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Abstract 

This thesis describes the preparation and characterisation of potential ‘modular’ solid state 

hydrogen storage solutions for on-board applications. The systems investigated throughout 

this work are based on reactions between light weight hydroxides and hydrides. 

In many senses light metal hydroxides can be seen as attractive candidates for hydrogen 

storage: they are low cost, present negligible toxicity and it is not possible to poison the fuel 

cell with decomposition products, unlike in nitrogen or boron containing systems. However, 

as the dehydrogenation products are the respective oxides, the major drawback of such 

systems lays in the fact the thermodynamics of rehydrogenation are not favourable for on-

board applications. Hence, the system must be considered as a ‘charged module’, where the 

regeneration is performed ex-situ. Dehydrogenation can be achieved through reaction with 

light metal hydrides such as LiH or MgH2. 

A wide range of ‘modular’ release systems can be studied, however the most interesting in 

terms of theoretical gravimetric capacity, kinetics and thermodynamics within reasonable 

temperature range (RT - 350˚C) use magnesium and lithium hydroxide and their hydrate 

forms. The present work focuses on the full investigation of three main systems: 

• Mg(OH)2 – MgH2 system 

• Mg(OH)2 – LiH system 

• LiOH(·H2O) – MgH2 system (both anhydrous and monohydrate LiOH were used) 

Mixtures of hydroxides and hydrides were prepared by manually grinding stoichiometric 

amounts of the starting materials. Further, nanostructuring the reactants was investigated as a 

means to control the dehydrogenation reaction and enhance the kinetics and thermodynamics 

of the process. Nanostructured Mg(OH)2 and LiOH(·H2O) have been successfully obtained 

using both novel and conventional synthetic routes. Reduction of the particle size of both 

hydrides was effectively achieved by mechanically milling the bulk materials. As detailed 

throughout Chapters 3, 4 and 5, promising results were obtained when employing nanosized 

reactants. The onset temperatures of hydrogen release were decreased and the overall systems 

performances enhanced. Particularly interesting results were obtained for the LiOH – MgH2 

system, which exhibit a dramatic decrease of the onset temperature of H2 release of nearly 

100 K when working with milled and nanostructured materials with respect to bulk reagents. 

All systems were characterised mainly by Powder X-ray diffraction (PXD) and 

simultaneous thermogravimetric analysis (TG-DTA) mass spectroscopy (MS). TG-DTA-
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MS experiments were performed to obtain information on the onset and peak temperature 

of hydrogen release, weight loss percentage and nature and amount of the gases evolved 

during the reaction. Ex-situ PXD studies have been performed for each system in order to 

try and identify any intermediate species forming during the dehydrogenation process and 

ultimately propose a mechanism of H2 release. Since two fundamentally different types of 

reaction pathway could be proposed for the Mg(OH)2 – LiH system, powder neutron 

diffraction (PND) was employed for following the reaction in-situ. Developing a complete 

model of the dehydrogenation process in terms of mechanistic steps was found to be 

pivotal in order to understand and enhance such systems further. 
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1 Introduction 
 

1.1 Hydrogen: a clean and renewable energy carrier 

One of the major challenges facing modern society is to find a means of sustainable fuel 

generation, storage and delivery and overcome our reliance on non-renewable fossil fuels 

such as oil, coal and natural gases. If the negative effects of global warming, degradation 

of the ozone layer and consequent world’s climate change is to be stopped, the 

development and use of a green and renewable energy vector is mandatory.1 Further, 

projections to 2040 predict an increase of 56 % in the global world energy demand.2,3 

Hydrogen is undoubtedly one of the key alternatives to replace fossil fuels and petroleum 

products as a clean energy carrier for both transportation and stationary applications. 

Hence, over the past decades, great efforts have been made towards the development of 

non-carbon emitting sustainable vehicular hydrogen storage solutions.4,5 However, less 

than 1 % of hydrogen is available as H2. Most of hydrogen exists in H2O and some of it is 

bound to C in liquid or gaseous hydrocarbons. The energy density of hydrogen, however, 

is greater than that of fossil fuels or other non-renewables.1 The production, storage, 

consumption and regeneration of H2 fuel is known as ‘hydrogen economy’ and the 

‘sustainable hydrogen cycle’ on which it is based is presented in Figure 1-1. 

 

Figure  1-1: Schematic of a sustainable hydrogen cycle. 

Current research is focused mainly on the production and storage of hydrogen, the two 

steps of the whole cycle which still represent a bottle neck to the usage of H2 more widely 

as energy vector especially for on-board applications. 
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Today, hydrogen can be produced from renewable sources using different methods with 

minimum environmental impact, although not very efficiently in many cases: for instance 

solar, wind, hydro, electrolysis, photolysis, water splitting, biomass gasification and 

fermentation can be used for hydrogen production.6,7,8,9 

Before the hydrogen economy can become completely viable, the safe storage and 

availability of H2 is an issue that must be overcome. The major challenge in terms of using 

hydrogen as a fuel is to develop effective methods for its storage that can not only store H2 

safely, but also supply it when and where it is needed. Another key factor worth 

considering is that the storage systems have to be cost-competitive as well as energy 

efficient. H2 can be stored as gas, liquid or in the solid state. At present, in industry 

hydrogen is normally stored in the form of a compressed gas or liquid. Nevertheless, there 

are issues related to the safety and volume restrictions for the storage of high pressure 

hydrogen gas, preventing its application more widely.1,10,11 Recent research is thus 

focusing on the development of safer solid state storage solutions. Further, the cost 

advantages would be dramatic if it could be possible to store H2 in the solid state using 

naturally occurring, cheap or waste materials. Potential solid state hydrogen storage, 

materials need to meet certain criteria: the US Department of Energy recently adjusted its 

targets in 2012 to new ones with an ultimate system gravimetric capacity of 2.5 wt. % H2, 

an ultimate volumetric capacity of 2.3 kWh/L and overall storage system cost to be 8 

$/kWh, which can be also expressed as 266 $/kg H2. Selected technical system targets for 

solid state on-board H2 storage are shown in Table 1-1. 

Table  1-1: Selected DoE technical system targets for on-board hydrogen storage for light-duty 

hydrogen powdered vehicles. Adapted from Reference 12. 

Storage Parameter 2017 Ultimate 

System Gravimetric Capacity / kWh kg-1 

(kg H2 kg-1 system) 

1.8 

(0.055) 

2.5 

(0.075) 

System Volumetric Capacity / kWh L-1 

(L H2 L
-1 system) 

1.3 

(0.040) 

2.3 

(0.070) 

Storage System Cost / $ kWh-1 net 

($ kg-1 H2) 

12 

(400) 

8 

(266) 

Charging / discharging Rates 

(system fill time; 5 kg) / min 

3.3 2.5 
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Beside these criteria, other properties must be taken into account when considering 

candidate materials. They must exhibit favourable hydrogen uptake and release kinetics 

and thermodynamics and must exhibit negligible toxicity. Further, the poisoning of the fuel 

cell due to decomposition or reaction by-products is an issue that must be avoided as it 

may result in a decreased lifespan of the cell as well as a diminished efficiency.13,14,15 A 

wide range of materials is currently under investigation. Research is focusing on improving 

the hydrogen desorption/absorption processes with particular emphasis on enhancing the 

kinetics and thermodynamics of dehydrogenation.16,17,18 Light metal hydrides and complex 

hydrides are considered the most promising candidates for realising an on-board storage 

system.19,20,21,22,23 However, solid state chemists must also face other issues relative to the 

usage of such materials, as many are sensitive to both moisture and air. Therefore handling 

represents another challenge, which requires inert techniques at all times. The most recent 

progress in terms of materials for solid state hydrogen storage will be presented in a brief 

literature review (Section 1.3) with respect to the materials of interest employed during this 

work. 

If hydrogen can be safely stored, it becomes available to the fuel cell for consumption. The 

reaction between H2 and O2 to form H2O and generate power is the basis of fuel cell 

operation. An overview on the working principles of fuel cells, categorised based on 

operating temperature and the type of electrolyte employed, will be briefly described in the 

following section. 

 

1.2 Fuel Cells 

Fuel cells (FC) are quickly becoming one of the promising energy sources of the 21st 

century for both stationary and on-board applications. FCs produce electricity via a 

chemical reaction between a fuel (commonly hydrogen) and oxygen. Although hydrogen is 

the most used fuel, other ones such as methanol or ethanol can be employed as well. 

A typical setup of a hydrogen powered fuel cell consists of three main components: the 

anode, the cathode and the electrolyte, which is located between the two electrodes. As can 

be seen from Figure 1-2, oxygen (typically O2 from the atmosphere) is supplied to the 

cathode while hydrogen is transferred to the anode. At the anode, hydrogen is stripped of 

its electrons to yield positive ions and electrons. Only the positive ions are then allowed to 

pass through the specifically designed electrolyte membrane and flow to the cathode. The 

electrons flow from anode to cathode through an external electrical circuit creating current. 
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Once protons and electrons reach the cathode they recombine and react with the oxidant 

(O2) to form water and expel exhausted oxidizing agent. 

The reactions taking place respectively at the anode and cathode are presented in Equations 

1-1 and 1-2, whilst Equation 1-3 shows the overall reaction occurring. 

−+ +→ e4H4H2:Anode 2  (1-1) 

OH2H4e4O
2

1
:Cathode 22 →++ +−  (1-2) 

OHO
2

1
H:reactioncellOverall 222 →+  (1-3) 

Electricity production form a FC usually continues as long as fuel and oxidizing agents are 

supplied and there is no poisoning of the apparatus. FC poisoning may be caused by the 

presence of impurities in the fuel (i.e. CO, CO2, H2S and NH3) or air pollutants such as 

NO, SO and CO, ultimately resulting in a shortened FC lifetime. 

 

Figure  1-2: Schematic of a hydrogen powered fuel cell. 

 

As today, FCs can be divided into two major categories depending on their operational 

temperature range: it is possible to distinguish between low temperature (50-350 °C), 

intermediate temperature (350-600 °C) and high temperature FCs (600-1000°C).24 Further, 

FCs can also be classified in terms of the type of electrolyte employed.25 Low temperature 

fuel cells comprise Proton Membrane Exchange Fuel Cells (PEMFC), Alkaline Fuel Cells 
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(AFC), Phosphoric Acid Fuel Cells (PAFC) and Direct Methanol Fuel Cells (DMFC). 

High temperature fuel cells include Solid Oxide Fuel Cells (SOFC), also known as ceramic 

fuel cells, and Molten Carbonate Fuel Cells (MCFC). An overview of the materials 

employed for anode, cathode and electrolytes for each FC is given in the following 

Sections 1.1.1 and 1.1.2. 

 

1.2.1 Low Temperature Fuel Cells 

 

1.2.1.1 Polymer Electrolyte Membrane Fuel Cells 

The PEM fuel cells operate in the temperature range of 50-100 °C and therefore they are 

suitable for both stationary and portable applications to replace rechargeable batteries.26 

This type of FC uses a solid polymer as electrolyte, usually Nafion, a Teflon-like 

membrane which acts as conductor for protons and as insulator for electrons.27 This is 

positioned between anode and cathode. The latter is usually made of porous carbon. In 

PEMFCs, the hydrogen is activated by a catalyst. A wide range of catalysts has been 

studied,28 although platinum or platinum alloys such as Pt/C are still used.29,27 The 

chemical reactions occurring at the anode and cathode as well as the overall reaction are 

given in Equations 1-1, 1-2 and 1-3. 

A PEM fuel cell presents many advantages. An efficiency in the 50-60 % range and a high 

power density together with a low operating temperature makes them ideal for 

transportation, especially considering their short start-up time. Moreover, they use a solid 

electrolyte, which avoids the handling of liquids and the relative refilling problems.25 

Conversely, their major drawback resides in the fact that the FC can be easily 

contaminated by impurities present in the hydrogen fuel (CO, CO2, H2S and NH3) and also 

by air pollutants such as NO, SO and CO or cations produced by the corrosion of the FC 

components (Fe3+ and Cu2+).30 This sensitivity problem eventually led to the development 

of Direct Methanol Fuel Cells (Section 1.1.1.4). Lastly, it is important to remember that 

they use a platinum catalyst and a solid polymer membrane, both of which are very 

expensive. Moreover, the Pt catalyst can also be partially deactivated by the presence of 

CO. In fact, carbon monoxide blocks the active catalyst sites where the hydrogen 

absorption and dissociation take place, rendering the fuel cell less efficient.31,32 
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1.2.1.2 Alkaline Fuel Cells 

The AFC, as its name indicates, uses an alkaline water based solution as an electrolyte, 

usually KOH.33 The operating temperature range is similar to the PEMFC one (60-100 °C). 

Alkaline fuel cells were the first FC developed by Francis Thomas Bacon in the 1940s at 

the Department of Colloid Science, University of Cambridge.34 Since their invention, 

AFCs have found their major application in the aerospace field. AFCs are in fact the 

primary source of electricity on human spaceflights for over 40 years now.35 The 

electrochemistry on which these types of FC are based presented in Equations 1-4 and 1-5, 

with the overall cell reaction given in Equation 1-6. 

−− +→+ e4OH4OH4H2:Anode 22  (1-4) 

−− →++ OH4e4OH2O:Cathode 22  (1-5) 

OH2OH2:reactioncellOverall 222 →+  (1-6) 

Besides the low working temperature, which makes AFCs suitable for transport 

applications as they have a fast start-up, they present several advantages such as a high 

efficiency (50%), low-weight and low-volume and they do not present corrosion problems. 

Moreover, they require a little amount of catalyst, which lowers the costs of the whole FC 

apparatus. The major disadvantage lies in an extreme sensitivity to CO2 and CO, limiting 

the types of fuels (both hydrogen and oxidizing agent) that can be employed. The use of 

liquid electrolytes could be seen as a disadvantage, as it can result in handling problems of 

the apparatus. They also present a low power density (ca. 1 kW m-3), limiting their 

applications for large scale energy applications. Schulze et al. published several papers in 

which they investigated deeply AFCs in terms of focusing on the long term operation of 

AFC electrodes and their poisoning as an effect of the presence of CO2 as well as long 

term investigations on the degradation of different types of anodes and cathodes.36,37,38,35 

An extensive review on the different anion exchange membranes that can be employed for 

alkaline fuel cells has been recently published by Nijmeijer et al..39 Fuel sources using 

methanol and ethanol instead of pure hydrogen have been investigated as well.40 

 

1.2.1.3 Phosphoric Acid Fuel Cells 

Phosphoric acid fuel cells (PAFCs) use phosphoric acid (H3PO4) as an electrolyte and high 

surface area graphite electrodes with Pt or Pt alloys as catalysts.24 They follow the same 

working principles as PEMFCs, although their operating temperature is in the 150-200 °C 
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range, due to the poor ionic conductivity of phosphoric acid at low temperatures. Although 

PAFCs are well-developed and commercially available, the use of very expensive catalysts 

is needed and their market has not progressed because of their high cost. Another 

disadvantage can be identified in the corrosive nature of the liquid electrolyte employed. 

Currently, PAFC plants with size of 100, 200 and 500 kW are available for stationary and 

heat applications.25 Phosphoric acid FCs present several advantages however. Since CO2 

does not affect the electrolyte or cell performances, PAFCs do not require pure oxygen as 

fuel and atmospheric air can be used as the oxidizing agent. Moreover, the electrolyte the 

use is stable and presents low volatility even at the operating temperature of the FC. 

Further, this FC technology is able to use the waste heat produced when working at 

medium temperatures for cogeneration of electricity and useful heat.34 

 

1.2.1.4 Direct Methanol Fuel Cells 

DMFCs are based on the same working principles of PEMFCs, although the fuel is 

methanol instead of pure hydrogen. At the anode CH3OH is oxidised to carbon dioxide, 

while the cathode is fed with atmospheric oxygen from air. The electrochemical reactions 

occurring at anode and cathode respectively are shown in Equations 1-7 and 1-8, with the 

overall cell reaction given in Equation 1-9.41,42 

−+ ++→+ e6H6COOHOHCH:Anode 223  (1-7) 

OH3e6H6O
2

3
:Cathode 22 →++ −+  (1-8) 

OH2COOHCHO
2

3
:reactioncellOverall 2232 +→+  (1-9) 

The main advantage in employing DMFCs is the use of methanol as liquid fuel resulting in 

faster refilling times. They are reasonably efficient (30-40 %) at operating temperatures in 

the 60-200 °C range. Further, they demonstrate long lifetime and do not need to be 

subjected to any recharging process. On the other hand, their efficiency is lower compared 

to PEMFCs. Moreover, to be operational at temperatures as low as 60 °C, a high amount of 

catalyst is needed for the electro-oxidation of methanol fuel, which reflects in increased 

production costs. Ethanol has also been proposed as fuel for FCs based on the same 

setup.43,44,45 
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1.2.2 High Temperature Fuel Cells 

 

1.2.2.1 Solid Oxide Fuel Cell 

Solid oxide fuel cells work at high temperatures, in the 300-1000 °C region.46  

SOFCs use a solid ceramic electrolyte, positioned in between porous anode and cathode. 

Many electrolyte materials have been investigated and include perovskites and related 

structures, apatites, LAMOX and fluorite-base systems such as zirconia or ceria, although 

recently YSZ (yttrium stabilized zirconia) has been extensively employed. Perovskites are 

typically used for the cathode, whereas Ni and Ni/YSZ composites are commonly used for 

the anode. A number of reviews on the state of art of SOFCs and materials employed are 

available. Further, recent efforts have been focusing on exploring suitable materials for 

lowering the effective operating temperature of the cell to the 300-600 °C range.46,47,48,49,50 

The main difference between SOFCs and other FCs lays in the fact that the charge carriers 

are oxide ions O2- and not protons; O2 is stripped of two electrons at the cathode, yielding 

O2-. Oxygen ions then migrate to the anode, where they react with the fuel. The majority of 

SOFCs use hydrocarbons as fuel at the anode. When hydrocarbons are employed (usually 

CH4), O
2- will react with hydrogen and CO to form H2O and CO2. However, if the source 

is pure hydrogen, the only product of the electrochemical reaction will be water. The 

reactions occurring at the cathode and the anode and the overall reaction occurring in a 

typical SOFC are shown below. 

−− →+ 2
)g(2 Oe2O

2

1
:Cathode  (1-10) 

−−−− +→++→+ e2COOCOande2OHOH:Anode 2
2

)g(2
2

)g(2  (1-11) 

OHCOOCOH:reactioncellOverall 2222 +→++  (1-12) 

SOFCs have a very high efficiency that can be as high as 60% when pure hydrogen is used 

as fuel.26 Solid oxide fuel cells generate electricity when operating at temperatures as high 

as 1000 °C. There is no need for an expensive noble metal catalyst and the presence of 

solid electrolytes avoids handling problems related to the presence of liquid inside the 

stacks. Further, it is not possible to poison the fuel cell with CO from fossil fuels, as the FC 

is able to convert it to CO2. The start-up of SOFCs is still slow and they show sensitivity to 

sulphur.51 The study of solid state electrolytes with a good conductivity at low SOFC 
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operating temperatures that are compatible with the other FC components is still an open 

research field. 

 

1.2.2.2 Molten Carbonate Fuel Cells 

MCFCs are fuel cells operating at high temperatures in the 600-700 °C range, which are 

mainly used in stationary applications such as power plants and other industrial 

applications.52 The electrolyte is usually a mixture of lithium carbonate and potassium 

carbonate, impregnated inside an LiAlO2 matrix.53 Unlike most fuel cells, in MCFCs CO3
2- 

ions migrate from the cathode to the anode. At the anode, the carbonate ions will react with 

the hydrocarbon fuel gas (typically methane, CH4) and H2 react to yield water, CO2 and 2e- 

via a series of reductions and oxidations. The electrons will travel to the cathode to 

generate electricity. The anode is commonly Ni and Ni-alloys,54,55 whist the cathode 

materials typically used include nickel oxide, NiO composites and LiFeO2.
56,57,58 Due to 

the high working temperatures, noble metals are not required as catalysts and Ni is usually 

employed and presents good activity as well as low price. Other than this, MCFC are 

characterised by high efficiency (50-60 %). Moreover, the high temperatures allow the 

regeneration of the system inside the cell stacks, improving the overall efficiency of the 

FC. However, one of the drawbacks are the long times needed to reach the operating 

temperature, which translate to a slow start up and generation of power. Other drawbacks 

include intolerance to sulphur, particularly for the anode, corrosive nature of the electrolyte 

and partial dissolution of the cathode’s NiO in the electrolyte. All these factors tend to 

result in a shorter lifespan for MCFCs compared to SOFCs.53 
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1.2.3 Fuel cells technologies comparison 

 

Table  1-2: Comparison of different fuel cell types. Adapted from Reference 59. 

 Fuel Cell Type 

Parameters PEMFC AFC PAFC DMFC SOFC MCFC 

Electrolyte Solid 

polymer 

membrane 

(Nafion) 

KOH 

aqueous 

solution 

Phosphoric 

acid (H3PO4) 

Solid 

polymer 

membrane 

Stabilised 

solid oxide 

electrolyte 

Li 2CO3 and 

K2CO3 in 

LiAlO 2 

matrix 

Operating 

Temperature 

/˚C 

50-100 50-200 Ca. 200 60-200 300-1000 Ca. 650 

Charge 

Carrier 

H+ OH- H+ H+ O2- CO3
2- 

Fuel Pure H2 Pure H2 Pure H2 CH3OH H2, CO, CH4 H2, CO, CH4 

Oxidant O2 from 

atmosphere 

O2 from 

atmosphere 

O2 from 

atmosphere 

O2 from 

atmosphere 

O2 from 

atmosphere 

O2 from 

atmosphere 

Efficiency 40-50 % Ca. 50 % 40 % 40 % > 50 % > 50 % 

Power 

Density 

/kWm -3 

3.8-6.5 Ca. 1 0.8-1.9 Ca. 0.6 0.1-1.5 1.5-2.6 

Cogeneration – – Yes No Yes  Yes 

Applications Residential, 

industry, 

transports, 

backup or 

portable 

power, 

vehicles 

Transport, 

space 

shuttles, 

portable 

power 

Transports, 

commercial 

cogeneration, 

portable 

power 

Replace 

batteries in 

mobile 

phones, 

laptops and 

portable 

devices 

Residential, 

commercial 

cogeneration, 

utility power 

plants, 

auxiliary 

power 

Transports, 

industries, 

utility power 

plants 
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1.3 Solid State Hydrogen Storage 

Solid state hydrogen storage materials have been widely investigated and the state of the 

art on such topic is reported in various literature reviews.16,60,17,61 The storage of hydrogen 

in the solid state can be divided into two main categories: physical storage and chemical 

storage. The former requires H2 to be bound or included in a host by relatively weak 

interactions commonly referred to as physisorption or physical absorption. Most studied 

materials employed for physically storing H2 include MOFs (metal-organic frameworks), 

COFs (covalent-organic frameworks), polymers, porous carbon and zeolites.62,22,63,64,65,66 

The study of these materials goes beyond the scope of the present work, hence it will not 

be further covered. In the latter storage category, the hydrogen is chemically bound in a 

compound and the uptake/release process involves chemical reactions. In this scenario 

hydrogen is relatively strongly bound and recent efforts focus on enhancing the 

thermodynamics and kinetics of the dehydrogenation process for the materials employed 

for storing hydrogen. The work carried out during this project focuses on chemical 

hydrogen storage with particular emphasis on hydride – hydroxide systems, and therefore 

recent developments on chemical storage of hydrogen in the solid state are summarised in 

the following section. 

 

1.3.1 Chemical hydrogen storage 

Metal hydrides have been extensively studied as a hydrogen store medium because of their 

light weight and high theoretical gravimetric as well as volumetric hydrogen 

capacity.19,67,68 A comparison overview of some hydrogen storage hydrides is given in 

Figure 1-3. 
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Figure  1-3: Comparison of theoretical gravimetric and volumetric capacity for solid state hydrogen 

storage hydrides.69 

Accordingly, studies have focused on alkali and alkaline earth metal hydrides. Most efforts 

have been pointing towards the development of cost- and energy-efficient solid state 

hydrogen storage solutions. 

 

1.3.1.1 Light metal hydrides 

In terms of light metal hydrides, LiH, NaH, CaH2 and MgH2 attracted the most interest in 

terms of solid state hydrogen storage. In Table 1-3 are reported the molecular weight, 

gravimetric and volumetric hydrogen capacities and decomposition temperatures for the 

aforementioned hydrides. 

 

Table  1-3: Molecular weight, theoretical gravimetric and volumetric hydrogen capacities, 

temperatures of decomposition for selected light metal binary hydrides. Adapted from Reference 70. 

Hydride MW / g ·mol-1 
Theoretical 

wt. % H 2 

Theoretical 

volume H2 / kg·m-3 
Tdec / °C 

LiH 7.95 12.59 98.60 720 

NaH 23.99 4.17 57.73 425 

MgH 2 26.31 7.60 110.03 327 

CaH2 42.09 4.75 92.37 600 
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Lithium hydride can store up to 12.59 wt. % H2, whilst the percentage decreases to 4.17 

wt. % H2 for sodium hydride. Both LiH and NaH are extremely air sensitive and therefore 

their manipulation and storage is more difficult when compared to magnesium or calcium 

hydride. In addition, LiH is characterised by very high decomposition temperatures of 

nearly 720 °C (and a melting point of 680 °C)71, rendering the use of LiH on its own 

unsuitable for storing H2 in the solid state. However, the use of LiH has been widely 

investigated as a component of Li-N-H systems for direct and indirect H2 storage as well as 

a component for hydride – hydroxide ‘modular’ hydrogen release systems. The 

employment of lithium hydride in such systems will be discussed in Sections 1.3.1.3 and 

1.3.2 respectively. Similarly to NaH, CaH2 is able to store 4.75 wt. % of hydrogen and like 

LiH is characterised by high decomposition temperatures. Like MgH2, CaH2 the 

dehydrogenation process is reversible (Equation 1-13) and calcium hydride is typically 

synthesised by reaction of calcium metal with high pressure hydrogen at high 

temperature.72,73 

2
1

22 HmolkJ171)K298(HHCaCaH −⋅=°∆+↔  (1-13)  

As per LiH, due to its high Tdec, CaH2 is usually employed as a component in composite 

systems. Its behaviour in the presence of borohydrides, amides and ammonia borane has 

been investigated over the recent years.74,75,21,76,77 

The most promising light metal hydride to be employed for solid state H2 storage solutions 

is MgH2, with a theoretical gravimetric capacity of 7.60 wt. % H2. Further, magnesium is 

cheap and abundant and hence plays a pivotal role in the development of solid state 

hydrogen storage solutions. However, due to its thermal stability, MgH2 decomposition 

occurs at temperatures at temperature as high as 327 °C via a single endothermic event 

associated with hydrogen release (Equation 1-14).69 

2
1

22 HmolkJ2.76)K298(HHMgMgH −⋅=°∆+↔  (1-14) 

Two main strategies have been investigated in order to enhance the thermodynamic 

performances by reducing the enthalpy of decomposition of MgH2: nanostructuring the 

material and the use of additives. Many catalysts/additives have been tested. These include 

calcium hydride, lithium hydride and sodium hydride to yield ternary hydrides and 

composites78,79, graphite and/or silicon carbide80 as well as transition metals such as multi-

valence vanadium- and titanium-based materials, Ni, Nb and Pd. 81,82,83,84,85,86 Only 
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recently, alkali metal hydroxides have been proposed as additives for MgH2, with the aim 

of improving the hydrogen desorption properties of nanosized MgH2.
87 

Tailoring hydrogen storage materials is currently one of the major fields in solid state H2 

storage research; in particular, nanostructing materials is seen as a means to have a better 

control over the dehydrogenation process and enhance the performances of H2 

release/uptake.88,89 The reduction of the particle size to the nanoscale is usually achieved 

by mechanical milling, as chemical methods for yielding nanomaterials like 

hydrothermal/solvothermal syntheses, templating or sol-gel syntheses often cannot be 

employed due to the air-sensitive nature of the hydrides. Nanostructured magnesium 

hydride has been successfully obtained by ball-milling the bulk material.78,90,91 

 

1.3.1.2 Complex hydrides 

The interest in the use of complex hydrides has increased recently. Boron and aluminium, 

like magnesium, are cheap and light-weight and ternary hydrides containing alkaline and 

alkaline-earth metals are able to store an increased amount of hydrogen compared to the 

respective binary hydrides. For these reasons, borohydrides and alanates have been widely 

investigated as cheap and abundant H2 storage mediums.21,92 Table 1-4 gives an overview 

of the molecular weight, gravimetric and volumetric hydrogen capacities and 

decomposition temperatures for the most promising complex hydrides. 

 

Table  1-4: Molecular weight, theoretical gravimetric and volumetric hydrogen capacities, 

temperatures of H2 desorption for selected borohydrates and alanates. Adapted from Reference 70. 

Hydride MW / g ·mol-1 
Theoretical 

wt. % H 2 

Theoretical 

volume H2 / kg·m-3 
Tdes / °C 

LiBH 4 21.75 18.39 124.02 380 

NaBH4 37.81 10.58 118.02 400 

Mg(BH 4)2 53.93 14.84 117.23 280 

Ca(BH4)2 69.70 11.48 124.07 347 - 497 

LiAlH 4 37.95 10.55 74.02 115 

NaAlH 4 53.97 7.41 97.41 220 

Mg(AlH 4)2 86.3 9.27 98.15 110 - 200 

Ca(AlH 4)2 102.04 7.84 96.97 200 - 250 
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As can be observed from Table 1-4, lithium borohydride and sodium borohydride are the 

most promising complex hydride in terms of H2 gravimetric capacity (18.39 wt. % H2 and 

10.58 wt. % H2 for LiBH4 and NaBH4 respectively). However, they are characterised by 

poor reversibility in addition to not particularly favourable dehydrogenation kinetics and 

thermodynamics. Hence, over the past years efforts have been focused on improving their 

hydrogen release/uptake performance. Many approaches have been employed for 

enhancing the dehydrogenation properties of these complex hydrides. Nanostructuring the 

materials has been investigated as a means to lower the onset temperatures of hydrogen 

release for the hydrides. Ball milling the bulk materials with one or multiple additives has 

proved to be a viable approach for promoting hydrogen release by destabilising the 

hydride. In this sense, promising results have been obtained for both LiBH4 and 

NaBH4.
93,94 Nanoconfinement is one of the main focuses of current research. Incorporating 

the borohydrides inside a porous scaffold host such as carbon has showed promising 

results in terms of lowering the dehydrogenation temperature when compared to the 

respective bulk materials. In fact, enhanced dehydrogenation performances were observed 

when nanoconfining both LiBH4 and NaBH4.
95,96 Further, through this nano-engineering 

approach it was possible to increase the reversibility of the H2 release-uptake process with 

either lithium borohydrides or sodium borohydride.97,98 

The role of borohydrides and other complex hydrides will not be covered in any more 

detail in this thesis, hence reviews on the latest progress in terms of LiBH4 and NaBH4 for 

hydrogen storage can be consulted to obtain additional information on the subject.99,100 

 

1.3.1.3 Nitrides, imides and amides: N-H-based materials 

Nitrides and their hydrogenated compounds imides and amides gained attention in 2002, 

when Chen et al. discovered Li3N to be an extremely promising medium for storing 

hydrogen in the solid state.101 In fact, Li3N can theoretically store 10.4 wt. % H2 when 

subjected to the hydrogenation process presented in Equation 1-15: 

LiH2LiNHHLiHNHLiH2NLi 22223 +↔++↔+  (1-15) 

However, experimentally the system was found to release only 9.3-10 wt. % of 

hydrogen.101 Further, the system suffers from poor kinetics and the thermodynamics of the 

dehydrogenation step from imide to nitride occurs at temperatures as high as 320 °C and 

pressures as low as 10-5 mbar. Hence, only the imide-amide conversion (second step of the 

overall mechanism) is reversible at practical working temperatures. Nonetheless, the 
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second step alone can yield 6.5 wt. % H2, which is a value realistically near to the targets 

set by the US DoE.  

Following Chen’s discovery, a large variety of Metal-N-H systems have been investigated, 

employing light-weight materials containing aluminium, magnesium, boron and 

sodium.102,103 Most attention was focused on the ternary Li-N-H system although also the 

quaternary Li-Mg-N-H system has been thoroughly investigated. Nanostructuring such 

materials using different approaches was one of the main aims in the nitride-imide-amide 

research area with the ultimate goal of enhancing the performances of such systems. 

Reduction of the particle size of the reactants via ball milling as well as the use of catalysts 

and nano-catalysts and additives have been studied in this respect. The behaviour of 

complex amides and nanocomposites has been investigated as well. Further, great effort 

has been devoted to reaching a complete understanding of the decomposition pathways of 

such materials.76,88,89,104,105,106 

A crucial objective related to the work in this thesis is to clarify the reaction pathways of 

hydrogenation with particular focus on the second step of the process, when the conversion 

from imide to amide occurs. In fact, the first step is a hydrogenation process where one H 

replaces one Li inside the nitride structure to give Li2NH and LiH; in the second step an 

interaction between hydride and imide takes place resulting in the formation of LiNH2 and 

LiH. In this situation, the hydrogen bonded to N is positively charged (H+) because of the 

electronegativity relative to nitrogen, whilst the H in hydrides is negatively charged (H-). 

The combination between H+ and H-, together with the electrostatic attraction between the 

cation in the hydride and the ‘N anion’ in the amide, leads to the reaction between amide 

and hydride, which ultimately results in the evolution of H2. 

On this evidence, a whole new category of systems based on the reaction between 

negatively charged ionic hydrides and compounds containing protons can be identified and 

hence investigated. In fact, the present work will focus on the reaction between light metal 

hydroxides and light metal hydrides as a basis for the so-called ‘modular’ hydrogen release 

systems. The concept of ‘modular’ systems as well a review of the latest progress in terms 

of such systems is given in the following section. 
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1.3.2 Hydride – Hydroxide hydrogen release systems 

As previously stated, no single material or system has been able to meet the targets set by 

the DoE yet.12 In many senses, light metal hydroxides could be seen as attractive 

candidates for storing hydrogen in the solid state; they are low cost, they do not present 

toxicity and moreover it is not possible to poison the fuel cell with undesired by-products, 

unlike in systems containing nitrogen or boron. However, as the end products of the 

dehydrogenation process are their corresponding oxides, the rehydrogenation 

thermodynamics are unfavourable for on-board applications. The system must therefore be 

considered as a ‘charged module’, where its regeneration can be performed inexpensively 

ex-situ. These ‘charged modules’ are regenerated/recycled offline and plugged into the 

desired appliance/vehicle by the user (Figure 1-4). In this sense, refuelling time may be 

decreased, although the whole process of dehydrogenation-rehydrogenation needs to be 

cost- and energy-efficient. 

 

Figure  1-4: Schematic of the proposed ‘modular’ hydrogen release system; H2 fuel source is given from 

the reaction between hydride and hydroxide. 

A wide range of ‘modular’ hydrogen release systems can be studied, however the most 

interesting ones in terms of both theoretical gravimetric capacity and kinetics within 

reasonable temperature range (RT – 623 K) use magnesium, lithium and sodium hydroxide 

and their hydrate forms. Dehydrogenation can be achieved by reaction with light metal 

hydrides, such as LiH, MgH2, LiBH4 or NaBH4. In fact, the H+ - H- interaction mechanism 

proposed by Chen for the lithium amide – lithium hydride107 would suggest that light metal 

hydroxide should effectively destabilise the hydride, promoting the dehydrogenation 

process due to the H+ - H- coupling between the proton of the hydroxide’s OH- and the 
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anion of the hydride. Other evidence of this coupling reaction is reported for systems 

employing nitrogen-containing compounds and hydrides, where the hydrogen release is 

driven by the H+ - H- interaction force.101,108,109,110 Ultimately, light metal hydroxide – 

hydride systems could meet the criteria set by the DoE since they are cheap, could be 

tailored to yield high hydrogen capacities at low hydrogen release temperature and could 

be sustainably regenerated by reacting the dehydrogenated oxides either with water or with 

high pressure hydrogen gas. 

In 2004, Vajo et al. were the first ones to propose the study of the solid state reactions 

between light metal hydrides and alkali hydroxides to yield the respective oxides together 

with the evolution of hydrogen when heated to 673 K.111 In particular the LiH – LiOH, 

2LiH – NaOH, LiBH4 – LiOH and LiBH4 – LiOH·H2O systems were preliminarily 

investigated, working under a pressure of 1.3·10-6 Pa. Further, ball milling was found to be 

a promising technique for the preparation of hydroxide – hydride mixtures as no major 

reactions occurs during the milling procedure. The best results in terms of hydrogen 

desorption were obtained when working with lithium borohydride. In particular the thermal 

treatment of LiBH4 – LiOH was found to generate 6.6 wt. % of hydrogen, whereas the 

reaction between LiBH4 and LiOH·H2O was found to evolve ca. 10 wt. % H2 below 543 

K, with the dehydrogenation process starting at temperatures as low as 313 – 323 K. For 

both borohydride – hydroxide composites the end products were found to be Li2O, Li3BO3 

and Li4B2O5. The reaction between lithium hydride and lithium hydroxide instead was 

found to evolve ca. 5.5 wt. % of hydrogen and yield Li2O, when heating the mixture to 523 

K: the dehydrogenation performances for the system were found to improve when a 

catalytic amount of 2-10 mol % of TiCl3 was added. It was proposed that the added TiCl3 

may have acted either as a catalyst, facilitating diffusion and desorption of hydrogen, or as 

a dispersant, resulting in a finer mixing of the LiOH and LiH phases. The less promising 

results were obtained for the 2 LiH – NaOH system, where only 3.2 wt. % H2 was 

generated, with the final products being Li2O and NaH. The absence of Na2O as final 

product was proposed to be due to its instability in a hydrogen environment below 673 K. 

More recently, the use of LiOH and its hydrate for hydrogen generation with facile 

regeneration of the monohydrated hydroxide by reaction with water was further 

investigated by Lu et al.112. Dehydrogenation is achieved by reaction with lithium hydride 

at temperatures below 623 K. Moreover, high capacities are possible. The theoretical 

gravimetric capacity of hydrogen is 6.3 wt. % H2 for the anhydrous lithium hydroxide – 
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lithium hydride system, whilst it can be as high as 8.8 wt. % H2 when lithium hydroxide 

monohydrate is employed (Equations 1-16 and 1-17). 

2
1

22 HmolkJ84.19)K298(HHOLiLiHLiOH −⋅−=°∆+→+  (1-16) 

2
1

222 HmolkJ33.134)K298(HH3OLi2LiH3OHLiOH −⋅−=°∆+→+⋅  (1-17) 

In addition, both hydride and hydroxide can be easily regenerated from the dehydrogenated 

oxide. With this hybrid approach for hydrogen storage, the release and uptake of hydrogen 

is reversible via a series of simple reaction based on the reaction between LiOH or its 

hydrates and LiH with good kinetics within a practically reasonable temperature range. 

Further, the recharge of hydrogen is accomplished by reaction with water, rather than high 

pressure H2 gas, resulting in an overall energetically favourable reversible cycle despite the 

high temperature magnesothermic reduction step. A schematic of the reaction cycle is 

presented in Figure 1-5. 

 

Figure  1-5: Proposed ‘modular’ solid state hydrogen release system112 

 

In 2009, Leardini et al. investigated the Mg(OH)2-MgH2 hydrogen release system, which 

can theoretically release 4.7 wt. % H2 (Equation 1-18).113 

2
1

222 HmolkJ3.101)K298(HH2MgO2MgH)OH(Mg −⋅−=°∆+→+  (1-18) 

In this work, hydride-hydroxide composites were obtained by exposing MgH2 to ambient 

atmosphere for a certain amount of time. Rietveld refinement against X-ray diffraction data 

was used to exactly calculate the weight fractions of the two components. Together with 
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water and hydrogen releases due to magnesium hydroxide and magnesium hydride 

decomposition reactions respectively, two other hydrogen desorption events were 

identified, which were believed to be related to solid state reactions between Mg(OH)2 and 

MgH2. The three dehydrogenation events were found to take place at 423, 623 and 723 K. 

