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Preface 

Although the work contained in this thesis covers the same general area, the research 

envelops several distinct aspects within the overall theme. As such I have chosen to 

weight the bulk of the thesis into the central results sections. The introductory chapter 

(Chapter 1) is a brief introduction to the African trypanosome, Trypanosoma brucei, 

describing its sexual reproduction and population structure and presenting current typing 

systems for genome analysis, in particular the role of minisatellite loci as useful genetic 

markers. The first two results chapters (Chapters 3 and 4) describe the development of the 

tools for genome analysis, and the subsequent chapters contain the results of this analysis 

from laboratory crosses (Chapter 5) and field samples (Chapters 6-8). The discussion 

chapter (Chapter 9) attempts to draw general conclusions from these results and point to 

the way forward for future research. 
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Abstract 

Many minisatellite loci show extremely high levels of variability in the length of their 
tandemly repeated sequences, due to a high rate of spontaneous mutation to new length 
alleles. Because of this hypervariability, minisatellites have been used extensively in many 
areas of biology, from forensic medicine to paternity testing. However such loci have been 
rarely studied in parasites, yet they can be of particular value in strain identification and 
the detection of recombination. In this study, three minisatellite loci, which vary 
extensively in both repeat copy number and sequence differences between repeat units, 
were identified and characterized from Trypanosoma brucei. These minisatellite markers 
along with four microsatellite loci, were chosen because they were all relatively small and 
so could be faithfully amplified by PCR from small quantities of DNA and, by using a 
nested PCR approach, from single trypanosomes. These markers were then used to 
investigate the nature and extent of sexual recombination in this parasite, using both 
laboratory crosses and population analysis. 
Analysis of trypanosomes derived from laboratory crosses showed that minisatellite 
inheritance is in agreement with a Mendelian system and that such markers are 
particularly useful for the detection of cross and self-fertilization. Examination of the FI 
hybrids from these crosses has identified some hybrids as being trisomic, but that, 
contrary to previous reports, triploidy is rare. The rate of recombination between 
homologous chromosomes was also examined and used to estimate the physical distance 
per centiMorgan (4.9-25kb/cM). 
Although sexual recombination has been demonstrated to occur in laboratory experiments 
the extent of genetic exchange in natural populations remained to be elucidated. Analysis 
of a series of field samples isolated from tsetse flies indicated that a high proportion of 
tsetse flies harboured mixed T. brucei infections, a prerequisite for genetic exchange to 
occur in the field. 
Minisatellite variant repeat PCR (MVR-PCR) was employed, to map the interspersion 
patterns of variant repeat units within a minisatellite locus, a ternary code for a number of 
different alleles was generated and from this the underlying mechanisms of mutation for 
one minisatellite (MS42) were inferred. This method of allele mapping was applied to a 
collection of field samples to study the relationship between T. b. brucei and T. b. 
rhodesiense populations and the extent of sexual recombination in natural populations in 
each sub-species. The analysis revealed that there is considerable sub-structuring in T. 
brucei populations, due to geographical barriers and host specificities. T. b. rhodesiense 
populations are distinct from T. b. brucei and a T. b. rhodesiense-specific marker has been 
identified for the Busoga (Uganda) focus. T. b. rhodesiense appears to have originated 
from a subset of genotypes in the local T. b. brucei population and the ability to infect 
humans has arisen independently in at least two different foci, i.e. T. b. rhodesiense is not 
a monophyletic sub-species. T. b. rhodesiense has a different (possibly clonal) popUlation 
structure from T. b. brucei, with the latter having a population structure in which mating is 
a common feature. 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

Trypanosomes 

The order Kinetoplastida, genus Trypanosoma, encompasses a large range of single-celled 

parasitic protozoa found throughout the world in both vertebrate and invertebrate hosts. 

Although most of these species replicate in the host without causing any adverse affects, 

there are a few species which are associated with disease, the most noteworthy of these 

being T. cruzi, the aetiological agent of Chagas' disease which infects humans in South 

America and T. brucei, the African trypanosome which is transmitted by the tsetse fly and 

causes African sleeping sickness or trypanosomiasis. There were 45,000 reported cases of 

African sleeping sickness in 1997, although the real infection rate could be nearer 450,000, 

most of which are fatal unless treated [Molyneux, 1997; Barrett, 1999]. Trypanosomes 

also have an adverse effect on domestic livestock in sub-Saharan Africa as T. brucei. T. 

congolense, and T. vivax infect cattle causing the disease, nagana, which is economically 

important resulting in wasting, infertility and lethality. Because of trypanosomes' ability to 

cause disease in both humans and livestock, the threat of trypanosome-infected tsetse flies 

has prevented the exploitation of fertile land in tsetse infested areas of sub-Saharan Africa 

[Vickerman, 1997]. 

Within the genus Trypanosoma there are 472 different named species which infect a range 

of different hosts and are transmitted by a number of different vectors. The mammal

infective species have been classified into 2 groups depending on the different modes of 

infection: the. Stercoraria and the Salivaria. There are 94 species in the Stercoraria, 

including T. cruzi, which develops in the hind gut of the insect vector (triatomid bug) and 

is excreted in the faeces, contaminating the bite or wound. Trypanosomes belonging to the 

Salivaria are transmitted in the saliva of the tsetse fly or mechanically by any biting fly, 

when the insect takes a blood meal (with the exception of T. equiperdum which is 

transmitted by venereal contact). There are 9 different species within the group Salivaria, 

most of which are pathogenic to the mammalian host, and can be separated into 4 

subgenera, Duttonella, Nannomonas, Pycnomonas and Trypanozoon (Figure 1.1). The 

different species within the Salivaria differ in the hosts they infect, the diseases they cause 

and their development in the insect vector. For example, T. brucei and T. congolense 

develop in the tsetse midgut before migration to the mouthparts, T. vivax develops in the 

mouthparts alone and T. evansi is mechanically transmitted by tsetse flies (and biting flies) 
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CMpter 1 Introduction 

Kingdom Protista 

Phylum Euglenozoa 

I 
Order Kinetoplastida 

Family Trypanosomatida 

Genus Trypanosoma 

Section Stercoraria SaIivaria 

. Subgenus Schizotrypanum Duttonella Nannomonas Trypanozoon Pycnomonas 

Species T. cruzi T. uniforme 1. congolense 1. equiperdum T. suis 

T. vivax 1. simiae T. evansi 

T. godfreyi T. brucei 

Sub-species 1. brucei brucei 1. brucei rhodesiense T. brucei gambiense 

Figure 1.1. Classification of the saIivarian trypanosomes. 
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Chapter 1 Introduction 

with no cyclical development in the flies. Details of the different Salivarian species i.e. the 

diseases they cause, their hosts and vectors and their geographical distribution is 

summarised in Table 1.1 [adapted from Cox, 1993; McNamara et al., 1994]. 

This study is concerned solely with the tsetse-transmitted T. brucei species of sub-Saharan 

Africa, which was named by Plimmer in honour of Bruce who, in 1895, discovered that 

trypanosomes were the aetiological agent for the disease (nagana) and were transmitted by 

tsetse flies [Vickerman, 1997]. The present method of classification identifies three 

morphologically identical subspecies of T. brucei: T. brucei brucei, T. brucei rhodesiense 

and T. brucei gambiense based on criteria of host specificities, geographical distribution 

and chronicity of disease [Hoare, 1972~ T. b. brucei is not infective to humans and is 

found throughout the tsetse region of Africa, T. b. rhodesiense is responsible for an acute 

disease in humans and is mainly found in East and Southern Africa, while T. b. gambiense 

causes a chronic sleeping sickness which is usually restricted to West and Central Africa. 

Life Cycle of T. brucei 

The life cycle of T. brucei is conducted in three different environments; the mammalian 

host, tsetse fly midgut and tsetse fly salivary glands. For each environment there are two 

life cycle stages, a proliferative stage which establishes an infection in that environment 

and a non-dividing form that is pre-adapted to the next environment (see Figure 1.2 

adapted from Vickerman, (1985)). In this view of the life cycle no reference has been 

made to sexual reproduction as this is fully discussed in a later section. 

A mammal becomes infected when the non-dividing metacyclic forms, in the tsetse fly's 

saliva, are injected into the dermis of the host as the infected fly takes a blood meal. A 

chancre (local swelling) develops at this site due to a local inflammatory reaction. The 

metacyclics, which enter the lymph and blood stream, transform into rapidly dividing long 

slender bloodstream forms which are dependent on the host for many nutrients. The 

bloodstream forms are completely covered by a protective variant surface glycoprotein 

(VSG) coat to which the mammalian host mounts an immune response, resulting in the 

parasite population falling dramatically. Long slender bloodstream forms have the ability 

to change the surface coat to antigenically different variants at a high frequency: 

approximately once in every 100 cell divisions [Turner and Barry, 1989]. The 

trypanosome expressing the new variant surface coat avoids the immune response and 

divides rapidly, causing a rise in the parasite population. This new variant then becomes 

the target for the immune response. By the time the host is prepared to eliminate one 

antigenic type of trypanosome, the next generation has already been established. The 

switching to different antigenic types within the mammalian host results in a chronic 

infection with characteristic waves of parasitaemia. The majority of trypanosomes are long 

slender forms; however another type of trypanosome, non-dividing short stumpy form, is 

also present in the bloodstream population, becoming more abundant at high 
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Species 

T. b. brucei 

T. b. rllOdesiense 

T. b. gambiense 

T. evansi 

T. equiperdum 

T. suis 

T. congolense 

T. simiae 

T. uniforme 

T. vivax 

T. godfreyi 

Vector 

Tsetse flies 

Tsetse flies 

Tsetse flies 

Tabanid flies 

(and any biting fly) 

Tabanid flies 

( and any biting fly) 

Venereal disease 

Tsetse flies 

Tsetse flies 

Tsetse flies 

Tsetse flies 

Tsetse flies 

(and any biting fly) 

Tabanid flies 

(and any biting fly) 

Tsetse flies 

Host Disease 

Cattle, pigs, sheep, Nagana 

wild game 

Humans, cattle, wild game Sleeping sickness 

Humans, pigs, sheep Sleeping sickness 

Equines, cattle Surra 

Equines, cattle Mal de Caderas 

Equines Dourine 

Pigs Acute porcine trypanosomiasis 

Cattle, sheep, goats, etc. Nagana 

Pigs Acute porcine trypanosomiasis 

Cattle None I Mild 

Cattle, sheep, goats, etc. Nagana 

Cattle Huequera 

Pigs, warthog Acute porcine trypanosomiasis 

Table 1.1. Salivarian trypanosomes [adapted from Cox, 1993; McNamara et al .• 1994]. 
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Long slender 
bloodstream form 

Asexual reprcxluction 

Short stumpy 
bloodstream form 

Figure 1. 2. The life cycle of T. brucei. The life cycle consists of at least 6 
stages, two life cycle stages for each of the three environments (mammailan host, tsetse 
salivary glands, tsetse midgut). In each environment one life cycle stage is able to 
undergo asexual reproduction, establishing a dense infection and the other stage is 
unable to divide but is pre-adapted to life in the next environment This figure is adapted 
from Vickerman, (1985). 
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Chapter 1 Introduction 

parasitaemia. These short stumpy forms are pre-adapted to being able to establish an 

infection in the next environment, the tsetse fly midgut. As a tsetse fly takes a blood meal 

from the infected mammalian host, the short stumpy forms are ingested and pass to the 

midgut where they transform to procyclics and establish an infection between the gut wall 

and the peritrophic membrane. Differentiation involves the loss of the VSG coat and the 

appearance of an invariant coat, specific to this life cycle stage, procyclin or procyclic 

acidic repetitive protein (PARP) [Roditi et al., 1987]. 

Procyclics then transform to the non-dividing elongated proventricular form which travels 

though the fly's alimentary canal to the proboscis and then to the salivary glands. Some 

weeks (3-5) after the midgut infection has been established, the salivary glands become 

infected when the proventricular forms transform to dividing epimastigotes which attach to 

the epithelium of the salivary gland. The cycle is completed when the epimastigotes 

transform to the non-dividing metacyclics which are not attached to the epithelium and are 

pre-adapted to survival in the mammalian host, complete with a VSG coat. Metacyclic 

stage cells have a more limited repertoire of possible VSG coats for their surface called 

metacyclic variant antigen types or M-VATs [Barry et al., 1983]. 

Trypanosomes have developed the ability to survive in two very different hosts by 

undergoing a number of morphological, metabolic and genetic changes. The most striking 

changes involve the surface coat and the two unique organe1les, the kinetoplast and the 

glycosome. The large single copy organelle, the kinetoplast, consists of a network of 

several thousand circular DNA molecules, comprising two types, termed the minicircles 

and maxicircles based on their size [Vickerman, 1994]. The maxicircles are similar to the 

mitochondrial DNA of other eukaryotes and contain genes which are essential for 

kinetoplast biogenesis: genes coding for mitochondrial ribosomal RNAs and proteins 

involved in the electron transport chain and ATP synthesis [Simpson, 1987]. The 

minicirc1es are known to encode small RNA molecules which can facilitate the 

insertion/deletion of uridine nuc1eotides in maxicircle transcripts in a process known as 

RNA editing [Kable et al., 1996]. The other organelle unique to the order Kinetoplastida is 

the glycosome, containing the enzymes involved in glycolysis, which are essential for 

survival in the blood of the mammalian host as glucose is the main food source [Michels et 

al., 1997]. In the midgut of the tsetse fly glycolysis is less important as the main energy 

source is the amino acid, proline. In order to utilise this source the mitochondrial 

respiratory chain becomes activated. 

Human African Trypanosomiasis 

Trypanosomiasis causes immense human suffering. In the early phase of an infection the 

symptoms are non-specific: nausea, headache, fever and lethargy, which can easily be 

confused with other diseases, such as malaria. In the late phase, the parasites cross the 

blood brain barrier, causing neural damage which results in the classical symptoms of 
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Chapter 1 Introduction 

sleeping sickness: severe neurological disturbance, irregular sleep patterns, coma and 

death. Without treatment, for the acute disease (rhodesiense sleeping sickness) death can 

occur in 6-12 months, and in 5-20 years for the chronic disease (gambiense sleeping 

sickness). 
The observation of trypanosomes in the blood of patients is the main method of diagnosis. 

However, the waves of parasitaemia, as a result of antigenic variation, and the sequestering 

of the trypanosomes to tissues such as the heart and liver, can result in few parasites 

circulating in the blood, making positive diagnosis difficult. A number of kits have been 

developed to aid the detection of trypanosomes in blood, which include concentration 

techniques, such as the mini-anion exchange column and the microhaematocrit 

centrifugation techniques [Nantulya, 1991], although they have not raised the level of 

sensitivity enough to avoid generating false negative results from patients with low 

parasitaemias. The card agglutination test, which detects antibodies to T. brucei antigens, 

is a cheap sensitive technique, however, it is unable to distinguish between a current 

infection and one that has already been treated and cured [Truc et al., 1994]. A sensitive 

technique allowing the early detection of infections is still desirable, as it would facilitate 

the control of the disease. 

The treatment of this debilitating disease has changed little in the past 50 years. Suramin 

and pentamidine, developed in 1922 and 1937 respectively, remain the preferred drugs for 

treatment of early stage infections, while melarsoprol, introduced in 1949, is used in the 

treatment of late infections. All of these drugs are toxic to the mammalian host causing 

side effects ranging from vomiting to neurological disorders and, in the case of 

melarsoprol, causing encephalopathy and death in 5% of treated patients [Pepin and 

Milford, 1994]. The first new drug since the introduction of melarsoprol, DL-a

difluoromethylornithine (DFMO), was introduced in 1990. Originally developed as an 

anti-cancer agent, this drug inhibits ornithine decarboxylase and is highly effective at 

eliminating T. b. gambiense although it is not effective against all isolates of T. b. 

rhodesiense [WHO, 1995]. The main limitation of this drug is expense: at $500 per patient 

compared to $60 per patient for melarsoprol, few developing countries can afford the 

treatment, although the WHO has .been trying to reduce the cost of production [WHO, 

1995]. 

The improper use of melarsoprol and pentamidine has led to the emergence of resistant T. 

brucei strains [Scott et al., 1996]. Laboratory experiments with resistant T. b. rhodesiense 

strains have given encouraging results for the use of combination therapy with DFMO and 

either suramin or melarsoprol for the treatment of the disease involving drug resistant T. b. 

rhodesiense strains [WHO, 1995]. 

Although there is an obvious need for new, cheap drugs, which do not cause severe side 

effects, the development of such a drug would be a non-profit making venture for a 

pharmaceutical company and so is unlikely to occur, unless a trypanocidal drug emerged 
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Chapter 1 Introduction 

from a screening process designed towards more 'profitable diseases' such as cancer, or 

alternatively by exploiting traditional remedies for the treatment of sleeping sickness 

[Kigotho, 1997]. 

The possibility of generating a universal vaccine for the protection against the disease has 

been hindered by the ability of the parasite to undergo antigenic variation, as over a 

thousand possible different surface coats can be expressed by a trypanosome [Barry, 1997] 

and even further variants could be generated by gene conversion between VSG genes 

during the process of switching. Despite being covered by a dense surface ~oat, the 

trypanosome cell must take up nutrients, such as glucose, from the external environment. 

The invariant receptors responsible for nutrient uptake are buried deep in the cell body at 

the base of the flagellum in a structure known as the flagellar pocket, which is the site of 

endocytosis in T. brucei [Webster and Russell, 1993]. This structure ensures that, should 

antibodies bind to proteins in the pocket, they will be unable to stimulate macrophage 

killing of the parasite due to the small size of the pocket. 

One of the most successful control measures for the disease has proved to be the method of 

vector control using biconical insecticide impregnated traps, which use chemical 

attractants to lure the tsetse flies. Placed in known foci, such traps have been known to 

lower significantly the number of seropositive people within a local area [WHO, 1995]. 

Although cheap and safe, these traps require high levels of maintenance. By using a 

combination of control measures such as surveillance, early diagnosis, treatment and 

vector control using traps, the 1980s epidemic in Uganda was brought under control 

[Molyneux, 1997l However this required a concerted effort on the part of the authorities 

and removal of the control methods is likely to result in the re-emergence of the disease. A 

sterile tsetse release programme on the island of Zanzibar has proved highly successful in 

eradicating tsetse flies and eliminating the disease [Hide, 1999], although such a 

programme could only be effective in an isolated region, such as an island, where there is 

little chance of reinfestation with tsetse flies from the surrounding area. In other countries 

social and political unrest has resulted in a breakdown of control measures. and the 

movement of people to tsetse infested areas, resulting in a upsurge in the number of 

infected individuals. The estimat.ed 1995 figures for sleeping sickness cases in the 

Democratic Republic of Congo and Angola have reached 250,000 and 100,000, 

respectively, with a prevalence of 20-50% being reported in some villages [WHO, 

web site] and, in 1997, an epidemic in Sudan was reported with 10 million people at risk 

[Kigotho, 1997]. 

Genomic Organisation of T. brucei 

Direct cytogenetic examination of T. brucei chromosomes to determine the karyotype and 

ploidy has not been possible as trypanosome chromosomes do not appear to condense at 

any stage during mitosis [Vickerman and Preston, 1970]. Therefore, indirect evidence of 
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ploidy was sought using a number of different techniques: isoenzyme data [Gibson et al., 

1980; Tait, 1980], RFLP analysis of single copy genes [Gibson et aI., 1985] and the 

measurement of DNA content and kinetic complexity [Borst, 1982]. The results obtained 

are all consistent with bloodstream trypanosomes being diploid. 

The suggestion that T. brucei may be a sexual organism [Tait. 1980] led to the search for a 

haploid stage (gametes) in its life cycle. Trypanosomes isolated from different life cycle 

stages, in both T. brucei and other trypanosome species, were analysed by cytofluorimetry 

and their DNA contents compared to bloodstream forms [Shapiro et al., 1984; Kooy et al., 

1989]. These results indicated that all life cycle stages of the trypanosome that were 

investigated are diploid. The findings of these two studies directly contradict one report 

which, based on microfluorometry, suggested that metacyclic forms of the parasite were 

haploid and the products of obligatory meiosis during trypanosome development in tsetse 

flies [Zampetti-Bosseler et al., 1986]. If this suggestion were correct then it would be 

predicted that cloned trypanosome lines heterozygous for a number of loci, when 

transmitted through a tsetse fly and sub-cloned from single metacyclics, should be 

homozygous for all loci. Analysis of a series of metacyclic derived sub-clones all appeared 

to be identical to the original clone, i.e. all heterozygous loci remained heterozygous [Tait 

et al., 1989]. demonstrating that metacyclics were indeed diploid and not the products of 

obligatory meiosis. 

The development of pulse field gel electrophoresis (PFGE) has greatly increased our 

unders.tanding of the T. brucei karyotype, with chromosomes falling into three distinct 

categories, mini (50-150 kb), intermediate (150-700 kb) and large chromosomes (800 kb-

6Mb). It has been estimated that there are 50-150 minichromosomes in the T. brucei 

genome which are believed to act as a reservoir for VSG genes [Van der Ploeg et al., 

1984]. The number and size of the intermediate chromosomes, which also contain VSG 

genes, varies between strains, and both mini and intermediate chromosomes are probably 

essentially haploid [Gottesdiener et al., 1990]. The large chromosomes have recently been 

resolved into' 11 chromosome pairs ranging in size from 1Mb to approximately 5.2Mb 

[Melville et al., 1998]. These chromosomes are diploid and appear to contain 

housekeeping genes. Within a stock, homologous chromosomes can differ widely in size, 

while non-homologous chromosomes can be of the same size and co-migrate under PFGE 

[Gottesdiener et al., 1990; Melville et al., 1998]. PFGE has also revealed a remarkable 

diversity in chromosome patterns between trypanosome species and strains [Gibson and 

Borst, 1986; Melville et al., 1998], with chromosomes of all classes varying between 

strains. 

A concerted effort to map and sequence the - 70 Mb comprising the T. brucei genome has 

begun and has lead to significant progress in generating both a genetic [M. Turner, D. 

Masiga and A. Tait, personal communication] and a physical map [Melville et al., 1998], 

with both bacterial artificial chromosomes (BAC) and PI libraries covering the entire 
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genome and cosmid contigs for portions of the genome, now available. The T. brucei 

sequencing project has succeeded in sequencing most of chromosome I and a considerable 

part of chromosome 1I, also the sequencing of random cDNA clones is being pursued by 

some groups as a direct approach to obtaining coding gene sequences [for example, El

Sayed et al., 1995]. Undoubtedly the primary sequence of the genome will in itself prove 

invaluable as a basic tool for genome analysis. However, in order to understand fully the 

structure and function of the T. brucei genome, the nature of DNA sequence variation 

between different strains needs to be elucidated as well as the mechanisms which generate 

such variation. Variation between genomes can be generated by specialist mechanisms 

such as antigenic variation or by haplotypic mixing, with resultant homologous 

recombination and crossing over during sexual recombination. The processes of mutation 

and sexual recombination in T. brucei are poorly understood. 

Genomic Variation 

The T. brucei karyotype is known to exhibit high levels of size polymorphism, with 

homologous chromosomes within a genome differing in size by as much as 20%, while 

chromosome size differences between stocks can be as large as two-fold [Melville et al., 

1998]. As syntenic groups are maintained in all stocks examined to date, the size 

differences are thought to be due, to a large extent, to expansions and contractions of 

repetitive sequence throughout chromosomes and at the telomeres, although the insertions 

of transposable elements and variable location of VSG expression sites may also be 

responsible for some of the variation observed. However, the nature of the sequences 

involved in these size differences is largely unknown, as are the mechanisms leading to the 

generation of such size differences. 

Tandemly repeated genes. Many housekeeping genes in the T. brucei genome 

(approximately half of the genes studied to date) are present as multiple tandem copies 

[Swindle and Tait, 1996] and a number of these genes have been shown to be polymorphic 

in their copy 'number between stocks, for example PARP [Mowatt and Clayton, 1988], 

tubulin [Seebeck et al., 1983] and the glucose transporter genes [Barrett et al., 1996]. 

These clusters are assumed to have arisen from a single source gene, via duplication and 

rounds of unequal exchange to produce arrays of genes which are able to diverge and form 

the basis of mUltigene families, for example, the VSG genes [Barry, 1997]. 

Variant Surface Glycoproteins (VSG) expression sites. The dense layer of a 

single glycoprotein which covers the surface of the bloodstream T. brucei cell is encoded 

by VSG genes which are transcribed from large polycistronic expression sites found at 

telomeres. There are several such telomeric expression sites (probably about 20) in the 

genome although only one site is transcriptionally active at anyone time. The 

bloodstream expression sites (believed to be hemizygous) have a unique architecture: at 

the 5' region of the expression site lies a 50bp tandem repeat, followed by at least 8 
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expression site associated genes (ESAGs) and another large stretch of tandem repeats with 

a repeat size of approximately 70bp, next to the VSG gene which is situated adjacent to the 

telomere. The metacyclic expression sites, which express M-VSG genes, have a simpler 

organisation consisting of a small number of 70bp repeats next to the VSG gene at the 

telomere. As well as VSG genes in expression sites, there are estimated to be 

approximately one thousand other VSG genes within the T. brucei genome, residing either 

at internal sites within the large chromosomes or at the telomeres of mini- and intermediate 

chromosomes. Antigenic variation, the process of the serial expression of different VSG 

genes [reviewed in Barry, 1997 and Borst, 1997] can occur by a number of different 

mechanisms. Three types of mutation processes which cause VSG switching involve 

genome re arrangements. They are: (1) duplicative transposition, arguably the major 

mechanism. in which a VSG gene from an internal site (or from a minichromosome) is 

copied into the active expression site and which can result in the formation of chimeric 

VSGs ; (2) telomere conversion, where the VSG gene and telomere in the expression site 

is replaced by a copy of a VSG gene and telomere from another telomeric site leaving the 

donor site unchanged or (3) reciprocal telomeric exchange in which the existing VSG gene 

and telomere at the expression site is reciprocally exchanged with the VSG gene and 

telomere of another telomeric site. 

Two other mechanisms which do not involve major chromosomal re arrangements but 

which may generate anti genic variation are point mutations in the VSG gene (although this 

is believed to be rare and of little significance [Barry, 1997]) and switching transcription 

from one expression site to another. 

Retrotransposon-like elements. The main dispersed repeat in the T. brucei genome 

(excluding the VSG genes and their associated tandem.repeats) is the element termed ingi. 

This is a 5.2kb sequence which has a copy number of -200 and is located throughout the 

genome accounting for approximately 1Mb of the genome [Kimmel et al .• 1987]. The ingi 

element is flanked on either side by half a RIME element (-250bp). The RIME elements 

are also widely dispersed and have a copy number of - 400, but are usually associated with 

ingi elements. The ingi element shows features characteristic of transposable elements 

(short direct terminal repeats, poly.-A tract at the 3' end and sequence homology to a 

reverse transcriptase) which can be expressed as part of larger transcripts [Kimmel et al., 

1987]. Unlike the dispersed nature of ingi and RIME, another retrotransposon-like 

element, SLACS, is confined to one locus, the mini exon cluster, and is found in 20-30 

copies [Aksoy et al., 1990]. Although possessing many of the features of retrotransposons, 

SLACS have not been shown to transpose. Dispersed repeats may act as initiators of non

homologous recombination which could lead to deleterious deletions or duplications, but 

could also account for some of the chromosome size polymorphisms [Melville et al., in 

press]. 
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Variable number tandem repeats (VNTRs). The most variable loci in eukaryotic 

genomes are the so called variable number tandem repeats (VNTRs) which, as their name 

suggests, show variation in the copy number of tandemly repeated sequences. The 

presence of repetitive DNA is a ubiquitous feature of higher eukaryotic genomes. The term 

VNTR can be used to include a range of variable loci including mononucleotide repeats, 

dinucleotide repeats, or microsatellites, up through minisatellites, midisatellites, telomeric, 

rDNA and satellite repeats. Such loci often show extreme levels of variation in terms of 

repeat unit copy number with high levels of heterozygosity. Such high allele length 

variability is based directly upon rapid mutation to new length alleles by insertion/deletion 

mechanisms. 

Genes containing tandem repeats have been identified in T. brucei, and include the gene 

encoding the cytoskeletal paraflagellar rod protein, with a number of repeats of 11 amino 

acids [Woodward et al., 1994], the gene encoding the PARP which covers the surface of 

the insect stage parasites [Roditi et al., 1987], and two other membrane proteins which 

contain repeat motifs, the cysteine-rich, acidic integral membrane protein (CRAM) and 

292, [Lee et al., 1990; Lee et al., 1994; see also Chapter 3]. Also with the T. brucei 

genome sequencing project underway and the sequencing of expressed sequence tags 

(ESTs) [EI-Sayed et al., 1995] many tandemly repeated sequences, such as microsatellites, 

have been identified in non-coding (and coding) regions of the genome. Size 

polymorphisms between stocks in the repeated regions of these coding and non-coding 

sequences, due to variations in the number of repeats, could be a rich source of 

polymorphic markers; however little work has been carried out in this area, with the 

exception of the work of Sasse who identified a series of micro satellite markers in T. 

brucei [Sasse, 1998], and the minisatellite identified by Barrett [Barrett et al., 1997; see 

also Chapter 3]. 

Genetic Exchange in T. brucei 

Experimental crosses. The first evidence for genetic exchange in T. brucei was 

provided by Tait in 1980, who examined the isoenzyme patterns of a number of field 

isolates and concluded that the large number of different genotypes and the apparent 

random assortment of alleles at different loci was due to sexual recombination, although it 

was not until 1986 that the first genetic cross between two different T. brucei stocks was 

demonstrated in the laboratory [Jenni et al., 1986]. To date nine different experimental 

crosses between trypanosome stocks have been conducted, together with one backcross 

and two experiments in which the products of self-fertilization were detected (summarised 

in Table 1.2). In all cases the procedure for performing the crosses involved cotransmitting 

two different T. brucei stocks through tsetse flies. Clones of trypanosomes derived from 

the infected flies were then analysed using a variety of techniques; RFLPs of single copy 

genes and of kDNA, isoenzymes, DNA content and karyotype. A total of 140 hybrid 
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progeny clones and 10 selfers have been identified to date (Table 1.2), although not all of 

these recombinant progeny are the products of different mating events, e.g. two of the first 

three clones identified are identical [Jenni et al., 1986]. 

The analysis of these crosses has demonstrated that genetic exchange is non-obligatory. 

For example, a proportion of flies infected with two different trypanosomes develop 

mature salivary gland infections consisting of only one parental type. Also, although the 

majority of flies which have mixed-infected salivary glands produce hybrid trypanosomes, 

a proportion of the metacyclics are still of a parental genotype, with the proportions of 

parental and hybrid genotypes varying with time; early in infections, parental 

trypanosomes are produced, but if sampled later during the course of the infection, hybrid 

trypanosomes are also produced [Schweizer et al., 1988]. Marker analysis of clones from 

mixed-infected flies has shown that some trypanosomes were equivalent to Fl progeny, in 

that alleles appeared to segregate in a Mendelian fashion. For example, for loci at which 

parents were homozygous but different from each other, the hybrids were heterozygous, 

and for loci heterozygous in the parents, segregation and independent assortment of alleles 

into the progeny was observed [Wells et al., 1987; Tait et al., 1988; Gibson, 1989; 

Sternberg et al., 1989; Turner et al., 1990; Gibson and Garside, 1991; Gibson et al., 1992]. 

No barriers to mating have yet been identified as three stocks have been successfully 

crossed in all combinations [Sternberg et al., 1989; Turner et al., 1990], although it is 

conceivable that a mating type system exists and at least one of the stocks was 

heterozygous for alleles at a putative mating type locus. 

Another class of recombinant progeny from a mixed transmission has been identified as 

the product of self-fertilization [Tait, 1983; Tait, et al., 1996; Gibson et al., 1997]. It is 

interesting to note that such an event appeared to occur only in the context of cross

fertilization. Single stock transmissions through flies have so far only ever produced 

clones which were identical to the original stock [Tait et al., 1996] and the double drug 

selection of progeny from a cross between two drug resistant transformants of the same 

strain did not generate the products of self-fertilization [Gibs on et al., 1997]. 

Another interesting feature of the sexual process is that a proportion of analysed hybrid 

clones demonstrated an elevated DNA content of approximately 1.5 times the normal 

level, [Gibson et al., 1992; Tait et al., 1993]. Further examination of these clones 

demonstrated trisomy for those chromosomes analysed. It is possible that such hybrid 

clones are triploid and have arisen as a result of failure of meiosis in one parent, generating 

a diploid gamete which then fuses with a haploid gamete [Gibson, 1995], or through fusion 

of a normal diploid cell with a haploid gamete. However, due to the limited numbers of 

progeny clones analysed to date it is difficult to determine whether the increased DNA 

content is indicative of a specific aspect of the genetic exchange mechanism or is merely 

an aberrant phenomenon. 
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Parent 1 

Summary of T. brllcei Genetic Crosses 
Parental clones for each cross 

Parent 2 
Clone OJigin Host qone ... Origin Host 
Crosses 
STIB 247 

STIB 247 
STIB 386 
STIB 247-LF 
058 

196 
STIB 831-K cl I 
058H 

TH2N 

Backcross 
058H 

Tanzania 

Tanzania 
Ivory Coast 
Tanzania 
Zambia 

Ivory Coast 
Uganda 
Z1mbia 

West Africa 

Z1mhia 

Self-fertilisation 

STIB 247 Tanzania 

TH2N West Africa 

. Hal1chcast . STI B 386 I vory Coast Human 

Hartebeast TREU927/4 Kenya Tsetse 
Human TREU927/4 Kenya Tsetse 
Hartebeast STIB 777-A Uganda Tsetse 
HUlnan 196 Ivory Coast Pig 

Pig JI0 Zambia Hyena 
Tsetse STIB-831-K cl 2 Uganda Tsetse 
Human KP2N Ivory Coast Tsetse 

Human 05811 Z1mbia Human 

Human P20 (hybrid of 058 x KP2) 

Hartebeast (in the presence of STIB 386) 

Human (in the presence of 058H) 

No. of 
Hybrids 

3 

I 
8 
5 
24 
9 
4 
10 

12 
9 
7 
29 
6 

Reference 

Jcnni et al., 1986 
Paindavoine et al., 1986 
Wellsetal., 1987 
Sternberg er al .• 1988 
Sternberg et al .• 1989 
Turner et al., 1990 
Turner et al., 1990 
Turner et al., 1990 
Schweizer et al., 1994 
Gibson W. c., 1989 
Gibson et al., 1992 
Gibson and Garside 1991 
Oegen et al., 1995 
Gibson and Whittington 1993 
Gibson and Bailey 1994 
Gibson et al., 1997 

13 Gibson et aI., 1995 

5 Tait et al., 1996 

5 Gibson et al., 1997 a 
.§ 
.~ 

Table 1.2. A Summary of T. brllcei genetic crosses. Each hybrid clone is not necessarily the product of a unique mating event. Hybrids with ::: 
identical genotype patterns are likely to be vegetative derivatives of a single mating event. STIB, Swiss Tropical Institute Basel; TREU, Trypanosome ~ 
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Chapter I Introduction 

Chromosomal inheritance. The three different classes of chromosomes in T. brucei 

are inherited by Fl progeny in different ways. Mini and intermediate chromosomes are 

inherited in a non-Mendelian fashion. Wells et al. (1987) demonstrated that hybrid 

progeny clones inherited a full complement of minichromosomes from each parent. The 

hybrid progeny clones examined in these experiments all had elevated DNA contents and 

the inheritance of all minichromosomes from both parents accounted for only a small 

proportion of their increased DNA content. However, diploid progeny clones have not 

been investigated for minichromosome inheritance. Consequently, it is possible that these 

results are aberrant and do not reflect the true pattern of inheritance of these chromosomes. 

Analysis of intermediate chromosomes has shown that parental chromosomes appear to be 

randomly distributed among the progeny, as would be expected if the chromosomes were 

not segregating as homologues at meiosis [Sternberg et al., 1987; Wells et al., 1987; Le 

Page et al., 1988; Gibson, 1989]. Large chromosomes however appear to segregate in a 

Mendelian fashion, i.e. progeny inherit one homologue from each parent. It would appear 

that different sized chromosomes, which are structural homologues (from Southern 

analysis), behave as genetic homologues [Gibson, 1989; Gibson and Garside, 1991; 

Melville et al., 1998]. These findings provide further evidence for the occurrence of 

meiosis. Although some features of chromosomal inheritance appear to oppose the model 

of a traditional Mendelian genetic system, i.e., as mentioned previously, some hybrid 

clones appear to be trisomic for a number of chromosomes [Gibson et al., 1992], have 

raised DNA content [Paindavoine et al., 1986; Gibson et al., 1992; Tait et al., 1993], and 

novel non-parental size chromosomes which appear to be specifically associated with 

genetic exchange are often observed in progeny clones [Gibson, 1989; Gibson and 

Garside, 1991; Tait et al., 1993; Melville et al., 1998; Tait et al., manuscript in 

preparation] . 

Kinetoplast inheritance. The inheritance of the kinetoplast organelle was examined 

by analysing polymorphic regions within maxi- or minicircle DNA. Initial studies 

indicated that maxicircles were inherited uniparentally from either parent [Gibson. 1989; 

Sternberg et al., 1989; Gibson and Garside, 1990] and minicircles were inherited 

biparentally [Gibs on and Garside, 1990]. However more recent studies of hybrid clones 

during their early stages of bloodstream growth appear to indicate that both maxi- and 

minicircles are inherited biparentally with subsequent stochastic segregation at each 

mitotic division [Turner et al., 1995]. This model would predict rapid fixation to a 

uniparental pattern for the maxicircles (but not for the minicircles due to their high copy 

number), and would explain the results of earlier reports and the observation that 

maxicircles are homogeneous. The evidence is strengthened by the observation of two 

hybrid clones, which have identical nuclear genotypes, mixed mini-circle genotypes but 

differing maxi circle genotypes [Gibson and Garside, 1990]. The clones are believed to be 

the two daughter cells from the same mating event, suggesting that parental kinetoplasts 
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fuse followed by the segregation of the maxi-circles in subsequent mitotic divisions 

[Gibson and Garside, 1990]. 

Stage of mating. It is clear from the results of the laboratory crosses that mating takes 

place at some stage during the trypanosome life cycle in the tsetse fly, i.e. at the procyclic. 

proventricular, epimastigote or metacyclic stages. Analysis of trypanosomes vegetatively 

derived from single metacyclics. obtained .from flies in which trypanosome mating is 

occurring. have been shown to be hybrid. It is reasonable to assume that such metacyclics 

are the products of mating and that mating occurs at an earlier stage [Kooy et al., 1989; 

Tait et al.. 1989], contrary to a previous report [Zampetti-Bosseler et al.. 1986] which 

suggested that metacyclics were haploid gametes. The crossing of drug resistant stocks of 

T. brucei and the double drug selection of the progeny [Gibson and Whittington, 1993; 

Gibson et al., 1997]. has shown that hybrids can be isolated from the salivary glands but 

not the midgut of mixed-infected tsetse flies, indicating that the probable site of genetic 

exchange is the salivary glands. A report [Schweizer and Jenni, 1991] has described the 

detection of hybrids in the midguts of tsetse flies, using isoenzyme markers but as no 

clones were isolated and demonstrated to be of the predicted hybrid phenotype. the 

significance of this report is unclear. On this basis, the life cycle stage at which mating 

takes place in T. brucei is still open to question. 

Most flies with a mature mixed infection will eventually produce hybrid trypanosomes 

[Sternberg et al .• 1989; Tait, personal communication]. By analysing the metacyclics 

produced by these flies over time, it is clear that early in infection the parental stocks are 

transmitted without mating, but that, after approximately 25-50 days post infection, hybrid 

trypanosomes (as well as parentals) are observed, and continue to be produced for the life 

time of the fly [Schweizer et al., 1988; Sternberg et al., 1989; Turner et al., 1990] 

indicating that mating is non-obligatory. 

Models of genetic exchange. The observed segregation and independent assortment 

of alleles in T. brucei provides strong evidence that genetic exchange involves meiosis and 

syngamy; as the majority of markers used in the analysis of crosses appear to be inherited 

in a Mendelian fashion. Although the common mechanism of mating for diploid 

eukaryotes involves the formation of haploid gametes, and such a mechanism has been 

described for other flagellates [Cleveland, 1956], other models for genetic exchange in T. 

brucei have been proposed. 

Paindavoine et al., (1986) proposed a fusion/chromosome loss model whereby diploid 

nuclei fuse to fonn a tetraploid nucleus followed by random chromosome loss to restore 

diploidy. This attempts to explain the elevated DNA content found in some hybrids, but 

would predict that the DNA levels fall during vegetative growth, a phenomenon 

Paindavoine et al. report. However Wells et al. (1987) analysed the same hybrids and 

found no such loss. This model also predicts non-Mendelian allelic segregation, which has 

not been observed. There is strong evidence for meiosis and syngamy [Turner et al., 1990]. 
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although, it is still not clear whether meiosis precedes fusion or meiosis follows fusion. For 

the classical Mendelian model, the limited number of progeny clones identified is 

insufficient to obtain statistically significant proof (or rejection) of Mendelian segregation 

ratios. Other data appear not to fit the Mendelian model. The elevated DNA content of 

some hybrids [Paindavoine et al., 1986; Gibson et al., 1992; Tait et al., 1993] cannot be 

directly explained by this model, but may be aberrant products of meiosis, perhaps 

resulting from fusion of a diploid cell with a haploid gamete (or nucleus). The detection of 

two hybrid clones that are identical for nuclear markers but differ in maxicircle DNA, has 

led to the suggestion that an intermediate stage in hybrid formation exists, in which both 

parental kinetoplasts are present [Gibson, 1989; Gibson, 1995]. The model of fusion 

followed by meiosis involves the fusion of diploid parents to form an intermediate 

polyploid cell in which meiosis occurs to yield haploid nuclei which then fuse in pairs, 

resulting in diploid progeny. A failure of meiosis of one nucleus could result in diploid 

nuclei being produced which fuse with haploid nuclei and generate triploids. This model 

may also explain the failure to identify a haploid stage in the T. brucei life cycle, (although 

the search for haploid gametes has been limited). 

Population Structure of T. brucei 

Identification of T. brucei Although trypanosomiasis has probably been prevalent 

in Africa for centuries, it was the first recorded in the late 19th century by European 

colonists. For example, Livingstone, in 1857, referred to the 'tsetse disease' which caused 

wasting in cattle and horses [Vickerman, 1997]. In 1895, Bruce discovered that 

trypanosomes were the aetiological agent for the disease and were transmitted by the tsetse 

fly, which was soon followed by the recognition that human sleeping sickness was also 

caused by trypanosomes [Vickerman, 1997]. 

There are three morphologically identical subspecies of T. brucei: T. b. gambiense and T. 

b. rhodesiens,e, which cause the chronic and acute forms of human trypanosomiasis, 

respectively, and T. b. brucei which is non-human infective. The distinction between these 

subspecies has been based on the area of isolation (T. b. gambiense in West and Central 

Africa, T. b. rhodesiense in East Aftica and T. b. brucei throughout Africa) and on the host 

from which the sample was isolated (T. b. gambiense and T. b. rhodesiense from humans 

and T. b. brucei from other mammals). 

Human Infectivity. Given that tsetse flies feed on both humans and other mammals, 

the possibility existed that animals could be infected with T. b. gambiense or T. b. 

rhodesiense, i.e. that animals could act as a reservoir of human infective trypanosomes. To 

address this question a number of early studies used human volunteers to assess the ability 

of trypanosomes isolated from animals to infect humans, demonstrating that wild animals 

were a reservoir for human infective trypanosomes [Heisch et al., 1958] and that T. b. 

gambiense and T. b. rhodesiense could retain their ability to infect humans even after long 
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periods of cyclical transmission between tsetse flies and sheep [Willett and Fairbairn, 

1955]. However, some T. h. rhodesiense strains could lose their ability to infect humans 

after serial passage in laboratory rodents, and some stocks isolated from animals were 

unable to infect humans [Rifkin et al., 1994]. 

Early observations revealed that human serum has a lytic effect on some strains of 

trypanosome isolated from animals while other stocks appear to be resistant to this 

trypanolytic effect. Exploiting this effect, a number of tests have been designed to 

differentiate between human infective and non-human infective trypanosomes without 

recourse to human experimentation. For example, the blood incubation infectivity test 

(BlIT) involves the incubation of trypanosomes with human serum and then either 

inoculating laboratory rodents [Rickman and Robson, 1970] or measuring cell lysis in 

vitro [Brun and Jenni, 1987] to determine whether any trypanosomes have survived. This 

method was widely used to identify a number of wild and domestic animals as reservoirs 

for human serum resistant trypanosomes [Robson et al., 1972], although the test has been 

shown to give variable results with some T. h. rhodesiense samples (isolated from 

humans), as the phenotype can vary depending on the passage history [Rifkin et al., 1994], 

Mechanisms of human infectivity. The mechanism(s) of resistance to human serum 

has been the subject of a great deal of research over the past decade, however, it is still not 

fully clear how these organisms evade lysis. Investigations into the mechanisms of human 

serum resistance have identified two trypanolytic factors in human serum. Rifkin, (1978) 

identified the trypanolytic factor, (TLFl) as being a high density lipoprotein and in 1996 a 

second trypanocidal factor, TLF2, was identified as being a non-high density lipoprotein 

[Tomlinson and Raper, 1996]. TLF2 was discovered to be the main lytic factor [Raper et 

al., 1996] which binds to trypanosome receptors, enters the cell by endocytosis, 

accumulates in the lysosome and triggers cell lysis. Resistance to this process is believed 

to be due, not to a reduction in TLF binding but to a reduction in internalisation of TLF 

[Hager and Hajduk, 1997]. 

In 1989 a possible genetic basis of resistance to human serum was proposed, when a VSG

like gene (the SRA gene) was found to be expressed only in human serum resistant 

trypanosomes [De Greef et al., 198-9]. More recently the SRA gene has been identified as 

being an ESAG (expression site associated gene) of the Etat 1.10 expression site [De Greef 

and Hamers, 1994], which, if transfected into a human serum sensitive stock, can confer 

resistance, clearly suggesting a link between SRA gene expression and resistance [Van 

Xong et al., 1998]. However several pieces of evidence indicate that this cannot be the 

complete explanation of resistance. Firstly, following this model, human serum resistant 

stocks would be limited to only using one expression site, unless another SRA gene is 

present and expressed from another part of the genome. Secondly, this expression site is 

not active in metacyclics and so would not confer resistance for the first few crucial days 

in which the parasite is in the mammalian host, before differentiation into bloodstream 
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forms. Thirdly, at least two human serum resistant stocks do not express the SRA gene 

[Lindergard, 1999]. 

Sleeping sickness epidemics. Human sleeping sickness is characterized by long 

periods of endemicity and occasional short term epidemics confined to specific areas or 

foci which expand or contract with environmental changes. Many foci have existed for 

decades, for example, the Busoga focus in l! ganda was the site of the epidemic of 1900 

and is still active today. This grand epidemic was estimated to have infected half a million 

people and was thought originally to be due to T. b. gambiense but is more likely to have 

been due to the morphologically identical T. h. rhodesiense [Koerner et al., 1995]. 

It is important to be able to distinguish between the different subspecies of T. brucei and to 

be able to track different strains through populations, so that questions regarding the 

epidemiology of the disease and the population structure of the parasite can be addressed. 

For example, are the trypanosomes from different foci the same or different? If it was 

possible to define a marker for human infectivity, then it would allow human infective 

trypanosomes to be identified from any host or vector and so facilitate detailed 

epidemiological analysis. To this end much research has been focused on biochemical and 

molecular approaches for the identification of the strains and subspecies of T. brucei. 

Distinguishing T. b. gambiense from T. b. rhodesiense and T. b. brucei. 

Isoenzyme analysis has been used extensively for several years to distinguish T. brucei 

strains and, although no single isoenzyme marker can define T. h. gambiense, the results 

with several enzymes has succeeded in distinguishing T. b. gambiense from T. brucei 

brucei and T. b. rhodesiense [Godfrey and Kilgour, 1976; Gibson et al., 1978; Gibson et 

al., 1980; Mehlitz et al., 1982; Tait et al .• 1984; Godfrey et al., 1987]. T. h. gamhiense 

stocks have been divided into two groups based on isoenzyme analysis. The majority of 

human infections from West Africa fall into the first category (group 1), which have a 

limited isoenzyme variability and are highly resistant to human serum, but a second group 

of trypanosomes (group 2) are more heterogeneous in their isoenzyme patterns and display 

variable resistance to human serum [Gibson et al., 1980; Mehlitz et al., 1982; Tait et al., 

1984; Gibson, 1986]. Further analysis of T. b. gamhiense using repetitive DNA probes and 

RFLPs confirms the existence of two distinct groups of West African trypanosomes. the 

well defined T.. b. gambiense and a heterogeneous group of trypanosomes which shows a 

close relationship to West African T. b. brucei, and could be considered as the West 

African equivalent of T. b. rhodesiense [Paindavoine et al., 1989; Hide et al., 1990]. 

Distinguishing T. b. rhodesiense from T. b. brucei. T. h. rhodesiense stocks 

appear to be indistinguishable from T. b. brucei stocks by isoenzyme analysis. Although 

human infective strains have a more restricted repertoire of zymodemes (sets of stocks 

which share the same isoenzyme profile) than T. b. brucei and certain zymodemes 

predominated in the T. h. rhodesiense samples, there was no particular pattern which was 

exclusively associated with T. b. rhodesiense and could distinguish the two subspecies 
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[Gibson et al., 1980; Gibson and Gashumba, 1983; Gibson and Wellde, 1985]. 

Polymorphisms in the maxi-circles of kDNA also failed to differentiate between T. b. 

rhodesiense and T. b. brucei, which led to the suggestion that they were not different 

subspecies but that T. b. rhodesiense was a host range variant of T. b. brucei [Borst et al., 

1981], further suggested. on the basis of isoenzyme data. by Tait (1985). 

Using RFLPs in repetitive DNA sequences to examine different trypanosome stocks, Hide 

found that it was possible to distinguish between human serum resistant and human serum 

sensitive samples on the basis of a complex cluster analysis, although two samples which 

were human serum sensitive clustered with the human serum resistant types [Hide et al.. 

1990; Hide et al., 1994]. The fact that human infective field samples cluster together and 

are a semi-defined group suggests they are distinct, although the fact that expression of 

human serum resistance can vary and sensitive derivatives of cloned human isolates can be 

obtained by passage in rodents, suggests at first sight. that it would be unlikely that T. b. 

rhodesiense is genetically distinct from T. b. brucei. However, fully human serum 

sensitive strains occur and so the distinction. at this level. is in the ability to express human 

serum resistance. Early studies used human volunteers to determine human infectivity 

[Heisch et al., 1958] and although such methods have been replaced by tests such as the 

BIIT, one must be cautious when equating human serum resistance to human infectivity, 

as stocks may have the ability to survive in human serum. but may not be able to establish 

a human infection. 

Animal reservoirs. If T. b. rhodesiense stocks are host range variants of T. b. brucei it 

follows that animals could be a reservoir for the human disease. This was demonstrated in 

1958 when human volunteers were infected with trypanosomes which had been isolated 

from wild game. The resulting disease indicated that an animal reservoir for human 

trypanosomiasis existed [Heisch et al., 1958]. This work was supported by a number of 

studies which used the blood incubation infectivity test (BIIT) in place of human 

volunteers and demonstrated that a range of wild and domestic animals could act as 

reservoirs for human infective trypanosomes [Robson et al., 1972]. More recently. 

molecular approaches have been used to identify human-infective T. b. gambiense and T. 

b. rhodesiense isolates from wild and domestic animals. Isoenzyme and RFLP patterns of 

some isolates from both man and animals have been shown to be identical. suggesting 

there is a reservoir of human infective types within non-human hosts [Gibson et al., 1978; 

Gibson et al., 1980; Scott et al., 1983; Tait et al., 1984; Gibson and Wellde, 1985; Enyaru, 

1993; Hide et al., 1994]. 

Analysis of data from a number of studies in the Lambwe Valley district of Kenya 

examined by Mihok showed that -27% of T. brucei infected domestic animals possessed 

trypanosomes which were identified as being human infective by DNA and isoenzyme 

analysis [Mihok et al., 1990]. In these studies human serum resistance was not tested 

directly, but the analysis was based on 'identity' of isoenzyme or RFLP patterns between 
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isolates of human and animal origin as a criteria for identifying human infective strains. In 

a similar study of the Tororo district of Uganda, Hide at al., (1996) examined (using 

isoenzyme and RFLP polymorphisms) isolates that had been collected in 1988-90 during 

an epidemic and directly measured human serum resistance, to show that -23% of animal 

isolates were human infective [Hide et al., 1996]. Examination of blood meals from tsetse 

flies during the epidemic in SE Uganda demonstrated the importance of the cattle reservoir 

by showing that a tsetse fly was 5 times more likely to have picked up T. b. rhodesiense 

from cattle than from humans [Hide et al., 1996]. 

Clonality vs. sexual reproduction. Sexual recombination in T. brucei has been 

shown to occur in laboratory experiments when two genotypically distinct trypanosome 

stocks are cotransmitted though a tsetse fly, resulting in the generation of novel hybrid 

genotypes Jenni et al., 1986; Turner et al., 1990; Gibson and Bailey, 1994; see also 

Chapter 5]. Although, T. brucei stocks can undergo sexual recombination in the laboratory, 

it is still not clear to what extent mating takes place in natural trypanosome populations. 

The importance of determining the role of mating in the field lies in the possibility that 

traits such as human infectivity and drug resistance can be spread through a population of 

non-human infective trypanosomes by genetic exchange. A high level of sexual 

recombination would also increase the diversity within a population thus creating a wide 

range of genotypes capable of providing the means for the organism to adapt to changes in 

the environment. In recent years a number of studies have attempted to define the 

contribution of sexual recombination to the generation of the genetic variation observed in 

T. brucei. 

The first evidence for sexual recombination in T. brucei populations came in 1980 when 

Tait analysed 17 trypanosome isolates from Lugala, in Uganda, for isoenzyme 

polymorphisms [Tait, 1980]. Examination of allele and genotype frequencies indicated that 

there was a high degree of allele diversity with genotype frequencies exhibiting no 

significant difference from those expected if the population was randomly mating, i.e. the 

population was in Hardy-Weinberg (HW) equilibrium. Similar analysis of two further 

populations, Sindo and Kiboko, also indicated agreement with HW expectations, leading 

to the proposal that sexual recombination was frequent [Tait, 1983]. However, this 

conclusion was later criticised, for although agreement to HW expectations is consistent 

with the occurrence of a randomly mating popUlation, the agreement with expectation 

could occur by chance, especially if the sample size is small [Cibulskis, 1988]. The high 

level of allelic diversity found in the T. brucei populations analysed [Gibson et al., 1980; 

Godfrey et al., 1990], and the observation of a range of allelic combinations, suggests that 

it is highly unlikely that mutation alone could account for the observed variation, as the 

same mutations would have to occur repeatedly. These considerations led Cibulskis to 

come to the conclusion that some sexual recombination was occurring, but that it was not 

sufficiently frequent to fully break up associations between loci [Cibulskis, 1988]. 
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Subsequent studies by a number of different groups would also appear to suggest a less 

important role for sexual reproduction in the field, for, although they found large numbers 

of different phenotypes and genotypes, the number of different allelic combinations 

remained lower than that theoretically expected from a randomly mating population, 

resulting in deviations from HW expectations [Gibson and Wellde, 1985; Tait et al., 

1985]. 

A population in which recombination is frequent, may still display deviation from HW 

expectations and linkage disequilibrium for a number of reasons. Mating may not be 

random, for example, self-fertilization may occur which would generate an excess of 

homozygotes. Self-fertilization has been demonstrated in T. brucei [Tait et al., 1996; 

Gibson et al., 1997; see also Chapter 5]. The samples analysed may not be from a single 

population, but a mixture of two or more genetically isolated populations. This could occur 

if two species are wrongly considered as a single panmictic unit or if two genetically 

isolated populations are combined. Sub-populations could be created by geographical 

barriers or by host specificities, creating populations each of which may be randomly 

mating. Combining data from sub-populations (or different species) could result in 

departure from HW. Another reason for deviation from HW eqUilibrium. could be sample 

bias whereby different genotypes may have different likelihoods of being included in the 

sample, perhaps due to variation in the ability of trypanosomes to grow in the laboratory. 

All samples analysed to data have been initially grown in rodents, sometimes for many 

passages. Indeed it has been observed that only a proportion of T. brucei isolates from 

tsetse salivary glands were able to grow in laboratory rodents [Goebloed et al., 1973]. 

Such sample bias could be overcome by genotyping trypanosomes directly by PCR 

without recourse to growth in the laboratory. While it has been generally assumed that 

selection in rodents will be random in relation to the types of markers used in population 

genetic analysis, this has never been formally tested. Other factors such as natural 

selection, bottlenecks, and migration may all result in a deviation from HW eqUilibrium in 

an organism' in which sexual recombination is frequent. It is also possible that a 

combination of a number of different factors may exert such effects on the analysis of the 

population structure of T. brucei. 

When considering the life cycle of T. brucei, the degree of sexual recombination is 

dependent on opportunities for genetic exchange, which in turn is dependent on the 

feeding behaviour of flies and the number of mixed infections. It is clear that not all tsetse 

flies harbour mixed infections and of those that do, laboratory studies show that only a 

proportion produce hybrid trypanosomes together with parental genotypes [Sternberg et 

al., 1989]. It would therefore appear unlikely that T. brucei populations would demonstrate 

a truly panmictic population structure, although sexual recombination may still play a 

significant role in generating new genotypes. 
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In 1990 after examining isoenzyme variation in populations of a number of medically 

important protozoa, including Plasmodium, Leishmania and Trypanosoma, Tibayrenc 

proposed a clonal theory of population structure, whereby sexual recombination plays only 

a minor role [Tibayrenc et al., 1990]. Tibayrenc's criteria for clonality centre on the 

absence of segregation of alleles at a single locus and the lack of recombination between 

alleles at different loci and are presented in Table 1.3. 

Tibayrenc's criteria for clonalit 
cntena or segregauon lxe eterozygoslty 

absence of segregation genotypes 
deviation from H-W 

cntena for recombmauon Identical genotypes widespread. over given geographical areas 
absence of recombinant genotypes 
linkage disequilibrium 
correlation between independent sets of genetic markers (e.g. 
kDNA and nuclear DNA) 

Table 1.3. Criteria for c10nality given by Tibayrenc et aI., (1990). 

A number of other studies on T. brucei have supported the findings of Tibayrenc in that 

deviations from HW expectations were detected [Mihok et al., 1990; Cibulskis, 1992; 

Enyaru, 1993]. However, one reason for this could be that the populations sampled were 

sub-structured by, for example. geographical barriers. which would disrupt a panmictic 

population structure and result in linkage disequilibrium and deviation from HW 

eqUilibrium. Indeed many of the studies, including those of Tibayrenc, have examined T. 

brucei stocks isolated from a wide variety of locations, time points and hosts and so do not 

take into account the possibility of population sub-structuring when collecting samples. 

Indeed, when Tibayrenc analysed 'non-gambiense' T. brucei samples from West and East 

Africa separately. there was no statistically significant evidence for linkage disequilibrium. 

but when the West and East African samples were combined, significant linkage 

disequilibrium was observed [Tibayrenc et al., 1990]. Given that these populations are 

very likely to be geographically sub-structured, his argument for a clonal population of T. 

brucei is weak. 

Tibayrenc argued that if deviation from HW expectations was due to population sub

structuring this would be associated with fewer than expected numbers of heterozygotes, 

but the data showed a larger proportion of heterozygotes than predicted, suggesting that 

even if population sub-structuring was present, the effect was not sufficient to counteract 

the excess of heterozygotes generated by clonal propagation. The persistence and over

representation of heterozygotes over generations suggested a lack of meiotic segregation 

and self-fertilization (which would generate homozygotes). Stronger evidence for clonality 

was provided by the detection of identical multilocus genotypes from different widespread 

geographical areas. The association of alleles at different loci suggests a lack of sexual 

recombination which would tend to break up these associations and the fact that such 
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genotypes were detected from samples isolated at different times suggests that clonal 

propagation has persisted for many years. 

In 1993 Maynard-Smith proposed a population structure for T. brucei distinct from either 

random outbreeding or clonality: an epidemic population structure, whereby a randomly 

mating population structure is obscured by a recent explosive increase in one (or a few) 

particular genotype(s) [Maynard-Smith et al., 1993]. This was demonstrated by Maynard

Smith using isoenzyme data from Kenyan samples of T. brucei. Using a measure of 

linkage disequilibrium, the Index of Association, lA' (whereby lA is zero for randomly 

mating population and non-zero if recombination is rare or absent), significant linkage 

disequilibrium (a non-zero value of lA) was detected in this population, suggesting a non

randomly mating population structure. However when each common multilocus genotype 

was considered as an individual sample in the analysis, then the lA returns to zero, 

suggesting a panmictic population structure. This indicates that one or a few genotypes 

have expanded within this population, becoming abundant and widespread, and so have 

concealed the true role of genetic exchange in the underlying population. 

The concept of an epidemic population structure for T. brucei, proposed by Maynard

Smith, was supported by Hide in 1994 in a study of sympatric T. brucei isolates in SE 

Uganda, collected at the same time (between 1989 and 1990) from two different hosts 

(man and cattle), thus eliminating the possibility of population sub-structuring due to 

geographical barriers or time. Analysis of these isolates, (which were divided into human 

infective and non-human infective types) was carried out using Maynard-Smith's Index of 

Association on all the samples and again on electrophoretic types only, whereby the 

common multilocus genotypes were considered as single samples to reduce any population 

distortion created by an epidemic spread of one (or a few) genotype(s). The results of this 

analysis revealed that the non-human infective stocks appeared to show evidence of sexual 

recombination, whereas the underlying sexual popUlation structure for the human stocks 

was initially obscured by an epidemic explosion of one or a few genotypes. Indeed it 

would appear that during epidemics such a population structure may be prevalent, with 

selection for the human infectivity phenotype driving clonal reproduction but only within 

the context of a 'background' population undergoing frequent recombination [Stevens and 

Welburn, 1993]. 

In summary, although it appears that genetic exchange takes place in natural populations 

the extent of sexual recombination and the question as to whether it occurs between human 

infective and non-human infective stocks remains to be elucidated. With the development 

of more informative DNA markers which can analyse genotype rather than phenotype and 

be interpreted genetically, more discriminatory tests can be carried out to determine the 

population structure and whether genetic exchange can affect the spread and inheritance of 

traits of medical and economic importance. 
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Substructuring in trypanosome populations due to geography. If the 

population of T. brucei were highly substructured due to geography, then each focus 

would contain genetically distinct trypanosomes, and combining data from different foci 

would give misleading results. For example, a deviation from Hardy-Weinberg 

equilibrium would be obtained although each subpopulation was undergoing random 

mating. The evidence presented by Hide et al., (1994), based on RFLPs in rDNA and a 

repetitive probe pBE2, using isolates from Kenya, Uganda, and Zambia, suggests that 

there is clear sub structuring, as parasites from different geographical regions are distinct. 

For example, T. b. rhodesiense stocks from Zambia are distinct from the T. b. rhodesiense 

stocks from the Ugandan/Kenyan focus [Hide et al., 1990; Hide et al., 1994]. Also 

examination of isolates from the Lambwe Valley in Kenya indicate that the frequency of 

particular zymodemes can vary significantly over quite short geographical distances 

[Cibulskis, 1992]. 

Substructuring in trypanosome populations due to host species. Different 

trypanosome strains can exhibit different levels of host range specificities, for example 

human infective strains can infect both humans and animals, whereas non-human infective 

stocks can infect cattle but not humans, probably reflecting an adaptation to specific 

transmission cycles. This adaptation could result from resistance to the lytic effects of 

human serum or from variation in the binding of essential transferrin in different hosts, as 

different transferrin binding affinities have been implicated in the ability of stocks to infect 

different hosts [Borst et al., 1997; Bitter et al., 1998]. Clearly, if different.stocks have 

different host range specificities this will result in population substructuring. Evidence for 

such sub-structuring has been obtained by isoenzyme studies from the Lambwe Valley in 

Kenya [Cibulskis, 1992], where zymodemes appear to be restricted in the range of hosts 

they infect, ~ith only a limited number of human infective zymodemes being detected. 

Further evidence for population sub-structuring due to host specificities was obtained by 

isoenzyme analysis of trypanosome isolates from Lugala in Uganda, where samples from 

humans appeared to be extremely homogeneous [Gibson and Gashumba, 1983], whereas 

samples from tsetse flies from the same area were remarkably diverse [Tait, 1980]. Mihok 

et al., (1990), analysing isolates from different hosts, proposed that the high level of 

diversity found in tsetse flies could not be explained by the flies feeding solely on cattle or 

humans, but that wild animals must be the source of the range of different genotypes found 

[Mihok et al., 1990]. However little work has been done on the analysis of samples 

isolated from wild game or from tsetse flies largely due to the practical difficulties 

involved in collecting such samples. For example, only 0.1 % to 1 % of tsetse flies are 

infected with T. brucei, so many thousands of tsetse flies must be screened to obtain a 

reasonable sample size. The pioneering work of Tait, in which sexual recombination was 

proposed as a mechanism for generating diversity in T. brucei [Tait, 19801 was carried out 

on samples isolated from tsetse flies, whereas most of the work supporting the theory of 
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clonality has been based on the more homogeneous human or cattle isolates [Tibayrenc et 

al., 1990]. It is possible that substructuring due to host specificity has lead to an incorrect 

conclusion that T. brucei is clonal whereas, in fact, sexual reproduction is common. There 

is an obvious need for a large scale analysis of field isolates, sampled correctly from the 

vector and all hosts from the same place and time to address these issues adequately. 

Epidemics and 'new' strains. It has been suggested that epidemics may be caused by 

the introduction of a 'new' particularly virulent strain of parasite into an area. In a small 

survey of isolates from the South Nyanza focus in early 1980s, Gibson et al., found that 

'new' stocks not previously observed in this region were prevalent [Gibson and Wellde, 

1985]. The detection of new strains could be due to the spread of virulent strains from 

other foci or they could have arisen within the area, perhaps due to changes in the 

environment which have resulted in a higher transmission of human infective stocks that 

were already circulating in that area in both man and animals, but were previously 

undetected due to low abundance and inadequate sample size. Alternatively the new 

strains could have been generated by genetic exchange or mutation. DNA analysis of 

stocks from the Tororo district of Uganda sampled in 1960 and 1988-90, and the 

surrounding geographical area of Busoga in 1982, does not support the idea of the 

occurrence of new strains but suggests that a single strain present before the epidemic was 

responsible for the outbreak of disease [Hide et al., 1994; Hide et al., 1996]. This idea is 

supported by the fact that, in general, epidemics appear to arise in the same foci time after 

time suggesting that they are caused by pre-existing strains becoming prevalent when 

conditions within the area are favourable for transmission. 

Sampling considerations. It is clear that a great deal still needs to be elucidated 

regarding the epidemiology of T. brucei, and further analysis of field samples is desirable. 

Because of the difficulties of sampling field isolates often only small sample sizes are 

available for analysis. Although it is tempting to pool isolates from different hosts, 

locations and time, this is only valid if there is no population substructuring. 

The handling· of field samples in the laboratory is also an important consideration. The 

universal practice of growing field isolates in the laboratory in order to obtain enough 

material for analysis undoubtedly applies selection for particular stocks and the loss of 

some genotypes, for example Goebloed reported only a proportion of isolates from 

salivary glands were successfully grown in laboratory rodents [Goebloed et al., 1973]. The 

development of markers that can be scored directly by the sensitive PCR technique could 

enable the direct analysis of field isolates without the requirement of growth in the 

laboratory, although mixed samples could not be scored for genotypes without isolating 

single cells and either analysing these directly using single cell PCR or by amplifying in 

mice prior to analysis. 

Another consideration is that the field isolates collected are appropriate for the question 

under investigation and in sufficient numbers to allow statistical evaluation. For example, 
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if examining sub structuring due to host specificity, the samples must come from different 

hosts but from the same area and isolated at the same time. The same issue applies to 

differences due to geography, in that samples must come from the same host, isolated at 

the same time, from different regions. To date these basic requirements have rarely been 

satisfied. 
When investigating the importance of genetic exchange in the field it may not be 

appropriate to sample during an epidemic, as the available evidence suggests that a few 

genotypes predominate. On this basis, a full understanding of the population structure may 

require sampling endemic areas. The final consideration is that the appropriate typing 

system be used and this, again, will depend on the questions being addressed. 

Typing Systems 

A sensitive typing system for T. brucei, which would allow strain identity to be established 

unambiguously, would have a number of applications in the study of trypanosome biology. 

The identification of particular strains could provide evidence for the ongoing debate on 

whether trypanosome populations are predominantly clonal or panmictic, as clonally 

expanded lineages would be obvious. The epidemiology of T. brucei infections would also 

be aided by such strain identification, for example, by identifying if new foci are due to 

novel genotypes or are as a result of a re-emergence of human infective trypanosomes 

from the local population. 

Human infective trypanosome genotypes could potentially also be distinguished from non

human infective lineages, perhaps revealing that human infectivity has arisen 

independently in different areas or that all human infective stocks share a common 

ancestry. Alternatively, the question could be addressed; are T. brucei rhodesiense stocks 

distinct from the local T. brucei brucei popUlation or should T. brucei rhodesiense samples 

be considered host range variants of a single subspecies? If human infective strains could 

be identified by some T. b. rhodesiense-specific marker, this would allow local 

trypanosome populations to be assessed in terms of their potential human infectivity. 

Isoenzyme analysis. Isoenzyme analysis, the detection of differences in the 

electrophoretic mobility of particular enzymes, has been used extensively in the population 

and genetic analysis of a wide range of organisms, including trypanosomes [for example, 

Gibson et al., 1980; Godfrey et al., 1990]. This method of analysis can distinguish 

between some stocks, data from some enzymes can be interpreted genetically and allele 

frequencies for population analysis can be measured. Those strains with identical 

isoenzyme patterns are called zymodemes and closely related zymodemes belong to strain 

groups. However there are drawbacks with using this method of analysis. As large 

amounts of purified trypanosome material are required, only a proportion of the variation 

is measured (i.e. substitutions which affect protein charge), the markers are not very 

polymorphic and convergent evolution may result in unrelated stocks having the same 
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zymodeme pattern. Despite these drawbacks isoenzyme analysis has been the method of 

choice for most studies regarding the identification of T. brucei and although no one 

marker is capable of distinguishing between T. b. gambiense and T. b. brucei or T. b. 

rhodesiense, by using several markers in combination, the sub-species T. b. gambiense can 

be reliably identified [Tait et al., 1984; Paindavoine et al., 1989]. Isoenzyme analysis has 

also revealed the presence of T. b. rhodesiense-like trypanosomes in West Africa, termed 

T. b. gambiense type 2 by Gibson [Gibs on, 1986]. Although isoenzyme analysis has been 

unable to distinguish between T. b. rhodesiense and T. b. brucei, as identical patterns can 

be found in isolates from both humans and animals, a number of studies have indicated 

that trypanosomes isolated from humans are more homogeneous than those isolated from 

other hosts, suggesting that T. b. rhodesiense represents stocks which are host range 

variants of T. b. brucei [Tait et al., 1985; Mihok et al., 1990; Cibulskis, 1992; Enyaru et 

al., 1997]. 

Restriction fragment length polymorphisms (RFLPs). DNA typing has been 

used in a number of studies; for example, RFLPs in kDNA were used to type a small 

collection of samples, the results of which suggested that there is no difference between T. 

b. brucei, T. b. rhodesiense and T. b. gambiense stocks [Borst et al., 1981]. Clearly these 

RFLP markers do not have the level of discrimination of alloenzyme markers. Maxi-circle 

kDNA is now believed to be biparentally inherited with stochastic segregation at each 

mitotic division leading to fixation for one parental type [Turner et al., 1995], therefore 

maxi-circle inheritance may not reflect nuclear differences between stocks and variable 

results could be obtained from typing kDNA depending on the number of mitotic divisions 

undergone prior to analysis. Taken together, it would appear that kDNA markers are 

unsuitable for population genetic studies. 

RFLPs in nuclear DNA have been used to a limited extent in the analysis of T. brucei 

populations, but have been used to provide further evidence for two types of T. b. 

gambiense stocks in West Africa [Paindavoine et al., 1989]. By using RFLPs in repetitive 

ribosomal genes Hide et al. have generated molecular fingerprints of T. brucei stocks [Hide 

et al., 1994]. Pairwise comparisons of the fingerprint banding patterns were used in cluster 

analysis to produce dendrograms, illustrating the similarity/differences of different stocks. 

Several stocks with different DNA patterns were found to have the same isoenzyme 

pattern, indicating that this method is more sensitive at detecting differences than 

isoenzyme analysis [Hide et al., 1994]. Although this method reveals high levels of 

variation, genetic interpretation is not possible as the relationship between specific 

restriction fragments and the different loci detected has not been established. 

Random Amplified Polymorphic DNAs (RAPDs). In recent years the PCR based 

DNA typing system, RAPDs, in which random fragments of DNA are amplified by peR, 

has increased in popularity and has been used to complement alloenzyme analysis [Stevens 

and Tibayrenc, 1995]. The RAPD technique is quick and easy to perform, detects many 
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variable fragments of DNA, yet requires no sequence information, and can analyse small 

amounts of trypanosome DNA. However, RAPD data are often not reproducible, cannot 

readily be interpreted genetically, are unable to identify mixed or contaminated samples 

and require purified parasite DNA. Analysing samples from West and East Africa, 

Mathieu-Daude et al., found this technique more discriminating than isoenzymes and were 

able to distinguish T. b. gambiense type 1 stocks from all other samples. although they 

were unable to differentiate between T. b. brucei and T. b. rhodesiense [Mathieu-Daude et 

al., 1995]. Komba et al. (1997) in their analysis of Tanzanian samples combined a number 

of techniques including RAPD analysis. They also concluded that RAPD analysis revealed 

more diversity than isoenzymes and that the Tanzanian stocks were distinct from the T. b. 

rhodesiense stocks from other East African foci. RAPD analysis has been used in the study 

of T. cruzi, confirming previous results obtained using isoenzymes that this parasite 

appears to have a clonal population structure made of two clonal lineages [Tibayrenc et al., 

1993]. 

