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Chapter 6 

General Discussion 
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6.1 Experimental findings 

6.1.1 Intermittent exercise 

6.1.1.1 VE -veo 2 coupling 

The intennittent study again demonstrated that the VE response was appropriate 

to the metabolic demands imposed by the intensity domain rather than the 

absolute work-rate. This coupling of VE to the metabolic demands, both veo 2 

clearance and respiratory compensation when required, in the face of constant, 

presumably intense, central drive enforces the belief that a primary component of 

the respiratory control system must include a humoral element. Although, it 

should be pointed out that none of the exercise phases were sufficiently long 

enough for subjects to achieve a steady-state, therefore no conclusion can be 

drawn regarding the control of VE during phase III. 

The uncoupling of VE from veo 2 during phase I of the off-transient is an 

interesting finding and warrants further investigation of the mechanistic basis of 

these changes in V E • 
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6.1.1.2 Isocapnic buffering 

The partitioning of the exercise phase into varying time domains illustrated that 

the delayed onset of respiratory compensation was not strictly [La-]a dependent 

nor related to the central drive. However, the results of this study cannot further 

elucidate the mechanisms underlying the delay. To further out understanding 

detailed knowledge of both the behaviour of the carotid bodies in response to the 

conditions typically associated with supra-0 L exercise, and the respiratory 

controllers response to such inputs might be required. This would begin to allow 

us to establish why there is delay in the onset of respiratory compensation while 

the carotid bodies have been shown to respond rapidly to the presence of 

metabolic acidosis (e.g. Biscoe et al., 1970; Hornbein & Roos, 1963; Ponte & 

Purves, 1974). 

6.1.2 LTM 

6.1.2.1 Neural mechanisms underlying L TM 

Recently some defmitions of modulation and plasticity with regard to respiratory 

control have been proposed (Mitchell & Johnson, 2003). The term modulation 

has been defined as a neurochemical modification of synaptic strength over a 

relatively short time period, that is only active while the neuromodulator is 

present (e.g. 'STP' changes during an exercise trial) (Mitchell & Johnson, 2003). 

This is distinct from plasticity, which has been defined as a persistent change 
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within the neural control system which outlasts the stimulus (Mitchell & 

Johnson, 2003). However, while such standardisation should be welcomed, the 

tenns used in this thesis reflect those in the literature to date and not these 

definitions. As such, short-tenn potentiation (STP) whether referred to here or by 

Eldridge for example is what is actually being defined as modulation; i.e. it is a 

short-tenn change which is reversible in the absence of the stimulus. Whereas 

long-tenn modulation (L TM) or long-tenn plasticity (L TP), while only LTM has 

been used during this thesis the tenns appear interchangeably in the literature, 

both represent plasticity; i.e. neural changes based on experience that persist after 

removal of the stimulus. This can be schematised by figure 6.1. 

A 
Modulation 

B 
Plasticity ... t 

Figure 6.1: Schematic representation of modulation and plasticity. Panel A illustrates 
modulation, whereby an increased activity is seen in the integrated activity in the respiratory 
nerves while a neuromodulator (black bar) is present. This response does not persist when 
the neuromodulator is removed. Panel B illustrates plasticity, the same response is seen while 
the neuromodulator is present. However, when the neuromodulator is removed the response 
is a slow decline to an increased level (relative to baseline). Reproduced from Mitchell & 
Johnson. 2003. 

While much is known about the mechanisms underlying certain types of 

respiratory plasticity (e.g. hypoxia induced, Bavis & Mitchell, 2003), little is 

known for certain about the structural basis of exercise induced plasticity. 

However, there are two demonstrations that are of particular importance. Firstly 
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that L TM in goats is abolished by para-cholorphenylalanine, a serotonin depleter 

(Johnson & Mitchell, 2001) and secondly that STP ofthe exercise hyperpnoea in 

goats also appears to be under serotonergic mediation (Bach et al., 1993; 

McCrimmon et al' J 1995; Mitchell et al., 1993; Mitchell et al' J 1995). Therefore, 

it appears that L TM may be operating via the same pathway as STP and as such 

may indicate a consolidation of the changes initiated by STP. 

Furthermore, as both STP and LTM appear serotonin dependent it is likely that 

these forms of respiratory plasticity operate via neuromodulator (i.e. serotonin) 

induced changes in synaptic strength (see figure 6.1). That is to say that serotonin 

release onto the pre-synaptic terminal activates intra-cellular signalling 

molecules which initiate changes resulting in increases of synaptic strength. In 

the short term the activated kinases may bring about increases in synaptic 

strength through modulation of existing channels and receptors (e.g. by 

phosphorylation). 

Further, more robust longer-term changes are proposed occur as repeated 

activation of serotonin receptors may bring about protein synthesis, possibly of 

kinases and neurotrophic factors for example, thus producing longer lasting 

plasticity (Mitchell & Johnson, 2003). It is hypothesised that hypercapnic 

exercise (i.e. during conditioning with increased V D) increases activity in 

brain stem serotonergic raphae neurons which terminate in respiratory control 

regions. This increased activity results in increased serotonin release which may 

increase ventilatory output through increases in synaptic potency (Johnson & 

Mitchell, 2001). 
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6.1.2.2 Phase III 

In the absence of any evidence of a role for L TM in the control of the phase II 

and III moderate exercise hyperpnoea, nor even any evidence of the existence of 

such a mechanism, how does this impact on the currently proposed control 

schemes? Even the strongest proponents of a humorally mediated control system 

do not seriously contend that chemoreception can account for the entire increased 

drive to breathe, above rest or a lower work-rate for that matter, during phase II 

and III. Additionally, essentially no one proposes a carotid or central 

chemoreceptor drive during phase I. Therefore, during each phase of the 

ventilatory response, regardless of the control scheme being proposed, classical 

neural mechanisms proportional to the exercise intensity seem likely to be 

operational. 