The use of lithium borohydride and sodium borohydride as the hydride in the hydride – 

hydroxide ‘modular’ hydrogen release systems has gained momentum over recent years. 

Sodium borohydride was first proposed as suitable starting material to be employed in the 

so-called Millennium Cell,114 based on the reaction of NaBH4 with H2O (Equation 1-19): 

22
catalyst

24 H4NaBOOH2NaBH + →+  (1-19) 

The systems presents a theoretical gravimetric capacity of 10.8 wt. % H2.The reaction 

products were found to be only hydrogen and NaBO2, which would then be regenerated 

offsite to re-obtain the borohydride. The hydrogen would be evolved from the borohydride 

aqueous solution with the help of a catalyst at a working temperature in the 333 – 353 K 

range. However, this setup involves the use of water and it is not suitable for developing 

solid state hydrogen storage on-board solutions. Nonetheless the use of NaBH4 as well as 

LiBH4 has been further investigated, also in the light of the aforementioned results reported 

in 2005 by Vajo et al.111. In 2007, Drozd et al. investigated the NaBH4 – Mg(OH)2 system, 

which can theoretically release 5.2 wt. % H2 (Equation 1-20).115 

2
1

2224 HmolkJ9.135)K298(HH4MgO2NaBO)OH(MgNaBH −⋅−=°∆++→+ (1-20) 

Hydrogen evolution was found to start at approximately at 563 K, with the mechanistic 

steps believed to be a simultaneous brucite dehydration and hydride hydrolysis. Moreover, 

ball milling was employed to reduce the particle size of the reactants: a smaller particle 

size resulted in an increased reaction rate. The activation energy for the whole process was 

calculated and found to be 155.9 kJ mol-1. Differences in the dehydrogenation properties 

were found when different preparative methods were employed. Hand mixing with mortar 

and pestle resulted in a 54 wt. % release of hydrogen with respect to the theoretical figure, 

whereas mechanically milling the starting materials for 30 minutes lead to an improved 93 

wt. % mass change with respect to the theoretical 5.2 wt. % H2. Further, cobalt oxide and 

SiO2 were tested as catalysts for the system: the former was found to have little or no effect 

on the dehydrogenation performances of the composite, whilst the latter was found to have 

improvements on the hydrogen generation. In 1969, Mikheeva et al.116 studied the thermal 
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behaviour of the NaBH4 – NaOH system, which was found to follow the stoichiometry 

presented in Equation 1-21. 

2224 H3NaHNaBOONaNaOH3NaBH +++→+  (1-21) 

The sodium borohydride – magnesium hydroxide system was further investigated in 2012 

by Varin and Parviz, who additionally studied the lithium borohydride – magnesium 

hydroxide composite system.117 They also investigated the addition of nanometric nickel as 

an additive in order to improve dehydrogenation kinetics and thermodynamics for both 

systems. Both NaBH4 – Mg(OH)2 and LiBH4 – Mg(OH)2 composites were prepared by 

high energy ball milling. The sodium-based system was found to undergo one single 

dehydrogenation as an exothermic reaction with H2 release starting at ca. 513 K, whereas 

the lithium-based counterpart was found to undergo two distinct events, one exothermic 

and one endothermic although no reaction mechanism was proposed for the latter 

dehydrogenation process. The hydrogen evolution for the LiBH4-based system was found 

to begin at approximately 473 K, showing a lower onset temperature of hydrogen release 

with respect to the sodium-based counterpart. In addition, the presence of nanometric 

nickel in the mixture does not seem to affect the dehydrogenation behaviour for both Na- 

and Li-based composites. Also, in the case of the lithium borohydride – magnesium 

hydroxide system, the presence of nickel additives results in a decrease of evolved 

hydrogen and specifically a 10% decrease for each dehydrogenation step with respect to 

the un-doped composite. 

In 2014, Pan et al. systematically studied the dehydrogenation properties of non-

stoichiometric mixtures of the LiBH4 – x Mg(OH)2 system.118 The study concluded that the 

optimal performances were found for the LiBH4 – 0.3 Mg(OH)2 composite, which was 

found to release ca. 9.6 wt. % H2, with an onset temperature of hydrogen release of 373 K. 

The mechanistic steps of dehydrogenation were investigated as well. The reaction was 

believed to proceed via a series of endothermic and exothermic reactions with the 

intermediate species being LiMgBO3, LiH, B2O3, Li2B12H12 and B. Reversibility studies on 

the materials showed that the dehydrogenated systems was able to uptake ca. 4.7 wt. % of 

hydrogen at 723 K and 100 bar H2. 

At the same time, Zhu et al. investigated the dehydrogenation behaviour of lithium 

borohydride when mechanically mixed with alkali hydroxides.119 LiOH, KOH and NaOH 

were used and a destabilization due to the interaction between H+ in [OH]- and H- in [BH4]
- 

was hypothesised. This destabilisation was found to be greatest when employing LiOH, 
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reduced when using NaOH with the minimum found for KOH. The most promising 

composite was found to be the LiBH4 – x LiOH system and it was further investigated 

using different stoichiometric ratios (1:1, 1:1.36 and 1:4). Different dehydrogenation 

pathways were proposed based on the stoichiometry examined. The fastest 

dehydrogenation kinetics were observed for the LiBH4 – 4 LiOH composite. Also, 

increasing the ratio resulted in a higher amount of hydrogen evolved: the weight change 

associated with H2 release was found to increase from 4.1 wt. % to 6.5 wt. % when 

employing the 1:4 ratio, although also the onset temperature of hydrogen release was found 

to increase from 480 to 523 K. 

A very interesting reversible ternary system studied by Xu et al. is the NaOH-NaH-Na2O-

H2 system.120,121,122 It is possible to study the dehydrogenation behaviour of sodium 

hydride in presence of sodium hydroxide both anhydrous and monohydrate (Equation 1-22 

and Equation 1-23). 

2
1

22 HkJmol3.64)K298(HHONaNaHNaOH −=°∆+→+  (1-22) 

222 H3ONa2NaH3OHNaOH +→+⋅  (1-23) 

Although the theoretical gravimetric capacity for the systems is not very high (4.2 wt. % 

H2 when working with NaOH and 4.6 wt. % H2 when using NaOH·H2O), it has been 

widely proved that the release/uptake of hydrogen is a reversible process, with the full 

system being able to desorb and absorb hydrogen. 

 

1.4 Light metal hydroxides 

As explained in the previous section, the role of light metal hydroxide is becoming more 

and more important in the development of novel solid state hydrogen storage solutions. 

The prominent hydroxides used were found to be Mg(OH)2 and LiOH and therefore their 

structure, decomposition and dehydrogenation properties must be understood. 

 

1.4.1 Magnesium hydroxide: structure and dehydrogenation properties 

A wide variety of methods for yielding nanostructured Mg(OH)2 from MgO and H2O have 

been reported. Conventional heating syntheses have been studied as well as microwave 

preparations to give nanosized magnesium hydroxide. The use of additives and templating 
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agents was explored as well, resulting in crystals with different morphologies: hexagonal 

nanoplates, nanotubes, nanorods, nanosheets and a mixture of nanosheets and 

nanoparticles were obtained.123,124,125,126,127,128,129,130 

Magnesium hydroxide crystallises in the tetragonal P-3m1 space group, with lattice 

parameters of a = 3.15(1) Å and c = 4.80(2) Å (Figure 1-6).131,132 

For Mg(OH)2, every magnesium atom can coordinate 6 hydroxyl groups, resulting in a 

octahedral layered structure, with the octahedra linked together by O-O hydrogen bonds. 

 

Figure  1-6: Crystal structure of Mg(OH)2. Olive green spheres indicate magnesium, red spheres 

oxygen and white spheres hydrogen respectively. 

When heated to temperatures above 623 K, Mg(OH)2 decomposes undergoing a 

dehydration process which results in the formation of MgO (cubic, Fm-3m)133 and 

evolution of water (Equation 1-24).134,135 Magnesium hydroxide can theoretically evolve 

30.8 wt. % H2O. However hydrogen cannot normally be extracted, Mg(OH)2 can indirectly 

store 3.4 wt. % of hydrogen. 

OHmolkJ4.98)K298(HOHMgO)OH(Mg 2
1

22
−⋅=°∆+→  (1-24) 

Due to its light weight, low cost, low toxicity and facile synthesis, Mg(OH)2 can be seen as 

an ideal candidate to be employed in ‘modular’ hydrogen release systems. 
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1.4.2 Lithium hydroxide: structure and dehydrogenation properties 

Anhydrous lithium hydroxide crystallises in the tetragonal P4/nmm space group,136 

whereas lithium hydroxide monohydrate crystallises in the monoclinic C2/m space 

group.137,138 Crystal structures for LiOH and LiOH·H2O are presented in Figure 1-7 and 

Figure 1-8 respectively. 

LiOH structure comprises of alternate layers of lithium atoms coordinating 4 oxygen and 

hydroxyls, in which hydrogen bonding is not present. In the LiOH·H2O structure every Li 

atom coordinates 4 oxygen atoms to form a tetrahedron. Of the 4 oxygens, 2 come from the 

hydroxyl groups and 2 come from the water molecules. The chains are linked together by 

hydrogen bonds O-H-O. 

 

 

Figure  1-7: Crystal structure of LiOH. Blue spheres indicate lithium, red spheres oxygen and white 

spheres hydrogen respectively. 
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Figure  1-8: Crystal structure of LiOH·H 2O. Blue spheres indicate lithium, red spheres oxygen and 

white spheres hydrogen respectively. 

 

As per Mg(OH)2, the decomposition of LiOH(·H2O) involves a dehydration processes to 

yield Li2O (cubic, Fm-3m)139 and evolution of water. Both LiOH and LiOH·H2O 

dehydration reactions have been widely investigated and they are given in Equations 1-25 

and 1-26.140,141,142 LiOH can theoretically release 37.6 wt. % of water and indirectly store 

4.2 wt. % of H2, whilst LiOH·H2O can evolve 64.4 wt. % of H2O and indirectly store 7.2 

wt. % of hydrogen. 

OHkJmol1.53)K298(HOHLiOHOHLiOH 2
1

22
−=°∆+→⋅  (1-25) 

OHkJmol4.97)K298(HOHOLiLiOH2 2
1

22
−=°∆+→  (1-26) 
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Moreover, it is common knowledge that both anhydrous lithium hydroxide and its 

monohydrate are characterised by an air sensitive nature. Both LiOH and LiOH·H2O react 

with CO2 under ambient atmosphere in a carbonisation reaction which leads to the 

formation of lithium carbonate and evolves water (Equations 1-27 and 1-28). 

2
1

2322 HkJmol9.96)K298(HOHCOLiCOLiOH2 −−=°∆+→+  (1-27) 

2
1

23222 HkJmol1.10)K298(HOH3COLiCOOHLiOH2 −−=°∆+→+⋅  (1-28) 

However this reaction can easily be overcome by working under a controlled inert 

atmosphere, perhaps this may be the reason why, as today, no successful synthesis of 

nanostructured LiOH(·H2O) has been reported in the literature. 

 

1.5 Scope of this work 

The work presented in this thesis is focused on the study of ‘modular’ hydrogen release 

systems, based on the reaction between light metal hydroxides and light metal hydrides. 

Three different systems were fully investigated: 

• Magnesium hydroxide – magnesium hydride system 

• Magnesium hydroxide – lithium hydride system 

• Lithium hydroxide – magnesium hydride system, employing both anhydrous LiOH 

and its monohydrate  

The aim of this thesis was to investigate the hydrogen release behaviour of all systems 

when subjected to thermal treatment, focusing the attention on the onset and peak 

temperature of hydrogen release events in each case. The experimental weight change was 

compared with the theoretical gravimetric H2 storage capacity. The performances of each 

system were studied as a function of particle size and morphology of the starting materials; 

nanostructuring the reactants was seen as a means to improve the dehydrogenation kinetics 

and have a better control over the overall hydrogen release process. In this sense, both 

novel and conventional synthetic routes have been employed for the preparation of 

nanosized light metal hydroxides. Mechanical milling was identified as another route for 

achieving reduction of the particle size distribution of all hydroxides and hydrides used 

throughout the whole project. Data obtained for nanostructured, milled and bulk materials 

were compared, with the final goal being the identification of the most promising H2 
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release systems. Ex-situ powder X-ray diffraction was used to try and isolate any 

intermediate species forming during the dehydrogenation reaction and to propose a 

mechanism of hydrogen release for each studied system. Further, the Mg(OH)2 – LiH 

system was studied using in-situ powder neutron diffraction in order to elucidate the 

mechanism of hydrogen release. Ultimately, understanding the dehydrogenation process in 

terms of mechanistic steps is pivotal to have a better insight on the reaction occurring and 

therefore further improve kinetics and thermodynamics for each system. 
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2 Experimental 
 

In this work, different synthetic techniques including microwave and conventional 

synthetic methods have been used in order to prepare nanostructured hydrogen storage 

materials to be used in ‘modular’ hydrogen release systems. 

A wide range of techniques has been used to investigate the structure and the properties of 

such materials and systems fully. Powder X-ray diffraction has been used as the main 

method of characterisation. However, a variety of complementary techniques have been 

employed, such as in-situ powder neutron diffraction, simultaneous thermogravimetric 

analysis, mass spectroscopy and scanning electron microscopy. 

The aim of this chapter is to give an overview of both the synthetic and characterisation 

techniques used throughout the whole project. 

 

2.1 Air Sensitive Handling Techniques 

 

2.1.1 Dry Glove Boxes 

Most materials used in this project are air and moisture sensitive, and therefore they must 

be handled inside a recirculating glove box under an inert atmosphere. During this project 

two types of recirculating glove boxes have been used. These were manufactured by 

Saffron Scientific1 and mBraun2 (Figure 2-1) and they were set to work respectively under 

argon and nitrogen atmosphere. 

The atmosphere inside the glove box is kept clean by the continuous flow of inert gas 

through a system of molecular sieves and a catalyst. For the mBraun glove box, the typical 

O2 and H2O levels are below 0.5 ppm, whereas for the Saffron Scientific glove box, the 

typical O2 levels are in the 0-5 ppm range and H2O levels are in the 0-30 ppm range. In 

order to keep the atmosphere inside the glove box within the aforementioned levels, 

regeneration processes were conducted every two months or less, depending on the usage 

of the box. 

The regeneration of the Saffron glove box is conducted off-box: the molecular sieve, which 

removes the moisture, is regenerated by heating under vacuum for 12 hours. The 
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commercial catalysts, which remove the oxygen, are regenerated by heating under a flow 

of 5% H2 in N2 and subsequently heated under vacuum for 12 hours in order to remove the 

water formed as by-product of the first regeneration reaction. The regeneration of the 

mBraun glove box is conducted in-situ by flowing 5% H2 in Ar for 16 hours. At any time 

the levels in both of the glove boxes are monitored by oxygen and moisture sensors. 

Samples and preparative equipment are transferred into and out of the glove box through 

an antechamber, which is vacuumed and filled with inert gas for three times, in order to 

preserve the atmosphere inside the box. The antechamber is kept under vacuum when not 

in use. 

 

Figure  2-1: a) Omega Saffron Scientific glove box and b) LABstar mBraun glove box. Adapted from 

References 1 and 2. 

 

2.2 Preparative Methods 

 

2.2.1 Ball Milling 

A mechano-chemical reaction is defined by IUPAC as a “chemical reaction that is induced 

by the direct absorption of mechanical energy”.3 

Mechanochemistry has recently become a widely used technique, also because of its 

effectiveness in promoting reaction between solids. Today the term ‘mechanochemistry’ 

usually refers to solvent-free solid state reactions, whose driving force is the mechanical 

energy produced during the grinding process taking place in ball mills. One of the most 

well-established areas of mechanochemical synthesis involves the use of inorganic 

materials4, however a wide range of materials can be studied. In addition, ball milling 
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techniques are one of the most used processing methods for the developments of novel 

materials as well as novel composites for hydrogen storage and release.5 

Ball milling can be seen also as a top-down approach for yielding nanomaterials. In fact, 

during the mechanochemical procedures there is a reduction of the particle size of the 

crystallites: the products are often nanoparticles or amorphous phases,6 which usually 

exhibit a higher surface area leading to an increased reactivity. 

The milling processes have been carried out using a Retszch PM100 planetary ball mill. 

This involves the rotation of a milling jar containing a grinding medium and the sample to 

be milled. The jar is placed on a sun wheel and clamped with a counterweight for 

balancing purposes, in order to prevent any oscillations and vibrations disturbing the 

instrument. The sun wheel acts as a counter rotating plate during the mechanical milling, 

with the jar and sun wheel moving in opposite directions with a 2:1 ratio. The grinding 

balls within the jar are subjected to Coriolis forces, which are superimposed rotational 

movements dependent on the velocity of the moving object together with their centrifugal 

force. The difference in speeds between the balls and grinding jars produces an interaction 

between frictional and impact forces, resulting in the generation of the high dynamic 

energy required for the milling operations and effectively reduces the particle size of the 

sample (Figure 2-2).7 

 

Figure  2-2: (a) Retszch PM100 planetary ball mill configuration; (b) cross section of the milling jar. 
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Moreover, various reaction parameters can be controlled, such as the milling speed and 

time, the rotation direction (clockwise and anticlockwise) and rotation direction reversal, 

the type of milling tools (i.e. stainless steel or agate jar), the type, number and size of the 

grinding medium as well as the mass of the material or materials used. All these variables 

contribute to the formation of the desired final product. 

The ball milling operations conducted during this project involve the reduction of the 

particle size of both light metal hydrides (MgH2 and LiH) and light metal hydroxides 

(Mg(OH)2, LiOH and LiOH·H2O). Generally, 1 gram of sample was loaded into a 50 ml 

stainless steel jar together with 10 stainless steel balls used as grinding medium (10 mm 

diameter, 4 g/ball), resulting in a ball-to-powder ratio of 40:1. All preparations have been 

carried out under inert atmosphere inside an argon-filled or nitrogen-filled recirculating 

glove box. The jar was then sealed with a rubber O-ring and an air sensitive clamp before 

being transferred out of the glove box and exposed to air.  

 

2.2.1.1 Ball Milling of Light Metal Hydrides 

Slightly different milling conditions have been employed for the milling of magnesium 

hydride and lithium hydride. Nevertheless the same 40:1 ball-to-powder ratio was used. 

Typically, 1 gram of MgH2 (Aldrich, hydrogen-storage grade, ≥ 96.5%) was mechanically 

milled for 5 hours at 450 rpm, using 10 stainless steel balls. A 5 minute interval for every 5 

minutes of milling was used.8 By contrast, 1 gram of LiH (Sigma, 95%) was typically ball 

milled at 450 rpm for 4 hours using 10 stainless steel grinding balls: a rest time of 1 minute 

per every 15 minutes of ball milling was used.9 

Henceforth, the ball milled hydrides will be referred to as m-MgH2 and m-LiH, whereas 

the bulk materials will be named as b-MgH2 and b-LiH. 

 

2.2.1.2 Ball Milling of Light Metal Hydroxides 

All light metal hydroxides were mechanically milled using the same conditions, based on 

those reported by Zhu et al..10 However, a 40:1 ball-to-powder ratio was used with respect 

to the 120:1 used by Zhu. 
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The as-received light metal hydroxides used were: 

• Mg(OH)2, Sigma-Aldrich, 95% 

• LiOH, Sigma-Aldrich, 98% 

• LiOH·H2O, Sigma-Aldrich, ≥ 98% 

Typically, 1 gram of light metal hydroxide was ball milled for 5 hours at 500 rpm, using 10 

stainless steel balls. A 5 minute interval for every 5 minutes of milling was employed. 

From this point forward, the mechanically milled hydroxides will be referred to as m-

Mg(OH)2, m-LiOH and m-LiOH·H2O. The bulk materials will be referred to as b-

Mg(OH)2, b-LiOH and b-LiOH·H2O. 

 

2.2.2 Synthesis of Nanostructured Light Metal Hydroxides 

Different synthetic routes have been employed for yielding nanostructure magnesium 

hydroxide and lithium hydroxide, both anhydrous and monohydrate. The novel procedures 

for obtaining these nanostructured light metal hydroxides are discussed below and in 

subsequent chapters. 

Mg(OH)2 has been synthesised exploiting the synergistic effect of microwave irradiation 

and hydrothermal treatment, whereas LiOH and LiOH·H2O have been prepared reacting 

lithium metal with ionised water inside a Schlenk line apparatus working under dynamic 

vacuum. 

Henceforth, the synthesised nanostructured hydroxides will be referred to as n-Mg(OH)2, 

n-LiOH and n-LiOH·H2O. 

 

2.2.2.1 Microwave Synthesis of Nanostructured Magnesium Hydroxide 

It is widely known that nanostructured Mg(OH)2 can be easily synthesised via 

hydrothermal, solvothermal treatment or wet precipitation methods.11,12,13 These syntheses 

require relatively long times of 12 hours or more and the use of surfactants as templating 

agents. 

Nevertheless, the use of microwaves (MW) has gained considerable attention in solid state 

as well as solvent-based chemistry.14,15 In fact, using MW heating allows reaction times to 
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be dramatically decreased from days to even a matter of minutes when compared to 

conventional heating approaches. 

Microwaves belong to the part of the electromagnetic spectrum between radiowave and 

infrared frequencies (0.3-300 GHz), corresponding to a wavelength range of 1mm – 1m 

(Figure 2-3). 

 

Figure  2-3: The electromagnetic spectrum. 

 

A large part of this spectrum is employed for radar technologies as well as 

telecommunication applications, and only the 900-2450 MHz range is used for heating 

purposes. Common domestic microwave ovens (DMOs) work at a frequency of 2.45 GHz 

to avoid interferences with any wireless networks, cellular phones or telecommunication 

devices. Since not all materials interact with microwaves at that frequency, a susceptor 

such as silicon carbide or graphite may be used to aid coupling. 

Microwaves usually interact with materials in three main ways: reflection, transmission or 

absorption.16 Insulating materials transmit microwaves and therefore no heat will be 

generated and they are usually employed as reaction vessels (i.e. quartz, Teflon, ceramics). 

If the irradiated sample is a conducting, semi-conducting, ionically conducting or dielectric 

material, it will couple with microwaves, which will be absorbed and heat will be 

generated. There are two microwave absorption mechanisms: ionic conduction and 

dielectric heating (dipole polarisation in liquids).17 

In liquids, in terms of ionic conduction, heating is produced through resistance to an 

electric current generated by an oscillating electromagnetic field: the molecules oscillate 

under the influence of the field colliding with the neighbouring particles creating heat. 
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In the phenomenon of dipole polarization in liquids, molecules with electrical dipole 

moments are irradiated with microwaves, they continuously rotate in the attempt to realign 

themselves with the electromagnetic oscillating applied field. The molecules will change 

their directions as the field alternates, resulting in collisions with other molecules leading 

to the generation of kinetic and thermal energy.17 It is important to remember that the 

frequency of the oscillating field has to be carefully chosen to allow coupling to the 

microwave frequency: a frequency of 2.45 GHz is suitable for inorganic synthetic 

chemistry.15 

In solid state MW heating, dielectric heating results from the difference in 

electronegativity values of individual atoms, ultimately resulting in a permanent electric 

dipole within the molecule, formed by charge separation. The dielectric heating leads to 

the dissipation of thermal energy which is the driving force of the solid state reaction. The 

dielectric constant describes the dielectric properties of a material and comprises two terms 

ε' and ε" (Equation 2-1).18 

"j'* ε+ε=ε  (2-1) 

Where ε' is the dielectric constant, which describes the capability of the material to be 

polarized by the electric field, whereas ε" is the dielectric loss (Equation 2-2), that 

indicates the efficiency with which the electromagnetic radiation is converted into heat. ε" 

must be taken into account as it directly relates to the electrical conductivity (σ) of the 

material (Equation 2-2). 

f
"

0ε
σ=ε  (2-2) 

Further, Equation 2-3 gives the ability of a solid material to convert electromagnetic 

radiation to heat at a given frequency. 

'"Tan εε=δ  (2-3) 

Therefore, tanδ is the loss factor describing the ability of the material to absorb MW and 

dissipate them as energy at a given frequency and temperature.19 Ultimately, the coupling 

of materials with microwaves depends on the dielectric constant and thermal properties of 

the materials, which are related to the chemical and physical composition as well as their 

conductivity. 
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In terms of MW preparation of nanostructured Mg(OH)2, great progress has been made 

over the past few years. According to the paper published in 2012 by Al-Hazmi et al., the 

rapid growth of Mg(OH)2 nanosheet has been proved feasible in 30 minutes starting from 

MgCl2, urea and NaOH using a multimode cavity microwave reactor.20 However, Al-

Gaashani et al reported the first MW-assisted additive-free synthesis of a mixture of 

nanosheets and nanoparticles of Mg(OH)2 starting from Mg metal during the same year.21 

The novel synthetic route for obtaining nanostructured Mg(OH)2 used in the present study 

is based on a facile route exploiting MW heating coupled with hydrothermal treatment. 

Hydrothermal (HT) techniques are commonly used for the synthesis of new crystalline 

materials and they are based on the reaction of bulk reagents inside a sealed aqueous 

environment at appropriate temperature and pressure. The pressure range is 1-100 atm 

whilst the temperature range is usually 373-1273 K, however a subcritical temperature 

range of 373-513 K is typically used in common industrial and laboratory operations22. 

Typically these reactions usually occur at lower temperature with respect to traditional 

solid state reactions and they are conducted inside high-pressure sealed autoclaves.23,24 The 

reagents are usually a powder and water, which are placed inside a Telfon-lined vessel 

inside a stainless steel autoclave and heated to a temperature above their boiling point. A 

typical HT autoclave and its cross section is presented in Figure 2-4.25 

 

Figure  2-4: Typical autoclave used for hydrothermal synthesis. Figure (a) shows the full set-up, whilst 

Figure (b) shows the cross section of the autoclave. Adapted from Reference 24. 

 

Nevertheless, for safety reasons, there are limitations in the amount of solvent that can be 

used as well as the temperature to be reached. In fact, it is very important not to over-fill 

the autoclave as it could result in both an expansion of the volume of the solution and an 
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escalation of pressure, which increases exponentially. Usually, the volume of solvent must 

not exceed 2/3 of the total volume of the Teflon-lined vessel. It is also important to 

consider the temperature limits that the vessel can reach: these are usually 523 K for the 

most common vessels and 548 K for high-strength ones. Moreover, the materials used 

during the experiments must be carefully selected. The equipment may be damaged or 

ruptured if the reaction is highly exothermic or if the products or by-products are corrosive 

or unstable. 

As already mentioned, a new MW-HT synthetic procedure has been used for the 

preparation of nanostructured Mg(OH)2. As shown in Figure 2-5, the reaction setup 

comprises of a Teflon-lined vessel sealed with a cap and a Teflon O-ring.25,26 The 

autoclave body and screw cap are made from a high strength, insulator polymer to prevent 

overheating. A safety pressure release valve operates in the event of an overpressure inside 

the vessel.27 These autoclaves can be heated to a temperature of 523 K and can reach a 

pressure limit of 1200 psi. 

 

Figure  2-5: Microwave autoclave used for the synthesis of n-Mg(OH) 2. Figure (a) shows the full set-up, 

while Figure (b) shows the cross section of the autoclave. Adapted from Reference 24. 

 

Typical reaction conditions for the synthesis of Mg(OH)2 nanoplates are described below 

and will be further specified in Chapter 3. 

A certain amount of magnesium oxide was placed inside a Teflon-lined autoclave for 

microwave synthesis, together with deionised water. The MW autoclave is heated for a 

total of 4 minutes inside a domestic microwave oven. It is important to allow the autoclave 

to cool and to ensure that it is not over-filled: rapid pressure rises during heating can lead 
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to damage of the instrumentation. The rupture of the vessel and the melting of the o-ring 

and the vessel itself may occur. The product was washed and centrifuged with H2O three 

times. The white precipitate was collected and dried in air overnight.28 The reaction yields 

single phase hydroxide. The preparation of nanostructured Mg(OD)2 employed in the in-

situ powder neutron experiments (Chapter 4) was successfully carried out following the 

same synthetic route. The morphology is retained when working with deuterated reagents. 

 

2.2.2.2 Selective Synthesis of Nanostructured Lithium Hydroxide 

The selective synthesis of nanostructured lithium hydroxide was performed using Schlenk 

apparatus working under dynamic vacuum. This reaction setup, outlined in Figure 2-6, is 

commonly used to manipulate air and moisture sensitive as well as pyrophoric 

materials.29,30 The core of the Schlenk line consists of a two-cross braced manifold with 

multiple outlets (typically 4 or 6): one end is connected to a source of inert gas (in the 

present study argon was used) and the other end is connected to a vacuum pump. A two-

way valve between gas and vacuum lines is present to allow choosing between vacuum and 

inert gas flow during the experiment. The excess of argon delivered in the line is vented 

through a mineral oil bubbler, which also acts as a barrier between the external atmosphere 

and the internal inert atmosphere inside the line. Also, volatile reaction products and 

solvent vapours are prevented entry to the vacuum pump through a system of two 

consecutive liquid nitrogen cooled traps, condensing the gases. Moreover, great attention 

must be paid to the condensed liquids inside the trap. In fact, if a reasonable amount of air 

enters the line, liquid oxygen can condense and an explosion may occur as a result of the 

reaction between oxygen and any compound already present in the trap. Schlenk glassware 

is similar to common glassware, with the addition of an extra side arm with a tap which is 

connected to the Schlenk line via PVC connections securely tightened with o-rings. To 

prevent air and oxygen contaminations and ensure air-tight seals, all joints and taps have to 

be properly greased: a thin layer of high vacuum grease must be applied on the male joint 

and then inserted into the neck of the female joint and gently rotated so that the grease is 

evenly distributed. 
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Figure  2-6: Schematic of a typical Schlenk apparatus. 

 

For the synthetic procedure to prepare nanostructured LiOH, lithium metal ribbon was 

carefully cut into small chips inside an argon filled recirculating glove box and put inside a 

glass vial, which was sealed with parafilm prior to transfer from the glove box. The metal 

was then quickly transferred inside a Schlenk flask and dissolved in deionised water, 

minimising the exposure of the lithium metal chips to moisture and air. Once the metal was 

completely dissolved, the flask was connected to the Schlenk apparatus and the 

evaporation process started. By carefully tuning the reaction conditions it was possible to 

synthesise anhydrous LiOH and the monohydrate selectively, exploiting the well-known 

vacuum evaporation and thermal vacuum evaporation processes.31,32 

Working in a high vacuum environment at room temperature allows evaporation of only 

the solvent water, yielding lithium hydroxide monohydrate. Conducting the evaporation 

process at higher temperature allows to fully dehydrate the LiOH forming in solution 

during the first step of the reaction, leading to the formation of the anhydrous hydroxide. 

Specifically, to obtain LiOH, the process was conducted by immersing the flask in an oil 

bath heated to 343 K. For the synthesis of LiOH·H2O, vacuum evaporation was conducted 

at room temperature. Typical reaction conditions for the synthesis of LiOH and LiOH·H2O 

will be further specified in Chapter 5. 
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2.3 Characterisation Techniques 

 

2.3.1 Powder X-Ray Diffraction (PXD) 

Powder X-ray diffraction (PXD) is a fundamental technique for both qualitative and 

quantitative analysis of crystalline solid materials.33 For this reason PXD was used as the 

main method of characterisation during this project as it can give information about the 

phase(s) present in a mixture as well as information about its quantitative phase 

composition. 

The diffraction phenomenon is based on the fact that the wavelength of X-rays (1 Å) is of 

the same order of magnitude as the interatomic distances (ca. 0.5-2.5 Å). Therefore, a 

crystal behave as a 3-D grating to an incident beam of X-rays and the resulting diffraction 

pattern can be used to determine the crystal structure of a material together with its 

composition.  

Diffraction is usually explained using Bragg’s Law (Equation 2-4).34,35 

θ=λ sind2n  (2-4) 

Where λ is the wavelength of the incident beam, d is the perpendicular distance between 

lattice planes and θ, known as Bragg angle, is the angle of incidence. The n parameter is an 

integer number that represents the order of the reflection: when n = 1 the reflections are called 

first order, when n = 2 they are called second order and so on. 

As shown in Figure 2-7, two parallel X-rays beam A and B with a certain wavelength λ and 

an incidence angle θ are ‘reflected’ by adjacent crystal planes.  
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Figure  2-7: Schematic of diffraction of a crystal used for deriving Bragg’s law. 

 

In order for constructive interference to occur and X-rays beams to be in phase, n must be 

an integer number corresponding to an integer number of wavelengths. Beam B must travel 

an extra distance XYZ with respect to beam A: this is related to the interplanar spacing dhkl 

by the relation expressed in Equation 2-5. 

θ= sind2XYZ (2-5) 

However, as previously stated, the additional distance XYZ covered by beam B must be an 

integer number of wavelength for the beam to be in phase (Equation 2-6). 

λ= nXYZ (2-6) 

The combination of Equations 2-5 and 2-6 yields Bragg’s law. 

In the case of powdered materials, the sample can be considered as a large number of small 

randomly oriented crystallites. However, if irregularities in the powder diffraction pattern 

are noted, these may be due to the preferred orientation of the crystallites, which can result 

in the increase of the intensities of some peaks attributed to a particular direction. 

In a crystal, the unit cell represents the simplest repeating unit of the crystal structure: it 

has the full symmetry of the crystal and it continuously repeats in all directions. The 

common way to describe it is by defining symmetry, shape and size, where a, b and c are 

the lengths and α, β and γ are the angles of the unit cell (Figure 2-8). 



78 
 

 

Figure  2-8: definition of axis, unit cell dimensions and angles for a general unit cell36. 

 

A summary of all the possible unit cell geometries (crystal systems) and respective 

symmetry elements is given in Table 2-1. 

Table  2-1: Summary of the seven crystal systems and respective symmetry elements36. 

Crystal system Unit Cell 
Parameters 

Bravais 
Lattices 

Point Groups 

Triclinic 
α ≠ β ≠ γ ≠ 90° 

a ≠ b ≠ c 
P 1, -1  

Monoclinic 
α = γ = 90° ; β ≠ 90° 

a ≠ b ≠ c 
P, C 2, m, 2/m 

Orthorombic 
α = β = γ = 90° 

a ≠ b ≠ c 
P, C, I, F 222, mm2, mmm 

Tetragonal 
α = β = γ = 90° 

a = b ≠ c 
P, I 

4, -4, 4/m, 422, 
4mm, -42m, 4/mmm 

Trigonal 
α = β = γ ≠ 90° 

a = b = c 
R 3, -3, 32, 3m, -3m 

Hexagonal 
α = β = 90° ; γ = 120° 

a = b = c 
P 

6, -6, 6/m, 622, 
6mm, -6m2, 6/mmm 

Cubic  
α = β = γ = 90° 

a = b = c 
P, I, F 

  
23, 3m, 432, -43m, 

m3m  
 

The orientation of the crystal planes can be defined by the Miller indices (hkl) which indicate 

the reciprocal values of the positions where the plane intersects the a, b and c axes 

respectively. The Miller index values (hkl) can be positive, negative or null. The value of dhkl 

can be determined for each of the seven crystal systems and the equations used are presented 

in Table 2-2. The equations for calculating the interplanar distances can be combined with 

Bragg’s law to determine the unit cell dimensions as part of the indexing process. 
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Table  2-2: Equations for calculating d-spacing in the different crystal systems. 

Crystal system Expression for dhkl 
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Finally, it is important to note that X-rays are scattered by electrons rather than by atomic 

nuclei and the active scattering centres are given by the electron density distributed in the 

crystal lattice. Therefore, how well an atom or a material diffracts depends upon the 

number of electrons present. Atoms with a greater number of electrons (with higher atomic 

number, heavier atoms) will scatter X-rays more effectively, resulting in a greater intensity 

of the observed diffraction peaks. On the other hand, materials containing lighter elements 

such as hydrogen or lithium (the atomic numbers are 1 and 3 respectively) will not scatter 

strongly when in presence of heavier atoms. 
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2.3.1.1 PXD Instrumentation and Sample Preparation 

For data collection a Bruker d8 Advance diffractometer working with a VÅNTEC detector 

and a PANalytical X’Pert PRO MPD diffractometer equipped with an X’Celerator solid 

state detector were used. In particular, air sensitive samples were analysed using the d8 

instrument, whilst measurements on non-air sensitive materials were performed with the 

X’Pert diffractometer. All samples were ground to obtain a homogeneous powder as well 

as to ensure random distribution and avoid preferred orientation of the crystallites. Both 

instruments use Cu Kα1 radiation (λ = 1.54056 Å) and an X-ray tube operating at a power 

of 40 kV and 40 mA. It is important to note that the preparation method of a sample could 

also affect the diffraction pattern characteristics. 

The preparation of air sensitive samples was performed inside an Ar- or N2-filled 

recirculating glove box. The ground samples were loaded into either 0.5 or 0.7 mm 

diameter glass capillaries to approximately half the height of the capillary (ca. 2.5-3 cm). 

The capillary is sealed with vacuum grease prior to transfer from the glove box and 

subsequently, flame sealed in order to prevent exposure to air and moisture. The sealed 

capillaries were placed on the goniometer with wax and aligned rotationally and 

translationally on an aluminium capillary holder with the help of an optical microscope. 

This allows the capillary to be perfectly centred with the X-ray beam. Typically, 

diffraction patterns were collected over a 2θ range of 5-85° with a step size of 0.0167 2θ° 

for one hour for phase identification and overnight for structural refinement purposes. 

The d8 diffractometer works in a transmission configuration with Debye-Scherrer 

geometry (Figure 2-9), where the sample diffracts the X-ray beam in accordance to 

Bragg’s law and produces cones of diffracted beam which reach the detector. To achieve 

better beam collimation as well as minimise background scattering, a monochromator and 

divergence slit of 2 mm are employed. 
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Figure  2-9: Debye-Scherrer transmission geometry. 

 

The X’Pert diffractometer works in a reflection configuration in Bragg-Brentano geometry 

(Figure 2-10). In this type of configuration the X-ray beam is produced by a stationary 

source and collected by a moving detector. The beam penetrates to a certain depth in the 

sample and is then diffracted. In particular the sample holder is tilted on an axis by an 

angle θ while the detector is rotated by an angle of 2θ. The beam is collimated using a 10 

mm mask, Soller slits, a ½° divergence slit and a ½° anti-scatter slit. 

 

 

Figure  2-10: Bragg-Brentano reflection geometry. 
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Different sample stages could be used, however in this work only the bracket stage has 

been employed specifically for the analysis of non-sensitive materials. In this type of stage 

the sample holder is constituted by a glass slide with an indent. The samples were 

positioned on a glass slide and gentle pressure applied with the help of a glass slide, 

resulting in a homogeneously flat powder surface. The holder is then positioned on the 

goniometer where the collimated beam will irradiate the sample. Standard runs were 

conducted over a 2θ range of 5-85° with a step size of 0.0167 2θ° and data were collected 

approximately for 30 minutes for phase identification and three hours when structural 

refinements were performed. 

 

2.3.1.2 Data Analysis 

The Bruker d8 and X’Pert PRO diffractometers produce different data output files; the d8 

produces raw data files (.raw) while the X’Pert produces diffraction patterns with the 

characteristic PANalytical format (.xrdml). The latter can be easily converted into a raw 

file using the PowDLL convertor software.37 

PowderCell software was used to visualise the collected raw experimental data.38 The 

collected powder patterns were subsequently compared with the appropriate reference ones 

generated from the ICSD database.39 Reference patterns present in the ICDD database40 

were consulted when working with the PANalytical HighScore Plus software. 

Rietveld refinement against the PXD data were performed using the General Structure 

Analysis System (GSAS)41 with the EXPGUI interface42 as explained in Section 2.3.3. 