Karyotype. The full karyotype of the T. brucei stock 927/4 has been determined 

[Melville et al., 1998] and comparisons with other stocks has revealed remarkable 

variability. For this reason, pulse field gel electrophoresis (PFGE) has been used as a tool 

to differentiate between some strains [Komba et al., 1997], although this is a time 

consuming technique which requires large amounts of purified parasite material for 

analysis. 

Multilocus DNA fingerprinting. Classic multilocus DNA fingerprinting is achieved 

by hybridizing restriction digested DNA to a minisatellite probe (at low stringency) to 

produce a complex pattern of bands which are individual-specific. This technique has been 

extensively used in the analysis of human DNA samples [Jeffreys et al., 1985]. It can be 

used for the analysis of parasite samples not only for the identification of progeny clones 

but also for distinguishing between different stocks. T. cruzi and Leishmania species have 

both been examined in this way using the human minisatellite probe 33.15 [Macedo et al., 

1992; Macedo et al., 1992]. Although the high level of diversity revealed by DNA 

fingerprinting is ideal for individual/strain identification. the high level of intra-population 

variation revealed by this technique would normally preclude the use of this technique for 

inter-population comparisons. However, in situations where there are a small number of 

founders, a severe bottleneck or an inbred or clonal population which reduced the intra

population differences, then the multilocus fingerprinting approach can be applied and can 

reveal intra- and inter- population differences which are not detected by other systems 

[Gilbert et al., 1990]. 

Unfortunately this technique requires large amounts of high molecular weight purified 

parasite DNA, the fingerprint results cannot be interpreted genetically as many loci are 
, 

detected at once, and the results can be difficult to interpret if they are from samples 

containing mixtures of genotypes. 
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Single Locus Minisatellite Probes. Single locus mini satellite analysis has been 

used extensively in human genetics to complement the multilocus approach. Although 

each test is less informative than the classic fingerprint, single locus probe (SLP) analysis 

offers a number of advantages. Less DNA is required for analysis, the results can be 

interpreted genetically. and mixed samples can be identified and analysed. Also, by 

sequential analysis using a series of different probes, highly informative profiles can be 

obtained [Wong et al., 1987]. 

Although several genes encoding tandem repeats (i.e. coding minisatellites) have been 

identified in T. brucei. no work has been carried out to determine if these loci are 

polymorphic, with the exception of the P ARP gene [Mowatt and Clayton, 1988] and MS42 

[Barrett et al.. 1997; and Chapter 3]. The use of these coding minisatellites as genetic 

markers may have a number of applications in the analysis of T. brucei populations. 

Microsatellites. Polymorphic microsatellites, or short tandem repeats (STRs). which are 

amenable to amplification by PCR [Weber and May, 1989], have proved extremely useful 

in the analysis of population genetics and for linkage mapping in a variety of species. 

These markers (and small minisatellite markers) have many advantages over other typing 

systems as they can be amplified by PCR and so require very little DNA, they are locus 

specific and so can be interpreted genetically, are able to detect mixed samples and can be 

amplified from DNA contaminated with DNA from another species. Polymorphic 

microsatellite markers were used to analyse the population genetic structure of T. cruzi and 

have provided evidence for clonality and a high incidence of mixed T. cruzi infections in 

animals and insects compared to humans [Oliveira et al .• 1998]. Despite the advantages of 

this typing system. no studies have used these markers in the analysis of T. brucei 

populations although they have been used as markers in laboratory crosses [Sasse, 1998]. 

The choice of markers for the analysis of T. brucei populations should reflect the specific 

question under consideration. Each typing method has its own advantages and 

disadvantages. '!able 1.4 illustrates some of the typing systems available for analysing 

populations and their different strengths and weaknesses. For example. RAPDs are quick 

and simple to perform and do not require any sequence information, but they do not 

provide any allele frequency data and the interpretation can be confused if samples are 

mixed or contaminated with host material. Isoenzymes on the other hand can generate 

allele frequency data and can identify mixed samples. but, these markers are less 

polymorphic than RAPDs or minisatellites. Highly polymorphic markers are required to 

distinguish between different strains (intra-species analysis). whereas less polymorphic 

markers are more suitable for examining the differences between species (inter-species 

analysis). Highly polymorphic markers would therefore be desirable if a population is 

suspected of being clonal. as individual strains can be traced through populations. For the 

analysis of T. brucei populations a series of highly polymorphic markers, such as 

minisatellites. which are among the most polymorphic loci identified to data in eukaryotes. 
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Typing methods Info-rmat Genotype Identity Kinship intra- inter- mixed u Degra-ded! --Technical 

-iveness analysis species species samples small simplicity 

analysis analysis quantities 

material 

Prohes multilocus probes ++++ ++++ +++ ++ + 

(DNA fingerprinting) 

multi-allelic RA~Ps +++ + +++ ++ ++ + +++ .++ 

RFLPs + + + +/- +/- ++ ++ 

peR minisatellite peR +++ + +++ ++ ++ + +++ ++ +++ 

microsatellite peR ++ + ++ + + + ++ +++ +++ 

RAPDs + ++ +/- + + +++ +++ 

MVR-PCR ++++ + +++ ++ ++ + + ++ ++ 

Proteins Isocnzymcs ++ + ++ ++ ++ ++ +/- ++ 

Table 1.4. Comllarison of different typing methods. 
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would be desirable to address the population genetics issues of clonality and population 

sub-structuring. 

Minisatellites in Eukaryotes 

Tandemly repeated loci are highly abundant in most, if not all, eukaryotic genomes. 

However, most of the knowledge gained about tandem repeats, and minisatellites in 

particular, has come from the pioneering work on the analysis of these regions in humans. 

As a result of this, a large part of this section is based on human repeat loci, but relevant 

work on parasite genomes will be referred to, where available. 

Tandemly repeated regions are present in a wide range of sizes, allowing them to be 

divided into different classes depending on both the size of the repeat unit and/or the size 

of the tandem array. However the categorisation of repeat blocks is arbitrary with no clear 

boundaries between the classes. In fact there is probably a continuum of repeat sizes from 

small simple repeats to very large midisatellites and satellite arrays. Nonetheless, for 

reasons of simplicity, the following classes are recognised in this discussion. 

Microsatellites are short mono-, di-, tri- or tetrameric nucleotide repeats, with arrays of up 

to lkb in length; mini satellites are arrays of 1-30kb, usually made up of more complex 

repeats of 8-1 OObp in size, whereas midisatellites are much larger with repeat arrays of 50 

-200kb [Armour et al., 1993]. 

Minisatellites. Wyman first observed the phenomenon of multi-allelic restriction 

fragment length polymorphism (RFLP) in 1980 [Wyman and White, 1980]. Other highly 

variable RFLPs were subsequently identified flanking a number of human genes including 

the insulin gene [Bell et al., 1982] and the Harvey ras oncogene [Capon et al., 1983]. In 

some cases the variability was shown to be due to variation in the number of repeats within 

a tandem array [for example, Bell et al., 1982]. Although these variable regions were 

recognised as useful markers, there was no efficient systematic approach available for 

isolating more tandemly repeated loci. 

Multilocus detection of minisatellites. The breakthrough came in 1985 when 

Jeffreys demonstrated that it was possible to detect multiple tandem repeat loci of similar 

repeat sequence simultaneously on Southern blots by hybridization at low stringency, with 

probes which contained tandem repeats [Jeffreys et al., 1985]. This produced a complex 

banding pattern for each human DNA sample. Each probe could detect approximately 17 

variable DNA fragments ranging in size from 3.5kb to over 20kb (termed minisatellites for 

the first time) from one individual. The patterns, which were somatic ally stable, were 

shown to be so variable that they could uniquely identify an individual, and became widely 

known as DNA fingerprints [Jeffreys et al., 1985]. Also, the high degree of germline 

stability of these complex banding patterns allowed them to be used for relationship testing 

[Jeffreys et al., 1985] as bands present in a child must have been inherited from either the 

mother or the father. De novo mutations which can generate novel-sized bands can be 
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directly observed in DNA fingerprinting patterns but they are sufficiently infrequent not to 

compromise the use of these fingerprint patterns in kinship analysis [Jeffreys et al., 1991]. 

Other potential applications were quickly realised. In forensic medicine, DNA extracted 

from a wide range of biological samples could be analysed by multilocus fingerprinting 

allowing genetic material from a crime scene to be compared to that of a suspect [Gill et 

al., 1985]. The success of bone marrow transplants can be monitored [Thein et al., 1986] 

and tumour specific variation, such as large scale rearrangements, can be detected [Thein 

et al., 1987]. Other applications include the identification of cell lines [Thacker et al., 

1988] and of monozygotic twins [Hill and Jeffreys, 1985]. Later, this technique was 

extended to the identification/paternity testing of other species e.g. pigs, marmosets and 

Waldrapp ibises [Signer and Jeffreys, 1993] and has also been used in the study of 

protozoa, including T. cruzi [Macedo et al., 1992] and Leishmania species [Macedo et al., 

1992]. 

Cloning of minisatellite loci. DNA fingerprinting provides DNA patterns rather 

than genotypes so that information on loci and alleles is unavailable. At high stringency, 

minisatellite probes can detect their cognate single locus (single locus probes, SLP) on 

Southern blots of human DNA samples [Jeffreys et al., 1990], allowing the generation of 

information on locus specific genotypes. The ability of repeat probes, e.g. the original 

Jeffreys' 33.6 and 33.15 probes and other multilocus probes e.g. M13 [Vassart et al., 

1987], to cross hybridise to many related minisatellite sequences allowed the direct 

cloning of many more minisatellite loci from humans [Jeffreys et al., 1985; Wong et al., 

1986; Nakamura et al., 1987; Wong et al., 1987; Armour et al., 1990] and other species 

e.g. pigs [Signer and Jeffreys, 1993]. 

Many of these minisatellite loci showed extreme allele length variability with 

heterozygosities in excess of 90% [Wong et al., 1987], while other loci were invariant. 

N akamura distinguished between these two types by calling variable minisatellites, 

variable number tandem repeats (VNTRs) [Nakamura et al., 1987]. Many of the highly 

variable minisatellites were used as extremely informative genetic markers. In fact, panels 

of SLPs were used for individual human identification, kinship analysis, forensic analysis 

[Wong et al., 1987] and the detecti~n of chromosome abnormalities/allele loss [Vogelstein 

et al., 1989]. 

Another important use of SLPs is in linkage mapping [Nakamura et al., 1987]. However 

minisatellites do not appear to be distributed evenly throughout human chromosomes, but 

are clustered towards the ends of chromosomes [Royle et al., 1987; Amarger et al., 1998], 

while such sequences in the mouse genome are more evenly distributed [Jeffreys et al., 

1987]. 

Internal variation in minisatellites. Most (if not all) hypervariable minisatellites 

which have been characterised in detail have not only shown variation in the length of the 

repeat array but also variation in the sequence of the tandem repeat unit. Frequently repeat 
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units within an array carry base substitutions or small deletions/insertions relative to other 

repeats. These variant repeat types do not appear to be clustered together but are 

distributed over the entire array of repeats. Thus, each mini satellite allele can be composed 

of an interspersed mixture of two or more minisatellite variant repeat (MVRs) types. The 

distribution pattern of MVR types along an allele was first mapped by restriction site 

mapping for the minisatellite locus, Ms32 [Jeffreys et al., 1990]. More recently a simpler 

PCR based method for MVR mapping alleles was developed, MVR-PCR [Jeffreys et al., 

1991] and has been extend to other human minisatellites [Armour et al., 1993; Neil and 

Jeffreys, 1993; Urquhart and Gill, 1993], mouse minisatellites [Bois et al., 1998] and to 

the circumsporozoite gene of the malaria parasite, Plasmodium Jalciparum [Amot et al., 

1993]. 

Coding minisatellites. Most minisatellites identified to date in humans are non

coding. A few examples of coding variable human minisatellites exist and include the gene 

for the mucin protein, MUC1, which has a length variation due to different numbers of a 

60bp repeat (20 amino acids), resulting in a protein which can range in size from 120 to 

225 kDa [Gendler et al., 1990]. Proline rich proteins, usually found in saliva, also show 

variation in the number of their repeats [Azen et al., 1984]. The gene coding for involucrin 

(an epidermal protein) is also highly variable [Simon et al., 1991; Urquhart and Gill, 

1993]. In parasites the P. Jalciparum genes for many surface antigens have been found to 

contain variable repeats, for example the circumsporozoite gene [Amot et al., 1993] and 

coding mini satellites have also been identified in T. brucei [Lee et al., 1990; Lee et al., 

1994; Barrett et al., 1997]. 

Microsatellites. Although short simple tandem repeats have been known in humans for 

some time and variation in repeat copy number has been identified by sequence analysis 

there was no easy way of assessing variation at these loci, until the advent of PCR [Saiki et 

al., 1988] which enabled these regions to be analysed simply and rapidly revealing that 

many of these loci were polymorphic with heterozygosities of up to 90% [Weber and May, 

1989]. Because microsatellites are very abundant and widely distributed with no apparent 

clustering, they make ideal markers for linkage analysis [Wang and Webber, 1992], and 

have been used extensively in this respect. Use of such markers has been extended to 

mapping projects for humans [Dib et al., 1996], PlasmodiumJalciparum [Su and Wellems, 

1996] and T. brucei [Sasse, 1998; see also Chapter 5]. 

Mutations in tandem repeats. Although most analysis of the mutation processes 

involved in tandem repeat turnover has been performed on minisatellites because they can 

be readily cloned, it is likely that the molecular processes operating on one class of tandem 

repeat are shared between classes, with varying relativities and may be dependent on 

factors other than the size of repeat array and the sequence of the repeat units. 

Some mini satellites have a high mutation rate e.g. Ms32 has a 1 % mutation rate to new 

length alleles allowing measurement of de novo mutations in pedigrees [Jeffreys et al., 
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1991] and by single spenn analysis [Jeffreys et al., 1990; Jeffreys et al., 1994]. This high 

level of gennline mutations is in contrast to the very low mutation frequency in somatic 

cells. Minisatellite variant repeat mapping of gennline specific mutant alleles compared 

with their progenitor alleles, demonstrated that the mutation events involve complex 

processes whereby blocks of repeats are copied and transferred from one allele to another. 

These transfers are usually restricted to one end of the repeat array and appear to be 

influenced by, as yet unidentified, cis acting elements [Monckton et al, 1994]. However, 

somatic mutations do not appear to be generated in the same way, in that they are mainly 

intra-allelic events and are not restricted to one end of the mini satellite array. 

MVR analysis of mutants from three mini satellites isolated from mice demonstrate that, 

unlike humans, mouse mutation events involve non-polar intra-allelic mutation events, 

with a frequency of mutations below 10-3 per gamete, much lower than for the human 

minisatellites analysed to date. A correlation between the size of the minisatellite and the 

number of alleles at the locus has also been described, suggesting instability is directly 

related to array size, a phenomenon not observed in human mini satellites [Bois et al., 

1998]. 

The human minisatellites analysed so far are among the most variable loci identified in any 

organism, although no moderately variable minisatellites have been analysed. It is possible 

that the mouse minisatellites reflect the mutation mechanisms involved in more common 

but less variable human minisatellite loci. Indeed one human minisatellite has been 

recently shown to be similar to the mouse mini satellites in that it mutates in a non-polar 

fashion [Andreassen and Olaisen, 1998]. 

Applications of minisatellite markers to T. brucei genetics. In the analysis of 

trypanosome genetics in both laboratory crosses and field studies, research has been 

hampered by the lack of highly informative molecular markers. The identification of 

hypervariable minisatellites in T. brucei would provide the tools necessary investigate 

these areas of trypanosome biology. It would also be interesting to study minisatellite 

repeat turnover in an evolutionary ancient organism such as T. brucei. 

Aims of this Study 

There were several aims to this study: 

1) To investigate the mechanisms of genetic exchange in laboratory crosses and to 

determine the level and rate of recombination between homologous chromosomes. 

2) To investigate the role of genetic exchange in natural populations of T. brucei. 

3) To investigate the population structure of T. b. brucei and T. b. rhodesiense in relation 

to host and geography and specifically to address whether T. b. rhodesiense is clonal and 

can be defined as a distinct sub-species. 
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4) To analyse whether T. b. rhodesiense strains are stable over time in a focus of sleeping 

sickness and from this whether epidemics arise as a result of new strains or are due to the 

same set of strains. 

5) To analyse whether strains of T. b. rhodesiense from different geographically separate 

foci have the same origin or have arisen independently. 

The approach taken to address these questions was to use genetic markers that could be 

applied to both the laboratory crosses and to the population analysis. To address the 

outstanding questions concerning the mechanisms of genetic exchange, the approach taken 

was to develop a system for genotyping T. brucei so that progeny clones could be 

genotyped, and, if the genotyping system could be extended to single cells, different life 

cycle stages within the tsetse fly could be examined to determine the stage at which mating 

takes place and, possibly, identify intermediates in the mating process. To undertake this 

approach would require the identification of highly polymorphic markers that could be 

amplified by PCR. On the basis of studies undertaken in human genetic analysis, mini- and 

microsatellite markers would be ideal in this respect and so the initial phase of the research 

was directed at isolating and identifying such markers and developing a system for single 

trypanosome PCR. These highly polymorphic markers were then used to analyse a large 

number of trypanosomes derived from genetic crosses. 

To address the questions concerning the population structure and biology of T. b. brucei 

and T. b. rhodesiense it was necessary to consider whether the genetic markers used to 

date were appropriate and applicable. For the reasons described in the previous sections, 

the available markers suffered from a range of disadvantages and so could not be used. 

While it is probably true to say that there is no class of marker that is ideal for addressing 

the full range of population genetics questions, mini satellite markers offer many 

advantages, particularily in relation to their high levels of polymorphism and ability to 

identify different genotypes with a high level of sensitivity. On this basis, minisatellite 

markers were chosen to address the questions outlined earlier. Thus the results presented 

here primarily address the mechanisms and frequency of genetic exchange in both 

laboratory crosses and natural pop,:!lations but they also have lead to an evaluation of a 

class of marker not previously used in trypanosome genetics. 

pag~ 36 



Chapter 2 Materials and Methods 

Chapter 2 

Materials and Methods 

Materials 

Chemicals, enzymes and other molecular hiology reagents. All reagents used 

were standard, purchased from established suppliers of molecular biology reagents, 

(Fisons, FMC Bioproducts, Gibco BRL, New England Biolaboratories, Sigma and 

Pharmacia). 

Oligonucleotides. Oligonucleotides for PCR amplification were synthesized to order 

by Cruachem Ltd., Glasgow. The sequences of the oligonuc1eotides described in this 

thesis are presented in Table 2.1. 

T. brucei DNA samples. Trypanosome DNA samples were supplied by A. Tait and 

G. Hide and prepared using standard methods as described in Turner et al., [1990]. 

Plasmid sample. DNA from plasmid p42Sc3, containing the mini satellite MS42, was 

provided by M. Barrett [personal communication]. 

T. brucei stocks. Trypanosome stocks, either cloned or uncloned, were supplied by A. 

Tait as stabilates (mouse blood infected with bloodstream form trypanosomes frozen in 

liquid nitrogen) or as pellets of trypanosomes from procyclic culture. The origins of the T. 

brucei field isolates are given in Table 2.2. The parental stocks of laboratory crosses have 

been described previously [Jenni et al., 1986; Turner et al., 1990] and are listed in Table 

2.3. Clones derived from experimental crosses are listed in Table 2.4, some of the hybrid 

stocks have been described elsewhere [Sternberg et al., 1989; Turner et al., 1990; Tait et 

al., 1996]. A series of 'new' hybrid bloodstream clones were generated (by A. Tait) during 

the course of this work (Table 2.5.), by cloning directly from bloodstream stabilates which 

were derived from mice infected w~th metacyclic stage trypanosomes from mixed infected 

tsetse flies. 

Tsetse flies. Teneral tsetse flies (Glossina morsitans) were provided by I. Maudlin and 

S. Welburn. 

Mice stocks. Irradiated (600 rads) MFl mice were used to amplify trypanosome stocks. 
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Primer 
CRAM-C 
CRAM-D 
CRAM-G 
CRAM-H 
292-C 
292-D 
292-G 
292-H 
MS42-A 
MS42-B 
MS42-BR 
MS42-C 
MS42-D 
MS42-CR 
MS42-F 
MS42-F8 
MS42-F8R 
MS42-H2 
MS42-HineII+ 
MS42-K 
MS42-KR 
MS42-L 
MS42-LR 
MS42-MboII+ 
MS42-Q 
MS42-QR 
MS42-R 
MS42-RR 
MS42-S 
MS42-.SR 
MS42-T 
MS42-V 
MS42-W 
MS42-WR 
TIM-A 
TIM-B 
TIM-C 
TIM-D 
TIM-E 
TI!>1-F 
JS2-A 
JS2-B 
JS2-C 
JS2-D 
D2-A 
D2-B 
ES-A 
ES-B 
F3-A 
F3-B 

5' - 3' sequence 
gcaacgaggcaggtccaatctttg 
ctcctccatcataacctcgttgtc 
ctgctgatgccgtacatgatgatttc 
aactccctcccgatcgatcacaac 
acggaagcagtgcgggtagttaag 
atcacttgccgatgatgtatcacc 
acaccccctctccacttcagatac 
gctgaacctgtgggcccctcaattg 
cttctccacaatttctgcc 
cgcgttcaaaaaatatggcc 
ggccatattttttgaacgcg 
ggatttcttcatagcgaaggcattc 
aacttcccacttgtgcggtcgtta 
gaatgccttcgctatgaagaaatcc 
ttgtgcggtcgttaacgcgcgttcaa 
agttgttgccaggacagcaac 
acaaggttagttgctgtcctgg 
aaatgcactagccacatgtgactc 
cattccgttgcgttttttgaagtcaac 
gtcgaacatctcgctcctcctttg 
gacgacagcattgccgtaaggag 
cgaatttggagggttcacaggttc 
gaacctgtgaaccctccaaattcg 
gcgttgactgagatatgcagcgaa 
gaagggcgttcaggcattcgttc 
gaacgaatgcctgaacgcccttc 
attggaggacatgcgctctgccc 
gggcagagcgcatgtcctccaat 
cttaccgctgctcatggtcagg 
cctgaccatgagcagcggtaag 
aaccgctgcacgactaagcttcac 
cattattccacggacgcgaagcagc 
ggtgattcatcggctcccttacca 
tggtaagggagccgatgaatcacc 
ccacgcatcatccgcagctg 
aacaccccctattgttccctctcc 
caacttactggggacgctgctatc 
ctacactctcttttcctctcccag 
tgccgttgagtgggtgaagatagc 
ctccctgctacctgtctttacatc 
gattggcgcaacaactttcacatacg 
ccctttcttccttggccattgttttactat 
agtaatgggaatgagcgtcaccag 
gatcttcgcttacacaagcggtac 
ggaagtgaggggagacggaagac 
cggcaggggaagggagaa 
atgaagcaaagacaccttctctcc 
tggctgatgtgttagttccgcagc 
gtccgttcacccacacaactaaag 
tttcggcagtctagttaggcatcc 

Table 2.1. Oligonucleotide primer sequences. 
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Table 2.2 
Origin Sample Other Clonedl Host HS Year 

identifica identification numbers unc10ned 
-tion no. (no. of 

eassages) 
Zambia- Z210 clone man R 1982 
Luangwa 
Z-L Z269 clone d.a. ND 1983 
Z-L Z90 clone man R 1981 
Z-L Z274 clone man R 1983 
Z-L Z 194 clone man R 1982 
Z-L Z218 clone man R 1982 
Z-L Z222 clone man R 1982 
Z-L Z208a clone man R 1982 
Z-L Z 199 GUP2540 clone man R 1982 
Z-L Z220 GUP2590 clone man R 1982 
Z-L Z273 GUP2560 clone d.a. ND 1982 
Z-L Z203 GUP2469 clone man R 1982 
Z-L Z221 GUP2548 clone man R 1982 
Z-L Z231 GUP2491 clone man R 1982 
Z-L Z244 GUP2492 clone man R 1982 
Z-L Z267 GUP2546 clone d.a. NO 1983 
Z-L Z212 clone man R 1982 
Z-L Z270 clone tsetse ND 1983 
Z-L Z 185 clone man R 1982 
Kenya- N97 EATRO 97, CUP 1052 clone man R 1961 
Nyanza 
K-N N96 EATRO 96, CUP 1051 clone man R 1961 
K-N N2340 EA TRO 2340, GUP 2498 clone man R 1977 
K-N N lS6 EATRO 156, GUP 791 clone man R 1961 
K-N N95 EATRO 95, GUP 1043 clone man R 1961 
K-N N94 EATRO 94, CUP 1042 clone man R 1961 
K-N N 106 EATRO 106, GUP 2077 clone man R 1961 
K-N N 116 EATRO 116, GUP 2078 clone man R 1961 
K-N N7 EATRO 7, CUP 795 clone tsetse ND 1961 
K-N N 110 EATRO 110, GUP 2088* clone man R 1961 
K-N N98 EATRO 98, GUP 1074 clone man R 1961 
K-N N 111 EATRO 111 clone man R 1961 
K-N N 112 EATRO 112 clone man R 1961 
K-N N 115 EATRO 115 clone man R 1961 
K-N NS02 EATR0502 clone man R 1961 
K-N N 113 EATRO 113 clone man R 1961 
K-N N 120 EATRO 120 clone man R 1961 
K-N N605 EATR0605 clone man R 1961 
K-N N609 EATR0609 clone man R 1961 
K-N N 102 EATRO 102, GUP 2088* clone man R 1961 
K-N N 105 EATRO lOS, CUP 2079 clone man R 1961 
K-N N 149 EATRO 149, GUP 784 clone man R 1961 
K-N N 148 EATRO 148, CUP 788 clone man R 1961 
K-N N 18 EA TRO 18, GUP 793 clone tsetse ND 1961 
K-N N 118 EATRO 118, GUP 2089 clone man R 1961 
K-N N 103 EA TRO 103, GUP 790 clone man R 1961 
Uganda- B EA 174 EATRO 174, GUP 1075 clone man R 1959 
Busoga 
U-B BEA3 EATRO 3, CUP 1301 clone tsetse R 1960 
U-B B UTAR3 CUP 2067 clone man R 1981 
U-B B UTAR4 GUP2069 clone man R 1982 
U-B B EA 2274 EATRO 2274, CUP 1011 clone man R 1976 
U-B B papol60 uncloned cattle S 1990 
U-B B B76 uncloned· cattle S 1988 
U-B BB 135 uncloned cattle S 1988 
U-B B I 155 uncloned cattle S 1988 
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Table 2.2 continued 
Origin Sample Other Clonedl Host HS Year 

identifica identification numbers uncloned 
-tion no. (no. of 

eassages2 
U-B BM 12 uncloned cattle S 1990 
U-B B UgC90 uncloned man NO 1990 
U-B B UgE90 uncloned man NO 1990 
U-B B U89/8 uncloned man R 1989 
U-B BUgL uncloned man R 1988 
U-B B UgA90 uncloned man R 1990 
U-B BEO un cloned man R 1990 
U-B BUg! uncloned man R 1988 
U-B BUgK uncloned man R 1988 
U-B BUR! un cloned tsetse R 1988 
U-B B UgJ uncloned man R 1988 
U-B B Fly 48 un cloned tsetse ND 1990 
U-B B U8912 uncloned man R 1989 
U-B B UgB90 uncloned man ND 1990 
U-B BUgM uncloned man R 1988 
U-B BMAP uncloned man R 1988 
U-Busia B 3194 KETRI 3194 uncloned man R 1989 
U-Busia B 3196 KETRI 3196 uncloned man R 1989 
U-Busia B 3200 KETRI3200 uncloned man R 1989 
U-Busia B 3202 KETRI 3202 uncloned man R 1989 
U-Busia B 3203 KETRI 3203 uncloned man R 1989 
U-B BM31 uncloned cattle ND 1990 
U-B BM32 uncloned cattle S 1988 
U-B BM42 uncloned cattle NO 1990 
U-B BM66 uncloned cattle R 1988 
U-B BM80 uncloned cattle S 1990 
U-B BM85 uncloned cattle ND 1990 
U-B B papo133 uncloned cattle S 1990 
U-B Bpapoll03 uncloned cattle R 1988 
U-B B S14 uncloned cattle S 1990 
U-Busia B 3205 KETRI3205 uncloned man R 1989 
U-Busia B 3206 KETRI3206 uncloned man R 1989 
U-B B B23 uncloned cattle S 1988 
U-B B B25 un cloned cattle ND 1988 
U-B B I 147 uncloned cattle 5 1988 
U-B B Mag 18 uncloned cattle 5 1988 
U-B B Mag40 un cloned cattle 5 1988 
U-B BM3 uncloned cattle 5 1988 
U-B B 528 uncloned cattle S 1990 
U-B B S38 uncloned cattle ND 1990 
Kenya- K 1337 LUMP 1337, KI0 clone tsetse( G.pal/) ND 1969 
Kiboko 
K-K K 1008 TREU 1008, K 29 clone (3-11) tsetse( G.pal/) ND 1970 
K-K K 1027 TREU 1027, K2 uncloned(3-11) tsetse( G.pall) NO 1969 
K-K K 1027 TREU 1027 clone tsetse( G.pall) ND 1969 
K-K K927 TREU927 uncloned(3-11) tsetse( G.pall) ND 1970 
K-K K 927cllB TREU 927cllB clone tsetse( G.pal/) ND 1970 
K-K K 927cl4B TREU 927c14B clone tsetse( G.pal/) ND 1970 
K-K K927c14 TREU927c14 clone tsetse( G.pall) NO 1970 
K-K K927cl5 TREU927cl5 clone tsetse( G.pal/) NO 1970 
K-K K 927c19 TREU927c19 clone tsetse( G. pal/) NO 1970 
K-K K984 K21 uncloned(3-1l) tsetse( G. pal/) NO 1969 
K-K K984 clone tsetse( G. pal/) ND 1969 
K-K K854 TREU854, K4 uncloned(>8) tsetse( G. pall) NO 1969 
K-K K854 TREU854 clone tsetse( G.pal/) NO 1969 . 
K-K K975 K18 uncloned(3-11 ) tsetse( G. pall) NO 1970 
K-K K975 clone tsetse( G. e.all) NO 1970 
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Table 2.2 continued 
Origin Sample· 

K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
K-K 
Uganda
Lugala 

identifica 
-tion no. 

K925 
K925 
K982 
K853 
K 1009 
K 1009 
K851 
K851 
K852 
K852 
K978 
K978 
K997 
K997 
K258 
K258 
K936 
K926 
K869 
K994 
K994 
K 981 
L 834 

Other 
identification numbers 

K38 

TREU 1009, K31 
TREU 1009 
TREU 851, K2 
TREU 851 
TREU 852, KI0 
TREU852 
K37 

mouse K269 

LUMP 258, K9 
LUMP 258 
TREU936 
TREU926 
K2 
K36 

K4 
TREU 834, EATRO 1253 

Clonedl 
uncloned 

(no. of 
passages) 

uncloned(3-11) 
clone 

c1one(3-11) 
clone 

uncloned(3-11) 
clone 

uncloned(9) 
clone 

uncloned(6) 
clone 

unc1oned(3-11) 
clone 

uncloned(3-11) 
clone 

uncloned 
clone 

uncloned(3-11) 
uncloned(3-11) 

uncloned 
uncloned(3-11) 

clone 
uncloned(3-11) 
uncloned(l4) 
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Host 

tsetse( G.pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse(G.pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G.pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G.pall) 
tsetse( G. pall) 
tsetse( G. pall) 
tsetse( G.pall) 
tsetse( G. pall) 
tsetse(G.pall) 
tsetse(G.pall) 
tsetse(G.pall) 

HS 

ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 
ND 

Year 

1969 
1969 
1970 
1969 
1970 
1970 
1969 
1969 
1969 
1969 
1970 
1970 
1969 
1969 
1969 
1969 
1969 
1969 
1969 
1970 
1970 
1969 
1969 

U-L L 844 TREU 844, EATRO 1317 uncloned(6) tsetse(G.pall) ND 1969 
U-L L 929 TREU 929, EATRO 1321 uncloned(5) tsetse(G.pall) ND 1969 
U-L L 933 TREU 933, EATRO 1644 uncloned(>9) tsetse ND 1970 
U-L L 934 TREU 934, EATRO 1497 uncloned(8) tsetse(G.pall) NO 1970 
U-L L 941 TREU 941, EA TRO 1386 uncloned(9) tsetse( G.fox) ND 1969 
U-L L 832 TREU 832, EATRO 1242 uncloned tsetse(G.pall) ND 1969 
U-L L 845 TREU 845, EATRO 1448 uncloned(lo) tsetse(G.pall) NO 1970 
U-L L 791 TREU 791, EATRO 1297 uncloned(l3) tsetse(G.pall) ND 1969 
U-L L 836 TREU 836, EATRO 1279 uncloned(7) tsetse(G.pall) ND 1969 
U-L L 944 TREU944. EATRO 1581 uncloned(lO) tsetse(G./Jall) ND 1970 
Table 2.2. List of all stocks used in this study. Column 1 indicates the country 
and region from which each sample was isolated. Z-L, Zambia-Luangwa; K-N, Kenya
Nyanza; V-B, Vganda-Busoga; K-K, Kenya-Kiboko; V-L, Uganda-Lugala. Column 2 
shows the identification number used throughout this study. Column 3 gives additional 
identification. numbers such as stabilate numbers and those used by other research groups. 
TREV, Trypanosome Research Edinburgh University; EATRO, East African 
Trypanosomiasis Research Organisation; LUMP, London University Medical 
Protozoology; KETRI, Kenyan Trypanosomiasis Research Institute; GUP, Glasgow 
University Parasitology. Column 4 'indicates whether an isolate is cloned or uncloned and 
the number of passages in mice before analysis. Column 5 gives details of the host from 
which each sample was isolated. G. pall, Glossina pallidipes,' G.jux, Glossina fuxcipes,' 
d.a., domestic animal. Column 6 indicates human serum sensitivity. R, resistant; S, 
sensitive; ND, not determined. Two criteria were used to identify human serum 
resistance/sensitivity. Samples isolated from humans were considered human serum 
resistant. Parasites isolated from non-human hosts were assayed for human serum 
resistance using the in vitro test ofBrun and Jenni (1987) and the results published in Hide 
et al 1994. Column 7 gives the year in which each sample was isolated. The Luangwa 
stocks were described in [Godfrey et al., 1990], the Nyanza stocks were isolated by the 
East African Trypanosomiasis Research Organisation, the Busoga stocks by Hide [Hide et 
al., 1994] and the Kiboko and Lugala stocks were isolated by Goebloed [Goebloed et al., 
1973]. 
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Details of parental stocks 

Stock Place of Host Serum Year of 

number isolation Resistance isolation 

STlB 247 Tanzania hartebeest S 1971 

STill 386 Ivory Coast man R 1978 

TREU 927/4 Kenya tsetse (G.pall) I 1969 

Table 2.3. Details of the origin of each parental stock described in 
Turner et al., [1990]. Human serum (HS) resistance data was provided by G. 
Lindergard based on an in vivo assay [Lindergard, 1999]. R, resistant; S, sensitive and I; 
intermediate; G. paU, Glossina pallidipes. 
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Table 2.4. 

Trypanosome clones derived from genetic crosses 

Cross 
STIB 247 x TREU 927/4 

STIB 386 x TREU 927/4 

STIB 386 x TREU 927/4 

Clones previously described 
Clone 
F 124/28 bsel Al 
F124/28 bse! B3 
F124/28 bse! A6 
F124128 bse! C5 
F532/53 mel 1 
F532/63 bsc1 2 
F532/63 bsel 3 
F532163 bsc1 5 
F532163 bse! 7 
F532163 bsc1 8 
F532172 mc1 1 
F532172 me! 2 
F532172 mc1 3 
F532172 me! 4 
F532172 mc1 5 
F532172 mc1 6 
F532172 mc1 7 
F532172 me! 9 
F532172 me! 10 
F124128 bse! B 1 
F124128 bsel C3 
F124/28 bsel C2 
F974nOmell 
F974nOmc12 
F974nOmc13 
F974nOmcl4 
F974nO me16 
F974nO me! 7 
F974nO mel8 
F974n8 mell 
F974n8 me! 2 
F974n8 mel3 
F974n8 mc14 
F974n8 mc16 
F974n8 mel7 
F296/44 bsel 1 
F296/44 bsel 2 
F296/44 bsel 3 
F296/44 bsel 4 
F296/44 bsc1 5 
F296/44 bsel 6 
F296/44 bsel 7 
F296/44 bsel 8 
F296/44 bsc1 9 
F296/44 bsc1 11 
F296/44 bsel 12 
F296/44 bsel 13 
F296/46 mel 1 
F296/46 mc1 12 
F296/56 mel 1 
F296/56 mel 2 
F296156 mc1 3 
F296/56 mel 4 
F296156 mel 6 

F296156 mel 5 
F296156 mel 7 
F296/56 mc1 8 
F296/56 mel 9 

GUP number (if available) 

3114 

3128,4391 
3129 
3130 
3131 
3132,4392 
3133,4393 
3134 
3136,4366 
3135,4360 

3083 
3084 
3085 
3086 
3088 
3089 
3090 
3092 
3093 
3094 
3095 
3096 
3097 
3!99 
3200,4261 
3201 
3204 
3203 
3210 
3202 
3205 
3206 
3208 
3211 
3209 
3196 
3197 
3218 
3219 
3212 
3213 
3215 
3214 
3220 
3216 
3217 
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Table 2.4 continued 
Trypanosome clones derived from genetic crosses 

Cross 
STIB 247 x STIB 386 

Clones previously described 
Clone 
723VI-L 
723CAB 
F9128 mel3 
F9/34 mell 
F9/34 mcl2 
F9/45 mel2 
F9/45 mcl4 
F9/45 mcl7 
F9/45 mel9 
F9/45 mcll0 
F9/45 melll 
F9/45 mcl 12 
F57/50 mel2 
FI8/50 mel4 
FI8/50 mel8 
F19/31 mel2 
F19/31 mcl3 
F492150 mel 1 
F492150 mel 4 
F492150 mcI 5 
F4921S0 mel 6 
F4921S0 mel 7 
F492150 mcl 8 
F492150 mel 9 
F492150 mell0 
F492150 mel 11 
F492150 mcl 12 
F492150 mel13 
F492150 mellS 
F492150 mel 16 
F492150 mel 17 
F492150 mel 18 
F492150 mel 19 
F492150 mel 20 
F492150 mel 21 
F492150 mcI 22 
F492150 mel 23 
F492150 mcl 24 
F492150 mel 25 
F492150 mel 26 

GUP number (if available) 

2846 

3300 
4295 

3290 
3291 
3287 
3288.3296 

2834 
2838 
2839 
2840 
2841 
2847 
2852 
2853.4312 
2854,4364 
2843 
2856 
2857.3365 
2858.3363 
2859 
2860,3364 

2861 

2848 
2855 
2862 

Table 2.4. Previously isolated trypanosome clones derived from genetic 
crosses. The crosses from which each clone is derived is given in column 1. Column 2 
indicates the hybrid clone identific.ation number used throughout this study. Columns 2 
gives the Glasgow University Parasitology (GUP) number for the stabilates. Clone 
nomenclature follows that described by [Sternberg et al., 1989]. For example F492150 bscl 
25, was the twenty-fifth clone isolated from fly 492, on day 50 post infection. 
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Table 2.5 
Trypanosome clones derived from genetic crosses 

Newly generated clones 
Cross 

STIB 386 x TREU 927/4 

STIB 247 x STIB 386 

Clones 
F296/39 bscl 1 
F296/39 bscl 2 
F296/39 bscl 4 
F296/39 bscl 5 
F296/39 bscl 6 
F296/39 bscl 7 
F296/39 bscl 8 
F296/39 bscl 9 
F296/39 bscl 10 
F296/39 bscl 11 
F296/39 bscl12 
F296/39 bscl 13 
F296/39 bscl 14 
F296/39 bscl 15/1 
F296/39 bscl 16 
F296/39 bscl 17 
F296/39 bscl 18 
F296/39 bscl 19 
F296/39 bscl 27 
F296/39 bscl 2211 
F296/39 bscl 2212 
F296/39 bscl 23/3 
F296/39 bscl24/1 
F296/39 bscl 26/2 
F296/39 bscl 32 
F296/39 bscl 40 
F296/39 bscl 41 
F296/39 bscl 44 
F296/39 bscl 47 
F296/39 bscl 57 
F296/39 bscl 58 
F296/39 bscl 59 
F296/42bscl 26 
F296/42bscl 29 
F296/42bscl 41 
F296/42bscl 44 
F296/42bscl47 
F296/42bscl 48 
F296/42bscl 49 
F4921S0 bscl 1 
F4921S0 bscl 2 
F4921S0 bscl 3 
F4921S0 bscl 4 
F4921S0 bscl 5/1 
F4921S0 bscl 6 
F492150 bscl 7 
F4921S0 bscl 8 
F4921S0 bscl 9 
F4921S0 bscl 1 1 
F4921S0 bscl 12 
F492150 bscl 13 
F4921S0 bscl 14 
F492150 bscl 15 
F4921S0 bscll6 
F4921S0 bscl 17 
F4921S0 bscl 18 
F492150 bscI 19 
F4921S0 bscl 20 
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Table 2.5 continued 
Trypanosome clones derived from genetic crosses 

Cross 
STIB 247 x STIB 386 

Newly generated clones 
Clones 

F492/S0 bscl 21 
F4921S0 bscl 22 
F4921S0 bscl 23 
F492150 bscl 25/1 
F492/50 bscl 27 

Tables 2.5. Newly generated trypanosome clones derived from genetic 
crosses. The crosses from which each clone is derived is given in column 1. Column 2 
indicates the hybrid clone identification number used throughout this study. Clone 
nomenclature follows that described by Sternberg et al., [1989]. For example F492/50 bscl 
25/1, was the first reclone (11) of the twenty-fifth clone isolated from fly 492, on 50 days 
post infection. 
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Methods 

Trypanosome and tsetse fly manipulations 

Optical cloning. Clones were made by direct observation of single parasites in a drop 

of blood from an infected mouse diluted in guinea pig serum in a well of a humidified ( 

Terasaki plate. Immediately after the presence of a single cell was detected, the 

trypanosome was removed in 20,.11 of 50% PBSG (phosphate buffered saline/l % 

glucose)/50% guinea pig serum and injected into an irradiated MF1 mouse. The parasites 

were harvested at peak parasitaemia (101-108 parasites/m!) for subsequent PCR analysis. 

Cryopreserved stocks (stabilates) of the first peak parasitaemias were generated by the 

addition of DMSO to a final concentration of 7% and storing in liquid nitrogen. All optical 

cloning was performed by A. Tait. 

Isolation of single trypanosomes. Each single trypanosome was observed in a 

single drop of blood from an infected mouse diluted in guinea pig serum in a well of a 

humidified Terasaki plate. The single trypanosome was then transferred to a PCR micro-

tube by the addition of lOll1 of 1 x PCR buffer (as described in Chapter 4). 

Tsetse flies and cyclical transmission. Teneral tsetse flies were fed through a 

silicone membrane on thawed stabilates of bloodstream form trypanosomes of parental 

clones STIB 386 and TREU 927/4 diluted in defibrinated sheep blood to 3 x 101 

trypanosomes/ml. The two stocks were mixed in a 1: 1 or 3: 1 ratio immediately before 

feeding to flies. Fly handling and maintenance were performed as described by Schweizer 

et al., [1988]. Briefly, infected flies were maintained in individual tubes and membrane 

fed three times a week on uninfected horse or sheep blood. From day 21 onwards, flies 

were allowed to probe (spit) onto warm (35°C) microscope slides to enable the detection 

of salivary gland infections by microscopy. Positive fly probes were then analysed by 

PCR to identify the trypanosome genotype present in the saliva. Midgut trypanosomes 

were obtained by fly dissection (performed by M. Hope). 

Generation of clones from stabilates. Bloodstream stabilates derived from mice 

infected with metacyclic trypanosomes from mixed infected flies were thawed and 

examined for live trypanosomes. Single parasites were optically identified and cloned 

directly from these stabilates (by A. Tait) using the method described above. The clones 

are listed in Table 2.5. 

Molecular Biology Techniques 

Crude lysate and DNA preparation. Crude lysates from infected mouse blood were 

prepared as follows: 500J.Ll of PBS was added to 500).11 of infected mouse blood and 

centrifuged at 2500g for 5 minutes, after which 750111 of the supernatant was discarded. 

page 47 



Chapter 2 Materials and Methods 

This washing process was repeated three times. The final parasite/blood pellet was then 

resuspended in 50J.11 lysis buffer (50mM Tris-HCI pH8, 100mM EDT A 0.5% SOS, 

O.64mgml-1 proteinase K), incubated overnight at 56°C and stored at 4°C. The lysates were 

then diluted 11100 in deionised water and the proteinase K was heat inactivated at 95°C for 

5 minutes. One J.11 of lysate was then used as a template for each of the subsequent PCR 

reactions. DNA of purified parasites from infected mouse blood were prepared as 

described by Turner et al., [1990] and provided by A. Tait. 

DNA handling. General methods for handling DNA, gel electrophoresis, Southern 

blotting etc. were performed as described by [Sambrook et al., 1989]. 

Enzymatic manipulations. DNA restriction enzymes and other modifying enzymes 

were used according to the manufacturers' instructions with the supplied buffer systems. 

Preparative gel electrophoresis. For the preparation of size fractionated DNA, the 

DNA was electrophoresed on agarose gels in 0.5 x TBE buffer (45mM Tris-HCI, 45mM 

Boric acid, 0.125mM EDTA) containing 0.5J.1gml-1 ethidium bromide and the required size 

fraction or band was excised from the gel under UV illumination. The gel slice was then 

loaded onto a Spin-X column (Costar) and centrifuged at 15000 rpm for 5 minutes. The 

solution was then diluted 1120 or 1150 before subsequent amplification by PCR. 

General peR [Saiki et al., 1988]. Due to the sensitivity of the polymerase chain 

reaction, precautions were taken to ensure that reagents and materials used for PCR were 

kept free of contaminating DNA, i.e. PCR dedicated reagents were used and pipette tips 

and tubes were taken directly from the manufacturers packaging to minimise exposure to 

the laboratory environment. Preparation of PCR reagents, single genome dilutions and 

single molecule PCR reactions were performed in a laminar flow hood to prevent aerial 

contamination. All PCR reactions were performed in conjunction with the appropriate 

zero DNA controls, which consistently gave no products. 

All PCR reactions, unless otherwise stated, were performed in 10J.11 reaction 

volumes in 45mM Tris-HCI pH 8.8, IlmM (NH4)2S04' 4.5mM MgCI2, 6.7mM 2-

mercaptoethanol, 4.4J.1M EDTA, 113J,lgml-1 BSA, ImM each of the four 

deoxyribonucleotide triphosphates, 1 J,lM of each oligonucleotide primer and one unit of 

Amplitaq Polymerase (Perkin Elmer, Cetus USA) using a template of either 5ng of 

genomic DNA or IJ,ll of diluted crude lysate. Reaction mixtures were overlaid with 

mineral oil and amplifications were carried out in a Robocycler gradient 96 (Stratagene). 

The cycling conditions, unless stated otherwise in the text, were as follows: 96°C for 50s, 

64°C for 50s and 70°C for 180s, for a total of 28 cycles. PCR products were separated by 

electrophoresis in a 1 % Seakem agarose gel in 0.5 x TBE buffer or a 4% Nusieve gel for 
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products under 800bp, and visualised by ethidium bromide staining (0.5Ilg/ml) and UV 

illumination. 
PCR amplification from fly probes. Positive fly probes containing metacyclic stage 

trypanosomes were identified by microscopic examination. Deionised water (lOlJ.l) was 

then added to the spot of saliva on each microscope slide, mixed with the dried saliva and 

transferred to a PCR micro-tube where it was heated to 95°C to disrupt the cells. One III of 

each sample was amplified using primers specific for the TIM as described in Chapter 5. 

peR amplification from single trypanosomes. The nested PCR approach to the 

amplification of single trypanosomes is described in full in Chapter 4 and MacLeod et al., 

[1997]. 

Minisatellite Variant Repeat (MVR) -PCR. The MVR-PCR technique was 

developed for the T. brucei minisatellite, MS 42, to specifically amplify variant 

minisatellite repeats and was adapted from the method of [Jeffreys et al., 1991]; the 

principles of the technique are described in Chapter 8. The gel extracted DNA from each 

allele was MVR mapped as follows. One III of a 1120 or 1150 dilution of DNA was 

amplified by PCR in a Will reaction using O.OlIlM of MS42-TAG-A or MS42-TAG-G 

primer, and a high concentration (1J.LM) of primers TAG and MS42-W. The primers are 

described in Table 2.1. The cycling conditions were; 50s at 95°C, 50s at 65°C and 3 min at 

70°C f<:>r 18 cycles. PCR products were electrophoresed through a 40 cm long 1 % Seakem 

agarose gel in 0.5 x TBE, 0.5Ilgml-1 ethidium bromide. DNA was denatured, transferred 

by Southern blotting onto Magna membrane (MS I) and hybridized to the 32P-Iabelled 

MS42 repeat probe overnight. The preparation and labelling of the MS42 repeat probe is 

described in the DNA hybridization section. Autoradiography was for 24 hours at -70°C. 

Small Pool (SP) -peR. The SP-PCR method for the detection of novel sized MS42 

alleles was adapted from [Jeffreys et al., 1994] and is described in Chapter 8. Briefly, 

limited quantities of DNA (serial dilutions ranging from the equivalent of 1 genome to 

100 genomes) were amplified under standard PCR conditions using primers MS42-W and 

MS42-F, for 24 cycles. The PCR products were electrophoresed though a 40 cm 1 % 

Seakem agarose gel. The DNA was denatured, transferred by Southern blotting onto 

Magna membrane (MS I) and hybridized to 32P-Iabelled MS42 repeat probe overnight. 

Autoradiography was for 24 hours at -70°C. 

Estimation of the number of input amplifiable molecules per SP-PCR 

reaction. For every SP-PCR experiment, 12 PCR reactions for each dilution of DNA 

were amplified. For reactions at high dilutions of DNA, the number of successful 

amplifications was determined. From this number Poisson analysis was used to determine 
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the number of amplifiable input molecules in each reaction, which was then used to 

extrapolate the number of input molecules in reactions containing lower dilutions of DNA. 

Southern blotting. Standard procedures were used for the preparation of agarose gels 

for Southern blotting. Briefly, for genomic blots, 5Jlg of total genomic DNA was digested 

with the appropriate enzyme and fractionated by agarose gel electrophoresis. The gel was 

washed in 0.25M HCI for 2 x7 minutes, followed by 1.5M NaCI, 0.5M NaOH for 2 x 15 

minutes and 1.5M NaCI, 0.5M Tris-HCI pH 8.0 for 2 x 15 minutes. The gel was 

transferred to a platform which was covered with a layer of 3MM filter paper, the ends of 

which were immersed in 20 x SSC (3M NaCI, 0.3M tri-sodium citrate pH 7.0). The gel 

was overlaid with a nylon membrane (MS! Magna membrane), several layers of dry filter 

paper and a weight. In this way the DNA was transferred to the nylon membrane by 

capillary action. After transfer the DNA was cross-linked to the membrane by placing the 

membrane on a UV transilluminator for 45 seconds. 

DNA hybridization. MS42, 292 and CRAM probes were generated by amplifying these 

loci from genomic DNA by PCR using primers MS42-A and MS42-B, 292-C and 292-D, 

and CRAM-C and CRAM-D, respectively (for primer sequences see Table 2.1), under 

standard PCR conditions. The PCR products were fractionated by electrophoresis on a low 

melting point 1 % agarose gel and gel slices containing the DNA fragments were excised 

from the gel. The gel slices were melted (60°C for 5 minutes) and diluted to a final 

concentration of 2nglJlI with de ionised water. Probes (20ng) for DNA hybridization were 

labelled using the random hexamer priming kit, Prime-it (Stratagene), incorporating 0.-

32p_dCTP using the method described by the manufacture. All Southern blots were 

hybridized to probes in Church and Gilbert hybridization buffer'(7% SDS, 0.5M Na2HP04 

pH 7.0, ImM EDTA) [Church and Gilbert, 1984], at 65°C in a rotating bottle 

hybridization oven (Hybaid). Filters were washed at high stringency (0.1 x SSC, 0.1 % 

SDS) for 30 minutes to lhour at 65°C. Autoradiography was performed as described 

[Sambrook et al., 1989] with exposure times of 1 hour to 1 week depending on the band 

intensity required. 

DNA sequencing. DNA sequencing reactions were performed in accordance with the 

AB! protocol for automatic sequencing. Sequencing electrophoresis was performed by the 

Molecular Biology Sequencing Unit within the University. 

Computing. DNA sequencing analysis was performed using the Genetic Computer 

Group Sequence Analysis Software Package, developed at the University of Wisconsin, 

run on a UNIX mainframe computer. Digital MVR data was analysed with software 

written by 1. A. L. Armour run on a Apple Macintosh personal computer [Armour et al., 

1996]. Analysis of allele frequencies was performed on a personal computer using the 

Genetic Data Analysis program written by P. Lewis [Lewis and Zaykin, 1999]. 
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The methods used during the course of this work followed standard molecular biological 

procedures, which have largely been described elsewhere, except in some specific 

instances. Thus the materials and methods outlined here do not contain an exhaustive list 

of standard protocols. Instead only brief descriptions are given of the general methods 

used, with minor modifications and exact experimental conditions used being described, 

in context, within each results chapter. 
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Chapter 3 

Polymorphic Loci in T. brucei 

Introduction 

A number of questions remain to be addressed regarding the basic biology, genetics and 

epidemiology of the parasitic protozoan, T. brucei, as outlined in Chapter 1. This is 

particularly true of the sexual recombination process, regarding both the mechanisms of 

genetic exchange and the frequency of the sexual process in the field. In order to address 

these issues an effective genotyping system for T. brucei must be available, so that 

individual isolates of T. brucei can be readily identified thus allowing, for example, 

progeny clones to be distinguished from parental types. 

A number of different typing systems have been used to analyse stock variation in T. 
brucei. The most extensively used technique, isoenzyme analysis, has been employed for 

the past two decades to study the relationships between trypanosomatids [Gibson et al., 

1980; Gibson and Gashumba, 1983; Tait et al., 1984; Tait et al., 1985; Godfrey et al., 

1990; Tait, 1990; Turner et al., 1990; Tait et al., 1993; Tait et al., 1996]. In recent years 

the peR based DNA typing system, RAPDs (randomly amplified polymorphic DNAs), 

has been increasingly applied to T. brucei genetics and has been used to complement 

isoenzyme analysis [Gibson et al., 1995; Stevens and Tibayrenc, 1995]. Restriction 

fragment length polymorphisms (RFLPs) have also been used to a limited extent in the 

analysis of T. brucei genomes, for example to distinguish Fl hybrids from parental 

trypanosomes [Sternberg et al., 1989], however such RFLPs display limited variability. 

RFLPs in repetitive ribosomal genes can reveal greater variability, and have been used in 

the analysis of trypanosome populations, generating molecular fingerprints [Hide et al., 

1994], although genetic interpretation is not possible with the data generated in this way. 

Hypervariable minisatellites or variable number tandem repeat (VNTR) loci in the T. 

brucei genome, which vary in a strain-specific manner, should provide a means of 

identifying and tracking individual strains as well as allowing the allele and genotype 

frequencies of T. brucei populations to be determined. The use of locus-specific primers to 

PCR amplify microsatellite and small minisatellite markers should enable the genotyping 

of trypanosomes even when contaminated with large quantities of host DNA in addition to 

allowing the analysis of small quantities of DNA by PCR amplification. Isoenzyme, RFLP 
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or RAPD analysis requires the amplification of parasites in mice to generate enough 

material for analysis. however with trypanosome specific PCR based methods this can be 

circumvented. Because of their high level of polymorphism. minisateIlite markers are 

particularly useful in determining variation between populations. analysing progeny from 

crosses and detecting heterogeneity within a sample (mixed stocks). This high level of 

variability allows strains to be tracked through populations and should be useful in 

identifying trypanosomes which are responsible for epidemics. However. the high degree 

of variability of mini satellite markers limits the use of these markers to intra-species 

analysis. 
The aim of the work reported in this chapter was to identify and characterize highly 

polymorphic mini- and/or microsatellites which were small enough to be easily amplified 

by PCR and which were informative for crosses between the three stock STm 247. STm 

386 and TREU 927/4. so that they could be used for the analysis of genetic crosses (see 

Chapter 5). 

Results 

Tandemly repeated regions are present in the T. brucei genome. some of which have 

already been characterised; for example. the genes encoding the procyclic acidic repeat 

protein (PARP)[Mowatt and Clayton, 1988]. A literature and database search revealed 

several single copy sequences which had known repetitive regions. although none of these 

repetitive loci had been analysed for allele length polymorphisms. Those sequences which 

contained repetitive regions small enough to be readily PCR amplified were chosen for 

further analysis. At the time of the searches. the database consisted primarily of coding 

sequence as the T. brucei sequencing project had not been initiated, and thus the tandemly 

repeated sequences found were in genes. 

CRAM. The sequence of the single copy gene from T. brucei. encoding the cysteine-rich 

acidic integral membrane protein, CRAM, has been described previously from EATRO 

427 and shown to contain 66 copies of a 36bp motif [Lee et al., 1990]. Using the 

published sequence, a pair of primers flanking the repeated region were designed. These 

primers were used initially to amp!ify, by PCR, samples of DNA from stocks STm 247, 

STm 386 and TREU 927/4 (Figure 3.1 A and B). Two amplified fragments of different 

sizes were detected in stock STm 386 and TREU 927/4 and presumed to represent allelic 

variation in the number of repeat units. with the two stocks being heterozygous for 

different sized alleles, (stock STm 247 produces one band and so is presumed to be 

homozygous at this locus). In order to demonstrate that these bands were in fact different 

alleles, Fl progeny clones from a cross between STIB 386 and TREU 927/4 were 

analysed by peR analysis for the CRAM marker (Figure 3.2A). It is clear that each Fl 

progeny clone has inherited one band from each parent. The results confirm that the two 

bands are alleles that segregate in the Fl progeny and are therefore allelic size variants. 
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A 

A~ 

A~ ~B 

B c D 

CRAM 292 MS42 

247 386 927 247 386 927 247 386 927 

1.8 kb - 2.3 kb -
2.9 kb -·a 1.5 kb ~ 1.8 kb • 2.8 kb 

1.3 kb 2.7 kb - .. 1.5 kb • 1.4 kb 

2.0 kb • 1.0 kb a 1.2 kb • 0.95 kb 

Figure 3.1. Amplification by peR of minisatellite loci from the stocks 
STIB 247, STIB 386 and TREU 927/4. 
(A) Diagrammatic representation of amplification of a minisatellite locus. Two alleles of 
different sizes are drawn as rectangles. Boxes represent repeat units, PCR primers, A 
and B, designed to the DNA flanking the repeats, are drawn as arrowheads. 
PCR amplification of the minisatellites, (B) CRAM, (C) 292 and (D) MS42 from DNA 
isolated from the stocks STIB 247, STm 386 and TREV 927/4, using primer pairs 
CRAM-G/CRAM-H, 292-G/292-H, and MS42-WIMS42-F, respectively. PCR 
conditions and primer sequences were as described in Materials and Methods. PCR 
products were separated on a 1 % Seakem agarose gel and visualised by ethidium 
bromide staining. Band sizes estimates were obtained by comparison to AHindIII and 
<j>x HaeIII markers (not shown). 
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A 1 2 3 4 5 6 7 8 9 10 11 
4.36 kb 

2.32 kb 

2.03 kb---... 

B 
1 2 34567 8 9 10 11 

2.03 kb 

1.35 kb 

1.08 kb 

0.87 kb 

0.60 kb 

Figure 3.2. Mendelian inheritance of minisatellite markers. Amplification 
by peR of the variable regions of the CRAM and 292 genes from DNA isolated from 
stocks STIB 386, TREU 927/4 and hybrid clones derived from a STIB 386 x TREU 
927/4 cross. peR conditions and primer sequences are described in Materials and 
Methods. peR products were separated on a 1 % Seakem agarose gel and visualised by 
ethidium bromide staining. 
CA) Amplification by peR of the CRAM locus, using primers CRAM-O and CRAM
H, from the parental stocks STIB 386 and TREU 927/4 and 8 progeny from a cross 
between these stocks. 
(B) Amplification by peR of the 292 locus, using primers 292-0 and 292-H, from the 
same material as in (A). 
Lane 1; Lambda Hind III and ~x Hoe ITI markers (Advanced Biotechnologies). Lanes 
2-11; STIB 386; TREU 924/4; F296/44bscl1; F296/44bscl4; F296/39bscl7; 
F296/44bscl3; F296/44bsc112; F296/39bscl22/1; F296/44bscI8; F296/39bscI2. 
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292. A similar approach was taken in the analysis of the gene encoding the membrane

associated protein 292 [Lee et al., 1994]. The cloned gene from T. brucei, (EATRO 427) 

contained a repeated region, consisting of 47 copies of a 24bp repeat unit. By designing 

primers flanking the repeats, the repeated region of this locus was amplified by peR from 

stocks STm 247, STm 386 and TREU 927/4 (Figure 3.1 e). As with the CRAM locus, two 

stocks, STm 386 and TREU 927/4 showed two bands differing in size consistent with 

these stocks being heterozygous for allelic length variants at this locus. PCR amplification 

of this variable region from the same FI progeny of a cross between stocks STm 386 and 

TREU 927/4 also demonstrates that these variable size peR products are in fact different 

alleles which are inherited in a classical Mendelian manner (Figure 3.2B). 

STm 247 appeared to be homozygous for both CRAM and 292 which was confirmed by 

analysis of Fl progeny from STm 247 and either STm 386 or TREU 927/4 crosses (see 

Chapter 5). 

MS42. The minisatellite, MS42, was originally cloned fortuitously (plasmid pTGR3) by 

M. Barrett from EATRO 427, in experiments designed to isolate the 6-phosphogluconate 

dehydrogenase gene, GNU, of T. brucei [Barrett and Le Page, 1993; Barrett et al., 1997]. 

The plasmid pTGR3, was found to comprise almost exclusively copies of a 42bp repeat 

sequence, named MS42. This repeated region, unlike most minisatellites isolated in other 

systems e.g. in humans [Wong et al., 1987], was short (-1.6kb) and so was amenable to 

peR amplification. Approximately 50bp on either side of the repeat region had been 

sequenced (Accession number X70187) allowing locus specific PCR primers to be 

designed to the DNA flanking the repeats [Barrett et al., 1997], which could then be used 

to amplify the repeated region. This locus, containing tandem repeats, was amplified from 

genomic DNA of the three stocks, STIB 247, STIB 386 and TREU 927/4, (Figure 3.1D). 

It is clear from this figure that alleles at this locus vary in size between the different 

stocks, and that two bands were generated during the PCR reaction in the stocks STIB 386 

and TREU 927/4, suggesting these stocks were heterozygous for this locus, while STm 

247, which gave a single PCR product, was homozygous. 

Analysis of a genomic Southern of stock EATRO 427, digested with various restriction 

endonucleases, and of chromosome~ separated by pulsed field gel electrophoresis (PFGE), 

followed by hybridization to the MS42 repeat sequence [Barrett et al., 1997], revealed that 

the MS42 locus is a single copy sequence, hybridizing to the two homologues of 

chromosome I. A genomic Southern blot of parental stocks STIB 247 and TREU 927/4 

and Fl progeny from a STIB 247 and TREU 927/4 cross, revealed different sized bands 

probably due to allelic variation in the number of repeat units within the tandem array 

[Barrett et al., 1997]. To further demonstrate that this variation was indeed due to allelic 

polymorphism, Fl progeny clones a cross between stocks STIB 386 and TREU 927/4 

were analysed by a genomic Southern blot of Pst 1 digested DNA and hybridized to the 

MS42 repeat sequence (Figure 3.3), revealing that each allele was a different size and was 
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1 2 3 4 5 

9.42kb - - ---6.56kb - -• .. -.. 
4.36kb -

Figure 3.3. Genomic Southern of DNA from STIB 386, TREU 927/4 

and 3 Ft progeny clones probed with MS42. 5J.1g of total genomic DNA was 
digested with Pst I, electrophoresed through a 1 % Seakem agarose gel, blotted onto 
MS! Magna membrane and hybridized to a MS42 repeat probe. The sizes given are 
from A. Hindill markers (not shown). Lane 1, STIB 386; lane 2, TREU 927/4; lane 3, 
F296/44bscl 1; lane 4, F296/44bscl 3; lane 5, F296/44bscl 8. 

4.1 Kb 

3.1 Kb 

2.0 Kb 

1.6 Kb 

1.0 Kb 

M 1 2 3 4 5 6 

Figure 3.4. Amplification by peR of a range of MS42 aIleles from 
different T. brucei isolates. The PCR conditions and oligonucleotide sequences 
(MS42-W and MS42-F) were as described in Materials and Methods. PCR products 
were separated on a 1 % Seakem agarose gel, stained with ethidium bromide and 
visualised by ultra violet transillumination. Lane 1, K984; lane 2, K997; lane 3, Z218; 
lane 4, Z210; lane 5, N96; lane 6, N7. Lane M, 1 Kb ladder (BRL). PrefIx K, Kiboko, 
Kenya; N, Nyanza, Kenya and Z. Luangwa Valley, Zambia 
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inherited in a Mendelian fashion. For example, progeny clone F296/44bscl 8 (lane 5, 

Figure 3.3), appears to have inherited the upper allele of STili 386 and the lower allele of 

TREU927/4. 
It is also clear from the patterns of allele inheritance that the alleles of the three 

minisatellite loci are inherited independently from each other (see Chapter 5). This 

independent assortment of alleles is expected for these loci, as they are located on 

different chromosomes: MS42 on chromosome I; CRAM on chromosome X, and 292 on 

either chromosome III or V [Barrett et al., 1997; Lee et al., 1990; Lee et al., 1994; Hope et 

al., in press]. A similar analysis, for all three loci, was undertaken with the progeny from 

other crosses, i.e. between stocks STIB 247 and TREU 927/4 and stocks STm 247 and 

STili 386. The data (described in full in Chapter 5) are again consistent with Mendelian 

segregation, further supporting the conclusion that the size differences in the repeat 

regions of these genes represent allelic variation at each of the two loci. 

To investigate if these loci were highly polymorphic and therefore could be useful 

markers for distinguishing different field isolates, each locus was amplified from a small 

collection of cloned stocks isolated from Kiboko and Nyanza in Kenya and Luangwa in 

Zambia. A number of distinct alleles were identified on the basis of differences in size of 

the PCR products of the MS42 locus (Figure 3.4) [Barrett et al., 1997], indicating that this 

locus was extremely polymorphic, varying in a strain specific manner. Similar results 

were obtained for CRAM and 292 minisatellites. Extensive analysis of all three loci in a 

large collection of field isolates is presented in Chapters 6, 7 and 8. 

Minisatellite stability. Minisatellite sequences in other systems have been shown to 

have a high mutation rate, generating novel sized alleles [Jeffreys et al., 1994]. In order to 

test the mitotic stability of MS42 and CRAM, 33 lines derived from single cloned stocks 

were analysed. These lines had been passaged as procyclic forms, bloodstream forms, 

transmitted through tsetse flies, and selected for resistance to either melarsen or suramin. 

No alteration in the repeat length was observed in any of the cloned lines (Table 

3.l)[Barrettet al., 1997]. Further analysis of mutation processes involved in the 

generation of MS42 variants is presented in Chapter 8. 

Sequencing of MS42. Sequet:lce analysis of plasmid, pTGR3, containing MS42, 

revealed the 42bp repeat unit [Barrett et al., 1997]. Like many mini satellites, the repeat 

unit is not precisely reiterated over the tandem array, but contains variant repeat units. 

Figure 3.5A gives the repeat sequence including the most common variable position, an 

A-G polymorphic site at one end of the repeat unit. 
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Single stock fly transmissions 
Clones· GUPno. Lysate Markers Comments 

no. 
CRAM MS42 

Reference 927/4 3-4 3-4 
Reference 247 1-1 5-5 
Reference 386 1-2 1-2 
927/4 -F222 84/31mcl2 3305 117 nd 3-4 Parental 
927/4 -F222 84/31mcl3 3306 118 nd 3-4 Parental 
927/4 -F222 84/31mcl4 3307 119 nd 3-4 Parental 
927/4 -F222 84/31mcl5 3308 120 nd 3-4 Parental 
927/4 -F222 84/31mcl 7 3309 121 nd 3-4 Parental 
927/4 -F222 84/31mcll 3310 122 nd 3-4 Parental 
927/4 -F222 84/31mcl6 3311 123 nd 3-4 Parental 
247- F125 md 1 3104 125 1-1 5-5 Parental 
247- F125 md2 3105 127 1-1 5-5 Parental 
247- F125 mcl 3 3106 128 1-1 5-5 Parental 
247- F125 mcl4 3107 129 1-1 5-5 Parental 
386- F62/47 mcl 1 3266 135 1-2 1-2 Parental 
386- F62/56 mcl 1 3270 136 1-2 1-2 Parental 
386- F62/56 mcl 2 3271 137 1-2 1-2 Parental 
386- F62/56 mcl 3 3272 138 1-2 1-2 Parental 
386- F62/56 mcl 4 3273 139 1-2 1-2 Parental 
386- F62/56 mcl 6 3275 141 1-2 1-2 Parental 
386- F62156 mcl 7 3276 142 1-2 1-2 Parental 
386- F62156 mcl 8 3277 143 1-2 1-2 Parental 
386- F62156 mcl 10 3294 145 nd 1-2 Parental 
386- F62/56 mcl 11 3278 144 nd 1-2 Parental 

Long term passaged clones 
Clones GUP Lysate No. of Markers Comments 

no. no. passages 
CRAM MS42 

247 3280 156 30 nd 5-5 Parental 
247 3228 130 49 1-1 5-5 Parental 
247 (culture) 157 30 nd 5-5 Parental 
247 Melarsen R 132 16 1-1 5-5 Parental 
247 Melarsen R 3650 131 16+ fly trans. 1-1 5-5 Parental 
247 Suramin R 133 9 1-1 5-5 Parental 
927/4 3163 124 30 nd 3-4 Parental 
386 Suramin R 150 13 nd 1-2 Parental 
386 3247 149 52 + fly trans. nd 1-2 Parental 
386 Melarsen R 151 7 nd 1-2 Parental 

Table 3.1. MinisatelIite analysis of clones from long term passaged and 
single stock fly transmissions. The clone identification number used throughout 
this study and additional identification numbers i. e. stabilate and lysate numbers, are 
given. The results of minisatellite analysis is shown, alleles are numbered 1-5 for the 
minisatelIites, CRAM and MS42. The interpretation of results for each clone is given. For 
details of drug resistant lines see [Scott et al., 1996]. Fly trans., fly transmitted; GUP, 
Glasgow University Parasitology; R, resistant; nd, not determined. 
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Plasmid pTGR3 contained very little DNA flanking the MS42 repeat units. In order to 

obtain more sequence surrounding the repeats, plasmid pTGR3 was used as a probe to 

screen a cosmid library, which was made from a STm 247 X TREU 927/4 hybrid, clone 

F532n2 mcl 7 [M. Barrett, personal communication]. This hybridized to cosmid clone, 

F8, which was digested with Pst I and the fragments subcloned into PUC9. One of those 

subclones hybridized to the pTGR3 plasmid, and so was believed to contain the MS42 

minisatellite. This plasmid clone, p42Sc3, had a larger insert (-4.2kb) which contained the 

minisatellite sequence MS42 and more of its flanking DNA [M. Barrett, personal 

communication] . 

In an attempt to characterize the MS42 locus and obtain more flanking DNA sequence, the 

insert of plasmid clone, p42Sc3, a gift from M. Barrett, was sequenced using an automated 

ABI sequencing protocol. The sequencing strategy involved sequencing using the forward 

and reverse primers specific for the vector, PUC9, and designing specific MS42 primers 

from the newly generated sequence data, as it was obtained. In this way, the DNA 

flanking the MS42 repeats was sequenced [with the technical help of Y. Shafi and the 

Molecular Biology Service Unit (MBSU)]. Only seven complete MS42 repeat units within 

the plasmid were sequenced although, from the size of the insert, it was estimated that 26 

repeats were present. The sequence of the repeat units obtained from p42Sc3 was identical 

except for position 1, which could be either an A or G (see Figure 3.5A), and was similar 

to the repeat sequence obtained from plasmid pTGR3 although they were isolated from 

different stocks (F532n2mcl 7 and EATRO 427, respectively). More detailed analysis of 

repeat' sequence variation is given in Chapter 8. Figure 3.5B gives a simple map of the 

plasmid p42Sc3 clone, with the relative positions of the MS42 specific primers used to 

sequence the insert. The primer sequences are given in Material and Methods. (Chapter 2, 

Table 2.1), and the sequence of plasmid clone p42Sc3, with seven complete repeat units. 

is given in the Appendix (Figure AI). 

The orientation of the sequence was not known and, prior to the sequence of p42Sc3 being 

completed, 5' and 3' labels were applied arbitrarily to respective ends of the insert. The 5' 

end was arbitrarily defined as the side of the repeat array where the primer sequence 

MS42-W was situated. This labelling system was continued throughout the following 

analysis and all subsequent chapters (in particular Chapter 8). 

MS42 Open Reading Frame (ORF). The stock EATRO 427 has been shown to 

carry two different sized alleles for MS42 [Barrett et al., 1997]. Northern blots of RNA 

from the bloodstream stage of stock EATRO 427 probed with the MS42 sequence, have 

revealed two different sized transcripts (approximately 4.2Kb and 4.9Kb), which could 

represent transcripts of the different sized alleles [M. Barrett, personal communication]. 