With this specific frame of reference, could the system require a learned 

component during the phase II or III response? The neural drives, predominantly 

central command and muscle reflexes, that are purported to provide part of the 

increased drive to breathe are by definition proportional to the generation of 

muscular activity (central command) and proportional to muscular activity 

(muscle reflex). Therefore, while not able to generate a hyperpnoea proportional 

to CO2 clearance, such mechanisms could provide a component of the total drive 

proportional to the work-rate. This would leave a constant proportion of the total 

drive across work-rates requiring to be provided by humoral mechanisms. This is 

consistent with the work of MacDonald et al. (1990) which showed a constant 
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proportional carotid body drive, a contribution of -20%, independent of work

rate during phase III. 

Therefore, in such a scheme, what advantage would a 'learned' response provide? 

At face value there would seem to be no advantage to a learned response over 

one simply proportional to muscular activity as described above. However, if the 

contributions of central command and muscle reflexes are to account for -80% 

of the phase III hyperpnoea: How does the respiratory controller equate a given 

input from central and peripheral drives to an output equivalent to 80% of the 

total requirement? In such a model it would seem prudent to propose that a role 

for L TM might be to adjust the ventilatory output to the input from central and 

peripheral neurogenesis to the appropriate level, e.g. -80% of the total 

requirement, allowing the humoral contribution to 'top-up' and create the 

proportionality between '.IE and VC0 2. However, the demonstration that the 

ventilatory response of 'cycling naive' subjects is appropriate, despite 

presumably not 'learning' the match between central command and muscle reflex 

to the -80% of the required drive seemingly precludes this. This could indicate 

redundancy within the system or that the efficiency of the carotid bodies at 'fine

tuning' the response requires only a crude approximate drive from central 

command or muscle reflex. Therefore, the system may not require plasticity to 

accurately match the central drive to a very accurate output. Alternatively, only 

coarse refinement of the input-output characteristic may be required, which could 

potentially be achieved without such a specific 'exercise-memory' as was 

hypothesised to be excluded in the study, i.e. the plasticity may occur during 

basic day-to-day exercise such as walking. 
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What is not clear, if the central command and muscle reflex drives are integrated 

in some way to provide -80% of the total drive during phase III, i.e. they provide 

a drive proportional to -80l/min if the total requirement is 1 ~Ol/min, then why 

does ventilation not simply rise to this level, during phase I and II? Could the 

carotid bodies actually provide a constraint to VE during phase II and cardio

dynamic mechanisms the same during phase I? The alternative would seem to be 

STP increasing the neural drive that originates during phase 1. However, how the 

'on' 'off asymmetry of STP when the stimulus is present versus not present is 

compatible with the 'on' 'off symmetry of the ventilatory response irrespective 

of whether the stimulus is present during recovery (i.e. transition to rest) (e.g. 

Whipp et al., 1982; Griffiths et al., 1986). 

6.1.2.3 Phase II 

Can a similar role for a memory-related phenomenon be envisaged in phase II? 

The instinct here is to consider STP, i.e. reversible plasticity within the exercise 

bout, which has been shown to have an intrinsic time course not dissimilar to V E 

during moderate exercise. Furthermore, in the absence of a sustained increased 

error signal capable of driving an increased carotid body contribution, could STP 

'heighten' the carotid body drive despite an insufficient increase in the basic 

stimulus? 

Firstly this would require a stimulus to trigger such a mechanism. There is likely 

to be a small transient hypercapnia during phase II as ventilation lags slightly 
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behind YCO 2 ; i.e. is slightly low for the requirement. Could this small elevation 

in P aC02, conventionally thought too small to actually mediate the phase II rise 

in YE, provide the trigger to STP of the carotid body input to the respiratory 

controller. As such, the small increase in P aC02 which is sustained relatively 

constant and hence cannot provide the continually increasing drive needed for a 

classical humoral drive during phase II, would begin to increase Y E proportional 

to the error signal. Then, as P aC02 stabilises and falls, i.e. the classical humoral 

drive is removed, potentiation of the signal could continue to increase the drive 

to breathe thus continuing the increase in Y E . 

The time course of STP in the absence of an input is quantitatively similar to that 

for YE, the rapid time course typically observed for the onset of STP is actually 

a composite of STP plus the stimulus. In such a scheme the proposed stimulus is 

likely to be greatest shortly after the switch from phase I to II and decline 

thereafter. The reduction in stimulus might allow the time course of the STP 

itself to be manifest and thus provide the slow drive to YE. However, how this 

could account for situations where experimental manipulation speeds or slows 

YCO 2 kinetics, e.g. prior hyperventilation (see page 49), is unclear. 

6.1.2.4 Phase I 

As already discussed phase I is the most likely candidate to involve a role for 

LTM (see page 233). These studies are unable to shed any light on the issue and 

so further work is required. However, it is worth considering whether a similar 
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mechanism as discussed for phase III might be appropriate. That is, could L TM 

set the appropriate VEin response to a given intensity of stimulus from central 

command, for example? This could be consistent with Beaver and Wasserman's 

demonstrations (1968 and 1970) that less experienced subjects exhibited less 

marked phase I responses. Could they simply not have learned the appropriate 

output (VE) in response to the input (e.g. central command)? 

Therefore, while the studies conducted during this thesis find no role for, or 

evidence of, L TM in the phase II and III responses. Thus suggesting it is not a 

primary component of the control system; it is not possible to rule out plasticity 

within the controller being required in some way. One possibility being 

involvement in fine-tuning the input-output characteristics of the VE response. 

