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Abstract

Profiling tools are essential for understanding and tuning the performance of both
parallel programs and parallel language implementations. Assessing the performance
of a program in a language with high-level parallel coordination is often complicated
by the layers of abstraction present in the language and its implementation. This
thesis investigates whether it is possible to profile parallel Domain Specific Languages
(DSLs) using existing host language profiling tools. The key challenge is that the host
language tools report the performance of the DSL runtime system (RTS) executing the
application rather than the performance of the DSL application. The key questions are
whether a correct, effective and efficient profiler can be constructed using host language
profiling tools; is it possible to effectively profile the DSL implementation, and what
capabilities are required of the host language profiling tools?

The main contribution of this thesis is the development of an execution profiler for
the parallel DSL, Haskell Distributed Parallel Haskell (HdpH) using the host language
profiling tools. We show that it is possible to construct a profiler (HdpHProf) to support
performance analysis of both the DSL applications and the DSL implementation. The
implementation uses several new GHC features, including the GHC-Events Library and
ThreadScope, develops two new performance analysis tools for DSL HdpH internals,
i.e. Spark Pool Contention Analysis, and Registry Contention Analysis.

We present a critical comparative evaluation of the host language profiling tools
that we used (GHC-PPS and ThreadScope) with another recent functional profilers,
EdenTV, alongside four important imperative profilers. This is the first report on
the performance of functional profilers in comparison with well established industrial
standard imperative profiling technologies. We systematically compare the profilers for
usability and data presentation. We found that the GHC-PPS performs well in terms
of overheads and usability so using it to profile the DSL is feasible and would not have
significant impact on the DSL performance.

We validate HdpHProf for functional correctness and measure its performance
using six benchmarks. HdpHProf works correctly and can scale to profile HdpH pro-
grams running on up to 192 cores of a 32 nodes Beowulf cluster. We characterise the
performance of HdpHProf in terms of profiling data size and profiling execution runtime
overhead. It shows that HdpHProf does not alter the behaviour of the GHC-PPS and
retains low tracing overheads close to the studied functional profilers; 18% on average.
Also, it shows a low ratio of HdpH trace events in GHC-PPS eventlog, less than 3%
on average.

We show that HdpHProf is effective and efficient to use for performance analysis
and tuning of the DSL applications. We use HdpHProf to identify performance issues
and to tune the thread granularity of six HdpH benchmarks with different parallel
paradigms, e.g. divide and conquer, flat data parallel, and nested data parallel. This
include identifying problems such as, too small/large thread granularity, problem size
too small for the parallel architecture, and synchronisation bottlenecks.

We show that HdpHProf is effective and efficient for tuning the parallel DSL
implementation. We use the Spark Pool Contention Analysis tool to examine how
the spark pool implementation performs when accessed concurrently. We found that
appropriate thread granularity can significantly reduce both conflict ratios, and conflict
durations, by more than 90%. We use the Registry Contention Analysis tool to evaluate
three alternatives of the registry implementations. We found that the tools can give a
better understanding of how different implementations of the HdpH RTS perform.
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Chapter 1

Introduction

The manycore revolution has both made parallelism mainstream, and sparked inter-

est in functional languages. The underlying memory model has a big influence on

parallel languages: in shared-memory languages computations can share state, but in

a distributed-memory language computations must communicate any common state.

The increasing demand for parallel machines to solve larger problems raises the need

for advanced performance analysis tools to help programmers effectively and efficiently

optimise parallel applications [42].

Performance analysis and tuning for parallel environments is important due to

the complexity of parallel technology [51, 30], and presents more challenges than on a

sequential machine [145]. Profiling is a key element of effective parallel programming

and performance optimisation: it is essential that the programmer understands the

parallel behaviour in order to improve it [146, 98, 6, 20].

In languages that provide high-level parallelism, like most parallel functional lan-

guages, profiling is especially important. The high level abstraction means that the

conceptual gap between the program and its execution on the hardware is greater [122].

Therefore, language implementers and programmers must have a profiler to help un-

derstand parallel behaviour and identify performance bottlenecks in the implementa-

tion [54, 35, 66].

This thesis investigates a new approach to constructing profiling infrastructure

for parallel Domain Specific Languages (DSLs), namely using host language profiling

tools to construct an effective and efficient profiling tool for a parallel DSL. Specifi-

cally, Haskell Distributed Parallel Haskell (HdpH) is a distributed-memory parallel

DSL [84, 82] that is built solely on the standard Glasgow Haskell Compiler (GHC) [46]

runtime. We present the design, implementation, validation and evaluation of Hd-
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pHProf, an execution profiler, i.e. time profiler, for the DSL HdpH constructed from

Haskell profiling tools.

1.1 Thesis Statement

This thesis investigates whether it is possible to profile parallel DSLs using existing host

language profiling tools. The key challenge is that the host language tools report the

performance of the DSL Runtime System (RTS), executing the application rather than

the performance of the DSL application. The key questions are as follows: can a correct,

effective and efficient profiler be constructed using host language profiling tools for

applications written in the parallel DSL? Is it possible to construct a correct, effective

and efficient profiler to tune the parallel DSL implementation? What capabilities of

the host language profiling tools facilitate parallel DSL profiling? Can shared-memory

profiling tools be extended to work effectively for a distributed-memory parallel DSL?

1.2 Contributions

This thesis investigates how to use commodity pre-existing profiling tools for a host

language to profile the performance of a distributed-memory parallel DSL. The main

contribution is to develop, validate and evaluate a new profiler, HdpHProf, for a

distributed-memory parallel functional DSL, i.e. HdpH which runs on a Beowulf cluster

of multicore. The thesis makes the following research contributions:

1. We report a critical analysis of parallel functional profilers [4, 5], comparing two

functional profilers, GHC Parallel Profiling System (GHC-PPS) with its trace

viewer ThreadScope [67, 134] and EdenTV [11]; alongside four important imper-

ative profilers, i.e. Vampir [139], Score-P [124], mpiP [141], and ompP [37]. The

comparison is based on the SICSA Concordance benchmark [23], covers both

shared and distributed-memory parallel languages, and is performed on com-

mon parallel architectures. We compare the runtime overheads and amount of

profiling data generated by the profilers, analysed by whether the parallelism

is shared/distributed memory and whether the profiler is imperative/functional,

and tracing/summative. We systematically compare the profilers for usability

and data presentation (Chapter 3).
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2. We investigate the feasibility of constructing an effective profiler for a distributed-

memory parallel DSL using the host language profiling tools. We do so by design-

ing and implementing HdpHProf [3], a post mortem, multi-stage, and extensible

profiler for a distributed-memory Haskell parallel DSL (HdpH). HdpHProf re-

quires no changes to the host language (GHC) unlike EdenTV [11], nor to the

HdpH programs that are profiled. Importantly, the implementation uses several

new GHC features including the GHC-Events Library and ThreadScope, to build

profiling infrastructure for a parallel DSL. We introduce two novel analysis tools

for monitoring HdpH internals, i.e. Spark Pool Contention Analysis and Registry

Contention Analysis (Chapter 4).

3. We validate HdpHProf for functional correctness and characterise its perfor-

mance. We ascertain that HdpHProf works correctly and accurately records the

behaviour of parallel programs. Also, we validate HdpHProf for scalability by us-

ing 5 HdpH benchmarks to show that it can scale to profile applications running

on a large number of cores (192 cores on 32 cluster nodes). We characterise the

performance of HdpHProf in terms of data size and execution runtime overhead,

depending on computation size and the number of Processing Elements (PEs)

as in [4]. We show that HdpHProf retains the low time and space overheads

of the GHC-PPS. Moreover, profiling the parallel DSL occupies less than 2.2%

of tracing overheads of GHC-PPS, unless thread granularity is excessively small

(Chapter 5).

4. We show that an effective and efficient DSL profiler (HdpHProf) can be con-

structed for applications using host language profiling tools. We use HdpHProf

to identify performance issues and to tune the thread granularity of six HdpH

benchmarks. We demonstrate how to identify performance problems in execution

behaviour of HdpH applications with different parallel paradigms, e.g. divide and

conquer, flat data parallel, and nested data parallel. This includes problems such

as too small/large thread granularity, problem size too small for the parallel ar-

chitecture, synchronisation bottlenecks, and combinations of these factors. We

demonstrate how HdpHProf can be used to tune thread granularity in HdpH

applications (Chapter 6).

5. We show that an effective and efficient profiler can be constructed to tune the par-

allel DSL implementation (i.e. the HdpH RTS) using the host language profiling
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tools. We do so by using HdpHProf analysis tools to investigate the behaviour of

HdpH RTS. The Spark Pool Contention Analysis tool reveals, for example, how

the spark pool implementation behaves during high concurrent access demand

and how contention changes with task granularity. We present how appropriate

task granularity can significantly reduce contention on the spark pool by more

than 97%. We use the Registry Contention Analysis tool to evaluate three alter-

native registry implementations. This shows how HdpHProf can identify different

execution behaviours for the different implementations which can help debug or

improve the parallel DSL implementation (Chapter 7).

1.3 Authorship and Publications

Parts of this thesis are closely based on the work reported in the following papers:

• HdpHprof— A Profiler for Haskell Distributed Parallel Haskell [3]. In

The Draft Proceedings of the Symposium on Trends in Functional Programming

(TFP12), St Andrews, Scotland, 2012. With Patrick Maier, Phil Trinder and

Lilia Georgieva. The paper presents the initial design and implementation of

HdpHProf and shows preliminary profiling results of HdpH’s programs run on a

Beowulf cluster comprising 32 8-cores nodes.

• A Critical Analysis of Parallel Functional Profilers [4]. In The Draft Pro-

ceedings of The 25th symposium on Implementation and Application of Functional

Languages(IFL13), Radboud University Nijmegen, The Netherlands, 2013. With

Patrick Maier, Phil Trinder and Lilia Georgieva. This paper presents an evalua-

tion of two parallel Haskell profilers, GHC-PPS and EdenTV, in comparison with

four important profilers for imperative languages. The comparison covers both

shared and distributed memory parallel languages, and is performed on common

parallel architectures. The comparison uses a published benchmark, namely the

Concordance application set as the first Multicore Challenge [23]. We compare

the amount of profiling data generated by the profilers analysed by whether the

parallelism is shared/distributed memory and whether the profiler is imperative/-

functional, and tracing/summative. We investigate the runtime overheads of the

profilers, again analysed by whether the parallelism is shared/distributed mem-

ory and whether the profiler is imperative/functional, and tracing/summative.

Also, we systematically compare the profilers for usability and data presentation.
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Background

Parallelism has become the norm in commodity computers. Unfortunately developing

applications for parallel computers is more difficult than developing software for sequen-

tial computers, hence it consumes more time and money [110]. A parallel programmer

must specify additional coordination aspects, such as how to divide load among dif-

ferent processors, and how these processors communicate and synchronise. Moreover,

parallelism makes debugging and optimisation of programs more complicated and error

prone [74, 34, 147].

To get good performance, tools for performance analysis and tuning of parallel

programs are crucial to give programmers an insight about the execution behaviour

and assistance in identifying performance problems [97, 51]. Performance tools help

programmers identify performance bottlenecks and under-utilisation of computing re-

sources. Every mainstream parallel programming language, such as C with MPI and/or

OpenMP, has one or more performance analysis tools, e.g. Seecube [25], HyperView

[86], Pablo toolkit [115], and ParaGraph [60].

This chapter surveys the state of the art of parallel computer architectures, par-

allel programming models, and performance analysis of parallel programs. We present

parallel computer systems depending on the physical memory organization: shared-

memory and distributed-memory (Section 2.1). We discuss parallel programming

models (Section 2.2). We discuss ways of profiling performance of parallel programs

and explain what makes profiling distributed-memory programs different from shared-

memory programs (Section 2.3). We present state-of-the-art performance analysis tools

for imperative languages such as C/C++ with MPI and/or OpenMP, and high-level

functional parallel Haskells (Section 2.4).
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Figure 2.1: An SMP Architecture

2.1 Parallel Architectures

Parallel architectures can be classified according to the machine’s instruction and data

streams as in Flynn’s taxonomy [31, 32]. He identified four categories of architecture:

SISD (e.g. uni-core), SIMD (e.g. vector processor), MISD (e.g. systolic array), and

MIMD (e.g. multicore). Today most general-purpose parallel computers are based on

MIMD [112]. MIMD is too broad to be useful on its own so it is split into two classes of

parallel systems according to memory organisation, shared-memory, and distributed-

memory [92].

2.1.1 Shared-Memory Architectures

All the processors in a shared memory system share a single physical or logical address

space and communicate with each other by reading and writing variables from the

shared-memory. Shared-memory systems could be divided further into two categories

based on how the memory is accessed by the processors, i.e. Uniform Memory Access

(UMA), and Non-Uniform Memory Access (NUMA).

UMA. Uniform Memory Access (UMA) is a class of shared-memory systems where

the cost of accessing memory is the same for all collaborating processors.

Shared-Memory Multiprocessor (SMP) is one form of the UMA shared memory

systems in which all processors can access all the memory locations at equal speed via a

shared bus [110]. Figure 2.1 depicts a SMP architecture. SMP is considered attractive

and easy to program because of the convenience of sharing data among processors [144].

On the other hand, SMP is not scalable beyond a relatively small number of processors

because increasing the number of processors causes contention on the bus [92].

A Multicore system [45] is a special kind of SMP where two or more ”execution
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cores” are implemented within a single processor. The cores reside in a single die

and are considered as individual processors which have their own set of execution

and architectural resources [1]. Multicore systems, may, or may not, share a large

on-chip L2 cache between cores. Multicore systems are more efficient than the SMP

since the cores share the L2 cache, reducing the memory bandwidth bottleneck and

communication problem. As with SMP, multicore systems’ scalability is limited [29].

NUMA. Non-Uniform Memory Access (NUMA) is another class of shared-memory

systems in which all processors share a memory which is nonuniformly addressable for

them, where some processors may physically reside more closely in some memory blocks

than other processors. The access time for data in the memory can vary considerably

depending upon whether the data is located in the local memory of the processor, or the

local memory of another processor [110]. Figure 2.2 depicts a shared memory NUMA

architecture. Unlike the SMP the NUMA is more scalable because of the lower memory

bandwidth bottleneck involved. On the contrary, the time it takes to access location

on the memory could vary considerably from one processor to another depending on

how far the memory is from the processor [92].

2.1.2 Distributed-Memory Architecture

Each processor in a distributed-memory architecture has its own memory and typically

communicates with other processors by sending and receiving messages. Figure 2.3 de-

picts a distributed-memory architecture [92, 110]. The speed of distributed systems

depends not only on the speed of CPUs but also on the speed and topology of the
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network. Most importantly, in distributed systems it is more probable that the pro-

grammer will be responsible for explicitly specifying all the communication between

processors, and specifying the distribution of data [92]. We will discuss the ubiqui-

tous cluster and hybrid architectures used later in the thesis, but will not discuss Grid

[33, 18], cloud technologies [26, 27] or the more exotic manycore [22, 81] .

Cluster Computing. A cluster [92, 121] is a set of computers connected with each

other by some networking technology, e.g. Ethernet. Beowulf clusters [127, 119] are

constructed by networking Commercial Off-The-Shelf (COTS) nodes, typically running

free to use operating system and software packages, e.g. Linux and MPI/PVM libraries.

Beowulf clusters are powerful and inexpensive compared with High-Performance Com-

puting (HPC) architectures [118].

Hybrid Architectures. Hybrid systems are built by combining shared-memory and

distributed-memory technology. When a cluster is built of shared-memory nodes, e.g.

multicores –which is probably the most common platform for PCs and workstations

these days– the cluster is considered a hybrid parallel system. Cores in each separate

node can communicate through passing pointers to shared-memory regions. On the

other hand, message-passing is used for communication between nodes within the clus-

ter. We will profile parallel programs running on a hybrid Beowulf cluster of multicores

in Chapter 6.

2.2 Parallel Programming Models

To program a parallel computing architecture programmers need a programming model

that allows the design and implementation of parallel applications. Moreover, pro-

gramming languages, tools, and environments are essential elements for designing and
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implementing parallel applications [130]. To make it possible for programmers to build

and run parallel programs they need a set of tools, features, and an Application Pro-

gramming Interface (API) [92].

According to Rauber and Rünger [113] a parallel programming model ”specifies

the programmers view on the parallel computer by defining how the programmer can

code an algorithm. This view is influenced by the architectural design and the language,

compiler, or the runtime libraries.” Unlike in sequential programming there are many

possible parallel programming models, depending on the architecture of the parallel

machine [130, 92]. This makes it hard for programmers to write portable programs.

The most commonly used models for parallel programming are the shared-memory,

distributed-memory, or hybrid models.

There are many programming languages and environments for parallel program-

ming [92]. Here we only present the two parallel programming environments most

widely used by the parallel programming community, i.e. OpenMP [101] for shared-

memory, and Message Passing Interface (MPI) [95] for distributed-memory. In addi-

tion, we will discuss high-level functional parallel languages.

2.2.1 Shared-Memory Parallelism

OpenMP [101] is a model for shared-memory architectures that currently support For-

tran, C, and C++ on Linux and Windows platforms. OpenMP is mostly used by adding

a compiler directive around a loop to add parallelism to sequential code where the com-

piler takes care of the majority of the detailed thread creation and management [92].

OpenMP is the most widely used communication standard in shared-memory program-

ming in parallel computing [15].

2.2.2 Distributed-Memory Parallelism

The Message Passing Interface (MPI) [95] is a standard message passing library used

for distributed-memory architectures where processes do not share data. There are

multiple implementations of the MPI specification in the form of libraries that pro-

vide functions, subroutines, and methods for languages, e.g. Fortran, C, and C++.

Moreover, it is supported in a variety of HPC and commodity clusters [110]. Pro-

gramming distributed-memory machines with MPI is difficult because the programmer

must specify the data distribution and inter-process communication between processes
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using messages [92]. MPI is probably the most widely used communications standard

for programming distributed-memory parallel applications [15].

2.2.3 Parallel Functional Languages

This section discusses parallel implementations of the general purpose lazy functional

programming language Haskell [58]. We will focus on Haskell and not discuss other

functional languages e.g. Erlang [7] and ML [143] because we will profile Haskell

DSLs. Haskell is different from most current languages that are closely related to

the underlying hardware, where programming is based upon the concept of changing

stored values. Instead, Haskell promotes a programming style with higher level of

abstraction, based upon the idea of applying functions to arguments [65]. Haskell is a

functional computation language that is the base for a range of parallel and distributed

languages [135]. We will outline various Haskell extensions for parallel and distributed

programming.

Shared-Memory Haskells

GpH. Glasgow Parallel Haskell (GpH) [136] is an extension of Haskell that provides

parallelism and keeps the programmer away from the details of the parallel execu-

tion. GpH provides semi-explicit parallelism with little programmer control of parallel

behaviour where the compiler and the runtime system do most of the work. The pro-

grammer only writes the parallel algorithm and explicitly controls some aspects of the

parallel algorithm. There are two available implementations for GpH: GHC-SMP [90]

for shared-memory, and GUM [138] for distributed-memory. Evaluation strategies,

i.e. coordination abstractions, have been introduced [137, 88] to specify parallelism

(evaluation order and degree) at a higher level (e.g. parallel data structures).

GHC-SMP. GHC on a Shared-Memory Multiprocessor (GHC-SMP) [57, 90] is a

present full-scale implementation of shared-memory parallel Haskell based on the GHC.

GHC-SMP provides lightweight parallel evaluation and deterministic parallelism: the

parallel program has the same semantics as the sequential program. The GHC-SMP

runtime can support explicit thread-based parallelism [106] and semi-explicit determin-

istic parallelism [137].

25



Chapter 2. Background

Parallel Monad. Par Monad [89] is a programming model for deterministic parallel

computation in Haskell that provides monadic control of parallelism and retains deter-

minism and purity. Furthermore, Par Monad’s work-stealing scheduler allows it to lift

system-level functionality to the Concurrent Haskell level. Despite this, performance

results show that Par Monad keeps performance overhead at a level comparable with

other parallel programming models in Haskell.

Distributed-Memory Haskells

Eden. Eden [12, 80] is a Haskell extension for distributed-memory parallelism. Eden

provides a high-level of abstraction for parallel programming by controlling the par-

allel evaluation of processes. Processes in Eden can by defined explicitly; meanwhile

communication between the processes remains implicit. Eden provides a rich library

of predefined skeletons that cover many common patterns of parallel algorithms, e.g.

parallel divide-and-conquer, and parallel map. Eden programmers can choose or adapt

one of these skeletons for the problem at hand instead of writing programs from scratch.

