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Abstract 

Rheumatoid arthritis (RA) is a chronic disease characterised by inflammatory 

infiltration of the synovial membrane, with concomitant destruction of adjacent 

cartilage and bone. Elucidation of immunoregulatory networks within the synovium 

offers the potential for therapeutic intervention. Two such pathways were investigated 

in the present study. 

Interleukin-15 (IL-15) is a novel pleiotropic cytokine produced by macrophages and 

fibroblasts, which induces T cell migration and activation and B cell maturation and 

immunoglobulin production. IL-15 was identified in RA synovial fluids and synovial 

membrane cultures and, using immunohistochemistry, its expression was localised in 

the RA synovial membrane to the lining layer and T lymphocyte aggregates. 

Enhanced proliferation and cytokine production to IL-15 was observed in RA synovial 

fluid (SF) T cells in comparison to matched peripheral blood (PB) T lymphocytes, 

which in turn, were more sensitive to IL-15 induced proliferation than PBT cells from 

normal controls. Following IL-15 mediated activation, PBT cells were capable of 

inducing TNFa. production from a macrophage cell line, from syngeneic PB 

monocytes, and from synovial macrophage I synoviocyte co-cultures, through a cell

contact dependent mechanism, which required no T cell cytokine synthesis. RA SFT 

cells exhibited similar properties, which were IL-15 dependent in vitro. IL-15 up

regulated CD69 expression on CD45RO+ T cells and neutralisation studies determined 

that such CD69 expression, in combination with LFA-l and ICAM-l, was partly 

responsible for cell-contact mediated macrophage activation by T cells. Finally, in a 

murine model, IL-15 injection induced significant local tissue T cell invasion, 

confirming previous in vitro observations of its chemotactic properties. IL-15 

expression in RA synovial membrane therefore provides a mechanism whereby 

polyc1onal T cell recruitment and activation can lead to macrophage activation and 

TNFa production, without T cell cytokine synthesis. 
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Nitric oxide (NO) is a critical immunomodulatory and microbicidal mediator in several 

animal models of inflammation. Production of NO in RA synovial membrane has 

previously not been characterised. Inducible NO synthase (iNOS) expression was 

localised in RA and OA synovial membrane and NO production was detected in 

synovial membrane cultures from both RA and OA patients, which could be up

regulated in vitro using bacterial superantigen. NO-donors induced TNFa production 

from macrophage cell lines and from synovial macrophage I synoviocyte co-cultures, 

indicating that NO might modify pro-inflammatory cytokine production in RA. These 

data provided direct evidence for NO synthesis in human synovium. However, NO 

mediates diverse effects in vitro on chondrocyte metabolism and leukocyte activation, 

raising doubts as to its net contribution in RA. The effect of iNOS activity were 

therefore investigated in vivo in iNOS-I- mice, using a model of staphylococcal 

infection, which mediates pathology primarily through superantigen-driven T cell 

activation. The incidence and severity of arthritis and septicaemia was increased in 

iNOS-I- mice compared with iNOS+I- controls. Ex vivo culture established the 

presence of an exaggerated Thl cytokine response in iNOS-I- mice. Moreover, 

superantigen-induced proliferation and Tb 1 cytokine production was enhanced a priori 

in iNOS-I- animals, indicating that NO can regulate T cell cytokine production, with 

protective consequences in vivo in an arthritis model. 

Neutralisation of TNFa production in RA affords significant clinical benefit. 

However, the mechanisms whereby TNFa production is enhanced in RA are unclear. 

The present study provides two novel immunoregulatory pathways which can increase 

TNFa production in human RA synovial membrane. However, the diverse functions 

of NO in host defence and immunoregulation, and consequent doubts as to its net 

effect in articular inflammation, may preclude therapeutic usefulness in human 

arthritis. In contrast, neutralisation of IL-15 offers exciting clinical potential, through 

inhibition of T cell activation and interruption of crucial pro-inflammatory T cell I 

macrophage communication within the RA synovial membrane. 
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Chapter 1 

General Introduction 
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1.1 Rheumatoid Arthritis 

1.1.1 History 

The antiquity of rheumatoid arthritis (RA) is disputed in the absence of convincing 

records documenting its existence in ancient or mediaeval literature. Anecdotal case 

descriptions exist in ancient Hindu and Greek medical writings and in ancient 

remains in North American Indians (reviewed by Sturrock, et al, 1977; Rothschild & 

Woods, 1990), but frequently chronic rheumatic disease is referred to as 'gout' in 

mediaeval manuscripts and in references up to the 19th century. Evidence from 

paleopathology suggests that osteoarthritis was common in ancient and mediaeval 

times (Thould & Thould, 1983), but the small bones of the hands and feet are 

invariably missing from skeletal remains confounding a search for characteristic 

bony erosions of RA. The earliest clear description of RA is found in 1800 in the 

French literature by Landr~-Beauvais who described 'goutte asthenique primitif' 

(reviewed by Snorrason, 1952). Subsequent reports followed before the term 

'rheumatoid arthritis' was used by Garrod in 1859. 

1.1.2 Epidemiology and aetiology 

RA has world-wide distribution. It lacks precise clinical definition and several sets 

of criteria have been developed to facilitate diagnosis. Most epidemiological studies 

have employed the criteria defined by Ropes et al in 1958 or the most recent 

revision of these proposed by the American Rheumatism Association (Amett, et aI, 

1988). The overall prevalence rate for RA in western Europe is about 1 % with a 

female to male ratio of around 3: 1 and peak age of onset in the fifth and sixth 

decades of life. Annual incidence rates vary from 30 to 300 new cases per 100,000 

(Hazes & Silman, 1990; Symmons, et aI, 1994). There are variations in prevalence 
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between ethnic groups, with low rates observed in rural African and Chinese 

populations. 

The precise aetiology of RA remains unclear, but has been variously attributed to 

primary autoimmunity or environmental infectious agents, under the influence of 

several genetic components. 

Genetic contribution RA is a polygenic disease, with overall twin concordance for 

community based RA of -15% (Silman, et al, 1993). The predominant genetic 

influence is at the HLA-DR locus (Stastny, 1978). Around 80% of RA patients 

express DR4 and DR1, which share an epitope mapping to amino acids 70-74 

(QKRAA) of the DR~ chain (Gregerson, et al 1987). Mutation analysis indicates 

that amino acid 71 confers particular susceptibility (Hammer, et al, 1995). The 

mechanism whereby this association influences RA severity is unclear. The 

QKRAA sequence at the HVR may (i) confer high affinity for an arthritogenic 

peptide, (ii) modify thymic education thereby prejudicing the T cell receptor 

repertoire, or (iii) facilitate molecular mimicry (e.g. gpllO of EBV, dnaJ or HSP73 • 

see below). 

Microsatellite polymorphisms at cytokine loci, including TNFa, IL-l~ and IL-l 

receptor antagonist, are being sought in RA patients, based on observations made in 

other human autoimmune diseases, such as insulin dependent diabetes mellitus 

(IDDM; Pociot, et aI, 1993). TNFa polymorph isms so far associated with RA arise 

from linkage with HLA-DR4 (Duff, 1994; Hajeer, et aI, 1996), although a novel 

association has recently been identified which is independent of the HLA, which has 

higher frequency in patients with extra-articular disease (Field, et aI, 1996). Such 

polymorphic variants, if confirmed, may be associated with high output of cytokine, 

such that specific alleles can act as 'modifier genes' on established inflammatory 

processes. 
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Infectious aetiology Many agents have been linked with RA pathogenesis, which 

might contribute to arthritis by persistent infection, by molecular mimicry, in which 

microbial proteins cross-react with host and break tolerance, or by 'immune 

modulation'. The latter is employed by numerous microbes to enhance survival. 

Thus, the generation of virus-derived 'cytokines' or their receptors, evolved for host 

evasion, or the generation of superantigens can directly influence immunological 

pathways. 

Causative agents, however, have proven elusive. Raised antibody titres to Epstein 

Barr virus (EBV) have been reported in RA, which together with observed sequence 

homology of EBV gpllO and the HVR of HLA-DR4-(DR~1 *0401) led to 

suggestions of a causative link (Roudier, et al, 1989). Many RA patients, however, 

have no evidence of previous EBV exposure. Retroviruses offer an alternative area 

of some promise (Kalden & Gay, 1994). High levels of human T cell leukaemia 

virus-l (HTLV-l) infection were detected in Japanese with RA, and HTLV-l causes 

arthritis in mice (Iwakura, et al, 1996). However, a search for HTL V -1 conserved 

sequences in human RA failed to confirm an association with early RA (Di Giovine, 

et al, 1994). That other retroviral sequences exist undetected in the RA population 

remains possible. Other reports have implicated proteus mirabilis, parvovirus, 

chlamydia, mycoplasma and mycobacteria (reviewed by Griffiths, 1995). The 

presence of slow-growing bacterial variants of mycobacteria which evade standard 

detection or culture has also been postulated (McCulloch, et aI, 1993). No single 

agent has been universally detected, although it might be that several microbial 

species, or their DNA or protein products, may be capable of generating related 

clinical syndromes, a subset of which are recognised as 'RA'. 

Candidate antigens Bacteria-related products have been suggested as candidate 

antigens. Heat shock protein (HSP 65) is found in synovial membrane and anti-HSP 

65 specific responses are detected in RA, but also at other inflammatory sites, 
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implying lack of specificity (De Graeff-Meeder, et al, 1990, Gaston, et al, 1990). A 

human hsp 70 (HSP73), similar to E.coli dnaK, has also recently been shown to bind 

motifs in the DR~1 *0401 and 1001 molecules (Auger, et aI, 1996) and specific 

synovial T cells responses have been detected against E.coli dnaJ, which shares 

sequence homology with the shared epitope QKRAA, in early RA and juvenile RA 

patients (Albani, et aI, 1995). Other antigens implicated are often those found 

within articular structures. Both T cell and antibody responses to collagen type IT 

have been detected (Londei, et aI, 1989; Ronnelid, et al, 1994), although such 

responses are not RA specific and may be secondary to cartilage damage. The 

peptide binding motif of the DR4 (DR~1 *0401) may be used to screen candidate 

peptides, e.g. an inflammation responsive glycoprotein (gp39) from human 

chondrocytes has been detected by this means which stimulates T cell responses in 

RA peripheral blood cells, and which, on injection into BALB/c mice, induces a 

relapsing, erosive arthritis (Rijnders, et al, 1996). 

Other factors Several data point to a role for endocrine factors, including the female 

preponderance of RA and reported influence on disease activity of the oral 

contraceptive pill, post partum period (prolactin levels) and nulliparity. Defective 

hypothalamic-pituitary-adrenal responses have been detected in RA patients 

(Chikanza, et aI, 1992). Stress, educational status and diet have also been 

implicated in disease severity. 

1.1.3 Clinical features 

RA encompasses a broad clinical spectrum and may present with systemic 

symptoms of malaise, low-grade fever and weight loss, associated with onset of 

articular disease. The latter usually fit one of three basic patterns. Most commonly, 

RA is onset with minimal jOint involvement, which progresses slowly but 

inexorably over years to involve multiple joints in a severe deforming arthropathy 
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with associated significant functional limitation. Other patients suffer an 

intermittent chronic course, punctuated by acute episodes of arthritis between 

periods of remission. Finally, particularly in elderly patients, RA may be of 

explosive onset with multiple jOint involvement and active synovitis, which may 

partially remit after around three years. Extra-articular disease complicates up to 

40% of RA (reviewed by McInnes & Sturrock, 1995) and is associated with 

significant morbidity and mortality (Pincus & Callahan, 1990). Such disease 

complications should be contained in acceptable theories of aetiopathogenesis, 

which must explain not only intra-articular, but also extended major organ 

involvement in destructive pathology. 

The characteristic clinical manifestations of rheumatoid disease entail the classical 

hallmarks of inflammation - swelling, erythema, heat and pain, presiding over 

progressive host tissue destruction. Radiological and gross pathological 

appearances demonstrate cartilage and underlying bone loss reflecting such 

inflammation. Magnetic resonance imaging detects erosive disease within weeks of 

RA onset (Heron, 1992), indicating that tissue destruction closely parallels symptom 

onset. The normally relatively acellular synovial membrane becomes clinically 

palpable ('synovitis') and often cell-rich inflammatory effusions collect within the 

joint space and capsule. This inflammatory symptomatology in RA provides the 

rationale for investigation of the processes which mediate and regulate the articular 

inflammatory response. 

1.2 Immunopathogenesis of rheumatoid arthritis 

1.2.1 Normal synovial membrane 

The normal synovial membrane contains a lining layer of up to three cells thickness 

consisting of macrophages and fibroblasts (reviewed by Edwards, 1987). 
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Superficial type A synoviocytes are CD68+ and non-specific esterase (NSE) 

positive bone-marrow derived cells of the monocyte/macrophage lineage. Type B 

synoviocytes are of fib rob last origin, derived from local proliferation of adjacent 

underlying stromal cells (Barland, et al, 1962; Revell, et aI, 1987; Revell, 1989). 

They exhibit secretory features and possess active golgi and represent the majority 

of lining layer cells (Athanasou, et aI, 1988). They are approximately marked by 

expression of uridine diphosphoglucose dehydrogenase, VCAM-l, the ~ unit of 

prolyl hydroxylase and by synthesis of hyaluronan, and other extra cellular matrix 

components e.g. that identified by Mab 67 (Edwards, 1987; Lindblad & Hedfors, 

1987; Stevens, et aI, 1990; Edwards & Wilkinson, 1995). Type B cells form a loose 

boundary between lining layer and deeper highly vascular, fibrous connective tissue, 

which contains few cells. Those present are largely of fibroblast morphology, with 

some macrophages, mast cells and adipocytes present and occasional T and B 

lymphocytes identified, usually in perivascular cuffs (Norton & Ziff, 1966; 

Edwards, 1987). Although there is evidence of MHC class 11 expression in lining 

layer and some deeper macrophage-like cells (Lindblad & Hedfors, 1987) and of 

adhesion molecule expression (Morales-Ducret, et al, 1992), there is little to indicate 

the presence of ongoing inflammation in the normal synovium. 

1.2.2 Synovial membrane in RA 

In contrast, in RA marked synovial hyperplasia occurs. The lining layer contains 

increased numbers of type A macrophages as a result of increased extra-vascular 

migration (Edwards & Willoughby, 1982; Dreher, 1982), whereas local proliferation 

accounts for considerable type B fibroblast-like (synoviocyte) expansion (Revell et 

al, 1987; Howat, et aI, 1987). Large numbers of synoviocytes, macrophages and T 

and B lymphocytes are found in the interstitium, as are dendritic cells, mast cells 

and polymorphonuclear cells, particularly neutrophils (Duke, et aI, 1982; Burmester, 

et al, 1983; Kennedy, et al, 1988; Cush & Lipsky, 1988; Thomas, et al, 1994). The 
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latter are predominantly located in synovial fluid, along with T lymphocytes and 

macrophages. No basement membrane separates the membrane and fluid phase of 

synovium, indicating that eggression from the membrane is a function of adhesion 

molecule expression and the presence of chemotactic gradients. Profuse 

angiogenesis is characteristic (reviewed by Colville-Nash & Scott, 1992) and 

endothelial differentiation may generate 'high-endothelial venules' (Freemont, 

1987; Yanni, et aI, 1993; Girard & Springer, 1995), reminiscent of those found in 

lymph nodes. Together with the presence of lymphocytic aggregates, these 

histological appearances resemble an active lymphoid tissue, implying that 

immunological processes are important in RA pathogenesis. 

The production of cytokines and their soluble receptors has been recognised to be of 

critical importance in RA pathogenesis (reviewed by Feldmann, et aI, 1996b). 

Cytokines modify diverse cell functions in vivo, through binding to specific cell 

membrane receptors and considerable interest surrounds the possibility that de

regulated cytokine production can lead to autoimmune disease. In addition, high 

levels of adhesion marker expression are found on endothelial cells and leukocytes 

in RA synovial membrane and peripheral blood (Pitzalis, et al, 1988; Hale, et al, 

1989; Gearing & Newman, 1993; Cronstein & Weissman, 1993; Johnson, et aI, 

1993; Pitzalis, et aI, 1994). Together with cytokine production, these molecules 

comprise a complex regulatory network which determines the activation, 

suppression and recruitment of inflammatory cells in the RA synovial membrane. 

The mechanisms whereby the above cellular infiltrate contribute to articular damage 

remain poorly understood. Deregulated production of matrix metalloproteinases 

(MMP) and tissue inhibitors of metalloproteinases (TIMPs) (Dayer, et al, 1986; 

Gravellese, et aI, 1991; McCachren, et aI, 1991; Firestein, et aI, 1991), reactive 

oxygen intermediates (Blake, et aI, 1989; Mapp, et al, 1995), and prostaglandins 

(Dayer, et al, 1986) by synovial membrane cells has been described. Cytokines may 
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also exert direct effects through modification of chondrocyte or osteoblast / 

osteoclast biosynthetic activity. Local production of auto antibodies by B 

lymphocytes leads to immune-complex formation, complement fixation, neutrophil 

activation and degranulation and may increase IL-l ~ and TNFa. production 

(Chantry, et aI, 1989; Plater-Zyberk, et al, 1992). Given such complexity, it is 

essential to identify the pre-eminent cell type within the synovial membrane to 

choose therapeutic targets with maximum potential impact. Controversy, however, 

surrounds the nature of the optimum target - the T cell, the macrophage (or its 

products) or the synoviocyte? 

1.2.3 Involvement of T Iympbocytes in RA 

T lymphocytes lie central to the regulation of the normal immune response. The 

majority of synovial T cells are of the CD4 helper/inducer subset (Duke, et aI, 1982; 

Pitzalis, et aI, 1987c; Cush & Lipsky, 1988) and are found in perivascular 

aggregates, which occasionally also contain germinal centres (Duke et aI, 1982). 

CD8+ cells are found in the transitional zone surrounding aggregates, or scattered 

throughout the interstitium. Synovial T cells are predominantly CD45RO+, 

CD45RA-, CD45RBdim, CD27-, indicating advanced differentiation within the 

memory subset (Thomas, et al, 1992; Matthews, et aI, 1993; Horgan, et al, 1994). 

They express activation markers, including high levels of CD69 and MHC class 11, 

particularly HLA-DR, (Pitzalis, et aI, 1987a; Afeltra, et aI, 1993; Fernandez

Gutierrez, et al, 1995) and several adhesion molecules, including ICAM-l (CD54) 

together with the integrins, VLA-l (CD49a1CD29), VLA-4 (CD49d/CD29) and 

LFA-l (CDllalCD18) (Pitzalis, et al 1988; Potocnik, et al, 1990; Laffon, et aI, 

1991; Thomas, et al, 1992; Pitzalis, et al, 1994). Moreover, CD2, CD3 and CD4 

levels are suppressed. A characteristic, and as yet unexplained, feature of synovial 

T cells is the coincident expression of markers which normally appear in co

ordinated sequential fashion following antigen or mitogen induced activation. Thus 
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CD69 is coexpressed with HLA-DR, VLA-l or VLA-4, markers which do not 

normally appear until after CD69 levels subside (Iannone, et aI, 1994). 

Furthermore, the IL-2 receptor (IL-2Ra.-chain - CD25) is present on only around 

10% of cells (Pitzalis, et al, 1987a). Since IL-2 is the principle T cell growth factor 

in the normal immune response, alternative mechanisms must therefore operate to 

recruit and activate T cells in the synovial membrane. 

Only a small number (-1 %) of synovial T cells are in cell cycle (Bonvoisin, et al, 

1984; Revell, et aI, 1987; Qu, et aI, 1994). The accumulation of synovial T cells 

therefore, most likely results from the preferential migration of memory T cells into 

the inflammatory synovium (Pitzalis, et aI, 1988; Pitzalis, et aI, 1991; Thomas, et al, 

1992; Iannone, et aI, 1994). A subpopulation of circulating C04+, C045RO+, 

RBdim, C027- memory T cells possess intrinsic migratory properties allowing 

transmigration into endothelial-coated collagen gels (Cush, et alI992). Such cells 

express CD44, CDlla, CD26 and CD49, but not CD62L (Brezinschek, et aI, 1995). 

CD27- memory T cells are usually cutaneous lymphocyte antigen positive (CLA) 

and represent a tissue-homing memory T cell subset, in contrast to C062+ lymph 

node-seeking cells (Baars, et aI, 1995). Activation is not a prerequisite for 

migration, and although C069+ T cells migrate more efficiently, the majority of 

cells with migratory potential are resting (Brezinschek, et al, 1995), Removal of the 

endothelium alters the migratory cell phenotype, and prior activation of the 

endothelial cells with TNFa. induces migration of a further C069+, CD62L + 

population, indicating that the endothelium may regulate T cell recruitment to 

inflammatory sites (Brezinschek et aI, 1995). Enhanced numbers of C045RO+, 

CD45RBdim, CD27- T cell subset were recently identified in peripheral blood of 

RA patients compared to controls, perhaps reflecting long-term systemic antigen 

stimulation (Kohem, et al, 1996), 
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In vivo, similar accumulation of CD45RO+ T cells into PPD-induced skin blisters 

has been observed (Pitzalis, et aI, 1991) and subsequent FACS analysis shows the 

early presence of VLA-l + and HLA-DR+ cells which must have resulted from 

preferential recruitment of preactivated cells (Iannone, et aI, 1994). Moreover, the 

interaction of T cells with endothelial cells led to up regulation of CD69 and HLA

DR expression. Thus, T cells appear to differentiate to a maturation stage at which 

egression from the circulation to tissue is enhanced. The mature synovial phenotype 

can therefore be partially explained by preferential recruitment of differentiated 

memory T cells, with additional activation by endothelial cell contact during 

extravasation. 

The functional significance of cell adhesion molecule expression extends beyond 

cell-cell interactions. Synovial T cells express integrin receptors for extracellular 

matrix (ECM) components, including collagen, vitronectin and fibronectin 

(Rodriguez, et aI, 1992; Pitzalis, et aI, 1994; Kohem, et aI, 1996). Membrane 

interactions with the ECM are capable of further activating T cells within the 

synovial environment (GHat, et ai, 1996). A further consequence is upregulated 

production of matrix-degrading enzymes by T cells, such as heparanase, which 

facilitate movement through inflammatory tissues and thus enhance local migration. 

It has been proposed that the CD45RBdim status of synovial T cells indicates 

longevity within the synovial compartment, although this view has recently been 

challenged (Matthews, et aI, 1993; Iannone, et aI, 1994; Westermann & Pabst, 

1996). In contrast to synovial lining layer cells, synovial T cells exhibit little 

evidence of apoptosis in vivo (Firestein, et aI, 1995; Nakajima, et aI, 1995). 

Analysis of relative levels of bcl-2, bcl-x and Bax gene expression in synovial T 

cells, suggests that survival may be attributable to the production of 'stromal' 

factors, as yet unidentified, produced by synovial fibroblasts, rather than by 

cytokine-mediated rescue (Akbar, et aI, 1996; Salmon, M. - personal 
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communication). Thus, the synovial environment may represent a privileged site for 

memory T cell survival, contributing to the observed phenotype. 

The functional capabilities of synovial T cells have been extensively investigated in 

vitro. T cell clones derived from RA synovial membrane are predominantly IFN-y 

producers (Miltenberg, et aI, 1992; Quayle, et aI, 1993; Cohen, et aI, 1995), 

indicating that RA may be a Thl driven disease as has been suggested for reactive 

arthritis (Schlaak, et aI, 1992; Simon, et al, 1994; reviewed by Sieper & Kingsley, 

1996) and insulin dependent diabetes (reviewed by Liblau, et al, 1995). Many T cell 

clones were also capable of IL-lO production, but few produced IL-4 (Cohen, et al, 

1995). However, polyc1onal synovial T cell populations exhibit deficient 

proliferation and IFN-y or IL-2 production in response to mitogens (Aaron, et al, 

1991, Thomas, et aI, 1992) and demonstrate impaired responses to recall antigens 

(Verwilghen, et al, 1990). Impaired helper I inducer and suppressor function in vitro 

has also been reported (Chattopadhyay, et aI, 1979; McCain, et aI, 1984). In 

contrast, the CD45RO+' RBdim, CD27- subset found within synovium is capable of 

potent B cell help having lost the ability to suppress immunoglobulin production in 

vitro (Thomas, et aI, 1992), suggesting a role in autoantibody production in RA. 

However, taken together with their activated phenotpye, these observations have led 

to the suggestion that synovial T cells are in a state of 'split anergy', (Thomas, et aI, 

1992; Howell, et al, 1992) or of 'frustrated activation' (Pitzalis, et al, 1987a). This 

might be a reflection of their maturation state, the presence of inhibitory factors in 

synovium, such as TGF~, IL-lO, and prostaglandins, or result from interaction with 

synovial antigen presenting cells on entry to the membrane with resultant anergy 

(Salmon & Kitas, 1989; Fava, et aI, 1989; Firestein & Zvaifler, 1990; Schwarz, 

1990; Katsikis, et al, 1994). 
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Evidence from several sources, however, strongly support a central role for T cells 

in RA pathogenesis (Panayi, et aI, 1992; Panayi, 1993). 

1. Therapy directed specifically at T cells leads to reduction in synovial 

inflammation. Thus, physical measures such as thoracic duct drainage, 

peripheral lymphocytapheresis or total lymphoid irradiation induce partial 

amelioration of inflammatory symptoms (Paulus, et aI, 1977; Panayi & Amlot, 

1982; Emery, et aI, 1986; Zvaifler, 1987). Administration of monoc1onal 

antibodies against T cell markers such as CD4 (Homeff, et al, 1991; Wendling, 

et al, 1991; Tak, et al, 1995), CDw52 (Campath) (Weinblatt, et aI, 1995) or CD5 

(Strand, et aI, 1993) have yielded variable responses, with undoubted clinical 

improvement in some patient groups. However, patients submitted to such trials 

often have advanced disease, amenable only to partial remission due to extensive 

secondary mechanical problems, and as such perhaps underestimate the impact 

of T cell targeting. Furthermore, cyclosporin A treatment exhibits demonstrable 

benefit in early (Pasero, et al, 1996) and late RA (Harrison, 1992), indicating 

that T cells can play a significant role, even in established disease. 

2. RA patients infected with human immunodeficiency virus (HIV) have been 

reported to undergo partial disease remission (Bijlsma, et al, 1988). Recently 

however, reports in which HIV+ RA patients have been followed over time 

suggest that remission may not reflect delay in articular destruction (MUller

Ladner, et aI, 1995). Moreover, several patients have now been described in 

whom little improvement in clinical inflammation followed HIV infection 

(Omstein, et al, 1995). Since the immunological consequences of HIV extend 

beyond effects simply on CD4+ T cells, such data require cautious 

interpretation. 
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3. Several animal models of arthritis have been shown to be T cell dependent. 

Collagen induced arthritis (CIA) in rodents may be induced in naive recipients 

by transfer of primed T cells from CIA mice, or by collagen specific T cell 

clones (Trentham, et aI, 1978; Brahn & Trentham, 1989). Moreover, CIA is 

effectively prevented or ameliorated by T cell depletion if performed during 

immunisation (Ranges, et al, 1988; Williams & Whyte, 1996). Streptococcal 

cell wall arthritis, adjuvant induced arthritis and pristane induced arthritis 

behave similarly (reviewed by Kaklamanis, 1992; Levitt, et al, 1992; Staines & 

Wooley, 1994;). Thus, small numbers of specific T cells can initiate immune 

responses with consequent articular pathology. 

4. Perhaps the strongest evidence for T cell involvement comes from the 

association of RA disease severity with the HLA-DR shared epitope already 

described (Section 1.2; Stastny, 1978). The defined function of class II 

molecules is to present peptide to the T cell receptor. It is therefore attractive to 

hypothesise that continued presentation of an arthritogenic autoantigen occurs 

within the synovial compartment leading to initiation and perpetuation of 

disease. However, it remains possible that the effect of MHC is mediated only 

through shaping of the T cell receptor repertoire during thymic education, or 

through preferential presentation of an extrinsic antigen(s) i.e. pathogen, 

contained on putative causative microbial agents. Nevertheless, each of these 

possibilities implicates the T cell at some stage in RA disease development. 

5. In animal models of autoimmune disease to defined 'self' antigen, such as 

murine experimental encephalomyelitis (e.g. Acha-Orbea, et aI, 1988) analysis 

of the TCR usage demonstrates restricted clonal expansion of V~ genes, 

indicative of the dominant antigen-specific response. However, similar studies 

in RA using southern blot analysis, polymerase chain reaction or monoclonal 

antibody typing of T cell clones, or of IL-2 expanded synovial T cell 
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populations, have yielded conflicting results. Whereas some earlier studies 

suggested over-representation of V~14, indicating possible involvement of a 

superantigen (Paliard, et al, 1990; Howell, et aI, 1991), the majority of studies, 

while establishing differential V~ gene usage in synovial compared to blood T 

cells, have failed to provide a consistent pattern in different RA patient cohorts 

(Bowness & Bell, 1992; Struyk, et aI, 1996). In contrast, CDR3 amino acid· 

sequencing by DNA analysis has suggested the presence of conserved amino 

acid sequences within diverse V~ repertoires (e.g. Muruyama, et aI, 1993; 

Struyk, et aI, 1994; reviewed by Struyk et aI, 1996). These data indicate 

conserved sequences in the antigen binding domains of the T cell receptor and 

provide suggestive evidence for antigen-driven expansion of T cells within the 

synovial membrane. 

Few antigen specific T cells need be present within an inflammatory lesion. In 

tuberculoid leprosy, fewer than 2% of T cells within the skin eruption are M. leprae 

responsive (Modlin, et aI, 1988). Similarly, T cell frequency against myelin 

oligodendrocyte glycoprotein in blood of MS patients is only 1:7,299 and in 

cerebrospinal fluid, 1:450 (Sun, et al, 1991) and bacteria-specific T cells in reactive 

arthritis are present at a frequency of -0.1 % (Sieper, et al, 1993). The vast majority 

of T cells within the RA synovial membrane are therefore likely to recognise 

irrelevant antigens. Whether such cells contribute directly to RA pathology, or are 

simply functional 'bystanders', is currently unclear. 

1.2.4 Fibroblasts in RA 

The contribution of the synoviocyte to RA has been subject of controversy. 

Synovial fibroblasts produce cytokines including TGF~, FGF, PDGF, IL-6, TNFa 

and IL-l ~ and are significant sources of MM Ps and of prostaglandins (Remmers, et 

al, 1991; Zvaifler & Firestein, 1994; Edwards, 1995). As such they comprise an 
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important component of the inflammatory response in RA, but have been considered 

the inevitable result of chronic inflammatory infiltration. That they represent the 

primary lesion has also been proposed (Zvaifler & Firestein, 1994). Several animal 

models evolve articular erosion in the absence of T cells. Borrelia infection induces 

destructive arthritis in SCIO mice (Schaible et aI, 1990), and the early phase of 

spontaneous arthritis in MRL-MP-lpr/lpr mice is characterised by fibroblastic 

infiltration in the absence of T cells (O'Sullivan, et aI, 1985). Similarly, c-fos 

transgenic mice develop antigen-induced arthritis the articular component of which 

proceeds independent of lymphocyte infiltration (Shiozawa, et al, 1992). Synovial 

fibroblasts exhibit invasive properties in vitro and express adhesion molecules for 

ECM, particularly vitronectin, which would facilitate migration into cartilage with 

ultimate formation of 'erosions' (Zvaifler & Firestein, 1994). 

1.2.5 Macrophages in RA 

Macrophages, derived from the circulating monocytes, constitute some 30-50% of 

the cellular pool in synovial membrane and like T cells, they exhibit features 

suggestive of activation. Ultrastructural examination demonstrates prominent 

filopodia, vacuoles, vesicles and rough endoplasmic reticulum (Athanasou, 1995) 

and histological studies show enhanced expression of complement receptors (C3b), 

Fc receptors and multiple adhesion molecules, including ICAM-l and the (32 

integrins (Theofilopoulos, et aI, 1980; Burmester, et al, 1983; Athanasou & Quinn, 

1991; Johnson, et aI, 1993). HLA-OR up regulation has been widely reported, 

although the mechanism whereby this occurs is unclear in the absence of IFN-y 

(Klareskog, et al, 1981; Burmester, et aI, 1987; Firestein & Zvaifler, 1988). CD14 

and CD68 expression have been used extensively for identification purposes. 

However, the former is lost during maturation in the synovial membrane, and the 

latter may be found in intimal synovial fibroblasts (Wilkinson, et aI, 1992), raising 

doubts as to its specificity outwith the lining layer. Non-specific esterase therefore 
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probably remains the most reliable macrophage marker for histological purposes. 

The principle manifestation of macrophage activation however, is the presence of 

upregulated cytokine gene expression (Firestein, et aI, 1990) and of high 

concentrations of macrophage-derived cytokines detectable within synovial 

membrane and fluid. 

1.2.6 Cytokine production in RA 

Bodel & Hollingsworth first described endogenous pyrogen (now 'IL-l') production 

by synovial cells in 1968. Subsequcntly, it was found that IL-l induced lcukocytc 

infiltration and cartilage breakdown in rabbit synovial joints (Pcttipher, et al, 1986). 

Numerous cytokines have since been localised in the synovial membrane and some 

have become the focus of therapeutic intervention, as it has become established that 

they play a central regulatory role in articular destruction. The pattern of cytokine 

production, however, has lcd to considerable controversy as to which of the cell 

types present in synovial membrane is the key element in pathogenesis (Panayi, et 

al, 1992; Firestein & Zvaifler, 1990). 

The presence of many activated synovial T cells is not reflected in high levels of T 

cell cytokine expression in synovial membrane (Firestein & Zvaifler, 1987; 

Firestein, et al, 1988; Chen, et al' 1993), Although IFN-r, and rarely IL-2, may be 

detected at the mRNA level by peR or in situ hybridisation (Simon, et aI, 1994; 

Buchan, et aI, 1988), immunohistochemical localisation has proven difficult, 

demonstrating expression in small numbers of cells only (Ulfgren, et aI, 1995). 

Neither cytokine has been consistently detected in synovial fluid or in synovial 

tissue cultures by ELISA. Moreover, IL-4 has not been detected by any means. 

These observations have cast doubt on the role of T cells in ongoing synovitis, on 

the basis that T cell effects should be 'cytokine driven'. However, just as the 

frequency of antigen specific T cells in inflammatory sites is limited, so too is the 
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level of T cell cytokine expression. Thus, IFN-y expression in leprosy skin lesions is 

seen in <1% of cells (Cooper, et aI, 1989). Moreover, it has been recently 

recognised that the actual concentration of cytokine adjacent to its cell receptor in 

vivo may be markedly higher than that predicted from in vitro measurements 

(Kaplan, 1996). The level of T cell cytokines thus far detected may therefore be 

sufficient to sustain a small number of arthritogen-specific T cells, but is unlikely to 

explain the extensive T cell activation described. 

In contrast, macrophage derived cytokines have been relatively easily detected. 

These include IL-la, IL-l~, TNFa, IL-6, IL-8 and GM-CSF (Di Giovine, et aI, 

1988; Houssiau, et al, 1988; Arend & Dayer, 1990; Seitz et al, 1991; Field, et al, 

1991; Chu, et al, 1991; Alvaro-Gracia, et al, 1991; Brennan, et al, 1991; Koch, et aI, 

1992; Deleuran, et aI, 1992; Deleuran, et aI, 1994) and encompass a broad range of 

pro-inflammatory activities. Investigations of their role in animal models and in 

vitro suggest that IL-l~ and TNFa may be of prime importance (Arend & Dayer, 

1995; Maini, et aI, 1995b). TNFa is produced by macrophages in the lining layer 

and at the cartilage-pannus junction (Chu, et al, 1992). It is present in up to 50% of 

RA synovial fluids and is detected in vitro after synovial tissue culture. Its 

bioactivities can explain several pathological features observed in RA and include 

up regulation of adhesion molecule expression, activation of osteoclast-mediated 

resorption of bone, suppression of anabolic effects of osteoblasts and chondrocytes, 

promotion of angiogenesis, enhancement of MMP and prostaglandin E2 (PGE2) 

production, stimulation of fibroblast proliferation and activation of T and B 

lymphocytes and of endothelial cells (reviewed by Arend & Dayer, 1995; Feldmann, 

et aI, 1996b). TNFa also upregulates other cytokine production within the synovial 

compartment, since the addition of neutralising anti-TNFa. antibodies to synovial 

tissue cultures inhibits the production of IL-l~, IL-6, IL-8 and GM-CSF (Brennan, 

et aI, 1989, Feldmann, et aI, 1996b). TNFa. production is enhanced in murine CIA 

and adjuvant arthritis, and disease development and progression are suppressed by 
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treatment with anti-TNFa antibodies (Williams, et aI, 1992; Staines & Wooley, 

1994). Moreover, a transgenic mouse which expresses the human TNFa. gene, 

stabilised by replacement of its mRNA 3' untranslated region with that of the p

globulin gene, develops erosive polyarthritis characterised by marked synovial 

hyperplasia (Keffer, et al, 1991). The most persuasive evidence for a central role for 

TNFa., however, lies in the amelioration of clinical and laboratory parameters of 

disease activity in RA patients treated with 'humanised' monoclonal anti-TNFa. 

antibodies (Elliott, et al, 1994; Rankin, et al, 1995). 

The activities of TNFa overlap considerably with those of IL-l~. Thus, IL-l~ 

upregulates MMP and PGE2 production, enhances cartilage breakdown and 

upregulates osteoclast activity, promotes angiogenesis and induces fibroblast 

proliferation. However in comparison to TNFa, IL-l~ may exert more potent 

effects on chondrocyte and osteoclast activity and induces higher levels of MMP 

production from synoviocytes (reviewed by Arend & Dayer, et aI, 1995). In animal 

models, administration of IL-l~ induces or upregulates inflammatory arthritis, and 

inhibition of IL-lp activity down-regulates inflammatory disease (van den Berg, et 

aI, 1994). However, others have found IL-l receptor antagonist (IL-lra) less 

effective than anti-IL-I~ antibodies, suggesting that IL-l may be of variable 

importance in different models (Wooley, et aI, 1993). Nevertheless, clinical trials 

using IL-Ira in RA have brought about clinical improvement, but remain at a 

preliminary stage (Campion, et al, 1996). 

Addition of anti-IL-l~ antibody or IL-lra to synovial tissue cultures suppresses IL-6 

and GM-CSF production, but does not influence TNFa. production (Feldmann, et al, 

1996b). In combination with the in vivo effects of TNFa. neutralisation, these data 

indicate that TNFa. lies proximal to other monokines, occupying the pivotal point in 

a cytokine 'cascade'. However, recent studies in streptococcal cell wall arthritis, 

zymosan-induced arthritis, antigen-induced arthritis and CIA have suggested that 
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TNFa and IL-l~ may exert distinct biological effects in articular destruction. IL-l~ 

appears more involved in cartilage degradation, whereas TNFa is implicated 

primarily in pro-inflammatory effects in synovium (Van de Loo, et aI, 1995; Van 

Lent, et al, 1995; Joosten, et al, 1996). These data imply that combined neutralising 

therapies may be required to adequately suppress tissue damage and moreover, that 

functional redundancy of cytokines in the synovium is not absolute. 

TGF~, in both latent and active forms (Fava, et aI, 1989; Chu, et al, 1991), and IL-I0 

(Katsikis, et al, 1993) have been detected in synovial membrane and are capable in 

vitro of down-regulating macrophage activation and of opposing the effects of IL-l ~ 

and TNFa. Although TGF~ may induce synovitis when injected into rodent knees 

(Fava, et aI, 1991), its role in the majority of animal models is anti-inflammatory 

(Kuruvilla, et aI, 1991; Brandes, et aI, 1991). Increased levels of IL-lra, and of 

soluble IL-l, IL-2 and TNFa receptors (p55 and p75) are also found in synovial 

membrane and in synovial fluid (Miossec, et aI, 1990; Symons, et aI, 1991; 

Deleuran, et al, 1992; Cope, et aI, 1992; Duff, 1993; Firestein, et aI, 1994). They 

usually inhibit the action of their respective cytokines, although in low 

concentration, soluble TNFaR may stabilise the bioactivity of TNFa (Aderka, et al, 

1992). These molecules provide evidence of an attempt within the synovial 

membrane to down-regulate the inflammatory process. Their net effect in tissue will 

be determined by the precise local balance of cytokine and antagonist The cytokine 

network in RA therefore appears to represent a balance of pro- versus anti

inflammatory (repair) processes, in which the former dominates over time. 

Chemokines comprise a further class of pro-inflammatory protein represented within 

synovium. Both C-X-C (ex) chemokines, including IL-8, epithelial neutrophil 

activating peptide 78 (ENA 78) and melanoma growth stimulating activity (GROa), 

and C-C (~) chemokines, including macrophage inflammatory protein (MIP)-la, 

MIP-l~, RANTES (regulated upon activation normal T cell expressed and secreted) 
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and monocyte chemoattractant protein (MCP)-1 have been detected in RA synovial 

membrane (Seitz, et aI, 1991; Koch, et aI, 1991; Koch, et al, 1992; Rathanaswami, et 

aI, 1993; Koch, et aI, 1994a; Koch 1994b; Deleuran, et aI, 1994; Hosaka, et aI, 

1994). Synovial fluid therefore contains chemotactic activity which is attributable 

to multiple factors which, in turn, exhibit considerable redundancy (Al-Mughales, et 

al, 1996). Their contribution to leukocyte recruitment occurs in combination with 

the increased expression of adhesion molecules characteristic of the synovial 

environment (Johnson, et aI, 1993; Cronstein & Weissman, 1993; Pitzalis, et aI, 

1994). Specific reorganisation of adhesion molecules, such as ICAM-3 and LFA-1, 

to the tips of uropods follows chemokine exposure, thereby optimising ligand 

interactions at the point of cell-cell contact (Angel del Pozo, et aI, 1996). However, 

the precise role of chemokine activity in RA is unclear, since in vitro transepithelial 

migration studies of lymphocyte recruitment have demonstrated that MIP-1a and 

RANTES do not alter the phenotype or magnitude of peripheral blood lymphocyte 

invasion (Brezinschek, et aI, 1995). It is therefore possible that their primary 

importance lies in regulating migration within the synovial membrane. In this 

respect, the recent demonstration that cytokine-ECM interaction can create high 

local concentrations of bioactive cytokine may be of relevance (GHat, et aI, 1996). 