 

2.3.2 In-Situ Powder Neutron Diffraction (PND) 

Powder Neutron Diffraction (PND) is a powerful tool, although experimentally more 

expensive when compared to powder X-ray diffraction. Yet, the information obtained 

using PND is complimentary to that obtained using PXD. As previously mentioned, X-rays 

interact with the electron cloud of the atoms, making this technique unsuitable for the 

study of light elements. On the contrary, neutrons interact with the nuclei of the elements. 

In this sense, powder neutron diffraction becomes a very useful probe for the study of 

compounds containing light elements, such as hydrogen and hydrogen storage materials. 

As widely known, hydrogen can exist as three isotopes: protium (1H), deuterium (2H) and 

tritium (3H). Both hydrogen and deuterium scatter neutrons well. The scattering power is 
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not strongly affected by an atom mass (atomic number z) or the scattering angle θ. 

Although PND is mostly used for crystallographic purposes (solving the structure of 

crystalline solids or monitoring phase transitions), this technique can also be used for 

studying reactions in-situ. 

During this project, PND has been used as an in-situ technique to investigate the 

mechanism of hydrogen release of ‘modular’ hydrogen release systems. In-situ 

experiments were conducted at the ISIS facility, Rutherford Appleton Laboratory in 

Oxfordshire, using the Polaris instrument. The results obtained are presented and discussed 

in detail in Chapter 4. 

 

2.3.2.1 The Polaris instrument at Rutherford Appleton Laboratory (RAL) 

The neutron source at the ISIS facility of the Rutherford Appleton Laboratory in 

Oxfordshire was used for PND data collection. This is a spallation (pulsed) neutron source. 

At such sources neutrons are produced by bombarding a heavy metal target (tungsten at the 

ISIS facility) with highly energetic particles. The accelerator consists of an injector and a 

synchrotron. Firstly, hydrogen gas together with hot caesium vapour is fed around a ring 

and ionised to H-. Discrete bunches of H- ions are then focussed and accelerated by a Radio 

Frequency Quadrupole (RFQ) accelerator working at 665 keV and 202.5 MHz. 

Subsequently, ions are extracted from the ion source in long 200 µs pulses and their 

acceleration continues in the synchrotron, a ring of powerful magnets that bend and focus 

the beam into a circle. The H- ions are stripped of any electrons by a thin alumina foil 

resulting in a beam of only protons. Once a sufficient amount of protons have been 

collected, radio frequency electric fields accelerate them. The protons are then separated 

into two different bunches: each bunch is extracted from the synchrotron by a ‘kicker’ 

magnet and collides with the tungsten target. The bombardment of the heavy metal target 

leads to the emission of neutrons from the nuclei of the target atoms. Typically, each 

proton colliding with the target produces ca. 15 neutrons. This process is called spallation 

and gives a highly intense neutron pulse with modest heat production from the target. 

Neutrons are then slowed by hydrogenous moderators around the target and redirected to 

different stations for performing neutron diffraction experiments.43,44 

In Time-of-Flight (ToF) neutron diffraction, the sample is irradiated with a pulsed beam of 

neutrons of different wavelengths. Neutrons travel into the material and they are detected 

as they emerge. In this kind of experiments, scattered neutrons are recorded in banks of 
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detectors with a fixed 2θ detection angle together with the time at which they arrive at the 

detector. The d-spacing and the wavelength of the neutrons are the variables. To calculate 

the wavelengths (Equation 2-7), the linear relationship between ToF and d-spacing is 

employed and it is derived from the De Broglie relationship (Equation 2-8) and Bragg’s 

Law (Equation 2-4). 

nnvm

h=λ  (2-7) 

θ==λ sind2
vm

h
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 (2-8) 

Where h is the Plank constant, mn is the neutron mass and vn is the neutron velocity. 

Neutrons travel a known distance (primary flight path, L1) from the source to the sample 

and subsequently from the sample to the fixed detectors (L2) at an angle of 2θ for a total 

distance L (L1 + L2). These correspond to times of flight t1 and t2, with a total time of flight 

t given by the sum of t1 and t2. Hence, Equation 2-6 can be rewritten with L1, L2, t1 and t2 to 

give Equation 2-10 through Equation 2-9. 
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And so 

θ= sin
h
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dL2t n (2-10) 

Hence, time of flight is directly proportional to wavelength and the values of λ and θ can 

be used to obtain the d-spacing values using Bragg’s law.45 

The Polaris instrument at ISIS is a high intensity, medium resolution powder 

diffractometer which was recently rebuilt after a major upgrade and became operational 

again in May 2012.45,44 A schematic of the upgraded instrument is presented in Figure 2-1. 

The upgraded Polaris has a primary flight path of 14 m and features a large vacuum vessel 

(ca. 20.000 l) inside which the detector banks are mounted. The instrument consists of 6 

detector banks: bank 1 (very low angle, 2θ˚ 6-14), bank 2 (low angle, 2θ˚ 19-34), bank 3 

(low angle, 2θ˚ 40-67), bank 4 (90 degrees, 2θ˚ 75-113), bank 5 (back scattering, 2θ˚ 135-

143) and bank 6 (back scattering, 2θ˚ 146-168). The instrument allows data to be collected 

in rapid time with short counting rates and with small amounts of sample. This is a very 
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important feature especially when phase transitions or chemical reactions are to be 

monitored and diffractions patterns collected under non-ambient conditions (i.e. while the 

sample is heated inside a furnace or cooled inside a cryostat). 

 

Figure  2-11: Schematic of Polaris diffractometer.44 The numbers indicate the different detector banks. 

 

2.3.2.2 Sample Preparation and Data Collection on Polaris 

The preparation of the sample for PND analysis was performed inside a recirculating 

argon-filled glove box at the ISIS facility. Stoichiometric mixtures of Mg(OD)2 and LiD 

were ground together using agate mortar and pestle. The mixture was then loaded into a 

single glass quartz tube with an outer diameter of ca. 10 mm, a wall thickness of 1 mm and 

a total length of approximately 300 mm (Figure 2-12). A stainless steel pipe (1.5 mm inner 

diameter) running down the quartz tube to about 1 cm above the top of the incident neutron 

beam ensured a flow of argon throughout the whole duration of the experiment. The gas 

circulated over the top of the sample and flowed up between the steel and quartz tube to 

the top of the sample stick where can it be redirected to either a mass spectrometer of an 

exhaust trap together with any evolved gaseous species. This is done through the presence 

of Swagelok fittings that can also be vacuum tightened to allow the transfer of the sample 

stick inside and outside of the glove box. Two external thermocouples to be connected to 

the Polaris furnace are present and they are placed on opposite sides of the quartz tube just 

above the incident neutron beam to provide homogeneous heating. The height of the beam 

at Polaris is 40 mm, which is the same height at which the sample is placed at the bottom 

of the closed tube. The total length of the apparatus is approximately 450 mm. The stick is 
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then inserted into the furnace in the sample area, the thermocouples connected to the 

furnace and data collected. The temperature programme and the experimental conditions 

used during the PND experiments are detailed in Section 4.2.8. All measurements were 

performed with the help of Dr Ron Smith. 

 

Figure  2-12: Polaris experiment: (a) sample placed at the bottom of the quartz tube for a total height 

of ca. 40 mm; (b) full experimental setup single glass quartz tube with inner stainless steel pipe for the 

flow or argon. 

 

2.3.3 PXD and PND Data Analysis: Rietveld Refinement 

The Rietveld method is a very powerful technique for the refinement of structural data in 

powder diffraction, which was first developed by H. M. Rietveld for constant wavelength 

neutron diffraction.46,47 However, it can be utilised using time of flight neutron data and 

powder X-ray diffraction data. The Rietveld method is a full profile refinement that fits the 

observed diffraction data to the structural model of the powdered sample:48 Rietveld 

realised that even though many individual Bragg reflections overlapped and could not be 

modelled as single entities, they could be fitted using simple peak shape parameters to 

calculate the total intensity of a cluster of diffraction peaks. Rietveld refinements can yield 

detailed crystal structure information together with an accurate quantitative determination 

of the weight fractions for multi-phase mixtures. 

The process of structure refinement begins with a starting model, usually obtained from a 

similar or isotypic crystal structure. Having a good starting model is essential; the method 

is one of refinement rather than of structure solution. The next step involves introducing 

background parameters. They can be either manually set or calculated using a polynomial 

expression. An accurate determination of Bragg reflection positions is accomplished by 

varying the lattice parameters and the zero-point error correction (and/or sample 
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displacement). Subsequently the refinement of the peak shape parameters is performed 

followed by the variation of atom positions to fit peak intensities. Thermal displacement 

parameters are subsequently refined, intensity irregularities may be observed and they may 

be caused by thermal motion of the atoms within the sample. In some cases it may be 

possible to vary temperature factors anisotropically. A final refinement of peak shape is 

then performed (together with further background coefficients if needed) to define 

asymmetry or peak broadening effects. The software can cope with multi-phase samples, 

preferred orientation, and peak asymmetry to give full structural data as well as to 

determine weight fractions. Instrumental parameters can be varied depending on the 

experiment performed. Refinement is a least squares best fit method which minimises the 

quantity of the function M (Equation 2-11). 
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ii yywM ∑ −=  (2-11) 

Where wi is a weighting factor given by 1/yi
obs, yi

obs is the observed intensity at each 

step/point i (2θ for PXD) and yi
calc is the calculated intensity at each step. 

For PXD data, yi
calc values are determined from the |Fk|

2 values calculated from the 

structural model by summing the calculated contributions from neighbouring Bragg 

reflections (k) plus a background bi. 
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Where s is the scale factor, Lk comprises Lorentz polarisation and multiplicity factors, Φ is 

a reflection profile function, Fk is the structure factor for the kth Bragg reflection, Pk is the 

preferred orientation function, A is the absorption factor and ybi is the background intensity 

for the i th step. The Lorentz factors depend upon both instrumental (geometry, detector, 

beam size) and sample factors (sample volume and geometry). 

The background intensities can be obtained by three methods: an operator-supplied table of 

background intensities, a specified background function or an interpolation between 

operator selected background points. In GSAS the background can be fitted either 

manually or using one of the available background function. During this thesis either 

Function 1 (Chebyschev polynomial) or Function 8 (reciprocal interpolation function) have 

been used. Function 1 is a polynomial of the first type, whilst the reciprocal interpolation 

Function 8 divides the pattern into equal 1/T segments where T is the location. The 
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intervals are concentrated into small d-spacing regions where changes are more likely to 

arise. 

During a refinement, a comparison between intensities of experimental and calculated data 

is performed at every point. Therefore it is also vital for the construction of the profile to 

describe the peak shape of the reflections accurately. Usually the peak shape is governed 

by the instrument and modelled using the pseudo-Voigt function (pV, Equation 2-13), 

which is a combination of Lorentzian and Gaussian functions. 

( )G1LpV η−+η=  (2-13) 

Where L and G are the Lorentzian and Gaussian contributions to the peak shape 

respectively and η is the mixing parameter that can be refined as a linear function of 2θ. 

( )θ+=η 2NN BA  (2-14) 

Where NA and NB are refinable parameters. 

The Gaussian and Lorentzian contributions are represented by Equations 2-15 and 2-16 

respectively. 
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Where 2θk is the calculated position for the kth Bragg reflection corrected for the counter 

zero-point and Hk is the Full-Width-at-Half-Maximum (FWHM) of the kth Bragg 

reflection. The full width half maximum (FWHM) factor Hk is modelled as shown in 

Equation 2-17 and it is depending on the scattering angle 2θk. 

WtanVtanUH 22
k +θ+θ=  (2-17) 

Where U, V and W are refinable factors and are both sample and instrument dependent. 

The FWHM value takes into account peak broadening effects related to the size of the 

crystallites: in fact broadening of Bragg’s peaks can be the result of a particle size 

reduction or the presence of lattice imperfections.49 
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In order to determine whether the ‘best fit’ for a refinement has been achieved and 

understand whether the proposed model is correct; the agreement between the observed 

and calculated profiles must be calculated. For this purpose refinement reliability factors 

are employed principally: Rprofile (Rp), Rexpected (Rexp) and Rweighted profile (Rwp). These are 

described as follows. 
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Where Rexp is defined from statistics of the refinements, N is the number of observations, P 

is the number of varied parameters and C is the number of constrains. 

From a mathematical point of view, the Rweighted profile (Rwp) is the most meaningful and 

important of the R-factors because the numerator is the residual being minimised in the 

refinement process (Equation 2-20). This makes Rwp the most appropriate parameter to 

reflect the quality of the refinement. 
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The final goodness of the whole fit, minimised during the refinement, is measured with the 

chi-squared factor (χ
2, Equation 2-21). 
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In conclusion, for a good fit the Rwp should statistically approach the Rexp factor. The 

quality of the fit can also be measured using graphical criteria. The observed and 

calculated patterns can give an immediate idea of the goodness of the fit and at the same 

time clues on the source of possible problems present while refining. The difference 

between the calculated and observed profiles is plotted as well and in a good fit this should 

be as flat as possible. 
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All Rietveld refinements presented in this work were performed using the Generalised 

Structure Analysis System (GSAS)41 with the EXPGUI interface.42 

 

2.3.4 Simultaneous Thermogravimetric Analysis (STA) Mass 

Spectrometry (MS) 

Thermal analyses study the changes of chemical or physical properties as a function of the 

temperature. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) 

measurements were performed simultaneously in this project. Simultaneous 

Thermogravimetric Analysis (STA: TG-DTA) was employed to obtain onset temperatures 

and peak temperatures of hydrogen release of analysed materials. The activation energy of 

specific events occurring during heating could also be determined with appropriate 

experimental procedures and data analysis. Mass Spectrometry (MS) was employed in 

conjunction with thermal analysis in order to identify the gases evolved during thermal 

treatment. 

 

2.3.4.1 Simultaneous Thermogravimetric Analysis (STA) 

STA-MS experiments were performed using a Netzsch STA 409 PC instrument under 

flowing argon. A schematic of the STA instrumentation is presented in Figure 2-13. 

 

Figure  2-13: Schematic of the Netzsch STA 409 PC.50 
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In a TGA measurement, the mass of a sample is recorded as a function of time and 

temperature. The output, based on the weight changes observed, can give information on 

the chemical processes the studied material is subject to. 

In DTA the sample is heated against an inert reference material (i.e. alumina). The 

measured parameter is the temperature difference (∆T) between the sample and the inert 

reference, with both undergoing the same thermal treatment, as a function of temperature. 

Figure 2-14 shows the arrangements of both sample and reference crucibles on the sample 

carrier. As the thermal treatment proceeds, the temperature of both crucibles should be 

identical unless a thermal event such as decomposition, dehydration, crystallization or a 

structural phase change occurs in the sample. Through the DTA profile, it is also possible 

to differentiate between exothermic or an endothermic event, giving important information 

about the thermal behaviour of the studied material. 

 

Figure  2-14: Schematic of the sample and reference crucible arrangement on the DTA sample carrier. 

 

It is more useful to record both DTA and TGA signals simultaneously. This allows 

categorisation of thermal events and whether they occur with or without an associated 

weight change. 

First, correction files need to be created by heating an empty alumina pan to the target 

temperature at the desired heating rate. When appropriate, the temperature could be held 

(i.e. for one hour). In a typical experiment, approximately 20-25 mg of sample was loaded 

into the sample pan inside the apparatus chamber. Initial experiments involved heating 

from room temperature to 873 K at 5 K min-1 and holding at that temperature for 1 hour 

before allow the sample to cool naturally. The relevant data were determined using the 

Proteus Analysis Software present in the Netzsch TA4_5 suite. Data could also be exported 

to be plotted with different software. 

TG-DTA experiments were performed to obtain information on the onset and peak 

temperature of the thermal event occurring during heating and weight loss percentage. 
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Beyond, data analysis allowed the calculation of activation energy of specific thermal 

events through the Kissinger method.51,52 Samples were heated to 773 K using different 

heating rates (β) of 2, 5, 10 and 20 K min-1 respectively and Kissinger plots were obtained 

applying the mathematic expression given in Equation 2-22: 
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Where R is the gas constant (8.314 J K-1 mol-1). By plotting the left hand side of Equation 

2-22 on the y-axis against 1/Tm on the x-axis and performing a linear fitting on the 

obtained dataset, it was possible to calculate the activation energy for the desired event. 

The equation of the linear regression (Equation 2-23) was used to derive the Ea value from 

the gradient m of the calculated equation (Equation 2-24). 

xmcy ×+=  (2-23) 

R

Ea
m −=  (2-24) 

 

2.3.4.2 Mass Spectrometry (MS) 

The use of mass spectrometry has been employed in this work to determine the gaseous 

species evolved during STA experiments. A typical MS analysis consists of four stages. 

The first process is the ionisation of the sample by an electron source. This causes the 

sample to lose one of more electrons forming a positive ion (Equation 2-25), where M is 

the neutral species present in the sampled gas). 

−+− +→+ e2MeM  (2-25) 

These positive ions are then separated based on their mass-to-charge ratio (m/z). The 

separation is obtained by subjecting them to acceleration as a result of an applied potential. 

The third stage involves the deflection of the ions by a magnetic field: the lighter the ion 

the more it is deflected accordingly to Newton’s second law of motion (Equation 2-26), 

which states that the acceleration of a particle is inversely proportional to its mass. 

amf ×=  (2-26) 

Where f is the force, m is the mass and a is the acceleration.  
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In addition, the more positively charged an ion is, the more it will be deflected. At last, the 

ions are focussed and electrically detected as a function of their m/z ratio. The signal is 

amplified, converted and displayed as a mass spectrum. 

In this work a Hiden Analytical HPR 20 mass spectrometer was used.53 This is a 

quadrupole mass analyser designed for fast transient gas analysis. The quadrupole mass 

analyser was first developed by Wolfgang Paul (Figure 2-15).54 It presents four parallel 

metal rods arranged to form a square. The pairs of rods are connected opposite each other 

and a radio frequency (RF) voltage is applied. A direct current (DC) potential is then 

superimposed on the RF voltage. This results in the two opposite rods having an applied 

potential of (U+Vcos(ωt)) whilst the other two rods having an equal and opposite applied 

potential of -(U+Vcos(ωt)), where U is the DC voltage and and Vcos(ωt) is the RF voltage. 

The positive ions produced travel along the middle of the rods and the applied voltages 

affect their trajectory: only ions with the desired mass-to-charge value are stabilised and 

allowed to the detector whereas other ions will collide with the rods. 

 

Figure  2-15: Quadrupole mass analyser developed by W. Paul. Adapted from Reference 54 

 

Programmes were set up using the MASsoft Pro software and the detection of specific 

gases evolved was enabled. Typically, the amount of H2, H2O, N2 and Ar were monitored. 

Before every MS experiment, a pre-run of approximately 20-30 minutes was performed to 

verity the absence of air and moisture and prevent the contact between sample and any 

non-inert environment. 
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2.3.5 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) is a powerful tool for determining the morphology as 

well as the particle size of both bulk and nanostructured materials. It can be coupled with 

energy dispersive X-ray spectroscopy (EDX) to obtain additional information about the 

elemental composition of samples. During this project, SEM was used only for imaging. 

Since the samples being investigated during this work consisted of lighter elements, the 

usefulness of EDX would have been minimal and therefore no EDX analysis was 

performed. 

In electron microscopy the visible light source used in optical microscopy is replaced with 

a high energy incident electron beam.55,56 The generated electrons can interact with the 

sample either elastically or inelastically. The former interaction occurs when scattered 

electrons have the same energy as the incident ones, whilst the latter occurs when the 

energy of the scattered electrons is different. An elastic collision results in the emission of 

high energy electrons, known as backscattered electrons. They escape the surface of the 

sample retaining ca. 60-80 % of their initial energy, reaching the detector with an energy 

greater than 50 eV.56 They are used for imaging purposes and diffraction, providing both 

compositional and topographic information. 

However, when the electrons from the incident beam strike the sample; inelastic scattering 

can yield different types of signals including the emission of secondary electrons, X-rays 

and Auger electrons (Figure 2-16). In particular, emitted secondary electrons have low 

energies (on average 3-5 eV). For this reason they can be used for obtaining topographic 

information with good resolution as they escape within a few nanometres of the sample 

surface and can be used to mark the position of the beam accurately. 

Moreover, when the material is scanned, an inner shell of electrons is ejected by the 

primary beam, leaving the sample in an excited state. When it relaxes back to the ground 

state, the sample will emit both Auger electron and X-rays as a result of an electron from 

an outer shell dropping down to a core level. The Auger electrons and X-rays will be 

characteristic of the atom they are emitted from and can be employed for the study of the 

elemental composition of the material by either Auger Electron Spectroscopy (AES) or 

energy dispersive X-Ray Spectroscopy (EDX). 



95 
 

 

Figure  2-16: Schematic of possible scattering of electrons from a typical SEM experiment. 

 

In a common scanning electron microscope, a beam of high energy electrons is emitted by 

an electron gun. The beam is focused by a condenser lens and travels through a system of 

magnetic lenses before interacting with the sample. Through the use of scanning coils the 

focused beam is moved across the surface of the sample, scanning it. The detector then 

collects the backscattered and secondary electrons, the emitted signals responsible for 

imaging. The microscope is usually interfaced to a PC, facilitating the viewing and 

manipulation of the collected images. 

The equipment works under high vacuum, in order to avoid oxidation and preserve the 

filament responsible for the generation of the beam. A high vacuum results also in lower 

background noise and better image quality. 

A schematic of a scanning electron microscope is presented in Figure 2-17. 
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Figure  2-17: Schematic of a Scanning Electron Microscope. 

 

2.3.5.1 Preparation of samples 

In order to collect SEM images, the sample to be analysed is placed onto adhesive carbon 

tabs fixed to an aluminium stub. Since in this work the analysed materials were often found 

to charge under the beam, the samples were typically sputter-coated with a 10 nm layer of 

gold/palladium alloy to achieve better conductivity and increase the quality of the collected 

images. All manipulations were carried out inside a recirculating glove box under either an 

argon or nitrogen atmosphere. The samples were put into glass vials and sealed before 

being transferred out of the glove box to minimise the exposure to air and moisture. The 

samples were then placed inside the vacuum column of the microscope, which was shut 

using an air-tight door and evacuated. The measurements were performed using two 

different scanning electron microscopes. 

The images presented in Chapters 3 and 5 were acquired at the Imaging Spectroscopy and 

Analysis Centre (ISAAC), in the School of Geographical and Earth Sciences (GES) at the 

University of Glasgow, with the help of Dr Peter Chung. The instrument used was a Carl 

Zeiss Sigma Variable Pressure Analytical SEM with Oxford Microanalysis using a 

Schottky thermal field emitter electron source. An accelerating voltage of 15-25 kV and a 

working distance of typically 5-6 mm were used. 

The images presented in Chapter 4 were collected using a Philips XL30 ESEM 

microscope, operated in high vacuum mode with an applied accelerating voltage of 25 kV 

and a working distance of 5 mm, suitable for imaging.  
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3 The magnesium hydride – magnesium hydroxide 

‘modular’ release system 
 

3.1 Introduction 

The magnesium hydroxide – magnesium hydride system was one of the first ‘modular’ 

hydrogen release system to be proposed by Leardini et al. in 2009.1 More recently, Wang 

et al. studied the improved hydrogen storage and release properties of mechanically milled 

magnesium hydride when mixed with catalytic amounts of alkali hydroxides in 2013.2 

Furthermore, the use of magnesium hydroxide in these kind of systems has also recently 

been proposed in combination with lithium borohydride and sodium borohydride.3,4 

The Mg(OH)2 – MgH2 dehydrogenation system, presented in Equation 3-1, is 

thermodynamically favourable. It can theoretically release up to 4.7 wt. % of hydrogen and 

involves the reaction between magnesium hydroxide and magnesium hydride to yield 

magnesium oxide together with and the evolution of hydrogen. 

2
1

222 HkJmol3.101)K298(HH2MgO2MgH)OH(Mg −−=°∆+→+  (3-1) 

The decomposition of both magnesium hydroxide and magnesium hydride as individual 

components have been widely studied. In the case of Mg(OH)2, the decomposition is a 

dehydration process (Equation 3-2), which theoretically leads to the release of 30.8 wt. % 

H2O.5,6 

OHkJmol4.98)K298(HOHMgO)OH(Mg 2
1

22
−=°∆+→  (3-2) 

Magnesium hydride can theoretically release up to 7.6 wt. % H2, although the kinetics and 

thermodynamics of the dehydrogenation process are (Equation 3-3) characterised by slow 

H2 desorption at high temperatures.7 

2
1

22 HkJmol2.76)K298(HHMgMgH −=°∆+→  (3-3) 

In this work Mg(OH)2 and MgH2 have been employed together as a single system: a 

stoichiometric amount of the two reagents have been mixed together as shown in Equation 

3-1. Bulk, mechanically-milled and chemically nanostructured materials were used. First, 
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mixtures of as-received Mg(OH)2 and MgH2 were ground together manually and their 

dehydrogenation investigated. Following the study of the bulk system, mechanically milled 

materials were employed: both bulk Mg(OH)2 and MgH2 were ball milled to reduce 

particle size and subsequently manually mixed and used as a ‘modular’ system. 

Furthermore, nanostructured Mg(OH)2 with an hexagonal platelet morphology has been 

successfully synthesised. The hydroxide was mixed with milled MgH2 and the behaviour 

of the whole system investigated. As mentioned in Section 1.3.2, the reduction of the 

particle size of the materials in these kinds of systems can lead to an enhancement of the 

thermodynamics and kinetics of hydrogen release and can potentially yield better control 

of the whole dehydrogenation process. 

All starting materials and systems were characterised using simultaneous 

thermogravimetric analysis (TG-DTA) mass spectroscopy (MS), powder X-ray diffraction 

and scanning electron microscopy. TG-DTA-MS studies were conducted to obtain 

information on the onset and peak temperature of any thermal event occurring, weight loss 

percentage and nature and amount of the gas evolved during the reaction. Ex-situ PXD has 

been used to monitor the various dehydrogenation steps occurring during the thermal 

treatment and ultimately to propose a mechanism of hydrogen release for each studied 

system. Scanning electron microscopy was employed for imaging: the morphology of both 

milled and nanostructured materials have been studied before and after the heating process 

in order to verify any retention of the morphology, especially for nanostructured 

magnesium hydroxide. 

The aim of this chapter is to give an overview on the Mg(OH)2 – MgH2 system with 

particular focus on the comparison among chemically nanostructured, mechanically milled 

materials and bulk reagents dehydrogenation properties. TG-DTA-MS studies were 

performed on each system in order to obtain onset and peak temperature of any thermal 

event occurring, associated weight loss percentages and nature and amount of the gas 

evolved during heating. Ex-situ PXD experiments were conducted to try and isolate any 

intermediate phases forming during dehydrogenation and propose a mechanism of 

hydrogen release for bulk, milled and nano systems. Scanning Electron Microscopy was 

employed for morphology studies of both milled and nanostructured materials before and 

after heating. 
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3.2 Experimental 

 

3.2.1 Preparation of the systems 

All ‘modular’ systems were prepared by manually mixing materials with a mortar and 

pestle stoichiometric amounts of the starting for 5 minutes. All mixtures were prepared by 

mixing 222 mg of magnesium hydroxide and 100 mg of magnesium hydride. All 

preparations were carried out under an inert atmosphere inside either an argon- or nitrogen-

filled recirculating glove box. 

Three different kinds of systems were prepared: 

• Bulk ‘modular’ system: as-received Mg(OH)2 (Sigma-Aldrich, 95%) and MgH2 

(Aldrich, hydrogen-storage grade, ≥ 96.5%) were mixed (denoted b-Mg(OH)2 and 

b-MgH2 respectively). 

• Mechanically milled ‘modular’ system: mixtures of mechanically milled 

magnesium hydroxide (denoted m-Mg(OH)2) and mechanically milled magnesium 

hydride (m-MgH2) were prepared. 

• Nanostructured ‘modular’ system: nanostructured Mg(OH)2 (denoted n-Mg(OH)2) 

was mixed together with mechanically milled MgH2. 

 

3.2.2 Microwave-Hydrothermal Synthesis of nanostructured Mg(OH) 2 

To obtain ca. 2 grams of n-Mg(OH)2, approximately 1.6 grams of magnesium oxide 

(Sigma Aldrich, 98%) were placed inside a Teflon-lined autoclave for microwave synthesis 

together with 30 ml of deionised water. The MW autoclave was heated for a total of 4 

minutes (1 minute followed by 30 minutes of cooling each time) inside single mode cavity, 

adapted domestic microwave oven. Products were washed and centrifuged with H2O three 

times and the white precipitate collected and dried in air overnight.5,8 

 

3.2.3 Ball milling of Mg(OH) 2 

Magnesium hydroxide was mechanically milled using the same conditions reported by Zhu 

et al..9 However, a 40:1 ball-to-powder ratio was used as opposed to the 120:1 employed 

by Zhu. 
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During a typical milling experiment, 1 gram of Mg(OH)2 (Sigma-Aldrich, 95%) was ball 

milled for 5 hours at 500 rpm, using 10 stainless steel balls. A 5 minute interval followed 

every 5 minutes of milling. 

 

3.2.4 Ball milling of MgH 2 

Nanostructured MgH2 was produced by mechanically milling the as-received hydride 

(Aldrich, hydrogen-storage grade, ≥ 96.5%). Typically, 1 gram of MgH2 was loaded into a 

50 ml stainless steel jar using 10 stainless steel balls as grinding medium. The milling 

process was performed for 5 hours at 450 rpm. A 5 minute interval was applied after every 

5 minutes of milling.10 

 

3.2.5 TG-DTA-MS studies 

The hydroxide – hydride system was characterised by thermogravimetric-differential 

thermal analysis coupled with mass spectroscopy. These experiments were performed to 

obtain information on the onset and peak temperature of the thermal event occurring 

during heating, weight loss percentage and nature and amount of the gas evolved during 

the reaction. TG-DTA experiments were carried out using a Netzsch STA 409 PC coupled 

to a Hiden HPR20 mass spectrometer as detailed in Section 2.3.4. All measurements were 

performed under a flow of argon and all manipulations were conducted inside inert 

atmosphere glove boxes. 

First correction files were created and then the materials analysed (Section 2.3.4.1). Initial 

experiments involved heating from room temperature to 873 K at 5 K min-1 and holding 

that temperature for 1 hour before undergoing natural cooling. Subsequent experiments 

were planned based on the initial TG-DTA results obtained and intermediate temperature 

points were studied to isolate any intermediate species forming to facilitate the proposal of 

a mechanism of hydrogen release. For each experiment, approximately 20-25 mg of 

sample were subjected to thermal treatment. 

As mentioned in Section 2.3.4.1, TG-DTA analyses was performed in order to calculate 

the activation energy for the system using the Kissinger method.11,12 Samples were heated 

to 773 K using heating rates of 2, 5, 10 and 20 K min-1 respectively (Table 3-5) and 

Kissinger plots were obtained. 
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3.2.6 Powder X-ray diffraction (PXD) experiments 

All starting materials and ‘modular’ hydrogen release systems were analysed by PXD as 

described in paragraph 2.3.1.1. Capillaries were prepared for the characterisation of air 

sensitive materials and these were analysed with a d8 Bruker diffractometer. Data were 

typically collected from 2θ˚ 5-85 for one hour for phase identification. Non-air sensitive 

materials were characterised using a PANalytical X’Pert powder diffractometer, employing 

the bracket stage. Data were usually collected from 2θ˚ 5-85 for 30 minutes for phase 

identification and for 3 hours for Rietveld refinements studies. 

The data obtained were compared with the appropriate reference powder diffraction 

patterns using the ICSD database13 on PowderCell14 or using the ICDD PDF database15 

with the PANalytical HighScore Plus software. 

As already discussed in Section 2.3.3, Rietveld refinements against the PXD data were 

performed using the General Structure Analysis System (GSAS)16 with the EXPGUI 

interface17. The background was successfully modelled using Function 1 (Chebyschev 

function, polynomial of the first type). This was followed by the refinement of the cell 

parameters, atomic positions, profile parameters and temperature factors. The peak shape 

was modelled using Function 2, which is a multi-term Simpson’s integration of the 

Pseudo-Voigt function. 

 

3.2.7 Scanning Electron Microscopy (SEM) imaging 

Samples for SEM imaging were prepared accordingly to Section 2.5.2.1. In each case a 

small amount of sample was placed onto an adhesive carbon tab fixed on an aluminium 

stub. Since the analysed materials were observed to charge under the electron beam, 

samples were sputter-coated with a 10 nm layer of gold/palladium alloy in order to achieve 

better conductivity and increase the quality of the collected images. All manipulations 

were carried out inside a recirculating glove box under inert atmosphere. The samples were 

put into glass vials and sealed before being transferred out of the glove box. The samples 

were then placed inside the vacuum column of the microscope, which was shut and 

evacuated. 

Images were acquired using a Carl Zeiss Sigma Variable Pressure Analytical SEM with 

Oxford Microanalysis employing a Schottky thermal field emitter electron source. SEM 

imaging was performed with an accelerating voltage of 15-25 kV and a working distance 
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of typically 5-6 mm. The instrument is situated at the Imaging Spectroscopy and Analysis 

Centre (ISAAC), School of Geographical and Earth Sciences (GES) at the University of 

Glasgow. All images were collected with the help of Dr Peter Chung. 

 

3.2.8 Summary of samples and reactions 

 

Table  3-1: Summary of starting materials employed in the Mg(OH) 2 – MgH2 ‘modular’ release 

systems. 

Sample Material Preparation Conditions Heating program / K 

1 n-Mg(OH)2 4 min MW synthesis 873 / 5 K min-1 + 1 h dwell 

2 m-Mg(OH)2 5 h milling @ 500 rpm (5/5) 873 / 5 K min-1 + 1 h dwell 

3 m-MgH2 5 h milling @ 450 rpm (5/5) 873 / 5 K min-1 + 1 h dwell 

 

Table  3-2: Summary of preparations carried out for the bulk ‘modular’ system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

4 b-Mg(OH)2 – b-MgH2 5 min manual mixing – 

5 b-Mg(OH)2 – b-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

6 b-Mg(OH)2 – b-MgH2 5 min manual mixing 638 / 5 K min-1 

7 b-Mg(OH)2 – b-MgH2 5 min manual mixing 673 / 5 K min-1 

8 b-Mg(OH)2 – b-MgH2 5 min manual mixing 723 / 5 K min-1 

9 b-Mg(OH)2 – b-MgH2 5 min manual mixing 773 / 5 K min-1 

 

Table  3-3: Summary of preparations carried out for the mechanically milled ‘modular’ system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

10 m-Mg(OH)2 – m-MgH2 5 min manual mixing – 

11 m-Mg(OH)2 – m-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

12 m-Mg(OH)2 – m-MgH2 5 min manual mixing 658 / 5 K min-1 

13 m-Mg(OH)2 – m-MgH2 5 min manual mixing 758 / 5 K min-1 
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Table  3-4: Summary of preparations carried out for the nanostructured ‘modular’ system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

14 n-Mg(OH)2 – m-MgH2 5 min manual mixing – 

15 n-Mg(OH)2 – m-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

16 n-Mg(OH)2 – m-MgH2 5 min manual mixing 673 / 5 K min-1 

17 n-Mg(OH)2 – m-MgH2 5 min manual mixing 773 / 5 K min-1 

 

Table  3-5: Summary of preparations carried out for activation energy calculations. 

Sample 
 

Preparation 

Conditions 
Heating program / K 

18a b-Mg(OH)2 – b-MgH2 5 min manual mixing 773 (2 K min-1) 

18b 
  

773 (5 K min-1) 

18c 
  

773 (10 K min-1) 

18d 
  

773 (20 K min-1) 

19a m-Mg(OH)2 – m-MgH2 5 min manual mixing 773 (2 K min-1) 

19b 
  

773 (5 K min-1) 

19c 
  

773 (10 K min-1) 

19d 
  

773 (20 K min-1) 

20a n-Mg(OH)2 – m-MgH2 5 min manual mixing 773 (2 K min-1) 

20b 
  

773 (5 K min-1) 

20c 
  

773 (10 K min-1) 

20d 
  

773 (20 K min-1) 
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3.3 Results and Discussion 

 

3.3.1 Preparation of the system components 

 

3.3.1.1 Nanostructured Mg(OH)2 

Nanostructured Mg(OH)2 (Sample 1) was successfully obtained using the synthetic route 

described in Section 3.2.1.5 

The synthesised nanostructured magnesium hydroxide was characterised by PXD and 

SEM. As shown in the PXD pattern (Figure 3-1) pure-phase Mg(OH)2 nanoplates are 

synthesised with no trace of MgO starting material present. Crystallites were of  hexagonal 

platelet morphology with a typical thickness of 10 – 60 nm, a diameter and diagonals 

varying in the 100 nm – 300 nm and 200 – 600 nm range respectively (Figure 3-2). 

 

Figure  3-1: PXD pattern for Sample 1, synthesised n-Mg(OH)2. 
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Figure  3-2: Collected SEM images for Sample 1: a) 1 µm scale b) 200 nm scale 

 

Due to the non-uniform size distribution of the sample, the Scherrer method has not been 

used to give an estimation of the particle size of the synthesised Mg(OH)2. Rietveld 

refinement was performed against PXD data with GSAS16 using the EXPGUI17 interface. 

Crystallographic data are presented in Table 3-6 and the cell parameters are in good 

agreement with the literature values.18 The observed, calculated and difference (OCD) plot 

from the PXD Rietveld refinement for Sample 1 is presented in Figure 3-3. 

 

Table  3-6: Selected data from the PXD Rietveld refinement for Sample 1, synthesised nano Mg(OH)2.
5 

Empirical Formula Mg(OH) 2 

Crystal System Trigonal 

Space Group P-3m1 

Lattice Parameters 

a / Å 

c / Å 

 

3.150(4) 

4.774(9) 

V / Å3 41.0(1) 

Z 1 

Unit Cell Formula 

Weight / Mw 
58.319 

Density / g cm-3 2.360 

No. of Variables 31 

No. of Observations 9573 

Rwp % 9.31 

Rp % 3.61 

χ
2 4.43 
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Figure  3-3: Observed, calculated and difference (OCD) plot from the PXD Rietveld refinement for 

Sample 1, synthesised n-Mg(OH)2. 

 

A possible mechanism of nanoplates growth was proposed in 2003 by Yu et al., who 

studied the conventional HT synthesis of Mg(OH)2 hexagonal nanoplates from only MgO 

and H2O.19 This process starts with the dissolution of bulk MgO in water, forming primary 

particles, and then proceeds with the aggregation of those particles to yield mesoporous 

nanoplates. 

The mechanism herein proposed for the MW-HT synthesis is different to the one reported 

above and it consists of a dissolution-precipitation process (Equation 3-4). The use of MW 

results in a much higher rate of both heating and cooling and this could lead to an 

extremely fast initial MgO dissolution step. Even though the solubility of MgO and 

Mg(OH)2 is poor under ambient conditions, these increase with increasing temperature.20,21 

The mechanism then involves the formation of magnesium hydroxide on the oxide surface 

via intermediate Mg(OH)+ species. This is then followed by the removal of Mg(OH)2 from 

MgO surface.22,23 

)s(2)aq()ads()l(2)s( )OH(MgOHMgOHOHMgO →+→+ −+  (3-4) 

The oxide is believed to rapidly react with H2O, with the formation of Mg(OH)2 particles 

being faster than their removal from the surface of the oxide. 

The final step of the process is the cooling which is when the agglomeration of the 

particles is believed to occur. In this sense, this suggests that the mechanism is different to 

the one proposed by Yu et al..19 Both mechanisms are presented in Figure 3-4. 
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Figure  3-4: Proposed growth processes for (a) conventional hydrothermal synthesis of Mg(OH)2 

nanoplates19 and (b) MW-HT synthesis of Mg(OH)2 nanoplates performed during this project.5 

 

3.3.1.2 Ball milled Mg(OH) 2 

Magnesium hydroxide (Sample 2) was ball milled for 5 h at 500 rpm; as shown in Figure 

3-5, the post-milling product is still single phase Mg(OH)2. SEM images were collected 

(Figure 3-6) and show particles with a typical particle size of 70-200 nm in diameter. 