Eden provides dynamic load balancing by its replicated workers’ skeleton which fre-

quently gives better performance than purely static schemes such as tasks farms.

Cloud Haskell. Cloud Haskell [28] is a new domain-specific (cloud computing) lan-

guage which is shallowly embedded in Haskell for distributed-memory parallelism.

Cloud Haskell has been influenced by the successful message-passing model used in

Erlang [7] along with the purity, types, and monads of Haskell. A message-passing

communication model is provided in Cloud Haskell. Unlike Eden, Cloud Haskell con-

tributes a new method for serialising functions’ closures to be transferred over the

network with no need to extend the compiler or the runtime system.

2.2.4 HdpH

Haskell Distributed Parallel Haskell (HdpH) [84, 83] that is profiled in the reminder

of the thesis is a new Haskell embedded DSL for distributed-memory parallelism. It

provides semi-explicit parallelism i.e. the programmer specifies only a few key par-

allelism aspects, e.g. the creation of tasks. HdpH scales to run on HPC, e.g. the

90K core HECToR supercomputer [63]. HdpH is designed to not rely on a bespoke

low-level runtime system. Like Cloud Haskell it requires no more than GHC, primarily

to minimise the language maintenance effort. HdpH is implemented in a modular and
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layered approach and, importantly, coded in vanilla Concurrent Haskell [106]. As this

thesis presents the design, implementation and evaluation of a profiler (HdpHProf) for

HdpH, in Chapters 4, 5, 6 and 7 this section gives an overview of HdpH.

Listing 2.1: HdpH Primitives [84].
1 data Par a −− Par monad
2 eva l : : a −> Par a
3
4 f o rk : : Par ( ) −> Par ( )
5
6 data IVar a −− b u f f e r s
7 new : : Par ( IVar a )
8 put : : IVar a −> a −> Par ( )
9 get : : IVar a − Par a

10
11 data NodeId −− e x p l i c i t l o c a t i on s
12 a l lNodes : : Par [ NodeId ]
13
14 data Closure a −− e x p l i c i t , s e r i a l i s a b l e c l o s u r e s
15 spark : : Closure (Par ( ) ) −> Par ( )
16 pushTo : : Closure (Par ( ) ) −> NodeId − Par ( )
17
18 data GIVar a −− g l o b a l hand les to IVars
19 glob : : IVar ( Closure a ) −> Par (GIVar ( Closure a ) )
20 rput : : GIVar ( Closure a ) −> Closure a −> Par ( )
21 at : : GIVar ( Clusure a ) −> NodeId

Listing 2.1 illustrates the basic primitives that the programmer can use to express

parallelism in HdpH. The lines from 1 to 9 show the shared-memory primitives, and

in lines 11 to 21 are the distributed-memory primitives. The Par type constructor is

used to encapsulate a parallel computation. The fork primitive creates a new thread

and returns nothing, and is used for generating shared-memory parallelism. IVars are

mutable variables (writable exactly once) used by threads to communicate computa-

tional results. There are three operations that allow the programmer from accessing

IVars: creating new one (new), blocking read (get), and write (put). The put does

not normalise its argument hence the eval primitive is used, instead, to evaluate an

expression to weak-head normal form.

HdpH support distributed-memory parallelism with abstract data types for ex-

plicit locations, explicit closures, and global IVars. To generate distributed-memory

parallelism HdpH exposes to the programmer the basic primitives spark and pushTo.

The spark generates computation (called a spark), a future computation that may be

executed on different node. A created spark resides in a spark pool and waits to be

distributed or scheduled by an on-demand work-stealing scheduler. The pushTo prim-

itive is similar to spark but eagerly sends a computation to a target node for instant

execution.

HdpH retrieves the results of remote distributed computations by using global

IVars, which are global references to IVars that support remote write, and local only
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read. Global IVars are exposed to the programmer by three operations: create new

one (glob) by globalising a local IVar, remote write (rput), and location information

(at) of the underlying IVar. The operations restrict the base type of their underlying

IVars to closures to ensure the serialisability of the values that the rput writes. All

transported values between nodes both computation and results are closures which

means that a result might be again a computation.

The following example and descriptive text are closely based on [84]. Listing 2.2

shows an HdpH Fibonacci program (dpfib) that employs the HdpH primitives, and

can be executed on shared or distributed memory architectures using the HdpH im-

plementation. The program must globalise the IVar v, yielding global IVar gv, and

wrap the first recursive call in an explicit closure generated by the Template Haskell

splice $(mkClosure [|...|]), before sparking. Also, it must convert the result of the

sparked computation to an explicit closure with toClosure before writing to gv, and

that closure must be eliminated again with unClosure before adding the results of

both recursive calls.

Listing 2.2: HdpH Fibonacci Program [84].
1 dpf ib : : Int −> Int −> Par Int
2 dpf ib t n
3 | n <= t = return $ f i b n
4 | otherwise = do
5 v <− new
6 gv <− glob v
7 spark $ (mkClosure [ | dpf ib t (n−1) >>=
8 eva l >>=
9 reput gv . toClosure | ] )

10 y <− dpf ib t (n−2)
11 c l o x <− get v
12 return ( unClosure c l o x + y)

2.3 Parallel Performance Analysis

Performance monitoring and analysis tools play a very important role in the process

of developing parallel software that efficiently utilises the parallel machine [6, 71]. Ac-

cording to Liang and Viswanathan [76] the term profiling in its broad sense is, ”the

ability to monitor and trace events that occur during run time, the ability to track the

cost of these events, as well as the ability to attribute the cost of the events to specific

part of the program.” Moreover, the goal of performance analysis of parallel programs

is to provide programmers with an insight about the behaviour and performance is-

sues during execution by efficiently recording and intuitively presenting performance

data [116]. This thesis uses the term profiler to mean a tool that is used to monitor
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and analyse the behaviour and performance of parallel applications, for the purpose of

helping programmers to tune and improve their parallel code.

2.3.1 Performance Profiling Process

Performance profiling is commonly broken into different stages where the output of

one stage is the input for the next [74, 30]. The process consists of: Gathering critical

data that can give an insight about the behaviour of the parallel system, persisting

the performance data for processing, e.g. in memory, in a database or a trace file,

the analysis of performance data to order events and calculate facts, and finally, the

presentation of system behaviour to the user which can be in the form of graphical, or

text-based (summarised) visualisation. Figure 2.4 illustrates the performance profiling

process workflow.

Execution & 
Data Collection Profiling data Presentation Analysis 

Figure 2.4: Performance Profiling Process Workflow.

Data Collection

The profiling process starts by collecting performance data from the executing pro-

gram. The data collection process can take different forms, e.g. summative profiling,

sampling, or tracing [24]. In the following we describe three common data collection

approaches.

Summative Profiling. In this approach the profiler collects aggregated information

about particular events during execution [71]. The profiler counts routine invocations

or execution times of various events during the program execution and derives statistics

from this data, e.g. gprof [52], CPPRO [54], and Haskell profiler [122, 66]. A profile

can be useful for improving the behaviour of a program by showing routines that are

responsible for most counts and execution times and comparing different alternative

implementations [52]. An advantage of summative profiling is the low-overhead com-

pared to other data collected methods such as tracing. However, profiling can only be

useful for high-level analysis because it does not preserve the structure and temporal

ordering of events [35, 99].
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Sampling. Sampling takes snapshots at time intervals during the program execution,

and the runtime must be sufficiently long relative to the sample period so that meaning-

ful information can be derived [116]. Figure 2.5 demonstrates how performance data is

collected during the sampling process1. Periodic interrupts during program execution

occur to take measurement. Statistical inference is used to derive program behaviour

from the sampled data [16, 43].

Time

Measurements

func 1

main

func 2

func 3

func 4

s1 s2 s3 s4 s5 s6

Figure 2.5: Sampling of Performance Data.

Tracing. Tracing is the recording of individual program execution events against

time. With tracing detailed analysis of the interaction of processes or threads is possible

with time-stamped events [35, 71]. Many performance analysis tools use tracing for

collecting more detailed and comprehensive information about the behaviour of the

executing program [68]. However, tracing is more intrusive than profiling and sampling.

The main disadvantage of tracing is that it is considered the most expensive approach

for performance data collection in terms of perturbation to program execution, space

required for tracing data, and the post-processing of the trace events [6, 98, 116, 71,

99]. Importantly, tracing allows performance analysis that summative profiles cannot:

for instance, identifying variation in dynamic behaviour of a function over several

iterations. Besides, from tracing data, profiles can be computed, but not vice versa [71].

Instrumentation is used to emit trace events at certain places in the parallel

code. Tracing is implemented by either instrumenting the runtime system, or the

parallel application, to emit trace events during the execution. A trace event consists

1 With permission from Holger Brunst and Brian Wylie the figure is re-produced with slight
modifications from original [16, 43] for the purpose of illustration in this thesis.
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of a time stamp which indicates when the event occurred and a string that describes

where/why the event occurred [115]. Figure 2.6 illustrates how individual trace events

are recorded in a program for different functions or procedures1.

The emitted trace events are then saved into a kind of storage system. As can be

seen from Figure 2.7, monitors record trace events at the time of the executions then

all collected tracing data is stored into a trace file1. Trace events are most commonly

stored in a trace file with a predefined data structure to help analysis tools to read and

process the data more efficiently. We use tracing to collect data for HdpH performance

analysis in Chapter 4.

Time
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main

func 2

func 3
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Figure 2.6: Tracing Performance Data.
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Figure 2.7: Collecting Tracing Data.
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Data Analysis

Once the performance has been collected it is analysed [74]. The analysis process

starts by reading the raw trace events. After that, the trace events can be processed

for categorisation, grouping, calculation of statistics, etc. The results can be shown to

the user instantly, saved into a file, or fed to a presentation tool for visualisation.

Presentation

Presenting the performance data is about presenting the profile data in a form that

usefully reflects the execution behaviour of the parallel program. For the presentation

to be meaningful, it must relate the information in a context [62]. The data presentation

can be graphical or text-based. In the graphical case data presentation graphs, such

as Gantt charts or Kiviat diagrams [59], are used to map trace events to a physical

or logical computation resource, e.g. a processor or a thread. Text-based presentation

uses summaries [35], tables, and statistics to provide information about the execution

behaviour of the program.

It is very important that the performance data is presented to the user in a way

that allows them to identify performance problems [85]. Presenting performance data

using graphical visualisation tools is a powerful tool for understanding, tuning, and

optimising the behaviour of parallel systems and program execution [74, 53, 39]. Fig-

ure 2.8 demonstrates how a Gantt chart can be used to give an insight into the parallel

behaviour of an application in terms of processor utilisation by visually presenting trace

events to the user1. Trace events are used to construct the dynamic behaviour of the

parallel program, and time stamps indicate when things happened (x-axis), whereas

description is used to identify where things happened (y-axis).
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Figure 2.8: Visualising Tracing Data.
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Shared and Distributed Memory Profiling

Parallel performance profiling depends on the programming model of the profiled pro-

gram. Distributed-memory profiling poses several challenges absent in the shared-

memory model; for instance, how to profile highly scalable systems, monitor commu-

nication, manage multiple trace files, synchronise trace events, and resolve different

clock rates. Therefore, profiling distributed-memory parallelism is more challenging

than shared-memory parallelism. In Chapter 4 we will present HdpHProf a profiler for

the distributed-memory HdpH DSL on a hybrid architecture. It uses tracing to collect

HdpH performance data and provides trace analysis tools.

2.4 Parallel Profilers

2.4.1 Imperative Profiling

For decades imperative parallel languages have been supported by a variety of perfor-

mance analysis tools. Early profilers, like ParaGraph [60], Pablo [117], and XPVM [73],

provided parallel programmers with useful information about the parallel execution.

Parallel profiling faces new challenges in new architectures; for instance, larger-scale

systems and higher-level parallel languages. These challenges encourage the research

community to develop advanced performance tools such as mpiP [141], ompP [37],

Score-P [124], Vampir [139], Scalasca [123, 42], and TAU [125]. We will use some of

the imperative profilers in our study for parallel functional profilers in Chapter 3.

ParaGraph. ParaGraph [60] is a trace based performance analysis tool for message-

passing programs. It was probably the commonly accepted performance visualisation

technology in the mid ’90s [62]. ParaGraph uses the portable tracing library PICL [44]

that runs on variety of message-passing parallel computing systems. However, Para-

Graph does not support performance analysis of shared-memory parallel programs. It

post-processes produced trace information of actual executions to present performance

behaviour. ParaGraph provides multiple graphs that depict dynamic behaviour of

message-passing parallel applications, and shows overall graphical performance sum-

maries [61]. It provides users with a variety of displays that can give detailed analysis

about parallel performance from different prospectives, e.g. utilisation, processor count,

and concurrency profile. Figure 2.9 shows some ParaGraph performance graphs, for

example, the Kiviat diagram display (bottom-right in Figure 2.9) shows a geometric
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Figure 2.9: Some ParaGraph displays [51]

representation of individual processor’s usage and how the overall load is balanced

among all processors.

Pablo Toolkit. Pablo [114, 117] is a performance analysis environment that sup-

ports a variety of scalable parallel computing architectures. It focuses on scalability,

portability, and extensibility. The Pablo environment toolkit consists of two main

components: a portable instrumentation library, and a portable software analysis tool

[115]. Pablo uses its own Self-Describing Data Format (SDDF) [8] for recording tracing

data into a trace file [116]. The analysis of trace data is post-mortem. Pablo analysis

tools can present performance behaviour to the user, using graphics to help understand

the parallel program behaviour and identify performance bottlenecks [117].

mpiP. mpiP [142, 141] is a profiler for MPI applications. mpiP monitors the perfor-

mance of MPI by collecting statistical information about MPI functions from the MPI

profiling layer. Users can configure mpiP to collect aggregate metrics for statistical

analysis [99]. mpiP does not capture all MPI calls; it avoids communication during

profiling, and it can limit the profiling scope to reduce the profiling overhead. mpiP

has no Graphical User Interface (GUI) and does not provide performance graphs but

outputs text profiles to show statistical information about the execution of the parallel

program. Figure 2.10 shows an extract of mpiP profile of a parallel program.
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Figure 2.11: ompP Profile for Parallel Section.

Figure 2.10: mpiP profile Header and MPI Time Sections.

ompP. ompP [36, 37] is a performance analysis tool for shared-memory programming

with OpenMP. Tracing is used to gather performance data in the memory to produce

a post-mortem profile. ompP measures the performance of an OpenMP application

by calculating statistical information about the parallel execution. Also, it can sup-

port performance monitoring of hybrid applications of OpenMP + MPI [38]. ompP

helps identify performance problems, e.g. most time-consuming regions and load im-

balance. ompP is similar in spirit to mpiP [141]; it has no GUI and it does not present

performance graphs, instead it presents the performance information in a text profile.

Figure 2.11 shows an extract of ompP profile for a parallel program.

Score-P and Vampir. Score-P [124] and Vampir [139] are elements of a bigger set

of performance analysis tools for optimising the performance of parallel applications.

Score-P is used for performance data collection and Vampir is a visualisation and

analysis tool.

Score-P is a performance measurement infrastructure for parallel programming.

Score-P is highly scalable and can support HPC facilities [17]. It equips its users with

tools for profiling, event tracing, and online analysis of parallel application. In addition,
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Figure 2.12: Screenshot of Vampir Visualising a Score-P Trace File.

Score-P can work with a number of performance analysis tools [72]; for example, Vampir

[139], Scalasca [123, 42], and TAU [125]. Score-P made this possible by adopting

standardised output formats such as the Open Trace Format (OTF) [70], the CUBE4

profiling formats [41] and using instrumentation tools like Opari2 [94].

Vampir is a performance analysis tool which was introduced in the mid ’90s by

Nagel et al. [96] and improved upon to become one of the most advanced and sophis-

ticated performance analysis tools available nowadays [71, 15, 14]. Vampir is a GUI

which provides the capability to read, analyse and present graphically the performance

monitoring data for different parallel imperative languages, e.g. C or Fortran with

MPI, or OpenMP, or CUDA. Vampir provides its users with multiple views to help

the understanding of the execution behaviour of parallel programs. Also, it is capable

of working on large scale computing infrastructures, e.g. HPC. Figure 2.12 shows a

screenshot of Vampir Visualising a Score-P trace file. It offers different performance

graphs the can be selected for performance inspection (from the tool bar top-left in

Figure 2.12), e.g. process and thread activities and messages between them. Also, it

provides overall activity display (top-right in Figure 2.12) depicting the average utili-

sation of the parallel machine.

2.4.2 Functional Profilers

Parallel functional languages also have performance analysis tools. hpcpp [120] was

one of the earliest attempts to profile a parallel Haskell. GranSim [55, 79] was the

first performance analysis tool for the parallel implementations of the Glasgow Haskell

Compiler (GHC), GpH-GUM [138], and GpH [108]. GranSim provides a variety of

performance graphs such as overall activity, threads activity, and granularity profile.
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Figure 2.13: An example GranSim overall activity [78]

Other variants of GranSim also have been developed [56, 69]. Influenced by GranSim,

more recent parallel Haskell profilers have been developed utilising GUI technology,

e.g. EdenTV [11] and ThreadScope [134]. We will present a critical analysis of these

two functional profilers in Chapter 3.

GranSim. GranSim [55, 78] is a simulator built around the GHC threaded runtime

system. It simulates parallel execution of Haskell programs and provides profiling

tools for tuning the performance and granularity of parallel programs. Each thread is

given a statistics buffer attached to its Thread State Object (TSO) in which the trace

events of the execution are recorded. When the thread terminates, all the contents of

the buffer will be dumped to a trace file. Moreover, other important events, such as

communication between processes, can be written to the trace file during the execution

time. The profiling tools focus on visualising the granularity profile but they also

provide general activity profiles such as overall activity, per-processor activity, and

per-thread activity. Figure 2.13 shows an example of GranSim overall activity profile

for a parallel program where the overall runtime is measured in machine cycles and

the average parallelism is determined by the area covered by the continuing green or

medium-grey threads.

Eden Tracing and EdenTV. The Eden programming language [12, 80] is supported

with performance analysis tools. The profiling system of Eden provides tracing and

visualisation.

Eden tracing is the performance monitoring tool for the parallel Haskell Eden [12,
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Figure 2.14: Screenshot of EdenTV Visualising an Eden Trace File.

80]. The runtime of GHC-Eden [48] is instrumented to produce trace events. This is

can be activated from the runtime options. Previously, Eden tracing was implemented

by using the Pablo Toolkit [117] and adopting its SDDF [8] for the trace files. The

most recent version of Eden adopts the new tracing of GHC Parallel Profiling System

(GHC-PPS) and uses its GHC EventLog Format (GHC-ELF) [67].

The Eden Trace Viewer (EdenTV) is a post-mortem visualisation tool which

provides the capability to read, analyse, and present graphically the performance mon-

itoring data (trace file) of the parallel functional language Eden from the level of

the parallel runtime system [11]. EdenTV presents Eden’s processes mapped to the

machines they were executed on, Eden threads activities, garbage collection phases,

process generation tree, and the stream of communication between Eden processes on

different machines. Figure 2.14 shows an example of EdenTV profile (Machines view)

for Eden program where each machine’s status is depicted in a coloured bar on the

y-axis and the execution time is represent on the x-axis, e.g. green is active, blue is

idle. The black lines between the machines shows the stream of messages between the

machines.

GHC-PPS. The GHC Parallel Profiling System (GHC-PPS) [67] is the current per-

formance analysis tools for the GHC on multicore [57]. The GHC-PPS consists of

tracing facility, analysis tools (GHC-Events Library [49]), and a GUI for browsing the

trace events called ThreadScope [134]. Figure 2.15 shows the workflow model of the

GHC-PPS.

The GHC-PPS tracing is built into the GHC runtime. To monitor the perfor-

mance of a program, tracing flags are added to both the compilation and the execution
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Figure 2.15: Work Flow model of the GHC-PPS.

options (known as event logging in the Haskell community). This will produce a trace

file with the GHC EventLog Format (GHC-ELF) called (eventlog).

The GHC-Events library is for reading and processing performance data in the

eventlogs [49]. It includes a variety of analysis tools and functionalities that allow the

user to investigate the eventlog contents; for example, to sort and print out the trace

events to the user in human readable format. Importantly, the library is extensible, so

users of the GHC-PPS can develop custom analysis tools to satisfy their needs.