Analysis of the sequence data of p42Sc3, using the Genetic Computer Group COCa) 

sequence analysis programs, developed at the University of Wisconsin, indicated that one 

large ORF spanned almost the entire sequence (see Figure 3.5 for diagram). The predicted 
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A 

B 

MS42 allele 

ItctgCcttggctggttc~gggactgccactggtttcacagt 
!rgacggaaccgaccaagtccctgacggtgaccaaagtgtca 

42 nucleotide repeat 

Pst I REPEATS Pst I 

~11--_<_KR __ <L ___ <_R_<_Q_<_W_R<_Clffi[==Jill]I-<_B_<F_8_<_S __ --Il~ 
REV> K> LR> RR>QR> W> V>C> F8R> SR> 1'> 

MS420RF ATG ------------------------------------------
lOObp 

Figure 3.5. Diagrammatic representation of MS42. 
(A) The repeat array is represented as a large rectangle, with each repeat unit being a 
shaded box. Both strands of the 42 bp sequence of the repeat unit are given, with the 
coding strand in bold. The A-G transition site at one end of the repeat unit is 
highlighted, r indicates either a or g; y indicates t or c. 
(B) A 4.2kb fragment containing the minisatellite MS42 was cloned into the Pst I site 
of PUC9 [Barrett et al., 1997], creating the clone p42Sc3. The diagram illustrates the 
insert of the clone p42Sc3 and the positions of the MS42 primers used for sequencing 
and PCR amplification. Arrowheads indicate the direction of the primers. FOR and 
REV primers are the universal primers designed to the vector. MS42 primer sequences 
are given in Material and Methods. The repeat array is represented by a rectangle. The 
ORF is drawn below the map. 
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amino acid sequence of this ORF is given in the Appendix (Figure A2). The ORF consists 

of 2757bp (excluding the repeats), starts at position 3116 on the p42Sc3 sequence 

(Appendix, Figure AI) and continues for the length of the insert (to position 1). No stop 

codon within the insert was detected, thus it is unlikely that the entire ORF has been 

sequenced. The predicted amino acid sequence of the repeats are proline rich (3 prolines 

out of 14 amino acids). 

The length of the ORF from the upper allele of stock EATRO 427, which was estimated to 

contain 38 repeats, has a minimum length of 4.35Kb (i.e. at least 2757bp of non-repetitive 

DNA and 38 x 42bp of repeats), not allowing for any 3' untranslated DNA. Since the 

estimated band size from a Northern blot was 4.9Kb [M. Barrett. personal 

communication], it was concluded that approximately 500bp of the ORF and untranslated 

sequence had not been cloned or sequenced. 

Similarity searches of the p42Sc3 DNA sequence against the EMBL database did not 

identify any similar sequences from any organism. Protein searches, however, using the 

predicted amino acid sequence, found similarity to a number of proteins in the EMBL 

database. All of the proteins showed similarity to the repeated region and no other part of 

the sequence. The repeated region has similarity to other genes which contain proline rich 

repeats. Two proteins with the best matches over the repeat region are, myosin-light-chain 

kinase (from rabbit) and an unknown protein from Mycoplasma hyopneumoniae, which 

contain repeat units of 12 and 10 amino acids in length, respectively. The repeat units both 

contain a ET -KPV A motif, but the functional significance of this is unclear. 

Discussion 
In this chapter. the first polymorphic minisatellites identified in T. brucei have been 

described. These minisatellite markers have many distinct advantages over typing systems 

previously used for the analysis of trypanosomes; they are highly polymorphic arid 

generate information which can be interpreted genetically. As these minisatellites are in 

coding regions of the genome, and therefore presumably have a functional significance. 

they may be under selection. For this reason, it is preferable to use several unlinked loci in 

any typing system and not to rely on one locus. 

This chapter describes how three previously identified genes containing repeats, which 

demonstrate allelic polymorphism. were exploited to develop a genotyping system. Other 

genes containing tandem repeats were considered for analysis, but were rejected if they 

were not single copy, or were too large to be easily amplified by peR. 

A more systematic (but more time consuming) approach to identifying minisatellite loci 

would be to screen genomic libraries (at low stringency) with minisatellite sequences. for 

example Jeffreys' probes, 33.6 and 33.15 [Jeffreys et al., 1985]. Alternatively, with more 

genomic sequence becoming available from the T. brucei genome project, computer 
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programs designed to identify tandem repeats could be used quickly and easily to find 

more mini- and microsatellite loci [Benson, 1999]. 
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Chapter 4 

Genotyping Single Trypanosomes 

Introduction 

The analysis of experimental crosses of two genotypic ally different trypanosomes has 

been limited to only a few Fl hybrids cloned either directly from metacyclics in the 

salivary glands of a mixed-infected tsetse fly or from bloodstream infections of mice 

initiated by the bite of an infected tsetse fly. The isolated cloned parasites were then 

grown in mice to generate enough parasites for examination by isoenzymes, RFLPs and 

PFGE [Jenni et al., 1986; Sternberg et al., 1987; Wells et al., 1987; Schweizer et al., 

1988; Sternberg et al., 1988; Gibson, 1989; Sternberg et al., 1989; Sternberg and Tait, 

1990; Turner et al., 1990; Gibson and Garside, 1991; Gibson et al., 1992; Gibson and 

Whittington, 1993; Gibson and Bailey, 1994; Schweizer et al., 1994; Degan et al., 

1995; Gibson et al., 1997]. Although the results of this analysis demonstrated that 

genetic exchange can occur, it did not determine where or when trypanosome mating 

takes place or the frequency of cross and self-fertilization. 

Direct analysis of individual metacyc1ic cells present in the salivary glands of tsetse 

flies sampled over a time course of infection could determine the proportion of 

trypanosomes present in the salivary glands that are hybrid, parental or products of self

fertilization and so indicate the extent of cross and self-fertilization. Also, examination 

of single cells from other life cycle stages e.g. proventricular and epimastigote forms 

could help identify the stage at which recombination occurs and whether this involves a 

haploid trypanosome cell. 

The polymerase chain reaction is sensitive enough to allow the analysis of DNA from 

an individual cell [Jeffreys et al., 1988; Li, 1988]. Single cell PCR technology has been 

used extensively in human genetics to address a range of genetic and biological 

questions. For example, analysis of large numbers of single sperm have been used to 

estimate the recombination frequencies between genetic loci to a higher resolution than 

had been possible by pedigree analysis [Cui et al., 1989]. Handyside et al (1990) 

applied single cell typing to pre-implantation disease diagnosis by blastomere biopsy 

and analysis. Such analysis was initially limited to 2-3 loci, but, the development of 

primer extension PCR (PEP), which randomly amplifies -80% of the sequences in the 

genome, extended this technique to allow the amplification of a number of different 
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from individual cells, including blastomeres [Zhang et al., 1992, Snabes, 1994 #191]. 

Another development, which relies on the amplification of DNA diluted to the 

equivalent of a single molecule, has greatly improved linkage mapping for those 

organisms where the number of progeny from crosses are limited. This technique, 

'HAPPY mapping', examines large fragments of DNA for the presence of specific 

sequences to determine linkage [Piper et al., 1998]. PCR from small amounts of DNA 

has also proved very useful in the analysis of forensic material [for example, Hopkins et 

al., 1994] and ancient DNA samples [Hagelberg et al., 1990]. 

PCR amplification of the mUlticopy satellite sequence from different species of African 

trypanosomes has been used to detect these parasites both from infected blood [Moser 

et al., 1989] and tsetse flies [Masiga et al.. 1992] and it has been shown that a PCR 

signal can be obtained from DNA or trypanosome extracts diluted to less than a single 

genome equivalent [Moser et al.. 1989; Masiga et al., 1992]. While these reports show 

that amplification of mUltiple copy sequences can be used to detect trypanosomes to a 

high degree of sensitivity, PCR based techniques using single copy sequences have not 

yet been used to detect or genotype single trypanosomes. Studies with Plasmodium 

Jalciparum have shown that single copy gene sequences can be amplified from single 

oocysts [Ranford-Cartwright et al.. 1991], although this life cycle stage contains many 

nuclei. 

A single cell PCR technique could be applied to the analysis of trypanosomes to address 

a series of issues. For laboratory genetics, single trypanosomes isolated from the 

salivary glands of mixed-infected tsetse flies could be individually genotyped to assay 

the extent of cross and self-fertilization and to address the question of ploidy for each 

life cycle stage trypanosome. Other possible applications include the genotyping of 

trypanosomes from wild tsetse flies (or mammals) to study the extent of mixed 

infections in the field. Single cell analysis could also be used in for the analysis of 

recombination and other genomic rearrangements, such as VSG switching, in single 

trypanosomes. rather than in populations. 

The aim of the work presented here was to develop a method for determining the 

genotype of single trypanosomes ~ith a high degree of efficiency using target single 

copy gene sequences. The technique was intended to be used to genotype the different 

trypanosomes present in the salivary glands of mixed-infected tsetse flies in which 

trypanosomes are undergoing mating. Parasites would be collected from tsetse flies by 

allowing them to probe into serum. Trypanosomes could be sampled every few days for 

the life of the fly, and then be individually genotyped. This would allow an extensive 

direct assessment of the genotypes of trypanosomes present in the salivary glands of a 

tsetse fly. The percentage of parental trypanosomes, Fl hybrids and selfers could be 

determined and any change in their proportions over time could be measured. 
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This method was applied to the analysis of laboratory crosses of two different T. brucei 

stocks to determine which tsetse flies harboured mixed infections and were producing 

hybrid trypanosomes. However, although a small number of tsetse flies were mixed

infected, none produced hybrid trypanosomes (see Chapter 5 for details of attempted 

crosses). 

Results 

Choice of marker loci for single trypanosome PCR. Three polymorphic 

markers were examined for their possible use in single cell analysis. The marker, 

CRAM, (described in detail in Chapter 3) was one of the first highly polymorphic single 

copy minisatellite markers to be identified. This is a highly informative locus, being 

able to distinguish between all four alleles of the T. brucei stocks STm 386 and TREU 

927/4 (the parental stocks in the attempted crosses, see Chapter 5). However the size of 

the variable region to be amplified was large and so the PCR amplification of this locus 

could be less efficient. A smaller single copy locus containing a dinucleotide repeat. the 

triosephosphate isomerase gene (TIM), although not as informative as the CRAM locus, 

was considered for single cell analysis. The third marker to be considered for single cell 

PCR, which was both small enough for efficient amplification in a PCR reaction and 

polymorphic enough to distinguish all four alle1es in stocks STm 386 and TREU 927/4, 

was the microsatellite marker, JS2, which was identified by J. Sasse [Sasse, 1998]. 

PCR from diluted DNA. In order to develop the technique, initial experiments to 

PCR amplify a single copy sequence from dilutions of STill 386 DNA equivalent to a 

single haploid genome (O.04pg) [Borst, 1982] per reaction were performed using the 

CRAM locus. Details of the PCR conditions are given in the legend of Figure 4.1. The 

PCR products were size separated on a 1 % agarose gel, Southern blotted and hybridized 

to a CRAM repeat probe. The resulting autoradiograph (shown in Figure 4.1) 

demonstrates that it was technically feasible to amplify a single copy sequence from 

trypanosome pNA diluted to the single cell level. STill 386 is heterozygous for the 

CRAM locus with alleles of 2 and 2.8 Kb available for amplification. In 5 out of the 23 

reactions both alleles amplified and in 8 reactions only one allele amplified. Overall 

56% of reactions generated a PCR product from one or other allele. Since smaller 

fragments amplify more efficiently [Jeffreys et al., 1988], it was believed that by 

changing to a smaller polymorphic locus e.g. a microsatellite, the efficiency of the PCR 

reactions would improve and would allow amplification of single cells to visible levels 

on an ethidium stained gel, using a nested PCR approach. 
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Figure 4.1 Amplification by peR of the CRAM locus from diluted DNA. 
The CRAM locus was amplified using primers CRAM-G and CRAM-H from STIB 386 
DNA (for primer sequences see Materials and Methods). The peR products were size 
separated by gel electrophoresis, transferred to a nylon membrane and hybridised to a 
radiolabelled CRAM repeat probe. The autoradiograph was for 24 hrs. 
(A) Panel a, 5 zero ONAcontrols; panel b, 5 peR amplification reactions from4pg DNA; 
panel c, 10 peR reactions from O.4pg ON A 
CB) 23 peR amplification reactions from O.04pg of ON A Size markers based on lambda 
HindIII are shown. 
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TIM polymorphism. The single copy triosephosphate isomerase gene (TIM) 

sequence of Trypanosoma brucei contains a micro satellite sequence within the 3' 

untranslated region, consisting of fourteen repeats of the dinucleotide TA in the 

sequence obtained from stock EATRO 427 [Swinkels, 1986]. Using the published 

sequence, several pairs of primers were designed. Two of these, TIM-E and TIM-F 

(Figure 4.2A), were used to amplify (by peR) samples of DNA from stocks STm 386 

and TREU 927/4 of T. brucei. The products were run out on a 3% Nusieve agarose gel 

and visualised with ethidium bromide (Figure 4.2B). The sizes of the fragments differ 

between the two stocks (STIB 386-100bp; TREU 927/4-80bp) indicating a 

polymorphism in the length of each repeat array, with each stock being homozygous for 

a different sized allele. This has been confinned by sequence analysis (data not shown). 

The lower band is due to primer dimers and is present in the absence of any DNA 

template (track 3, Figure 4.2B). 

peR of the TIM locus from single trypanosomes. To detennine whether it 

was possible to amplify a single copy sequence from a single trypanosome, bloodstream 

trypanosomes were isolated from mice which had been infected with either a mixture of 

stocks STIB 386 and TREU 927/4 or solely with TREU 927/4. The trypanosome

infected blood was diluted in guinea pig serum, spotted onto Terasaki plates, and drops 

containing single parasites were identified optically using an inverted microscope. Each 

well containing a single cell was flooded with lOJ..lI of 1 x PCR buffer, transferred to a 

thin walled microtube and subjected to PCR amplification using various primer 

combinations for the TIM locus, (details of which are given in the legend of Figure 4.2 

and Materials and Methods). Briefly, the primary amplification was conducted using 

primers TIM-C and TIM-D, which should amplify a 1390kb region of the gene. One J..lI 

of this primary amplification product was used as a template for the second 

amplification reaction, using internal primers TIM-A and TIM-B. This generated a 

600bp product which could be visualised by UV illumination of the ethidium stained 

agarose gel. 

In the initial experiment 22 single bloodstream trypanosomes of a single stock (TREU 

927/4), were subjected to PCR amplification (using primer pairs TIM-CITIM-D 

followed by TIM-NTIM-B) and eight gave an ethidium bromide stained product of the 

predicted size (600bp; see Figure 4.3A for an example, tracks 4-19). The positive 

controls used in these experiments were drops containing> 1 trypanosome and produced 

an amplified fragment (Figure 4.3A, tracks 1 and 2). In order to provide rigorous 

negative controls, several (individual) drops from the infected blood which contained 

no trypanosomes by microscopic inspection, were also subjected to PCR amplification 

using primers TIM-CITIM-D followed by TIM-NTIM-B (data not shown). One of these 
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Figure 4.2 Amplification by peR of the TIM locus from stocks STIB 
386 and TREU 927/4. 
(A) The schematic diagram indicates the TIM locus with the approximate positions of 
the TA dinucleotide repeat and the primers (TIM-E and TIM-F) used for peR 
amplification, under standard peR conditions (see Materials and Methods). 
(B) Ethidium bromide stained 3% Nusieve agarose gel separation of the peR 
amplified products obtained from genomic DNA of stocks STIB 386 and TREU 927/4 
using the primers TIM-E and TIM-F. Track 1, STIB 386; track 2, TREU 927/4; track 
3, zero DNA control; M, 20bp ladder (Advanced Biotechnologies). 
Primer sequences are given in Materials and Methods. 
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Figure 4.3 peR amplification of the TIM locus from single trypanosomes using a 
series of nested primers. 
(A) Sixteen single bloodstream stage trypanosomes were isolated optically. transferred to 
a PCR microtube by the addition of 10J,ll of PCR buffer. described in Material and 
Methods. overlaid with mineral oil and heated to 96°C for 5 mins (to disrupt the cell). 
The samples were then subjected to peR amplification. by the addition of primers l1M-C 
and TIM-D to a final concentration of 0.2J.1M. under the following cycling conditions: 
96°C for I min .• 64°C for 1 min. and 70°C for 90 sec. for a total of 26 cycles. A one J,ll 
sample of the product was transferred to a fresh PCR microtube and subjected to a 
second PCR amplification using primer pair TIM-A and TIM-B under the same 
conditions for a further 26 cycles. The final products were separated on 1 % Seakem 
agarose. stained with ethidium bromide and visualised by UV illumination. Lanes I and 
2, each contained more than one trypanosome; lane 3. zero trypanosome control; lanes 
4-19. drops each containing a single trypanosome; M. q,x 174 HaeIII markers. . 
(B) Ethidium bromide stained 3% Nusieve agarose separation of the PCR products of 
single drops containing a single trypanosome isolated from a mixture of stocks TREU 
927/4 and STIB 386. The conditions for PCR amplification were identical to those 
described in (A) except that primer pair l1M-AffIM-B was used for the initial 
amplification and primer pair TIM-EffIM-F for the second. Lanes 1-19. single 
trypanosomes in a single drop; M, q,x 174 HaeIII markers. 
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drops in a collection of 10 produced an amplified fragment which is presumed to be due 

to overlooking a trypanosome in this drop. However, given only 1110 of the drops 

lacking trypanosomes gave a positive signal, we conclude that the amplified product is 

dependent on the presence of trypanosomes rather than extraneous contaminating DNA. 

These results suggested that it was possible to amplify a single copy gene sequence 

from a single trypanosome cell, however, the efficiency was low (36%). The inability to 

amplify a fragment from all samples may be attributed to either a failure to transfer 

single cells to the peR tubes or a failure of the primers to amplify successfully from the 

two target molecules present. The predicted peR product from the primary 

amplification was 1390bp and -600bp for the secondary amplification. In an attempt to 

increase the efficiency of the nested peR technique, primers TIM-E and TIM-F were 

used which generated smaller products (-1 OObp for the secondary amplification of 

TREU 927/4), since smaller products are likely to be amplified more efficiently than 

larger ones. In four subsequent independent experiments, each using 20 single 

trypanosomes, the cells were isolated and subjected to the nested peR amplification, 

using the TIM-E and TIM-F primer combination for the secondary amplification. The 

efficiency of peR recovery from a single cell rose to an average of 48% (see Figure 

4.3B for an example). 

One other possible reason for a loss in efficiency of the single cell peR method was 

that the single trypanosome failed to be transferred from the Terasaki well to the peR 

tube. In order to determine if this was the case, each Terasaki well was washed twice in 

10lll of water after the trypanosome was removed. The water from these washings was 

then amplified as described before. Out of a total of 36 wells, 4 produced a peR 

product of the size expected (data not shown), thus showing that some trypanosomes (at 

least 11 %) were not being transferred to the peR tube in the first instance resulting in a 

reduced efficiency of peR. However this only accounts for a small proportion of the 

peR failures. 

Genotyping single trypanosomes. In order to test whether individual 

trypanosomes could be identified from mixtures of trypanosome stocks, single cells 

were isolated (as described above) from infected mouse blood containing two stocks of 

the parasite, TREU 927/4 and STill 386. These stocks have different lengths of the TIM 

dinucleotide repeat and so generate different sized peR products when amplified using 

primers TIM-E and TIM-F (Figure 4.2B). In this experiment, a total of 19 drops 

containing single trypanosomes were peR amplified and the results obtained are shown 

in Figure 4.3B. A total of 12 out of 19 drops containing single trypanosomes gave an 

ethidium bromide stained fragment of either 80bp (TREU 927/4) or 100bp (STill 386) 

but none gave two fragments indicating that none of the drops contain two 

trypanosomes (the lower size band on these gels is due to primer dimers). These data 
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support the conclusion not only that single copy genes can be amplified from single 

trypanosomes but that single cells can be genotyped in this way. The results presented 

here compare well with the success rate for developing clones in mice injected with 

single trypanosomes, demonstrating that single cell PCR is a reliable technique for 

defining the genotype of single trypanosomes. To improve the utility of this technique 

in laboratory genetic analysis, it was necessary to extend this technique to another more 

informative polymorphic locus i.e. a marker which can differentiate between all four 

alleles present in STm 386 and TREU 927/4. This led to the search for another 

microsatellite locus. 

]S2 polymorphic locus. The sequence of the single copy T. brucei locus, JS2, 

which contains a polymorphic CA dinucleotide repeat and was obtained from 1. Sasse 

[Sasse, 1998]. Primers flanking the repeat were designed based on this sequence and 

used to amplify the locus from the stocks STm 247, STm 386 and TREU 927/4 (Figure 

4.4A). The products were run on a 4% Nusieve agarose gel and visualised with 

ethidium bromide (Figure 4.4B). Unlike the TIM microsatellite, each stock is 

heterozygous for different sized alleles, allowing all six alleles from the three stocks to 

be easily distinguished from each other, which makes this marker extremely 

informative in strain identification and useful in the analysis of the Fl progeny from 

crosses between these stocks. 

peR of the ]S2 locus from single trypanosomes. Using a nested PCR 

strategy with the oligonucleotides JS2-C and JS2-D followed by JS2-A and JS2-B 

(Figure 4.4A), the JS2 locus was successfully amplified from single trypanosomes of 

the stock TREU 927/4, at an efficiency of 71 % (i.e. 37/52 produced a PCR product: 

Figure 4.4C). This increased efficiency is probably because the primary PCR 

amplification product is only about 300bp, compared to the primary amplification 

product of the TIM locus which was 1390bp. As TREU 927/4 is heterozygous for the 

1S2 locus, two different and easily distinguishable alleles are available for amplification 

from each individual trypanosome, resulting in two PCR products of -190bp and 

-105bp (Figure 4.4C). In contrast the TIM locus is homozygous with two alleles of the 

same size so that it is impossible to determine whether the PCR product was derived 

from one or both alleles. With the iS2 locus, 8 single trypanosomes produced only one 

visible PCR product with the other allele having failed to amplify (for example Figure 

4.4C, lanes 7 and 18). The relative proportions of samples which generated two PCR 

products (56%), a PCR product from the upper allele only (9.6%), the lower allele only 

(5.8%), or no product at all (29%) are presented in the pie chart in Figure 4.5. The 

failure of one allele to amplify could be due to sequence variation in the flanking DNA. 

which affects the efficiency of one or more of the primers, although this is unlikely as 

no one allele failed to amplify significantly more times than the other (X 2 test of 
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Figure 4.4 PCR amplification of the JS2 locus from DNA and single trypanosomes. 
(A) A schematic diagram of the JS2 locus indicating the relative positions of the PCR 
primers. Primer sequences are given in Materials and Methods. 
(B) Ethidium bromide stained 4% Nusieve agarose gel separation of the PCR amplified 
products obtained from genomic DNA of stocks STIB 247 (lane 1), STIB 386 (lane 2) 
and TREU 927/4 (lane 3), using primers JS2-A and JS2-B. Lane 4, zero DNA control. 
Lane 5, 20bp ladder (Advanced Biotechnologies). Allele numbers and approximate band 
sizes are shown. 
(C) An example of an ethidium bromide stained 4% Nusieve agarose gel separation of 
JS2 nested PCR amplification products from single trypanosomes. Bloodstream stage 
trypanosomes of the stock TREU 92714 were isolated optically, transferred to a PeR 
microtube by the addition of 10111 of PCR buffer, described in Materials and Methods, 
overlaid with mineral oil and heated to 96°C for 5 mins (to disrupt the cell). The samples 
were then subjected to PCR amplification, by the addition of primers JS2-C and JS2-D to 
a final concentration of 0.2J.1M, under the following cycling conditions: 96°C for 50 sec., 
56°C for 50 sec. and 70"C for 50 sec. for a total of 26 cycles. A one III sample of the 
product was transferred to a fresh PCR microtube and subjected to a second PCR 
amplification using primer pair JS2-A and JS2-B under the same conditions for a further 
26 cycles. Lanes 2-20, PeR products from single drops each containing a single 
trypanosome; Lane 21,20 bp ladder (Advanced Biotechnologies). 
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Figure 4.5. A pie chart illustrating the results generated by the peR 
amplification of the JS2 locus from single TREU 927/4 trypanosomes . 
The proportion of samples which generated two products is coloured blue (56%); allele 
3 only in green (9.6%); allele 4 only in red (5. 8%) and those which failed to amplify are 
coloured grey (29%). n = 52. 
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homogeneity = 0.5, d.f.=I, p=0.5, leading to acceptance of the null hypothesis that there 

is no allele bias). It is possible that the alleles simply did not amplify sufficiently to be 

visible on an ethidium stained gel. Southern blotting followed by hybridization could 

possibly detect these alleles. However, the vast majority (78%) of the trypanosomes that 

generated a PCR signal contained the products of both alleles. Because the percentage 

of single allele amplifications is low and similar for each allele, it would not appear to 

hinder the application of this technique to genotyping single cells as the proportion of 

failed alleles can be taken into consideration when applied to the quantitative analysis 

of trypanosome genotypes. 

A summary of the different properties and the relative efficiencies of the three markers 

used in this study is presented in Table 4.1. It is clear from these results that the JS2 

locus is both informative and highly efficient for the amplification of single cells and 

that by minimising the size of the primary amplification product, the efficiency of PCR 

from single trypanosomes can be increased. 

Markers No. of different alleles in Size of peR product Efficiency of peR 

stocks 386 and 927/4 pnmary secondary 

CRAM 4 2 - 2.8kb NA 56% a 

TIM 1 2 1390bp 600bp 36% b 

TIM2 2 1390bp -lOObp 48% b 

JS2 4 300bp -200bp 71% b 

Table 4.1. Summary of experiments with different markers. Column 1 
lists the different markers used in these experiments. Two different primer 
combinations were used to amplify the TIM locus (see text). Column 2 indicates the 
number of different alleles distinguished by each marker for the two stocks STrn 386 
and TREU 927/4. Column 3 gives the estimated size of the PCR products from the 
primary and secondary (nested) reactions. For the CRAM locus, a single amplification 
reaction was performed followed by Southern blotting and hybridization to a specific 
probe. Column 4 indicated the efficiency of PCR amplification from either (a) DNA 
diluted to the equivalent of a single cell or (b) from single trypanosomes. 

Discussion 

The JS2 locus is a highly informative polymorphic locus, as it is heterozygous for the 

stocks STrn 247, STrn 386 and TREU 927/4 for different sized alleles. This makes it 

an excellent marker for the analysis of hybrids derived from the genetic crosses of these 

stocks. Coupled with the powerful technique of nested PCR, it is possible to genotype 

individual trypanosomes from any life cycle stage and so identify where and when 

hybrids are produced and to what extent cross and self-fertilization occur. 

page 75 

I 
r 
. I 

I 



Chapter 4 Genotyping single trypanosomes 

The results obtained from the analysis of single trypanosomes using JS2 compare well 

with those obtained from single human sperm [Li, 1988], where 76% of the PCR 

reactions gave a signal which was consistent with only single cells being amplified. 

Where two loci were amplified from the same haploid cell, which should generate two 

PCR products, 61 % gave a signal from both loci. This can be compared to 56% of 

single (diploid) trypanosomes, producing PCR products from both alleles from the same 

locus. Although it is not expected that PCR amplification from a single cell will be 

100% efficient it is obvious that by optimising the conditions of the reactions the 

efficiency of the technique can be improved. However, because of the sensitive nature 

of the single cell PCR technique, the data generated by this method may be subject to 

error. Such errors can arise in a variety of ways: one of the alleles may not be amplified 

to a visible level, the trypanosome sample may be contaminated with PCR products 

carried over from other amplification reactions, the sample tube may not contain a cell 

or may contain more than one cell. However these errors for single trypanosome PCR 

are minimal. For example, none of the reagent negative controls ever produced a PCR 

product and results from mixed trypanosome experiments reveal that optical isolation of 

single cells is reliable. Statistical estimations of these errors are possible [Cui et al., 

1989] and so they can be taken into consideration in the analysis of the data. 

By extending this technique to incorporate other microsatellites in the same reaction i.e. 

multiplexing [Jeffreys et al., 1988], or by employing the PEP technique [Zhang et al., 

1992], it should be possible to analyse single cells for several different markers, 

although with more markers, the proportion of samples in which at least one allele 

failed to amplify is increased (assuming the probability of each allele to amplify is 

independent of the next allele). Using this technique, the independent assortment of 

alleles in hybrid metacyclic cells isolated from the salivary glands of mixed-infected 

tsetse flies could then be examined or if the markers were located on the same 

chromosome, recombination frequencies could be measured. The detection of the 

products of self-fertilization, however, would be indistinguishable from samples in 

which an allele has failed to amplify. Although if selfers were present in the population. 

examination of large numbers of cells should reveal a significantly higher proportion of 

samples exhibiting a single allele pattern compared to the controls. This approach is 

limited only by the availability of tsetse flies harbouring hybrid metacyclic 

trypanosomes. 
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Chapter 5 

Analysis of Genetic Exchange in T. brucei 

Introduction 

The first suggestion that T. brucei was a diploid sexual organism came from the analysis 

of the nature and frequency of isoenzyme variation of different trypanosome stocks 

[Gibson et al., 1980; Tait, 1980; Tait, 1983]. A system of genetic exchange was confirmed 

in 1986 when Jenni and co-workers demonstrated the first genetic cross between two 

genetically and phenotypically distinct T. brucei stocks [Jenni et al., 1986]. The cross, 

which involved the co-transmission of two stocks through tsetse flies, produced 

trypanosomes with non-parental genotypes and phenotypes, indicating that some form of 

genetic exchange took place. Since then eight other crosses have been performed in the 

laboratory, generating hybrid clones which appear to be equivalent to Fl progeny [Gibson, 

1989; Sternberg et al., 1989; Turner et al., 1990; Gibson and Garside, 1991; Gibson et al., 

1992; Gibson and Whittington, 1993; Gibson and Bailey, 1994; Degan et al., 1995; Tait et 

al., 1996; Gibson et al., 1997]. One backcross has also been performed [Gibson et al., 

1995]. However, the nature of this genetic exchange, i.e. the mechanisms involved in the 

generation of hybrids, still remains to be fully elucidated. 

To date 141 hybrid clones from the 10 different crosses have been isolated (see Chapter 1, 

Table 1.1). Figure 5.1 illustrates the procedure involved in making a genetic cross, 

whereby individual trypanosomes derived from a mixed-infected tsetse fly are isolated 

and grown as a clonal population by mitotic replication. There are two distinct methods of 

analysing the,products of a cross: 1) Single non-dividing metacyclic trypanosomes are 

taken directly from the dissected salivary glands of a mixed-infected tsetse fly, and 

injected into a mouse where they differentiate to bloodstream forms and replicate. The 

resulting population is then analysed (for a novel hybrid genotype) using a series of 

genetic markers that differ between the two parental stocks. Since metacyclic cells are 

believed to be cell-cycle arrested [Vickerman, 1985], i.e. they only replicate after they 

have differentiated into bloodstream forms in the mammalian host, each hybrid metacyclic 

is assumed to be the product of a single genetic exchange event, and is therefore 

considered to be unique. 2) Either a mixed-infected tsetse fly is allowed to bite a mouse or 

part of the dissected salivary glands of the fly is injected into a mouse, thereby infecting 

the mouse with several thousand trypanosomes, which differentiate and multiply. Single 
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parasites are analysed for hybrid genotypes 

Figure 5.1. A schematic diagram illustrating the procedure involved in 
the generation of a genetic cross. (A) Two genetically distinct T. brncei stocks 
are mixed and fed to tsetse flies. (B) Mixed infected tsetse flies are fed on mice at 
regular intervals. The mice develop infections. Single bloodstream trypanosomes are 
then isolated and regrown in mice. Trypanosomes isolated in this way are called 
bloodstream clones. (C) The tsetse flies are sacrificed and single metacyclic 
trypanosomes are removed from the salivary glands. The metacyclics are grown in 
mice. Trypanosomes isolated in this way are called metacyclic clones. 
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trypanosomes are then isolated from the infected mouse blood and injected into separate 

mice where they multiply as clonal populations. Since there is a pre-amplification step in 

the first mouse before cloning. some of the resulting bloodstream hybrids are identical 

clones derived from the one genetic exchange event. For the analysis of hybrid clones 

presented in this chapter. bloodstream clones isolated from the same fly on the same day 

and which have identical genotype patterns for three minisatellites and one microsatellite 

marker. were considered to be vegetative derivatives of the same genetic exchange event. 

The nomenclature used for clone identification throughout this chapter follows that of 

Sternberg et al.. [1989]. for example clone F9/45mcl 7. is the seventh metacyclic 

trypanosome clone derived from fly 9, on day 45 post infection. 

Clones derived from mixed-infected tsetse flies have been examined using a range of 

genotypic and phenotypic markers, in particular by isoenzymes and RFLPs. From these 

studies a number of the basic features of genetic exchange in T. brucei have been defined. 

It is clear that three distinct genotypes/phenotypes of trypanosomes can be identified from 

a cross; parentals, indicating that the process of genetic exchange is non-obligatory 

[Sternberg et al .• 1989], hybrids (equivalent to Fls) [Gibson, 1989; Sternberg et al., 1989; 

Turner et al., 1990] and selfers (the products of self-fertilization) [Tait et al., 1996; 

Gibson, et al., 1997]. Analysis of markers for loci on the megabase chromosomes 

demonstrates that the majority of hybrid clones show chromosome segregation in a 

fashion that is consistent with a Mendelian system of inheritance [Turner et al., 1990]. 

The ploidy and karyotype of T. brucei has been demonstrated by a number of studies to be 

diploid and stable during mitosis at all life cycle stages examined so far [Shapiro et al., 

1984; Wells et al .• 1987; Tait et al., 1989; Tait et al., 1996; Melville et al., 1998]. 

However the karyotype may be altered by genetic exchange, for example, by the 

generation of novel sized chromosomes [Tait et al., 1993; Melville et al., 1998] and the 

raised DNA content of some hybrids [Shapiro et al., 1984; Wells et al., 1987; Gibson et 

al., 1992]. Indeed the first three hybrids isolated all had elevated DNA content 

(approximat~ly 1.5x) compared to the parental stocks [Sternberg et al., 1989]. 

Examination of those clones with raised DNA content by RFLP, isoenzyme and karyotype 

analysis by [Wells et al., 1987; Gibson et al., 1992] led to the suggestion that these clones 

were triploid. 

A number of models of genetic exchange have been proposed for T. brucei. The first 

model proposed a mechanism to explain the detection of triploids and involved the fusion 

of diploid parasites to form a tetraploid, followed by DNA loss to produce a triploid 

organism [Paindavoine et al., 1986]. As more hybrid clones were examined from a 

number of different crosses it became clear that the majority of hybrid progeny were 

diploid, which led to the suggestion that genetic exchange involved meiosis, with triploid 

hybrids being an aberrant minority [Le Page et al., 1988; Sternberg et al., 1989]. This 

hypothesis was supported by the results from a number of other crosses [Gibson, 1989; 
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Turner et al., 1990; Gibson and Garside, 1991]. However two further crosses, which 

involved the double drug selection of resistant hybrid stocks [Gibson and Bailey, 1994; 

Gibson et al., 1995], generated a far higher number of progeny with raised DNA content; 

in one case 27/32 (11114 unique clones) had a DNA content of -1.5x [Gibson and Bailey, 

1994]. This has led to the proposal of another model [Gibson, 1995] involving fusion of 

diploid cells followed by meiosis. The most recent analysis of a large collection of hybrid 

clones from three different crosses has revealed that the majority of hybrid clones have a 

diploid DNA content with only 2130 demonstrating raised DNA content, which suggests 

that triploidy is rare, at least for those particular crosses, supporting the view that genetic 

exchange is carried out by a conventional mating system [Hope et al., 1999]. The different 

models of genetic exchange are examined in more detail in the discussion (Chapter 9). 

Despite a number of successful crosses perfonned in the laboratory there are several 

specific questions regarding genetic exchange in T. brucei which still need to be 

addressed: 

1) At what stage in the trypanosome life cycle does genetic exchange take place? It is 

clear that mating occurs at some stage in the tsetse fly. Experiments involving the double 

drug selection of resistant trypanosomes by Gibson and Whittington, (1993) have 

indicated that the procyclic (midgut) stage is probably not the stage of genetic exchange, 

contradicting earlier reports of the detection of hybrid procyclics [Schweizer and Jenni. 

1991]. Further analysis of the metacyclic (salivary gland) stage indicate that they are the 

products of mating [Tait et al., 1989]. Taken together these data indicate that either the 

proventricular or the epimastigote stages may be involved in genetic exchange. 

2) Does sexual recombination follow Mendel's laws of allele segregation and random 

assortment of genes? Evidence from a number of studies, mainly using RFLPs and 

isoenzymes. suggest Mendelian inheritance, but ratios of different hybrid genotypes in the 

Fl progeny, which would confirm or refute Mendelian inheritance, have been unavailable 

because only a very limited number ofFl progeny clones have been generated. 

3) Is triploidy or diploidy the usual outcome of genetic exchange? Analysis of hybrid 

clones by pulse field gel electrophoresis, followed by Southern blotting and hybridization 

to gene probes, has indicated th.at hybrid clones inherit one homologue of each 

chromosome from each parental clone [Tait et al., 1993], suggesting a normal diploid 

Mendelian genetic system. However it is clear from the data of Gibson and colleagues 

[Gibson and Garside, 1991; Gibson and Bailey, 1994; Gibson et al., 1995], that many 

hybrid progeny clones can be trisomic for a number of chromosomes and are probably 

triploid. 

4) Are bloodstream clones, derived from a mixed-infected tsetse fly, true representatives 

of salivary gland infections, i.e. does the pre-ampIification step in the generation of 

bloodstream fonns select for particular genotypes of trypanosome? 
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5) Do the proportions of selfers, hybrids and parentals alter over time? Preliminary 

evidence suggests that hybrids are produced late in the tsetse fly infection [Schweizer et 

al., 1988; Sternberg et al., 1989]. 

6) Does self-fertilization only occur in the presence of cross-fertilization? Two studies 

have demonstrated self-fertilization in the context of cross-fertilization, but examination 

of a limited number of clones derived from single stock transmissions has not revealed 

any products of self-fertilization [Tait et al., 1996; Gibson et al., 1997]. 

7) What is the mechanism of genetic exchange? Does genetic exchange involve the 

generation of haploid gametes, which have not yet been identified, followed by fusion, or 

do diploid cells fuse and then undergo meiosis? 

8) To what extent does crossing over occur? How large is a centiMorgan in T. brucei? 

Examination of these questions has been hindered by the limited number of available 

clones derived from experiments. The aim of this chapter was to address some of the 

questions raised, using two separate approaches involving the techniques described in 

Chapters 3 and 4. 

The first approach was to generate new genetic crosses and to analyse directly individual 

metacyclic cells present in the salivary glands of tsetse flies sampled over a time course of 

infection, using the method for genotyping single trypanosomes outlined in Chapter 4. 

This would determine the proportions of the trypanosome population in the salivary 

glands that were hybrid, parental or products of self-fertilization and so indicate the extent 

of cross- and self-fertilization. Also, examination of single cells from other life cycle 

stages e.g. proventricular and epimastigote forms were planned, which could help identify 

the stage at which sexual recombination occurs and determine whether genetic exchange 

involves a haploid gamete based system. 

The second approach was to examine the existing hybrid and parental material already 

available from previous crosses using the newly identified mini- and microsatellite 

markers, to determine if hybrid formation follows Mendel's laws of allele segregation and 

random assortment and if triploidy is a normal outcome of genetic exchange. Also, since 

the uncloned bloodstream trypanosomes from mice which had been bitten by mixed

infected tsetse flies were available ~s frozen stabilates. new clones from the old crosses 

could easily be generated, greatly increasing the number of hybrid clones available for 

analysis. 

Marker analysis of hybrid clones has previously relied on isoenzyme, RFLP and 

karyotype analysis. This study, which is focused on the inheritance of the megabase 

chromosomes, uses the highly informative markers described in Chapter 3 to analyse the 

clones derived from genetic crosses. The four mini- and microsatellite loci are highly 

informative, genetically interpretable markers, with each marker being able to distinguish 

between all four alleles in the parental clones STm 386 and TREU 927/4. This should 

allow the identification of the 256 potential Fl genotypes. The high discriminating power 
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of these markers should also be able to identify the majority of selfers. Selfers can be 

distinguished from parental clones, as in 50% of loci where the parents are heterozygous, 

the selfers will be homozygous. Therefore one heterozygous marker can identify 

approximately 50% of selfers, two markers can identify 75%, three markers can identify 

87.5% and four markers, 93.75%. 

Results and Discussion 

Attempted crosses. Attempts were made to generate new genetic crosses. The method 

for generating the new genetic cross was similar to that outlined in Figure 5.1, whereby 

two genetically distinct parental stocks were co-transmitted through tsetse flies. However 

as well as generating bloodstream or metacyclic clones from these parasites, it was 

intended that single metacyclic andlor epimastigote cells from the salivary glands of the 

mixed-infected tsetse flies would be analysed directly using the single trypanosome 

genotyping method described in Chapter 4. In this way large numbers of cells could be 

analysed directly. The analyses of metacyclics and epimastigotes would identify the life 

cycle stage at which mating takes place. Also the proportions of trypanosomes with 

parental and recombinant genotypes present in the salivary glands could be determined 

and so indicate the extent of cross and self-fertilization. In order to ascertain if these 

proportions change over time in individual tsetse flies, metacyclic stage trypanosomes 

could be obtained from the flies without dissection, by allowing the tsetse flies to probe 

into mouse serum. 

The parental stocks STill 386 and TREU 927/4 were chosen for the crosses because they 

are both heterozygous for different sized alleles for the minisatellites described in Chapter 

3 and so are the most informative combination of stocks. These stocks have previously 

been successfully crossed so few problems in generating a cross were anticipated. 

In the first experiment 200 teneral tsetse flies (provided by I. Maudlin and S.C. Welbum) 

were fed blood containing a 1: 1 mixture of the two parental stocks STill 386 and TREU 

927/4. After three weeks the tsetse flies were allowed to probe onto microscope slides (as 

described in Materials and Methods) and the saliva was examined by phase contrast 

microscopy for the presence of try~anosomes. Those probes which contained metacyclic 

stage trypanosomes were analysed by microsatellite PCR. (Figure 5.2 is an example of the 

PCR amplification of the TIM locus from fly probes, illustrating that it is possible to 

identify the genotypes present in the saliva of the tsetse flies and to distinguish mixed

infected flies (for example Figure 5.2, lane 6) by this method). In this way the proportion 

of flies harbouring mixed or single stock metacyclic infections was determined. 
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Figure 5.2. Amplification by peR of the T I M locus from 17 tsetse fly 
probes. Tsetse fly probes from flies harbouring salivary gland infections from a STill 
386 x TREU 927/4 cross (3:1 ratio) were obtained as described in Materials and Methods. 
Deionised water (1OJ.11) was added to each slide, mixed with the dried saliva, transferred to 

a PCR microtube and heated to 95°C to disrupt any intact cells. One J.11 of each sample was 
amplified using primers TIM-E and TIM-F described in Materials and Methods. PCR 
conditions were as follows; 95°C for 50sec., 64°C for 50sec. and 70°C for 50sec. for 30 
cycles. The products were separated on a 3% Nusieve agarose gel, stained with ethidium 
bromide and visualised by UV illumination. Lane 1, control STill 386; lane 2, control 
TREU 927/4; lanes 3-19 examples of fly probes. 

The proportions of metacyclic infections from the first attempted cross are illustrated in 

Figure 5.3A. It is evident from this pie chart that the majority (87%) of tsetse flies did not 

appear to harbour metacyc1ic infections, however the proportion of metacyclic infections 

(13%) is within the 'normal' range (10-20%) for this species of tsetse fly (Glossina 

morsitans) under these conditions [A. Tait, personal communication]. It is also apparent 

from Figure 5.3A that only TREU 927/4 genotypes were detected in the tsetse saliva. It 

was not clear at this stage why no STm 386 genotypes were detected. Two possibilities 

existed; STm 386 had not established midgut infections or the STIB 386 trypanosomes 

had not progressed from the midgut to the salivary glands. It has been reported previously 

that STill 386 has a lower transmission index and so is less efficient at generating salivary 

gland infections from midgut infections than other stocks [I. Maudlin and S. Welbum, 

personal communication]. 

In order to determine if STm 386 had established midgut infections, ten tsetse flies were 

dissected by M. Hope and 1 J.11 of each of the midgut contents was analysed by PCR (under 

the same conditions as described i~ Figure 5.2). The results are illustrated as a pie chart in 

Figure 5.3B. From this small sample, it would appear that no flies had midgut infections 

established by STill 386 alone, while 60% had been infected solely with TREU 927/4 and 

33% contained mixtures. Thus, while mixed infections had been established, there was a 

bias with TREU 927/4 establishing in the midgut more effectively than STIB 386. It 

would appear that a combination of a lower midgut infection rates and a lower 

transmission rate were responsible for the lack of STill 386 salivary gland infections. To 

bias the second cross in favour of STm 386, and thus compensate for initial lower midgut 

infections and a lower transmission index, 300 tsetse flies were fed on a 3: 1 ratio of STm 
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Figure 5. 3. Pie charts of tsetse fly infections. 
(A) Proportions of tsetse salivary gland inftx;tions from flies feed on a 1:1 mixtureof 
S1IB 386 and TREU 927/4. S1IB 386 genotype 0%, TREU 927/4 genotype 13%, 
mixed genotype 0% and uninfocted 87% . n= 100. 
(B) Proportions of tsetse midgut infoctions from flies feed on amixture(l: 1) ofSTIB 
386 and TREU 927/4 . S 1IB 386 genotype 0%, TREU 927/4 genotype 60%, mixed 
genotype 33% and uninfocted 7% . n= 15 . 
(C) Proportions of tsetse salivary gland inftx;tions from flies feed on a 3:1 mixtureof 
S1IB 386 and TREU 927/4. S1IB 386 genotype 5.9%, TREU 927/4 genotype 5.3%, 
mixed genotype 8.2% and uninfocted 80.6%. n= 170. 
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386 to TREU 927/4 bloodstream stage trypanosomes. The results of the PCR 

amplification of the TIM microsatellite locus from fly probes of infected flies is given in 

Figure 5.2, in which mixed-infected flies can be identified (Figure 5.2, lane 6). In Figure 

5.3C the proportions of metacyclic infections obtained from this cross (24 days post 

infection), is given as determined by fly probe PCR. It is evident that by altering the ratios 

of the parental stocks, mixed-infected flies could be obtained at a fairly high frequency 

(8.2%). However the poor viability of these tsetse flies precluded any further work on the 

analysis of the mixed-infected flies. Numerous attempts at more crosses involving 

thousands of flies also failed due to a drop in viability of the tsetse colony. 

Analysis of material from existing crosses. The second approach to the analysis 

of genetic exchange in T. brucei was to examine clones derived from previous crosses, to 

generate new clones from these crosses and to analyse all of these clones using the highly 

informative mini satellite markers, MS42, CRAM and 292, described in Chapter 3 and the 

microsatellite, JS2, described in Chapter 4. This approach would generate a great deal of 

data regarding the inheritance of minisatellite markers and so provide an insight into the 

process of genetic exchange in T. bruce~ although it could not indicate at what life cycle 

stage mating occurs. 

Generation of new hybrids. Three types of crosses have been successfully 

performed in this laboratory, as described in Figure 5.1, STill 247 x STill 386, STIB 247 

x TREU 927/4 and STill 386 x TREU 927/4 [Turner et al., 1990]. and 38 hybrid clones 

from these crosses were available for analysis. Bloodstream trypanosomes from mice 

which had been bitten by mixed-infected tsetse flies (Figure 5.1B) were also available as 

frozen stabilates. Stabilates from the STIB 386 x TREU 927/4 cross and the STIB 247 x 

STill 386 cross were thawed and single trypanosomes were isolated optically and regrown 

in mice. In this way the total number of clones derived from all crosses was increased 

from 91 to 156. All new clones were generated by A. Tait, using the method described in 

Turner et al., (1990). 

Inheritance' of minisatellite markers -analysis of all clones derived from 

crosses. Crude lysates from the infected mouse blood of each clone were prepared as 

described in Chapter 2 and by MacLeod et al., [1999] and analysed by PCR using the 

mini- and microsatellites, MS42, CRAM,292 and JS2. Two amplified fragments of 

different sizes were detected in the parental stocks STill 386 and TREU 92714 for all four 

markers and presumed to represent allelic variation in the number of repeat units, with 

each stock being heterozygous for different sized alleles (see Chapter 3, Figure 3.1). Only 

one amplified product was detected in the parental stock, STIB 247 for markers CRAM, 

MS42 and 292, and so the stock was presumed to be homozygous for these markers. For 

JS2 two bands were generated for STm 247 suggesting that this stock is heterozygous for 

this marker. 
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Analysis of all clones derived from the three crosses, indicated that the majority of clones 

fall into one of three categories; parentals, selfers and Fl hybrids. The results for all four 

markers for every clone derived from the crosses are presented in Table Al of the 

appendix. 

Parental clones. A large percentage (44%) of clones derived from mixed-infected tsetse 

flies demonstrate the same allelic pattern as one of the parents for all markers analysed 

(Table A 1 of the appendix). This suggests that sexual recombination is not obligatory. 

F 1 hybrids. Hybrid clones were identified as having two PCR amplified bands which 

correspond to one band from each parent (for example, see Chapter 3, Figure 3.2). This 

demonstrates that the variable size PCR products are different alleles which appear to be 

inherited in a classical Mendelian manner i. e. most combinations of the parental alleles are 

observed in the Fl progeny. Hybrid clones which possessed three alleles for one or more 

markers were considered trisomic or triploid and are discussed in the following section. It 

is also clear from the patterns of allele inheritance shown in Figure 3.2 A and B (Chapter 
3) that the alleles for the minisatellite loci CRAM and 292 are inherited independently of 

each other. For example, hybrids F296/44bscl4 and F296/39bscl7 have inherited the same 

alleles for the CRAM locus, allele 1 from STill 386 and allele 4 from TREU 927/4 (Fig. 

3.2 A, lanes 5 and 6) but for the 292 minisatellite, these two hybrids have inherited 

different parental alleles (Fig. 3.2 B, lanes 5 and 6), indicating that the two loci are 

inherited independently. Examination of all hybrid clones from all three crosses for the 
micro- and minisatellite loci (see Table 5.1) also indicate the independent assortment of 

alleles at these loci. This independent assortment of alleles was expected for all four 

markets, as they are located on different chromosomes [Lee et al., 1990; Lee et al., 1994; 

Barrett et al., 1997; Sasse, 1998]. Analysis of the largest collection of hybrids from one 

cross (STill 247 x TREU 927/4) for all pairwise combinations of markers using the '1.. 2 test 

of independence, did not detect any linkage disequilibrium (MS42ICRAM, '1.. 2 = 0.225, 

d.f.= 1, P>0.5; CRAM1292, '1..2 = 0.622, d.f.= 1, P>0.3; MS421292, '1..2 = 0.035, d.f.= 2, 

P>0.95; MS42IJS2, '1..2 = 0.1, d.f.= 2, P= 0.95; CRAMIJS2, "I: = 0.11, d.f.=2, P=0.95; 

292/JS2, '1..2=0.389, d.f.= 2, P>0.7; for every comparison, the genotype classes with the 

lowest expected values were merged to raise the expected value to 5 or more). 

Analysis of all 156 clones derived from crosses revealed that 81 were hybrids, 53 of which 

were the products of unique events. Full marker analysis for all clones derived from the 

three crosses is presented in Table Al of the appendix, and for unique hybrid clones in 

Table 5.1 A-C. 
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Table 5.IA STIB 247 x TREU 92714 
Clones GUP Lysate Markers Comments 

no. no. Cram 292 MS42 ]S2 
Reference 247 1-1 5-5 5-5 5-6 
Reference 927/4 3-4 3-4 3-4 3-4 
F124/28 bsc1 Al 68 1-3 3-5 3-5 3-5 Hybrid 
F124/28 bsel A6 72 1-3-4 3-4-5 3-4-5 nd Mix or 

triploid 
F124/28 bsel B3 73 1-4 3-5 4-5 4-6 Hybrid 
F 124/28 bsc1 CS! 71 1-4 3-5 4-5 4-6 Hybrid 
F532/53 mcl 1 3114 107 1-3 3-5 3-4-6* 4-5 Hybrid-

mutant! 
trisomic 

F532/63 bsc1 2 80 1-4 3-5 3-5 3-6 Hybrid 
F532/63 bsc1 3 78 1-4 4-5 4-5 4-5 Hybrid 
F532/63 bsel 5 81 1-3 3-5 4-5 3-6 Hybrid 
F532/63 bscl 7 79 1-4 4-5 4-5 3-6 Hybrid 
F532/63 bscl 8 82 1-4 4-5 4-5 3-5 Hybrid 
F532n2 mell 3128,439184 1-4 4-5 3-5 3-5 Hybrid 
F532n2 mc12 3129 85 1-4 4-5 3-5 4-5 Hybrid 
F532n2 mel3 3130 86 1-4 4-5 4-5 4-5 Hybrid 
F532n2 mel4 3131 87 1-4 4-5 3-5 3-5 Hybrid 
F532n2 mc15 3132,4392 88 1-4 4-5 4-5 3-5 Hybrid 
F532n2 mc16 3133,4393 89 1-3 3-5 3-5 4-5 Hybrid 
F532n2 mc17 3134 90 1-4 4-5 4-5 4-6 Hybrid 
F532n2mel9 3136,436692 1-4 4-5 4-5 3-6 Hybrid 
F532n2 mc110 3135,436091 1-4 3-5 4-5 4-5 Hybrid 
F974nOmel4 3086 77 1-4 3-5 4-5 3-5 H~brid 

Table 5.IB STIB 386 x TREU 927 14 
Clones GUP Lysate Markers Comments 

no. no. Cram 292 MS42 ]S2 
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Table S.IC STIB 247 x STIB 386 
Clones GUP Lysate Markers Comments 

no. no. Cram 292 Ms42 JS2 
Reference 247 1-1 5-5 5-5 5-6 
Reference 386 1-2 1-2 1-2 1-2 
1723 VI-L2~"''''''''''''''-''"'''··-"'''!·-·'''"'''·''''·153··'''-'-iid··¥''''--''ifd·''""''''~~'T:2~5''''''''''iid '~~'~""~·TrIploi~1''"'·''''1 

i723CAB,~.""_,,,~,~.;,,,,",,.~".,;.._.;.lS4d .. ,,,_,nd ,,,..,,,,,,",~,,,,.nd ,~_" .. '" t:;:2:.~ ... ",,,.nd .• , .. , .... M. Trip~oi(L""_,J 
F9/34 md 1 37 1-1 2-5 1-5 2-5 Hybrid 
F9/4S mcl2 3300 30 1-2 1-5 2-5 I-S Hybrid 
F9/45 mcl 7 32 1-2 1-5 I-S I-S Hybrid 
F9/4S mcl9 3290 33 1-1 2-5 1-5 1-6 Hybrid 
F9/45 mdlO 3291 34 1-1 2-5 I-S 1-6 Hybrid 
F9/45 md 11 3287 35 1-2 1-5 1-5 1-5 Hybrid 
'1:'9/45" .... "1'12 ""~-3288 :"''1296''36 """''''''''''''1':1 '''''"'',..,,'! 2:S '·1>"!·~'~"r:2:;5'm-·F5·"""n"'·'·TriSom ·C""·'·'~ ~; , ,m<;::,,,,,,., <.,,\')""~~, . ,t,lil .... «,,~."''''' .,.~~""""c. "" .. .:.::..-.oiJ~,.... ,iW{~~, .... ,., 1'._ " ... ,..,.,~,:;." <, .... ~~ .. ,.;... ., 1 , .... ,~,.""'l,iIi/jI 
F492/50 mcl12 2843 39 1-2 1-5 1-5 2-6 Hybrid 
F492/50 mcl13 2856 40 1-1 2-5 1-5 1-6 Hybrid 
F492/50 bsc1 1 1-1 2-5 I-S 2-6 Hybrid 
F492/50 bsc1 2 1-1 I-S 1-5 2-6 Hybrid 
F492/50 bsc1 3 1-2 1-5 1-5 2-6 Hybrid 
F492150 bsCl 6""~~""'-"'--"~"""""''--1::'2'~''1:5"''"~- [':2'::5 "~"l':S-"""'''''Trisomic''' ,., 
,. . .... ' "'" "- , ",' " "'. ,.. .' ,j 
F492/50 bsc1 7 1-2 2-5 1-2-5 1-6 Hybrid -mix 

or trisomic 
F492/50 bsc18 1-1 2-5 1-5 1-6 Hybrid 
F492/50 bsc1 9 1-2 1-5 2-5 2-5 Hybrid 
F492/50 bsc111 1-2 1-5 1-5 2-5 Hybrid 
F492/50 bsc1 12 1-1 2-5 2-5 2-5 Hybrid 
:F4921S0 bscr14 ~~"~-"'·"'7I:r---l::2~5'~1:·5>~'~r:6~""'':-Trisoiriic~'''''] 
F492/50 bscl 16 1-2 1-2-5 1-2-5 nd Hybrid -mix 

or triploid 

Tables 5.1 A-C. Mini- and microsatellite analysis of unique hybrid 
trypanosome clones. (A) Cross STIB 247 x TREU 927/4. (B)Cross STIB 386 x 
TREU 924/4. (C) Cross STIB 247 x STIB 386. Column 1 indicates the hybrid clone 
identification number used throughout this study. Columns 2 and 3 give additional 
identification numbers Le. stabilate and lysate numbers. Columns 4-7 give the results of 
mini- and microsatellite analysis. Alleles are numbered 1-5 for the minisatellites, CRAM, 
292 and MS42, and 1-6 for the micro satellite JS2. Column 8 gives the interpretation of 
results for each clone. Bloodstream clones from the same tsetse fly, sampled on the same 
day and exhibiting the same pattern for all markers were considered vegetative derivatives 
of the one sexual recombination event and are represented in this table by one clone. The 
complete set of results incorporating all clones derived from genetic crosses (including 
clones of parental genotype) is presented in Table 1 of the appendix. (I indicates clone 
differs from other bloodstream clones by other markers not presented here). Each 
metacyclic clone was considered to be a product of a unique event. Clones exhibiting 
three band patterns for one of the markers were considered either a mix or trisomic 
(lightly shaded rows). Clones which maintained their three band pattern after recloning 
were considered trisomic (shaded rows). Clones were considered triploid if a three band 
pattern was obtained for all markers analysed (shaded rows). 2 indicates original hybrid 
clones identified by Jenni et al., in 1986. Analyses of parental clones are given in rows 1 
and 2 of each table, for reference. 
GUP, Glasgow University Parasitology; nd, not determined. * indicates novel sized 
mutant allele. 
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Assuming a Mendelian system of inheritance, there are 32 possible progeny genotypes 

which can be detected from the crosses, STIB 247 x STIB 386 and STIB 247 x TREU 

927/4, where one parental clone is heterozygous and the other is homozygous for three 

markers (CRAM, 292 and MS42) and both are heterozygous for the fourth marker (JS2). 

For the STIB 247 x TREU 927/4 cross, 13 different genotypes were detected out of 18 

hybrids (triploids and trisomics were excluded), with five genotypes being detected twice. 

No genotypes were detected three times. Similarly for the STIB 247 x STIB 386 cross, 10 

different genotypes were detected in 15 hybrids with two genotypes being detected twice 

and one genotype being detected four times. 

In order to test if the ratio of different hybrid genotypes detected was in agreement with 

those predicted by Mendelian segregation ratios, the two largest data sets of unique 

hybrids (excluding triploids and trisomics), STIB 247 x TREU 927/4 (18 unique hybrids) 

and STIB 247 x STIB 386 (15 unique hybrids) were analysed. A comparison of the 

observed frequency of different hybrid genotypes to the expected genotypes assuming 

Mendelian inheritance, was made for each marker in turn, using the "l test of homogeneity 

(Table 5.2). For Table 5.2 the STIB 247 alleles were not included as they were 

uninformative. 

Cross Marker sTIll 386 observed 
or TREU (expected) 
92714 
alleles 
inherited 

d.f. Accept/ 
reject Ho 
significance 
of 0.05 

STIB 247 x TREU 927/4 CRAM 3 3 (9) reject 
4 15 (9) 8 1 P<O.OI 

292 3 8 (9) accept 
4 10 (9) 0.22 1 0.7>P>0.5 

MS42 3 6 (9) accept 
4 12 (9) 2 1 0.2>P>0.1 

JS2 3 10 (9) ~. accept 
4 8 (9) 0.22 1 c 0.7>P>0.5 

STIB 247x STIB 386 CRAM 2 7 (7.5) , accept 
1 8 (7.5) 0.07 1 0.9>P>0.7 

292 1 8 (7.5) accept 
2 7 (7.5) 0.07 1 0.9>P>D.7 

MS42 1 12 (7.5) reject 
2 3 (7.5) 5.4 1 0.05>P>0.01 

JS2 1 7 (7.5) accept 
2 8 (7.5) 0.1 1 O.9>P>0.7 

Table 5.2. Test for Mendelian inheritance of each marker from the two 
crosses STIB 247 x STIB 386 and STIB 247 x TREU 92714. Column 3 
indicates the genotypes for each marker examined. Column 4 gives the observed and 

expected numbers of genotypes. The 'I} value and degrees of freedom are presented in 
columns 5 and 6, respectively. Column 7 indicates the acceptance (shaded) or rejection of 
the null hypothesis at the 0.05 level of significance. 

From the data presented in Table 5.2, although from a small sample size, appears to 
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indicate that the majority of markers do not show deviation from the allele segregation 

predicted by Mendelian inheritance. The CRAM locus for parental stock TREU 927/4 and 

the MS42 locus for STm 386, however, are not in agreement with the null hypothesis of 

Mendelian allele segregation. This segregation distortion could be because unequal 

numbers of the different gametes are produced or selection could favour one particular 

genotype over another. 

The third cross, STIB 386 x TREU 927/4, is the smallest data set with only 12 unique 

hybrids all originating from one fly, including one triploid and two samples which could 

be either mixed or trisomic (see following sections). Both parental stocks for this cross are 

heterozygous for each marker, therefore the number of possible distinct progeny 

genotypes predicted for each marker is 4, and 256 for all four markers combined. 

Examination of the different genotypes detected from this cross, numbered 1-7, (excluding 

triploids and bloodstream clones from the same fly and day, which appeared identical), is 

presented in Table 5.3. It is clear from this table that three genotypes have been detected 

twice and one genotype three times. Given that there are 256 different genotypes, 

assuming Mendelian inheritance, then it would be highly unlikely that one genotype 

would appear three times (P = 1.5 X 10.4
) by chance and another two genotypes appear 

twice (P = 3.9 x 10-3
) out of a sample size of 12. This is especially true for the genotype 

which appears to be trisomic, a usually rare event (see following section), which has been 

detected twice in this fly. 

Table 5.3. Different trypanosome genotypes detected from fly 296 
sampled at different time points. Column 1 indicates the different hybrid 
genotypes detected from this fly. Co.1umns 2-5, gives the different genotypes sampled on 
days 39,42,44 and 56 respectively. Column 6 provides the number of times the genotypes 
were sampled over the time course. Identical genotypes sampled on the same day were 
removed from this analysis. 

There are several possible reasons for these results: 1) Since most of the hybrids from this 

cross are bloodstream clones, it is possible that the pre-amplification step before cloning, 

could select for particular genotypes. Although identical bloodstream clones from the 

same day have been removed from this analysis, it is possible that the same hybrid 

genotypes are selected for at each time point. 2) It is possible that selection for particular 
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genotypes occurs in the salivary glands, with certain genotypes not being viable. 3) There 

is an amplification step in the salivary glands of the tsetse flies. It has been assumed that 

since metacyclics are non-dividing, there is no amplification in the salivary glands. 

However it is possible that hybrids are generated as epimastigotes which then produce a 

number of hybrid metacyclics with the same genotype. 4) The sexual recombination 

process is not Mendelian. 5) Matings involving STrn 386 and TREU 927/4 may be more 

problematic than the other crosses, with a high proportion of triploids and trisomies being 

detected with STm 386 chromosomes (see following sections). It is therefore conceivable 

that only a few cells successfully undergo sexual recombination or many of the progeny 

are selected against. 

To summarise, it would appear that the majority of hybrid clones demonstrate allelic 

segregation for the mini- and microsatellite loci examined. The ratios of the different 

hybrid genotypes are broadly in agreement with those expected from a Mendelian system 

for the two crosses, STm 247 x TREU 927/4 and STm 386 x STm 247. The third cross, 

however, does not appear to follow Mendelian ratios, perhaps due to selection of different 

hybrid genotypes or limited mating in the salivary glands generating a restricted number 

of hybrid genotypes which proliferate in the salivary glands. The independent assortment 

of alleles at different loci has also been demonstrated for the four loci examined. Taken 

together, the data provide evidence to suggest that the sexual process in T. brucei follows 

a broadly Mendelian system. 

Selfers. The third class of clone derived from genetic crosses of T. brucei is a result of 

self-fertilization, which has been demonstrated previously in a fly co-infected with STm 

247 and STrn 386 [Tait et al., 1996]. The products of self-fertilization, 'selfers', would be 

expected to be homozygous for approximately 50% of the markers for which the parental 

stock is heterozygous. In the analysis carried out by Tait et al., five products of STIB 247 

self-fertilization were identified using a combination of isoenzyme, RFLP and karyotype 

analysis. 

Using four markers for which the parental stock is heterozygous, approximately 93.75% 

of all selfers should be identifiable. Since the parental stocks TREU 92714 and STIB 386 

are heterozygous for all four mini- and microsatellites, the majority of TREU 927/4 and 

STIB 386 selfers would be identified using the minisatellites described. However, for 

STm 247 only 50% of selfers would be detected because JS2 is the only heterozygous 

marker. From the analysis of 156 clones derived from the three crosses, 75 clones had a 

non-hybrid genotype (Table 5.4 A-C). Thirty-nine non-hybrid clones were derived from 

TREU 927/4, and only one possible TREU 927/4 selfer, F296/46mcl 1, was identified. 

This clone was homozygous for the 292 minisatellite marker (Figure 5.4, lane 4). Lanes 1-

3 of this figure illustrate the normal Mendelian inheritance of this marker for hybrid 

clones, with lanes 5 and 6 being the parental stocks, TREU 927/4 (genotype 3-4) and 
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Table S.4A STIB 247 x TREU 92714 

Clones GUP Lvsate Markers 
no. no. CRAM 292 MS42 )S2 

Comments 

Reference 247 1-1 5-5 5-5 5-6 
Reference 927/4 3-4 3-4 3-4 3-4 
F124/28 bsd B 1 69 . 3-4 3-4 3-4 nd Parental 
F124/28 bsd C3 75 3-4 3-4 3-4 nd Parental 
F124128 bsd C2 70 3-4 3-4 3-4 nd Parental 
F974170 mell 3083 93 1-1 5-5 5-5 5-6 Parental 
F974170 mel2 3084 94 1-1 5-5 5-5 5-6 Parental 
F974170 mel3 3085 95 1-1 5-5 5-5 5-6 Parental 
F974170 md 6 3088 96 3-4 3-4 3-4 3-4 Parental 
F974170 md 7 3089 97 3-4 3-4 3-4 3-4 Parental 
F974170 md8 3090 98 1-1 5-5 5-5 5-6 Parental 
F974178 mell 3092 99 3-4 3-4 3-4 3-4 Parental 
F974178 md2 3093 100 1-1 5-5 5-5 5-6 Parental 
1t:' .. 974n.· f.r:mcr3"'·r;:;···3094"'":"~"'''''''lOl''-I":n·1: 1 ~:~'5:S""'''''''''''' S:s·~:~uu","."l' S:S "~"""~""'Selfer "".' ... "r!'.'''~ 
,..:" ',,, x "*",.,:..::.:,,, ,H.'··'>""~:. "'" ,}i;o:~~~~,., ,~i~~,,""A"~~';'_"'~'~" '>""""~~"""". ,~,,~,~~~!~, '."'··,,,-,,, .. ,,.ilfI'.'··"~I\oi'/i~ 
F974178 mel4 3095 102 3-4 3-4 3-4 3-4 Parental 
F974178 mel6 3096 105 1-1 5-5 5-5 5-6 Parental 
F974178 md 7 3097 106 1-1 5-5 5-5 5-6 Parental 
Table S.4B STIB 247 x STIB 386 

Clones GUP Lvsate Markers Comments 
no. no. CRAM 292 MS42 JS2 
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Table 5.4C STIB 386 x TREU 927 14 
Clones GUP Lysate Markers Comments 

no. no. CRAM 292 MS42 JS2 
Reference 386 1-2 1-2 1-2 1-2 
Reference 927/4 3-4 3-4 3-4 3-4 
F296/42 bsel 5 3203 22 3-4 3-4 3-4 3-4 Parental 
F296/42 bsel6 3210 23 3-4 3-4 3-4 3-4 Parental 
F296/42 bsel 11 3208 24 3-4 3-4 3-4 3-4 Parental 
r296!46]:n9rJ:=3196:::=12==='3~==~4:4'~,.=:.3~=.:::3:4''''::"Selfei.:::::::1 
F296/46 mel 2 3197 13 3-4 3-4 3-4 3-4 Parental 
F296/56 mell 3218 14 3-4 3-4 3-4 3-4 Parental 
F296/56 mel2 3219 15 3-4 3-4 3-4 3-4 Parental 
F296/56 mel3 3212 16 3-4 3-4 3-4 3-4 Parental 
F296/56 mel 4 3213 17 3-4 3-4 3-4 3-4 Parental 
F296/56 mel5 3214 18 3-4 3-4 3-4 3-4 Parental 
F296/56 mel 7 3220 19 nd 3-4 3-4 3-4 Parental 
F296/56 mel 8 3216 20 3-4 3-4 3-4 3-4 Parental 
F296/56 mel 9 3217 21 3-4 3-4 3-4 nd Parental 
F296/39 bscl 1 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 4 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 8 nd nd 3-4 3-4 Parental 
F296/39 bscl 10 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 11 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 13 nd 3-4 3-4 3-4 Parental 
F296/39 bscl 14 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 16 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 18 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 32 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 40 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 41 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 44 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 58 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 59 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 2212 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 23/3 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 2612 3-4 3-4 3-4 3-4 Parental 
F296/39 bsel 57 nd nd 3-4 3-4 Parental 

Table 5.4 A-C. Mini- and microsatellite analysis of selfers and parental 
clones derived from genetic crosses. (A) Cross STIB 247 x TREU 927/4. (B) 
Cross STIB 247 x STm 386. (C) Cross STm 386 x TREU 924/4. Column 1 indicates the 
clone identification number used throughout this study. Columns 2 and 3 give additional 
identification numbers i.e. stabilate and lysate numbers. Columns 4-7 give the results of 
mini- and rnicrosatellite analysis. Alleles are numbered 1-5 for the minisatellites, CRAM, 
292 and MS42, and 1-6 for the microsatellite JS2. Column 8 gives the interpretation of 
results for each clone. Shaded rows indicate possible selfers i.e. the products of self
fertilisation. Analysis of parental clones is given in rows 1 and 2, for reference. 
* indicates previously identified selfers [Tait et al., 1996]. 
GUP, Glasgow University Parasitology. nd, not determined. 
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3 4 5 6 

Figure 5.4. Minisatellite marker analysis of hybrid clones, including a 
putative 927 selfer. PCR amplification of minisatellite marker, 292, from parental 
stocks and hybrid clones. PCR conditions were as described in Materials and Methods. 
The products were size separated on a 1 % Seakem agarose gel and visualised by 
ethidium bromide staining. Lane 1, F296/39bscl 6; lane 2, F296/39bscl 2; lane 3, 
F296/56mcl6; lane 4, F296/46mcll; lane 5, TREU 927/4; lane 6, STIB 386. 
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STm 386 (genotype 1-2), respectively. From this figure it is clear that clone, F296/46mcl 

1 has only inherited allele 4 and not allele 3 from the parental stock TREU 92714. For all 

other markers examined, this clone was identical to TREU 927/4. To investigate if allele 3 

was present in the clone, but amplified poorly in the peR reaction, this gel was Southern 

blotted and hybridized to the 292 probe (data not shown). No trace of another 

amplification product other than allele 4 was detected. 

No STm 386 parental clones or STIB 386 se'lfers were identified from any of the crosses. 

The lack of parental STm 386 genotypes is consistent with the previous observation that 

STIB 386 has a lower transmission index than the other two stocks. To explain this 

observation assuming that equal proportions of midgut infections for each stock was 

achieved in a co-transmission experiment, STm 386 would not progress to the salivary 

glands until after the other stock (either STm 247 or TREU 927/4) had established 

infections there. It would appear that as soon as STm 386 infected the salivary glands it 

began to mate with the stock which was already established there, producing only hybrids. 

The parental stock STm 247 is only heterozygous for one marker, JS2. Therefore only 

approximately 50% of all STm 247 selfers could be identified using this marker. In this 

analysis, of the 37 non-hybrid clones derived from STm 247, five selfers were identified 

(two of which had previously been identified by Tait et al., 1996) bringing the total of 

STm 274 selfers identified to date to seven (six are described in Table 5.4 A and B, the 

other in [Tait et al.. 1996]). Since only -50% of selfers can be detected by the 

microsatellite marker JS2. it is predicted that approximately 10 selfers are present in the 

37 nori-hybrid clones (27%). This is in marked contrast to the proportion ofTREU 927/4 

selfers, which constitutes 2.6% of the non-hybrid clones, almost a 10 fold difference. This 

could indicate that STIB 247 undergoes self-fertilization more readily that TREU 927/4. 

In total eight selfers have been identified from the three crosses. The availability of 

multiple heterozygous markers for each parental stock allows the detection of selfing with 

a high degree of sensitivity, identifying two further STm 247 selfers and a TREU 927/4 

selfer, which were not identified using isoenzymes or RFLPs [Tait et al.. 1996]. The high 

level of heterozygosity exhibited by mini- and micro satellites makes them particularly 

useful in this context. 

However, one concern regarding the identification of selfers from the PCR analysis of 

minisatellite markers is the possibility that the homozygosities detected for these markers 

were not genuine, i.e. they were heterozygotes in which one allele has failed to amplify, 

for this reason all PCR amplifications were performed in duplicate. However, to confirm 

that each stock was indeed a selfer and homozygous for that particular marker, a genomic 

Southern of each stock should be performed. Further examination of these clones, such as 

karyotype analysis would also help to confirm (or refute) the initial interpretation that 

these clones were the products of self-fertilization. Full analysis of all parental and selfer 

clones from the three crosses are presented in Table S.4. 
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Examination of clones derived from single stock transmissions was also undertaken using 

one of the minisatellites [Barrett et al., 1997](Chapter 3, Table 3.1), initially to test for 

minisatellite stability (see Chapter 3), but these experiments would also detect any STIB 

386 or TREU 927/4 selfers generated during single stock transmissions. However no 

selfers were detected from the 19 stocks examined (although this is not surprising if only 

2.6% of TREU 927/4 non-hybrid clones are selfers). Similar analysis of clones derived 

from single stock transmissions by Tait et al., [1989 and by Gibson et al., [1997] have not 

demonstrated selfing. The fact that self-fertilization has only been detected in the context 

of cross-fertilization suggests that the sexual process is only induced when two stocks 

interact with each other, perhaps through the secretion of pheromones [Gibson et al., 

1997]. 