Furthermore, a role during phase I has yet to be rigorously investigated and 

should a demonstration of L TM in phase I be made, it may clear up the 

uncertainties regarding the requirements of a conditioning paradigm. This would 

therefore allow re-evaluation of the L TM studies currently in the literature to be 

performed. 
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6.2 How is V E controlled? 

The simple and probably most commonly given answer to this question is that 

we do not know. However, this answer does not give credence to the amount of 

information amassed in the literature. The consequence of this however, is that 

there is not the scope to critically discuss every piece of information relating to 

the control of the exercise hyperpnoea with the aim of fitting them together and 

producing a complete picture. Even if this could be done there remains the 

possibility the final picture will be incomplete, as our knowledge almost certainly 

is. Therefore, certain demonstrations which have a major bearing on our ability 

to piece together the picture of a functional control scheme will be focused on; 

specifically those demonstrations that seem to preclude involvement of particular 

control mechanisms. 

6.2.1 Phase I 

Firstly the work of on spinal cord transected patients, predominantly the studies 

of Adams et al. (1984). The weight of existing evidence seemingly precludes 

conventional chemoreception from mediating the phase I response. Therefore, 

both the experimental evidence and the pattern of response are suggestive of a 

controller capable of 'seeing' changes immediately at exercise onset. It is worth 

noting that it is not the neural transmission time from carotid bodies to 

respiratory controller which rules them out, but their physical separation from 
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any changes observed with the onset of exercise. This leaves central command, 

muscle reflex and cardio-dynamic linkages. 

Adams et al. (1984) show significant increases in both VI and veo 2 with 

consequently stable PETC02 and R by the second breath after exercise onset, i.e. 

essentially normal responses. Although, it is worth noting that when exercise is 

initiated during expiration, changes are typically seen within that respiratory 

cycle (e.g. Whipp et al., 1970). Exercise was initiated during expiration in the 

study in question, furthermore VI rather than VE was measured. Therefore it 

might have been expected that changes would have been seen in the first breath 

rather than the second. The subjects involved in the study had clinically complete 

thoracic level lesions and as such there could have been no involvement of a 

peripheral reflex, at least via the spinal cord anyway. The absence of central 

command was assumed and it was suggested to be the case as the subjects were 

said to often be unaware exercise was taking place. 

Furthermore, utilising a similar exercise protocol Adams et al. (1987) compared 

the changes in cardiac output and VI during voluntary and electrically induced 

exercise and found no specific relationship between the two. However, the study 

did not utilise paraplegic subjects. 

How then can these seemingly inconsistent findings be brought together? The 

use of Positron Emission Tomography (PET) over the last decade has displayed 

an involvement of higher centres during exercise onset and offset (e.g. Fink et 

al., 1995; Thornton et al., 200 I). Employment of such techniques during induced 

296 



exerclse In spinal cord transected subjects should confirm whether central 

command was absent during the studies of Adams et al. and others. Clearly if the 

outcome of such a study was to show increased activation of the motor cortical 

areas thought to be important in central command in tandem with a typical phase 

I response. Alongside no correlation between V E and Q then it might be a 

significant step closer to allowing a conclusion that the Phase I response is driven 

by central command. However, if no activation and hence no central command 

could be demonstrated, but still a 'normal' phase I response, then either central 

command is not involved in phase I or is not required for phase 1. 

There is, I believe, sufficient evidence in the literature to promote the latter 

consideration as the more plausible. Regardless, the position in the literature at 

the moment does not allow a distinction between the system exhibiting 

hierarchical redundancy or experimental error. To conclude if central command 

is the predominant mediator of phase lone of two demonstrations is required. 

Firstly whether or not central command is actually present in spinal cord 

transected subjects exhibiting a 'normal' phase I VE, or secondly a demonstration 

that spinal cord transected subjects, without any volitional attempt to generate 

exercise, do not normally increase V E during phase 1. Either a positive outcome 

in the former or a negative outcome in the latter would suggest that the increases 

reported in the literature are actually unrelated to a normal exercise drive or 

reflect an attempt to generate motion. However, neither demonstration has been 

reliably made, therefore it is not possible at this stage to conclude on the specific 

pathways involved in phase 1. 
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6.2.2 Phase II 

While it is important to remember Eldridge's (1977) note of caution that a slow 

response does not necessitate a humoral one, especially given the rapid response 

typically exhibited by the carotid bodies, how a feedforward controller could be 

capable of directing the tight regulation between VE and veo 2 is unclear. 

Equally, for that matter, a feedback controller unaware of the e02 clearance 

requirement, e.g. a muscle reflex mediated by group III and IV afferents. Even if 

the group III and IV afferents are capable of transducing information regarding 

e02 production, it is not obvious how they could be aware of the degree of C02 

storage and hence the remaining volume of C02 requiring to be cleared. 

Therefore, the only mechanism seemingly capable of sensing the required 

information to match VE to veo 2 during the dynamic phase is peripheral 

chemoreception. 

There are many demonstrations in the literature supporting a role for the carotid 

bodies in phase II, many of which have already been discussed. Therefore I wish 

to focus principally on some interesting abnormalities in results and omissions 

from our knowledge. Oren et al. (1982) demonstrate that augmenting the carotid 

body drive, through chronic metabolic acidosis, speeds the V E kinetics relative 

to VC0 2 , an effect which is seemingly abolished by hyperoxia. However, while 

hyperoxia slows the ventilatory kinetics in acidosis, alkalosis and control to 

essentially the same levels (roughly half as slow as for room air control, i.e. 