ThreadScope [134] is the post-mortem trace analyser for the GHC-SMP [57]. It

is the standard GUI tool to read, analyse, and display performance data generated

by the GHC-PPS. Figure 2.16 shows ThreadScope profile of shared-memory parallel

Haskell program. The main display of the profile shows (on the y-axis) the overall

activity of the program and a list of Haskell Execution Contexts (HECs) beneath it

(normally each HEC represents a thread that is mapped to a physical core), and the

execution time is represented on the x-axis.

Figure 2.16: Screenshot of ThreadScope Visualising a GHC Trace File.
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2.5 Summary

This chapter covered a background about parallel computing, parallel programming

languages and profiling parallel performance. We presented parallel systems architec-

tures based on the underlying physical memory organisation: shared-memory architec-

tures, distributed-memory architectures and hybrid architectures(Section 2.1). Later

in this thesis we will measure performance on a hybrid architecture, a Beowulf clus-

ter of multicores. We presented parallel programming models that are widely used in

the parallel programming domain; shared-memory programming with OpenMP and

distributed-memory programming with MPI. Also, we discussed parallel programming

with high-level parallel functional languages like HdpH that we will use for the rest of

the thesis (Section 2.2). We discussed the analysis of parallel performance, illustrating

the performance profiling process that we will use in Chapter 4 to build the profiler

HdpHProf. We also discussed performance analysis tools of both imperative parallel

languages and functional parallel languages that we will study in Chapter 3 for the

comparative analysis of parallel functional profiler (Section 2.4).
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A Survey of Parallel Functional

Profilers

This chapter presents a survey of parallel functional profilers alongside important im-

perative profilers. We evaluate two parallel Haskell profilers, GHC-PPS and EdenTV,

in comparison with four important profilers for imperative languages. The functional

profilers are relevant as our new HdpHProf profiler exploits GHC-PPS capabilities to

profile a distributed-memory DSL, and hence EdenTV is a natural comparator.

The comparison covers profilers of both shared/distributed- memory parallel lan-

guages, and is performed on common parallel architectures. The comparison uses a

published benchmark, namely the Concordance application which was set as the first

SICSA Multicore Challenge [23].

The GHC-PPS performs tracing profiling of shared-memory parallel Haskell, and

EdenTV performs tracing profiling of the Eden distributed-memory parallel Haskell.

The imperative profilers are the tracing and graphical Score-P/Vampir for MPI, Score-

P/Vampir for OpenMP, the two summative profilers mpiP for MPI, and ompP for

OpenMP (Section 3.1). We compare the amount of profiling data generated by the

profilers classified by whether the parallelism is shared/distributed-memory, whether

the profiler is imperative/functional, and tracing/summative. The study reveals some

interesting results, e.g. both functional tracing profilers generate one or two orders of

magnitude less data than the imperative tracing profilers (Section 3.2).

We investigate the runtime overheads of the profilers, again classified by whether

the parallelism is shared/distributed memory, whether the profiler is imperative/func-

tional, and tracing/summative. The results of this study shows, for example, both

tracing functional profilers induce overheads of an order of magnitude less than the
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imperative tracing profilers. A more complete account of our studies is available as a

technical report [5] (Section 3.3). We systematically compare the profilers for usability

and data presentation, and found that the results reflect the design philosophy of the

tools. Summative tools report a small set of key data with minimal intrusion into pro-

gram execution. The functional tracing profilers provide more information, together

with some graphical visualisation, with little more intrusion. Vampir offers the greatest

range of information at the cost of significant intrusion (Section 3.4).

We discuss a number of related studies that evaluate other parallel profilers.

We compare the experimental methodology used to evaluate the profilers with the

methodology we use to evaluate the functional profilers (Section 3.5). After that, we

outline the findings and summarise the work of this chapter (Section 3.6).

3.1 Experimental Methodology

3.1.1 Experimental Set-up

The profilers were measured on a Beowulf cluster comprising 32-nodes, each node com-

prising two Intel quad-core processors (Xeon E5504) running at 2.00GHz, sharing 4MB

of L3 cache and 12GB of RAM. The machines were connected via Gigabit Ethernet

and ran CentOS Linux distribution [19] version 6.3 x86 64. Table 3.1 specifies the

compilers and profiling tools used for the experiments.

Compiler/Profiling Tool Version

GNU Compiler Collection (GCC) Red Hat [40] 4.4.6-4
The Glorious Glasgow Haskell Compilation System (GHC) [46] 7.2.1
The Parallel Haskell Compilation System (GHC-Eden) [48] 7.4.2
ompP to profile OpenMP [36] 0.7.1
mpiP to profile MPI [141] 3.3
Vampir to profile MPI & OpenMP [139] 8.0.0 Demo
Opari2 to profile OpenMP [100] 1.0.6
Score-P to profile MPI [124] 1.1
ThreadScope to profile GHC-SMP [134] 0.2.1
EdenTV to profile GHC-Eden [10] 4

Table 3.1: Compilers and Profiling Tools.

42



Chapter 3. A Survey of Parallel Functional Profilers

3.1.2 Concordance Benchmark Versions

The profilers were compared using implementations of the same algorithm Concordance

benchmark that was published as Phase I of the SICSA MultiCore Challenge [23]. The

Concordance benchmark takes as input a text file and an integer (N). It processes the

text file to find all sequences of words in the text, up to the length of N, together

with the number of occurrences of this sequence and a list of start indices. As the

profilers work on different languages we obtained four parallel implementations of a

Concordance benchmark application, i.e. Eden, GHC-SMP, MPI and OpenMP.

3.1.3 Experiments

We used the Concordance benchmark implementations to measure the profilers’ data

size and runtime overhead as compared to non-profiling execution. We measured the

performance of the profilers in dependence of 2 parameters; i.e. application com-

putation size, and the number of PEs. Firstly, we studied how the increase in the

computation size changed the performance of the tools. Secondly, we evaluated how

the increase in the number of PEs affected these profilers. The total number of exper-

imental executions was 2400. Each experiment was repeated 5 times and the reported

figures are medians.

To increase the computation size, we used different sizes of input files because

computation size grows with input size for the concordance. The SICSA MultiCore

Challenge provides two input files: the smallest file is 35 KB and the largest is 4300

KB. To carry out the experiments we needed more input files with a gradual increase in

size. Therefore, we used the 4300 KB file to produce files with different sizes starting

with 100 KB and doubling up to 3200 KB. Our analysis is based on the data sets

100 KB to 3200 KB. However, for completeness we also included the 35 KB and the

4300 KB files in the experiment as they are the standard set of input in the SICSA

MultiCore Challenge.

Similarly, we doubled the number of PEs from 1 PE to 8 PEs as this is the maxi-

mum number of cores on our system. However, the MPI Concordance implementation

requires a minimum of 2 PEs in to work; one as master and the other as worker. As

consequence, this study reports the results based on the number of workers used in

the computation. The master PE only distributes the work and waits for termina-

tion, and hence does not generate profiling data. We also included measurements of
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6 PEs as using all the available cores on a machine is known to sometimes perturb

performance [88].

3.2 Profiling Data Size

This section investigates the amount of profiling data generated by the profilers. The

results are presented in the following order: imperative/functional distributed-memory

profilers; imperative/functional shared-memory profilers; then summative distribute/share-

memory profilers.

3.2.1 Profiling Data Size in Relation to Computation Size

   8192

  16384

  32768

  65536

 131072

 262144

 524288

1048576

 25  35  50  100
 200

 400
 800

 1600
 3200

 4300
 6400

T
ra

ce
 F

ile
 S

iz
e 

(K
B

)

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

Figure 3.1: Score-P (MPI) Profiling Data Size in Relation to Input Size.

Score-P (MPI). Figure 3.1 shows how the tracing data size of Score-P (MPI)

changes as the input size increases. The tracing data size of profiling MPI with Score-P

increases substantially as the input size increases. Increasing the input size by a factor

of 2 will result in a significant increase to the size of the trace file by about 99% on

average.

Eden Tracing. Figure 3.2 shows how the tracing data size of Eden tracing changes

as the input size increases. All the curves show an increasing data size. The tracing
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data size increases dramatically as the input size gets bigger. Increasing the input size

by a factor of 2 causes a significant change in the size of tracing data, on average the

tracing data will increase by 160%. The ratios appear to be uniform on 1 and 2 PEs

between 82% and 109% but beyond that the ratios are noisy.
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Figure 3.2: Eden Tracing Profiling Data Size in Relation to Input Size.
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Figure 3.3: Score-P (OpenMP) Profiling Data Size in Relation to Input Size.
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Score-P (OpenMP). Figure 3.3 presents how the tracing data size of Score-P

(OpenMP) changes as the input size increases. The increase in the profiling data

size of profiling OpenMP with Score-P is similar to profiling MPI with Score-P. The

tracing data size of profiling OpenMP with Score-P increases dramatically as the input

size increases. Our results show that increasing the input size by a factor of 2 will

result in a significant increase to the trace data size by about 99% on average.
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Figure 3.4: GHC-PPS Profiling Data Size in Relation to Input Size.

GHC-PPS. Figure 3.4 shows how the tracing data size of GHC-PPS changes as the

input size increases. Again, all the curves show an increase in data size. The tracing

data size increases dramatically as the input size gets bigger. Our results show that

increasing the input size by a factor of 2 will result in a significant increase in the trace

data size; on average trace data size will increase by 90%.

mpiP. Figure 3.5 shows that the profiling data size of mpiP does not change as the

input size increases.

ompP. Figure 3.6 illustrates that the profiling data size of ompP does not change as

the input size increases. This is to be expected because ompP is a summative profiler

like mpiP.
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Figure 3.5: mpiP Profiling Data Size in Relation to Input Size.
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Figure 3.6: ompP Profiling Data Size in Relation to Input Size.

3.2.2 Profiling Data Size in Relation to Number of Processing

Elements (PEs)

Score-P (MPI). Figure 3.7 shows how the tracing data size of MPI Score-P changes

as the number of PEs increases. The figure shows that increasing the number of PEs

will result in a slight increase to the tracing data size when profiling MPI with Score-P.
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Figure 3.7: Score-P (MPI) Profiling Data Size in Relation to Number of PEs.

Increasing the number of PEs by a factor of 2 will result in a slight increase to the size

of the tracing data ranging between 1.5% and 3.1%.

Eden Tracing. Figure 3.8 depicts how the increase in the number of PEs changes

the trace data size of Eden tracing. All curves show an increase in data size. We

noticed that the 35 KB, 100 KB, and 200 KB curves tailed off at 4 PEs, and may even

decrease below 4 PEs. We think that the input size was too small to effectively use

more than 4 PEs, and that the data points at 35 KB, 100 KB, and 200 KB below 4

PEs should be disregarded. Increasing the number of PEs by a factor of 2 increases

the data size significantly by between 97% and 420%.

Score-P (OpenMP). Figure 3.9 depicts how the increase in the number of PEs

changes the tracing data size of Score-P (OpenMP). The increase in the profiling data

size of profiling OpenMP with Score-P is similar to profiling MPI with Score-P. We

found that increasing the number of PEs only results in a slight increase in the profiling

data size. Our results show that increasing the number of PEs by a factor of 2 will

result in a slight increase to the size of the tracing data size between 0.1% and 4.0%.
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Figure 3.8: Eden Tracing Profiling Data Size in Relation to Number of PEs.
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Figure 3.9: Score-P (OpenMP) Profiling Data Size in Relation to Number of PEs.

GHC-PPS. Figure 3.10 shows how the increase in the number of PEs affects the

tracing data size of GHC-PPS. As the Figure demonstrates, increasing the number of

PEs results in an increase in the tracing data size. We noticed that the smallest data

inputs, i.e. 35 KB, 100 KB, and 200 KB, remained fairly steady after 2 PEs, however,

they showed an unexpected increase at 8 PEs. This effect was likely caused by the

input being too small, and the data points at 35 KB, 100 KB, and 200 KB beyond 2
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PEs should be disregarded. Increasing the number of PEs by a factor of 2 will result

in increase to the tracing data ranging between 46% and 155%.
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Figure 3.10: GHC-PPS Profiling Data Size in Relation to Number of PEs.

     8

    16

    32

1 PE 2 PEs 4 PEs 6 PEs 8 PEs

S
u

m
m

at
iv

e 
D

at
a 

F
ile

 S
iz

e 
(K

B
)

Processing Elements

35 KB
100 KB
200 KB
400 KB
800 KB

1600 KB
3200 KB
4300 KB

Figure 3.11: mpiP Profiling Data Size in Relation to Number of PEs.

mpiP. Figure 3.11 illustrates how the increase in the number of PEs changes the size

of the profiling data of mpiP. Increasing the number of PEs results in an increase in
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the summative data size. Increasing the number of PEs by a factor of 2 changes the

profiling data by between 11.7% and 37.2%.
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Figure 3.12: ompP Profiling Data Size in Relation to Number of PEs.

ompP. Figure 3.12 illustrates how the increase in the number of PEs changes the

profiling data size of ompP. As the Figure shows, increasing the number of PEs increases

the profiling data size. We found that increasing the number of PEs by a factor of 2

changes the profiling data size by between 7.5% and 24.2%.

3.2.3 Profiling Data Size Discussion

This section compares the profiling data size of the parallel profilers reported in sections

3.2.1 and 3.2.2. The goal of this comparison is to see how the functional profilers

compare to the imperative profilers in terms of profiling data size. We compare the

profilers with increasing input size on 4 PEs. Comparisons with other fixed numbers

of PEs, and comparisons with fixed input sizes show similar results, and can be found

in [5].

Figure 3.13 compares 6 profiling tools in terms of how an increase in the input

size changes the profiling data size on a fixed number of PEs. Table 3.2 demonstrates

how the profiling data size of these profiling tools are compared to each other in terms

of minimum, mean, and maximum values of the profiling data size for each line from

Figure 3.13.
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Figure 3.13: Synopsis of Profiling Data Sizes in Relation to Input Size (on 4 PEs).

We based the following comparison on the mean values from Table 3.2(a) and

Table 3.2(b). We observed that the profiles generated by Score-P were about two

orders of magnitude bigger than those generated by the functional profilers, which in

turn were two to three orders of magnitude bigger than the data generated by the

summative profilers.

Distributed Memory: Imperative (Score-P) vs Functional (Eden). In Ta-

ble 3.2(a) the mean profiling data size of Score-P (MPI) was 316 MB; whereas, the

mean profiling data size of the Eden tracing was 8014.4 KB. The functional Eden

tracing generated significantly smaller profiles than the imperative Score-P (MPI).

Shared Memory: Imperative (Score-P) vs Functional (GHC-PPS). There

was an even larger difference between the functional, and the imperative shared-

memory profilers. The mean profiling data size of GHC-PPS was 1228.7 KB; whereas,

the mean profiling data size of Score-P (OpenMP) was 445 MB, see Table 3.2(b).

The reason why Score-P profiles are so much bigger than profiles generated by

the functional profilers is twofold.

• Firstly, Score-P collects many more events than both GHC-PPS and Eden. To

give an example, for an input of 800KB (and on 4PEs), Score-P (OpenMP)
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(a) Distributed-Memory Profilers

Imperative Functional
Summative Tracing Tracing

mpiP Score-P (MPI) Eden Tracing

Min 12.9 9420.8 96.7

Mean 12.9 316428.8 8014.4

Max 12.9 1012121.6 28160.0

Profiling Data 
Siz e (KB)

(b) Shared-Memory Profilers

Imperative Functional
Summative Tracing Tracing

ompP Score-P (OpenMP) GHC-PPS

Min 6.6 13619.2 65.9

Mean 6.6 445952.0 1228.7

Max 6.6 1468006.4 3686.4

Profiling Data 
Siz e (KB)

Table 3.2: Minimum, Mean, and Maximum Profiling Data Sizes (on 4 PEs).

generates 490 times as many events as GHC-PPS, and Score-P (MPI) generates

8 times as many events as Eden.

• Secondly, Score-P records events in the OTF format [70], which defines a human-

readable line-by-line ASCII encoding of events. Even after compression, this

format is less compact than the (not directly human-readable) binary formats

adopted by GHC-PPS and Eden.

Trace Based vs Summative. Figure 3.13 and Table 3.2 illustrate that the sum-

mative profiling tools require significantly smaller storage space for the profiling data

than trace based profiling tools. This is to be expected since the summative profiling

tools only summarise the parallel execution behaviour in a text format. Moreover, the

space reported does not grow with input size, or number of PEs.

3.3 Runtime Overheads of Profiling

This section investigates the runtime overheads of profilers as compared with non-

profiling executions. The results are presented in the following order: imperative/-

functional distributed-memory profilers; imperative/functional shared-memory profil-

ers; then summative distribute/share-memory profilers.
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3.3.1 Runtime Overhead in Relation to Computation Size
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Figure 3.14: Score-P (MPI) Runtime Overhead in Relation to Input Size.

Score-P (MPI). Figure 3.14 shows how the relative runtime overhead of Score-P

(MPI) changes as the input size increases. The data is noisy with overhead curves

rising slightly as the input size increases from 100 KB to 3200 KB. Overall, the relative

runtime overhead of Score-P (MPI) remains between 126% and 234%.
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Figure 3.15: Eden Tracing Runtime Overhead in Relation to Input Size.
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Eden Tracing. Figure 3.15 shows the relative runtime overhead of Eden tracing.

The data is very noisy, with curves fluctuating extremely as the input size increases.

It is difficult to determine how increasing the input data size can affect the overhead

change as the overhead decreased in some cases, and increased in other cases. However,

the majority of curves show that the overhead decreased as the input size increased.

Overall the relative runtime overhead of Eden tracing is less than 23% .
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Figure 3.16: Score-P (OpenMP) Runtime Overhead in Relation to Input Size.

Score-P (OpenMP). Figure 3.16 shows the change of relative runtime overhead

of Score-P (OpenMP). There is a drop of all curves as the input size increases. We

think that the 8 PEs curve is an outlier because of the fact that 8 was the maximum

number of cores on our system. The relative runtime overhead of profiling with Score-P

(OpenMP) decreases as the input size increases from 100 KB to 3200 KB. Overall the

relative runtime overhead remains between 269%, and 1266%.

GHC-PPS. Figure 3.17 shows how the relative runtime overhead of GHC-PPS changes

as the input size increases. The data is noisy, and all curves fluctuate widely. There

is a decreasing pattern as the input sizes increases. The relative runtime overhead of

profiling with GHC-PPS declines as the input size increases from 100 KB to 3200 KB.

Overall the runtime relative overhead is less than 20%.
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Figure 3.17: GHC-PPS Runtime Overhead in Relation to Input Size.

  64

 128

 256

 512

 25  35  50  100
 200

 400
 800

 1600
 3200

 4300
 6400

O
ve

rh
ea

d
 %

Input File Size (KB)

1 PE(s)
2 PE(s)
4 PE(s)
6 PE(s)
8 PE(s)

Figure 3.18: mpiP Runtime Overhead in Relation to Input Size.

mpiP. Figure 3.18 shows how profiling runtime relative overhead of mpiP changes

as the input size increases. From the figure we can see that there is a growth pattern

between all the PEs curves as the input size increases. The figure shows that run-

time relative overhead grows as the input size increases. Overall the relative runtime

overhead remains between 135% and 378%.
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Figure 3.19: ompP Runtime Overhead in Relation to Input Size.

ompP. Figure 3.19 shows how the profiling relative overhead of ompP changes as

the input size increases. As the figure illustrates, the data is noisy where all curves

fluctuate. However, all curves show that, to some extent, there is a decreasing pattern

as the input sizes increases. Generally speaking, we can say that the overhead decreases

as the input size increases from 100 KB to 3200 KB. Overall the runtime relative

overhead is less than 15%.

3.3.2 Profiling Overhead in Relation to Number of PEs

Score-P (MPI). Figure 3.20 shows how the relative runtime overhead of Score-P

(MPI) changes as the number of PEs increases. The data is noisy beyond 4 PEs; and

it appears that changing the number of PEs does not change the relative overhead but

increases variability.

Eden Tracing. Figure 3.21 shows how the relative runtime overhead of Eden trac-

ing [11] changes as the number of PEs increases. The data is noisy; Eden tracing

appears to contribute significant variability to the overheads. However, there is a

trend towards increasing relative overheads as the number of PEs increases.
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Figure 3.20: Score-P (MPI) Runtime Overhead in Relation to Number of PEs.
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Figure 3.21: Eden Tracing Runtime Overhead in Relation to Number of PEs.