Triplaids. It is clear from the analysis presented in Table 5.1, that the vast majority of 

hybrid clones were equivalent to Fl hybrids, consistent with a Mendelian genetic system 

and that diploidy is usually maintained, at least for the four markers on different 

chromosomes analysed here. 

DNA content analysis by flow cytometry on 30 of these hybrids, performed by M. Hope 

[Hope et al., 1999], indicated that the majority of hybrids had DNA contents within the 

parental range, denoting the maintenance of diploidy. However, two clones, F296/44bscl2 

and F296/44bscl 7, appear to have raised DNA contents of 1.6x and 1.5x those of the 

parents, respectively. 

Analysis of these clones using the three minisatellite and one microsatellite markers 

indicated that these clones had inherited three alleles for each marker; both alleles from 

one parent (STIB 386) and one from the other (TREU 927/4). Figure 5.5 illustrates the 

inheritance patterns for all four markers for two normal diploid hybrids (lanes 3 and 4) 

and the two hybrids with raised DNA content, the putative triploids, (lanes 5 and 6). The 

results indicate that clones F296/44bscl 2 and 7 are probably trisomic for each 

chromosome tested and together with results from the DNA content analysis, suggest that 

these clones· are triploid. Since these clones have identical marker profiles and are 

bloodstream clones from the same fly, sampled on the same day, it is likely that these 

clones are vegetative derivatives of.the one genetic exchange event. 

To rule out the possibility that these extra alleles were due to DNA contamination in the 

PCR reactions, a Southern blot using Pst I digests of genomic DNA of one of the putative 

triploid clones and several diploid hybrid clones was performed and hybridized to the 

MS42 repeat probe (see Chapter 2 for a description of the probe). Figure 5.6 illustrates an 

autoradiograph obtained from the genomic Southern. The results confirm the PCR data 

demonstrating that the normal diploid clones have inherited two alleles one from each 

parental clone (lanes 3-5) and clone F296/44bscl 2 (lane 7) has clearly inherited both 

alleles from parental clone STIB 386 and allele 3 from TREU 927/4. The three band 

pattern in lane 6 is discussed in the following section. 
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Figure 5.5. peR amplification of mini- and microsatellite markers from 
four hybrids two of which are putative triploids. PCR amplification of mini
and microsatellites, (A) 292, (B), CRAM, (C) MS42 and (D) JS2, from DNA isolated 
from the parental stocks and hybrid clones. PCR conditions were as described in 
Materials and Methods. The products for 292, CRAM and MS42 were size separated 
on a 1 % Seakem agarose gel, for JS2 on a 3% Nusieve gel, and visualised by ethidium 
bromide staining. Lane 1, STIB 386; 2, TREU 927/4; 3, F296/44bscl 1; 4, 
F296/44bscl13; 5, F296/44bscl2; 6, F296/44bscl7. 
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Further examination of the putative triploids was carried out using Southern blots of 

chromosomes separated by pulse field gel electrophoresis [Hope et al., 1999]. There are 

11 megabase chromosomes which contain housekeeping genes [Melville et al., 1998]. 

Although not all chromosomes were informative by PFGE, the results of analysis of five 

chromosomes, indicated trisomy for each chromosome. These results, together with the 

mini- and microsatellite analysis presented above, indicate that a total of 7 chromosome 

pairs were found to be trisomic using 9 markers, strongly suggesting that these clones 

were triploid. 

From the mini- and microsatellite analysis of all the hybrid clones identified (Table AI, 

appendix for all clones, and Table 5.1 for unique hybrids only) it is clear that two other 

clones could be triploid, clone F124/28bscl A6 and clone F492/50bscl 16. It is possible 

that the sample F124/28bscl A6 is not a triploid clone but a mixture of the parental stocks. 

In order to prove that it is a genuine triploid the sample must be recloned and re-analysed 

for the minisatellite markers and for DNA content. Clone F492/50bsc! 16 appears to be 

trisomic for both MS42 and 292, which are on different chromosomes but is uninformative 

for CRAM, since the parental stocks STm 386 and STIB 247 share an allele for this 

minisatellite. Recloning of this stock followed by re-examination for the markers verified 

1 2 

9.42kb - ... ... 6.56kb -

4.36kb -

3 4 5 6 7 

Figure 5.6. Genomic Southern of hybrids, including one triploid and 
one putative trisomic clone. 5J..lg of total genomic DNA was digested with Pst I, 
electrophoresed through a 1 % Seakem agarose gel, blotted and hybridized to an MS 42 
repeat probe. Lane 1, STIB 386; lane 2, TREU 927/4; lane 3, F296/44bscl 1; lane 4, 
F296/44bscl3; lane 5, F296/44bscl8; lane 6, F296/44bsclI2; lane 7, F296/44bscl2. 
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that it was not a mixed sample (see Table 5.5). It is possible that this clone is another 

triploid, however DNA content analysis would have to be undertaken in order to 

demonstrate this. Also further analysis of this clone for the JS2 microsatellite may provide 

further evidence for/against triploidy. 

The analysis of 53 unique clones, has revealed that one clone is probably triploid [Hope et 

al., 1999] and another two clones could be triploids, although further analysis would have 

to be undertaken to verify this. It is evident, therefore, that the proportion of triploids from 

these crosses is of the order of 2% to 6% of the total number of unique clones. This is in 

contrast to the finding of Gibson et al., [Gibson, 1995] who observed an increase in DNA 

content in 12 of 18 (66.7%) genotypic ally distinct hybrid clones from crosses between T. 

b. brueei and T. b. rhodesiense stocks. It is possible that the particular stocks used by 

Gibson et al., may not be fully genetically compatible, with triploidy being an aberrant 

product of sexual reproduction that is strain dependent. 

Trisomies. From the analysis of the hybrid clones with the minisatellite markers, it is clear 

that not all hybrids inherit just two alleles from the parental clones. Triploids have been 

mentioned previously. However there appears to be another class of hybrid which is 

trisomic for just one locus examined (highlighted in Table 5.1). The genomic Southern of 

some of the hybrids probed with MS42 indicate that one clone. F296/44bscl 12. had 

inherited three MS42 alleles (Figure 5.6, lane 6). However for the other mini satellite 

markers this clone appeared to have the normal number of alleles, one from each parental 

clone (Table 5.1B). There are three possible explanations for this observation. The first is 

that the sample is actually a mix of two hybrid clones which differ at this one locus. The 

second is that the clone is trisomic for the chromosome carrying the MS42 marker 

(chromosome I). Thirdly a gene duplication event could have generated the extra copy of 

the locus. There are several clones in the collection which have a similar profile (11 in 

all), in that they appear to have an extra allele for one marker (see Table 5.5). In order to 

rule out the possibility that these clones are mixed, some of the samples were recloned and 

analysed again using the minisatellite markers (the recloning was performed by A. Tait). 

Three of the samples (F492150bscl 5, F492150bscl 25 and F296/39bscl 15) no longer gave 

a three band pattern after recloning. and so the original stock must have been a mixture of 

two hybrid clones. However five clones (highlighted in Table 5.5) continued to give a 

three band pattern after recloning, indicating that these clones carried an extra allele at one 

locus. Clone F492/50bscl 16, is either trisomic for the chromosomes carrying MS42 and 

292, or triploid and has been discussed in the previous section. Three of the four other 

possible trisomic clones indicated in Table 5.5 gave a three band pattern for the 

minisatellite marker, MS42, which is located on chromosome I, but a normal two band 

pattern for the other minisatellite markers. These clones were analysed further using 

another highly informative marker on chromosome I, D2, which was identified by J. Sasse 

and is described in detail in the next section (Figure 5.7B). All four clones which had an 
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Clones Markers 
CRAM 292 MS42 D2 JS2 

Table 5.5. Mini- and microsatellite analysis of possible trisomic hybrid 
clones. Column 1 gives the identification number of each clone and the reclones. 
Columns 2-6 indicate the results of the analysis with the mini- and microsatellites. Alleles 
are numbered as in Table 5.1. Shaded rows indicate those clones which gave a three band 
pattern after recloning. Analysis of parental clones is given in rows 1-3 for reference. 
Note, MS42 and D2 markers are both on chromosome I. * indicates novel sized mutant 
allele. nd, not determined. 
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extra allele for MS42 also had an extra allele for the marker D2. These data suggest that 

the clones are trisomic for chromosome I and have not acquired an extra allele of MS42 by 

gene duplication. Only one putative trisomic line has been analysed for DNA content. 

DNA content analysis was performed on F296/44bscl 12, which appears trisomic for 

chromosome I, and indicated that the DNA content of this clone was within the normal 

parental range [Hope et al., 1999], demonstrating that this clone is not triploid. 

The majority of the clones identified from previous crosses, for example from Gibson et 

al., [1992], which have been shown to be trisomic, appear to be trisomic for a number of 

loci and are probably triploid. It is difficult to prove triploidy as three copies of every 

megabase chromosome must be demonstrated. However for these clones the raised DNA 

content to 1.5 x the parental level is highly suggestive of triploidy. 

Trisomy appears to be a more common event than triploidy, with up to 8 possible trisomic 

clones, one of which is likely to be triploid (F492/50bscl 16), bringing the number of 

trisomies detected to 7, from a total of 53 unique clones. Trisomy is most likely to have 

arisen from chromosomal non-disjunction during meiosis, and in six of the seven 

examples identified in this study, the extra allele/chromosome was inherited from the 

parental stock STill 386, suggesting that this stock may have difficulty in undergoing 

meiosis. The majority of possible trisomies (6n) involve marker MS42, on chromosome I, 

(see Table 5.6), suggesting a bias in the failure of meiosis for this chromosome in stock 

STIB 386 or an ability for the trisomic trypanosome to survive with an extra chromosome 

I, where trisomy of other chromosomes may be selected against. 

The relatively high incidence of trisomy in the hybrid clones (see Table 5.6). constituting 

13% of the total number of unique clones from all crosses is consistent with the 

occurrence of meiosis in T. brucei. Trisomy due to nondisjunction is a common 

phenomenon in higher eukaryotes, for example, in humans, trisomy occurs in 25 % of 

spontaneous abortions [Koehler et al., 1996]. 

Cross Possible Marker displaying three band 

trisomies pattern 

No. % MS42 292 CRAM JS2 

STIB 247x TREU 927/4 1120 5 1 0 0 0 

STill 247 x STill 386 4/21 19 3 1 0 0 

STill 386 x TREU 927/4 2112 16.7 2 0 0 0 

Table 5.6. Detection of trisomic clones in three crosses. 

Bloodstream clones vs. metacyclic clones. The majority of clones derived from 

crosses have been bloodstream clones, generated as described in Figure S.lB. However it 
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is not clear if the pre-amplification step involved in the generation of bloodstream clones 

selects for particular genotypes of trypanosome. In order to address this issue, 24 

bloodstream clones were generated from the available F492/50 uncloned material. 

Twenty-three metacyclic clones had previously been generated from this fly at this time 

point [Turner et al., 1990] and so it was possible to make a direct comparison between the 

metacyclic and bloodstream clones generated from this fly. Analysis of all 47 clones using 

the three minisatellites and one micro satellite is presented in Table Al of the appendix and 

a summary of the results is presented in Table 5.7. It is obvious from these data that there 

is a startling difference between the bloodstream and metacyclic clones, with the 

bloodstream clones being mainly hybrids (96%) in direct contrast to the metacyclic 

clones, which were mainly parental or selfers (8.7% hybrids). It is evident from these 

results that some form of selection in favour of hybrid trypanosomes has taken place 

during the pre-amplification step in the generation of the bloodstream clones. despite the 

use of immunosuppressed mice. This suggests that these hybrid clones are better adapted 

to growth in mice. STIB 247 is the main genotype of trypanosomes present in the salivary 

glands of fly 492 (Table 5.7) and multiplies slowly in mice, often failing to reach a high 

parasitaemia compared to the other parental clone STIB 386 [Turner et al .• 1995]. It is 

therefore not surprising that hybrid clones grow more efficiently in mice than STIB 247. 

What perhaps is surprising is that this selection procedure has not resulted in the isolation 

of a STIB 386 genotype, possibly reflecting the fact that very few STIB 386 trypanosomes 

are present in the salivary glands. 

F492150 clones Hybrids 

metacyclic clones 2 (2 unique) 

bloodstream clones 23 (11 unique) 

Parentals Selfers 

17 (all 247 genotype) 4 

1 (247 genotype) 0 

Table 5.7. Comparison between bloodstream and metacyclic clones. Both 
bloodstream and metacyclic clones were isolated from tsetse fly F492 on day 50 post 
infection as described in the text and in figure 5.1. This table summarises the analysis of 
these clones (for complete minisatellite marker results see Table 1 of the appendix). 

As mentioned previously, selfing has only been detected in the presence of cross

fertilization, suggesting a possible chemical signal for meiosis to occur only when a 

different stock is present. It is clear from the metacyclic clones generated from F492 on 

day 50. (Table 5.7) that the majority of trypanosomes in the salivary glands are parental 

STIB 247. Therefore if a chemical signal to stimulate meiosis and syngamy were made 

due to presence of a few STIB 386 cells, then a significant amount of self-fertilization of 

STIB 247 would occur, due to the abundance of this genotype. Indeed this appears to have 

been the case with 4 selfers having been detected from the 23 metacyclic clones 

generated. 
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Proportions of hybrids/parentals. Preliminary evidence has suggested that hybrid 

trypanosome genotypes are produced only late in the mixed infection of the salivary 

glands [Schweizer et al., 1988; Sternberg et al., 1989]. It was possible to examine this 

phenomenon by analysing 51 clones identified from one fly. F296. which had been 

infected with the parental stocks STrn 386 and TREU 927/4. sampled over a time course 

(see Table Al in the appendix for a full analysis of all clones). It was possible to make a 

direct comparison between the different types of bloodstream clones sampled at each time 

point (Table 5.8). It is clear from this table that the proportions of hybrids to parentals (all 

of TREU 927/4 genotype) has altered over the course of the infection. The proportion of 

parentals has decreased, and the number of hybrids identified has increased as the 

infection has progressed. Although bloodstream clones do not give a true representation of 

the trypanosomes present in the tsetse fly salivary gland (see previous section) and it is 

unclear if there is a selective (dis)advantage for hybrids over TREU 927/4 parentals, the 

proportions of hybrids to parentals should reflect the general trend of change within the 

salivary gland over time. 

day sampled 

day 39 

day 42 

day 44 

Number of clones derived from fly 296 

hybrids Parentals 

13 (41 %) 19 (59%) 

7 (70%) 3 (30%) 

9 (100%) 0(0%) 

Table 5.8. Typing of clones derived from one flyover a time course. 
Column 1 indicates the day on which the trypanosomes were sampled. Columns 3 and 4 
give the number of bloodstream clones generated from fly 296, which were hybrids or 
parentals. 

Recombination on chromosome 1. Highly polymorphic mini- and microsatellite 

markers are useful for not only detecting and analysing hybrids, but also to detect 

recombination or crossing over between homologues of a particular chromosome. Such 

information can aid the understandi~g of recombination during the sexual process and also 

contribute to the construction of a genetic map. To this end a study of recombination on 

chromosome I was undertaken in collaboration with I. Sasse from the University of 

Cambridge. 

Three polymorphic microsatellites, D2, E5 and F3 have been identified and localised to 

chromosome I [Sasse, 1998]. Figure 5.7 A illustrates the position of these markers and the 

minisatellite MS42 on chromosome I, [I. Sasse, personal communication] obtained from 

mapping these markers to PI clones that had been ordered on chromosome I. 

page 103 



A 

BSF-ES PGK 

til 

Chapter 5 Analysis of genetic exchange in T. brucei 

tubulin 

1i~\'iV1!~til't?/:[l'!·1 
PGI 

l\l!111 

M-ES 

uncharacterised 100-150 kb (±25) 150-250 kb 
telomere 

B 

allele I 
allele 3 
allele 5 
allele 4 
allele 2 

c 

allele (1-2) 
allele 4 
allele 3 

repeats tt 
MS42 D2 

t 
E5 
F3 

telomere 

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 M 

M 1 2 3 4 5 6 7 8 9 10 11 12 M 

Figure 5.7. Position of mini- and microsatellites on chromosome I and 
the peR amplification of markers D2 and E5 from hybrid clones. 
(A) Diagram of one TREU 927/4 homologue of chromosome I, showing the relative 
positions of the mini- and microsatellite markers, MS42, D2, F3 and ES. The 
chromosome size is approximately 1115 kb. The diagram is not to scale. BSF-ES, 
bloodstream from expression site; M-ES metacyclic expression site; PGK, 
phosphoglycerate kinase gene; PGI phosphoglucose isomerase gene. 
(B) PCR amplification of the D2 locus, using primers D2-A 5' and D2-B 5', the 
sequences of which are presented in Materials and Methods. The products were 
separated on a 3% Nusieve agarose gel, stained with ethidium bromide and visualised 
by UV illumination. Lane M, 20 bp ladder (Advanced Biotechnologies); lane 1, STIB 
247; lane 2, STIB 386; lane 3, TREU 927/4; lanes 4-6, hybrids from STIB 247 x STIB 
386 cross; lanes 7-15, hybrids from STIB 386 x TREU 927/4 cross. 
CC) PCR amplification of the ES locus, using primers ES-A, and ES-B, the sequences 
of which are presented in Materials and Methods. The products were separated on a 3% 
Nusieve agarose gel, stained with ethidium bromide and visualised by UV illumination. 
Lane M, 20 bp ladder (Advanced Biotechnologies); lane 1, STIB 386, lanes 2-12, 
hybrids from STIB 386 x TREU 927/4 cross. Allele 3 from STIB 386 and alleles (1-2) 
and 3 from TREU 927/4 are indicated. 
PCR conditions for both loci were as follows; 95°C for 50 sec., 60°C for 50 sec. and 
700 e for 50 sec. for 28 cycles. 
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Some of the hybrid clones were genotyped for the microsatellites, 02, E5 and F3 by J. 

Sasse. This analysis was extended for 02 and E5 to incorporate the newly generated 

hybrids. Since markers F3 and E5 have been located on the same 58 kb fragment of 

chromosome I, and no crossovers were detected between these markers [Sasse, 1998], 

microsatellite F3 was not used to analysed the new clones. Figure 5.7B and C gives 

examples of the data from the PCR assay for the markers, 02 and E5. 02 is a highly 

informative marker, being able to detect all four alleles of STIB 386 and TREU 927/4. 

However, as with most markers analysed, STIB 247 is homozygous and so crossovers can 

only be detected in STIB 386 and TREU 927/4 chromosomes. Marker E5 is less 

informative as both STIB 386 and STrn 247 are homozygous for the same sized allele, but 

TREU 927/4 is heterozygous for different sized alleles and so is informative. The allele 

nomenclature is the same as that followed by J. Sasse, [personal communication]. The 

complete analysis of all unique hybrid clones for all chromosome I markers is presented in 

Table 5.9, including the previously obtained data for MS42. The shaded rows indicate 

those clones where a crossover was found. Hybrids were considered vegetative derivatives 

of one trypanosome if they were bloodstream clones, sampled from the same fly, on the 

same day and were identical for the following markers; MS42, CRAM, 292, JS2, 02 and 

E5; these clones were removed from the analysis. Hybrid clones from STIB 247 x STIB 

386 or STIB 247 x TREU 927/4 crosses which were triploid or trisomic for chromosome I 

were excluded from the analysis as they were uninformative. 

STrn 247 is homozygous for all markers except JS2 and so only TREU 927/4 and STIB 

386 chromosomes could be analysed for crossover events. From this analysis eleven 

unique crossover events were identified and are recorded in Table 5.9 (shaded). The 

recombinant chromosomes identified are shown schematically in Figure 5.8. Seven 

recombination events were identified for TREU 927/4 from a total of 30 chromosomes 

examined, recombination being detected between MS42 and 02 and between 02 and E5, 

leading to all four possible recombinant chromosomes being detected. Four recombination 

events from 26 chromosomes examined were detected for STIB 386, which was only 

informative for crossovers between MS42 and 02, but only one of the two possible 

recombinant chromosomes was detected. 

Recombination frequencies for MS42 and D2. Recombination frequencies were calculated 

from the number of recombinant chromosomes expressed as a proportion of the total 

number of chromosomes. Four TREU 927/4 chromosomes with a recombination event 

between the markers MS42 and D2, were detected out of a total of thirty, resulting in a 

recombination frequency of 0.133, i.e. 13.3 map units or centiMorgans (cM). Four STIB 

386 chromosomes with a crossover between the markers MS42 and 02, were detected out 

of 26 chromosomes examined, resulting in a recombination frequency of 0.154 (15.4 cM). 

A comparison between these two figures illustrates there is very little difference between 
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ll",."_hi ... "ti,, ... Cross Cbfi~~me Iw.lkers 
MS42 E5·349 

TREU 927/4 parental 3-4 1-2 1-2 (1-2)-3 
STm 247 parental 5-5 5-5 0-0 4-4 
STm 386 parental 1-2 3-4 0-0 4-4 
F532/63blscl2 247 x 92714 3-5 1-5 0-2 3-4 
F532/63blscl3 4-5 2-5 0-1 (1-2)-4 

f!!'FS31"1·/63bI'cr5'~·"1"'-fr"""""~~'i"'J''''~·~'4:S'''''''~'''11-2:S'''''''·~~'O:2"""~'"':-''''··3::4'1'''''>;,,"1~~'''1 ik, ,~', ~"~,,,.i·;: <,~~~~_~~~"«~,',~~~~~~'i.,, ,_ ,.~,~niliUf",><, ';#..~~~'~~~",,-':'. ,',"l<.o>-".j'~'W"""""~I~ 
F532/63blsel7 4-5 2-5 0-1 (1-2)-4 
F532/63blsel8 4-5 2-5 0-1 (1-2)-4 
F532172 mel 1 3-5 1-5 0-2 3-4 
F532172mc12 4-5 2-5 0-1 (1-2)-4 
F532172mel3 4-5 2-5 0-1 (1-2)-4 
F532172mel4 3-5 1-5 0-2 3-4 
F532172mel5 4-5 2-5 0-1 (1-2)-4 
F532172mel6 3-5 1-5 0-2 3-4 
F532172mel 7 4-5 2-5 0-1 (1-2)-4 
F532172mel9 4-5 2-5 0-1 (1-2)-4 

~'F5"l2' n2' '1'1" 0··~t'l"':'7"""·""r!<-7'""""""--'?rl""""!·"4· "S~"'''\''''''''''''"'''"''''l' 5 .,.""",.",e"'·'·'·"f~'''CO '2 "~""~'"""""'':''''''''~'''''''4 -"-"'''"-'~'I! l~, . c, ,~, _:',. mp" '. ,,,.~~,~..:~~;.~',;i'1'i,,,,,,~i.,,,",«<j\l"""~";':~~'~""~' ',~ .... ~"",",.\~:~~ ... ~, ••. ",, <.":" ~'"'~""~I:#~;~~'" -: ~~.t.,"'~~oI<"""'I.I"M"·~>~'~·: ... ,."q!~.J..~~"*~~~',,,~ 
F124/28blsclAl 3-5 1-5 0-2 3-4 

F124128blselC5 4-5 2-5 0-1 (1-2)-4 
F974170 mel4 4-5 2-5 0-1 (1-2)-4 
F9/34 mell 247 x 386 1-5 4-5 na na 
F9/45 mel 2 2-5 3-5 na na 
F9/45 mel 7 1-5 4-5 na na 
F9/45 mcl 9 1-5 4-5 na na 

rF('l:IA·S"M'c'!I"1J'f.·'P~:'':''~WY'Pf''''''''''~'''''''f-~~:;·'1:;'S·':~'''''''1'''1''··S!'~'l"'-~""'h'-!\!""---~\-"""'''''''''-''''-'''~1I L ' ,'.~~~ .. ' ~,t'~;'-"'k'< ""';,,'!<~~:~~~kh4,;,;~,4k::"(~~~~,,~~~.fp,,,,<:.~ '·T~~@;~'i<i~~~~I>?,:7, ",. ~~~~"~~~~-....Q.,\;!t.;~I~'~.~~1i~~"J~I\""~WI>"'~~~~MI~:A 
F9/45 mel 11 1-5 4-5 na na 
B80C2 2-5 3-5 na na 
F492/50 mel 12 1-5 4-5 na na 
F492/50 mel 13 1-5 4-5 na na 
F492/50 bsel 1 1-5 4-5 na na 
F492/50 bsel 2 1-5 4-5 na na 
F492/50 bscl 3 1-5 4-5 na na 
F492/50 bscl 8 1-5 4-5 na na 
F492/50 bscl 9 2-5 3-5 na na 
F492/50 bsel 11 1-5 4-5 na na 
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D2 ES 

2 (1-2) 

Recombinant TREU 927/4 Chromosomes 

2 (1-2) 

Number of 
times 

observed 

9 

14 

3 

4 1 

(1-2) 1 

4 2 2 

Parental STIB 386 Chromosomes 

MS42 D2 ES 

19 

2 3 4 3 

Recombinant STIB 386 Chromosomes 

3 4 4 

2 o 

Figure 5.8. Diagram of TREU 924/4 and STI8 386 parental and 
recombinant chromosomes. 
(A) The parental and recombinant chromosomes for TREU 927/4, with the alleles for 
MS42, D2 and E5 are drawn. The number of times these chromosomes have been 
observed is indicated. n=30. 
(8) The parental and recombinant chromosomes for STIB 386, with the a1leles for 
MS42, D2 and E5 are drawn. The number of times these chromosomes have been 
observed is indicated. n=26. 
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the frequency of recombination in the two stocks (the average recombination frequency is 

0.143). 

Recombination frequencies for D2 and E5. Only TREU 927/4 chromosomes were 

informative for crossovers occurring between D2 and E5. Three recombination events 

were identified from 30 chromosomes examined, giving a recombination frequency of 0.1 

or 10 cM. 

Recombination frequencies for MS42 and E5. The genetic map distance between MS42 

and E5 can be calculated by adding the map distances for MS421D2 and D2lE5 together, 

which results in a distance of 24.3 cM. The probability of a crossover occurring between 

MS42 and D2 is 0.143, and the probability of a crossover occurring between D2 and E5 is 

0.1, therefore the probability of a double crossover occurring is 0.143 x 0.1 = 0.0 143 (or 

1.4%), assuming no interference. It is not surprising, therefore, given the small number of 

chromosomes examined, that no double crossovers were detected. 

Relationship between the genetic and physical map distances. At present most, but not all, 

of chromosome I has been mapped using PI clones, [Melville, personal communication] 

and the physical distances between the three markers. MS42, D2 and E5 are given as 

rough estimates in Figure 5.7 A. The average physical distance per centiMorgan for MS42 

and D2 is 8.74 kb/cM, and for D2 and E5 is 20 kb/cM. with a minimum and maximum 

figure ranging between 4.9 kb/cM and 25 kb/cM. The difference in the estimates of a 

centiMorgan between MS42 and D2 and between D2 and E5 could possibly reflect a 

recombination 'hot spot' around MS42 which is explored in more detail in Chapter 8. 

From the data presented in Figure 5.8, there appears to be a significant bias in terms of the 

particular STIB 386 parental homologue chromosomes inherited by the F1 progeny, 

compared to the 1:1 ratio predicted for a Mendelian system (-c =11.636. d.f.= 1. P<O.OOl). 

The deviation from non-Mendelian ratios is even greater for the inheritance of the STIB 

386 MS42 alleles (see Figure 5.8). Stock TREU 927/4 shows no significant difference 

from a 1: 1 ratio (X2 = 1.087, dJ.=1, P= 0.3). There are two possible reasons for this; either 

there is a bias in the generation of meiotic products (i.e. non-Mendelian ratios) or selection 

for/against particular progeny carrying one of the homologues. However. the markers on 

other chromosomes appeared to be'inherited from STIB 386 in the predicted Mendelian 

proportions. This is suggestive that normal meiotic products are generated and indicates 

that selection may account for the chromosome I bias. 

Conclusions 

The approach of generating new clones from uncloned populations derived from the 

previous crosses dramatically increased the number of hybrids available for study from 38 

to 81 (53 unique hybrids), creating the largest collection of hybrid clones from three 

crosses. Analysis of the collection of clones derived from these crosses, using the highly 
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informative mini- and microsatellite markers, has allowed a number of the issues 

regarding the sexual process in T. brucei to be examined. Most important is the 

examination of allele segregation. The majority of minisatellite markers appear to be 

inherited in a manner which is consistent with a Mendelian system, although significant 

deviation from Mendelian ratios has been observed for the MS42 marker in crosses 

involving STIB 386. However it must be remembered that the majority of FI hybrids were 

cloned from bloodstream trypanosomes and so have undergone a pre-amplification step in 

mice, which could distort allele segregation ratios. The direct analysis of single 

trypanosomes in the salivary glands of tsetse flies would avoid this pre-amplification step, 

although it is possible that the FI hybrids have multiplied within the salivary glands and 

only by analysis of gametes (if they exist) can the true segregation ratios be determined. 

In this study attempts were made to generate a new genetic cross between STIB 386 and 

TREU 92714 which could have been analysed by the single trypanosome PCR method 

outlined on Chapter 4. Using this technique it should have been possible to genotype 

metacyclic and epimastigote cells, allowing the extent of cross-fertilization to be 

examined and perhaps detecting genetic exchange intermediates, (for example, 

multinucleate cells or gametes) in the salivary glands of mixed-infected tsetse flies, which 

would reveal at what life cycle stage mating takes place. However no mixed infected 

tsetse flies were available for analysis. 

The analysis of existing hybrids and new hybrids from existing crosses, however, did 

generate some interesting findings. For example, the incidence of triploidy in FI hybrids 

is low' (2-6%) compared to 66% detected by Gibson et al., (1994) and the triploids 

identified here all involved extra copies of STIB 386 chromosomes. It is interesting to 

note that STIB 386 is a T. b. gambiense type 2 (i.e. a West African T. b. rhodesiense) 

strain and that all triploids identified by Gibson et al., (1994) also involved extra 

chromosomes donated by a T. b. rhodesiense stock. Such triploids may have been 

generated by the fusion of a diploid T. b. rhodesiense cell (perhaps due to a failure of T. b. 

rhodesiense trypanosomes to undergo meiosis), with a haploid T. b. brucei trypanosome. 

STill 386 has also been shown to be involved in the generation of trisomics, the new class 

of hybrid clones identified, whic~ may have been generated by chromosomal non

disjunction, suggesting that this T. b. rhodesiense stock is unable to undergo meiosis 

faithfully. 

The availability of hypervariable markers, which have been localised to one chromosome 

(chromosome I), allowed an investigation into the level of recombination between 

homologous chromosomes. Although from a small number of cross over events, an 

estimate of the physical distance per centiMorgan was obtained (4.9 - 25 kh/cM) and is in 

the same order of magnitude as that for P.falciparum (15-30kb/cM)[Walker-Jonah, 1992]. 

However there are still a number of aspects of genetic exchange in T. brucei which remain 

to be determined. It is still not clear at which life cycle stage genetic exchange takes place. 
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Do hybrid epimastigotes exist in the salivary glands? Why do hybrids appear late in 

salivary gland infections? What is the mechanism of genetic exchange? The different 

models of genetic exchange and how they can be investigated are discussed in detail in 

Chapter 9. 
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Chapter 6 

A high level of mixed T. brucei 

infections in tsetse flies 

Introduction 

Although genetic exchange in T. brucei has been shown to occur in the laboratory [Jenni 

et al., 1986], the importance of this sexual process in natural populations of trypanosomes 

remains controversial. Three models of the population structure of trypanosomes have 

been proposed, firstly that trypanosomes undergo frequent, if not random mating [Tait, 

1980; Tait et al., 1990; Tait et al., 1993], secondly that trypanosomes have a clonal 

population structure [Tibayrenc et al., 1990; Tibayrenc and Ayala, 1991; Mathieu-Daude 

et al., 1995] and thirdly that mating occurs at high frequency but is masked by the 

expansion of a few genotypes in a short time frame - an epidemic population structure 

[Hide et al., 1994]. An understanding of the extent and importance of genetic exchange in 

T. brucei populations has practical implications, as sexual reproduction would facilitate 

the spread and inheritance of traits of medical and economic importance as well as 

generating a population with a high degree of genetic diversity that would make defining 

common strains causing particular disease patterns difficult. 

A difficulty with much of the data on which these models have been based is that they rely 

on relatively small sample sizes which are diverse in time, host species sampled and 

geographical location and therefore assume that little or no population sub-structuring 

occurs. Furthermore, limited attention has been paid to intra-isolate heterogeneity (mixed 

infections) which is a critical issue if genetic exchange is occurring at any significant 

level. However, some studies have reported isolates containing more than one genotype of 

parasite [Letch, 1984; Godfrey et al., 1990; Stevens et al., 1994; Stevens and Tibayrenc, 

1995] from both tsetse flies and mammalian hosts. The restraints on examining larger 

population samples have been the need to expand isolates in laboratory rodents to prepare 

pure parasites in sufficient quantity for analysis by isoenzyme and RAPD markers while 

the detection of intra-isolate heterogeneity requires parasite cloning due to the difficulties 

in applying genetic interpretations to some of the markers used. On this basis there is a 

need to address these issues using markers that allow parasites to be genotyped without 

recourse to cloning and growth in the laboratory, facilitating the analysis of large sample 

sizes and avoiding any selection during vegetative growth. Additionally, genetically 
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interpretable markers with high levels of polymorphism would be particularly 

advantageous in examining whether population sub-structuring occurs, whether 

predominant genotypes are stable in time and place and whether individual isolates are 

heterogeneous in terms of parasite genotype. 

Hypervariable mini satellites or variable number tandem repeat (VNTR) loci, are very 

useful genetic markers, as they often have a high degree of heterozygosity and many 

different allelic states based on variation in the number of repeat units in the tandem array. 

Such minisatellites have been used extensively in human genetics for individual 

identification, paternity testing [Wong et al., 1987] and linkage mapping [Nakamura et al.. 

1987] but have only been used to a limited extent in the analysis of parasite genomes. 

Three minisatellite loci from T. brucei have been described in Chapter 3 all of which vary 

in a strain-specific manner allowing genotypes and allele frequencies to be detennined, as 

well as providing a means of identifying and tracking individual strains. The use of locus

specific primers to PCR amplify minisatellite markers should enable the genotyping of 

trypanosomes even when contaminated with large quantities of host DNA, as well as 

allowing the analysis of small quantities of DNA as demonstrated by the detection and 

genotyping of single trypanosomes [MacLeod et al.. 1997; Chapter 4] by peR 

amplification of single copy genes. Because of their high level of polymorphism. 

minisatellite markers are particularly useful in determining variation between 

geographically distinct populations and detecting heterogeneity within a sample. 

This chapter describes the use of the three T. brucei minisatellite markers in the analysis 

of parasite isolate genotype heterogeneity. The degree of genetic diversity in a collection 

of trypanosomes isolated from wild tsetse flies has been determined in order to examine 

the extent to which these flies harboured mixed T. brucei infections within their salivary 

glands. The objective was to ascertain to what extent this pre-condition for sexual 

recombination in T. brucei occurs in the field. 

Results 

T. brucei populations under study. In this chapter two T. brucei populations 

isolated between 1969 and 1970 w~re examined, Kiboko in Kenya and Lugala in Uganda. 

Details of the stocks used in this study are presented in Chapter 2, Table 2.1. The stocks 

were isolated by Goebloed from infected salivary glands of tsetse flies of the subgenus 

Glossina and pass aged 3-10 times in mice before transfer to the Glasgow laboratory 

[Goebloed et al., 1973]. The uncloned stabilates were used to infect irradiated (600 rads) 

MF1 adult mice and infected blood harvested at peak parasitaemia for subsequent peR 

analysis. Single trypanosomes from stabilates of these first peak parasitaemias were used 

to infect mice for the generation of parasite clones. 

Level 0/ polymorphism in Kiboko and Lugala clones. In order to estimate the 

level of polymorphism shown by the three minisatellites markers, MS42, CRAM and 292, 
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in the two T. brucei populations, lysates of single cloned lines from each of 20 isolates 

from Kiboko were PCR amplified using locus-specific primers. The minisatellite 

genotypes obtained (see Chapter 8, Table 8.10) are presented as an estimate of the 

number of repeats in each allele. In brief, twelve distinct alleles for each of the CRAM and 

292 loci (estimated from allele size measurements) and sixteen alleles of the MS42 locus 

as identified by allele size and MVR maps (described in full in Chapter 9) were detected. 

The genotypes of each isolate gave heterozygosities of 100% for MS42 and 95% for 

CRAM and 292. These results show that the minisatellite loci are highly polymorphic as 

had been demonstrated previously for the MS42 locus [Barrett et al., 1997]. 

Analysis of uncloned T. brucei samples from tsetse salivary glands. 

Because of the hypervariability of the repeat regions within the genes for MS42, CRAM 

and 292, and the ease with which stocks can be genotyped, these markers could be 

extremely useful in the identification of different genotypes. The data summarised above 

have been obtained using cloned stocks of the parasite and so do not allow the question of 

whether isolates contain more than one genotype to be addressed. To resolve this issue the 

markers were used to determine the number of different genotypes of T. brucei present in 

the collection of uncloned isolates from Kiboko and Lugala derived from the salivary 

glands of tsetse flies. By using all three minisatellite loci the sensitivity of detecting 

different genotypes was increased, for example the CRAM marker detected a minimum of 

36 different genotypes in the 28 uncloned isolates, whereas by using all three markers a 

minim~m of 42 genotypes were identified. Parasite DNA or crude lysates from infected 

mouse blood were analysed by PCR using all three markers. The results for the Kiboko 

samples are presented in Figure 6.1, and for all samples in Table 6.1. From the genetic 

analysis and the genotypes exhibited by cloned trypanosome stocks. one genotype will 

either contain two different sized alleles (heterozygous) or a single allele (homozygous). 

A number of the isolates show two alleles at each of the three minisatellite loci. for 

example tracks 1, 2 and 3 in Figure 6.1A-C, and could represent a single genotype 

heterozygous' at allthree loci. Although, formally. such genotypes could represent a 

mixture of two homozygotes, the high levels of heterozygosity at these loci argue against 

this. A second group of isolates show more than two alleles (e.g. lanes 4, 7, 8, Figure 

6. lA-C) up to a maximum of six alleles per locus (lane 17, Figure 6.1C) indicating that 

they contain a mixture of different trypanosome genotypes. In the isolates from Lugala 

and Kiboko a significant proportion of the tsetse flies harboured more than one genotype 

based on the detection of more than two PCR products per locus. Assuming that all the 

trypanosomes are heterozygous for alleles at each locus and that multiple alleles at more 

than one locus do not assort independently. the minimum number of genotypes present in 

each isolate can be determined (Table 6.1). In total, eight out of seventeen (47%) of the 

Kiboko samples contained more than one genotype and four out of eleven (36%) of the 

Lugala samples. 
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A 
kb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

4.36 

2.32 

2.03 

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

2.32 

2.03 

1.35 

1.08 

c 
2.32 

2.03 

1.35 

1.08 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Figure 6.1. Analysis of uncloned tsetse derived trypanosomes using three 
minisatellite markers. One III of 1/100 dilution of a crude lysate of infected blood was 
used in each PCR reaction. All reactions were performed under the same PCR 
conditions as described in Materials and Methods. peR products were separated on a 
1 % Seakem agarose gel and visualised by ethidium bromide staining. Lanes 1-17: 
uncloned stocks K936; K926; K869; K981; K994; K1027; K984; K854; K975; K925; 
KI009; K851; K852; K978; K997; K258; K927, using primers specific for the (A) 
CRAM locus; (B) 292 locus; (C) MS42 locus. The sizes given were determined from 
lambda HindUI markers (not shown). 
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Origin Sample No. of different sizes peR Minimum 
products detected for each no. of 

minisatellite marker genotypes 
MS42 CRAM 292 present 

Kiboko K936 2 2 2 1 
Kiboko K926 2 2 2 1 
Kiboko K869 2 2 2 1 
Kiboko K981 4 4 3 2 
Kiboko K994 2- 2 2 1 
Kiboko K1027 2 2 2 1 
Kiboko K984 4 4 5 3 
Kiboko K854 4 4 4 2 
Kiboko K975 2 2 4 2 
Kiboko K925 2 2 2 1 
Kiboko KlOO9 2 2 2 1 
Kiboko K851 2 2 2 1 
Kiboko K852 4 2 2 2 
Kiboko K978 2 2 2 1 
Kiboko K997 3 2 4 2 
Kiboko K258 3 2 4 2 
Kiboko K927 6 6* 5 3 
Lugala L836 2 4 2 2 
Lugala L791 2 4 2 2 
Lugala L944 2 2 3 2 
Lugala L834 2 2 2 1 
Lugala L929 2 1 2 1 
Lugala L933 2 2 2 1 
Lugala L941 2 2 " 1 ~ 

Lugala L832 2 2 2 1 
Lugala L934 2 2 2 1 
Lugala L844 2 2 2 1 
Lugala L845 4 4 4 2 

* Fifth and sixth bands visible after high resolution electrophoresis. 

a K994 on one occasion gave four MS42 alleles, but this result was not reproducible. 

Table 6.1. Minisatellite analysis of uncloned T. brucei isolates. Numbers 
of different minisatellite alleles detected in uncloned Kiboko and Lugala isolates. The 
number of different sized PCR products (corresponding to the minimum number of 
different alleles) detected for three rninisatellite markers is indicated in Columns 3-5. The 
minimum number of genotypes present in the stocks are shown in column 6. Those 
samples which generated >2 peR products were considered to harbour mixed 
trypanosome genotypes. 
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Most mixed samples probably contained a minimum of two different genotypes, as four 

alleles at one or more loci were detected. However, two samples must have contained at 

least three different genotypes, as sample K984 contained five different 292 alleles and 

sample K927 contained six different MS42 alleles. It is clear that by using a combination 

of different highly variable minisatellites rather than relying on one marker. the sensitivity 

of the analysis was greatly increased. The number of mixed infections is probably an 

underestimate as the PCR reactions could favour one genotype over another. due to 

sequence divergence at the primer sites or, if an unequal ratio of two genotypes was 

present, the most abundant genotype would be preferentially amplified. Also some 

trypanosome genotypes could have been lost during the amplification in mice and 

repeated passaging. Analysis of the alleles at the three loci in the Kiboko population of 

isolates (uncloned and cloned) shows that there are at least nineteen distinct alleles of 

MS42, fifteen distinct alleles of CRAM and eighteen alleles of 292 i.e. a very high level of 

allelic variation. Analysis of all the uncloned Kiboko isolates using the three loci shows 

that out of seventeen isolates, sixteen are genotypic ally distinct (tracks 6 and 12 are 

identical, Figure 6.1) demonstrating a high level of polymorphism in the trypanosomes 

within this population. 

Cloned parasites from mixed infections. The estimates of the number of 

genotypes in the isolates showing more than two alleles at two or more loci is a minimum. 

As the loci are located on different chromosomes and are therefore unlinked [Lee et al., 

1990; Lee et al., 1994; Barrett et al., 1997; Chapter 3]. the alleles at each locus would 

potentially assort independently and so many more distinct genotypes could be present in 

such isolates. As little is known, (in trypanosomes) as to the mechanism by which the 

repeat length variants are generated, it is possible that they have arisen by mutation during 

mitosis. To address both these issues, a series of cloned trypanosomes lines were 

established from two different samples. K927 and L845, both of which harbour multiple 

trypanosome genotypes. Each cloned line was then analysed by peR for all three loci. The 

results from the thirteen K927 clones, analysed for one marker, 292. are shown in Figure 

6.2. Four distinct banding patterns, each containing two bands, clearly demonstrate that 

more than one genotype of T. brucei was present in the original tsetse salivary glands. 

These genotypes account for four of the alleles observed in the uncloned isolate (lane 2, 

Figure 6.2) but the fifth allele is not found in any of the cloned lines, implying that further 

genotypes are present but have not been cloned. The fact that all the cloned lines exhibit 

only two alleles yet have undergone multiple rounds of mitosis during cloning (from 1 to 

_108 trypanosomes) suggests that length variants at this locus are not generated at an 

appreciable frequency during mitosis. The clones obtained were also characterised with 

respect to the two other minisatellite markers (CRAM and MS42) and the results are 

summarised in Table 6.2. There are at least seven different genotypes of trypanosomes 

present in the tsetse fly's salivary glands represented by isolate K927. Marker analysis of 
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Figure 6.2. peR amplification of the 292 locus from K927 derived clones. PCR 
reactions were performed on crude lysates as described in Materials and Methods. PCR 
products were separated on a 1 % Seakem agarose gel and visualised by ethidium bromide 
staining. Lane 1, Lambda Hind III and <j>x Hae III markers (Advanced Biotechnologies); 
lane 2, uncloned tsetse derived sample K927; lanes 3-15, K927 clones, 4B, 4,5,9, 10, 12, 
13, 14, 18B, 20, 22, 23 and 24. 

the eight cloned lines derived from sample 845 (Table 6.2) also indicate that the original 

sample contained at least two different genotypes of trypanosome. Whether further 

combinations of alleles are present in this isolate is unknown. 

Evidence for meiosis in field sample K927. The five 292 aUeles present in the uncloned 

K927 sample (lane 2, Figure 6.2) have been calculated (by band size estimations) to 

contain 76, 50, 44, 41 and 38 copies of the 24bp repeat unit. The K927 derived clones 

(lanes 3-14, Figure 6.2) contain the four smaller alleles in four different combinations out 

of a possible six combinations. This allele assortment has also been observed for the other 

markers, CRAM and M S42, (Tabl~ 6.2), where three out of the six possible allele 

combinations of CRAM and four out of six possible MS42 combinations are found in the 

clones, excluding those alleles not recovered. Furthermore when the complete multilocus 

genotypes of each clone are considered seven of the thirteen clones are distinct showing 

different combinations of alleles at the three loci. It seems likely that the analysis of 

further clones would identify further allelic combinations and a high level of multiple 

genotypes within one tsetse fly. These data raise the question of the origins of the 

trypanosome genotypes identified. These could have arisen by the fly feeding on one· 

mammalian host simultaneously containing at least seven different trypanosome 

genotypes or these genotypes could represent the products of mating as a result of the 
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tsetse feeding on a mammal containing two (or more) genotypes. It would be difficult to 

fonnally distinguish between these possibilities without analysis of the genotypes present 

in the midgut of the fly, but the results obtained are highly suggestive of mating having 

occurred in this tsetse fly. 

Samples 

uncloned K927 
clone K927/4B 
clone K927/4 
clone K927/5 
clone K927/9 
clone K92711 0 
clone K927112 
clone K927/13 
clone K927/14 
clone K927/20 
clone K927/22 
clone K927/23 
clone K927/24 
clone K927/18B 
uncloned L845 
clone L845/1 
clone L845/2 
clone L845/3 
clone L845/4 
clone L84515 
clone L845/6 
clone L84517 
clone L845/8 

Genotypes detected for each 
minisatellite marker 

MS42 
35/34/30/26/25/20 

26/25 
25/20 
30/20 
30/20 
25/20 
26/25 
26/25 
26/25 
30/20 
25/20 
25/20 
25/20 
30/26 

31/26/21116 
31116 
31116 
31116 
31116 
31116 
31116 
31116 
26/21 

CRAM 
70/68/62161160152 

70/68 
68/61 
68/61 
68/61 
68/61 
68/61 
68/61 
70/68 
68/61 
68/61 
68/61 
68/61 
62/61 

98173170150 
98173 
98173 
98173 
98173 
98173 
98173 
98173 
70/50 

292 
76/50/44/41138 

44/38 
50/38 
50/41 
50/41 
50/38 
44138 
44/38 
44/41 
50/41 
50/38 
44/41 
44/41 
50/38 

75/49/43/12 
49/12 
49112 
49112 
49/12 
49/12 
49/12 
49/12 
75/43 

Multi
locus 

genotype 
mixed 

A 
B 
C 
C 
B 
D 
D 
E 
C 
B 
F 
F 
G 

mixed 
H 
H 
H 
H 
H 
H 
H 
J 

Table 6.2. MinisateIIite genotypes detected for all clones generated 
from uncIoned samples K927 and L845. Column 1 indicates the isolate number 
of cloned and uncloned samples. Columns 2, 3 and 4 indicate the MS42, CRAM and 292 
minisatellite genotypes presented as an estimate of the number of repeats in each allele, 
respectively. Column 5 shows the multilocus genotype, i.e. the combined results from the 
three minisatellites. . 

Discussion 

There are a large variety of methods available to aid the analysis of trypanosome 

population genetics. The most extensively used technique, isoenzyme analysis, has been 

used for the past two decades to study the identification, distribution and relationships 

between trypanosomatids [Gibson et al., 1980; Tait. 1980: Tait et al., 1984: Tait et al., 

1985; Godfrey et al., 1990]. In recent years the PCR-based DNA typing system, RAPDs, 

has increased in popularity and has been used to complement isoenzyme analysis [Stevens 

and Tibayrenc, 1995]. The RAPD technique is quick and easy to perfonn, detects many 

page 118 



· Chapter 6 A high level of mixed Trypanosoma brucei infections in tsetse flies 

variable fragments of DNA, yet requires no sequence information, and can analyse very 

small amounts of trypanosome DNA. However, RAPD data cannot readily be interpreted 

on a genetic basis and are unable to identify samples of mixed genotypes or contaminated 

samples. 

In order to detect mixed trypanosome samples highly variable single locus markers were 

required. This chapter has described the use of three highly polymorphic minisatellites 

loci, present in the coding region of the MS42, CRAM and 292 genes. By designing 

specific primers to the DNA flanking the tandem repeats of these genes, it was possible to 

amplify, by PCR, the hypervariable regions from a range of T. brucei samples (even from 

samples contaminated with host DNA). These single locus markers proved to be 

extremely informative due to the large number of allelic states at both loci, allowing 

individual T. brucei stocks to be identified and tracked through populations (see Chapter 

8). The mini satellite markers were also able to detect those samples which contained more 

than one genotype of trypanosome. 

Using these minisatellites as markers evidence has been obtained for a range of 

genetically distinct trypanosomes coexisting in salivary glands of a significant proportion 

of tsetse flies, 47% of Kiboko and 36% of Lugala samples. This is in contrast to the 

isoenzyme data of Godfrey et al., (1990) where only 9.6% of tsetse samples were shown 

to be of mixed genotype. This could reflect the fact that isoenzyme analysis is less 

sensitive for detecting mixtures due to the lower levels of variation compared to 

minisateUites. Further analysis, (Godfrey, 1990) of a large collection of samples from 

mammalian hosts from across Africa also detected infections of more than one genotype, 

in both man (3%) and a range of different animals (2%) as well as two samples containing 

three genotypes. Stevens et al., (1994) examined the isoenzyme patterns of trypanosomes 

from the midguts of three tsetse flies and found two flies containing five and nine different 

T. brucei genotypes respectively. Further analysis of cloned lines from the same samples, 

by the more informative method of RAPD analysis, revealed that even more genotypes 

were present and that all three tsetse flies harboured mixed infections [Stevens and 

Tibayrenc, 1995], thus suggesting that previous studies based on isoenzyme analysis alone 

may under-represent the true degree of trypanosome genetic diversity and number of 

mixed tsetse infections present in natural populations. 

It is possible that all estimates of mixed infections recorded to date, including those 

presented here, may under-represent the levels of genetic diversity and the frequency of 

mixed infections, due to the influence of sample bias. All samples analysed, except those 

from the midgut of tsetse, have been grown in rodents and passaged before analysis. It is 

likely that the repeated passaging of trypanosome populations in laboratory rodents may 

serve to filter out less virulent trypanosome types, especially as different genotypes may 

have different rates of growth in rodents. However the only clear data which suggests that 

the timing and number of passages in mice or culture can select for different genotypes in 
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a mixed infection have not been performed on T. brucei but on the related species T. cruzi 

[Deane et al., 1984]. In this present study, attempts were made to minimise the loss of less 

virulent strains by examining trypanosome isolates which had been passaged a limited 

number of times (about 10). Another factor which may influence the reliability of 

sampling is selection due to host infectivity, i.e. the failure of some trypanosome isolates 

to grow in laboratory rodents. Host selection has been reported previously, for example 

approximately 63% of trypanosomes isolated from the salivary glands of tsetse flies in 

Kiboko were unable to infect rodents and so were lost. similarly, from 23 salivary gland 

isolates from Lugala only 13 were infective to mice and 3 were lost in passaging 

[Goebloed et al., 1973]. While the problems associated with selection operating on any 

sampling procedure involving growth or culture is well recognised, it is assumed that such 

selection does not bias the analysis of markers which have no obvious phenotype on 

which selection would operate. Given the nature of the markers used to date, it has been 

impossible to test this assumption, however the markers described here could readily be 

used to address this question. 

Lysates from infected material, e.g. the salivary glands of tsetse flies or mammalian blood. 

could be analysed directly by PCR amplification of the minisatellite loci. Such an 

approach could analyse approximately 1000 trypanosomes in each PCR reaction. This 

would detennine far more accurately the number of different T. brucei strains present in 

both tsetse flies and the mammalian host. By comparing these results to those obtained 

from ~opulations grown in laboratory rodents, it should be possible to ascertain to what 

extent sample bias due to growth rates in mice and selection due to host infectivity affect 

the detection of genotype diversity. 

It is estimated that 1-0.1 % of tsetse flies are infected with T. brucei, which would lead to 

the prediction that 0.01-0.0001 % of tsetse flies have mixed infections. Clearly this is not 

the case for the Kiboko and Lugala isolates. indicating that the probability of acquiring a 

second infection is not independent of acquiring the first, perhaps by feeding from a 

mixed infected mammal. Another explanation for the high incidence of mixed infections 

could be that a proportion of the wild tsetse flies may be more susceptible to T. brucei 

infections than the others, which has been linked to the presence of rickettsia-like 

organisms (RLOs) in the tsetse midgut [Welbum and Maudlin, 1997]. 

Tsetse salivary glands are the probable site at which genetic exchange takes place between 

T. brucei stocks and a prerequisite for genetic exchange to occur is that there are at least 

two different strains of T. brucei present in the salivary glands at the same time [Jenni et 

aI., 1986; Turner et al., 1990; Tait et al., 1996]. Results from this chapter have 

demonstrated that a significant proportion of tsetse flies fulfil this prerequisite in that they 

harbour mixed T. brucei infections in their salivary glands. This suggests that genetic 

exchange could be occurring in the field. In addition, the detection of seven distinct yet 

highly related genotypes in one fly (K927) and the allele assortment which was 
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demonstrated for three polymorphic loci, cannot easily be explained without genetic 

exchange being involved. The most direct way of testing this would have been to analyse 

the genotypes of trypanosomes present in this fly's midgut to determine what genotypes 

had infected the fly and from this analysis deduce whether the genotypes in the salivary 

gland were recombinant. Unfortunately midgut samples were not collected. An 

alternative, but less direct approach would be to analyse the frequencies and nature of the 

different genotypes in the population of fly isolates to estimate the probability that this fly 

had ingested the seven genotypes detected. Similar numbers of genotypes have been 

isolated from fly midguts [Stevens et al., 1994] presumably reflecting genotypes ingested 

when the flies feed on infected mammals and so the observation of multiple genotypes in 

the salivary glands does not per se indicate that these are generated by genetic exchange. 

The high levels of mixed infections detected in this study and the recombinant genotypes 

detected in one fly, together provide evidence that genetic exchange does occur. However 

the data presented in this chapter do not address how frequently genetic exchange occurs 

and to what extent it is involved in generating diversity. It is likely that population 

diversity has been underestimated due to sampling selection and the use of markers with 

low heterozygosity. This can now be assessed by analysing trypanosomes, directly from 

their source, without the additional step of growth in laboratory rodents, using the highly 

polymorphic and informative minisatellite markers described here. 
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Chapter 7 

Analysis of T. brucei populations 

using three hypervariable minisatellites 

Introduction 

The main goals of molecular epidemiological studies of trypanosomes are to identify the 

parasite(s) responsible for particular outbreaks of trypanosomiasis and to determine their 

source and route of transmission. The extent to which such goals can be achieved is very 

dependent on the genetic variability detected by the markers used in any particular study. 

For example, T. b. gambiense, the aetiological agent of chronic sleeping sickness, has 

been identified as a distinct population genetics entity, using a number of biochemical and 

molecular techniques, in particular isoenzymes [Godfreyand Kilgour, 1976; Gibson et al., 

1978; Gibson et al., 1980; Tait et al., 1984; Godfrey et al., 1987]. However, such 

techniques have been unsuccessful in distinguishing T. b. rhodesiense, which causes acute 

human sleeping sickness, from T. b. brucei, which is non-human infective, as no particular 

pattern of isoenzyme (or kDNA) polymorphism is exclusively associated with T. b. 

rhodesiense has been identified [Gibson et al., 1980; Borst et al., 1981; Gibson and 

Wellde, 1985; Tait et al., 1985]. This does not necessarily imply that differences do not 

exist, but demonstrates that the techniques used to date may be inadequate for the 

identification of possible differences. Most of the studies carried out so far on parasite 

populations have been based on isoenzyme analysis, with the description of stocks sharing 

particular enzyme patterns as zymodemes. However isoenzymes are not particularly 

variable, so that stocks sharing identical isoenzyme profiles should not be considered as 

identical but only as related samples. Other typing systems, for example, restriction 

fragment length polymorphisms (RFLPs) [Hide et al., 1994] and random amplified 

polymorphic DNAs (RAPDs) [Mathieu-Daude et al., 1995; Stevens and Tibayrenc, 1995] 

have been used in conjunction with isoenzymes, but are either cumbersome to apply in the 

analysis of populations or difficult to interpret genetically. There is a clear need for better 

marker systems that may allow the more sensitive detection of differences between 
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isolates as well as being genetically interpretable. Microsatellites would be an obvious 

improvement on isoenzymes or RAPDs markers for determining whether linkage 

disequilibrium occurs in populations, as they are often highly polymorphic, detect 

genotypes rather than phenotypes, can be readily interpreted genetically and different 

alleles can be sensitively detected by PCR and accurately measured on polyacrylamide 

gels. Also standard popUlation genetic tests can easily be applied to microsatellites with a 

limited number of alleles. Unfortunately microsateIlites have not been used to examine 

trypanosomes, as sequence information is required to develop a panel of markers. 

Furthermore, the level of variation is lower than for minisatellites and so less valuable for 

tracking individual strains, while scoring micro satellites is often difficult due to PCR 

artefacts" Minisatellite markers or VNTRs, which have been used extensively in forensic 

and legal medicine, may overcome some of these problems as many have large numbers 

of alleles [Wong et al., 1987]. Although VNTR markers are useful in the analysis of 

populations, they have not been used extensively for this purpose, as most mini satellites 

are large and so cannot be easily amplified by PCR, requiring restriction digests of 

genomic DNA and Southern blotting techniques to be employed followed by 

hybridization with the minisatellite probe. Therefore micro satellites, although less 

variable, have become more popular in the analysis of populations as they can be quickly, 

easily and sensitively detected by PCR. 

In the case of T. brucei neither micro- or mini satellites have been employed in the analysis 

of populations as only a few have been described [Barrett et al., 1997; Sasse, 1998]. The 

three T. brucei mini satellites described in Chapter 3 are highly polymorphic and all are 

small enough to be amplified by PCR and so combine the convenience of PCR markers 

with the extreme variability of a minisatellite for the analysis ofpopulations. 

The aim of this chapter is to address questions relating to the population genetics of T. 

brucei. Specifically, the aims were to test for recombination in the field, to examine the 

population structure (panmictic, clonal or epidemic as proposed by Tait [Tait, 1980], 

Tibayrenc [Tibayrenc et al., 1990] and Maynard-Smith [Maynard-Smith et al., 1993], 

respectively) and to test for popUlation sub-structuring due to geography or host 

specificities. If there is popUlation sub-structuring then this needs to be taken into 

consideration when analysing populations, as many previous studies have been based on 

samples from different geographical areas, times and host species [Tibayrenc et al., 1990]. 

The approach taken in this study to address these issues was to use the highly variable 
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minisatellite typing method, which has been described in Chapter 3, to analyse field 

isolates collected from five different populations. 

The details of the five populations chosen for this analysis are summarised in Table 7.1 

and contain three populations sampled mainly from humans during sleeping sickness 

epidemics (Busoga, Nyanza and Luangwa) and two other populations from tsetse flies, 

one from a sleeping siclmess endemic area (Lugala) and the other from a region where no 

sleeping siclmess has been reported (Kiboko). Although the sample size for each 

population is small and therefore far from ideal, these populations were chosen as they 

were the largest collection of samples available which could provide an insight into sexual 

recombination and sub-structuring in T. brucei populations. By analysing these 

populations, comparisons can be made as to the extent of recombination in different 

populations, to determine if there is an association between clonality/panmixia and 

specific hosts, e.g. cattle, human and tsetse. Population sub-structuring due to geography 

can be examined by comparing the allele distributions observed between geographically 

distinct populations. Similarly, popUlation divisions due to host specificities can be 

examined by comparing human infective stocks with non-human infective isolates, which 

were collected from the same geographical area (Busoga) at the same time (see Table 7.1) 

Such analysis could also indicate if cattle are an important reservoir for human infective 

trypanosomes. 

Population Specific geographical area Number of Host Year 
name sam~les 

Luangwa, Z Chilbale and Kasyasya in 19 clones 15 man 1981-83 
Luangwa Valley in Zambia 3 d.a. 

1 tsetse 
Kiboko, K . Kiboko in Kenya 17 clones all tsetse 1969-70 

17 uncloned 
Lugala, U Lugala in Busoga (Uganda) 11 uncloned all tsetse 1969-70 
Nyanza, K Central Nyanza in Kenya 26 cloned 24 man 1961 

2 tsetse (one from 
1977) 

Busoga, U Busoga (Uganda) and Busia 49 uncloned 24 man 1988-90 
(Kenya) at the U gandan/Kenyan 22 cattle (5 from 
border 3 tsetse 19S9-82l 

Table 7.1 Description of samples. Samples from all hosts in each area were included in 
the analysis except where stated otherwise; d.a., domestic animal. 

A brief description of the five populations under study (Table 7.1) follows and a map of 

the different regions in Kenya and Uganda is provided (Figure 7.1). 
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Kiboko is in the southern region of Kenya, approximately 340Km from Lake Victoria (see 

Figure 7.l). At the time of sampling (1969·70) the grass savannah area was rich in wild 

game, with some cattle and few humans. No cases of human trypanosomiasis were 

reported from this region. The samples collected from this area were isolated from tsetse 

salivary glands [Goebloed et al., 1973]. 

Samples from Lugala, in the Busoga region of Uganda, on the north eastern shore of Lake 

Victoria (Figure 7.1) were also isolated from tsetse salivary glands at the same time (1969· 

70)[Goebloed et al., 1973]. At the time of sampling this wet savannah area was sparsely 

populated with few domestic animals but abundant game. Acute human trypanosomiasis 

was first recorded in the region in the 1940s and was believed to have spread southwards 

across the Kenyan border to Central Nyanza during the 1950s, where it persisted at a low 

endemic level, with sporadic outbreaks until an explosive epidemic arose in Alego in 

Central Nyanza in the 1960s [Baldry, 1972]. The samples from the Nyanza population 

were collected from humans in 1961 during this epidemic. The recent outbreak of human 

trypanosomiasis around Lake Victoria in SE Uganda began in 1976, [Abaru, 1985] 

spreading north to the Tororo district and peaking at over 300 cases in 1990 [Hide et al., 

1994]. The trypanosome samples from SE Uganda, taken in 1990, were from both humans 

and cattle, mainly from Tororo with six samples taken from the same focus from Busia on 

the Kenyan border. 

The Luangwa valley m Zambia was the source of many outbreaks of human 

trypanosomiasis in the 1960s and with a major outbreak occurring in 1971·74 [Gibson et 

al., 1980]. The Zambian samples in this study were collected in 1981·3 from two villages 

in the Luangwa Valley, Chilbale and Kasyasya. This area is home to a large tsetse (G. 

morsitans) population and contains a large wild animal reserve. The incidence of human 

infections correlates with the movement of animals whereby humans are infected when 

the wild animals seasonally migrate [Gibson et al., 1980]. 

Results 

In this chapter the hypervariable mini satellite loci (described in Chapter 3) were used to 

analyse stocks from the five populations (Table 7.1). The alleles at each locus were 

examined in every stock by PCR amplification using locus specific primers (see Materials 

and Methods). Because of the large number of alleles at these loci and the fact that the 

alleles vary in a quasicontinuous manner, unequivocal allele identification is often 

difficult, this is especially true when the difference between allele bands on an agarose gel 
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is small. For CRAM and 292, the 'fixed bin' method of allele identification [Devlin and 

Risch, 1992] was employed, whereby the band (allele) size was determined on the basis of 

mobilities relative to a reference standard lane (using the Kodak 10 Image Analysis 

Software) and a window is created around it. Repeated measurements of the same allele 

were used to calculate the mean and the standard deviation around the mean; two standard 

deviations corresponded to 2.3% of the estimated allele size. This measurement was then 

taken as the window size for every band measurement C±2.3% band size) and alIeles were 

considered identical if they are within this window. However there was the possibility that 

alleles of the same size can differ in repeat structure and so size may not always indicate 

identity. To circumvent these problems for one minisatellite (MS42), alleles were 

identified by assaying sequence variation in the tandem array as well as size differences 

by the process of minisatellite variant repeat (MVR) mapping. A full description of this 

technique, the allele maps derived from it and an analysis of the relationship between 

alleles is presented in Chapter 8. In this current chapter, this technique is used only to 

identify unequivocally MS42 alleles. 

Three RFLPs flanking the minisatellite MS42 have been described and used to type all 

field samples (see Chapter 8). These data (Table A3, appendix) have been included in the 

analysis to compare the results obtained for agreement with Hardy-Weinberg (HW) 

proportions and linkage disequilibrium from the hypervariable minisatellite markers with 

those from the two allele system defined by RFLP analysis. These markers are within a 

few kilobases of each other and so are closely linked; therefore the data obtained for these 

RFLPs can be considered as one locus. 

The results of the minisatellite genotype analysis for every stock in each population are 

presented in Table A2 of the appendix as an estimate of the number of repeat units in each 

allele for minisatellites CRAM and 292, and as unequivocal defined alleles based on size 

and MVR analysis for minisatellite MS42. Due to the imprecise method of allele 

identification for CRAM and 292, which is conservative, i.e. there is the possibility that 

different alleles are grouped together, more weight is given to the analysis of the data 

obtained from MS42 than for the other two mini satellite markers. Many of the samples in 

this study were not cloned isolates and could contain more than one genotype of 

trypanosome, therefore any sample which generated more than two peR products for any 

minisatellite marker was considered mixed and so could not be included in the multilocus 

genotype analysis. However the alleles from mixed samples were included in the allele 
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frequency analysis. For some Kiboko samples both uncloned and cloned material was 

available. Where an uncloned sample was identical for all markers to its cloned 

counterpart, only the cloned sample was included in the analysis but where the genotypes 

differed between cloned and uncloned material both samples were included. 

Variation within popuiations. Forty-eight different MS42 alleles were identified 

using the unequivocal allele identification system described in Chapter 8, compared to 24 

alleles which were be identified by band size measurements alone. The nomenclature 

system for MS42 alleles is based on the number of repeat units, designated by a number, 

and the mini satellite variant repeat code, designated by a letter, for example, allele 35c. 

Band size measurements were used to identify alleles for the other two mini satellite loci, 

292 and CRAM, which revealed, 27 and 21 alleles, respectively. The frequencies of each 

allele, for each marker, within each population is given in Tables A4-A6 of the appendix 

and are presented as summary histograms in Figures 7.2 -7.4. The multilocus genotypes, 

i.e. the combined results for the three minisatellites are also presented in Table A2 of the 

appendix' and in Figure 7.5. It is immediately obvious from the allele/genotype 

distributions displayed in the figures, that some populations are quite homogeneous, 

consisting of one or a few genotypes, whereas other populations have a high level of 

variation, despite the small sample size. For example, for all three mini satellite markers 

the Kiboko and Lugala populations have a large number of alleles and genotypes. i.e. they 

are diverse, whereas the other three populations are far more homogeneous with fewer 

alleles and genotypes. The levels of diversity in each population can be measured by 

examining the number of different alleles and multilocus genotypes as a proportion of the 

total number of alleles or multilocus genotypes detected in each population (Table 7.2). It 

is clear from these values that the two populations isolated from tsetse flies (Kiboko and 

Lugala) have a higher level of diversity than the populations isolated from humans. The 

isolates from Busoga were sampled at the same time but from humans, cattle and tsetse. 

The cattle isolates appear to have a level of diversity similar to those of tsetse flies from 

Kiboko and Lugala or perhaps slightly lower. Examination of the distribution of 

multilocus genotypes within different hosts (Figure 7.6) from the Busoga population 

shows that the human isolates consist mainly of the single genotype 21 and are, therefore, 

far more homogeneous than the cattle samples. 
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Figure 7.4. The frequency of CRAM alleles in each population. HSR, human serum 
resistant; HSS. human serum sensitive; ND. not determined. n = number of alleles. 
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o Zambia 

n= 14 

• Kiboko 

n=24 

• Lugala 

n=6 

Nyanza 

n=25 

Busoga HSR 

• HSS 

0 ND 

n=37 

multi locus genotypes 

Figure 7. 5. Multi~o~us genotype. fr~q~encies. The. frequency of each 
multilocus genotype WIthin each population IS illustrated. Multilocus genotypes are 
described Table A2, Appendix. HSR, human serum resistant; HSS, human serum 
sensitive; ND, not determined. n = number of samples. 
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Figure 7.6. Multilocus genotypes isolated from humans, cattle and tsetse flies from 
Busoga in Uganda. 
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Chapter 7 Analysis ofT. brucei popu(ations using three hypervariable minisatellites 

Popula- Host No. of different alleles / total no. of alleles No. of different 

tions (%) multi locus geno-

types/ total no. of 

MS42 CRAM 292 mean genotypes (%) 

Lugala, U T 52 35 40 42 83 

Kiboko, K T 34 24 26.5 28 58 

Busoga, U C 29 18 22 23 69 

Luangwa, Z M 20 18 12.5 17 50 

Nyanza, K M 8 8 8 8 29 

Busoga, U M 9 7 4 7 19 

Table 7.2. Diversity within each population. Mixed samples were excluded. Samples 
were isolated from tsetse flies (T), cattle (C) and humans (M). Only samples from the 
hosts stated were included. 

Hardy-Weinberg and linkage disequilibrium. Although T. brucei has been demonstrated 

to undergo selfing under laboratory conditions [Tait et al., 1996], it is not clear to what 

extent selting occurs in natural populations. The fixation index, Fis, is a measure of the 

amount of reduction in heterozygosity observed due to inbreeding (or selfing) compared to 

that expected if the population was in HW proportions. The heterozygosity for each 

marker (mini satellites and RFLPs) and the fixation index were calculated for each 

population using the Genetic Data Analysis (GDA) program [Lewis and Zaykin, 1999], 

and the results are presented in Table 7.3. Combining the data for all markers, each 

population gave a negative fixation index value, indicating that there was an excess of 

heterozygotes rather than homozygotes. The Fis values for the RFLP markers were slightly 

lower than those for the mini satellite markers, probably reflecting the high number of 

mini satellite alleles relative to sample size, a phenomenon described by [Scribner et al., 

1994]. The Fis values varied between populations, being closest to 0 for the Kiboko 

(Kenyan) population and as low as -0.54 for the Luangwa (Zambian) population. 