'normal') it also slows t VCO 2. Thus meaning that, under control conditions 

(with regard to acid-base status) in hyperoxia the same relationship exists 
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between'tVe0 2 and'tVE as in normoxia. This is in direct contrast to a carotid 

body mediation of the phase II hyperpnoea, as removal of the sensor (the carotid 

bodies through hyperoxic desensitisation) should uncouple the output response 

('t VE) from its input or target ('t Ve0 2 ), i.e. not the case in this study. However, 

Griffiths et al. (1986) have demonstrated a separation of 't V E from 't veo 2 with 

hyperoxia. 

A possible demonstration to resolve this issue would be to examine the effect of 

manipulation of the body C02 stores (e.g. Ward et al., 1983) prior to exercise 

with high Fr0 2. This should differentiate between the coupling of veo 2 to VE 

during hyperoxia (Oren et al., 1982) being coincidental or controlled by a 

structure other than the carotid bodies. 

Another note of caution lies in regard to the interpretation of the slope of the VE

VC0 2 relationship. This typically has a value of around 25 (e.g. Neder et al., 

2001). Therefore, it seems common practice to simply accept that the existence 

of a slope around this means that VE has been appropriately controlled to 

accurately regulate Pae02. However, this is not necessarily the case. For 

example, it has been reported that SCI subjects have a normal VE - veo 2 

relationship (e.g. Adams et al., 1982). However, SCI subjects typically have a 

reduced cardiac output during exercise (e.g. Jacobs et al., 2002). Therefore, it is 

likely that pulmonary perfusion is compromised in these individuals; thus 

potentially reducing the physiological dead space less and requiring an elevated 
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VE with respect to VC0 2 , i.e. a steeper VE- VC0 2 relationship than nonnal 

(see page 28). 

Furthennore, the 'noise' typically seen on the VE - VC0 2 relationship (see 

results) hints at the possibility of PaC02 fluctuating with this variability. How 

much P aC02 fluctuates and whether this variability has sufficiently defined 

response characteristics to be capable of providing a stimulus the carotid body 

chemoreceptors remains to be elucidated. 

Therefore, while the carotid bodies appear to be the predominant candidate to 

mediate the phase II hyperpnoea there are still some uncertainties. What is even 

less clear is exactly how the carotid bodies might sense the appropriate 

requirement, with regard to CO2 clearance, for VE at any given moment. There 

is no convincing evidence of an appropriate signal in mean P aC02, the oscillation 

in PaC02 or pHa, the 'phase-coupling' of the oscillation, [K+] or any other known 

carotid body stimulant. Furthennore, it is not obvious how any stimulant not 

directly CO2 related could provide the necessary infonnation regarding the CO2 

clearance requirement. 

The identification of a signal the carotid bodies are capable of transducing into 

an appropriate drive for V E should be the next experimental goal. Consequently 

such a demonstration would also surely confinn that the carotid bodies are the 

mediator of the phase II hyperpnoea. 
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6.2.3 Phase III 

There are few realistic voices denouncing a role for the carotid bodies in phase 

III. It is widely accepted that they contribute to -20% of the total drive (Dejours 

test estimate, see page 60). The same concerns apply as during phase II regarding 

the source of their error signal. However, potentially of more interest is the 

remaining 80%; given the demonstration that SCI subjects exhibit a 'normal', 

with regard to vco 2' phase III ventilatory response despite the lack of a 

traditional muscle reflex and central command. While it is arguable that some 

volitional attempt to generate exercise despite the actual inability to do some may 

contaminate the phase I responses, it is unlikely that such subjects could 

continually provide the appropriate central drive while not actually generating 

exercise and therefore having no mechanical feedback. Therefore, where did the 

remaining 80% of the drive come from in such subjects? 

Again hyperoxia may help elucidate the mechanisms. Should SCI subjects 

exhibit a greater decline than -20% when breathing hyperoxia in the steady-state 

then the carotid bodies are increasing their contribution, with regard to 'normals'. 

This is quite plausible as the pattern of fibre type recruitment is typically 

reversed during electrically induced exercise and consequently the subjects are 

likely to be acidotic, which may augment the carotid body drive. Such a result 

would suggest it is still likely that a combination of muscle reflex drive and 

central command normally provide the majority of the 80% of the phase III drive 

not under carotid body mediation. However, if no greater that a 20% decrease is 

observed, taking care to ensure that the decline is not prematurely abolished by 

301 



corrective adjustments (e.g. error detection by central chemoreceptors), then it 

would seem likely that another mechanism must account for the remaining phase 

III drive. 

Therefore, it would seem that two specific pieces of information are required 

regarding phase III. Firstly, what is the specific combination of mechanisms that 

provide the non-carotid body mediated drive? Secondly, similar to phase II (and 

potentially the same answer) what is the error signal detected by the carotid 

bodies in order to 'fine-tune' the ventilatory response? 

6.2.4 Summary 

To summarise, during phase I the weight of evidence in the literature seems to 

support a centrally located feedforward controller (e.g. central command 

hypothesis) despite some demonstrations to the contrary. Such a controller 

should be capable. of creating the proportionality between VE and Q through 

parallel activation. 

The carotid bodies must almost certainly be involved in the control of phase II. 

An as yet unknown model of chemoreception seems the only plausible 

alternative mechanism and given the failure to demonstrate the existence of 

venous or pulmonary chemoreceptors, despite extensive searching, this seems 

unlikely. How the peripheral chemoreceptors receive the necessary information 

to provide the appropriate drive is as yet unclear. 
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The control of phase III is widely agreed to involve a contribution rather than 

mediation from the carotid bodies, the question of interest therefore remains how 

is the remaining contribution provided? The most plausible is probably a 

combination of all other feedforward and feedback structures, i.e. an integration 

of the drive arising from central command, muscle reflex and cardio-dynamic 

drive. The relation of central drive, and potentially all other inputs, to V E 

especially during phase I and phase III seems the most likely mechanism to 

require plasticity or 'learning'. However, several experimental demonstrations 

are required to begin clearing up many of the reports conflicting with this 

hypothesis before these suggestions could be taken as a conclusion. 