However, it is also possible to notice that the milled Mg(OH)2 particles tend to 

agglomerate in bigger clusters with a diameter of typically a few µm. 

 

Figure  3-5: PXD pattern for Sample 2, ball milled magnesium hydroxide. 
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Figure  3-6: Collected SEM images for Sample 2: a) 1 µm scale b) 200 nm scale 

 

3.3.1.3 Ball milled MgH 2 

Magnesium hydride (Sample 3) was ball milled for 5 h at 450 rpm. As shown in the PXD 

pattern (Figure 3-7), no major reaction occurs during the milling time, although it is 

possible to identify peaks assignable to different MgH2 polymorphs: β-MgH2 and γ-MgH2. 

Nonetheless, the γ-MgH2 reflections are very low in intensity and β-MgH2 is still the main 

phase present. Magnesium metal is also present as impurity. Its presence was identified in 

the as-received hydride, before the milling process was performed. Rietveld refinement 

was performed against the collected PXD data and the calculated weight fractions were 

found to be 96 ± 1 % MgH2 and 4 ± 1 % Mg. The PXD pattern of the as-received MgH2 

together with selected crystallographic data and the observed, calculated and difference 

(OCD) plot from the PXD Rietveld Refinement can be found in Appendix A. 

SEM images were collected prior and after the ball milling (Figures 3-8 and 3-9). The 

images show a dramatic reduction of the particle size with respect to the as-received 

hydride. The milling process results in a typical particle size of 70-150 nm in diameter. 

The collected SEM images show nonetheless that the particles tend to agglomerate in 

clusters with a diameter of typically 1-2 µm, as was previously observed for milled 

Mg(OH)2. 
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Figure  3-7: PXD pattern for Sample 3, ball milled magnesium hydride (β-MgH 2). Triangles and circles 

indicate γ-MgH 2 and Mg metal respectively. 

 

 

Figure  3-8: Collected SEM images: a) commercial MgH2 (10 µm scale) and b) Sample 3 (2 µm scale) 

 

Figure  3-9: Higher magnification SEM image for Sample 3 (200 nm scale) 
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3.3.1.4 TG-DTA-MS data 

Prior to the study of the ‘modular’ release system, TG-DTA-MS studies were carried out 

on each of the starting materials. Samples 1, 2 and 3 and the commercial magnesium 

hydroxide and magnesium hydride were analysed individually in order to compare onset 

and peak temperatures of dehydration and dehydrogenation for Mg(OH)2 and MgH2 

respectively, as well as weight losses and the evolution of gaseous species occurring during 

heating. 

A summary of the results obtained for magnesium hydroxide is reported in Table 3-7. 

Table  3-7: Onset temperature, peak temperatures, weight losses and identified released gaseous species 

for Sample 1 (nano Mg(OH)2), Sample 2 (milled Mg(OH)2) and as-received Mg(OH)2. 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

1 

n- Mg(OH)2 
560 663 29.7 H2O 

2 

m- Mg(OH)2 
528 615 30.4 H2O 

  
653 

 
 

Commercial 

Mg(OH)2 
553 603 30.6 H2O 

  
631 

 
 

 

 

Figure  3-10: (a) TG and (b) DTA data comparison for commercial (red), nanostructured (1; blue) and 

milled (2, green) magnesium hydroxide. 
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Figure  3-11: MS profiles Vs time for commercial (red), nanostructured (1; blue) and milled (2, green) 

magnesium hydroxide. 

 

Figure 3-10 presents the TG-DTA data collected for Sample 1 (nano Mg(OH)2), 2 (milled 

Mg(OH)2) and commercial Mg(OH)2. All weight losses appear to be consistent: the lowest 

can be observed for the nanostructured hydroxide (Sample 1), where a mass loss of 29.7 

wt. % is observed, corresponding to 96.4 % of the theoretical 30.8 wt. %. The thermal 

treatment of Sample 2 leads to a mass loss of 30.4 wt. % (98.8 % of the theoretical one), 

whereas the as-received Mg(OH)2 dehydration process results a weight loss of 30.6 %, 

which is 99.4 % of the theoretical figure. The DTA profiles show differences amongst the 

materials: the onset temperature of dehydration are found to be 560 K, 528 K and 553 K 

for nano, milled and commercial Mg(OH)2 respectively. The profile for Sample 1 suggests 

that the dehydration process takes place in a single step, with a peak temperature of 663 K. 

DTA profiles for commercial magnesium hydroxide and Sample 2 suggest the dehydration 

to be a two-step process instead, as previously reported: Turner et al. suggest that this may 

be due to differences in surface energy and the presence of crystal lattice defects.6 Two 

different peaks may be identified with peak temperatures of 603 and 631 K for as-received 

Mg(OH)2 and 615 and 653 K for milled Mg(OH)2 (Sample 2). However, this is not 

completely in agreement with the MS spectra collected (Figure 3-11): the only gaseous 

specie detected is water as expected, although for all samples the release of water appears 

to happen in a single event, with the maxima being 615, 631 and 663 K for milled, 

commercial and nanostructured magnesium hydroxide respectively. 

Based on the data presented, Sample 2 (milled magnesium hydroxide) appears to be most 

promising of the hydroxides to be employed together with MgH2 in this type of ‘modular’ 
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system in order to achieve the best hydrogen release performances, as its onset and peak 

dehydration temperatures are lowered when compared to the bulk material, suggesting an 

improved reactivity. 

 

A summary of the data collected for magnesium hydride are presented in Table 3-8. 

 

Table  3-8: Onset temperature, peak temperatures, weight losses and identified released gaseous species 

for Sample 3 (milled MgH2) and for as-received MgH2. 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

3 

m-MgH 2 
580 625 6.4 H2 

Commercial 

MgH 2 
667 696 6.9 H2 

 

 

Figure  3-12: (a) TG and (b) DTA data comparison for commercial (red) and milled (3, blue) 

magnesium hydride. 
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Figure  3-13: MS profiles Vs time for commercial (red) and milled (3, blue) magnesium hydride. 

 

As can be observed in Figure 3-12, the TG-DTA profile shows great improvement in the 

dehydrogenation properties magnesium hydride as a result of ball milling. In fact, the 

milling procedure results in a decrease of the onset temperature of hydrogen release by 

almost 100 K with respect to the as-received MgH2. The kinetics of H2 release appear to be 

slightly slower when compared to the bulk materials as a broadening of the DTA peak 

relative to H2 desorption can be observed for Sample 3. However, this could be an effect of 

the size distribution of particles in the sample. The MS profiles (Figure 3-13) show that the 

only gaseous species evolved during the thermal treatment is hydrogen. From the data 

collected, it is also clear that the dehydrogenation process for milled material occurs ca. 30 

minutes before the bulk one (lowered by ca. 90 K), although it seems to require more time 

to go to completion (roughly 25 minutes for milled MgH2 against the 15 minutes of non-

milled MgH2). On the other hand, for the as-received hydride a weight loss of 6.9 wt. % 

(nearer to the theoretical 7.6 wt. % H2) can be observed. The thermal treatment of Sample 

3 leads to a mass loss of 6.4 wt. %, which is 84.2 % of the expected 7.6 %. (91 % of the 

theoretical value for the bulk). The lower weight losses can be attributed to the presence of 

magnesium metal as an impurity in the pre-milled hydride as well as γ-MgH2 as previously 

explained in Section 3.3.1.3. 
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Initial TG-DTA-MS experiments were performed on Samples 5, 11 and 15 to determine 

the onset temperature as well as the peak temperature of hydrogen release and the weight 

loss for bulk, milled and nanostructured systems (Figures 3-14 and 3-15). The results 

obtained are summarised in Table 3-9. The mixtures were heated to 873 K and that 

temperature was held for one hour (Samples 5, 11 and 15). 

 

Table  3-9: Onset temperature, peak temperatures, weight losses and identified released gaseous species 

for Samples 5, 11 and 15. If not otherwise specified, the thermal events are endothermic 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

5 567 611 21.5 H2; H2O 

b-Mg(OH)2 – b-MgH2 
 

645 
 

 

 
688 716 

 
 

  
737 

 
 

11 527 642 (exo) 12.6 H2; H2O 

m-Mg(OH)2 – m-MgH2 718 743 
 

 

  
779 

 
 

15 530 615 (exo) 7.9 H2 

n-Mg(OH)2 – m-MgH2 713 753 
 

 

  
776 

 
 

 

 

Figure  3-14: (a) TG and (b) DTA data comparison for Sample 5 (bulk; red), Sample 11 (milled; green) 

and Sample 15 (nano; blue). 
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As can be clearly seen from Figure 3-14, interesting differences can be appreciated among 

the three studied systems in terms of both weight loss and differential thermal analysis. 

Although the onset temperature of H2 release is not dramatically decreased when reducing 

the particle size of the starting materials (567, 527 and 530 K for Sample 5, bulk, 11, 

milled, and 15, nano respectively), great differences can be observed in the DTA profiles. 

The most important distinction between samples is related to the thermodynamic nature of 

the events occurring. Sample 5 shows the presence of four main endothermic events: the 

first one starting a 567 K (with a peak temperature of 611 K) and the second starting 

immediately afterwards with a peak temperature of 645 K. The third endothermic shows an 

onset temperature of 688 K and a peak temperature of 716 K and the last endothermic 

event occurs immediately after with a peak temperature of 737 K. The DTA profile for 

Samples 11 and 15 show that the presence of three events only. Further, the first event 

appears now to be exothermic for both samples whilst the other events remain 

endothermic. In particular, for Sample 11 the first event starts at 527 K and shows a peak 

temperature of 642 K. The second event starts at 718 K (with a peak temperature of 743 K) 

and it is immediately followed by the third and last endothermic event which presents a 

peak temperature of 779 K. A similar profile can be observed for Sample 15, with slight 

shifts in temperatures with respect to 11. The first event presents an onset temperature of 

530 K and a peak temperature of 615 K, whereas the second event starts at 713 K (753 K 

peak temperature) with the third endothermic event starting immediately after with a peak 

temperature of 776 K. 

TGA profiles shows that the weight losses are much higher than expected for the evolution 

of hydrogen. In fact the theoretical figure for this system is 4.7 wt. % H2. The observed 

mass losses were found to be 21.5, 12.6 and 7.9 wt. % for Samples 5 (bulk), 11 (milled) 

and 15 (nano) respectively. This could be explained by taking into account the DTA 

profiles as well as the MS spectra showing the gaseous species evolved during the thermal 

treatment of each sample (Figure 3-15). 
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Figure  3-15: MS profiles Vs time for Sample 5 (bulk), Sample 11 (milled) and Sample 15 (nano). The 

black line denotes hydrogen release. In the insert, water release for bulk, milled and nanostructured 

materials is denoted by red, green and blue lines respectively. 

 

As previously stated, the gravimetric capacity of the system is 4.7 wt. % of hydrogen 

according to Equation 3-1 presented in Section 3.1. 

However, if the decomposition of the two starting materials is considered as being two 

independent thermal events; i.e. the dehydration of Mg(OH)2 and the dehydrogenation of 

MgH2 (Equations 3-2 and 3-3 previously given in Section 3.1), then the system would 

theoretically release 21.3 wt. % H2O from Mg(OH)2 and 2.4 wt. % H2 from MgH2, 

resulting in a total weight loss of 23.5 wt. %. 

This is in broad agreement with both the DTA profile (only endothermic events can be 

identified) and the mass loss observed for Sample 5, which was found to be 21.5 % (91.5 

% of the expected H2O/H2 weight loss of 23.5 %). The MS spectrum of sample 5 shows in 

fact the release of both hydrogen and water during TG-DTA analysis. The lower mass loss 

may be imputed to the Mg metal impurity present in the hydride as well as a slight reaction 

of MgH2 with the H2O released from the hydroxide during the first step of the reaction, 

associated with the evolution of a small amount of hydrogen. 
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Both Samples 11 and 15 show a lower mass loss with respect to the bulk materials as well 

as different DTA profiles as previously discussed. A weight loss of 12.6 % is observed for 

the milled system (11) and again both water and hydrogen are evolved during the thermal 

treatment according to the mass spectrum. Nevertheless, H2 is released in two different 

steps, which coincide with the first LT exothermic event and the second HT endothermic 

event. This suggests that dehydration of hydroxide still occurs, but the water evolved is 

immediately hydrolysing part of the hydride leading to H2 release together with H2O. Then 

the remaining hydride decomposes according to Equation 3-3 and hydrogen is evolved. 

The last endothermic event could be related to the melting of Mg resulting from MgH2 

dehydrogenation. Although the melting point of magnesium metal is higher (mp = 922 

K)24, it may be possible to observe melting of Mg metal at lower temperatures due to a 

depression of the melting point caused by the reduced particle size of MgH2. This is 

supported also by the fact that no weight change is associated with such thermal event. 

However, a closer look at the DT profile could also suggest the last two events to be a 

combination of an endothermic event immediately followed by an exothermic one. In this 

case the last exothermic event (peak temperature of 758 K) could be related to the 

formation of MgO from the reaction between Mg resulting from MgH2 dehydrogenation 

and the water evolved from Mg(OH)2 dehydration. 

A similar reaction pathway can be proposed for nanostructured materials, however the 

weight loss for Sample 15 was found to be only 7.9 %. This figure indicates that both H2 

and H2O are evolved from the nanostructured mixture. However, only hydrogen is detected 

in the mass spectrum in a two-step process when heating nanostructured materials. An 

almost negligible signal for water was observed. The first mechanistic step is hypothesized 

to be once again the simultaneous dehydration of Mg(OH)2 and hydrolysis of most of the 

MgH2 and this is supported both by the evidence of the LT exothermic event in the DTA 

profile and the hydrogen peak in the mass spectrum. The subsequent endothermic step of 

the reaction appears to be the dehydrogenation of the remaining hydride, which is believed 

to be followed by the melting of the newly formed Mg. However, the weak water signal 

observed would suggest that the evolved water could partly react with the newly formed 

Mg metal to yield MgO and release H2. In fact, as previously observed for Sample 11 

(milled), it is possible the last event to be a combination of endothermic and exothermic 

events, relative to MgH2 dehydrogenation and reaction of Mg to yield MgO respectively. 

As observed for the milled system, the exothermic event presents a peak temperature of 

758 K. However, also in this case it is not possible to observe a weight gain associated to 
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such event. Moreover, the MS profile for 15 suggests that most hydrogen is released during 

the first exothermic event rather than during the second one. 

Further, it is possible to note from DTA profiles as well as MS spectra show that the 

temperature of the thermal event associated with MgH2 dehydrogenation is shifted towards 

higher temperatures when working with nanosized materials. This is believed to be caused 

by reactions occurring at the hydroxide-hydride interface. In fact, it has been reported by 

Bobet et al. that during the hydrolysis reaction of MgH2 a passive layer of hydroxide is 

formed on the surface of the material.25 In this case, due to the high temperature, that layer 

is believed to be MgO, associated with H2O evolution from Mg(OH)2, which leads to a 

core-shell-like structure with an inner core of MgH2 and an outer shell of MgO. Moreover, 

reducing the particle size of the hydride results in an increased surface area and reactivity 

and thus an increased surface area of the outer MgO layer. This results in a lowered 

reactivity of the remaining MgH2 leading to a higher onset and peak temperature of 

hydrogen release for milled and nanostructured systems. This is also in good agreement 

with the data previously reported by Leardini et al..1 

It is important to note that although the water signal is very weak as to that compared to 

that from hydrogen, the value of the integrated peak areas are comparable. A summary of 

the integrated peak area calculated from the MS spectra is given in Table 3-10. 

Table  3-10: Summary of the integrated peak area calculated from the MS spectra and normalised to 

the mass weight of each sample. 

Sample Mass / mg 
H2O peak area 

/ Torr·mg-1 

H2 peak area 

(LT event) / 

Torr·mg -1 

H2 peak area 

(HT event) / 

Torr·mg -1 

1 27.11 1.54E-10 – – 

2 27.88 5.77E-10 – – 

Commercial 

Mg(OH)2 
27.73 2.17E-10 – – 

3 24.49 – – 8.01E-09 

Commercial 

MgH 2 
24.57 – – 6.02E-09 

5 23.66 1.17E-10 4.43E-10 3.63E-10 

11 24.51 8.53E-11 4.81E-10 2.26E-10 

15 24.50 – 3.61E-10 1.25E-10 
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The Kissinger method was employed for calculating the activation energies of the two 

main thermal events.12,11 The first one a low temperature (LT) is believed to relate to the 

decomposition of Mg(OH)2 (and simultaneous MgH2 hydrolysis for milled and nano 

mixtures) and the one at high temperature (HT) is believed to correspond to the 

decomposition of the remaining MgH2. Data for obtaining Kissinger plots were collected 

for bulk, milled and nanostructured mixtures (Samples 18, 19 and 20) prepared using the 

exact same procedure to 4, 10 and 14 and analysed as previously stated in Section 3.2.5. 

Kissinger plots for both thermal events are shown in Figure 3-16 (error bars omitted for 

clarity). A summary of the activation energies and linear regression equations are given in 

Table 3-11. Single Kissinger plots with relative error bars and DTA profiles are reported in 

Appendix A. 

The activation energy for the LT thermal event was found to be 94±9, 155±6 and 202±8 kJ 

mol-1 for Sample 18 (bulk), 19  (milled) and 20 (nano) respectively. The activation energy 

of 94±9 kJ mol-1 found for the bulk system is consistent with the values reported in the 

literature for the dehydration of magnesium hydroxide (98±6 and 86 kJ mol-1 

respectively)1,26. However, the values calculated for milled and nanostructured mixtures 

were found to be higher. This could be explained by the fact that a simultaneous 

dehydration of Mg(OH)2 and hydrolysis of MgH2 is occurring, leading to an overall 

increased activation energy for the whole mechanistic step. 

The activation energy for the HT thermal event corresponding to the decomposition of 

MgH2 was found to be 144±9, 159±3 and 175±2 kJ mol-1 for Sample 18, 19 and 20 

respectively. These values are in agreement with the literature; the activation energy of 

magnesium hydride in fact does not appear to be very affected from the particle size of the 

materials. Reported Ea values for bulk MgH2 are 142, 166±4, 156 kJ mol-1, whilst Ea 

values for milled MgH2 is 120 kJ mol-1.27,28,29 Nonetheless, a trend can be observed in the 

samples as the activation energies tend to steadily increase of ca. 15 kJ mol-1 from bulk 

(18) to nanostructured (20) mixtures, with the intermediate point found in the milled 

sample (19). This is in good agreement also with the TG-DTA-MS data previously 

collected for Samples 5 (bulk), 11 (milled) and 15 (nano): as a shifting of the MgH2 

decomposition peak towards higher temperatures was observed with the decreasing of the 

particle size from bulk to nano together with the aforementioned core-shell effect. 
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Figure  3-16: Kissinger plots for Samples 18 (bulk; red triangles), 19 (milled; green dots) and 20 (nano; 

blue squares): (a) plots calculated for the LT thermal event; (b) plots calculated for the HT thermal 

event. 

Table  3-11: Kissinger plot data for Samples 18, 19 and 20. Literature reported values for activation 

energy of Mg(OH)2 and MgH2 are given at the bottom of the table. 

Sample Thermal Event Ea / KJ mol-1 

18 LT 94±9 

 
HT 144±9 

19 LT 155±6 

 
HT 159±3 

20 LT 202±8 

 
HT 175±2 

EaMg(OH)2 = 98±6 kJ mol-1 Ref. 1 

EaMg(OH)2 = 86 kJ mol-1 Ref. 26 

Ea bulk MgH2 = 142 kJ mol-1 Ref. 27 

Ea bulk MgH2 = 166±4 kJ mol-1 Ref. 28 

Ea bulk MgH2 = 156 kJ mol-1 Ref. 29 

Ea milled MgH2 = 120 kJ mol-1 Ref. 29 
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3.3.2 Ex-situ PXD and Proposed Mechanisms 

Ex-situ PXD studies were performed for each studied system in order to propose a 

mechanism of hydrogen release and to identify any differences in terms of the reaction 

steps of dehydrogenation when using differently processed starting materials. 

Based on the STA results discussed in the previous section, the bulk, milled and 

nanostructured systems were each studied fully. The results obtained for each system are 

discussed below. 

 

3.3.2.1 Bulk System 

Ex-situ PXD experiments were carefully planned based on the data discussed in Section 

3.3.1.4. Figure 3-17 illustrates the DT-TGA profile for Sample 5 and the intermediate 

temperature points selected for ex-situ PXD experiments. TG-DTA-MS analysis was 

performed in order to try and isolate the intermediate phases formed. The intermediate 

temperature points of the individual thermal analyses are reported in Table 3-2. Six 

different temperatures points were studied: 298, 638, 673, 723, 773 and 873 K and X-ray 

diffraction patterns are presented in Figure 3-18. TG-DTA plots of the intermediate 

temperature point are presented in Appendix A. 

 

 

Figure  3-17: TG (green line) and DTA (blue line) data obtained for Sample 5. The temperature values 

are those selected for subsequent TG-DTA and PXD experiments. 
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Figure  3-18: Ex-situ PXD patterns for Samples 4, 5, 6, 7, 8 and 9 collected at 298, 873 638, 673, 723 and 

773 K respectively. Triangles denote Mg(OH)2, circles β-MgH 2, squares Mg and crosses MgO 

respectively. 

 

During manual mixing, no reaction occurs between hydroxide and hydride prior to thermal 

treatment and MgH2 and Mg(OH)2 were found to be the only phases observed in the 

diffraction pattern together with Mg impurity. At 873 K the reaction has gone to 

completion and the main phase present is MgO. Reflections assignable to magnesium 

metal can be identified as well. PXD patterns collected at 638 and 673 K both reveal the 

presence of MgO, β-MgH2 and Mg, suggesting that the complete dehydration of Mg(OH)2 

is achieved. This is in agreement with the TG-DTA profiles obtained for b-Mg(OH)2 

starting material (Figure 3-10). At 723 K the intensities of reflections relative to MgO and 

Mg are increased, while the peaks relative to MgH2 are decreased in intensity, suggesting 

that the decomposition of MgH2 started. This is also in agreement with the TG-DTA-MS 

data obtained for MgH2 (Figure 3-13). At 773 K the only phases present are magnesium 

oxide and magnesium. A summary of the phases present at each temperature point is given 

in Table 3-12. 
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Table  3-12: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 4, 5, 6, 7, 8 and 9. 

Sample Temperature / K Present Phases 

4 298 Mg(OH)2; MgH2; Mg 

6 638 MgH2; Mg; MgO 

7 673 MgH2; Mg; MgO 

8 723 MgH2; Mg; MgO 

9 773 MgO; Mg 

5 873 MgO; Mg 

 

Based on the results shown in Sections 3.3.1.4 and 3.3.2.1, the following mechanism of 

hydrogen release can be proposed Equation 3-5: 

222222 HOHMgMgOMgHOHMgOMgH)OH(Mg +++→++→+  (3-5) 

In the proposed mechanism, the first thermal event is the endothermic decomposition of 

magnesium hydroxide (∆H = 84.2 KJ mol-1 H2O) leading to the formation of magnesium 

oxide and the evolution of water. This is followed by the dehydrogenation of magnesium 

hydride (∆H = 76.2 KJ mol-1 H2) yielding magnesium metal and hydrogen. 

 

3.3.2.2 Milled system 

Ex-situ PXD experiments for Sample 11 were performed based on the results reported in 

Section 3.3.1.4. Diffraction data were collected at intermediate temperature points to try 

and isolate phases formed during the thermal treatment of the sample. In order to do this, 

TG-DTA-MS experiments were performed and the intermediate temperatures point for 

which PXD data were collected are summarised in Table 3-3. Four temperatures points 

were studied: 298, 658, 758, and 873 K: Figure 3-17 shows the full DT-TGA profile for 

Sample 11, indicating the intermediate temperature points at which TG-DTA and 

diffraction data were subsequently obtained. TG-DTA plots from room temperature to each 

of the intermediate temperature point are presented in Appendix A. The respective ex-situ 

PXD patterns are presented in Figure 3-20. 
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Figure  3-19: TG (green line) and DTA (blue line) data obtained for Sample 11. 

 

 

Figure  3-20: Ex-situ PXD patterns for Samples 10, 11, 12 and 13 collected at 298, 873, 658 and 758 K 

respectively. Triangles denote Mg(OH)2, circles β-MgH 2, squares Mg and crosses MgO respectively. 
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No reaction apparently occurs between hydroxide and hydride during the manual mixing 

before the heating treatment as only reflections assignable to MgH2 and Mg(OH)2 are 

present in the powder pattern together with Mg as an impurity. As for the bulk materials, at 

873 K the reaction has gone to completion with the major phase present being MgO. 

However, peaks assignable to Mg metal can be additionally identified. At 658 K it is not 

possible to assign any peaks to magnesium hydroxide and the only phases present are 

magnesium oxide, magnesium hydride and magnesium metal. Reaching the 758 K 

temperature point results in the absence of MgH2 peaks with the only phases present being 

MgO and Mg. From 758 to 873 K it is possible to note a decrease in the width of MgO 

reflections together with increased peak intensity. This would suggest that MgO is forming 

as the temperature increases, while the melting of magnesium metal is hypothesised to 

occur. However, based on the TG-DTA data discussed in Section 3.3.1.4, this change in 

intensity of Mg and MgO reflections could also be attributable to the reaction between Mg 

and H2O to yield MgO and evolve hydrogen. A summary of the phases identified at each 

temperature point throughout the heating process is given in Table 3-12. 

 

Table  3-13: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 10, 11, 12 and 13. 

Sample Temperature / K Phases Present 

10 298 Mg(OH)2; MgH2; Mg 

12 658 MgH2, Mg; MgO 

13 758 MgO; Mg 

11 873 MgO; Mg 

 

Equations 3-6 and 3-7 illustrate the two proposed dehydrogenation mechanisms for the 

milled system, based on the results discussed in Sections 3.3.1.4 and 3.3.2.2: 

2222222 H3MgOHMgO3MgHH2OHMgO3MgH2)OH(Mg2 +++→+++→+  (3-6) 

222

22222

H4MgO4H3MgOHMgO3

MgHH2OHMgO3MgH2)OH(Mg2

+→+++→
→+++→+

 (3-7) 

When using milled materials, the first dehydrogenation step is the simultaneous 

decomposition of Mg(OH)2 (∆H = 84.2 KJ mol-1H2O) and MgH2 hydrolysis (∆H = -138.5 

KJ mol-1H2) leading to the formation of magnesium oxide and the evolution of hydrogen. 
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Nevertheless, traces of water can still be detected from the MS analysis. This is followed 

by the decomposition of the remaining hydride (∆H = 76.2 KJ mol-1H2) yielding 

magnesium metal and hydrogen. The final step of the process is yet to be completely 

understood and two possible pathways are proposed: the mechanism proposed in Equation 

3-6 involves the melting of magnesium metal, whilst the dehydrogenation reaction 

proposed in Equation 3-7 involves the reaction of the newly formed Mg with water to form 

MgO and release H2. 

 

3.3.2.3 Nanostructured system 

Once again, based on the STA data discussed in Section 3.3.1.4, ex-situ PXD experiments 

were carefully planned to try and isolate the intermediate species: TG-DTA-MS analysis 

were performed and diffraction data obtained at intermediate temperature points collected 

as reported in Table 3-4. The DT-TGA profile for Sample 15 is shown in Figure 3-2. As 

for the milled system, four temperatures points were studied: 298, 673, 773 and 873 K. Ex-

situ PXD patterns have been collected at each temperature point and the phases present 

identified (Figure 3-22). TG-DTA plots of the intermediate temperature point are presented 

in Appendix A. 

 

 

Figure  3-21: TG (green line) and DTA (blue line) data obtained for Sample 15. 
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Figure  3-22: Ex-situ PXD patterns for Samples 14, 15, 16 and 17 collected at 298, 873, 673 and 773 K 

respectively. Triangles denote Mg(OH)2, circles β-MgH 2, crosses MgO and squares Mg respectively. 

 

Similarly to the bulk and milled system, no reaction occurs during the manual mixing and 

the PXD pattern collected at 298 K prior to thermal treatment confirms that the only phases 

present in the mixture are Mg(OH)2 and MgH2 together with Mg present as impurity from 

the as-received hydride. Again, the pattern collected after heating to 873 K shows that the 

only phases present are magnesium oxide and magnesium metal, confirming that the 

reaction has gone to completion. Reaching 673 K results in the complete absence of 

Mg(OH)2 reflections together with the presence of new peaks attributable to magnesium 

oxide. At 773 K the reflections of MgH2 are completely absent, while MgO and Mg 

reflections both show an increased intensity. The 773-873 K range sees a decrease in the 

intensity of Mg reflections, together with an increase of the intensity of MgO peaks, 

suggesting that either MgO is forming as the temperature increase while magnesium is 

melting or Mg is reacting with water to form MgO. 

A summary of the phases present at each intermediate temperature point is presented in 

Table 3-13. 
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Table  3-14: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 14, 15, 16 and 17. 

Sample Temperature / K Present Phases 

14 298 Mg(OH)2; MgH2; Mg 

16 673 MgH2, Mg; MgO 

17 773 MgO; Mg 

15 873 MgO; Mg 

 

The proposed mechanisms of hydrogen release when working with nanostructured 

materials was found to be similar to the dehydrogenation process proposed for the 

mechanically milled system (Equations 3-6 and 3-7). In fact, the reactions steps are 

essentially the same; however the two processes differentiate by the slight changes in 

temperature at which they occur. 

2222222 H3MgOHMgO3MgHH2OHMgO3MgH2)OH(Mg2 +++→+++→+  (3-6) 

222

22222

H4MgO4H3MgOHMgO3

MgHH2OHMgO3MgH2)OH(Mg2

+→+++→
→+++→+

 (3-7) 

As for the milled mixture, the dehydrogenation starts once again with the decomposition of 

Mg(OH)2 (∆H = 84.2 KJ mol-1H2O) which takes place simultaneously with the hydrolysis 

of most of the MgH2 (∆H = -138.5 KJ mol-1H2). This step yields MgO and H2. This is then 

followed by the decomposition of the remaining hydride (∆H = 76.2 KJ mol-1H2) leading 

to the formation magnesium metal and hydrogen. Again, the last step of the process is not 

completely clarified yet: the first proposed reaction pathway involves the melting of Mg 

metal (Equation 3-6), while the second one involves the reaction between magnesium and 

the evolved water to give MgO and H2 (Equation 3-7). However, when working with 

nanostructured materials, a very weak signal related to water was detected during the TG-

DTA-MS experiments, unlike in the system employing milled materials. This evidence 

favours the mechanism involving the reaction between Mg and H2O to form MgO 

(Equation 3-7). Data collected so far are although not conclusive. 

SEM images were collected after thermal treatment in order to verify if the hexagonal 

platelet morphology of Mg(OH)2 was retained. As it can be seen in Figure 3-23, it is 

possible to still identify hexagonal nanoplates, believed to be MgO relative to the 

dehydration product of Mg(OH)2. However they seem to have agglomerated with what it is 
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believed to be the melting products of Mg yielded from the decomposition of MgH2. This 

results in the presence of clusters of Mg and MgO where a partial hexagonal morphology 

can still be observed. 

 

Figure  3-23: Collected SEM images for Sample 15: a) 200 nm scale b) 100 nm scale. 

 

3.4 Conclusions and Future Work 

Single-phase nanostructured magnesium hydroxide has been successfully synthesised 

using a facile synthetic route which combines microwave heating and hydrothermal 

treatment that employs only MgO and H2O as starting materials.5,8 The synthesis results in 

the production of nanostructured hydroxide with an hexagonal platelet morphology of a 

typical thickness 10-60 nm and a diameter and diagonals varying in the 100-300 nm and 

200-600 nm range respectively. Rietveld refinement was performed on the synthesised 

hydroxide and lattice parameters have been calculated: these were found to be in good 

agreement with the literature values.18 A dissolution-precipitation process has been 

proposed as mechanism of crystal growth (Equation 3-4) in which the formation of 

Mg(OH)2 takes place on the MgO surface with Mg(OH)+ forming as intermediate species. 

This is then followed by the removal of Mg(OH)2 from MgO surface.22,23 The oxide is 

believed to react with H2O rapidly, with the formation of Mg(OH)2 particles being faster 

than their removal from the surface of the oxide and the final step of the process being the 

cooling and agglomeration of the particles. 

Reduction of the particle size of as-received magnesium hydroxide has been successfully 

obtained by mechanically milling the commercial reactant: the typical particle size of the 

milled hydroxide was found to be 70-200 nm in diameter. 

Nanostructured MgH2 has been successfully obtained by mechanical milling the 

commercial reactant. Milling MgH2 results in better kinetics of dehydrogenation with an 
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onset temperature of hydrogen release lowered to 580 K (with a peak temperature of 625 

K) with respect to the 667 K (with a peak temperature of 696 K) of the bulk material. This 

value is in agreement with the data obtained by Zhu et al. for milled MgH2 in the absence 

of any additives of catalysts.2 SEM imaging confirmed a decrease in the particle size with 

respect to the bulk material, with the typical particle size being in the 70-200 nm range. 

The Mg(OH)2 – MgH2 system was studied in detail comparing bulk, milled and 

nanostructured materials. All samples were prepared by manually mixing stoichiometric 

amounts of the starting material for 5 minutes under inert atmosphere inside a recirculating 

Ar- of N2-filled glove box. The onset temperature of hydrogen release is not dramatically 

lowered when comparing milled to nanostructured materials, important differences were 

observed in the DTA profiles and MS spectra when reducing the particle size to the 

nanometric scale. In particular, when working with bulk materials only endothermic peaks 

can be observed. The system releases both water and hydrogen, which are evolved from 

the decomposition of Mg(OH)2 and MgH2 respectively. Using milled materials or 

nanomaterials results in an exothermic reaction followed by an endothermic event. These 

are believed to be associated with simultaneous decomposition of both Mg(OH)2 and 

MgH2 followed by the dehydrogenation of the remaining hydride. Water and hydrogen are 

released from both the milled and nano systems, although the water signal was found to be 

very weak when employing nanostructured Mg(OH)2. 

The Mg(OH)2 – MgH2 system can theoretically release up to 4.7 wt. % H2. However, after 

thermal treatment to 873 K the weight losses were found to be 21.5, 12.6 and 7.9 wt. % for 

bulk, milled and nano materials respectively. Activation energies were calculated for the 

two main thermal events for each system. These were found to be 94±9, 155±6 and 202±8 

kJ mol-1 for the low temperature event for the bulk, milled and nano system respectively. 

The activation energy values for the second HT event were found to be 144±19, 159±3 and 

175±2 kJ mol-1 for bulk, milled and nano materials respectively. 

Two different mechanisms of hydrogen release have been proposed: one for the bulk 

materials and one for the milled and nanostructured systems, which seem to follow the 

same dehydrogenation process. In particular, in the bulk system the starting materials were 

found to behave independently with the first event being the dehydration of Mg(OH)2 to 

yield MgO and H2O, followed by the dehydrogenation of MgH2 to give Mg and H2 

(Equation 3-5). 

222222 HOHMgMgOMgHOHMgOMgH)OH(Mg +++→++→+  (3-5) 



135 
 

Milled and nano materials were found to follow the same mechanistic steps in terms of H2 

release: the first event was found to be the simultaneous dehydration of Mg(OH)2 and 

hydrolysis of MgH2 to give MgO and evolve both H2 and H2O. This step is then followed 

by the decomposition of the remaining hydride resulting in the formation of Mg and 

evolution of H2 (Equation 3-6). It is not completely clear whether this is then followed by 

either the reaction between the newly formed Mg and the evolved water to yield MgO and 

release hydrogen or just the melting of magnesium metal. 

2222222 H3MgOHMgO3MgHH2OHMgO3MgH2)OH(Mg2 +++→+++→+  (3-6) 

222

22222

H4MgO4H3MgOHMgO3

MgHH2OHMgO3MgH2)OH(Mg2

+→+++→
→+++→+

 (3-7) 

Overall, the use of nanostructured materials has lead to the best performance in terms of 

kinetics and thus it was identified to be the most promising one. Therefore all efforts 

should be focused on the improvement of the nanostructured system. The use of additives 

or catalysts could lead to improved kinetics of hydrogen release. In fact, finding a suitable 

candidate able to disrupt the proposed core-shell structure forming during the hydrolysis of 

MgH2 should result in an exfoliation of the MgO passivation layer which can lead to faster 

hydrogen evolution. Several additives and catalysts have been tested in order to enhance 

the dehydrogenation properties of magnesium hydride by itself, although none of them has 

been tested in the presence of both Mg(OH)2 and MgH2. These include calcium-, lithium- 

and sodium hydride to yield ternary hydrides and composites29,30, graphite and/or silicon 

carbide10, mixed-valence vanadium- and titanium-based materials and chloride 

compounds31,32,33,34,35. They all could be seen as suitable candidates to be tested on the 

Mg(OH)2 – MgH2 system. Attention should also be focused on developing the system in 

order to have one single hydrogen release event, while avoiding the release of water. In-

situ PXD and PND experiments should also be performed in order to fully understand the 

proposed mechanism of hydrogen release for bulk, milled and nanostructured systems. 

Elucidating the exact reaction pathway is indeed pivotal in order to understand and 

improve the system further, especially for the milled and nanostructured systems, for 

which two different reaction mechanisms were proposed. Further, future studies should be 

focused also on the recyclability of such system, as the only end product is MgO. 

However, magnesium Mg metal is present as impurity of the end product: its weight 

fraction with respect to magnesium oxide should be exactly calculated (i.e. via Rietveld 

refinement). As detailed in Section 3.2.2, to yield nano-Mg(OH)2, MgO starting material is 



136 
 

reacted with water and any Mg present would react with water as well resulting in the 

formation of magnesium hydroxide and evolution of hydrogen. Moreover, the morphology 

of the synthesised nano Mg(OH)2 does depend on the morphology of the starting material 

employed. In this sense, magnesium oxide should be fully investigated as potentially 

recyclable starting material for the synthesis of new nanostructured Mg(OH)2. 
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4 The lithium hydride – magnesium hydroxide 

‘modular’ release system: an in-situ powder neutron 

diffraction study 
 

4.1  Introduction 

The magnesium hydroxide – lithium hydride system has been extensively studied.1,2 The 

system can release up to 5.44 wt. % of hydrogen (Equation 3-1) and involves the reaction 

between magnesium hydroxide and lithium hydride to yield the respective oxides and the 

evolution of hydrogen. 

2
1

222 HkJmol9.46)K298(HH2OLiMgOLiH2)OH(Mg −−=°∆++→+  (4-1) 

The decomposition of both magnesium hydroxide and lithium hydride as individual 

components have been widely studied. In particular, Mg(OH)2 decomposes following a 

dehydration process to yield MgO and H2O (Equation 4-2). The process can theoretically 

lead to the release of 30.8 wt. % H2O.3,4 

OHkJmol4.98)K298(HOHMgO)OH(Mg 2
1

22
−=°∆+→  (4-2) 

Lithium hydride can theoretically store to 12.59 wt. % H2. However, an extremely air 

sensitive nature and a very high decomposition temperatures of nearly 720 °C (with a 

melting point of 680 °C)5 render the use of LiH on its own unsuitable for solid state 

hydrogen storing solutions. Nonetheless, the use of LiH has been widely investigated as a 

component of Li-N-H systems for direct and indirect H2 storage as well as a component for 

hydride – hydroxide ‘modular’ hydrogen release systems. In terms of ‘modular’ systems, 

Vajo et al. were the first to propose the use of LiH in combination with LiOH (both as 

anhydrous and as the monohydrate) working under medium vacuum.6 Following Vajo’s 

studies, in 2007 Lu et al. published a much more detailed study of the lithium hydride – 

lithium hydroxide system employing either LiOH or LiOH·H2O.7 

During this work, such system has been fully studied using both bulk and nanostructured 

materials. The use of nanomaterials can be seen as a means to have a better control over 

the dehydrogenation process, leading to an enhancement of the reaction kinetics. The 
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system has been characterised using simultaneous thermogravimetric differential thermal 

analysis (TG-DTA) coupled to mass spectrometry (MS), powder X-ray diffraction and 

scanning electron microscopy. The results obtained are herein summarised and two 

mechanisms of hydrogen release are proposed. However, the data previously collected 

have not been conclusive in order to prefer one mechanism over another. 