Score-P (OpenMP). Figure 3.22 shows how the relative runtime overhead of Score-

P (OpenMP) changes as the number of PEs increases. As the figure demonstrates, the

data is fairly steady up to 6 PEs, where increasing the number of PEs does not increase

the relative overhead. The sudden drop in relative overheads on 8 PEs for the smaller

input sizes 35 KB, 100 KB, and 200 KB are outliers, possibly caused by too little work.
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Figure 3.22: Score-P (OpenMP) Runtime Overhead in Relation to Number of PEs.

GHC-PPS. Figure 3.23 shows the relative runtime overhead of GHC-PPS [67]. The

data is noisy as for the Eden tracing, and GHC-PPS appears to contribute significant

variability to the overheads. However, unlike the Eden tracing, there is no clear trend

showing an increase in relative overheads with increasing number of PEs.
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Figure 3.23: GHC-PPS Runtime Overhead in Relation to Number of PEs.

mpiP. Figure 3.24 shows how the profiling runtime relative overhead of mpiP changes

as the number of PEs increases. The data is fairly stable up to 4 PEs. As a result,
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we can say that the relative runtime overhead does not change as the number of PEs

increases. However, it contributes to variability in the overheads.
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Figure 3.24: mpiP Runtime Overhead in Relation to Number of PEs.

ompP. Figure 3.25 shows how the profiling relative overhead of ompP changes as the

number of PEs increases. The data is noisy, with high variability in overheads; there

is no clear trend towards an increase in overheads with an increasing number of PEs.
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Figure 3.25: ompP Runtime Overhead in Relation to Number of PEs.
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3.3.3 Runtime Overhead Discussion

This section discusses the results presented from Sections 3.3.1 and 3.3.2, aiming to

compare the functional and imperative profilers in terms of relative runtime overhead.

We compare the profilers with increasing Input Size on 4 PEs. Comparisons with other

fixed numbers of PEs, and comparisons with fixed input sizes show similar results and

can be found in [5].
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Figure 3.26: Synopsis of Relative Runtime Overheads in Relation to Input Size (on 4
PEs.)

Figure 3.26 compares the relative runtime overhead of the 6 profiling tools. To

demonstrate how the overheads of these profiling tools compared to each other we also

summarised the minimum, mean, and maximum values of the relative overhead for

each curve from Figure 3.26 into Table 3.3(a) and Table 3.3(b). In this comparison we

used the mean value from the table for each curve.

The figures show that profilers are clearly divided into two groups; those with

high overheads (over 100%), and those with low overheads (below 25%). The group

with high overheads comprises, in increasing order of overheads, Score-P (MPI), mpiP,

and Score-P (OpenMP). The last has a mean relative overhead of 873%, which is

surprising for a shared-memory profiler. The group with low overheads comprises both

functional profilers and ompP. Because relative overheads for these profilers are already

low, they are also more susceptible to perturbations, resulting in a higher variability
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(a) Distributed-Memory Profilers

Imperative Functional
Summative Tracing Tracing

mpiP Score-P (MPI) Eden Tracing

Min 133.00% 163.00% 2.64%

Mean 295.88% 173.88% 9.40%

Max 361.00% 194.00% 23.00%

Overhead 
%Value

(b) Shared-Memory Profilers

Imperative Functional
Summative Tracing Tracing

ompP Score-P (OpenMP) GHC-PPS

Min 0.44% 313.00% 1.87%

Mean 5.22% 873.50% 10.53%

Max 9.21% 1813.00% 30.00%

Overhead 
%Value

Table 3.3: Minimum, Mean, and Maximum Relative Runtime Overheads (on 4 PEs).

of overheads.

Distributed Memory: Imperative (Score-P, mpiP) vs Functional (Eden).

Table 3.3(a) shows the mean overheads of Score-P (MPI), mpiP, and Eden tracing as

173.88%, 295.88%, and 9.40%, respectively. Thus, the relative overhead of both Score-

P and mpiP is more than an order of magnitude higher than the overhead of Eden.

The higher overheads of Score-P (MPI) may be partially explained by the fact that

Score-P (MPI) collects more data in a less compact format than Eden, as discussed in

Section 3.2.3. However, this cannot explain the overheads of mpiP, which collects far

less data than Eden.

Shared Memory: Imperative (Score-P, ompP) vs Functional (GHC-PPS).

The mean overheads of Score-P (OpenMP), ompP, and GHC-PPS are 873.50%, 5.2%,

and 10.5%, respectively (see Table 3.3(b)). Surprisingly, the overhead of Score-P

(OpenMP) is almost two orders of magnitude higher than GHC-PPS and ompP.

Trace Based vs Summative. Here, the picture is not clear cut. The summative

ompP has the lowest overhead (5.2%), yet this is closely followed by the trace based

Eden (9.4%) and GHC-PPS (10.5%). Despite being a summative profiler, the overheads

of mpiP (295%) are greater than the overheads for the trace based Score-P (173% on

MPI).
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3.4 Data Presentation and Visualisation

This section compares the performance data presentation tools of the functional profil-

ers and imperative profilers. We critically compare the main features and facilities of

these tools. In particular, we investigate how the visualisation tools of parallel Haskells

i.e. EdenTV and ThreadScope, compare to Vampir, the well established technology

which is used by mainstream manufacturers for visualising the performance data of

imperative parallel languages. Table 3.4 summarises how the visualisation tools of

functional profilers compare to imperative profilers.

3.4.1 Programming Model

The Programming Mode section of Table 3.4 highlights the differences between the

tools. Vampir can visualise the performance data of multiple programming models,

e.g. MPI [96], OpenMP, MPI + OpenMP [15], or MPI + Accelerator [13]. mpiP

can only support MPI [141]. ompP mainly supports OpenMP [37], but can also profile

hybrid applications, e.g. MPI + OpenMP [38]. EdenTV only supports the distributed-

memory parallel Eden [11]. Likewise, ThreadScope only supports the shared-memory

parallel Haskell (GHC-SMP) [67].

In terms of the variety of programming models and parallel languages that these

tools support, we can say that Vampir is more flexible. Moreover, EdenTV and Thread-

Scope are both visualisation tools for two parallel variants of the general purpose pro-

gramming language Haskell, which are Eden and GHC-SMP respectively. Nonetheless,

EdenTV cannot present the parallel behaviour of GHC-SMP, and ThreadScope cannot

present the parallel behaviour of Eden.

3.4.2 Presentation of Performance Data

Vampir, EdenTV, and ThreadScope provide the user with a browser to visualise graph-

ically the performance data as well as textual data. However, mpiP and ompP do not

provide such a facility to the user; instead the performance data is summarised into

a text file. Presenting the performance data graphically is important because graphs

can help the user to quickly identify any performance problems. Text based visualisa-

tion is useful for presenting statistical information, e.g. ratios, counters, and repetitive

patterns about the parallel behaviour.
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Features
Imperative Profilers Functional Profilers

Vampir mpiP ompP EdenTV ThreadScope

Distributed Memory + + - + -

Shared Memory + - + - +

Hybrid + - + - -
D

at
a 

Pr
es

en
ta

tio
n GUI + - - + +

Graphs + - - + +

Text Profile + + + + +

So
ft

w
ar

e 
P

ro
pe

rt
ie

s - + + + +

Interoperability + N/A N/A - -

Heterogeneity + - + - -

Scalability + + N/A - N/A

U
sa

bi
lit

y

Zooming + - - + +

Filtering + - - - -

Find + - - - -

Machines + + N/A + -

Processes + - N/A + N/A

Threads + - + + +

Synchronisation + - + - -

Messages + + - + -

Communications + - - + -

Overall Activity + - - - +

+ - - - -

Pr
og

ra
m

m
in

g 
M

od
el

License 
(Open Source)

V
is

ua
lis

at
io

n 
D

is
pl

ay
s/

V
ie

w
s

Two Profiles
Comparison

Table 3.4: Synopsis of Visualisation Tools.

3.4.3 Software Properties

Performance Visualisation tools are software systems which are used by programmers to

tune and improve the behaviour of their parallel programs [60, 51]. A software system

has properties that can make it the ideal choice for its users. Here we will compare these

visualisation tools based on their software properties as shown in Table 3.4 (Software

Properties).
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License. The only proprietary visualisation tool is Vampir; whereas, mpiP, ompP,

EdenTV, and ThreadScope are all open source software.

Interoperability. Here our concern is the ability of the visualisation tool to process

trace files from different trace generation tools, and Vampir is the only interoperable

tool. Vampir can process trace files of the format OTF2 [104], which is the standard

trace format adopted by performance monitoring tools of Vampir, i.e. Score-P [72]

and VampirTrace [140]. In contrast, EdenTV and ThreadScope are not interoperable

visualisation tools, e.g. EdenTV can only process trace files generated by GHC-Eden.

Heterogeneity. In this context heterogeneity is the ability of the tools to visualise

the performance of heterogeneous parallel applications, e.g. MPI + OpenMP. Vam-

pir and ompP are the only tools that present performance information of heteroge-

neous applications. ompP can only profile OpenMP applications or hybrids of MPI +

OpenMP [38]. In contrast, Vampir is more heterogeneous since it can support hybrid

applications of different paradigms, e.g. MPI + Accelerator + Threads, MPI + CUDA,

PGAS + CUDA, and MPI + PGAS [13].

Scalability. Scalability means a tool can visualise long executions on large numbers

of processors [53, 68]. Large-scale problems mean performance data gathered becomes

increasingly more challenging to process [111]. In particular, scalability is an impor-

tant issue for visualising the performance of distributed-memory applications since the

number of processors on distributed-memory grows exponentially. However, scalability

is not such a critical issue for shared-memory applications because the number of pro-

cessors in a single shared-memory machine is limited and typically small. Therefore, we

compared the imperative visualisation tools for distributed memory with the functional

visualisation tools for distributed memory, i.e. Vampir and mpiP vs EdenTV.

Vampir is designed to target scalability [14]. Vampir can scale to a large number

of processors, and can process large numbers of execution events, e.g. up to 220,000

cores and up to 1012 recorded events [13]. In addition, mpiP can scale up to 65536

processes [141]. However, we could not find any publication claiming EdenTV to be

scalable, or revealing the maximum number of processors it can handle. On the other

hand, we have used EdenTV to profile a Concordance application on a Beowulf cluster,

and found that increasing the number of processors significantly increased the size of

the trace file. When the trace file becomes too big to fit into main memory, EdenTV
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is not able to open it. Therefore, EdenTV’s scalability is limited to common cluster

architectures.

3.4.4 Usability

We focus on three main facilities which we think important to help identify performance

problems. These are zooming in and out of the performance graphs, filtering the

performance data to show a particular group of events in the performance graphs,

and finding a specific event in a performance graph. All profiling tools with GUI

provide zooming facilities, i.e. Vampir, EdenTV, and ThreadScope. However, the

graph zooming of both EdenTV and ThreadScope is quite basic. In contrast, Vampir

has more advanced zooming facilities; for example, the user can use the mouse to select

a specific part of the performance graph to be magnified on the screen. Moreover,

Vampir is the only profiling tool that provides filtering and finding facilities. In terms

of the variety of performance graphs each profiling tool provides a selection of views,

see Table 3.4 (Displays/Views). However, we emphasise that Vampir provides more

views than the other profiling tools.

3.4.5 Discussion

Functional profilers provide good facilities for identifying parallel performance prob-

lems. However, comparing them with imperative profilers shows that functional profil-

ers can benefit from the more mature imperative profilers. Our study shows that imper-

ative profilers support different programming models, provide more facilities, and have

adopted standardised formats. In addition, scalability is an important feature of im-

perative distributed-memory profilers. However, we found that scalability has not been

considered in EdenTV. Furthermore, even though EdenTV and ThreadScope are both

visualisation tools for two variants of the functional language Haskell, they are based on

different trace file formats. This means that neither can display trace files produced for

the other, making them incompatible systems. The tools in the established imperative

world such as Vampir [139], Scalasca [123], Periscope [105], and, TAU [132], already

address challenges such as interoperability, heterogeneity, and scalability, as these are

important demands for profiling parallel performance [72]. Therefore, the functional

tools would have to do the same.

Since Eden processes communicate via MPI message-passing one could in princi-

66



Chapter 3. A Survey of Parallel Functional Profilers

ple use a standard MPI profiler, like Score-P (MPI), to profile Eden programs. While

such an approach can provide some summary information, e.g. about overall re-

source utilisation, it is insufficient to profile high-level parallel functional languages.

Berthold et al. [11] for instance, investigated whether the imperative profiler XPVM [73]

could be used to profile Eden programs (using PVM-based message passing [109]) and

found that XPVM lacks the ability to relate the gathered performance data to the

Eden language constructs, e.g. processes and threads, that matter to the programmer.

3.5 Related Work

Chung et al. [21] investigated how to reduce the cost of tracing by selectively recording

only certain classes of events using a set of standard HPC profiling tools. They evalu-

ated their approach with an experimental study of the cost of five profiling tools: IBM

HPCT, Paraver, KOJAK, TAU, and mpiP. In a similar approach to our work, they used

two metrics to characterise the profiling tools: the runtime overheads and the size of

the collected profiling data. There are a number of differences between their study and

our work. Firstly, their study was restricted to one programming model, imperative

programming with MPI, whereas we covered a range of different programming models

(shared vs distributed memory) and paradigms (imperative vs functional). However,

their study used 4 benchmark applications, whereas we were limited to one because it

was difficult to find multiple and similar benchmarks for all the programming models

we considered. Finally, their study investigated the cost of profiling on a larger scale

than ours did. We selected small numbers of processors, so that we could compare

profiling tools for both distributed and shared memory, inheriting the low processor

limit of shared-memory architectures.

Malony et al. [87] investigated overhead compensation in a prototype extension of

the TAU [125] profiling tool. They performed experiments to evaluate the performance

of their tool, measuring the runtime overhead but not the data size of profiles. However,

they did not vary the computation size or the number of PEs in their experiments. They

also did not compare their results with the overheads of other profilers.

Jones Jr. et al. [67] introduced the GHC parallel profiling system and the Thread-

Scope visualizer to the Haskell community. To demonstrate the overheads of parallel

profiling, the paper presents the runtime overheads and trace file sizes of two mi-

crobenchmarks (parallel Fibonacci and parallel quicksort). However, the authors do
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not investigate the impact of computation size and number of cores on the cost of

profiling, nor do they compare their overheads with those of other profiling tools.

3.6 Summary

We have evaluated two functional profilers, GHC-PPS and EdenTV, alongside four

important imperative profilers. The comparison is based on the SICSA Concordance

benchmark [23], which covers both shared and distributed-memory parallel languages,

and is performed on common parallel architectures.

Key findings are as follows: The summative profilers generated the least profiling

data. More interestingly both functional tracing profilers generated one or two orders

of magnitude less data than the imperative tracing profilers. While generating so much

data risks distorting the parallel execution, the benefit is that tools like Score-P/Vampir

can potentially assist the programmer by providing more detailed information about

program execution (Section 3.2). More work is needed to establish the cost/benefit

trade-off between profiling data size and the programmer’s understanding of program

behaviour.

Both tracing functional profilers induce very low runtime overheads by an order of

magnitude less than the imperative tracing profilers. Both functional profilers runtime

overheads, whether distributed or shared-memory, are no more than twice as much

than the best summative profiler in our study: for example, 9.4% of runtime overhead

for EdenTV and 10.5% for GHC-PPS compared with 5.2% for ompP (Section 3.3).

Comparing the profilers for usability and data presentation, we see that the

functional profilers are relatively immature when compared with tools like Vampir

for popular imperative technologies. The results also reflect the profiler design philoso-

phies: summative tools provide key information with minimal intrusion. The functional

profilers provide more information and some graphical visualisation; Vampir offers the

greatest range of information, and the most sophisticated and usable visualisation tools

(Section 3.4).

Functional profilers could be improved in a number of ways. Currently the data

collection and visualisation options are relatively modest, and both could be improved

to approach the standard of leading tools like Vampir. Functional profiling archi-

tectures could better exploit techniques proven by tools like Vampir. For example,

instead of different visualisation tools to visualise two variants of parallel Haskell, one
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tool could be designed to visualise multiple variants. Similarly, instead of producing

different trace formats for each Haskell variant, a standard format is needed which can

capture monitoring data from a more generic abstract unit of computation resource.

While GHC-PPS represents a move in this direction, it is closely entwined with GHC

and has a relatively simple model of computation resources.

Interesting challenges lie ahead: functional profilers must soon address the issues

of scalability and heterogeneity. The scalability challenge is to collect useful information

as the number of cores grows exponentially and the bandwidth available to each core

shrinks. The challenge of heterogeneity is to profile a program executing on a range of

computing resources, e.g. multicores and GPUs.

Moreover, since Haskell has become the host language of several DSLs implemen-

tations, another important challenge for functional profilers is how to support profiling

parallel DSL. The DSL profiling challenge is the ability of the profiler to monitor,

analyse the performance, and present the behaviour from the high-level abstraction of

the DSL. It is unclear how much profiling technologies can be shared by the various

parallel Haskell DSLs like the Par Monad [89], Cloud Haskell [28], and HdpH [84].
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HdpHProf– Design and

Implementation

This chapter presents the design and implementation of HdpHProf, a profiler for the

HdpH DSL. In keeping with the HdpH philosophy of relying on nothing but the host

platform, HdpHProf builds on GHC’s existing profiling infrastructure, in particular on

the event logging mechanism of the GHC Parallel Profiling System (GHC-PPS). Hd-

pHProf is post-mortem, multi-stage, and extensible. Importantly, the implementation

exploits several new GHC features, including the GHC-Events Library and Thread-

Scope, to build profiling tools for HdpH. HdpHProf faces some challenges unique to

the high-level distributed-memory DSL setting: how to instrument and trace the be-

haviour of the parallel DSL, how to tweak event logging to generate a single profile of

a distributed program execution, spanning multiple machines with independent clocks,

and how to analyse and visualise such trace files. The design introduces two novel

analysis tools for monitoring the DSL internals, i.e. Spark Pool Contention Analy-

sis and Registry Contention Analysis. Furthermore, we present how HdpHProf uses

ThreadScope [134], the standard GHC shared-memory performance analysis tool, to

visualise the performance of the distributed-memory executions of HdpH.

4.1 HdpHProf Requirements

The requirements for HdpHProf to profile HdpH are to use the available performance

analysis infrastructure from the host language, i.e. GHC [57], to profile HdpH. The

GHC compiler comes with a full profiling suite called the GHC Parallel Profiling Sys-

tem (GHC-PPS) [67] and a trace visualiser, ThreadScope [134]. We can categorise
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HdpHProf requirements into three different types as follows.

Architecture Requirements:

• HdpHProf should not require any change to the GHC platform.

• HdpHProf should use the GHC-PPS tracing to emit HdpH trace events into the

eventlogs produced by the GHC-PPS on each node.

• HdpHProf should use and extend the GHC-Events library to read HdpH trace

events from the eventlog, normalise the HdpH RTS start time in each eventlog

and synchronise the time in the eventlogs accordingly, and merge the multiple

eventlogs from a distributed run.

Functional Requirements:

• HdpHProf should provide analysis tools for HdpH performance, e.g. spark pool

contention analysis and registry contention analysis.

• HdpHProf should use ThreadScope to browse the eventlogs and see how HdpH

utilises the cores of a Beowulf cluster of multicores.

Performance Requirements:

• HdpHProf should scale to profile HdpH applications on clusters of multicores

with large number of cores, e.g. 192 cores of a 32-node Beowulf cluster.

• HdpHProf should induce low tracing overheads to the GHC-PPS and the profiled

applications.

4.2 HdpHProf Implementation Design

This section presents the design of HdpHProf. HdpHProf is a performance analysis

tool for the high-level distributed parallel Haskell (HdpH). We explore the feasibility

and issues of profiling a parallel DSL using the host language profiling tools. HdpH-

Prof aims to help HdpH programmers to tune and improve the performance of their

parallel programs and help HdpH implementers to debug the HdpH RTS. HdpHProf

is a post-mortem, multi-stage and extensible time profiler which takes a new approach
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to constructing profiling tools for the parallel DSL HdpH. The approach that HdpH-

Prof takes is to use off-the-shelf commodity profiling tools of a general purpose parallel

language and adapt the tools to profile the parallel DSL; in our case HdpH. HdpHProf

uses the GHC-PPS tracing and the GHC-Events Library as a base to profile HdpH.