6.2.5 Supra-0 L 

The delayed onset of respiratory compensation typically seen in rapidly 

incrementing ramps does not appear to be related to a threshold in the [La·]a, 

although the degree of hyperventilation is related to the [La-]a. As the onset of 

respiratory compensation was delayed relative to the onset of exercise, the onset 

of metabolic acidosis and the transit delay of the acidosis reaching the carotid 

bodies it is unclear exactly what is mediating this time dependent delay. 

Although it appears not strictly concentration dependent it is possible that a 

threshold number of excitatory inputs is required by the respiratory control 

centres, presumably from the carotid bodies sensing the acidosis, before 

respiratory compensation is invoked. 
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6.3 Conclusions 

While there was some evidence of the capacity for plasticity within the 

respiratory control system during trials with additional external dead space, no 

evidence could be found of a role for plasticity within the moderate-intensity 

«& d cycle ergometry hyperpnoea. A 'learned' response was not evident in 

either the phase II or phase III hyperpnoea following conditioning to moderate 

intensity cycle ergometry with added external dead space. Furthermore, the 

exercise hyperpnoea was essentially 'normal', with regard to arterial blood gas 

and acid base regulation, in subjects lacking in exercise experience and presumed 

therefore to be lacking in a specific 'learned response' to that mode and intensity 

of exercise. Therefore, while the respiratory control may exhibit the potential for 

plasticity, there appears to be no direct role for it in the control of the exercise 

hyperpnoea. Consequently no further conclusions regarding the potential control 

schemes proposed throughout this thesis can be drawn on the basis of these 

experimental demonstrations. 

The onset of compensatory hyperventilation is delayed relative to the onset of 

exercise and of the acidosis. The delay does not appear to be related to a 

threshold level of acidosis, but the level of hyperventilation does appear to be 

linked to the degree of acidaemia. The results of this study cannot further 

elucidate the mechanisms which may be involved. 
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CENTRE FOR EXERCISE SCIENCE AND MEDICINE 

MEDICAL HISTORY 

(CONFIDENTIAL) 

Please read. 

It is important to take a record of your medical history. You may 
have, or may have once had a condition that would make this type of 
testing unsuitable for you. For this reason we ask you to be as 
truthful and detailed as possible. At no point will this information be 
made available to anyone other than the principal investigators for 
this study. If you have any doubts or questions, please ask. 
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SUBJECT DETAILS: 

NAME: 

AGE: D.O.B: 

SEX (M/F): 

GP NAME & ADDRESS: 

SMOKING: 
Never Smoked 
(Not for >6 months ..... . 
Smoke < 1 0 per day ..... . 
Smoke> 1 0 per day ..... . 

ILLNESSES: 

ALLERGIES: 

HOSPITALISA TIONS: 

MUSCULO-SKELET AL DISORDER: 
(Arthritis, Joint Pain. Fractures, Sports injury, Others) 

CARDIOV ASCULAR DISORDER: (Fever, Heart Munnurs, Chest Pain, Palpitations, High Blood 

Pressure, Others) 

RESPIRATORY DISORDER: (Asthma, SOB, Cough, URTI, Others) 

GASTROINTESTINAL DISORDER: (Jaundice, Bleeding, Others) 

DIABETES: 

CNS DISORDER: (Fits, Blackouts, Tremor, Paralysis, Epilepsy, Other) 

PSYCHIATRIC TREATMENT: 

FAMILY HISTORY: (Sudden death in a first degree relative under the age of35 years) 
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\ 

ARE YOU CURRENTLY TAKING ANY MEDICATION? No /Yes* 

(*Please specify) ____________________________ _ 

ARE YOU CURRENTLY TAKING ANY SUBSTANCES TO HELP IMPROVE YOUR TRAINING 
OR CONTROL YOUR WEIGHT i.e. CREATINE, PROTEIN SUPPLEMENT? No / Yes* 

(*Please specify) ___________________________ _ 

ARE YOU CURRENTLY TAKING ANY OTHER SUPPLEMENTS i.e. FOOD SUPPLEMENTS, 
VITAMINS? No / Yes· 

(*Please specify) ___________________________ _ 

CAN YOU THINK OF ANY OTHER REASON WHY YOU SHOULD NOT TAKE PART IN ANY OF 
OUR TESTS? 

SYMPTOMS: 

Do you experience any of the following, particularly on exercise? 

Breathlessness 
Chest Pain 
Dizzy Fits/Fainting 
Palpitations 

No /Yes 
No/Yes 
No /Yes 
No /Yes 

Please note that if you feel unwell on the day of the proposed test, or have been feeling poorly over 
the preceding day or two, please inform the investigators and DO NOT TAKE PART in the 
exercise test. 

DECLARATION: 

I have completed this questionnaire fully and truthfully. I have not kept any infonnation from the 
investigators that may put mysel.f at risk during high-intensity exercise, or affect the results that they 
obtain. I understand that I may Withdraw from anyone test or the study as a whole if I feel unwell, or feel 
uncomfortable with any part of the testing procedure. 

(Signature) ................................... . 

(Date) ......................... . 
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PHYSICAL EXAM: 

WEIGHT: HEIGHT: 

PULSE (Resting): ___ _ BP (Resting): ____ _ 

Screened by: .................................. . 

(Signature) ..................................... . (Date) ............................ . 
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CENTRE FOR EXERCISE SCIENCE AND MEDICINE 

ACTIVITY OUESTIONNAIRE 

NAME: SUBJECT NO: 

What kind(s) of exercise do you reeularly do (20+ min/session)? (Please circle.) 