The aim of this chapter is to give an overview of the Mg(OH)2 – LiH system and to clarify 

the mechanism of hydrogen release. To fully understand the mechanism of hydrogen 

release, in-situ powder neutron diffraction (PND) experiments have been carried out. The 

use of deuterated starting materials has allowed us to identify all the components during 

the various stages of the reaction, particularly those containing the lightest elements Li and 

H. The ability to map the transformation/depletion of LiH(D) especially has found to be 

crucial to elucidate the reaction pathway. In-situ PND data will be presented and discussed 

in detail and a conclusive dehydrogenation model will be proposed. 

 

4.2 Experimental 

 

4.2.1 Preparation of the Mg(OH)2 – LiH system 

Stoichiometric amounts of the starting materials were mixed manually using pestle and 

mortar for 5 minutes. All preparations were carried out under an inert atmosphere inside a 

recirculating glove box. 

Typically, 375 mg of Mg(OH)2 was mixed with 110 mg of LiH. Bulk mixtures were 

prepared using as-received Mg(OH)2 (Sigma, 95%; denoted b-Mg(OH)2) and LiH (Sigma, 

95%; denoted b-LiH), whereas nanostructured mixtures were prepared mixing synthesised 

nanostructured Mg(OH)2 (denoted n-Mg(OH)2) and milled lithium hydride (denoted m-

LiH). 
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4.2.2 Preparation of the Mg(OD)2 – LiD system for PND experiments 

Stoichiometric amounts of Mg(OD)2 and LiD were mixed manually using pestle and 

mortar for 5 minutes inside an Argon-filled glove box. 

In order to provide a sufficient amount of sample for the Polaris experiment, 1 g of LiD 

and 3 g of Mg(OD)2 were manually mixed for 5 minutes inside a recirculating Argon filled 

glove box at the RAL facilities. 

 

4.2.3 Synthesis of nanostructured Mg(OH)2 (Mg(OD)2) 

Approximately 1.6 g of magnesium oxide (Sigma Aldrich, 98%) were placed inside a 45 

ml Teflon-lined autoclave for microwave synthesis, together with 30 ml of deionised 

water. H2O has been used when synthesising Mg(OH)2, whereas heavy water D2O has 

been used for the synthesis of Mg(OD)2. The MW autoclave was then heated up for a total 

of 4 minutes (1 minute of heating followed by 30 minutes of cooling each time) inside a 

domestic microwave oven. The product was then washed and centrifuged with either H2O 

or D2O three times. The white precipitate was collected and dried in air overnight. The 

reaction yields ca. 2 grams of pure nanostructured hydroxide as previously discussed in 

Section 3.2.1. The morphology of hexagonal nanoplates is retained when working with 

deuterated reagents.3 

 

4.2.4 Ball milling of LiH(D) 

Nanostructured LiH was produced by mechanically milling the as-received hydride or 

deuteride (LiH: Sigma, 95%; LiD: Sigma, 98%). Approximately 1 g of hydride was loaded 

into a 50 ml stainless steel jar using 10 stainless steel balls as a grinding medium, under an 

Argon atmosphere inside a glove box. The jar was sealed with a rubber O-ring and an air 

sensitive clamp before being transferred out of the glove box and exposed to air. The 

milling process has been carried out using a Retszch PM100 planetary ball mill and LiH 

was milled at 450 rpm for 4 hours (ball-to-powder ratio of 40:1): a rest time of 1 minute 

per every 15 minutes of ball milling was used.2 
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4.2.5 TG-DTA-MS studies 

The hydroxide – hydride system was characterised by thermogravimetric analysis coupled 

with mass spectroscopy in order to obtain information on the onset and peak temperature 

of hydrogen release, weight loss percentage with respect to the hydrogen content of the 

system and the nature and amount of the gas evolved during the reaction. 

TG-DTA experiments were performed using a Netzsch STA 409 PC, which was coupled 

with a Hiden HPR20 mass spectrometer for the identification and analysis of the evolved 

gas. Correction measurements were carried out using an empty alumina crucible and were 

created by setting the target temperature and appropriate heating rate until the desired 

temperature was reached. Where appropriate, the target temperature was typically held for 

1 h. Initial experiments involved heating from room temperature to 873 K at 5 K min-1 and 

holding for 1 h before cooling naturally to ambient temperature. Subsequent experiments 

were planned based on the results obtained and intermediate temperature points were 

studied to isolate any intermediate phases forming and ultimately to propose a mechanism 

of hydrogen release. All measurements were conducted under a flow of argon. For each 

experiment, approximately 20-25 mg of sample was loaded into the alumina sample pan 

inside the sample chamber (Section 2.4.1). 

Furthermore, thermogravimetric analysis was performed in order to calculate the activation 

energy for the system using the Kissinger method.8,9 Samples were heated to 773 K using 

heating rates of 2, 5, 10 and 20 K min-1 respectively (Table 4-3) and Kissinger plots were 

obtained. A summary of samples and reactions carried out for the magnesium hydroxide – 

lithium hydride system are herein reported (Tables 4-1 and 4-2). 

 

Table  4-1: Summary of samples and preparations carried out for the development of the Mg(OH)2 – 

LiH ‘modular’ system. 

Sample Material Preparation Conditions Heating program / K 

1 n-Mg(OH)2 4 min MW synthesis – 

2 m-LiH 4 h ball milling (15/1) – 

3 b-Mg(OH)2 – b-LiH 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

4 n-Mg(OH)2 – m-LiH 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

5 n-Mg(OH)2 – m-LiH 5 min manual mixing 513 / 5 K min-1 
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Table  4-2: Summary of reactions carried out for activation energy calculations. 

Sample Material Preparation Conditions Heating program / K 

6a n-Mg(OH)2 – m-LiH 5 min manual mixing 773 (2 K min-1) 

6b 
  

773 (5 K min-1) 

6c 
  

773 (10 K min-1) 

6d 
  

773 (20 K min-1) 

 

4.2.6 Powder X-ray diffraction (PXD) experiments 

All starting materials and synthesised compounds were analysed by PXD as described in 

Section 2.3.1.1. Capillaries were prepared for the characterisation of air sensitive materials: 

these were analysed with a d8 Bruker diffractometer. Data were typically collected 

between 5 ≤ 2θ/˚ ≥ 85 for 1 h. 

Non-air sensitive materials were characterised using a PANalytical X’Pert powder 

diffractometer, working in Bragg-Brentano geometry with the bracket stage. Data were 

usually collected between 5 ≤ 2θ/˚ ≥ 85 for 30 minutes. 

The data obtained were compared with the appropriate reference powder diffraction 

patterns calculated from data in the ICSD database10 using the PowderCell package11 or 

directly using the ICDD database12 with the PANalytical HighScore Plus software. 

 

4.2.7 Scanning Electron Microscopy (SEM) imaging 

Samples for SEM imaging were prepared as discussed in Section 2.3.5.1. A small amount 

of sample was deposited onto aluminium stubs using adhesive carbon tabs. The preparation 

of the samples was carried out inside a recirculating glove box under inert atmosphere. The 

samples were put into glass vials and sealed before being transferred out of the glove box, 

to minimise the exposure to air and moisture. Since charging was encountered, the samples 

were sputter-coated with a 10 nm layer of gold/palladium alloy in order to achieve better 

conductivity and increase the quality of the images. 

The samples were then placed inside the vacuum column of the microscope, which was 

shut using an air-tight door and evacuated. The measurements were performed using a 

Philips XL30 ESEM, working in high vacuum mode with an applied accelerating voltage 

of 25 kV and a working distance of 5 mm, suitable for imaging. 
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4.2.8 In-situ powder neutron diffraction (PND) experiments 

In-situ powder neutron diffraction studies were carried out on the Polaris instrument at the 

ISIS facility at the Rutherford Appleton Laboratory in Didcot. Polaris is a high intensity, 

medium resolution powder diffractometer which is fully described in Section 2.3.2.1. 

A fresh hydroxide – hydride mixture using deuterated reagents was prepared on site inside 

an Argon filled recirculating glove box and then loaded into a single wall quartz glass tube. 

The setup, already discussed in detail in Section 2.3.2.2, utilises Swagelok fittings enabling 

the entire assembly to be made vacuum tight to allow sample transfer into and out of the 

glove box. Approximately 4 g of mixture were prepared. 

The in-situ PND experiment in Polaris was carefully planned based on the results obtained 

by thermogravimetric analysis (Section 4.3.1.1). 

The experiment comprised a complete temperature range scan. Data were collected at 

room temperature before heating the samples to a maximum temperature of 673 K under 

flowing Argon. Attention was focused on the crucial temperatures of dehydrogenation in 

order to follow the reaction steps individually: the mixture was heated with short 

temperature steps and PND patterns collected every 10 K over the 448-548 K range. 

Data were collected for approximately 1 h at each temperature point using detector banks 1 

(very low angle, 2θ˚ 6-14), 2 (low angle, 2θ˚ 19-34), 3 (low angle, 2θ˚ 40-67), 4 (90 

degrees, 2θ˚ 75-113) and 5 (back scattering, 2θ˚ 135-143). A summary of samples can be 

found in Tables 4-3 and 4-4. 

Moreover, runs of the empty quartz tube at different temperature points were performed 

starting from room temperature up to 673 K. This allowed us to re-process all data sets 

using a Mantid13 script using the empty quartz tube runs as background. 

 

Table  4-3: Summary of samples prepared for in-situ PND experiment at POLARIS. 

Sample Material Preparations Conditions Heating program / K 

7 n-Mg(OD)2 4 min MW synthesis – 

8 n-LiD 4 h ball milling (15/1) – 

9 n-Mg(OD)2 – m-LiD 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

10 n-Mg(OD)2 – m-LiD 5 min manual mixing Table 4-4 
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Table  4-4: Summary of data collected during the variable temperature in-situ PND experiment for the 

Mg(OD)2 – LiD system under flowing Argon. 

Sample Temperature / K Duration / min 

11 298 60 

12 448 60 

13 458 60 

14 468 60 

15 478 60 

16 488 60 

17 498 60 

18 508 60 

19 518 60 

20 523 60 

21 528 60 

22 538 60 

23 548 60 

24 573 60 

25 673 60 

 

4.2.9 Rietveld refinement against PND data 

Rietveld refinements against the collected PND ToF data were performed using the 

General Structure Analysis System (GSAS)14 with the EXPGUI interface.15 Prior to 

Rietveld refinement, all data sets were re-processed using a Mantid13 script using the 

empty quartz tube runs as background. 

Data from detector banks 3, 4 and 5 were consecutively refined. A total of 25 data sets 

were collected at various temperatures. First data from bank 5 (back scattering) were 

refined, followed by the addition of banks 4 (90 degrees) and 3 (low angle) respectively. 

The background was successfully modelled using Function 8 (reciprocal interpolation 

function). This was followed by the refinement of the cell parameters, atomic positions, 

isotropic temperature factors and profile parameters. Modelling of the peak shapes was 

carried out using Function 3 (an extension of Function 1, developed by Von Dreele, 

Jorgensen and Windsor)16, which is a convolution of a Pseudo-Voigt function with two 

back-to-back exponentials. This function models strain broadening due to sample effects 

such as particle size as well as the effects of instrumental design on the width of 
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reflections. Other phases were then added and refined as appropriate. At last, the phase 

fractions of the species present were refined in order to obtain an accurate overview of the 

weight fractions. 

 

4.3 Results and Discussion 

 

4.3.1 The Mg(OH)2 – LiH system 

 

4.3.1.1 Preparation of the system components 

Nanostructured Mg(OH)2 (Sample 1) has been successfully synthesised using the synthetic 

route described in Section 4.2.1. A detailed discussion of the material obtained can be 

found in Section 3.3.1.1. 

Lithium hydride (Sample 2) was ball milled for 4 h at 450 rpm and this resulted in uniform 

particles size distribution of 1-3 µm in diameter (Figure 4-1). 

 

Figure  4-1: SEM image of Sample 2, m-LiH. 
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Powder X-ray diffraction patterns for both of the starting materials are presented in Figures 

4-2 and 4-3. The former shows that the nanostructured magnesium hydroxide starting 

material is single phase. The latter shows no significant reaction occurs during the milling 

of LiH. Lithium oxide can be identified as impurity, however its presence was observed in 

the pre-milled as supplied material and it is not due to the milling process. 

 

Figure  4-2: PXD pattern of Sample 1, synthesised n-Mg(OH)2. 

 

 

Figure  4-3: PXD pattern of Sample 2, m-LiH. The black circles indicate the presence of Li2O. 
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4.3.1.2 TG-DTA-MS data 

TG-DTA-MS experiments were performed on Samples 3 and 4 to determine the onset 

temperature as well as the peak temperature of hydrogen release and the weight loss for the 

two systems (Figures 4-4 and 4-5). The results obtained are summarised in Table 4-5. 

 

Table  4-5: Onset temperature, peak temperatures and weight losses for Samples 3 and 4. 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

3 478 525 5.1 H2 

b-Mg(OH)2 – b-LiH 
 

583 
 

 

  
626 

 
 

4 453 489 4.7 H2 

n-Mg(OH)2 – m-LiH 
 

529 
 

 

  
610 

 
 

 

As can be seen in Figure 4-4, TG-DTA results for ground Mg(OH)2 – LiH mixtures show 

important differences between the bulk and the nanostructured samples. In fact, the 

reaction between milled lithium hydride and nanoplates of magnesium hydroxide results in 

a reduction in the onset temperature for hydrogen release to 453 K from 478 K for the bulk 

reagents. The dehydrogenation kinetics appear to be improved as well, reducing the total 

time over which hydrogen is evolved from the mixture. The TG-DTA data is in good 

agreement with the MS profiles (Figure 4-5): for Sample 3 (bulk) three distinct hydrogen 

releases can be identified. For Sample 4 (nano) also three hydrogen evolutions peaks can 

be observed. The temperature at which the dehydrogenation event occurs are in accordance 

with the differential thermal analysis results. 

The weight loss appears to be closer to the theoretical 5.4% wt. H2 when working with 

bulk materials. The use of nanostructured starting materials leads to a weight loss of 4.7 

wt. % (87.0 % of the theoretical 5.4 %), suggesting that the dehydrogenation process starts 

during the milling, rather than during the thermal treatment. For the bulk materials the 

weight loss is 5.1 wt. % which is nearly 95% of the expected figure. The lower weight 

losses observed for both bulk and nanostructured materials may also be due to the presence 

of Li2O impurity in the LiH phases, leading to an inferior amount of hydrogen present in 

the system. 
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Figure  4-4: (a) TG and (b) DTA data comparison for bulk (3; red) and nanostructured (4; blue) 

Mg(OH) 2 – LiH materials. 

 

Figure  4-5: MS profiles Vs time for Sample 3 (bulk mixture, red line) and Sample 4 (nanostructured 

mixture, blue line). 

Moreover, the TG-DTA data suggest that the dehydrogenation process is a multiple-step 

reaction. Once again, a noticeable difference can be observed between the nano and the 

bulk materials. Examination of the DTA profile suggests a three-step mechanism for the 

nanomaterials, with the first event starting at 453 K (with a temperature peak of 489 K) 

and the second thermal event occurring immediately afterwards with a peak temperature of 

529 K and followed by the third event with a peak temperature of 610 K. The reaction of 

the bulk materials seems to follow a three-step mechanism as well. The dehydrogenation 

starts at 478 K and follows 3 consecutive thermal events, with a peak temperature of 525, 

583 and 626 K respectively. 

The use of nanostructured materials has lead to better perfomances of the system and thus 

it was further investigated. The Kissinger plot for a nanostructured mixture prepared in an 
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identical procedure to 4 was obtained by performing TG-DTA experiments at different 

heating rates on Sample 6 (Figure 4-6). DTA profiles are reported in Appendix B. 

 

Figure  4-6: a) Kissinger plots for Samples 6: (a) plots calculated for the LT thermal event; (b) plots 

calculated for the HT thermal event. 

 

Table  4-6: Kissinger plot data for Samples 6. Literature reported values for activation energy of 

Mg(OH) 2, LiH and LiOH are given at the bottom of the table. 

Sample Thermal Event Ea / kJ mol-1 

6 LT 96±4 

 
HT 165±9 

EaMg(OH)2 = 86 kJ mol-1 Ref. 17 

EaMg(OH)2 = 98±6 kJ mol-1 Ref. 18 

EaLiH = -6.7 kJ mol-1; Ref 19 

EaLiOH = 123±4 kJ mol-1; Ref. 20 

 

The activation energy for the low temperature event was found to be 96±4 kJ mol-1. This 

value is in good agreement with the literature for the dehydration of magnesium hydroxide  

(EaMg(OH)2 = 86 kJ mol-1; EaMg(OH)2 = 98±6 kJ mol-1)17,18. The Ea value for the high 

temperature event was calculated to be 165±4 kJ mol-1. This is not in agreement with the 

Ea value found in the literature for the decomposition of LiH, which was found to be a 

barrierless reaction characterised by a negative value of activation energy (EaLiH = -6.7 kJ 

mol-1)19. However, the value calculated for the LiH – Mg(OH)2 system is higher when 

compared to the activation energy of lithium hydroxide decomposition (EaLiOH = 123±4 kJ 
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mol-1)20, suggesting that the HT event is somehow related to the presence of LiOH. The 

higher value may be due to the fact that an interaction between LiOH and LiH is occurring 

at that temperature range, so the activation energy would be related to that solid state 

reaction rather than LiH decomposition. 

 

4.3.1.3 Ex-situ PXD analysis and proposed mechanisms: an intermediate study of 

the nanostructured system 

Based on the STA results discussed in the previous Section, ex-situ PXD studies were 

performed on the nanostructured Mg(OH)2 – LiH system in order to propose a mechanism 

of hydrogen release indentifying the mechanistic steps of dehydrogenation. In order to try 

and isolate the intermediate species, TG-DTA-MS analyses were performed and 

intermediate temperature points in the profile were selected. The post STA products were 

collected and ex-situ PXD analysis carried out for each temperature point. 

Experiments were performed at three different temperature points: 298, 513 and 873 K 

(Figure 4-7). No reaction apparently occurs between hydroxide and hydride during the 

manual mixing as since prior to the thermal treatment only Mg(OH)2 and LiH are observed 

in the diffraction pattern. At 873 K the reaction has gone to completion as the only phases 

present are the respective oxides. In order to try and isolate intermediate species, TG-DTA-

MS analysis was performed: Sample 5 was heated to 513 K at 2 K min-1. PXD patterns 

reveal the presence of LiH, Mg(OH)2, MgO, LiOH and a small amount of Li2O. Moreover, 

it is possible to note differences in peak widths for different phases: in particular the peaks 

assignable to Mg species (MgO) are very broad with respect to the lithium species: this 

may be due to the nanostructured nature of the material leading to a broadening of 

diffraction peaks.21,22 
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Figure  4-7: Ex-situ PXD patterns of Samples 4 and 5 compared to the mixture of starting materials at 

room temperature (PXD patterns of Sample 4 were collected at 298 K, prior to thermal treatment). 

Crosses denote Mg(OH)2, squares LiH, stars  MgO, triangles LiOH and circles Li2O respectively. 

Based on the results shown in Sections 4.3.1.2 and 4.3.1.4, two alternative mechanisms of 

hydrogen release could be proposed. The first involves the release of gaseous water, the 

second would proceed entirely in the solid state. 

 

22

2222

H4OLi2MgO2

H3OLiLiHLiOHMgO2LiH4OH2MgO2LiH4)OH(Mg2

++→
++++→++→+

 (4-3) 

 

22222 H4OLi2MgO2H3OLiLiHLiOHMgO2LiH4)OH(Mg2 ++→++++→+  (4-4) 

 

In Equation 4-3 (Mechanism 1), the first thermal event is the endothermic decomposition 

of magnesium hydroxide (∆H = 84.2 KJ mol-1) leading to the formation of magnesium 

oxide and the evolution of water. This is followed by the hydrolysis of two equivalents of 

the hydride (∆H = -178.3 KJ mol-1) forming lithium hydroxide and lithium oxide. By 

analogy with the first step of the process, the last mechanistic step could involve the 

dehydration of LiOH to give Li2O and release water with a subsequent hydrolysis of the 

remaining hydride. However, the last step of this mechanism is believed to be the solid 

state reaction between LiOH and the remaining LiH to form Li2O (∆H = -9.4 KJ mol-1). 
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This involves the combination of H2 in the solid state form: Lu et al. suggested a similar 

reaction for the LiOH·H2O – LiH system, which proceeds though the initial 

dehydrogenation of the hydroxide and subsequent reaction of LiOH and LiH.7 Moreover, 

for the last dehydrogenation step, a similar reaction pathway has been proposed by Drozd 

et al. for the NaBH4 – Mg(OH)2 system.23 Recently Zhu et al. investigated the 

dehydrogenation behaviour of LiBH4 mixed with alkali hydroxides, where a destabilization 

due to the interaction between H+ from OH- and H- from the borohydride was 

hypothesised.24 Based on this evidence, the first proposed reaction pathway, the 

mechanism of hydrogen release appears to be a three-step process. 

In Equation 4-4 (Mechanism 2) instead, the formation of lithium hydroxide occurs 

simultaneously to the decomposition of magnesium hydroxide, implying that this process 

happens entirely in the solid state. This reaction is similar to dehydrogenation of LiNH2 

and LiH in the Li-N-H system, involving a proposed H2 combination in the solid state.25 

The first step is then followed by the reaction of the remaining LiH with LiOH as for 

Equation 4-3. Hence, for this dehydrogenation process, the proposed reaction pathway 

involves a two-steps mechanism. 

However, since it is very difficult to identify phases containing light elements such as 

lithium and hydrogen, the data collected has not been conclusive to identify one 

mechanism over the other. If Equation 4-3 was favoured, at 513 K magnesium hydroxide 

would not be present as it would dehydrate to MgO and the magnesium oxide – lithium 

hydride intermediate could be easily isolated before LiOH is formed. However, the 

reaction between the water evolved and LiH could be very fast. In fact, it is possible to 

draw an analogy with the Li-N-H system. In particular, for Li-N-H systems, it has been 

proposed that the amide decomposes to ammonia and this evolved NH3 mediates the 

hydrogen release with an ultrafast reaction with LiH.26 In the present case, it is not clear 

whether decomposition followed by hydrolysis is a prerequisite for the dehydrogenation 

process. Ex-situ PXD data would suggest that Equation 4-4 is favoured as it is not possible 

to isolate the MgO – LiH intermediate before LiOH is formed. Nevertheless, TG-DTA data 

previously discussed would seem to favour Equation 4-3: it is possible to identify three 

distinct thermal events which could be associated to Mg(OH)2 dehydration, LiH hydrolysis 

and the LiH – LiOH solid state reaction respectively. 

Moreover, the mass spectrometry coupled with differential thermogravimetric analysis has 

not given any conclusive evidence, since no rise in the detected water decomposition as 

might be expected from the hydroxide was observed. 
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In this sense, in-situ PND data combined with the data already obtained were considered 

crucial in elucidating the mechanism of H2 release. The PND data collected are discussed 

in the following Section. 

 

4.3.2 Powder neutron diffraction experiments 

 

4.3.2.1 Preparation and preliminary characterisation of the system 

Deuterated reagents were prepared as discussed in Sections 4.2.1, 4.2.2 and 4.2.4. 

Nanostructured Mg(OD)2 (Sample 7) was successfully synthesised, whereas nano LiD 

(Sample 8) was obtained by ball milling. As shown in Figures 4-8 and 4-9, deuterated 

magnesium hydroxide appears to be pure phase, whereas commercial lithium deuteride, 

after milling, indicates lithium oxide is present as an impurity. However, the Li2O impurity 

comes from the pre-milled commercial LiD. 

 

Figure  4-8: PXD pattern of Sample 7, synthesised nanostructured Mg(OD)2 
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Figure  4-9: PXD analysis showing the experimental pattern of Sample 8, ball milled LiD. The black 

circles indicate the presence of Li2O. 

TG-DTA analysis of the deuterated mixture was performed to determine any shift in the 

onset temperature of D2 release with respect to the hydrogenated materials. As shown in 

Figure 4-10, the results have been found to be consistent with the ones obtained for Sample 

4 (Mg(OH)2 – LiH) in terms of onset and peak temperatures of H2/D2 release: TG-DTA 

profile for Sample 9 (Mg(OD)2 – LiD) shows an onset temperature of D2 release of 442 K 

and peak temperatures of 495 and 528 K respectively. However, as opposed to Sample 4, it 

is not possible to identify the third thermal event when working with deuterated materials. 

In this sense, in-situ PND experiments are vital in order to completely clarify the 

mechanism of deuterium release for the Mg(OD)2 – LiD system. The higher weight loss of 

8.8 wt. % is due to the use of deuterated materials (theoretical gravimetric capacity for the 

deuterated system is 10.2 wt. % H2). The lower mass change with respect to the theoretical 

figure is believed to be related to the presence of Li2O impurity in the commercial LiD. 

Mass spectroscopy confirmed that the only gas evolved during the thermal treatment is D2. 
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Figure  4-10: TG (green line) and DTA (blue line) data obtained for Sample 9. 

 

4.3.3 The Polaris experiment 

Initially, room temperature data were collected to ensure that no reaction occurred during 

the preparation of the PND sample. The sample was heated to 448 K. In order to avoid 

overshooting the set temperature small temperature increments were used. PND patterns 

were collected every 10 K up to a temperature of 548 K. The subsequent target 

temperatures were set to 573 K and then to 673 K. This was decided after a close analysis 

of the TG-DTA profile of the deuterated mixture (Figure 4-10), as the reaction should have 

gone to completion at ca. 673 K. Rietveld refinements were performed for each 

temperature point and the exact weight fraction was calculated for each phase at each 

temperature point to try to elucidate the mechanism of deuterium release. 

An overview of the dehydrogenation process is given in Figure 4-11: data collected from 

Bank 5 (back scattered) during the in-situ PND experiment are presented. The phase 

changes involved when the Mg(OD)2 – LiD system was heated can be clearly observed. 
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Figure  4-11: Bank 5 (back scattered) data obtained for the full temperature range showing the phase 

changes throughout the dehydrogenation process (Samples 11, 12, 20, 24 and 25). Crosses denote 

Mg(OD)2, squares LiD, stars MgO, triangles LiOD and circles Li2O respectively. 

 

A summary of the calculated weight fractions from the PND Rietveld refinement data for 

the phases present is given in Table 4-6. 

 

Table  4-7: Calculated weight fractions from the PND Rietveld refinement data for the phases present 

in Samples 11, 12, 20, 24 and 25. 

 

Sample 

Collection 

Temperature / K 

Mg(OD)2 

wt. % 

LiD 

wt. % 

LiOD 

wt. % 

Li 2O 

wt. % 

MgO 

wt. % 

11 298 75.8(2) 24.2(3) – – – 

12 448 67.6(6) 21.9(5) – 2.3(4) 8.2(1) 

20 523 – 11.2(3) 14.6(5) 17.1(5) 57.1(5) 

24 573 – 6.7(3) 6.3(4) 31.2(7) 55.8(8) 

25 673 – 2.6(2) – 42.3(9) 55.1(9) 

 

At room temperature, the only phases present are Mg(OD)2 and lithium deuteride: selected 

data from the PND Rietveld refinement are presented in Table 4-7 and Figure 4-12. 
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Table  4-8: Selected data from the PND Rietveld refinement for Sample 11 (298 K). 

Empirical Formula Mg(OD) 2 LiD 

Crystal System Trigonal Cubic 

Space Group P-3m1 Fm-3m 

Lattice Parameters 

a / Å 

c / Å 

 

3.1451(1) 

4.7526(1) 

4.0670(1) 

V / Å3 40.712(2) 67.268(3) 

Z 1 4 

Unit Cell Formula 

Weight / Mw 
60.331 35.820 

Density / g cm-3 2.461 0.884 

Wt. % 75.8(2) 24.2(3) 

Temperature / K 298 

No. of Variables 73 

No. of Observations 5807 

Rwp % 2.49 

Rp % 3.92 

χ
2 1.80 

 

 

Figure  4-12: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 11 (298 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The black and red tick marks 

indicate reflections from Mg(OD)2 and LiD respectively. 
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A close look at the 448 K temperature point reveals the presence of very low intensity 

reflections assignable to both magnesium oxide and lithium oxide (Table 4-8 and Figure 4-

13): the weight fractions of Mg(OD)2 and LiD decrease with respect to the wt. % 

calculated for Sample 11 and new phases MgO and Li2O appear (weight fractions of 8.2 

and 2.3 wt. % respectively). 

 

Table  4-9: Selected data from the PND Rietveld refinement for Sample 12 (448 K). 

Empirical Formula Mg(OD) 2 LiD MgO Li 2O 

Crystal System Trigonal Cubic Cubic Cubic 

Space Group P-3m1 Fm-3m Fm-3m Fm-3m 

Lattice Parameters 

a / Å 

c / Å 

 

3.1459(1) 

4.7856(2) 

4.0919(1) 4.237(3) 4.630(1) 

V / Å3 41.018(3) 68.514(5) 76.1(1) 99.24(9) 

Z 1 4 4 4 

Unit Cell Formula 

Weight / Mw 
60.331 35.820 161.216 119.524 

Density / g cm-3 2.442 0.868 3.518 2.000 

Wt. % 67.6(6) 21.9(5) 8.2(1) 2.3(4) 

Temperature / K 448 

No. of Variables 94 

No. of Observations 5762 

Rwp % 2.84 

Rp % 4.32 

χ
2 1.58 
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Figure  4-13: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 12 (448 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The red, black, blue and green tick 

marks indicate reflections from LiD, Mg(OD)2, MgO and Li2O respectively. 

 

As shown below in Table 4-9 and in Figure 4-14, at 523 K all the Mg(OD)2 has converted 

to MgO, whose weight fraction has now risen to 57.1 wt. %. A new LiOD phase (14.6 wt. 

%) appears, whilst the intensity of the peaks assignable to LiD and Li2O decrease and 

increase respectively. 
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Table  4-10: Selected data from the PND Rietveld refinement of Sample 20 (523 K). 

Empirical Formula LiD MgO Li 2O LiOD 

Crystal System Cubic Cubic Cubic Tetragonal 

Space Group Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

4.1133(1) 4.2398(3) 4.6394(2) 

 

3.5695(2) 

4.3672(6) 

V / Å3 69.593(7) 76.22(1) 99.86(1) 55.64(1) 

Z 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 49.908 

Density / g cm-3 0.855 3.512 1.998 1.489 

Wt. % 11.2(3) 57.1(5) 17.1(5) 14.6(5) 

Temperature / K 523 

No. of Variables 65 

No. of Observations 5458 

Rwp % 2.47 

Rp % 3.64 

χ
2 1.07 

 

 

Figure  4-14: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 20 (523 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The green, blue, red and black tick 

marks indicate reflections from LiD, MgO, Li2O and LiOD respectively. 
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At 573 K there is little variation in the amount of MgO from 20, while the weight fractions 

of LiOD and lithium deuteride both decrease and lithium oxide increases. Selected data for 

this temperature point are presented in Table 4-10 and Figure 4-15. 

 

Table  4-11: Selected data from the PND Rietveld refinement for Sample 24 (573 K). 

Empirical Formula LiD MgO Li 2O LiOD 

Crystal System Cubic Cubic Cubic Tetragonal 

Space Group Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

4.1243(2) 4.2370(2) 4.6448(1) 

 

3.5750(2) 

4.376(1) 

V / Å3 70.155(8) 76.06(2) 100.208(8) 55.93(2) 

Z 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 49.908 

Density / g cm-3 0.848 3.520 1.981 1.482 

Wt. % 6.7(3) 55.8(8) 31.2(7) 6.3(4) 

Temperature / K 573 

No. of Variables 72 

No. of Observations 5438 

Rwp % 2.65 

Rp % 4.24 

χ
2 0.83 
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Figure  4-15: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 24 (573 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The green, blue, red and black tick 

marks indicate reflections from LiD, Li2O, MgO and LiOD respectively. 

 

Once the mixture is heated to 673 K, there are no peaks assignable to LiOD, however a 

small amount of LiD is still present (2.6 wt. %). This may be due to the fact that a greater 

amount of sample has been employed during PND experiments with respect to the 500 mg 

scale; the mixing time was not entirely adequate anymore in order to obtain a 

homogeneous sample. In this sense, no reflections assignable to Mg(OD)2 are identified 

due to the high target temperature: 673 K is abundantly above the dehydration temperature 

of magnesium hydroxide. Nonetheless, the main phases present are magnesium oxide and 

lithium oxide as expected. Rietveld refinement data for the PND data collected at 673 K 

are presented in Table 4-11 and Figure 4-16. 
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Table  4-12: Selected data from the PND Rietveld refinement for Sample 25 (673 K). 

Empirical Formula LiD MgO Li 2O 

Crystal System Cubic Cubic Cubic 

Space Group Fm-3m Fm-3m Fm-3m 

Lattice Parameters 

a / Å 

 

4.1488(3) 

 

4.2364(2) 

 

4.6578(2) 

V / Å3 71.41(2) 76.03(1) 101.05(1) 

Z 4 4 4 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 

Density / g cm-3 0.833 3.521 1.964 

Wt. % 2.6(2) 55.1(9) 42.3(9) 

Temperature / K 673 

No. of Variables 51 

No. of Observations 5425 

Rwp % 4.26 

Rp % 7.14 

χ
2 0.74 

 

 

Figure  4-16: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 25 (673 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The blue, red and black tick marks 

indicate reflections from LiD, Li 2O and MgO respectively. 
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Therefore, at a first glance, it would appear that the system undergoes a two-step 

dehydrogenation process with the first step starting at 448 K and finishing at 523 K, when 

all the Mg(OD)2 has reacted. The second step appears to start immediately after the first, 

involving the reaction between LiD and LiOD. 

Further, no major structural changes can be observed for the phases throughout the whole 

reaction, however thermal expansion for LiD Li2O and Mg(OD)2 can be observed (Figure 

4-17). The lattice parameters obtained from the Rietveld refined data in this study are in 

good agreement with the data present in the literature.27,28,29,30 

An overview of the calculated weight fractions from the PND Rietveld refinement data for 

the phases present across the entire temperature range is given in Figure 4-18 (error bars 

omitted for clarity). It can be noted that the MgO weight fraction is decreased for the last 

two temperature points; this is believed to be attributable to a poor resolution of the 

experimental data. Beam issues were encountered during the acquisition of the 573 and 

673 K temperature point, resulting in a higher signal to noise ratio and lower pattern 

resolution. 

 

Figure  4-17: Variation of lattice parameters Vs temperature obtained by Rietveld refinement across 

the complete temperature range. 
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Figure  4-18: Calculated weight fractions from the PND Rietveld refinement data for all phases present 

across the complete temperature range. 

 

4.3.3.1 First mechanistic step: Mg(OD)2 dehydration and LiD hydrolysis 

To understand the mechanism of hydrogen release more fully, the two dehydrogenation 

steps have been studied in detail. The data presented in this section focuses on the first 

reaction step that occurs in the 448 – 518 K range: PND patterns were collected every 10 

K. Bank 5 (back scattered) data collected during the in-situ PND experiment are shown in 

Figure 4-19. 
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Figure  4-19: Bank 5 (back scattered) data obtained over a temperature range of 448-518 K (Samples 

12 to 19). Crosses denote Mg(OD)2, squares LiD, stars MgO, triangles LiOD and circles Li2O 

respectively. 

 

A summary of the calculated weight fractions from the PND Rietveld refinement data for 

the phases present is given in Table 4-12. 

Selected Rietveld refinement data and all observed, calculated and difference (OCD) plots 

for all intermediate points are reported in Appendix B. 
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Table  4-13: Calculated weight fractions from the PND Rietveld refinement data for the phases present 

in Samples 12 to 19. 

Sample 

Collection 

Temperature / K 

Mg(OD)2 

wt. % 

LiD 

wt. % 

MgO 

wt. % 

Li 2O 

wt. % 

LiOD 

wt. % 

12 448 67.6(6) 21.9(5) 8.2(1) 2.3(4) – 

13 458 59.3(5) 19.9(4) 15.7(4) 5.1(4) – 

14 468 46.8(7) 16.5(4) 25.8(6) 8.8(4) 2.1(2) 

15 478 35.6(8) 15.1(4) 34.2(8) 10.4(4) 4.8(3) 

16 488 21.4(5) 13.5(4) 44.1(6) 12.3(5) 8.7(4) 

17 498 9.8(4) 12.6(4) 52.7(8) 13.4(5) 11.5(5) 

18 508 <1 11.8(4) 59.9(9) 15.9(7) 12.4(6) 

19 518 – 9.8(2) 58.8(4) 18.2(3) 13.2(3) 

 

From the data analysis, it would appear in fact that the first step of hydrogen release 

involves the dehydration of Mg(OD)2, which decomposes to MgO and releases D2O. This 

decomposition takes place at a lower temperature with respect to the data reported in the 

literature.4,31 This may be due to the synergistic effect between the two reactants. In fact, 

the lower dehydrogenation temperature cannot be explained only by the fact that 

nanostructured materials are employed: as presented in Section 3.3.2, the decomposition of 

Mg(OH)2 nanoplates alone starts at ca. 573 K. Nonetheless, in this system, the dehydration 

reaction starts at ca. 448 K. It can be proposed that the water evolved immediately 

hydrolyses two equivalents of LiD, leading to the formation of Li2O and LiOD. As 

reviewed by Haertling et al., LiOH is the main product of LiH hydrolysis. However, it has 

been observed that a layer of Li2O forms between lithium hydroxide and lithium hydride 

(Equations 4-4 and 4-5).32 

222 H2OLiOHLiH2 +→+  (4-4) 

LiOH2OHOLi 22 →+  (4-5) 

This hydrolysis reaction thus results in a multi-layered structure with a core of LiH and a 

two-layer shell formed by an inner layer of lithium oxide and a layer shell of lithium 

hydroxide at the interface with H2O. 
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Figure  4-20: Layered structure for LiH hydrolysis 

 

The literature model for LiH hydrolysis is in good agreement with the PND data collected, 

where at first peaks assignable to Li2O and MgO are found (448 and 458 K), followed by 

presence of LiOD peaks at higher temperatures (starting at 468 K). As the dehydration of 

Mg(OD)2 proceeds, so does the hydrolysis of LiD to the point (518 K) at which all the 

Mg(OD)2 has decomposed to MgO and the lithium species present are LiD, Li2O and 

LiOD. 

 

4.3.3.2 Second mechanistic step: reaction of the remaining LiD 

In this section, the data presented focuses on the second dehydrogenation step, starting at 

528 K. Bank 5 (back scattered) data collected during the in-situ PND experiment are 

shown in Figure 4-21. 
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Figure  4-21: Bank 5 (back scattered) data obtained at 528-673 K, showing the phase changes 

throughout the dehydrogenation process (Samples 21, 22, 23 and 25). Squares denote LiD, stars MgO, 

triangles LiOD and circles Li2O respectively. 

 

A summary of the calculated weight fractions from the PND Rietveld refinement data for 

the phases present is given in Table 4-20. 

Selected Rietveld refinement data and all observed, calculated and difference (OCD) plots 

for all intermediate points are reported in Appendix B. 

 

Table  4-14: Calculated wt. % from the PND Rietveld refinement data for the phases present in 

Samples 21-25. 

Sample 

Collection 

Temperature / K 

Mg(OD)2 

wt. % 

LiD 

wt. % 

MgO 

wt. % 

Li 2O 

wt. % 

LiOD 

wt. % 

21 528 – 8.9(3) 59.8(6) 20.9(6) 10.4(4) 

22 538 – 8.2(3) 60.6(7) 22.3(7) 8.9(4) 

23 548 – 6.6(4) 60.3(6) 26.1(5) 7.0(3) 

24 573 – 6.7(3) 55.8(8) 31.2(7) 6.3(4) 

25 673 – 2.6(2) 55.1(9) 42.3(9) – 
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As already discussed in Section 4.3.3.1, at 673 K there are no peaks assignable to LiOD, 

but there is a small amount of LiD remaining (2.6 wt. %). The other phases present are 

magnesium oxide and lithium oxide as expected. The MgO weight fraction remains 

effectively constant throughout the whole temperature range of 528 – 673 K. 