An additional effect may be to potentiate neovascularisation, as demonstrated for 

IL-8 or ENA 78 (Koch, et al, 1991; Koch, et al, 1994b). 

There is therefore little doubt that synovial macrophages occupy a central position in 

RA pathogenesis through cytokine secretion. Immune complexes, complement 

degradation products, bacterial or viral constituents and cell-cell contact have been 

proposed as stimulatory factors, but none is satisfactorily proven. Thus, although 

the effector role of TNFa in RA is established, much less is known about the events 

initiating and maintaining TNFa production. Nor has a satisfactory explanation 

been provided to link the presence and activity of the majority of T cells with 

macrophages in synovial membrane, beyond the putative presentation of antigen and 
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HLA-DR to a subset of disease-specific lymphocytes. Recently, a novel cytokine, 

designated IL-15, has been identified which is produced by activated macrophages 

and fibroblasts and exerts potent activities on T cells. This functional profile 

indicated that it might be highly relevant in the context of rheumatoid pathogenesis. 

1.3 Interleukin 15 (IL-lS) 

IL-15 (synonym: 'IL-T') was simultaneously identified as a product of the simian 

kidney epithelial cell line, CV-IIEBNA (Grabstein, et al, 1994) and of the HTLV-l

associated HuT-102 adult T cell leukaemia cell line (Burton, et aI, 1994; Bamford, 

et aI, 1994). Relevant physical characteristics are shown in table 1.1. Although they 

share no primary sequence homology, IL-2 and IL-15 possess similar functional 

activities, as both are members of the short chain four a. helix bundle cytokine 

family. However, whereas 1L-2 synthesis is primarily restricted to activated T cells, 

IL-15 expression, at least at the mRNA level, has been identified in numerous 

normal human tissues, including skeletal muscle, placenta and kidney, and cell 

types, such as activated monocytes and fibroblast cell lines, but not as yet in T cells 

(Grab stein, et aI, 1994; Tagaya, et al, 1996a). However, because IL-15 was first 

identified as aleukaemic T cell product, the possibility remains that T cells 

appropriately activated may also synthesise IL-15. 

1.3.1 IL-lS receptors 

The functional similarities between IL-2 and IL-15 are reflected in shared utilisation 

of the 70175kD IL-2R ~-chain, and the 64kD common y-chain. Thus, the effect of 

IL-15 on activated T cells can be inhibited by antibodies against IL-2~ or y chains 

but not against IL-2Ra. chain. Similar data were obtained on analysis of IL-15 

binding to cells transfected with different IL-2R subunits (Giri, et aI, 1994; 

Grabstein, et aI, 1994; Bamford, et al, 1994). Subsequently, a type 1 membrane 



Table 1.1 Physical characteristics of human interleukin-15 

Properties 

Structure 

Primary sequence homology 

Genomic structure 

Cellular distribution of mRNA 

Receptor a-chain distribution 

T cell receptor signalling 

Mast cell receptor signalling 

Interleukin-15 

four a-helical bundle, 

two disulphide cross-links 

14-15 kO, 114 amino acids 

variable glycosylation 

97% with simian IL-15 

73% with murine IL-15 

<10% with human IL-2 

8 exon 17 intron 

(variable mRNA splicing reported) 

placenta, skeletal muscle, kidney, lung, 

heart, fibroblasts, epithelial cells, monocytcs 

T cells, NK cells, B cells, Monocytes 

JAKlI JAK 3 STAT 31 STAT 5 

JAK2 STAT5 
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protein has been identified in mice which binds IL-15 with high affinity (Giri, et aI, 

1995). Parallel studies in humans have identified a similar receptor, designated IL-

15R a-chain (Anderson, et aI, 1995b; de Jong, et al 1996; Kennedy & Park, 1996). 

The IL-15Ra gene maps to human chromosome 10, adjacent to the IL-2Ra gene, 

with which it shares fragmented sequence homology. It is alternatively spliced to 

yield three active forms, each capable of high affinity binding to IL-15 (Anderson, et 

aI, 1995b). Like IL-2Ra, it does not appear to transduce signals, despite the 

presence of a 37 amino acid intracellular domain. However, notwithstanding these 

similarities, the two a chains appear functionally discrete. IL-15Ra binds IL-15 

with 1000-fold higher affinity than does IL-2Ra to IL-2, with no reported 

crossreactivity (Giri, et al, 1995). Moreover, IL-15Ra forms an unstable complex 

with IL-2R~'Y, in contrast to the tight IL-2Ra~'Y complex which results from the 

stabilising effect of IL-2Ra on ~'Y chain binding (Minami, et al, 1993; de Jong, et al, 

1996). Thus, the up regulation of IL-2Ra expression during T cell activation will 

effectively compete for available IL-2~'Y chain, with consequent down regulation of 

IL-15 mediated signalling, through disaggregation of weak IL-15Ra - ~'Y chain 

interactions. 

The widespread tissue distribution of IL-15Ra further distinguishes it from IL-2Ra. 

Whereas IL-2Ra is primarily expressed on activated T cells, IL-15Ra mRNA has 

been identified in numerous human tissues and cell lines, including activated T cells 

(Anderson, et aI, 1995b). Interestingly, IFN-y stimulated monocytes also express 

IL-15Ra mRNA, indicating the potential for autocrine regulation. However, since 

the distribution of IL-2R~'Y chain is limited, the demonstration of IL-15Ra 

expression alone may not be a satisfactory indicator of IL-15 responsiveness. 

Although IL-15 can transduce signals through ~y chain alone, it does so less 

efficiently than does IL-2 (Grabstein, et al, 1994; Anderson, et al, 1995b; Kumaki, et 

al, 1996). The functional significance of IL-15RIl expression in the absence of ~'Y 

chain is currently unknown. Possibilities include the scavenging of 'free' IL-15 at 
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inflammatory sites, or the presentation of IL-15 to other IL-15 receptor bearing 

cells, thereby increasing the efficiency of ligand-receptor interaction. 

Expression ofIL-2Ra. and IL-15Ra. appear linked. IL-15, like IL-2, upregulates the 

level of IL-2Ra. on human B and T cells, but rapidly down-regulates the expression 

of IL-15Ra.. Thereafter, lymphocyte responsiveness to IL-15 is reduced in 

comparison to IL-2 as measured by JAK3 kinase activation (Kumaki, et al, 1996). 

Thus, macrophage-derived IL-15 can enhance T cell activation during the early 

stages of an immune response, but thereafter down-regulate its own receptor, 

thereby enabling IL-2 to function as the principle T cell growth factor. 

The observation that mast cells proliferate to IL-15 but not to IL-2, led to the 

discovery of a further novel receptor for IL-15, designated IL-15RX (Tagaya, et al, 

1996b). This 60-65 kD protein requires neither IL-2R~ nor y chain for signalling 

and is also found on normal bone marrow mast cells. Whether a cofactor membrane 

protein exists, or indeed whether this receptor enjoys wider cellular distribution is 

not yet known. These data further demonstrate that the functional profiles of IL-2 

and IL-15 are not identical. 

1.3.2 Signal transduction following IL·15 receptor occupancy 

Following IL-15 binding to activated T cells, functional coupling of Janus

associated kinases (JAK) 1 and JAK3 with the IL-15 receptor occurs (Johnston, et 

aI, 1995a). JAKl and JAK3 in turn activate and tyrosine phosphorylate insulin 

receptor substrate (lRS)-1 and IRS-2, with subsequent tyrosine phosphorylation and 

nuclear translocation of Stat 3 and Stat 5 (signal transducers and activators of 

transcription) (Johnston, et aI, 1995b; Lin, et aI, 1995), Other signalling events 

transduced by IL-15 include phosphorylation of p56lck and p72syk and induction 

of Bcl-2, with resultant protection or rescue from apoptosis (Miyazaki, et aI, 1995; 
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Akbar, et aI, 1996). The IL-15RX, in contrast, utilises a JAK2! Stat 5 dependent 

pathway in mast cells which is distinct from that in activated T cells (Tagaya, et al, 

1996b). Whether this pathway also exists in human T cells is unknown. 

1.3.3 Biological activity of IL·15 

1. T lymphocytes • IL-15 activates T cells as judged by several criteria. IL·15 

induces proliferation of PHA activated CD4+ and CD8+ T cells, T cell clones 

and y8 T cells (Grabstein, et al, 1994), with concomitant release of soluble IL-2 

receptors (sIL-2R) (Treiber-Held, et al, 1996). CD69 expression is upregulated 

on CD45RO+, but not CD45RA+, peripheral blood T cells, consistent with the 

distribution of IL-2R~ chain expression on memory T cell subsets (Minami, et 

aI, 1993; Kanegane & Tosato, 1996). IL-15 mediates cytotoxicity, through 

generation of both CD8+ CTL and of lymphokine activated killer (LAK) cells 

(Grabstein, et aI, 1994). IL-15 induces T cell polarization, a recognised 

prerequisite to activation, and migration in collagen gel or filter assays, with 

greater potency than either IL-8 or MIP-la (Wilkinson & Liew, 1995). 

Moreover, it redistributes adhesion molecules, including ICAM-3, -1 and -2, to 

uropods in the presence of ~-integrin ligands, such as fibronectin and VCAM-I 

(Nieto, et aI, 1996). Thus, IL-15 might recruit T cells and thereafter, modify 

homo- or heterotypic cell-cell interactions within inflammatory sites. 

Furthermore, IL-15 has recently been shown to rescue T cells from cytokine 

withdrawal-induced apoptosis, through selective induction of bcl-2 and bcl-xl 

(Akbar, et aI, 1996), indicating that lymphocyte survival within inflammatory 

sites can be enhanced in the presence of IL-15. 

Given its likely early expression in immune responses, the relationship of IL-15 

to T cell subset differentiation, particularly in combination with IL-12, is clearly 

of interest. IL-15 primes naive CD4+ T cells from TCR transgenic mice for 



44 

subsequent IFN-y, but not IL-4 production (Seder, 1996). Moreover, antigen 

specific responses in T cells from HIV+ patients in the presence of high-dose IL-

15 exhibit increased IFN-y production (Seder, et al, 1995) and preliminary data 

indicate that IL-15 might enhance IFN-y production if IL-12 is relatively 

deficient. However, IL-15 induces IL-5 production from human 

dermatophagoides jarinae II specific T cell clones, implying a positive role in 

Th2 mediated allergic responses (Mori, et al, 1996). Whether IL-15 prejudices 

Thl or Th2 responsiveness in uncommitted ThO cells (Mossman & Coffman, 

1989) therefore remains unclear. Current data indicate that its function as a T 

cell growth factor will likely sustain either Thl or Th2 cells, if already 

committed to that differentiation pathway. 

2. Natural killer cells - IL-15 induces NK cell activation measured either by direct 

cytotoxicity, antibody dependent cellular cytotoxicity (ADC C) or by production 

of cytokines, including IFN-r, TNFa, GM-CSF and MIP-la (Carson, et a11994; 

Carson, et al, 1995; Bluman, et al, 1996; Warren, et al, 1996). These data imply 

that IL-15, rather than IL-2, may be the primary activator of NK cells during 

early immune responses, in combination with IL-12. 

3. B cells - IL-15 costimulates proliferation and immunoglobulin synthesis (IgM, 

IgG, IgA) by human B cells activated with either CD40 ligand or immobilised 

anti-IgM (Armitage, et aI, 1995). A role has also been proposed for IL-15 as a 

growth factor in B cell chronic lymphoproliferative disorders (Trentin, et aI, 

1996). 

4. Mast cells - IL-15 induces mast cell proliferation and activation. The presence 

of the IL-15X receptor in bone marrow mast cells indicates a role in mast cell 

development along with IL-3 (Tagaya et al, 1996b). 
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5. Thymic development - Early reports have implicated IL-15 in T cell 

development. Lymphocytes from IL-2R~ deficient mice do not proliferate to IL

lS. These animals exhibit abnormal T cell development, with significantly 

reduced thymocyte numbers after 4 weeks (Suzuki, et aI, 1995). Subsequent 

studies comparing the effect of IL-15 and IL-2 on thymocyte development have 

demonstrated that IL-15 may preferentially support differentiation of bipolar IL-

2R~+, CD4-, CD8- progenitor cells towards T y8 or NK cell populations rather 

than to the T ex ~ subset (Leclercq, et aI, 1996). Furthermore, IL-2 reduced 

thymocyte expansion in vitro through binding to IL-2Ra, in contrast to the 

proliferative effect of IL-15 through IL-15Rex expression (Willerford, et aI, 1995; 

Leclercq, et al, 1996). Thus, IL-2 and IL-15 may exhibit differential effects in 

immature T I NK cell development. Recently, IL-15 has also been implicated in 

development of mature CD16+, CD56+ NK cells from CD34+ haematopoietic 

progenitor cells (Mrozek, et al, 1996). 

6. Activity outside the immune system. The widespread tissue distribution of 

mRNA for IL-15 and IL-15Ra indicates that diverse functions may exist beyond 

the immune system. For example, IL-15 exerts anabolic effects, but not 

proliferation, in vitro in skeletal muscle (Quinn, et al, 1995). 

IL-1S thus represents a mechanism whereby local tissue cells can contribute to the 

early 'innate' phase of immunity, providing enhancement of NK cell and 

subsequently T cell responses, prior to optimal IL-2 production. 

1.3.4 Regulation of IL·IS production 

The factors which up regulate IL-15 synthesis are poorly understood. Using 

semiquantitative RT-PCR, up regulation of IL-15 mRNA levels in bone-marrow 

derived murine macrophages was induced by lipopolysaccharide (LPS), BCG, M. 
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tuberculosis or T. gondii, only after prior IFN-y priming. Compared with mRNA for 

IL-12, IL-15 induction was partially resistant to down-regulation by IL-4, IL-13 and 

TGF~. In contrast, IL-IO addition increased levels of IL-15 mRNA in cultures 

(Doherty, et aI, 1996). These data were partially confirmed at the protein level using 

CTLL cell bioassay. Similarly, LPS I IFN-y stimulation, or Human Herpesvirus-6 

infection of peripheral blood monocytes induced IL-15 mRNA expression (Carson, 

et aI, 1995; Bamford, et aI, 1996a; Bamford, et aI, 1996b; Flamand, et al, 1996). 

Thus, recognised macrophage activators appear to increase IL-15 expression, at least 

at the mRNA leveL 

Consistent detection of IL-15 protein synthesis, however, has not followed the 

widespread distribution of its mRNA. Whereas most cytokines are regulated by 

modification of transcription and message stabilisation (reviewed by Paul & Seder, 

1994; Kishimoto, et aI, 1994), significant post-transcriptional regulation has been 

detected for IL-15. The human IL-15 mRNA 5' UTR contains 10 AUO triplets 

which significantly reduce the efficiency of translation (Kozak, 1991; Bamford, et 

al, 1996a). Fusion of the IL-15 mRNA with an HTLV-l R region in the HuT-I02 

cell line deleted the AUO rich 5'UTR sequence, leading to high levels of 

constitutive IL-15 secretion (Burton, et aI, 1994; Bamford, et aI, 1996b). 

Engineered removal of this sequence similarly induces increased levels of IL-15 

protein expression in appropriately transfected COS cells (Bamford, et al, 1996b). 

In a similar system, replacement of the IL-15 signal peptide with that of IL-2, 

induces significantly higher levels of IL-15 production, indicating that this region 

too is involved in down-regulating IL-15 protein production (Tagaya, et al, 1996b). 

Multiple levels of regulation therefore exist to provide an available pool of mRNA, 

but which prevent undesirable IL-15 expression in tissues. 
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1.3.5 IL-15 in pathology 

The corollary to this regulatory organisation is the ready resource of IL-15 mRNA in 

tissues in the event of infection or toxic insult. That such expression could lead to 

autoimmunity forms a basic tenet of this thesis. Evidence for involvement of IL-15 

in human pathology, however, is sparse. A novel transcript of IL-15 has been 

recently identified in human small cell lung cancer cell lines, although its role in 

tumorigenesis is as yet unclear (Meazza, et al, 1996). IL-15 has also been identified 

in alveolar macrophages of sarcoid patients, from whom pulmonary CD4+ T cells 

were found to proliferate to IL-15, implying a role in T cell alveolitis (Agostini, et 

aI, 1996). IL-15 expression has also been detected in alveolar macrophages and 

epithelial cells from induced sputum samples of asthmatic patients (Leung, B.P. & 

Mclnnes I.B. - unpublished observations). Since IL-15 also induces mast cell 

proliferation and supports T cell clone-derived IL-5 production (Tagaya, et aI, 

1996b; Mori, et aI, 1996), these data together indicate that IL-15 might play a role in 

bronchial hyperreactivity. IL-15 expression has been reported in human 

keratinocytes (Sorel, et aI, 1996), It remains unclear whether UVB radiation 

upregulates IL-15 expression (Mohamadzadeh, et aI, 1995), or inhibits its 

production, thereby contributing to UVB-mediated immunosuppression (Blauvelt, et 

aI, 1996). 

RA synovium is characterised by the presence of activated macrophages and 

fibroblasts, and by large numbers of activated T cells. Given its established cellular 

distribution and functional profile, IL-15 represents an attractive candidate cytokine 

for involvement in RA synovitis. Its identification in that context could provide 

considerable insight into the mechanisms whereby T cells are recruited and activated 

in RA. A second exciting possibility is that within the synovial membrane, IL-15 

could direct T cell-mediated regulation of macrophage-derived cytokine production, 

particularly TNFa, thereby driving the pro-inflammatory response. 
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1.4 'Non-cytokine' mediators in RA synovitis 

Non-cytokine mediated pro-inflammatory mechanisms operate in the synovial 

membrane. Of these, the role of free radicals in RA pathogenesis has been of 

particular interest. Reactive oxygen intermediates (ROI) formed through cycles of 

hypoxic-reperfusion can modify multiple processes within the synovial membrane 

by oxidation (Blake, et al, 1989). Proposed molecular targets include IgG, with 

consequent rheumatoid factor formation and lipids, leading to formation of lipid

radicals. Depolymerisation and fragmentation of hyaluronan after oxidation will 

generate fragments with immunomodulatory potential e.g. chemotactic factors. 

Hyporesponsiveness of synovial T cells might arise secondary to hypoxia and the 

formation of low molecular weight aldehydes (reviewed by Mapp, et al. 1995). 

Definitive confirmation of such hypotheses in vivo is currently lacking, although 

they provide stimulating alternatives to established antigen-driven mechanisms. 

Recently, reactive nitrogen intermediates (RNI), specifically nitric oxide (NO-), 

have been recognised as mediators of fundamental importance in several models of 

infection and inflammation (Moncada & Higgs, 1993; Nathan & Xie, 1994a). These 

observations have raised the possibility that similar mechanisms might operate in 

human inflammatory disease. 

1.5 Nitric Oxide 

In 1987, NO was recognised as the previously elusive endothelium-derived relaxing 

factor (Furchgott & Zawadski, 1980; Ignarro, et aI, 1987; Palmer, et aI, 1987). 

Subsequently, NO emerged as a key regulatory molecule in numerous and diverse 

physiological and patho-physiological processes. 
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1.5.1 NO synthase 

NO is generated by isoforms of the enzyme NO synthase (NOS) which catalyses the 

conversion of L-arginine through hydroxy-arginine to L-citrulline. The terminal 

guanidino nitrogen is oxidised forming a reactive nitrogen-oxygen complex with 

one unpaired electron (NO-), which confers radical properties on NO (Stamler, et aI, 

1992). Three isoforms of NOS have been identified and their enzymology 

extensively studied (reviewed by Moncada & Higgs, 1993; Kiechle & Malinski, 

1993; Bredt & Snyder, 1994; Nathan & Xie, 1994a; Nathan & Xie, 1994b; Marletta, 

1994; Butler, et al, 1995). Endothelial NOS (eNOS) and neuronal NOS (nNOS) are 

constitutively expressed and are capable of rapid onset, short lived generation of low 

concentrations of NO (together termed cNOS). Inducible NOS (iNOS), in contrast, 

is present in cells only after specific up regulation. NOS isoforms share 30-40% 

homology with cytochrome P450 reductase (CPR), with consensus sequences for 

redox-active cofactors including NADPH, flavin adenine dinucleotide (FAD) and 

flavin mononucleotide (FMN). The homology with CPR is reflected at a functional 

level in the ability of NOS to generate ROI in the absence of L-arginine and 

presence of NADPH (Bredt & Snyder, 1994), although the biological relevance of 

this activity is unknown. 

cNDS dimers form from a resting pool of NOS monomers, after binding of L

arginine, haem and tetrahydrobiopterin (BH4). Calmodulin binds to this complex in 

the presence of elevated calcium, which results usually from agonist activity. This 

facilitates rapid electron transfer through FAD and FMN to haem with consequent 

substrate oxidation. In contrast, expression of inducible NOS (iNOS) requires novel 

protein synthesis and thereafter generates high concentrations of NO over prolonged 

periods. As with cNOS, iNOS forms dimers in the presence of BH4, haem and L

arginine. However, calmodulin is tightly bound to a basic, hydrophobic site on 
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iNOS, and enzyme activity is independent of ambient calcium concentration (Cho, 

et aI, 1992). 

All three isoforms have been cloned and sequenced (Bredt, et al, 1991; Sessa, et al, 

1992; Xie, et al, 1992). eNOS is 130kD and shares 58% homology with nNOS. An 

N-terminal myristoylation site confers the ability to bind the plasma membrane and 

phosphorylation or cleavage of this site renders eNOS soluble in the cytosol. The 

human gene is located on chromosome 7 and contains AP-l, AP-2, NF-l, acute 

phase reactants and shear stress regulatory consensus sites in its 5' promoter region 

(Marsden, et aI, 1992). eNOS expression has been detected in cells outwith 

endothelium, including platelets, fibroblasts, vascular smooth muscle cells and 

polymorphonuclear cells (Nathan & Xie, 1994a). The larger human nNOS (160kD) 

is located on chromosome 12 (Bredt & Snyder, 1994). It is expressed in different 

neurone types throughout the central nervous system, in the retina and in peripheral 

nerve terminals, e.g. non-adrenergic, non-cholinergic signals in the gastrointestinal 

tract (Bult, et aI, 1990). Alternatively spliced forms of murine cerebellar nNOS 

have been described although their functional significance is unclear. 

iNOS was first cloned from murine macrophages (Xie, et aI, 1992) and subsequently 

from human hepatocytes and chondrocytes (Geller, et al, 1993; Charles, et aI, 1993), 

but not from human macrophages. Human iNOS shares -50% homology with 

cNOS, and 80% with murine iNOS and is located on chromosome 17. Widespread 

tissue distribution of iNOS has been reported with expression observed in human 

keratinocytes, hepatocytes, osteoblasts I osteoclasts, chondrocytes, uterine smooth 

muscle cells, mesangial cells, dermal fibroblasts and respiratory epithelial cells 

(Nathan & Xie, 1994a). Expression in human tumours has also been observed, 

including colorectal adenocarcinoma and glioblastoma (Ellie, et ai, 1996). 

However, considerable controversy surrounds the presence and activity of iNOS in 

human macrophages. Whereas some authors have demonstrated NO production 
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directly, or L-arginine-I NO-dependent activity (Denis, 1992; Hunt & Goldin, 1992; 

Reiling, et aI, 1994; Pietraforte, et aI, 1994; Zembala, et aI, 1994; Mautino, et al, 

1994; De Maria, et aI, 1994; Dugas, et al, 1995; Burkrinsky, et al, 1995), others have 

been unable to detect any evidence of iNOS activity at all (Cameron, et aI, 1990; 

Schneemann, et aI, 1993). The required stimuli for iNOS up regulation in human 

macrophages appear to differ significantly from those in rodents, and where NO 

production has been detected, it is of an order of magnitude lower than that observed 

in rodent macrophages. The functional and evolutionary significance of these data 

are unclear. 

1.5.2 Regulation of NO synthase 

NO may not be stored in 'bioactive' form, thus its concentration in tissue is 

regulated through NOS activity. cNOS generates NO at picomolar concentrations in 

response to local vasoactive mediators, such as bradykinin, thrombin, histamine, 

acetylcholine, 5-hydroxytriptamine, to cytokines e.g. IL-l~, endothelin-3, or to 

physical factors, including shear stress or increased blood flow (reviewed by Lyons, 

1995). Whether cNOS output may be further upregulated is unclear. Preliminary 

evidence for induction of 'nNOS' by IL-l~ and LPS in OA chondrocytes has been 

reported, indicating that the delineation between low and high output NOS on the 

basis of calcium dependency alone may be oversimplified (Amin, et al, 1995). 

The predominant source of NO in inflammatory lesions, however, is iNOS. Factors 

which activate iNOS in vitro include cytokines, microbial products. particularly LPS 

and superantigen toxins, picolinic acid, cAMP-elevating agents and physical factors, 

including UV light or trauma (reviewed by Nathan & Xie, 1994a; Nathan & Xie, 

1994b). Cytokines exert the major regulatory influence in vivo. IFN-y is a potent 

inducer of NO production by rodent macro phages and endothelial cells, in synergy 

with LPS (Ding, et aI, 1988; Liew & Cox, 1991). IL-l~ and TNFa also increase 
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iNOS expression in many cells, either alone or in synergistic combination (Liew, 

1994). Cytokine requirements vary with the species and tissue origin of cells. Thus, 

rodent smooth muscle cells respond either to IL-lp alone, or in synergy with IFN-y 

or TNFa., whereas human vascular smooth muscle cells require a combination of 

LPS, IFN-y and TNFa. for NO production. Similarly, rodent hepatocytes respond to 

LPS alone, whereas human hepatocytes require a combination of LPS, IFN-y, TNFa. 

and IL-2 (Geller, et al, 1992; Liew, 1994, Nathan & Xie, 1994b; reviewed by Lyons, 

1995). 

The multiplicity of activatory factors is matched by a wide range of inhibitory 

agents. TGFp, IL-4, IL-8, IL-lO (indirectly through effects on TNFa. production), 

IL-13, MIP-la., epidermal growth factor (EGF), PDGF, and FGF all oppose iNOS 

activation (Liew, 1994; Nathan & Xie, 1994b; Lyons, 1995). Again species and 

tissue specificity appear cmcial. TGFp inhibits rodent macrophage and endothelial 

iNOS expression, but enhances NO production in Swiss 3T3 fibroblasts (Gilbert & 

Herschman, 1993). Moreover, IL-lO has been shown to increase iNOS activity in 

avian osteoclasts (Sunyer, et al, 1996), as has IL-4 in human macrophages (Mautino, 

et aI, 1994). The temporal sequence of ligand binding appears important, since pre

exposure of macrophages to LPS suppresses subsequent IFN-y induced NO 

production (Severn, et aI, 1993). Such observations emphasise the difficulties 

attached to extrapolation between species and cell types. Furthermore, it has only 

recently been appreciated that iNOS may be 'constitutively' present in human 

tissues, such as lung, retina, skeletal muscle or CNS, in the absence of specific up 

regulatory factors (Nathan & Xie, 1994a; Park, et al, 1996). This suggests that, in 

addition to a postulated responsive role in inflammation, iNOS may also be involved 

in normal physiological regulation. 

Engagement of class 11 MHC either by alIo-specific monoc1onal antibodies, or by 

bacterial superantigens (SEB, TSST-l), in the presence of syngeneic lymphocytes, 
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increases NO production by macrophages (Hauschildt, et al, 1993; Tao & Stout, 

1993, Isobe & Nakashima, 1993). Similar activation of macrophage NO synthesis 

follows crosslinking of CD69 by antibody (De Maria, et al, 1995). Cell-cell contact 

between T lymphocytes of both Thl and Th2 subsets and macrophages leads to 

iNOS expression mediated in part through CD40/CD40 ligand and LFA-IIICAM-l 

(Tian, et aI, 1995). Thus, homo- or hetero-typic cell contact can induce NO 

synthesis in an inflammatory lesion. The relative contribution of such mechanisms 

in the context of high levels of cytokine production is currently unclear. 

These diverse factors mediate regulation at multiple levels: 

Transcription Two promoter I enhancer sites are found 5' to the murine iNOS gene 

(Xie, et al, 1993; Lowenstein, et al, 1993). Region 1 (-50 to -200 bp) contains LPS 

responsive elements containing AP-l, NF-IL6 and NF-KB binding sites, whereas 

region 2 (-1000 bp upstream) contains an interferon specific response element 

(reviewed by Bredt & Snyder, 1994; Nathan & Xie, 1994a, 1994b). Macrophages 

from IFN-r related transcription factor-l (IRF-l) knockout mice do not produce NO 

in response to IFN-r confirming a role for IRF-l in regulating iNOS expression, 

mediated partly through enhancement of LPS-dependent effects (Kamijo, et aI, 

1994). A hypoxia-responsive enhancer has recently been identified (-209 to -207 

bp; Melil1o, et aI, 1996) indicating that other factors can facilitate iNOS 

transcription outwith cytokine-dependent elements. Transcriptional regulation of 

the human iNOS gene is more complex. Involvement of a NF-KB binding site (-106 

to -115 bp) has been demonstrated using mutant constructs of vascular smooth 

muscle iNOS (Kolyada, et aI, 1996) and recent studies of hepatocyte iNOS 

responsiveness to IL-l~, TNFa and IFN-r revealed three cytokine responsive 

elements -3.8 to -16 kb upstream from the iNOS gene (De Vera, et aI, 1996). This is 

in contrast to the shorter regulatory 5' region (-lkb) of rodent iNOS. Further 

characterisation of the iNOS promoter sites will elucidate inter-species differences 
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currently detected at the protein expression and functional level, particularly in 

comparison of rodent and human macrophage activation. 

Post-transcription iNOS mRNA stability is increased by IFN-y and reduced by 

TGF~ and IL-4 in murine macrophages. TNFa reduced the stability of eNOS 

mRNA in rat smooth muscle cells (Nathan & Xie, 1994a). Modification of mRNA 

levels by many regulatory factors is reported, but it is unclear at present whether 

these effects are directly mediated on mRNA stability or at earlier or later stages. 

Post-translation cNDS is calcium and calmodulin dependent and may be inhibited 

by competitive inhibitors of calmodulin, such as trifluoperazine. iNOS requires 

only physiological concentrations of calcium which are present in resting cells, and 

as such is resistant to calmodulin antagonists (Cho, et aI, 1992). NOS activity may 

also be modified by phosphorylation. eNOS and nNOS share consensus sequences 

for cAMP-dependent protein kinase phosphorylation (Bredt & Snyder, 1994). 

Protein kinase C, cGMP-dependent kinase, calcium I calmodulin-dependent kinase 

have also been implicated in cNOS phosphorylation, raising the possibility of 

regulatory feedback loops, whereby the reaction of NO with target enzymes may 

increase kinase activity, with consequent suppression of NOS activity (Bredt & 

Snyder 1994). However, whether significant phosphorylation occurs in vivo to 

directly modify enzymatic activity, cofactor function or iNOS compartmentalisation 

is unclear. Finally, haem-binding proteins are subject to down regulation by NO. 

Thus, direct inhibition of NOS activity by NO itself has been reported (Assreuy, et 

al, 1993). 

Substrate availability in vitro is determined by the relative presence of L-arginine, 

of argininosuccinate synthetase, which converts L-citrulline to L-arginine, and of 

arginase in macrophages. Similarly, cofactor availability is critical. IFN-y induces 

the enzyme GTP cyclohydroxylase I, which is the rate-limiting enzyme in the 
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biopterin synthesis pathway responsible for the generation of BH4. Although the 

latter is deplete after long term culture of human endothelial cells or fibroblasts, it is 

unclear whether this represents in vitro artefact, or an in vivo example of coordinate 

function by IFN-y. 

External regulation of NOS Glucocorticoids inhibit iNOS-dependent activity. (Di 

Rosa, et aI, 1990). The rate of iNOS transcription is reduced, and although mRNA 

is briefly stabilised, translation is significantly retarded and degradation of iNOS 

protein is enhanced (Kunz, et aI, 1996). NF-lCB p50 or p65 nuclear translocation is 

unaffected, but NF-kB and not AP-l binding in the iNOS promoter region is 

prevented (Kleinert, et aI, 1996). L-N°O-substituted arginines also inhibit NOS 

activity in biological systems. L-Noo methylarginine (L-NMMA) is commonly used 

when no isofonn specificity is necessary. No isoform specific inhibitor has yet been 

identified, although L-N°O nitroarginine (L-NNA) exhibits relative specificity for 

cNOS as does L-Noo amino arginine for iNOS. Aminoguanidine and N-iminoethyl

L-Iysine are further 'iNOS specific' inhibitors often used in animal models (e.g. 

Connor, et aI, 1995). However, mice in which the eNOS, nNOS and iNOS genes 

respectively have been specifically targeted have now been generated, allowing 

definitive investigation of the specific contribution of individual isoforms to be 

evaluated in different biological systems in vivo (Wei, et aI, 1995; MacMicking, et 

al, 1995; Huang, et al, 1995; Nelson, et al, 1995). 

1.5.3 Molecular targets for NO 

The target interactions of NO which facilitate effector function depend largely on its 

redox and additive chemistry (reviewed by Stamler, 1994). NO has a half-life of 6 

seconds, and can diffuse freely through membranes and within cells. NO reacts with 

oxygen (02), superoxide (02-) and transition metals, to generate nitrosonium ions 
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(NO+), peroxynitrite (OONO-) and metal-NO adducts respectively, each capable of 

further reactivity with thiol groups at nucleophilic centres. NO therefore mediates 

effects primarily through modification of critical iron or thiol groups on protein 

targets. The diversity of effector function reflects the wide prevalence of such 

moieties in regulatory/signalling pathways, enzymes, ion channels and transcription 

factors (Stamler, 1994; Lyons, 1994). In conditions of oxidant stress, cell redox 

conditions may support the direct N-nitrosation of DNA or covalent modification of 

tyrosine groups. DNA may also be targeted by deamination or by induction of 

strand breaks (Nguyen, et al, 1992). 

Reactions with metals Iron containing metals are particularly vulnerable to NO. 

Complex I and complex 11 in the mitochondrial electron transfer chain and aconitase 

in the tricarboxylic acid cycle, are critical targets (Stuehr & Nathan, 1989; Stamler, 

et aI, 1992). Together with inhibition of glyceraldehyde-3-phosphate 

dehydrogenase, through ADP-ribosylation following activation of ADP-ribosyl 

transferase (Dimmeler, et al, 1992), these effects profoundly impair the capacity for 

energy production in the target. Aconitase serves also as an iron response element 

binding protein (IRE-BP) and through binding to IRE-BP, NO has been 

demonstrated to modify ferritin and transferrin expression and thus iron homeostasis 

(Weiss, et al, 1993; Drapier, et aI, 1993). 

The interaction of NO with haem induces functionally significant conformational 

changes, e.g. guanylate cyclase is activated by this means and mediates many 

bioactivities attributable to NO (Nathan & Xie, 1994b; Schmidt & WaIter, 1994). 

Direct nitrosylation of the haem prosthetic group involved in catalysis is usually 

inhibitory. This is evident in CPR-like enzymes, including iNOS itself through 

attenuation of oxygenase activity, and perhaps also in ribonucleotide reductase, with 

subsequent modification of DNA synthesis (Stamler, 1994). In contrast, 

cyclooxygenase 1 and 2 are activated by this mechanism (Salvemini, et al, 1993; 
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Manfield, et al, 1996). Furthermore, interaction with zinc finger containing proteins 

has been reported, which may have functional relevance to the zinc dependent 

activities of matrix metalloproteinases in synovium (Murrell, et al, 1995). 

Thiol group interactions Nitrosonium, peroxynitrite and metal-NO adducts are 

capable of S-nitrosylation with consequent modification of protein function. Target 

proteins undergo (i) conformational change (e.g. tissue plasminogen activator), (ii) 

covalent alteration by the formation of disulphide bonds (e.g. calcium-dependent 

potassium channels), or (Hi) if cysteine residues are present in the catalytic site, may 

be directly inhibited by nitrosylation (e.g. neutrophil NADPH oxidase). The latter 

exemplifies the crucial interaction of NO and ROI production (Clancy, et aI, 1992; 

Stamler, 1994). In circumstances where ROI are primary mediators of tissue 

damage, NO production may be protective by diverting oxygen species away from 

the formation of harmful radicals (Wink, et aI, 1993; Wink, et aI, 1996). In contrast, 

the formation of peroxynitrite has been shown in many systems to be dangerous to 

host tissues and in such circumstances the combination of ROI with NO generation 

is likely to be detrimental (e.g. Mulligan, et al, 1991). The effect of NO in a given 

tissue can therefore vary over time, if the presence of ROI in the tissue alters in 

response to other stimuli. Thus, production of NO may be initially detrimental and 

later protective or vice versa. Similarly, functional outcome of NO effects may alter 

as the redox environment changes over time within a cell, perhaps following 

activation, allowing NO to sequentially exert apparently contradictory responses on 

resting or activated cells. Such possibilities are of particular importance in immune 

responses within chronic inflammatory environments, such as those in the RA 

synovial membrane. 
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1.5.4 Functional consequences of NO production in inflammation 

By virtue of its EDRF activity NO can induce vasodilatation through relaxation of 

vascular smooth muscle leading to erythema and increased local temperature 

(reviewed by Schmidt & Waiter, 1994). Data from murine dextran- and 

carrageenan-induced models of inflammation indicate that NO also induces 

clinically detectable oedema formation, through alteration of endothelial 

permeability (Ialenti, et aI, 1992; Ianaro, et aI, 1994). Thus, two features of the 

classical inflammatory response are regulated by NO. Further roles for NO in 

immunoregulation, responses to infectious disease, alloreactivity and auto immune 

models have been demonstrated. 

(i) lmmunomodulatory properties of NO 

NO inhibits platelet aggregation as a function of its cardioprotective role, through 

production of cGMP (Schmidt & Waiter, 1994). Subsequent studies of ischaemia

reperfusion in mesenteric vessels and myocardium have indicated that NO also 

reduces neutrophil adhesion through CDll I CD18, ICAM-l and P-selectin 

dependent pathways and by scavenging ROI, which enhance adhesion (Kubes, et al, 

1993; Xin, et aI, 1993). These data indicate that cellular recruitment, and in 

particular the crucial interaction of the leukocyte with endothelium, can be modified 

by NO. 

NO exerts bi-phasic effects on T lymphocyte responsiveness. Initial observations 

described inhibition of in vitro antigen or mitogen driven T cell proliferation, either 

by NO donors or by macrophage derived NO in co-cultures (Fu & Blankenhorn, 

1992; Denharn & Rowland, 1992; Merryman, et al, 1993). Subsequently, it was 

established that low dose NO significantly enhanced peripheral blood lymphocyte 

activation, measured by PHA-induced proliferation, increased glucose uptake, 
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increased NF-lCB binding activity and activation of protein tyrosine kinase p56lck 

(Lander, et aI, 1993). Moreover, in vitro and in vivo, L-arginine enhances 

lymphocyte proliferation, and increases NK cell and lymphokine activated killer 

activity (Barbul, et aI, 1990; Park, et aI, 1991). Recent studies in mice have 

established that NO preferentially inhibits 1111 clonal proliferation to antigen, but 

has no effect on 1112 clones (Liew, et al, 1991; Taylor Robinson, et aI, 1993; Taylor 

Robinson, et aI, 1994; Wei, et aI, 1995). Thus, the local concentration of NO and 

the developmental phenotype influence the modulatory effect of NO on T cells. 

Cellular immune function may be further modified by NO through induction of 

apoptosis (Albina, et al, 1993; Messmer, et al, 1994; Fehsel, et al, 1995). 

Cytokine production is also influenced by NO. Thl clones exhibit reduced IFN-y 

production in the presence of NO, correlating with reduced proliferation, but no 

effect is demonstrable on Th2 cytokine generation (Taylor-Robinson, et aI, 1994; 

Wei, et aI, 1995; Huang, F.P. personal communication). Increased TNFa. production 

from human neutrophils and from PBMN exposed to NO-donors has been detected, 

although the cellular origin of TNFa. in the latter was not specified (Lander, et al, 

1993; Dervort, et aI, 1994). Production of cytokine by purified blood monocytel 

macrophages or macrophage cell lines has been variously reported to be suppressed 

(FUlle, et al, 1991) or enhanced (Deakin, et aI, 1995) in the presence of exogenous 

NO. The mechanism underlying these observations is unknown, but may reflect 

modification of transcription factors, such as NF-lCB (Huang F-P. personal 

communication). 

(ii) Infection 

Early studies detected increased nitrate generation during septicaemia (Green, et aI, 

1981). NO has now been implicated in the response to a large number of organisms, 

including intracellular bacteria, fungi, protozoa, helminths and viruses. NO 
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dependent innate defence has been most studied in macrophages. In most cases 

microbicidal activity is demonstrable in vitro, where it is inhibited by LID-arginine 

analogues, and is enhanced by addition of macrophage activating factors, such as 

IFN-y or LPS. Normally in vivo, T cells and macrophages cooperate to regulate NO 

synthesis through cytokine production. Thus, host responses to Leishmania major 

are dependent on the generation of an effective Thl response, in which IL-12 and 

IFN-y production leads to NO-mediated resistance. Parasite killing activity is 

demonstrable in splenic macrophages in vitro, and treatment of infected mice with 

iNOS inhibitors increases lesion size and parasitic load (Liew, et aI, 1990). 