HdpH is implemented in vanilla Concurrent Haskell [84]. This means that HdpH

can be profiled using the GHC-PPS. However, doing so will capture the performance

behaviour of only one of the HdpH virtual parallel machines. Therefore, HdpHProf

is designed to profile the performance of HdpH on all nodes and collects performance

data that captures the behaviour of the parallel DSL. For example, HdpH trace events

that reflect what is happing at the HdpH level are emitted into the trace file.

Figure 4.1 illustrates the work flow design1 of HdpHProf, where an application

is compiled with GHC with GHC-PPS enabled. The executor takes the compiled

application, along with a list of a cluster nodes, and executes the application on these

nodes to produce eventlogs; one per node. Eventlogs can be analysed before or after

being merged as required to produce summative performance profiles. Similarly, an

eventlog of single nodes can be visualised separately or after being merged with all

eventlogs to see overall performance on the parallel architecture.

Application

Compile
(GHC)

Execute eventlog
eventlog

eventlog
eventlog

Merge

eventlog

Analysis
(GHC-Events Library) Visualise

(ThreadScope)

Profiles

Node list

Graphs

1

2 3

4

5

Figure 4.1: HdpHProf Work Flow Model.

4.2.1 HdpH Trace Events

Trace based data collection requires code instrumentation with trace events that are

triggered during execution to emit the trace events into a log, as discussed in Sec-

1 A rectangle with sharp corners represents an input/output for/from a process. However, a
rectangle with rounded corners represents a functional phase that takes an input and produces an
output [126].
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tion 2.3.1. The emitted trace events represent events in the program being profiled,

e.g. the start of executing a function. Having these trace events in the form of an

eventlog can help to understand the execution behaviour of the program and identify

performance problems. The GHC-PPS provides valuable trace functions for Haskell

users who want to profile the behaviour of their programs, and especially for imple-

menters of Haskell parallel DSLs. Therefore, to emit HdpH trace events we use this

feature to instrument the HdpH runtime system.

The GHC-PPS trace function allows trace events to be emitted from the DSL

level into the GHC-PPS eventlogs without the need to change the GHC. It provides

general data fields with each trace event. For example, a trace event has when and

where the trace event was emitted along with an event description that is specified by

the user. Emitted trace events then can be read from the eventlog after execution for

performance analysis. Table 4.1 gives a list of all trace events that HdpHProf traces

to profile HdpH execution. Some of the trace events are one to one where we emit

only one trace event. Conversely, some other trace events are paired where we have to

record the beginning and the end of an event.

Category Type Trace Event

   HdpH RTS
Single    Start-up
Single    Shut-down

   Global References

Single    Put an IVar
Single    Get an IVar

Paired 
Enter    Globalise GRef
Exit    GRef Globalised

Paired 
Enter    Dereference GRef
Exit    GRef Dereferenced

Paired 
Enter    Free GRef
Exit    GRef Freed

   Sparks

Single    Put Spark
Single    Spark Created

Paired 
Enter    Get Spark 

   Converted Spark
   Nothing to Spark

   Messages

Single    SCHEDULE Message
Single    FISH Message
Single    Forward FISH
Single    NOWORK Message
Single    PUSH Message

Exit 
(or)

Table 4.1: HdpH Trace Events.
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4.2.2 Multiple Trace Files

An important point of the HdpHProf design is to produce a unique and independent

trace file for each HpdH node. The trace files can be later merged into a single trace

file that gives a complete picture of the execution behaviour, or they can be analysed

individually for node based diagnosis, e.g. contention analysis.

The trace file produced by the GHC-PPS is designed to profile a shared-memory

parallel programming model. In contrast, HdpH extends this programming model for

distributed-memory parallelism on a cluster of multicores. This means the GHC-PPS

on its own is insufficient to profile the execution behaviour of HdpH.

Figure 4.2 demonstrates how HdpHProf generates multiple trace files of an HdpH

application. HdpHProf uses its Executor component for this task. The Executor runs

the HdpH application in the eventlogging mode and makes each node produce a unique

trace file which can be identified by, e.g. application name and node number. It is

important that each HdpH node has a unique eventlog so each node can be analysed

individually for quick and light-weight diagnosis of execution behaviour. Moreover,

this design enables the process of synchronising and merging the eventlogs to take

place after the execution to reduce the overhead of profiling, thus avoiding distorting

profiling runs with synchronisation overheads.

Application

Executor

Run on
(Node 1)

Run on
(Node 2)

Run on
(Node 3)

Run on
(Node N)…

Eventlog 1 Eventlog 2 Eventlog 3 Eventlog N…

Merger

Eventlog

Synchroniser

Generating Multiple Trace Files

Time Synchronisation

Merging Trace Files

Synchroniser Synchroniser Synchroniser…

Figure 4.2: Generating, Synchronising and Merging Multiple Trace Files.
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4.2.3 Time Synchronisation

HdpHProf solves the time synchronisation for the multiple trace files of HdpH. Captur-

ing consistent time for trace events is crucial for accurate performance measurements.

Tracing profilers use time stamps in trace events as a means of keeping track of time to

observe points of interest in the course of program execution [71]. Time synchronisa-

tion is relatively easy in profiling shared-memory parallel programs as processes exist

within the same machine and share a clock. However, in a distributed-memory execu-

tion processes reside in separated machines with their own clocks, and time needs to

be synchronised in the tracing data, to reflect an accurate picture for the performance

of the profiled application.

HdpHProf eventlogs contain trace events which are emitted with time stamps

produced from different machines. In terms of profiling this introduces two issues. The

first issue is in the case of using computing architecture that consists of multiple ma-

chines where it is likely that the clocks have some time difference. In the HdpHProf

design we assume that while clock rates may not be identical they do not differ signif-

icantly during a program execution. The second issue is in how the GHC-PPS gives

its trace events their time stamps. It starts by giving an arbitrary time greater than

0s for the first trace event in the log and greater time stamps for the following trace

events.

HdpH has a barrier synchronisation for its RTS to start-up. However, starting

the trace events with an arbitrary number in each trace file makes start-up times

asynchronous in HdpHProf eventlogs. To solve the issue of time difference in the

eventlogs, HdpHProf uses its Synchroniser component (Figure 4.2) to fix the time

difference from the multiple eventlogs by equalising the HdpH RTS’s start-up times

and reflects this change for all trace events accordingly.

Figure 4.3 illustrates in more detail how the process of the time synchronisation

is accomplished for the multiple eventlogs of HdpH. As the figure shows eventlogs

have different HdpH RTS start-up times . To synchronise the trace events for all

the eventlogs an arbitrary but uniform start-up time is needed to synchronise the

profiling data based upon it. The arbitrary start-up time is architecture dependent.

For instance, 1.5s is suitable for a Beowulf cluster of 32 nodes as no machine is expected

to exceed this number. However, other computing architecture may need a longer time,

e.g. 10s for HECToR [63]. The start-up must be greater than the real HdpH RTS start-

up time otherwise time stamps get corrupted because of their unsigned integer type.
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For example, if the HdpH RTS start-up time in an eventlog is 0.8s the synchronisation

value will be (1.5 − 0.8 = 0.7s) and all the times in this eventlog will be updated by

+0.7s. After synchronising all the eventlogs the profiling data is synchronised and all

machines have the same start-up time.

Time line 
0s Ns

Log 1

Log 2

Log N

…

1.5s Synch point

HdpH's Trace Events

HdpH RTS's Start-up time

HdpH's Trace Events

HdpH RTS's Start-up time

HdpH's Trace Events

HdpH RTS's Start-up time

Time line 
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Log 1

Log 2

Log N

…

1.5s Synch point

HdpH's Trace Events

HdpH RTS's Start-up time

HdpH's Trace Events

HdpH RTS's Start-up time

HdpH's Trace Events

HdpH RTS's Start-up time

Synchronise

Profiling data before synchronisation 

Profiling data after synchronisation 

Figure 4.3: Design of HdpHProf Time Synchronisation Process.

4.2.4 Merging Trace Files

HdpHProf merges the multiple eventlogs from an HdpH application. The eventlogs are

in the GHC-ELF [50]. Therefore, they can be read, analysed, and visualised individu-

ally by the GHC-PPS tools. However, to get a comprehensive picture of performance

all eventlogs must be merged into one eventlog.

One alternative is to modify the GHC-Events Library and ThreadScope to read,

analyse, and present performance data from multiple eventlogs. We think this is not a

good design decision since it requires changing the code of both GHC-Events Library

and ThreadScope. The second option is to provide a merging tool to locate and merge

the multiple eventlogs of HdpH into a single eventlog.

Figure 4.2 illustrates the design of HdpHProf for merging multiple eventlogs. The

Merger locates all eventlogs and merges them into a single eventlog that contains all
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the trace events from the input files. In addition, the Merger keeps the output eventlog

in the same format as the input eventlogs, i.e. GHC-ELF. The merger also keeps the

performance data sorted by node number so it will be possible to identify performance

problems for each node.

This approach is different from other functional distributed-memory profilers. For

example, EdenTV [11] wraps all the trace files of distributed-memory execution into a

single trace file of a different format than the GHC-ELF. Therefore, it is not possible to

visualise Eden’s trace file with the standard GHC trace browser ThreadScope. Instead,

Eden has its EdenTV to visualise aspects that ThreadScope cannot, such as Eden

processes. On the contrary, our approach in the design of HdpHProf is to keep the

performance data in the GHC-ELF, so we can use the GHC-PPS to profile HdpH and

extend it to introduce new profiling tools for HdpH.

4.2.5 Trace Visualisation

To present the performance data of HdpH, HdpHProf uses two approaches; summative

profiles, which we discuss in Section 4.2.6, and performance graphs. HdpHProf uses

the standard GHC trace viewer ThreadScope to visualise the HdpH performance date

graphically. Performance data visualisation was discussed earlier in Section 2.3.1. Since

HdpHProf is built based on the GHC-PPS this means that the raw performance data of

HdpH has the GHC-ELF format. This means HdpHProf eventlogs can be visualised by

ThreadScope directly for presentation. Figure 4.1 (Phase 5) shows how an HdpHProf

eventlog is visualised with ThreadScope.

Visualising the performance of HdpH with ThreadScope gives information about

how HdpH performs. HdpH is implemented using concurrent Haskell [107] where HdpH

schedulers and message handlers are Haskell IO threads. Therefore, by visualising the

performance data of HdpH in ThreadScope we see how well HdpH is utilising the

parallel architecture. This helps see how HdpH applications behave also it can identify

performance problems and tune thread granularity which we will discuss in Chapter 6.

4.2.6 Trace Analysis and Presentation

HdpHProf provides analysis tools to analyse and present the HdpH DSL implementa-

tion performance. Performance data analysis was discussed earlier in Sections 2.3.1.

HdpHProf extends the GHC-Events Library with analysis tools specially designed for
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the DSL HdpH. The library is equipped with tools and functionalities that can be

used to read and process HdpH’s eventlogs to produce performance profiles. We call

the extended version the GHC-Events-HdpH Library and it is available to download

online [2]. As proof of concept we designed two analysis tools for HdpH internals:

Spark Pool Contention Analysis, and Registry Contention Analysis. These are tools

specified for detecting contention on data structures shared between HdpH schedulers

and we want to know when it occurs because contention reduces performance. Fig-

ure 4.1 (Phase 4) demonstrates how the analysis tools read and present performance

of the DSL implementation. We will discuss the tools in more detail in the following

sections.

Spark Pool Analysis

The spark pool is an important shared data structure in the HdpH DSL implementation

that schedulers use to get sparks. This means that more than one scheduler can

access the spark pool concurrently during execution. This can create contention where

schedulers have to wait for sparks and this can affect the performance of HdpH. The

Spark Pool Contention Analysis tool is designed to detect contention on accessing the

spark pool by the multiple schedulers. It reads the spark pool trace events and analyses

them for contention.

The tool is designed to detect two type of conflicts: 1) unproductive conflict,

when two or more schedulers conflict and none of them leave the spark pool with

a converted spark, and 2) productive conflict, where two or more schedulers conflict

and one scheduler leaves the spark pool with a converted spark. It is important to

distinguish between these two types of contentions as unproductive conflicts happen

when the spark pool is empty and no scheduler leaves with a spark; whereas, productive

conflicts happen when the spark pool contains some sparks and eventually one scheduler

leaves with a spark while other schedulers must wait.

Figure 4.4 illustrates how contention on spark pool is identified by conflicts be-

tween sequences of spark pool trace events over time. An unproductive conflict exists

when the first scheduler enters the spark pool until it exits the spark pool; meanwhile,

a second scheduler enters after the first scheduler and leaves with no spark until the

first scheduler exits the spark pool. With this data more statistical information can

be derived; e.g. how often conflicts happen, what are their durations, and what is the

maximum conflict duration. This information can be used to understand the behaviour
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of the HdpH RTS and to help improve it.

S#1 ESP

Spark Pool Trace Events

S#2 ESP S#2 NS S#1 NS S#3 ESP S#4 ESP S#4 CS S#3 NS

S#X ESP  =   Scheduler number X tries to enter Spark Pool

S#X CS    =  Scheduler number X exits with converted spark

S#X NS  =   Scheduler number X exits with no spark to convert

Unproductive Conflict Productive Conflict

Time

Figure 4.4: Spark Pool Conflicts.

Registry Analysis

The registry is another important data structure that manages global data in the HdpH

DSL implementation. The registry can face high demand as many schedulers may try

to access the registry concurrently, but only one scheduler can update the registry at a

time and the others have to wait. The Registry Contention Analysis tool is designed

to detect contention between schedulers accessing the registry.

A conflict on the registry occurs when a scheduler is holding the registry while one

or more other schedulers are trying to access the registry and they have to wait until

the first scheduler leaves the registry. Figure 4.5 shows how contention on the registry

is detected by conflicts between the sequence of registry trace events over time. A

conflict happens when a first scheduler enters the registry and a second scheduler tries

to access the registry after the first scheduler and it has to wait until the first scheduler

releases the registry. With this data statistical information can be derived, e.g. how

often conflicts occur, and what are the durations of these conflicts. This information

can help to understand the execution behaviour of HdpH RTS and improve it in the

event of performance problems.

HpdH Performance Presentation

To present the HdpH RTS implementation performance data, HdpHProf uses sum-

mative profiles for presentation. We extend the GHC-Events Library with HdpHProf

profiles for the DSL profiling. HdpHProf analysis tools, the Spark Pool Contention
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S#1 Enters

Registry Trace Events

Conflict

Time

S#2 Enters S#3 Enters S#1 Exits S#2 Exits S#3 Exits

S#X Enters = Scheduler number X tries accessing the registry

S#X Exited = Scheduler number X exits the registry   

Figure 4.5: Registry Conflicts.

Analysis and the Registry Contention Analysis present their result in the form of a

summative profile. Figure 4.1 (Phase 4) demonstrates how a performance profile is

produced from an eventlog with HdpHProf analysis tools. The profilers are discussed

and presented in more detail in the implementation (Section 4.3.5).

4.3 HdpHProf Implementation

This section presents the implementation of HdpHProf. It introduces how HdpHProf

collects performance data of the execution behaviour of HdpH, how the GHC-Events

Library [49] is used and extended to introduce new performance analysis tools for the

DSL HdpH, and how multiple eventlogs of distributed-memory Haskell parallel DSL

are tweaked to be visualised in ThreadScope [134]. The extended version of the library,

GHC-Events-HdpH is available to download online [2].

4.3.1 Data Collection

This section demonstrates how HdpHProf collects HdpH performance data. The HdpH

RTS is instrumented with HdpH trace events that are emitted into the GHC-PPS

eventlog during execution. The following sections illustrate the emission of HdpH trace

events, the code instrumentation of HdpH RTS, and the creation of HdpH multiple

eventlogs.

Emitting HdpH Trace Events

HdpHProf exploits the trace function of GHC-PPS to record HdpH RTS level events

in the eventlogs. We used the traceEventIO from the Debug.Trace module to emit

trace events in monadic code. The function takes a string (event content) and emits
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the event content along with a time stamp and the HEC that indicates the number of

the virtual PE in which the event occurred.

HdpH RTS Code Instrumentation

HdpH RTS is instrumented with HdpH trace events in a number of modules. To emit

the trace events enumerated in Table 4.1 we have to find in which module a particular

event happens then instrument its code. For contention analysis it is important to

know when an event has started and when it finished. Therefore, instrumentation will

emit two trace events, before and after the actual event. In addition, an event must

have a unique description so it can be identified during the data analysis process. Here

we demonstrate how events instrumentation is implemented for the HdpH RTS.

Listing 4.1 illustrates how functions from the HdpH IVar module are instrumented

to emit registry trace events. Three paired events occur: globalising a Global Reference

(GRef), dereferencing a GRef, and freeing a GRef. For example, to emit trace events

for globalising a GRef in the globIVar function Line 3 emits the beginning of the event

and Line 5 emits the end of the event. Similarly, the other events are implemented,

dereferencing GRef in Lines 10 and 12, and Freeing GRef in Lines 13 and 15.

Listing 4.1: Extract of IVar Module.
1 globIVar : : Int −> IVar m a −> IO (GIVar m a )
2 globIVar schedID v = do
3 traceEventIO $ ”Global iseGRef { s chedu l e Id = ”++ show schedID ++”}”
4 gv <− g l o b a l i s e v
5 traceEventIO $ ”GRefGlobal ised { s chedu l e Id = ”++ show schedID ++”}”
6 return gv
7
8 putGIVar : : Int −> GIVar m a −> a −> IO [ Thread m]
9 putGIVar schedID gv x = do

10 traceEventIO $ ”DereferenceGRef { s chedu l e Id = ”++ show schedID ++”}”
11 t s <− withGRef gv (\ v −> putIVar v x ) ( return [ ] )
12 traceEventIO $ ”GRefDereferenced { s chedu l e Id = ”++ show schedID ++”}”
13 traceEventIO $ ”FreeGRef { s chedu l e Id = ”++ show schedID ++”}”
14 f r e e gv
15 traceEventIO $ ”GRefFreed { s chedu l e Id = ”++ show schedID ++”}”
16 return t s

Some of HdpH trace events implementation are in none of the monadic functions

and we need to lift the traceEventIO into the monad that HdpH uses; for instance,

the getSpark function from the Sparkpool module. To get a spark a scheduler enters

the spark pool then either exits with a converted spark, or with nothing to spark.

Listing 4.2 illustrates the implementation on HdpH trace events. Lines 1 and 2 show

how the traceEventIO is lifted to the SparkM monad. Line 7 emits the beginning trace

events of entering the spark pool to get a spark. In contrast, in Lines 10 and 13 emit

the exit trace events based on the result.
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Listing 4.2: Extract of Sparkpool Module.
1 t r a c e : : String −> SparkM m ()
2 t r a c e message = l i f t I O $ traceEventIO message
3
4 getSpark : : Int −> SparkM m (Maybe ( Spark m) )
5 getSpark schedID = do
6 pool <− getPool
7 t r a c e $ ”EnterSparkPool { s chedu l e Id = ”++ show schedID ++”}”
8 maybe spark <− l i f t I O $ popFrontIO pool
9 case maybe spark of

10 Just −> do t r a c e $ ”ConvertSpark { s chedu l e Id = ”++ show schedID ++”}”
11 sendFISH
12 return maybe spark
13 Nothing −> do t r a c e $ ”NothingToSpark { s chedu l e Id = ”++ show schedID ++”}”
14 sendFISH
15 return maybe spark

Multiple Trace Files

This section shows the implementation of hdphexec, a profiling executer for HdpH

applications. One of the challenges we faced in profiling the performance of the DSL

HdpH was to produce a unique trace file (eventlog) for each computing node. This is

because HdpH executes on multiple nodes that run multiple instances of GHC. Using

the GHC-PPS on its own is not sufficient because it is designed for shared-memory

profiling on a single multicore, producing a single eventlog from one machine. There-

fore, we implemented the hdphexec, which takes a list of Beowulf cluster nodes and an

HdpH application then executes the application to produce multiple eventlogs, one per

node. Eventlogs are identified by the application name and the node number. For ex-

ample, SumEuler#3.eventlog means this is the eventlog of the SumEuler application

which was executed on the third node. Listing 4.3 shows the implementation code for

the hdphexec (as a shell script).