The data collected favour a second mechanistic step which involves reaction in the solid 

state between LiOD and LiD, where D+ and D- combine together to form D2. As mentioned 

in Section 4.3.1.4 , a similar reaction pathway has been suggested by Drozd et al. for the 

NaBH4 – Mg(OH)2 system23 as well as by Lu et al. for the LiOH·H2O – LiH system, in 

which the second dehydrogenation step sees the solid state reaction between LiOH and 

LiH.7 

 

4.4 Conclusions 

Nanostructured magnesium hydroxide has been successfully synthesised using the 

combination of hydrothermal treatment and microwave irradiation. This novel synthesis 

has resulted in the production of hexagonal nanoplates of Mg(OH)2 with a thickness of 

tenths of nanometres. The same synthetic route has been successfully used to produce 

nanostructured Mg(OD)2, subsequently employed during in-situ powder neutron 

diffraction experiments at the Rutherford Appleton Laboratory in Didcot. Nanostructured 

LiH and LiD have been successfully obtained by mechanical milling of the bulk reactants. 

The Mg(OH)2 – LiH modular hydrogen release system has been studied in detail, 

comparing bulk as well as nanostructured materials. The system has been prepared by 

manually mixing stoichiometric amounts of the starting materials for 5 minutes. All 

manipulations have been carried out inside a recirculating glove box under inert 

atmosphere. For both systems, the theoretical weight loss of 5.4 wt. % of hydrogen was not 

achieved when heated to 873 K: the mass losses have found to be 5.1 wt. % and 4.7 % for 

bulk and nanomaterials respectively. However, using nanomaterials has resulted in a 

lowered onset temperature of hydrogen release (lowered from 478 K to 453 K) and a faster 

dehydrogenation process. Overall, nanomaterials have lead to better performances in terms 

of kinetics for the system. The calculated activation energy for the nanostructured system 

was found to be 96±4 kJ mol-1 for the first (low temperature) and 165±9 kJ mol-1 for the 

second (high temperature) step. Based on the calculated Ea values, the first event is 

believed to relate to Mg(OH)2 dehydration and the second event to the solid state reaction 

between LiOH and LiH. 
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Two mechanisms of hydrogen release were proposed: the first one involved the 

dehydration of magnesium hydroxide as initial step to form MgO, followed by the 

hydrolysis of 1 mole of lithium hydride and formation of lithium hydroxide, with the last 

step being the solid state reaction between the remaining LiH and LiOH. The second 

mechanism involves the solid state reaction between 2 equivalents of LiH and Mg(OH)2 

leading to the formation of magnesium oxide, lithium oxide and lithium hydroxide, with 

the second and last step of the reaction being the same as the final step of the first proposed 

mechanism. Ex-situ powder X-ray diffraction experiments have been performed in order to 

clarify the reaction pathway, although the studies were not conclusive. Therefore, in-situ 

PND data combined with the data already obtained were found to be pivotal to elucidate 

the mechanism of hydrogen release. 

PND experiments were carried out over the complete temperature range of 

dehydrogenation, with short data collections over the crucial dehydrogenation temperatures 

to follow the reaction steps individually. Rietveld refinements against the collected PND 

ToF data were performed: the results confirm that the dehydrogenation process appears to 

follow the first proposed mechanism (Equation 4-3) rather than the second. 

22222 H4OLi2MgO2H3OLiLiHLiOHMgO2LiH4)OH(Mg2 ++→++++→+  (4-4) 

First the magnesium hydroxide undergoes a dehydration process forming MgO and 

releasing H2O. The evolved water then hydrolyses 1 mol of lithium hydride leading to H2 

release together with the formation of a layered structure with a core of LiH and a Li2O-

LiOH double layer (Figure 4-25). These two steps happen almost simultaneously. The last 

reaction step involves the solid state reaction of the newly formed lithium hydroxide and 

the remaining hydride, which results in hydrogen evolution and formation of lithium oxide. 

Future work should focus on further enhancing the performances of the nanostructured 

system. The use of additives or catalysts could be seen as a feasible option in order to 

improve the kinetics of hydrogen release. Disruption of the layered structure formed during 

the first dehydrogenation step should facilitate hydrogen evolution. Several catalysts and 

additives have been studied for promoting the hydrolysis process for magnesium hydride, 

although none of them has been tested in the presence of LiH. Based on studies published 

on MgH2, suitable candidates to be added to the magnesium hydroxide – lithium hydride 

modular system include graphite, silicon carbide as well as multi-valence titanium and 

vanadium based additives/catalysts.33,34,35,36,37 Further studies in order to understand which 

additives and catalysts could be the most efficient are required.  
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5 The magnesium hydride – lithium hydroxide 

‘modular’ release system: H2 desorption properties 

when working with anhydrous or monohydrate 

lithium hydroxide 
 

5.1 Introduction 

Lithium hydroxide has increasingly gained attention over the last decades in terms of 

hydrogen storage solutions. In fact its use has been proposed in several solid state 

hydrogen release systems in combination with different light metal hydrides. Firstly, in 

2005 Vajo et al. proposed the use of LiOH, both anhydrous and as the monohydrate, in 

combination with two different light metal hydrides: lithium hydride, and lithium 

borohydride.1 In 2007, Lu et al. published a detailed study of the lithium hydroxide – 

lithium hydride system using either LiOH or LiOH·H2O.2 More recently Wang et al. 

studied the improved hydrogen storage and release properties of mechanically milled 

magnesium hydride when mixed with alkali hydroxides in catalytic amounts.3 In 2014, 

based on the same idea Zhu et al. further investigated the destabilisation of LiBH4 via its 

dehydrogenation through the H+ – H- interaction between the hydride and light metal 

hydroxide (sodium, lithium and potassium hydroxides were employed).4 Furthermore, the 

use of another light metal hydroxide, has been proposed to be used in these kind of 

systems, specifically the reaction between Mg(OH)2 and Na(Li)BH4 has been 

investigated.5,6 

However, so far the lithium hydroxide – magnesium hydride hydrogen release system has 

not been studied. Two different systems can be proposed when employing these starting 

materials: both LiOH and LiOH·H2O can be mixed with MgH2 to release H2. 

The LiOH – MgH2 system, presented in Equation 5-1, is thermodynamically favourable 

and can theoretically release up to 5.9 wt. % of hydrogen. The starting materials react to 

yield magnesium oxide and lithium oxide together with the evolution of hydrogen. 

2
1

222 HkJmol3.74)K298(HH2MgOOLiMgHLiOH2 −−=°∆++→+  (5-1) 
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When working with the monohydrate hydroxide, for the LiOH·H2O – MgH2 system 

(Equation 5-2) the theoretical thermogravimetric capacity of the whole system rises to 7.4 

wt. % H2. Once again the overall reaction is thermodynamically favourable and the starting 

materials react to yield magnesium oxide and lithium oxide, evolving hydrogen. 

2
1

2222 HkJmol7.98)K298(HH6MgO3OLiMgH3OHLiOH2 −−=°∆++→+⋅  (5-2) 

The decompositions of both anhydrous and lithium hydroxide monohydrate have been 

widely studied and are reported in Equations 5-3 and 5-4.7,8,9 

2
1

22 HkJmol1.53)K298(HOHLiOHOHLiOH −=°∆+→⋅  (5-3) 

2
1

22 HkJmol4.97)K298(HOH2OLiLiOH2 −=°∆+→  (5-4) 

Further, it is well known that under ambient atmosphere lithium hydroxide undergoes a 

carbonisation reaction by CO2, leading to the formation of Li2CO3 (Equations 5-5 and 5-

6).10,11,12 This phenomenon can be easily overcome by working under controlled 

atmosphere at all times: all LiOH(·H2O) manipulations must be conducted under inert 

atmosphere. 

OHkJmol9.96)K298(HOHCOLiCOLiOH2 2
1

2322
−−=°∆+→+  (5-5) 

OHkJmol6.3)K298(HOH3COLiCOOHLiOH2 2
1

23222
−−=°∆+→+⋅  (5-6) 

The decomposition of MgH2 has been fully investigated. Magnesium hydride can 

theoretically release up to 7.6 wt. % H2, although the kinetics and thermodynamics of the 

dehydrogenation process are not favourable (Equation 5-7) and the process is characterised 

by slow H2 desorption at high temperatures.13 

2
1

22 HkJmol2.76)K298(HHMgMgH −=°∆+→  (5-7) 

The hydrolysis reaction of MgH2 meanwhile follows the reaction expressed in Equation 5-

8.14 

2
1

2222 HkJmol5.138)K298(HH)OH(MgOH2MgH −−=°∆+→+  (5-8) 
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During this project LiOH(·H2O) and MgH2 have been used together to test their behaviour 

as solid state hydrogen release systems. A stoichiometric amount of the two reagents have 

been mixed together and the resulting mixture fully investigated. LiOH – MgH2 and 

LiOH·H2O – MgH2 mixtures have been prepared. Bulk, mechanically milled and 

nanostructured materials were used for each system. For the study of bulk systems, as-

received LiOH(·H2O) and MgH2 have been manually ground together. Milled systems 

were prepared by mixing either anhydrous or hydrated mechanically milled lithium 

hydroxide with ball milled magnesium hydride. All starting materials were milled in order 

to reduce their particle size prior to mixing them together and testing their properties as 

hydrogen release systems. 

Further, a feasible and facile route for the selective synthesis of nano LiOH(·H2O) has 

been successfully identified. Anhydrous lithium hydroxide nanosheets with a thickness of 

tens of nanometres were successfully obtained. Their behaviour as well as nanostructured 

LiOH·H2O when mixed with mechanically milled MgH2 was tested. 

The aim of this chapter is to give an overview on the LiOH(·H2O) – MgH2 system: 

attention has been focused of the comparison of the dehydrogenation properties of 

chemically nanostructured and mechanically milled materials with respect to bulk reagents. 

In particular, the onset temperature of hydrogen release and associated weight loss has 

been fully studied for each system. Further, the role of structural water in LiOH·H2O was 

considered: the behaviour of lithium hydroxide monohydrate when mixed with MgH2 was 

investigated and compared to its corresponding anhydrous hydroxide. All materials were 

characterised using simultaneous thermogravimetric analysis (TG-DTA) with mass 

spectroscopy (MS), powder X-ray diffraction (PXD) and scanning electron microscopy 

(SEM). TG-DTA-MS studies were conducted to obtain information on the onset and peak 

temperature of any thermal event occurring, weight loss percentage and nature and amount 

of the gas evolved during heating. Ex-situ PXD was employed to propose a mechanism of 

hydrogen release for each studied system. SEM was used for morphology studies of both 

milled and nanostructured materials before and after heating. 
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5.2 Experimental 

 

5.2.1 Preparation of the systems 

Mixtures were prepared by manually mixing stoichiometric amounts of the starting 

materials for 5 minutes with an agate mortar and pestle. All preparations were conducted 

under an inert atmosphere inside either an Ar- or N2-filled recirculating glove box. 

The amounts of starting materials mixed together for each system were: 

• 180 mg of LiOH – 100 mg of MgH2 

• 216 mg of LiOH·H2O – 100 mg of MgH2 

For each hydroxide, three different kinds of systems were prepared and analysed: 

• Bulk ‘modular’ system: mixtures of as-received LiOH(·H2O) (LiOH: Sigma-

Aldrich, ≥ 98%; LiOH·H2O: Aldrich, 98%) and MgH2 (Aldrich, hydrogen-storage 

grade, ≥ 96.5%). (b-LiOH, b-LiOH·H2O) 

• Mechanically milled ‘modular’ system: mixtures of mechanically milled lithium 

hydroxide (m-LiOH(·H2O)) and mechanically milled magnesium hydride (m-

MgH2). 

• Nanostructured ‘modular’ system: mixtures of synthesised nanostructured 

LiOH(·H2O) (n-LiOH(·H2O)) and mechanically milled MgH2 (m-MgH2). 

 

5.2.2 Selective Synthesis of nanostructured LiOH(·H2O) 

To prepare nanostructured LiOH(·H2O) (denoted n-LiOH and n-LiOH·H2O respectively), 

approximately 160 mg of lithium metal ribbon (Aldrich, Lithium ribbon, thickness × width 

1.5 mm × 100 mm, 99.9%) was carefully cut into small chips inside an argon filled 

recirculating glove box and put inside a glass vial, which was sealed with parafilm prior to 

transfer out of the glove box. The metal was then quickly transferred to a 50 ml Schlenk 

flask and dissolved in 25 ml of deionised water, minimising the exposure of the lithium 

metal chips to moisture and air. Once the metal was completely dissolved, the flask was 

connected to the Schlenk apparatus and the evaporation process started. By carefully 

tuning the reaction conditions it was possible to synthesise the anhydrous LiOH and the 

monohydrate hydroxide selectively, exploiting the vacuum evaporation and thermal 

vacuum evaporation processes.15,16 
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Working in a high vacuum environment at room temperature allows evaporation of only 

the solvent water, yielding lithium hydroxide monohydrate. Conducting the evaporation 

process at higher temperature allowed to dehydrate the LiOH fully, resulting in the 

formation of the anhydrous hydroxide. 

Specifically, to obtain LiOH, the process was conducted by immersing the flask in an oil 

bath heated to 343 K. The process was completed after ca. 120 minutes. For the synthesis 

of LiOH·H2O, vacuum evaporation was conducted at room temperature. The process took 

approximately 240 minutes to complete. For both synthetic procedures, the crystals were 

collected after the reaction flask was carefully sealed and transferred inside a glove box. 

 

5.2.3 Ball milling of LiOH(·H 2O) 

Lithium hydroxides were mechanically milled broadly using the same conditions reported 

by Zhu et al.,4 although a 40:1 ball-to-powder ratio was used as opposed to the 120:1 ratio 

employed by Zhu. During a typical milling experiment, 1 gram of LiOH(·H2O) (Sigma-

Aldrich, 95%) was milled for 5 hours at 500 rpm, using 10 stainless steel balls. A 5 minute 

interval following every 5 minutes of milling was employed. The milling products are 

henceforth referred to as m-LiOH and m-LiOH·H2O. 

 

5.2.4 Ball milling of MgH 2 

Nanostructured MgH2 was produced by mechanically milling the as-received hydride 

(Aldrich, hydrogen-storage grade, ≥ 96.5%). 1 gram of MgH2 was loaded into a 50 ml 

stainless steel jar using 10 stainless steel balls as a grinding medium. The process was 

typically conducted by milling the starting material for 5 hours at 450 rpm. A 5 minute 

interval following every 5 minutes of milling was used.17 Milled MgH2 is henceforth 

referred to as m-MgH2. 

 

5.2.5 TG-DTA-MS studies 

Thermogravimetric analysis coupled with mass spectroscopy studies were performed to 

obtain information on the onset and peak temperatures of the thermal events occurring 

during heating, the change in mass (wt. %) and nature of the gaseous species evolved 

during the thermal treatment. TG-DTA experiments were carried out using a Netzsch STA 
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409 PC instrument coupled to a Hiden HPR20 mass spectrometer as detailed in Section 

2.3.4. All measurements were performed under a flow of argon and all manipulations were 

conducted under inert atmosphere inside glove boxes. 

Initially correction files were created and then the samples analysed. First experiments 

were carried out heating the analysed material from room temperature to 873 K with a 

heating rate of 5 K min-1 and holding that temperature for 1 hour before allowing the 

sample to cool naturally. Subsequent experiments were planned based on the results 

obtained and intermediate temperature points were studied to isolate any intermediate 

species forming and to propose a dehydrogenation mechanism. For each experiment, 

approximately 20-25 mg of sample were analysed. 

Further, thermogravimetric analyses were performed in order to calculate the activation 

energy for every thermal event occurring during TG-DTA-MS experiments: this was done 

employing the Kissinger method.18,19 Samples were heated to 773 K using heating rates of 

2, 5, 10 and 20 K min-1 (Table 5-5 and 5-9) and Kissinger plots were obtained. 

 

5.2.6 Powder X-ray diffraction (PXD) experiments 

All starting materials and hydrogen release systems were analysed by PXD as described in 

Section 2.3.1.1. Due to the air sensitive nature of the materials employed, all X-ray 

diffraction patterns were collected with a Bruker d8 diffractometer using sealed capillaries. 

Typically, data were collected between 5 ≤ 2θ/˚ ≥ 85 for 1 h for phase identification and 

for 12 h for structural refinement purposes. 

PXD patterns obtained were compared with the appropriate reference patterns using the 

ICSD database20 and generating calculated powder patterns with PowderCell.21 

As already discussed in Section 2.3.3, Rietveld refinements against the PXD data were 

performed using the General Structure Analysis System (GSAS)22 with the EXPGUI 

interface.23 The background was successfully modelled using Function 8 (reciprocal 

interpolation function). This was followed by the refinement of the cell parameters, atomic 

positions, profile parameters and temperature factors. The peak shape was modelled using 

Function 2, which is a multi-term Simpson’s integration of the Pseudo-Voigt function. 
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5.2.7 Scanning Electron Microscopy (SEM) imaging 

Samples for SEM imaging were prepared as discussed in Section 2.3.5.1. All 

manipulations were carried out inside a recirculating argon- or nitrogen- filled glove box. 

A small amount of sample was deposited onto aluminium stubs using adhesive carbon tabs. 

The samples were put into glass vials and sealed before being transferred out of the glove 

box, to minimise the exposure to air and moisture. Since in this work materials were often 

found to charge under the beam, the samples were typically sputter-coated with a 10 nm 

layer of gold/palladium alloy in order to achieve better conductivity and increase the 

quality of the images. The samples were then placed inside the vacuum column of the 

microscope, which was shut using an air-tight door and evacuated. 

Images have been acquired at the Imaging Spectroscopy and Analysis Centre (ISAAC), 

School of Geographical and Earth Sciences (GES) at the University of Glasgow. A Carl 

Zeiss Sigma Variable Pressure Analytical SEM with Oxford Microanalysis employing a 

Schottky thermal field emitter electron source was used with a working distance of 

typically 5-6 mm and an accelerating voltage of 15-25 kV and. All images were collected 

with the help of Dr Peter Chung. 

 

5.2.8 Summary of samples and reactions 

 

Table  5-1: Summary of starting materials employed in the LiOH – MgH 2 hydrogen release systems. 

Sample Material Preparation Conditions Heating program / K 

1 n-LiOH Schlenk Apparatus - 343 K 873 / 5 K min-1 + 1 h dwell 

2 n-LiOH·H2O Schlenk Apparatus - 298 K 873 / 5 K min-1 + 1 h dwell 

3 m-LiOH 5 h milling @ 500 rpm (5/5) 873 / 5 K min-1 + 1 h dwell 

4 m-LiOH·H2O 5 h milling @ 500 rpm (5/5) 873 / 5 K min-1 + 1 h dwell 

5 m-MgH2 5 h milling @ 450 rpm (5/5) 873 / 5 K min-1 + 1 h dwell 

 

 

 



183 
 

Table  5-2: Summary of preparations carried out for the bulk LiOH – MgH 2 system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

6 b-LiOH – b-MgH2 5 min manual mixing – 

7 b-LiOH – b-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

8 b-LiOH – b-MgH2 5 min manual mixing 673 / 5 K min-1 

9 b-LiOH – b-MgH2 5 min manual mixing 758 / 5 K min-1 

10 b-LiOH – b-MgH2 5 min manual mixing 773 / 5 K min-1 

 

 

 

Table  5-3: Summary of preparations carried out for the mechanically milled LiOH – MgH 2 system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

11 m-LiOH – m-MgH2 5 min manual mixing – 

12 m-LiOH – m-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

13 m-LiOH – m-MgH2 5 min manual mixing 623 / 5 K min-1 

14 m-LiOH – m-MgH2 5 min manual mixing 648 / 5 K min-1 

15 m-LiOH – m-MgH2 5 min manual mixing 773 / 5 K min-1 

 

 

 

Table  5-4: Summary of preparations carried out for the nanostructured LiOH – MgH 2 system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

16 n-LiOH – m-MgH2 5 min manual mixing – 

17 n-LiOH – m-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

18 n-LiOH – m-MgH2 5 min manual mixing 648 / 5 K min-1 

19 n-LiOH – m-MgH2 5 min manual mixing 773 / 5 K min-1 
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Table  5-5: Summary of preparations carried out for activation energy calculations for the LiOH – 

MgH 2 system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

20 b-LiOH – b-MgH2 5 min manual mixing 773 (2 K min-1) 

   
773 (5 K min-1) 

   
773 (10 K min-1) 

   
773 (20 K min-1) 

21 m-LiOH – m-MgH2 5 min manual mixing 773 (2 K min-1) 

   
773 (5 K min-1) 

   
773 (10 K min-1) 

   
773 (20 K min-1) 

22 n-LiOH – m-MgH2 5 min manual mixing 773 (2 K min-1) 

   
773 (5 K min-1) 

   
773 (10 K min-1) 

   
773 (20 K min-1) 

 

 

Table  5-6: Summary of preparations carried out for the bulk LiOH·H 2O – MgH2 system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

23 b-LiOH·H2O – b-MgH2 5 min manual mixing – 

24 b-LiOH·H2O – b-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

25 b-LiOH·H2O – b-MgH2 5 min manual mixing 408 / 2 K min-1 

26 b-LiOH·H2O – b-MgH2 5 min manual mixing 673 / 5 K min-1 

27 b-LiOH·H2O – b-MgH2 5 min manual mixing 758 / 5 K min-1 

28 b-LiOH·H2O – b-MgH2 5 min manual mixing 773 / 5 K min-1 
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Table  5-7: Summary of preparations carried out for the mechanically milled LiOH·H 2O – MgH2 

system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

29 m-LiOH·H2O – m-MgH2 5 min manual mixing – 

30 m-LiOH·H2O – m-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

31 m-LiOH·H2O – m-MgH2 5 min manual mixing 408 / 2 K min-1 

32 m-LiOH·H2O – m-MgH2 5 min manual mixing 573 / 5 K min-1 

33 m-LiOH·H2O – m-MgH2 5 min manual mixing 673 / 5 K min-1 

34 m-LiOH·H2O – m-MgH2 5 min manual mixing 773 / 5 K min-1 

 

 

 

Table  5-8: Summary of preparations carried out for the nanostructured LiOH·H 2O – MgH2 system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

35 n-LiOH·H2O – m-MgH2 5 min manual mixing – 

36 n-LiOH·H2O – m-MgH2 5 min manual mixing 873 / 5 K min-1 + 1 h dwell 

37 n-LiOH·H2O – m-MgH2 5 min manual mixing 408 / 2 K min-1 

38 n-LiOH·H2O – m-MgH2 5 min manual mixing 623 / 5 K min-1 

39 n-LiOH·H2O – m-MgH2 5 min manual mixing 773 / 5 K min-1 
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Table  5-9: Summary of preparations carried out for activation energy calculations for the LiOH·H2O 

– MgH2 system. 

Sample Material 
Preparation 

Conditions 
Heating program / K 

40 b-LiOH·H2O – b-MgH2 5 min manual mixing 773 (2 K min-1) 

   
773 (5 K min-1) 

   
773 (10 K min-1) 

   
773 (20 K min-1) 

41 m-LiOH·H2O – m-MgH2 5 min manual mixing 773 (2 K min-1) 

   
773 (5 K min-1) 

   
773 (10 K min-1) 

   
773 (20 K min-1) 

42 n-LiOH·H2O – m-MgH2 5 min manual mixing 773 (2 K min-1) 

   
773 (5 K min-1) 

   
773 (10 K min-1) 

   
773 (20 K min-1) 

 

 

5.3 Results and Discussion 

 

5.3.1 Preparation of the system components 

 

5.3.1.1 Nanostructured LiOH(·H2O) 

Nanostructured LiOH(·H2O) (Samples 1 and 2) were successfully obtained using the 

selective synthetic route described in Section 5.2.1. To obtain LiOH vacuum evaporation 

was conducted at 343 K, whereas for the synthesis of LiOH ·H2O, the process was 

conducted at room temperature. For both synthetic procedures, the yield was found to be 

lower than the theoretical one: ca. 73% for both hydroxides. This may be due to the 

difficulty in collecting the entire amount of crystals from the Schlenk glassware. In 

particular, in a typical synthesis ca. 200 mg of LiOH and ca. 350 mg of LiOH·H2O were 

obtained with respect to the 274 mg and 480 mg theoretical figures for anhydrous and 
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monohydrate lithium hydroxide respectively. The synthesised nanostructured hydroxides 

were then characterised by PXD as well as SEM. 

As shown in the PXD pattern for Sample 1 (Figure 5-1), pure phase LiOH was synthesised 

with no trace of either Li metal starting material or the monohydrate hydroxide present. 

 

Figure  5-1: PXD pattern for Sample 1, synthesised n-LiOH. 

 

SEM images of Sample 1 show a dramatic decrease of the particle size with respect to the 

as-received hydroxide (Figure 5-2). However, the particles show a non-uniform size 

distribution with particle size varying in the 40-80 µm range. Nonetheless, a closer look at 

the morphology of the synthesised LiOH shows that the particles present a stacked sheet-

like morphology with typical sheet thicknesses varying in the 30-50 nm range (Figure 5-3). 

 

Figure  5-2: Collected SEM images: a) commercial LiOH (100 µm scale) and b) Sample 1 (20 µm scale). 
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Figure  5-3: Collected SEM images for Sample 1: a) 2 µm scale b) 200 nm scale. 

 

Rietveld refinement was performed against PXD data with GSAS22 using the EXPGUI23 

interface. Crystallographic data are presented in Table 5-10. These were found to be in 

good agreement with the literature values.24 The observed, calculated and difference 

(OCD) plot from the PXD Rietveld refinement for Sample 1 is shown in Figure 5-4. 

 

Table  5-10: Selected data from the PXD Rietveld refinement for Sample 1, synthesised nano LiOH. 

Empirical Formula LiOH 

Crystal System Tetragonal 

Space Group P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

 

3.548(1) 

4.347(1) 

V / Å3 54.71(5) 

Z 2 

Unit Cell Formula 

Weight / Mw 
47.896 

Density / g cm-3 1.454 

No. of Variables 23 

No. of Observations 1056 

Rwp % 9.51 

Rp % 6.87 

χ
2 2.19 
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Figure  5-4: Observed (green line), calculated (red dots) and difference (pink line) (OCD) plot from the 

PXD Rietveld refinement for Sample 1, synthesised n-LiOH. Black tick marks indicate n-LiOH 

reflections. 

As can be observed from the PXD pattern collected for Sample 2 (Figure 5-5), pure phase 

LiOH·H2O crystals were successfully obtained. No trace of either Li metal starting 

material or the anhydrous hydroxide can be identified in the diffraction pattern. 

 

Figure  5-5: PXD pattern for Sample 2, synthesised n-LiOH·H2O. 

Once again, SEM images were collected and they show a dramatic decrease of the particle 

size with respect to the as-received hydroxide (Figure 5-6), as previously observed for the 

anhydrous hydroxide. Also for the monohydrate compound, the particles do not show a 

uniform size distribution, which was found to vary in the 20-100 µm range. Images were 
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collected at higher magnification in order to identify the potential presence of a sheet-like 

morphology similar to that identified for n-LiOH. As shown in Figure 5-7, smaller 

particles in the 1-6 µm range can be identified. Although it is not possible to identify any 

sheet-like morphology, the surface of the particle appears porous and textured. 

 

 

Figure  5-6: Collected SEM images: a) commercial LiOH (100 µm scale) and b) Sample 2 (20 µm scale). 

 

 

Figure  5-7: Collected SEM images for Sample 2: a) 2 µm scale b) 100 nm scale. 

 

Rietveld refinement was performed for Sample 2 against PXD data. Crystallographic data 

are reported in Table 5-11 and were found to be in good agreement with the literature 

values.25,26 The observed, calculated and difference (OCD) plot from the PXD Rietveld 

Refinement for Sample 2 is presented in Figure 5-8. 
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Table  5-11: Selected data from the PXD Rietveld refinement for Sample 2, synthesised n-LiOH·H2O. 

Empirical Formula LiOH·H 2O 

Crystal System Monoclinic 

Space Group C2/m 

Lattice Parameters 

a / Å 

b / Å 

c / Å 

7.4146(1) 

8.3051(1) 

3.1947(1) 

V / Å3 184.742(6) 

Z 4 

Unit Cell Formula 

Weight / Mw 
167.852 

Density / g cm-3 1.509 

No. of Variables 33 

No. of Observations 4423 

Rwp % 6.45 

Rp % 4.95 

χ
2 1.73 

 

 

Figure  5-8: Observed (green line), calculated (red dots) and difference (pink line) (OCD) plot from the 

PXD Rietveld refinement for Sample 2, synthesised n-LiOH·H 2O. Black tick marks indicate n-

LiOH·H 2O reflections. 
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5.3.1.2 Ball milled LiOH(·H 2O) 

Anhydrous lithium hydroxide (Sample 3) and lithium hydroxide monohydrate (Sample 4) 

were ball milled for 5 h at 500 rpm. As shown in Figures 5-9 and 5-10, the post-milling 

products are still single phase LiOH(·H2O). 

 

Figure  5-9: PXD pattern for Sample 3, ball m-LiOH. 

 

Figure  5-10: PXD pattern for Sample 4, m-LiOH·H2O. 

 

SEM images for both milled hydroxides have been collected (Figures 5-11 and 5-12). The 

milled materials present similar typical particle size of 2-8 µm in diameter. However, 

unlike as previously observed for milled Mg(OH)2 (Section 3.3.1.2), milled LiOH(·H2O) 
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particles do not tend to agglomerate into bigger clusters, resulting in a homogeneous 

distribution of the particles throughout the whole sample. 

 

 

Figure  5-11: Collected SEM images for Sample 3: a) 2 µm scale b) 1 µm scale. 

 

 

Figure  5-12: Collected SEM images for Sample 4: a) 2 µm scale b) 1 µm scale. 

 

5.3.1.3 Ball milled MgH 2 

Magnesium hydride (Sample 5) was ball milled for 5 h at 450 rpm. The PXD pattern 

collected after the milling procedure was carried out confirms that shows that no major 

reaction occurs during the milling time: β-MgH2 is still the main phase present and 

reflections assignable to γ-MgH2 and Mg metal can be identified as minor phases. A 

detailed discussion of ball milled MgH2 can be found in Section 3.3.1.3. 
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Figure  5-13: PXD pattern for Sample 5, ball milled magnesium hydride (β-MgH 2). Triangles and 

circles indicate γ-MgH 2 and Mg metal respectively. 

 

5.3.2 TG-DTA-MS data 

 

5.3.2.1 Starting Materials 

Similarly to the magnesium hydroxide – magnesium hydride system already presented in 

Chapter 3, prior to the study of the ‘modular’ release system, TG-DTA-MS studies were 

carried out on the starting materials. Samples 1, 2, 3, and 4, the commercial anhydrous as 

well as monohydrate lithium hydroxide were investigated individually. Sample 5 and as-

received MgH2 were also studied individually. This allowed a comparison of onset and 

peak temperatures of dehydration and dehydrogenation for LiOH(·H2O) and MgH2 

respectively, as well as weight losses and an assessment of the gaseous species evolved 

during heating. A summary of the results obtained for anhydrous lithium hydroxide is 

reported in Table 5-12. 
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Table  5-12: Onset temperature, peak temperatures, weight losses and identified released gaseous 

species for Sample 1 (n-LiOH), Sample 3 (m-LiOH) and as-received LiOH (b-LiOH). 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

1 

n-LiOH 
709 747 27.7 H2O 

3 

m-LiOH 
713 751 35.2 H2O 

Commercial 

LiOH 
711 751 36.2 H2O 

 

 

Figure  5-14: (a) TG and (b) DTA data comparison for commercial (red), nanostructured (1; blue) and 

milled (2, green) anhydrous lithium hydroxide. 

 

Figure 5-14 presents the TG-DTA data collected for Sample 1 (n-LiOH), 3 (m-LiOH) and 

as-received LiOH (b-LiOH). From both TG and DTA profile it is possible to identify one 

single thermal event. The temperature of this endothermic event is consistent throughout 

all three samples with the dehydration and melting of LiOH beginning at 709, 713 and 711 

K and reaching a peak temperature of 747 K for nano and 751 K for both milled and 

commercial materials respectively. These data are consistent with the melting of LiOH, 

which is supposed to occur at 723 K according to the Handbook of Chemistry and 

Physics.27 However, the TG profiles show differences between materials. Nanostructured 

LiOH (Sample 1) displays a weight change of 27.7 %, which corresponds to ca. 75% of the 

theoretical mass loss of 37.6%. The thermal treatment of Sample 3 results in a mass loss of 

35.2 % (93.6 % of the theoretical one), whilst the commercial LiOH dehydration process 
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yields a weight loss of 36.2 % (96.3 % with respect to the theoretical figure). It was not 

possible to retrieve any sample after the thermal treatment, as the powder melted inside the 

sample holder inside the STA apparatus. It is interesting to note that all mass losses start 

close to the melting point of the material and take place mostly during the 1 h holding time 

at 873 K. It is possible to hypothesise that if the temperature of holding was held for a 

longer time, this would have resulted in mass losses nearer to the theoretical value of 

37.6%. 

 

 

Figure  5-15: MS profiles Vs time for commercial (red), nanostructured (1; blue) and milled (3, green) 

anhydrous lithium hydroxide. 

 

The only gaseous species detected appears to be water as expected. As can be seen in 

Figure 5-15, the H2O release appears to be a single event, with the mass losses take places 

during the holding time. Further, the MS peak shape from the H2O release is not well-

defined, suggesting that the water release was still an ongoing process at the time the 

measurement ended. 

 

Data obtained for lithium hydroxide monohydrate are summarised in Table 5-13. The TG-

DTA data collected for Sample 2 (n-LiOH·H2O), Sample 4 (m-LiOH·H2O) and as-

received LiOH·H2O (b-LiOH·H2O) are presented in Figure 5-16. 
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Table  5-13: Onset temperature, peak temperatures, weight losses and identified released gaseous 

species for Sample 2 (n-LiOH·H2O), Sample 4 (m-LiOH·H2O) and as-received LiOH·H2O (b- 

LiOH·H 2O). 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

2 

n- LiOH·H 2O 
331 383 63.5 H2O 

 
716 745 

 
 

4 

m- LiOH·H 2O 
324 378 62.7 H2O 

 
716 744 

 
 

Commercial 

LiOH·H 2O 
330 390 63.4 H2O 

 
724 746 

 
 

 

 

Figure  5-16: (a) TG and (b) DTA data comparison for commercial (red), nanostructured (3; blue) and 

milled (4, green) lithium hydroxide monohydrate. 

From both TG and DTA profiles is possible to identify two different thermal events taking 

place. The first endothermic event is believed to relate to the loss of structural water, 

leading to the formation of LiOH from LiOH·H2O. The onset temperature for this first 

event was found to be 331, 324 and 330 K with a peak temperatures of 383, 378 and 390 K 

for Sample 2 (nano), 4 (milled) and commercial LiOH respectively. The second 

endothermic event can be attributed once again to the final dehydration and melting of the 

remaining LiOH. The onset temperature of this process was found to be consistent with 

Sample 1, 3 and commercial LiOH and was found to be 716 K for nanostructured and 

milled LiOH·H2O and 724 K for as-received LiOH·H2O, with the peak temperatures being 
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746, 744 and 745 K for commercial, milled and nanostructured LiOH·H2O respectively. 

This values are once again in agreement with the melting point value given in the 

Handbook of Chemistry and Physics.27 Further, all mass losses appear to be consistent; the 

lowest is related to the milled LiOH·H2O (Sample 4), where a weight change of 62.7 % 

corresponding to 97.4 % with the theoretical figure is observed. Thermal treatment of a 

nanostructure lithium hydroxide monohydrate results in a weight loss of 63.5 %, which is 

98.6% of the theoretical 64.4 % loss. This value is found to be similar to the mass loss 

observed for the as-received LiOH·H2O, whose weight change was found to be 63.4 % 

(98.4 % of the theoretical figure). 

Although the theoretical weight losses are closer to the theoretical figure than was the case 

with anhydrous lithium hydroxide, the combination of TG and DTA profile once again 

suggests that by holding the temperature of 873 K for a longer period of time, it would be 

possible to completely dehydrate and melt the material. Similarly to LiOH, it was not 

possible to collect any LiOH·H2O powder after the STA analysis. 

 

Figure  5-17: MS profiles Vs time for commercial (red), nanostructured (2; blue) and milled (4, green) 

lithium hydroxide monohydrate. 

MS spectra (Figure 5-17) present two events which can be related to the release of 

structural water and the dehydration/melting of the remaining LiOH respectively. Similarly 

to LiOH, mass losses are found to take place after the peak temperature of the respective 

thermal event is reached in the MS spectra: 390, 378 and 383 K for the first event and 746, 

744 and 745 K for the second event for commercial, milled and nanostructured LiOH·H2O 

respectively. As for the anhydrous LiOH, the peak shape of the second water release is not 

completely defined, suggesting that some H2O was still being evolved from the material 

during the holding time of the 873 K temperature point. 
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As for the studies of MgH2 starting material, a detailed discussion of the TG-DTA-MS 

studied performed on both ball milled and as-received magnesium hydride can be found in 

Section 3.3.1.4. A summary of the data obtained is given in Table 5-14. 

Table  5-14: Onset temperature, peak temperatures, weight losses and identified released gaseous 

species for Sample 5 (milled MgH2) and for as-received MgH2. 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

5 

m-MgH 2 
580 625 6.4 H2 

Commercial 

MgH 2 
667 696 6.9 H2 

 

5.3.2.2 LiOH – MgH 2 system 

Initial TG-DTA-MS experiments were performed on Samples 7, 12 and 17 to determine 

the onset temperature as well as the peak temperature of possible hydrogen release and the 

weight loss for bulk, milled and nanostructured systems (Figures 5-18 and 5-19). The 

results obtained are summarised in Table 5-15. The three mixtures were heated to 873 K 

and that temperature held for one hour. 

Table  5-15: Onset temperature, peak temperatures, weight losses and identified released gaseous 

species for Samples 7, 12 and 17. 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

7 598 673 10.1 H2 

b-LiOH – b-MgH 2 
 

702 
 

 

  
735 

 
 

12 509 598 5.2 H2 

m-LiOH – m-MgH 2 629 648 
 

 

  
711 

 
 

17 512 606 5.2 H2 

n-LiOH – m-MgH 2 635 649 
 

 

  
720 

 
 

 



200 
 

 

Figure  5-18: (a) TG and (b) DTA data comparison for Sample 7 (bulk; red), Sample 12 (milled; green) 

and Sample 17 (nano; blue). 

 

Figure  5-19: MS profiles Vs time for Sample 7 (bulk), Sample 12 (milled) and Sample 17 (nano). 

 

As can be observed from Figure 5-18, interesting differences can be appreciated amongst 

bulk, milled and nanostructured systems in particular in terms of both weight losses and 

DTA profiles. It is possible to note how the onset temperature of hydrogen release is 

dramatically decreased by nearly 100 K when working with both milled and 

nanostructured materials. The onset T was found to be 509 K and 512 K for Sample 12 

(milled) and Sample 17 (nano) respectively, whilst for Sample 7 (bulk) it was found to be 

as high as 598 K. DTA profiles for all samples show the presence of 2 main endothermic 

events occurring one immediately after the other. Although a closer look at both TG and 

first derivative of the DTA data suggest the second event to be a combination of two. The 

peak temperatures of the three events were found to be 673, 702 and 735 K for Sample 7 
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(bulk); 598, 648 and 711 K for Sample 12 (milled) and 606, 649 and 720 for Sample 17 

(nano). 