Moreover, L. major infection in iNOS knockout mice is of increased severity and 

mortality, despite the presence of an enhanced Thl response, indicating that NO is 

critical in host defence to this organism (Wei et aI, 1995). However, NO-mediated 

parasite killing can also proceed in the absence of T cells. Listeria monocytogenes 

infected SCID mice, treated with amino guanidine, exhibit increased mortality and 

enhanced recovery of viable listeria from spleens. IFN-y production by NK cells is 

sufficient to confer resistance (Beckerman, et al, 1993). Thus, in rodents at least, the 

production of NO by activated macrophages provides a principle component of the 

microbicidal armature. 

NO may mediate host toxicity during infection. Elevated nitrate levels are detected 

in animals and humans with septicaemia. NOS inhibitors can reverse the 

hypotension of LPS induced shock in rodents, although the effect is dose and time 

dependent (Kilboum, et al, 1990), and preliminary trials in humans have indicated 

that some clinical features of septicaemia are NO dependent (ValIance & Moncada, 

1991; Petros, et aI, 1994). However, LPS-induced shock in iNOS knockout mice 

has yielded conflicting evidence in favour of either a protective, or a detrimental 

role for NO production (Wei, et aI, 1995; Gross, et aI, 1996), although minor 

differences in genetic strain between 'knockouts' may partially explain apparent 

discrepancies. What is clear is that NO has 'double-edged' effects (Schmidt & 
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Walter, 1994), and in some situations is aggressive to the host. Whether these 

observations can be extended to autoimmune disease in which excess NO 

production occurs is unclear. These data indicate that caution must be shown in the 

potential use of NOS inhibitors in management of autoimmune disease, in which 

equally complex mechanisms exist in subtle equilibrium. 

(iii) Alloreactivity 

NO involvement in graft rejection is suggested by the nitrosylation of proteins 

during cardiac allograft rejection in rats (Lancaster, et al, 1992). iNOS expression is 

found at mRNA and protein levels in rejecting allografts, in both graft and host 

derived cells. Debate surrounds the net effect of NO production in rejection. 

Aminoguanidine treatment prolongs graft survival, reduces the histological grade of 

cellular infiltration and improves cardiac allograft contractility in rats (Worrall, et al, 

1995). However, several studies have determined that iNOS inhibitors are 

deleterious to graft survival through removal of T cell regulatory activity attributable 

to NO (e.g. Langrehr, et aI, 1992). Moreover, BALB/c skin allograft rejection by 

iNOS knockout mice is similar to that by heterozygote controls (Casey 1., personal 

communication). The precise role of NO production in alloreactivity is therefore 

unclear, although the latter data imply that NO production is not obligate in graft 

rejection. 

(iv) Autoimmune models 

The evidence reviewed above clearly implicates NO as an integral component of 

protective host immune responses. That NO is similarly involved in deleterious 

autoimmune responses, either as an aggressive or protective component, has been 

explored in several animal models systems. 
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Murine disease resembling insulin dependent diabetes mellitus (IDDM) occurs 

following inoculation with streptozocin. NO modifies cytokine production within 

the pancreatic ~ islets and inhibition of NO production using NOS inhibitors led to 

delayed onset of disease, with attenuation of the pancreatic inflammatory infiltrate 

(Lukic, et aI, 1991; Kolb & Kolb-Bachofen, 1992). Similarly, in the genetically 

predisposed non obese diabetic (NOD) mouse model, transfer of NOD mouse spleen 

cells induced diabetes in irradiated recipients. The onset of disease was Significantly 

delayed by amino guanidine treatment (Corbett, et aI, 1993). These findings 

implicate NO as an aggressor in IDDM pathogenesis. However, its role in 

experimental allergic encephalomyelitis (EAE) is more complex. NO production is 

upregulated in EAE and iNOS levels have been reported to correlate with disease 

severity (Okuda, et aI, 1995). Whereas, aminoguanidine was reported to inhibit 

clinical signs and progression of EAE in SJL mice and in Lewis rats (Zhao, et al, 

1996), paradoxical aggravation of EAE following administration of LOO-arginine 

analogues has also been detected (Ruuls, et aI, 1996). Suppression or aggravation of 

EAE by NOS inhibitors may depend on the mode of disease induction, or on the 

choice of inhibitor in T cell-induced, or myelin basic protein-induced EAE 

(Zielasek, et aI, 1995). Such discrepancies again emphasise the double-edged 

effector function of NO as an immunosuppressor, or a neurotoxin, dependent on 

subtle alterations of immunogen, inhibitor dosage and regimen. 

NO has been implicated in immune complex mediated disease. In pulmonary 

alveolitis induced by intra-tracheal injection of preformed immune complexes, NOS 

inhibitors reduce the severity of pulmonary haemorrhage and oedema formation. 

Similar inhibition of dermal vasculitis is observed. Moreover, a major component 

of this model is dependent on intact complement function, indicating that NO 

synthesis may interact with complement to mediate pathology (Mulligan, et aI, 

1991). 
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Graft versus host disease (GVHD) in mice resembles the early stages of 

inflammatory bowel disease (IBD), or gut hypersensitivity syndromes, such as 

coeliac disease. (CBAxBALB/c)Fl recipients of CBA spleen cells develop GVHD, 

which is significantly retarded by L-NMMA treatment, with preservation of 

intestinal architecture and reduced density of intra-epitheliallymphocyte infiltration 

(Garside, et al, 1992). However, it is unclear whether this effect operates primarily 

through immunoregulatory modification, or by haemodynamic effects in the 

mesenteric vasculature. NO production has been detected in human IBD, indicating 

that a role in human disease pathogenesis may exist (Middleton, et aI, 1993, 

Broughton-Evans, et aI, 1993). However, altered epithelial permeability found in 

IBD leads to increased exposure to bacteria and bacterial products within the lamina 

propria, with the potential for enhanced local NO production and consequent 

immunomodulation. Whether NO is ultimately protective or detrimental is therefore 

unclear. 

1.5.5 NO in arthritis 

Considerable evidence exists which indicates that NO is an important mediator in 

autoimmune responses. Evidence for a similar role in inflammatory articular 

disease has recently been derived from several animal studies. 

Adjuvant arthritis in rats bears histopathological similarities to RA. iNOS is 

detectable in synovial membrane and elevated levels of urinary and plasma nitrite 

are maximal after 14 days. Continuous administration of NOS inhibitors prevents or 

attenuates the clinical severity of arthritis, normalises weight gain, reduces acute 

phase response and retards erosive articular destruction (Ialenti, et aI, 1993; 

Stefanovic-Racic, et aI, 1994a; Stichtenoth, et aI, 1994; Stefanovic-Racic, et aI, 

1995; Connor, et al, 1995). Treatment during adjuvant priming alone is sufficient to 

confer subsequent reduction in disease severity (Oyanagui, 1994) and anti-
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mycobacterial antigen-specific T cell responses are suppressed in treated rats. These 

observations indicate an immunoregulatory role for NO in this model. Similar data 

were obtained in streptococcal cell wall (SCW) induced arthritis in rats, in which L

NMMA inhibited the onset and progression of arthritis. Furthermore, treatment of 

established disease led to partial clinical amelioration (McCartney-Francis, et aI, 

1994). Administration of NOS inhibitors to MRL-MP-lpr/lpr mice suppressed the 

development of renal pathology and attenuated clinical and histological evidence of 

arthritis (Weinberg, et al, 1995; Huang, et al 1996). NO synthesis is closely linked 

to IL-12 production in this model, indicating that cytokine modulation by NO may 

complete a positive feedback loop, culminating in end-organ damage (Huang, et al, 

1996). These data together implicate NO generation in articular pathology in 

rodents. 

The role of nitric oxide production in RA, however, is less clear. Nitrite levels are 

elevated in synovial fluid and serum, and urinary nitrate: creatinine ratios are raised 

in patients with active RA, indicating that NO production might be enhanced in 

human articular disease (Farrell, et al, 1992, Kaur & Halliwell, 1994; Grabowski, et 

al, 1996; Ueki, et aI, 1996). The principle source of nitric oxide production is, as 

yet, ill-defined. In vitro studies have identified iNOS expression and NO generation 

in rodent synoviocytes and in human and rodent chondrocytes, osteoblasts and 

osteoc1asts (Stadler, et al, 1992; Charles, et al, 1993; Stefanovic-Racic, et al, 1994b; 

Rediske, et aI, 1994; Ralston, et aI, 1995; Murrell, et aI, 1996). Given their 

previously recognised functional profile, neutrophils, macrophages, mast cells and 

endothelial cells might all contribute to NO generation within synovial membrane 

(Nathan & Xie, 1994a; Nathan & Xie, 1994b; Bames & Liew, 1994; Lyons, 1995; 

Grabowski, et aI, 1996). Moreover, the RA synovial membrane contains abundant 

cytokine activities, such as IL-l~ or TNFa, which have been shown to up regulate 

iNOS in vitro. However, neither iNOS expression nor direct NO production within 

the human synovial membrane have yet been properly characterised. 
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1.6 Objectives 

The immunopathological processes in RA resemble an ongoing immune response. 

Components of humoral and cell mediated arms of the immune system are 

represented, although their relative contributions remain controversial. Regardless 

of whether these processes are primary, or secondary to an unidentified insult, 

evidence from animal and preliminary human studies indicates that manipulation of 

immunoregulatory networks in synovial membrane offers exciting therapeutic 

potential. Two such regulatory pathways are of particular interest to the author. 

(i) T lymphocytes lie central to conventional immunoregulatory paradigms. Their 

apparently sessile appearance in RA is therefore intriguing. 

• By what means are T lymphocytes activated within RA synovial membrane 

in the relative absence of the recognised T cell growth factor, IL-2? 

• What is the functional Significance of the majority of non-arthritogen 

specific T lymphocytes in synovial membrane in RA? 

(ii) Similarly, nitric oxide subserves multiple immunoregulatory functions in animal 

models, but its role in human inflammatory disease remains poorly defined. 

• Where and how is NO produced by the human synovial membrane? 

• What are the functional consequences of NO production within the synovial 

compartment? 

(iii) TNFa. has provided the most promising therapeutic biological target thus far in 

RA. Events mediating its production, however, remain obscure. 

• Can either IL-15 or nitric oxide mediated activities be related to enhanced 

TNFa. production within synovial membrane? 



1.7 Aims 

1. To investigate the presence and functional significance of interleukin-15 

production in RA synovial membrane. 

2. To provide direct evidence for nitric oxide production in RA synovial 

membrane, and to investigate the functional consequences of nitric oxide 

production in articular tissues. 
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Chapter 2 

Materials and methods 
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2. 1 Patients and tissue I fluid samples 

Samples were obtained from patients attending the Centre for Rheumatic Diseases and 

University Department of Orthopaedic Surgery. Glasgow Royal Infinnary (GRl). the 

Rheumatology Department. Gartnavel General Hospital and the Department of 

Orthopaedics. Stobhill General Hospital. Glasgow. Synovial tissues were obtained at 

routine hip or knee arthroplasty. usually from pannus adjacent to cartilage and. in the 

knee. particularly around femoral condyles. Synovial biopsy material was also 

obtained during diagnostic arthroscopy (Dr. M. Field. Glasgow Royal Infinnary) and 

was used for immunohistochemical studies. Buffy coats were provided by the Blood 

Transfusion Service (Law Hospital. Carluke. UK) within 2 hours of donation by 

nonnal volunteer donors. 

RA patients satisfied the American College of Rheumatology diagnostic criteria 

(Amett. et al. 1988). The diagnosiS of OA depended on characteristic clinical and 

radiological presentation (Altman. et al. 1986) with convincing absence of 

inflammatory arthritis (Erythrocyte sedimentation rate [ESR]. C-reactive protein 

[CRP], serum urate - <460 J.1m01/1, no radiological erosions, rheumatoid [RP] and 

anti-nuclear factors [ANA] - negative). Clinical data were collected from the case 

record, including age, gender, disease duration, drug therapy and concurrent disease. 

ESR. CRP (nephelometry) and serum RP and ANA titres (ELISA) were obtained 

from laboratory records (Departments of Immunopathology. Haematology and 

Biochemistry, GRl. Glasgow, UK). 

2.2 Ethical considerations 

Pennission from the Ethical Committee in ORI was applicable to the use of tissues 

from arthroscopy as part of a separate investigation (Role of gene vectors in 

therapeutic delivery of cytokines in inflammatory arthritis; Dr M. Field, ORI). 
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Synovial fluids and tissues were surplus to clinical requirements following routine 

therapeutic or diagnostic procedures and would otherwise have been discarded. 

Blood and synovial fluid samples were collected only when clinically indicated, and 

informed consent was obtained from patients prior to research use of samples so 

obtained. All animal experimentation was performed under project licences provided 

following UK Home Office review and were used only to address questions not 

amenable to in vitro study of human tissue. Experimentation was performed under 

Project Licence 60/1311, procedure 5, Project Licence 6011475, procedure 2, and 

Project Licence 60/01347, procedure 6. 

2.3 Reagents Ibuffers 

The source of reagents either purchased or donated is given in the text and tables. 

Details of preparation of buffers and reagents, where appropriate, are contained in 

Appendix I. 

2 . 4 Cell culture 

All culture media and supplements were obtained from Gibco BRL, Paisley. 

Scotland, UK. Dulbecco's modified Eagle medium was supplemented with 1 mM 

sodium pyruvate, 2 mM L-glutamine, 100 I.U.lml penicillin and 100 ~g/ml 

streptomycin ('complete Dulbecco's MEM'). Supplements were stored in 5 ml 

aliquots (xlOO final concentration) at -20°C and added to medium prior to culture. 

RPMI was supplemented with L-glutamine, penicillin and streptomycin as above 

('complete RPMI'). Murine lymphocyte proliferation medium consisted of complete 

RPMI, 25 mM HEPES, 2.5 ~glml amphoteracin Band 50 ~M 2-mercaptoethanol 

(Sigma Chemical, Poole, UK). Iscove's modified Dulbecco's medium for whole 

blood culture was supplemented with penicillin, streptomycin and L-glutamine as 

above, and stored at -200C in 100 tnl aliquots until use. Foetal calf serum (FCS) was 
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mycoplasma screened by the manufacturer, heat inactivated at 56°C for 30 minutes in 

a circulating waterbath, then stored in 10 ml aliquots at -20°C. Culture was 

performed at 37°C in a humidified incubator with 5% CO2• Cells were counted 

directly using a Neubauer haemocytometer (Weber Scientific International Ltd, UK) 

on a Nikon Labphot microscope or automatically by Coulter Zl cell counter (Luton, 

UK). Viability was assessed microscopically by trypan blue exclusion (0.1 % trypan 

blue [Sigma], 0.1 % acetic acid (BDH), phosphate buffered saline[PBS]). 

2.4. 1 Synovial tissue culture preparation 

Synovial tissue cultures were prepared as previously described (Brennan, et aI, 

1989). Resected tissue was harvested into cold complete Dulbecco's MEM and the 

synovial membrane was dissected free of fibrous connective and adipose tissue, 

before being cut into 2mm fragments. These were incubated in complete Dulbecco's 

MEM with 2.5 mg/ml collagenase (specific activity 193 u/mg, Worthington 

Biochemicals, NI, USA) I 0.1 mglml DNAse (Boerhinger Mannheim, Germany) for 

90 minutes at 37°C with gentle agitation. The digest was passed through a sterile tea 

strainer, washed three times and filtered through Nytex membrane (Cadisch & son, 

London, UK) to remove debris and cellular aggregates. Cells were washed 

throughout by centrifugation at 250g for 7 minutes (Mistral 3000i, MSE, UK) in 15 

ml polypropylene centrifugation tubes (Costar Corporation, MA, USA). A single cell 

suspension was thus obtained which contained a heterogeneous synovial cell 

population. Cell yield was around 5x107 cells / tissue, with range 106 to 5x108 cells. 

Primary cultures were established as follows. 250 Jll of heterogeneous synovial cells 

adjusted to 2x106 cells/m 1 in complete Dulbecco's MEM, 10% PCS, were plated into 

48 well culture plates (Costar). After 1 hour, stimuli were added at different 

concentrations in a total volume of 250 ~l, giving a final density of lxl06 cells/ml in 

500 III with 5% PCS. Cultures were maintained from 24 to 120 hours. Stimuli 
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included staphylococcal enterotoxin B (SEB, stock 1 mg/ml, Sigma), lipopoly

saccharide (LPS, stock 1 mg/ml, Salmonella enteritidis, Sigma), human recombinant 

interferon-r (IFN-r), human recombinant interleukin-l~ (lL-l~) and human 

recombinant tumour necrosis factor a. (TNFa.). Recombinant cytokines, at various 

stock concentrations, were a gift from Dr G.R. Adolf, Bender Wien, Austria. 

Reagents were stored at -20°C as concentrated stock solutions before dilution in 

appropriate medium prior to culture. Nitric oxide synthase activity was inhibited in 

some cultures by addition of NG-monomethyl-L-arginine hydrochloride (L-NMMA, a 

gift from Dr Hodson, Wellcome, Beckenham, UK). L-NMMA (mol. wt. = 225) was 

stored desiccated, at room temperature, and was dissolved immediately prior to use to 

20 mM in appropriate medium, then filtered (Millex-GV 0.22 J.lffi, Millipore, France). 

This solution was added to final culture with further 1:20 dilution to a final 

concentration of 1 mM in vitro. Culture supematants were frozen at -700C until assay 

for cytokine or nitrite production. 

Cytospin preparations were made after tissue digestion to measure the proportional 

cellular yield. Synovial cells were suspended at 5x105 cells/ml in serum free medium 

and spun at 500 rpm for 5 minutes onto silane coated glass slides (500 JlVslide) using 

a Cytospin 3 (Shandon, UK). Silane coated slides were prepared as described 

(section 2.6). Cytopreps were fixed in cold acetone for 15 minutes, air dried and 

stored at -20°C before immunohistochemical characterisation of CD3, CD19 and 

CD68 expression (section 2.6). Synovial cultures were typically 20-40% CD3+, 30-

50% CD68+, <10% CDI9+, consistent with previously published observations 

(Brennan, et aI, 1989). 

2.4.2 Peripheral blood mononuclear cell preparation 

Mononuclear cell populations were obtained by density gradient centrifugation. After 

collection into heparinised sterile universals (10 I.UJml preservative free heparin, Leo 
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Laboratories Ltd, Bucks, UK), venous blood was diluted 1:2 in complete Dulbecco's 

MEM. 7 ml diluted blood was layered over 5 ml Lymphoprep (Nycomed Pharma, 

Oslo, Norway) in a 15ml conical tube and spun at 500g for 30 minutes at 22oC. The 

mononuclear fraction was collected and washed thrice in medium before adjustment to 

the required cell concentration. This population was designated peripheral blood 

mononuclear cells (PBMC). Buffy coats from the Blood Transfusion Service were 

diluted 1:3 in complete Dulbecco's MEM then prepared as for venous blood samples. 

T lymphocyte enrichment was performed by negative selection using successive 

adherence steps to obtain a peripheral blood T lymphocyte fraction (PBTL). 

Mononuclear cell suspensions obtained above were incubated at 2x106 cells/ml in 75 

cm2 tissue culture flasks (Costar) for 1 hour, then non-adherent cells were further 

incubated overnight in complete Dulbecco's MEM, with 10% FCS. Cells remaining 

non-adherent were collected and washed thrice in medium before suspension to the 

desired concentration. Cellular purity was assessed by FACS analysis (FACScan, 

Becton Dickinson) for CD3, CD14 and CD19 marker expression (section 2.5). PB 

monocytes were prepared by selecting adherent cells during the T cell enrichment 

process described above. Cells which adhered after both the I hour and 16 hour 

incubation steps were removed using a cell scraper and maintained in 10% FCS at 

5xl05 cells/ml until required. Prior to use, they were first gently washed in situ to 

remove non-viable monocytes or residual non-adherent lymphocytes, then 

resuspended to the desired concentration. Cell purity was assessed by FACS analysis 

(section 2.5). 

2.4.3 Synovial fluid mononuclear cell isolation 

Synovial fluid obtained by joint aspiration from RA patients was collected with 10 

I.U.lml heparin, then diluted 1:3 in complete Dulbecco's MEM. The mononuclear 

cell fraction was obtained using lymphoprep as before, and T cell enrichment was 
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performed as described above for peripheral blood. The non-adherent fraction was 

designated synovial fluid T lymphocytes (SFfL). The adherent fraction was retained, 

resuspended to 5xlOS cells/ml and plated in 96 well flat bottom plates (Nunclon) for 

cell-contact experiments (section 2.4.8). Cellular purity was assessed using 

cytopreps (section 2.6). 

2.4.4 Proliferation and cytokine production by human cells 

Proliferation assays were performed in triplicate in complete Dulbecco's MEM with 

25 mM HEPES and 10% FCS. 2x1Q5 PBMC, PBTL or SFfL in 100 ~1 were 

incubated in U-bottom 96 well culture plates (Nunclon microwell, Nunc. Denmark) 

for 24. 48, 72 or 96 hours. Stimulatory reagents or medium alone were added in a 

further 100 ~1 at twice the desired final concentration. 30 minutes after seeding of cells 

to culture plates. 1 ).1Ci of 3H-thymidine (Amersham Life Science, UK) in 25 ).11 

complete Dulbecco's MEM was added to each well during the final 6 hours of culture 

before harvesting onto a glass fiber filter (Packard, CT, USA) using a Micromate 196 

Harvester (Packard). 3H-thymidine incorporation was measured using a Matrix 96, 

Direct Beta Counter (Packard). Because background counts varied considerably 

between individuals (range from 100 cpm to 3000 cpm), proliferation was expressed 

as a stimulation index derived as follows: 

SI = (mean counts per minute test culture) I (mean counts per minute medium alone) 

Parallel triplicate cultures in identical conditions were performed in 96 well plates for 

analysis of cytokine production by PBMe, PBTL and SFTL following stimulation. 

Culture supematants were frozen at -700C at different time points indicated in figures 

and assayed for cytokine concentration by ELISA in single batches (section 2.9). 

Reagents included recombinant interleukin-15 (IL-15, donated by Dr D Cosman, 

Immunex Corporation, Seattle, USA), recombinant interleukin-2 (IL-2, R&D 

Systems. Oxon, UK) and phytohaemagglutinin (PHA, Murex Diagnostics Ltd, UK), 
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rabbit polyclonal anti-human IL-15 ('azide free', PeproTech, UK) and rabbit 

polyc1onal anti-human IL-2 ('azide free', Genzyme Diagnostics, MA, USA ). 

2.4.5 Nitric oxide production by monocytes in vitro 

Production of NO by human monocytes was investigated using adherent PBMC, 

prepared as above (section 2.4.2), or monocyte cell lines (U937, THP-l; European 

Collection of Animal Cell Cultures, Salisbury, UK). Cells were incubated in the 

presence or absence of stimuli in 48-well culture plates at various cell concentrations 

(106 to 4x106 /ml) in complete Dulbecco's MEM with 1 to 10% FCS for 24,48, 72 or 

96 hours. Supematants were frozen at -200C until assay for nitrite concentration 

using the Griess reaction (section 2.10.1). Stimuli used were SEB, LPS, IL-I~, 

IFN-y and TNFa as described in section 2.4.1. In some experiments, monocytes 

were first matured by incubation in 10 nM phorbol myristate acetate (PM A, Sigma) 

for 6 - 48 hours in 25 cm2 flasks, prior to addition of reagents. 

In the absence of a recognised human monocyte / macrophage line capable of NO 

production, control experiments were performed using the murine macrophage cell 

line 1774, which is known to produce nitrite after stimulation with 50 I.U.lml IFN-y 

and 10 ng/ml LPS. 1774 cells harvested as described (section 2.4.7) were suspended 

in 100 J.d complete RPMI, 5% PCS, at 2x105 /ml in flat-bottom 96 well plates 

(Nunc1on) and rested for 1 hour. Reagents were added in 100 Jll, then cells were 

incubated for 24 hours before measurement of nitrite concentration in the supernatant 

by Griess reaction (section 2.10.1). Stimuli were SEB, LPS and murine recombinant 

IFN-y (donated by Genentech Inc., CA, USA) at concentrations indicated in the text. 

500 JlM L-NMMA was used as an inhibitory control, to confirm the involvement of 

the L-arginine-dependent NOS pathway (Nathan & Xie, 1994a). 
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2.4.6 Murine spleen cell preparation 

Murine spleens were dissected, weighed, cut into 2 mm fragments in a 10 cm petri 

dish (Sterilin, Middlesex, UK) and gently minced through a tea strainer, using a 10 

ml syringe plunger. This cell suspension was washed three times in complete RPMI, 

passed through Nytex membrane to remove cellular aggregates and debris and 

resuspended to the desired concentration. 

Proliferation assays for spleen (SC) were performed in quadruplicate in U-bottom 96 

well culture plates (Nunclon) at 2x1OS cells/well in 100 ~ proliferation RPM! with 

10% FCS. Stimuli were added in 100 J.11 giving a final culture volume of 200 J.1l. 1 

J.1Ci of 3H-thymidine was added during the final 6 hours of culture and plates were 

harvested as described in section 2.4.4. Cytokine production by se was measured 

by incubating 4x106 cells in Iml of complete RPMI, 10% FCS, for various times in 

48-well culture p]ates, in the presence or absence of stimuli. Supematants were 

frozen at -70°C before cytokine assay in single batches (section 2.9). Stimuli 

included 0.1 to 10 J.1g1ml concanavalin A (Sigma) as positive control. Staphylococcal 

enterotoxin A (SEA), staphylococcal enterotoxin B and Toxic Shock Syndrome Toxin 

(TSST) -1 (all Sigma) and heat-killed staphylococcus aureus LS-l (gift from Dr C. 

Gemmell, Dept. of Bacteriology, University of Glasgow) were used during in vitro 

studies of staphylococcal infection in iNOS deficient mice at concentrations indicated. 

Superantigens were resuspended to 1 mglml in RPM!. 10% PCS, and filter sterilised 

before dilution and use in culture. 

2.4.7 Cell line maintenance 

Human and murine monocyte (THP-l, U937 & 1774) celllines (ECACC) were 

maintained in complete RPMI with 10% PCS between 2x105 and 5x105 cells/ml with 

sub-culture every 2-3 days. CTLL cells (donated by Prof A. Bradley, Dept. Surgery, 
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University of Glasgow) were cultured in complete RPMI, 10% FCS supplemented 

with 10 I.U.lml murine recombinant IL-2 (Genzyme Diagnostics, MA, USA) 

between 1()5 and 5x105 cells/ml, with sub-culture every 2-3 days. For functional 

assays, cells were washed twice before suspension to the desired concentration and 

addition of indicated stimuli. 1774 cells are normally adherent and were harvested by 

cell scraper, then rested for at least 1 hour, after harvesting and washing, prior to 

addition of stimuli. Cell lines were regularly tested for mycoplasma (Mycoplasma 

PCR ELISA kit, Boerhingcr Mannheim, Germany). Cells were stored in 90% FCS; 

10% dimethyl sulfoxide (DMSO) in liquid nitrogen. 

2.4.8 Cell contact protocols 

The ability of T lymphocytes to regulate the pro-inflammatory activity of macrophages 

by direct cell-membrane contact may be investigated by fixing T cells after activation, 

but prior to co-incubation with macrophages (Vey, et al, 1992; Lacraz, et al, 1994). 

PBTL were cultured in 25 cm2 flasks (Costar) for 72 hours in 5% FCS, in the 

presence of medium alone, rIL-15 (100 ng/ml), rIL-2 (lOO ng/ml), rIL-8 (100 ng/ml; 

R&D Systems), rMIP-la (lOO ng/ml; donated by Dr G.l. Graham, CRC Beatson 

Institute, Glasgow, UK) or, as positive control, a combination of 1 J.1g/ml PHA, and 

1 nM phorbol myristate acetate (PMA; Sigma). Cells were washed thrice then fixed 

for 2 hours in filter sterilised (Millex-GV, Mi1lipore, France) 1 % paraformaldehyde in 

phosphate buffered saline (PBS; Sigma) at 40 C with gentle agitation. SFfL were 

prepared in identical conditions but were cultured with or without stimulus for only 24 

hours before fixation. Fixed cells were washed thrice, resuspended to 4x106 cells/ml 

in RPMI, then immediately added in equal volume to 5xl05 cells/ml of either 

unprimed U937 cells, PB monocytes (section 2.4.2) or adherent synovial fluid 

derived macrophage I synoviocyte co-cultures (section 2.4.3) in 10% FCS in flat

bottomed 96 well plates (Nunc1on). After a further 48 hours, supematants were 

harvested and stored at -700C prior to TNFa estimation by ELISA (section 2.9.2). 
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The in vivo capacity for cell-contact mediated macrophage activation by synovial 

lymphocytes was further investigated by direct fixation of freshly isolated synovial 

mononuclear cells (SFMC). Synovial fluid was prepared through lymphoprep as 

before, then SFMC were cultured for 30 mins in 10% FCS in 25 cm2 flasks (Costar), 

after which the non-adherent cells were fixed in 1 % PFA. 4x106 fixed cells Iml were 

cultured with U937 cells as described above. Supematants were collected after 48 

hours for TNFa estimation. 

Double chamber culture was performed in parallel experiments. PBTL were 

stimulated for 72 hours as described, then added without fixation at 4xl06 cells/m I to 

U937 cells at 5xlOS cells/m!. Identical cultures were established in which PBTL were 

separated from U937 cells by a culture-well insert (Falcon, Becton Dickinson) with a 

porous membrane, which prevented cell-contact but allowed soluble factor mediated 

communication. Supematants were harvested after a further 48 hours and TNFa 

concentrations estimated by ELISA. 

Some experiments were modified to investigate the contribution of surface markers to 

T cell I macrophage communication following IL-15 mediated activation of T cells 

(Isler, et al, 1993). Antibodies against CD69 (Becton Dickinson), LFA-l and ICAM-

1 (both donated by Dr N. Hogg, Imperial Cancer Research, London, UK) were 

diluted to 50 ~g/ml in PBS. Fixed T cells were pelleted by centrifugation at 250g for 

10 minutes, then suspended in 180 ~l medium, to which was added 20 ~l of 

neutralising antibody (final concentration 5 ~glml), or control murine monoclonal 

IgG 1 (DAKO, Denmark) at equivalent concentration. Cells were incubated at 4°C for 

30 minutes, washed twice in cold Dulbecco's MEM and adjusted to 4x106 Iml. These 

cells were added to monocyte preparations as before. These cultures were 

supplemented with 5 ~glml human IgG (Sigma) to reduce non-specific Fc binding by 

cell bound antibody. In some experiments, increased concentrations of neutralising 

antibodies were employed up to a final concentration of 50 ~glm1. 
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2.4.9 Whole Blood Culture 

Phenotypic maturation of peripheral blood lymphocytes to recombinant IL-15 or 

mitogens was investigated using FACS analysis by modification of a whole blood 

culture method (Bocchieri, et aI, 1995). Blood was withdrawn, heparinised (10 

I.U.lml) and immediately diluted 1:5 in complete Iscove's medium. After addition of 

rIL-15 (100 ng/ml), rIL-2 (lOO ng/ml) or PHA (lJlg/ml) to the diluted blood, triplicate 

cultures (500 ,.u each) in 48-well culture plates were established and incubated for 3, 

6, 24, 48 and 72 hours. Unstimulated, diluted blood was withheld to serve as 'time 

0' negative control and analysed within 30 minutes of venesection. FACS analysis of 

these cultures was performed as described below. 

2. 5 FA CS analysis 

2.5. 1 Analysis of Iymphocyte phenotype after whole blood culture 

Double immunofluorescence staining of peripheral blood lymphocytes following 

stimulation with cytokines or mitogens was performed by FACS analysis. 200 JlI of 

blood I Iscove's culture prepared and stimulated as described above were placed in a 

12 x 75 mm polystyrene tube (Falcon 2052, Becton Dickinson, UK). Primary 

antibodies employed were as follows: CD3 (FITC and PE), CD56 (PE), CDl6 (PE), 

CD69 (FITC and PE), CD45RA (FITC), CD45RO (PE), CD19 (FITC) (all Becton 

Dickinson). 10 JlI of primary antibody were added to cells at 4°C for 30 minutes. 

Negative control primary antibodies (IgG 1 FITC, IgG I PE; DAKO) of appropriate 

isotype and conjugate were added to parallel tubes and were similarly processed. 2 ml 

FACSR Brand Lysing Solution was added (1:10 dilution of commercial stock 

contained 5% diethylene glycol, 1.5% formaldehyde; Becton Dickinson), vortexed for 

5 seconds, then cells were incubated for 10 minutes at room temperature in the dark to 

facilitate erythrocyte lysis. Leukocytes were recovered by spinning at 300g for 5 
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minutes, then washed with 1 ml FACSFlow (Becton Dickinson) at 200g for 5 

minutes. Cells were resuspended in 200 J.11 FACSFlow and analysed on a FACScan 

(Becton Dickinson). Gates were set for lymphocytes using forward and side light 

scatter parameters. The percentage of mc or PE positive cells, or of double labelled 

cells, was generated for lymphocytes within this region using Lysis 11 software 

(Becton Dickinson). 

2.5.2 Human cell subset analysis 

Cell preparations from peripheral blood, synovial fluid and tissues were analysed 

using FACS to determine cellular purity. Single cell suspensions were adjusted to 

106 /ml in serum free medium, then 100 J.11 were incubated with 5 J.11 of FITC or PE 

labelled primary antibody in separate tubes (CD3 PE, CD14 FITC, CD19 FITC; 

Becton Dickinson) for 15-30 minutes at 4°C in the dark. Cells were washed in 1 ml 

FACSFLow at 200g for 5 minutes, then analysed as described before. Both 

lymphocyte and monocyte regions, determined by forward and side light scatter 

parameters, were examined to identify cell subsets present. 

2.5.3 Murine spleen cell analysis 

Murine spleen cell suspensions prepared as described (2.4.6) were cultured for 24 

hours with or without SEA (100 ng/ml) or TSST-l (lOO ng/ml). Cells were 

harvested by pipette (Pl000 Gilson, UK), washed once in serum free RPMI, then 

100 J.Ll of 106 cells/ml were incubated with 5 J.Ll of antibody for 20 minutes at RT in the 

dark. Anti-murine CD4 (PE), anti-murine CDS (FITC) and IgG 1 negative control 

antibodies were obtained from PharMingen (USA). After incubation, 1 ml FACSR 

Brand Lysing solution was added for 10 minutes, spun at 300g for 5 minutes, than 

washed once in 1 ml FACSFlow at 200g for 5 minutes. Cells were analysed as 

before in the lymphocyte region gated by forward and side light scatter parameters. 
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2.6 Immunohistochemistry 

Tissue from RA or OA patients undergoing arthroplasty or arthroscopy was collected 

in theatre and processed immediately. Approximately 5 mm fragments of synovial 

membrane were dissected, placed in mounting medium (Cryo-M-Bed, Bright 

Instrument Company Ltd, Cambs, UK) on cork disks and snap frozen in liquid 

nitrogen. Samples were stored at -700C until required. 

Glass microscope slides were soaked overnight in 2% Decon 90 (Decon Labs Ltd, 

UK), then rinsed in tap water for 3 hours before air drying. Slides were dipped in 

2% silane (3-aminopropyltriethoxysilane, Sigma) in acetone for 4 minutes, rinsed in 

running tap water for 6 minutes, then air dried. 4-6 J.l.ffi frozen sections were cut onto 

silane coated slides at -200C using either a Bright 5030 Microtome, or a Leica 

CM1800 cryostat and immediately fixed by immersion in acetone (BDH Lab 

Supplies, Poole, UK) at 4°C for 15 minutes. Sections were air dried for 10 minutes 

and stored at -200C in an air I moisture tight container before use. 

Primary, secondary and negative control antibodies which were used, their source, 

species of origin, isotype and final working dilution are detailed in tables 2.1 to 2.3. 

2.6.1 Alkaline phosphatase staining 

Frozen sections were rehydrated in Tris buffered saline, pH 7.36 (TBS), for 10 

minutes and non-specific, Fe-mediated immunoglobulin binding was blocked with 

25% normal goat serum (NGS) I normal pooled human serum (PHS) (both supplied 

by SAPU, Scotland, UK) in TBS, for 30 minutes at room temperature. All 

incubation steps were performed in a humidified slide container (Shandon). For all 

washes, slides were placed in a slide rack in 250 ml TBS at room temperature with 

gentle agitation for 5 minutes. Primary antibody (Table 2.1), diluted as required in 
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10% NOS I PHS was then incubated in 1O01l1 volume, overnight at 4°C. Sections 

were washed twice for 5 minutes before incubation with secondary biotinylated goat 

anti-immunoglobulin antibody of appropriate species specificity (Table 2.2), diluted in 

10% NOS I PHS, for 1 hour at room temperature. After two further washes, alkaline 

phosphatase conjugated streptavidin, diluted 1:100 (51lg/ml, DAKO), was added for 

1 hour at room temperature. Sections were washed once and bound antibody detected 

by incubation under light microscopic observation for up to 10 minutes with either 

Fast Red solution (Vector Laboratories, UK) per the manufacturers instructions, or 

with fast red salts prepared as follows. Fast red salt (Sigma) was dissolved to 1 

mg/ml in TBS, pH 8.2 containing 1 mg/ml naphthol-AS-MX phosphate (Sigma) and 

5% N.N.-dimethyl form amide (Sigma). Levamisole (Sigma) was added to 0.001 M 

final concentration to inhibit endogenous tissue alkaline phosphatase activity, and the 

solution was filtered prior to use (Millipore). Finally, sections were dipped in 

Harris's haematoxylin (BDH) for 8-12 seconds to provide a nuclear counterstain and 

mounted using pre-warmed aqueous mounting medium (OlycergeFM, DAKO). 

2.6.2 Con-focal microscopy 

To identify the cell subsets expressing inducible nitric oxide synthase (iNOS) within 

the synovial membrane, double immunofluorescence staining was performed with 

visualisation by con-focal microscopy. 4 Ilm synovial sections were cut, fixed and 

blocked as before. Primary rabbit anti-human iNOS antibody (N053, Merck, Table 

2.1) was incubated on sections overnight at 4°C, then with either murine monoclonal 

anti-CD3 or anti-CD68 antibody for 1 hour at room temperature. Sections were 

washed twice, incubated for 1 hour with biotinylated goat anti-rabbit immunoglobulin 

antibody (DAKO), washed again in TBS, and finally incubated for 1 hour with PE

conjugated streptavidin (DAKO, 5 Ilg/ml) in combination with FITC-conjugated Fab2 

goat anti-mouse immunoglobulin (DAKO). Sections were washed for 15 minutes in 

TBS and mounted in Permafluor (Immunotech SA, France), before storage at -200C 
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until visualisation by con-focal microscopy. Histological fields of interest were 

selected by direct immunofluorescence (Nikon Optiphot-2), then con-focal images 

were acquired (BIORAD MRC1024, Herts, UK). 

2.6.3 Non specific esterase (NSE) double staining with 

anti human iNOS 

NSE may be visualised by incubation with a-naphthyl acetate or butyrate substrate 

and localises predominantly to macrophages with a characteristic cytoplasmic pattern, 

allowing distinction from lymphocyte expression (Meuller, et aI, 1975). 4 J.1m 

sections were stained with rabbit polyc1onal anti-human iNOS antiserum (Merck) as 

described above, but developed with fast blue (Vector, UK), without counterstain, to 

provide subsequent contrast with NSE staining (red-brown). Acid a-naphthyl acetate 

esterase stain (ANAE) was prepared as follows. Hexazotized pararosaniline was 

freshly prepared by mixing equal volumes of 4% sodium nitrite (BDH) with 40 mg/ml 

pararosaniline chloride (Sigma). The reaction mixture consisted of 10 mls 0.067 M 

phosphate buffer, pH 5.0 (9.85 ml 0.067 M KH2P04, pH 5.0 added to 0.15 ml 

0.067 M Na2HP04,2H20 [appendix ID, to which was added 600 J.11 (6%) 

hexazotized pararosaniline and 100 J.11 (1 %) 25 mg/ml a-naphthyl acetate (Sigma) 

dissolved in acetone (BDH) (10 mg dissolved in 400 J,ll). Before use this was 

adjusted to pH 5.8 by addition of a few drops of 2 M sodium hydroxide (BDH). 

Initial experiments identified the formation of non-specific, dark brown precipitates on 

synovial tissues. This was overcome by optimising the incubation time to 20 minutes 

and by centrifuging the reaction solution at lO,OOOg for 1 minute prior to addition to 

tissue. Sections were incubated with 200 J.ll of reaction solution for 20 minutes at 40 C 

in the dark, then washed extensively in running tap water before mounting in 

glycergel without nuclear counterstain. 
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2.6.4 Murine Articular and Footpad Histology 

Hind limbs were removed above the knee and immediately fixed in 10% neutral 

buffered formalin for at least 72 hours. Paws were decalcified in 5% HN03 for a 

further 72 hours, then 6 J.l.m sections were cut using a bone cryostat (by Mr P. Kerr, 

Pathology Department, University of Glasgow). Sections were stained with 

haematoxylin and eosin using the standard method of the Department of Pathology, 

University of Glasgow. Immunohistochemical characterisation of the inflammatory 

infiltrate following rIL-I5-induced chemotaxis was performed using peroxidase 

detection to avoid the strong endogenous alkaline phosphatase activity observed in 

skin, glands, bone and cartilage in murine paw specimens. Sections prepared as 

above were rehydrated through xylene (BDH) and progressively dilute alcohols 

(100%,90% x2, 70% x2, TBS) then treated with 0.3% hydrogen peroxide (DAKO) 

for 10 minutes to block endogenous peroxidase in tissues. Thereafter, tissues were 

stained as described in section 2.6.1, using rabbit polyclonal anti-CD3 antibody 

(DAKO) and horseradish peroxidase-conjugated streptavidin (DAKO), diluted 11100, 

to detect bound antibody. Staining was visualised by developing for 5 minutes in 0.5 

mg/ml diaminobenzidine (Sigma) containing 0.03% hydrogen peroxide, followed by 

haematoxylin nuclear counterstain. 