Number of times per average week. 

Walking 1 2 3 4 5 
Running 1 2 3 4 5 
Cycling 1 2 3 4 5 
Swimming 1 2 3 4 5 
Skiing 1 2 3 4 5 
Rowing 1 2 3 4 5 
Gymnastics 1 2 3 4 5 
Martial arts 1 2 3 4 5 
Tune up 1 2 3 4 5 
Popmobility 1 2 3 4 5 
Sweat session 1 2 3 4 5 
Weight training 1 2 3 4 5 
Field athletics 1 2 3 4 5 
Racket Sports 1 2 3 4 5 
Rugby/soccer/hockey 1 2 3 4 5 

Other (s) * 1 2 3 4 5 

*(Specify) ................................................................ 

How long have you been exercising at least twice/week for at least 20 min/session? 

(Signature) ................................ . 

(Date) .......................... . 
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INFORMA TION SHEET 

Physiological determinants of performance for intermittent 
dynamic exercise 

You are invited to take part in a study involving exercise. We wish to describe how the 
body responds to exercise that lasts for a relatively long period (eg. 30 minutes) with 
intermittent exercise (ie. repeated short bursts of exercise that are interspersed with short 
recovery periods. lasting a similar period of time). Sports such as soccer and squash involve 
a lot of intermittent exercise, and we would like to improve our understanding of how the 
body adapts to this. We will therefore measure the responses of your breathing system, your 
heart and your muscles and also how you feel during these two kinds of exercise. 

Testing will take place in the West Medical Building at Glasgow University. You are asked 
to take part in the following tests: 

• 
Progressive Exercise Test: 
We will ask you to perform a "progressive" test on an exercise cycle, in which we would 
like to exercise until you can no longer continue (typically because your legs will become 
tired). This test will take about 15-20 minutes. The results of this test will allow us to 
estimate the maximal rate at which your body can take in and consume oxygeJI (an 
important "marker" of performance). On a previous occasion, we would like you to a~tend 
for a short a familiarisation trial. Also, you will have a short warm-up immediately before 
the test. and a warm-down immediately after the test. 

Sustained Exercise Tests and Intermittent Exercise Tests: 
On separate days. we will ask you to complete two "sustained" (or constant-load) 
submaximal exercise tests, to provide us with "control" responses: one will be at a moderate 
effort and the other at a higher effort. Each test will last no longer than 30 minutes. On other 
days. you will be asked to complete a 3D-minute period of "intermittent" exercise, in which 
each exercise period will last between 0.5 and 10 minutes, and the intervening recovery 
periods will be of similar duration. This will allow us to compare the response to the 
intermittent exercise with those of the "control" tests. All tests will be preceded by a warm
up and followed by a warm-down. 

Cardiovascular Measurements 
We will monitor the rate at which your heart beats and its electrical activity, using mildly 
adhesive electrodes attached to the surface of your chest (electrocardiography). 

Respired Air Measurements: 
We will monitor the air that you breathe in and out so that we can calculate the level at 
which you arc breathing and the amount of oxygen that enters your lungs and, we assume, 
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goes to your muscles. To do this, you will be required to breathe normally through a 
snorkel-type rubber mouthpiece to which is attached an integral monitor for sensing air 
flow, whilst wearing a nose clip (so that we can "capture" all the gas you breathe). A small 
fraction of the air will be sampled continuously by analysers for oxygen, carbon dioxide and 
nitrogen. 

Perceptions of Breathlessness and Exertion: 
At intervals throughout the tests, we will ask you to assess how breathless you feel and also 
how tired your legs feel, using a standard rating scale (e.g. with a range of numbers with 
word anchors to help you characterise the intensity of the sensations). 

Noninvasive Measurement of Oxygen Levels in Blood: 
The levels of oxygen in your blood will be measured noninvasively at one of your fingers or 
at an ear lobe (pulse oximetry), using a lightly-sprung "collar" that attaches to the measuring 
site. This involves a low intensity infra-red light (which is absorbed by haemoglobin - the 
oxygen-carrying pigment in your blood) being shone through the measuring site. 

Noninvasive Measurement of Oxygen Levels in Muscle: 
The levels of otygen in the blood vessels of a part of your thigh muscle (quadriceps femoris) 
will be measured non-invasively (near infra-red spectroscopy). This involves a low intensity 
infra-red light (which is absorbed by haemoglobin). This will involve attaching the light 
transmitter and receiver to the surface of your thigh muscle with mildly adhesive tape. 

Measurement of Lactate in Capillary Blood: 
We will take capillary blood samples by pinprick sampling on a number of occasions during 
the tests so that we can measure the levels of a blood chemical called lactate, which IS 

produced by exercising muscles when they start to fatigue. 

Before you nccomc a subject, you will complete a medical questionnaire. Pecple who have 
asthma. heart related and/or circulatory problems, hypertension or any other contraindicated 
condition will not he allowed to take part in the study. 

All infomlation ohtained both from the preliminary medical questionnaire and from the 
study itself will be treated confidentially. It is our intention to publish the results of 
this study. hut not in a way which will not enable individuals or their performance to be 
identified. 

You are free to leave the study at any time. The outcome of the study may not 
benefit you directly. Some parts of the study constitute a possible transient risk to 
your health. There is a small cardiac risk to your health. You may feel uncomfortable 
during certain stages of the tests. If you are pregnant or may be pregnant, you should not 
take part in t he study. 