Listing 4.3: Implementation of HdpHProf Executer (hdphexec).
1 # va r i a b l e s from command l ine , number o f nodes , ho s t s f i l e and the program name
2 nodes=$3
3 hos t s=$4
4 execname=$5
5 # crea te e x e cu t a b l e f o r each machine .
6 N=1
7 while test ”$N” − l e ” $nodes ”
8 do
9 read hostname

10 cp $execname $execname#$N
11 N=$ [N+1]
12 done<$host s
13 #s h i f t the command−l i n e v a r i b l e s to s t r a t from the HdpH run commands .
14 N=1
15 while test ”$N” − l e ”5” ; do
16 sh i f t
17 N=$ [N+1]
18 done
19 # generat command to run the program on mu l t i p l e nodes
20 runcommad=”mpiexec”
21 N=1
22 while test ”$N” − l e ” $nodes ”
23 do
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24 read hostname
25 i f test ”$N” − l t ” $nodes ” ; then
26 runcommad=”$runcommad −host $hostname $execname#$N $@ : ”
27 else
28 runcommad=”$runcommad −host $hostname $execname#$N $@ ”
29 f i
30 N=$ [N+1]
31 done<$host s
32 # execute the command
33 $runcommad

4.3.2 Data Analysis

This section presents the implementation aspects of HdpHProf related to HdpH per-

formance data analysis tools we discussed previously in Section 4.2.6. This includes

introducing HdpH trace event types, tools for reading and filtering trace events, and

tools for performance analysis, Spark Pool Contention Analysis and Registry Con-

tention Analysis.

HdpH Trace Event Types

Defining a data structure for trace events is crucial for performance data collection. A

trace file can consist of hundred of thousands of trace events. Storing trace events in an

appropriate data structure makes it easier to manage the data and derive information.

Moreover, structured data makes it possible to process or apply functions on trace

events based on their type, e.g. operations such as equality or ordering can be applied

to trace events.

We implemented HdpH trace events data format as a module in the GHC-Events-

HdpH Library, called HdpHEventType (Listing 4.4). The implementation follows the

approach used to implement the GHC event types from the GHC-Events Library.

We introduced new Haskell data type, HdpHData. The data type consists of a list

of type HdpHEvent. Each HdpH event has two fields, a time stamp and an event

information. The time stamp field represents when the event happens. However, the

event information field can be one of the shown HdpH trace events. Keeping HdpH

trace events in such a Haskell data structure makes them readable and processable to

derive performance information as discussed in the following sections.

Listing 4.4: HdpHEventTypes Module.
1 module HdpH. HdpHEventTypes where
2 import GHC.RTS. Events
3 import Data . List
4 import Data .Word (Word16)
5
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6 type Scheduler Id = Word16
7 type Message = String
8 type Node = String
9

10 data HdpHData = HdpHData {
11 hevents : : [ HdpHEvent ]
12 }
13
14 data HdpHEvent =
15 HdpHEvent {
16 e t ime : : {−# UNPACK #−} ! Timestamp ,
17 e spe c : : HdpHEventInfo
18 } deriving (Show, Eq, Ord)
19
20 data HdpHEventInfo
21 −− sparks
22 = SparkCreated { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
23 }
24 | ConvertSpark { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
25 }
26 | NothingToSpark { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
27 }
28 | EnterSparkPool { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
29 }
30 | PutSpark { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
31
32 −− Globa le References
33 }
34 | Global iseGRef { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
35 }
36 | GRefGlobal ised { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
37 }
38 | FreeGRef { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
39 }
40 | GRefFreed { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
41 }
42 | FreeGRefNow { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
43 }
44 | GRefFreedNow { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
45 }
46 | DereferenceGRef { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
47 }
48 | DeadGRef { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
49 }
50 | GRefDereferenced { s chedu l e Id : : {−# UNPACK #−} ! Schedu ler Id
51 }
52 −− Messages
53 | FishMsg { node : : Node
54 , message : : Message
55 , t a r g e t : : Node
56 }
57 | ScheduleMsg { node : : Node
58 , message : : Message
59 , f i s h e r : : Node
60 }
61 | ForwardFish { node : : Node
62 , message : : Message
63 , t a r g e t : : Node
64 }
65 | NoWorkMsg { node : : Node
66 , message : : Message
67 , f i s h e r : : Node
68 }
69 −− RTS s ta r t−up/shutdown
70 | HdpHStartup {}
71 | HdpHShutdown {}
72 −− mis
73 | NotHdpHEvent {}
74
75 deriving (Show, Eq, Ord , Read)
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Extracting HdpH Trace Events

This section demonstrates how HdpH trace events are extracted from the GHC event-

log. HdpH trace events are emitted into an eventlog as GHC trace events that we

discussed earlier (Section 4.3.1). To analyse the performance of HdpH we needed to

extract its trace events from the eventlog. Therefore, we implemented a function that

takes trace events of an eventlog then returns HdpH trace events as result.

Listing 4.5 shows partial code of the HdpH.Analysis module from the GHC-

Events-HdpH Library [2] that illustrates how HdpH trace events are extracted. The

getHdpHEvents function takes a list of GHC trace events2 then returns a list of HdpH

trace events as results. The function recursively checks and extracts events from the

input list then produces a new list of HdpH trace events. The liftEvent function is

utilised by the getHdpHEvents to parse the content of trace events. It examines the

content of the trace event; in case of a HdpH trace event it returns it as a result or

skips it otherwise. This is how HdpH trace events are extracted from an eventlog trace

events.

Listing 4.5: Parsing HdpH Events.
1 getHdpHEvents : : [ Event]−> [ HdpHEvent ]
2 getHdpHEvents [ ] = [ ]
3 getHdpHEvents ( x : xs ) =
4 let evt = l i f tEv en t x
5 in case e spe c evt of
6 NotHdpHEvent −> getHdpHEvents xs
7 −> evt : getHdpHEvents xs
8
9 l i f t Ev en t : : Event −> HdpHEvent

10 l i f t Ev en t e = let
11 eventt ime = time e
12 eventspec = isHdpHEventInfo ( reads (msg $ spec $ e ) : : [ ( HdpHEventInfo , String ) ] )
13 in HdpHEvent { e t ime = eventt ime , e spe c = eventspec }
14
15 isHdpHEventInfo : : [ ( HdpHEventInfo , String ) ] −> HdpHEventInfo
16 isHdpHEventInfo [ ]= NotHdpHEvent
17 isHdpHEventInfo [ ( x , y ) ] = x

Spark Pool and Registry Analysis

To analyse contention on the spark pool it is necessary to acquire the spark pool trace

events and pair events. Listing 4.6 shows the pairSparkEvents function from the

HdpH.Analysis module of the GHC-Events-HdpH Library. The function takes a list

of HdpH events and returns a list that contains lists of paired HdpH trace events.

Similarly, the pairRegEvents function in Listing 4.7 is used to acquire and pair the

2 The GHC trace events at this stage are filtered to be only those emitted with the traceEventIO

function.
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registry trace events. In a following section we will show performance profile with

information derived from this data (Section 4.3.5). Full implementation is also available

in [2].

Listing 4.6: Extracting Spark Pool Events from HdpH Events.
1 −− Takes a l i s t o f HdpHEvent and return a l i s t o f pa i r s each pa i r
2 −− has the event s o f en t e r ing the spark poo l and l e a v i n g the sparkpoo l
3 −− f o r the same schedu l e Id
4 pairSparkEvents : : [ HdpHEvent]−> [ [ HdpHEvent ] ]
5 pairSparkEvents [ ] = [ ]
6 pairSparkEvents ( x : xs )
7 | i sEnterSparkPool x = searchForPairOf x xs : pairSparkEvents xs
8 | otherwise = pairHdpHEvents xs

Listing 4.7: Extracting Registry Events from HdpH Events.
1 −− This func t ion take s a l i s t o f HdpHEvent and re turns a l i s t o f pa i r s in
2 −− a l i s t o f r e g i s t r y event s i . e g l o b a l i s e , dere f e rence and f r e e .
3 pairRegEvents : : [ HdpHEvent ] −> [ [ HdpHEvent ] ]
4 pairRegEvents [ ] = [ ]
5 pairRegEvents ( x : xs )
6 | i sG loba l i s eGRef x = searchForPairOf x xs : pairRegEvents xs
7 | i sFreeGRef x = searchForPairOf x xs : pairRegEvents xs
8 | i sDere fe renceGRef x = searchForPairOf x xs : pairRegEvents xs

4.3.3 Trace File Time Synchronisation

Listing 4.8 presents the HdpH.Synch module from the GHC-Events-HdpH Library that

synchronises distributed eventlogs. The synchEventlogs function takes a start time

and an HdpH eventlog then synchronises its trace events time stamps to the required

start time. For example, 1.5s as a start time will be sufficient for a Beowulf cluster

up 32 nodes as we found that average HdpH RTS start-up time is about 1s. The

function works by first reading the HdpH RTS start-up time from the eventlog. Then

it calculates the synchronisation time value by subtracting start time (stime) from

the HdpH RTS start-up time. After that it modifies times for all trace events in the

eventlogs by adding the synchronisation value to each event time stamp. The function

is used recursively over the multiple eventlogs before merging them as will be discussed

in the next section.

Listing 4.8: HdpH.Synch Module.
1 module HdpH. Synch ( synchEventLogs ) where
2
3 import GHC.RTS. Events (Data )
4 import Data . List
5 import Data .Word (Word64)
6
7 synchEventLogs : : Word64 −> EventLog −> EventLog
8 synchEventLogs st ime (EventLog h d) = EventLog h ( synchData st ime d)
9

10 synchData : : Word64 −> Data −> Data
11 synchData st ime d@(Data (x : xs ) ) =
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12 let sv = synchValue st ime d
13 evt s = syn sv (x : xs )
14 where syn s (y : ys ) = Event ( time y + sv ) ( synchBlock s ( spec y ) ) : syn s ys
15 syn s [ ] = [ ]
16 in Data evt s

4.3.4 Merging Trace Files

HdpHProf merges eventlogs using its component merger, a script that implements the

design described in Section 4.2.4. The merger locates eventlogs and recursively feeds

them to the synch function.

Merge Executer

Listing 4.9 presents the implementation of the merger which is an executer for merging

HdpH eventlogs. The merge executer locates the eventlogs of the profiled application.

It applies the synch function to each eventlog for time synchronisation, then merges

the eventlogs.

Listing 4.9: Implementation HdpHProf Merge Executer.
1 #!/ bin /bash
2 programname=$1
3
4 i f test ”$programname” != ”” ; then
5 x=0
6 for i in $programname#∗ . e v en t l o g
7 do
8 ghc−events−hdph synch 1500000000 temp . event l og $ i
9 mv temp . event log $ i

10 x=$ [ x+1]
11 done
12 mergecommand=”ghc−events−hdph merge $programname . event log ”
13
14 N=1
15 while test ”$N” − l e ”$x”
16 do
17 mergecommand=”$mergecommand $programname#$N . event l og ”
18 N=$ [N+1]
19 done
20 $mergecommand
21
22 else
23 echo ”Usage : hpmerge <program name> ”
24 f i

Merge Function

Listing 4.10 illustrates the implementation of the merge function in the GHCEvents

module of the GHC-Events-HdpH Library. This function is a modified version of the

existing merge function from the GHC-Events Library [49]. The original function can

only merge two eventlogs in a single execution. However, our modified versions are
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capable of merging non-empty list of eventlogs with fold1. We changed the function

parameters to take multiple input files. We used mapM to read input files as a list to

return a list of monadic actions for reading the input files. After that, we used the

foldr13 function to apply mergeEventLogs function to the result from the mapM. This

upgrade to the merge function makes it capable of merging multiple eventlogs at single

execution instead of only two eventlogs. This function is used by the merger which is

presented in the previous section to merge HdpH eventlogs.

Listing 4.10: Re-implementation of Merge Function from the GHC-Events Library.
1 command ( ”merge” : out : f i l e s ) = do
2 f s <− mapM readLogOrDie f i l e s
3 let m = foldr1 mergeEventLogs f s
4 writeEventLogToFile out m

4.3.5 Data Presentation

This section shows how HdpHProf presents HdpH performance data. HdpHProf pro-

vides two methods of presenting performance data. First, HdpHProf analysis tools

which present results as summative profiles, i.e. Spark Pool Contention Analysis Pro-

file and Registry Contention Analysis Profile. Second, HdpHProf utilises ThreadScope

[134] the standard GHC-PPS eventlog time line browser to visualise eventlogs of HdpH.

Summative Profiles

HdpHProf analysis tools present their results in the form of summative profile, i.e.

Spark Pool Contention Analysis Profile, and Registry Contention Analysis Profile.

Spark Pool Contention Analysis Profile. One of the analysis tools which we

designed and implemented is the Spark Pool Contention Analysis tool. The tool

analyses performance data from an HdpH eventlog then presents a performance profile.

The profile presents statistical information that measures certain behaviour aspects

of HdpH. Figure 4.6 shows a spark pool contention analysis profile. It is divided

into four sections. The first section gives counts of how many times the spark pool

has been accessed, the total exiting the spark pool with sparks converted, and the

total of no spark to convert. The second section shows statistics regarding conflicts

between schedulers entering the spark pool. The third section presents information

3 The list of eventlogs must be folded from the right; a fold from the left produces a corrupted
eventlog.
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about conflict durations. Finally the fourth section shows the total number of conflicts

grouped by the number of schedulers involved.

The tool is implemented as an extension in the GHC-Events-HdpH Library. It

can be used from the command line. For example, the Spark Pool Contention Analysis

tool is called to present the profile as follows:

$ ghc-events-hdph showsparkcont fib#1.eventlog

This will execute the (showsparkcont) tool which will read its argument (fib#1.eventlog)

as input and produce the performance profile. We will use the Spark Pool Contention

Analysis tool to profile the HdpH DSL implementation in Chapter 7.

Figure 4.6: Spark Pool Contention Analysis Profile.

Registry Contention Analysis Profile. Another analysis tool that HdpHProf pro-

vides is the Registry Contention Analysis tool. It reads HdpH performance data from

the eventlog and produces a profile. The profile contains statistical information about
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the HdpH RTS performance in terms of operations on the registry. Figure 4.7 illustrates

a registry contention analysis profile. The registry profile is divided into five sections.

The first section gives the total number of times the registry has been accessed by

different operations. The second, third and fourth sections are similar to those on the

Spark Pool Contention Analysis tool. The fifth section presents conflicts grouped by

operations type. For example, Glob means conflicts that only have globalise GIVar op-

erations involved; whereas, Mixture means conflicts that have more than one operation

type involved. The registry contention profile is important to understand how oper-

ations on the registry behave during execution. We will use the Registry Contention

Analysis tool to evaluate different implementations of the registry for the HdpH DSL

in Chapter 7.

Graphical Visualisation

Figure 4.8 shows ThreadScope visualising HdpH performance. ThreadScope was in-

troduced to visualise threads activities of GHC-SMP [57] on a single multicore ma-

chine [67]. We extended the use of ThreadScope to present the performance of HdpH

and show how load is distributed between nodes of Beowulf cluster of multicores. As

the figure illustrates, the first green bar is an overall activity for all cores –from multi-

ple nodes of multicores– used in computation. Overall green colour goes up when the

cores are being utilised whereas it is white when they are under-utilised. The follow-

ing green bars show multiple HECs. The per-core HECs indicate if there is an active

thread utilising that core or not. For instance, green means there is an active thread

utilising the core, white means the core is not utilised, and orange indicates garbage

collection. HECs are sorted in an ascending order, e.g. HECs from 0 to 1 report cores

of node-1 and HECs from 2 to 3 report cores of node-2 etc.
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Figure 4.7: Registry Contention Analysis Profile.

Figure 4.8: TheadScope visualises HdpH Fibonacci 40 threshold 30 on 4 nodes 2 cores

each (total cores 8). 91
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4.4 Summary

This chapter shows that it is possible to construct a profiler for a distributed-memory

parallel DSL using the host language profiling tools. We presented the design and

implementation of HdpHProf, a profiler for the parallel Haskell DSL, HdpH. We pre-

sented the requirements of HdpHProf to profile HdpH (Section 4.1). To meet these

requirements, we introduced the design of HdpHProf to collect the performance data

of HdpH using trace events and multiple trace files. Moreover, we presented how to

synchronise times in HdpH trace files and how they can be merged into a trace file.

Also, we showed how the performance data of HdpH can be analysed and presented

for performance tuning (Section 4.2). In addition, we presented the implementation

of HdpHProf. We showed the implementation of the HdpH RTS instrumentation for

performance data collection. We presented how to extract HdpH trace events and

use them for performance analysis. Also, we showed the implementation of time syn-

chronisation and merging of HdpH trace files. We discussed how to extend the host

language profiling tools with HdpHProf analyses for the HdpH DSL implementation.

Finally, we discussed the implementation of HdpHProf performance data presentation

(Section 4.3). We use HdpHProf to profile HdpH applications in Chapter 6 and use

the Spark Pool Contention Analysis tool and the Registry Contention Analysis tool in

Chapter 7 to analyse the implementation of the HdpH DSL internal data structures.
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Validating HdpHProf

This chapter validates HdpHProf for functional correctness and profiling performance.

Functional correctness means that HdpHProf accurately records the behaviour of par-

allel programs. In addition, it is important to measure its performance and characterise

it in terms of its design goals and requirements, i.e. scalability, profiling data size, and

profiling execution runtime overhead. Consequently, this chapter is divided into four

main sections. It starts by validating HdpHProf functional correctness (Section 5.2).

Second, we validate the scalability of HdpHProf up to 192 cores of 32 Beowulf cluster

nodes (Section 5.3). Third, we characterise the overheads of HdpHProf and compare

it to other profilers in terms of profiling data size (Section 5.4) and profiling execu-

tion runtime overhead (Section 5.5). After that, we measure the ratio of HdpH trace

events in the GHC-PPS eventlog (Section 5.6). Therefore, each section has its own

experimental methodology that satisfies the purpose of the study.

5.1 Experimental Tools and Benchmarks

This section specifies the compilers and profiling tools used for experiments, and de-

scribes the benchmarks that we use for validation and evaluation. Table 5.1 specifies

the compilers and profiling tools used for experiments. Table 5.2 describes the HdpH

benchmarks. The benchmarks and profiling tools will also be used for experiments in

Chapter 6 and Chapter 7.

Summatory Liouville. The Liouville function, denoted by λ(n) is a completely

multiplicative function, which is related to the number of prime factors of integer n,

with λ(n) being −1 when n is a prime number [131]. Summatory Liouville, denoted
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Compiler/Profiling Tool Citation Version

The Glorious Glasgow Haskell Compilation System (GHC) [46] 7.6.3
The HdpH RTS [82] 0.1.0
Ghc-Events-HdpH Library [2] 0.4.0.0
ThreadScope [134] 0.2.1

Table 5.1: Compilers and Profiling Tools.

Benchmarks Algorithm Parameters
Granularity

Control

Source
Code

Citation

Summatory Liouville Data parallel 2 Chunk Size [129, 128]
Mandelbrot Divide and conquer 4 1 threshold [129, 128]
SumEuler Data parallel 3 Chunk Size [82]
Fibonacci Divide and conquer 3 2 thresholds [82]
Queens Nested data parallel 2 Chunk Size [82]
NBody Data parallel 3 Chunk Size [82]

Table 5.2: HdpH Benchmarks.

by L(n) is the sum of the values of the Liouville function λ(n) up to n and defined as:

L(n) :=
n∑

k=1

λ(k) [129]. The benchmark has a flat data parallel algorithm and gives the

user control over thread granularity by a chunk size argument.

Mandelbrot. The Mandelbrot set is the set of values of c on the complex plane

which remain bounded to the set when a mathematical operation is iterated on it. It is

formed of all values defined by the complex numbers c for which the recursive formula

zn+1 = z2n + c never approaches infinity when z0 = 0 and n approach infinity [129].

The benchmark has a divide and conquer parallel algorithm and takes four arguments,

X, Y , Depth, and threshold. The threshold is used to control thread granularity to

determine when to evaluate sequentially.

SumEuler. The benchmarks sums Euler’s totient function φ over long lists of integers

and it has a flat data parallel algorithm. It takes three arguments, the first two are

beginning and the end of the integers list, and the third argument is chunk size to

control thread granularity.