2.6.5 Control Experiments 

Parallel sections were stained with negative control antibodies to conflrm speciflcity of 

primary antibody binding. Murine monoclonal primary antibodies were controlled 

with isotype matched monoclonal antibodies of irrelevant speciflcity (DAKO) used at 

equivalent concentrations (Table 2.3). Similarly, equivalent concentrations of purified 

rabbit immunoglobulin (DAKO) or 20% higher concentrations of non-immune rabbit 

serum (SAPU) served as controls for primary rabbit polyclonal antibodies and 

antisera respectively (Table 2.3). 
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Tissues were pre-blocked with normal goat serum. Goat secondary antibodies, which 

had been previously solid-phase absorbed against human immunoglobulins, were 

used to reduce background staining. The secondary antibodies utilised did not bind 

tissues in the absence of primary antibodies at the concentrations indicated in the 

above protocol. In double immunofluorescence staining for confocal studies, parallel 

sections were stained with several combinations of primary and secondary antibody to 

exclude the possibility of cross reaction. Thus, primary murine monoclonals were not 

detected by secondary goat anti-rabbit immunoglobulin antibodies, even in the 
'. 

presence of normal rabbit serum, and primary rabbit polyc1onal antisera were not 

detected by secondary goat anti-mouse immunoglobulin antibodies. Streptavidin 

conjugates, either alone, or in the presence of secondary antibodies, did not bind 

tissues directly. 

Neutralisation of primary antibody staining for IL-15 and iNOS was carried out. 

(i) Human rIL-15 served as positive control for M112, which was originally raised 

against simian IL-15 (Grabstein, et al, 1994), and human rIL-2 (R&D Systems) was 

used as a likely candidate for cross-reactivity, given the similar quaternary structure 

and shared receptor specificity with IL-15 (reviewed by Tagaya, et aI, 1996a). A 

dose range (0.5 - 100 ~glml) of each cytokine was used. 

(ii) Various peptides were used to test the specificity of iNOS detection. The 

immunising human iNOS peptide YRASLEMSAL (50 J,lg/ml) and iNOS peptide from 

a similar area of the C-terminus ofrat iNOS YEEPKATRL (50 J.lg/ml) were gifts from 

Dr. R.A. Mumford, Merck Research Laboratories, USA. Recombinant human eNOS 

(50 J.lg/ml) was donated by Dr. I. Charles, Wellcome, UK. Primary antibodies were 

incubated with or without peptide I recombinant protein, either overnight at 4°C, or 

for 2 hours at 37°C, in 10% NGS I PHS in TBS, pH 7.36, before addition to 

sections for subsequent staining as described (section 2.6.1). 
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2.6.6 Quantification of histology 

Quantitative light microscopy was performed on a Laborlux S microscope (Leitz, 

Germany) with an additional 'teaching' binocular eye piece, which allowed two 

observers (Or M. Field and the author) to count cells simultaneously in high power 

fields (x250 magnification). Synovial tissues were divided into three areas (Duke, et 

al, 1982; Cush & Lipsky, 1988): 

• lining layer 

• aggregate area 

• interstitial layer 

In alkaline phosphatase stained RA and OA synovial sections, representative high 

power fields were selected and positive cells were counted in each of the above areas 

as a percentage of the total number of nuclei found in that field. If possible, 200 

nuclei were counted from each field and at least three fields were counted per section, 

with more selected in relatively acellular tissues. Observers were blind to whether 

positive or negative antibody was used and to the clinical diagnosis. Positive cells 

were those in which discrete staining could be localised to a single nucleus. 

Aggregate areas were not found in OA synovial tissues and direct comparison with 

RA in that respect was not possible. Otherwise, OA tissues were used as a disease 

control for RA tissues. Appropriate 'normal' synovial tissue was unfortunately 

unavailable and was not, therefore, included in this study. In double stained sections 

(NSE plus iNOS), the number of single stained cells I field was determined for each 

stain, then double stained cells were counted. The percentage of double stained cells 

for each specific cell subset was calculated as follows: 

number of double stained cells xl 00 
number of double + single stained cells for each marker 

Murine footpad histology after rIL-15 injection (section 2.7.2) was quantified by 

determining the number of infiltrating inflammatory cells in a high power field, and 
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expressing this observation as a percentage of the total number of cells in the same 

field. CD3 positive, peroxidase stained cells in similar sections were scored as a 

percentage of the total number of cells in the same high power fields (x400). 

2.6.7 Photo-micrography 

Photo-micrographs were obtained using an Orthoplan photo-microscope (Leitz, 

Germany) in the Medical Illustration Department, GRI. Colour prints were made on 

EKT AR 25 film (Kodak, UK), and in some experiments, 35mm colour slides were 

made with Ektachrome 64T film (Kodak) and colour prints were subsequently 

developed commercially. 

2.7 Animal Models of Inflammation 

2.7. 1 Staphylococcus aureus arthritis in mice. 

MFl Swiss mice are susceptible to induction of staphylococcal arthritis (Bremmell, et 

al, 1992). The iNOS gene targeted mice recently developed by Wei et al (1995) on a 

129xMFI background, allowed detailed analysis of the effect of NO deficiency in this 

model in the context of normal cNOS activity. Bremmell strain (LS-l) 

Staphylococcus aureus were obtained from Dr C. Gemmell (Dept. of Bacteriology, 

University of Glasgow) and 107 CFU to 108 CFU/mouse were injected intravenously 

via the tail vein in 50 III PBS. Male and female mice aged 3-4 weeks were used 

(provided by Dr X.Q. Wei, Dept. of Immunology, University of Glasgow) caged in 

groups numbering four to six animals, fed standard chow and water ad libitum. Wild 

type 129xMFl (iNOS+/+) and iNOS mutant heterozygote 129xMFl (iNOS+/-) 

served as control groups for comparison with the iNOS mutant homozygote mice 

(iNOS-/-). Mice were observed (blind to treatment / innoculation) for up to 14 days 

for development of arthritis and for clinical signs of septicaemia. 



(i) Arthritis 

Arthritis progression was monitored daily using the following criteria: 

incidence of arthritis 

weight change 

number of limbs involved I mouse 
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footpad I inter alveolar diameter - calliper measurement (Kroeplin, Germany) 

articular index - 3 points I limb, totall2! mouse derived as follows by a 

treatment blinded observer: 

erythema alone (1) 

swelling and erythema (2) 

erythema, swelling, and extension I loss of function (3) 

Mice were observed for up to 14 days before sacrifice, required at that time point by 

Home Office guidelines. 

(U) Septicaemia 

Septicaemia was assessed by the presence of the following: 

stary coat (I) 

hunched posture (I) 

loss of spontaneous movement (1) 

mucocutaneous abscess (1) 

Using these signs, a summative 'septic index' (maximum 4 Imouse) was derived for 

each animal. This index correlated with loss of, or failure to gain, weight from base 

line and with mortality (Chapter 6). Further assessment by articular histology (section 

2.6.4) and measurement of staphylococcal specific responses in spleen cell cultures 

(section 2.4.6) was performed in some experiments as described before. 

Staphylococcal viability was estimated by organ culture as follows. Groups of 3 mice 

were sacrificed 3, 7 and 11 days after Lv. staphylococcal injection. Spleens and 

kidneys were removed aseptically, homogenised, then submitted to serial ten-fold 
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dilutions in sterile PBS. 200 ,.Ll blood was similarly diluted in PBS. Each dilution 

was plated out on 5% blood agar plates (Dept. of Bacteriology, OR!) and cultured 

overnight at 37°C. Plates in which at least 100 distinct colonies were observed were 

counted and the original number of CPU present in blood or tissue was derived from 

the dilution factor. CPU were expressed per ml of blood, or per tissue. 

(iii) Staphylococcal killing assays 

Staphylococcus aureus LS-1 (107 CPU/ml) diluted in gel-Hanks (working solution 

prepared as follows; 80 mls dH20, 10 mls IOx Hanks, 10 mls 1 % gelatin [SigmaD 

were opsonised by mixing with an equal volume of murine plasma prepared from 

iNOS-/- controls for 15 minutes at 37°C. Bacteria were resuspendcd in gel-Hanks to 

107 CFU/ml after cenrifugation at 3000 rpm for 15 minutes. Pooled blood was 

obtained from 4 iNOS-/- mice and from 4 iNOS+/- controls, heparinised (10 

I.U.lml), then 100 ~ was added to 100 III of opsonised bacteria. The mixture was 

incubated for 0, 30, 60 or 90 minutes at 37°C at which point, cells were lysed by 

addition of 3 mls of sterile ice cold water. The resulting solution was diluted ten-fold 

and plated in pairs onto 5% blood agar plates for 18 hours at 370C. The percent 

killing at time x was calculated as follows: 

mean CPU in time x culture x 100 
mean CPU in time 0 culture 

2.7.2 Footpad Lymphocyte Invasion Model. 

The capacity of IL-15 to recruit T lymphocytes in vivo was investigated in a murine 

footpad invasion model. Male DBAl1 mice, aged 8-10 weeks, were injected 

intraperitoneally with 500 mg of Corynebacterium parvum (donated by Prof. P.C. 

Wilkinson, Dept. of Immunology, University of Glasgow) in 100 III PBS and seven 

days later, received 500 ng rIL-15 in PBS, or PBS alone as a control, by 50 III 

injection to the hind footpad. Control mice which had been given no C.Parvum 

received IL-15 or PBS injection as a further control. C. parvum was used because 
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earlier studies (Wilkinson & Liew, 1995) showed that primed T cells responded more 

strongly to IL-2 and IL-15 in vitro, in chemotactic assays. Paws were collected 16, 

48 and 72 hours after injection, fixed in 10% neutral buffered formalin, decalcified 

and examined histologically as described in section 2.6.4. Draining lymph nodes 

were collected, cleaned and weighed, and then examined by light microscopy after 

H&E staining. 

To exclude the possibility that any observed inflammatory infiltrate was due to 

contaminating lipopolysaccharide, rIL-15 was tested for the presence of endotoxin by 

limulus amebocyte lysate assay (E-toxate, Sigma, UK) as per the manufacturers 

instructions. 500 ng IL-15 was found to contain less than 0.0015 I.U. endotoxin in 

this assay. 

2.8 RT ·peR for mRNA expression in synovial tissue. 

Fragments of synovial tissue were snap frozen immediately after surgical excision and 

stored at -700C. Synovial fluid cells were pelleted by centrifugation at 450g for 10 

minutes, immediately resuspended in 400 J.lI RNAzolTM (Biogenesis, Bournemouth, 

UK) and were also snap frozen and stored at -70°C. Reverse transcription

polymerase chain reaction (RT-PCR) was performed as previously described 

(Kawasaki, 1990) and modified by Dr D. XU and Mr B.P. Leung (Dept. of 

Immunology, University of Glasgow), whose technical assistance is gratefully 

acknowledged. 

2.8.1 RNA extraction 

Total mRNA was extracted using RNAzoFM (Biogenesis) as described (Chomczynski 

& Sacchi, 1987). Frozen tissue fragments, or synovial cell pellets, were disrupted in 

800 J.i.l RNAzol using a PlOOO Gilson Pipette. To this was added 80 J.i.l chloroform 
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(Sigma) followed by vortexing for 15 seconds and rest on ice for 5 minutes, before 

centrifugation at 12,OOOg for 15 minutes at 4°C. The aqueous phase was added to an 

equal volume of isopropanol (Sigma), rested at 4°C for 15 minutes, then spun at 

12,OOOg for 20 minutes at 4°C. The pellet was resuspended in 800 III ice-cold 75% 

ethanol, spun at 12,OOOg for 8 minutes, dried under vacuum for 10 minutes, then 

resuspended in 20 III distilled water. RNA concentration was determined by its 

optical density at 260nm and 280nm (Sambrook, et aI, 1989) per the following 

formula: 

- [(62 x Od260) - (36 x Od280)] x dilution of sample = "RNA" Ilglml 

2.8.2 cDNA preparation 

cONA was prepared using the following mixture: 0.5 III 40 I.U.lJ.1l RNasinR RNase 

inhibitor (Promega), 2 III containing 0.5 Ilg random primer (Promega), 4 III 5x RT 

buffer (375 mM KCI, 15 mM MgCI2, 250 mM Tris-HCI, pH 8.3), 2 III containing 

0.25 IlM of each dNTP (Promega), 2 J.1l1O mM OTT (Promega) and 1 III containing 

200 units Moloney murine leukaemia virus reverse transcriptase (Gibco BRL). 2 Ilg 

RNA in 8.5 III was heated to 900C for 5 minutes, cooled on ice then added to the 

above mixture giving a final volume of 20 Ill. After sitting at room temperature for 10 

minutes, the reaction was performed at 37°C for 1 hour. 

2.8.3 Polymerase Chain Reaction (peR) 

PCR was performed as follows. 2 III of the above reverse transcription reaction 

mixture, or around 0.1 Ilg cONA, was mixed with 10 J.1llOx reaction buffer (500 mM 

KCI, 15 mM MgCI2, 0.01 % gelatine, 100 mM Tris-HCI pH 8.3), 2 III containing 

0.2-0.3 IlM of each primer, 4 III containing 40 IlM of each dNTP (Promega), and was 

then made up to 99.5 III with water. This mixture was heated to 95°C for 5 minutes 

then cooled on ice before addition of 0.5 III Taq DNA polymerase (Promega) and was 
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overlaid with 50 III mineral oil (Sigma). A Techne PHC-3 Dri-Block Cycler was 

programmed to give the desired cycle conditions detailed below with respective 

primers used. After the PCR, 20 III of the reaction product was visualised by 

electrophoresis on 1 % (w/v) agarose gel containing 0.5 Ilg/ml ethidium bromide 

(Sigma) with a DNA 1 kb ladder. 

Oligonucleotide primers specific for human iNOS were a gift from Dr I. Charles 

(Wellcome, Beckenham, UK) - 5'-GCCTCGCTCTGGAAAGA-3' and 5'

TCCATGCAGCAACCTT-3' and were used to amplify a 500 bp fragment. Human 

chondrocyte iNOS cDNA (Or I. Charles) and ~-actin oligonucleotide primers - 5'

CCACACTGTGCCCATCTACGAGGGGT-3' and 5' -AGGGCAGTGATCTCCTTC 

TGCATCCT-3' (Genosys, Cambridge, UK) were used as internal controls. Reaction 

conditions for iNOS and ~-actin PCR amplification were 95°C (35 secs), 55°C (60 

secs), 72°C (120 secs) for 35 cycles. The double nucleotide sequence of the PCR 

product was derived by Dr X.Q. Wei (Dept. of Immunology, University of Glasgow) 

and found to be identical to that predicted from human chondrocyte iNOS (Charles, et 

al1993; Genbank database No X73029). 
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2.9 Cytokine assays 

2.9.1 IL-15 ELISA 

IL-I5 in synovial fluid and culture supernatants was detected using a sandwich 

enzyme linked immunosorbent assay (ELISA). Immulon 4 micro-ELlS A plates 

(Dynatech, Virginia, USA) were coated with 50 ~l monoclonal anti-IL-I5 antibody 

(MII2, 5 ~g/ml) in bicarbonate coating buffer (O.IM NaHC03), pH 8.2 incubated at 

4°C overnight. Between each of the following steps the plates were washed at least 

four times with PBS /0.05% Tween 20. Non-specific binding was blocked with 200 

~ PBS containing 1 % bovine serum albumin (BSA, Sigma) and 2% heat inactivated 

goat serum (SAPU) for 2 hours at room temperature (blocking buffer). 

Subsequently, 100 ~ test samples or standard recombinant human IL-I5 (three-fold 

dilutions from 100 ng/ml to 50 pg/m!) were diluted in blocking buffer and incubated 

either at room temperature for 4 hours, or at 4°C overnight. Bound IL-I5 was 

detected using 100 ~l rabbit anti-human IL-IS antibody (2 ~g/ml, PeproTech) for 1 

hour at room temperature, followed by 100 ~l alkaline phosphatase-conjugated goat 

anti-rabbit (1:5000, Sigma) for 1 hour, developed with p-nitrophenyl phosphate (1 

mg/m!) in IM Tris, 3 mM MgCl2 buffer and the optical density read at 630 nm 

(reference filter 405 nm) using an MR5000 ELISA reader (Dynatech, UK). The 

lower limit of detection of the assay was 1 nglml (Figure 3.1). 

2.9.2 General ELISA protocol 

Human TNFa and murine TNFa, IFN-y. IL-4 and IL-6 were detected in culture 

supernatants or serum by ELISA, with paired capture and biotinylated detection 

monoclonal antibodies for each cytokine (pharMingen). Immunolon 4 micro-ELlS A 

plates were coated overnight at 4°C with capture monoclonal antibody at 2 J,lglml in 

bicarbonate coating buffer. Wash steps were performed as described above. Plates 
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were blocked with PBS 110% Fes (Gib co BRL) for 2 hours, incubated with test 

samples, or twofold standard dilutions of recombinant cytokine (10 ng/ml- 10 pg/ml) 

in triplicate for 2 hours, and bound cytokine was detected for 1 hour with 1 J.1g/ml 

biotinylated detection monoclonal antibody diluted in blocking buffer. Peroxidase

conjugated extravidin was added for 45 minutes (1:1000; Sigma), developed with 100 

J.lI TMB Microwell Peroxidase Substrate (Kirkegaard & Perry Laboratories, MA, 

USA) and the plate was read at 630nm as above. The lower limit of detection in each 

assay was as follows:-

hTNFa 

mTNFa 

mIFN-r 

mIL-4 

mIL-6 

2.10 NO measurement 

10 pg/ml 

10 pg/ml 

30 pg/ml 

40 pg/ml 

20 pg/ml 

Nitric oxide (NO) production may be estimated by measuring the concentration of its 

oxidative products, nitrite or nitrate anion (Archer, 1993). 

2.10.1 Griess reaction 

This is a colorimetric assay for nitrite concentration (Green, et al, 1982). Reagents 

were prepared as follows: solution A - 0.1 % a-naphthyl-amine (Sigma) in distilled 

water and solution B-1 % sulfanilamide (Sigma) in 5% phosphoric acid (Sigma). 

Both were stable stored in the dark at 40 C for 2 months. The Griess reagent was 

obtained by mixing equal volumes of solution A and B immediately prior to use. A 

sodium nitrite stock solution (10 J.lglml, Sigma) was diluted twofold to provide a 

standard curve (72.5 nmol/ml- 1 nmol/ml). The assay was performed in triplicate, by 

placing 50 III of either test culture supematant, or standard dilutions of nitrite in 
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identical medium, into a flat bottom 96 well plate, after which 50 J,Ll Griess reagent 

was added to each well. The plate was incubated for 10 minutes at room temperature 

in the dark, and thereafter, the colorimetric reaction was measured at 570nm 

(reference fllter at 630 nm) in an MR5000 ELISA reader (Dynatech) and the test nitrite 

concentration estimated from the standard curve. The lower limit of sensitivity was 2 

nmollml. 

2.10.2 Chemiluminescence assay for nitrite I nitrate 

The presence of high protein concentrations in serum and synovial fluid leads to 

precipitation in the acid pH environment of the Griess reaction. This may interfere 

with colorimetric assessment, therefore, a chemiluminescent assay for nitrite was also 

used (Aoki, 1990; Palmer, et aI, 1987). A reflux reaction was created by 

continuously boiling 75ml glacial acetic acid (BDH) with 25ml 6% sodium iodide 

(BDH) in a 250ml Pyrex reaction flask, through which was passed a low flow of 

nitrogen gas. 50 or 100 J,Ll of either test sample, or standard nitrite solution prepared 

as above, was injected directly into the reaction flask using a Hamilton syringe 

(Sigma). N02 - in the sample is immediately reduced to NO·, which is carried in 

gaseous phase through a condenser and a cold trap, created with a glass U-tube 

surrounded by "dry ice" to remove acetic acid vapour, and on to a chemiluminescence 

NO analyser (Dasibi Environmental Corporation, Japan). NO reacts with ozone 

causing photoemission which may be detected and converted to a digital readout. The 

photomultiplier signal is proportional to the nitrite concentration in the original 

sample, allowing the generation of a standard curve and estimation of nitrite 

concentration in test samples. Sensitivity for this assay was 2 nmollml nitrite. 

Nitrate concentration in biological fluids may be estimated by first reducing nitrate to 

nitrite using the enzyme nitrate reductase (Sigma). To measure 50 samples, reaction 

buffer was prepared as follows: 500 ~15 mg/ml NADPH (Sigma), 500 J,Ll4.15 mg/ml 
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FAD (Sigma), 500 JlI KH2P04, pH 7.5,950 JlI distilled water and finally, 50 JlI 34 

mg/ml nitrate reductase, immediately after which 30 J.1l reaction buffer was added to 

30 JlI sample in a flat bottom 96 well plate. The reaction was incubated at 37°C for 2 

hours, after which nitrite produced was measured by chemiluminescence as described 

above. Standard curves for sodium nitrite and sodium nitrate were included in the 

reductase reaction to provide a control for the efficiency of the reduction. This was 

calculated for the conversion of 100 JlM sodium nitrate to sodium nitrite as shown 

below and was routinely >75%. 

% reduction nitrate = (ppb nitrite I ppb nitrate) x 100 

2.11 Statistical Analysis 

Data were collated and statistical analyses performed using Minitab software for 

Macintosh. Means were compared using either a two-tailed student's Hest or the 

Mann-Whitney test. Paired data were compared using the paired student's Hest, or 

using Wilcoxon's signed sum of ranks test. Tabulated data were submitted to the 

Chi-squared test Significance was accepted at p<0.05. 
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Table 2.1 Primary antibodies used for immunohistochemistry 

Antibody Specificity' Host Species Type Presentation Dilution! Source 
concentration 

UCHTI hCD3 mouse JgGI supematant 11100 DAKO 

HD37 hCDl9 mouse JgGI supematant 11100 DAKO 

KPI hCD68 mouse JgGI supematant 11150 DAKO 

N053 hiNOS C-term peptide rabbit polyclonal neat antiserum 1120,000 Merck Research:t: 

h13 hiNOS C-term peptide rabbit polyclonal neat antiserum 1110,000 Wellcome* 

PA3-030 miNOS C-term peptide rabbit polyclonal affmity 11500 - 10,000 Cambridge Bioscience 

purified (Affmiti) 

N32020 miNOS 21kD protein mouse IgG2a purified ascites 11250 Transduction Labs (Affmiti) 

49M miNOS rabbit polyclonal neat antiserum 11500 - 10,000 Wellcome* 

hiNOS peptide sheep polyclonal neat antiserum 11200 - 10,000 Wellcome* 

MIl2 hIL-15 mouse IgGl supematant 30J.lglml Immunex Corporation+ 

<J[ h =-human; m - murine 
:t: Donated by Dr RA. Mumford, Merck Research Laboratories, USA. 
* Donated by Dr I. Charles, Wellcome Research, Beckenham, UK. 
+ Donated by Dr D. Cosman, Immunex Corporation, Seattle, W A, USA. 
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Table 2.2 Secondary antibodies used in immunohistochemistry 

Host Antibody Specificity Conjugate Concentration Source 
species 

Goat polyclonal mouse immunoglobulins biotin lA Ilg/ml DAKO 

Goat polyclonal rabbit immunoglobulins biotin 3 Ilg/ml DAKO 

Goat Fab2, polyclonal mouse immunoglobulins FITC 30 Ilg/ml DAKO 

Horse polyclonal universal (VectastainR) biotin 1120 stock Vector 

Table 2.3 Negative control antibodies for immunohistochemistry 

Host species Antibody type Specificity Source 

Mouse IgGl Aspergillus niger DAKO 
glucose oxidase ... 

Mouse IgG2a Aspergillus niger 
glucose oxidase ... 

DAKO 

Rabbit Serum Non-immune SAPU 

Sheep Serum Non-immune SAPU 

Sheep Immunoglobulin - Non-immune Sigma 
affinity purified 

... neither constitutively nor inducibly expressed in mammalian cell systems. 
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Introduction 

IL-15 is a novel cytokine with biological functions similar to those of IL-2, but with 

no significant sequence homology (Grabstein, et aI, 1994). It mediates its functions 

through the ~ and y chains of the 1L-2 receptor and its own unique ex chain (Girl, et al, 

1994; Bamford, et al, 1994; Giri, et al, 1995; Anderson, et aI, 1995b). 1L-15 induces 

T cell proliferation, enhances NK cell cytotoxicity and ADCC, up regulates 

production of NK cell derived cytokines, including IFN-y, GM-CSF and TNPa 

(Grabstein, et al, 1994; Carson, et al, 1994). and can co-stimulate proliferation and 

differentiation of B cells (Armitage, et al, 1995). In addition, IL-15 stimulates 

locomotion and chemotaxis of normal T cells measured by an assay of locomotor 

shape-change (head-tail polarization), by checkerboard filter assay and by invasion 

into IL-15 containing collagen gels (Wilkinson & Liew, 1995). IL-15 can be detected 

at mRNA level in several normal human tissues including placenta, skeletal muscle 

and kidney. Production by epithelial and fibroblast cell lines and peripheral blood 

monocytes has been shown, but, unlike IL-2, IL-15 is not reported to be produced by 

activated T cells (Grabstein, et aI, 1994). The role of IL-15 in the context of any 

pathological situation remains to be elucidated. 

Rheumatoid arthritis (RA) is a destructive inflammatory polyarthropathy which 

provides an ideal opportunity to study expression of pro-inflammatory cytokines in 

situ. Chronic RA synovitis is characterised by infiltration of the normally relatively 

acellular synovial membrane by macrophages, T cells and plasma cells, together with 

the presence of activated fibroblast-like synoviocytes (Duke, et al, 1982; Burmester, 

et al, 1983; Cush & Lipsky, 1988). Pro-inflammatory cytokines of macrophage 

derivation, including IL-l, IL-6, IL-8 and TNFa, are readily detected at the protein 

level in RA synovial tissue, and also at the eroding cartilage/pannus junction, 

indicating the importance of macrophages in articular damage (reviewed by Feldmann, 

et aI, 1996b). Nevertheless, a significant T cell infiltrate is present in RA synovial 
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tissue, which exhibits a memory phenotype with markers characteristic of both early 

and late stages of activation (Pitzalis, et aI, 1987; Laffon, et aI, 1991; Thomas, et aI, 

1992; Iannone, et al, 1994). The mechanisms governing recruitment of these T cells 

to the synovial membrane from the circulation remain ill-defined, but probably involve 

co-ordinated adhesion molecule expression and production of appropriate chemotactic 

factors (reviewed by Oppenheimer-Marks & Lipsky, 1995). 

T cells are important in RA pathogenesis (Panayi, et aI, 1992). Therapies directed at 

T cells, such as cyclosporin A and monoclonal antibodies against T cell surface 

antigens produce significant, albeit transient, clinical improvement (Homeff, et aI, 

1991; Wendling, et aI, 1991; Pasero, et al, 1996). Several animal arthritis models can 

be demonstrated to be T cell-dependent (Trentham, et aI, 1978; Staines & Wooley, 

1994). Moreover, the association of RA with the HLA-DR shared epitope strongly 

implicates T cell I antigen recognition in disease aetiology (Gregerson, et aI, 1987). 

Cytokines associated with T cell activation such as IFN-y or IL-2 can be detected at 

the mRNA level (Buchan, et aI, 1988; Simon, et aI, 1994) and at the protein level 

using immunohistochemical analysis (Ulfgren, et aI, 1995). However, only a 

relatively small number of T cells expressing these proteins can be found, and 

furthermore, T cell-derived cytokines are usually undetectable in synovial fluid 

(Firestein & Zvaifler, 1987; Firestein, et aI, 1988). Whether there is sufficient IL-2 

present to account for the extensive evidence ofT cell activation remains uncertain and 

has raised controversy regarding the relative contribution of macrophages and T cells 

to the pathogenesis of RA (Firestein & Zvaifler, 1990; Panayi, et aI, 1992). The 

identification of significant levels of a macrophage-derived cytokine capable of T cell 

chemoattraction, activation and maturation in RA synovial tissue would clearly be of 

considerable interest. 
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3.1 Detection of IL-lS in synovial fluid 

A sandwich ELISA was designed to detect IL-15 in biological solutions, using a 

murine monoclonal anti-simian IL-15 antibody (M112) for capture and an affinity 

purified rabbit polyclonal anti-human IL-15 antibody (PeproTech) for detection. 

Recombinant IL-2, IL-l~ and TNFa were not detected in this ELISA system, nor did 

the level of rheumatoid factor correlate with IL-I5 concentrations detected in synovial 

fluid. The sensitivity for recombinant human IL-15 was 1 nglml (Figure 3.1). 

Synovial fluids were collected from 17 RA patients whose clinical and serological 

characteristics are shown in table 3.1 and from 6 OA patients (mean 69 years ± 11.9, 

range 50-79). The latter were treated with simple analgesic drugs or non-steroidal 

anti-inflammatory drugs. IL-15 was detected in RA synovial fluids at significantly 

higher levels than was observed in OA fluids (p<0.OO3, Mann-Whitney; Figure 3.2). 

Despite a wide variation in disease duration and acute phase response in RA patients, 

local synovial fluid IL-15 levels did not correlate with systemic disease activity 

parameters or with drug therapy (Table, 3.1; Pearson's correlation coefficient). 

3.2 Synovial tissue cultures generate IL.lS 

To determine whether synovial membrane was the source of detectable IL-15. single 

cell suspensions of synovial tissue samples from 7 RA and 4 OA patients were 

cultured for 72 hours in vitro. without exogenous stimulation. IL-15 was detected in 

the supernatants from 417 RA patients. but from only 114 OA patients (Figure 3.3). 

These data indicate that rheumatoid synovial tissue is capable of generating IL-15. 
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Figure 3.1 Standard curve for IL-15 ELISA 
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rIL-15 was diluted ten-fold in PBS /1 % BSA and submitted to assay as 

described in section 2.9.1. Synovial fluids were diluted in PBS then 

assayed as for the standard. The concentration of IL-15 in samples was 

calculated as shown (dotted lines). Sensitivity was typically 1 nglml. 
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Table 3.1 Demography of RA patients from whom synovial fluid samples were 

obtained for IL-15 analysis 

Age Disease RF ESR CRP Drugprofllc 
(years) Duration +/-

(l::ears) 

RAl 89 6 + 4 10 

RA2 36 5 + 36 58 Gold 

RA3 34 4 + 28 57 SASP 

RA4 44 9 + 15 14 SASP 

RA5 44 10 + 16 5 Pred, MTX 

RA6 57 3 + 46 50 SASP 

RA7 60 8 + 51 39 Gold 

RA8 59 33 + 89 161 MTX 

RA9 75 50 + 30 74 SASP 

RAW 49 11 + 46 59 MTX 

RA 11 56 16 + 8 30 Gold 

RA12 65 7 + 71 66 SASP 

RA13 74 20 + 22 44 SASP 

RA14 73 3 + 58 86 Gold 

RA15 54 25 23 66 SASP 

RA16 31 5 + 45 16 Gold 

RA17 57 15 + 80 93 Gold 

Clinical details of RA patients were collected at the time of synovial fluid aspiration. 

Data shown are for samples used in IL-15 ELISA. RF - rheumatoid factor, ESR -

erythrocyte sedimentation rate, CRP - C-reactive protein «10 mg/ml normal 

reference), SASP - sulphasalazine; Pred - prednisolone; MTX - methotrexate; Gold

intramuscular sodium aurothiomalate. 



Figure 3.2 Detection oflL-15 in RA and OA synovial fluid 
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Synovial fluids from RA or OA patients were collected, and assayed for IL-15 

presence by ELISA. Levels in RA fluids were significantly higher than in OA 

(p=O.OO29, Mann-Whitney). 

Figure 3.3 IL-15 production by synovial membrane cultures 
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Single cell suspensions of synovial tissue from RA and OA patients were cultured 

without exogenous stimulation for 72 hours. IL-15 levels in resultant 

supematants were measured by ELISA (sensitivity indicated - 1 ng/ml). 
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3.3 Immunohistochemical localisation of IL·15 in human synovium 

To further investigate the presence of IL-15 in synovial membrane, parallel cryostat 

sections of RA synovial tissues were stained with murine monoclonal anti-simian IL-

15 (Ml12). Simian IL-15 shares 97% homology with human IL-15 (Grabstein, et aI, 

1994) and similar antibodies localised IL-15 expression in human monocytes 

(Carson, et aI, 1995). Figure 3.4a demonstrates the tissue distribution of M112 

binding in rheumatoid synovium. The pattern of cytoplasmic staining appears to 

represent intracellular rather than membrane-bound cytokine, implying that these cells 

contain, and are likely synthesising, IL-15. Staining was abolished completely by 

pre-incubation with recombinant human IL-15 (50 J.lg/ml), indicating specificity of 

antibody binding (Figure 3.4b). To determine which cells were expressing IL-15. 

parallel sections were stained with monoclonal antibodies against CD68 (tissue 

macrophage) and CD3 (T lymphocyte). IL-15 co-expressed with CD68+ macro

phages in the lining layer (Figure 3.4c), but not with adjacent CD3+ T cells (Figure 

3.4d). The extent of lining layer staining (mean 54 ± 13.1 % of cells) indicated that 

type B synoviocytes may also express IL-15 (Table 3.2). IL-15 was also detected in 

the T cell rich aggregates. This staining may correlate with intracellular localisation in 

macrophages, which are found in these areas, or may reflect receptor bound IL-15. 

Although T cells have not thus far been shown to produce IL-I5 in vitro (Grabstein, 

et al, 1994), production of IL-15 by CD3+ synovial T cells cannot be excluded by 

these data. In keeping with the lower levels of IL-I5 detected in OA synovial fluid, 

OA synovial sections contained fewer IL-15 expressing cells in both the lining layer 

and interstitial areas (p<O.OOl, Mann-Whitney; Table 3.2) suggesting that up 

regulation of expression of 1L-15 is a feature of RA. 

These data clearly demonstrate the presence of IL-I5 in the RA synovial membrane. 

Subsequent experiments addressed the possible functional significance of this 

observation. 



Figure 3.4 Immunohistochemical localisation of IL-15 in RA synovial membrane 



Table 3.2 Immunohistochemical localisation of IL-15 in synovial membrane 

Diagnosis 

n = number fields 

Rheumatoid 
arthritis (n=30) 

Ostcoarthritis 
(n=21) 

Lining layer 

54 ± 13.1 
(29-80) 

6.5 ± 4.5 
(1-16) 

% positive cells mean ± s.d. 

(range) 

Aggregate areas 

24 ± 12.3 
(5-55) 

Interstitium 

12 ± 7.7 
(3-32) 

2 ± 1.1 
(0.5-4) 
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Synovial tissue sections from RA (9 patients) and OA (5 patients) were stained 

with a monoclonal anti-IL-15 antibody (M112) as described (section 2.6.1). A 

minimum of 500 cells were counted in each section, in at least three fields 

(magnification x 250). Mean values (per field) are presented with standard 

deviation and range in parenthesis. IL-15 expression is greater in RA lining layer 

and interstitium than OA (p<O.ool, Mann-Whitney). Percent of IL-15 positive 

cells is expressed as: 

(positive cells !total number cells) x 100. 

Legend to Figure 3.4 

Immunohistochemical analysis of synovial tissue from a representative RA 

patient. Cryostat sections were fixed and stained with (a) anti-IL-15 (M112), (b) 

anti-IL-15 neutralised by recombinant human IL-15, (c) anti-CD68, or (d) anti

CD3. Primary antibodies were detected with biotinylated goat anti-mouse IgG, 

then with streptavidin-alkaline phosphatase complex and fast red salts. 

(Magnification x80) 
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3.4 IL·15 footpad injection induces inflammatory cell recruitment in 

DBA/l mice. 

Previous studies have shown that IL-15, like IL-2, is a potent chemoattractant for T 

cell polarization and migration in vitro (Wilkinson & Liew, 1995), raising the 

possibility that IL-15 may recruit T cells into local tissues during inflammatory 

responses. To test this hypothesis in vivo, male DBNl mice, primed 7 days 

previously with C. parvum, received either 500 ng rIL-15 (n=12), or PBS alone 

(n=12), subcutaneously to their hind foot pads. Human IL-15 was used because 

murine IL-15 was unavailable and preliminary experiments had shown that the murine 

T cell line, CTLL-2, proliferated to human 1L-15 (Figure 3.5). 

Figure 3.5 CTLL cell activation by human IL-15 
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Murine T cells proliferate to human rIL-15. CTLL cells (1 X 105 

Iml) were cultured for 24 hours with human rIL-15 (D), or human 

rIL-2 (0) and 3H-thymidine incorporation over the last 6 hours was 

assessed. The response to IL-15 significantly exceeded that to IL-2 

between 50 and 200 pg/ml of cytokine (p<O.OI, Mann-Whitney). 
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Mice which received rIL-15 developed an inflammatory cell infiltrate in the 

hypodermis and muscle layers, in contrast to those which received PBS alone (Figure 

3.6, p<O.OOI, Mann-Whitney; Figures 3.7a & 3.7b). Immunohistochemical staining 

was performed, which showed that up to 56 ± 3.6% (mean ± s.d.; n=4 tissues) of the 

tissue cell population after rIL-15 injection was CD3+ (Figure 3.7c). Few CD3+ cells 

were present in PBS treated limbs «2% total cell number; n=4 tissues). 

Inflammatory cell recruitment was evident within 16 hours and was present up to 72 

hours after cytokine injection (Figure 3.6). No change in paw thickness was detected 

on caliper foot-pad measurements compared with PBS injected limbs. However, the 

size of draining popliteal and inguinal lymph nodes was significantly increased 24 and 

48 hours after rIL-15 injection (Figure 3.8). Histological examination of the lymph 

nodes using H&E, demonstrated marked paracortical expansion, consistent with the 

presence of increased numbers of T lymphocytes (Figure 3.9a & 3.9b). Thus, a 

single injection of rIL-15 induced a local tissue inflammatory infiltrate. 

A single experiment was performed in which 10 unprimed DBNl mice were injected 

in the hind footpad with either PBS or rIL-15. No significant inflammatory infiltrate 

was detected in these mice «10% inflammatory cells I high power field [HPF]), 

whereas C. Parvum primed controls developed histological appearances similar to 

those described above (mean 78 ± 4% inflammatory cells IHPF after 48 hours). 

These data suggest that an enhanced circulating pool of activated T cells was required 

for rIL-l5-mediated recruitment in this model system. 



Figure 3.6 rIL-15-induced inflammatory infiltrate in murine footpads 
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DBN1 mice received either rIL-15 (500 ng; n=12) or PBS (n=12) by footpad 

injection and tissue was examined histologic ally daily thereafter. H&E stained 

sections were scored by a treatment-blinded histologist. Significantly higher 

numbers of infiltrating cells were detected in rIL-15 treated mice (*p<O.OO2, 

Mann-Whitney compared with PBS controls at same time point). Percentage 

infiltrating mononuclear cells was calculated for 3 high power fields (minimum 

1000 cells) in each of 4 paws for each group (saline - filled bar; rIL-15 - clear bar) 

after 16, 48 and 72 hours. Figure shows mean value with s.e.m. 

number inyadin~ mononuclear cells x 100 
total number cells in field 



Figure 3.7 Histology of murine footpad after IL-15 injection in DBNl mIce 
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Legend figure 3.7 next page 



Figure 3.8 Lymphadenopathy after IL-15 footpad injection 

in DBNI mice 
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DBNI mice received rIL-15 (clear bar, 500 ng) or PBS (filled bar) by 

50 J.11 footpad injection. Draining lymph nodes were removed from 4 

mice in each group daily thereafter, dissected free of connective tissue 

and weighed. Data are mean ± s.e.m. for at least 8 lymph nodes at 

each time point. (*p<0.05, Mann-Whitney) 

Legend to figure 3.7 (previous page) 

Histological investigation of murine footpads was performed after 

injection of 500 ng IL-15 or PBS. H&E staining of formalin fixed, 

decalcified footpad 48 hours after (a) saline, or (b) IL-15 injection 

demonstrates inflammatory infiltrate in IL-15, but not in PBS recipient. 