Individuals who do not have an exercise science background may find some of the above 
terminology difficult to understand. Please ask one of the experimenters to explain any 
aspect which is unclear before you make your final decision about taking part in the study. 
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Consent Form 

I, •..•.........................•.....................................•.....•.•••.....•.....................•............ (PRINT) 

of ..•...•.........•...........••••••••••.••••••••••.•••••••••.•••.•••••••••••••••••••••••••••••••••••••••••••••••••••••• 

give my consent to the research procedures which are outlined above, the aim, 
procedures and possible consequences of which have been outlined to me 

by ..................................................................................................................... . 

Signature .....................•.•........................•..••...•••••••.......•.....•.•... Date .••.......•....•• 
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University of Glasgow 
Institute of Biomedical and Life Sciences 

University of Glasgow 

INFORMATION SHEET 

TITLE OF INVESTIGATION: Effects of increased "dead space" on the ventilatory response to 
exercise in healthy humans 

We invite you to participate in an investigation which we believe to be of potential importance. In 
order to help you to understand what the investigation is about, we are providing you with the 
following information. Be sure you understand it before you formally agree to participate. Ask 
any questions you have about the information which follows. We will do our best to explain and 
to provide my further information you require. You have been selected as a possible participant 
in this investigation because you are in good health. 

The mechanisms that determine the ability to sustain moderate to severe exercise are poorly 
understood. Such information, however, is crucial if we are to improve exercise tolerance (i.e. the 
ability of indivi~als to perform exercise) in both health (e.g. elite athletes) and disease (e.g. 
patients with IUnS or heart disease). This study aims to study how breathing is controlled during 

) exercise. 

Testing will take place in the Laboratory of Human Physiology, West Medical Building at 
Glasgow University. You will be asked to visit the laboratory on up to sixteen occasions and to 
take part in the following tests: 

Progressive Exercise Test: You will be asked to perform a maximal progressive exercise test on a 
stationary computer-controlled cycle so that we can noninvasively assess your level of fitness (i.e. 
by your maximal oxygen uptake and the work rate where you first start to produce lactic acid -
the "lactate threshold"). During this test, the load will increase over the course of 15-25 minutes 
until you have to stop cycling either because of fatigue or breathlessness. You will repeat this test 
on up to three further occasions. On at least one occasion, you will perform the test while 
breathing through a wide-bore tube (approx. 30-50 cm long, and 5 cm diameter) - this resembles 
a snorkel tube. This intervention will cause your breathing to increase slightly, and we wish to 
examine the size of this response and how quickly it develops. 

Submaximal test - constant load test: On separate days, you will cycle at moderate and high 
exercise intensities (below and above the lactate threshold) for periods ranging between 5 - 20 
minutes, preceded and followed by 5-0 minutes of unloaded cycling. The total test duration will 
be no more than one hour. 

Arterial blood oxyge~ saturation will be monitored contin~ousl~ noninvasively from a finger or an 
ear lobe ~y pulse oXImetry. Intramuscular ~xygen saturation ~dl be monitored continuously and 
noninvaslvely from the surface of the nght or left quadnceps muscle using near infra-red 
spectroscopy. 

Breathlessness and Rating of Perce~ved Exertion ~ll be monitored at intervals throughout tests, 
using either a standard Borg scale (I.e. numbers With word anchors to help you rate a variable) or 
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a visual analogue scale (VAS) (the VAS scale consists of a horizontal line: the word "none" is 
placed at one end of the scale and the word "very severe" at the other). You will be asked provide 
a response which relates to your level of Breathlessness and Rating of Perceived Exertion using 
these scales. 

During the exercise tests, you may breathe through a rubber mouthpiece which is similar to that 
used for snorkeling, and wear a noseclip. You may experience difficulty swallowing while 
breathing through a mouthpiece and wearing a noseclip, due to some pressure in the ears. Some 
subjects experience increased salivation when breathing through a mouthpiece. Some subjects 
experience mild discomfort from prolonged sitting on the seat of the cycle ergometer. 

Exercise has a negligible risk in healthy adults, although maximal exercise has a small risk of 
inducing myocardial ischaemia. The primary symptom of myocardial ischaemia is chest pain on 
exertion. If you experience any unusual sensations in your chest during the experiment, you 
should cease exercising immediately. Your heart rate will be monitored via adhesive surface 
electrodes for the monitoring of the heart's electrical activity (the "electrocardiogram"). 

Before you become a subject, you will complete a medical questionnaire. People who have 
asthma, heart related and/or circulatory problems, hypertension or any other contraindicated 
condition will not be allowed to take part in the study . .. . 
All information obtained both from the preliminary medical questionnaire and from the study itself 
will be treated confidentially. It is our intention to publish the results of this study, but not in a 
way which will not enable individuals or their performance to be identified. 

You are free to leave the study at any time. The outcome of the study may not benefit you 
directly. Some parts of the study constitute a possible transient risk to your health. There is a 
small cardiac risk to your health. You may feel uncomfortable during certain stages of the tests. 

If you are worried about any unwanted side effects from any of the above procedures, you should 
contact: 

Professor Susan A Ward, Director 
Director, Institute of Biomedical and Life Sciences 
West Medical Building 
University of Glasgow, 
Glasgow G 12 8QQ 
Phone: 0141 3306287 
Fax: 01413306345 
e-mail: S.A. WardCiil,biQ...&la.ac.uk 

Dr Yannis Pitsiladis 
Lecturer, Institute of Biomedical and Life Sciences 
West Medical Building 
University of Glasgow 
Glasgow, G12 8QQ 
Phone: 0141 3303858 
Fax: 0141 3306542 
e-mail: y'J~iJ~i.!~.~j~@~jQ,gJ~,<l~,.,*, 
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Consent Form 

I, ...................................................................................................................... (PRINT) 

of ..................................................................................................................... . 

give my consent to the research procedures which are outlined above, the aim, 
procedures and possible consequences of which have been outlined to me 

by ..................................................................................................................... . 