In terms of thermogravimetric capacity, according to Equation 5-1, the LiOH – MgH2 

system can theoretically release 5.9 wt. % of H2. However, the weight change for Sample 7 

(bulk) was found to be 10.1 wt %, which is a higher value than expected, whereas mass 

losses for Sample 12 and Sample 17 were consistent for both systems and they were found 

to be 5.2 wt. %, nearly 90 % of the theoretical figure. 

If the thermal profile followed the independent decomposition of the two starting materials 

then two distinct thermal events would be expected and the TG-DTA profile would appear 

different from the experimental one (and no third event would be identified). Further, the 

system would release 24.3 wt. % H2O from the decomposition of LiOH and 2.7 wt. % of 

H2 from the decomposition of MgH2, for a total weight loss of 27.0 %. This is not in 

agreement with the experimental data. In this sense, it is believed that the two starting 

materials interact with each other rather than react individually. 

The differential thermogravimetric analysis data for Sample 7 (bulk) suggest that an initial 

solid state reaction between LiOH and MgH2 to yield Li2O and MgO accompanied by 

hydrogen evolution and driven by an H+ – H- interaction. In fact, if the first event were 

related to the decomposition of either LiOH or MgH2, the onset temperature of the thermal 

event would be higher (711 and 667 K for LiOH and MgH2 respectively). However, the 

reaction may lead to the formation of MgO and Li2O on the surface of MgH2 and LiOH 

respectively, preventing the interaction between the two starting materials as the reaction 

proceeds. The dehydrogenation process then proceeds with the decomposition of the 

remaining hydride to evolve hydrogen and give magnesium metal, with the last event being 

the dehydration of the remaining lithium hydroxide to release water, which will react with 

the Mg obtained from the hydride decomposition. These three reaction steps are assignable 

to three different mass losses for a total of 4.8 wt. %. This is followed by another 5.3 wt. % 

of mass loss during the holding time. Considering the data obtained from the analysis of 

LiOH by itself (Section 5.3.2.1), this is consistent with the decomposition of LiOH, and a 

mass change that occurs during the holding time. Ultimately, the higher mass loss may be 

imputed to the release of gaseous water from LiOH which has not reacted with MgH2 

during the thermal treatment. Although, this is in contrast with the collected MS data 

(Figure 5-19), where the only gaseous species detected during the analysis was hydrogen. 
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Sample 12 (milled) and Sample 17 (nano) present the same mass loss of 5.2 wt. % and a 

similar DTA profile. Further, no mass loss is recorded during the holding time of 1 h at 

873 K, suggesting that the reaction has gone to completion when reaching the final target 

temperature is reached. A similar reaction pathway can be therefore proposed for both 12 

and 17. The reaction is believed to start with the solid state reaction between MgH2 and 

LiOH to give Li2O and MgO and evolve hydrogen. The reaction should then proceed with 

the decomposition of the remaining hydride to evolve hydrogen and yield magnesium 

metal. The difference between bulk and milled/nanostructured materials resides in the fact 

that this reaction is believed to be simultaneous to the decomposition of both the remaining 

magnesium hydride and lithium hydroxide. The Mg metal obtained from the hydride 

decomposition will immediately react with the water released from the hydroxide 

decomposition resulting in the formation of MgO and evolution of hydrogen. 

MS data are presented in Figure 5-19. The only gaseous species detected for all samples 

was found to be hydrogen and evolution of water was not observed during any of the 

thermal treatments. However, this is not completely in agreement with the mass change 

observed for Sample 7 (bulk): this may be due to the fact that a very small amount of water 

is released from the dehydration of the remaining LiOH, still partly occurring when the 

measurement was stopped. This is consistent also with the MS profiles of LiOH starting 

material. Moreover, there are some subtle differences for the nanostructured system 

compared to the bulk with respect to the differential thermogravimetric analysis results. In 

particular, for Sample 7 (bulk) and Sample 12 (milled) the MS profile shows the presence 

of three distinct hydrogen releases. For the bulk materials most hydrogen appears to be 

evolved during the second and third event with only a small amount of H2 being released 

during the first event. For milled materials most H2 appears to be released during the first 

two events with a small amount of gas evolved during the last endothermic event. The 

mass spectrum for Sample 17 (nano) suggests hydrogen release takes place in a single 

event and it is not possible to discriminate amongst different H2 release peaks. A slightly 

higher onset T of H2 release and peak temperature throughout the whole dehydrogenation 

process suggests the hydrogen evolution from the nanostructured system to be subjected to 

slower kinetics with respect to the milled system. 

The Kissinger method was employed for calculating the activation energies relative to the 

two main thermal events.18,19 The first one a low temperature (LT), believed to relate to the 

solid state reaction between LiOH and MgH2 and the one at high temperature (HT), 

believed to correspond to the decomposition of the remaining MgH2 and simultaneous 
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dehydration of the remaining LiOH to yield MgO and Li 2O and evolve H2. Data for 

Kissinger analysis were collected for bulk, milled and nanostructured mixtures (Samples 

20, 21 and 22) prepared using the exact same procedure to 6, 11 and 16 and analysed as 

previously stated in Section 5.2.5. Kissinger plots for both thermal events are shown in 

Figure 5-20 (error bars omitted for clarity) and a summary of the activation energies is 

given in Table 5-16. Single Kissinger plots with relative error bars and DTA profiles can 

be found in Appendix C. It is important to note that at greater heating rates it was not 

possible to discriminate between the second two thermal events. Hence it was not possible 

to collect enough data points to construct a Kissinger plot for postulated MgH2 

decomposition and LiOH dehydration reactions. 

 

 

Figure  5-20: Kissinger plots for Samples 20 (bulk; red triangles), 21 (milled; green circles) and 22 

(nano; blue squares): (a) plots calculated for the LT thermal event; (b) plots calculated for the HT 

thermal event. 
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Table  5-16: Calculated activation energies for Samples 20, 21 and 22. Literature reported values for 

activation energy for LiOH and MgH2 are given at the bottom of the table. 

Sample Thermal Event Ea / kJ mol-1 

20 LT 166±6 

 
HT 442±9 

21 LT 137±9 

 
HT 232±8 

22 LT 118±9 

 
HT 181±8 

EaLiOH = 123±4 kJ mol-1; Ref. 28 

Ea bulk MgH2 = 156 kJ mol-1; Ref 29 

Ea milled MgH2 = 120 kJ mol-1; Ref 29 

 

The activation energy for the LT thermal event (proposed solid state reaction between 

LiOH and MgH2) was found to be 166±6, 137±9 and 118±9 kJ mol-1 for Sample 20, 21 

and 22 respectively. 

The activation energy values for the HT thermal event were found to be 442±9, 232±8 and 

181±8 kJ mol-1 for Sample 20, 21 and 22 respectively. It is possible to observe a trend in 

the activation energy values associated with the HT event: from bulk to milled materials 

the value of Ea is nearly halved, whereas between nanostructured and milled materials the 

values are found to be similar, although slightly decreased when working with 

nanomaterials. This could be explained by the fact that milled as well as nano systems 

present a smaller particle size with respect to the bulk system: in fact, reducing the particle 

size of the starting materials results in an increased surface area and reactivity of the 

materials resulting in better dehydrogenation kinetics and thus decreased values of 

activation energies. 
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5.3.2.3 LiOH·H 2O – MgH2 system 

Samples 24, 30 and 36 were analysed using TG-DTA-MS to determine the onset 

temperature as well as the peak temperature of hydrogen release and the weight loss for 

bulk, milled and nanostructured systems (Figures 5-21 and 5-22). The bulk, milled and 

nanostructured mixtures were heated to 873 K and that temperature was held for one hour. 

The results obtained are summarised in Table 5-17. 

 

Table  5-17: Onset temperature, peak temperatures, weight losses and identified released gaseous 

species for Samples 24, 30 and 36. If not otherwise specified, the thermal events are endothermic. 

Sample Onset T / K Peak T / K Weight Loss / % 
Evolved 

Gases 

24 331 383 33.6 H2; H2O 

b-LiOH·H 2O – b-MgH2 669 708 
 

 

  
732 

 
 

30 323 358 (exo) 25.2 H2; H2O 

m-LiOH·H 2O – m-MgH2 490 566 
 

 

  
615 

 
 

 
672 707 

 
 

36 313 358 (exo) 22.8 H2; H2O 

n-LiOH·H 2O – m-MgH2 473 573 
 

 

 
627 680 

 
 

  
713 

 
 

 

 

Figure  5-21: (a) TG and (b) DTA data comparison for Sample 24 (bulk; red), Sample 30 (milled; 

green) and Sample 36 (nano; blue). 
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Figure  5-22: MS profiles Vs time for Sample 24 (bulk), Sample 30 (milled) and Sample 36 (nano). 

Black line denotes hydrogen release. In the inserts, water release for bulk, milled and nanostructured 

materials is denoted by red, green and blue lines respectively. 

 

As can be observed from Figure 5-21, great differences can be appreciated amongst the 

three systems in terms of both mass change and DTA profiles. 

TGA profiles show that the weight losses are higher than the expected 7.4 wt. %: the 

observed mass changes were found to be 33.6, 25.2 and 22.8 wt. % for Sample 24 (bulk), 

30 (milled) and 36 (nano) respectively. Again, if the decomposition of the starting 

materials were due to distinct independent events such as the dehydration of LiOH·H2O 

and the decomposition of MgH2, the theoretical weight change of the system would be of 

38.5 wt. %: 34.6 wt. % H2O from LiOH·H2O (23.1 wt. % from the structural water and 

11.5 wt. % from LiOH dehydration) and 3.9 % wt. % H2 from magnesium hydride. The 

differences in terms of TG-DTA profiles could be explained by taking into account the MS 

spectra showing the gaseous species evolved during the thermal treatment of each sample 

(Figure 5-22). 
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The most interesting feature in terms of the differential thermal analysis is related to the 

thermodynamic nature of the first thermal events occurring and the release of the gaseous 

species associated with them. For Sample 24 (bulk) the first thermal event was found to be 

endothermic, starting at 331 K and with a peak temperature of 383 K, which is assignable 

to the loss of structural water from LiOH·H2O as H2O is the main species detected in the 

mass spectra, however a very small amount of hydrogen could be detected as well. This 

could explain the first weight loss of 29.5 %, which may be due both the loss of structural 

water from the hydroxide together with a slight release of H2 from the surface of the newly 

formed anhydrous LiOH. The dehydrogenation process is then believed to follow the same 

reaction pathway as Sample 7, the anhydrous lithium hydroxide – magnesium hydride 

already discussed in Section 3.3.2.2, with the only gaseous species detected being H2. The 

subsequent thermal event was found to have an onset temperature of 669 K and a peak 

temperature of 708 K and it is immediately followed by the last event with a peak 

temperature of 732 K. 

TG-DTA data suggest a different dehydrogenation reaction occurring when employing 

milled and nanostructured materials. Sample 30 (milled) and Sample 36 (nano) present 

similar weight change and similar differential thermogravimetric profiles and therefore it is 

hypothesised that they follow similar mechanistic steps in terms of hydrogen release. The 

major difference with respect to bulk materials is that for both milled and nanostructured 

materials the first event appears to be exothermic, suggesting the reaction to be a 

simultaneous loss of structural water from LiOH·H2O and MgH2 hydrolysis to yield 

magnesium hydroxide and evolve hydrogen rather than water, starting at temperatures as 

low as 323 and 313 K (with peak temperatures of 358 K for both systems) for Sample 30 

(milled) and 36 (nano) respectively. This event is related to mass changes of 12.5 wt. % 

and 11.3 wt. % for milled and nanostructured systems respectively. If only water was 

evolved that weight loss would be higher and the evidence suggests instead that water 

release is accompanied by hydrogen evolution. The collected MS data are in good 

agreement with the TG-DTA profiles, showing that mostly hydrogen is released during this 

event, together with the presence of a small amount of water vapour. Both Samples 30 

(milled) and 36 (nano) then appear to be subjected to three more reaction steps associated 

with hydrogen and water release throughout the whole thermal treatment. 

In particular, the next event for Sample 30 (milled) was found to start at 490 K with a peak 

temperature of 566 K and is immediately followed by the third thermal event, with a peak 

temperature of 615 K. The fourth and last event was found to have an onset temperature of 
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672 K and a peak temperature of 707 K. The mass loss associated with the 3 events was 

found to be 12.7 wt. %, suggesting once again that both H2 and H2O are evolved during the 

thermal treatment. A similar TG-DTA profile was observed for Sample 36 (nano), which 

present temperatures consistent with the milled materials. For nanostructured materials the 

second event was found to start at 473 K and to have a peak temperature of 573 K. For 

nanostructured materials, it was also possible to identify the onset temperature of the third 

event, which was found to be 627 K with a peak temperature of 680 K with the fourth and 

last event following immediately with a peak temperature of 713 K. These 3 events are 

associated with a weight change of 11.6 %, suggesting as for milled materials, that both 

hydrogen and gaseous water are being evolved. This is confirmed by the mass spectra. 

Based on the TG-DTA-MS data collected it is possible to hypothesise that milled and nano 

materials follow the same reaction pathway. The first step would correspond to the 

simultaneous loss of structural water from LiOH·H2O and hydrolysis of 1 mole of MgH2 to 

yield Mg(OH)2, LiOH and evolution of both H2 and H2O. Then the reaction is believed to 

proceed via the dehydration of Mg(OH)2 to evolve water, which hydrolyses another mole 

of the hydride and at the same time evolves more water and hydrogen. This is then 

followed by the decomposition of the remaining mole of magnesium hydride to give Mg, 

evolving H2. The last step of the reaction mechanism is believed to be the decomposition 

of the remaining lithium hydroxide to release water, which will partially react with the 

magnesium metal formed during the decomposition of the hydride to yield Mg(OH)2, 

which then almost instantly forms MgO and evolves H2. 

Similarly, the Kissinger method was used to obtain the activation energies for the different 

thermal events for the LiOH·H2O – MgH2 system.18,19 Data for obtaining Kissinger plots 

were collected for bulk, milled and nanostructured mixtures (Samples 40, 41 and 42) 

prepared using the same procedure to 23, 29 and 35 and analysed as previously stated in 

Section 5.2.5. Specifically, it was possible to calculate the activation energies for the 3 

events occurring during the thermal treatment of Sample 40 and for the 4 events occurring 

during thermal treatment of Sample 41 and Sample 42. Kissinger plots for all thermal 

events are shown in Figure 5-23 (error bars omitted for clarity) and a summary of the 

activation energies given in Table 5-18. Single Kissinger plots with relative error bars and 

DTA profiles are presented in Appendix C. 
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Figure  5-23: Kissinger plots for Samples 40 (bulk; red triangles), 41 (milled; green dots) and 42 (nano; 

blue squares): (a) plots calculated for thermal event 1; (b) plots calculated for thermal event 2; (c) plots 

calculated for thermal event 3; (d) plots calculated for thermal event 4. 
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Table  5-18: Calculated activation energies for Samples 40, 41 and 42. Literature reported values for 

activation energy for LiOH·H2O, Mg(OH)2, LiOH and MgH 2 are given at the bottom of the table. 

Sample Thermal Event Ea / kJ mol-1 

40 1 56±2 

 
2 212±7 

 
3 363±9 

41 1 100±8 

 
2 120±4 

 
3 176±9 

 
4 290±8 

42 1 102±7 

 
2 142±4 

 
3 152±9 

 
4 228±9 

EaLiOH·H2O = 52 kJ mol-1; Ref. 30 

EaLiOH = 123±4 kJ mol-1; Ref. 28 

EaMg(OH)2 = 123±5 kJ mol-1; Ref 31 

Ea bulk MgH2 = 156 kJ mol-1; Ref 29 

Ea milled MgH2 = 120 kJ mol-1; Ref 29 

 

The activation energy values for the thermal event 1 were found to be 56±2, 100±8 and 

102±7 kJ mol-1 for Sample 40 (bulk), 41 (milled) and 42 (nano) respectively. This event is 

believed to be related to the loss of structural water from the hydroxide (and partial 

hydrolysis of MgH2 for milled and nano materials). In fact, the Ea value found for bulk 

materials is in good agreement with the literature for the first dehydration step of 

LiOH·H2O (Ea = 52 kJ mol-1)30. The values are higher in case of milled and nano systems. 

This is likely to be due to the fact that a simultaneous dehydration – hydrolysis process is 

believed to be taking place, resulting in an overall increased activation energy. 

The second event for milled and nanostructured materials presents an activation energy of 

120±4 and 142±4 kJ mol-1 for Sample 41 (milled) and 42 (nano) respectively: this is 

believed to be related to the dehydration of magnesium hydroxide formed during the first 
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step of the dehydrogenation process: the calculated values were found to be in good 

agreement with the one reported by Leardini et al (Ea value of Mg(OH)2 dehydration 

123±5 kJ mol-1).31 

The second event for Sample 40 (bulk) relates to the third event for Samples 41 (milled) 

and 42 (nano) yielding activation energies of 212±6, 176±9 and 152±9 kJ mol-1 

respectively. A trend can be seen, with the values of Ea decreasing from bulk to 

nanomaterials. This event is believed to relate to the decomposition of MgH2. Although the 

calculated value for Sample 40 (bulk) is high when compared to the activation energy 

values reported in the literature. The calculated Ea for both Sample 41 (milled) and 42 

(nano) materials are in good agreement with the values reported for the decomposition of 

both bulk and milled magnesium hydride (Ea bulk MgH2 = 156 kJ mol-1; Ea milled MgH2 = 120 kJ 

mol-1).29 The higher value for bulk materials can be explained if the event in considered as 

a combination of the solid state reaction between LiOH and MgH2 with the decomposition 

of the remaining hydride. 

The activation energies for the thermal event taking place at the highest temperature, 

believed to correspond to the dehydration of the remaining LiOH, were found to be 363±9, 

290±8 and 228±8 kJ mol-1 for Sample 40, 41 and 42 respectively. For all samples, the 

calculated Ea appears to be higher than the equivalent values given in the literature (EaLiOH 

= 123±4 kJ mol-1).28 This may be due to the fact that in the system described in he present 

work, the reaction of Mg yielded from MgH2 decomposition is simultaneously reacting 

with the water released from lithium hydroxide, which thus represents a different, more 

complex process. 

 

5.3.3 Ex-situ PXD and Proposed Mechanisms 

Ex-situ PXD studies were performed for each studied system in order to propose a 

mechanism of hydrogen release as well as identify any differences in terms of the 

mechanistic steps of dehydrogenation when using different starting materials. Based on the 

STA results discussed in the previous Section, bulk, milled and nanostructured system 

were fully studied individually for both the LiOH – MgH2 and LiOH·H2O – MgH2 

systems. In order to try and isolate the intermediate species, TG-DTA-MS analyses were 

performed and intermediate temperature points in the profile were selected. The post STA 

products were collected and ex-situ PXD analysis carried out for each temperature point. 
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5.3.3.1 LiOH – MgH 2 system 

 

5.3.3.1.1 Bulk system 

Figure 3-17 illustrates the DT-TGA profile for Sample 7 and the intermediate temperature 

points selected. Samples from five different temperatures points were studied (see Table 5-

2): 298, 673, 758, 773 and 873 K. The collected X-ray diffraction patterns are presented in 

Figure 5-25. TG-DTA plots for the intermediate points of reaction are presented in 

Appendix C. 

 

 

Figure  5-24: TG (green line) and DTA (blue line) data obtained for Sample 7. 
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Figure  5-25: Ex-situ PXD patterns for Samples 6, 7, 8, 9 and 10 collected at 298, 873, 673, 758 and 773 

K respectively. Squares denote LiOH, circles MgH2, stars Mg, triangles Li2O and crosses MgO 

respectively. 

 

During manual mixing, no reaction occurs between hydroxide and hydride prior to thermal 

treatment and MgH2 and LiOH were found to be the only phases observed in the 

diffraction pattern together with Mg impurity from the MgH2 starting material. At 873 K 

the reaction has gone to completion as the only phases present are Li2O and MgO. The 

PXD pattern collected at 673 K reveals the presence of LiOH, MgH2 and Mg together with 

low intensity reflections assignable to Li2O and MgO. The 758 K point sees the absence of 

reflections attributable to magnesium hydride and magnesium metal. The relative 

intensities of reflections from MgO and Li2O increase, while the LiOH peaks are found to 

decrease in intensity. At 773 K the main phases present are still magnesium oxide and 

lithium oxide with weak intensity peaks attributable to LiOH. A summary of the phases 

present at each temperature point is given in Table 5-19. 
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Table  5-19: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 6, 7, 8, 9 and 10. 

Sample Temperature / K Present Phases 

6 298 LiOH, MgH2, Mg 

8 623 LiOH, MgH2, Mg, Li2O, MgO 

9 648 Li2O, LiOH, MgO 

10 773 Li2O, LiOH, MgO 

7 873 MgO, Li2O 

 

Based on the results shown in Sections 5.3.2.2 and 5.3.3.1.1, the following mechanisms of 

hydrogen release can be proposed (Equation 5-9): 

2222

2222

H4MgO2OLi2H3OLiMgO2LiOH2

H2MgOOLiMgHLiOH2MgH2LiOH4

++→+++→
→++++→+

 (5-9) 

In the proposed mechanism, the first thermal event is the reaction between LiOH and 

MgH2 leading to the formation of magnesium oxide and lithium oxide accompanied by the 

evolution of hydrogen. This is followed by the decomposition of the remaining magnesium 

hydride (∆H = 76.2 KJ mol-1 H2) to yield magnesium metal and the evolution of H2. This 

step would also involve immediate reaction of Mg with H2O to give MgO. The last step of 

the reaction is believed to be the decomposition of the remaining LiOH to yield Li2O (∆H 

= 97.4 KJ mol-1H2O). 

 

5.3.3.1.2 Milled system 

Based on the results reported for Sample 12, samples from five temperature points were 

studied: 298, 623, 648, 773, and 873 K (Table 5-3). Figure 5-26 shows the TG-DTA 

profile for Sample 12 as well as the intermediate temperature points. TG-DTA plots for the 

intermediates studied can be found in Appendix C. The collected ex-situ PXD patterns are 

presented in Figure 5-20. 
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Figure  5-26: TG (green line) and DTA (blue line) data obtained for Sample 12. 

 

 

Figure  5-27: Ex-situ PXD patterns for Samples 11, 12, 13, 14 and 15 collected at 298, 873, 623, 648 and 

773 K respectively. Squares denote LiOH, circles MgH2, stars Mg, triangles Li2O and crosses MgO 

respectively. 
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The PXD pattern collected at 298 K, after hand mixing and prior to thermal treatment, 

shows that no reaction occurs between hydroxide and hydride as the only reflections 

present are assignable to LiOH and MgH2 (with Mg metal being the impurity from the 

commercial magnesium hydride). Similarly to bulk materials, the reaction has gone to 

completion at 873 K with the phases present being MgO and Li2O. X-ray diffraction 

patterns collected at 623 and 648 K show the presence of the same species: LiOH and 

MgH2 starting materials are present, together with Mg metal, MgO and Li2O. As the 

reaction proceeds, the intensity of LiOH and MgH2 reflections decreases, whereas the 

intensity of the reflections attributable to Mg, MgO and Li2O increases. Reaching the 773 

K temperature point results in the absence of any peak assignable to the starting materials, 

with the only phases present being MgO and Li2O, suggesting that the reaction has gone to 

completion by that temperature. A summary of the phases identified at each temperature 

point is given in Table 5-20. 

Table  5-20: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 11, 12, 13, 14 and 15. 

Sample Temperature / K Present Phases 

11 298 LiOH, MgH2, Mg 

13 623 LiOH, MgH2, Mg, Li2O, MgO 

14 648 LiOH, MgH2, Mg, Li2O, MgO 

15 773 Li2O, MgO 

12 873 Li2O, MgO 

 

For milled materials, the hypothesised mechanism of hydrogen release is presented in 

Equation 5-10: 

2222

2222

H6MgO3OLi3H5MgO3OLi2LiOH2

H3MgOOLiMgMgHLiOH4MgH3LiOH6

++→+++→
→+++++→+

 (5-10) 

The reaction appears to start with the interaction between lithium hydroxide and most 

magnesium hydride, yielding magnesium oxide and lithium oxide accompanied by the 

evolution of hydrogen. This is followed by the decomposition of the remaining magnesium 

hydride (∆H = 76.2 KJ mol-1H2) to yield magnesium and the evolution of H2, which is 

believed to take place simultaneously to the decomposition of the remaining LiOH 

associated with H2O evolution (∆H = 97.4 KJ mol-1H2O). The water is believed to react 

with Mg to give MgO. The reaction appears to be completed at 773 K. 
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5.3.3.1.3 Nanostructured system 

TG-DTA-MS analyses were performed and intermediate temperature points collected as 

reported in Table 5-4. Samples for four temperatures points were studied: 298, 648, 773 

and 873 K. Ex-situ PXD patterns were collected at each temperature point and the phases 

present identified (Figure 5-29). The DT-TGA profile for Sample 17 is shown in Figure 5-

28, whereas TG-DTA plots for the intermediate temperature points are reported in 

Appendix C. 

 

 

Figure  5-28: TG (green line) and DTA (blue line) data obtained for Sample 17. 
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Figure  5-29: Ex-situ PXD patterns for Samples 16, 17, 18 and 19 collected at 298, 873, 648 and 773 K 

respectively. Squares denote LiOH, circles MgH2, stars Mg, triangles Li2O and crosses MgO 

respectively. 

 

Similarly to the bulk and milled systems, no reaction occurs during the manual mixing and 

the PXD pattern collected at 298 K prior to thermal treatment confirms that the only phases 

present in the mixture are LiOH and MgH2 together with Mg present as impurity from the 

as-received hydride. Again, the pattern collected after heating to 873 K shows that the only 

phases present are magnesium oxide and lithium oxide, confirming that the reaction has 

gone to completion. At 648 K it is possible to observe the presence of new reflections 

assignable to MgO and Li2O, together with the presence of peaks attributable to LiOH, 

MgH2 and Mg metal. It is interesting to note that the intensity of the peaks assignable to 

magnesium metal has considerably increased in intensity with respect to the other phases 

present, suggesting that it is possible that the hydride has almost completely decomposed 

by that temperature. At 773 K the reflections relative to any of the starting materials are 

completely absent, while MgO and Li2O reflections are present, suggesting as for the 

milled materials that the reaction is completed at 773 K. A summary of the phases present 

at each intermediate temperature point is presented in Table 5-21. 
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Table  5-21: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 16, 17, 18 and 19. 

Sample Temperature / K Present Phases 

16 298 LiOH, MgH2, Mg 

18 648 LiOH, MgH2, Mg, Li2O, MgO 

19 773 Li2O, MgO 

17 873 Li2O, MgO 

 

Nanostructured materials are believed to follow an almost identical pathway to the milled 

materials (Equation 5-10), with the first dehydrogenation step being the solid state reaction 

between LiOH and MgH2 to yield MgO, Li2O and H2. This is once again believed to be 

followed by the decomposition of the remaining hydride (∆H = 76.2 KJ mol-1 H2) to 

evolve hydrogen and form Mg, being simultaneous to the dehydration of the remaining 

hydroxide (∆H = 97.4 KJ mol-1 H2O). The water evolved from LiOH will immediately 

react with Mg, ultimately leading to the formation of Li2O and MgO final products. 

Similarly to milled materials, the reaction is completed at 773 K. 

2222

2222

H6MgO3OLi3H5MgO3OLi2LiOH2

H3MgOOLiMgMgHLiOH4MgH3LiOH6

++→+++→
→+++++→+

 (5-10) 

SEM images were collected after thermal treatment in order to ascertain whether the sheet-

like morphology of LiOH was retained. As can be seen in Figure 5-30, the sample is 

composed of particles with a typical size distribution of 100-300 nm and it is not possible 

to still identify any specific morphology. This may be due to the fact that the temperature 

employed during the thermal treatment is above the melting point of LiOH, resulting in a 

post STA product composed of agglomerated clusters of MgO mixed with melted Li2O 

particles. 
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Figure  5-30: Collected SEM images for Sample 17: a) 2 µm scale b) 200 nm scale. 

 

5.3.3.2 LiOH·H 2O – MgH2 system 

 

5.3.3.2.1 Bulk system 

Based on the results reported for Sample 24, sample for six temperatures points were 

studied: 298, 408, 673, 758, 773, and 873 K (Table 5-6). Figure 5-31 illustrates the TG-

DTA profile for Sample 24 and the collected intermediate temperature points. TG-DTA 

plots for the intermediate temperature points are presented in Appendix C. The collected 

ex-situ PXD patterns are presented in Figure 5-32. 

 

 

Figure  5-31: TG (green line) and DTA (blue line) data obtained for Sample 24. 
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Figure  5-32: Ex-situ PXD patterns for Samples 23, 24, 25, 26, 27 and 28 collected at 298, 873, 408, 673, 

758 and 773 K respectively. Asterisks denote LiOH·H2O, squares LiOH, circles MgH2, stars Mg, 

triangles Li2O and crosses MgO respectively. 

 

During manual mixing, no major reaction occurs between hydroxide and hydride prior to 

thermal treatment and MgH2 and LiOH·H2O were found to be the main phases present in 

the PXD pattern. Nonetheless, it is possible to identify peaks assignable to LiOH, although 

their intensity is very weak. At 873 K the reaction has gone to completion as the only 

phases present were found to be magnesium oxide and lithium oxide. The 408 K point sees 

the presence of only LiOH and MgH2 together with Mg metal as impurity from the as-

received hydride. At 673 K the presence of new reflections assignable to MgO and Li2O 

can be observed, together with LiOH, MgH2 and Mg metal. The 758 K point sees the 

absence of peaks assignable to lithium hydroxide and magnesium hydride and the only 

phases present were found to be lithium oxide, magnesium oxide and magnesium metal. 

These phases remain at 773 K. 

A summary of the phases present at each temperature point is given in Table 5-22. 
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Table  5-22: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 23, 24, 25, 26, 27 and 28. 

Sample Temperature / K Present Phases 

23 298 LiOH·H2O, LiOH, MgH2, Mg 

25 408 LiOH, MgH2, Mg 

26 673 LiOH, MgH2, Mg, Li2O, MgO 

27 758 Li2O, Mg, MgO 

28 773 Li2O, Mg, MgO 

24 873 MgO, Li2O 

 

Based on the results shown in Sections 5.3.2.3 and 5.3.3.2.1, the following mechanisms of 

hydrogen release can be proposed (Equation 5-11): 

2222

222

2222

H12MgO6OLi2H11OLiMgO5MgLiOH2

H10MgO5OLiMgHLiOH2

MgH6OH4LiOH4MgH6OHLiOH4

++→++++→
→++++→

→++→+⋅
 (5-11) 

In the proposed mechanism, the first thermal event is the loss of structural water leading to 

LiOH and MgH2 with release of water (∆H = 53.1 KJ mol-1H2O). The system then 

undergoes the same dehydrogenation process as the bulk anhydrous lithium hydroxide – 

magnesium hydride system. The first step is followed by the solid state reaction between 

LiOH and MgH2 leading to the formation of MgO and Li2O and release H2. This is 

followed by the decomposition of the remaining magnesium hydride (∆H = 76.2 KJ mol-

1H2) to yield magnesium and the evolution of H2, with the last step of the reaction being 

the decomposition of the remaining LiOH to give Li2O and water (∆H = 97.4 KJ mol-

1H2O). The H2O released from the last step of the reaction reacts with the Mg present, 

leading to the formation of MgO and evolution of the last mole of H2. 

 

5.3.3.2.2 Milled system 

Simultaneous thermogravimetric analyses were performed and samples at intermediate 

temperature points collected as reported in Table 5-7. The TG-DTA profile for Sample 30 

is shown in Figure 5-28, whilst TG-DTA plots for the intermediates are reported in 

Appendix C. Six temperatures points were studied: 298, 408, 573, 673, 773 and 873 K. Ex-
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situ PXD patterns were collected at each temperature point in order to identify all the 

phases present (Figure 5-29).  

 

Figure  5-33: TG (green line) and DTA (blue line) data obtained for Sample 30. 

 

 

Figure  5-34: Ex-situ PXD patterns for Samples 29, 30, 31, 32, 33 and 34 collected at 298, 873, 408, 573, 

673 and 773 K respectively. Asterisks denote LiOH·H2O, squares LiOH, circles MgH2, rhombuses 

Mg(OH) 2, triangles Li2O and crosses MgO respectively. 
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The PXD pattern collected at 298 K, after mixing and prior to thermal treatment, shows 

that no major reaction occurs between hydroxide and hydride as only reflections present 

are assignable to LiOH·H2O and MgH2, however very weak peaks assignable to LiOH can 

be identified. At 873 K the reaction has gone to completion as the only phases present were 

found to be magnesium oxide and lithium oxide. At the 408 K point, the phases present 

were found to be LiOH, MgH2 and Mg(OH)2. At 573 K new reflections assignable to MgO 

and Li2O are observed, together with LiOH and MgH2. Moreover, at this temperature it is 

not possible to observe reflections assignable to magnesium hydroxide. The 673 K point 

sees the absence of peaks assignable to magnesium hydride with the only phases present 

being lithium hydroxide, lithium oxide and magnesium oxide. The same composition can 

be observed at 773 K, where Li2O and MgO are present together with LiOH as minor 

phase. 

The phases present at each temperature point are summarised in Table 5-23. 

 

Table  5-23: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 29, 30, 31, 32, 33 and 34. 

Sample Temperature / K Present Phases 

29 298 LiOH·H2O, LiOH, MgH2 

31 408 LiOH, MgH2, Mg(OH)2 

32 573 LiOH, MgH2, Li2O, MgO 

33 673 LiOH, Li2O, MgO 

34 773 Li2O, MgO, LiOH 

30 873 Li2O, MgO 

 

Milled materials seem to be subjected to a different dehydrogenation process with respect 

to the bulk materials. The hypothesised mechanism of hydrogen release is presented in 

Equation 5-12: 

22

2222

22222

H12MgO6OLi2

H11MgO6OLiLiOH2H8MgO4MgH2LiOH4

H4MgH4)OH(Mg2LiOH4MgH6OHLiOH4

++→
→+++→+++→

→+++→+⋅
 (5-12) 
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The reaction appears to start with the simultaneous loss of structural water from 

LiOH·H2O (∆H = 53.1 KJ mol-1H2O) and MgH2 hydrolysis (∆H = -138.5 KJ mol-1H2O) to 

yield Mg(OH)2, LiOH and evolve H2. This is then followed by the dehydration of the 

newly formed magnesium hydroxide (∆H = 84.2 KJ mol-1H2O), whose released water is 

believed to hydrolyse another mole of MgH2. The next step is believed to be the 

decomposition of the remaining magnesium hydride (∆H = 76.2 KJ mol-1H2) to yield Mg 

and H2. This is immediately followed by the dehydration of the remaining LiOH associated 

with evolution of H2O (∆H = 97.4 KJ mol-1H2O), which is believed to react with Mg to 

give MgO and H2. 

 

5.3.3.2.3 Nanostructured system 

Figure 5-35 illustrates the DT-TGA profile for Sample 36 and the intermediate temperature 

points collected. Samples from five different temperatures points were studied (Table 5-8): 

298, 408, 623, 773 and 873 K. The collected PXD patterns are presented in Figure 5-25. 

TG-DTA plots of the intermediate temperature point are presented in Appendix C. 

 

 

Figure  5-35: TG (green line) and DTA (blue line) data obtained for Sample 36. 
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Figure  5-36: Ex-situ PXD patterns for Samples 35, 36, 37, 38 and 39 collected at 298, 873, 408, 623 and 

773 K respectively. Asterisks denote LiOH·H2O, squares LiOH, circles MgH2, rhombuses Mg(OH)2, 

triangles Li2O and crosses MgO respectively. 

 

As previously observed for bulk and milled systems, no major reaction occurs between the 

starting material during the mixing and before the thermal treatment: the main phases were 

still found to be LiOH·H2O and MgH2, although once again weak reflections attributable to 

LiOH can be identified. At 873 K the only phases present were found to be lithium oxide 

and magnesium oxide, indicating that the reaction has gone to completion. Similarly to the 

milled systems at 408 K the phases present were found to be LiOH, MgH2 and Mg(OH)2. 

At 623 K it is possible to observe reflections attributable to MgO and Li2O, together with 

LiOH and MgH2. Mg(OH)2 reflections are completely absent at this temperature. At 773 K 

it is possible to observe the presence of reflections relative to LiOH, Li2O and MgO and 

the absence of MgH2 peaks. 
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Table  5-24: Summary of the temperature points and respective phases present for ex-situ PXD analysis 

for Samples 35, 36, 37, 38 and 39. 

Sample Temperature / K Present Phases 

35 298 LiOH·H2O, LiOH, MgH2 

37 408 LiOH, MgH2, Mg(OH)2 

38 623 LiOH, MgH2, Li2O, MgO 

39 773 LiOH, Li2O, MgO 

36 873 Li2O, MgO 

 

Nanostructured materials are believed to follow an almost identical reaction pathway as 

milled materials (Equation 5-12). Initially simultaneous loss of structural water from 

LiOH·H2O (∆H = 53.1 KJ mol-1H2O) and hydrolysis of 1 mole of MgH2 (∆H = -138.5 KJ 

mol-1H2O) occurs to yield Mg(OH)2, LiOH and evolve H2. The next mechanistic step is 

once again believed to be the decomposition of Mg(OH)2 (∆H = 76.2 KJ mol-1H2), with the 

water evolved from this step believed to hydrolyse a second mole of MgH2 resulting in the 

formation of MgO and H2. This is then followed by the decomposition of the last mole of 

magnesium hydride (∆H = 76.2 KJ mol-1H2) and dehydration of LiOH (∆H = 97.4 KJ mol-

1H2O), which ultimately leads to the formation of the final products Li2O and MgO 

together with H2 evolution (Equation 5-12). 

22

2222

22222

H12MgO6OLi2

H11MgO6OLiLiOH2H8MgO4MgH2LiOH4

H4MgH4)OH(Mg2LiOH4MgH6OHLiOH4

++→
→+++→+++→

→+++→+⋅
 (5-12) 

Again for Sample 36, SEM images have been collected after TG-DTA-MS analysis to 

determine if the morphology of LiOH·H2O was retained. Figure 5-30 illustrates that it is 

not possible to identify any specific morphology. Further, it is possible to observe particles 

with a typical size distribution of 100-500 nm in diameter. Similar to the LiOH – MgH2 

nanostructured system, this is believed to be a result of the high temperature employed 

during the thermal treatment of the system. The melting point of lithium hydroxide is 

exceeded which is believed to result in a partial melting of the post-STA product. This is 

thus proposed to be composed of agglomerated clusters of MgO particles and partially 

melted Li2O particles. 
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Figure  5-37: Collected SEM images for Sample 36: a) 1 µm scale b) 200 nm scale. 

 

5.4 Conclusions and Future Work 

A selective synthesis for yielding nanostructured anhydrous and monohydrate LiOH was 

successfully identified. Pure LiOH(·H2O) was synthesised and fully characterised. Rietveld 

refinements were performed on the synthesised hydroxides and lattice parameters were 

calculated. These were found to be in good agreement with the literature values for both 

LiOH and LiOH·H2O respectively.24,25,26 Collected SEM images show that the 

nanostructuring process results in a dramatic decrease of the particle size with respect to 

the commercial hydroxides. In particular, the synthesis of LiOH results in the production 

of hydroxide with a non-uniform morphology and size distribution with the particle size 

varying in the 40-80 µm range. Further, SEM images collected at higher magnification 

show a sheet-like morphology present at the surface of the synthesised particles, with a 

typical sheet thickness varying in the 30-50 nm range. The synthesis of LiOH·H2O results 

in particles with a diameter varying in the 20-100 µm range, again with a non-uniform size 

distribution. Images were collected at higher magnification in order to determine the 

presence of any sheet-like morphology. Smaller particles in the 1-6 µm range can be 

identified, however it was not possible to observe the presence of sheets. Nonetheless the 

surface of the particles appeared textured and porous. 