(c) CD3+ cells detected after 48 hours with anti-CD3 I peroxidase 

localisation (2.6.4). A representative field is shown from an IL-15 

injected animal. Few CD3+ cells «5%) were detected in interstitial 

areas of saline treated controls. (Magnification a, b xSO, C x2S0). 
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Figure 3.9 Histology of lymph nodes drai ning IL-15 injected limbs 

Paracortical expansion, suggestive of increased numbers of T cells, was 

observed in popliteal lymph nodes, draining footpads injected 48 hours 

previously with either (a) 500 ng IL-15, or (b) PBS. Lymph nodes were 

fixed in 10% neutral buffered formalin immediately after excision, and 

sections were stained with H&E. (Magnification x40 for each figure) 
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3.5 IL·lS induced peripheral blood T Iymphocyte activation 

T lymphocyte polarization often accompanies entry into G1 phase of cell cycle 

(Wilkinson, 1986). Moreover, IL-15 induces proliferation of PHA-blasts from 

peripheral blood and of transformed T cell lines (Grabstein, et al, 1994). Since PB T 

cells polarize to rIL-15 alone (Wilkinson & Liew, 1995), it was decided to investigate 

whether circulating T cells were capable of cell-division in response to rIL-15. The 

proliferation to rIL-15 of peripheral blood mononuclear cells (PBMC) from 14 RA 

patients was therefore compared with 14 age and sex matched normal controls in 3H

thymidine incorporation assays. RA patients were all receiving DMARD therapy, but 

no corticosteroids, whereas normal controls were on no regular drug therapy. RA 

derived PBMC, stimulated with 100 nglml of rIL-15, exhibited a significantly higher 

stimulation index than PBMC from normal controls after 72 and 96 hours culture 

(p<O.05, Wilcoxon; Figures 3.lOa & 3.10b). However, 4 RA synovial fluids, 

known to contain IL-15 (by ELISA and by the presence of IL-15-dependent 

chemoattractant activity [AI-Mughales, et aI, 1996]), were found not to be mitogenic 

for PBMC. This is likely to be due to the presence of soluble inhibitors within the 

synovial fluids tested, such as TGF~ (Fava, et al, 1989; Chu, et al, 1991). These data 

show that a circulating T cell population exists in RA which is directly responsive to 

IL-15, but indicate that the behaviour ofT cells in the synovial membrane willlikcly 

reflect multiple cytokine activities. 
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Figure 3.10 Peripheral blood mononuclear cells proliferate to rIL-15 
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(a) Dose response of RA (0, n=14) or control (a, n=14) PBMC to rIL-15 

after 72 hours in triplicate 3H-thymidine incorporation assays. Values 

shown are mean ± s.e.m. Medium control ranged from 500 - 1,500 cpm. 

(*p<O.Ol, Mann-Whitney). Stimulation index calculated as: 

cpm after incubation with IL-15 
cpm medium control 

(b) Time course showing stimulation index of PBMC from RA (0, n=14) or 

age matched controls (A, n=14) after addition of 100 ng/ml rIL-15 in 

triplicate 3H-thymidine incorporation assays. Values shown are mean ± 
s.e.m. ('" p<O.05, "'''' p<O.03, Mann-Whitney) comparing RA patient 

with normal control group. 
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Discussion 

This study clearly demonstrates the presence of IL-15 in the rheumatoid synovial 

membrane. T cell! macrophage interactions in the synovial membrane are integral to 

the progression of synovitis and resulting articular destruction (Feldmann, et aI, 

1996b). The detection of IL-15 in this context provides a mechanism for T cell 

recruitment and activation by a macrophage-derived cytokine in RA. 

High concentrations of IL-15 were detectable in RA synovial fluid, in excess of levels 

previously shown to possess biological activity in vitro (Grabstein, et al, 1994; 

Burton, et aI, 1994; Carson, et al, 1995). The synovial membrane was the likely 

source of this IL-15, since it was present in synovial cultures and could be 

predominantly localised immunohistochemically to the synovial lining layer. The 

possibility remains, however, that this represents detection and release of stored 

cytokine. Further experiments are required, in which the capacity for protein 

synthesis inhibitors to abrogate IL-15 production by synovial membrane in vitro is 

investigated. The recent development of a more sensitive ELISA system for IL-15 

will allow this question to be formally addressed. 

Pro-inflammatory cytokines, such as IL-l, IL-6, TNFa and IL-8, are abundant in 

synovial tissue and are similarly localised to the lining layer, and to cartilage I pannus 

junction and perivascular infiltrates, where they are recognised to be predominantly 

macrophage derived (reviewed by Brennan, et aI, 1991; Feldmann, et aI, 1996b). 

The high proportion of lining layer cells which expressed IL-15, and the co-staining, 

in parallel sections, of IL-15 with CD68+ cells, made it likely that macrophages 

contributed significantly to IL-15 production in RA, consistent with the in vitro 

observation that IL-15 is made by cells of the monocyte series (Grabstein, et al, 1994; 

Carson, et al, 1995). However, IL-15 expression has been reported from the bone 

marrow stromal cell line, IMTLH (Grabstein, et aI, 1994), therefore type B 
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synoviocytes, which are derived from fibroblast-like cells, may also be capable of IL

lS production. Similarly, IL-15 production by synovial T cells remains possible. IL

lS was first isolated from HuT-102 cells (Burton, et aI, 1994), indicating that cells of 

the T lymphocytes series might also synthesise IL-15 if appropriately activated. 

In common with IL-2, IL-15 induces T lymphocyte locomotion and proliferation ofT 

lymphoblasts (Grabstein, et al, 1994; Wilkinson & Liew, 1995) raising the possibility 

that it is of importance in recruitment and concomitant activation of T cells at sites of 

chronic inflammation. The RA synovial membrane contains aggregates of polyclonal 

T lymphocytes which concurrently express cell surface markers normally seen 

sequentially through various stages of the activation pathway, such as HLA-DR, 

CD69 and VLA-4 (Pitzalis, et aI, 1987; Burmester, et aI, 1987; Laffon, et al, 1991; 

Iannone, et al, 1994; Femandez-Gutierrez, et aI, 1995). They also possess a mature 

differentiated phenotype (CD45RO+, RBdim, CD27-), probably reflecting preferential 

recruitment of re circulating memory T cells, (Pitzalis, et al, 1988; Pitzalis, et al, 1991; 

Thomas, et al, 1992; Matthews, et al, 1993; Kohem, et al, 1996), which may undergo 

further activation, initiated by endothelial interaction during extravasation, and 

subsequently modified by the cytokine environment within synovial tissue (Iannone, 

et al, 1994). Although IL-2 mRNA can be detected in RA synovial tissue (Simon, et 

al, 1994), and T cells containing IL-2 protein can be found immunohistochemically 

(Ulfgren, et al, 1995), these studies have demonstrated that most CD3+ T cells in RA 

synovium show no evidence of IL-2 expression. Moreover, T cells derived from 

synovial tissues are recognised to exhibit deficient cytokine production in vitro to 

exogenous stimuli or recall antigens (Combe, et aI, 1985; Verwilghen, et aI, 1990; 

Aaron, et al, 1991; Thomas, et aI, 1992) and IL-2Rex expression is limited to -10% of 

cells (Pitzalis, et al, 1987). Therefore, it is unlikely that the observed T cell activation 

can be explained solely by the levels of IL-2 thus far detected, and other cytokine

dependent mechanisms of T cell recruitment and activation may operate in RA. 1L-IS, 

by virtue of its described functional phenotype, may fulfil such a role. 
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The processes whereby inflammatory cells are recruited to the synovium remain ill

defined. Synovial endothelial cells express high levels of E-selectin, ICAM-l and 

VCAM-l, which can be up-regulated by IL-l~ and TNFa (Abbot, et aI, 1992; 

Morales-Ducret, et al, 1992; Wilkinson, et al, 1993). Interaction with T cell markers, 

such as VLA-4 and LFA-l, will thereby facilitate endothelial adhesion and 

transmigration (reviewed by Oppenheimer-Marks & Lipsky, 1995). These pathways 

operate in parallel with the activities of synovial chemokines. AI-Mughales, et al 

(1996) have recently demonstrated that RA synovial fluid contains chemoattractant 

activity for T lymphocytes which is biologically active in in vitro assays. Using 

neutralising antibodies they have identified IL-15 as an important contributory 

cytokine in this context (Appendix Ill; Mclnnes, et al, 1996). Recombinant IL-15, 

having no reported chemotactic effects on neutrophils, B cells or monocytes 

(Wilkinson & Liew, 1995), appears T lymphocyte specific. Its locomotor action is 

seen in highly purified T cells (Dixon, R. personal communication; McInnes, et al, 

1996), and in CD4+ and CD8+ T cells subsets, both of which are represented in 

synovial tissue, and it is inhibited by neutralising antibody to the ~y chains of the IL-2 

receptor (Wilkinson & Liew, 1995). Other macrophage-derived lymphocyte 

chemokines, including MIP-l a, MCP-l and IL-8 (Koch, et aI, 1991; Koch, et al, 

1992; Taub, et al, 1993; Deleuran, et al, 1994; AI-Mughales, et aI, 1996) have also 

been implicated in chemoattraction in RA, and IL-15 is therefore unlikely to operate in 

isolation in recruitment of lymphocytes to the synovial compartment. However, 

unlike other T cell chemotactic factors, IL-15 is also associated with lymphocyte 

proliferation, indicating a unique combination of activities which in the synovial 

membrane could have pathological significance by facilitating both recruitment and 

activation ofT cells in RA. 

PBMC proliferated in response to rIL-15 alone, indicating the presence of circulating 

primed T cells capable of cell division in response to a single signal (Janeway & 

Bottomley, 1994). It is of interest that this response was enhanced in RA patients. 
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Since increased numbers of mature CD45RO+, CD27- T cells have been reported in 

RA peripheral blood (Kohem, et ai, 1996), it is attractive to hypothesise that such 

cells represent an expanded memory T cell population in RA, which constitutes a pool 

from which the synovial membrane can recruit, partly through the activity of IL-15. 

Alternatively, the level of IL-15Rcx expression may be increased in some PB T cells in 

RA patients. Currently, lack of available reagents prevents formal investigation of 

this latter possibility. 

The chemoattractant properties of IL-15 have until now been demonstrated only in 

vitro. The murine T cell line, CTLL-2, proliferated to human IL-15 at higher levels 

than to murine IL-2. This unexpected finding may reflect high levels of IL-15Rcx in 

this cell line, or perhaps represent a feature of cytotoxic CD8+ T cell responses in 

vitro to IL-15. Nevertheless, this inter-species cross-reactivity permitted investigation 

of the role of IL-15 in vivo in a model of initiation of inflammation in DBNl mice. 

The demonstration of a cellular infiltrate lasting at least three days after a single 

subcutaneous injection of rlL-15 into murine footpads, suggests that the chemotactic 

activity measured in vitro by AI-Mughales, et al (1996) indeed has biological 

significance. The duration of the observed response, and presence of related 

lymphadenopathy, indicates that other mechanisms aside from IL-1S-induced 

chemotaxis, are operating. The possibility that IL-15 may up-regulate adhesion 

molecule expression either on circulating T cells, or on endothelial cells, needs to be 

explored. IL-lS induces adhesion molecule redistribution on T cells (Nieto, et aI, 

1996), although novel expression of markers was not reported. Nevertheless, it is 

clear that, since up to 56% of infiltrating cells expressed CD3 three days after 

injection, the events initiated by IL-lS can have a prolonged action on T cell 

recruitment 
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These data demonstrate for the first time the presence of IL-15 in a pathological 

setting. It was of interest to determine possible mechanisms whereby IL-15 might 

contribute to RA pathogenesis, beyond T cell recruitment. The relationship of IL-15 

mediated T cell activation with TNFa production by macrophages in synovial 

membrane was therefore investigated. 



Chapter 4 

Interleukin-15 mediates T cell dependent 

regulation of tumour necrosis factor (l 
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Introduction 

IL-15 is a pleiotropic cytokine derived from several cell types, including macrophages 

and fibroblasts (Grabstein, et aI, 1994; 1994; Tagaya, et aI, 1996a), which mediates 

its activity through a heterotrimeric receptor consisting of a unique IL-15Ra chain 

with the ~ and r chains of the IL-2 receptor (Giri, et aI, 1995; Anderson, et aI, 

1995b). IL-15 can induce T cell proliferation, B cell maturation and isotype 

switching, NK cell cytotoxicity and cytokine generation and may protect T cells from 

apoptosis (Grabstein, et aI, 1994; Bamford, et aI, 1994; Armitage, et aI, 1995; 

Carson, et aI, 1995; Akbar, et aI, 1996). IL-15 promotes inflammatory cell 

recruitment in vivo following footpad injection in mice primed with C. Parvum 

(chapter 3), and in chemotactic assays in vitro, induces T cell polarization and 

invasion into collagen gels (Wilkinson & Liew, 1995). Responding migratory T cells 

are mainly of the CD45RO+ phenotype (AI-Mughales, et aI, 1996). IL-15 can be 

identified immunochemically in RA synovial membrane (chapter 3) and RA synovial 

fluid contains potent chemotactic activity attributable, at least in part, to the presence 

of IL-15 (McInnes, et aI, 1996; Al-Mughales, et al, 1996). Moreover, RA peripheral 

blood T cells exhibit enhanced proliferative responses to rlL-15. It therefore seems 

likely that IL-15 plays a critical role in T cell recruitment and activation in RA in the 

relative absence of IL-2. 

The relationship ofIL-15 to other cytokines in the RA synovial membrane is currently 

unclear. Studies in animal models and of synovial tissue in vitro have generated a 

hypothetical hierarchy of cytokine activities in RA (reviewed by Maini, et al, 1995). 

TNFa appears pivotal in regulating synthesis of other pro-inflammatory cytokines, 

particularly IL-l~. which in turn is important in enhancing chondrocyte bioactivity and 

the production of matrix metalloproteinases (MMP) (Dayer, et aI, 1986; Arend & 

Dayer, 1995). Furthermore, in animal arthritis models and in RA patients, 

monoclonal antibodies against TNFa reduce clinical inflammation and laboratory 
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parameters of disease activity (Williarns, et al, 1992; Elliott, et al, 1994; Rankin, et al, 

1995). However, it is unclear which factors up regulate TNFa production in the 

synovium, particularly in the relative absence of IFNy (Firestein & Zvaifler, 1987). 

Non-cytokine dependent mechanisms may therefore be important. Following 

mitogen stimulation in vitro, T lymphocytes can induce macrophage production of 

cytokines and matrix metalloproteinases (MMP) by cell-contact (Vey, et al, 1992; 

Lacraz, et aI, 1994). However, it has not previously been possible to extend these 

observations in the context of RA, because no physiologically relevant T cell 

activation factor has been described prior to the identification of IL-15. 

The current studies were performed to address the possibility that IL-I5 might induce 

TNFa production in RA. They tested the hypothesis that polyclonal synovial T cells, 

activated by IL-15, can exert pro-inflammatory effects through a cell-contact 

dependent mechanism, in the absence of local antigen recognition or cytokine 

secretion. 
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4.1 Activation of Synovial T cells by rIL·15 

Previous studies have established that peripheral blood mononuclear cells from RA 

patients produced significantly stronger proliferative responses to IL-15 than those 

from normal age-matched controls (chapter 3; Figure 3.9). It was therefore of interest 

to compare the proliferative response to IL-15 of T cells derived from matched 

peripheral blood (PB) and synovial fluid (SF) samples from 15 RA patients (mean 

age 62.4 years [range 24 - 83]; RF+ 90%). All patients were receiving DMARD 

therapy and none had received intra-articular corticosteroid within three months of 

sampling. Given its similar functional phenotype described thus far, IL-2 was used 

for control purposes. T lymphocyte enriched populations (~90% CD3+, <3% 

CD 14+ by FACS analysis of PH and ~90% CD3+, <8% CD68+ cytoprep analysis of 

SF) from both sources proliferated vigorously to IL-15 and IL-2 in a similar dose

dependent manner (Figure 4.1 a). However, the response of T cells from the SF was 

significantly higher than that of T cells from PH (p<O.OI, Wilcoxon). By comparison 

and as previously reported (Combe, et aI, 1985; Thomas, et aI, 1992), the 

proliferative response of T cells from SF to the T cell mitogen PHA was markedly 

lower than that of T cells from PH (Figure 4.1b). These results therefore clearly 

establish that RA synovial T cells exhibit up-regulated responses to IL-lS. 

The consequence of activation of synovial T cells by IL-15 has not previously been 

defined. Since TNFa plays a pivotal role in the pathogenesis of RA, the possibility 

that IL-15 might up regulate TNFa synthesis through synovial T cells was 

investigated. T cells derived from PH or SF from 15 RA patients (as above) were 

therefore cultured with IL-15 or IL-2 and the concentrations of TNFa in culture 

supematants determined by ELISA. T cell enriched cultures from SF produced 

significant amounts ofTNFa. in response to IL-15 (p<O.OO5, Wilcoxon). In contrast, 

IL-2 induced only low and variable levels of TNFa. synthesis (Figure 4.2a). The 

induction of TNFa. production from synovial T cells was dose-dependent (Figure 



Figure 4.1 Proliferation of SF and PB lymphocytes to cytokines and mitogens 
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Synovial lymphocytes proliferate to rIL-15 (circles) and rIL-2 

(squares). (a) T cells from PB (filled symbols) or SF (empty symbols) 

from 15 RA patients were stimulated with doses indicated of either 

cytokine for 72 hours. SF responses exceeded those of PB for both 

cytokines (**p<O.OI). (b) In contrast, responses to PHA were 

diminished for SF derived, compared with PB derived, T cells 

(*p<O.05). Data are mean ± s.e.m. 



Figure 4.2 Production of TNFa by PB and SF T cell-enriched cultures 
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4.2b), thus the reduced response to IL-2 was unlikely to be due to an altered dose

response. Neither cytokine, however, induced significant TNFcx synthesis by T cells 

derived from PB (Figure 4.2a). In comparison, PHA induced TNFcx synthesis by 

lymphocytes from both SF and PB lymphocytes, but that from PB exceeded that from 

SF (386 ± 110 pg/m1 v 184 ± 39 pg/ml respectively [mean ± s.e.m], p<0.03, 

Wilcoxon). These results therefore demonstrate that synovial T cells can contribute 

directly to TNFcx production in the RA synovial membrane in response to IL-15. 

Moreover, they show that the functional effects of IL-15 and IL-2 on this pathological 

T cell population may be different. 

4.2 IL-15-dependent upregulation of TNFcx production from 

macrophages 

As they are the major source of TNFcx in RA synovitis (Chu, et al, 1991), the effect 

of IL-15 on TNFcx production by macrophages was investigated. Addition of IL-15 

(1 - 100 ng/ml) to cultures of unprimed macrophage cell lines (U937 and THP-l) or 

blood-derived monocytes (n=3) from normal donors failed to induce TNFcx 

production. These data implied that in RA, IL-15 might mediate its effects on 

macrophages primarily via T cells. Therefore, the possibility that IL-15-activated T 

cells could induce TNFa. synthesis by macrophages I monocytes was addressed. 

Optimal PB proliferative responses to IL-15 having been obtained after 72 hours 

culture (Figure 3.10), PB T cells from normal donors were stimulated with 100 ng/ml 

IL-15 or mitogen for 72 hours, then washed thoroughly before co-culture in double

chamber wells, either in contact with, or separated by a semi-permeable membrane 

from U937 cells. TNFcx production was observed only in cultures in which IL-15-

stimulated T cells and macrophages were in direct contact (Figure 4.3). As expected, 

PHA I PMA-stimulated T cells induced TNFcx production in the presence or absence 

of cell contact (Figure 4.3; section 4.1), These data indicated that a cell-contact event 



Figure 4.3 Double chamber culture of PB T and U937 cells 
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between IL-15-activated T cells and macrophages was capable of inducing TNFa 

production. 

To clarify whether T cell cytokine production was required in addition to cell-contact, 

and to confirm that macrophages were the primary source of TNFa in these mixed 

cultures, T cells were fixed in 1% paraformaldehyde (PFA) before co-culture with 

macrophages. PFA fixation is known to prevent T cell cytokine production but 

preserves cell-membrane integrity providing a simple experimental system for 

investigation of cell-contact mediated effects (Vey, et al, 1992; Lacraz, et al, 1994). T 

cells from PB of normal individuals (n=lO) were therefore cultured for 72 hours with 

medium alone, cytokines or, as positive control PHA I PMA, then fixed in 1 % PFA. 

They were thoroughly washed, then co-cultured with U937 cells for a further 48 

hours (Lacraz, et al, 1994). Preliminary experiments established that pre-stimulation 

with 100 ng/ml IL-15 was optimal for induction of T cell-mediated macrophage 

activation, at a ratio of 8: 1 T cells:U937 (Figure 4.4). PFA fixed-T cells, previously 

stimulated with IL-15, consistently induced production of significant concentrations 

of TNFa by U937 cells (Figure 4.5a). In contrast, similar prior activation of T cells 

with IL-2 was effective in inducing TNFa production only in some donors, and did 

so at lower levels (Figure 4.5a, p<0.003 compared with IL-15-activated PB T cells, 

Wilcoxon). This is unlikely to be due to a dose-response effect, since the 

concentration of IL-2 used (lOO ng/ml) was supra-optimal, and because IL-2 and IL-

15 had identical induction profiles for T cell proliferation (Figure 4.la) and 

polarization (Wilkinson & Liew, 1995). 

To investigate whether other T cell chemotactic factors might possess similar activity 

to IL-15, PB T cells were stimulated with IL-8 or MIP-la at doses known to induce 

polarization and migration (Wilkinson & Liew, 1995), but no TNFa production was 

detected in the above culture system (Figure 4.5a). IL-I5-activated, PFA-fixed T 

cells alone were unable to produce TNFa, even after addition of further PHA 



Figure 4.4 Dose response oflL-15 mediated U937 cell activation 
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Figure 4.5 Activated PH T cells induce TNFa production by U937 

and monocytes 
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IL-15-activated T cells induce TNFa synthesis by macrophages. PFA

fixed IL-15 (100 ng/ml)-activated PB T cells from normal donors 

induced TNFa production by (a) U937 cells (n=lO), or (b) syngeneic PH 

monocytes (n=3), at significantly higher levels than did IL-2 (100 

ng/ml)-activated T cells (**p<O.OO3). IL-8 (lOO ng/ml) or MIP-la (100 

ng/ml) activated T cells (n=2) were ineffective. Sensitivity of TNFa 

ELlSA was 10 pg/m!. Data are mean ± s.e.m. 
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(1 Jlg/ml), indicating that macrophages were the source of TNFa. in the co-cultures. 

Identical results were obtained when highly purified syngeneic peripheral blood

derived monocytes (>92% CDI4+, <2% CD3+ by FACS analysis) were used instead 

of U937 cells (Figure 4.5b), demonstrating that these results are unlikely to be due to 

an allogeneic effect between Tcells and macrophages, nor could it be a unique feature 

of an immortalised macrophage cell line. Finally, separation oflL-15-activated, PFA

flxed T cells from U937 cells in double chamber wells prevented induction of TNFa. 

production confirming that a soluble factor was not involved after fixation. 

4.3 Induction of TNFa. production by cells of synovial origin. 

To determine whether a similar mechanism might operate in vivo in RA, freshly 

isolated synovial fluid mononuclear cells from RA patients (n=8) were fixed with 1% 

PFA without prior stimulation and then added directly to U937 cells. Significant 

TNFa. production was observed after 48 hours in all culture supernatants (Figure 

4.6a), demonstrating that synovial T cells may have been sufficiently activated in vivo 

to induce TNFa. production by macrophages. It was of interest to determine whether 

IL-15 was required to maintain this ability of synovial T cells to induce macrophage 

TNFa. synthesis. Synovial T cells were cultured for 24 hours with medium alone, 

IL-15 or IL-2, then flxed with PFA, before co-culture with U937 cells. TNFa. was 

produced only when synovial T cells were maintained in IL-15 or, to a significantly 

lesser extent, in IL-2 (p<O.Ol, Figure 4.6b). Similar results were obtained using 

syngeneic peripheral blood monocytes (instead of U937 cells) which were obtained 

from each RA patient at the time of joint aspiration (Figure 4.7a). To confirm that 

synovial macrophage TNFa. synthesis could be enhanced by this pathway, PB T cells 

from 4 RA patients were added to syngeneic synovial macrophage / synoviocyte co

cultures (>75% CD68+, <3% CD3+ by cytoprep analysis). TNFa. synthesis was 

observed only with prior activation of PB T cells by IL-IS (Figure 4.7b). Together, 

these data demonstrate that synovial T cell-mediated upregulation of TNFa production 
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Figure 4.6 Synovial T cells induce TNFa production via cell contact 
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or (b) after culture for 24 hours (n=lO) in the presence of IL-15 (lOO 

ng/ml). Culture with IL-2 (lOO ng/ml) induced significantly less 

TNFa synthesis (*p<O.01 compared with IL-15). Data are mean ± 

s.e.m. 



Figure 4.7 Cell-contact regulates TNFa production by blood 

monocytes and synovial macrophages 
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Blood-derived and synovial monocyte I macrophages produce TNFa after 

cell-contact activation. (a) PFA-fixed RA SF T cells activated by IL-15 

(100 ng/ml) induced TNFa synthesis by RA blood monocytes from the 

same donor patients (n=3). (b) IL-15-activated T cells induced TNFa 

synthesis by synovial macrophage I synoviocyte co-cultures ("'p<O.Ol). 

PB T cells from RA patients (n=4) were stimulated with medium alone or 

IL-15 (100 ng/ml) for 72 hours, then PFA fixed prior to addition to 

synovial macrophage I synoviocyte co-cultures. Data are mean ± s.e.m. 
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by macrophages through cell-contact can occur in RA, and indicate that IL-15 within 

the synovial membrane enhances this activity. 

4.4 Effect of IL·lS on PB Iymphocyte phenotype 

The ability of single cytokines to induce cell division and to sustain cell-contact 

mediated macrophage activation suggested that the responding cells were of a primed, 

differentiated T cell subset. Thus, experiments were performed to characterise 

alterations in T cell-surface phenotype following activation with IL-15, compared 

with IL-2, on different peripheral blood lymphocyte populations. Whole blood 

cultures were employed to avoid T cell activation during purification. Both IL-15 and 

IL-2 up-regulated CD69 expression on CD3+ lymphocytes, which was detectable in 

whole blood cultures up to 72 hours (p<O.005, Figure 4.8a). Since circulating T 

cells recruited to synovial membrane are predominantly of 'memory' phenotype, the 

effect of IL-15 on CD69 expression in the CD45RO+ subset was next examined. 

CD69 expression was elevated within 24 hours, and enhanced seven-fold in 

CD45RO+ PB T cells by 72 hours after addition of IL-15 in vitro (p<O.02, Figures 

4.8b). In contrast, CD45RA + cells demonstrated only two-fold enhancement of 

CD69 levels (Table 4.1), which was probably accounted for by elevated CD69 

expression on CD8dim, CDI6+, CD56+ NK cells (Figure 4.9), which are recognised 

to reside in the CD45RA population (Prince, et aI, 1992). Modest elevation of CD69 

on a small subset of CD 19+ B cells was observed (Table 4.1). 



Figure 4.8 FACS analysis ofPB lymphocytes following cytokine 

induced activation 
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IL-15 upregulates expression of CD69 on PB T cells. (a) CD69 

expression on CD3+ PB T cells stimulated with IL-15 (lOO ng/ml), or IL-2 

(lOO ng/ml) in vitro for 72 hours (n=6, ...... p<O.OO5 compared with medium 

alone). (b) CD69 expression was enhanced in CD45RO+ T cells up to 72 

hours ("'p<0.02, • ... p<0.OO2 compared to medium alone) by addition of IL-

15 (lOO ng/ml) or IL-2 (100 ng/ml) in vitro. No significant difference 

between IL-15 and IL-2 was detected. Data are mean ± s.e.m. 



Figure 4.9 IL-15 upregulates CD69 expression on NK cells 
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Double label FACS analysis was performed after 24 hours whole blood 

culture from normal volunteers. CD69 (FITe) expression was increased in 

CD8dim cells (PE) after culture with (a) rIL-15 (100 ng/ml), but not with (b) 

medium alone. In the same cultures, CDI6+, CD56+ NK cells (PE) were 

entirely CD69+ after addition of (c) IL-15 (100 nglml), but not (d) medium 

alone. Data are representative of four similar experiments. Figures 

represent the percentage of gated cells. 
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Table 4.1 CD69 upregulation by IL-15 and IL-2 in vitro 

medium IL-2 IL-15 

n=5 % CD45RA + /69+ 

Oh <2 <2 <2 

24h 4.8 (0.7) 25 (4)* 25 (4.5)* 

72h 10.4 (4) 25 (4.9)** 24 (4.8)** 

n=6 %CD19+/69+ 

Oh <2 <2 <2 

24h <2 <2 <2 

72 h <2 5.1 (2.3) 5.1 (2.3) 

Whole blood cultures from normal volunteers were maintained up to 72 hours in 

the presence of medium alone, IL-2 (lOO nglml) or IL-I5 (lOO ng/ml). At time 

points indicated, FACS analysis was performed to determine the percentage of 

either CD45RA+ cells, or of CD19+ B lymphocytes, expressing CD69. n = 

number of donor samples cultured "'p<0.05 comparing IL-I5 or IL-2 stimulated 

cultures vs medium alone, ** not significant, Wilcoxon. Data are mean ± s.d. in 

parenthesis. 
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4. S Molecules involved in T lymphocyte ! macrophage cell-contact 

Many surface receptors have been implicated in T cell! macrophage membrane 

contact, including the LFA-I and CD69 (Vey, et aI, 1992; Isler, et aI, 1993). The 

contribution of these markers to the production of TNFa. by monocytes after contact 

with IL-15-activated T cells was therefore investigated. TNFa. production by PB T 

cell! U937 co-cultures (n=4) was significantly reduced by neutralisation of LFA-I 

(p<O.02) or ICAM-I (p<O.03) and almost completely abrogated by addition of anti

CD69 antibody (p<O.OOl, Figure 4. lOa). Increasing the concentration of neutralising 

antibody (from 5 J..lglml up to 50 J..lg/ml) did not further inhibit TNFa. induction. 

Parallel experiments (n=4) demonstrated similar involvement of CD69 (p<O.OOl), 

LFA-I and ICAM-I (both p<O.Ol) on the production of TNFa. by blood-derived 

monocytes induced by IL-15-activated T cells (Figure 4.10b). Addition of human 

IgG (5 Ilg/ml) to minimise Fc receptor binding on U937 cells and blood monocytes 

by T cell-surface bound antibody did not reverse the observed inhibition of TNFa. 

production by macrophages. Thus, at least CD69 and the LFA-I/ ICAM-I pathway 

were implicated in IL-15-activated T cell-mediated macrophages activation. 
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Figure 4.10 Inhibition of T cell! macrophage activation by 
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Inhibition of cell-contact induced TNFa synthesis by antibodies to cell 

surface markers. PFA-fixed IL-15-activated PB T cells were cultured with 

(a) U937 cells, or (b) PB monocytes. Pre-incubation of the fixed T cells 

with neutralising antibodies to CD69, LFA-I or ICAM-I significantly 

inhibited TNFa synthesis compared to IgG I control antibody treated cells 

(*p<O.OOI, *"'p<0.03, "'**p<O.OI). Human IgG (5 ~g!ml) was present in 

all cultures. Data are mean ± s.e.m. from four separate experiments. 

% inhibition was calculated as follows: 

x 100) 
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Discussion 

Many pro-inflammatory cytokines have been detected in synovial membrane including 

TNFa, IL-l~, IL-6, IL-8 and GM-CSF (Feldmann, et al, 1996b). Intervention using 

monoclonal anti-TNFa. therapy in murine collagen-induced arthritis (Williams, et al, 

1992) and in clinical trials in RA (Elliott, et aI, 1994; Rankin, et al, 1995) leads to 

significant amelioration of joint inflammation. These observations therefore confirm 

the clinical relevance of such cytokine production within the synovial membrane and, 

in combination with previous in vitro reports, establish the central importance of 

TNFa. in the cytokine cascade which regulates synovitis (Maini, et al, 1995). At 

present, however, the factors which up regulate TNFa production in RA remain 

unclear. Data presented here demonstrate that IL-15 is critical in this process. 

IL-15-stimulated proliferation and direct TNFa production in T cells derived from 

synovial fluid was enhanced compared to those from blood, thereby establishing that 

T cell responsiveness to IL-15 was upregulated in vivo. However, T cells represent 

only a minor source of TNFa compared with macrophages in RA synovium (Chu, et 

al, 1991). IL-15-activated PB T cells induced significant TNFa. production from 

either unprimed U937 cells, syngeneic blood-derived monocytes, or RA synovial 

macrophage I synoviocyte cultures, by a cell-contact dependent mechanism. Thus, 

freshly recruited IL-15-activated T cells may contribute to TNFa. synthesis by 

activating macrophages within the synovial membrane. Furthermore, freshly isolated 

SF T cells behaved like IL-15 activated PB T cells, indicating that this pathway could 

operate in vivo in RA. IL-15 was required to maintain this activity in vitro, because 

synovial T cells cultured in the absence of IL-15 for 24 hours lost this ability. This is 

unlikely to be simply the result of apoptosis due to the absence of IL-15, because IL-

2, which can rescue T cells from apoptosis in vitro through IL-2Ry chain binding 

(Akbar, et al, 1996), was incapable of maintaining synovial T cell-contact activity. 

Thus, synovial T cells under the control of IL-15 are clearly able to activate RA blood 
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monocytes to produce TNFa. Since recently recruited CDI4+ monocyte I 

macrophages constitute a major source of TNFa in the synovial membrane (Chu, et 

al, 1991), these data together provide compelling evidence for T cell-contact mediated 

up regulation of TNFa synthesis by macrophages, driven by IL-15 produced in the 

synovial membrane. 

Pro-inflammatory cytokine and metalloproteinase production following cell contact

mediated activation of macrophages and fibroblasts by T cells and T cell clones 

stimulated with non-physiological mitogens (PHA, PMA, OKTI) has been reported 

(Vey, et aI, 1992; Lacraz, et al, 1994; Li, et al' 1995; Miltenburg, et aI, 1995). Here 

a cytokine has been employed which is widely distributed in the RA synovial 

membrane. The synovial T cell population is predominantly C045RO+, RBdim, 

C027-, implying advanced differentiation (Thomas, et al, 1992; Kohem, et al, 1996). 

They often simultaneously express early (C069), mid (HLA-OR) and late (VLA1) 

markers of activation, perhaps initiated by interactions with endothelium during 

extravasation of mature memory T cells (Burmester, et al, 1987; Pitzalis, et al, 1987; 

Pitzalis, et al, 1988; Potocnik, et al, 1990; Laffon, et al, 1991; Iannone, et al. 1994; 

Femandez-Gutierrez, et aI, 1995), and subsequently modified by the cytokine 

environment within synovial tissue, particularly IL-15. The finding that IL-15-

~duced CD69 expression was primarily restricted to CD45RO+ T cells is compatible 

with these observations, and with a recent report comparing the effect of IL-15 on 

naive and memory T cell CD69 expression (Kanegane, et aI, 1996). Despite 

extensive efforts to determine the synovial T cell repertoire, no consensus has 

emerged for oligoclonal T cell receptor V~ gene expression between RA patient 

cohorts, although some amino-acid conservation of CDR3 regions has been reported, 

raising the possibility that some synovial T cells are antigen driven (reviewed by 

Struyk, et al, 1996). The majority of synovial T cells, however, are polyc1onal. T 

cell contact-mediated macrophage activation, driven by IL-15, is therefore consistent 

with the recognised phenotype and functional profile of synovial T cells. It provides 
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a pathological role, but implies no local antigen recognition and requires no cytokine 

secretion, consistent with the polyclonality of synovial T lymphocytes, and their 

relative absence of cytokine expression. 

The cell-contact pathway for macrophage activation by T cells insynovium is likely to 

utilise multiple cell surface molecules. As expected, the LFA-l! ICAM-1 pathway 

was involved. Following chemokine-induced polarization, T lymphoblasts 

redistribute adhesion molecules, such as ICAM-l or ICAM-3, to the tips of uropods 

and IL-15 has recently been shown to exhibit similar properties (Nieto, et al, 1996; 

Angel del Poze, et aI, 1996). However, since it was not possible to induce 

macrophage activation by T cells maintained with the T cell chemotactic factors, IL-8 

or MIP-la., it seems probable that IL-15 must exert effects beyond ligand 

redistribution on the T cell surface. The data also implicated CD69 in cell-contact. 

Increased CD69 expression occurs in vivo on RA synovial T cells (Laffon, et al, 

1991; Femandez-Gutierrez, et aI, 1995) and has been reported in other autoimmune 

diseases, such as multiple sclerosis and chronic active hepatitis at sites of 

inflammation (Garcia-Monzon, et aI, 1990; Perrella, et aI, 1993). CD69 appears 

following TCR! antigen interaction, although IL-2 alone may up regulate expression 

on NK cells and CD45RO+ lymphocytes (Testi, et al, 1994). Data presented here 

show that IL-15 shares this activity with IL-2 and is therefore likely to account for the 

continued expression of CD69 characteristic of synovial T cells, in the relative 

absence of IL-2 in synovial tissue. Although CD69 has previously been shown to 

mediate mitogen-induced T cell! macrophage contact (lsler, et al, 1993), the current 

observations demonstrate that it might sub serve this function in RA. Both IL-2 and 

IL-15 upregulated CD69 expression equally in PB lymphocytes, but IL-2 was 

significantly less efficient than IL-15 at inducing T cell-dependent macrophage 

activation, either in PB cells, or in synovial cells. This implies that other receptors 

which are involved in cell-contact are preferentially upregulated by IL-15, compared 

to IL-2, and also indicates that the precise combination of surface markers present is 
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likely to be of critical importance. The widespread expression of CD69 on other 

circulating cells, such as platelets (Testi, et aI, 1990), requires that such additional 

levels of regulation be present. 

The bioactivities described thus far for IL-15 have been broadly similar to those of IL-

2 (Grabstein, et aI, 1994; Burton, et aI, 1994; Tagaya, et al, 1996a). The differential 

distribution of IL-2Ra and IL-15Ra, however, implies that this may not always be 

the case (Anderson, et aI, 1995b), although functional evidence to support this 

proposal is currently sparse. Whereas SF T cells proliferated equally to 1L-15 and IL-

2, differential direct TNFa production was observed. In combination with the 

divergent effects of IL-15 and IL-2 in generating PB and SF T cell-induced 

macrophage activation, these findings show, in an immunopathological setting, that 

IL-15 can exhibit effects distinct from IL-2 on the same target cell population. This 

has implications for IL-15 receptor expression within the synovial membrane. It is 

possible that IL-15Ra-chain binding modifies the signal generated by IL-2R~ or 

common '1 chain occupancy, although the a-chain has no apparent direct role in signal 

transduction (Giri, et aI, 1994; Giri, et al, 1995: Anderson, et aI, 1995b). The 

distribution of IL-15R a-chain compared to 1L-2R a-chain in the synovium however, 

is currently unknown and discordant expression in different subsets may partially 

explain these data. Recently, however, a novel receptor for IL-15 has been described 

on mast cells (Tagaya, et al, 1996b), and it remains possible that expression of this or 

related, as yet undescribed, receptors may explain the divergent functional profile for 

IL-15 and IL-2 in the synovial T cell population. 

In the absence of a clearly identified antigen, non-antigen driven processes within the 

RA synovial membrane offer the best targets for therapeutic intervention (Miossec, et 

al, 1996). It is attractive to hypothesise that macrophage or fibroblast derived IL-15 

recruits and further activates circulating memory T cells in the synovial membrane. 

Under the continuing influence of IL-15, newly arrived T cells within the synovial 
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membrane can up regulate TNFa production by macrophages, predominantly through 

cell membrane contact. This may generate a positive feedback loop, whereby IL-15 

produced by activated macrophages maintains T cell-induced synthesis of TNFa, 

which can further activate macrophages to produce IL-15. This proposal predicts that 

anti-T cell therapies which not only inhibit T cell activation, but also deplete T cells 

from the synovial compartment will be most successful. Anti-T cell monoclonal 

antibody therapies in RA have been less successful than direct anti-cytokine 

approaches, perhaps reflecting inadequate T cell depletion within the synovial 

compartment. It is of interest that RA clinical improvement following anti-CD4 

therapy correlates with synovial T cell coating with anti-CD4 (Tak, et al, 1995; Choy, 

et al, 1996). Anti-IL-15 antibody or anti-IL-15Ra antagonists therefore represent 

potential approaches to attenuating RA and perhaps other inflammatory diseases. 

Further efforts are now required to characterise other cell surface molecules involved 

in T cell I macrophage contact and to establish which factors up regulate IL-15 

production, thereby generating further rational targets for novel therapy. 
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Introduction 

Critical immuno-regulatory and effector activities have been attributed to nitric oxide 

(NO) in several models of infection and inflammation (Nathan & Xie, 1994a; Lyons, 

1995). NO is produced constitutively in small amounts by endothelial NO synthase 

(eNOS), or by neuronal NO synthase (nNDS) and in higher concentrations by 

inducible NO synthase (iNOS) following stimulation by bacterial products, including 

LPS, or by cytokines, including IFN-y, TNFcx and IL-l~ (Bredt & Snyder, 1994; 

Nathan & Xie 1994b). All NOS isoforms may generate NO in inflammatory lesions, 

although in the chronic phase, iNOS is likely to provide the principal contribution. 

Considerable circumstantial evidence indicates that NO production is important in 

autoimmune pathology. Inducible NOS expression and increased NO generation 

have been implicated in murine streptozocin-induced diabetes (Lukic, et aI, 1991; 

Kolb & Kolb-Bachofen 1992) and experimental allergic encephalomyelitis (Zhao, et 

al, 1996). Similarly, articular pathology in MRL-lpr/lpr mice (Weinberg, et al, 1995; 

Huang, et al, 1996) and streptococcal cell wall and adjuvant arthritis models in the rat 

are dependent on NO production. iNOS activity can be detected within the synovial 

membrane by northern blot analysis and NO is produced by synovial explant culture 

(McCartney-Francis, et al, 1993; Ialenti, et al, 1993; Stefanovic-Racic, et al, 1994a). 