The negative values ofFis indicate a deviation from the number ofheterozygotes predicted 

if the populations were in HW equilibrium. To investigate this for each population 

separately to avoid any deviation from HW expectations caused by combining sub

populations, the number of stocks with the observed genotypes was compared to the 

page 134 



· Chapter 7 Analysis ofT. brucei populations using three hypervariab/e minisatellites 

Popula- Host Heterozygosity for Heterozygosity for Fis 

tions mini satellite markers RFLP markers based on data from 

MS42 CRAM 292 BglII Hind! MboII mini- RFLPs Over-

satellites all 

Lugala, U T 1.0 1.0 1.0 0.67 0.37 0.57 -0.16 -0.43 -0.25 

Kiboko, K T 1.0 0.96 0.96 0.36 0.32 0.27 -0.12 -0.17 -0.13 

Luangwa, Z M 1.0 0.93 0.83 0.75 0.83 0.50 -0.54 -0.54 -0.54 

Nyanza, K M 0.91 0.875 0.96 0.78 0.86 0.56 -0.33 -0.58 -0.43 

Busoga, U C 0.75 0.57 0.25 0.33 0.73 0.77 

Busoga, U M 0.95 0.95 0.19 1.0 1.0 0.89 0.02 -0.70 -0.29 

Table 7.3. Estimate of the inbreeding coefficient (F1S). Mixed samples were excluded. 
Samples were isolated from tsetse flies (T), cattle (C) and humans (M). Only samples 
from the hosts stated were included. 

expected number of genotypes if the population was in HW equilibrium, for each 

mini satellite marker and for the RFLP markers and the results obtained are presented in 

Tables 7.4 and 7.5. Given the large number of different alleles in each population, the 

number of expected genotypes is extremely large, and so many genotypes are not 

represented in the population samples. Therefore only those genotypes which were 

observed in the population are given in Table 7.4. Inspection of Table 7.4 reveals that in 

each population one genotype tends to occur far more frequently than was predicted, for 

example, in the Luangwa population the MS42 32/26b genotype has been observed 15 

times compared to the expected 6.7 times. As some genotypes are over-represented in 

each population, (with the exception of Lugala, although this is the smallest population 

sample), other genotypes are under-represented or not present at all, which suggests 

deviation from HW expectations in most populations. The samples from the Busoga 

collection were separated into two' different groups for this analysis depending on their 

resistance to human serum (samples which have not been tested for human serum 

resistance but were isolated from cattle were included in the human serum sensitive 

group). From the data presented in Table 7.4 the Busoga human serum resistant (HSR) 

population appears to show deviation from the expected whereas the human serum 

sensitive (HSS) population is in agreement with the expected values. However by dividing 

the Busoga samples into two groups, the size of the HSS popUlation is small (10 isolates) 

and so may not give a true reflection of the HSS population. In general for the RFLP data, 
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Chapter 7 Analysis ofT. brucei populations using three hypervariab/e minisatellites 

PODulation ~umber of times ~!l!:b e:~nQtyn!: was observed 
MS42 CRAM 292 

genotype obs {exQ} genotyQe obs {exe} genotyQe obs {exe~ 
Luangwa, Z 32126b 15 (6.7) 68/45 13 (6.12) 55/32 11 (6.43) 

45/32 1 (0.54) 59/59 1 (0.06) 32132 2 (4.02) 
47/42 2 (0.169) 53/45 1 (0.94) 55/51 1 (0.43) 
30f726b 1 (0.54) 47/45 1 (0.47) 

Nyanza, K 35a134 16 (S.9) 61/55 15 (6.64) 76/44 18 (8.08) 
35C/28 1 (0.02) 61161' 2 (5.09) 51144 1 (0.38) 
34/33b 3 (3.5) 50/36 1 (0.19) 76/36 2 (2.S3) 
33b/33b 2 (0.92) 61136 4 (4.42) 36/36 1 (0.47) 
35a133b 1 (3.1) 64/36 2 (0.3S) 36/35 2 (0.40) 
33b/21 1 (0.2) 36/36 1 (0.96) 44/36 1 (2.69) 
33b/27d 1 (0.2) 45/36 1 (0.19) 76/35 1 (1.21) 

Busoga, U 35a134 23 (6.13) 61/55 25 (10.75) 76/44 5 (14.72) 
Total 35d/34 1 (0.23) 61161 1 (4.22) 76/76 23 (14.23) 

3Sb/26a 1 (0.05) 115/55 1 (0.33) 44/44 S (3.S1) 
33b/33b 5 (1.7) 55/50 2 (1.95) 44/29 2 (0.51) 
36b/33b 1 (0.17) 36/36 5 (0.S7) 46/42 1 (0.01) 
34/34 1 (3.53) 55/36 2 (4.88) 
38d/26a 1 (0.23) 61136 1 (3.84) 
38c/26a 1 (0.23) 55/55 1 (6.84) 
38d/33b 1 (0.81) 
35b/33b 2 (0.33) 

Busoga, HSR 35a134 23 (11.96) 61155 24 (12.48) 76/44 5 (4.5) 
35d/34 1 (0.52) 61161 1 (6.76) 76176 20 (20.25) 
34/34 1 (6.76) 

Busoga, HSS 38b/26a 1 (0.15) 115/55 1 (0.3) 76176 2 (0.36) 
33b/33b 4 (3.03) 55/50 2 (0.6) 44/44 7 (5.11) 
36b/33b 1 (0.55) 36/36 4 (2.5) 44/29 1 (0.68) 
38d/26a 1 (0.15) 55/36 1 (3) 46/42 1 (0.05) 
38C/26a 1 (0.15) 55/55 1 (0.9) 
35b/33b 2 (0.55) 61136 1 (0.5) 

Kiboko,K 40/25a 1 (0.05) 83/83 1 (0.06) 48/44 1 (0.12) 
35a134 9 (1.17) 61155 9 (2.25) 76/44 9 (1.98) 
30al17 2 (0.19) 61/52 2 (0.96) 60/50 2 (0.19) 
30c/20 1 (0.04) 68/61 1 (0.32) 41150 3 (0.19) 
26c125a 1 (0.19) 70/68 1 (0.04) 44/38 1 (0.25) 
30al27c 4 (0.38) 73/55 3 (0.64) 76174 1 (0.31) 
29/27b 1 (0.02) 61153 1 (0.16) 46/31 1 (0.19) 
38a120 1 (0.04) 64/43 2 (0.17) 76/62 1 (0.15) 
36a125b 1 (0.04) 61144 1 (0.16) 51139 2 (0.06) 
26c/25b 1 (0.14) 63/55 1 (0.13) 53/40 (0.08) 
39a125b 1 (0.07) 68/36 1 (0.02) 76/56 (0.46) 
30al25c 1 (0.94) 83/59 1 (0.13) 56/56 (0.04) 

Lugala, U 38d/27d 1 (0.1) 70/36 2 (0.43) 45/36 2 (0.18) 
35a134 1 (0.02) 61155 1 (0.07) 76/44 1 (0.81) 
33b/30d 1 (0.27) 50/36 1 (0.28) 45/44 1 (0.54) 
26a122b 1 (0.07) 61136 1 (0.14) 76/45 1 (0.54) . 
38d/27d 1 (0.09) 70/55 1 (0.21) 80/44 1 (0.13) 
33b/26a 1 (0.27) 76/39 1 (0.13) 

Table 7.4. Number of times each genotype that was observed compared to the expected value. The 
genotypes for a few samples were not determined (see Table A2 in appendix), therefore the number of 
genotypes analysed in each population for each marker may vary. 
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Chapter 7 Analysis ofT. brucei popu}ations using three hypervariable minisatelIites 

Genotype Number of times each genotype was observed (and expected) in each 
population 

Kiboko LugaIa Busoga Busoga Busoga Nyanza Zambia 

HincII Total (HSR) (HSS) 

++ o (0.56) 1 (0.78) 0 (6.82) 0 (5.75) o (1.23) 0 (3.77) 0 (2.16) 

+- 7 (5.89) 3 (3.4) 30 (16.36) 23 (11.5) 7 (4.55) 19 (11.47) 11 (6.68) 

15 (15.56) 4 (3.78) 3 (9.82) 0 (5.75) 3 (4.23) 5 (8.76) 3 (5.15) 

Bgffi 

++ 14 (14.73) 0(0.667) 0 (4.13) 0 (5) o (0.27) o (4) 3 (5.15) 

+- 8 (6.545) 4 (2.66) 24 (15.79) 20 (10) 4 (3.46) 20 (12) 11 (6.68) 

o (0.726) 2 (2.67) 11 (15.15) 0 (5) 11 (11.28) 5 (9) 0 (2.16) 

MboII 

++ o (0.41) 1 (1.29) 0 (5.93) o (4.05) o (1.93) o (2) 0 (0.57) 

+- 6 (5.18) 4 (3.43) 28 (16.12) 18 (9.9) 10(6.16) 14 (10) 4 (2.86) 

16 (16.4) 2 (2.28) 5 (10.96) 2 (6.05) 3 (4.92) 11 (13) 3 (3.57) 

Table 7.5. Number of times each genotype that was observed compared 
to the expected value. The genotypes for a few samples were not determined (see 
Table A3 in appendix), therefore the number of genotypes analysed in each population for 
each marker may vary. 

which are presented in Table 7.5, there is better agreement between the number of 

observed and expected genotypes, especially for the Kiboko and Lugala populations, with 

the Busoga, Nyanza and Zambian populations showing greater deviation due to an excess 

of heterozygotes and a deficit of ++ homozygotes for each RFLP marker. As with the 

minisatellite markers, the RFLP data of all the Busoga samples show deviation from the 

expected frequencies as does the HSR samples, but the observed genotype frequencies 

from the HSS samples show agree~ent with the expected values. This suggests that the 

Busoga population is sub-structured due to host specificities. 

Because the collection of 116 samples is divided into 6 populations (based on geography 

and host specificities), each population is small making the statistical evaluation of the 

population difficult. For this reason the Lugala population has been omitted from the 

Hardy-Weinberg analysis, as this population is the smallest collection of samples (n=7) 

and therefore agreement with HW expectations could occur by chance due to the small 

sample size [Cibulskis, 1988]. For the analysis several approaches were taken to examine 

deviation from HW predictions, although no method can fully compensate for the small 
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Chapter 7 Analysis of T. brucei poputations using three hypervariable minisatellites 

sample sizes. Deviation from HW expectations and linkage disequilibrium were calculated 

using the shuffling tests of Weir, and the results are presented as probabilities of the exact 

significance levels in Tables 7.6 and 7.7 for the minisatellites and RFLPs, respectively. A 

probability of less than 0.05 indicates a statistically significant deviation from HW 

expectations and linkage equilibrium. With small sample sizes, such as these, the RFLP 

data are more suitable for HW analysis than the minisatellite data as there are fewer alleles 

and therefore fewer possible genotypes. The probability of linkage equilibrium measured 

using the three loci analysed by RFLP, however, is not valid for this population analysis 

as the three loci are closely linked on Chromosome I (see Chapter 8), therefore only the 

HW analysis based on RFLP data is presented in Table 7.7. The results with the 

mini satellite data are consistent with the Fis values, indicating that each population (with 

the exception of Busoga HSS population) is not in agreement with HW predictions, or in 

linkage equilibrium. The RFLP data for HW should give slightly more statistically robust 

results as only two alleles are observed. From these results the Busoga (HSS) and Kiboko 

populations appear to show agreement with the results expected if the populations were in 

HW equilibrium, with little or no agreement with HW expectations for the Nyanza, 

Luangwa and Busoga (HSR) populations. Comparison of these results (Table 7.7) with 

those from the minisatellites (Table 7.6), suggests that the Busoga (HSS) population is in 

agreement with HW expectations. It is interesting to note that the Busoga populations 

have fewer minisatellite alleles than the other populations which may explain the 

agreement between th~ minisatellite and RFLP results. The conflicting results obtained for 

the Kiboko population (n=24) for the minisatellite analysis compared to the RFLP data is 

probably due to the very large number of minisatellite alleles detected in these samples, 

which generate a large number of different possible genotypes, but the sample size is 

small so that they are unlikely to be detected. With the two allele system (RFLPs) the 

small sample size is less crucial and so agreement is obtained. The human serum resistant 

samples from Busoga appeared no~ to be in HW equilibrium, whereas the human serum 

sensitive samples may be in agreement with HW expectations. When the human serum 

resistant and sensitive samples are combined, the population appears to show a deviation 

from HW expectations and linkage equilibrium. These results are consistent with those 

expected if the Busoga population was a mixture of two distinct sub-populations i.e. if 

there was sub-structuring due to host specificities. However it must be remembered that 

by dividing the samples into two groups the sample size is reduced further (to 25 and 15) 

respectively and this may affect the results. 
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Chapter 7 Analysis ofT. brucei populations using three hypervariable minisatellites 

Popula tions N Probability of agreement Probability of 

withHW agreement with Linkage 

Equilibrium 

MS42 CRAM 292 MS42! MS42! CRAM 

CRAM 292 1292 

Luangwa, Z 19 0.000 0.000 0.025 0.000 0.005 0.000 
Nyanza, K 26 0.000 0.000 0.000 0.000 0.000 0.000 
Kiboko, K 24 0.000 0.000 0.000 0.000 0.000 0.000 
Busoga, U-HSR 25 0.000 0.000 1.000 0.000 0.000 0.000 
Busoga, U-HSS 15 0.165 0.227 0.000 0.018 0.001 0.000 
Busoga, U-Total 40 0.000 0.000 0.000 0.000 0.000 0.000 

Table 7.6. Hardy-Weinberg and linkage equilibrium analysis for each 
population, calculated for the minisatellite data, using the GDA 
program. Shaded cells indicate agreement with HW equilibrium or linkage equilibrium 
i.e. probability of >0.05. The Lugala population was omitted due to its small sample size 
(N). 

Populations N Probability of agreement with HW 
BglII HincII MboII 

Luangwa, Z 19 0.034 0.034 1.000 
Nyanza, K 26 0.001 0.003 0.061 
Kiboko, K 24 1.000 1.000 1.000 
Busoga, U-HSR 25 0.000 0.000 0.000 
Busoga, U-HSS 15 1.000 0.219 0.091 
Busoga, U-Total 40 0.003 0.000 0.000 
Table 7.7. Hardy-Weinberg analysis for each popUlation for the RFLP 
data, using the GDA program. Shaded cells indicate agreement with HW 
expectations i.e. probability of >0.05. The Lugala population was omitted due to its small 
sample size (n). 

Populations N Probability of agreement with HW by X2 

MS42 CRAM 292 

Luangwa, Z 19 <0.001 <0.001 0.05>P>0.01 
Nyanza, K 26 <0.001 <0.01 <0.001 

Kiboko, K 24 <0.01 0.5 0.05>P>0.01 
Busoga, U-HSR 25 <0.001 <0.001 0.9>P>0.7 
Busoga, U-HSS 15 0.3>P>0.2 =0.05 >0.05 
Busoga, U-Total 40 <0.001 <0.001 <0.01 

Table 7.S. Hardy-Weinberg analysis for each population, calculated 
using minisatellite data for the two most common alleles and combining 
all other allele frequencies. Shaded cells indicate agreement with HW i.e. 
probability of >0.05. The Lugala population was omitted due to small sample ize (n). 
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Two alternative methods for calculating deviation from HW, involving binning or 

grouping alleles together, were also applied to the minisatellite data. All alleles from each 

population except the two most frequently sampled alleles were combined and treated as a 

third allele. The observed and expected frequencies were compared and the significance 

was then calculated using X2 test. The probability of agreement to HW expectations for 

each population is presented in Table 7. 8 and agrees with that obtained from the RFLP 

analysis, in that the Busoga HSS population (and perhaps the Kiboko population) shows 

agreement with HW while the other populations appear to deviate from HW expectations. 

In a similar way, binning alleles according to similarities in their internal structure as 

defined by MVR mapping (see Chapter 8) gave similar results (data not shown). 

A possible explanation for the deviation from HW eqUilibrium shown in the T. brucei 

populations under study could be an epidemic population structure. From the allele and 

multilocus genotype frequencies depicted in Figures 7.2-7.5, is clear that one or two 

genotypes dominate each population, particularly in the populations isolated from humans. 

Given the large number of alleles present at all three minisatellite loci, the expected 

frequency of any particular multilocus genotype in the population would be extremely 

small, assuming HW and linkage equilibrium. Therefore observing a genotype several 

times in one population would be wholly unexpected, a probability which can be 

calculated using the multiplication rule (i.e. the expected genotype frequency for one locus 

is multiplied by the expected genotype frequency at another locus). This is illustrated for 

the most common genotype (multilocus genotype 7) where the expected frequency 

(assuming HW equilibrium) is far smaller than the observed frequency for each population 

in which it was observed (see Table 7.9). The same is true for genotype 21, which is the 

most common genotype present in the Busoga population (data not shown). 

Populations 

Luangwa, Z 
Nyanza, K 
Busoga, U 
Kiboko, K 
Lugala. U 
Table 7.9. Observed 
population. 

Frequency of multilocus genotype 7 
observed expected 
o 0 
0.56 0.01894 
0.105 0.0177 
0.375 0.000313 
0.167 0.0000051 

and expected frequency of genotype 7 in each 
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· Chapter 7 Analysis ofT. brucei populations using three hypervariable minisatellites 

If deviation from HW equilibrium and linkage disequilibrium were due an epidemic 

population structure [Maynard-Smith et al., 1993; Hide, 1999], whereby a few common 

genotypes obscure a randomly mating population structure, the removal of the common 

genotypes may reveal the true population structure. The frequency of each multilocus 

genotype detected (see also the genotype frequencies in Figure 7.5) is presented in Table 

7.10. Most genotypes were unique, being detected only once, however a few genotypes 

were detected several times, with genotype 7 being detected 28 times. Following the type 

of analysis described by Maynard Smith, each multilocus genotype (defined by 

minisatellite analysis) which was detected more than once, was considered as one 

individual or electrophoretic type (ET). Re-analysis, using Weir's shuffling tests of the 

minisatellite data for HW expectations using ETs only revealed that most of the 

populations were in agreement with HW predictions (see Table 7.11), which would be 

predicted if an epidemic population structure were prevalent. The same data set of only 

ETs was re-analysed for the RFLP markers (Table 7.12), and revealed that nearly all 

populations are in agreement with HW expectations. However, caution must be taken in 

drawing conclusions as, by removing many stocks from the analysis, the population sizes 

were reduced further, increasing the probability of obtaining agreement with HW 

expectations by chance. For example, the Busoga (HSR) population was reduced to 4 

genotypes, which is too small a sample size from which to draw any conclusions. The 

HSS samples (n=14) appears to show agreement with HW predictions. However, when the 

HSR and HSS samples are combined, deviation from HW expectations is detected (for 

both mini satellite and RFLP data), which is indicative of sub-structuring due to host 

specificities. The Nyanza population also shows agreement with HW expectations. 

However the Kiboko and Luangwa populations do not show agreement with HW 

predictions for the minisatellite data but show strong agreement for the RFLP data, which 

may be a reflection of the fact that-these populations have a large number of minisatellite 

alleles. 

No. of times each genotype 
sampled 

1 
2 
3 
9 
19 
28 

Table 7.10. Common genotypes. 

No. of different genotypes 

32 
8 
1 (genotype 26) 
1 (genotype 1) 
1 (genotype 21) 
1 (genotype 7) 
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Chapter 7 Analysis ofT. brucei populations using three hypervariable minisatellites 

Populations n Probability of agreement Probability of agreement with 

with HW (ETs) Linkage Equilibrium (ETs) 

MS42 CRAM 292 MS42! MS42! CRAM! 
CRAM 292 292 

Luangwa, Z 11 0.002 0.019 0.641 0.262 0.889 0.586 

Nyanza, K 10 0.806 0.833 0.420 0.619 0.834 0.832 

Kiboko, K 16 0.001 0.044 0.009 0.054 0.035 0.104 

Busoga, U-HSR 4 1.000 1.000 1.000 0.839 0.839 1.000 

Busoga, U-HSS 14 0.145 0.398 0.000 0.127 0.001 0.000 

Busoga, U-Total 18 0.006 0.120 0.001 0.007 0.001 0.000 

Table 7.11. Hardy-Weinberg and linkage equilibrium analysis for each population, 
calculated for the minisatellite data for ETs only, using the GDA program. Shaded cell 
indicate agreement with HW or linkage equilibrium i. e. probability of >0.05. The Lugala 
population was omitted due to its small sample size. The Busoga HSR sample were included 
from comparison. 

Populations n Probability of agreement with HW (ETs) 

BgllI HincII Mho II 

Luangwa, Z 11 1.000 1.000 1.000 

Nyanza, K 10 0.468 1.000 1.000 

Kiboko, K 16 1.000 1.000 1.000 

Busoga, U-HSR 4 1.000 0.322 1.000 

Busoga, U-HSS 14 1.000 0.173 0.070 

Busoga, U-Total 18 0.528 0.022 0.030 

Table 7.12. Hardy-weinberg and linkage equilibrium analysis for each population, 
calculated for the RFLP data for ETs only, using theGDA program . Shaded cell indicate 
agreement with HW or linkage equilibrium i. e. probability of >0.05. The Lugala population wa 
omitted due to its small sample size. The Busoga HSR samples were included from comparison. 
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To investigate further the possibility of an epidemic population structure, the Index of 

Association (lA) was calculated for each population as described by Maynard-Smith et al. 

(1993). The lA measures the association of alleles (or genotypes for diploid organisms) at 

different loci, and has a predicted value of zero (or a negative value) for populations 

which are randomly mating, while if recombination is rare or absent the lA is larger with a 

value significantly different from zero. The lA values for each population, using the total 

data set, (i.e. all isolates) are presented in Table 7.13, with the Nyanza, Luangwa. Kiboko 

and Busoga (HSR) populations all having large lA values, indicating non-random mating 

populations, whereas the Busoga (HSS) and the Lugala samples have small lA values, 

suggesting little linkage disequilibrium and therefore indicating that genetic exchange 

could be occurring in these populations. The data were also analysed using only ETs to 

reduce population distortion which may be caused by the epidemic spread of particular 

strains [Maynard-Smith et al., 1993]. The analysis shows that when the common 

genotypes are removed the lA values are greatly reduced all becoming negative, thus 

indicating that genetic exchange and recombination could be occurring in all populations, 

but that the population structure was distorted by an epidemic spread of one or two 

genotypes for the Nyanza, Luangwa, Busoga (HSR) and Kiboko populations. The 

difference in lA for all isolates for the HSR and HSS samples from Busoga suggests that 

there is a different population structure for human infective and non-human infective 

trypanosomes, which has previously been suggested by Hide et al. [Hide et al., 1994]. By 

inspection of the data, in terms of the numbers of distinct alleles and their frequencies, this 

is clearly due to a predominance in the HSR population of one major genotype. However 

it must be remembered that small sample sizes (particularly for the Lugala population) and 

the few loci analysed in this study may result in misleading conclusions. 

Similar re-calculation of the FIS value using only ETs was carried out (Table 7.14), 

resulting in a increase in the FIS values for most populations, bringing them closer to zero 

(the predicted value for a panmictic population). Again the lowest values were obtained 

for Kiboko and the Busoga (HSS) populations. 

Variation between populations. From the allele frequency distributions illustrated 

in Figures 7.2 - 7.4, it is clear that a great deal of variation exists not only within but also 

between the different populations, with limited allele sharing between populations. Many 

alleles are specific to the population from which they were derived. Table 7.15 indicates 

the number of private alleles (alleles not present in another population) per locus, 
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Population Number of lA all Number of lA 

isolates isolates isolates 

(ETs only) (ETs only) 

Luangwa(Z) 14 1.447 6 -0.489 

Nyanza (K) 25 1.138 9 -0.002 

Busoga HSR (U) 25 1.539 4 -0.391 

Busoga HSS (U) 13 0.116 9 -0.192 

Kiboko (K) 24 1.407 14 -0.488 

Lugala (K) 6 0.08 5 -1 

Table 7.13. Comparison of Index of Association, IAJ for each population. The lA was 
calculated saparately for all isolates and ETs only, for each population as described in 
Maynard-Smith et al., 1993. 

. Populations FI' all data FI' common genotypes 

removed 

LuangwaZ -0.54 -0.24 

NyanzaK -0.43 -0.20 

Busoga, U -HSR -0.84 -0.50 

Busoga, U -HSS -0.05 -0.07 

Kiboko K -0.13 -0.03 

Lugala U -0.25 -0.20 

Table 7.14. Comparison of inbreeding coefficient (FIg) estimates using all samples 
and electrophoretic types only. Mixed samples were excluded. 
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identified from each population, ranging from 0 for the Nyanza population for the CRAM 

locus, to a striking 15 MS42 alleles for the Kiboko population. The number of alleles 

shared between populations is presented in Tables 7.16- 7.18. From these data, the 

Zambian population appears to be the most genetically distinct with limited allele sharing 

with any of the other populations, whereas Busoga, Lugala and Nyanza share a 

considerable number of alleles. This can also be clearly seen in the allele frequency graphs 

of Figures 7.2-7.4. 

The amount of inter-population genetic variation can be assessed by estimating the 

fixation index, F ST which determines the amount of genetic difference between sub

populations, with a theoretical minimum of 0 indicating no genetic divergence, and a 

maximum of 1 indicating fixation for each SUb-population for different alleles. The FIT is a 

measure of the amount of inbreeding, taking into account both the effect of non-random 

mating within the sub-population and the effect of population subdivision. Estimates of 

FST and FIT were calculated, using all markers, for the T. brucei samples (using the GDA 

program [Lewis and Zaykin, 1999]), and the results are presented in Table 7.19. From 

these results the overall estimate of the FST value was 0.141, with 95% confidence 

intervals of 0.168 and 0.105 (measured by bootstrapping). FST values of this magnitude 

indicate moderate to great genetic difference between populations [Hartl and Cl ark, 1997], 

indicating that the populations are sub-divided. Re-analysis using only ETs increased the 

FST value marginally to 0.168, reflecting the fact that the common genotype (genotype 7) 

is the only genotype which is present in more than one population and so by removing it 

from the analysis the difference between populations is greater. The overall FIS value (the 

inbreeding coefficient) was -0.318, indicating that there is an excess of heterozygotes in 

the populations. After removing the common genotypes the FIS value became closer to 0 at 

-0.1485. The overall estimate of inbreeding measured by FIT which was -0.132, also 

increased to 0.0447 when the common genotypes were removed. 

A pairwise measure of genetic dist.ance (Nei 1978) was calculated using the mini satellite 

data and the results are presented in Table 7.20. From this table it is clear that the 

populations with the smallest genetic distance between then are the Nyanza and Lugala 

populations, followed by Nyanza and the HSR samples from Busoga. Interestingly the 

HSR and HSS samples from Busoga display a large genetic distance of 0.471, similar to 

that of Nyanza and Zambia, which provides strong evidence for sub-structuring due to 

host specificities. However caution must be taken not to over-interpret these results, as the 

sample sizes are small and so may not be truly representative of the population from 
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Populations Host Number of private alleles/population 

MS42 CRAM 292 

Lugala, U T 2 0 2 

Kiboko, K T 15 6 11 

Luangwa,Z M 6 1 2 

Nyanza, K M 2 0 1 

Busoga, U M,C 5 2 

Table 7.15. Private alleles/population. Samples were isolated from tsetse flies (T), cattle 
(C) and humans (M). Only samples from the hosts stated were included. 

Populations 

Zambia (6) 
Nyanza (9) 
Busoga (12) 
Kiboko (22) 
Lugala (12) 

Number of MS42 alleles shared between populations 
Zambia (6) Nyanza (9) Busoga (12) Kiboko(22) Lugala(12) 

o 0 0 0 
3 2 5 

2 6 
2 

Table 7.16. Number of distinct MS42 alleles shared by each pair of populations. 
Numbers in parentheses show the number of distinct alleles found in each popUlation. 

Populations 

Zambia (3) 
Nyanza (5) 
Busoga (8) 
Kiboko (18) 
Lugala (10) 

Number of 292 alleles shared between populations 
Zambia (3) Nyanza (5) Busoga (8) Kiboko(18) Lugala(10) 

1 1 2 0 
2 4 3 

3 2 
6 

Table 7.17. Number of distinct 292 alleles shared by each pair of populations. 
Numbers in parentheses show the number of distinct alleles found in each population. 

Populations 

Zambia (5) 
Nyanza (6) 
Busoga (6) 
Kiboko (15) 
Lugala (9) 

Number of CRAM alleles shared between populations 
Zambia (5) Nyanza (6) Busoga (6) Kiboko(15) Lugala(9) 

1 0 3 1 
4 4 4 

4 4 
6 

Table 7.18. Number of distinct CRAM alleles shared by each pair of populations. 
Numbers in parentheses show the number of distinct alleles found in each popUlation. 
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Genetic variability within and between populations 

over all markers 
95% Cl upper 
95% Cl lower 
over all markers with common 
genotypes removed 
95% Cl upper 
95% Cl lower 

-0.318 -0.132 
-0.174 0.016 
-0.498 -0.349 
-0.1485 0.0447 

-0.025 
-0.330 

0.125 
-0.086 

Table 7.19. Genetic variability within and between populations. 

0.141 
0.168 
0.105 
0.1682 

0.235 
0.121 

Painvise estimates of genetic distance (Nei 1978) among populations 
Populations Kiboko Lugala Busoga Busoga Nyanza Zambia 

(HSS) (HSR) 
Kiboko 0.125 0.453 0.256 0.145 0.369 
Lugala 0.086 0.250 0.053 0.370 
Busoga (HSS) 0.471 0.167 0.651 
Busoga (HSR) 0.074 0.975 
Nyanza 0.493 
Table 7.20. Pairwise estimates of genetic distance (Nei 1978) among populations, 
calculated from minisatellite alleles. 
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which they were derived. The largest genetic distance (0.975) was found to be between the 

HSR samples of Busoga and the Zambian population. These results illustrate what is 

immediately obvious from the allele frequency histograms, i.e. that the Zambian 

population is the most divergent from the other populations examined and that there is a 

close relationship between the Nyanza, Busoga and Lugala populations. It is interesting to 

note that the Kiboko population appears to be closer to the Busoga HSR population than 

the Busoga HSS population. This is due to the detection of genotype 7 in the Kiboko 

population, which is a common genotype in the Busoga HSR population and is closely 

related to major genotype 21. The implication of this result is that there are human 

infective trypanosomes within the Kiboko population. 

Discussion 

Choice of markers. As mentioned in Chapter 1 the markers for any analysis should be 

chosen for the particular question that is being addressed. For evolutionary studies and 

comparisons between species, markers which are not particularly variable would be 

desirable, and for more recent population changes markers which are evolving at faster 

rates are required. To trace particular genotypes through populations and to address the 

question of clonality, markers which can distinguish between particular genotypes (such 

as minisatellites) are required. In this chapter, five T. brucei populations have been 

examined, using the three hypervariable minisatellite markers described in Chapter 3, to 

address the question of clonality and popUlation sub-structuring. However, because the 

sample sizes are small and there are many alle1es at each locus, these markers are probably 

less than ideal for the analysis of deviations from HW expectation and less variable 

markers are more appropriate. It was for this reason that three RFLP markers (located on 

Chromosome 1) have been employed to detect deviations from HW equilibrium. 

Cloltality. It is without doubt that sexual recombination does occur in natural populations 

of T. brucei, as the high level of diversity would be difficult to explain by mutations alone 

[Cibulskis, 1988]. In this study the assortment of alleles into different genotypes has been 

observed many times, indicating that some sexual recombination does occur. However the 

key question regarding sexual recombination is the level at which it occurs in the field. 

To address the issue of clonality in T. brucei populations a marker system which would 

uniquely identify specific clones is required. Previous analysis of populations using 

markers with limited variability could possibly have grouped different clones together and 

so incorrectly given the impression of c1onality. In this chapter unequivocal allele 
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identification for one minisatellite locus (MS42) combined with allele size measurements 

for another two minisatellites were used to identify stocks, with most multilocus 

genotypes being unique. It is clear from the data presented here (Figure 7.5), however, that 

one or two genotypes in each population are over-represented, (especially pronounced in 

the populations isolated from humans- Luangwa, Nyanza and Busoga (HSR», which 

would initially suggest a clonal population structure as proposed by [Tibayrenc et al., 

1990]. Indeed these data would fit Tibayrenc's criteria for clonality (see Chapter 1, Table 

1.3), in that there is an excess of heterozygotes, deviation from HW expectations and 

linkage disequilibrium. However, the common genotypes are not detected over a wide 

geographical area and the Zambian (Luangwa) population does not share the genotypes 

which are common to the other populations but has a different common genotype. Further 

analysis of these data, examining only the ETs (for both HW and lA)' indicated that the 

underlying population may be in agreement with HW expectations and the population 

structure may be sexual, which was initially obscured by the over-representation of one or 

two genotypes. However it must be emphasised that by removing the common genotypes 

the sample size for each population was considerably reduced, thus decreasing the ability 

to detect deviation from HW equilibrium. In order to verify an epidemic population 

structure a far larger number of samples would be required; unfortunately only a small 

number of samples collected at the same time and from the same place were available for 

analYSIS here. The results presented in Chapter 6 in which uncloned mixed isolates were 

analysed, gives a sample of the larger population and indicates that not only are there 

more alleles in the population than in the genotypes presented in this chapter, but also that 

different combinations of alleles exist, suggesting that if a large number of isolates were 

examined more recombinant genotypes would be identified. It is also possible that an 

epidemic pop~lation structure was observed because the samples were collected during an 

outbreak of the disease in humans or cattle and that, by sampling from other hosts (or the 

vector) during periods of endemic~ty, a different population structure would have been 

apparent. 

Population sub-structuring due to geography -comparison of human 

isolates. In order to examine the possibility of population sub-structuring due to 

geography, a comparison can be made between the human isolates from different 

geographical regions, Luangwa, (Zambian), Nyanza (Kenyan) and Busoga (Ugandan). 

Examining the allele distribution for each of these populations, for the mini satellite MS42, 

(Figure 7.2), it is immediately clear that the Luangwa (Zambian) stocks do not share any 

MS42 alleles with those of any of the other populations. This is highlighted in Table 7.16, 
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which indicated the number of MS42 alleles shared between populations. For the 292 

locus, two alleles have been found to be shared between the Luangwa stocks and those 

isolated from Nyanza and Busoga, and for the CRAM marker, one allele has been 

identified that is common in the Luangwa population and has been observed in one 

Nyanza stock (see Tables 7.17 and 7.18). Interestingly the three alleles shared between 

Nyanza and Busoga were from the few samples in these populations isolated from non

human isolates, i.e. they were isolated from tsetse flies or cattle. Therefore a direct 

comparison of human isolates from Luangwa with human isolates from Nyanza and 

Busoga does not identify any alleles in common. These data suggests that the human 

isolates from the Zambian population are distinct from the human isolates from other 

populations, supporting the findings of Hide et al in 1994. However it must be 

remembered that the Luangwa samples were isolated at a different time (1981-3) from 

those of the other populations and so the genetic distance observed here may be due to 

time differences rather than geographical barriers. However, this is unlikely as the 

populations from the shores of Lake Victoria (Lugala, Nyanza and Busoga) show 

remarkable similarity over time, with the same common alleles being present in all 

populations between 1969 and 1990. 

The samples from Luangwa in Zambia were isolated from two villages (Kasyasya and 

Chilbale) in Luangwa approximately 40 Km apart. Analysis of the genotypes detected 

(Table 7.21) has revealed that the samples from Kasyasya appear to be clonal with only 

two highly related genotypes being present in the 15 samples from this village, the 

genotypes differing by two repeat units in one MS42 allele (see Chapter 8). The four 

samples isolated from the Chilbale village, however, are all different. Although from a 

small sample set, these results indicate that differences in genotypes can be detected 

between villages which are only a short distance apart, suggesting that sub-structuring can 

occur over very small distances. A much larger collection of isolates exists from this 

region [Godfrey et al., 1990] and could be analysed to substantiate fully these findings. 

Genotype of Luangwa HSR samples 
Village MS42 CRAM 292 

Kasyasya 32/26b 68/45 55/32 
Kasyasya 30f126b 68/45 55/32 
Chilbale 32/26b 59/59 32/32 
Chilbale 45/32 53/45 55/32 
Chilbale 47142 53/45 55/51 
Chilbale 47/42 47/45 32/32 

Table 7.21. Genotypes of HSR Luangwa samples. 

Multilocus 
genotype 

I 
5 
2 
3 
4 
6 
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Population sub-structuring due to geography -comparison of tsetse 

isolates. To examine further the possibility of population sub-structuring due to 

geography, two populations, which were both isolated from tsetse flies at the same time 

(1969-70) but from different locations, Kiboko (Kenya) and Lugala (Uganda), 

approximately 400Km apart, were compared. From Figure 7.2 it is clear that there are 

only 2 shared alleles, which constitute the common genotype, out of 34 different MS42 

alleles detected in the two populations. Six 292 and six CRAM alleles are also shared 

between the two populations. It is clear from these data that the two populations are 

genetically different, each containing several private alleles (for a summary see Table 

7.22). 

No. of different alleles (total no. of alleles) 
-Lugala 
No. of different alleles (total no. of alleles) 
- Kiboko 

MS42 
12 (23) 

22 (64) 

Markers 
CRAM 
9 (26) 

15 (62) 

Shared alleles between Lugala and Kiboko 2 6 
Private alleles - Lugala 2 0 
Private alleles - Kiboko 15 6 

292 
10 (25) 

18 (68) 

6 
2 
11 

Table 7.22. Comparison between Lugala and Kiboko 
total number of alleles in each population are given in brackets. 

populations. The 

The differences between the 5 populations in this study are reflected in the F ST values, 

which suggests that there is an appreciable level of genetic difference between 

populations. The data presented here, from both tsetse and human isolates, suggests that 

because significant population sub-structuring exists due to geographical barriers, which 

has previously been suggested by [Cibulskis, 1992], previous studies in which samples 

from widely different geographical areas were combined [Tibayrenc et al., 1990] would 

lead to flawed conclusions. 

Population sub-structuring due to host specificity and T. h. rhodesiense

specific markers. The possibility of population sub-structuring due to host specificity 

has rarely been considered in the analysis of T. brucei populations, with the exception of 

Cibulskis et al., in 1992 who provided evidence for a difference in zymodemes isolated 

from different hosts, suggesting population sub-structuring. In this present study one 

population was ideally suited for the analysis of sub-structuring due to host specificities. 

Samples from Busoga in Uganda were collected from both humans and cattle at the same 

time point, and many of those samples were analysed for human serum sensitivity [Hide et 
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al., 1994]. Examining the difference between HSR and HSS stocks, it is clear that no 

MS42 alleles are shared between them (Figure 7.2), but the less discriminatory markers 

CRAM and 292 do show common alleles between the populations, although there are 

substantial allele frequency differences between the two groups of stocks (Figures 7.3 and 

7.4). Comparing the multilocus genotypes, only 4 genotypes have been identified in 25 

HSR stocks compared to 8 genotypes in 13 HSS or stocks where human serum resistance 

was not tested, suggesting that the HSR stocks are far more homogeneous than the HSS. 

Interestingly the 4 different HSR genotypes are all highly related (see Table 7.23), in that 

they share the same basic complement of alleles. The relationship between these 

genotypes suggests that they could have originated by selfing, for example, genotype 7 

(heterozygous for alleles at MS42 and 292) could have self-fertilised to produce genotype 

20, which is homozygous at both loci. This could also be the case for the derivation of 

genotype 21 and 16 as the self-fertilization of genotype 7 could produce genotype 21, 

which is homozygous for 292, and genotype 16, which is homozygous for CRAM (the 

MS42 allele 35d is a single repeat variant of allele 35a, described in full in Chapter 8). It 

would appear that for the Busoga focus at least, HSR is associated with one genotype and 

its self-fertilization products, implying little or no recombination between the HSR and 

HSS stocks; this is further supported by the high genetic distance value (0.471) between 

these groups of isolates. This view supports the findings of [Hide et al., 1994] who 

examined many of the same stocks from the Busoga focus. The fact that several self

fertilization products have been detected in the HSR stocks may not be surprising as 

during an epidemic (from which these samples were collected) the predominant genotype 

may only come in contact with trypanosomes of the same genotype, and so any mating 

would essentially constitute self-fertilization (a phenomenon which has been observed in 

laboratory crosses). The results presented here suggest that HSR stocks may be clonal in 

origin, with stocks from just one lineage being able to infect humans, perhaps suggesting 

that human infectivity is a fairly recently acquired attribute which has not as yet, or 

cannot, spread through the rest of the T. brucei population by sexual recombination. 

The majority of the samples were isolated from Busoga between 1988 and 1990, with the 

exception of five samples which were isolated from humans at earlier time points; 1959, 

1960, 1976, 1981 and 1982. Two multilocus genotypes were identified from these samples 

(genotype 7 and 16, see Table 7.23), neither of which were detected in the large collection 

of samples from 1988-90. The relationship between the samples suggests that genotype 7, 

which has been found in all populations except the Zambian population, is the ancestral 

HSR genotype from which the other genotypes were derived, giving rise to genotypes 20 
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and 21 (probably by self-fertilization) which are the only HSR genotypes detected in the 

1988-1990 Busoga samples. 

Genotype of Busoga HSR samples 
Year of 

isolation 
MS42 CRAM 292 

1959-82 35a/34 61/55 
1976 35d134 61161 
1989 35a/34 61155 

1988-90 34/34 61155 
Table 7.23. Genotypes of HSR Busoga samples. 

76/44 
76/44 
76n6 
76n6 

Multilocus 
genotype 

7 
16 
21 
20 

It is interesting to note that the possible epidemic population structure due to the over

representation of common genotypes from the five populations (as depicted in Figure 7.5), 

may be related to the ability of the different trypanosomes to infect humans, in that each 

of the common multilocus genotypes (1, 7, and 21) is associated with human serum 

resistance. Evidence from the Busoga population suggests that human infective stocks 

may be a sub-population, defined by a unique set of alleles, with limited genetic exchange 

with human serum sensitive stocks. One of the multilocus genotypes associated with 

human infectivity from the Busoga population (genotype 7) has also been detected in the 

Kiboko samples, which predicts that the Kiboko population may contain trypanosomes 

which are human infective. This hypothesis could be easily tested using the blood 

incubation infectivity test (BlIT) to identify any human infective trypanosomes in the 

Kiboko population. 

Analysis of the Busoga HSR samples has revealed one lineage which is associated with 

human infectivity and could be considered a T. h. rhodesiense-specific marker. However 

analysis of the Nyanza population does not reveal such a tightly defined set of genotypes 

associated with HSR (see Table 7.24), although the predominant genotype (genotype 7) is 

common to both populations, and the Nyanza genotype 8 and the Busoga genotype 16 are 

highly related, with a single MS42 repeat unit change between them (see Chapter 8). The 

presence of other alleles in genotypes, 10, 11, 12 and 14 suggests that a pure clonal 

lineage of HSR genotypes does not exist in this population and that some measure of 

cross-fertilization has occurred, although there is still a restricted repertoire of alleles and 

the genotypes are related (for example, it is possible that the Nyanza genotype 11 is the 

product of self-fertilization of genotype 10). 
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MS42 
Genotype of Nyanza HSR samples 

CRAM 292 Multilocus 
genotype 

35a134 61/55 76/44 7 
35a134 61/61 76/44 8 * 
34/33b 61/36 76/36 10 
34/33b 61/36 36/36 11 
33b/33b 64/36 36/35 12 
35a133b 61/55 76/44 13 
33b/21 36136 44/36 14 

Table 7.24. Genotypes of HSR Nyanza samples. Genotype 8 is highly related 
to the Busoga HSR genotype 16, having one MS42 repeat unit difference (see Chapter 8). 

Interestingly, the human infective genotype isolated from the Zambian population is very 

different from the human infective genotype isolated from Busoga focus, with no alleles in 

common. This indicates that T. b. rhodesiense samples from different areas may not be 

closely related, as their subspecies classification would suggest. Indeed, HSR Busoga (T. 

b. rhodesiense) samples appear to be more closely related to (although still distinct from) 

HSS Busoga samples (T. b. brucei) than to the Zambian T. b. rhodesiense samples. 

Further evidence from the similarity of MVR maps of MS42 alleles which supports this 

conclusion is provided in the following chapter. 

Most studi'es of T. brucei populations [Stevens and Welburn, 1993; Truc and Tibayrenc, 

1993; Mathieu-Daude and Tibayrenc, 1994] have examined samples which were derived 

largely from human and cattle infections, sampled during an epidemic, and have 

concluded that T. brucei populations are homogeneous with little or no sexual 

recombination. Based on the data presented here, it is likely that a wider range of 

genotypes would have been observed if the samples were collected from other mammalian 

hosts or vectors from an endemic area. Indeed the apparent clonality and genetic isolation 

of T. b. rhodesiense from T. b. brucei would mean that previously analysed populations 

would be a mixture of two sub-species and so would not be in HW equilibrium and would 

show linkage disequilibrium. 

Cattle are a reservoir for human infective trypanosomes. Having identified 

multilocus genotypes which are associated with human infectivity in the Busoga area of 

Uganda, examination of the host species they were isolated from (Figure 7.6) revealed that 

these genotypes were present in the cattle population, indicating that cattle could be a 

reservoir for human infective trypanosomes, supporting the view of Hide [Hide et al., 

1996]. These data also highlight the importance of sub-structuring in the trypanosomes 

within the cattle host. 
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Conclusions 

The main findings from this study indicate that T. brucei populations have an epidemic 

population structure, whereby a sexual population structure has been obscured by the 

over-representation of mainly one genotype, which is associated with human infectivity. 

This is likely to have been accentuated by the non-random sampling programme focused 

on epidemics of disease in humans. For the Busoga focus the human infective 

trypanosomes appear to be clonal in origin having been derived from genotype 7, and so 

for the Busoga population a T. b. rhodesiense marker has been identified. The main 

human infective genotype in the Nyanza population can also be identified using this 

marker system (and is highly related to the Busoga human infective genotype), although 

one or two human infective samples may have a variant genotype, suggesting sexual 

recombination has occurred. Human infective stocks from the Zambian population, 

however, are unrelated to the human infective samples from Nyanza or Busoga and may 

have originated separately from the human infective samples of the Busoga/Nyanza focus. 

Indeed the nature of the disease they cause appears to be different in the two foci, with a 

very acute disease in the Busoga/Nyanza focus and a low virulence disease in Zambia, 

with a high incidence of asymptomatic carriers [Hide, 1999]. 

The results from this chapter also suggest that considerable population sub-structuring can 

be observed due to geography, with little allele sharing between different populations . 

. Analysis of stocks isolated from different hosts also suggests that sub-structuring exists 

due to host specificities with human infective trypanosomes having a more restricted 

repertoire of alleles and genotypes. Taken together, these data suggest that previous 

studies based on samples from different areas, hosts and time points may give misleading 

results. For example, deviation from HW could arise by mixing samples from different 

populations. Although it was tempting to combine the data obtained from the 116 samples 

examined in this study to measure deviation from HW, the results from the sub-population 

analysis indicates that the basis for .doing this would be seriously flawed. 

The analysis presented in this chapter outlines a new approach to the analysis of T. brucei 

populations, by using hypervariable minisatellite markers which can distinguish between 

the majority of stocks. This approach is particularity useful for tracing genotypes through 

the population and to examine the theory of c1onality. However the question arises as to 

how appropriate the statistical tests commonly employed are to the data generated by 

hypervariable markers. A direct comparison of isoenzyme and single-locus minisatellite 

markers for the analysis of toad populations using traditional statistical tests found a high 

degree of concordance with the different marker systems and suggests that minisatellites 
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may be highly informative for population-level analysis addressing questions concerning 

population sub-division [Scribner et al., 1994]. However in order to derive meaningful 

results from these markers a large number of samples must be analysed. The sample sizes 

in this study were too small to yield unequivocal conclusions, although the general trends 

they reveal, which support the findings of [Cibulskis, 1992; Maynard-Smith et al., 1993; 

Hide et al., 1994], may be valid. 
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Chapter 8 

Development of a digital DNA typing system 

to analyse T. brucei populations 

Introduction 

In Chapter 7 hypervariable minisatellite markers were used to analyse a series of T. brucei 

population samples from East Africa, in order to address the issues of popUlation 

substructuring (due to geography and host species), epidemic popUlation structures and 

c1onality. However, despite the obvious advantages of mini satellite markers over 

traditional typing systems, there are some technical problems involved in the use of these 

markers. For example, minisatellite alleles tend to vary in a quasicontinuous fashion 

making unambiguous allele identification difficult. Thus, when size differences between 

alleles are small, allele length estimates are not very accurate and variation between gel 

runs can lead to a failure in identifying matching samples, or the false matching of 

different samples, thus weakening the statistical power of popUlation databases based on 

allele length. Also alleles of the same size may differ in repeat structure and so size may 

not indicate relatedness. The development of minisatellite variant repeat (MVR) mapping 

by the polymerase chain reaction (MVR-PCR) as a digital approach to DNA typing 

[Jeffreys et al., 1991] has overcome many of the drawbacks ofVNTR length analysis. The 

system assays the dispersion patterns of MVRs within mini satellite arrays producing an 

easily interpretable code for each allele. The simple and rapid MVR-PCR technique 

increases the level of information about each allele so that the ability to define differences 

is increased. Furthermore the information is generated in a digital format ideal for 

computer based analysis and for the production of population databases. 

MVR mapping has been applied successfully to a number of minisatellites in humans 

[Jeffreys et al., 1991; Neil and Jeffreys, 1993; Armour et al., 1993; Buard and Vergnaud, 

1994], mice [Bois et al., 1998] and the parasite, Plasmodium [alciparum [Arnot et al., 

1993]. The study of variant repeats within minisatellite arrays has proved useful for two 

main areas of research; individuaVstock identification for the analysis of populations and 
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analysis of the mutation processes involved in the generation of new length alleles at those 

loci which are highly unstable. For example, MVR-PCR analysis of the human 

minisateIIite, Ms205, has revealed differences in allele diversity between African and non

African populations with a restricted set of allele groups being identified in the non

African populations [Armour et al., 1996]. The non-African alleles appeared to be a subset 

of the much greater diversity found in the African population, supporting the 'out of 

Africa' theory of human evolution. Allele differences between British African-Caribbean 

and Caucasian populations have also been investigated using the MVR-PCR technique on 

the minisatellite in the involucrin gene, indicting how this gene evolved in human 

populations and revealing a potential race specific marker, which may have forensic 

applications [Urquhart and Gill, 1993]. Another human mini satellite found on the non

pseudo autosomal segment of the Y chromosome which is therefore male specific, has 

been identified by Jobling and co-workers, and internal mapping of this locus by MVR

PCR has been used to trace male lineages [Job ling et al., 1998; Bouzekri et al., 1998]. 

MVR-PCR has been applied to the study of the mutation processes involved in the 

generation of new length alleles for three human mini satellites, (Ms32, Ms31 and Ms205) 

revealing that variation in allelic structures has a marked polarity with mutations occurring 

at or near one end of the repeat array, although polarity for a fourth minisateIlite has not 

been confirmed [Buard and Vergnaud, 1994] and has not been observed for another 

human minisatellite [Andreassen and Olaisen, 1998]. Evidence from the analysis of these 

mutations has also suggested that inter-allelic as well as intra-allelic recombination may 

play an important role in the creation of new length alleles [Jeffreys et al., 1991; Armour 

et al., 1993; Neil and Jeffreys, 1993; Buard and Vergnaud, 1994], with the frequency of 

the mutation process apparently being modulated by cis acting elements [Monckton et al., 

1994]. The discovery of mini satellite mutations which are associated with human disease, 

has renewed interest in minisateIlite mutation processes [Buard and Jeffreys, 1997]. 

The MVR-peR method is a powerful tool in the analysis of mini satellite loci, but not all 

minisatellites are amenable to analysis by this technique. For the methodology to be 

successfully applied to a locus, the minisatellite structure must meet a number of criteria. 

At least one variant repeat must be common among alleles and other variant repeats must 

be rare. As MVR specific primers are designed to the common variant, the presence of 

further polymorphic sites within the repeat unit could prevent the primers from amplifying 

from every repeat. The repeat unit size must be uniform throughout the locus (for diploid 

mapping) and for single allele mapping, alleles must be small enough to amplify in their 
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entirety for gel purification or alternatively flanking polymorphisms must exist which can 

be exploited to generate allele specific primers for the typing of heterozygous samples 

[Monckton et al., 1993]. 

This chapter describes the application of the MVR-PCR technique to the T. brucei 

mini satellite, MS42, with the aim of obtaining large numbers of single allele maps from 

the five different populations described in Chapter 7. Using this method, a greater number 

of alleles were identified at this locus than by size estimates alone. The allelic structures 

identified also generated cladistic information as well as providing evidence for both intra

and inter-allelic recombination in the generation of new length alleles at this highly 

variable locus. In order to relate allelic structures to the local haplotypic context, several 

polymorphisms identified in the DNA flanking the MS42 repeats were examined. This 

information could aid the grouping of similar alleles and also indicate the extent of 

recombination events involving the exchange of flanking markers. 

By studying the five different populations of T. brucei (see Chapter 7) in this way, a 

number of questions regarding the population structure and mutation processes can be 

addressed. Can T. brucei rhodesiense stocks be distinguished from the local T. brucei 

brucei population as suggested by Hide et al., (1994)? Can MVR maps provide a rational 

method for binning or grouping alleles to provide data for population analysis? Did human 

infectivity arise from the T. b. brucei population and did this occur independently in 

several different regions? How frequently do new length alleles arise, i.e. are the repeats in 

MS42 mitotic ally stable or do they represent a recombination hot spot? Do new length 

alleles arise by intra-allelic events during mitosis or by inter-allelic crossing over during 

meiosis? 

Results and Discussion 

The principles of MVR-PCR of MS42. Sequence analysis of the T. brucei minisatellite 

MS42 (Chapter 3) and partial sequence of several alleles [see following sections and 

Barrett et al., 1997] shows the presence of variant repeats, the most common being an AJG 

transition which does not affect the predicted amino acid sequence of the gene product. 

The presence of one common variant repeat, the fact that the repeat unit size is constant 

(42bp) and that all alleles are small and so can be easily purified suggests that the 

minisatellite MS42 satisfies the strict criteria necessary for the development of a digital 

DNA typing system. 
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The MVR-PCR method accesses the dispersion pattern of variant repeats within the repeat 

array of a minisatellite, In the case of MS42, two repeat types exist, which differ by a 

single base substitution, (NG transition) at the beginning of the repeat unit; thus, every 

repeat can have either an A or G base at the first position of the repeat unit. The two 

classes of repeat unit were designated a-type and g-type repeats (Figure 8.1). To access 

this variation two PCR primers were generated which are specific for each repeat type. 

Using these MVR specific primers and a specific primer located in the flanking DNA, a 

ladder of PCR products corresponding to the position of each a-type and each g-type 

repeat could be generated (Figure S.lC). Applied to single isolated alleles, a binary code 

of the distribution of a- and g-type repeats within the repeat array could be constructed, 

while if applied to total genomic DNA, (by including both alleles), a ternary code could be 

derived from the superimposed maps of the two alleles. 

Unlike the human minisatellites Ms32 and Ms31 [Jeffreys et al., 1991; Neil and Jeffreys, 

1993], which have many alleles > lOkb long, all the alleles of the MS42 variable region are 

small (less than 2.4Kb), and so every allele can be completely and readily amplified by 

PCR. This allows each allele to be analysed in full, in a similar fashion to the human 

minisatellite MS205 [Armour et al., 1993; Armour et al., 1996]. 

MVR-PCR methodology. Initially the variable region of the MS42 locus in each 

isolate was amplified to visible levels on an ethidium stained gel, using the universal 

flanking primers MS42-W and MS42-F (as in Chapter 3; Figure 3.2; details of PCR 

reactions including oligonucleotide sequences are given in Materials and Methods). Each 

PCR-generated band, corresponding to the different alleles in the sample, was then 

excised from the agarose gel and used as a template for the subsequent PCR reactions 

using MVR specific primers. 

The two different MVR specific primers prime off either a- or g-type repeats in 

conjunction with the universal flanking primer to generate two sets of products, one 

recording the products of repeats. starting with a and the other repeat starting with g. 

Because the MVR specific primers can prime internally from the initial peR products this 

can lead to progressive shortening of the peR products with each cycle of amplification. 

To prevent this occurring each MVR specific primer contains a 20 nucleotide extension, 

TAG. Thus the MVR-tagged primers provide the specificity of the peR reactions and are 

used at low concentrations while the TAG primer is used at higher concentrations to 

amplify these products. In this way the MVR detection is separated from the subsequent 

amplification (Figure 8.1). After a limited number of cycles of amplification the products 

were electrophoresed through a 40 cm 1 % agarose gel to obtain the maximum resolution 
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A I I I11III I I I 11 --Single alleles 
-$I • • 1111 I I I I -----I .. IM.II 'NI-IM.IIIII-

binary code : a g g a a g gag a g g a a a g gag g ..... . 

B 

C 

MS42 repeat unit 
5' ytctgccttggctggttcagggactgccactggtttcacagt 3 ' 

)' ragacggaaccgaccaagtccctgacggtgaccaaagtgtca 5' 

Ms42-T AG-A a Ms42-TAG-G 3' 9 agacggaaccgaccaagtccctgacaggcctggtacctgcgtact 5' 
TAG 3'aggcctggtacctgcgtact 5' 

MS42-W 
=:I Hi iW 
~ ~ ~ MS42-TAG-A 

••• 
~ 1 

• •• 
• •• 

t2 
"P' 

••• 
.n. TAG 

t3 
amplify with MS42-W and TAG 

Figure 8.1 The principles of minisatellite repeat coding. 
(A) Principle of digital coding. Minisatellite alleles consisting of interspersed arrays of two 
variant repeat units tenned a-type (sh~ boxes) and g-type (open boxes). Individlal alleles can be 
encod:d as a binary cod:: extending from the first repeat unit. 
(B) Ms42 repeat unit and MVR-PCR primers. Both strands of the consensus 42bp repeat unit 
sequence of T. brucei showing the common polymotphic site, with y indicating C or T and r indicating 
A or G. The coding strand is in bold Primers MS42-TAG-A and MS42-TAG-G are variant repeat 
specific oligonucleotid:s tenninating at the polymorphic site. Each primer consists of 20 nucleotiees of 
the minisatellite repeat unit (bold) and 20 nucleotiees of a non-mini satellite extension ieentical to the 
TAG primer. 
(C) The principle of MVR-PCR. lllustrated for a single allele amplified using MS42-TAG-A. 1. 
At low concentrations of MS42-TAG-A primer, the primer will anneal to approximately one a-type 
repeat unit per target minisatellite molecule and extend into the flanking DNA. 2. Primer MS42-W 
then primes from the flanking DNA, creating a secpence complementary to the TAG sequence. 3. The 
newly synthesised fragments tenninate in W and the complement of TAG. They can now be amplified 
using high concentrations of MS42-W and MS42-TAG primers, to create a set of peR products 
extending from the flanking MS42-W site to each a-type repeat unit. By using primer MS42-TAG-G in 
place of MS42-TAG-A a complementary set of prodlcts terminating at each g-type repeat unit can be 
generated This figure was acnpted from JetIreys et al., 1991. 
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Chapter 8 Development of a digital DNA'typing system to analyse T. brucei populations 

of the PCR products. Southern blotting and hybridization to an MS42 repeat probe 

revealed a continuous ladder of complementary products extending for the length of the 

alleles. The number of repeats in each allele, estimated by allele size measurements was 

compared to the number of repeats indicated by MVR-PCR analysis, to confirm that the 

entire allele had been mapped. The largest allele detected (47 repeats) generated clearly 

separated products ranging in size from 319bp to 2377bp. It is possible to amplify the 

MVR-PCR products to visible levels on an ethidium bromide stained gel, but because 

smaller products can out-amplify larger ones and the PCR products can collapse [Jeffreys 

et al., 1988] only partial maps are often obtained. 

An example of the variant repeat dispersion patterns of one allele from the stock TREU 

927/4 (lower allele) is presented in Figure 8.2A, with grey and red boxes representing a 

and g type repeat units, respectively, and arrowheads indicating the primer sites. The 

binary code for this allele is given below the diagram. The MVR mapping autoradiograph 

for this allele, illustrating the complementary ladder of PCR products generated by 

amplification using a and g-type repeat specific primers, is presented in Figure 8.2B, 

beside the deduced MVR code generated from it. Further examples of MVR maps 

generated from several different purified alleles are presented in Figure 8.3. 

In this study alleles from the population samples previously used in Chapter 7 were 

analysed by MVR-PCR, generating a total of 274 MVR codes, and identifying 48 

different alleles; the data are summarised in Table 8.1. A forty-ninth allele was detected in 

stock STm 247, which does not belong to any of the five populations and so is excluded 

from subsequent analysis. The proportion of distinct alleles detected varies markedly 

between populations, with maximum single allele frequencies in the populations ranging 

from 0.145 to 0.4. The analysis of the distribution of the different alleles in the five 

populations is presented and discussed in Chapter 7. 
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A 