Physical reduction of the particle size of as-received anhydrous and hydrated lithium 

hydroxides and magnesium hydride has been successfully achieved by mechanically 

milling the commercial reactants. For both anhydrous and hydrated LiOH, the typical size 

distribution of particles was found to be a range between 2-8 µm in diameter. The milling 

process for MgH2 resulted in a decreased particle size distribution with respect to the bulk 

material, with a typical particle size in the 70-200 nm range. 
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The LiOH(·H2O) – MgH2 systems were studied in detail comparing bulk, milled and 

nanostructured materials. All samples were prepared by manually mixing stoichiometric 

amounts of the starting material for 5 minutes inside a recirculating Ar- or N2-filled glove 

box under an inert atmosphere. 

Results obtained for the LiOH – MgH2 system, show a dramatic decrease in the onset 

temperature of H2 release of nearly 100 K when working with milled and nanostructured 

materials with respect to bulk reagents (an onset T of 509 K and 512 K for milled and nano 

systems respectively, whereas it was found to be 598 K for bulk materials). TG-DTA 

profiles of all samples show the presence of 2 main endothermic events occurring 

immediately one after the other, although a closer look at the data suggests the second 

event to be a combination of two processes occurring close in temperature. It is believed 

that the first event is a solid state reaction between LiOH and MgH2, followed by the 

decomposition of the remaining hydride, with the last mechanistic step being the 

dehydration of the remaining LiOH. The LiOH – MgH2 system can theoretically release up 

to 5.9 wt. % H2. However, after thermal treatment to 873 K the weight losses were found 

to be 10.1 % for bulk materials and 5.2 wt. % for both milled and nano systems. The higher 

mass loss observed for bulk materials may be due to the release of gaseous water from 

LiOH, which has not reacted with MgH2 during the thermal treatment. For milled and nano 

systems no mass loss is recorded during the holding time of 1 h at the 873 K temperature 

point during TG-DTA-MS analyses, suggesting that the reaction has gone to completion 

when reaching the final target temperature. The last step of the reaction is believed to the 

simultaneous final LiOH dehydration and reaction of the Mg metal formed from the 

decomposition of MgH2. Activation energies were calculated for the two main thermal 

events for each system: these were found to be 166±6, 137±9 and 118±9 kJ mol-1 for the 

low temperature event for bulk, milled and nano system respectively. The activation 

energies for the second HT event were found to be 442±9, 232±8 and 181±8 kJ mol-1 for 

bulk, milled and nano materials respectively. 

Ex-situ PXD analyses were performed to elucidate the mechanism of hydrogen release for 

each system. It was possible to propose two different dehydrogenation pathways: one for 

the bulk materials and one for both the milled and nanostructured systems. The two 

reaction mechanisms are presented in Equation 5-9 and 5-10 respectively. 
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 (5-9) 
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2222

2222

H6MgO3OLi3H5MgO3OLi2LiOH2

H3MgOOLiMgMgHLiOH4MgH3LiOH6

++→+++→
→+++++→+

 (5-10) 

Results obtained for the LiOH·H2O – MgH2 system show important differences in the TG-

DTA profiles and mass spectra when reducing the particle size from the bulk to the 

nanometric scale. In particular, when working with bulk materials only endothermic peaks 

can be observed and the system releases both water and hydrogen. The first event was 

found to relate to the loss of structural water from LiOH·H2O, after which the system was 

found to behave as the bulk LiOH – MgH2 system. Using milled or nanostructured 

materials results in an initial exothermic process followed by three endothermic events. 

Data suggest the first event to be the simultaneous dehydration of LiOH·H2O to yield 

LiOH and hydrolysis of MgH2 to give Mg(OH)2. This is associated with hydrogen release 

and evolution of a small amount of water. The onset temperature of H2 is drastically 

lowered to 323 and 313 K for milled and nano systems respectively, whereas the first 

major H2 release for bulk system was found to start at 669 K. Further, the weight changes 

for all systems were found to be higher than the theoretical 7.4 wt. % H2 figure: in 

particular the bulk, milled and nano systems were found to lose 33.6, 25.2 and 22.8 wt. % 

with most of the weight being lost during the first dehydration step of LiOH·H2O, 

suggesting that both H2O and H2 are evolved from all systems. Although the onset 

temperature of hydrogen release is dramatically lowered to nearly ambient temperature 

when working with milled and nanosized reactants, the thermal treatment of such materials 

always results in the evolution of H2O together with H2. This could make the employment 

of lithium hydroxide monohydrate – magnesium hydride system difficult to in operational 

fuel cells. Activation energies were calculated for all the thermal events for each system. 

For bulk materials these were found to be 56±2, 212±7 and 363±9 kJ mol-1. Milled and 

nano systems present four thermal events each. The values of Ea were calculated to be 

100±8, 120±4, 176±9 and 290±8 kJ mol-1 for the milled system and 102±7, 142±4, 152±9 

and 228±9 kJ mol-1 for the nano system. 

It was possible to propose two different dehydrogenation reaction pathways; one for the 

bulk materials and one for the milled and nanostructured systems. The mechanisms are 

reported in Equations 5-11 and 5-12 for bulk and milled/nanostructured materials 

respectively. 
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 (5-12) 

Overall, the most promising systems have been identified in the LiOH – MgH2 system 

employing nanosized materials. Hence, efforts should be focused on further enhancing the 

performances of such systems. First, elucidating the exact reaction mechanism of hydrogen 

release is pivotal in order to understand and improve the system. In this sense, In-situ PXD 

and PND experiments should also be performed in order to confirm the proposed 

mechanism of hydrogen release for both bulk and milled materials. The use of catalysts 

and additives should be fully investigated. Finding a suitable candidate for favouring the 

solid-state reaction between LiOH and MgH2 could result in a single event of hydrogen 

release at temperature suitable for fuel cells operating at low or intermediate temperatures. 

Moreover, completing the reaction in a single step would result in the release of hydrogen 

as the only gaseous species evolved, suppressing the release of water as by-product of the 

LiOH dehydration reaction. A wide range of additives and catalysts have been tested in 

order to enhance the dehydrogenation properties of magnesium hydride by itself, although 

no-one of them has been tested in the presence of both MgH2 and LiOH. These include 

calcium, lithium and sodium hydrides to yield ternary hydrides and composites29,32, 

graphite and/or silicon carbide17 as well as transition metals and multi-valence vanadium- 

and titanium-based materials.33,34,35,36 They all could be seen as suitable candidates to be 

tested on the LiOH – MgH2 system. 

Studies for the further development of the system are needed. 
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6 Conclusions and Future Work 
 

6.1 Conclusions 

This thesis describes the preparation and characterisation of potential ‘modular’ solid state 

hydrogen storage solutions for on-board applications. The systems investigated throughout 

this work are based on reactions between light weight hydroxides and hydrides. In 

particular, three main systems were fully investigated: 

• Mg(OH)2 – MgH2 system 

• Mg(OH)2 – LiH system 

• LiOH(·H2O) – MgH2 system (both anhydrous and monohydrate LiOH were used) 

Mixtures of hydroxides and hydrides were prepared by manually grinding stoichiometric 

amounts of the starting materials under inert atmosphere. Further, nanostructuring the 

reactants was investigated as a means to improve the dehydrogenation process. All systems 

were characterised by Powder X-ray diffraction (PXD) and simultaneous 

thermogravimetric analysis (TG-DTA) mass spectroscopy (MS) and scanning electron 

microscopy (SEM). Each system was then studied in detail comparing bulk and nanosized 

materials. The most promising systems were identified. 

Chemically nanostructured Mg(OH)2 and LiOH(·H2O) were successfully obtained using 

both new and conventional synthetic routes. Specifically, using a new synthetic procedure 

that combines microwave irradiation and hydrothermal treatment, Mg(OH)2 hexagonal 

nanoplates were successfully obtained. Further, a selective synthesis for yielding 

nanostructured anhydrous LiOH and its monohydrate was successfully identified. Physical 

reduction of the particle size of magnesium hydroxide, lithium hydroxides, lithium hydride 

and magnesium hydride was successfully achieved by mechanically milling the 

commercial reactants. 

Mg(OH)2 – MgH2 system 

Amongst the Mg-O-H systems, the most promising was found to be the nanostructured 

Mg(OH)2 – MgH2 system. Although the onset temperature is not dramatically lowered 

when working with nanostructured materials (530 K) when compared to bulk reactants 

(567 K), it is interesting to note that, with respect to the results published by Leardini et al., 

the onset T of H2 release is lowered of nearly 100 K (first main hydrogen release event was 
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reported to occur at 623 K).1 Further, important differences were observed when 

employing nanomaterials instead of bulk reagents. In particular, using nanostructured 

materials resulted in an initial exothermic event, attributed to a simultaneous 

decomposition of both Mg(OH)2 and MgH2, followed by the dehydrogenation of the 

remaining hydride. The major drawback is that both water and hydrogen were evolved 

from the nano systems, resulting in a dilution of the FC hydrogen fuel, which can result in 

a decreased efficiency of the fuel cell apparatus. However, the water signal was found to 

be very weak. This is in agreement with the weight losses observed for the system; after 

thermal treatment to 873 K the mass change was found to be 7.9 wt. % for nano materials, 

which is higher than the theoretical 4.7 wt. % H2. Based on the obtained STA results, ex-

situ PXD experiments were performed in order to propose a mechanism of 

dehydrogenation (Equation 6-1). 

222

22222

H4MgO4H3MgOHMgO3

MgHH2OHMgO3MgH2)OH(Mg2

+→+++→
→+++→+

 (6-1) 

Mg(OH)2 – LiH system 

Nanomaterials have lead to better performance for the system and were further studied. 

The use of nanostructured materials resulted in a reduced onset temperature of hydrogen 

release (lowered from 478 K to 453 K) and faster kinetics, although the mass loss was 

found to be 4.7 wt. %, lower than to the theoretical 5.4 wt. % H2. Based on ex-situ PXD 

experiments performed, two mechanisms of hydrogen release were proposed: the first 

involved the release of gaseous water from the dehydration of Mg(OH)2 as an initial step, 

whilst the second proposed mechanism involved the reaction in the solid state between 

magnesium hydroxide and lithium hydride to form their respective oxides and LiOH. In-

situ PND data combined with the data already obtained were found to be essential for 

elucidating the mechanistic steps of hydrogen release. In-situ PND experiments were 

carried out over the complete temperature range, with short data collections over the 

crucial dehydrogenation temperatures to follow the reaction steps individually. Rietveld 

refinements against the collected PND ToF data were performed. Data analysis confirms 

that the system follows the mechanism presented in Equation 6-2. 

22222 H4OLi2MgO2H3OLiLiHLiOHMgO2LiH4)OH(Mg2 ++→++++→+  (6-2) 
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LiOH(·H2O) – MgH2 system 

The most promising system was identified as the nanostructured LiOH – MgH2: it shows a 

dramatic decrease of the onset temperature of H2 release of nearly 100 K with respect to 

bulk materials (from 598 K to 512 K) and the weight loss was found to be 5.2 wt. % (88% 

of the theoretical 5.9 wt. % H2). The dehydrogenation pathway is believed to start with the 

solid state reaction between LiOH and MgH2 to yield the respective oxides and evolve H2. 

This results in the formation of MgO and Li2O at the surface MgH2 and LiOH respectively, 

preventing a further interaction between the two starting materials. The next step is 

believed to be the decomposition of the remaining hydride, followed by the dehydration of 

the remaining LiOH (Equation 6-3). 

2222

2222

H6MgO3OLi3H5MgO3OLi2LiOH2

H3MgOOLiMgMgHLiOH4MgH3LiOH6

++→+++→
→+++++→+

 (6-3) 

Results obtained for the LiOH·H2O – MgH2 system show important differences when 

reducing the particle size to the nanometric scale. Bulk materials appear to first release the 

structural water from LiOH·H2O, after which the system was found to behave as the bulk 

LiOH – MgH2 composite. The use of milled or nanostructured materials results in a first 

exothermic event which is believed to relate to a simultaneous loss of structural water from 

lithium hydroxide and partial hydrolysis of MgH2, associated with water and hydrogen 

release. The onset temperature of H2 release for nanosized material is drastically lowered 

to 323 and 313 K for milled and nano systems respectively, whereas the first major H2 

release for bulk system was found to start at nearly 670 K. Further, the weight changes for 

all systems were found to be higher than the theoretical 7.4 wt. % H2 (33.6, 25.2 and 22.8 

wt. % for bulk, milled and nano materials respectively), confirming that both hydrogen and 

water are evolved from all systems. The evolution of H2O together with H2 renders the 

employment of lithium hydroxide monohydrate difficult in operative low temperature fuel 

cells, as it dilutes the cell fuel reducing the efficiency of the PEMFC. 

Comparison of Li-Mg-O-H systems  

It is possible to compare the dehydrogenation performances of the nanostructured MgH2 – 

LiOH and the LiH – Mg(OH)2 systems. They present similar theoretical gravimetric 

capacity (5.9 wt. % H2 for the MgH2-based and 5.4 wt. % H2 for the LiH-based). Although 

the onset temperature of hydrogen release for the MgH2 – LiOH system is higher with 

respect to the LiH – Mg(OH)2 system (512 K Vs 453 K), the weight change associated 

with hydrogen release was higher: it was possible to evolve 5.2 wt. % H2 when working 
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with MgH2 – LiOH composite, whereas only 4.7 wt. % H2 was released when working 

with the LiH – Mg(OH)2 system. The higher onset temperature of hydrogen release is 

believed to be related to the ionic nature of the hydride: being LiH more ionic than MgH2, 

it is more effectively destabilised by the interaction with the hydroxide, resulting in a 

decreased onset T. The two systems were also found to follow different reaction pathways. 

In the MgH2 – LiOH the reaction starts with a solid state reaction between the two reagents 

driven by a H+ – H- interaction, whereas in the LiH – Mg(OH)2 system the reactions begins 

with the independent decomposition of the two starting materials (Mg(OH)2 dehydration 

and LiH hydrolysis). The major drawback for both systems is that the hydrogen evolution 

is a multi-step reaction and efforts should be focused on having a single H2 release event. 

Overall, the magnesium hydride – anhydrous lithium hydroxide system appears to be the 

most promising one and should be further investigated. 

Moreover, it is possible to draw a comparison between the systems studied during this 

work and the systems already reported in the literature. 

When magnesium hydroxide is used as component for ‘modular’ hydrogen release 

systems, it is interesting to note that the results obtained when employing LiH are similar 

to the one obtained when using LiBH4. In fact, in the present work the onset temperature of 

hydrogen release for the nanostructured LiH – Mg(OH)2 system was found to be 478 K 

with a mass loss of 4.7 wt. % H2. For the LiBH4 – Mg(OH)2 system, the onset T reported 

by Varin et al. was found to be 473 K and the hydrogen release was associated with a mass 

change of 4.5%.2 In 2014 however, Pan et al. reported a mass loss of 9.6 wt. % with an 

onset temperature of H2 release lowered to 373 K when working with a non stoichiometric 

ratio of 1 LiBH4 to 0.35 Mg(OH)2.
3 In the light of these results, LiH – Mg(OH)2 non-

stiochiometric mixtures should be investigated as well. 

Further, as previously discussed in Section 5.1, LiOH has increasingly gained attention as a 

component of solid state hydrogen storage solutions and its use has been proposed in 

several systems. Its dehydrogenation properties have been tested in the presence of several 

light metal hydrides such as lithium hydride and lithium borohydride. With respect to both 

onset temperature of hydrogen release and weight change, data obtained in this work are 

consistent with the results already reported in the literature. When working with the LiOH 

– LiH composite, Vajo et al. and Lu et al. reported a mass loss of 5.5 and 6.6 wt. % H2 

with onset temperatures of hydrogen release of respectively 523 and 473 K.4,5 

Interestingly, the same onset T of 523 K was observed by Vajo et al. when employing 

LiOH together with LiBH4, although the observed weight change in this case was 6.6 wt. 
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% H2.
4 Zhu et al. further investigated the LiBH4 – LiOH system using different 

stoichiometric ratios: when working with a 1:4 ratio, the system was found to release 6.5 

wt. % H2 with an onset T of H2 release as high as the one reported by Vajo et al. in 2004 

(523 K).6 These temperatures are similar to the onset temperature of hydrogen release 

observed for the LiOH – MgH2 system studied during this project (512 K), which is 

however characterised by a lower mass change of 5.2 wt. % of hydrogen. When working 

with lithium hydroxide monohydrate, the onset temperatures of hydrogen release were 

found to be consistent with the ones obtained for other systems: both Vajo et al. and Lu et 

al. reported an onset temperature of hydrogen release of 313 K when employing 

LiOH·H2O with LiBH4 and LiH respectively.4,5 A difference can be observed in the mass 

changes of such systems: for the LiOH·H2O – MgH2 system a weight chance of 22.8 wt. % 

due to the release of both H2 and H2O was observed, while the mass loss was found to be 

10 and 8.8 wt. % for the LiOH·H2O – LiBH4 and LiOH·H2O – LiH systems respectively 

and they were related to the release of only hydrogen. 

 

6.2 Future Work 

From the experimental evidence, it is clear that the most promising systems in terms of 

hydrogen release properties are the nanostructured Mg(OH)2 – MgH2, the Mg(OH)2 – LiH 

and the LiOH – MgH2 systems. Future work should focus on further improving their 

performance. Attention should be also focused on developing the system in order to have 

one single hydrogen release event and at the same time avoiding the release of water. A 

viable approach could be seen in the use of additives or catalysts, which could lead to 

improved performances of hydrogen release. In this sense, magnesium hydride has been 

extensively studied and a wide range of catalysts and additives have been investigated in 

order to improve its dehydrogenation performances. However, none of them has been 

tested in the presence of both lithium hydroxide and magnesium hydride. On the contrary, 

lithium hydride has been studied mostly as a component of solid state hydrogen release 

systems (i.e. Li-N-H systems) because of its very high decomposition temperature. 

Nonetheless suitable catalysts and additives for promoting the interaction between hydride 

and hydroxide could be seen in calcium, lithium and sodium hydride to yield ternary 

hydrides and composites7,8 as well as transition metals including multi-valence vanadium- 

and titanium-based materials.9,10,11,12,13 Two different strategies could be followed: 

composites could be prepared by adding the appropriate wt. % of catalyst/additives (5 to 

20 wt. %) to the as-received hydrides before the milling procedure is carried out. The 



240 
 

milled hydride is then mixed with the hydroxide and the resulting system characterised by 

thermogravimetric analysis, PXD and SEM. The other approach could consist in adding 

the catalyst/additives to the system prior manual mixing and after the milling of the starting 

materials: mixtures could be prepared by adding appropriate wt. % of additive/catalyst to 

the stoichiometric amounts of nanostructured hydride and hydroxide. The three 

components will then be manually ground together under inert atmosphere and the 

resulting composite characterised by TG-DTA-MS, PXD and SEM. However, destabilising 

the hydride could also lead in a prevented interaction between hydride and hydroxide. 

Moreover, catalysts or additives to be employed must be carefully chosen: they must not 

interact with the hydroxide and they must not react or be deactivated by the presence of the 

smallest amount of water that could be released during the dehydrogenation process. 

Additional studies in order to understand which additives and catalysts could be the most 

efficient are required. 

Moreover, future studies should focus on the recyclability of each system. In particular, for 

the Mg(OH)2 – MgH2 system, the main phase present after the dehydrogenation process 

was found to be MgO with magnesium metal as impurity. Thus, MgO should be fully 

investigated as potentially recyclable starting material for the synthesis of new 

nanostructured Mg(OH)2 to be employed in a new dehydrogenation cycle. Further, the 

morphology of the synthesised nano Mg(OH)2 is not dependant on the morphology of the 

starting material employed. For Mg-Li-O-H systems the study of the recyclability is 

intrinsically more complicated as the final dehydrogenation product is a mixture of 

magnesium oxide and lithium oxide for both Mg(OH)2 – LiH and LiOH – MgH2 systems. 

Different recycling strategies should be investigated: MgO and Li2O could be separated 

with a thermal treatment basing on their melting point (3125 and 1711 K for MgO and 

Li 2O respectively)14. Solubility tests could be performed to identify one or more solvents in 

which either MgO or Li2O is soluble and therefore selectively precipitate MgO or Li2O. 

MgO could then be used to regenerate nanostructured Mg(OH)2, whilst lithium oxide could 

be employed for the regeneration of LiOH starting material via reaction with water. 

Further, working with the LiOH – MgH2 system could prove problematic because the 

dehydrogenation product consist in clusters of MgO particles mixed partially melted Li2O: 

studies are required in order to understand whether it is possible to retain the morphology 

and the particle size after the recycling process. Additional studies are required to identify 

a viable approach for the separation of magnesium oxide and lithium oxide and subsequent 

regeneration to starting materials that would result in an overall energy- and cost-efficient 

cycle. 
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Further, elucidating the exact reaction pathway is indeed pivotal to achieve a better insight 

in order to improve dehydrogenation properties of each system. In this respect, similar to 

the Mg(OH)2 – LiH system, in-situ PXD and PND experiments should be performed on 

Mg(OH)2 – MgH2 and LiOH – MgH2 systems to confirm the proposed mechanism of 

hydrogen release. 
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7 Appendices 
 

7.1 Appendix A: Tables and Figures for Chapter 3 

 

Figure  7-1: PXD pattern for commercial β-MgH 2. Circles indicate Mg metal. 

 

 

Figure  7-2: Observed, calculated and difference (OCD) plot from the PXD Rietveld refinement for 

commercial β-MgH 2. The black and red tick marks indicate reflections from MgH 2 and Mg 

respectively. 
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Table  7-1: Selected data from the PXD Rietveld refinement for commercial β-MgH 2. 

Empirical Formula MgH 2 Mg 

Crystal System Tetragonal Hexagonal 

Space Group P4/mnm P63/mmc 

Lattice Parameters 

a / Å 

c / Å 

 

4.51639(5) 

3.02074(3) 

 

3.2101(2) 

5.2117(4) 

V / Å3 61.616(2) 46.510(6) 

Z 2 2 

Unit Cell Formula 

Weight / Mw 
52.642 48.610 

Density / g cm-3 1.419 1.735 

Wt. % 96(1) 4(1) 

No. of Variables 30 

No. of Observations 4423 

Rwp % 7.29 

Rp % 5.54 

χ
2 1.74 

 

Figure  7-3: DTA profiles used to obtain Kissinger plots for Sample 18 (bulk). Dashed and full lines 

indicate temperature and DTA profiles respectively. 
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Figure  7-4: Kissinger plot for the LT thermal event for Sample 18 (bulk). 

 

 

Figure  7-5: Kissinger plot for the HT thermal event for Sample 18 (bulk). 
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Figure  7-6: DTA profiles used to obtain Kissinger plots for Sample 19 (milled). Dashed and full lines 

indicate temperature and DTA profiles respectively. 

 

 

Figure  7-7: Kissinger plot for the LT thermal event for Sample 19 (milled). 
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Figure  7-8: Kissinger plot for the HT thermal event for Sample 19 (milled). 

 

 

Figure  7-9: DTA profiles used to obtain Kissinger plots for Sample 20 (nano). Dashed and full lines 

indicate temperature and DTA profiles respectively. 
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Figure  7-10: Kissinger plot for the LT thermal event for Sample 20 (nano). 

 

 

Figure  7-11: Kissinger plot for the HT thermal event for Sample 20 (nano). 
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Figure  7-12: TG (dashed line) and DTA (full line) data obtained for Sample 6. 

 

 

Figure  7-13: TG (dashed line) and DTA (full line) data obtained for Sample 7. 
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Figure  7-14: TG (dashed line) and DTA (full line) data obtained for Sample 8. 

 

 

Figure  7-15: TG (dashed line) and DTA (full line) data obtained for Sample 9. 
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Figure  7-16: TG (dashed line) and DTA (full line) data obtained for Sample 12. 

 

 

Figure  7-17: TG (dashed line) and DTA (full line) obtained for Sample 13. 
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Figure  7-18: TG (dashed line) and DTA (full line) data obtained for Sample 16. 

 

 

Figure  7-19: TG (dashed line) and DTA (full line) data obtained for Sample 17. 

  



253 
 

7.2 Appendix B: Tables and Figures for Chapter 4 

 

 

Figure  7-20: DTA profiles used to obtain Kissinger plots for Sample 6 (nano). Dashed and full lines 

indicate temperature and DTA profiles respectively. 
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Table  7-2: Selected data from the PND Rietveld refinement for Sample 13 (458 K). 

Empirical Formula Mg(OD) 2 LiD MgO Li 2O 

Crystal System Trigonal Cubic Cubic Cubic 

Space Group P-3m1 Fm-3m Fm-3m Fm-3m 

Lattice Parameters 

a / Å 

c / Å 

 

3.1462(1) 

4.7888(2) 

4.0941(1) 4.236(2) 4.6305(6) 

V / Å3 41.054(3) 68.629(5) 76.04(8) 99.29(4) 

Z 1 4 4 4 

Unit Cell Formula 

Weight / Mw 
60.331 35.820 161.216 119.524 

Density / g cm-3 2.440 0.867 3.521 1.999 

Wt. % 59.3(5) 19.9(4) 15.7(4) 5.1(4) 

Temperature / K 458 

No. of Variables 77 

No. of Observations 5965 

Rwp % 2.89 

Rp % 5.56 

χ
2 1.38 

 

 

Figure  7-21: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 13 (458 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The green, blue, red and black tick 

marks indicate reflections from Li2O, MgO, LiD and LiOD respectively. 
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Table  7-3: Selected data from the PND Rietveld refinement for Sample 14 (468 K). 

Empirical Formula Mg(OD) 2 LiD MgO Li 2O LiOD 

Crystal System Trigonal Cubic Cubic Cubic Tetragonal 

Space Group P-3m1 Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

 

3.1463(1) 

4.7914(2) 

4.0965(1) 4.2359(7) 4.6295(3) 

 

3.5599(7) 

4.374(4) 

V / Å3 41.076(3) 68.743(5) 76.01(4) 99.22(2) 55.42(5) 

Z 1 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
60.331 35.820 161.216 119.524 49.908 

Density / g cm-3 2.439 0.865 3.522 2.000 1.495 

Wt. % 46.8(7) 16.5(4) 25.8(6) 8.8(4) 2.1(2) 

Temperature / K 468 

No. of Variables 87 

No. of Observations 5799 

Rwp % 2.61 

Rp % 4.71 

χ
2 1.12 

 

 

Figure  7-22: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 14 (468 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The purple, green, blue, red and 

black tick marks indicate reflections from Mg(OD)2, LiOD, LiD, Li 2O and MgO respectively. 
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Table  7-4: Selected data from the PND Rietveld refinement for Sample 15 (478 K). 

Empirical Formula Mg(OD) 2 LiD MgO Li 2O LiOD 

Crystal System Trigonal Cubic Cubic Cubic Tetragonal 

Space Group P-3m1 Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

 

3.1461(1) 

4.7945(3) 

4.0984(1) 4.2366(5) 4.6301(3) 

 

3.5606(3) 

4.361(2) 

V / Å3 41.097(4) 68.842(5) 76.04(3) 99.26(2) 55.30(2) 

Z 1 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
60.331 35.820 161.216 119.524 49.908 

Density / g cm-3 2.438 0.864 3.521 2.000 1.499 

Wt. % 35.6(8) 15.1(4) 34.2(8) 10.4(4) 4.8(3) 

Temperature / K 478 

No. of Variables 86 

No. of Observations 5813 

Rwp % 2.56 

Rp % 4.68 

χ
2 1.02 

 

 

Figure  7-23: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 15 (478 K), Bank 3 (low angle, 2θ˚ 40-67). The purple, green, blue, red and black tick marks 

indicate reflections from Mg(OD)2, LiOD, LiD, Li 2O and MgO respectively. 
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Table  7-5: Selected data from the PND Rietveld refinement for Sample 16 (488 K). 

Empirical Formula Mg(OD) 2 LiD MgO Li 2O LiOD 

Crystal System Trigonal Cubic Cubic Cubic Tetragonal 

Space Group P-3m1 Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

 

3.1458(1) 

4.7973(5) 

4.1007(1) 4.2352(4) 4.6311(2) 

 

3.5614(2) 

4.361(1) 

V / Å3 41.113(6) 68.955(6) 75.97(1) 99.32(1) 55.32(1) 

Z 1 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
60.331 35.820 161.216 119.524 49.908 

Density / g cm-3 2.437 0.863 3.524 1.998 1.498 

Wt. % 21.4(5) 13.5(4) 44.1(6) 12.3(5) 8.7(4) 

Temperature / K 488 

No. of Variables 86 

No. of Observations 5882 

Rwp % 2.57 

Rp % 5.46 

χ
2 0.99 

 

 

Figure  7-24: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 16 (488 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The purple, green, blue, red and 

black tick marks indicate reflections from Mg(OD)2, LiOD, LiD, Li 2O and MgO respectively. 
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Table  7-6: Selected data from the PND Rietveld refinement for Sample 17 (498 K). 

Empirical Formula Mg(OD) 2 LiD MgO Li 2O LiOD 

Crystal System Trigonal Cubic Cubic Cubic Tetragonal 

Space Group P-3m1 Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

 

3.1445(3) 

4.794(1) 

4.1025(1) 4.2349(3) 4.6314(2) 

 

3.5618(2) 

4.3617(9) 

V / Å3 41.05(1) 69.045(7) 75.95(2) 99.35(2) 55.33(1) 

Z 1 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
60.331 35.820 161.216 119.524 49.908 

Density / g cm-3 2.441 0.861 3.525 1.998 1.498 

Wt. % 9.8(4) 12.6(4) 52.7(8) 13.4(5) 11.5(5) 

Temperature / K 498 

No. of Variables 74 

No. of Observations 5980 

Rwp % 2.70 

Rp % 6.46 

χ
2 1.04 

 

 

Figure  7-25: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 17 (498 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The purple, green, blue, red and 

black tick marks indicate reflections from Mg(OD)2, LiOD, LiD, Li 2O and MgO respectively. 
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Table  7-7: Selected data from the PND Rietveld refinement for Sample 18 (508 K). 

Empirical Formula LiD MgO Li 2O LiOD 

Crystal System Cubic Cubic Cubic Tetragonal 

Space Group Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

4.1050(2) 4.2346(3) 4.6328(2) 

 

3.5635(2) 

4.3649(8) 

V / Å3 69.174(8) 75.94(2) 99.43(1) 55.43(1) 

Z 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 49.908 

Density / g cm-3 0.860 3.525 1.996 1.495 

Wt. % 11.8(4) 59.9(9) 15.9(7) 12.4(6) 

Temperature / K 508 

No. of Variables 79 

No. of Observations 5883 

Rwp % 2.66 

Rp % 5.08 

χ
2 1.08 

 

 

Figure  7-26: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 18 (508 K) from PND data, Bank 4 (90 degrees, 2θ˚ 75-113). The green, blue, red and black tick 

marks indicate reflections from LiOD, LiD, Li 2O and MgO respectively. The black circle indicates the 

presence of Mg(OD)2. 
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Table  7-8: Selected data from the PND Rietveld refinement for Sample 19 (518 K). 

Empirical Formula LiD MgO Li 2O LiOD 

Crystal System Cubic Cubic Cubic Tetragonal 

Space Group Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

4.1073(2) 4.2344(3) 4.6338(2) 

 

3.5649(2) 

4.3652(8) 

V / Å3 69.29(1) 75.92(2) 99.50(1) 55.47(1) 

Z 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 49.908 

Density / g cm-3 0.858 3.526 1.995 1.494 

Wt. % 9.8(2) 58.8(4) 18.2(3) 13.2(3) 

Temperature / K 518 

No. of Variables 74 

No. of Observations 5934 

Rwp % 2.64 

Rp % 5.37 

χ
2 1.02 

 

 

Figure  7-27: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 19 (518 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The green, blue, red and black tick 

marks indicate reflections from LiOD, LiD, Li 2O and MgO respectively. 



261 
 

Table  7-9: Selected data from the PND Rietveld refinement for Sample 21 (528 K). 

Empirical Formula LiD MgO Li 2O LiOD 

Crystal System Cubic Cubic Cubic Tetragonal 

Space Group Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

4.1092(2) 4.2329(3) 4.6346(2) 

 

3.5656(2) 

4.3674(8) 

V / Å3 69.39(1) 75.84(1) 99.55(1) 55.52(1) 

Z 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 49.908 

Density / g cm-3 0.857 3.530 1.994 1.493 

Wt. % 8.9(3) 59.8(6) 20.9(6) 10.4(4) 

Temperature / K 528 

No. of Variables 62 

No. of Observations 5696 

Rwp % 2.70 

Rp % 4.47 

χ
2 1.07 

 

 

Figure  7-28: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 21 (528 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The green, blue, red and black tick 

marks indicate reflections from LiOD, LiD, Li 2O and MgO respectively. 
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Table  7-10: Selected data from the PND Rietveld refinement for Sample 22 (538 K). 

Empirical Formula LiD MgO Li 2O LiOD 

Crystal System Cubic Cubic Cubic Tetragonal 

Space Group Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

4.1116(2) 4.2328(3) 4.6360(2) 

 

3.5670(3) 

4.369(1) 

V / Å3 69.51(1) 75.84(1) 99.64(1) 55.59(1) 

Z 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 49.908 

Density / g cm-3 0.856 3.530 1.992 1.491 

Wt. % 8.2(3) 60.6(7) 22.3(7) 8.9(4) 

Temperature / K 538 

No. of Variables 65 

No. of Observations 5815 

Rwp % 2.67 

Rp % 4.83 

χ
2 1.06 

 

 

Figure  7-29: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 22 (538 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The green, blue, red and black tick 

marks indicate reflections from LiOD, LiD, Li 2O and MgO respectively. 
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Table  7-11: Selected data from the PND Rietveld refinement for Sample 23 (548 K). 

Empirical Formula LiD MgO Li 2O LiOD 

Crystal System Cubic Cubic Cubic Tetragonal 

Space Group Fm-3m Fm-3m Fm-3m P4/nmm 

Lattice Parameters 

a / Å 

c / Å 

4.1134(2) 4.2321(3) 4.6366(2) 

 

3.5676(3) 

4.369(1) 

V / Å3 69.87(1) 76.14(1) 100.03(1) 55.60(2) 

Z 4 4 4 2 

Unit Cell Formula 

Weight / Mw 
35.820 161.216 119.524 49.908 

Density / g cm-3 0.855 3.532 1.991 1.490 

Wt. % 6.6(4) 60.3(6) 26.1(5) 7.0(3) 

Temperature / K 548 

No. of Variables 63 

No. of Observations 5728 

Rwp % 2.70 

Rp % 4.68 

χ
2 1.01 

 

 

Figure  7-30: Observed, calculated and difference (OCD) plot from the PND Rietveld refinement for 

Sample 23 (548 K) from PND data, Bank 3 (low angle, 2θ˚ 40-67). The green, blue, red and black tick 

marks indicate reflections from LiD, Li2O, MgO and LiOD respectively.  
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7.3 Appendix C: Figures for Chapter 5 

 

Figure  7-31: DTA profiles used to obtain Kissinger plots for Sample 20 (bulk LiOH – MgH2 system). 

Dashed and full lines indicate temperature and DTA profiles respectively. 

 

 

Figure  7-32: Kissinger plot for the LT thermal event for Sample 20 (bulk LiOH – MgH2 system). 
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Figure  7-33: Kissinger plot for the HT thermal event for Sample 20 (bulk LiOH – MgH2 system). 

 

 

Figure  7-34: DTA profiles used to obtain Kissinger plots for Sample 21 (milled LiOH – MgH2 system). 

Dashed and full lines indicate temperature and DTA profiles respectively. 
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Figure  7-35: Kissinger plot for the LT thermal event for Sample 21 (milled LiOH – MgH2 system). 

 

 

Figure  7-36: Kissinger plot for the HT thermal event for Sample 21 (milled LiOH – MgH2 system). 
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Figure  7-37: DTA profiles used to obtain Kissinger plots for Sample 22 (nano LiOH – MgH2 system). 

Dashed and full lines indicate temperature and DTA profiles respectively. 

 

 

Figure  7-38: Kissinger plot for the LT thermal event for Sample 22 (nano LiOH – MgH2 system). 
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Figure  7-39: Kissinger plot for the HT thermal event for Sample 22 (nano LiOH – MgH2 system). 

 

 

Figure  7-40: DTA profiles used to obtain Kissinger plots for Sample 40 (bulk LiOH·H2O – MgH2 

system). Dashed and full lines indicate temperature and DTA profiles respectively. 
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Figure  7-41: Kissinger plot for the thermal event 1 for Sample 40 (bulk LiOH·H2O – MgH2 system). 

 

 

Figure  7-42: Kissinger plot for the thermal event 2 for Sample 40 (bulk LiOH·H2O – MgH2 system). 
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Figure  7-43: Kissinger plot for the thermal event 3 for Sample 40 (bulk LiOH·H2O – MgH2 system). 

 

 

Figure  7-44: DTA profiles used to obtain Kissinger plots for Sample 41 (milled LiOH·H2O – MgH2 

system). Dashed and full lines indicate temperature and DTA profiles respectively. 
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Figure  7-45: Kissinger plot for the thermal event 1 for Sample 41 (milled LiOH·H2O – MgH2 system). 

 

 

Figure  7-46: Kissinger plot for the thermal event 2 for Sample 41 (milled LiOH·H2O – MgH2 system). 
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Figure  7-47: Kissinger plot for the thermal event 3 for Sample 41 (milled LiOH·H2O – MgH2 system). 

 

 

Figure  7-48: Kissinger plot for the thermal event 4 for Sample 41 (milled LiOH·H2O – MgH2 system). 
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Figure  7-49: DTA profiles used to obtain Kissinger plots for Sample 42 (nano LiOH·H2O – MgH2 

system). Dashed and full lines indicate temperature and DTA profiles respectively. 

 

 

Figure  7-50: Kissinger plot for the thermal event 1 for Sample 42 (nano LiOH·H2O – MgH2 system). 
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Figure  7-51: Kissinger plot for the thermal event 2 for Sample 42 (nano LiOH·H2O – MgH2 system). 

 

 

Figure  7-52: Kissinger plot for the thermal event 3 for Sample 42 (nano LiOH·H2O – MgH2 system). 
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Figure  7-53: Kissinger plot for the thermal event 4 for Sample 42 (nano LiOH·H2O – MgH2 system). 

 

 

Figure  7-54: TG (dashed line) and DTA (full line) data obtained for Sample 8. 
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Figure  7-55: TG (dashed line) and DTA (full line) data obtained for Sample 9. 

 

 

Figure  7-56: TG (dashed line) and DTA (full line) data obtained for Sample 10. 
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Figure  7-57: TG (dashed line) and DTA (full line) data obtained for Sample 13. 

 

 

Figure  7-58: TG (dashed line) and DTA (full line) data obtained for Sample 14. 
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Figure  7-59: TG (dashed line) and DTA (full line) data obtained for Sample 15. 

 

 

Figure  7-60: TG (dashed line) and DTA (full line) data obtained for Sample 18. 
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Figure  7-61: TG (dashed line) and DTA (full line) data obtained for Sample 19. 

 

 

Figure  7-62: TG (dashed line) and DTA (full line) data obtained for Sample 25. 
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Figure  7-63: TG (dashed line) and DTA (full line) data obtained for Sample 26. 

 

 

Figure  7-64: TG (dashed line) and DTA (full line) data obtained for Sample 27. 

 



281 
 

 

Figure  7-65: TG (dashed line) and DTA (full line) data obtained for Sample 28. 

 

 

Figure  7-66: TG (dashed line) and DTA (full line) data obtained for Sample 31. 
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Figure  7-67: TG (dashed line) and DTA (full line) data obtained for Sample 32. 

 

 

Figure  7-68: TG (dashed line) and DTA (full line) data obtained for Sample 33. 
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Figure  7-69: TG (dashed line) and DTA (full line) data obtained for Sample 34. 

 

 

Figure  7-70: TG (dashed line) and DTA (full line) data obtained for Sample 37. 
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Figure  7-71: TG (dashed line) and DTA (full line) data obtained for Sample 38. 

 

 

Figure  7-72: TG (dashed line) and DTA (full line) data obtained for Sample 39. 

 