Their observed phenotype and cytokine production profile indicates that activated 

synovial macrophages are of central importance in RA pathogenesis (Feldmann, et al, 

1996a). Whereas, in animal models, NO synthesis occurs predominantly in 

macrophages, the capacity for NO synthesis by human macrophages is currently 

controversial. This has raised doubts as to the origin of NO in human diseases in 

which macrophage activation is a central feature, such as RA. NO generation within 

inflammatory foci may differ between rodents and humans, and data from animal 

models therefore require cautious interpretation. However, several other cell types 
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normally found in RA synovium are capable of inducible NO production. Rodent 

synoviocytes (Stefanovic-Racic et al 1994b) and rodent and human neutrophils, 

chondrocytes, osteoblasts and mast cells (Stadler, et al, 1991; Charles, et aI, 1993; 

Stefanovic-Racic, et al, 1993; Bames & Liew, 1994; Ralston, et al, 1995) have been 

clearly shown to generate significant levels of NO in vitro. 

Evidence for NO production within human synovium has, until now, been indirect. 

Preliminary studies indicate that nitrite concentrations are higher in synovial fluid than 

in serum in RA patients (Parrell, et al, 1992). 3-nitrotyrosine is detectable in synovial 

fluid and serum from RA, but not from OA patients or normal donors (Kaur & 

Halliwell, 1994) and elevated urinary nitrate:creatinine ratios are found in active RA 

patients (Grabowski, et aI, 1996). These data, however, do not address either the 

precise tissue or cellular location of NO synthesis. In particular, the relative 

contribution of cartilage and synovial membrane remains unclear since direct NO 

production in vitro has not been reliably demonstrated from human synovial tissue. 

In this context, it was clearly important to establish whether human synovial 

membrane was indeed capable of significant NO production and thereafter, to 

detennine the cellular location of such synthesis, if present 
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s. 1 Assay for nitrite in biological fluids 

NO production was estimated by the concentration of its oxidative products nitrite and 

nitrate ions in culture supematants, serum and synovial fluid. Two methods were 

employed. 

(a) The Griess reaction was performed to detect nitrite in either fresh, or previously 

frozen (_20DC) culture supematants, with typical sensitivity of2 J,tM (Figure 5.1a). 

(b) The Griess reaction develops at acid pH raising the possibility of protein 

precipitation in test samples. Serum or synovial fluid nitrite levels were therefore 

measured by chemiluminescence, after reduction of nitrate to nitrite using nitrate 

reductase. A typical standard curve is shown in Figure 5.1 b, demonstrating 

sensitivity of 2 J,tM. 

S.2 Nitrate I nitrite in rheumatoid synovial fluid and serum 

Matched cell-free synovial fluid and serum samples were collected from 17 patients 

with RA and stored at -70DC prior to assay for nitrite I nitrate concentration using 

chemiluminescence. Figure 5.2a shows that the concentration of nitrite, representing 

total nitrite I nitrate concentration after enzymatic nitrate reduction, was not 

significantly different in paired RA serum or synovial fluid (Wilcoxon). The mean 

concentration of either was not different from total nitrite / nitrate levels measured in 

serum from 17 age and sex matched normal controls (Figure 5.2b; Mann-Whitney). 

Neither the Griess reaction, nor the chemiluminescence assay was sufficiently 

sensitive to detect nitrite concentration alone in serum or synovial fluid samples, 

without prior conversion of nitrate, and it was not therefore possible to confirm or 

refute the data of Farrell et al (1992). Moreover, patient samples were usually 

collected on routine outpatient visits, with no prior dietary modification, and it is 

therefore likely that the effect of dietary nitrate rendered the detection of measurable or 

significant differences improbable (Green, et al, 1982; Knight, et al, 1987). The 
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Figure 5.1 Standard curves for nitrite I nitrate estimation 
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(a) Standard curve derived from triplicate sodium nitrite dilutions in 

Dulbecco's MEM estimated by the Griess reaction as described in 

section 2.10.1. Calculation of sample nitrite concentration was as shown 

(dotted lines). 

(b) Standard curves derived from dilutions of sodium nitrite (0) and sodium 

nitrate (D) in Dulbecco's MEM estimated by chemiluminescence as 

described in section 2.10.2. 
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Total nitrate I nitrite levels were assayed using chemiluminescence (section 

2.10.2). 

(a) Paired synovial fluids and serums from 17 RA patients were compared 

for nitrate I nitrite levels. No significant difference between serum and 

synovial samples was observed (paired Hest). 

(b) Nitrate I nitrite levels were compared in serum from RA and age I sex 

matched controls (n=17). No difference between the group means was 

observed (Mann-Whitney). RA synovial fluid group mean is shown for 

comparison. 
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required low nitrate diet was investigated, but proved unpalatable, and was not 

pursued for ethical reasons. Moreover, Grabowski, et al (1996) subsequently 

developed a urinary nitrate:creatinine ratio for clinical follow-up, which clearly 

indicated that nitrate turnover was elevated in active RA, which obviated further 

investigation. 

5.3 Expression of iNOS mRNA in RA synovial membrane 

Inducible NOS expression in human synovium was determined first at the mRNA 

level. RT-PCR was performed using primers specific for human chondrocyte iNOS 

(Charles, et al, 1993). Preliminary experiments using snap-frozen leukocyte pellets 

from freshly isolated synovial fluid from 5 RA patients contained no iNOS mRNA, 

although satisfactory positive control amplification was observed from a plasmid 

containing human iNOS cDNA. RT-PCR was therefore performed, using the same 

primers, on 4 RA synovial membrane samples frozen immediately after surgical 

excision (Figure 5.3). In all 4 tissues, PCR generated the expected 500 bp product, 

consistent with that predicted from human chondrocyte iNOS. This product was 

sequenced by Dr X.Q. Wei (Dept. of Immunology, University of Glasgow) and 

found to be identical to human iNOS (Charles et al 1993), thereby confirming the 

specificity of the reaction. For control,l3-actin was amplified, as was cDNA prepared 

from OA synovial tissue. The latter also contained iNOS mRNA (Figure 5.3). Thus, 

iNOS expression was detectable at the mRNA level in both RA and OA synovial 

tissue. 



Figure 5.3 RT-PCR for iNOS in human synovial membrane 
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RT-PCR was performed to detect human iNOS mRNA expression in 

freshly isolated RA and OA synovial tissue samples. Lanes 1-4 -

representative RA patients, lane 5 - representative OA patient, lane 6 -

positive control (human iNOS cDNA), lane 7 - negative control (dH20 + 

reagents). Subsequent sequencing showed that the peR product was 

identical to human iNOS. ~-actin mRNA was amplified for control. 
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5.3 Nitric oxide production in RA synovial membrane 

The principal objective of this study was to obtain direct evidence for NO production 

by human synovial tissue. Primary heterogeneous cultures were therefore established 

from samples obtained at primary hip or knee arthroplasty. Synovial membranes 

were collected from 13 patients with RA (mean age 62 years [range 28-83], mean 

disease duration 14.7 years [range 5-22], 78% rheumatoid factor positivity) and 

single cell suspensions were cultured at 2x 1Q6 /ml before nitrite measurement using 

the Griess reaction. Spontaneous nitrite generation was measured in 9 of 13 RA 

culture supematants after 72 hours (Table 5.1). The level of nitrite production varied 

considerably (mean ± s.e.m. 9.6 ± 3.6 JlM [range 3.2 - 51]) presumably reflecting 

clinical and cellular heterogeneity. No obvious association with specific DMARD 

therapy, nor correlation with age, disease duration or serum acute phase response 

(ESR, CRP) was observed (Pearson's correlation coefficient). To confirm that 

bacterial contamination of the collagenase preparation was not responsible for 

'spontaneous' NOS expression, 4x106 /ml J774 cells were incubated with 5 mg/ml 

collagenase for 2 hours at 37°C, then cultured for a further 24 hours. Although 1774 

cells are capable of high output of NO, no nitrite production was detected under these 

conditions. These data demonstrate that NO production is a feature of RA synovial 

tissue and indicate that iNOS activity has been initiated in vivo. 

5.4 Induction of NO production in vitro in RA synovial membrane 

In contrast to the situation in rodents, the precise cytokine requirements for activation 

of iNOS in human pro-inflammatory cells remain unclear. The superantigen, 

staphylococcal enterotoxin B (SEB), induces T lymphocyte proliferation and cytokine 

secretion through interaction with the T cell receptor and can also up regulate 

mononuclear cell cytokine expression following MHC class IT binding (Marrack & 

Kappler, 1990; Trede, et aI, 1993). Moreover, SEB stimulates NO production by 
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Table 5.1 Production of nitric oxide by primary human synovial cultures 

Disease Features Nitric oxide production 

Patients Duration 
(yrs) 

DMARD U nstimulated SEBt 

nitrite (J.JM) 

RAl 14 H 9.3 (3.0) 33 (7)* 

RA2 20 M 13 (1.7) 34 (0.5) 

RA3 5 M+H+P 51 (2.7) 131 (6) 

RA4 13 G <2 6 (2.2) 

RA5 9 M 10.5 (1.3) 16.2 (0.5) 

RA6 19 A+P <2 11.7 (3.2)* 

RA7 22 S+P 10.1 (0.3) 32 (5.9) 

RA8 20 <2 <2 

RA9 15 D 10.4 (2) 8.8 (1.0)* 

RA 10 20 5.2 (1.2) 6.7 (2.8)* 

RA 11 10 3.2 (0.5) 44 (8) 

RA12 10 M 4.3 (0.5) 41 (3.9) 

RAt3 15 <2 19 (2.5) 

Production of nitrite (J.tM 1106 cells) by RA synovial cells in vitro. Values are mean 

of triplicate nitrite assay of each of triplicate cultures (s.d.) after 72 hours. SEB 

stimulated RA synovial tissues produce enhanced nitrite levels (p<O.Ol, Wilcoxon). 

tData shown are for optimal concentration of SEB (range 1-10 Jlg Iml) for each 

patient * 1 Jlglml LPS present in culture. 

Disease modifying anti-rheumatic drugs (DMARD): - G - IM sodium aurothiomalate; 

S - sulphasalazine; M - methotrexate; H - hydroxychloroquine; D - penicillamine; A -

azathioprine; P - prednisolone. 
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murine macrophages in the presence of T lymphocytes (Isobe & Nakashima, 1992). 

It was first necessary to clarify whether this effect was through direct iNOS 

activation, or through T cell activation and subsequent IFN-y production. 

Preliminary experiments were performed using J774 cells which showed that SEB 

addition alone did not induce NO production (Figure 5.4). However, SEB 

augmented the production of nitrite by IFN-y primed J774 cells in the absence of LPS 

(Figure 5.4). This finding established that SEB can act directly on appropriately 

primed target cells to induce NOS activity, presumably through MHC class 11 

binding. Since several synovial cell species express high levels of MHC class 11 

(Burmester, et al, 1987; Pitzalis, et al, 1987), the effect of SEB on NO production by 

RA primary synovial cultures was therefore investigated. 

SEB induced dose dependent production of nitrite in RA synovial cultures (Figure 

5.5a) which increased up to 72 hours, but not thereafter (Figure 5.5b). All patient 

samples were therefore compared for peak nitrite production at 1 or 10 Ilglml SEB 

after 72 hours. The addition of SEB induced novel or significantly increased nitrite 

production in 12 of 13 RA tissues examined (p<O.OI, Wilcoxon, Table 5.1). LPS 

(1 Ilglml) alone was less effective than SEB in inducing nitrite production (Figure 

5.5a, Table 5.2), indeed, addition of LPS (0.1-10 Ilg/ml) inhibited SEB-mediated 

enhancement in 7 of 7 RA patients studied (Figure 5.5b, Table 5.2; p<0.02). This 

may reflect the synthesis of inhibitory cytokines, such as IL-lO or TGF~. Production 

of nitrite in vitro was completely inhibited by addition of 1 mM L-NMMA. L-NMMA 

did not significantly reduce synovial cell viability by trypan blue exclusion - >80% at 

72 hours in presence or absence of 1mM L-NMMA. These observations demonstrate 

that enhancement of basal NO production through an L-arginine dependent pathway is 

possible within the inflamed human synovial membrane in RA patients. 
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Figure 5.4 SEB induces NO production by IFN-y stimulated 1774 cells 
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The production of NO by 1774 cells in response to SEB was investigated 

either alone (~), or in combination with 40 I.U.lml IFN-y (0). Triplicate 

culture supernatants were frozen after 24 hours and nitrite measured by 

Griess reaction. Representative of three similar experiments. Data are 

mean ± s.e.m. *p<0.OO5 comparing SEB + IFN-y with IFN-yalone. 
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Figure 5.5 Production of NO by RA synovial membrane cultures 
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(a) Dose response for SEB-induced nitrite production, with or without LPS, 

by heterogeneous synovial cells from representative patient RA12 

(**p<O.005 compared with basal levels). LPS addition reduced SEB· 

induced NO production (*p<O.05 compared with SEB alone). 0 SEB 

alone; 0 SEB + LPS 1 Jlglml 

(b) Time course of nitrite production by synovial tissue from RA 11. Parallel 

cultures were established and harvested at the time points indicated, and 

stored prior to simultaneous nitrite assay. Production with SEB was 

significantly greater than basal levels (p<O.OOl, Mann-Whitney) at all 

time points from 24 hours. Data are mean ± s.e.m., representing 4 similar 

experiments. 

o SEB IJlg/ml, 0 SEB IJlg/ml + LPS IJlg/ml, 

• SEB IJlg/ml + L-NMMA ImM, 6. LPS IJlg/ml 
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Table S.2 Effect of LPS on RA synovial membrane NO production 

Patient Unstimulated LPS1 SEBt SEB + LPS'" 

nitrite (@!) 

RA2 13 (1.7) 17 (2.3) 34 (0.5) 25 (l.4) 

RA3 51 (2.7) 87 (2) 131 (6) 111 (3.5) 

RA4 <2 3 (0.7) 6 (2.2) 3.1 (0.8) 

RA5 10.5 (1.3) 8.9 (1.8) 16.2 (0.5) 14.6 (1) 

RA7 10.1 (0.3) 21 (6) 32 (5.9) 28 (2.5) 

RA 11 3.2 (0.5) 6 (0.4) 46 (8) 41 (3.7) 

RA12 4.3 (0.5) 8 (1.4) 41 (3.9) 34 (2.9) 

Production of NO ijJ.M 1106 cells) by RA synovial cells in vitro. Values are mean 

of triplicate nitrite assay of each of triplicate cultures (s.d.) after 72 hours. '1LPS 

(1 J.1g/ml) alone induced significantly less nitrite production than SEB alone 

(p<O.04, Wilcoxon). "'LPS also significantly inhibited SEB enhanced nitrite 

levels (p<0.02, Wilcoxon). tOata shown are for optimal concentration of SEB 

(range 1-10 Jlg Iml) for each patient 
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5.5 Cross-reacting antibodies against iNOS in synovial membrane 

Initial efforts to localise iNOS in human synovial tissues employed cross-reacting 

antibodies developed against rodent iNOS, raising the possibility of target non

specificity or of cross-reactivity with other NOS isoforms, or with P450 reductase 

enzymes (Bredt & Snyder, 1994). The antibodies used and ICC conditions are 

detailed in table 2.1. Both monoclonal and polyclonal anti-murine iNOS antibodies 

exhibited extensive synovial lining layer and blood vessel staining (Figure 5.6a). 

Non-specific nuclear cross-reactivity was observed with the rabbit polyclonal anti

murine iNOS from Affiniti (Figure 5.6b). Similarly, rabbit (h13) and sheep anti

human iNOS products (both Wellcome) exhibited widespread lining layer staining. 

However, since none of the staining patterns observed was neutralised by prior 

incubation with 50 Ilglml human recombinant iNOS (riNOS) protein, and because no 

consistent staining pattern emerged, considerable doubt remained as to the specificity 

of the available reagents. 

5.6 Tissue localisation of iNOS in RA synovial membrane 

To resolve such concern, a rabbit antiserum raised specifically against the C-terminal 

heptamer peptide (YRASLEMSAL) of human iNOS was obtained (N053; Nicholson, 

et al, 1996). This sequence is not present on either eNOS or cNOS, nor on rodent 

iNOS. This antiserum detected human iNOS in ELISA at a dilution of 1 :400,000 

(personal communication Dr. H.R. Williams, Merck Research Laboratories, NI, 

USA) and recognised neither human eNOS nor the C-terminal of rodent iNOS by 

ELlSA. Preliminary antibody concentration-range studies were performed which 

established positive staining of human RA synovial tissue down to 1 :40,000 serum 

dilution, although I :20,000 dilution gave optimal tissue localisation and was used 

subsequently. 



a 

b 

Figure 5.6 Anti-rodent iNOS antibodies bind non-specifically in human 

RA synovial membrane 

RA synovial sections were stained with (a) polyclonal anti-murine 

iNOS (Wellcome) and localised with fast red. Extensive lining layer 

staining was detected which could not be neutralised by prior 

incubation with human iNOS (50 )lg/ml). (b) Nuclear cross-reactivity 

was evident following staining with anti-murine iNOS (Affiniti) 

localised with lissamine rhodamine. 

(Magnification x 250). 
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Light microscopy with this antibody demonstrated intra-cytoplasmic staining in cells 

both within, and deep to, the synovial lining layer (Figure 5.7a). The lining layer 

contained significantly greater numbers of iNOS+ cells than interstitial or lymphocytic 

aggregate areas (Table 5.3, p<O.Ol, Mann Whitney). The frequency of positive cells 

for each area varied considerably between different patients, as predicted by the 

heterogeneity of spontaneous nitrite production in primary culture (Table 5.1), and 

within individual tissues. Staining revealed cells in discrete groups, rather than 

spread diffusely through the tissue, as had been a feature of staining with antibodies 

raised against rodent iNOS. Staining for iNOS was abolished by prior addition of the 

immunising human iNOS peptide (N054; Figure 5.7b), but remained unchanged after 

pre-incubation with a peptide from a similar region of rodent iNOS (YEEPKATRL) 

Table S.3 Histological distribution of iNOS in RA synovial membrane. 

n=number fields 

meant s.d. 
(range) 

% cells iNOS positive 

Lining layer 
n=36 

19 ± 13.1 * 
(2-56) 

Interstitium 
n=24 

5 ±5.6 
(0-20) 

Aggregate 
n=31 

7 ±7.8 
(0-37) 

Synovial sections from 10 RA patients stained with anti-human iNOS antiserum 

were assessed by two histologists counting at least 500 cells in at least 3 high 

power fields per section area (magnification x400). Data are mean ± s.d. (range) 

for total number of fields counted. iNOS expression is greater in lining layer 

compared to either aggregate or interstitial areas (* p<O.OOl). Percent of iNOS 

positive cells is expressed as - [(positive cells)/(total number cells in field)] x 100 



Figure 5.7 Immunohistochemical localisation of iNOS in human RA 

synovial membrane 

a 

c 
RA synovial tissue section showing 

lining layer and adjacent interstitium 

stained with rabbit anti-human iNOS 

antiserum (fast red). Ca) anti-iNOS 

serum alone, Cb) anti-iNOS serum 

after pre-incubation with human 

iNOS peptide, (c) anti-iNOS serum 

after pre-incubation with rodent 

iNOS peptide. Staining after pre

incubation with recombinant human 

eNOS was identical to Cc) . 

(Magnification x300) 



Figure 5.8 iNOS expression in endothelial cells in RA synovial membrane 

RA synovial membrane was stained with anti-human iNOS antiserum and 

localised with fast red. (a & b) Endothelial cells were localised by morphology. 

(c) Prior incubation of section b with recombinant human iNOS neutralised the 

observed staining. In contrast recombinant human eNOS was ineffective in 

neutralising experiments (appearances similar to [b]) 
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or recombinant human eNDS (Figure 5.7c), demonstrating that the pattern of staining 

was specific for human iNOS. iNOS positive smooth muscle and endothelial cells 

were also identified around blood vessels in 8 of 10 RA tissues examined (Figure 

5.8a). As before, this was neutralised by prior incubation with human iNOS peptide, 

but not with human eNDS (Figure 5.8b) indicating that iNOS up regulation is also a 

feature of activated synovial endothelial cells in RA. 

5.7 Cellular localisation of iNOS expression 

The degree of lining layer staining with anti-human iNDS antibody implied that iNOS 

was potentially present in both macrophages and fibroblast-like synoviocytes. It was 

therefore important to establish which of these was the major source of inducible NO 

production in RA. To address this question, double staining for iNOS was 

performed with the macrophage markers, non-specific esterase (NSE) and murine 

monoclonal anti-CD68 by light microscopy and confocal microscopy respectively. 

Double staining with NSE and anti-iNDS (Figure 5.9) revealed that the majority of 

iNOS positive cells either in the lining layer, or the interstitium, were NSE negative 

(mean ± s.e.m, 89 ± 5%) and therefore, unlikely to be macrophages (Table 5.4). 

Only 5% of synovial cells were NSE+ I iNOS+. These data were confirmed using 

confocal microscopy. Figure 5. lOa demonstrates that most iNOS positive cells were 

not double-labelled with anti-CD68, although co-staining of anti-iNOS and CD68 in 

lining layer cells was occasionally observed (Figure 5.lOb), indicating that some 

macrophages were capable of iNOS expression. Together these data showed that the 

majority of NSE+ and CD68+ cells in the lining layer were iNOS negative, indicating 

that most macrophages were not directly involved in NO production (Figure 5.10a, 

Table 5.4). In vitro, T cells do not normally synthesise NO and consistent with this, 

synovial T cells detected with murine anti-CD3 were all iNOS- (Figure 5.lOc). 
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Because murine anti-CD3 monoclonal shares isotype and species origin with anti

CD68 antibody, this finding serves as an additional specificity control for the positive 

double staining observed with anti-iNOS and anti-CD68. 

Table 5.4 Co-localisation of iNOS with NSE in RA synovial membrane. 

phenotype 

mean±s.d 
(range) 

% positive cells 

NSE+/iNOS-

49±24 
(0-80) 

NSE-/iNOS+ 

45±23 
(16-93) 

NSE+ liNOS+ 

5 ± 3.1 
(0-12.5) 

Sections from 4 RA patients were double stained with anti-human iNOS 

antiserum and non-specific esterase (NSE). At least 250 lining layer and 

adjacent interstitial area cells positive for NSE and I or iNOS were counted per 

section and the number of NSE+, iNOS+, or double positive cells were 

expressed as a % of the total number of cells counted. 



Figure 5.9 Co-localisation of non-specific esterase and iNOS in 

RA synovial membrane 

RA synovial sections were stained with anti-human iNOS antiserum, 

localised with fast blue, then with NSE (brown). No nucl ar 

counterstain was used. The majority of iNOS+ cells were NSE-, 

although occasional double labelled cells were observed (arrow). 

(Magnification x200) 



Figure 5.10 Con-focal microscopic localisation of iNOS in RA synovial membrane 

Confocal images of RA synovial 

frozen tissue sections stained with 

anti-human iNOS (red), in 

combination with Ca) anti-CD68 

(green) showing that most iNOS 

positive cells are CD68 - [x250] (b) 

anti-CD68 showing that CD68 + 

iNOS+ cells are present (double 

stain represented as yellow [x500]) 

or (c) anti-CD3 (green) showing that 

T lymphocytes are iNOS- [x400]. 
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S.8 NO production in OA synovial tissue 

In order to test whether NO synthesis was a specific property of inflammatory 

arthritides, NO production in OA synovial tissues was investigated. RT-PCR had 

earlier demonstrated the presence of iNOS mRNA in an OA synovial membrane 

indicating that increased NO production might be a feature of OA (Figure 5.3). 

Single cell suspensions from 7 OA synovial membranes were therefore cultured for 

72 hours and nitrite generation measured. Spontaneous nitrite production was 

measured in 5 of 7 tissues examined. with mean concentration produced of 19 ± 9 

JlM (Table 5.5 & Figure 5.11). As with RA synovial membrane, addition of SEB (1-

10 J.lglml) lead to novel or significantly increased levels of nitrite production in 7 of 7 

patients in vitro (Table 5.6, p<O.05, Wilcoxon). No significant difference in either 

spontaneous or induced NO production was observed between the group means of 

RA and OA patient samples. The remarkable level of NO generated in the absence of 

exogenous stimuli in patient sample OA8 provoked clinical reassessment from which 

emerged a history of congenital hip disease, with a possible seronegative 

inflammatory arthritis. These data were therefore excluded from statistical analysis. 

The distribution of iNOS in OA synovial membrane was investigated by 

immunohistochemistry, using rabbit anti-human iNOS antiserum (N053) as 

described. iNOS expression was detected mostly in lining layer, with occasional 

interstitial cell staining (Table 5.6). Taken together, these data provide direct evidence 

that iNOS expression and NO production is a feature of OA synovial membrane. 
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Table 5.5 Production of nitric oxide by primary human synovial cultures 

Disease Features Nitric oxide production 

Patients Duration Unstimulated SEBt 
(yr) 

nitrite (pM) 

OAl 10 15 (0.5) 32 (3.6) 

OA2 7 <2 3.3 (1.0)'" 

OA3 5 <2 3.2 (1.0)'" 

OA4 10 22 (2.5) 57 (8) 

OAS 5 10 (3.3) 24 (3) 

OA6 7 6 (2) 19 (4) 

OA7 8 76 (9) 112 (8) 

OA8 3 128 (26) 98 (8) 

Production of NO (J,JM 1106 cells) by OA synovial cells in vitro. Values are mean 

of triplicate nitrite assay of each of triplicate cultures (s.d.) at 72 hours. SEB 

stimulated OA synovial tissues produce enhanced nitrite levels (p<0.02, 

Wi1coxon). tData shown are for optimal concentration of SEB (range 1-10 ~g 

fml) for each patient. '" 1 ~g/ml LPS present in culture. Patients were all 

receiving non-steroidal anti-inflammatory drugs. 



Figure 5.11 Production of NO by OA synovial membrane culture 
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Dose response for SEB-induced nitrite production, with or without 

LPS, by heterogeneous synovial cells from a representative patient, 

OA06. NO production with SEB was significantly greater than basal 

levels, or with added LPS (*p<O.OOI, Mann-Whitney). Data are mean 

± s.e.m., representing 3 similar experiments. 
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Table 5.6 Immunohistochemical distribution of iNOS in OA synovial membrane 

n=number fields 

mean ± s.d. 
(range) 

% cells iNOS positive 

Lining layer 
n=28 

11±13 
(0 - 53) 

Interstitium 
n=25 

3 ± 3.5 
(0 - 15) 

Synovial sections from 10 OA patients stained with anti-human iNOS antiserum 

were assessed by two histologists counting at least 500 cells in at least 2 high 

power fields per section area (magnification x4(0). Data are mean ± s.d. (range) 

for total number of fields counted. iNOS expression is greater in lining layer 

compared to interstitial areas (*p<0.006, Mann-Whitney). Percent of iNOS 

positive cells is expressed as - [(positive cells)/(total number cells in field)] x 100 



5.9 Do similar culture conditions induce human monocytes to 

produce NO? 
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The ability of human macrophages to produce NO is currently controversial 

(Schneemann, et al, 1993; Dugas, et aI, 1995). Light and con-focal microscopic data 

presented here indicate that human macrophages activated in a chronic inflammatory 

environment can indeed express iNOS, although in the context of RA, they may be of 

secondary importance in quantitative terms. Nevertheless, the enhancement of NO 

production by SEB in both human synovial cultures and 1774 cells raised the 

possibility that this agent might up regulate iNOS expression in human monocytes. 

THP-l cells, U937 cells, or unfractionated PBMC and purified blood monocytes 

(>90% CDI4+, <3% CD3+, <3% CDI9+ by FACS analysis) from 4 normal donors 

and 4 RA patients were cultured between 106 / ml and 4x 106 / ml for 1, 3, 5 and 7 

days with various doses and combinations of SEB (1 - 200 J.1g/ml) and LPS (0.01 - 1 

J.1g1ml) with or without prior maturation for 24 hours with 10 nM PMA. In some 

experiments, reagents were added to culture wells 24 hours after cell seeding to wells 

and in others, the concentration of FCS was reduced to 0.1 %. No combination of 

reagents or in vitro conditions was capable of consistent NO production measured by 

the Griess reaction (sensitivity of 2 J.1M). 

5.10 NO dependent regulation of TNFa production. 

Since TNFa production constitutes an important pro-inflammatory pathway in RA 

pathogenesis, it was of interest to determine whether NO might regulate its production 

in RA synovium. Synovial tissues or fluids were collected and adherent single cell 

suspensions prepared (>75% CD68+, <5% CD3+, <2% CD19+, by cytoprep 

analysis). These were cultured at 2 x106 /ml in the presence of graded concentrations 

of the NO donor, S-nitroso-N-acetylpenicillanline (SNAP), and the levels ofTNFa in 

the culture supematant determined 48 hours later by ELISA. Cells cultured with 
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medium alone produced low concentrations of TNFa.. This was markedly enhanced 

by the presence of SNAP in a dose-dependent manner (Figure 5.12a). In parallel 

experiments, SNAP also increased the production of TNFa. by the macrophage cell 

line U937 which had been primed by prior culture in 1 nM PMA for 24 hours (Figure 

5.12b). The analogue N-acetylpenicillamine (NAP) which does not release NO, 

induced no TNFa synthesis. Neither SNAP, nor NAP, contained detectable LPS, 

using the Limulus amoebocyte assay (<0.0015 I.U./mM stock solution). 



Figure 5.12 Nitric oxide enhances TNFa synthesis in vitro 
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TNFa production (mean ± s.e.m.) to SNAP by (a) adherent cells from 

RA synovial fluid (SFAC) (0, n=4) or RA synovial tissue (0, n=2) or 

(b) PMA matured U937 cells (L\ SNAP, • NAP; representative of 3 

similar experiments). NAP did not induce TNFa production from 

SFAC (n=3). 2 mM SNAP contained <0.0015 I.U. LPS by limulus 

amebocyte lysis assay. Data are mean ± s.e.m. 
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Discussion 

These observations provide direct evidence for NO production by human synovial 

membrane. In contrast to reports in animal experimental systems, in which cartilage 

was the predominant source of NO (Murrell, et aI, 1996), synovial tissue appears 

capable of significant NO generation in human inflammatory arthritis. Evidence from 

in vivo model systems suggests that such NO synthesis is likely to have pathological 

significance. 

The current data constitute a detailed ex vivo study of the cellular origin of NO 

production in RA synovial membrane. As such they significantly extend previous 

reports which provided largely indirect evidence for NO production in RA. Synovial 

fluid nitrite levels are reported to exceed those in serum in RA (Farrell, et aI, 1992; 

Veki, et aI, 1996). This observation was not confirmed in the present study because 

the sensitivity of the chemiluminescence method for nitrite estimation employed here 

was inadequate to detect isolated elevation of nitrite in the presence of normal daily 

nitrate intake (Knight, et aI, 1987). Moreover, Renoux, et al, (1995) recently 

detected higher levels of nitrite in OA synovial fluid than in RA. Dietary influences 

and possible variations in sample acquisition or methodology for nitrite estimation 

therefore cast doubt on the validity of nitrite as an index of NO production in RA. 

However, the fasting urinary nitrate:creatinine ratio, which avoids dietary effects, is 

increased in active RA (Grabowski, et aI, 1996) and elevation of urinary nitrite 

excretion is reduced by prednisolone therapy (Stichtenoth. et al. 1995). 3-

nitrotyrosine levels detected by electron-spin trapping are also elevated in RA synovial 

fluid (Kaur & Halliwell, 1994). These data indicate that articular tissues are a likely 

source of NO. The present study showed clearly. that the synovial membrane itself 

can contribute Significantly to NO production during inflammatory arthritis, in 

combination with cartilage and bone derived cells. 
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Several recent reports have addressed the articular source of NO production. 

Whereas bovine or human chondrocyte cultures produced high levels of NO induced 

by cytokines, including IL-l~ and TNFa, parallel cultures of synovial fibroblasts 

made only minimal levels of NO (Rediske, et aI, 1994; Murrell, et aI, 1996). In 

contrast, comparing NO production by human chondrocytes, osteoblasts and synovial 

fibroblasts, Ralston et al (1996) confirmed chondrocyte production of NO, but 

showed in vitro and using RT-PCR, that NO was produced by passaged synovial 

fibroblasts, after stimulation with IL-I~, TNFa and IFN-y. However, unstimulated 

synovial fibroblasts and synovial fluid-derived leucocytes were iNOS- by RT-PCR. 

Nitrite production by human RA synovial explant cultures and preliminary evidence 

for enhanced NO production by IL-I~, TNFa and LPS has also been reported which 

correlated with levels of CD14 expression (Sakurai et alI995). However, synovial 

fibroblasts in the latter study did not synthesise NO even after activation by cytokine 

combinations. Data presented here clearly establish that primary heterogeneous RA 

synovial cultures spontaneously generate NO. That such production was induced by 

bacterial product contamination during the enzymatic tissue digestion process seems . 

unlikely, since iNOS expression was detectable by RT-PCR and immunohisto

chemistry in freshly isolated tissue. Moreover, 1774 cells were resistant to NOS 

induction by a similar incubation protocol. These data indicate that NO production is 

upregulated in vivo, and as such constitutes a component of the inflammatory 

response in RA synovial membrane. 

Immunohistochemical localisation of iNOS indicated that synovial fibroblasts 

constitute the predominant source of NO in vivo, with lesser contributions from 

macrophages and endothelial cells. The anti-iNOS antibody employed here also 

detects iNOS in alveolar macrophages in pulmonary tuberculosis patients (Nicholson 

et al1996) and in asthmatic alveolar macrophages (Leung, B.P. & McInnes, LB. 

unpublished observations). Neutralisation studies confirmed that it did not cross

react with either rodent iNOS or human eN~S. The iNOS staining pattern observed 
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contrasts with that reported using antibody raised against murine iNOS, which 

suggested more extensive iNOS expression, found mainly in CDI4+ synovial 

macrophages (Sakurai, et aI, 1995). This discrepancy may relate to the use of anti

rodent iNOS antibodies with attendant problems of cross-reactivity or non-specificity 

clearly documented in the current study. 

There is currently considerable controversy as to the capacity of human macrophages 

to produce NO (e.g. Denis, 1991; Schneemann, et al, 1993; Zembala, et al, 1994; 

Dugas, et al, 1995). The in vitro culture conditions optimal for the induction of iNOS 

in murine macrophages are apparently distinct from those required for the induction of 

iNOS in human macrophages. While macrophage cell lines (1774 or RAW) or 

thioglycollate stimulated peritoneal macrophages are used in most rodent systems, 

peripheral blood mononuclear cells are usually employed in human monocyte 

Imacrophage experiments perhaps representing a different maturation stage. 

However, even in reports where the production of NO by human monocyte 

Imacrophages was detectable (Zembala, et al, 1994; Dugas, et al, 1995), the levels are 

an order of magnitude lower than those produced by murine macrophages. This 

implies that cellular delegation of specific functions may differ between species in 

inflammatory lesions. Results from the present study show clearly that, although in 

the minority, some synovial macrophages from RA patients can indeed express high 

levels of iNOS. The latter observation was based not only on the presence of CD68+ 

I iNOS+ cells, since CD68 expression in synoviocytes in the interstitium has been 

reported (Wilkinson, et aI, 1992), but also on the identification of NSE+ I iNOS+ 

cells on light microscopy. The reason why only a limited number of macrophages is 

activated to produce NO in RA is at present unclear. 

There is, however, little doubt that RA synovial macrophages are activated, as 

demonstrated by the production of pro-inflammatory cytokines, such as IL-l, TNFa, 

IL-6 (Feldmann, et al, 1996b). Evidence from clinical intervention studies using 
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monoclonal anti-TNFa. therapy have suggested that such cytokine generation is 

critical in ongoing synovitis (Elliott, et al, 1994; Rankin, et al, 1995). The factors 

responsible for TNFa. upregulation remain unclear. Data reported here show clearly 

that, in contrast to their central position in cytokine production, synovial macrophages 

may express iNOS, but are not likely to be the principle producers of NO. In the 

context of inflammatory arthritis, this property appears to lie within the fibroblast 

compartment. Therefore, a reciprocal role for NO may exist whereby NO produced 

by synovial fibroblasts enhances pro-inflammatory cytokine production by 

macrophages, which in turn may up regulate iNOS expression, thereby generating a 

positive feedback loop. Certainly, TNFa. is a recognised inducer of iNOS expression 

in animal systems (Nathan & Xie, 1994b; Liew, 1994). Further experiments 

examining the effect of NOS inhibitors on spontaneous cytokine production in vitro 

by synovial membrane cultures will help to address this possibility. 

NO is likely to influence other immunoregulatory pathways in RA synovitis. The 

levels of NO spontaneously generated in synovial cultures are sufficient to inhibit T 

cell proliferation (Fu & Blankenhorn, 1992; Merryman, et aI, 1993) and may 

therefore contribute to the 'frustrated activation' phenotype characteristic of synovial 

T lymphocytes (Pitzalis, et aI, 1987). LPS-stimulation-dependent generation of 

angiogenic activity by human macrophages requires an L-arginine-dependent NO

synthase effector mechanism that may be independent of the generation of TNFa. and 

IL-8 (Leibovich, et al, 1994), indicating that NO may contribute to neovascularisation 

in RA synovial membrane. Moreover, NO can up regulate production of 

metalloproteinases (Murrell, et aI, 1995) and of prostaglandins (Manfield, et aI, 

1996), and has been implicated in IL-l~-mediated inhibition of proteoglycan 

biosynthesis (Hauselmann, et aI, 1994; Jarvinen, et al, 1995; Fukuda, et al, 1995), 

implying a pro-inflammatory effect. However, an acute chondroprotective role has 

recently been proposed for endogenous NO in bovine cartilage (Stefanovic-Racic, et 

al, 1996). Thus, in contrast to the situation in rodent arthritis models, in which NO is 
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usually detrimental (Ialenti, et aI, 1993; McCartney-Francis, et al, 1994), the net 

effect of NO generation in the human situation remains unclear. 

It was not clear whether SEB-induced NO production was mediated through direct 

effects on MHC class 11+ synoviocytes I macrophages, or rather through 'surrogate' 

cytokine production by T lymphocytes activated by V~ region I TCR binding 

(Marrack & Kappler, 1990). The induction of NOS activity by SEB in IFN-r primed 

1774 cells indicated that a direct effect on macrophages was possible in the presence 

of adequate co-stimuli. The presence of the latter would, in any case, reflect 

concomitant T cell activation in vivo and in the context of heterogeneous RA synovial 

cultures, a combination of mechanisms seems likely. Further investigation of highly 

purified subsets of synovial cells will be required to address this question. 

Nevertheless, the ability of SEB to induce NO production in OA tissues. in which 

fewer T lymphocytes were present, perhaps indicates that a direct effect does exist. 

The addition of LPS alone induced low levels only of NO synthesis. and addition 

with SEB did not further increase SEB-induced NO production. but rather led to 

inhibition. This may reflect the generation of inhibitory cytokines, such as IL-IO, 

from CDI4+ synovial macrophages. However, SEB. with or without LPS, was 

unable to induce NO production by peripheral blood monocytes. even after prior 

maturation with IFN-y or PMA. or the presence of SEB-responsive PB lymphocytes. 

These data indicate that the complex signals priming macrophages within an 

inflammatory site are not as easily mimicked in the human, as in the rodent situation. 

The apparently contradictory evidence which exists regarding NO production by 

synovial fibroblasts can be resolved by the current study. Previous discrepancies 

may reflect various stages of fibroblast differentiation in vitro, cell passage used, or 

the culture conditions to confluence employed by different groups (Rediske, et aI, 

1994; Ralston, ct aI, 1996; Murrell, et aI, 1996). By providing immunohistochemical 

evidence for fibroblast iNOS expression, the difficulties attached to interpretation of 
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in vitro data can be avoided. Thus, NO synthesis can be added to the list of 

synoviocyte bioactivities which includes, MMP production, cytokine generation and 

PG synthesis. This provides further evidence indicating a crucial role for fibroblasts 

in RA pathogenesis (reviewed by Zvaifler & Firestein, 1995). 

It is of interest also that both RA and OA patient synovia were capable of NO 

generation. OA synovial tissues contain areas of inflammatory infiltrate, with 

macrophages present, particularly in the lining layer, and low levels of monokines 

detectable, including IL-l~ and TNFa (Gordon, et aI, 1984; Brennan, et aI, 1989; 

Brennan, et al, 1991). High levels of NO production have been detected in OA 

chondrocytes (Amin, et aI, 1995) and indeed, higher levels of nitrite have been 

reported in OA than in RA synovial fluid (Renoux, et aI, 1995). The clinical OA 

syndrome, however, is not considered to be of primarily inflammatory origin. NO 

production is therefore unlikely to be a property of the inflammatory arthritides alone. 

but may reflect a non-specific response to injury or inflammation with potential 

protective or pathological consequences. In particular. given its extensive 

microbicidal activities, the role of NO in synovial defence against infection merits 

consideration. This may have important therapeutic consequences when specific 

iNOS inhibitors come to clinical trial. 

In summary, these results demonstrate directly the production, and further induction, 

of NO by synovial cultures from RA and OA tissue and provide evidence of iNOS 

expression in synovial inflammatory cells. These in vitro and immunohistochemical 

data significantly extend the previous reports of NO production in synovial 

membrane, by clarifying its cellular origin and confirming that the production of NO 

may be inducible in vitro. 