Signature .................................................................................. Date ................ . 

. , 
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University of Glasgow 
Institute of Biomedical and Life Sciences 

University of Glasgow 

INFORMATION SHEET 

Plasticity of ventilatory control to exercise in healthy subjects 

We invite you to participate in an investigation which we believe to be of potential 
importance. In order to help you to understand what the investigation is about, we are 
providing you with the following information. Be sure you understand it before you formally 
agree to participate. Ask any questions you have about the information which follows. We 
will do our best to explain and to provide any further information you require. Some terms 
will require us to provide you with further, verbal explanation~ these have been highlighted in 
the text. 

'What is the purpose of the study?': The mechanisms that determine the ability to sustain 
moderate to severe exercise are poorly understood. Such information, however, is crucial if 
we are to improve the ability of individuals to perform sustained physical activity habitually, 
in both healthy individuals and patients with lung or heart disease. This study therefore aims 
to study hoYAbreathing is controlled during exercise. 

r 

'Why am I being asked to participate in the study?': You are being asked to participate 
because you are in good health. Before you become a subject, you will be asked to complete a 
medical questionnaire. People who have asthma, heart-related and/or circulatory problems, 
hypertension or any other contraindicated condition will not be allowed to take part in the 
study. Women who are pregnant will be excluded. 

'Where will the testing take place?': Testing will take place in the Laboratory of Human 
Physiology, West Medical Building at Glasgow University. 

'How long will the study last?': You will be asked to visit the laboratory on typically eight, 
but no more than sixteen occasions. Each visit will last no longer than an hour and a half. If 
possible, we would prefer you to attend at the same time of day for each visit, i.e. the morning 
or the afternoon. At least three days will be allowed between consecutive visits. 

'What will I be asked to do?': We would like you to first perform a progressive nuvcimal 
exercise test on a stationary computer-controlled cycle. During this test, the load will increase 
over the course of 15-25 minutes, as if you were riding the cycle up a hill that becomes 
progressively steeper, until you feel that you have to stop. At this point, it most usual for 
subjects to feel leg tiredness and/or to feel short-of-breath. The results of this test will allow 
us to assess your level of fitness, in terms of (a) the work rate where your muscles first start to 
produce a substance called lactic acid and you start to feel tired and (b) the highest rate at 
which you can take oxygen into your lungs during the exercise. 

Subsequently and on separate days, we would like you to complete a series of 
submaximal exercise tests, again on the cycle. During these tests, you will be asked to cycle 
at a fixed work rate for periods ranging between 5 and 20 minutes, at an intensity ranging 
from moderate to heavy. 

Prior to each exercise test, we will ask to you perform some simple stretching 
exercises (under supervision) to help your muscles warm-up and then to complete about 5 
minutes of trent/heeling on the cycle. At the end of each test, the freewheeling will be 
repeated, and then the stretching. 
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'What measurements will be made'?: During the tests, we will make several non-invasive 
measurements. 
(a) The level of your breathing and the composition of your breath will be measured 

continuously with a flow sensor which is placed close to your mouth, and a mass 
spectrometer which samples a small amount of the air that you breathe in a,nd out. This 
will require you to breathe through a rubber mouthpiece which is similar to that used for 
snorkelling, and to wear a noseclip. 

(b) The electrical activity of your heart and the rate at which your heart is beating will be 
measured continuously and noninvasively with an electrocardiogram, from self-adhesive 
pads placed on the skin at several points on your chest. 

(c) The level of oxygen in your blood will be measured continuously and noninvasively with 
an oximeter that slips over one of your fingers. 

(d) At intervals during the tests, you will be asked to indicate the degrees to which you 
perceive being short-of-breath .and having tiredness in your legs, using a simple rating 
scale. 

t 

"What discomforts might I experience?': The level of discomfort is typically negligible. 
However, some subjects may experience slight discomfort. 
(a) While breathing through the mouthpiece-noseclip system, a little short-lasting discomfort 

may be experienced when swallowing, because of a small and transient pressure build-up 
in the ears. 

(b) lncrease~salivation may be experienced when breathing through a mouthpiece. 
(c) Mild disc.omfort from prolonged sitting on the seat of the cycle may be experienced. 

'Are there any risks in my taking part in the study?': The risks associated with the study 
are negligible. Exercise has a negligible risk in healthy adults, although maximal exercise has 
a small risk of inducing myocardial ischaemia. The primary symptom of myocardial 
ischaemia is chest pain on exertion. If you experience any unusual sensations in your chest 
during the experiment, you should cease exercising immediately. 

All information obtained both from the preliminary medical questionnaire and from the study 
itself will be treated confidentially. It is our intention to publish the results of this study, but 
not in a way which will not enable individuals or their performance to be identified. 

You are free to leave the study at any time. The outcome of the study may not benefit you 
directly. 

If you are worried about any unwanted side effects from any of the above procedures, you 
should contact: 

Professor Susan A Ward 
Director 
Phone: 0141 3306287 
Fax: 0141 3306345 
e-mail: S.A.Ward@bio.gla.ac.uk 

Dr Jonathan Fuld 
Clinical Research Fellow 
Phone: 0141330 2917 
Fax: 0141 3306345 
e-mail: lFuld@bio.gla.ac.uk 

Centre for Exercise Science and Medicine, West Medical Building, Institute of Biomedical 
and Life Sciences, University of Glasgow, Glasgow, G12 8QQ 
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Consent Form 

I, ...................................................................................................................... (PRINT) 

of ..................................................................................................................... . 

give my consent to the research procedures which are outlined above, the aim, 
procedures and possible consequences of which have been outlined to me 

by ..................................................................................................................... . 

Signature .................................................................................. Date ................ . 
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