Fibonacci. Fibonacci sequence, denoted by Fn is defined as: Fn = Fn−1+Fn−2, where

F1 = 1, F0 = 0. The benchmark has a divide and conquer parallel algorithm, and it

takes three arguments. The first argument n is to find the nth term in the Fibonacci
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sequence. The remaining two arguments are cut-off options, i.e. two thresholds to

control task granularity.

Queens. Queens, a nested data parallel benchmark. The benchmark tries to solve a

chessboard problem by placing N queens on an N ×N board such that no queen can

attack any other queen. The benchmark takes two arguments the number of queens

and a chunk size for thread granularity.

NBody. The benchmark runs a simulation of X bodies for Y time steps and uses

chunk size Z for parallelising each time step. In other words, the benchmark is phases

of data parallel problems where each time step is data parallel. However, time steps

sequentially follow each other, which requires sequential synchronisation.

5.2 Validation of Functional Correctness

HdpHProf functional correctness is validated using a combination of scenario-based

tests and real performance data. We profile HdpH benchmarks running on a Beowulf

cluster which is described earlier in Section 3.1.1. After that, the outcomes are exam-

ined for errors and defects, visually and by hand.

This experiment is divided into four areas. First of all, a coverage test that

confirms that HdpHProf correctly emits HdpH trace events during execution. The test

involves reading the trace events form eventlogs of multiple benchmarks and checks

whether HdpH trace events exist or not.

Second is a visual test for the trace file time synchronisation function. The

function is tested for adjusting the times in the eventlog profile as required so all HdpH

nodes start at the same time. The function is applied to eventlogs of real executions

produced by different HdpH benchmarks. The result, the profile before and after time

synchronisation, is then compared visually in ThreadScope.

Third is testing the merge function for reading multiple HdpH eventlogs and

correctly merging them into a single eventlog. The outcomes are compared visually in

ThreadScope with the original eventlogs. We check that all performance data appear

correctly and in the expected order.

Finally is a check on the functional correctness of the HdpHProf contention anal-

ysis tools. To validate the functional correctness of HdpHProf analysis tools perfor-

mance data with known contention is needed. Due to the random work stealing in
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HdpH, benchmarks cannot be used to produce predictable contentions. Therefore, we

used artificial performance data in the form of scenarios that simulate contention in

the HdpH RTS internals. These scenarios are carefully designed with a precision of

nanoseconds that produces contention between HdpH schedulers at specific location

and specific numbers at the execution. By feeding this data into the tools we know

exactly what to expect to see on the performance profile. If the profile shows exactly

the same results as contention planted in the performance data, it proves that the tools

function correctly, and the performance profile results are valid.

5.2.1 Code Instrumentation

This section illustrates how the HdpH RTS code instrumentation from Sections 4.2.1

and 4.3.1, for emitting HdpH trace events is validated for functional correctness, i.e. a

coverage test for HdpH instrumentation. To check that the instrumentation implemen-

tation is working and trace events are emitted during the applications’ executions, we

check a number of profiles to see whether all the different HdpH trace events appear

in the profiles. First, we had to read the eventlog and convert it to human readable

format. After that, we filtered HdpH trace events from the GHC trace events. Finally,

we tested that the instrumented trace events existed in the trace file, e.g. create spark

event. In every case we found that all expected HdpH RTS code instrumentations

emitted trace events. Indeed, unless a certain sequence of trace events exist in the

eventlog, for instance, enter spark pool then convert spark or no spark to convert, then

HdpHProf analysis tools will crash.

5.2.2 Time Synchronisation in Trace Files

This section presents testing the functional correctness of the trace files time synchro-

nisation function of HdpHProf from Sections 4.2.3 & 4.3.3. In short, the function shifts

the activity bar and HECs bars in the ThreadScope eventlog forward in time to be at

the required synchronisation point. Figure 5.1(a) shows a profile of HdpH application

before synchronising the time; whereas, Figure 5.1(b) shows the same profile after it

has been synchronised with the HdpHProf time synchronisation function to start at

1.5s. In addition, Figure 5.2 shows three eventlogs of an HdpH application before syn-

chronising the time, the profiles are synchronised and merged in Figure 5.3. As it can

be seen from the figures all bars have been shifted to make the HdpH RTS start-up time
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at 1.5s. However, the behaviour of the application remained intact in the ThreadScope

profile. Consequently, this confirmed that the function worked correctly and it did not

alter the behaviour presented in the synchronised eventlog.

(a) Before Time Synchronisation

(b) After Time Synchronisation

Figure 5.1: Test of HdpHProf Time Synchronisation Function.

5.2.3 Merging Trace Files

The merge function is used to merge multiple HdpH eventlogs into a single eventlog be-

fore visualising the overall performance of an HdpH application (Sections 4.2.4 & 4.3.4).

To validate the function we applied it to HdpH eventlogs of real executions then ex-

amined the resultant eventlog. For example, the function was used to merge eventlogs

of executions on 2 Beowulf cluster nodes with 2 cores up to 32 nodes with 192 cores

utilised. Figure 5.2 shows three eventlogs of an HdpH application executed on 3 Be-

owulf nodes, each utilised 3 cores. In this form these eventlogs do not represent the

overall performance of utilising the parallel machine; instead each shows only what is

happening on a single node separately.

In contrast, merging the eventlogs together into a single eventlog gives an overall

picture about how the parallel application utilised the parallel machine. In order to do

that the merge function should behave as follows: First, all eventlogs must be merged

into a single eventlog. Second, the overall active should reflect the performance of all

nodes. Third, the HECs must be ranked incrementally starting from 0 assigned to

the first core of the first node to TTotalCores − 1 for the last core of the last node.

Figure 5.3 illustrates the result of the HdpHProf merge function by merging the three
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(a) Node 1

(b) Node 2

(c) Node 3

Figure 5.2: Eventlogs Before Synchronisation and Merging.

eventlogs shown previously. Inspecting the profile visually showed that the function

worked correctly and the resultant eventlog presented the overall performance of the

three machines to be as expected without any problems.

5.2.4 Contention Analysis Tools

This section presents a validation of functional correctness of HdpHProf contention

analysis tools, i.e. the Spark Pool Contention Analysis tool and the Registry Contention

Analysis tool (Section 4.3.5). We created synthetic performance data that contains

scenarios of contentions situation on the HdpH internals. The scenarios were carefully

made with a precision of nanoseconds to produce contention on spark pool at specific

locations, with specific numbers of HdpH schedulers during the execution. To be sure

that we had not selected a biased sample we examined some random real execution

trace file sample scenarios. These scenarios are used as input for the analysis tools; by
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Figure 5.3: Eventlog After Merging.

examining the output profiles we know exactly what to expect to see. If the profiles

confirm the performance data this shows that the tools function correctly and the

performance profile results are valid.

Spark Pool Contention Analysis tool

The Spark Pool Contention Analysis tool detects contention on the spark pool which

is one of the main internal data structures for the HdpH RTS. The tool’s functional

correctness was examined with multiple scenarios to simulate different contention sit-

uations. Listing 5.1 shows an extract of an eventlog from a spark pool contention

scenario. Figure 5.4 shows the Spark Pool Contention Analysis tool profile resulting

from reading the trace events from the listing.

The eventlog contains 38 spark pool trace events: 19 enter spark pool, 10 convert

spark, and 9 nothing to spark. Comparing this with the produced profile of reading the

eventlog confirmed that the Spark Pool Contention Analysis tool showed the correct

values. Examining the second section of the profile showed that it presented the correct

number of times each scheduler was involved in a conflict (all/productive) with the

correct percentages of these contentions and total numbers. For example, from the

eventlog scheduler number 2 entered the spark pool 4 times and had 2 productive

conflicts (for definition see Section 4.2.6). The profile shows the exact numbers with

the correct percentage values of occurrence for these number, i.e. 2/4 ∗ 100% = 50%.

Similarly, the total row on line 18 of the listing at the end of this profile section
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reflects the correct total numbers of conflicts and percentages as in the eventlog, i.e.

19 entries, 6 all conflicts with 31.58% of occurrence and 5 productive conflicts with

26.32% of occurrence.

Listing 5.1: Contention on Spark Pool.

1 s c ena r i o5 = [
2 −− produc t i v c o n f l i c t f o r schedId 1
3 −− c o n f l i c t durat ion 30000ns , group o f 2 s chedu l e r s .
4 HdpHEvent { e t ime = 100030000 , e spe c = NothingToSpark { s chedu l e Id = 1}} ,
5 HdpHEvent { e t ime = 100010000 , e spe c = EnterSparkPool { s chedu l e Id = 2}} ,
6 HdpHEvent { e t ime = 100000000 , e spe c = EnterSparkPool { s chedu l e Id = 1}} ,
7 HdpHEvent { e t ime = 100020000 , e spe c = ConvertSpark { s chedu l e Id = 2}} ,
8 −− new non−produc t i v e c o n f l i c t f o r schedId 3
9 −− c o n f l i c t durat ion 40000ns , group o f 2 s chedu l e r s .

10 HdpHEvent { e t ime = 100070000 , e spe c = NothingToSpark { s chedu l e Id = 4}} ,
11 HdpHEvent { e t ime = 100040000 , e spe c = EnterSparkPool { s chedu l e Id = 3}} ,
12 HdpHEvent { e t ime = 100050000 , e spe c = EnterSparkPool { s chedu l e Id = 4}} ,
13 HdpHEvent { e t ime = 100080000 , e spe c = NothingToSpark { s chedu l e Id = 3}} ,
14 −− new produc t i ve c o n f l i c t f o r schedId 5
15 −− c o n f l i c t durat ion 810000ns , group o f 3 s chedu l e r s .
16 HdpHEvent { e t ime = 100090000 , e spe c = EnterSparkPool { s chedu l e Id = 5}} ,
17 HdpHEvent { e t ime = 100900000 , e spe c = ConvertSpark { s chedu l e Id = 5}} ,
18 HdpHEvent { e t ime = 100100000 , e spe c = EnterSparkPool { s chedu l e Id = 6}} ,
19 HdpHEvent { e t ime = 100110000 , e spe c = ConvertSpark { s chedu l e Id = 6}} ,
20 HdpHEvent { e t ime = 100120000 , e spe c = EnterSparkPool { s chedu l e Id = 4}} ,
21 HdpHEvent { e t ime = 100130000 , e spe c = ConvertSpark { s chedu l e Id = 4}} ,
22 −− new produc t i ve c o n f l i c t f o r schedId 2
23 −− c o n f l i c t durat ion 80000ns , group o f 4 s chedu l e r s .
24 HdpHEvent { e t ime = 100910000 , e spe c = EnterSparkPool { s chedu l e Id = 2}} ,
25 HdpHEvent { e t ime = 100990000 , e spe c = ConvertSpark { s chedu l e Id = 2}} ,
26 HdpHEvent { e t ime = 100920000 , e spe c = EnterSparkPool { s chedu l e Id = 1}} ,
27 HdpHEvent { e t ime = 100930000 , e spe c = ConvertSpark { s chedu l e Id = 1}} ,
28 HdpHEvent { e t ime = 100940000 , e spe c = EnterSparkPool { s chedu l e Id = 3}} ,
29 HdpHEvent { e t ime = 100950000 , e spe c = NothingToSpark { s chedu l e Id = 3}} ,
30 HdpHEvent { e t ime = 100960000 , e spe c = EnterSparkPool { s chedu l e Id = 4}} ,
31 HdpHEvent { e t ime = 100970000 , e spe c = NothingToSpark { s chedu l e Id = 4}} ,
32 −− new produc t i ve c o n f l i c t f o r schedId 2
33 −− c o n f l i c t durat ion 8000ns , group o f 2 s chedu l e r s .
34 HdpHEvent { e t ime = 100991000 , e spe c = EnterSparkPool { s chedu l e Id = 2}} ,
35 HdpHEvent { e t ime = 100999000 , e spe c = NothingToSpark { s chedu l e Id = 2}} ,
36 HdpHEvent { e t ime = 100992000 , e spe c = EnterSparkPool { s chedu l e Id = 3}} ,
37 HdpHEvent { e t ime = 100993000 , e spe c = ConvertSpark { s chedu l e Id = 3}} ,
38 −− new produc t i ve c o n f l i c t f o r schedId 6
39 −− c o n f l i c t durat ion 1000000ns , group o f 6 schedu ler s , maximum c o n f l i c t .
40 HdpHEvent { e t ime = 101000000 , e spe c = EnterSparkPool { s chedu l e Id = 6}} ,
41 HdpHEvent { e t ime = 102000000 , e spe c = NothingToSpark { s chedu l e Id = 6}} ,
42 HdpHEvent { e t ime = 101100000 , e spe c = EnterSparkPool { s chedu l e Id = 7}} ,
43 HdpHEvent { e t ime = 101110000 , e spe c = ConvertSpark { s chedu l e Id = 7}} ,
44 HdpHEvent { e t ime = 101120000 , e spe c = EnterSparkPool { s chedu l e Id = 8}} ,
45 HdpHEvent { e t ime = 101130000 , e spe c = ConvertSpark { s chedu l e Id = 8}} ,
46 HdpHEvent { e t ime = 101140000 , e spe c = EnterSparkPool { s chedu l e Id = 1}} ,
47 HdpHEvent { e t ime = 101150000 , e spe c = ConvertSpark { s chedu l e Id = 1}} ,
48 HdpHEvent { e t ime = 101160000 , e spe c = EnterSparkPool { s chedu l e Id = 2}} ,
49 HdpHEvent { e t ime = 101170000 , e spe c = NothingToSpark { s chedu l e Id = 2}} ,
50 HdpHEvent { e t ime = 101180000 , e spe c = EnterSparkPool { s chedu l e Id = 3}} ,
51 HdpHEvent { e t ime = 101190000 , e spe c = NothingToSpark { s chedu l e Id = 3}}
52 ]

The third section of the profile in lines 20 to 33 presents an analysis of con-

flict durations in milliseconds per schedulers and as total for all schedulers. Also, it

shows the maximum productive conflict duration. Examining the results of reading

the eventlog the profile presents the correct values. For instance, from the eventlog

schedulers number 3 had a conflict that lasts for 40000ns which is shown in the pro-

file as 0.04ms. Likewise, in the eventlog the maximum productive conflict duration of

1000000ns happened to scheduler number 6 it is presented correctly in the profile as

1.0ms.

The last section of the profile in lines 35 to 43 demonstrates an analysis of pro-

ductive conflicts grouped by the number of schedulers involved in a conflict. Again
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1 HdpHprof
2 Spark Pool Contention ana l y s i s
3
4 Total entry to sparkpoo l : 19
5 Total sparks converted : 10
6 Total No spark to convert : 9
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 SID Enter Al l . Cof . Al l .C.% Pro . Conf . Pro .C.%
9 1 3 1 33 .33 1 33 .33

10 2 4 2 50 .00 2 50 .00
11 3 4 1 25 .00 0 0 .00
12 4 3 0 0 .00 0 0 .00
13 5 1 1 100 .00 1 100 .00
14 6 2 1 50 .00 1 50 .00
15 7 1 0 0 .00 0 0 .00
16 8 1 0 0 .00 0 0 .00
17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 Total 19 6 31 .58 5 26 .32
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 Al l t imes d i sp layed are in mi l l i s e c ond s
21 SID Al l .C. Dur Mean Pro .C. Dur Mean
22 1 0 .0300 0 .0300 0 .0300 0 .0300
23 2 0 .0880 0 .0440 0 .0880 0 .0440
24 3 0 .0400 0 .0400 0 .0000 0 .0000
25 4 0 .0000 0 .0000 0 .0000 0 .0000
26 5 0 .8100 0 .8100 0 .8100 0 .8100
27 6 1 .0000 1 .0000 1 .0000 1 .0000
28 7 0 .0000 0 .0000 0 .0000 0 .0000
29 8 0 .0000 0 .0000 0 .0000 0 .0000
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 Total 1 .9680 0 .3280 1 .9280 0 .3856
32
33 Max durat ion in a product ive c o n f l i c t : 1 .00000
34 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 Con f l i c t s grouped by t o t a l number of s ch edu l e r s invo lved
36 No . Schedu le r s Conf . Occurance% Conf . Duration% Mean
37 8 0 .00 0 .00 0 .0000
38 7 0 .00 0 .00 0 .0000
39 6 20 .00 51 .87 1 .0000
40 5 0 .00 0 .00 0 .0000
41 4 20 .00 4 .15 0 .0800
42 3 20 .00 42 .01 0 .8100
43 2 40 .00 1 .97 0 .0190

Figure 5.4: Spark Pool Contention Analysis Profile.

manual analysis of the eventlog confirms the profile is correct. For example, groups of

2 schedulers conflicts occurred 3 times, 2 of which are productive. The profile shows

the group of 2 schedulers has an occurrence of 40% which is correct as the eventlog has

5 total productive conflicts i.e. 2/5 = 40%. The two productive conflicts durations are

30000ns and 8000ns; the ratio of these conflict duration to the total productive conflict

duration 1928000ns is 1.97% which is reflected correctly in the profile. Similarly, the

mean value of conflicts duration 30000ns and 8000ns is 19000ns which is presented

correctly as 0.019ms in the profile.

Table 5.3 summarises the tests that the Spark Pool Contention Analysis profile

passed during this validation. This confirms that the Spark Pool Contention Analysis

tool produced correct and validated performance results for HdpH RTS’ behaviour.

Registry Contention Analysis tool

The Registry Contention Analysis tool detects contention on the HdpH registry. The

tool is tested with scenarios in a similar manner to the previously tested Spark Pool

Contention Analysis tool in Section 5.2.4. Listing 5.2 shows an extract of an eventlog
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Table 5.3: Spark Pool Contention Analysis Profile Functionality Test.

with a scenario that simulates contention on the registry. Figure 5.4 shows an output

profile of the Registry Contention Analysis tool reading the trace events from the

listing.

The eventlog contains 34 registry trace events: 18 globalising GRef , 6 freeing

GRef, and 10 dereferencing GRef. Comparing the facts from the trace events with

the profile produced by reading the eventlog confirms that the Registry Contention

Analysis tool shows the correct values. Validating the second section in lines 9 to 20

of the profile confirms that it presents the correct number of times each scheduler is

involved in a conflict with correct percentages of these conflicts and total numbers.

For example, from the eventlog scheduler number 4 enters the registry 3 times and has

1 conflict. From the figure we can see the profile shows the exact numbers with the

correct percentage values of occurrence for these number, i.e. 1/3 = 33.33%. Likewise,

the total row on line 20 at the end of this profile section presents the correct total

numbers of conflicts and percentages as in the eventlog, i.e. 17 entries, 5 conflicts;

giving a 29.41% occurrence.
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Listing 5.2: Contention on Registry.