Chapter 6 

Staphylococcus aureus arthritis in mice lacking 

inducible nitric oxide synthase. 
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Introduction 

High concentrations of NO are generated by inducible NOS (iNOS) regulated by pro

inflammatory cytokines, particularly TNFa, IL-l~ and IFN-y and by bacterial 

components, including lipopolysaccharide (LPS) and staphylococcal enterotoxins 

(Isobe & Nakashima, 1992; Bredt & Snyder, 1994; Nathan & Xie, 1994a). iNOS 

activity constitutes the predominant source of NO in inflammatory lesions. Several 

observations implicate NO in articular inflammation. NOS inhibitors retard or 

abrogate streptococcal cell wall and adjuvant-induced arthritis in rats indicating that, in 

rodents at least, NO synthesis is required for autoimmune joint destruction (Ialenti, et 

al, 1993; MacCartney-Francis, et al, 1994; Stefanovic-Racic, et al' 1994). Elevated 

synovial fluid nitrite levels and urinary nitrite excretion provide indirect evidence for 

NO synthesis in humans in RA (Farrell, et aI, 1992; Grabowski, et aI, 1996). 

Furthermore, data presented in chapter 5 clearly demonstrate NO production by 

fibroblasts and macrophages in the synovial membrane of RA patients (Mclnnes, et 

al, 1996b), which can be further enhanced in vitro by addition of staphylococcal 

enterotoxin B (SEB). 

The net effect in vivo of NO synthesis in human synovial membrane, however, is 

subject to considerable controversy. NO induces matrix metalloproteinase 

production, cyclooxygenase activation and can enhance synovial macrophage derived 

TNFa synthesis (Murrell, et al, 1995; Manfield, et al. 1996). It also promotes 

macrophage driven neovascularisation and has been implicated in IL-I ~ mediated 

inhibition of proteoglycan biosynthesis and thus, cartilage degradation (Lcibovich, et 

al, 1994; Hauselmann, et aI, 1994; Jarvinen, et aI, 1995; Fukuda, et al, 1995). In 

contrast, an acute chondro-protective role for NO has recently been proposed 

(Stefanovic-Racic, et al, 1996) and immunomodulatory effects on T cell activation 

may partially account for the 'frustrated activation' exhibited by T cells in RA 

inflammatory synovium (Pitzalis, et aI, 1987). Thus, in inflammatory arthritis, NO 
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may exhibit bi-potential properties. However, high levels of NO production can also 

be demonstrated in joints of patients with OA (chapter 5; Amin, et al, 1995; Renoux, 

et al, 1995). NO synthesis in the synovial membrane most likely represents a non

specific response to diverse challenges. In evolutionary terms, the principle role for 

NO in immunity appears to be microbicidal, with immunomodulatory effects designed 

to assist in regulation of anti-microbial cellular and cytokine responses. This raises 

the possibility that NO production may be important in synovial defence against 

infection. This is of particular importance if iNOS inhibitors are to provide effective 

novel anti-inflammatory therapies. 

Septic arthritis commonly results from gram positive bacterial infection, particularly 

by Staphylococcus aureus (Rosenthal, et aI, 1980; Goldenberg & Reed, 1985; 

Goldenberg, 1989; Ostensson & Geborek, 1991). Whereas NO has been clearly 

shown to mediate cytotoxicity against intracellular pathogens, including protozoa, 

viruses and fungi (Nathan & Xie, 1994b), its role in killing extra cellular bacterial is 

poorly defined. Reactive nitrogen intermediates (RN!) have been implicated in 

staphylococcal killing after neutrophil phagocytosis (Malawista, et al, 1992). In a cell 

free system, NO exerted delayed bactericidal activity, but in contrast to the action of 

reactive oxygen intermediates (RO!), exerted no immediate killing effect (Kaplan, et 

al, 1996). 

Septic arthritis can be induced by intravenous inoculation of mice with exo-toxin 

producing Staphylococcus aureus (Bremmell, et aI, 1991; Bremmell, et aI, 1992). 

The resulting articular lesion exhibits synovial hyperplasia, containing neutrophils, 

macrophages and a prominent T lymphocyte infiltrate, with associated erosion of 

underlying cartilage and bone (Bremmell, et aI, 1992; Abdelnour, et al, 1994a). T 

cell activation by bacterial superantigens leads to high levels of cytokine production, 

particularly IFN-y and TNF~ (Abdelnour, et aI, 1994b). The course of 

staphylococcal infection in IFN-y receptor knockout and T cell receptor transgenic 
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mice indicates that such Thl bias is pro-inflammatory (Zhao, et al, 1995a; Zhao & 

Tarkowski, 1995b) and inhibition of T cell activity using anti-CD4 or anti-V~11 

antibodies can significantly improve disease outcome (Abdelnour, et aI, 1994b). 

These data indicate that immunological mechanisms constitute a major component of 

the observed articular pathology. Direct injection of bacterial superantigens, such as 

toxic shock syndrome toxin (TSST)-1 or SEB, leads to T cell mediated shock. In 

these circumstances, NO production is protective to the host (Florquin, et al, 1994). 

In contrast, the staphylococcal cell wall components, peptidoglycan and lipoteichoic 

acid, synergistically induce multiple organ failure in rats by an NO-dependent 

mechanism (De Kimpe, et al, 1995a; De Kimpe, et aI, 1995b). The precise role of 

NO in gram-positive infectious arthritis and septicaemia is therefore currently unclear. 

Wei, et al (1995) recently generated an iNOS gene targeted mouse, which facilitates 

investigation of the contribution of iNOS to inflammatory conditions in the context of 

normal constitutive eNOS and nNDS activity. This provides an ideal model in which 

to study the contribution of NO synthesis in vivo to both acute Staphylococcus aureus 

infection and its T cell-dependent pathological sequelae. By this means the relative 

contribution of microbicidal and immunomodulatory effects of NO in systemic and 

articular inflammation may be investigated. 
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6. 1 Incidence and severity of staphylococcal septicaemia 

Although NO production has been firmly implicated in gram negative endotoxin

induced shock, its role in gram positive bacterial sepsis is less clear. Septicaemia is 

uncommon in wild-type Swiss mice following Staphylococcus aureus infection 

(Bremmell, et aI, 1992). Initial experiments were thus performed to assess whether 

iNOS deficiency altered this normally resistant phenotype. Preliminary dose-ranging 

studies established that injection of 5x107 CPU staphylococci Imouse led to onset of 

arthritis, but only rarely induced septicaemia in wild-type mice. In three separate 

experiments, iNOS deficient homozygous (iNOS-I-; n=33), heterozygous (iNOS+I-; 

n=28) or wild type (iNOS+I+; n=20) mice therefore received 5x107 CFU/ml of 

Staphylococcus aureus LS-l strain by intravenous injection. 65% of iNOS-I

compared with 14% of iNOS+I- mice developed clinical evidence of sepsis within 48 

hours, rising to 83% compared with 20% respectively after 4 days (p<0.OO5, Chi 

Square; Figure 6. la). Disease severity in animals developing sepsis was significantly 

greater in iNOS-I- than iNOS+I- mice during the acute phase of disease up to day 6 

(p<O.OOI to p<0.04, Mann-Whitney; Figure 6.1b). These observations were 

reflected in significantly greater weight loss in iNOS-I- mice compared with either 

infected iNOS+I- or iNOS+I+ controls (p<O.OI, Mann-Whitney; Figure 6.2a), or 

with uninfected iNOS-I- littermates (Figure 6.2b). Increased mortality was observed 

in iNOS-I- mice, which reached 30% after 8 days (p<0.OO5 to p<O.03 compared with 

iNOS+I- or iNOS+I+ mice, Log-rank; Figure 6.3). These data demonstrate that 

deficient iNOS expression is associated with increased incidence and severity of 

septiCaemia and implicate NO in vivo in host defence to Staphylococcus aureus 

infection. 
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iNOS-I- mice developed higher incidence of septicaemia of greater 

severity than iNOS+I- or iNOS+I+ littermates. iNOS-I- (0; n=33), 

iNOS+I- (A; n=28) or iNOS+I+ (0; n=20) mice received 5x107 CFU 

staphylococcus aureus i. v. The (a) presence and (b) severity of 

septicaemia were assessed daily by group-blinded observers. Incidence 

was higher from day 2 in iNOS-I- mice than in either control group 

(p<O.OO5, Chi-Square). Severity of septicaemic mice only in either 

group was compared and was greatest in iNOS-I- mice ("'p<O.02, 

**p<O.OOI, ***p<O.04). Data are pooled from three separate 

experiments. 



Figure 6.2 Weight change after staphylococcal infection 
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(a) Mice were weighed daily after Lv. infection with staphylococcus 

aureus and mean ± s.e.m. change in weight was calculated from 

baseline. iNOS-I- mice (0; n=33) lost more weight than iNOS+I-

(A; n=28) or iNOS+I+ (0; n=20) controls ("'p<O.OI, Mann

Whitney). 

(b) Weight gain in uninfected controls (filled symbols) was identical in 

each group (n=6/group). 
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Figure 6.3 Mortality following staphylococcal infection 
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Mortality after staphylococcLls aureus infection was higher in 

iNOS-I- (0) compared with iNOS+/- (t.; **p<0.03, Log-rank) or 

with iNOS+/+ mice (0; *pdl.02, **p<0.005). Wildtype and 

heterozygote mortality rates were not significantly different. 

population numbers at outset were -/-n=33, +/-n=28 and +1+n=20. 

189 



190 

It was next important to determine whether clinical septicaemia was reflected in altered 

bacterial distribution and viability in vivo. iNOS-I- and iNOS+I- mice were injected 

Lv. with 5x107 CFU Staphylococcus aureus as before. Ten-fold dilutions of blood 

and tissue homogenates were cultured on blood agar for 18 hours at 37°C to derive 

the number of viable CFU present at successive time intervals, up to day 11. 

Staphylococci were not detected in blood in either group at day 3, but were present in 

iNOS-I- mice at days 7 and 11. In contrast, iNOS+I- mice had few viable blood

borne bacteria even at day 7 (Figure 6.4a). High numbers of bacteria were present in 

the spleens of both groups after day 3, but persisted to days 7 and 11 only in iNOS-I

animals (Figure 6.4b). Together these data indicate that although both groups 

similarly localise staphylococci to spleen, their subsequent viability within, and 

dissemination from, the spleen is altered in iNOS-I- animals. That this was relevant 

to end organ infection was demonstrated by the greater number of viable 

staphylococcal CFU detected in kidneys of homozygous animals (Figure 6.4c). 

iNOS deficiency therefore impairs clearance of staphylococci, leading to widespread 

tissue deposition of bacteria and consequent pathology. 

6.2 Incidence and severity of septic arthritis. 

The above data clearly indicate the deleterious consequences of staphylococcal 

infection in iNOS-I- mice. Since NO has been implicated as an important pro

inflammatory mediator in rodent 'autoimmune' arthritis, it was therefore of interest to 

determine the net effect of iNOS deficiency on the development and severity of septic 

arthritis. iNOS+I- and iNOS+I+ mice developed clinical signs of arthritis within 2 

days of infection, which was evident in 50% of mice after 10 days (Figure 6.5a). No 

significant difference between these groups was observed. Individual animals 

presented a fluctuating course with minor daily variation in clinical severity. In 
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Figure 6.4 Tissue distribution of viable staphylococci after i.v. infection 
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Higher numbers of viable staphylococci were recovered from iNOS-I- mice 

(hatched bars) after Lv. staphylococcus aureus infection compared with 

iNOS+I- mice (solid bars). Tissues (n=3 mice/group) were harvested at time 

points indicated. diluted ten-fold (to n/lO fi ) in sterile PBS. and the number of 

viable CPU was assessed in duplicate cultures in blood agar over 18 hours. 



Figure 6.S Incidence and severity of septic arthritis 
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iNOS-I- (0; n=33) mice developed arthritis more frequently and with 

greater severity than did iNOS+I- (~; n=28) or iNOS+I+ (0; n=20) 

littermates. The (a) incidence and (b) severity of arthritis following 

staphylococcus aureus infection was recorded daily by group-blinded 

observers. iNOS-I- mice exhibited significantly higher incidence of 

arthritis from day 2 (p<0.003) vs iNOS+I+ and from day 3 (p<D.OO3, 

Chi Square) vs iNOS+I- groups. Comparison of severity of arthritic 

mice in each group demonstrated higher mean articular indices in 

iNOS-I- mice (*p<O.OI, "'*p<0.05 vs iNOS+I- or iNOs+/+ groups, 

Mann-Whitney). 
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contrast, iNOS-I- mice displayed disease onset at day 2, which was progressive and 

unremitting in up to 93% of animals by day 10 (p<O.OI; Figure 6.Sa). Thus, arthritis 

was more common in iNOS-I- mice. 

The clinical severity of septic arthritis was compared in arthritic mice using an 

articular index determined daily by a 'cage-blinded' observer. The mean articular 

index was significantly higher in iNOS-I- than in iNOS+I- or iNOS+I+ mice after day 

5 (p<O.OS - p<O.OOS; Figure 6.Sb). The peripheral distribution of arthritis was 

similar between groups, but iNOS-I- mice developed a higher incidence of paraspinal 

abscess formation, with resultant hind limb paralysis and urinary incontinence 

(iNOS-I- 39% v iNOS+I- 10.7%; p<0.05, Chi Square), perhaps reflecting the 

enhanced tissue distribution of viable staphylococci observed previously (Figure 6.4). 

The latter was often a pre-morbid presentation, but in 3 iNOS-I- mice was 

asymptomatic and found only at post mortem. The histological appearances of 

arthritic joints of equivalent clinical severity from S iNOS-I- and S iNOS+I- mice were 

compared, using H&E stained sections (Figures 6.6a - 6.6d). Large numbers of 

polymorphonuclear cells were evident in surrounding tissues. Hypertrophy of the 

synovial membrane was observed in all joints, in which a prominent mononuclear 

infiltrate was present. Invasive pannus eroding cartilage and bony surfaces was 

found in both groups, in which mononuclear cells and synoviocytes were detected, 

but not neutrophils (Figure 6.6c & 6.6d). No obvious difference in the overall 

appearances was observed between iNOS-I- and iNOS+I- jOints. Taken together, 

these data indicate not only that NO protects against the development of septic 

arthritis, but that once established, the arthritic process might be modified by NO 

dependent pathways. 



Figure 6.6 Histology of staphylococcal arthritis in iNOS-I- mice 

Legend figure 6.6 next page 



6.3 Effect of iNOS deficiency on immune responses in 

Staphylococcus aureus infected mice 
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The mechanisms whereby NO synthesis might modify septic arthritis are currently 

unknown. At least two possibilities arise, which are not mutually exclusive. NO 

exerts direct toxic effects on intracellular microbes, primarily through inhibition of 

enzymes essential for mitochondrial function, energy generation and DNA synthesis 

(reviewed by Stamler, 1994). Bacterial viability within the synovial membrane may 

therefore be enhanced in circumstances of relative NO deficiency. Alternatively, since 

immunological processes comprise the major pathological sequelae to staphylococcal 

infection, the immuno-modulatory functions of NO might influence the autoimmune 

component of host tissue destruction. 

Preliminary experiments established that staphylococci were capable of inducing 

significant levels of NO production in vitro in spleen cell cultures. Spleen cell 

suspensions obtained from mice 12 days after staphylococcal infection were 

maintained up to 5 days in the presence of heat killed Staphylococcus aureus. 

iNOS+/+ derived cultures produced high levels of nitrite within 3 days, which were 

maintained up to 5 days, whereas iNOS-/- cultures produced low levels of NO only, 

Legend to Figure 6.6 

Joints from mice infected 5 days previously with Staphylococcus aureus, were 

fixed in formalin, decalcified then stained with H&E. The histological 

appearances in (a) iNOS-/- and (b) iNOS+/- joints were similar. High power 

views in (c) iNOS-/- or (d) iNOS+/- mice demonstrated the presence of 

invasive synovial pannus, leading to erosion of bone and cartilage. Light

microscopic appearances were similar in both groups. 

(Magnification a & b x40, c & d x250). 



196 

even after 5 days (p<O.OOI; Figure 6.7). Low levels of NO production in iNOS-I

cultures have been detected previously and may result from partial induction of cNOS 

activity (Wei, et aI, 1995; Amin, et aI, 1995). iNOS+I- spleen cells exhibited 

intermediate NO production, which was significantly higher than in iNOS-I- cultures 

(p<O.02; Figure 6.7), perhaps indicating a gene dose effect as has been suggested 

elsewhere (MacMicking et al, 1995; Wei, et al, 1995). Spleen cell cultures derived 

from uninfected control mice produced no detectable nitrite after addition of heat

killed staphylococci, indicating that prior in vivo priming was necessary for optimal 

NO production. 

The production of pro-inflammatory cytokines during the course of infection was next 

investigated. TNFa has previously been implicated in pathogenesis of gram positive 

shock (Miethke, et al, 1992). Serum TNFa levels were significantly higher at day 3 

(p<O.05) and day 7 (p<O.OI) in iNOS-I- compared with iNOS+I- mice (Figure 6.8a). 

Although serum TNFa levels were similar in both groups by day 11, spleen cells 

from iNOS-I- donors cultured with heat-killed staphylococci in vitro at this time point 

generated significantly higher levels of TNFa (p<O.OI, Figure 6.9) than those from 

similarly stimulated spleen cells from iNOS+I- or iNOS+I+ mice. As expected, the 

elevated levels of serum TNFa correlated with the period of maximal clinical sepsis 

and weight loss (Figures 6.1 b & 6.2a). Serum IFN-y and IL-6 levels were also 

measured at similar time points. Whereas no IFN-y was detected, high levels of IL-6 

were present. In contrast to the above however, no significant difference was 

observed between iNOS-I- and iNOS+I- groups at any time point (Figure 6.8b). In 

vitro, NO differentially modulates LPS and IFN-y induced IL-6 and TNFa release 

from 1774 macrophages (Deakin, et al, 1995). These data indicate that the production 

of pro-inflammatory cytokines might similarly be differentially regulated in vivo. 
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Figure 6.7 Nitrite production by spleen cell cultures stimulated 

with heat-killed staphylococci 
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NO production was significantly reduced in iNOS-I- cultures 

stimulated by staphylococcal cell wall. Pooled spleen cell cultures 

were established from iNOS-I- (0), iNOS+I- (A), or iNOS+I+ (D) 

mice (n=4 mice Igroup) to which were added lx107 CPU Iml of heat

killed Staphylococcus aureus. Supcrnatants were harvested at the time 

points indicated and the nitrite concentration measured by the gricss 

reaction (2.10.1). Data are mean ± s.d. of duplicate assay of triplicate 

cultures. *p<O.02 - heterozygote vs homozygote; .... p<O.OOI - wild 

type vs homozygote; .... p<O.O 1 wild type vs heterozygote. 
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Figure 6.8 Serum cytokine levels after staphylococcal infection 
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iNOS-I- mice (hatched bars) exhibited significantly higher serum TNFa 

levels than iNOS+I- mice (solid bars) after 3 and 7 days ("'p<O.05. 

"''''p<O.009. Mann-Whitney). No significant difference in serum IL-6 

levels was detected. Serum from individual mice was collected at time 

points indicated (n=3 I time point) and frozen until triplicate assay for 

cytokine concentration by ELISA (section 2.9.2). Data are mean ± 

s.e.m. 



Figure 6.9 Production of TN i~a by spleen cell cultures from 

Staphylococcus a.lreus infected mice 
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that from iNOS+I- (~) or iNO)+I+ (0) controls (p<O.OO5, Mann

Whitney). Spleens (n=4 mice hroup) were removed 12 days after i.v. 

staphylococcal infection and Cl. J tured in the presence or absence of 

heat-killed Staphylococcus aUTf IS LS-l at the concentrations shown 

for 24 hours. TNFa productiOI. was measured by ELISA. Data are 

mean ± s.e.m. of duplicate assa) of triplicate culture. representative of 

two separate experiments. Sim;lar relative production was observed 

after 48 and 72 hours culture. 
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High concentrations of NO-donors in vitro inhibit the proliferation and cytokine 

secretion of Thl cell clones to antigen (Taylor-Robinson, et aI, 1994; Huang, F.P. 

personal communication) and enhanced antigen-specific Thl responses in iNOS-I

mice have been reported following Leishmania major or Listeria monocytogenes 

infection (Wei, et al, 1995; MacMicking, et al, 1995). Thus, the possibility that 

deregulated ThlITh2 balance might underlie the adverse outcome in iNOS-I- mice 

following staphylococcal infection was investigated. The proliferative response and 

production of IFN-y and IL-4 was compared in pooled spleen cell suspensions 

obtained from mice 12 days post-infection. Cultures were maintained in the presence 

or absence of heat-killed Staphylococcus aureus (104 to 107 CPU/well) for up to 5 

days and cytokine production was estimated by ELISA. Peak 3H-thymidine uptake 

occurred after 72 hours, but no significant difference in proliferation was observed 

between the dose responses of iNOS-I- and iNOS+I- derived cultures up to 5 days. 

In contrast, spontaneous IFN-y production was significantly higher in iNOS-I

cultures (p<O.OO5, Mann-Whitney; Figure 6.10) at each time point. Addition of heat

killed staphylococci led to significant up-regulation of IFN-y synthesis in iNOS+I

and iNOS+I+ cultures, to levels similar to those spontaneously produced by iNOS-I

spleen cells (Figure 6.11). This shows that the diminished spontaneous IFN-y 

production observed was not due to inherent inability to produce IFN-y in 

heterozygote or wild type mice. However, no further up-regulation of IFN-y 

synthesis in iNOS-I- cultures was observed. indicating that maximal induction of 

IFN-y production had been achieved in vivo (Figure 6.11). These data suggest that 

IFN-y synthesis was differentially upregulated in vivo in infected iNOS-I- and 

iNOS+I- mice. No IL-4 was produced by any group, even after staphylococcal 

stimulation. Together, these observations are consistent with the presence of a 

dominant Thl response which is enhanced in iNOS-I- mice. 



Figure 6.10 Spontaneous prodJction of IFN-y by spleen cell 

cultures post-stap!lylococcal infection 
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Data are mean ± s.e.m. of dl:plicate assay of triplicate culture 

( ... p<0.OO5 ....... p<O.OOl. Mann-Whitncy). 

201 



202 

Figure 6.11 Effect of heat-killed staphylococci on IFN-y production 

by spleen cell cultures 
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Spleen cell cultures from iNOS-I- (0) or iNOS+I- (A) mice infected 12 

days previously with Staphylococcus aureus I were maintained with 

concentrations shown of heat-killed staphylococci for 5 days. 

Significant enhancement of IFN-y production was observed in iNOS+I-

cultures (*p<O.OI vs iNOS+I- baseline without staphylococci). Peak: 

production was not significantly different between groups (Mann

Whitney). IFN-y produced was measured by ELISA. Data are mean ± 
s.e.m. of duplicate assay of triplkatc culture. 
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6.4 Superantigen responses in mice lacking iNOS 

v~ 11 transgenic mice develop severe septic arthritis with associated mortality when 

infected with Staphylococcus aureus LS-l, which secretes TSST-l (Abdelnour, et al, 

1994b). Together with studies demonstrating the toxic consequences of direct 

injection of bacterial toxins, such as SEB (Florquin, et al, 1994), these data indicate a 

critical role for superantigen production in disease outcome following staphylococcal 

infection. Studies were therefore undertaken to determine whether lack of iNOS 

altered spleen cell proliferation and cytokine production to different superantigens in 

the absence of intact bacteria. 

Spleen cells from uninfected iNOS-I- or iNOS+I- mice were cultured with increasing 

concentrations of TSST-l or SEA. Significantly enhanced proliferation was observed 

to TSST-l and SEA in iNOS-I- cultures after 48 and 96 hours (p<O.OI to p<O.05; 

Figures 6.12 & 6.13). IFN-y production in these cultures was similarly increased 

compared to that in iNOS+I- derived spleen cell cultures (p<O.OOI to p<O.OI; Figures 

6.14 & 6.15). Low levels of IL-4 were detected in cultures at 96 hours, but in 

contrast to the situation with IFN-y, no significant difference was found between 

iNOS-I- and iNOS+I- groups (Figures 6.14 & 6.15). FACS analysis was performed 

after 48 hours, which demonstrated the presence of similar CD4+ and CD8+ 

populations in both iNOS+I- (19.67 ± 2.5% CD4+, 7 ± 0.7% CD8+) and iNOS-I

(21 ± 2% CD4+, 7.5 ± 0.5% CD8+) spleen cell cultures (mean ± s.d. of three 

individual experiments), suggesting that the enhanced IFN-y production was not due 

to different T cell subset proportions in vitro. Nitrite production was sought in all 

cultures using the Griess reaction, but none was detected (sensitivity <2 JlM), similar 

to previous observations using heat-killed bacteria in spleen cultures from uninfected 

mice (section 6.3). 



Figure 6.12 Spleen cell culture proliferation to TSST-l 
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Pooled spleen cell cultures from uninfected mice were maintained for 

(a) 48 or (b) 96 hours after addition of increasing concentrations of 

TSST-l. 3H-thymidine incorporation was measured during the final 6 

hours of culture. Data are mean ± s.e.m. of quadruplicate cultures, 

representative of two similar experiments. iNOS-I- (0) cultures 

proliferated significantly more than those derived from iNOS+I- (~) 

mice (*p<O.05, **p<O.Ol, Mann-Whitney). 
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Figure 6.13 Splcen cell culture proliferation to SEA 
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Pooled spleen cell cultures from uninfccted mice were maintained 

for (a) 48 or (b) 96 hours after addition of increasing concentrations 

of SEA. 3H-thymidine incorporation was measured during the final 

6 hours of culture. Data are mean ± s.e.m. of quadruplicate cultures, 

representative of two similar experiments. iNOS-I- (0) cultures 

proliferated significantly more than those derived from iNOS+I- (6) 

mice (*p<O.02. **p<O.05. Mann-Whitney). 
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Figure 6.14 IFN-y and IL-4 production by spleen cell cultures to 

Toxic shock synd;'ome toxin-l 
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Pooled splenic cultures from uninfcctcd iNOS-I- (0) or iNOS+I- (A) mice 

were stimulated Wilh TSST-l at the concentrations shown for (a,c) 48 

hours or (b,d) 96 hours and the production of IFN-y (a, b) and IL-4 (c,d) 

was measured by ELISA. iNOS-I- cultures generated significantly higher 

IFN-y concentrations at both time points than iNOS+I- cultures ("'p<O.OO I, 

"''''p<O.OI, Mann-Whitncy). IL-4 synthesis was similar in both groups. 

Data are mean ± s.c.m. of quadruplicate cultures. 
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Figure 6.15 IFN-y and IL-4 production by splcnic cultures to 

Staphylococcal enterotoxin A. 
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mice were stif1l'llatcd with SEA at the conccntrations shown for (a,e) 48 

hours or (b,d) 96 hours and the production of IFN-y (a,b) and IL-4 (c,d) was 

measured by fUSA. iI'~OS-I- cultures generated significantly higher IFN-y 

concentrations at both timc points than iNOS+I- cultures (*p<O.Ol, 

**p<O.OO5, Mann-Whitncy). IL-4 synthesis was similar in both groups. 

Data are mean ± s.c.m. of quadruplicate cultures. 
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Thus, iNOS-I- spleen cells exhibit significantly enhanced proliferation and IFN-y 

production in response to superantigens. These data indicate that following 

Staphylococcus aureus LS-l infection in vivo, TSST-l production can induce an 

exaggerated ThI response, which could in turn lead to increased pathology. 

6.5 Effect of iNOS deficiency on bacterial viability 

The above data strongly suggest that immunomodulatory defects in the iNOS-I- mice 

contribute to poor outcome following staphylococcal infection Investigations were 

performed to address the possibility that direct bacterial killing was also impaired in 

these mice. Staphylococcus aureus LS-l were opsonised, then cultured in whole 

blood from uninfected iNOS-I- and iNOS+I- mice for up to 90 minutes, in two 

separate experiments. Bacterial killing was similar in both groups (Figure 6.16) 

suggesting that iNOS expression was not critical for blood-borne neutrophil mediated 

bactericidal effects. These observations were in accord with previous reports which 

showed that immediate killing by neutrophils was ROI dependent, relative to RNI 

(Kaplan, et aI, 1996). Moreover, the delay associated with iNOS expression implies 

that it is unlikely to occupy a critical position in immediate bacterial killing activity. 



Figure 6.16 Staphylococcal killing by murine blood cultures in vitro 
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No difference in viability was observed in staphylococci incubated with 

whole blood cultures from iNOS-I- (hatched bar) or iNOS+/- (solid bar) 

mice. 100 III of 107 CPU/ml freshly opsonised live Staphylococcus 

aureus were added to 100 III heparinised blood, pooled from 4 mice 

from each group, for the times indicated. Cells were then lysed with ice 

cold water and the number of viable bacterial CPU remaining was 

estimated by culture on blood agar for 18 hours after ten-fold dilutions 

in PBS. Data are mean of duplicate cultures, representative of two 

similar experiments. 
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Discussion 

Bacterial septic arthritis leads to severe articular destruction with significant associated 

morbidity and mortality (Goldenberg, 1989). The incidence is higher in patients with 

underlying inflammatory arthritis than in the general population, and is likely to 

increase further with wider therapeutic use of immunosuppressive drugs, total joint 

arthroplasty and the emergence of antibiotic resistant bacterial species (Goldenberg, 

1989; Ostensson & Geborek, 1991). Mechanisms underlying joint destruction are 

not properly understood, but appear to depend on both host· and bacteria-derived 

products. The rapid onset, time course and histopathological appearances of murine 

staphylococcal infection closely resemble those seen in human septic arthritis. It is 

therefore an ideal model in which to study the net effects of the microbicidal and 

immunomodulatory functions of NO in articular inflammation. Data presented here 

clearly demonstrate increased incidence and severity of septicaemia and arthritis in 

mice lacking the capacity for high output of NO. Thus, in contrast to the situation in 

'autoimmune' inflammatory models in rodents, in which the generation of NO is 

associated with aggravation of pathology, NO production in the context of 

staphylococcal septicaemia and subsequent T cell mediated articular pathology appears 

to play a protective role. 

By virtue of its diverse roles in maintenance of vascular tone, major organ perfusion, 

leukocyte adhesion, and platelet aggregation, NO has been implicated in gram 

negative bacterial shock, in which LPS mediates induction of high levels of iNOS 

expression (Kilboum, et aI, 1990; Wei, et aI, 1995; reviewed by Lyons, 1995; 

Gross, et aI, 1996). Whether NO similarly modifies gram positive bacterial 

pathology, in the absence of LPS, has remained controversial. The staphylococcal 

cell wall component, lipoteichoic acid (LTA), induces delayed circulatory failure in 

rats by an NO-dependent mechanism (De Kimpe, et aI, 1995a), and in synergy with 

peptidoglycan (PG), LTA promotes multiple organ failure in anaesthetised rats 
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through induction of high levels of TNFa, IFN-y and NO production (De Kimpe, et 

al, 1995b). However, discrepancies in the effects of NO production in anaesthetised 

compared to alert mice in gram negative sepsis have been reported (MacMicking, et 

aI, 1995) and it is possible that such experiments do not accurately reflect the 

physiological circumstances which accompany infection. In contrast, SEB-induced T 

cell mediated shock in mice induces high levels of NO production, which are 

protective through down regulation of TNFa and IFN-y production, with consequent 

reduction of mortality (Florquin, et aI, 1994). However, the NOS inhibitor employed 

in these studies was not isoform specific, raising the possibility of complicating 

cardiovascular effects. Moreover, staphylococcal infection in vivo will reflect the 

combined effect of cell-wall component and superantigen-driven responses, such that 

data derived from use of individual components, including LTA or SEB, require 

cautious interpretation. 

The iNOS-I- septic arthritis model described here avoids such criticisms, since eNOS 

dependent cardiovascular and neuronal functions are intact, and the TSST-l secreting, 

Staphylococcus aurells strain, LS-l was employed. The incidence and severity of 

septicaemia in iNOS-1- mice was significantly higher than that observed in iNOS+I- or 

iNOS+I+ controls. This was reflected in increased weight loss, mortality and 

bacterial dissemination to tissues, and by elevation of serum TNFa levels, which 

correlated with the period of maximal clinical sepsis. Increased IFN-y production in 

iNOS-I- mice compared with controls was observed, consistent with the suggestion 

that Thl cytokine production mediates late septicaemic complications of 

staphylococcal infection (Zhao & Tarkowski, 1995a). These data clearly indicate that 

NO is a critical mediator in gram positive shock and establish a net protective effect 

for high output of NO following staphylococcal infection. 

Low levels of NO production in response to staphylococcal challenge were detected in 

iNOS-I- spleen cells in vitro, suggesting that NO synthesis was not completely 
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abrogated in these mice. It is attractive to hypothesise that the precise level of NO 

production within inflammatory lesions may therefore be crucial to outcome. Low 

concentrations of NO enhance cytokine production and proliferation by Thl clones in 

vitro, in contrast to the inhibitory effect of NO at higher concentrations (Taylor

Robinson, et aI, 1994; Huang, F.P. personal communication). Low levels of NO 

production in iNOS-I- mice may therefore have been sufficient to enhance harmful 

immune responses, but were apparently inadequate to confer protection upon the 

host. In contrast to iNOS+I- controls, iNOS-I- mice thus fail to extract the advantage 

of staphylococcal clearance and immunological down regulation afforded by high 

levels of NO production. 

T cells lie central to pathogenesis of staphylococcal infection. They are detected in 

synovial membrane within 48 hours of infection and anti-CD4-mediated T cell 

depletion ameliorates subsequent septic arthritis (Abdelnour, et al, 1994a). Non

exotoxin producing mutant staphylococci exhibit impaired pathogenicity (Bremmell & 

Tarkowski, 1995) and clonal expansion by superantigens is required for arthritis 

development (Abdelnour, et al, 1994b), such that TSST-l producing staphylococcal 

arthritis is attenuated by prior deletion of V~11 TCR expressing T lymphocytes. 

Moreover, V~3 TCR transgenic mice show increased mortality associated with 

enhanced IFN-y production after infection with SEA-producing Staphylococcus 

aureus (Zhao, et aI, 1995b) These data indicate an important role for superantigen 

secretion, mediate.d primarily through their effect on T cell activation and Thl 

cytokine production. The present data demonstrate that NO is involved in regulating 

these processes. Naive iNOS-I- spleen cells proliferated more and produced IFN-yat 

higher levels than did iNOS+I- controls, in response to either TSST-l or SEA 

stimulation. IL-4 production, in contrast, was of low level and was identical in the 

two groups. These data suggest that NO normally restricts Thl responses induced by 

superantigens, analogous to the NO-dependent suppression of antigen specific Th 1 

responses in murine leishmanial infection in vivo (Wei, et al, 1995) and of Thl clones 
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in vitro (Taylor-Robinson, et al, 1994; Huang, F.P. personal communication). Since 

IFN-y is an important iNOS activator, this provides an important negative feedback 

loop in vivo. 

It therefore seems likely that the inability to generate high levels of NO following 

staphylococcal infection in iNOS-I- mice led to an exaggerated superantigen-driven 

Thl response. The mechanism whereby NO mediates such effects is unclear. Direct 

regulation of cytokine production may be exerted by NO at the transcriptional level, 

through alteration of NF-lCB binding, or by mRNA stabilisation (Matthews, et al, 

1996; Huang, F.P. unpublished observations). However. given its previously 

reported role in induction of apoptosis (Albina, et al. 1993; Messmer, ct al. 1993; 

Fehsel, et al, 1995). it is also possible that NO enhances the apoptosis which is the 

normal consequence of superantigen-mediated activation for the majority of T cells 

(Kawabe & Ocbi, 1991). Other regulatory pathways which have been established in 

staphylococcal superantigen-driven shock include increased endogenous 

glucocorticoid production and synthesis of anti-inflammatory cytokines, such as IL-

10 and G-CSF (Florquin & Goldman. 1996). The interaction of NO with these 

pathways is currently unclear. 

Staphylococcal arthritis was observed with increased frequency and severity in 

iNOS-I- mice. However, the role of Thlrrh2 imbalance in determining the outcome 

of septic arthritis is less well defined, reflecting doubt as to the precise role of IFN-y 

in the pathogenesis of murine arthritis. Whereas IFN-y up-regulates MHC class 11 

expression and pro-inflammatory monokine production, including IL-lp and TNFa 

(Farrar & Schreiber. 1993; Verhoef & Mattsson. 1995). it can also inhibit fibroblast 

proliferation. collagen, prostaglandin and MMP secretion and can oppose IL-l p 

mediated bone resorption and cartilage degradation (Freundlich et al, 1986; Gowen, ct 

al, 1986; Seitz, et al. 1994). Direct intra-articular injection of IFN-y exacerbates 

collagen-induced arthritis (CIA), and increased levels of IFN-y mRNA are detectable 
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in the synovial membrane following staphylococcal infection, suggesting that high 

levels of local IFN-y production are arthritogenic (Mauritz, et aI, 1988; Zhao, et aI, 

1996). However, systemic administration of IFN-y inhibits CIA (Nakajima, et al, 

1990; Williams, et aI, 1993), and IFN-y receptor (IFNyR) knockout mice develop 

milder septic arthritis than do IFNyR +1+ controls following staphylococcal infection 

(Zhao, et al, 1995b). Recent studies in Xid mice also determined that high levels of 

IFN-y production were arthroprotective in septic arthritis (Zhao, et aI, 1995c). In 

vitro data in this study indicate that iNOS-I- mice generated higher levels of IFN-y 

than iNOS+I- controls, but developed more frequent and severe arthritis. It is 

therefore possible that the protective effects of IFN-y observed in other models at 

articular inflammatory sites are NO dependent. Further studies designed to quantify 

the level of IFN-y expression in iNOS-I- and iNOS+I- synovia during infection are 

now required to confirm that local IFN-y expression is enhanced. Moreover, since 

the light microscopic histological appearances were similar in the two groups, it wi11 

also be important to characterise the cell subsets present, given the recognised ability 

of NO to modify cell adhesion and migration (Kubcs, et aI, 1993; Xin, et aI, 1993). 

NO has also been implicated in direct killing of gram positive bacteria and it seems 

likely that this will contribute to the clinical consequences of staphylococcal infection 

in iNOS-I- mice. Cytokineplasts from human neutrophiIs kill staphylococci by an 

NO-dependent mechanism (Malawista, et aI, 1992) but these pathways appear 

secondary to ROI in importance for immediate killing. In cell free systems, NO 

enhances staphylococcal killing over longer periods, suggesting that it might play a 

role if ROI production were compromised (Kaplan, et aI, 1996). Consistent with 

this, neutrophils from iNOS-I- and iNOS+I- mice exhibited similar killing activity in 

vitro in a short term bactericidal assay. However, the increased dissemination of 

viable staphylococci to blood and kidneys in iNOS-I- mice after initial localisation to 

the spleen, provided circumstantial evidence that bacteria preferentially survived in the 

iNOS-I- splenic environment. It is thus possible that NO-dependent killing will be 
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observed only in longer term assays using spleen-derived macrophages. Recently, 

human neutrophil phagocytosis of fluorescein-Iabelled fixed staphylococci was 

shown to be augmented by addition of L-arginine and abrogated by NOS inhibitors 

(Moffat, et aI, 1996). Further studies using more sensitive bactericidal assays are 

therefore required to address the specific role of NO in bacterial phagocytosis and 

subsequent killing in iNOS-I- compared with iNOS+I- derived polymorphonuclear 

cells and macrophages. The interaction with ROJ in these circumstances also 

deserves further investigation. Several recent reports have identified a key protective 

role for NO by diverting ROJ from causing intracellular damage (Wink, et aI, 1993; 

Wink, et al, 1996) and transient inhibition of the effects of ROJ on staphylococcal 

killing has been observed after addition of NO-donors (Kaplan, et aI, 1996). Another 

possibility is that NO mediated effects are mediated not through immediate viability, 

but rather by modifying bacterial adhesion and tissue localisation. Expression of 

cellular adhesion factors, such as collagen adhesin, are important virulence factors 

which offer enticing targets for nitrosylation, functional modification and thus, host 

defence (Patti, et al, 1994). 

Several clinical and therapeutic implications arise. These data provide the first 

evidence for a protective role for NO in rodent articular pathology in vivo. The use of 

specific iNOS inhibitors in treatment of human inflammatory arthritis has been 

proposed on the basis of their inhibitory effects in animal inflammatory models. The 

incidence of septic arthritis is already increased in such patients and removal of a 

major natural anti-bacterial mediator may further increase this risk. Since NO exerts 

influence in vitro on diverse pro- and anti-inflammatory pathways which are present 

in vivo in the synovial membrane, it seems unlikely that such an approach will afford 

significant clinical improvement Indeed, the potentially harmful removal of a major 

component of non-specific synovial defence against infection may outweigh any 

putative benefits. Human synovial membrane is capable of NO production in 

response to bacterial superantigen and these observations should provoke a search for 
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direct evidence for NO synthesis in human septic arthritis. NO production in that 

context may constitute an important pathway whereby bacterial killing is optimised 

and T cell activation is opposed. Together with reported amelioration of septic 

arthritis after CD4 and Vp11 T cell depletion (Abdelnour, et al, 1994b), this raises the 

challenging proposal that therapeutic T cell suppression might be desirable in treating 

such patients. 