w 

• 
A G 
~~~.~~~C~~~~~~.~~~ 

binary code a g gag a g g a a a a a gag g a a a 

Figure 8.2. MVR-PCR of 
MS42 from the lower allele 
of stock TREU 927/4. 
(A) Diagram of the internal 
structure of the TREU 927/4 
lower allele. The interspersion 
patterns of a-type repeat units (grey 
boxes) and g-type repeat units (red 
boxes) are shown. The arrowhead 
labelled W represents the universal 
flanking primer MS42-W. MVR 
primers specific for the a-type 
repeat units, MS42-TAG-A, are 
shown as black arrowheads and 
those specific for the g-type 
repeats, MS42-TAG-G, as red 
arrowheads. 
(B) An internal mapping 
autoradiograph of the TREU 
927/4 lower allele. MVR 
mapping was achieved by 
amplification of the allele with 
primers MS42-W, MS42-TAG and 
MS42-TAG-A (left lane) or MS42-
TAG-G (right lane), followed by 
agarose gel electrophoresis, 
Southern blotting and hybridization 
to aMS42 repeat probe (full details 
of the MVR-PCR procedure are 
given in Materials and Methods). 
The derived internal map of a- and 
g -type repeats is shown. 

B 

TREU 927/4 
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allele 

a 9 

a 
a 
a 
g 
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separated alleles 

1 2 3 4 5 6 7 

11 11 11 11 1 1 11 code 
A G A G A G A G A G A G A G position bp 

30 1537 

1117 

10 697 

1 319 

Figure 8.3 Examples of MS42 allele repeat coding by MVR-PCR on 
separated alleles. MS42 alleles were generated by PCR amplification of each stock 
using primers MS42-F and MS42-W, under the conditions described in Materials and 
Methods. The PCR products were size separated on 1 % agarose gels and the visible 
bands were gel extracted using Spin-X columns. The purified alleles were MVR 
mapped as described in Materials and Methods. 
Lane 1, K927c1 lB lower allele (1); lane 2, K927cl lB upper alJeJe (u); lane 3, K854 
allele 4; lane 4, K927c1 4B 1; lane 5, K927 unc10ned allele 4; lane 6, K925 I; lane 7, 
K927cllB u. 
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populations no. of alleles no. of distinct maximum allele 
mapped alleles in each frequency 

population 
Zambia- Luangwa 38 6 0.421 

Kenya-Nyanza 52 9 0.365 
Kenya- Kiboko 62 22 0.145 
U ganda-Busoga 98 12 0.306 
U ganda- Lugala 23 12 0.174 

Total 273 61-shared alleles=48 

Table 8.1. MS42 mapped alleles. The number of distinct alleles identified in each 
population are given in column 3. The maximum allele frequency of the most common 
allele in each population is given in column 4. 

Different variant repeats. Occasionally, during MVR-PCR of MS42, some repeat 

units failed to amplify with either a- or g-type specific primers, indicating the presence of 

MVRs containing further sequence variation which prevented priming with the 

MS42TAG-A or MS42TAG-G primers. These 'null' or n-type repeats appear as gaps in 

the MVR ladder, and can be scored as a third coding state for single allele mapping. In 

this analysis of 48 different alleles, 4.8% of repeat units were scored as n-type repeats, 

compared with 57.2% a-types and 38% g-types. With three coding positions and an 

average allele length of 31 repeats, MVR-PCR has a theoretical capability of 

distinguishing 331 alleles. It was possible to rescore many of the n-type repeat units as 

either a - or g -types by designing MVR specific primers (MS42T AG-T and MS42T AG-C) 

to map the allele from the other end of the mini satellite array, i.e. by reverse mapping. 

Figure 8.4 illustrates the reverse mapping primers comparing them with the forward MVR 

MS42-TAG-A 

MS42-TAG-G 

aagacggaaccgaccaagtccctgac+TAG 5' 

gagacggaaccgaccaagtccctgac+TAG 5' 

ragacggaaccgaccaagtccctgacggtgaccaaagtgtcaragacggaaccgaccaagtccctgacggtgaccaaagtgtca 

ytctgccttggctggttcagggactgccactggtttcacagtytctgccttggctggttcagggactgccactggtttcacagt 

MS42-TAG-T 5' TAG+gggactgccactggtttcacagtt 

MS42-TAG-C 5' TAG+gggactgccactggtttcacagtc 

Figure 8.4. Forward and reverse MVR·PCR primers. Both strands of two 
42bp repeat units of MS42 with the common polymorphic site (in bold) are shown. The 
primers MS42-TAG-T and MS42-TAG-C are variant repeat specific oligonucleotides 
terminating at the polymorphic site, in the opposite orientation to the forward MVR-PCR 
pri~ers, A!S42-TAG-~ and MS42-T A,G-q. Ea~h primer consists. of 26 nucIeoti~e.s of 
mimsatelhte repeat umt and an extenslOn IdentIcal to the TAG pnmer. peR conditIOns 
were identical to those used for forward mapping. 
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specific primers, while Figure 8.5 illustrates MVR codes of alleles containing null 

repeats,obtained using both the forward and reverse mapping process. From the data it is 

clear that many n-type repeat units can be scored by reverse mapping as either a- or g

types, however some repeat units which were scored using forward mapping became n

type repeats by the reverse process and some null repeat units could not be scored by 

forward or reverse mapping, indicating that a number of variant sites exist in the 

minisatellite repeats. By combining the data for both forward and reverse mapping some, 

but not all, of the alleles could be rescored only in terms of a- and g-type repeats. 

To investigate further the sequence variation within the repeated region of MS42, two 

MS42 alle1es were sequenced. All 26 repeats of allele 26d from the stock STill 247 and 21 

of the 34 repeats from allele 34 of stock BU89/8 were sequenced and the results are 

presented in Figure 8.6. Allele 26d repeats are the same as the consensus sequence 

containing either G or A at the polymorphic site used for MVR mapping, (which does not 

affect the predicted amino acid sequence) and no other variant repeats were present. The 

sequence of seven repeats from alleles 20 and 25a was determined and revealed no other 

variants repeats (data not shown). The repeat units in allele 34 are quite different from 

those in the other alleles, with the normal polymorphic site used in MVR-PCR, being 

almost homogeneous, consisting mainly of As. Adjacent to this site is another 

polymorphic position, with an A-G transition which affects the predicted amino acid 

sequence of MS42. Two other variant repeat units were identified which also alter the 

amino acid sequence (Figure 8.6). Sequence analysis of three null repeats from allele 34 

(repeats 30-32) has revealed four variant positions (Figure 8.6). Two of these variants lie 

within the region of the MVR primers, and so are clearly responsible for preventing the 

MS42-TAG-A and MS42-TAG-G primers from amplifying these repeats. It is likely that 

n-type repeats identified by MVR-PCR from other alleles are different from those 

sequenced here, so that null repeats probably constitute a heterogeneous group of variant 

repeats. Similar analysis of null rt:peats for the human minisatellite, ms32, has revealed 

one major variant and a number of other different sequence variants which generate null 

repeats [Tamaki et al., 1992]. Further sequence variations in repeat units probably occur at 

MS42 which, instead of preventing MS42-TAG-A or MS42-TAG-G primers from 

amplifying completely, merely reduce the efficiency of the amplification reaction for 

certain repeat units, resulting in variations in band intensity observed on mapping 

autoradiographs. This phenomenon has been noted for other minisatellites including 

Ms205 [Annour et al., 1993]. 
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reverse 
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aaaagannnggagaaganaannnaaagagggggag 
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Figure 8.5. Forward and reverse MVR codes. Five MS42 aLleles containing null repeats (n) were analysed by both the standard (forward) MVR 
mapping procedure and the reverse mapping method. Reverse mapping was achieved using primers MS4 2T AG-T and MS4 2T AG-C, under the 
same conditions as described for forward mapping in Materials and Methods. Primer sequences are given in Figure 8.4. Note that the mapping of 
two alleles was completed by combining the results from both codes. Alleles from the uncJoned sample L 845 which contained four alleles were 
numbered 1-4. Ambiguous positions were indicated (?). 
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repeat MVR allele 26d sequence repeat MVR allele 34 sequence 
no. code no. code 

consensus 3' ~~ga~gg~a~~gg~~gggt~~~tg~~ggtgaccaaagtgtca 5' consensus 3' ~ggg~gggg~~gg~~gggt~~~tgg~ggtgaccaaagtgtca 5' 
1 a a 1 a a gl 

2 9 g 2 a a t g-
3 a a 3 a a g-
4 a a 4 a a rl 
5 9 go 5 a a g-
6 9 g 6 a a g-
7 a a 7 a a t gol 
8 9 go 8 a a g-
9 a • 9 a • t g-

~. 

10 9 g 10 a • t a 

11 9 g 11 a a g-
12 a a 
13 a a 23 a a gl 

14 9 g 24 a a g-
15 a a 25 a • g-
16 a a 26 a a g-
17 a a 27 a • t g-
18 9 go 28 a a t a 

19 9 go 29 a a e 
20 9 g 30 n a g t 
21 a a 31 n a g t 
22 9 go 32 n a g t' 
23 9 g 
24 a a 
25 a • 
26 a • 
AA sequence of the MS42 repeat unit T V K P V A V P E P A K A E 

variant1 A 

variant2 J: 
variant' S 

Figure 8.6. Sequence of MS42 repeats of alleles 26d and 34. The consensus sequence of MS42 repeat unit is given. with the variant repeat used in MVR 
mapping in bold and the region of the forward MVR primers underlined. The complete sequence of 26 repeats for allele 26d is shown. Positions of variation 
only are indicated in bold. Sequence of 21 of the 34 repeats of allele 34 is given with positions of variation shown in bold. The MVR codes for each repeat 
unit is indicated. Note repeats 30-32 of allel~ 34 which are null repeats by MVR mapping. contain variant positions in the region of the forward MVR 
specific primers. Three variant positions 1·3 alt~r the predicted amino acid of the repeat unit. The predicted amino acid (AA) sequence of the consensus MS42 
repeat unit is shown with the three possible variants in bold. Sequencing of each allele was performed in duplicate directly from the PeR-amplified allele. 
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MVR-PCR ofSTIB 386 alleles proved to be problematic probably due to a high number of 

variant repeat types present in the array. Sequencing of some of the repeats of this West 

African T. b. rhodesiense stock revealed some repeat variant positions in common with 

allele 34, suggesting that these alleles may be related (Figure 8.7). 

consensus 
allele 34 
386 
T . evansi 

repeat unit 
variant pos itions 
variant positions 
variant posi t ions 

actgtgaaaccagtggcagtccctgaaccagccaaggcagar 
gt tt 9 9 r 
gt t t r 

t t r 

Figure 8.7. Variant repeats. MS42 repeat unit consensus sequence is shown. Positions 
which vary from this in allele 34, STm 386 alleles, and T. evansi stock 2187 are indicated 
in bold. r, either a or g at that position. 

Null type repeats are restricted to a limited number of alleles, with 2-9 n-type repeats 

occurring in each of 11 (out of 48) different alleles (see Table 8.2), indicating a non

random distribution of n-type repeats. The percentage of null type repeats within an allele 

can range from 0% to 27% as illustrated by the analysis presented in Figure 8.8. 

40 ~------________________ ~ 

~ = 20 :;; -" ... .. 
'E 10 

" Z 

o 

n-type repeats 

" 

Percentllge of null repeats per allele 

Figure 8.8. Variation in the proportion of null repeats within MS42 alleles. 

MVR maps of the 48 different alleles identified can be grouped in terms of regions of 

homology, presumably indicating recent common ancestry (see following sections). The 

distribution of null repeats within these groups is again clustered, with only four homology 

groups (groups 5, 6, 13 and 16) containing alleles with null repeats (see Figure 8.13). It is 

likely, given the close relationship of alleles within groups, that the variants causing null 

repeats in one allele are the same variants in most null repeats within each allele within the 

group, although the variants are probably not different between groups. 

Allelic variation demonstrated by MVR mapping. A total of 48 different alleles, 
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Chapter 8 Development of a digital DNA typing system to analyse T. brueei populations 

(containing between 16 and 47 repeats with a mean of 31) were identified from the 274 

alleles mapped by MVR-PCR and the data are presented in Table 8.2. Compared to band 

size estimates, MVR-PCR doubled the number of different alleles detected (assuming 

100% accuracy of band size measurements) . This is further illustrated by the histogram in 

Figure 8.9, which shows that the same sized alleles can have different and unrelated allele 

maps. For example, there are six different alleles with an allele length of 30 repeat units 

(see Table 8.2, alleles 30a-30f, and Figure 8.9). It is clear from the data in Figure 8.9 that 

three alleles occurred with high frequency, having been sampled 37, 53 and 59 times while 

twenty four alleles were sampled only once. 

w~------------------~------------~ 

so 
-.:I .. 
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El 
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'" .. 
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=; 
'" 30 .. 
] ... 
Q .. 20 .. 
~ 

§ 
C 

10 

Number of repeats 

Figure 8.9. MS42 allele length distribution determined from 274 alleles. Alleles with the same 
number of repeat units, but different MVR codes are in different colours, the most frequently 
sampled allele being in red followed by, blue, yellow, green, eyan and purple. 

Homozygotes. Because some alleles are the same size but have different internal structures, 

it is possible that stocks which appear to be homozygous by allele length are in fact 

heterozygous (pseudo-homozygotes). MVR-PCR of these pseudo-homozygotes would 

generate a diploid MVR map (see following section), where one allele map is 

superimposed on the other. In this analysis no pseudo-homozygotes were identified and 

eight out of a total of 132 stocks were identified as homozygotes on the basis of their 

unambiguous single allele maps when analysed by MVR-PCR. To confirm that these 

homozygotes were not heterozygotes in which one allele has failed to amplify at all due to 

sequence variation in the primer region, each stock was amplified using a different 

combination of MS42 primers but still only produced one band (data not shown). However 

to prove conclusively that these stocks were genuine homozygotes, Southern blots of 

page 170 



."""""'''''''''''1>'1' 'I'" 

Table 8.2 
Allele Isolates with each allele Pop MVRmap 

16 L845,L944 L aagaagnananggggg 

17 K 1027cl, K851 un K agaaggaggggggaaag 

20 K927cll13, K854un, K925uI1 K aggagaggaaaaagaggaaa 

21 NI49,L845un,L929 NL aggggagagaaaaagaaaagg Q 
-§ 

22a K994un K agagaagaagagagagaggaaa ~ 
00 

22b L934 L agaggaaagaagaaaagaagaa 0 

23 BM32 B agaaggagggaagaaaggaggaa ~ 
S' 
"6 

25a K927cl4B, K1337c1, K854un, K997un K agggagaagaggggagggggagaaa ::i 
!I:I ;:s ... 

25b K997cl, K 1 009c1, K978un K agaaagagagaaaaaaaaaaagaga ~ 
~ 

25c K258cl K agagaaaagaagaggggagagggga ~ (IQ. 

26a Bpapol60, BM31, BM42, Bpapol 33, BB23, BS38, L845, BL aggagaggaagagaagaaagaagagg s· -L934, L832 0 

26b ZI99,Z273,Z210,Z269,Z90,Z274,Z222,Z208,Z220, Z agaaggggagagaggagggggggggg ~ 
Z203,Z221,Z231,Z244,Z267,Z212,Z270 ~ 

26c K927c14B, K981un, K854un, K978un K agagagagagaaaggaagaagaggaa ~. 

26d STIB 247 agaaggagaggaagaaagggaggaaa ~ 
'" 1i) 

27a K994un K agnnggagagagaagggagagaaggaa ::r 
0-

27b K925c1, K852un K agaaaggagaaaaggaaaaaaaagaga ~ ::s 
~ 

27c K984, K854c1, K978cl, K926un K agggagaggaaggaagaaaaagggaaa ~ 
'" !I:I 

27d NI8, L834, L941 NL aggagaggaagagaagaaaagaagagg ;.I 
er 

28 N7 N 
2 aggagaggaagagaagagggagaagagg 0 
!!. 

29 K925c1 K agaaagagagaagagaaaggaagagagaa "=s 
"tl .g 
~ 

I:;: 

Cl - :::-. 

" (:) - ~ 
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Table 8.2 continued 

Allele Isolates with each allele Pop MVRmap 

30a K984cl, K258c1, K854cl, K97Sc1, K1027c1, K926un, 
K851 un, K997un 

K aggagaaagagaagaggaggagggggggga 

30b 

30c 

30d 

30e 

30f 

31a 

31b 

32 

33a 

33b 

34 

K852un, K981 un 

K927cllB 

L791, L836, L933, BM32 

K agaaagagagaagagaaaggaagagagaaa 

K aggagaaaaagaagaggaggagggggggga 

LB aaaaaanaagannngagaagannngaggng 

N2340 N aggagaggaagagaaggagaaaagaagagg 

Z222 Z aagaaagagagaaggaaaaggaaaaaagga 

L944 L aagaagnanagaagnaaannaanannggggg 

845un L aagaagnananaagnaaannaagagnggggg 

Z21O, Z269, Z90, Z274, Z194, Z208, Z199, Z220, Z203, Z aagaaagagagaaggaaaaggaaaaaaggaga 
Z221,Z231,Z244,Z267,Z212,Z270,Z273 
K981un K agaaagggggaaaggaaaaaaaaaagaaagaga 

NIII, N112, NIIS, NS02h, N102, N149, NI4Sh, N18, NB agaggaaaaaaaaagaggagaagaaaagaagaa 
BUgC90, BUgE90, B1I47, BmaglS, Bmag40, BM3, BS2S, L 
BB76h, BB135h, BI1S5, BMI2h, BSI4h, BM85, BS38, 
BB25, BT168*, L791, L933, Bfly48h, BM80, L836, L832 
N97, N96, N156, N95, N94, NI06, N116, N2340, NI to, NB aaaaaaaaaaaaaannaaanaaaaaaaaannnag 
N98, Nlll, N112, NIIS, NI 13, N120, N60S, N609, NIOS, K L 
NI 03, BEA 174, BEA3, BUTAR3, BUTAR4, BEA2274, 
BUgC90*, BUgA90*, BUgE90, BUg89/Sh, BUgL, BUgI, 
BUgK, BUg], BURI*, Bpapoll03, BU8912, BUgM, BMAP, 
B3194, B3196, B3200, B3202, B3203, B3205, BM66, 
B3206, BM42, BM3), K 1 008cl, K851 cl, K975cl, K982cl, 
K853c1, K852c1, K936un, K869un, K994c1, L844, BEO 
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Table 8.2 continued 

3Sa N96, N97, N1S6, N9S, N94, N106, N116, N2340, NII0, 
N98, NI13, N120, N60S, N609, NI02, NI0S, NI03, 
BEAI74, BEA3, BUTAR3, BUTAR4, BUgC90, BUgE90. 
BUgL, BUgA90, BEO, BUgI, BUgK, BUgJ, BU8912, 
BUgB90, BURI*, BUgM*, BMAP, BM66*, B3194, B3196, 
B3200, B3202, B3203, Bpapoll 03, B3205, B3206, K 1 008e1, 
K851cl, K975c1, K982c1, K853c1, K852c1, K936un, K869un, 
K994cl, L844 

3Sb BI 147. Bmag18 
35c N7 
35d BEA2274 
36a KlO09cl 
36b BIl55 
38a K925un 
38b Bpapol 60 
38c BB23 
38d BB25, BM3, BS28, Bpapo133, BS38, L834, L941 
38e N2340 
39a K997c1, K981un 
39b K854un 
40 K1337c1 
42 Z218,Z185 
45 Z194 
47 Z218,Z185 

NB 
KL 

B 
N 
B 
K 
B 
K 
B 
B 
BL 
N 
K 
K 
K 
Z 
Z 
Z 
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aggagaggaagagaaggagaaaagaagaggagagg 

aaaaaaaaaaaaaaannaaanaaaaaaaaannnag 
aaaagagagggagaagagaaaaaaaagagggggag 
aggagaggaagagaaggagaaaaaaagaggagagg 
agaggggagagagaaagagggaaagaagaagaggaa 
aaaaaaaaaaaaaaannaaanaannaaaaannnnag 
aaaaagaagaggggaggagagggggaagagggggaaga 
aaaaaaaaaaaaaaaaaannaaaaaaaaaaaaannnag 
aaaaaaaaaaaaaaanaannaaaaaaaaaaaaannnag 
aaaaaaaaaaaaaaaaaannaaanaaaaaaaaannnag 
aaaaaaganaaaannaaanaaaaaaaaaannnaggagg 
agaaggaaggaggggaaggaagggggaaagagggagaag 
agagggagggaggggaaggaagggggaaagagggagaag 
agaaggaaggaggggaagggggaaggggagaagggagaag 
agaggaaggaaagagaaagaagaaggagagagaaggaagagg 
agaggaaggaaagagaaagaagaaggagagagaaggaaaagaagg 
agaggaaggaaagagaaagaagaaggagagagaaggaaaagaagagg 

Table 8.2 Ms42 alleles. Column 1 indicates the name of each different ms42 allele, based on size (number of repeats) and on the different MVR 
maps obtained for that size of allele. Homozygous stocks are marked (h). Column 2 indicates which isolates have that particular allele. Column 3 
gives the populations in which the different alleles have been observed; Z, Zambia; N, Nyanza; H, Husoga; K, Kiboko; L. Lugala. The different 
MVR maps are presented in column 4. * indicates 1-5 positions in the MVR map could not be scored, however the rest of the positions were 
identical to the assigned allele. 
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Chapter 8 Development of a digital DNt1 typing system to analyse T. brucei populations 

multiple restriction digests of the homozygous stocks followed by hybridization to the 

MS42 repeat probe would need to be undertaken. 

Diploid mapping. If MVR-PCR is applied to total genomic DNA a ternary code 

derived from the superimposed maps of the two alleles could be generated, as for the 

human minisatellite MS32 [Jeffreys et al., 1991]. This ternary code can be scored as 1 

(both alleles are a-type at that position. aa). 2 (both alleles are g-type at that position, gg) 

or 3 (heterozygous for a and g types at that position, a g). With the presence of null or n

type repeats three additional codes can be generated; 4 (a n), 5 (g 0) or 6 (00). 

Identification of the coding states 4-6 requires correct interpretation of MVR-PCR band 

intensities. However further variant repeat types can result in variations in band intensity 

observed on mapping autoradiographs, making the detection of these states difficult. Since 

mapping single alleles generates a simpler, cleaner map and each allele can be easily 

purified (with the exception of homozygotes), it was decided to only use purified alleles 

for the MVR-PCR analysis. 

Identification of flanking polymorphisms. Alleles which share a recent common 

ancestor would presumably also share the same sequence of DNA flanking the repeated 

region of MS42. Knowledge of flanking haplotypes would therefore aid in the derivation 

of allele lineages. Therefore in order to determine the haplotypic context of the alleles 

mapped, polymorphisms 5' and 3' to the repeats were identified. The ORF of MS42 has 

been partially sequenced (Chapter 3). To search for further polymorphisms in the 

sequenced region of the MS42 ORF and adjacent sequence, a series of primers were 

designed to PCR amplify the regions 5' and 3' to the repeats as illustrated in Figure 

8.10A. Using primers pairs MS42-H2/MS42-CR and MS42-BRlMS42-FS, the regions 

flanking the repeats were amplified from five different stocks. The resulting PCR products 

were analysed for restriction fragment length polymorphisms (RFLPs) by restriction 

digest with a variety of enzymes, revealing polymorphisms for three restriction sites, 

BglII, HincTI and MboTI. No polymorphisms were detected for the following enzymes; 

AccI, AluI, AvaI, BamHI, ClaI, DraI, EcoRI, HaeUI, HindUI HinfI, KpnI, MluI, NarI, 

NcoI, Ndel, NsiI, PstI, Pvull, RsaI. SalI, SmaI, Spel, SstI, StuI, StyI, TaqI, XbaI and Xhol. 

Assays for the polymorph isms and heterozygosity analysis. Figure S.10B 

illustrates the polymorphic BglII restriction site for several different stocks, giving the 
,,, 

three possible genotypes, homozygous for the absence of the Bglll site (--) and-so·'the PCR 

product of 1820bp is undigested. homozygous for the presence of a B g III site (++), 

producing bands of 1200bp and 620bp, and heterozygous (+ -), giving all three bands. 

Similar assays for the HincII and MboII polymorphisms are illustrated in Figure S.lOC 

and D. It was therefore a simple procedure to type each stock for these polymorphisms by 

peR amplifying the region containing the restriction site (using primer combinations 

MS42-H2IMS42-CR for both Bgill and HincTI sites and MS42-BRlMS42-FS for the MboII 

site), followed by a restriction digest with the appropriate enzyme (Figure 8.10). Table 
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Figure 8.10. Base substitutions in the DNA flanking MS42 repeats. 

HincII D 

.++++++ + 

lOObp 

MboII 

.++++++++ 

(A) Diagrammatic representation of the MS42 5' and 3' flanking regions, showing polymorpbic restriction sites (in bold) and PCR primers (arrowhead;). PCR primer 
secpences are given in Materials and Method;. 
(B) An example of the PCR assay for the Bgm polymoIphic site perfonned on 11 £lfferent stocks. 1820bp ofimmedate 5' flanking DNA was amplified from either 5ng of 
genomic DNA or 11200 dilution of a ClUOO lysate (see Chapter 2) using primers MS42-Hl andMS42-CR. The PCR conditions were; 95 OC for 50s, 50 OC for 50s, 70°C for 
2mins for 30 cycles. 2-5~1 of each PCR prodIct was £lgested with Bgm and resolved by electrophoresis through a 1% agarose gel. Stocks homozygous for the Bgm- allele 
(-) prodIce a prodlct of 1820bp. In stocks homozygous for the Bgm+ allele (++) the 1820bp band is £lgested to generate bands of 1200bp and 620bp. Heterozygous stocks 
(+-) give all three bands. (C) An example of the PCR assay for the Hindl polymoIpbic site for 11 different stocks. 1820bp of 5' flanking DNA was amplified as above. 2-
5J.1l of the PCR prodJct was digested by HincJI and resolved by electrophoresis as above. Those stocks homozygous for the HincJI- allele (-) prodlce four bands of 753bp, 
409bp, 405bp and 253bp. In this example the 253bp band was too faint to be visible. In stocks homozygous for the HincJI+ allele (++) the 753bp fragment is £lgested 
further to prodlce bands of size 537bp and216bp. Heterozygous stocks (+-) prodlce all six bands. (D) An example of the PCR assay for the MboJI polymorphic site for 11 
£lfferent stocks. 300bp of immedate 3' flanking DNA was amplified from either 5ng of genomic DNA or 11200 dlution of a ClUOO lysate using primers MS42-BR and 
MS 42-F8. The PCR conditions were: 95 OC for 50s, 600c for 50s, 700C for 50s, for 30 cycles. 2-5J.1l of each PCR prodIct was £lgested with MboJI and resolved by 
electrophoresis through a 3% NuSieve GTG agarose gel. Stocks homozygous for the MboJI- allele (-) generate prodlcts of219bp and 79bp. The 219bp fragment is digested 
further in the single stock homozygous for the MboJI+ allele (++), (stock L944, not shown), giving prodJcts of 153bp and 66bp. Heterozygous stocks (+-) prodlct all four 
bands. 
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Chapter 8 Development of a digital DN1 typing system to analyse T. brucei populatiolls 

2A-E in the appendix records the genotypes of the flanking polymorphisms for all stocks 

analysed. 

The five different populations of T. brucei (Chapter 7) constituting the 127 different 

stocks previously analysed by MVR mapping, were typed for these polymorphisms and 

revealed heterozygosities ranging from 78.6% to 36% for Bgm, 89.7% to 32% for HincII 

and 83% to 27% for MboII in the different populations (determined from the data in Table 

2, appendix). The allele frequencies for each population are given in Table 8.3, 

demonstrating the wide range of allele frequencies obtained from the different 

populations, e.g. Bgill+ allele frequency in Busoga is 0.34 compared to 0.82 in Kiboko. 

These markers were used in the analysis of populations described in Chapter 7. 

Locus Allele Zambia Uganda Kenya 
Luan Buso a Kiboko 
no. req. no. req. no. req. no. req. 

BglII + 17 20 0.4 30 0.34 36 0.82 4 0.33 
11 30 0.6 58 0.66 8 0.18 8 0.67 

HincII + 11 19 0.4 35 0.45 7 0.16 5 0.31 
17 29 0.6 43 0.55 37 0.84 11 0.69 

MboII + 4 14 0.28 35 0.42 6 0.14 6 0.43 
10 36 0.72 49 0.58 38 0.86 8 0.57 

Table 8.3. MS42 flanking polymorphism allele frequencies. The number of alleles observed and 
frequencies of each allele for each population is given for the three flanking RFLPs. 

Haplotype analysis of flanking DNA polymorphisms. Direct sequence analysis 

of the regions containing the polymorphisms from two stocks which were homozygous 

but different for each polymorphism (++ and --) revealed the BglII crr transition at 

position 1175 (see Chapter 3 for MS42 flanking sequence), the HincII crr transition at 

position 2167 and the MboII G/A transition at position 2991(Figure 8.11A and B). All 

three polymorphic sites do not affect the predicted amino acid sequence. 

In order to identify which homologue the flanking HinclI alleles are assigned to in relation 

to the minisatellite alleles, haplotypic analysis was performed using the following 

procedure. An allele specific primer for HincII+ was designed as shown in Figure 8.11A. 

PCR amplification of the entire minisatellite for each heterozygous stock was performed 

in duplicate using the allele specific. primer and a universal primer i.e. HincII+ primer with 

MS42-F. One aliquot was amplified at a low annealing temperature (58°C), the other 

identical aliquot was amplified at a higher temperature (68°C). At the lower annealing 

temperature both minisatellite alleles amplified, however at the higher temperature only 

the allele with a perfect match to the primer HincII+ could amplify. In this way the 

haplotype of the Hincll polymorphism with respect to the mini satellite array could be 

determined (Figure 8.11C). Similarly, the haplotype for the MboII polymorphism was 

obtained using primers MboII+ and MS42-V (Figure 8.11B and D). The BglII 

polymorphism was not analysed further due to time constraints. Therefore only the 
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A 
MS42HincII+ 5' CA TTCCGTTGCG I I I I I I GAAGTCAAC 3' 

. HincII 

B 
MS42MbolI+ 5' GCGTTGACTGAGATATGCAGCGAA 3' 

MbolI 

5' CA TTCCGTTGCG I I I I I I GA~GTCAA CbGT 3' . T 5' GCGTTGACTGAGATATGCAGCtiA~GkGC 3' 
G 

C 1 2 3 4 5 6 7 8 9 10 1112 

35 repeats 
34 repeats 
33 repeats 

Figure 8.11. The construction of 5' and 3' haplotypes. 

D 

35 repeats 
34 repeats 

1 2 3 4 5 6 7 8 9 10 

(A) The HinclI polymorphism. The genomic seq.tence is shown, with the position of the polymorphic crr transition, shachJ box represents HincIT recognition 
seqJence. Allele specific primer MS42f1incIT+ is shown. 
(B) The MboII polymorphism. The genomic secpence is shown, with the position of the polymorphic AlG transition, shl¥hl box represents the MboII recognition 
seqJence. The allele specific primers MS42MboII+ is shown. All primer seqJences are given in Materials and Methods. 
(C) An example of the PCR HindI haplotyping assay. The entire MS42 minisateIlite was amplified from 5ng of genomic DNA or 11200 dilution of crude lysate 
using the universal primer MS42-F and the allele specific primers MS42Hincll+. Each reaction was set up in ruplicate. One alicpot was amplified under the following 
concitions; 95°C for 50s, 580C for 50s, 70°C for 3mins for 28 cycles. The other alicpot was amplified using an annealing temperature of 68°C. The PCR reactions were 
load!d next to each other on a 1% agarose gel and electrophoresed in IxTBE. Odllanes at 58°C; even lanes at 68°C; lanes I and 2. NI 10; lanes 3 and 4, N98; lanes, NIII; 
lanes 5 and 6, N112; lanes 7 and 8, NIl3; lanes 9 and 10, N120; lanes II and 12, N605. 
(D) An example of the PCR MboII haplotyping assay. The entire MS42 minisatellite was amplified from 5ng of genomic DNA or 11200 dilution of crure lysate 
using the universal primer MS42-V and the allele specific primers MS42MboII+. Each reaction was set up in ruplicate. One aliCPOI was amplified unrer the following 
concitions; 95°C for 50s, 58°C for 50s, 7ffC for 3mins for 28 cycles. The other ali~ot was amplified using an annealing temperature of 68°C. The PCR reactions were 
load!d next to each other on a 1 % agarose gel and electrophoresed in I xTBE. ()dJ lanes at 58°C; even lanes at 68°C; lanes I and 2, BMAP; lanes 3 and 4, B3194; lanes, 
B3196; lanes 5 and 6, 83200; lanes 7 and 8, 83202; lanes 9 and 10, B3203. 
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Chapter 8 Development of a digital DNA, typing system to analyse T. brucei populatiolls 

obvious haplotype of those stocks which were homozygous either for Bgill ++ or -- are 

presented. All of the MboII haplotyping analysis and some of the HincII analysis was 

performed by K. Brown (including the gels shown in Figure 8.l1). Haplotypes for all 

alleles analysed, compared to the expected values assuming linkage equilibrium, are 

summarised in Table 8.4. Significant (but not absolute) linkage disequilibrium exists 

between the two polymorphic sites, with HincII- MboII- and HincII+ MboII+ over

represented in the population and HincII+ MboII- and HincII- MboII+ under-represented. 

The complete data set of minisatellite structures and corresponding flanking haplotypes is 

presented in Figure 8.13, indicating a clear association between allele groups, based on 

MVR code similarity and flanking haplotypes (data discussed in following section). 

Haplotype Zambia Kenya Uganda Kenya Uganda 
HincII Mboll Luangwa Nyanza Busoga Kiboko LugaJa 

obs exp obs exp obs exp obs exp ohs exp 
9 6.06 28 20.7 30 17.9 39 31.8 8 6.29 

+ 1 3.88' 6 13.8 2 14.6 0 6.05 0 2.83' 
+ + 4 1.58b 13 S.38 23 10.6 S 0.99& S 2.13b 

+ 0 2.48c 1 8.06 1 12.9 0 S.17b 3 4.7Sc 
X2 2.S1 23.96 44.S 7.899 0.766 

d.f. 1 3 3 2 1 
P 0.1 <0.001 <0.001 O.OS>P>O.Ol 0.S>P>O.3 
Table 8.4. Haplotype frequencies for RindI and MboII polymol"phisms. In the calculauon of 
"'l some cells were merged to raise the expected numbers above 5. For the Luangwa population 
cells a, b and c were merged, for the Kiboko population cells a and b were merged and for the 
Lugala population cells a, band c were merged. There is significant deviation from the null 
hypothesis of random association, for the Nyanza, Busoga and Kiboko populations. 

Allele' alignments and polarity. Variation in MVR patterns between alle1es at the 

three human minisatellites (ms32, ms31 and ms20S) are not randomly distributed 

throughout the allele, but tend to be concentrated at one end of the array i.e. they 

demonstrate a marked polarity [Jeffreys et al., 1991; Armour et al., 1993; Neil and 

Jeffreys, 1993]. Analysis of new length alleles has demonstrated that mutation events are 

often inter-allelic occurring at one end of the mini satellite array [Jeffreys et al., 1994; May 

et al., 1996]. Polarity has also been observed in the repeats of the circumsporozoite gene 

of Plasmodiumfalciparum [Amot et al., 1993]. However polarity at minisatellites is not 

universal, for example the minisatellites in mice have shown that non-polar, intra-allelic 

events appear to be responsible for the generation of most new alleles [Bois et al., 1998]. 

Visual inspection of the MS42 alleles revealed no obvious polarity, however these alleles 

are small in length by comparison to the human minisatellites analysed by MVR-PCR, and 

so it may be difficult to recognise regions of similarity, especially as new mutations could 

obliterate the changes made by older mutation events. 

In order to test if the differences between MS42 alleles are polar, the computer program 

'switchbyk', which has been used for human minisatellites [Armour et al., 1996] was 

applied to the collection MS42 alleles. The program aligns all the alle1es at one end (S') 
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and performs pairwise comparisons of all allelic structures giving each pair a similarity 

score. Alleles sharing a minimum similarity score were then assembled into groups. 
Comparisons were made of the number of different groups formed over a range of 

different similarity values. This analysis was repeated by aligning all the alleles at the 
opposite end (3') of the array, as well as aligning 'mock' alleles. To generate mock alleles 
the order of the repeat units of each allele in the data set was randomised to produce a new 

map using the computer program 'twister' (the frequency of pairs and triplets of repeats 

was approximately preserved) [Armour et al., 1996]. The results are represented by 

plotting the number of groups of alleles obtained at the different levels of similarity used 

to define groups, using alignments from the 5' or 3' ends and mock alleles (Figure 8.12). 
From the graph it appears that there are fewer groups generated for the 5' aligned alleles 
compared to either the 3' aligned and the control of mock alleles. This would suggest that 

there is a limited amount of polarised variability at this locus, with greater similarity at the 

5' end. However, the trend is limited and could be explained by the fact that all the MS42 
alleles are small, ranging from 16-47 repeats and so genuine regions of similarity are 

difficult to identify or have been 'overwritten' by recent mutation events. Only 48 

different allelic structures have been identified, and perhaps, with more allelic structures a 

more obvious pattern of variability would emerge. It is also possible that some groups of 

alleles mutate in a polar fashion whereas others do not, and by combining the data for all 
the alleles the overall trend is towards limited polarity. 

The limited polarity of MS42 is in contrast to the extreme polarity observed in the 

circumsporozoite gene of P. Jalciparum [Amot et al., 1993]. Although the 

circumsporozoite gene has small alleles with a similar repeat number to that of MS42, and 

a maximum of 46 repeat units, MVR-PCR analysis of 18 different alleles has revealed 

strong polarity with only 6 variants being detected in the first 13 repeat units. In order to 

generate allele groups for MS42, comparisons of all 274 MS42 alleles aligned at both the 
5' and 3' ends were generated using the computer program 'switchsorter' provided by 

John Armour, as well as pairwise dot matrix analysis on some alleles searching for a 

match of 10 perfect repeats. Matches of 10 repeats were chosen as it is expected that such 

matches would only appear (approximately) once by chance in a dataset of this size (1500 

repeat units) based on two types of repeat units randomly distributed (probability of a 

match is 1 in 2 10 = 1 in 1024). J'he authenticities of selected matches and the final 

alignment of allele groups were made by eye. The criteria for a match is reasonably 

stringent to reveal only those alleles which are clearly related. Relaxing the stringency 

would create larger groups but would also increase the risk of grouping unrelated alleles 

together. Figure 8.13 shows the full haplotypes including both repeat structures and 

flanking genotypes of all 274 alleles grouped in this way. Polarity at the 5' end of the 

repeat array is clearly demonstrated in group 3. However, in other groups no polarity is 

obvious, for example group 4 (although these alleles are approximately 10 repeats shorter 

than those in group 3). 

page 179 



Chapter 8 Development of a digital DNA typing system to analyse T. brucei populations 

50-~---------------------------------------------
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Figure 8.12. Comparison of 5' and 3' MS42 allele alignments. The 
number of different groups generated at different similarity coefficients are compared 
between (i) alleles aligned at the 5' end (black line), (ii) alleles aligned at the 3' end (red 
line) and (iii) 5' aligned mock alleles (blue line). 
Mock alleles were generated by randomly permutating the repeat units of each allele. 
Computer programs were kindly provided by John Armour and have been described in 
Armour et al. , 1996. 
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MS42 Figure 8 . 13 

Stock HS allele BglI I HincII MboII 
name 

group 1 
N96u R 35a a gga ga ggaag a gaagga gaaaagaag a gga ga gg 
N97u R 35a a gga g a ggaag a gaagga gaaaagaag a ggag a gg 
N156u R 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg Q 
N95u R 35a a gga g a ggaaga g aagga gaaaagaaga gga ga gg -§ 
N94u R 35a a gga g a ggaag a gaagga gaaaagaag a ggag a gg -~ ... 
N106u R 35a a gga g a ggaag a gaaggag aaaagaag a gga g a gg 00 

Nl16u R 35a a gga g a ggaag a gaagga gaaaagaag a gga ga gg t:J 
N2340-l R 35a a gga g a ggaaga gaagga gaaaagaag a gga ga gg ~ 

~ 
NllOu R 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg (1) 

N98u R 35a . a gga g a ggaaga g aagga gaaaagaaga gga ga gg .g 
N1l3u R 35a a gga g a ggaaga gaagga gaaaagaag a gga g a gg ::I 

(1) 

N120u R 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg ~ 
N605u R 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg ~ 
N609u R 35a a gga g a ggaag a gaagga gaaaagaag a gga ga gg Cl 

N102u R 35a a gga g a ggaag a gaagga gaaaagaaga gga ga gg l::I. 

N105u R 35a a gga g a ggaaga g aagga gaaaagaag a gga ga gg aQ' -. 
N103u R 35a a gga g a ggaag a gaagga gaaaagaaga gga ga gg S' -BUgC90u NO 35a a gga g a ggaag a gaagga gaaaagaaga gga g a gg t:J 
BEA174u R 35a a gga g a ggaaga gaagga gaaaagaaga gga ga gg ~ 
BEA3u R 35a a gga g a ggaaga gaagga gaaaagaag agga ga gg 

~ BUTAR3u R 35a a gga g a ggaaga gaagga gaaaagaag agga g a gg 
BUTAR4u R 35a a gga g a ggaaga gaagga gaaaagaaga gga g a gg ~. 

BUgE90u NO 35a a gga ga ggaag a gaagga gaaaag aagagga g a gg ~ 
BUgLu R 35a a gga g a ggaaga gaagga gaaaag aaga gga g a gg '" ~ 
BUgA90u R 35a a gga g a ggaag a gaagga gaaaagaag agga ga gg ::I 
BEOu R 35a a gga ga ggaag a gaagga gaaaag aaga gga g a gg 0-
BUglu R 35a a gga ga ggaaga gaagga gaaaagaag agga g a gg Cl 

BUgKu R 35a a gga ga ggaaga gaagga gaaaagaaga gga g a gg ;:s 
Cl 

BUgJu R 35a a gga g a ggaaga gaagga gaaaag aaga gga ga gg ~ 
'" BU89/2u R 35a a gga ga ggaaga gaagga gaaaag aag a gga ga gg (1) 

BUgB90u NO 35a a gga ga ggaaga gaagga gaaaagaag a gga g a gg ~ 
BURlu R 35a a gg??aggaaga gaagga gaaaag aag a gga g a gg eT 

BUgMu R 35a a gga g a gga?g agaagga gaaaagaaga gga g a gg 2 
0 

BMAPu R 35a a gga ga ggaaga gaagga gaaaagaag a gga g a gg !!. 

BM66u R 35a a gga ga ggaaga ? aagga g ????g aag a gga g a gg ~ 

~ B3194u R 35a a gga g a ggaaga gaagga gaaaagaag a gga g a gg ~ 
~ s:: 
~ B3196u R 35a a gga g a ggaaga gaagga gaaaagaaga gga g a gg ~ ..... 

B3200u R 35a a gga ga ggaaga gaagga gaaaagaaga gga g a gg g . 
00 

B3202u R 35a a gga ga ggaaga gaagga gaaaagaag a gga g a gg ~ 
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group 1 continued 
B3203u R 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg 
Bpapol103u R 35a a gga g a ggaag a gaagga gaaaagaag a gga ga gg 
B3205u R 35a a gga g a ggaag a gaagga gaaaagaag a gga ga gg 
B3206u R 35a a gga g a ggaag a gaagga g aaaag aag a gga ga gg 
KIOOBclu NO 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg 
KB51clu NO 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg Q 
K975clu NO 35a a gga ga ggaaga gaagga gaaaagaag a gga g a gg .g 
K9B2clu NO 35a a gga g a ggaag a gaagga gaaaagaag agga ga gg -<I> 

KB53clu ND 35a a gga g a ggaag a gaagga g aaaagaag a gga ga gg 
.., 
00 

K936unu ND 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg 
b KB69unu ND 35a a gga g a ggaag a gaagga gaaaagaaga gga ga gg <I> 

K994clu ND 35a a gga g a ggaag a gaagga gaaaagaag a gga g a gg ;g 
LB44u NO 35a a gga g a ggaag a gaagga gaaaagaaga gga ga gg ~ 
KB52clu ND 35a a gga g a ggaag a gaagga gaaaagaag a gga ga gg ::i 
B2274u R 35d a gga g a ggaag a gaagga gaaaaaaag a gga g a gg <I> 

;:s -N2340-4 ND 30e a gga g a ggaaga gaagga gaaaagaaga gg 
~ LB34I ND 27d a gga g a ggaaga gaaga---aaagaaga gg I:l 

NIBI NO 27d a gga g a ggaag a gaaga---aaagaaga gg I:l.. 
L9411 ND 27d a gga g a ggaag a gaaga---aaagaaga gg ciQ. .... 
L934u ND 26a a gga g a ggaaga gaaga----aagaaga gg S -BpapoI601 S 26a a gga g a ggaaga gaaga----aagaaga gg b 
BM31-3 ND 26a a gga g a ggaaga gaaga----aagaag a gg ~ 
BM42-3 ND 26a a gga g a ggaaga g aaga----aagaag a gg 

~ Bpapo1331 S 26a a gga g a ggaag a gaaga----aagaag agg 
BB231 S 26a a gga g a ggaag a gaaga----aagaaga gg ~. 
BS3B-3 ND 26a a gga g a ggaag a gaaga----aagaaga gg 

~ LB451 ND 26a a gga g a ggaag a gaaga----aagaaga gg '" 
LB321 ND 26a a gga g a ggaaga gaaga----aagaaga gg ii) 

::i 
N71 ND 2B a gga g a ggaag a gaag a ggga--gaaga gg 

0 
I:l 
;:s 
I:l 
~ 
'" <I> 

group 2 ~ 
K1337cIu ND 40 + a g aaggaagga ggggaagggggaa gggga gaaggga gaag eT 

K997clu ND 39a + a gaaggaagga ggggaagg--aaggggqaaag a ggga gaag i3 
0 

K9Blunu ND 39a a g aagqaagga ggggaagq--aaggggqaaag a ggga gaag ~ . 

KB54unu ND 39b a g a ggga ggqa ggqgaagg--aaqggggaaag a ggga gaag ~ 

~ 
.g 

~ 
s:: 
i:i" 

...... 5· 00 
"-' ;:s ..., 
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group 3 
Z21Bl R 42 + a g a ggaaggaaag a gaaagaagaagga ga ga gaaggaa-----ga gg 
Z1851 R 42 + a g a ggaaggaaaga gaaagaagaagga ga ga gaaggaa-----ga gg 
Z21Bu R 47 + a g a ggaaggaaaga gaaag aagaagga ga ga g aaggaaaagaaga gg 
Z185u R 47 + a g a ggaaggaaag a gaaagaagaagga ga ga gaaggaaaagaaga gg 
Z194u R 45 + a ga ggaaggaaaga gaaagaagaagga ga ga gaaggaaaaga--agg 

Q 
-§ 
~ ... 

group 4 00 

Z210u R 32 aag aaaga ga g aaggaaaaggaaaaaagga g a t:l 
Z269u ND 32 aagaaaga ga gaaggaaaaggaaaaaagga ga ~ 

'<! 
Z90u R 32 aagaaaga ga gaaggaaaaggaaaaaagga ga ~ 

Z274u R 32 aagaaag a ga g aaggaaaaggaaaaaaggag a ~ 
Z1941 R 32 + aagaaaga ga gaaggaaaaggaaaaaagga g a 3 

~ 

Z20Bu R 32 aagaaaga g a gaaggaaaaggaaaaaagga g a ~ 
Z199u R 32 aagaaaga ga gaaggaaaaggaaaaaaggaga ~ 
Z220u R 32 aagaaag a ga gaaggaaaaggaaaaaagga ga ~ 

Z203u R 32 aag aaaga ga gaaggaaaaggaaaaaagga g a !:l... 

Z221u R 32 aagaaaga ga gaaggaaaaggaaaaaagga ga aq' -. 
Z231u R 32 aag aaag a ga gaaggaaaaggaaaaaagga g a S --Z244u R 32 aagaaaga ga gaaggaaaaggaaaaaagga g a t:l 
Z267u ND 32 aagaaag a ga gaaggaaaaggaaaaaaggag a ~ 
Z212u R 32 aagaaag a ga gaaggaaaaggaaaaaagga g a 

~ Z270u ND 32 aagaaaga ga gaaggaaaaggaaaaaagga ga 
Z273u ND 32 aagaaaga ga gaaggaaaaggaaaaaagga ga S· 

OIl 
Z222u R 30£ aagaaaga ga g aaggaaaaggaaaaaagga ~ 
K925clu ND 29 + a- gaaag a ga g aaga gaaaggaaga ga gaa '" 
K9B1un3 ND 30b a- gaaag a ga gaaga g aaaggaaga ga gaaa ~ 

3 
KB52un3 ND 30b a- gaaag a ga gaaga gaaaggaaga ga gaaa 0 
K97Bunl ND 25b + a- gaaag a ga gaa--aaaaaaaaaga ga ~ 

K997cll ND 25b + a-gaaaga ga gaa--aaaaaaaaaga g a :s 
~ 

K1009cll ND 25b + a-gaaaga ga gaa--aaaaaaaaaga g a · ~ 
'" K925cll ND 27b + a-gaaagga gaaaaggaaaaaaaaga ga ~ 

KB52un4 ND 27b a-gaaagga gaaaaggaaaaaaaaga ga ~ 
0-a 
0 
~ . 

group 5 
~ 

" LB45un-4 ND 16 aagaagnana---------------n ggggg + {5 
I:> s.:: 

~ L9441 ND 16 + aagaagnana---------------n ggggg + ~ .... LB45unu ND 31b aagaagnananaagnaaannaaga gnggggg + 5' 00 ...., L944unu ND 31a + aagaagnana gaagnaaannaan a nnggggg + ~ 
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group 6 
BB23u 5 38c + aaaaaaaaaaaaaaanaannaaaaaa-aaaaaaannna g + 
Bpapo1 60u 5 38b + aaaaaaaaaaaaaaaaaannaaaaaa-aaaaaaannna g 
BB25 u ND 38d + aaaaaaaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
BM3 u 5 38d + aaaaaaaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
B528 u 5 38d + aaaaaaaaaaaaaaaaaannaaanaa-aaaaaaannna g + 
Bpapo133 u 5 38d + aaaaaaaaaaaaaaaaaannaaan aa-aaaaaaannna g + 9 
B538 u ND 38d + aaaaaaaaaaaaaaaaaannaaan aa-aaaaaaannna g + -§ 
L834 u ND 38d + aaaaaaaaaaaaaaaaaannaaanaa-aaaaaaannna g + ... 

(I) 

L941 u ND 38d + + .... 
aaaaaaaaaaaaaaaaaannaaan aa-aaaaaaannna g 00 

B1147 u 5 35b + a---aaaaaaaaaaaaaannaaan aa-aaaaaaannna g + tl 
Bmag18u 5 35b + a---aaaaaaaaaaaaaannaaan aa-aaaaaaannna g + (I) 

N2340-3 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + ~ 
(I) 
"-

N971 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + ~ 
N961 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + ~ 

N156u R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + <Il 
;:s ... 

N951 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + ~ N941 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + s::. 
N1061 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + I:<. 

N1l61 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + o'Q" 

N1l31 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + 
~. 
"-

N6051 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + tl 
N6091 R 34 + a----aaaaaaaaaaaaann aaan aa-aaaaaaannna g + ~ 
NI051 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + 

~ BUg89/8h R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + 
BUgL1 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g ~" 

BUgA901 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannn?g ~ 
BEO R 34 a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g ..., ... 
BUgIl R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g (I) 

~ 
BUgK1 R 34 a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g C 
BURIl R 34 a----aaaaaaaaaaaaannaaanaa-aaaaaaannn?g s::. 
BUgJ1 R 34 a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g ;:s 

s::. 
BUgM1 R 34 + a - - - - aaaaaaaaaaaaannaaanaa - a"aaaaaannna g + ~ 
BMAP1 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + 

..., 
<Il 

B31941 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + ;l 
B31961 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + er 
B32001 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + 2 

n 
B32021 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + !!" 
B32031 R 34 + a-- - -aaaaaaaaaaaaannaaanaa-aaaaaaannna g + "\::s 

~ BM311 ND 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + ~ 
t> so:: 
~ BM421 ND 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + "-

~ - BM661 R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g + c" 00 
~ 

;:s 

'" 
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group 6 continued 
Bpapol1031 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
B32051 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
B3206 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
BUTAR41 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
K1008cll NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
K975cll NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 9 
K982cll NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + -§ 
K853cll NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g ... 

"' K851cll NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
.., 
00 K869unl NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 

L8441 NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + b 
"' BU89/21 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* ..: 
"' N1031 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* .g 

N1201 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* :I 
BEA1741 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g "' ~ BEA31 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g 

~ BUTAR31 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g 
~ 

NllOl R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* ~ 
N981 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* c>Q' -. Nlllu R 34 + a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g -* S-
N1l2u R 34 + -* -a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g b 
N1l5u R 34 a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* ~ B22741 R 34 a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* 
BUgC901 NO 34 a----aaaaaaaaaaaaannaaan aa-aaaaaa???n a g -* ~ 
BUgE901 NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g ~. 

BUg89/8h R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g -* OQ 

K852cll NO 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g ~ .., 
K936unl NO 34 -* ... 

a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g "' K994unl NO 34 a----aaaaaaaaaaaaannaaanaa-aaaaaaannna g :I 

BI155u S 36b a---aaaaaaaaaaaaaannaaan aannaaaaannnna g -* C 
~ 

N2340u NO 38e a-----aaaaaga naaaannaaanaaaaaaaaaannna gga gg ;:s 
~ 

~ .., 
"' :1 
0'" 

group 7 i:! 
n 

KlOO9u ND 36a + a g a gggga ga ga gaaaga gggaaagaagaaga ggaa !!. 
K927c14bu ND 26c + a g ag---a ga ga gaaag-------gaagaag a ggaa "l:::I 

'tl K981un4 NO 26c a g a g--- a ga ga gaaag-------gaagaag a ggaa .g 
~ K854unl ND 26c a g a g--- a g a g a gaaag-------gaagaag a ggaa I:: -~ .... K978unu NO 26c + a ga g--- a ga g ag aaag-------gaagaag a ggaa g. 00 v. ;:s 

"" 
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group 8 
K9B41 ND 27c + a ggga g a ggaaggaagaaaaagggaaa 
KB54cll ND 27c + a ggga g a ggaaggaagaaaaagggaaa 
K97Bcll ND 27c + a ggga g a ggaaggaagaaaaagggaaa 
K926unl ND 27c + a ggga g a ggaaggaagaaaaagggaaa 

Q 
-§ -9 group ~ 
"t 

K1027cll ND 17 + a gaagga ggggggaaag 00 

KB51unl ND 17 + a gaagga ggggggaaag tJ 
~ 
~ 

group 10 .g 
K927cllbu NO 30c + a gga gaaaaagaaga gga gga gggggggga 3 

~ 

K9B4clu NO 30a + a gga g aaaga gaaga gga gga gggggggga ::s -K 25Bcl ND 30a a gga gaaaga gaaga gga gga gggggggga ~ 
K B54clu NO 30a + a gga gaaaga gaaga gga gga gggggggga s::. 
K 978clu NO 30a + a gga gaaaga gaaga gga gga gggggggga s::... 

oq' 
K lO27clu ND 30a + a gga gaaaga gaaga gga gga gggggggga .... 
K 926un ND 30a + a gga gaaaga gaaga gga gga gggggggga i:i -K B51un ND 30a + a gga gaaaga g aaga gga gga gggggggga tJ 
K 997unu ND 30a + a gga gaaaga gaaga gga gga gggggggga 5;: 

~ 
group 11 

S· 
OQ 

Z1991 R 26b a g aaggggaga ga gga gggggggggg ~ 
Z2731 NO 26b a g aagggga ga ga gga gggggggggg ..., 

~ 
Z2101 R 26b + a gaagggga g a ga gga gggggggggg + 3 
Z2691 ND 26b + a gaagggga ga ga gga gggggggggg + 0 
Z901 R 26b + a gaagggga ga ga gga gggggggggg + s::. 
Z2741 R 26b + a g aagggga ga ga gga gggggggggg + ::s 

s::. 
Z2221 R 26b + a g aagggga ga ga gga gggggggggg ~ ..., 
Z2081 R 26b a gaagggga g a ga gga gggggggggg ~ 

Z2201 R 26b + a gaagggga g a ga gga gggggggggg - * :l 
Z2031 R 26b a gaagggga g a ga gga gggggggggg eT 

~ 
Z2211 R 26b + a g aagggga g a ga gga gggggggggg n 

Z2311 R 26b a g aagggga g a ga gga gggggggggg n. 
Z2441 R 26b + a g aagggga ga ga gga gggggggggg "t:s 

~ Z2671 ND 26b a gaagggga ga ga gga gggggggggg 
.g 

tl t: 

~ Z2121 R 26b + a g aagggga g a ga gga gggggggggg 0' 

-- Z2701 ND 26b a gaagggga g a ga gga gggggggggg S' 00 
0-

::s 
too 
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group 12 
L9341 NO 22b a g a ggaaa----------- gaagaaaagaagaa 
Nllll R 33b a g a ggaaaaaaaaaga gga gaagaaaagaagaa 
N1l21 R 33b a g a ggaaaaaaaaaga gga gaagaaaagaagaa 
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group 21 
K994un4 ND 22a a ga gaagaaga ga ga gaggaaa 

group 22 
K258cll ND 25c a gagaaaagaaga ggggagagggga 

group 23 
BM32-3 S 23 a gaaggagggaagaaaggaggaa 

Figure 8.13. Groups of aligned MS42 alleles. For each allele its place of isolation is given as a prefix to its stock number; Z, Zambia; N, 
Nyanza; B, Busoga; K, Kiboko and L, Lugala. The MS42 flanking haplotypes, alleles + or -, for each RFLP, BglIJ, HincII and MboII are given. 
The absence of a symbol indicates that the flanking haplotype has not been determined in this instance. 
The derived MVR code and allele name is shown ( a-type repeat units are in red, g-type repeat units in blue, n-type repeat units are in black and 
ambiguous positions are ? ). Homozygous stocks are marked (h) and their alleles have been entered twice. Human serum resistance (R) and 
sensitivity (S) is given, ND, not determined, data from Hide et a!. , 1994. Gaps (-) have been introduced to improve alignments. Arrows indicate 
regions of duplication. Identical alleles showing switching of flanking haplotypes are marked (*). The allele groups were generated based on the 
criteria outlined in the text, with the authenticity of selected matches and the final alignment of allele groups being made by eye. 
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Allele alignments and population analysis. Of the 48 different alleles detected, 37 were 

aligned into 10 groups containing 2-7 different alleles. The remaining alleles failed to 

align obviously with any other allele using the methods outlined. The authenticity of the 

allele grouping was supported by the flanking haplotypes, in that nearly every member of 

a group shares the same flanking haplotype. Only three examples of haplotype switching 

within a group were observed. Allele NI021 in group 12 has changed both HincII and 

MboII sites compared to identical alleles, whereas allele Z20l in group 11 has a switch at 

the 3' MboII site. The third example of haplotype switching again involves the MboII site 

in group 6. This group comprises 59 examples of allele 34 and 13 other highly related 

alleles. Of the 56 alleles which have been typed for MboII in this group, the majority (43) 

are MboII+ and 13 are MboII-. The fact that four different allelic structures in the group all 

have an MboII+ haplotype may suggest that MboII+ was the ancestral haplotype for this 

allele lineage and the switch to an MboII- haplotype was a more recent event. 

It is interesting to note that all the haplotype switching events involve the 3' MboII site 

which would be consistent with the view that the 3' end of the mini satellite array is more 

variable and that this variability extends into the flanking DNA. However, it appears that 

haplotype switching is a rare event, suggesting that recombination involving the exchange 

of flanking markers may not be a major mechanism in the generation of new alleles. 

Alleles containing null repeats (n-type) appear to have a strong association with the 

MboII+ (and to a lesser extent HincII+) haplotypes. The fact that null containing repeats 

appear in a limited number of allele groups (groups 5, 6, 13 and 16) and have a restricted 

haplotype, may suggest that these alleles are distinct lineages having evolved separately 

from the other alleles. Certainly, alleles in group 6 which consist predominantly of a-type 

repeats with 6-9 n-type repeats, are unlike any of the other alleles identified so far. As 

previously mentioned, the sequence of the repeats from one of the alleles in group 6, allele 

34, is quite distinct from those obtained from allele 26d (Figure 8.6) and from the partial 

sequence of alleles 20 and 25 (data 'not shown). This suggests a limited (if any) amount of 

inter-allelic recombination events involving these alleles, as inter-allelic events would 

result in the transfer of g-type repeats into the predominantly a-type allele, and the spread 

of n-type repeats into other allele groups. 

A significant proportion of alleles fell into one of two groups (groups 1 and 6), containing 

6 and 7 different alleles, respectively, suggesting the existence of two relatively ancient 

lineages. The fact that these groups contain alleles from four of the five trypanosome 

populations studied supports the view that these groups are evolutionary ancient. 
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Groups 2, 3, 5, 7-11, 15-23, are all population specific. Twelve of those groups are 

specific for the Kiboko population, supporting the conclusion from Chapter 7 that the 

Kiboko population is very heterogeneous. If more alleles were examined, it is probable 

that some groups would expand to incorporate alleles from different origins. In larger 

groups, population specific subgroups could be identified (e.g. the Kiboko stocks in group 

4) sharing greater homology with each other than the rest of the group, presumably 

reflecting more closely related alleles. 

Allele groupings and population structure. The question of how the allele groups 

relate to population structure can be addressed by analysing the frequency of each group 

of alleles in the different populations. The data have been plotted for each of the five 

populations of trypanosomes analysed and are presented in Figure 8.14. 

Substructuring due to geography- comparison of human isolates. Three of the populations 

under study have been isolated from humans or are human serum resistant cattle isolates 

collected from Zambia, Uganda and Kenya, with the latter two locations being 

geographically close to one another on the north-west shores of Lake Victoria. The most 

recent outbreak of human trypanosomiasis near Lake Victoria in SE Uganda began in 

1976, spreading North to the Tororo district and peaking to over 300 cases in 1990. It was 

from this focus that the Busoga stocks used in this study were isolated [Hide et al., 1994]. 

The Kenyan samples from Central Nyanza were collected during an outbreak of human 

trypanosomiasis in 1961. From the analysis of allele groups, it is clear (graphs D and E, 

Figure 8.14) that the Uganda (Busoga) samples and the Kenyan (Nyanza) collection have 

almost identical patterns of allele group frequencies. This would strongly suggest that the 

Busoga and Nyanza foci are related, with the same human infective strains prevalent in 

both outbreaks. 

Previous analysis of allele frequencies (Chapter 7) of the Zambian population and the 

human isolates from the Ugandan (Busoga) and Kenyan (Nyanza) populations indicate 

that the Zambian population was distinct, with no alleles in common. Similar analysis 

using allele groupings revealed that no Zambian alleles are in groups containing Busoga 

Nyanza alleles, indicating that Zambian alleles do not have regions of homology with 

other alleles from Busoga or Nyanza (Figure 8.14 graphs A, D and E). This is further 

evidence that the Zambian focus is distinct from that around the shores of Lake Victoria, 

indicating population sub structuring due to geography. However it must be remembered 

that the Zambian samples were isolated in 1981-3, and so are not directly comparable to 

those isolated in Busoga (1988-90) and Nyanza (1961), despite the evidence presented in 
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Figure 8.14. Frequency of allele groups in each population. A1leles were grouped 
according to the criteria indicated in the text. The number of a1leles in each population 
is indicated (n). 
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the following section that there is little change of allele group frequencies (at least in the 

Busoga region) over time. 

The Zambian stocks were isolated from two different villages in Zambia, four isolates 

were from Chilbale (z90, z194, z218 and z185), the rest were collected from Kasayasya. 

Examining each group separately, the Kasayasya samples consist of only two MS42 

genotypes, 14 samples with the 32/26b genotype and one sample with the 30f726b (see 

Chapter 7, Table 7.1). MVR based groupings of allele 30f and 32 demonstrates that these 

alleles are highly related differing only by a two repeat unit deletion/insertion at the 3' end 

of the array, indicating that this collection of samples is virtually homogeneous (see 

Figure 8.12, group 4). Although the alleles, 32 and 26b, were isolated from the four 

Chilbale stocks, three other unique alleles were also identified (42, 45 and 47), which, 

when analysed by MVR-PCR, appear to be highly related to each other (fonning group 3), 

with the variation occurring at the 3' end of the repeat array. It appears, therefore that the 

stocks isolated from the two Zambian villages have differences, but this is based on a very 

small number of samples and analysis of a more extensive collection of samples would be 

required to demonstrate such population sub structuring. 

Substructuring due to geography - comparison of tsetse isolates. Comparing the Lugala 

and Kiboko collections, which were both isolated from tsetse flies in 1969-70, it is clear 

(Figure 8.14 C and B) that only two allele groups are shared between the two populations. 

These two groups (1 and 6) are the same groups which were prevalent in the Nyanza and 

Busoga populations, and appear to include alleles which are associated with human 

infectivity. Most of the other allele groups were distinct and exclusive to either 

population. 

Although no alleles were shared between the Zambian and Kiboko populations, one allele 

group (4) from the Kiboko collection of samples appears to be shared with the Zambian 

population, suggesting that the alleles are related. Close inspection of group 4 (Figure 

8.15), however, revealed only limited regions of similarity between the different alleles in 

this group. Indeed this group could be divided into three subgroups; the Zambian alleles 

which are virtually identical, and two Kiboko subgroups which are more closely related to 

each other than to the Zambian subgroup. It is still unclear if these alleles are truly related 

and reflect a recent common ancestor or if convergent evolution has generated alleles with 

these regions of identity. 
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group 4 

stock human allele BalII Hi ncII MVR codes MboI 
serum 

subgroup 1 Z210 R 32 - aagaaaga ga gaaggaaaaggaaaaaaggaga 
Z222 R 30f - aagaaaga ga gaaggaaaaggaaaaaagga 

subgroup 2 K925 ND 29 + - a-gaaaga ga gaaga gaaaggaagagagaa 
K981 ND 30b a-gaaaga ga gaaga gaaaggaagaga gaaa 

subgroup 3 K978 ND 25b + - a-gaaaga ga gaa--aaaaaaaaaga ga 
K925 ND 27b + - a- gaaaggagaaaaggaaaaaaaaga ga 

Figure 8.15. Subdivisions in group 4. Examples of the different aUeles in group 4 split 
into 3 subgroups, two containing Kiboko alleles and one subgroup containing Zambian 
a1leles. For each allele the flanking haplotypes for RFLPs, Bgffi, HincII and MboII are 
given. Stocks with these a1leles are human serum resistant (R), sensitive (S) or not 
determined (ND), respectively. 

Stability of alleles over time - analysis of isolates from the shores of Lake Victoria. Acute 

human trypanosomiasis was first recorded in the Busoga region of Uganda in the 1940s 

and was believed to have spread southwards across the Kenyan border to Central Nyanza 

by 1955 [Gibson et al., 1980]. The collection of stocks from Nyanza were isolated from 

this region in 1961, while the Busoga samples were collected during an outbreak of 

trypanosomiasis in 1988-90. Comparison of allele groups from human infective stocks from 

Busoga and Central Nyanza, presented in Figure 8.14 D and E, indicate that these 

populations share almost identical allele group frequencies . Although geographically these 

regions are not distant, (- 100 kilometres apart) the samples were isolated about thirty 

years apart, indicating that the same human infective strains have been circulating in that 

area for at least that time and may have been responsible for the earlier Busoga epidemic of 

the 1940s confirming a previous suggestion by Hide et al., (1997) . 

Lugala is a region within Busoga (Uganda), and so the Lugala samples, isolated from tsetse 

flies in 1969-70 can be directly compared to the Busoga stocks. Comparison of the allele 

groupings of these stocks (Figure 8.14 C and E) shows that four of the five allele groups in 

the Busoga isolates were also present in the Lugala tsetse samples, collected - 20 years 

earlier, providing further evidence that the aUeles circulating in this area are quite stable 

over time. One allele in group 23 (Figure 8.14 E), is present in the Busoga 1988-90 

collection but not in the Lugala tsetse population, probably as a result of sampling error as 

the number of isolates from the Lugala population is small. 

Subslrucluring due to host specific;ty. Although the Lugala collection of samples is small 

with only 23 alleles compared to that of the Busoga collection (98 alleles), one allele 

group (group 5), which consists of 3 different al1eles, was identified in the Lugala (tsetse) 

collection, which was not present in the human isolates from Nyanza and Busoga. 
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Presumably this is because the tsetse isolates include both human infective and non

human infective trypanosomes and so a proportion of the latter would not appear in the 

collection of isolates from humans. The tsetse samples appear to have quite different 

alleles from those detected in the human infective stocks, supporting the suggestion that 

trypanosome populations are substructured due to host specificities. 

A high level of allele diversity was obserVed in the Kiboko population sampled from 

tsetse flies (Figure 8.14, graph B), with 15 different allele groups being identified by 

MVR analysis from 64 alleles. It therefore appears that analysis of trypanosomes from 

tsetse flies provides a full representation of the T. brucei alleles circulating in an area, as 

they will contain trypanosomes from diverse hosts such as, wild animals, cattle and 

humans. 

Evolution of human infectivity. Evidence based on isoenzyme and RFLP analysis of 

stocks from Busoga, isolated in 1988-90 from both humans and cattle, has indicated that 

human infective stocks (T. b. rhodesiense) form a fairly homogeneous group which can be 

distinguished from non-human infective isolates (T. b. brucei), with the human infective 

samples forming a subset of the total T. brucei population [Hide et al., 1994]. Minisatellite 

analysis of many of the same stocks used by Hide et al., have been presented in Chapter 7, 

and the MS42 alleles identified are illustrated in Figure 8.16A. Results from this analysis 

support the conclusions of Hide et al., that the human infective samples were quite 

homogeneous, with 24 out of 26 stocks having the genotype 35a134 (see Chapter 7, Table 

7.1). One of the remaining human infective stocks (BU89/8) was homozygous for the 34 

allele and the other (B E 2274) had the genotype 35d/34, the 35d allele being only one 

repeat unit different from the 35a allele. It is clear from these data that there is an 

association between alleles 35a and 34 and human infectivity, since no non-human 

infective stocks had these alleles. This suggests that the human infective Busoga samples 

are distinct (genetically isolated) from the non-human infective stocks, and can possibly 

be defined by the presence of these alleles. The 34 and 35a alleles are also present and 

associated with human infectivity in the Nyanza population, although one other allele, 

33b, is also associated with human infectivity (see Chapter 7, Table 7.1). Information as to 

how these human infective stocks evolved could be gained by examining the MVR codes 

derived from their MS42 alleles. The 12 different MS42 alleles from Busoga isolates fall 

into 5 different allele groups, the two most frequent groups containing both human 

infective and non-human infective stocks (Figure 8.16B; and Figure 8.17). This suggests 
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Figure 8.16. Comparison of MS41 alleles from human serum resistant 
(HSR) and sensitive (HSS) stocks from Busoga. 
(A) MS42 allele frequenci~ for HSR (red) ~d HSS (blue stripes) stocks. ND 
indicates human serum sensItIvIty was not deternuned. 
(B) Frequencies of MS 42 allele groups for HSR and HSS stocks. 
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that the human infective and non-human infective stocks share recent common ancestors. 

The fact that there is a greater range of different non-human infective allelic structures in 

these and other groups, than those which are associated with human infectivity, would 

suggest that the human infective stocks are a subset of the more heterogeneous T. b. brucei 

samples. These results are in agreement with the conclusions of Hide et aI. , (1994). The 

data of Hide et aI., are based on a cluster analysis of multiple repetitive DNA RFLPs, 

which do not allow specific well defined genotypes to be defined that discriminate T. b. 

rhodesiense and T. b. brucei. The MVR mapping and definition of specific alleles of the 

minisatellite MS42 associated with T. b. rhodesiense not only extend and confirm the data 

of Hide et aI. , but also provide a simple and effective means of defining human infective 

trypanosomes in the UgandanlKenyan foci . 

Stock human allele BglII HincII MVR codes MboII 
serum 

Group 1 
B3206u R 35a a gga g a ggaag a gaagga gaaaagaag a gga ga gg 
B2274u R 35d a gga g a ggaag a gaagga gaaaaaaag a gga ga gg 
N2340-4 NO 30e a gga g a ggaag a gaagga gaaaagaag a gg 
L8341 NO 27d a gga ga ggaaga gaaga---aaagaag a gg 
Bpapo1331 S 26a a gga g a ggaag a gaaga----aagaag a gg 
N71 NO 28 a gga ga ggaaga gaag a ggga--gaag a gg 

Group 6 
N2340-3 R 34 + a----aaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
BB23u S 38c + aaaaaaaaaaaaaaan aannaaaaaa-aaaaaaannna g + 
Bpapol 60u S 38b + aaaaaaaaaaaaaaaaaannaaaaaa-aaaaaaannna g 
BS28 u S 38d - + aaaaaaaaaaaaaaaaaannaaan aa-aaaaaaannna g + 
BI147 u S 35b - + a---aaaaaaaaaaaaaannaaan aa-aaaaaaannn a g + 
BI155u S 36b - a---aaaaaaaaaaaaaannaaan aannaaaaannnna g -
N2340u NO 38e a-----aaaaaga n aaaannaaan aaaaaaaaaannna gga gg 

Figure 8.17. Examples of MVR codes from alleles from human infective and non
human infective stocks. An example of each different allelic structure within groups 1 and 
6 are shown. For each allele the flanking haplotypes for RFLPs, BgID, HincII and MboIl 
are given. R, S and ND indicate if the stocks with these alleles are human serum resistant, 
sensitive or not determined, respectively. 

The very different allelic structures identified in the human infective stocks from Zambia 

and those from Busoga/Nyanza (Figure 8.14) imply that these two groups of human 

isolates do not share a recent common ancestor. This suggests that the Busoga human 

infective isolates are more closely related to the local non-human infective isolates, than 

they are to other human infective stocks from different regions. Following this argument, 

human infectivity appears to have originated independently in these different geographical 

regions, a product of convergent evolution. This would infer that the separate classification 
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of all human infective stocks from East Africa into the subspecies, T. brucei rhodesiense 

[Hoare, 1972] is incorrect and would be better considered to be host range variants of T. 

brucei brucei or a series of different sub-species. To confirm and extend this conclusion it 

would be necessary to compare non-human infective stocks from Zambia with the human 

infective isolates presented here. If this revealed that the Zambian human infective stocks 

are more closely related to the local non-human infective isolates than to other human 

infective stocks from other regions (as in the case of the Busoga samples), it would 

provide a strong case for abandoning the subspecies classification of T. brucei 

rhodesiense, or alternatively geographical subspecies classifications of human infective 

trypanosomes would have to be introduced. 

It is interesting to note that the genotype 35a/34 has been detected in the Kiboko 

population, implying that human infective trypanosomes may be circulating in this area. If 

human infective and non-human infective trypanosomes are genetically distinct, with no 

alleles in common, then two separate groups of trypanosomes should be detected. 

Extensive analysis by isoenzymes and pulse field gel electrophoresis of 18 Kiboko clones 

has identified two distinct groups of trypanosomes [Tait, unpublished]. The first group 

was homogeneous for isoenzyme patterns, with very similar but not identical karyotype 

and the second group was heterogeneous for both isoenzymes and karyotype. The 

homogeneous group contains only those stocks with the 35a/34 genotype. This suggests 

that there is sub structuring with the Kiboko population, which may be due to human 

infectivity. However, no cases of human sleeping sickness have been reported from this 

area. Analysis of a much larger collection of samples, with human serum resistance data 

for each stock are required to confirm the association between the 35a/34 genotype and 

human infectivity. 

Mutation processes. MS42 shows a high level of variability in T. brucei populations, 

as a result of a high mutation rate to new length alleles. The mutation processes driving 

minisatellite variability has been e.xamined for four human minisatellites [Armour et al., 

1993; Armour et al., 1993; Neil and Jeffreys, 1993; Buard and Vergnaud, 1994; Jeffreys et 

al., 1994], revealing that most mutation events involve the gain of a small number of 

repeat units at one end of the repeat array, suggesting the existence of localised hotspots of 

mutation within minisatellites. Some new length alleles at these human loci appear to 

contain MVR map segments from both parental alleles indicating that these mutant alleles 

may have arisen through inter-allelic exchange events, either gene conversion or 
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recombination, although intra-allelic events such as sister chromatid exchange and 

slippage have also been implicated in the generation of some new alleles. 

In order to analyse the mutation processes which generate the variability at MS42, two 

approaches were adopted. The first was to analyse how MS42 alleles from the different 

populations are related to each other, which can provide evidence for the different 

mutation processes (both intra- and inter- allelic events) involved in the generation of new 

alleles. The second approach was to examine a length mutant generated during a genetic 

cross and to isolate new length mutants by the process of small pool PCR (SP-PCR) 

[Jeffreys et al., 1994]. 

Examination of allele groups- intra-allelic events. Examination of the 

different allele groups has revealed that many of the alleles identified here appear to have 

been generated by deletions/duplications, substitutions and micro-gene conversions, which 

need not involve another allele. For example, small regions of duplications or deletions 

can be observed in the alleles in group 1 (Figure 8.13), with the terminal 5 repeat units of 

allele 35a perhaps being generated by a duplication, while alleles 26a and 27 d could be 

generated by internal deletions. Further examples of variation involving 

duplications/deletions can been seen in group 3, where highly polar events have generated 

new alleles. Groups 7 and 15 also contain examples of possible deletions. 

Deletions/duplications and possible substitutions could also generate the different alleles 

in group 6. Only one g-type repeat unit is present in most of the alleles in group 6 and, 

since g-type repeat units constitute 44.8% of all non-group 6 alleles, it is highly unlikely 

that alleles from group 6 have been generated by inter-allelic events involving alleles from 

other groups. Another possible example of a simple intra-allelic event generating a new 

allele can be see in group 5 (Figure 8.13). Here alleles L845un-4 and L845unu (isolated 

from the same fly) differ by an internal deletion (or insertion). Substitutions or micro-gene 

conversion events may also play a role in the generation of new aUeles, for example in 