Superantigens have been implicated in induction of autoimmunity by mechanisms 

which include activation of quiescent auto-reactive T cells, partial activation of auto

reactive B cells through class IT recognition, or induction of aberrant cognate help for 

B cells by T cells by superantigen-mediated crosslinking (Friedman, et al, 1991; 

Goodacre, et al, 1994). Through suppression of superantigen responses, NO may 

reduce the tendency for auto-reactivity following staphylococcal infection. whereas 

impaired NO production may result in the opposite effect. Moreover, inadequate NO 

production at an initial inflammatory site might precipitate enhanced Th1 cytokine 

production, with increased levels of tissue MHC class 11 expression. Aberrant class 

II expression has been implicated previously in thyroid and pancreatic autoimmunity 

(BottazzD, et al, 1983). Further investigations are required to address such novel 

disease mechanisms. 
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Chapter' 

General Discussion 
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Neither the factors which account for onset of RA, nor those which mediate 

chronicity have been defined. Moreover, it should not be assumed that these two 

processes are identical. Nevertheless, the synovial immune response offers an 

attractive therapeutic target, although it is currently unclear which pathways offer 

the most potential clinical benefit. Controversy surrounding the nature of the 

critical regulatory cells within synovium, therefore lies central to rational choice in 

further development of biological therapies (Firestein & Zvaifler, 1990; Panayi, et 

aI, 1992; Kingsley, et aI, 1996). In normal circumstances, the interaction of T 

lymphocytes and macrophages is critical to generate cytokines from both cells, 

which together regulate the nature and outcome of the immune response. Since 

outcome encompasses a spectrum from complete resolution to chronicity, this 

relationship is likely to be critical in RA. Perhaps the most puzzling feature of RA 

synovial immuno-biology, therefore, has been the presence of a large population of 

T cells of activated phenotype, in the context of relatively low levels of T cell 

activation cytokines, either those capable of autocrine stimulation of T cells, e.g. IL-

2, or those providing evidence for T cell effector function, e.g. IFN-y In contrast, 

widespread evidence exists of macrophage activation and of monokine synthesis. 

The identification of IL-15, a cytokine of macrophage or fibroblast derivation, 

which is capable of T cell recruitment and activation in the synovial membrane, 

therefore provides a novel pathway, whereby co-ordinate T cell and macrophage 

function can occur in RA. 

IL-15 expression was detected in RA synovial lining layer and within T lymphocyte 

aggregates. Parallel staining in the former indicated that mostly CD68+ cells were 

IL-15 positive. Extensive staining in T cell rich areas was observed, raising the 

possibility that synovial T cells might contribute to their own activation through 

autocrine production of IL-15, although this appearance might also represent 

membrane bound cytokine, or macrophages which are also present in these areas. 

IL-15 expression has now been confirmed immunohistochemically in RA synovial 
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membrane, including biopsy material from early RA patients (Tak, P.P, personal 

communication). IL-15 was also detected to a significantly lesser extent in reactive 

arthritis synovial membrane (Thurkow, et al, 1996). Interestingly, double staining 

with T cell markers in the latter investigation confirmed that synovial T cells 

expressed IL-15. Future in situ hybridisation studies will be required to properly 

characterise the cellular location of IL-I5 synthesis in synovial membrane. 

Several mechanisms have been proposed to explain synovial T cell activation in the 

relative absence of IL-2. Synovial T cells are of mature CD45RO+, RBdim, CD29+, 

CD27- phenotype and simultaneously express activation and adhesion markers, 

characteristic of various stages of the 'normal' T cell activation pathway. This 

phenotype almost certainly reflects preferential recruitment of specific T cell subsets 

from peripheral blood, which possess intrinsic migratory potential (Pitzalis, et aI, 

1991; Iannone, et aI, 1994; Kohem, et aI, 1996). Activation is not, however, a 

prerequisite for such migration and other factors presumably operate to induce the 

observed phenotype. These include activation by adhesion molecule-ligand 

interactions following endothelial cell contact during extravasation and, since ~ 1 and 

~2 integrin receptors also bind to components of the extra-cellular matrix, further 

interactions in the synovial membrane itself (e.g. Damle & Aruffo, 1991; Gilat, et al, 

1996). In this context, IL-15 provides an important additional pathway whereby T 

cell activation can be initiated and maintained. IL-15 readily induces proliferation 

of PHA-T cell blasts (Grabstein, et al, 1994; Tagaya, et al, 1996a) and of a subset of 

circulating RA PB T cells. The latter likely represent previously primed CD45RO+ 

T cells, since these cells preferentially express CD69, an early marker of T cell 

activation, within 24 hours of IL-15 addition in vitro. Moreover, T cells from the 

RA synovial compartment exhibit enhanced responsiveness to IL-15, assessed either 

by prOliferation or by cytokine production, compared with PB T cells. 
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The clinical effects of T cell modulation in RA are generally favourable, indicating 

some regulatory role. This may represent inhibition of specific arthritogenic clones, 

or perhaps reflect general inhibition of polyclonal T cells. Clinical efficacy of anti

CD4 therapy is related to the extent of synovial T cell binding by therapeutic 

antibody, indicating that the majority of synovial T cells are indeed contributing to 

pathogenesis (Choi, et al, 1996). However, this effector pathway does not seem to 

include cytokine production by the majority of T cells within the synovial 

membrane. IFN-y and IL-5 production have been detected following IL-15 

stimulation of T cells (Seder. et aI, 1995; Seder, 1996; Mori, et aI, 1996), and 

modest TNFa. production was detected following IL-15 stimulation of synovial T 

cells in vitro (Chapter 4). Nevertheless, it appears that in vivo, the presence of IL-15 

alone is not sufficient to induce significant IFN-y or IL-2 production by synovial T 

cells. It was therefore of interest to investigate novel mechanisms where by IL-15 

activated T cells might contribute to inflammation in RA. 

Studies in animal models and in clinical trials in RA using neutralising monoclonal 

antibodies against TNFa. have indicated that the latter cytokine occupies a central 

position in the regulatory cytokine network in synovial membrane (Williams, et aI, 

1992; Maini, et aI, 1995). TNFa synt~esis is therefore a biologically relevant 

indicator of macrophage activation in vitro. T cells and macrophages lie in 

juxtaposition in lymphocyte aggregates, in which IL-15 expression was observed, 

raising the possibility that cell-contact mediated communication could occur. 

Previous studies have established that T cells or T cell clones, after activation by 

mitogen, can induce cytokine and MMP production by macrophages and fibroblasts 

through cell contact (Vey, et aI, 1992; Isler, et aI, 1993; Lacraz, ct aI, 1994). The 

present study demonstrated that IL-15-mediated activation conferred similar 

properties on PB T cells. Furthermore, synovial T cells exhibited this property ex 

vivo, which was IL-15 dependent. Thus, polyclonal synovial T cells can induce 

macrophage activation and TNFa production, with pro-inflammatory consequences. 
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It is attractive to hypothesise that IL-15 may also be produced by similarly activated 

macrophages, providing a positive feedback loop leading to further T cell 

recruitment and activation (Figure 7.1). This hypothesis therefore predicts firstly, 

that IL-15 activated T cells will induce production of IL-15 by synovial 

macrophages or fibroblasts. Secondly, interruption of IL-15 mediated T cell 

activation using neutralising antibodies against IL-15, or soluble IL-15Ra. chain, 

will down regulate TNFa. production, either in animal models or in synovial 

membrane culture systems. Thirdly. effective anti-T cell therapies will exhibit 

efficacy in proportion to the extent of synovial T cell binding or inhibition of T cell 

adhesion (Kavanaugh. et al, 1995; Choi, et aI, 1996). Finally, T cells need have no 

absolute requirement for T cell cytokine production, nor for the recognition of local 

antigen. Further investigations are now required to test at least the first two 

predictions. 

IL-15 may contribute to RA synovitis by several means other than T cell activation 

and cell-contact. Effects of IL-15 on adhesion molecule redistribution on T cells 

have been reported (Nieto. et aI, 1996). Furthermore. IL-15 is also a potent 

chemotactic factor for T lymphocytes. Evidence in vitro (Wilkinson & Liew, 1995; 

Al-Mughales, et al, 1996) and in vivo in the current study indicates that IL-15 can 

induce significant T cell recruitment. The combination of effects on adhesion and 

locomotion imply an important role for IL-15 in regulating T cell extravasation and 

simultaneous endothelial contact events, which mediate lymphocyte migration to the 

synovial compartment. In addition, the ability to activate B cells and to induce 

isotype switching indicates a possible role in rheumatoid factor production in the 

synovial membrane. Significant numbers of plasma cells synthesising rheumatoid 

factor are present in synovial membrane, often surrounding T cell aggregates (Ottcn, 

et aI, 1993; Brown, et aI, 1995), but their pathological role is unclear. Immune 

complexes formed from local auto-antibody production can contribute to synovial 

inflammation, through complement fixation, and up regulation of cytokine 
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production (Chantry, et al, 1989; Plater-Zyberk, et aI, 1992). Whether IL-15 is 

involved in these processes remains unclear. Finally, IL-15Ra chain expression has 

been detected in activated macro phages (Girl, et aI, 1995; Anderson, et aI, 1995b), 

and it remains possible that IL-15 can exert direct effects on macrophages in an 

autocrine fashion. Taken together, these data indicate a crucial role for IL-15 in RA 

patho genesis. 

The present study represents the first demonstration of IL-15 expression in a 

pathological setting. Preliminary experiments have now identified the presence of 

IL-15 by immunohistochemistry in alveolar macrophages from asthmatic patients 

(Leung, B.P. & McInnes, I.B. unpublished observations). Moreover, IL-15 

increases IL-5 production by human Th2 cell clones (Mori, et aI, 1996), and mast 

cells proliferate and mature through IL-15 mediated binding to its own IL-15X 

receptor (Tagaya, et aI, 1996b), indicating a possible role in type I bronchial 

hypersensitivity. IL-15 has also now been identified in alveolar macrophages from 

patients with pulmonary sarcoidosis (Agostini, et aI, 1996). It is intriguing that 

sarcoid, like RA, is associated with macrophage activation, and has possible 

aetiological associations with mycobacterial species. Furthermore, M. tuberculosis 

and B.C.G. are inducers of IL-15 expression, at least in murine macrophages 

(Doherty, et al, 1996). IL-15 likely constitutes an important component of early 

host defence to infection. However, tight control of IL-15 mRNA translation has 

been reported (Bamford, et aI, 1996a; Bamford, et aI, 1996b) and rapid down 

regulation of IL-15Ra chain follows T cell activation, in comparison to IL-2Ra 

(Kumaki, et aI, 1996), indicating that its functional role is short lived in the normal 

event. Such close control of protein synthesis implies that excess production 

comprises a danger to the host. It is therefore attractive to hypothesise that RA 

could result from failure to properly regulate IL-15 expression following an 

infective insult, leading to T cell recruitment and activation and subsequent 

chronicity. Further investigation of the factors which up regulate IL-15 production 
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by human synovial macrophages and synoviocytes is required to clarify the 

significance of such observations. 

The recent recognition that NO was a potent immunoregulatory molecule prompted 

investigation of its presence and functional contribution in RA synovial membrane. 

The present study has characterised the expression of iNOS ex vivo in human 

synovial membrane. NO production in the articular environment has now been 

detected in cartilage, bone and synovial membrane (Stadlcr, et aI, 1992; Charles, et 

aI, 1993; Rediske, et aI, 1994; Ralston, et aI, 1995) in both inflammatory and 

degenerative arthropathies. Prior to the present study, the net effect of such NO 

generation in vivo in arthritis models has been detrimental (Ialenti, et aI, 1993; 

Stefanovic-Racic, et aI, 1994a; MacCartney-Francis, et aI, 1994). Whereas the 

staphylococcal infectious arthritis model is not directly comparable to other auto

immune inflammatory diseases in rodents, it does provide an opportunity to study 

the mechanisms whereby T cell mediated articular destruction can occur. In this 

context, failure to generate high output NO synthesis was clearly detrimental to the 

host, manifest as increased incidence and severity of septicaemia and of arthritis. 

Poor clinical outcome was associated with enhanced Thl responses in iNOS-I- mice. 

Although specific cytokine neutralisation experiments are required to confirm that 

this relationship is causal, the evidence from SEB-induced T cell mediated shock 

suggests that this is likely to be the case (Florquin, et al, 1994). It can be inferred 

from these observations that NO functions normally to regulate Th 1 responses in 

vivo providing sufficient host defence at minimum cost. Aberrant regulation of NO 

synthesis might therefore prejudice immune responses to host destruction in certain 

circumstances. 

NO exhibits pleiotropic effects which might influence at least three areas of articular 

physiology - homeostasis, immunoregulation and synovial defence. 
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(i) Homeostasis - It is clear from studies in bovine, rodent and recently human 

bone and cartilage, that NO production is implicated in cytokine mediated 

effects on matrix biosynthesis and degradation (Hauselmann, et aI, 1994; 

Jarvinen, et al, 1995; Fukuda, et al, 1995). Remodelling is essential for normal 

tissue integrity, indicating that alterations in local NO synthesis can have 

significant consequences. At high concentrations NO down regulates 

osteoclast activity and can mediate cytokine-induced osteoblast activation. In 

contrast, at lower concentrations, NO potentiates bone resorption (Evans, & 

Ralston, 1996). These data implicate NO in erosion formation, and perhaps 

also in the local and systemic osteoporosis characteristic of RA patients. 

Similarly, NO exerts precise effects on chondrocyte function which may 

depend on the time course of inflammation, e.g. IL-l~ induced catabolism of 

bovine cartilage is inhibited by NO in the acute phase. but is enhanced in the 

chronic phase in vitro (Stefanovic-Racic, et al, 1996). 

NO may exert a vascular regulatory role in synovial membrane. High levels of 

endothelial iNOS expression were detected in the current study. NO has been 

shown to promote neovascularisation and was originally recognised as a 

vasodilator (Furchgott & Zawadski, 1980; Ignarro, et al, 1987; Lcibovich, et aI, 

1994; Tamura, et aI, 1996). It may therefore oppose the activities of 

vasoconstrictor substances, such as endothelin-l, which can also be detected in 

inflammatory synovium (Miyasaka, et aI, 1992). Synovial hypoxia has been 

implicated as pro-inflammatory factor (Blake, et aI, 1989). Thus, NO appears 

integral to several homeostatic processes, reducing its ultimate value as a 

specific therapeutic target. 

(ii) Immunoregulation - Data in the present study and elsewhere (Ialenti, et aI, 

1993; Oyanagui, 1994) indicate that immunoregulatory activities of NO can 

significantly alter the outcome of articular inflammation. NO derived from 
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endothelial cells and synovial fibroblasts might therefore influence the 

behaviour of neighbouring macrophages and T lymphocytes within the 

synovial compartment. These effects need not all be pro-inflammatory. Thus, 

in the present study, NO-donors increased TNFa. production in vitro from 

synovial macro phages I fibroblasts, and macrophage cell lines, and enhanced 

MMP and prostaglandin production by NO have also been reported (Salvemini, 

et al, 1993; Murrell, et al, 1995; Manfield, et al, 1996). However, synovial NO 

levels were sufficient to suppress T cell responsiveness in vitro (Merryman, et 

al, 1993). Moreover, observations in the T cell-driven staphylococcal model 

indicate that NO mediated effects on T cells may indeed have physiological 

relevance in articular pathology. Further investigations are now required to 

determine whether NO regulates IL-15 production in a similar manner to 

TNFa.. The possibility that a reciprocal relationship exists whereby NO 

production by synovial fibroblasts is, in turn, induced by IL-15 activated T 

cells through cell-contact is intriguing. 

(iii) Microbicidal - NO is implicated in host defence to numerous protozoans, fungi, 

viruses and bacteria and in many systems, the role of NO is crucial to 

successful outcome. A similar role in synovial defence is strongly indicated by 

the increased virulence of staphylococcal infection in iNOS-I- mice. 

Therapeutic intervention with iNOS inhibitors awaits the development of isoform 

specific agents. The above however indicates that no clear protective effect can be 

predicted. The production and regulation of NO in human and rodents is not 

synonymous, with high output of NO apparently delegated to different cell-types in 

each species. It is not known whether this has clinically significant and biological 

consequences, although it highlights that cautious interpretation of data from short 

term animal models is required. 
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It is not clear whether currently available anti-rheumatic drugs inhibit either iNOS 

activity or the effects of NO in tissue. Methotrexate, D-penicillamine, 5-amino

salicylate, and indomethacin have been reported to inhibit NO synthesis in vitro or 

to protect against peroxynitrite production (Amin, et al, 1995; Murrell, et aI, 1996; 

Whiteman, et aI, 1996). However, many commonly used drugs show little such 

activity (Whiteman, et al, 1996), yet are of apparently similar efficacy in vivo and 

further investigation is required. Interestingly, tetracycline based antibiotics exhibit 

potent protection against nitrosylation of tyrosine residues in vitro, and have been 

implicated in treatment of RA, perhaps indicating a possible disease modifying 

mechanism (Kloppenberg, et al, 1994; Tilley, et ai, 1995). Recently, NO has been 

conjugated to NSAIDs to produce agents with anti-inflammatory activity in acute 

murine inflammation models, but which are associated with significantly reduced 

gastrointestinal toxicity, apparently through local release of NO (Del Soldato, et aI, 

1996). Whether the latter also has protective activity at the site of inflammation is 

unclear. 

Conclusions 

The present study was concerned with immunoregulation in RA synovial membrane 

(section 1.6). 

1. It set out to address mechanisms of synovial T cell activation in RA and 

thereafter to implicate polyclonal T cells in pro-inflammatory pathways in the 

synovial membrane. The identification of IL-15 in synovial membrane and the 

demonstration that IL-15 can activate synovial T cells, induce T cell migration in 

vivo and, through T cell-contact with macrophages, up regulate TNFa 

production, provides a novel pro-inflammatory pathway with potential for 

therapeutic intervention. 
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2. Definitive evidence for NO production by human synovial membrane has been 

obtained and the distribution of iNOS in inflammatory and degenerative 

synovium has been characterised. NO was shown to increase TNFa. production 

by synovial macrophage I fibroblast cultures, providing a further mechanism for 

TNFa. up regulation. This provides a precedent for modulation of synovial 

cytokine production by NO. The in vivo activity of NO in a model of septic 

arthritis suggested a protective role, at least in part through regulation of T cell 

activity. This again provided evidence for immunoregulatory modification of 

articular pathology by NO. These observations have implications for therapeutic 

manipulation of NO synthesis in human arthritis. 

Future Studies 

Reference has been made in the text to further investigations at specific points of 

interest. Key areas include the following: 

• IL-15 receptor expression - its distribution and regulation of expression in 

synovial membrane. 

• IL-15 in arthritis models - Development of appropriate murine reagents to 

allow investigation of the role of IL-15 in animal models of articular 

inflammation. 

• Regulation of IL-15 production - identification of the factors which 

up regulate IL-15 production in synovial membrane. 

• Regulation of NO production - investigation of the role of cytokincs and of T 

cell contact in activation of fibroblast iNOS in the synovial membrane. 

• NO in cytokine regulation - what is the role of NO in regulation of other pro

inflammatory cytokines in synovial membrane, including IL-151 
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Appendix I 

Buffers 

1. PES (x 10 stock) 

80g NaCl 

11.6g NaH2P04 

2g KCl 

2g KH2P04 

2. PBS I Tween 

0.5 ml Tween 20 

1000 ml PBS (xl) 

3. Coatin~ buffer (ELlS A) 

O.IM NaHC03. pH 8.2 

4. Vector Kit buffer 

O.IM Tris-HCI, pH 8.2 

5. TBS (Ice Wash buffer) 

900 ml 0.9% NaCl 
100 ml50mM Tris-HCl, pH 3.6 

50 mM Tris-HCI 

6. ParaformaIdebyde 

IgPFA 

lOOm! PBS 

- Add cone HCI to 25 ml 0.2M tris-HCI to pH 7.36 
Make up to 100 ml with dH20 

100 J.11 2M NaOH 

Heat to 6(}<>C then gently mix until solution clears. 



7. Fast red solution 

A 100 mg naphthol-AS-MX phosphate 

5 ml N.N.-dimethylformamide 

lOO ml TBS, pH8.2 

B O.lM levamisole in dH20 

8. NSE stain phosphate buffers 

B 11.9 g/l Na2HP04, 2H20 (0.067M) 

Add 98.5 ml of A to 1.5 ml of B. 

9. Griess Reaction 

A 0.1 % a-naphthyl-amine in dH20 

B 1% sulfanilamide in 5% phosphoric acid 

Mix equal volumes for Griess reagent 

Store away from light 
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Appendixll 

A wards arising 

1. Young Investigator Award 

XVI European Workshop for Rheumatology Research 

McInnes, I.B., Al-Mughales, 1., Leung, B.P., Sturrock. R.D., Huang. F-P., 

Wilkinson, P.C., Field, M., Liew, F.Y. (1996) Interleukin-15 may potentiatc 

inflammation in rheumatoid arthritis synovitis. 

2. Scottish Society for Experimental Medicine 

Research Prize 1996 

Mclnnes, lB., Leung, B.P., Al-Mughales, J., Wilkinson, P.C., Field, M., 

Sturrock, R.D., Liew, F.Y. (1996) Role for interleukin 15 in pathogenesis of 

rheumatoid arthritis. 
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Publications 

Original Papers 

1. McInnes, LB., Leung, B.P., Field, M., Sturrock, RD., Liew, F.Y. (1996) 

Interleukin 15 mediates T cell dependent regulation of TNFa production in 

rheumatoid arthritis. Nature (Medicine) (in press) 

2. McInnes, I.B., Leung, B.P., Field, M., Wei, X.Q., Huang, F-P., Sturrock, 

R.D., Kinninmonth, A., Mumford, RA & Liew, F.Y. (1996) Production of 

nitric oxide in the synovial membrane of rheumatoid and osteoarthritis 

patients. J. Exp. Med. 184, 1519-1525. 

3. McInnes, LB., Al-Mughales, J., Field, M., Leung, B.P., Huang, F-P., Dixon, 

R., Wilkinson, P.C., Sturrock, R.D. & Liew, F.Y. (1996) The role of 

Interleukin 15 in T cell migration and activation in rheumatoid arthritis. 

Nature (Medicine) 2, 151-159. 

Clinical and related papers published in parallel studies 

4. Porter, D.P., Capell, H.A, McInnes, I.B., Hunter, J,. Madhok, R., Munro, R., 
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Brief Definitive Report 

Production of Nitric Oxide in the Synovial Membrane of 
Rheumatoid and Osteoarthritis Patients 
By lain B. McInnes,*+ Bernard P. Leung,* Max Field,+ Xiao Q.Wei,* 
Fang-Ping Huang,* Roger D. Sturrock,+ Andrew Kinninmonth,§ 
Jeffrey Weidner,11 Richard Mumford,11 and Foo Y. Liew* 

From the * Department if bllnJlwology, Ut/illersity if Glasgow, Glas,~ow, Gll GNT Ut/ited 
Kin,~dom; *Cet/trefor Rheumatic Diseases, Ulliversity Departmellt <?f !llcdicille, at/d §Dcpartltlellf of 
Orthopaedics, Glas,l(ow G31 2ER Royal bifirmary, Glasgow, United Kill,~dom; allil IIDillisiclll of 
Analytical Biochemistry, Departlllellt of Imlllullolo,~y alld b!i1alllmatioll, !llcrck Research Laboratories, 

Rahway, New Jersey 

Summary 

We have demonstrated spontaneous nitric oxide (NO) production by primary synovial cultures 
from rheumatoid (RA) and osteoarthritis patients. Increased NO production followed addition 
of staphylococcal enterotoxin B. Immunochemical double staining with specific anti-human 
inducible NQ synthase (iNOS) and nonspecific esterase (NSE), or anti-CD68 (markers for tis
sue macrophages) showed that although many lining layer cells in RA synovium expressed 
iNOS, most (rv90%) were NSE- and CD68-, with only a minor population (rvl0%) which 
were iNOS+, CD68+/NSE+. These data demonstrate the capacity for high output of NO by 
human synovial tissue and show that, although human macrophages can express high levels of 
iNOS, the majority of cells expressing iNOS are fibroblasts. We also report that synoviocytes, 
and macrophage cell lines, cultured with the NO donor, S-nitroso-acetyl penicillamine, pro
duced high concentrations of tUlllor necrosis factor (TNF)-a. These results suggest that NO 
may mediate pathology in RA through the induction ofTNF-a production. 

R heumatoid art?ritis (~A) is characteriz.ed by ~hronic 
inflammatory mfiltratJon of the synovlUm, WIth de

struction of cartilage and underlying bone, mediated by cy
tokines, metalloproteinases and superoxide radicals (1). Ni
tric Oxide is produced constitutively by endothelial (eNOS) 
Or neuronal NO synthases, or in higher concentrations by 
inducible NO synthase (iNOS) after stimulation by bacte
rial products and cytokines, including IFN-'Y, TNF-a, and 
IL-1 (2, 3). As such, it has emerged as an important regula
tory and effector mediator in several models of inflamma
tion (3), including streptococcal cell wall and adjuvant ar
thritis in the rat (4, 5) and renal and articular pathology in 
MRL-/pr//pr mice (6, 7). iNOS activity has been demon
strated in rodent synoviocytes and macrophages, and in ro
dent and human ncutrophils, chondrocytes and mast cells 
(2, 8-10). Evidence for NO production in human syn
ovium is provided by elevation of nitrite levels in synovial 
fluid relative to serum in RA patients (11) and by demon
Stration of elcvated urinary nitrate/creatinine ratios in RA 
(12). FurthemlOre, a recent report has suggested the pres
ence of iNOS in human synovium and implied that mac
rophages are the major source of synovial NO (13). 

We now provide direct evidence for spontancous NO 
production by human synovial tissue from RA and osteoar
thritis (OA) patients, which may be further upregulated by 
bacterial superantigen. We have shown that the predomi-

nant cellular source of NO is the synovial fibroblast. Fur
thermore, NO activated synovial cells produced TNF-a, a 
critical proinflammatory cytokine in RA synovitis (1). 

Materials and Methods 

Patiellts/Cell Culture. Synovial tissue was obtained at arthro
plasty from 25 paticnts satisfying American College of Rheuma
tolob'Y criteria for RA (14), and 7 with clinical and radiological 
features of OA (mean age 62, range 28-83 yr). Single-cell suspen
sions were prepared from 13 RA and 7 OA tissues as previously 
described (15). Cell subsets assessed by FACS® analysis fell within 
ranges previously reported (15), 106 cells/ml were cultured in 
triplicate in complete Dulbecco's MEM, 10% FCS (GIUCO llRL, 
Paisley, UK) for 72 h unless indicated. LPS, stephylococcal entero
toxin II (SEll) (Sigma Chemical Co., Poole, UK), NG-11l0n011le
thyl-L-arginine (L-NMMA) (provided by Dr. H. Hodson, WelI
come, Beckenham, UK). L-NMMA did not reduce cell viability or 
proliferation by synovial cultures to SED (data not shown). 

NO MC<lSlIrelll!'llt. NO production was measured as its oxida
tive product, nitrite, using the Griess reaction as described (7). 
Sensitivity was 2 I1M. 

IIl1tnlJlw/iis/(lcilemis/ry. Acetone fixed frozen sections (3-6 11ll1) 
from 10 RA synovia, blocked with goatlhuman serum, were in
cubated with rabbit antiserum against a human' iN OS peptide 
(N053), (16) then with biotin goat anti-rabbit 19 (DAKO, High 
Wycombe, UK), streptavidin-alkaline phosphatase (DAKO), fast 
red (Vector, Peterborough, UK) and hemotoxylin for light mi-
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Table 1. Prodl/crioll of NO by Prilllary RA alld OA SYllollial 
Cllltl/res 

Drug 
Patients Durati on Therapy Unstimulated SE13* 

R.A yr N i(rite /-LM 

RAl 14 H 9.3 (3 .0) 33 (7) * 

RA2 20 M 13 (1.7) 34 (0. 5) 

RA3 5 M+H+P 51 (2.7) 131 (6) 

RA4 13 G < 2 6 (2 .2) 

RA5 9 M 10.5 (1.3) 16 .2 (0.5) 

RM 19 A + P < 2 11.7 (3.2)+ 

RA7 22 S+P 10.1 (0.3) 32 (5 .9) 

RAS 20 < 2 <2 

R.A9 15 D l OA (2) S.S (1.0)+ 

I~Al 0 20 5.2 ( 1.2) 6 .7 (2.S)+ 

RAIl 10 3 .2 (0.5) 44 (8) 

R.A1 2 10 M 4.3 (0.5) 41 (3 .9) 

I~A13 15 <2 19 (2 .5) 

OA 

OAI 10 15 (0.5) 32 (3 .6) 

OA2 7 <2 3.3 (1.0)+ 

OA3 5 < 2 3 .2 (1.0)+ 

OA-l 10 22 (2.5) 57 (8) 

OA5 3 128 (26) ')8 (8) 

OM 5 10 (3.3) 24 (3) 

OA7 8 76 (9) 11 2 (8) 

SEU-stimulated RA synovial tissues produce en hanced nitrite! It-vc:ls 
(111ean ::':: SI), P <D.n l). 
*Optimal respome to SE13 (range 1- 10 1-1-£/ 1111) at 72 h for each patient. 
* I I-I-g/ ml LPS present. " IM gold; S, sulpha\a lazi m:; M, methotrexate; 
H, hydro),.')'chloroquine; D, penicillamine; A, aza thioprine; and 1' , 
prednisolone. 

croscopy. For double immunofluorescence, murine anti-CD3 or 
anti-C0 68 was fo llowed by FITC Fab2 goat anti- mouse Ig 
(DAKO), and anti- iNOS antiserum by biotin goa t anti- rabb it Ig 
and PE-streptavidin (OAKO). Positive staining was acquired by 
confocal microscopy (Nikon Optiphot-2; Bio-Rad, Hertford
shire, UK). Normal rabbit serum (NRS) or murin e IgG I 
(DAKO) of irreleva nt specificity served as contro ls and were neg
ative even after coincubati on with ant i- 0 68 o r NRS, respec
tively (data not shown) . For neutraliza tion experiments, the im
munizing iNO peptide Y I~SLEMSAL, rat iNOS peptide 
YE EPKATR..L (COOH tenllinus rat iNOS), or recombinant hu
man eN S (gift of Dr. I. harles, The rucifo n11 Proj ect, Uni
vers ity o llege London, UK) at 50 I-I-g/ ml were incubated over
night at 4°C with anti - iNOS before staining. N onspecific esterase 
(NSE) was detected as described (17) on sec ti ons sta ined with 
anti - iNO developed with fast blue (Vector) to contrast with 
N E. Staining \vas assessed by two histologists cOllnting >500 
cells in 111 0 re th an three high power fields per sec ti on (X400). 
The percentage of iNO positive ce lls is expressed as (positive 
cells) / (total number ce lls in fie ld) X 100. 

RT-PCR. R T-PC R. was perfonm:d as previously desetibed (8). 
Primers for hUlllan iNOS were a gift from Dr. I. C harles: -5'
GCCTCGCTCTGGAAAG-3' and 5'-TCCATGCAGCAA
CCTT -3'. Human chondrocyte iNOS cD NA and [3-actin primers 
5'-CCACACTGTGCCCATCTACGAGGGGT-3' and 5'-AGG
GCAGTGATCTCCTT TGCATCCT -3' (Genosys, Ca mbridge, 
UK) served as internal co ntrols. The PC lt produ ct was se
quenced (Am ershall1 Life Science, 13uckin ghal1lshire, UK) and 
was identical to that pred icted fi'om human chondrocyte iN OS (8). 

/"dll((io" <?JTNF-a SYllliIcsis by 1\ '0. Synoviocyte/ mK rophage 

cultures were prepa red using adh ere llt ce lls afte r 16 h culwn: of 
primary synovial ti ssue digests , o r synov ial fluid mononucl ea r ce lls 
obtain ed using lyll1ph oprep (Nyco med Pharma, O slo, N orway) · 
U,)37 ce lls were matured for 24 h with I () nM PMA (SignIa). 
Cells at 2 X 10"/ml were stimulated with S- nitroso-acetyl pel]l
cillamin e (SN AP) o r i\'-acetyl penicillamine (N AP , gifts fi 'o m \Jr. 
I. C harles) for 48 h and TNF-a concentrati ons determined bb 
ELl SA using paired antibod ies (MAb I , MAbll , sensiti vity <: I 
pg/ml; PharMin gen, Sa n Diego, C A). Cell viabi li ty was >90'!/c, by 
trypan blue exclusion. U,)37 ce lls cultured with '1 mM SNA P fOI 

48 h, then pulsed with 1 J.lC i IOH Ith ymidin e fo r 6 h , show simIlar 
uptake to co ntrols (data not shown). 

Statistical Allal),sis. Comparison between groups was by Mann
Whitn ey test. Paired sa mpl es were compared usin g a ( test or 
Wilcoxon matched pairs signed rank sum test. 

Results and Discussion 

Nitrite prod u ction by primary syn ovia l cultures fi'oill 91 
13 RA patients and 5/7 OA pat ients was detected in th e 

abse n ce of exogenous stimulation (Table I). Toge ther \vld~ 
th e demonstration of iNOS I11RNA expressio n in synoVJJ 
ti ssu e (F ig . I), th ese o bse rvat io ns show that NO ge n era tI On 

has been initi ated in vivo in both RA and OA syn o viuJ1l · 
No differen ce w as observed b e twee n nitrite produced by 

syn ovial cultures frolll RA and OA ti ssu es, nor waS serunl 

ac ute phase responsc co rre lated with nitrite leve ls (data n ot 

sh own) . The supe ranti ge n SE13 induces T cell pro li fc ratlOn, 

cytokin e secretion, and upregulatcs m onon u clea r cell cY; 
tokine expressio n a ftc r MH class 11 binding ( 18, 19· 

Additi o n of SE13 to synovial cultures from RA and OA pa
ticnts clearly induced in c reased NO synthesis in a dose-

iNOS 

~-actin 

M1234567 
'11-

Figure 1. R T- I'C R. for human iNOS II1RNA in ~ n 'lp-froZCI1. bA 
oviu ll1 . LJnes /- -/, rcpresclltJtivt: RA patiellt~; lane 5, rcpresentanvc 
patient; bne 6, human iNOS cDNA; "mc 7, negative cOl1tro l. 
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Fig ure 2. (a) SE ll- induced nitrite prod ucti o n by , ynovial culture, rro nl 
rcpn·<t·ntat ive pati ents RA I :! (tll'm) and O AO(, (r/osClQ. D . SE ll 1 fig / ml ; 
0 , SEU ( 1 fi g/ m I) + LI'S ( I fig/ ml). (h) Nitrite produ ctio n by ItA syn
ovial ti<sue over time (represeming ro ur simii.Jr e"periments) . Superna-

and time-dependent m anner (Fig . 2, Table 1). When LPS 
(0 .1 - 10 IJ.-g/ ml) was added w ith SEB, no signi ficant in 
crease in n itrite concentration was observed . Producti o n of 
nitri te was in hibited by additi on of L-NMMA (1 mM) , a 
competitive iNOS inhibitor (Fig. 2 b). T hus, in ad diti o n to 
cartilage (20), human synovial membrane itself has the po
tential for signifi cant NO ge neration . 

Prev ious efforts to loca li ze iNOS in human synovi um 
used cross-reac tin g an tibo di es to ro dent iN OS (13) . We 
used rabbit antiserum rai sed specifi ca lly aga inst a peptide 
ft'o m hu man iNOS (17), w hich recogn ized neither human 
eNOS no r rodent iNOS. Intracytoplasmic sta ining (Fig. 3 (1) 
was observed in 10 RA synovia in the fo Llowing disnibution 
(Ill ean ± SO [range]): lining b yer 19 ± 13. 1 [2- 561, inter
stitium 5 ± 5.6 [0-20], aggregates 7 ± 7.8 10-37J (P < 0.001 
LL vs Is o r Agg). Variable iN OS staining be tween patients 
reflected th e heterogeneity of spo ntaneous ni trite produ c
ti o n in primary culture. iNOS+ sm ooth muscle and endo
th eli al cells were identifi ed aro un d blood vesse ls in 81 I 0 
RA tissues. Stai ning was abo li shed by prein cubation w ith 
human iN OS pep tide (Fig . 3 b), but not w ith e ith er rodent 
iNOS peptide o r recombinant huma n eNOS (Fig. 3 c), 
demonstr:lting spcc ift city fo r hUl11 an iNOS. 

The RA synovial lining layer consists primari ly of acti 
vated Ill acrophages and fibrob lasts (1) . Double staining w ith 
NSE and ant i- iN OS (Fig. 3 d) revea led that the majority of 
iN OS + cells (89 ± 5%) in the lining layer, or interstitiul11, 
were NSE- and therefore unlikely to be l1l acro phages (Ta-

t :1 nt~ \ve re harvested at tilll es indi cJted :l nd ke pt for ~ i ll\l1l t:l ll l'O ll ~ :l ~c; :l yo 

0 , SEU (1 fi g/ IlII); 0 , SE U ( I I-lg / llIl) + LI'S ( I I-lg/ IlII): stJphyloco ccal 
ex tero to" in , SE ll ( I I-lg/ llIl) + L- MMA ( I IlIM): f:; . LI'S ( 1 I-lg/ IlI I). 

Figure 3. ItA synovial lin ing la ye r stailll'd with (,1) anti- hulllan iNOS amiSctulll (f.1S t red), preincubated with (b) hUllI an i 0 peptide , or (r) ,lmi
rodent iN OS pt'f>ti de. Preincubation with human e N OS was silllilar to (r). ((~ D ouble stain w ith anti - hul1lan iNOS (fJ st blu e) and NSE (red- brown): ar

row shows a do uble-Iabek d cell (X 30()). 
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Figure 4. Confocal images of RA synovia l sections double-stained with anti- human iNOS (red) and (a) ami-CD68 (green), showing that most iNOS
positive cells are CD68- (X250); (b) anti-CD68 at higher magnification, showing that CD68+ / iNOS + cells are prescm (double stain appears yellOW 
[X500]); or (c) ami-CD3 (green), showing that T cells arc iNOS - (X 400). 

ble 2). Confocal microscopy also demonstrated that most 
iNOS+ cells were CD68- (Fig. 4 a), although iNOS+ / 
CD68+ ce IJs were occasionally observed (Fig. 4 b). Thus, 
alth ough synovial macrophages po ess the capability of 
NO generation, fibrobl astl ike synoviocytes are the pre
dominant source of NO in vivo. Moreover, a majority of 
NSE+ and CD68 + cells in the lining layer were iNOS- , 
indicating that most macro phages are not directly involved 
in NO production (Table 2). CD3+ syno vial T cells were 
all iNOS- (Fig. 4 c). The shared species and isotype of anti 
CD3 with anti-CD68 antibody provided an additiona l 
spec ifi city control for the double sta ining observed with 
anti-iNOS and anti-CD68. 

There is currentl y controversy as to th e capacity of hu
man macrop hages to produce NO (21, 22) . Optimal con
ditions for iNOS expression in murine macrophages are 
appare ntly distinct from those required in the human, per
haps reflecting the tissue of origin, since blood monocytes 
are mainly used in human experiments. Where NO pro
duction by human macrophages was detectable (22), levels 

Table 2. Colocaliz alioll cif iNOS 1I)j11t N E ill RA Sy"ovilll" 

49 :!: 24 

(0-80) 

Percelll posilive cells 

45 :!: 23 

(16- 93) 

5 :!: 3.1 

(0- 12.5) 

I~A secti ons (/I = 4) were double stained with ami- human iNOS and 
NS E. Grea ter than 250 lining layer and interstiti al area cells positive fo r 
N E and / o r iNOS were counted per section and the number of single 
or double pos itive ce lls exprc. sed as a percentage o f th e to tal nUll1ber o f 
stained ce lls counted (mean :!: SI) Irange l) . 
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Figure 5. TNF-a production (mean :!: SEM) in response to SNAP bY 
(a) adhercm cells from ItA synovial fluid (SFAC) (0, /I = 4), o r RA,sY;~ 
ovial tis ue (0, /I = 2); o r (b) I'MA- lllatured U937 cells (t:., SNAI , e 
NAP: representati ve of ducc similar experimems). NAP did not ind ': p 
TNF-a production from SFA C (/I = 3, data not shown). 2 mM SN .' 
contained < 0.00 15 IU LPS by limulus amebocyte lysate assay (E_toxatc. 
Sigma). 
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Were an order of magnitude lower than those from murine 
macrophages. Our study demonstrates clearly that some syn
ovial macrophages in RA can express high levels of iNOS. 
The reason why only a limited number of macrophages is 
activated to produce NO is at present unclear. 

We next investigated a potential role for NO in the syn
ovial membrane. U937 cells or synovial mononuclear cells 
cultured with the NO donor, SNAP, produced TNFa in a 
dose-dependent manner (Fig. 5). RA synovial macrophages 
are activated, producing proinflammatory cytokines such as 
IL-1, TNF-a (1), and IL-15 (23) and clinical trials using 
monoclonal anti-TNF-a therapy indicate that such cyto
kine generation is critical in ongoing synovitis (24). How
ever, factors responsible for TNF-a upregulation remain 
unclear. Our data clearly show that synovial macrophages 
may express iNOS, but are unlikely to be the principle 
producers of NO. A reciprocal pathway may exist whereby 
NO from synovial fibroblasts enhances proinflammatory 
cytokine production by macrophages, which in turn may 
upregulate iNOS expression (2, 3), thereby generating a 

posItIve feedback loop. NO also upregulates MMP pro
duction (25) and is implicated in IL-l f3 mediated inhibition 
of proteoglycan synthesis (26), suggesting a proinflamma
tory role for NO. However, NO levels in our synovial cul
tures are sufficient to suppress T cell proliferation and may 
contribute to the hypo responsiveness of synovial T lym
phocytes (27). In addition, an acute chondroprotective role 
for endogenous NO in bovine cartilage has recently been 
proposed (28). Thus, in contrast to the situation in animal 
models in which NO is usually detrimental (4, 5), the net 
effect of NO production in human arthritis remains un
clear. 

Both RA and OA synovia produced NO. Although 
some OA synovial tissue contains an inflammatory infil
trate, the etiology of OA is not considered to be inflamma
tory. NO production is therefore unlikely to be a unique 
feature of primary inflammatory arthritides, but may reflect 
a nonspecific synovial response to injury or inflammation 
with potential protective or pathologic consequences. 
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