group 1 alleles 35d to 35a only differ by one repeat unit, suggesting such an event. One 

repeat unit difference has also been observed between alleles 30c and 30a in group 10 

which is likely to have been caused by a substitution or micro-conversion event. It is clear 

that examination of allele groups indicates that intra-allelic events such as duplications, 

deletions, substitutions and micro-gene converions can all be involved in the generation of 

new alleles. The mechanism by which these events can occur could either be crossovers 

between sister chromatids or replication slippage and may occur during mitotic 

replication. 
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Examination of allele groups- inter-allelic events. Other alleles could possibly have been 

generated by inter-allelic events, i.e. involving the allele on the homologous chromosome, 

perhaps by introducing a small patch of repeats by gene conversion or by larger 

recombination events, presumably occurring at meiosis. For example (Figure 8.18A) allele 

39b may have been generated by a crossover between alleles 40 and 39a. Unfortunately 

the flanking haplotypes for these alleles are not informative, so it is unclear if this 

crossover event (if real) involved the exchange of flanking markers. Although these alleles 

have been isolated from different stocks, they were all from the Kiboko popUlation, 

implying that mixing of alleles takes place in this popUlation. The second example (Figure 

8.18B) involves another possible recombination event, where two of the alleles, 30b and 

27b, have been isolated from the same stock, indicating that mating may have occurred to 

generate allele 25b. 

Examples C and D in Figure 8.18 are possible gene conversion events whereby a small 

part of one allele is inserted into another to create a larger hybrid allele, without exchange 

of flanking markers, which is the predominant mechanism of mutation in human 

mini satellites [Armour et al., 1993]. In these examples the alleles are all either from 

within the same population (mainly Kiboko) or are from populations which have been 

shown to be closely related (i.e. Busoga, Nyanza and Lugala), suggesting that these alleles 

could have been present in a single genome. However, the regions of homology between 

alleles in these examples are small and 50 need not necessarily suggest a recent ancestral 

link but may be the product of convergent evolution. 

Another example of a possible mutation event comes from the clone N2340. PCR 

amplification of the MS42 locus from this stock revealed the presence of four MS42 

alleles. This stock was a cloned isolated from a human in Nyanza in 1977 and so it is 

unlikely (although not impossible) that it was a mixed sample. Two of the alleles from this 

stock were the common alleles 34 and 35a, generating strong bands on an ethidium 

bromide stained gel, the other two °alleles (30e and 38e) were fainter and MVR mapping 

revealed that these alleles were unique. On closer inspection of these alle1es it is clear that 

these alleles were highly related and unlikely to be the result of contamination of the DNA 

sample. It seems likely that during growth in the laboratory a mutant trypanosome arose 

resulting in a mixed population of progenitor and mutant cells. Examination of the MVR 

codes from these alleles indicates that two of the alleles'may have been the products of a 

reciprocal crossover event (Figure 8.19). Whether this involved a small patch of gene 

conversion or extended into the flanking DNA and involved exchange of the flanking 
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HiDeI! 

+ 

+ 

+ 
+ 

agaaggaaggaggggaagggggaaggggagaagggagaag 
x 

agagggagggaggggaaggaagggggaaagagggagaag 
agaaggaaggaggggaaggaagggggaaagagggagaag 

agaaagagagaagagaaaggaagagagaaa 
x 

agaaaggagaaaaggaaaaaaaagaga 
agaaagagagaaa aaaaaaaagaga 

aggagaggaagagaagaaaga----------agagg 
x x 

aaaagagagggagaagagaaaaaaaagagggggag 
aggagaggaagagaaggagaaaaa-aagaggagagg 

agaggaaa-----------gaagaaaagaagaa 
x x 

aggagaggaagagaaggagaaaaaaagaggagagg 
agaggaaaaaaaaagaggagaagaaaagaagaa 

MhoI! 

+ 

Figure 8.18. Possible inter-allelic events in the generation of new alleles. The MVR 
maps of the two possible progenitor alleles for each example are shown in pink and light 
blue with the allele name and the flanking haplotypes for Bgill, Hincll and Mboll . The 
possible hybrid alleles are shown. Possible points of crossovers are indicted (x). 
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markers is not known as the flanking haplotypes for alleles 30e and 38e were not obtained. 

There is a small patch of non-homology detected at the beginning of allele 38e. Such 

anomalous repeats in mutant alleles compared to progenitor alleles have been observed in a 

number of human mini satellite mutants [Je£freys et aI., 1994], suggesting a complex 

(perhaps multistep) mutation process. 

stock allele HincII MVR codes MboII 

N2340-3 34 + aaaaaaaaaaaaaannaaan-aaaaaaaaannnaq + 
x 

N23401 35a aqqaqaqqaaqaqaaqqaqaaaaqaaqaqqaqaqq 
-N23-46u 38e aaaaaaga naaaannaaanaaaaaaaaaannnaqqaqq 
N2340-4 30e aqqaqaqqaaqaqaaqqaqaaaaqaaqaqq 

Figure 8.19. Possible reciprocal crossover in clone N2340. The MVR map of all four 
alleles from clone N2340 are given, along with the flanking haplotypes if known. Possible 
crossover point is indicated (x). Repeat units in black indicate non-homology. 

If polarity of variation in MS42 alleles is a real phenomenon, this would suggest the 

involvement of elements external to the repeats that generate de novo mutations in allelic 

structures, directing them to one end of the locus. This can be investigated by the analysis 

of new length alleles. However only one mutant allele was detected in the 156 clones 

analysed from genetic crosses (Chapter 5). 

Mutant F532153mcll. During the analysis of hybrids from the genetic cross between STffi 

247 and TREU 92714 (Chapter 5), a novel sized MS42 allele was observed in clone 

F532/53mcll , giving a mutation rate of 1/109 meiosis (putative). This clone appears to be 

trisomic possessing three MS42 alleles of 20, 25 and 28 repeats respectively. It appeared 

that this clone has inherited both TREU 927/4 alleles and a mutant STill 247 allele. By 

comparing the MVR map of the mutant allele with the parental allele, the mutation process 

involved in the generation of this allele can be deduced (Figure 8.20). It appears that the 

mutant allele was generated from the STffi 247 allele by an internal triplication of a 

aaggaga motif and a truncation. 
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stock allele Bg~II HincII MhoII 
STIB 247h 26 aqaaqqa qa --------------qqaaqaaaqqqaqgaaa 
mutant allele 28 a q aaqqa qaaaqqa qaaaqqa qaqqaaq 

------>------>------> 
TREU 927/4c141 20 + - aqqa qaqqaaaaaqaqqaaa 
TREU 927/4c14u 25 + - aqqqaqaaq aqqqqaqqqqqa q aaa 

Figure 8.20. MVR maps of the mutant and progenitor alleles for clone F532/53mcll. 
The MVR map of the F532/53mcll mutant allele and the maps trom the parental clones 
STIB 247 and TREU 92714 are given. For each allele the size (in repeats) and the flanking 
haplotypes for Bgill, HincII and MboII are given. STm 247 is homozygous (h) for MS42, 
a-type repeats are in red g-type repeats in blue. Arrows indicate the triplicated aaggaga 
motif Gaps (-) are introduced to improve alignments. 

Frequency of mutations. Since there are a limited number of progeny clones available for 

the study of minisatellite mutations, another approach to detecting mutants by peR was 

employed, small pool peR (Sp-peR) [JefIreys et al., 1994]. Small pools of DNA, the 

equivalent of 10 - 100 copies of a diploid genome, per pool, were amplified using a limited 

number of cycles for the peR reaction. The resulting products were run on an agarose gel, 

brotted and hybridised to a MS42 repeat probe (for a full description of Sp-peR see 

Materials and Methods). peR is sufficiently faithful to allow the detection of new length 

alleles derived from single molecules. Using this approach it is possible to screen thousands 

of molecules for new mutants. In this way new mutants could be isolated for analysis to 

reveal the mutation mechanisms generating variability and the frequency of these mutation 

events could be determined. The frequency of mutation events is particularly relevant to the 

use of minisatellite loci as markers, as a high mitotic mutation rate would prevent the 

ability to track individual alleles, for example, in pedigree analysis. Two stocks, the T. b. 

rhodesiense, STm 386 and the T. b. brucei, TREU 927/4, were analysed by Sp-peR for 

new length mutants generated during mitotic growth. No mutants were detected in 6500 

genomes worth of DNA, a maximum frequency of 0.00015, indicating that this locus is 

extremely stable mitotically (roughly equivalent to the mutation frequency in somatic cells 

for the human minisatellite ms32, [JefIreys et aI. , 1994]) and so confirming its suitability as 

a molecular marker. 

As indicated by the possible inter-allelic events detected in the population analysis, and the 

detection of one mutant allele in 53 Fl hybrid clones, mutation events during meiosis may 

be important in the generation of new alleles. This was investigated using the following 

approach. Since pure trypanosome meiotic material i.e. gametes, are obviously unavailable 
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for analysis, the closest available material to this was bloodstream (unpassaged) uncloned 

trypanosomes derived from the salivary glands of a tsetse fly from a genetic cross (STID 

386 x TREU 927/4), which was known to contain both parental types and hybrid progeny. 

Sp-peR analysis of DNA made from the uncloned material detected three presumptive 

mutant alleles from 15000 genomes worth of DNA, a frequency of -0.0002 (Figure 8.21). 

The frequency of detection of mutant alleles from this material is not significantly 

different from the values obtained for mitotic mutations (0.00015), although this is a 

minimum value. All three mutants were increases in size (if it is assumed that the 

progenitor allele is the closest in size to the mutant allele). Further analysis of these 

mutants by MVR-PCR was not carried out due to time constraints. This estimate of 

mutation frequency from this meiotic-enriched material by SP-PCR is approximately 50 

fold lower than the estimate based on progeny analysis (one new length allele in 53 

progeny clones; mutation frequency of 0.0094), however both are crude estimates. 

Conclusions 

MVR analysis has revealed a far larger number of alleles at the MS42 locus than could be 

detected by band size estimates even assuming 100% accuracy of the band size 

measurements. Therefore, using this system, unrelated alleles which are of the same size 

are no longer scored as matching alleles. The distribution patterns of variant repeats within 

alleles also contains cladistic information as alleles with very similar patterns presumably 

share a recent common ancestor. This provides a rational method for grouping (or 

binning) alleles for popUlation genetic analysis. 

In this study, comparisons of allele groups has revealed that trypanosomes isolated from 

tsetse flies have a greater level of diversity compared to those isolated from humans. 

Examination of allele groupings for human isolates have revealed that the Zambian stocks 

are quite unrelated to those from Kenya and Uganda, with the Kenyan and Ugandan foci 

being highly related, demonstrating that popUlation sub structuring due to geographical 

barriers exists. Also, examination of allele groups for human and non-human infective 

samples from the same area (Busoga), isolated at the same time, indicated that human 

infective samples could be defined by the presence of specific MS42 alleles and are more 

closely related to the local non-human infective samples than to human infective samples 

from Zambia, suggesting that the subspecies classification of T. brucei rhodesiense for all 

human infective stocks from East Africa is flawed. This analysis could be extended to 

examine trypanosomes from different regions of Africa; in particular, examination of non-

page204 



Chapter 8 Development of a digital DNA typing system to analyse T. brucei populations 

A 
a b c 

11 I~ 

allele I 

allele 2 

allele 3 

allele 4 

c d e f 
B 

allele I 

allele 2 

allele 3 

allele 4 

Figure 8.21. SP-PCR analysis of uncloned material derived from a STIB 
386 x TREU 927/4 cross. DNA was extracted from an uncloned stabilated which 
was known to contain both parental and hybrid trypanosomes . The DNA was diluted, 
amplified by peR to sub-visible levels, using. :primers MS42-W and MS42-F, 
fractionated on a 1% agarose gel, blotted and hybndlzed to the MS42 repeat probe, as 
described in Materials and Methods. The material contained 4 alleles (numbered 1-4) 
present i.n the approximate ra?o 3:.1: 12:27. Panel. A, (a) 12 iden.ti~ peR reactions of 
1/5 dilutlon of DNA, (b) 12 Identlcal peR reactlons of 1/10 ddutlon of DN~ (c) 3 
identical peR reactions of 1/100 dilution of DNA The autoradiograph was exposed for 
24 hours . Panel B , (c) 8 identical peR reactions of 11100 dilution of DN~ (d) 11 
identical peR reactions of 1/1000 dilution of DNA, (e) 3 identical peR reactions of 
}11 0000 dilution of DNA The autoradiograph was exposed for 2 days. Novel sized 
mutant allele is marked by an arrowhead in (e) lane 1. (t) Longer exposure (4 days) of 
last 4 lanes to highlight the mutant allele. The number of amplifiable molecules in each 
track for each allele was calculated using the Poisson distribution decribed in Materials 
and Methods . 
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human infective trypanosomes from Zambia would allow the investigation of the 

hypothesis that Zambian human infective stocks were derived from the circulating non

human infective trypanosomes. Also examination of archive material (for example 

microscope slides from the 1901 epidemic in East Africa) could reveal if the same 

trypanosome strains responsible for previous epidemics were causing current outbreaks. 

Extension of the MVR analysis to other populations could also reveal more alleles and so 

perhaps extend some of the allele groupings, providing more cladistic information. 

Comparisons of allele MVR maps has also provided evidence for inter- and intra-allelic 

mutation processes involved in the generation of new length alleles, with one mutant 

revealing an internal triplication and a truncation. Analysis of more mutants, detected by 

SP-PCR, would indicate which are the dominant mechanisms driving the variability at this 

locus. 

Despite the advantages of the MVR mapping technology to the study of T. brucei, it has 

its limitations. This technique has only been applied to one minisatellite so far. Since this 

is a coding locus it may be under selective pressure and so not act as a neutral marker. A 

non-coding minisatellite would be preferable (although this too may be under selective 

pressure if situated near a selected gene). MVR-PCR analysis could be extended to the 

. two other minisatellites identified, CRAM and 292, both of which contain variant repeats, 

although these both are also coding loci. In addition, although MVR analysis is ideal for 

strain identification and identifying samples with a recent common ancestry it is perhaps 

too variable for analysing very distantly related samples. 
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Chapter 9 

Discussion 

The broad aim of this project was to study sexual recombination in T. brucei in both the 

laboratory and field. Laboratory crosses were examined in order to investigate the 

mechanisms of genetic exchange and the rate of recombination between homologous 

chromosomes. Field populations were analysed to determine both the role of sexual 

recombination in natural populations of T. brucei and investigate the population structure 

of T. b. brucei and T. b. rhodesiense. A further objective was to develop a typing system 

which can be used for disease tracking and aimed at distinguishing T. b. rhodesiense from 

T. b. brucei as well as investigating the evolution of human infectivity i.e. whether strains 

of T. b. rhodesiense from different foci have the same origin or have arisen independently. 

The approach employed to address these questions was to develop a sensitive genotyping 

system based on minisatellites and to use this system to study genetic crosses and field 

isolates. Discussion of the results is provided at the end of each results chapter and so 

what I have attempted here is to draw together the main conclusions and discuss their 

broader implications in relation to addressing some of the questions in the study of genetic 

exchange in trypanosomes. 

Development of a genotyping system. A genotyping system for T. brucei was 

developed based on hypervariable mini- and micro satellite loci. Minisatellite markers 

were chosen as they are the most polymorphic loci identified to date in eukaryotic 

genomes. By using such a discrimin~ting marker system, potentially, each individual stock 

could be identified; parental and progeny trypanosomes could be distinguished, and any 

differences between T. b. rhodesiense and T. b. brucei stocks should be revealed. The 

minisatellite loci used in this study were chosen because they were relatively small and so 

could be easily amplified by PCR, which provides several advantages over other typing 

systems. For example, as only small numbers of parasites are required for genotyping and 

the peR primers are specific for trypanosomes, the parasites do not need to be removed 

from contaminating host DNA and can be genotyped directly without the need for growth 
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in laboratory rodents or in culture. Also, since the markers are single loci, the information 

obtained from them can be interpreted genetically, unlike classical DNA fingerprinting or 

RAPDs. Although each of the three minisatellites used as markers have heterozygosity 

levels of over 90%, they were all found in coding regions which may limit their 

variability. Non-coding minisatellites are less likely to be under selective pressure and so 

would provide neutral markers; however at the time of searching for minisatellite 

sequences in the database, the vast majority of sequences available were from coding 

regions. A library screen for minisatellite sequences, using Jeffreys' tandem repeat probes, 

could have been undertaken in order to isolate non-coding minisatellites, but this would 

have been a time-consuming exercise. It is also possible that T. brucei does not contain 

many non-coding single locus minisatellites, as intragenic sequences are usually short in 

this species. To circumvent the possible problem of selection, all three unlinked 

minisatellites were used in combination, as it is unlikely that all three markers are under 

the same selective pressure. Furthermore, this provides an increased level of 

discrimination between stocks. 

Four microsatellites were also used throughout this study. One microsatellite, in the 3' 

untranslated region of the TIM gene, was identified from the published sequence, shown 

to be polymorphic and used to genotype parasites present in tsetse fly saliva. The three 

other microsatellite markers were, JS2, D2 and E5 which were all isolated and 

characterized by J. Sasse. 

The identification of mini satellite loci in T. brucei is important not only because they 

provide a useful genotyping system but also because the high level of variation at these 

loci raises a series of questions about mutational mechanisms. Evidence from human 

studies indicates that the mutation events which generate new length alleles are most 

likely to occur during meiosis, with a 'hot spot' of recombination being found at one 

extensively stUdied minisatellite locus [Jeffreys et al., 1998]. The high level of T. brucei 

minisatellite variability may also be a result of meiotic events. To study mini satellite 

instability in more detail and to develop an even more discriminating method for tracking 

strains, the MVR-PCR technique [Jeffreys et al., 1991] was applied to the MS42 

mini satellite locus. This method digitally types MS42 alleles using both allele size 

(without recourse to band size measurements) and the distribution patterns of variant 

repeats. This typing method has a major advantage over conventional genotyping methods 

in that individual alleles can be identified precisely. A total of 274 alleles were typed 

using this system providing an insight into the mutation processes involved in generating 

new length alleles. The conclusions from this analysis (Chapter 8) are: 
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1) MS42 mutation processes do not appear to be very polar, in contrast to the 

circumsporozoite gene of P. Jalciparum and most of the human minisatellites analysed in 

this way. However, a less variable human mini satellite and several mouse mini satellites 

analysed to date do not show signs of polarity [Andreassen and Olaisen, 1998; Bois et al., 

1998]. 

2) There is evidence for possible crossover and gene conversion events, as well as internal 

duplications and deletions, suggesting that the mutation processes at this mini satellite 

probably involve inter- and intra-allelic events. 

3) One cloned line has provided evidence for a reciprocal crossover event. 

4) The examination of one Fl hybrid which contained a new length MS42 allele indicated 

that the mutation was probably a multistep process involving an internal triplication and a 

truncation. 

5) The maximum frequency of mitotic mutations which generate new length alleles was 

determined as being 0.00015 mutants! progenitor molecules, while the meiotic mutation 

events occur at frequency of 0.0094 mutants! meiosis (putative). 

However both mutation frequency estimates are likely to be inaccurate as no mitotic 

mutants were detected and only one meiotic mutant allele was detected in 53 hybrid 

clones. If more hybrid clones become available for analysis, a more accurate mutation 

frequency estimate could be obtained. The possibility that meiotic events are more 

frequent than mitotic events could lead to the suggestion that meiotic-specific events may 

be involved in generating some mutations. Further circumstantial evidence of meiotic 

events being common comes from the similarity of the dispersion patterns of variant 

repeats within the MS42 minisatellite to those described for human minisatellites, where 

meiosis-specific events are the major mechanisms for generating variation (variant repeats 

are randomly distributed throughout the allele). However one human minisatellite, MSYl, 

on the Y chromosome has a different dispersion pattern, whereby blocks of similar repeats 

are clustered [Jobling et al., 1998; Bouzekri et al., 1998]. The difference in dispersion 

patterns may be a reflection of the different mutation processes involved at this locus. The 

portion of the Y chromosome on which MSYl is located does not undergo recombination 

and so can in effect be considered clonal with no inter-allelic recombination events 

occurring~ The T. brucei mini satellite MS42 does not have this dispersion pattern, 

suggesting meiotic processes may be involved in repeat turnover. 

In order to strengthen this conclusion, it would be necessary to investigate the mutation 

events at this locus further. Three new length alleles have been detected from meiotic

enriched material by SP-PCR, although they were not analysed by MVR-PCR due to time 

Page 209 



Chapter 9 Discussion 

constraints. Analysis of these and other mutants may give an insight into complex 

mutation processes involved at this locus. The limiting factor in this investigation is the 

lack of pure meiotic material for SP-PCR. If parental lines differing in drug resistance 

were available (similar to those used by Gibson and Whittington, [1993], double drug 

resistant hybrid progeny could be selected for and so provide large numbers of pure hybrid 

material which could be analysed for mutations by SP-PCR and to isolate more meiotic 

mutants for comparison with mitotic mutants. By using allele-specific primers in the 

flanking DNA it should also be possible to detect mutation events which involved the 

exchange of flanking markers i.e. products of recombination. The analysis of crossovers 

on chromosome 1 has indicated a possible high rate of recombination near the MS42 

locus, albeit by analysis of a very small number of progeny and crossovers. It would be 

interesting to investigate this possible recombination 'hot spot', by analysing more 

progeny clones using further markers on chromosome 1. A search for additional 

polymorphic microsatellite markers is currently underway. 

If SP-PCR analysis of pure hybrid material were available, the T. brucei MS42 

minisatellite would be a model for studying mini satellite biology, as it would be possible 

to study the effects of cis acting elements, currently believed to modulate mutation events 

in human mini- and microsatellites [Monckton et al., 1994; Brock et al., 1999], by 

deleting the regions of DNA flanking the repeats and thus provide a test not readily 

available in other organisms. 

The function of the highly polymorphic minisatellites identified in T. brucei is still 

unknown. CRAM is believed to be a cell surface receptor localised to the flagellar pocket 

which is abundantly expressed in procyclics and at very low levels in bloodstream 

trypanosomes [Lee et al., 1990]. The 292 gene is expressed at higher levels in 

bloodstream trypanosomes than in procyclics and is believed to encode a membrane 

associated protein with unknown function [Lee et al., 1994]. Other proteins containing 

repeats have been found in memb~ane associated proteins of T. brucei, for example, the 

major surface protein, PARP [Mowatt and Clayton, 1988] and a microtubule-associated 

protein [Schneider et al., 1988]. Membrane associated proteins of other parasitic protozoa 

have also been shown to contain tandem repeats, for example, the surface antigens of the 

T. cruzi [Macina et al., 1989] and P.falciparum [Kemp et al., 1987]. 

It is unclear, at present, if the MS42 gene product is also located on the cell surface and 

what its function is. It would be interesting to characterize this protein, by knocking out 

the gene to determine if the gene product is essential and, by using specific antibodies, to 

determine its sub-cellular localisation. 
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The population studies presented in Chapter 8 have indicated that one MS42 allele (allele 

34) is associated with human serum resistance. It should be possible to transfect this 

unusual allele into a human serum sensitive strain to investigate if the allele is in some 

way involved in human serum resistance or if it is merely a marker for this phenotype. 

Analysis of laboratory crosses. Having developed a highly informative genotyping 

system, the products of genetic crosses could then be analysed in order to dissect the 

process of mating in T. brucei (Chapter 5). The specific questions which were addressed 

in this chapter were: 

1) At what life cycle stage does genetic exchange take place? 

2) Does sexual recombination follow Mendel's laws of allele segregation at a locus and 

independent assortment of alleles at unlinked loci? 

3) How common is triploidy? 

4) Does pre-amplification in laboratory rodents select for/against hybrid trypanosomes? 

5) Does the proportion of selfers, hybrids and parentals alter over time? 

6) Does self-fertilisation occur only in the context of cross-fertilization? 

7) What is the mechanism of genetic exchange? 

8) What is the level of recombination between homologous chromosomes? 

The approach taken to identify the life cycle stage at which mating takes place, was to 

genotype single trypanosomes from the relevant life cycle stages where mating could 

occur. To this end a genotyping system based on microsatellites was developed which 

could genotype single cells (Chapter 4). Using this technique it was possible to amplify a 

locus in 71 % of single cells. To improve the utility of this method, it will be necessary to 

extent this analysis to several loci from a single trypanosome (multiplexing). Using this 

technique to analysis several loci from large numbers of cells (and controls) it should be 

possible to identify parentals, hybrids and tetraploid or haploid cells from the different life 

cycle stages within the tsetse fly. However, the main limitation was the fact that no tsetse 

flies with mixed salivary gland inf~ctions were available for dissection and analysis, and 

so this question remains unanswered. 

To address the other questions, previously isolated progeny clones were analysed as well 

as new clones from previous crosses, increasing the total number of clones derived from 

crosses to 156, 81 of which were hybrid clones with 53 of these arising from unique 

events. Examination of these clones revealed some interesting features of T. brucei genetic 

exchange: 
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1) The minisatellite alleles, in the main, follow the laws of Mendelian inheritance in that 

they segregate in the progeny in broad agreement with Mendelian ratios and appear to be 

inherited independently. 

2) The vast majority of hybrid clones are the equivalent of Fl hybrids, with only 2-6% 

being triploid, in marked contrast to the results of Gibson, who found that 66% of progeny 

clones were triploid [Gibson and Bailey, 1994]. It is possible that the extent of triploidy 

may be due to the different stocks involved in the different crosses. It would therefore be 

useful to study different crosses to investigate the 'normal' level of triploidy. The triploids 

identified in this analysis all involve extra copies of the T. b. rhodesiense stock STIB 386 

chromosomes, with no triploids being identified from STm 247 x TREU 927/4 crosses. 

The stock STm 386 is quite different from the other two parental clones, in that it is a 

West African T. b. gambiense type 2 (Le. a West African T. b. rhodesiense) whereas STm 

247 and TREU 927/4 are both from East Africa. The triploid clones identified by Gibson 

et al., (1994) were also from a cross between an East African T. b. rhodesiense and a West 

African T. b. brucei stock, and all harboured extra chromosomes from the T. b. 

rhodesiense parental clone. Could this mean that T. b. rhodesiense is losing its ability to 

undergo meiosis? Another possibility is that a chemical signal which stimulates meiosis is 

not effectively received by the T. b. rhodesiense stock, perhaps because the parental stocks 

have diverged from each other. To test if the inability to undergo meiosis readily is an 

intrinsic property of T. b. rhodesiense it would be necessary to cross an East African T. b. 

rhodesiense stock with an East African T. b. brucei stock. 

3) A new class of hybrids has been identified, trisomics. These clones appear to have 

inherited three copies of at least one chromosome but not other chromosomes. In this 

analysis, which was based on 4 markers on different chromosomes, 13% of Fl hybrid 

clones appeared to be trisomic for one of the markers. Assuming that each trisomy event is 

independent, it is possible to extrapolate that approximately 36% of hybrid clones are 

trisomic for a chromosome and q% are trisomic for two chromosomes. The majority 

(6n) of trisomies were for chromosome 1 and inherited the extra chromosome from STm 

386, suggesting that non-disjunction is common for STm 386 for chromosome 1. Non

disjunction occurs frequently for chromosomes which have failed to undergo 

recombination and a failure of chromosomes to cross over is often due to a lack of 

homology [Koehler et al., 1996]. It is interesting to note that the chromosome I 

homologues of STIB 386 are very different in size [Melville et al., 1998] and MVR 

analysis of the MS42 alleles in these homologues indicate that the alleles are different (one 

allele has variant repeats so distinct as to render MVR analysis with the current primers 
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impossible, data not shown). It is possible therefore that trisomy may be an aberrant 

product of meiosis due to sequence divergence of STIB 386 homologues. Moreover, 

analysis of crossing over on chromosome IV has revealed that STIB 386 has a lower 

frequency of recombination than TREU 927/4 [M. Hope, personal communication], 

although no such difference was detected for chromosome I. 

One hybrid clone, which could be trisomic for chromosome 1, has a new length allele for 

the mini satellite MS42, indicating that either some form of DNA rearrangement has 

occurred and is associated with trisomy of that chromosome or a gene duplication event 

has resulted in a novel allele and so gives the clone three alleles and thus the appearance 

of trisomy. 

4) A comparison of bloodstream and metacyclic clones derived from the same fly has 

revealed that the amplification of trypanosomes in mice favours the growth of hybrid 

genotypes (from one cross), indicating that selection can occur during growth in 

laboratory rodents and that the direct genotyping of trypanosomes from tsetse flies would 

be the best approach to assessing the parasite genotypes present in the salivary glands. 

5) Examination of the frequency of crossing over on chromosome 1 using the minisatellite 

MS42 and 2 microsatellites, gives genetic distance estimates ranging between 4.9kb/cM 

and 25 kb/cM, which is in the same order of magnitude as that from P. Jalciparum (15-

30kb/cM) with an equivalent genome size [Walker-Jonah et al., 1992]. This gives a crude 

estimate of the T. brucei recombination rate in the order of 6.7 x 10-4 Morgans/kb 

approximately 67 times higher than humans (1 x lO-s) [Chakravarti et al., 1984]. This high 

recombination rate may compensate for the non-obligatory nature of sexual recombination 

in T. brucei. 

The three crosses which have been analysed in this study have been between stocks 

isolated from different geographical areas (Tanzania, Ivory Coast and Kenya) and, given 

the fact that sub-structuring in the T. brucei population due to geographical barriers has 

been demonstrated (Chapter 7), it would be unlikely that these strains would have come 

into contact with each other naturally. Perhaps a better strategy would have been to cross 

strains isolated from the same area at the same time, possibly generating fewer aberrant 

products. The three stocks in these crosses have different levels of human serum resistance 

(STm 247 is sensitive, TREU 927/4 has intermediate resistance and STm 386 is resistant) 

and analysis of the progeny from these crosses has been used in the study of the 

inheritance of human serum resistance [Lindergard, 1999]. However. if the hypothesis 

derived from the population studies suggesting that human infectivity arose independently 

in different geographical areas is correct, then the genetic component for human serum 
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resistance in the three stocks may be unrelated, and thus it may be unwise to pool data 

from all three crosses. The examination of a cross between a human infective and a non

human infective stock from the same area, for example Busoga. may be able to address 

the question of the inheritance of human infectivity. Progeny from a cross between a 

resistant stock carrying the unusual MS42 allele (allele 34) which is associated with 

human infectivity, and a sensitive stock, could be analysed for human serum resistance 

and each minisatellite marker. In this way the association between human serum 

resistance and the MS42 allele 34 could be examined. 

Models of genetic exchange. A number of models of genetic exchange in T. brucei 

have been proposed since sexual reproduction was first demonstrated in the laboratory in 

1986. The first model proposed by Paindavoine et al. in 1986 suggested that genetic 

exchange involved fusion of diploid cells followed by random elimination of DNA to 

return to a diploid state. This model attempts to explain the elevated DNA content found 

in some hybrids, but would predict non-Mendelian allele segregation, which has not been 

observed. Since this model does not fit the data presented in Chapter 5 nor the data from 

published analysis [Tait et al., 1988; Sternberg et al., 1989; Turner et al., 1990; Gibson et 

al., 1995], it can be disregarded. The observed segregation and independent assortment of 

alleles in T. brucei provides strong evidence that genetic exchange involves meiosis and 

syngamy. The majority of markers used in the analysis of crosses appear to be inherited in 

a Mendelian fashion and the observed ratios of hybrid genotypes is in general agreement 

with those predicted for a Mendelian system. 

The inheritance of the kinetoplast is biparental for the minicircles [Gibson and Garside, 

1990], but initial data [Sternberg et al .• 1989] presented for the maxicircles suggested that 

these were inherited uniparentally. However a more extensive analysis [Turner et al .• 

1995] has indicated that maxicircles are also inherited biparentally but due to random 

segregation during post meiotic replication. fixation for one type of maxicircle rapidly 

occurs during the course of vegetative amplification of progeny clones. 

Three basic models have been suggested based on meiosis and fusion and are discussed in 

turn. Sternberg and Tait. [1990] suggested two models: fusion after meiosis and fusion 

before meiosis. and Gibson et al., (1995) proposed a second fusion before meiosis model. 

The first of these models (outlined in Figure 9.1) predicts that haploid gametes are 

produced (Figure 9.1A). Three types of haploid gametes could possibly be produced. If 

the divisions of nuclear DNA and kDNA are linked then haploid gametes with half the 

normal kONA content would be produced. Alternatively the nuclear DNA could divide 
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without kDNA division so that half the gametes could have the normal kDNA content and 

half have no kDNA at all. 

The fusion of haploid gametes which have half the normal kDNA content (In O.5k) will 

produce a diploid hybrid cell which has the normal kDNA content, (2n lk) with the kDNA 

being biparentally inherited (Figure 9.1B). Alternatively, an akinetoplastic haploid cell 

and a kinetoplastic cell could fuse which would result in diploid cells with only one 

kinetoplast. However this model would predict that kDNA is uniparentally inherited. If 

only akinetoplastic and kinetoplastic cells could fuse then no mixed kDNA could arise. 

This does not fit the current data as hybrid trypanosomes with mixed kDNA have been 

observed [Turner et al., 1995]. It is possible that some akinetoplastic and kinetoplastic 

cells could fuse, but also two kinetoplastic gametes could fuse, which would result in 

some hybrid cells containing mixed kDNA. Fusion of these haploid gametes is illustrated 

in Figure 9.1C, where the nuclei fuse as well as the kinetoplasts generating a 2n 2k cell. 

This cell may undergo division of kDNA without any nuclear division to produce a 2n lk 

normal diploid cell, or the cell could undergo mitosis to produce two hybrid cells 

containing a 2n nuclear DNA content and double the normal kDNA content (2n 2k), 

which is then followed by gradual kDNA loss. Alternatively the fused cell undergoes 

mitosis to produce two diploid cells with normal kDNA content and two zoids which 

contain kDNA and no nuclei. 

The prediction from the meiosis followed by fusion model (all variants) would be that the 

products of self-fertilisation would have kDNA derived from the same parent as the 

nuclear DNA, which could provide a test for this model if sufficient numbers of selfers 

can be generated. 

Two variations of the second model of fusion before meiosis are presented in Figure 9.2 A 

and B. In the first, diploid cells fuse to produce a 4N 2k cell, which undergoes meiosis 

producing a cell with 8 nuclei and 4 kinetoplasts. The nuclei fuse in pairs generating 

hybrid nuclei and 'selfer' nuclei. ~ell division results in hybrid and selfer cells some of 

which could have mixed kDNA (Figure 9.2A). Alternatively (Figure 9.2B) the 4N cell 

could undergo meiosis without DNA synthesis. Cell division would result in hybrid cells 

with mixed kDNA, and parental cells also with mixed kDNA (Figure 9.2B). However no 

selfers would be produced by this model. Selfers could only be generated by the fusion of 

two identical diploid cells and so would have kDNA only from that parental stock. 

Another model, by Gibson et al. (1995) (outlined in Figure 9.2C), proposes the fusion of 

diploid parental cells, including the fusion of the kinetoplasts. The cell then undergoes 

meiosis to produce a multinucleate cell in which all but two of the haploid nuclei 
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Figure 9.1. Meiosis followed by fusion model of genetic exchange in T. brucei (A) 
Meiosis generating haploid gametes . (B and C) Fusion of haploid gametes to produce 
hybrids . 
Parent A nuclei in yellow parent B niH.lei in blue . Hybrid nuclei in green . 
Parent A kDNA in red, parent B kDNA in white . Mixed kDNA in pink. 
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Figure 9.2. Fusion followed by meiosis model of genetic exchange in 1: brucei (A) 
Diploid cells fuse, followed by meiosis to produce hybrids, parentals and selfers. (B) 
Diploid cells fuse, folJowed by meiosis without DNA synthesis to produce hybrids and 
parentals. (C) Model proposed by w.e. Gibson, taken from Gibson et al., 1995. 
Parent A nuclei in yellow, parent B nuclei in blue. Hybrid nuclei in green. 
Parent A kinetoplast in red, parent B kinetoplast in white. Mixed kinetoplast in pink. 
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disintegrate. The remaining nuclei fuse, resulting in a diploid cell with mixed kDNA. It is 

not clear from the proposed model if kDNA duplication accompanies nuclear division. If 

it does, what then happens to the extra copies of the kDNA? It is possible that the problem 

of extra kDNA may be resolved by the production of zoids or kDNA loss. Selfers could 

arise by the fusion of nuclei from one parent, and could result in selfers with mixed 

kDNA. Also triploids could arise if the nuclei of one parent failed to undergo meiosis and 

diploid and haploid nuclei fused. 

To summarise, models involving meiosis followed by fusion would predict all selfers and 

parental clones to have kDNA originating from the one parental stock. Models involving 

fusion of diploid cells followed by meiosis, could generate selfers and parental clones with 

mixed kDNA (summarised in Table 9.1). 

Predicted products of each model of genetic exchange 

Possible products Meiosis followed Fusion followed by meiosis 

by fusion 

(all variants) A B C 

Hybrids mixed kDNA Yes Yes Yes Yes 

Selfers mixed kDNA No Yes No Yes 

Selfers not mixed kDNA Yes Yes Yes Yes 

Parentals mixed kDNA No No Yes No 

Parentals not mixed kDNA Yes Yes Yes Yes 

Table 9.1. Predicted products of genetic exchange under different 

models. 

One trypanosome clone derived from a genetic cross has been reported which is identical 

to one parental clone for the nuclear markers used, but which has kDNA from the other 

parent [Gibs on, 1989]. This interesting result is suggestive of a fusion followed by meiosis 

model. However this has only been observed in one clone as few parental clones have 

been analysed for kDNA. Currently analysis of the kDNA (both minicircles and 

maxicircles) for all the selfers and parental clones derived from the three crosses is 

underway. The results are likely to provide data which could discriminate between the 

haploid gamete and cell fusion models. 
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Analysis of field isolates. 

Mixed T. brucei infections in tsetse flies. The fact that sexual recombination can 

occur between different T. brucei stocks is beyond doubt. However, the extent to which 

genetic exchange occurs in natural populations is still highly controversial. One of the 

main arguments against a high frequency of genetic exchange has been the apparent lack 

of mixtures of different T. brucei infections in tsetse flies, a prerequisite for genetic 

exchange to occur. 

Examination of uncloned trypanosomes isolated from the salivary glands of tsetse flies 

using the three minisatellite markers revealed that 36% of those samples from Lugala and 

47% from Kiboko (both in Kenya) were of mixed genotype (Chapter 6), indicating that a 

significant proportion of tsetse flies harbour more than one genotype of T. brucei and so 

the conditions for genetic exchange are met frequently. 

This was established unequivocally for two isolates by generating a series of cloned 

trypanosome lines from each and determining the genotype of each clone. One isolate 

contained 7 different genotypes with a high proportion of the possible combinations of 

alleles at each locus, suggesting that the high level of variation resulted from sexual 

recombination in this fly. If samples from this fly's midgut were available, the 

trypanosomes present in the midgut could have been compared to those in the salivary 

glands, which would have revealed whether or not the genotypes present in the salivary 

glands were recombinant. Unfortunately, midgut samples were not available. 

The high rate of mixed T. brucei infections indicate the possibility of frequent genetic 

exchange in the field. One interesting question which has emerged from these results is 

how do tsetse flies acquire multiple genotypes of trypanosomes? Evidence from Welburn 

[Welbum and Maudlin, 1992] indicates that tsetse flies are more likely to be infected by 

trypanosomes during their first feed, the incidence of infection being markedly reduced 

thereafter. The results obtained here imply that the tsetse flies fed on mixed-infected hosts, 

but the incidence of mixed infections in human and other mammals is low (-3% for 

humans and 2% for a range of different mammals)[Godfrey et al., 1990], although less 

informative markers were used to obtain these estimates. Because the tsetse samples were 

collected in 1969 from regions where there was abundant game, it is possible that game 

may have harboured mixed-infections, however no isolates from game were collected 

from this area at that time. Game have been suggested as a reservoir of a wide variety of 

different trypanosome genotypes [Mihok et al., 1990], however, the depletion of game in 

East Africa has probably altered the feeding behaviour of tsetse flies with humans and 

cattle becoming frequent hosts. Since a more limited repertoire of trypanosome genotypes 
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is capable of infecting humans (and perhaps cattle), the diversity of trypanosomes and the 

number of mixed T. brucei infections in tsetse flies may be lower in areas where game is 

scarce. An alternative explanation is that in the field tsetse acquire infections from more 

than one host. To investigate this further, isolates from all possible hosts need to be 

collected and analysed directly using peR amplification of hypervariable minisatellites. 

This approach would avoid the need to grow the samples in the laboratory and so avoid 

any selection. 

The frequency of tsetse fly infections is approximately 0.1-1 % [Welburn and Maudlin, 

1997] and so if the ability of a tsetse fly to acquire an infection is independent of it 

acquiring a second infection, the predicted frequency of mixed infections is extremely low 

(0.01-0.0001 %). Evidence from studies on T. congolense, which has a higher frequency of 

infection, -3%, and so many more samples available for analysis, suggest that there is a 

decline in the rate of infection of tsetse flies with fly age and that there are resistant flies in 

the population [Woolhouse and Hargrove, 1998]. Although this work has not been 

extended to T. brucei, there is evidence from laboratory studies that the infection rates for 

non-teneral flies is reduced relative to teneral and that the presence of rickettsia-like 

organisms (RLOs) in the tsetse midgut alters the ability of flies to acquire infections 

[Welburn and Maudlin, 1997]. It is possible that the presence of RLOs in the midguts of 

wild tsetse flies, may cause a proportion of the tsetse fly population to become susceptible 

to T. brucei infections. It would be interesting to examine wild tsetse flies for the presence 

of RLOs to investigate if there is a correlation between mixed infections and the presence 

of RLOs, however this type of study would require very large numbers of tsetse samples. 

T. brucei population structure. Although the conditions for genetic exchange are 

met, i.e. a significant number of tsetse infections are mixed, it is still unclear as to what 

extent genetic exchange occurs in the field. Three types of population structures have been 

proposed for T. brucei based on the extent of sexual recombination in the population: 

clonal (little genetic exchange), epidemic (some genetic exchange masked by clonal 

expansion of some strains) or panmictic (randomly mating). 

Tibayrenc, who proposed the theory of clonality for a number of parasitic protozoa, 

including T. brucei, provided evidence from isoenzyme data for linkage disequilibrium 

[Tibayrenc et al., 1990; Tibayrenc et al., 1991]. However, there are several reasons, other 

than clonality, why a population may demonstrate linkage disequilibrium. A population 

with a mixture of different sub-populations (populations or species) each of which may be 

randomly mating or the existence of a popUlation bottleneck could all result in linkage 

disequilibrium. Self-fertilization could also result in linkage disequilibrium, For example, 
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linkage disequilibrium for isoenzyme markers [Tibayrenc et al., 1990] has been 

demonstrated for small numbers of samples of the malaria parasite P. falciparum, which 

has an obligatory sexual cycle in the mosquito vector [Walliker et al., 1987]. This may be 

due to the high incidence of self-fertilization (resulting in parasites that are identical to the 

parental type). although a number of other studies have found no significant linkage 

disequilibrium [for example, Conway and McBride, 1991]. Analysis of oocysts isolated 

from mosquitoes in Papua New Guinea have shown that although self-fertilization may be 

common, revealed by an excess of homozygotes when compared to HW expectations, 

linkage disequilibrium is absent, suggesting that there is sufficient outbreeding to disrupt 

any linkage disequilibria [Paul et al., 1995]. Since the mosquito vector acquires mixed 

infections from feeding on mixed-infected humans, the extent of self-fertilization is 

dependent on the number of mixed infected people and the number of different clones 

present in the human host, which varies according to the transmission intensity of the 

region. In regions of low transmission intensity self-fertilization is more common than in 

areas of high transmission intensity [Paul et al., 1995]. 

Evidence for clonality in T. cruzi is more convincing with a few different genotypes being 

repeatedly sampled from a number of different countries [Tibayrenc et al., 1986]. For T. 

brucei, some studies supporting the theory of clonality have been reported, for example 

Mihok analysed a large number of samples from Kenya and found deviation from Hardy 

Weinberg (HW) [Mihok et al., 1990]. The clonal theory for the population structure of T. 

brucei, in which little sexual recombination is occurring, is diagrammatically represented 

in Figure 9.3A where a dendrogram of genotype similarity would resemble an 

evolutionary tree. Another population structure has been proposed in which sexual 

recombination is occurring but only between isolates from within the same lineage Figure 

9.3B. This population structure should be revealed by analysing samples from a sympatric 

population and using polymorphic markers. Analysis with markers which are not very 

polymorphic could group sample~ into lineages, although this does not mean they are 

clonal lineages. Furthermore, if samples are combined from several different lineages, 

linkage disequilibrium would be observed. 

The epidemic population structure proposed by Maynard-Smith is represented in Figure 

9.3C, whereby one or two successful genotypes clonally expand, overshadowing the 

sexual nature of the underlying population. 

In order to investigate the population structure of T. brucei and to investigate the 

relationship between T. b. brucei and T. b. rhodesiense, 116 field samples from 5 different 
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Figure 9.3. Representations of population structures from Maynard
Smith et al. (1993). 
(A) A clonal population structure. No recombination occurs between isolates in the 
same or different lineages. 
(B) Recombination occurs between isolates in the same lineage but not between isolates 
from different lineages. Therefore the structure within the branches is net-like, as 
represented by the expanded section of one of the branches. 
(C). An epidemic population structure. There is frequent recombination between all 
members of the popUlation, giving a net-like structure, but occasionally a 'successful' 
individual arises and increases rapidly to produce an epidemic clone. 
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geographical regions were analysed using hypervariable minisatellite markers (Chapter 7 

and 8). The specific questions which were addressed were: 

1) Are T. b. brucei populations panmictic, epidemic or clonal and do T. b. rhodesiense 

populations have the same structure? 

2) Is there sub-structuring in T. brucei populations due to geographical barriers and host 

specificities? 

3) Is it possible to differentiate between T. b. rhodesiense and T. b. brucei using a highly 

informative typing system? Are T. b. rhodesiense and T. b. brucei different sub-species? 

4) Did human infectivity arise independently in different areas or do T. b. rhodesiense 

stocks constitute a monophyletic group? 

6) Is it possible to track strains through populations? 

The main conclusions from this analysis are presented and discussed below. 

T. brucei has an epidemic population structure, whereby the underlying sexual nature of 

the population was obscured by the clonal expansion of one or two genotypes. The 

clonally expanded strains are associated with human infectivity, and appear to be highly 

related. This suggests that T. b. rhodesiense may have a clonal population structure and/or 

that T. b. rhodesiense stocks are restricted to sexual recombination within the T. b. 

rhodesiense lineage (resulting in homozygotes, which have been observed). The T. b. 

brucei stocks appear to be panmictic within the T. b. brucei lineage, with little sexual 

recombination between T. b. rhodesiense and T. b. brucei stocks in the Busoga focus (data 

is not available for other foci). Therefore it would appear that there is a different 

population structure for T. b. rhodesiense and T. b. brucei populations and by combining 

data from both populations and treating them as a single population an epidemic 

population structure emerges. These conclusions support the findings of Hide et al., 

(1994). The. results may explain the conclusions of clonal or epidemic population 

structures presented by other researchers as the majority of samples in most studies are 

from humans and are combined with some isolates from animals [Maynard-Smith et al .• 

1993; Stevens and Wellburn, 1993; Truc and Tibayrenc, 1993], whereas the evidence for 

frequent mating was derived from samples isolated from tsetse flies, which are likely to 

harbour more T. b. brucei than T. b. rhodesiense stocks [Tait, 1980]. 

The limited genetic exchange between T. b. rhodesiense and T. b. brucei could arise 

during an epidemic as T. b. rhodesiense stocks may be co-transmitted frequently due to a 

predominant fly-human-fly cycle. In fact, the fly-host cycle has received limited attention 

in the debate about the population structure of T. brucei yet it would seem to be a key 

factor. An alternative explanation could be that T. b. rhodesiense and T. b. brucei are 
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becoming reproductively isolated due to a biological barrier to mating. Some evidence 

from laboratory experiments indicates that successful crosses between T. b. rhodesiense 

stocks and T. b. brucei stocks are the most difficult to obtain and there is a high incidence 

of trisomy and triploidy involved in such crosses [Chapter 5 and Gibson et al., 1994], 

perhaps pointing to a partial genetic incompatibility between the two sub-species or a 

reduction in the ability of T. b. rhodesiense to undergo meiosis. 

T. b. rhodesiense samples from Zambia and Uganda were quite distinct suggesting that T. 

b. rhodesiense is not a monophyletic group i.e. that T. b. rhodesiense stocks from Zambia 

and Uganda have not arisen from a single common ancestor which spread through East 

Africa, but that human infectivity arose independently in different lineages more than 

once. This poses a number of questions: how frequently does human infectivity arise, has 

human infectivity arisen independently in each focus and is the mechanism for human 

infectivity the same in each population? It is possible that the mechanisms for human 

infectivity in the Zambian population are different from those in Uganda as the nature of 

the disease is different in these countries (acute in Uganda and low virulence in Zambia 

[Hide, 1999]). These issues are of fundamental importance as human infectivity is the 

focus of much research. However, if trypanosomes in each focus have a different 

mechanism of human infectivity then samples from different foci must be examined. One 

mechanism of human infectivity was shown to involve the serum resistance-associated 

gene (SRA), which, when transfected into a T. b. brucei strain, can confer human serum 

resistance [Van Xong et al., 1998]. However this is probably only one of several 

mechanisms of resistance as the SRA gene has been shown not to be expressed in at least 

two human infective strains of different geographical origins [Lindergard, 1999]. There 

remains another fundamental question to be addressed: once human infectivity has arisen 

in a lineage can this trait be spread to non-human infective samples by genetic exchange? 

From the data presented here, this is unlikely in the Busoga focus, but may not hold true in 

other foci. 

Human infective genotypes have existed in the same focus for some time. Evidence from 

Busoga suggests that the same human infective genotype has been circulating in that area 

for many years, suggests that epidemics are caused by an upsurge in the numbers of pre

existing human infective stocks and are not caused by new genotypes. Genotypes which 

are associated with human infectivity have been observed in an area where no sleeping 

sickness has been reported (Kiboko), suggesting that human infective stocks are 

circulating in the area possibly posing a threat to humans in that area. It would be 

important to test each of these samples which have been identified as possible human 
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infective isolates, for human serum resistance using the blood incubation infectivity test 

(BlIT) to verify that minisatellite analysis can identify human infective trypanosomes in a 

population. 

It is possible to distinguish T. b. rhodesiense from T. b. brucei for the Busoga population 

using the highly informative markers and in particular MVR-PCR of the minisatellite 

MS42. Since there are an average of 30 repeats in an allele and each one can be one of 

three types; a, g or n, approximately 330 different alleles could be distinguished (if they 

existed) using this method. Therefore alleles that are identical are likely to be so because 

they are related. Using this system it was possible to identify aT. b. rhodesiense genotype 

for the Ugandan and Kenyan foci, however, a separate genotype is prevalent for the 

Zambian focus. Using this marker system it may be possible to identify the major human 

infective genotype for each focus and to use this to track the spread of individual foci. A 

similar MVR-PCR typing system has been developed for P. falciparum, although only a 

few samples have been analysed in this way [Amot et al., 1993]. The more popular typing 

system in P. falciparum is based on minisatellite sequences within the merozoite surface 

antigens mspJ and msp2 [Felger et al., 1999]. 

From the results presented substantial population sub-structuring was observed, not only 

due to host specificities (humans in particular), but also due to geography, with few alleles 

being shared between populations from different geographical areas. For this reason, 

studies into the population structure of T. brucei in which samples are combined from 

different geographical areas [Tibayrenc et al., 1990] are flawed. 

The analysis of population samples presented here is based on a small number of isolates 

from five populations. Although some useful information can be obtained from such 

analyses, a more rigorous sampling strategy must be employed in order to obtain a full 

resolution to the questions posed. A large collection of samples needs to be obtained from 

a range of hosts and vectors from the same area at the same time and the same types of 

samples from different foci and endemic regions. In this way it should be possible to 

identify how many times human infectivity has arisen. It is clear that Ugandan and 

Zambian samples are distinct, is this also true of other areas such as Tanzania or West 

African T. b. rhodesiense? Evidence from a number of markers used to investigate a 

Tanzanian focus suggest that this focus is distinct from the Ugandan and Zambian foci and 

may have acquired human infectivity independently [Komba et al., 1997]. 

In order to understand fully the factors involved in natural T. brucei populations 

information on the feeding preferences of tsetse flies for each focus would be valuable. 
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Chapter 9 Discussion 

From such analysis it should be possible to determine which are the major reservoir hosts 

for human infective trypanosomes for each focus and whether strategies such as treating 

cattle for the disease to prevent the spread of human trypanosomiasis are viable. Since 

new strains are probably not the cause of new epidemics, other reasons for outbreaks need 

to be investigated, for example increases in fly numbers, or closer contact between tsetse 

and humans. In such analyses it should be possible to identify the most important factors 

in each focus. 

In conclusion, the work presented here illustrates how mini- and microsatellites can be 

used to investigate questions regarding the basic biology of trypanosomes, which could be 

applied to other parasitic protozoa. Coupled with the sensitivity of PCR, minisatellite 

analysis can be used to genotype individual trypanosomes; distinguish hybrids and selfers 

from parental stocks; identify field isolates that are of mixed genotype; allow the 

identification and tracking of individual strains in populations and can provide insights 

into the evolution of these parasites. With adequate sampling, these markers can reveal the 

answers some of the many fundamental questions facing parasitologists today. 
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Appendix 

Table A1.A STm 247 x TREU 927/4 

Clones GUP Lysate Markers Comments 
no. no. CRAM 292 MS42 JS2 

Reference 247 1-1 5-5 5-5 5-6 
Reference 927/4 3-4 3-4 3-4 3-4 
F124/28 bsel Al 68 1-3 3-5 3-5 3-5 Hybrid 
F124/28 bsel B3 73 1-4 3-5 4-5 4-6 Hybrid 
F124/28 bscl A6 72 1-3-4 3-4-5 3-4-5 nd Mix or 

trip) id 
F124/28 bsel C5 71 1-4 3-5 4-5 4-6 Hybrid 
F532/53 mcl 1 3114 107 1-3 3-5 3-4-6 4-5 Hybrid- mix 

r trio mic 
F532/63 bsel 2 80 1-4 3-5 3-5 3-6 Hybrid 
F532/63 bscl 3 78 1-4 4-5 4-5 4-5 Hybrid 
F532/63 bsel 5 81 1-3 3-5 4-5 3-6 Hybrid 
F532/63 bsel 7 79 1-4 4-5 4-5 3-6 Hybrid 
F532/63 bsel 8 82 1-4 4-5 4-5 3-5 Hybrid 
F532172 mel 1 3128,4391 84 1-4 4-5 3-5 3-5 Hybrid 
F532172 mel 2 3129 85 1-4 4-5 3-5 4-5 Hybrid 
F532172 mcl 3 3130 86 1-4 4-5 4-5 4-5 Hybrid 
F532172 mel 4 3131 87 1-4 4-5 3-5 3-5 Hybrid 
F532172 mel 5 3132, 4392 88 1-4 4-5 4-5 3-5 Hybrid 
F532172 mel 6 3133,439389 1-3 3-5 3-5 4-5 Hybrid 
F532172 mel 7 3134 90 1-4 4-5 4-5 4-6 Hybrid 
F532172 mel 9 3136,436692 1-4 4-5 4-5 3-6 Hybrid 
F532172 mcl 10 3135,436091 1-4 3-5 4-5 4-5 Hybrid 
F974170 mel4 3086 77 1-4 3-5 4-5 3-5 Hybrid 
F124/28 bsel Bl 69 3-4 3-4 3-4 nd Parental. 
F 124/28 bsel C3 75 3-4 3-4 3-4 nd Parental 
F 124/28 bsel C2 70 3-4 3-4 3-4 nd Parental 
F974170 mell 3083 93 1-1 5-5 5-5 5-6 Parental 
F974170 mcl 2 3084 94 1-1 5-5 5-5 5-6 Parental 
F974170 mel 3 3085 95 1-1 5-5 5-5 5-6 Parental 
F974170 mel 6 3088 96 3-4 3-4 3-4 3-4 Parental 
F974170 mcl 7 3089 97 3-4 3-4 3-4 3-4 Parental 
F974170 mcl 8 3090 98 1-1 5-5 5-5 5-6 Parental 
F974178 mell 3092 99 3-4 3-4 3-4 3-4 Parental 
F974178 mel2 3093 100 1-1 5-5 5-5 5-6 Parental 
F974178 mel3 3094 101 1-1 5-5 5-5 5-5 Selfer 
F974178 mel 4 3095 102 3-4 3-4 3-4 3-4 Parental 
F974178 mel6 3096 105 1-1 5-5 5-5 5-6 Parental 
F974178 mcl 7 3097 106 1-1 5-5 5-5 5-6 Parental 
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Table Al.B STffi 386 x TREU 927 14 
Clones GUP Lysate Markers Comments 

DO. DO. CRAM 292 MS42 ]S2 
Reference 386 1-2 1-2 1-2 1-2 
Reference 927/4 3-4 3-4 3-4 3-4 
F296/44 bscl1 3199 2 2-3 2-3 1-3 1-3 Hybrid 
F290/44 DScl 2 3200,4261 3 1-2-3 1-2-4 1-2-3 1-2-3 TriHloid 
F296/44 bscl 3 3201 6 1-3 1-3 1-3 1-4 Hybrid 
F296/44 bscl4 3204 5 1-4 1-4 1-4 1-3 Hybrid 
F296/44 bscl 7 3202 4 1-2-3 1-2-4 1-2-3 1-2-3 Tri loid 
F296/44 bscl 8 3205 7 1-4 1-4 1-4 1-3 Hybrid 
F296/44 bscl 9 3206 8 1-4 1-4 1-4 1-3 Hybrid 
F296/44 bscl 12 3211 9 1-3 2-3 1-2-4 2-3 Hybrid- mix 

or tri somic 
F296/44 bscl 13 3209 10 1-4 1-4 1-4 1-3 Hybrid 
F296/56 mcl 6 3215 1 2-3 2-3 1-3 1-3 Hybrid 
F296/39 bscl 2 1-3 1-3 1-3 1-4 Hy rid 
F296/39 bscl 5 1-3 1-3 1-3 1-4 Hybrid 
F296/39 bscl 6 1-4 1-4 1-4 1-3 Hybrid 
F296/39 bscl 7 1-4 2-3 1-3 2-3 Hybrid 
F296/39 bscl 9 1-4 2-3 1-3 2-3 Hybrid 
F296/39 bscl12 1-3 1-3 1-3 1-4 Hybrid 
F296/39 bscl 15/1 1-4 2-3 1-3 2-3 Hybrid 
F296/39 bscl 17 1-3 2-3 1-2-4 2-3 Trisomic 
F296/39 bscl 19 1-3 1-3 1-3 1-4 Hybrid 
F296/39 bscl 27 1-4 1-4 1-4 1-3 Hybrid 
F296/39 bscl 22/1 1-4 1-3 1-3 1-4 Hybrid 
F296/39 bscl 24/1 1-4 2-3 1-3 2-3 Hybrid 
F296/39 bscl47 1-4 1-4 1-4 1-3 Hybrid 
F296/42 bscl 26 1-3 1-3 1-3 1-4 Hybrid 
F296/42 bscl 29 1-3 1-3 1-3 1-4 Hybrid 
F296/42 bscl 41 1-3 1-3 1-3 1-4 Hybrid 
F296/42 bscl 44 1-3 1-3 1-3 1-4 Hybrid 
F296/42 bscl 47 1-3 1-3 1-3 1-4 Hybrid 
F296/42 bscl 48 1-3 1-3 1-3 1-4 Hybrid 
F296/42 bscl 49 1-3 1-3 1-3 1-4 Hybrid 
F296/42 bscl 5 3203 22 3-4 3-4 3-4 3-4 Parental 
F296/42 bscl 6 3210 23 3-4 3-4 3-4 3-4 Parental 
F296/42 bscl 11 3208 24 3-4 3-4 3-4 3-4 Parental 
F296/46 mcl 1 3196 12 3-4 4-4 3-4 3-4 Selfer 
F296/46 mcl 2 3197 13 3-4 3-4 3-4 3-4 Parental 
F296/56 mcl 1 3218 14 3-4 3-4 3-4 3-4 Parental 
F296/56 mcl 2 3219 15 3-4 3-4 3-4 3-4 Parental 
F296/56 mcl 3 3212 16 3-4 3-4 3-4 3-4 Parental 
F296/56 mcl 4 3213 17 3-4 3-4 3-4 3-4 Parental 
F296/56 mcl 5 3214 18 3-4 3-4 3-4 3-4 Parental 
F296/56 mcl 7 3220 19 nd 3-4 3-4 3-4 Parental 
F296/56 mcl 8 3216 20 3-4 3-4 3-4 3-4 Parental 
F296/56 mcl 9 3217 21 3-4 3-4 3-4 nd Parental 
F296/39 bscll 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 4 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 8 nd nd 3-4 3-4 Parental 
F296/39 bscl 10 3-4 3-4 3-4 3-4 Parental 

page 228 



Appendix 

Table A1.B STm 386 x TREU 927 14 continued 
Clones GUP Lysate Markers Comments 

no. no. CRAM 292 MS42 JS2 
F296/39 bsc1 11 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 13 nd 3-4 3-4 3-4 Parental 
F296/39 bsel 14 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc116 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 18 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 32 3-4 3-4 3-4 3-4 Parental 
F296/39 bsel 40 3-4 3-4 3-4 3-4 Parental 
F296/39 bsel 41 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 44 3-4 3-4 3-4 3-4 Parental 
F296/39 bscl 58 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 59 3-4 3-4 3-4 3-4 Parental 
F296/39 bsel 2212 3-4 3-4 3-4 3-4 Parental 
F296/39 bsel 23/3 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 2612 3-4 3-4 3-4 3-4 Parental 
F296/39 bsc1 57 nd nd 3-4 3-4 Parental 

Table AI.C STm 247 x STm 386 
Clones GUP Lysate Markers Comments 

no. no. CRAM 292 MS42 JSi 
Reference 247 1-1 5-5 5-5 5-6 
Reference 386 1-2 1-2 1-2 1-2 
723VI-L 153 nd nd J-2-5 nd Tripl id 
723CAB 154 nd nd 1-2-5 nd Triploid 
F9/34 mell 37 1-1 2-5 1-5 2-5 Hybrid 
F9/45 mc12 3300 30 1-2 1-5 2-5 1-5 Hybrid 
F9/45 mc17 32 1-2 1-5 1-5 1-5 Hybrid 
F9/45 mel9 3290 33 1-1 2-5 1-5 1-6 Hybrid 
F9/4S mell0 3291 34 1-1 2-S 1-5 1-6 Hybrid 
F9/4S melll 3287 35 1-2 1-5 1-5 1-5 Hybrid 
F9/45 mcl12 3288, 3296 36 1-1 2-S 1-2-5 1-5 Trisomic 
F57/50 mc12 167 nd nd 1-2-5 nd Hybrid -mix 

or tri omic 
F492/S0 mc1 12 2843 39 1-2 1-5 1-5 2-6 Hybrid 
F492/50 mc1 13 2856 40 1-1 2-5 1-5 1-6 Hybrid 
F492/50 bsc1 1 1-1 2-5 1-5 2-6 Hybrid 
F492/50 bsc1 2 1-1 I-S I-S 2-6 Hybrid 
F492/50 bsc1 3 1-2 1-5 I-S 2-6 Hybrid 
F492/50 bsc1 4 1-1 2-5 1-5 2-6 Hybrid 
F492/50 bsc1 511 1-2 1-5 1-5 2-6 Hybrid 
F492T50 bscl 6 1-2 1-5 1-2-5 1-5 Tris mic 
F492/50 bsc1 7 1-2 2-5 1-2-5 1-6 Hybrid -mix 

or tri s mi 
F492/50 bsc1 8 1-1 2-S 1-5 1-6 Hybrid 
F492/50 bsc1 9 1-2 1-5 2-5 2-5 Hybrid 
F492/50 bsc1 11 1-2 1-5 1-5 2-5 Hybrid 
F492/50 bscl12 1-1 2-5 2-5 2-5 Hybrid 
F492/50 bscl 13 1-1 2-5 1-5 1-6 Hybrid 
F492/50 bscl 14 1-1 1-2-5 1-5 1-6 Trisomk 
F492/50 bscl IS 1-1 2-5 1-5 1-6 Hybrid 
F492/50 bsel 16 1-2 1-2-5 1-2-5 nd Hybrid -mix 

or triEloid 
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Table A1.C STm 247 x STm 386 continued 
Clones GUP Lysate Markers Comments 

no. no. CRAM 292 MS42 JS2 
Reference 247 1-1 5-5 5-5 5-6 
Reference 386 1-2 1-2 1-2 1-2 
F492/50 bscl 17 1-2 1-5 1-5 2-5 Hybrid 
F492/50 bscl 18 1-2 1-5 1-5 2-6 Hybrid 
F492/50 bscl 19 1-1 2-5 1-5 2-6 Hybrid 
F492/50 bscl 20 1-1 1-5 1-5 2-6 Hybrid 
F492/50 bscl21 1-1 1-5 1-5 2-6 Hybrid 
F492/50 bscl 23 1-2 I-S L-5 2-5 Hybrid 
F492/50 bscl 2511 1-1 2-5 L-5 2-6 Hybrid 
F492/50 bscl 27 1-1 2-S 2-S 2-S Hybrid 
F9/28 mcl3 2846 43 1-1 5-S 5-5 5-6 Parental 
F9/34 mcl2 159 1-1 5-5 S-S S-6 Parental 
F9/4S mcl4 4295 31 1-1 5-5 S-5 5-6 Parental 
F18/50 mcl4 165 nd nd 5-5 nd Parental 
F18/50 mcl8 166 nd nd 5-5 nd Parental 
F19/31 mcl2 160 1-1 5-5 5-5 5-6 Parental 
F19/31 mcl 3 161 1-1 5-5 5-5 5-6 Parental 
F492/S0 mcl 1 2834 46 1-1 5-5 5-5 5-6 Parental 
F492/S0 mcl 4 2838 49 1-1 5-S 5-5 S-6 Parental 
F492/50 mcl 5 2839 50 1-1 5-5 5-5 S-6 Parental 
F492/50 mcl 6 2840 51 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 7 2841 52 1-1 5-5 5-5 5-6 Par ntal 
F492/S0 md 8 2847 56 1-1 5-5 5-5 5-5 Sclfer 
F492/50 mcl 9 2852 57 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 10 2853,431258 1-1 5-5 5-5 5-5 Selfer 
F492/50 mcl 11 2854, 4364 59 1-1 5-5 5-5 5-6 Parental 
F492/50 md IS 2857,336561 1-1 5-5 5-S 5-5 Selfer 
F492/50 mcl 16 2858, 3363 62 1-1 5-5 5-5 5-6 Parental 
F492/S0 rocl 17 2859 63 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 18 2860, 3364 64 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 19 48 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 20 2861 65 1-1 5-5 5-5 5-6 Parental 
F492/50 md 21 55 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 22 53 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 23 54 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 24 2848 41 1-1 5-5 5-5 nd Parental 
F492/50 mcl25 2855 60 1-1 5-5 5-5 5-6 Parental 
F492/50 mcl 26 2862 66 1-1 5-5 5-5 6-6 S It r 
F492/50 bscl 22 1-1 5-5 5-5 5-6 Parental 

Table A1.A-C. Minisatellite analysis of all trypanosome clones deriv d 
from genetic crosses. (A) Cross STIB 247 x TREU 927/4. (B)Cro STIB 386 x 
TREU 924/4. (C) Cross STIB 247 x STIB 386. Column 1 indicate the hybrid I ne 
identification number used throughout this study. Columns 2 and 3 give additi nal 
identification numbers i.e. stabilate and lysate numbers. Columns 4-7 give the re uJt f 
mini- and microsatellite analysis. Alleles are numbered 1-5 for the minisateBites, CRAM, 
292 and MS42, and 1-6 for the microsate11ite JS2. Column 8 give the interpretation f 
results for each clone. Clones exhibiting three band patterns for one of the markers were 
considered either a mix or trisomic (lightly shaded rows). Clones which maintained their 
three band pattern after recloning were considered tri omic (shaded row). Clone wer 
considered triploid if a three band pattern was obtained for all marker analy ed ( haded 
rows). GUP, Glasgow University Parasitology; nd, not determined. 
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Table A2.A 
Minisatellite genotypes of T. brucei samples 

Zambia stocks HS Host MS42 CRAM 292 MultiloclIS 

z210 R M 32/26b 68/45 55/32 

z269 ND DA 32/26b 68/45 55/32 1 

z90 (Ch) R M 32/26b 59/59 32/32 2 

z274 R M 32126b 68/45 55/32 1 

zl94 (Ch) R M 45/32 53/45 55/32 3 

z218 (Ch) R M 47142 53/45 55/51 4 

z222 R M 30f/26b 68145 55/32 5 

z208 R M 32126b ND ND ND 

zl99 R M 32/26b 68/45 55/32 

z220 R M 32126b 68/45 55/32 1 

z273 ND DA 32/26b ND ND NO 

z203 R M 32/26b 68/45 ND ND 

z221 R M 32/26b 68/45 55/32 I 

z231 R M 32126b 68/45 ND NO 

z244 R M 32/26b 68/45 55/32 I 

z267 D OA 32/26b 68/45 ND NO 

z212 R M 32/26b 68/45 55/32 

z270 ND T 32/26b 68/45 55/32 

z18S (Ch) R M 47/42 47/45 32/32 6 

page 231 



Appendix 

Table A2.B 
Minisatellite genotypes of T. brucei samples 

Nyanza stocks HS Host MS42 CRAM 2Y2 Multilocus 

N 97 R M 35a134 61155 76/44 7 

N96 R M 35a134 61155 76/44 7 

N 2340 R M 35a134 (38e,30e) 61/61 76/44 8 

N 156 R M 35a134 61155 76/44 7 

N 95 R M 35a134 61155 76/44 7 

N94 R M 35a134 61155 76/44 7 

N 106 R M 35a134 61155 76/44 7 

N 116 R M 35a134 61/55 76/44 7 

N7 ND T 35c/28 50136 51/44 9 

NllO R M 35a134 61155 76/44 7 

N98 R M 35a134 61161 76/44 8 

N 111 R M 34/33b 61136 76/36 10 

N il2 R M 34/33b 61136 36/36 11 

N 115 R M 34/33b 61136 76/36 10 

N 502 R M 33b/33b 64136 36/35 12 

N 113 R M 35a134 61155 76/44 7 

N 120 R M 35a134 61/55 76/44 7 

N 605 R M 35a134 61155 76/44 7 

N 609 R M 35a134 611S5 76/44 7 

N lO2 R M 35a133b 61/55 76/44 13 

N lO5 R M 35a134 61155 76/44 7 

N 149 R M 33b/21 36136 44/36 14 

N 148 R M 33b/33b 64136 36/35 12 

N 18 ND T 33b/27d 45/36 76/44 IS 

N 118 R M ND 61136 76/35 ND 

N lO3 R M 35a134 61/55 76/44 7 
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Table A2.e 
Minisatellite genotypes of T. brllcei samples 

Busoga stocks HS Host MS42 CRAM 292 Multilocus 

B EA 174 un R M 35aJ34 61155 76/44 7 

B EA 3 un R T 35aJ34 61155 76/44 7 

B UTAR3un R M 35aJ34 61155 76/44 7 

B UTAR4un R M 35aJ34 61155 76/44 7 

B EA 2274 un R M 35d/34 61/61 76/44 16 

B papol60 un S C 38b/26a 115/55 76176 17 

B B76 un S C 33b/33b 55/50 44/44 18 

B B135 un S C 33b/33b NO 44/44 ND 

B 1155 un S C 36b/33b 36/36 44/44 19 

B MI2 un S C 33b/33b 55/50 44/44 18 

B U89/8 un R M 34/34 61/55 76176 20 

B UgL un R M 35aJ34 61/55 76176 21 

B UgA90un R M 35aJ34 61155 76176 21 

B EO un R M 35aJ34 61155 76176 21 

B UgI un R M 35aJ34 61155 76176 21 

B UgK un R M 35aJ34 61155 76176 21 

BURlun R T 35aJ34 61155 76176 21 

B Ugl un R M 35a/34 61155 76176 21 

B FLY 48 un ND T 33b/33b 61155 76176 22 

B U89/2 un R M 35a/34 61155 76176 21 

B UgM un R M 35a/34 61155 76176 21 

B MAP un R M 35a/34 61155 76176 21 

B 3194 un R M 35a/34 61155 76176 21 

B 3196 un R M 35aJ34 61/55 76176 21 

B 3200 un R M 35aJ34 61155 76176 21 

B 3202 un R M 35aJ34 61155 76176 21 

B 3203 un R M 35aJ34 61155 76176 21 

B M66 un R C 35aJ34 61/55 76176 21 

B M80un S C 36*/33b 55/36 44/29 27 

B M85 un ND C 36*/33b 55/36 44/29 27 

B papal 33 un S C 38d/26a 61136 46/42 23 

B papal 103 un R C 35a/34 61155 76176 21 

B S 14 un S C 33b/33b NO ND ND 

B 3205 un R M 35aJ34 61155 76176 21 

B 3206 un R M 35aJ34 61155 76176 21 
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Appel/di:c 

Table A2.C continued 
Minisatellite genotypes of T. brucei samples 

Busoga stocks HS Host . MS42 CRAM 292 Multilocus 

B B23 un S C 38c/26a 55/55 76176 24 

B B25 un ND C 38d133b 36/36 44/44 25 

B 1147 un S C 35b/33b 36/36 44/44 26 

B Mag 18 un S C 35b/33b 36/36 44/44 26 

B Mag 40 un S C 35*/33b 36/36 44/44 possible 26 

Busoga samples- mixed 

BM3un ND C 38d133b 55/43/36 44/26 NA 
B S28 un ND C 38d133b 55/43/36 4-\./26 NA 

B S38 un ND C 38d/33b/26a 55/55 44/34 NA 

B UgC90 un ND M 35a/34/33b 61/55/50 76/44 NA 

B M31 un ND C 35*/34/26a 61/55 76176 NA 

B M32 un ND C 34*/30d/23 55/50 44/32 NA 

B M42 un ND C 35*/34/26a 61155 76176 NA 

B UgB90 un ND M 35a/34* 61/55/50 76/44 NA 

B UgE90un ND M 35a/34/33b 61/55/50 76/44 NA 
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Appelldi:c 

TableA2.D 
Minisatellite genotypes of T. brllcei samples 

Kiboko HS Hos1 MS42 CRAM 2Y2 Mult1locus 

K 1337cl NO T 40/25 a 83/83 48/44 28 
K 1008el NO T 35a134 61155 76/44 7 

K 1027cVun NO T 30all7 61/52 60/50 29 

K 927cllB NO T 30c/20 68/61 41150 30 

K 927cl4B NO T 26c/25a 70168 44138 31 

K 984cl NO T 30al27c 73/55 41150 32 

K 854c1 NO T 30al27c 73/55 41/50 32 

K 975cl NO T 35a134 61155 76/44 7 

K 925cl NO T 29/27b 61153 76174 33 

K 925 un NO T 38a120 64/43 46/31 38 

K 982cl NO T 35a134 61155 76/44 7 

K 853cl NO T 35a134 61/55 76/44 7 

K IOO9cl/un NO T 36a125b 61144 76/62 34 

K 851cl NO T 35a134 61/55 76/44 7 

K 851 un NO T 30all7 61152 60/50 29 

K 852cl NO T 35a134 61155 76/44 7 

K 978cl NO T 30al27c 73/55 51139 35 

K 978un NO T 26c/25b 63/55 53/40 39 

K 997cl NO T 39a125b 68/36 76/56 36 

K 258cl ND T 30al25c 64/43 56/56 40 

K 936un ND T 35a134 61155 76/44 7 

K 926un ND T 30al27c 83/59 51/39 37 

K 869 un ND T 35a134 61/55 76/44 7 

K 994cl/un ND T 35a134 61/55 76/44 7 

Kiboko uncloned samples- mixed 

K 981un NO T 39a133a130b/26c 73/59/52143 76/60/53/44 NA 
K 854un NO T 39b/26c/25a120 73170/64/61 51/44/41138 NA 

K 927un ND T 35a134/30c/26c/25a12C 70/68/61159/52 76/50/44/41/38 NA 

K 852un ND T 35a134/30b/27b 64/52 76174 NA 

K 984 un NO T 39*/33*/30al27c 73159/52143 76/60/53/41135 NA 

K 975 un NO T 35a134 61155 76/44/41/31 NA 

K 997 un ND T 39a130al25a 73/61 76/56/55/53 NA 

K 258 un NO T 30*/26*/25c 48143 76/56/55/40 NA 
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Table A2.E 

Minisatellite genotypes of T. brucei samples 
Lugala stocks HS Host MS42 CRAM 292 Multilocus 

L 834 un NO T 38d127d 70136 45/36 41 
L 844 un NO T 35a134 61/55 76/44 7 
L 929 un NO T 33*/21 NO 45144 NO 
L 933 un ND T 33b/30d 50136 76/45 42 

L 934 un ND T 26a122b 61136 80/44 43 

L 941 un ND T 38d127d 70136 45136 41 

L 832 un NO T 33b/26a 70155 76/39 44 

Lugala uncloned samples - mixed 

L 845 un NO T 31 b/26a121116 98173170150 76/50144/11 NA 
L 791 un ND T 33b/30d 70157/53/50 76/44 NA 
L 836 un ND T 33b/30d 70157/53/50 76/44 NA 

L 944 un ND T 31a116 98173 48/40/11 NA 

Tables A2.A-E Minisatellite analysis of T. brucei samples. Column 1 indicates the 
isolate number of cloned (cl) and uncloned (un) samples. Samples were cloned unless 
otherwise stated. Column 2 indicates human serum sensitivity; R, resistant, S, sensitive 
and ND not determined. Column 3 gives details of the host from which each sample was 
isolated; M, man; C, cattle, DA, domestic animal and T, tsetse fly. Column 4 presents the 
crenotype of each isolate for the marker MS42 based on the number of repeats and on 
MVR internal maps of each allele (see chapter 8), * indicates that allele size (the number 
of repeats) only was used to genotype these isolates for MS42. These alleles were 
therefore not included in the MVR analysis in Chapter 8. Columns 5 and 6 indicate the 
CRAM and 292 mini~atellite geno~ypes presented as an estimat,e of the number of repe~lts 
in each allele, respectIvely. Band Slze measurements used to estImate the number of repeat 
units within an allele were calculated using the fixed bin method, +/- 2 average standard 
deviations i.e. 2.3% of band size. Column 7 shows the multilocus genotype, i.e. the 
combined results from the three minisatellites. ND, not determined, NA, not applicable. 
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TABLE A3.A·E RFLP analysis of T. brucei samples 
Table A3.A 

RFLP 2:enotv~es 
Zambian Stocks Bglll Hincl! MboIl 
z210 + - + - + -
z269 + - + - + -
z90 + - + • + -
z274 + - + - + -
z194 + + 

z218 + + 

z222 + - + • NO 
z208 NO NO NO 
z199 + - + • NO 
z220 + - + -
z273 NO NO NO 
z203 NO NO NO 
z221 + - + - NO 
z231 NO NO NO 
z244 + - + - NO 
z267 NO NO NO 
z212 + - + - NO 
z270 + - + - NO 
zl85 ++ NO 
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Table A3.B 

RFLP ~enotYnes 
N yanza stocks Bg/II HillcII MbolI 

N97 + - + - + -
N96 + - + - + -
N 2340 + - + - +-
N 156 + - + - + -
N95 + - + - + -
N94 + - + - +-
N 106 + - + - + • 
N 116 + - + - +-
N7 + - + • 
N 110 + - + -
N98 + - +-
N III + -
N 1 J2 + -
N 115 NO 

N 502 
NI13 + - + - +-
N 120 + - + -
N 605 + - + - +-
N 609 + - + - + -
N 102 + - +- +-
N 105 + - + - + -
N 149 + -
N 148 
N 18 + -
N 118 NO NO NO 

N 103 + - + -
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Table A3.C 

RFLP ~enotl:nes 
Busoga stocks Bglll Hinc11 Mboll 
B EA 174 + - + - NO 
B EA3 + - + - NO 
B UTAR 3 NO + - NO 
B UTAR4 + - + - + -
B EA 2274 NO + -
B papal 60 + - + - + -
B B76 NO 
B B135 NO 
B 1155 + -
BM12 
B UgC90 + - + -
B UgE90 + - + - + -
B U89/8 + - + - + -
B UgL + - + - + -
B UgA90 + - + - + -
BEO NO NO + -
BUg! + - + - + -
B UgK NO NO NO 
BURI NO + - NO 
B UgJ + - + - + -
B FLY 48 + - + - + -
B U8912 + - + -
B UgB90 + - + -
BUgM + - + - + -
BMAP + - + - + -
B 3194 + - + • + -
B 3196 + - + • + -
B 3200 + - + - + • 

B 3202 + - + - + -
B 3203 + - + . + -
BM31 + - + - + -

B M32 + -
BM42 + - + - + -
BM66 + - + - + -
BM80 + - + -
B M85 + - + -
B papal 33 + - + - + • 

B papal 103 + - + - + • 

B S 14 NO NO ND 
B 3205 + - + - + -
B 3206 + - +- + • 

B B23 + - NO + • 

B B25 +- + -
B 1147 NO + -
B Mag 18 NO + . 
B Mag40 NO 
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B M3 ND + -
B S28 ND + -
T168 NO + -
B S38 + • NO + • 
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Table A3.D 

RFLP l:,enotvues 
Kiboko stocks Bg/lI Hindl MboU 

K 1337c1 + + 
K lOOSe! + - + - NO 
K1027cl + + 
K927c1IB + + 
K 927c14B + + 

K 984c1 ++ 

K854c1 + + 

K 975c1 + - + - + -
K 925c1 ++ 

K 925 un ++ 

K 982cl + - + - + - , 
K 853c1 + - + - + -
K loo9c1 ++ 

K 851cl + - + - + -
K 851 un ++ 

K 852c1 + - + - + -
K 978cl + + 

K 978un ++ 

K 997c1 ++ 

K 258c1 + -
K 936un ND NO 
K 926un ++ 

K 869 un + - + - + -
K 994c1 ND NO NO 
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Tabl~ A3.E 
RFLP ~enotv[!es 

Lugala stocks BgllI HincIl MbolI 

L 834 + - + - + -
L844 NO + - + -
L929 NO ND 
L933 + -
L934 + -
L941 + - + - + -
L944(mix.) + + + + 
L832 + -

Tables A3.A·E RFLP genotypes of T. brucei samples. Column 1 indicates the isolate 
number of cloned and uncloned (unmixed) samples. Column 2, 3 and 4 presents the 
genotype of each isolate for the Bg/Il, HindI and MboII RFLPs respectively. 
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Table A4 

MS.J2 Allele Frequencies for MS.J2 for each of the T. brucei populations 
alleles 

defined by ~~~_-:-_-:---____ --'~-==';':';:':= ____ ~ ___ -=---:" __ 
MVR ____ ;;.;;.;;=;...;.;......;..;.. ____ Nyanza Zambia 

mapping (human) (human) 

16 
17 
20 
21 
22a 
22b 
23 
25a 
25b 
25c 
26a 
26b 
26c 
27a 
27b 
27c 
27d 
28 
29 
30a 
30b 
30c 
30d 
30e 
30f 
31a 
31b 
32 
33a 
33b 
34 
35a 
35b 
35c 
35d 
36a 
36b 
38a 
38b 
38c 
38d 
38e 

0.0615 
0.~62 
0.0154 

0.0615 
0.0154 
0.0308 
0.0615 

0.0154 
0.1131 
0.0308 
0.0154 

0.0154 

0.1539 
0.1539 

0.0154 

0.0154 

39a 0~303 
39b 0.0154 
40 0.0154 

0.1304 

0.087 

0.1304 

0.0435 
0.0435 

0.1739 
0.0435 
0.0435 

0.087 

0.268 
0.2371 

0.0103 

0.0309 

0.1224 

0.0206 

0.0103 

0.0103 
0.0103 
0.0103 

0.0309 

0.0103 

0.0918 
0.0412 
0.031 

0.0408 

n=52 n-~8 

0.0192 

0.0192 
0.0192 

0.0192 

0.1923 
0.3654 
0.3269 

0.0192 

0.0192 

0.42 

0.0333 

0.42 

42 0.0667 
45 0.0333 
47 0.0667 
Table A4. The frequency of each MS.J2 allele in each population. HSR, human serum 
resistant; HSS, human serum sensitive; ND, not determined. n= number of alleles 
sampled. 
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CRAI'r1 
nUeles 

Allele frequencies for CRAM for each of the T. brucei populations 

ddined by 
size 

36 
43 
44 
45 
47 
48 
50 
52 
53 
55 
57 

Kiboko 
(tSc:tse) 
n=67 

0.01'+9 
0.0597 
0.01-+9 

0.01~9 

0.0896 
0.01-+9 
0.1791 

59 0.0597 
61 0.::38 
63 0.01~9 
64 0.0597 
68 0.0299 
70 0.0299 
73 0.07~6 
83 0.O..g8 

LuguJa 
(tsetse) 
n=26 

0.1538 

0.1538 

0.0769 
0.0769 
0.0769 

0.0769 

0.2308 
0.0769 

98 0.0769 

populations 
Busoga 
n=99 

Nyanza 
(mainly 

-::"::"::" __ --:-:~--~=--- human) 
HSR HSS NO 0=52 

0.2424 

0.2626 

. 0.10 10 0.0505 0.1923 
0.0202 

0.0192 

0.0202 0.0404 0.0192 

0.0606 0.1212 0.2885 

0.0101 0.0606 0.4423 

0.0385 

115 0.0101 

Zambia 
(mainly 
human) 
n=~4 

0.4706 
0.0294 

0.0588 

0.0588 

0.3823 

Table A5. The frequency of each CRA.\rl allele in each population. HSR, human serum 
resistant; HSS, human serum sensitive; ND, not determined. n= number of alleles 
sampled. 
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292 Allele frequencies for 292 for each of the T. brucei populations 
alleles 
defined by ____ ---::--:--_____ ....&;.;po;J;p:;:u.:,;;la:.;,;ti;.:;,o:.;,;ns=-___________ _ 

LugaJa size Busoga Nyanza Zambia 

11 
26 
29 
31 
32 
34 
35 
36 
38 
39 
40 
41 
42 
44 
45 

Kiboko 
(tsetse) 
n=71 

0.0282 

0.0141 

0.0282 
0.0282 
0.0282 
0.0563 

0.1831 

46 0.0141 
48 0.0141 
50 0.0704 
51 0.0422 
53 0.0563 
55 0.0282 
56 0.0422 
60 0.0563 
62 0.0141 
74 0.0282 

(tsetse) 
n=25 

0.08 

0.08 

0.04 
0.04 

0.24 
0.16 

0.04 
0.04 

76 0.2254 0.24 
80 0.0"" 

HSR 

0.0521 

0.4687 

n=96 (mainly (mainly 

HSS NO 

0.0104 

0.0104 
0.1562 

0.0104 

0.0417 

0.0208 
0.0104 

0.0104 
0.0104 

0.1042 

0.0937 

human) human) 
n=52 n-28 

0.0577 
0.1346 

0.3846 

0.0192 

0.4038 

0.5357 

0.0357 

0.4286 

Table A6. The frequency of each 292 allele in each population. HSR, human serum 
resistant; HSS, human serum sensitive; ND. not determined. n= number of alleles 
sampled. 
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Figure Al 

AGACGCCTTcTcTGGAACAACCCACGTAAATTcTTTTAAGTCCAcAAGTGGAACGGGTGG 
1 ---------+---------+---------+---------+---------+---------+ 

TCTGCGGAAgAgACCTTGTTGGGTGCATTTAAgAAAATTCAGGTgTTCACCTTGCCCACC 

GAACTCT~~TTGCcGGTTAATGCAAAGCAATTGaACAGCAAACATTGCCCAATATGCAA 

61 ---------+---------+---------+---------+---------+---------+ 
CTTGAGATTTAACGgCCAATTACGTTTCGTTAACtTGTCGTTTGTAACGGGTTATACGTT 

ATGCACTAGCCACATGTGACTCAGGTAAGAGAGTGAGGTGATGGAGTTCAGGCCGAAgAA 
121 ---------+---------+---------+---------+---------+---------+ 

TACGTGATCGGTGTACACTGAGTCCATTCTCTCACTCCACTACCTCAAGTCCGGCTTcTT 

CGTCCCAAC.~~;GTTGATAT~~TAAAGGAAGAGGAATCTGTGCGTCCTCGAAATTTTGCA 

181 ---------+---------+---------+---------+---------+---------+ 
GCAGGGTTG~TTCAACTATATTATTTCCTTCTCCTTAGACACGCAGGAGCTTTAAAACGT 

GCATTGTC~CCATCGTTACGGAGCATCTCTGTGTGACACGTTCAACAAACCATTGGGACG 241 _________ + _________ + _________ + _________ + _________ + _________ + 

CGTAACAGAGGTAGCAATGCCTCGTAGAGACACACTGTGCAAGTTGTTTGGTAACCCTGC 

ACAGTCTCTCCGAGCAGTTGGC~~GCAGAGTGCTCaCCGTACCTAAAAGGCaACAGtGAT 

301 ---------+---------+---------+---------+---------+---------+ 
TGTCAGAGAGGCTCGTCAACCGTTCGTCTCACGAGtGGCATGGATTTTCCGtTGTCaCTA 

TAGGCTT~CCATGCAATCTATAATGGTGAATATAAGCCATCACTTCATCAGGTCGGATAC 

361 ---------+---------+---------+---------+---------+--------+ 
ATCCGAAAGGTACGTTAGATATTACCACTTATATTCGGTAGTGAAGTAGTCCAGCCTATG 

CGTCAAACGCGTGTGCGATCTCCTTACGGCAATGCTGTCGTCGAACATCTCGCTCCTCCT 
421 ---------+---------+---------+---------+---------+---------+ 

GCAGTTTGCGCACACGCTAGAGGAATGCCGTTACGACAGCAGCTTGTAGAGCGAGGAGGA 

TTGCCATTACACGACGACTTTTTAgGCTGCTGATTCCGGAGAgTCGACATGCGACGGCAA 
481 ---------+---------+---------+---------+---------+---------+ 

AACGGTAATGTGCTGCTGAAAAATcCGACGACTAAGGCCTCTcAGCTGTACGCTGCCGTT 

CCCGGCACACTAAGTtGGGGTTTCCCGCATAgACTCGTTGCAACATTTCAACAAAATCCT 
541 ---------+---------+---------+---------+---------+---------+ 

GGGCCGTGTGATTCAaCCCCAAAGGGCGTATcTGAGCAACGTTGTAAAGTTGTTTTAGGA 
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Figure Al continued 

TCTCAtGTACTACTGATGAAAAGGGCTGGTCgCGAAACAACAACCACCTAGCGTCAGATA 
601 ---------+---------+---------+---------+---------+---------+ 

AGAGTaCATGATGACTACTTTTCCCGACCAGcGCTTTGTTGTTGGTGGATCGCAGTCTAT 

ACCCGGCATAgGCGAGTTGCCgTGTGACAACATTGAGGGGAACACCACTTTCTGTCCTCT 
661 ---------+---------+---------+---------+---------+---------+ 

TGGGCCGTATcCGCTCAACGGcACACTGTTGTAACTCCCCTTGTGGTGAAAGACAGGAGA 

ctGGATACTCGATGGATCTAtAgAGGCGGCGAAAGAATCgCaTCAgCaCCtCaAAGGGtC 
721 ---------+---------+---------+---------+---------+---------+ 

gaCCTATGAGCTACCTAGATaTcTCCGCCGCTTTCTTAGcGtAGTcGtGGaGtTTCCCaG 

gAtGAgAcgACaTGAGCtCAGtcACtGCAAtGCAGCGAttCAAAAATGATAGCGCAAcTT 
781 ---------+---------+---------+---------+---------+---------+ 

cTaCTcTgcTGtACTCGaGTCagTGaCGTTaCGTCGCTaaGTTTTTACTATCGCGTTgAA 

MS42-LR 5'GAA 
CTTCGCCACAAATCGACACTGGATCCAACACaGCTTTTACCACATTGTCGCTTCTCAGAA 

841 ---------+---------+---------+---------+---------+---------+ 
GAAGCGGTGTTTAGCTGTGACCTAGGTTGTGtCGAAAATGGTGTAACAGCGAAGAGTCTT 

CTT 

CCTGTGAACCCTCCAAATTCG 
CCTGTGAACCCTCCAAATTCGAAATAACCGCGTCAACATATCGTTTTACATCACCCTCTa 

901 ---------+---------+---------+---------+---------+---------+ 
GGACACTTGGGAGGTTTAAGCTTTATTGGCGCAGTTGTATAGCAAAATGTAGTGGGAGAt 
GGACACTTGGGAGGTTTAAGC 5' MS42-L 

ACGGGGACAAGTCACAGCACCTTGTTAATATTGGTACCACATCCATTTCTGTAAAGTGAC 
961 ---------+---------+---------+---------+---------+---------+ 

TGCCCCTGTTCAGTGTCGTGGAACAATTATk~CCATGGTGTAGGTAAAGACATTTCACTG 

CACCAAATACGTGCTCAACTTCAGCAGCAAATGCGGACGCGGCGTCACATAAAGTGCGAA 
1021 ---------+---------+---------+---------+---------+---------+ 

GTGGTTTATGCACGAGTTGAAGTCGTCGTTTACGCCTGCGCCGCAGTGTATTTCACGCTT 

CAAGGAAAGCTATCAATGATGTACGGCGCCTGTCCAGAATCGCGATACGCACAACACAGC 
1081 ---------+---------+---------+---------+---------+---------+ 

GTTCCTTTCGATAGTTACTACATGCCGCGGACAGGTCTTAGCGCTATGCGTGTTGTGTCG 

TGTTTTCGGCAACCCTCTTCAGTTCCTTGTATACATTGTCGGGCGTTAACTCCATGTCAT 
1141 ---------+---------+---------+---------+---------+---------+ 

ACAAAAGCCGTTGGGAGAAGTCAAGGAACATATGTAACAGCCCGCAATTGAGGTACAGTA 

Appendix 
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Figure Al continued 

CTAATTCCCCCCTTTCCACAAGGCGAAAACTCAACTCACCCATATCTTTTTCCTTCAACC 

1201 ---------+---------+---------+---------+---------+---------+ 
GATTAAGGGGGGAAAGGTGTTCCGCTTTTGAGTTGAGTGGGTATAGAAAAAGGAAGTTGG 

MS42-RR 5'GGGCAGAGCGCATGTCCTCCAAT 
CACACTCTTCCGCAAGGGCAGAGCGCATGTCCTCCAAtGCACAGCCTGGACGAAGTACCA 

1261 ---------+---------+---------+---------+---------+---------+ 
GTGTGAGAAGGCGTTCCCGTCTCGCGTACAGGAGGTTaCGTGTCGGACCTGCTTCATGGT 

CCCGTCTCGCGTACAGGAGGTTA 5' MS42-R 

ATGCCCGCATTACCTGTTGTGTCCCCCATGTGaAGAGACaTtgCAAGGGAAGAcCACTCG 

1321 ---------+---------+---------+---------+---------+---------+ 
TACGGGCGTAATGGACAACACAGGGGgTACACtTCTCTGtAaCGTTCCCTTCTgGTGAGC 

TACAAGGGTGACCCCTTACCGCAGTAACGTTAATACAGCTGCGTTTcTTCCTTATTGCCT 1381 _________ + _________ + _________ + _________ + _________ + _________ + 
ATGTTCCCACTGGGGAATGGCGTCATTGCAATTATGTCgACGCAAAgAAGGAATAACGGA 

CCCCCACCATTGCAGTAACGCCACTGGGGTTGCAtAACGGAACACCATTACTAtcaTAAA 

1441 ---------+---------+---------+---------+---------+---------+ 
GGGGGTGGTAACGTCATTGCGGTGACCCCAACGTaTTGCCTTGTGGTAATGATagtATTT 

Ms42-QR 5'GAAGGGCGTTCAGGCATTCGTTC 
TAATTATGTTGTCCATATCAGTTAAATGAAGGGCGTTCAGGCATTCGTTCCGGAATGACT 

1501 ~--------+---------+---------+---------+---------+---------+ 
ATTAATACAACAGGTATAGTCAATTTACTTCCCGCAAGTCCGTAAGCAAGGCCTTACTGA 

CTTCCCGCAAGTCCGTAAGCAAG 5'MS42-Q 

CAAACACCTTtGGTGACGcTTTCTTCCACGTTAAAAAAAAGCGAACAGGAGCCTTCTTTT 

1561 ---------+---------+---------+---------+---------+---------+ 
GTTTGTGGAAaCCACTGCgAAAGAAGGTGCAATTTTTTTTCGCTTGTCCTCGGAAGAAAA 

CCAATGAACACGCGACCTCAACCACTACCTCGTTAGGAAGCTCCTCCTCAACATCGGAGC 

1621 ---------+---------+---------+---------+---------+---------+ 
GGTTACTTGTGCGCTGGAGTTGGTGATGGAgCAATCCTTCGAGGAGGAGTTGTAGCCTCG 

MS42-W 5'GGTGATTCATCGG 
AATTTTTCTTCCCGCTGATACATTCCGTTGCGTTTTTTGAAGTCAATGGTGATTCATCGG 

1681 ---------+---------+---------+---------+---------+---------+ 
TTAAAAAGAAGGGCGACTATGTAAGGCAACGCAAAAAACTTCAGTTACCACTAAGTAGCC 

CCACTAAGTAGCC 

CTCCCTTGCCA 
CTCCCTTGCCATTTTTTGCCGTCACTGCATCCCCATCCCCGCCCTTAAACCCAgTAgGGA 

1741 ---------+---------+---------+---------+---------+---------+ 
GAGGGAACGGTAAAAAACGGCAGTgACGTAGGGGTAGGGGCGGGAATTTGGGTCATcCCT 
GAGGGAACGGA 5' MS42-WR 
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Figure Al continued 

MS42-V 5'CATTATTCCACGGACGCGAAGCAGC 
GAACTTTCGCATTATTCCACGGACGCGAAGCAGCATTTCCCTCCCCAACCAAGAcATCCT 

1801 ---------+---------+---------+---------+---------+---------+ 
CTTGAAAGCGTAATAAGGTGCCTGCGCTTCGTCGTAAAGGGAGGGGTTGGTTCTgTAGGA 

MS42-C 5' 9 
TCGTAAAAAGCGGTTCCAGTAaTCTTCCTGATCCTATTTCACTGTCCCGTAAAGCAGGGg 

1861 ---------+---------+---------+---------+---------+---------+ 
AGCATTTTTCGCCAAGGTCATtAGAAGGACTAGGATAAAGTGACAGGGCATTTCGTCCCc 

CC 

ATTTCTTCATAGCGAAGgCATTC 
ATTTCTTCATAGCGAAGgCATTCGGATCCCGGTCTTTTArAAATACACTCACGGCCAATG 

1921 ---------+---------+---------+---------+---------+---------+ 
TAAAGAAGTATCGCTTCcGTAAGCCTAGGGCCAGAAAATyTTTATGTGAGTGCCGGTTAC 
TAAAGAAGTATCGCTTCCGTAAG 5' MS42-CR 

ATAAATTTGGCTTCTCCACAATTTCTGCCTTGGCTGGTTCAGGGACTGCCACTGGTTTCA 

1981 ---------+---------+---------+---------+---------+---------+ 
TATTTAAACCGAAGAGGTGTTAAAGACGGAACCGACCAAGTCCCTGACGGTGACCAAAGT 

CAGTCTCTGCCTTGGCTGGTTCAGGGACTGCCACTGGTTTCACAGTTTCTGCCTTGGCTG 

2041 ---------+---------+---------+---------+---------+---------+ 
GTCAGAGACGGAACCGACCAAGTCCCTGACGGTGACCAAAGTGTCAAAGACGGAACCGAC 

-->------------------------------------------>--------------

GTTCAGGGACTGCCACTGGTTTCACAGTTTCTGCCTTGGCTGGTTCAGGGACTGCCACTG 

2101 ---------+---------+---------+---------+---------+---------+ 
CAAGTCCCTGACGGTGACCAAAGTGTCAAAGACGGAACCGACCAAGTCCCTGACGGTGAC 

-------------------------->--------------------------------

GTTTCACAGTyTCTGCCTTGGCTGGTTCAGGGACTGCCACTGGTTTCACAGTyTCTGCCT 

2161 ---------+---------+---------+---------+---------+---------+ 
CAAAGTGTCArAGACGGAACCGACCAAGTCCCTGACGGTGACCAAAGTGTCArAGACGGA 

-------->---------------------------------------->---------

TGGCTGGTTCAGGGACTGCCACTGGTTTCACAGTTTCTGCCTTGGCTGGTTCAGGGACTG 

2221 ---------+---------+---------+---------+---------+---------+ 
ACCGACCAAGTCCCTGACGGTGACCAAAGTGTCAAAGACGGAACCGACCAAGTCCCTGAC 

-------------------------------->--------------------------
5' MS42-BR GGCCATATTTT 

CCACTGGTTTCACAGTtTCTGCCTTGGCTGGTTCAGGGgGCaAattcTGGTcCAtAtTTT 

2281 ---------+---------+---------+---------+---------+---------+ 
GGTGACCAAAGTGTCAaAgACGGAACCGACCAAGTCCCcCGtTtaagAcCAgGTaTaAAA 

------------->--------------------> 
TTGAACGCG 
tTGaaCgyGcGTTAACGACCGCA~~GCGGGAAGttGATCGTTATCGTTCTTtGTGGATA 

2341 ---------+---------+---------+---------+---------+---------+ 
aACttGcrCgCAATTGCTGGCGTGTTCGCCCTTCaaCTAGCAATAGCAAGAAaCACCTAT 
AACTTGCGCGCAATTGCTGGCGTGTT 5'MS42-F 

Appentlix 
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Figure Al continued 

tGGGAACTTtGTTtTtATcTTCCTTCTTGTCAACTTCAGCTAGAGTCGCTCCTACCACCt 
2401 ---------+---------+---------+---------+---______ + _________ + 

aCCCTTGAAaCAAaAaTAgAAGgAAGAACAGTTGAAGTCGATCTCAGCGAGGATGGTGGa 

tGGCTCCGGtGTCGCCTCTGCCAATATtATATGTAAGATGGCAAACGCTTCGTTGCGCCA 2461 _________ + _________ + _________ + _________ +~--------+----_____ + 

aCCGAGGCCaCAGCGGAgACGGTTATAaTATACATTCTACCGTTTGCGAAGCAACGCGGT 

TACACGATCTTATAAGTAGAGCAGctGCCTCCTCGCtGCATATCTCAGTCAACGCCTTAC 
2521 ---------+---------+---------+---------+---------+---------+ 

ATGTGCTAGAATATTCATCTCGTcgaCGGAGGAGCGaCGTATAgAGTCAGTTGCGGAATG 

MS42-F8R 5'ACAAGGTTAGTTGCTGTCCTGG 
CGTTGCCTTCAGTGGAGAACAAGGTTAGTTGCTGTCCTGGCAACAAAACTTGCTGAATAG 

2581 ---------+---------+---------+---------+---------+---------+ 
GCAACGGAAGTCACCTCTTGTTCCAATCAACGACAGGACCGTTGTTTTGAACGACTTATC 

CGCCACGGACCGCTACCAAGAGAGCCTTCCAGATCTCGCGACGAGGGGGAATAAAACGTT 
2641 ---------+---------+---------+---------+---------+---------+ 

GCGGTGCCTGGCGATGGTTCTCTCGGAAGGTCTAGAGCGCTGCTCCCCCTTATTTTGCAA 

TCGTAGtTGGGACCCCTCCATCCGAGTGTTGAATGGATAACAGTACGAGCGGGTCATCCA 2701 ~ ________ + _________ + _________ + _________ + _________ + _________ + 

AgCATCaACCCTGGGGAGGTAGGCTCACAACTTACCTATTGTCATGCTCGCCCAGTAGGT 

CCAGCATTGAGCTTCCCACGCCGCTATCACAATGATCTATAACCGCCGTGAACACAAAAC 
2761 ---------+---------+---------+---------+---------+---------+ 

GGTCGTAACTCGAAGGGTGCGGCGATAGTGTTACTAGATATTGGCGGCACTTGTGTTTTG 

AAGGGCAACTATGCACTGAAAAGAATGCCACCACATCATCATCGCTGAGCAGCTTGCGGG 
2821 ---------+---------+---------+---------+---------+---------+ 

TTCCCGTTgATACGTGACTTTTC~TACGGTGGTGTAGTAGTAGCGACTCGTCGAACGCCC 

MS42-SR 5'CCTGACCATGAGCAGCGGTAAG 
GCGCTTCATCCTGACCATGAGCAGCGGTAAGCTCGAAGGTACCATGTTGCAGGCGAAGGT 

2881 ---------+---------+---------+---------+---------+---------+ 
CGCGAAGTAGGACTGGTACTCGTCGCCATTCGAGCTTCCATGGTACAACGTCCGCTTCCA 

GGACTGGTACTCGTCGCCATTC 5' MS42-S 

CGTAACTTTTAAGTAAGTTAACCATCTCGAGTATAGTACTTGGAGCTTCCTCTATACTAA 
2941 _________ + _________ + _________ + _________ + _________ + _________ + 

GCATTGAAAATTCATTCAATTGGTAGAGCTCATATCATGAACCTCGAAGGAGATATGATT 
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Figure Al continued 

ATGAGCGGAGGGTACATTCATTAGGCCCCCTGTATACCTCTAACCtACACAAAAAATTGC 
3001 ---------+---------+---------+---------+-----____ + _________ + 

TACTCGCCTCCCATGTAAGTAATCCGGGGGACATATGGAGATTGGaTGTGTTTTTTAACG 

TGCGCATCGCCATGATGATAACTTTCCCCGAGCAGACAAATGAAAGGTAGAGTCACCCTG 

3061 ---------+---------+---------+---------+---------+---------+ 
ACGCGTAGCGGTACTACTATTGAAAGGGGCTCGTCTGTTTACTTTCCATCTCAGTGGGAC 

CGACTTCTGCAAAGAAGCTTGAAGGAAGAAGGGAGAAAATTTTCTGCAAGTGGTGAATAA 

3121 ---------+---------+---------+---------+---------+---------+ 
GCTGAAGACGTTTCTTCGAACTTCCTTCTTCCCTCTTTTAAAAGACGTTCACCACTTATT 

ACCGCTGCACGACTAAGCTTCACCCCTAGTTTCTCCACACAAACAAAAAGTATTCTGCAT 

3181 ---------+---------+---------+---------+---------+---------+ 
TGGCGACGTGCTGATTCGAAGTGGGGATCAAAGAGGTGTGTTTGTTTTTCATAAGACGTA 

TGTTAATAAAATAATCCACAGAATGAGATGGCACAACTTGAGGGAGGTGTGGGTTTCACA 

3241 ---------+---------+---------+---------+---------+---------+ 
ACAATTATTTTATTAGGTGTCTTACTCTACCGTGTTGAACTCCCTCCACACCCAAAGTGT 

GGCATATGTGAATGAACGCAAAAAAAAAATAATTAAAAAACTGTATTTATGTTGTGCCCg 

3301 ~--------+---------+---------+---------+---------+---------+ 
CCGTATACACTTACTTGCGTTTTTTTTTTATTAATTTTTTGACATAAATACAACACGGGc 

AAACGAGTGAAATCaTCAACAAAACCATCCCACAAGAAAGGAAGGGAGTaCAAGaGTATC 

3361 ---------+---------+---------+---------+---------+---------+ 
TTTGCTCACTTTAGtAGTTGTTTTGGTAGGGTGTTCTTTCCTTCCCTCAtGTTCtCATAG 

TTTCATTTTCATTACGCATGCATGTATCAaAgCCTGGGGAACCTGCAG 

3421 ---------+---------+---------+---------+--------
AAAGTAAAAGTAATGCGTACGTAC~TAGTtTCGGACCCCTTGGACGTC 

Appendix Figure Al. Sequence of pla~mid p42Sc3 containing the 
minisatellite MS42. Both strands of the nucleotIde sequence of the insert of plasmid 
p42Sc3 are given. The seque.nce was determined using ~he AB! automated scqucncing 
protocol. Seven full repeat umts and part of one repeat umt were mcluded and underlined. 
Small letters indicate that the consensus for a particular position was taken. A TO start site 
of the ORF is in bold. Some MS-I2 primers are also given. 
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Appendix 

1 M}l1RSNFLCR LEVYRGPNEC TLRSFSIEEA PSTILEMVNL LKSYDLRLQH 

51 GTFELTAAHG QDEAPRKLLS DDDVVAFFSV HSCPCFVFTA VIDHCDSGVG 

101 SSMLVDDPLV LLSIQHSDGG VPTTKRFIPP RREIWKALLV AVRGAIQQVL 

15: L?GQQLTLFS TEGNGKALTE ICSEEAAALL IRSCMAQRSV CHLTYNIGRG 

20: DTGAKVVGAT LAEVDKKEDK NKVPISTKND NDQLPACAVV NARSKNMDQN 

25: L?PEPAKAET VKPVAVPEPA KAETVKPVAV PEPAKAETVK PVAVPEPAKA 
------>--------------->--------------->-------------

30: E7VKPVAVPE PAKAETVKPV AVPEPAKAET VKPVAVPEPA KAETVKPVAV 
>-------------->-------------->---------------->------

3~- PEPAKAEIVE KPNLSLAVSV FLKDRDPNAF AMKKSPALRD SEIGSGRLLE 
------> 

40: PLFTKDVLVG EGNAASRPWN NAKVLPTGFK GGDGDAVTAK NGKGADESPL 

45: TSKNATECIS GKKNCSDVEE ELPNEVVVEV ACSLEKKAPV RFFLTWKKAS 

SOl P~FESFRNE CLNALHLTDM DNIIIYDSNG VPLCNPSGVT AMVGEAIRKK 

5~- ~3CINVTAVR GHPCTSGLPL QCLFTWGTQQ VMRALVLRPG CALEDMRSAL 

6C: A~ECGLKEKD MGELSFRLVE RGELDDMELT PDNVYKELKR VAENSCVVRI 

65: A:LDRRRTSL IAFLVRTLCD AASAFAAEVE HVFGGHFTEM DVVPILTRCC 

7C: ~~SPLEGDVK RYVDAVISNL EGSQVLRSDN VVKAVLDPVS ICGEEVALSF 

7~- ~~RCIAVTEL MSSHRPFEVL MRFFRRLYRS IEYPERTESG VPLNVVTRQL 

BC: AYAGLSDARW LLFRDQPFSS VVHEKDFVEM LQRVYAGNPN LVCRVAVACR 

8~- L3GISSLKSR RVMAKEERDV RRQHCRKEIA HAFDGIRPDE VMAYIHHYRL 

9Cl ?GKPNHCCLL GTVSTLLANC SERLSSQWFV ERVTQRCSVT METMLQNFED 

9-- ~QIPLPLLYQ LCWDVLRPEL HHLTLLPESH VASAFAYWAM FAVQLLCINR 

10C: C:RVPTRSTC GLKRIYVGCS REGV 

Appendix Figure A2. Predicted amino acid sequence of part of the MS-I2 gene. 
beginning with the first methionine in the ORF. The repeat units are underlined. 
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A single locus minisatellite sequence which distinguishes 
between Trypanosoma brucei isolates 1 
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Restriction fragment length polymorphism 
(RFLP) analysis has become the method of choice 
in the analysis of genetic crosses in Trypanosoma 
brucei [1-3], although alternative markers which 
may be identified by polymerase chain reaction 
(peR), particularly the so called variable number 

Abbreviations: PFGE, Pulsed field gel electrophoresis; 
VNTR, Variable number of tandem repeat; PGK, Phospho
glycerate kinase; PCR, polymerase chain reaction; RFLP, 
restriction fragment length polymorphism; EATRO, East 
African Trypanosomiasis Research Organisation; STIB, Swiss 
Tropical Institute Basel; TREU, Trypanosomiasis Research 
Organisation, Edinburgh University; Mb, Megabase pairs. 

• Corresponding author. 
1 Note: Nucleotide sequence data reported in this paper 

have been submitted to the EMBL data base with the acces
sion number X70187. 

of tandem repeat (VNTR) or minisatellite and 
microsatellite sequences, have superseded RFLP 
analysis in mammalian genetic analysis [4]. We 
report the identification of a single locus, hyper
variable, tandemly repeated sequence in the 
genome of T. brucei which can be used as a 
genetic marker to follow inheritance of chromo
somes in genetic crosses and to identify DNA 
polymorphisms in the field. Variability of tandem 
repeat copy number between alleles has been de
tected and can be identified by peR analysis. 

The repetitive DNA sequence, tbms42, was 
cloned fortuitously in experiments designed to 
isolate the 6-phosphogluconate dehydrogenase 
gene, gnd, of T. brucei [5]. The plasmid pTGR3 
was found to contain a 1.6 Kb insert, comprised 
almost entirely of the tbms42 repeat (Accession 

0166-6851/97/$17.00 © 1997 E1sevier Science B.V. All rights reserved. 
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No. X70 187). The structure of thi ~ rep<:ated ~e
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isatellite or V;\,TR ~equencc of higher 
eukaryotes. The repeat i ~ 60"'1) GC-rich. unlike 
non-coding ON in T. hrun'1 ""hich con tam, on 
average ~O'~I) G and C re~idue !:>, o r co<.ltng 0 1 'A 
which contains 50" '" G and C re idue (6J, The 
repeat unit i ~ not homologo u to an) ~qucnce In 

the nucleic acid data bases and. like mo t other 
eukaryotic minisa tellite sequence~ (7). it I not 
precisely reiterated over its entire length . \\ hen 
lIsed to probe genomic 0 of r. hr/let'l I olate 
East African Trypanosmla i~ Re~earch Organi'>'l
tion (EA TRO) 427 digested vdth \arlOU rc .. tnc
tion endonucleases. tbms·f2 hybridilcd to t\\ O 
bands of different sizes (data not ..,ho\\n) anu .11 {) 
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p.lfcnt.lI donc~ (Fig, 1 ). The repeat p num
her \\ ,h e lImat~ b} den it metri cannin f 
dutOf.lUlllgraph or O;\.'r\ bl ) t- t d termin Ih 
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relative numbers of repeat in each allele and by 
counting repeats on sequencing gel autoradio
graphs. Isolate STIB 247 appeared to be ho
mozygous for tbms42 (estimated 26 copies of the 
repeat in each allele) while isolate TREU 927 was 
heterozygous (each allele containing 25 and eight 
copies respectively). Southern blots of restriction 
digests of DNA from progeny clone MC3 re
vealed one allele with 26 and one with 18 copies 
while MC8 had one allele with 18 copies and at 
least one with 26 copies (Fig. lA). Size-fraction
ated chromosomes from the same strains were 
also probed with tbms42 (Fig. 1 B). In parental 
isolate STIB 247 the probe hybridised to two 
bands with estimated sizes of 1.6 and lA Mb 
while in the parental isolate TREU 927, it hy
bridised to a single band estimated as 1.2 Mb in 
size. Analysis of the progeny clones MC3 and 
MC8 showed that tbms42 hybridised to bands of 
1.4 Mb and 1.2 Mb indicating that the progeny 
inherited one homologue from each parent. The 
intensity of hybridization to the larger band (lA 
Mb) in clone MC8 is higher than the equivalent 
band in clone MC3 and is consistent with the 
presence of two copies this allele (see also lane 3, 
Fig. lA). Phosphoglucose isomerase (PGI), IX

tubulin and phosphoglycerate kinase (PGK) gene 
probes all hybridised to the same chromosomes 
(data not shown), showing that the seq~ence de
scribed here is linked to these genes m the T. 
brucei genome. In addition, both PGK and 
tbms42 probes hybridised to identical clones from 
a phage PI library of genomic DNA from T. 
brucei isolate 927, suggesting tight linkage be
tween these loci (data not shown). A polymorphic 
region downstream of the PGK cluster, has previ
ously been described [9] and may correspond to 

tbms42. 
As tbms42 has the structure of a mini satellite 

sequence, it could be highly polymorphic and 
therefore a useful marker for the analysis of field 
populations. Primers were designed to the se
quences flanking tbms42 and used to amplify the 
repeat from DNA extracted from a collection of 
cloned isolates from Zambia , Kenya and Uganda 
(described in [10,11]). A total of thirteen distinct 
aIleles were identified on the basis of differences in 
size in the PCR amplified products as illustrated 

in Fig. 2. Each isolate is heterozygou for repeat 
length in tbms42 and the data show that thi locu 
is highly polymorphic and can therefore be 1I ed 
to distinguish between field isolates of T. brucei. 
While it is difficult to draw firm conclu ion about 
epidemiological relationship ba ed on the use of 
a single marker, the results obtained have been 
compared with the more exten ive multiple 10 u 
analysis undertaken on the e i olate previou Iy 
[8 ,12]. It had been shown that i ola tes of T. b. 
rhodesiense from Zambia formed a cIa ely related 
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Fig. 2. PCR amplifica tion of a range of Ibm 42 allele from 
different T. brucei isolate. P R products were separated on a 
1% Seakem aga rose gel and visualised by ult ra violet Iran illu
mination. I , TR EU 984; 2, TRE 997; 3, Z2 18; 4, Z2 10; 5, 
EATRO 1051; 6, E TRO 7. Lane M conta ins a I Kb marker 
ladder (BRL). P R reaction' were performed in 10 It! reaclion 
volume in 45 m M Tris- H I pH 8 .• 11 mM (N H4) l 0 4, 4.5 
mM MgC12, 6.7 mM 2-mercaptoelhanol, 4.4 p M EDTA pH 
8.0, 113 Ji g ml - I BS • I mM each of the four deoxyribonu
cleotide triphosphate , I p M of each oligonucleotide primer, I 
unil of Amplitaq Polymera e (Perkin Elmer, ctus U A) and 
I unit of Taq start antibody ( lontech). The reactions were 
carried out in a Robocycler gradient 96 ( tratagen ) u ing 
primers designed from equences fla nking tbms42 lig Ms-
5'Cggaltlct!ca lagcgaaggca llc3 ' and ol igo M -D 5'aa lIc aett
gtgcggtcgtla3') under the following condi tions: 96° for 50 s, 
66°C for 50 and 70° for 90 S, for a IOta I of 32 ycles . 
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gro up which was distinct from the popula ti ons of 
T. h. r/lllc/cs icI/.I C iso lated in Kenya and Uga nd a. 
pe R analysis of tbm s42 presented in this study 
supported these conclusions in that the Zambian 
stocks co ntained four a lleles and three genotypes 
(data not shown) . 

Reports from oth er orga ni sms [7] have show n 
that mini sate llites ca n alter the number of repea ts 
by ge ne conve rsion. I n order to determine 
whether this occurred at an appreciable freq uency 
with tbms42 in T. hru('ci, 30 cl oned lines deri ved 
from single cloned stocks which had been multi 
pl y passaged (b loodstrea m or procyclic stages), 
tran sm itted through tse tse fli es or selected fo r 
rcs istance to melarsen o r suramin were compared. 
No alterations in repeat length were observed. On 
the basis of these data we conclude that the repea t 
length is mito tically stable and ca n, therefore, be 
used as a genetic marker. 

pe R amplifica tion across the repea t reported 
here provides a mean s of distingui shing individual 
iso lates without Southern bl ot analysis and ca n be 
applied to the amplification of DNA from single 
trypanosomes [13]. These fea tures give tbm s42 a 
clear adva ntage over other single-copy probes 
used in R FLP analysis in trypanosome genetics. 
Simi lar polymorphic mini sa tellite sequences are 
likel y to occur at ot her loci within the ge nome 
and co uld be developed for the ana lysis of field 
populations. For exa mple the glutamate - proline 
dipeptide repea t of the procyclic acidic repea t 
protein (PARP) [14] shows differences in numbers 
of repea t present in different a lleles of the gene 
[1 5]. In addition the GR6 protein [1o] . the Micro
tubule Associated Repea t Protein (MARP I) [1 7]. 
the Gb4 protein [1 8] and a novel protein found in 
the parafla ge llar rod [1 9], all contain tandeml y 
repeated sequences. If variation in repea t length 
occu rs between strain s. such loci co uld also be 
used as ge netic markers by the pe R amplification 
approach described in this stud y. 
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The ability to determine the genotype of single 
cell s by polymerase chain reaction (peR) amplifi
cation of specific genes has been used extensively 
in human genetics [1 ,2], and is a powerful tech
nique for the analysis of a range of genetic and 
biological questions. With African trypanosomes, 
peR amplification of the multicopy satellite se
quence from different species of trypanosomes ha 
been used to detect trypanosomes both from in
fected blood [3] and tsetse flies [4]. It has been 
shown that a peR signal can be obtained from 
DNA or trypanosome extracts diluted to less than 
a single genome equivalent [3,4]. While these 

Abbreviations: EATRO, East African Trypanosomia is Re
search Organisa tion; ORF, open reading frame; P R , poly
merase chain reaction; STIB, Swis Tropical Institute Basel; 
TrM, triosepho phate isomerase gene; TREU, Trypanosome 
Research Edinburgh University. 

• Corresponding a uthor. Tel.: + 44 141 3078072; fax : +44 
141 3305422; e-mai l: gvwa08@udcf.gla.ac.uk 

reports show that amplification of multiple copy 
sequences can be used to detect trypanosomes to a 
high degree of sensitivity, to date P R ba ed 
technique using single copy equences have not 
been used to detect or genotype single try
panosomes. Studies with Plasmodium Jalciparul11 
have shown that single copy gene sequences can 
be amplified from single cells [5] , although the life 
cycle stage used (oocy t) contains many nuclei. In 
this paper we report the development of a method 
for determining the genotype of ingle try
panosome with a high degree of efficiency u ing a 
target single copy gene sequence. This technique 
should have applications for the study of the 
laboratory genetics, population genetics and ge
nomic rearrangement in trypano omes. 

The single copy triosephosphate isomerase gene 
(TIM) sequence of Trypanosoma brucei contains, 
within the 3' untranslated region , 14 repeats of the 
dinucleotide TA in the equence obtained from 
stock EATRO 427 [6]. Using the published se-

0166.6851 /97/$17.00 1997 Elsevier Science B.Y. All rights reserved 
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q uence, several pcllrS of primers were des igned . 
Initia ll y, two of these, E and F (Fig. la) . were 
used to amplify (by PC R) sa mples of DNA from 
stocks STIB 386 and TRE U 927 [7] of T. brucci. 
The products we re run o ut on a 4'1" Nusieve 
agarose gel and visuali sed with ethidium bromide 
(Fig. I b) . The sizes of the fragments differ in each 
of the stocks (ST IB 386- 100bp: TRE 927 
80bp) indica ting a polymorphi sm in the lengths of 
each repea t array which has been confirmed by 
sequence analysis (data not shown). The lower 
band is due to primer dim ers and presen t in the 
absence of any DNA template (track 3, Fig. I b). 

In itial experiments using diluti ons of ext racted 
DNA eq ui va lent to a single genome (0.12 pg) per 
reaction showed that , using nested primers, it was 
technica ll y feasible to amplify a single copy se
quence to visible levels on an ethidium bromide 
stained gel (data not shown). To determine 
whether it was possible to ampli fy the TI M locus 
from a sin gle trypa nosome, bloodstream try
panosomes were iso lated from mice which had 
been infec ted with either a mixture of stocks ST I B 
386 and TRE U 927 or solely with TRE U 927. 
The trypa nosome mi xture was diluted in guinea 
pig se rum and single parasites were isolated opti 
ca ll y usin g an in ve rted microscope. Each ce ll was 
then transferred to a thin wa lled micro tube by the 
addition of 10 II I of PCR buffer, which has been 
described elsewhere [8], and subjected to PC R 
amplifica tion. 

Using the bloodstrea m trypa nosomes of a sin
gle stock (TREU 927), 16 single trypa nosomes 
were subjected to PC R amplifica ti on (using 
primer pairs CID fo llowed by A/ B-Fig. I) and five 
gave an ethidium stained band of the predicted 
size (Fig. 2a: tracks 4- 19). The inabilit y to am
plify a fragment from all sa mples ma y be at
tributed to either a failure to transfer single ce ll s 
to the PC R tubes or a failure of the first pair of 
primers to successfull y amplify one of the two 
allelic copies. In order to provide a rigoro us nega
ti ve biologica l contro l, ten (individual) drops from 
the infec ted bl ood which contained no try
panosomes by microscopic inspection. were also 
subjected to PCR amplifica tion, as before. usin g 
primers C D foll owed by A /S (data not shown). 
One of these drops produced an amplified frag-

ment which is presumed to be due to overlooking 
a trypanosome in thi s drop. However, given only 
1/ 10 of the dro ps lack in g trypanosomes gave a 
positi ve signal compared to 7/ 18 drops contai ning 
trypanosomes. (Fig. 2a : tracks I, 2 and 4- 19) we 
conclude that the amplified product is dependent 
on the presence of trypanosomes rather than ex
traneous contaminating D A. The positive con
trols used III this experiment were drops 

A 

C A E F B D 
---3> ---3> ---3> ~ ~~ 

-1 TIM ORF ~ 
B 

M 1 2 3 

Fig. I. peR amplification of the T fM 10CllS from D A 
i,olated from stocks STIB 386 and T REU 927. (A) The 
schema tic diagram indicates the T IM locus wit h the approxi
mate positions of th~ TA dinucleotide repeat and the primers 
(A F) used for peR amplification. (B) Ethidiul11 bromide 
,tained agarosc gel sepa ration of the pe R amplified products 
obta ined from genom ic DNA stocks ST IB 386 and TR EU 927 
using the primers E and F. Track I. ST IB 386: track 2, TR EU 
9~7: track 3. ze ro DNA cont rol: M. 20bp ladder (Advanced 
Biotech nologies). Primer seq uences: A. gcgtagtggcctccaccttt 
gttc: B. aacaccccctat tgttccctctcc: C. caactt actggggacgctgctatc: 
D ctacactctcttttcctctcccag: E. tgccgtt gagtgggtgaaga tagc; F. etc
cctgctacctgtct t tacatc. 
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A 

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 M 

B 

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 M 

Fig. 2. PCR amplification of the TIM locus from single trypanosomes u ing a seri es of nested primers. (A) 16 single blood tream 
stage trypanosomes were isolated optically, transferred to a PCR microtube by the addition of 10 Id of P R buffer, de cri bed 
elsewhere [8], overlaid with mineral oi l and heated to 96°C for 5 min (to disrupt the cell). The sa mples were then subjected to P R 
am plification, by the addition of primers C and D to a fina l concentration of 0.2 f1 M, under the followin g cycling conditions: 96° 
for I min , 64°C for I min and 70°C for 90 s for a tota l of 26 cycles. A I Id sample of the product was transferred to a fre h P R 
micro tube and subjected to a second PCR amplification using primer pair A and B under the same conditions for a further 26 cycles. 
The final products were separated on 1% Seakem agarose, ta ined with ethidium bromide and visualised by ultra violet illumina tion . 
Tracks I and 2, each con tained more than one trypanosome; track 3, zero trypanosome control ; tracks 4- 19, drop each conta ining 
a single trypanosome; M, I/J x 174 Hae lII ma rkers. (B) Ethidium bromide stai ned 4% Nusieve agarose separa tion of the P R 
products of single drop containing a single trypanosome isolated from a mixture of stocks TREU 927 and STIB 386. The 
conditions for PCR amplifica tion were identical to those described in (A) except tha t primer pair A/B was used for the initial 
a mpli fica tion and primer pair El F for the second. Tracks 1- 19, single trypano ome in a single drop; M, I/J x 174 Hae III marker . 

contatn1l1g more than one trypanosome and all 
drops produced an amplified fragment (Fig. 2a, 
tracks I and 2). In order to test whether mix
tures of trypanosome stocks could be detected, 
single trypanosomes were isolated (as described 
a bove) from an infection containing two stocks 
of the parasite (TREU 927 and STIB 386) which 
had different lengths of the dinucleotide repeat 
and so could be distinguished after peR amplifi
cation . A total of 19 drops containing single 

trypanosomes, isolated from a mixed infection , 
were peR amplified and the results obtained are 
shown in Fig. 2b. A total of 12 out of 19 drops 
containing single trypanosomes gave an ethidium 
bromide stained fragment of either 80 bp 
(TREU 927) or 100 bp (STIB 386) but none 
gave two fragments indica ting that none of the 
drops contain two trypanosomes (the lower size 
band on these gels is due to primer dimers). 
These data support the conclusion that a single 
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copy gene ca n be ampli fied from a single try
panosome and that mi xtu res of diffe rent stocks 
ca n be detectcd . In a se ri es of these experi
ments, we have obtained an average of 56% 
amplified signals from drops containi ng si ngle 
trypanosomes, which compares we ll with the 
success ra te for developing clones in mice in
jected with single trypanosomes. The results pre
sented provide a reliable technique for defining 
the genotype of single trypanosomes. To im
prove the utility of this technique in laboratory 
genetic analys is or population genetic stud ies. it 
will be necessa ry to develop methods fo r the 
analys is of several loci fro m a single try
pa nosome (multiplex ing). This has been 
achieved with single human sperm usin g a total 
of fi ve loci [2] and experiments are currentl y be
ing undertaken to ex tend this approach to single 
trypanosomes using a range of polymorphic 
loci. 
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Abstract 

The issue of whether genetic exchange occurs at a significant frequency in natural populations of Trypanosoma 
brucei is controversial and one of the arguments against a high frequency has been the apparent lack of host infections 
with mixtures of trypanosome genotypes. Three minisatellite markers (MS42, CRAM, 292) within the coding regions 
of three genes have been identified and PCR based methods developed for detecting variation at these loci using crude 
Iysates of infected blood as templates. Initial PCR analysis, using primers flanking the repeats, of DNA from two 
cloned stocks of the parasite has shown that two DNA fragments of different size were amplified from each stock. 
Analysis of the inheritance of these fragments into the Fl progeny of crosses demonstrated that the different size 
fragments were alleles that segregated in a Mendelian manner. The alleles at each of the three loci segregated 
independently consistent with their localisation on three different chromosomes. Analysis of a series of cloned isolates 
from tsetse flies showed that these loci were highly variable giving heterozygosities of 94% and the identification of 
12 distinct alleles in a sample of 17 cloned isolates. In order to determine whether isolates are heterogeneous in terms 
of trypanosome genotype, the allelic variation at these three loci was examined in uncloned samples from tsetse flies 
isolated in Kiboko, Kenya and Lugala, Uganda. A significant proportion of the isolates (36% in Lugala and 47% in 
Kiboko) contained more than two alleles at one or more of the loci thus demonstrating that a high proportion of 
tsetse flies were infected with more than one genotype of trypanosomes. This was established, unequivocally, for two 
isolates by generating a series of cloned trypanosome lines from each and determining the genotype of each clone; one 
isolate (927) contained seven different genotypes with a high proportion of the possible combinations of alleles at each 
locus. These results indicate the possibility of frequent genetic exchange in the field, they imply that a significant 
proportion of mammalian hosts must contain mixtures of different trypanosome genotypes and they demonstrate the 
advantages of using rninisatellite markers for the analysis of the population structure of T. brucei. to 1999 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

Although genetic exchange in Trypanosoma 
brucei has been shown to occur in the laboratory 
[1], the importance of this sexual process in natu
ral populations of trypanosomes remains contro
versial. Three models of the population structure 
of trypanosomes have been proposed, firstly that 
trypanosomes undergo frequent, if not random, 
mating [2-4], secondly that trypanosomes have a 
clonal population structure [5-7] and thirdly that 
mating occurS at high frequency but is masked by 
the expansion of a few genotypes in a short time 
frame-an epidemic population structure [8,9]. 
An understanding of the extent and importance of 
genetic exchange in T. brucei populations has 
practical implications, as sexual reproduction 
would facilitate the spread and inheritance of 
traits of medical and economic importance as well 
as generating a population with a high degree of 
genetic diversity that would make the definition of 
common strains causing particular disease pat
terns difficult. 

Much of the information obtained to date has 
been generated from relatively small sample sizes 
which are often diverse in time, host species sam
pled and geographical location and therefore as
sume that little or no population sub-structuring 
occurs. Furthermore, limited attention has been 
paid to intra-isolate heterogeneity (mixed geno
type samples), which is a critical issue if genetic 
exchange is occurring at any significant level. 
However, some studies have reported isolates con
taining more than one genotype of parasite [10-
12] from both tsetse flies and mammalian hosts. 
The restraint on examining larger population 
samples has been the need to expand isolates in 
laboratory rodents to prepare pure parasites in 
sufficient quantity for analysis by isoenzyme and 
randomly amplified polymorphic DNA (RAPD) 
markers, while the detection of intra-isolate het
erogeneity usually requires parasite cloning due to 
the difficulties in applying genetic interpretations 
to some of the markers used. On this basis there is 
a need to develop new markers that allow para
sites to be genotyped without recourse to growth 
in the laboratory thus facilitating the analysis of 
large sample sizes and avoiding any potential 

selection during vegetative growth. Additionally, 
genetically interpretable markers with high levels 
of polymorphism would be particularly advanta
geous in examining whether popUlation sub-struc
turing occurs, whether predominant genotypes are 
stable in time and place and whether individual 
isolates are heterogeneous in terms of parasite 
genotype. 

Hypervariable minisatellites, or variable num
ber tandem repeat (VNTR) loci, are very useful 
genetic markers as they often have a high degree 
of heterozygosity and many different allelic states 
based on variation in the number of repeat units 
in the tandem array. Such minisatellites have been 
used extensively in human genetics for individual 
identification, paternity testing [13] and linkage 
mapping [14] but have only been used to a limited 
extent in the analysis of parasite genomes. The 
trypanosome minisatellite locus, MS42 [15], varies 
in a strain specific manner allowing genotype and 
allele frequencies to be determined, as well as 
providing a means of identifying and tracking 
individual strains. The use of locus-specific 
primers to PCR amplify minisatellite markers 
should enable the genotyping of trypanosomes 
even when contaminated with large quantities of 
host DNA, in addition to allowing the analysis of 
small quantities of DNA as demonstrated by the 
detection and genotyping of single trypanosomes 
by PCR amplification of single copy genes [16f 
Because of their high level of polymorphism, min
isatellite markers are particularly useful in deter
mining variation between populations due to 
geographical barriers, defining mating systems 
and detecting heterogeneity within a sample. 

In this paper we describe the identification of 
two further hypervariable minisatellite sequences 
that can be peR amplified directly from T. bru
cei-infected blood Iysates and the use of these for ' 
the analysis of genotype heterogeneity in parasite 
isolates. The degree of genetic diversity in two 
collections of trypanosomes isolated from wild 
tsetse flies has been determined in order to exam
ine the extent to which these flies harboured 
mixed T. brucei infections within their salivary 
glands. T. brucei undergoes genetic exchange in 
tsetse salivary glands [17] and requires the pres
ence of at least two genotypes to initiate mating 
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so the detection of mixed infections would indi
cate the extent to which this critical pre-condition 
for sexual recombination in T. brucei occurs in the 
field. 

2. Materials and methods 

2.1. Trypanosome stocks 

The 28 stocks used in this study were isolated 
by Goebloed et al. [18] from infected salivary 

Table I 

glands of tsetse flies and passaged three to ten 
times in mice before transfer to our laboratory 
(Table 1). The isolate numbers are the stabilate 
designations given by the Centre for Tropical 
Veterinary Medicine, University of Edinburgh 
(TREU) except for isolate 258 from the London 
School of Hygiene & Tropical Medicine (LUMP). 
The uncloned stabilates were used to infect irradi
ated (600 rads) MFl mice and infected blood 
harvested at peak parasitaemia for subsequent 
PCR analysis. Stabilates of these first peak para
sitaemias were used to infect mice for the genera-

Numbers of distinct minisatellite alleles detected in uncloned T. brLlcei isolates" 

Isolate Year of isolation 

K 936 1969 
K 926 1969 
K 869 1969 
K 981 1969 
K 994 1970 
K 1027 1969 

K 984 1969 

K 854 1969 
K 975 1969 

K 925 1970 

K 1009 1970 

K 851 1970 

K 852 1969 
K 978 1969 

K 997 1970 

K 258 1970 
K 927 1970 

L 836 1969 

L 791 1969 

L 944 1969 

L 834 1969 

L 929 1969 

L 933 1969 

L 941 1970 

L 832 1970 

L 934 1969 

L 844 1970 

L 845 1969 

No. of different sizes PCR products 
detected for each minisatellite marker 

MS42 CRAM 292 

2 2 2 
2 2 2 
2 2 2 
4 4 3 
2 2 2 
2 2 2 
4 4 5 
4 4 4 
2 2 4 
2 2 2 
2 2 2 
2 2 2 
4 2 2 
2 2 2 
3 2 4 
3 2 4 
6 6b 5 
2 4 2 
2 4 2 
2 2 3 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
2 2 2 
4 4 4 

Minimum no. of genotypes present 

I 
I 
2 
I 
I 
3 
2 
2 
I 
I 
I 
2 
I 
2 
2 
3 
2 
2 
2 

I 
2 

• The table lists the isolates used in the genotype analysis with all isolates obtained from Glossina pal/idipes salivary glands, except 
for L941 which was obtained from Glossina juscipes. The prefix K indicates isolates from tsetse flies captured in Kiboko, Kenya 
while the prefix L indicates those from Lugala, Uganda. Isolates with greater than two PCR bands were considered to harbour 
mixed trypanosome genotypes. 

b Fifth and sixth bands visible after high resolution electrophoresis. 
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tion of parasite clones. The derivation of stocks 
STIB 386 and TREU 927 and the Fl progeny 
clones from a genetic cross of these two stocks 
has been described elsewhere [19]. 

2.2. Optical cloning 

Clones were made by direct observation of 
single parasites derived from infected mice from 
a drop of blood diluted in guinea pig serum in 
a well of a humidified Terasaki plate. Immedi
ately after the presence of a single cell was de
tected, the trypanosome was removed in 20 1-11 
of 50% PBSG (phosphate buffered saline [20]/ 
1 % glucose) /50% guinea pig serum and injected 
into an irradiated MFl mouse. 

2.3. Crude lysates and DNA preparation 

Crude lysates from infected mouse blood were 
prepared as follows: 500 fll of phosphate 
buffered saline [20] was added to 500 1-11 of in
fected mouse blood and centrifuged at 2500 x g 
for 5 min, after which 750 1-11 of the supernatant 
was discarded. This washing process was re
peated three times. The final parasite/blood pel
let was then resuspended in 50 III lysis buffer 
(50 mM Tris-HCl pH 8, 100 mM EDTA 0.5% 
SDS, 0.64 mg ml - I proteinase K) and incu
bated overnight at 56°C. The lysates were then 
diluted 1/100 in deionised water and the 
proteinase K was heat inactivated at 95°C for 5 
min. One microlitre of lysate was then used as a 
template for each of the subsequent PCR reac
tions. Purified parasites were prepared from in
fected blood and DNA extracted from them as 
described by Turner et al. [19]. 

2.4. PCR analysis 

Using the published sequences for CRAM and 
292 [21,22], specific primer pairs flanking the re
peated mini satellite within the coding region 
were designed. Sequence of the DNA flanking 
the MS42 repeated region was determined from 
a plasmid clone of genomic DNA from a STIB 
247 x TREU 927/4 Fl hybrid; F532/72mcl7 
(data not shown). From this sequence, two spe-

cific MS42 primers were designed. The primer 
sequences were: 
CRAM-G, 5/ CTGCTGATGCCGTACATGAT
GATITC; CRAM-H, 5/ AACTCCCTCCCGA
TCGATCACAAC; 292-G, 5/ ACACCCCC
TCTCCACTTCAGAT AC; 292-H, 5/ GCTGA
ACCTGTGGGCCCCTCAATTG; MS42-F, 5T
TGTGCGGTCGTT AACGCGCGTTCAA, MS-
42-W,5/GGTGATTCATCGGCTCCCTTACCA. 
All PCR reactions were performed in 10 1-11 reac
tion volumes in 45 mM Tris- HCl pH 8.8, 11 
mM (NH4)2S04' 4.5 mM MgCI2, 6.7 mM 2-mer
captoethanol, 4.4 I-IM EDT A, 113 I-Ig ml - I 

BSA, 1 mM each of the four deoxyribonucle
otide triphosphates, I flM of each oligonucle
otide primer and one unit of Amplitaq 
Polymerase (Perkin Elme!", Cetus USA) using a 
template of either 5 ng of genomic DNA or I ~tl 
of crude lysate. Zero trypanosome DNA con
trols and mouse DNA controls were included in 
every set of PCR reactions. The reactions were 
carried out in a Robocycler gradient 96 (Strata
gene). The cycling conditions, which were identi
cal for the amplification of all three genes, were 
as follows: 96°C for 50 s, 64°C for 50 sand 
70°C for 180 s, for a total of 28 cycles. All 
PCR products were separated by electrophoresis 
on a 1% Seakem agarose gel and visualised by 
ethidium bromide staining and UV illumination. 

3. Results 

3.1. Allelic variation in CRAM and 292 

The sequence of the single copy gene from T. 
brucei, encoding the cysteine-rich acidic integral 
membrane protein, CRAM, has been described 
previously from EATRO 427 and shown to con
tain 66 copies of a 36-bp motif [21]. Using the 
published sequence, a pair of primers flanking 
the repeated region were designed. These 
primers were used initially to amplify (by peR) 
samples of DNA from stocks STIB 386 and 
TREU 927 (Fig. 1, lanes 2 and 3). Two am
plified fragments of different sizes were detected 
in each stock and presumed to represent allelic 
variation in the number of repeat units, with 
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A 1 2 3 4 5 6 7 8 9 10 

2.32-

2.03-

B 1 2 3 4 5 6 7 8 9 10 

2.03 

1.35 

1.08 

0.87 

0.60 

Fig. I. peR amplification of the variable regions of the 
eRA M (A) and 292 (B) genes from DNA isolated from stocks 
STlB 386, TREU 927/4 and hybrid clones derived from a 
STlB 386 TREU 927 cross. peR conditions were as de
scribed in Section 2. peR products were separated on a 1% 
Seakem agarose gel and visualised by ethidium bromide stain
ing. STIB 386 and the cloned line TREU 927/4 are the 
parental stocks while the stocks designated F296 are the FI 
progeny. Lane I: Lambda Hind III and q,x Hae 1II markers 
(Advanced Biotechnologies). Lanes 2- 10, peR amplification 
of the loci from: STlB 386; TREU 927; F296/44bcll; F296/ 
44bcl4; F296/39bcI7; F296/44bcI3; F296/44bcI12; F296/44bcI8; 
F296/39bcl2. Zero trypanosome DNA controls and mouse 
DNA controls were negative (not shown). 

each stock being heterozygous for different sized 
alleles. In order to demonstrate that these bands 
were different alleles, Fl progeny clones from a 
cross between STIB 386 and TREU 927 were 
analysed for the CRAM marker and the results 

are shown in Fig. lA; lanes 4- 10. It is clear 
that each Fl progeny clone has inherited one 
band from each parent. These results confirm 
the two bands as alleles that segregate in the Fl 
progeny and are therefore allelic size variants. A 
similar approach was taken in the analysis of 
the gene encoding the membrane-associated 
protein 292 [22]. The cloned gene from T. brucei 
(EATRO 427) contained a repeated region con
sisting of 47 copies of a 24-bp repeat unit. By 
designing primers flanking the repea ts, the re
peated region of this locus was amplified by 
PCR from stocks STIB 386 and TREU 927 
(Fig. IB; lanes 2 and 3). As with the CRAM 
locus, each stock showed two bands differing in 
size consistent with being allelic length variants 
at this locus. PCR amplification of thi variable 
region from the same FI progeny of a cross 
between stocks STIB 386 and TREU 927 also 
demonstrates that these variable size peR prod
ucts are different alleles which are inherited in a 
classical Mendelian manner (Fig. I B; lanes 4-
10). It is also clear from the patterns of allele 
inheritance (Fig. lA, B) that the alleles for the 
two minisatellite loci are inherited independently 
from each other. For example, hybrids F296/ 
44bcl4 and F296/39bcl7 have inherited the same 
alleles for the CRAM locus, the upper allele of 
STIB 386 and the lower allele of TREU 927/4 
(Fig. lA; lanes 5 and 6), but for the 292 min
isatellite, these two hybrids have inherited differ
ent parental alleles (Fig. 1B; lanes 5 and 6), 
indicating that the two loci are inherited inde
pendently. This independent assortment of alle
les is expected for these loci, as they are located 
on different chromosomes [21 ,22]. A similar 
analysis, for both loci , was undertaken with the 
progeny from crosses between stocks STIB 247 
and TREU 927 and STIB 247 and STIB 386. 
The data (not shown) are again consistent with 
Mendelian segregation, further supporting the 
conclusion that the size differences in the repeat 
regions of these genes represent allelic variation 
at each of the two loci. Similar allelic poly
morphisms due to variation in the number of 
repeats within a tandem array have been de
scribed for the MS42 minisateUite locus [15] and 
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the alleles at this locus segregate independently 
from both CRAM or 292 (data not shown). 

In order to estimate the level of polymorphism 
shown by the CRAM and 292 minisatellite mark
ers, lysates of cloned lines derived from 17 isolates 
from Kiboko were PCR amplified using the locus 
specific primers. Twelve distinct alleles for each of 
the CRAM and 292 loci were detected, giving 
heterozygosities of 94% for each locus (data not 
shown). These results showed that these loci are 
highly polymorphic as had been demonstrated 
previously for the MS42 minisatellite locus [15). 

3.2. Analysis of uncloned T. brucei samples from 
tsetse salivary glands 

The markers were used to determine the num
ber of alleles present in a collection of T. brucei 
isolates derived from the salivary glands of tsetse 
flies. Our prediction was that by using all three 
minisatellite loci (MS42, 292 and CRAM) the 
sensitivity of detecting different genotypes would 
be increased. The samples were derived from 28 
wild tsetse flies of the genus Glossina, from Ki
boko and Lugala (isolated in 1969 and 1970), 
which had been amplified in mice and passaged 
several times [18). Parasite DNA or crude lysates 
from the infected mouse blood were then analysed 
by PCR using all three markers. The results for 
the Kiboko samples are presented in Fig. 2, and 
for all samples in Table 1. From the genetic 
analysis and the genotypes exhibited by cloned 
trypanosome stocks, one genotype will either con
tain two different sized alleles (heterozygous) or a 
single allele (homozygous). A number of the iso
lates show two alleles at each of the three min
isatellite loci, for example tracks 1, 2 and 3 in Fig. 
2A-C, and could represent a single genotype 
heterozygous at all three loci. Formally, such 
genotypes could represent a mixture of two ho
mozygotes but the high levels of heterozygosity 
for these loci argue against this. A second group 
of isolates show more than two alleles (e.g. lanes 
4, 7, 8, Fig. 2A-C) up to a maximum of six alleles 
(lane 17, Fig. 2C) indicating that they contain a 
mixture of different trypanosome genotypes. Thus 
in both sets of isolates a significant proportion of 
the tsetse flies harboured more than one genotype 

of T. brucei, generating more than two PCR 
products (summarised in Table I). Assuming that 
all the trypanosomes are heterozygous for alleles 
at each locus and that multiple alleles at more 
than one locus do not assort independently, the 
minimum number of genotypes present in each 
isolate can be determined (Table 1). In total, eight 
out of 17 (47%) of the Kiboko samples contained 
more than one genotype, and four out of 11 (36%) 
of the Lugala samples. Most mixed samples prob
ably contained a minimum of two different geno
types, as four alleles at one or more loci were 
detected. However, two samples must have con
tained at least three different genotypes, as isolate 
TREU 984 contained five different 292 alleles and 
isolate TREU 927 contained six different MS42 
alleles. It is clear that by using a combination of 
different highly variable minisatelli tes rather than 
relying on one marker, the sensitivity of the anal
ysis was greatly increased. Despite this, the num
ber of mixed infections is probably an 
underestimate as some trypanosome genotypes 
could be lost during the amplification in mice and 
repeated passaging. Analysis of the alleles at the 
three loci in the Kiboko population of isolates 
shows that there are at least 13 distinct alleles of 
CRAM, 17 distinct alleles of 292, and 12 alleles of 
MS42, i.e. a very high level of allelic variation. 
Analysis of all the Kiboko isolates using the three 
loci shows that out of 17 isolates, 16 are genotyp
ically distinct (tracks 6 and 12 are identical, Fig. 
2) demonstrating a high level of polymorphism in 
the trypanosomes within this field population. 

3.3. Cloned parasites from mixed infections 

The estimates of the number of genotypes in 
the isolates showing more than two alleles at two 
or more loci is a minimum. As the loci are un
linked, the alleles at each locus would be expected 
to assort independently and so many more dis
tinct genotypes could be present in such isolates. 
As little is known (in trypanosomes) as to the 
mechanism by which the repeat length variants 
are generated, it is possible that they have arisen 
by mutation during mitosis. To address both these 
issues, a series of cloned trypanosomes lines were 
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established from two different samples, 927 and 
845, both of which appeared to harbour multiple 
trypanosome genotypes. Each cloned line was 
then analysed by peR for all three loci. The 
results from the thirteen 927 clones for one 
marker, 292, are shown in Fig. 3. Four distinct 
banding patterns, each containing two bands, 
clearly demonstrate that more than one genotype 
of T. brucei was present in the original tsetse 
salivary glands. These genotypes account for four 
of the alleles observed in the uncloned isolate 

(lane 2, Fig. 3) but the fifth and sixth aIleles are 
not found in any of the cloned lines, implying that 
further genotypes are present but have not been 
cloned. The fact that all the cloned lines show 
only two alleles yet have undergone multiple 
rounds of mitosis during clonal growth (from 1 to 
108 trypanosomes) suggests that length varian ts at 
this locus are not generated at an appreciable 
frequency during mitosis. The clones obtained 
were also characterised with respect to the two 
other minisatellite markers (CRAM and MS42) 

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
4.36 

2.32 

2.03 

B 
2.32 

2.03 

1.08 

c 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Fig. 2. peR amplification of three minisatellite markers from uncloned tsetse derived trypanosomes. One microlitre of 1/ 100 dilution 
of a crude lysate made from infected blood was used in each peR reaction. All reactions were performed under the same peR 
conditions as described in Section 2. peR products were separated on a 1% Seakem agarose gel and visualised by ethidium bromide 
staining. Lanes 1- 17: stocks 936; 926; 869; 981; 994; 1027; 984; 854; 975; 925; 1009; 851 ; 852; 978; 997; 258; 927, using primers 
specific for the: (A) eRA M locus; (B) 292 locus; (C) MS42 locus. No peR products were generated in the control samples, i.e. ze ro 
trypanosome DNA controls and mouse DNA controls (not shown). 
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1 2 3 4 5 6 7 8 9 10 11 12 13 1415 

Fig. 3. peR amplifica tion of the 292 locus from TREU 927 derived clones. peR reactions were performed on crude Iysa tes as 
described in Section 2 and Fig. 2. peR products were separated on a 1% Seakem agarose gel and visualised by ethidium bromide 
staining. Lane I: Lambda Hind III and q,x Hae III markers (Advanced Biotechnologies); lane 2: unc10ned tsetse derived isola te 927; 
lanes 3- 15: 927 clones, 4B, 4, 5, 9, 10, 12,13,14, 18B, 20, 22, 23 and 24. Zero trypanosome DNA controls and mouse DNA controls 

were negative (not shown) . 

and the results are summarised in Table 2. There 
are at least seven different genotypes of try
panosomes present in the tsetse fly's salivary 
glands represented by isolate 927. Marker analysis 
of the eight cloned lines derived from sample 845 
also indicate that original sample contained at 
least two different genotypes of trypanosome. 

3. 4. Evidence for meiosis in field sample 927 

The five 292 alleles present in the unc10ned 927 
sample (Fig. 3, lane 2) have been calculated (by 
band size estimations) to contain 76, 50, 44, 41 
and 38 copies of the 24-bp repeat unit. The 927 
derived clones (Fig. 3, lanes 3-14) contain the 
four smaller alleles in four different combinations 
out of a possible six combinations. This allele 
assortment has also been observed for the other 
markers, CRAM and MS42 (Table 2), where three 
out of the six possible allele combinations of 
CRAM and four out of six possible MS42 combi
nations are found in the clones, excluding those 
alleles not recovered. Furthermore when the com
plete multilocus genotypes of each clone are con
sidered seven of the 13 clones are distinct showing 
different combinations of alleles at the three loci. 
It seems likely that the analysis of further clones 
would identify further allelic combinations and a 

high level of mUltiple genotypes within one tsetse 
fly. These data raise the question of the origins of 
the trypanosome genotypes identified. These 
could have arisen by the fly feeding on one mam
malian host containing all the different try
panosome genotypes or these genotypes could 
represent the products of mating as a result of the 
tsetse feeding on a mammal containing two or 
more genotypes. It would be difficult to formally 
distinguish between these possibilities without fur
ther analysis. 

4. Discussion 

In order to detect the full range of trypanosome 
genotypes in field isolates, three highly variable 
minisatellite loci have been analysed; one of these, 
MS42, has already been described [15], and here 
we describe two further minisatellite loci, within 
the coding regions of two previously described 
structural genes, CRAM and 292. By designing 
specific primers to the DNA flanking the tandem 
repeats of these genes, it was possible to amplify, 
by peR, the hypervariable regions from a range 
of T. brucei samples including those contaminated 
with host DNA. These single locus markers 
proved to be extremely informative due to the 
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large number of allelic states at both loci, allow
ing individual T. brucei stocks to be identified. 
The minisatellite markers were also able to de
tect those samples which contained more than 
one genotype of trypanosome by virtue of these 
samples containing more than two alleles at 
each locus. In principal, this could suggest that 
the trypanosomes were polyploid, however this 
is very unlikely as this has only been reported in 
the progeny from laboratory crosses and geno
typing of single trypanosomes from field isolates 
only shows diploid patterns. 

Using these minisatellites we have found evi
dence that genetically distinct trypanosomes co
exist in salivary glands of a significant 
proportion of tsetse flies; 47% of Kiboko and 
36% of Lugala samples. This is in contrast to 
the isoenzyme data of Godfrey et al. [11] where 

Table 2 

only 9.6% of tsetse samples were shown to be of 
mixed genotype. This could reflect the fact that 
isoenzyme analysis is less sensitive for detecting 
mixtures due to a lower level of variation. 
Isoenzyme analysis of a large collection of sam
ples from mammalian hosts from across Africa 
also detected infections of more than one geno
type, in both human (3%) and a range other 
mammals (2%) [11]. Stevens et al. [10] examined 
the isoenzyme patterns of trypanosomes from 
the midguts of three tsetse flies and found two 
flies containing five and nine different T. brucei 
phenotypes respectively. Further analysis of 
cloned lines from the same samples, by RAPD 
analysis, revealed that even more genotypes were 
present and that all three tsetse flies harboured 
mixed infections [12], thus suggesting that previ
ous studies based on isoenzyme analysis alone 

The minisatellite genotypes of cloned lines derived from the uncloned isolates K927 and L845" 

Isolate number Genotype given as number of repeats per allele Multilocus genotype 

MS42 CRAM 292 

Uncloned K927 35/34/30/26/25/20 70/68/62/61 /52 76/50/44/41 /38 Mixed 

Clone K927/4B 26/25 70/68 44/38 A 
Clone K927/4 25/20 68/61 50/38 B 
Clone K927/5 30/20 68/61 50/41 C 
Clone K927/9 30/20 68/61 50/41 C 
Clone K927/10 25/20 68/61 50/38 B 

Clone K927/12 26/25 68/61 44/38 D 
Clone K927/13 26/25 68/61 44/38 D 
Clone K927j14 26/25 70/68 44/41 E 

Clone K927/18B 30/26 62/61 50/38 F 

Clone K927/20 30/20 68/61 50/41 C 

Clone K927/22 25/20 68/61 50/38 B 

Clone K927/23 25/20 68/61 44/41 G 

Clone K927/24 25/20 68/61 44/41 G 
Uncloned L845 31 /26/21 / 16 98/73/70/50 75/49/43/12 Mixed 

Clone L845j1 31 / 16 98/73 49/ 12 H 

Clone L845/2 31/16 98/73 49/12 H 

Clone L845/3 31 / 16 98/73 49/ 12 H 

Clone L845/4 31/16 98/73 49/ 12 H 

Clone L845/5 31 / 16 98/73 49/ 12 H 
Clone L845/6 31 / 16 98/73 49/ 12 H 
Clone L845/7 31 / 16 98/73 49/12 H 
Clone L845/8 26/21 70/50 75/43 J 

• Each multilocus genotype is determined from the combination of alleles at the three minisatellite loci and is assigned a different 

letter. 
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may under-represent the degree of trypanosome 
genetic diversity and the number of mixed tsetse 
infections present in natural populations. 

It is possible that all estimates of mixed infec
tions recorded to date, may not reflect the true 
levels of genetic diversity and the frequency of 
mixed infections, due to the influence of sample 
bias. All samples analysed, except those from 
the midgut of tsetse [12], have been grown in 
rodents and passaged to greater or lesser extent 
before analysis. It is probable that the repeated 
passaging of trypanosome populations in labora
tory rodents may serve to filter out less virulent 
trypanosome types, especially as different geno
types have different rates of growth in rodents 
[23]. Another factor which may influence the re
liability of sampling is selection due to host in
fectivity. Host selection has been reported; for 
example approximately 63% of trypanosomes 
isolated from the salivary glands of tsetse flies in 
Kiboko were unable to infect rodents [18], and 
35% of samples from the Ivory Coast were lost 
as they failed to grow in mice [24). While the 
problems associated with selection operating on 
any sampling procedure involving growth or cul
ture is well recognised, it is assumed that such 
selection does not bias the analysis of markers 
which have no obvious phenotype on which se
lection would operate. Given the nature of the 
markers used to date, it has been impossible to 
test this assumption, however the markers de
scribed in this paper could readily be used to 
address this question. 

Tsetse salivary glands are the probable site at 
which genetic exchange takes place between T. 
brucei stocks [17] and a prerequisite for genetic 
exchange to occur is that there are at least two 
different strains of T. brucei present in the sali
vary glands at the same time [1,19). We have 
demonstrated that a significant proportion of 
tsetse flies harbour mixed T. brucei infections in 
their salivary glands, suggesting that genetic ex
change could be occurring in the field. The de
tection of seven distinct yet highly related 
genotypes in one fly isolate (927) and the allele 
assortment which was demonstrated for the 

three minisatellite loci, cannot easily be ex
plained without genetic exchange being involved. 
The most direct way of testing this would have 
been to analyse the genotypes of trypanosomes 
present in this fly's midgut to determine what 
genotypes had infected the fly and, from this 
analysis, deduce whether the genotypes in the 
salivary gland were recombinant. Unfortunately 
midgut samples were not collected. An alterna
tive approach, would be to analyse the frequen
cies and nature of the different genotypes in the 
population of isolates to estimate the probability 
that the fly had ingested the seven genotypes 
detected. This would require the generation of 
multiple clones from each isolate and has not 
been undertaken. Similar numbers of genotypes 
have been isolated from fly midguts [10] pre
sumably reflecting genotypes ingested when the 
flies feed on infected mammals and so the ob
servation of multiple genotypes in the salivary 
glands does not per se indicate that these are 
generated by genetic exchange. However, given 
that the available evidence shows that salivary 
gland infections primarily arise as a result of the 
first teneral blood meal [25], the results pre
sented show that a high proportion of mam
malian hosts must be infected with more than 
one genotype of trypanosomes. The data ob
tained by analysing the trypanosome genotypes 
in the midgut of the tsetse could arise as a re
sult of post-teneral blood meals and therefore 
not result in maturation to the salivary gland . 
Thus, the results presented clearly show that the 
main prerequisite for mating, namely the inges
tion and maturation of more than one genotype 
of trypanosome, is satisfied in a high proportion 
of tsetse flies. 

The high levels of mixed infections detected in 
this study and the recombinant genotypes de
tected in trypanosomes from one fly, together 
provide evidence that genetic exchange does oc
cur. However the data presented in this paper 
do not address how frequently genetic exchange 
occurs and to what extent it is involved in gen
erating diversity. It is likely that popUlation di
versity has been underestimated due to sampling 
selection and the use of markers with low 
heterozygosity. This can now be assessed by 



A. MacLeod et al. ; Molecular and Biochemical Parasitology 102 (/999) 237- 248 247 

analysing trypanosomes, directly from their 
source, without the additional step of growth in 
laboratory rodents, using the highly polymorphic 
and informative minisatellite markers described 
here. 
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