1 s c ena r i o5 = [
2 −− no c o n f l i c t
3 HdpHEvent { e t ime = 000001000 , e spe c = Global iseGRef { s chedu l e Id = 1}} ,
4 HdpHEvent { e t ime = 000002000 , e spe c = GRefGlobal ised { s chedu l e Id = 1}} ,
5 HdpHEvent { e t ime = 000003000 , e spe c = Global iseGRef { s chedu l e Id = 3}} ,
6 HdpHEvent { e t ime = 000004000 , e spe c = GRefGlobal ised { s chedu l e Id = 3}} ,
7 −− c o n f l i c t o f type mixture f o r schedId 1
8 −− c o n f l i c t durat ion 9000ns , group o f 2 s chedu l e r s .
9 HdpHEvent { e t ime = 000010000 , e spe c = Global iseGRef { s chedu l e Id = 1}} ,

10 HdpHEvent { e t ime = 000012000 , e spe c = DereferenceGRef { s chedu l e Id = 0}} ,
11 HdpHEvent { e t ime = 000019000 , e spe c = GRefGlobal ised { s chedu l e Id = 1}} ,
12 HdpHEvent { e t ime = 000013000 , e spe c = GRefDereferenced { s chedu l e Id = 0}} ,
13 −− new c o f l i c t o f type g l o b a l i s e f o r schedId 2
14 −− c o n f l i c t durat ion 10000ns , group o f 2 schedu ler s , maximum durat ion .
15 HdpHEvent { e t ime = 000020000 , e spe c = Global iseGRef { s chedu l e Id = 2}} ,
16 HdpHEvent { e t ime = 000030000 , e spe c = GRefGlobal ised { s chedu l e Id = 2}} ,
17 HdpHEvent { e t ime = 000021000 , e spe c = Global iseGRef { s chedu l e Id = 3}} ,
18 HdpHEvent { e t ime = 000022000 , e spe c = GRefGlobal ised { s chedu l e Id = 3}} ,
19 −− new c o f l i c t o f type g l o b a l i s e f o r schedId 4
20 −− c o n f l i c t durat ion 4000ns , group o f 2 s chedu l e r s .
21 HdpHEvent { e t ime = 000031000 , e spe c = Global iseGRef { s chedu l e Id = 4}} ,
22 HdpHEvent { e t ime = 000035000 , e spe c = GRefGlobal ised { s chedu l e Id = 4}} ,
23 HdpHEvent { e t ime = 000032000 , e spe c = Global iseGRef { s chedu l e Id = 5}} ,
24 HdpHEvent { e t ime = 000034000 , e spe c = GRefGlobal ised { s chedu l e Id = 5}} ,
25 −− new c o n f l i c t o f type f r e e f o r schedId 6
26 −− c o n f l i c t durat ion 5000ns , group o f 3 s chedu l e r s .
27 HdpHEvent { e t ime = 000036000 , e spe c = FreeGRef { s chedu l e Id = 6}} ,
28 HdpHEvent { e t ime = 000041000 , e spe c = GRefFreed { s chedu l e Id = 6}} ,
29 HdpHEvent { e t ime = 000037000 , e spe c = FreeGRef { s chedu l e Id = 4}} ,
30 HdpHEvent { e t ime = 000038000 , e spe c = GRefFreed { s chedu l e Id = 4}} ,
31 HdpHEvent { e t ime = 000039000 , e spe c = FreeGRef { s chedu l e Id = 3}} ,
32 HdpHEvent { e t ime = 000040000 , e spe c = GRefFreed { s chedu l e Id = 3}} ,
33 −− no c o n f l i c t
34 HdpHEvent { e t ime = 000042000 , e spe c = Global iseGRef { s chedu l e Id = 2}} ,
35 HdpHEvent { e t ime = 000043000 , e spe c = GRefGlobal ised { s chedu l e Id = 2}} ,
36 HdpHEvent { e t ime = 000043100 , e spe c = Global iseGRef { s chedu l e Id = 4}} ,
37 HdpHEvent { e t ime = 000043200 , e spe c = GRefGlobal ised { s chedu l e Id = 4}} ,
38 −− new c o n f l i c t o f type de re f f o r schedId 1
39 −− c o n f l i c t durat ion 6000ns , group o f 4 s chedu l e r s .
40 HdpHEvent { e t ime = 000044000 , e spe c = DereferenceGRef { s chedu l e Id = 1}} ,
41 HdpHEvent { e t ime = 000050000 , e spe c = GRefDereferenced { s chedu l e Id = 1}} ,
42 HdpHEvent { e t ime = 000045000 , e spe c = DereferenceGRef { s chedu l e Id = 2}} ,
43 HdpHEvent { e t ime = 000046000 , e spe c = GRefDereferenced { s chedu l e Id = 2}} ,
44 HdpHEvent { e t ime = 000047000 , e spe c = DereferenceGRef { s chedu l e Id = 3}} ,
45 HdpHEvent { e t ime = 000048000 , e spe c = GRefDereferenced { s chedu l e Id = 3}} ,
46 HdpHEvent { e t ime = 000049000 , e spe c = DereferenceGRef { s chedu l e Id = 5}} ,
47 HdpHEvent { e t ime = 000049900 , e spe c = GRefDereferenced { s chedu l e Id = 5}}
48 ]

The next section of the profile, lines 22 to 34, shows an analysis of conflicts du-

rations in milliseconds per schedulers and as a total for all schedulers. In addition, it

shows the maximum conflict duration. The profile results of reading the eventlog con-

firms it presents the correct values. For instance, from the eventlog scheduler number 1

had 2 conflicts that lasted for 9000ns and 6000ns respectively which is shown correctly

in the profile as total of 0.015ms conflict duration. Similarly, the maximum conflict

duration from the eventlog, 10000ns, occurred to scheduler number 2 and is reflected

correctly in the profile as it shows it is 0.01ms.

The fourth section of the profile, lines 36 to 43, presents an analysis of conflicts

grouped by the number of schedulers involved in a conflict. The profile results of

reading the eventlog confirm that the profile shows the correct values. For example,

the eventlog contains 5 conflicts, 3 of them are group of 2 schedulers conflict. The

profile shows the group of 2 schedulers has occurrence of 60% which is correct as

3/5 = 60%. The three conflicts durations are 9000ns, 10000ns, and 4000ns; the ratio

of these conflict durations to the total conflict duration of 34000ns is 67.65%, which is
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1 HdpHprof
2 Reg i s t ry Contention ana l y s i s
3
4 Total e n t r i e s to r e g i s t r y : 17
5 Total g l o b a l i s e e n t r i e s : 9
6 Total f r e e e n t r i e s : 3
7 Total d e r e f e r en c e e n t r i e s : 5
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 Reg i s t ry Ana lys i s

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 SID Enter Con f l i c t Con f l i c t%
12 0 1 0 0 .00
13 1 3 2 66 .67
14 2 3 1 33 .33
15 3 4 0 0 .00
16 4 3 1 33 .33
17 5 2 0 0 .00
18 6 1 1 100 .00
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 Total 17 5 29 .41
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 Displayed t imes are in mi l l i s e c ond s .
23 SID Conf . Duration Mean
24 0 0 .0000 0 .0000
25 1 0 .0150 0 .0075
26 2 0 .0100 0 .0100
27 3 0 .0000 0 .0000
28 4 0 .0040 0 .0040
29 5 0 .0000 0 .0000
30 6 0 .0050 0 .0050
31 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 Total 0 .0340 0 .0068
33 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 Max c o n f l i c t durat ion : 0 .01000
35 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 Number of t imes a c o n l f l i c t occured with t h i s number of s ch edu l e r s
37 No . Schedu le r s Conf . Occurance% Conf . Duration% Mean
38 7 0 .00 0 .00 0 .0000
39 6 0 .00 0 .00 0 .0000
40 5 0 .00 0 .00 0 .0000
41 4 20 .00 17 .65 0 .0060
42 3 20 .00 14 .71 0 .0050
43 2 60 .00 67 .65 0 .0077
44 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 Con f l i c t grouped by events type
46 Events type Conf . Occurance% Conf . Duration% Mean
47 Glob 40 .00 41 .18 0 .0070
48 Free 20 .00 14 .71 0 .0050
49 Deref 20 .00 17 .65 0 .0060
50 Mixture 20 .00 26 .47 0 .0090

Figure 5.5: Registry Contention Analysis Profile.

reflected correctly in the profile. Similarly, the mean value of conflict duration 9000ns,

10000ns, and 4000ns, is 0.0077ms which is presented correctly in the profile.

The last section of the profile, lines 45 to 50, shows an analysis of conflicts

grouped by operations (event) type (Section 4.3.5). The results shown on the profile

correspond with the actual performance data from the eventlog. For instance, the

group conflicts of type Globalise (Glob) occurred twice in the eventlog. The profile

presented in this group with a 40% of occurrence which is correct as the total number

of conflicts is 5. In addition, it shows that this group has 41.18% of conflict duration,

(10000ns+ 4000ns)/34000ns = 41.18%, a correct result.

Table 5.4 summarises the tests that the Registry Contention Analysis profile

passed during this validation of functional correctness. This confirms that the Registry

Contention Analysis tool produces correct and validated performance results of HdpH

RTS behaviour.
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Table 5.4: Registry Contention Analysis Profile Functionality Test.

5.3 Scalability

This section evaluates the performance of HdpHProf in terms of scalability. HdpH-

Prof was benchmarked to see how it could profile HdpH applications running on rel-

atively large numbers of nodes and cores, i.e. 32 nodes with a total of 129 cores on

a Beowulf cluster. The hardware set-up and benchmarks were described previously in

Section 3.1.1 and Section 5.1 respectively. The goal of this experiment is to show that

HdpHProf is able to produce and visualise the performance profiles of large scale runs

on a common parallel architecture. For this demonstration we used two benchmarks

with different parallel paradigms, i.e. Fibonacci, which is a divide and conquer, and

Summatory Liouville, which is flat data parallel. The applications were profiled on

different number of nodes, i.e. 1, 2, 4, 8, 16, and 32, to show that HdpHProf is able

to scale to profile HdpH applications that run for long time (up to 148s), or run on

a large number of cores. This section is not about tuning behaviour or showing a

good performance of the profiled applications as these issues will be discussed later in

Chapter 6.
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Fibonacci. Figure 5.6 illustrates performance profiles (Overall Activity) of Fibonacci

50, co-location threshold 24, sequential threshold 16. The application was profiled on

1, 2, 4, 8, 16, and 32 nodes, with 6 cores each (192 cores in total). The runtimes of the

profiled application varied between 148s and 9.4s depending on the number of nodes

used.

(a) 6 Cores

(b) 12 Cores

(c) 24 Cores

(d) 48 Cores

(e) 96 Cores

(f) 192 Cores

Figure 5.6: Fibonacci 50 Thresholds Co-loc. 34 Seq. 16.

Summatory Liouville. Figure 5.7 demonstrates performance profiles (Overall Ac-

tivity) of Summatory Liouville 40,000,000 with chunk size 400,000. This was to measure
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HdpHProf scalability; the application profiled on 1, 2, 4, 8, 16, and 32 nodes 6 cores

each (192 cores in total). HdpHProf was able to profile all executions, runtime var-

ied between 68s and 11s depending on the number of nodes used. These experiments

show that HdpHProf is capable of profiling HdpH applications at the current scale of

widespread clusters.

(a) 6 Cores

(b) 12 Cores

(c) 24 Cores

(d) 48 Cores

(e) 96 Cores

(f) 192 Cores

Figure 5.7: Summatory Liouville 40,000,000 Chunk Size 400,000.
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5.4 Profiling Data Size

This section investigates and characterises the amount of profiling data size generated

by HdpHProf. This is similar to our study of parallel function profilers in Chap-

ter 3 and [4]. First, we will show how profiling data size changes in respect to the

increase in the profiled application computation size (sparks). Then, we will present

how data size changes as the number of Processing Elements (PEs) increases. We will

profile the execution of four HdpH benchmarks, i.e. Queens, Mandelbrot, Fibonacci,

and SumEuler, and measure the amount of storage space the profiler consumes in KB.

We will report the median of 5 executions. The hardware set-up and benchmarks were

described previously in Section 3.1.1 and Section 5.1 respectively.

To change the computation size we ran the benchmarks to produce different

number of sparks. The number of sparks was increased by about the factor of 2 and

ranged from 200 to 1000 sparks. Similarly, we increased the number of PEs (nodes)

by a factor of 2 starting by 1 PE until reaching 16 PEs. We chose to stop at 16 PEs

for these reasons. We wanted accurate results by running the experiments on cluster

nodes with very low load (less than 0.5), and it is difficult to find more than the 16

nodes that are not heavily loaded on our cluster. These experiments ran for along time

and were completed over many days so we did not want to disturb other researchers

by using the whole cluster.

5.4.1 Profiling Data Size vs Computation Size

Queens. Figure 5.8 shows that the tracing data size of profiling queens increases as

the computation size (sparks) increases. Doubling the computation size results in a

slight increase to the size of the trace file, by about 25% on average.

Mandelbrot. Figure 5.9 shows that the tracing data size increases dramatically as

the computation size gets larger. Doubling the computation size increases the tracing

data by 258% on average.
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Figure 5.8: Queens Profiling Data Size vs Computation Size.
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Figure 5.9: Mandelbrot Profiling Data Size vs Computation Size.

Fibonacci. Figure 5.10 shows that the data size grows as the computation size in-

creases. Increasing the computation size by the factor of 2 increases the trace data by

146% on average.
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Figure 5.10: Fibonacci Profiling Data Size vs Computation Size.

SumEuler. Figure 5.11 shows that the tracing data size increases as the computation

size gets bigger. Doubling the computation size increases the trace data by 108% on

average.
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Figure 5.11: SumEuler Profiling Data Size vs Computation Size.
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5.4.2 Profiling Data Size vs Number of PEs

Queens. Figure 5.12 shows that increasing the number of PEs increases the tracing

data size. Doubling the number of PEs rises the size of tracing data by 164% on

average.
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Figure 5.12: Queens Profiling Data Size vs Number of PEs.

Mandelbrot. Figure 5.13 shows that increasing the number of PEs will result in an

increase to the tracing data size. Doubling the number of PEs increases the tracing

data size by 45% on average.

Fibonacci. Figure 5.14 shows that increasing the number of PEs results in an in-

crease to the tracing data size. Increasing the number of PEs by the factor of 2 increases

the tracing data size by 46% on average.
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Figure 5.13: Mandelbrot Profiling Data Size vs Number of PEs.
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Figure 5.14: Fibonacci Profiling Data Size vs Number of PEs.

SumEuler. Figure 5.15 depicts that the tracing data size increases as the number of

PEs increases. Doubling the number of PEs increases the size of tracing data by 66%

on average.
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Figure 5.15: SumEuler Profiling Data Size vs Number of PEs.

5.4.3 Profiling Data Size Comparison and Discussion

We have characterised the performance of HdpHProf in terms of profiling data size,

and demonstrated how increasing computation size and number of PEs changes the

profiling data size. Increasing the computation size makes the profiler produce more

profiling data size. Similarly, increasing the number of PEs increases the profiling data

size. Noticeably, Queens’ results are slightly different from other benchmarks. This is

because Queens’ performance is poor for reasons that are discussed in Chapter 6.

Knüpfer et al. [71] argue that tracing profilers inevitably introduce overheads that

slow down the execution of the application and alter its original behaviour. Tracing

tools should try to keep this effect to minimum. Important parts of tracing overheads

are the tracing execution time overhead and storage of trace data to disk. More-

over, overall overhead of the monitored application should remain within an acceptable

level [71].

To see if HdpHProf overheads stay inside an acceptable range we compared our

results characterising HdpHProf performance with the performance results of the stud-

ied profilers from Chapter 3 and [4]. HdpHProf and the profilers in our study, were

classified according to the same matrices. However, we compared the results of Hd-

pHProf from four different benchmarks because we did not have a concordance for

HdpH. Even though it was not the same benchmark, the results showed a pattern that
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is more dependent on the profiler than the benchmark. We used four benchmarks and

we did not find four different set of behaviours. There are some differences but they

are not really major. We report the average from the four benchmarks results. The

comparison is based on the results from 1 PE up to 8 PEs, because the other profilers’

study was limited to 8 PEs only.

Doubling computation size increases the tracing data size of HdpHProf by an

average of 134%. Similarly, Score-P (MPI) increases by 99%, Eden tracing increases

by 160%, Score-P (OpenMP) increases by 99% and GHC-PPS increases by 90%. On

the other hand, increasing the number of PEs by a factor of two increases HdpHProf

tracing data size by an average of 80%. This is compared to 1.7% for Score-P (MPI),

127% for Eden tracing, 1.1% for Score-P (OpenMP), and 78% for GHC-PPS. Moreover,

the average trace file size of HdpHProf from all executions is 28 MB compared to 213

MB for Score-P (MPI), 7 MB for Eden tracing, 344 MB for Score-P (OpenMP), and

1.1 MB for GHC-PPS. From this result, we can see that HdpHProf tracing data size

is modest and fits within the range of other functional profilers.

5.5 Execution Time Overhead

This section investigates the execution time overhead of HdpHProf. First, we will

show how profiling execution runtime overhead changes in respect to the increase in

computation size of the profiled application. Then, we will present how overhead

changes as the number of PEs increases. The methodology and experimental set-up

of this experiment is the exactly same as in Section 5.4. However, we measure the

profiling execution time overhead as follows:

OH =
(TP − TN)

TN
∗ 100 (5.1)

where OH is the overhead, TN is the runtime of the parallel program without profiling,

and TP is the runtime of the parallel program with profiling.

5.5.1 Runtime Overhead vs Computation Size

Queens. Figure 5.16 shows that the runtime overhead decreases as the computation

size increases. Increasing the computation size by a factor of 2 declines the runtime

overhead by average of 18% points.

114



Chapter 5. Validating HdpHProf

   1

   2

   4

   8

  16

  32

 500
 1000

 2000
 4000

 8000

O
ve

rh
ea

d
 %

Computation Size (Sparks)

1 PE(s)
2 PE(s)
4 PE(s)
8 PE(s)

16 PE(s)

Figure 5.16: Queens Runtime Overhead in Relation to Computation.

Mandelbrot. Figure 5.17 depicts that increasing the computation size decreases run-

time overhead. Doubling the computation size decreases the runtime overhead by

average of 52% points.
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Figure 5.17: Mandelbrot Runtime Overhead in Relation to Computation.
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Fibonacci. Figure 5.18 illustrates that the runtime overhead decreases as the com-

putation size increases. Increasing the computation size by a factor of 2 lowers the

runtime overhead by 26% points on average.
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Figure 5.18: Fibonacci Runtime Overhead in Relation to Computation.
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Figure 5.19: SumEuler Runtime Overhead in Relation to Computation.
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SumEuler. Figure 5.19 shows that increasing the computation size decreases runtime

overhead. Doubling the computation size decreases the runtime overhead by average

of 26% points.

5.5.2 Runtime Overhead vs Number PEs

   1

   2

   4

   8

  16

  32

1 PE 2 PEs 4 PEs 8 PEs 16 PEs

O
ve

rh
ea

d
 %

Processing Elements

535 Sparks
1062 Sparks
2113 Sparks
4217 Sparks
8427 Sparks

Figure 5.20: Queens Runtime Overhead vs Number of PEs.

Queens. Figure 5.20 shows that the runtime overhead increases as the number of PEs

increases. Increasing the number of PEs by a factor of 2 rises the runtime overhead by

an average of 31% points.

Mandelbrot. Figure 5.21 illustrates that the majority of the curves show that the

runtime overhead increases as the number of PEs increases. Doubling the number of

PEs increases the runtime overhead by average of 81% points.

Fibonacci. Figure 5.22 depicts that runtime overhead increases as the number of

PEs increases. Increasing the number of PEs by a factor of 2 increases the runtime

overhead by average of 87% points.
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Figure 5.21: Mandelbrot Runtime Overhead vs Number of PEs.
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Figure 5.22: Fibonacci Runtime Overhead vs Number of PEs.

SumEuler. Figure 5.23 shows that increasing the number of PEs increases the run-

time overhead. Doubling the number of PEs rises the runtime overhead by average of

76% points.
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Figure 5.23: SumEuler Runtime Overhead vs Number of PEs.

5.5.3 Runtime Overhead Discussion

We have characterised the performance of HdpHProf in terms profiling execution run-

time overhead and illustrated how increasing computation size and number of PEs

changes the profiling overhead. Increasing the computation size reduces profiling over-

head. However, increasing the number of PEs introduces more profiling overhead. To

see if HdpHProf overhead stays inside an acceptable range we compared our results

of characterising HdpHProf performance with the performance results of the studied

profilers similar to Section 5.4.3.

Doubling the computation size decreases the execution time overhead of Hd-

pHProf by an average of 30% points. Only Score-P (OpenMP) that shows similar

behaviour which decreases by 14% points. However, Score-P (MPI) increases by 4%

points, Eden tracing increases by 70% points, and GHC-PPS increases by 21% points.

Increasing the number of PEs, on the other hand, shows that increasing it by a factor

of two HdpHProf data size increases by an average of 68% points. This is compared

to 2% increase for Score-P (MPI), 157% points for Eden Tracing, 13% points decrease

for Score-P (OpenMP), and 90% points for GHC-PPS.

The average execution time overhead of HdpHProf from all executions is 18%

point. In comparison, the execution time overhead for other profilers are 179% for

Score-P (MPI), 8% for Eden tracing, 705% for Score-P (OpenMP), and 8% for GHC-
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PPS. Again the results show that HdpHProf overhead in terms of execution time is

not excessive and stays in the range of other functional profilers. Importantly, execu-

tion time overhead decreases as the computations size increases. On the contrary, it

increases for other functional profilers.

5.6 HdpH Tracing Overhead

HdpHProf emits HdpH trace events into the GHC-PPS eventlog, and this section com-

pares the overhead of HdpHProf tracing over GHC tracing in the eventlog. This is

to ensure that the lightweight tracing of GHC-PPS [67] is preserved and not per-

turbed with HdpHProf. We used four benchmarks Mandelbrot, Summatory Liouville,

Fibonacci, and SumEuler, two divide and conquer, and two data parallel, each with

three different thread granularity, i.e. small, appropriate, and large as discussed in

Section 6.3. This was to ensure that the measurement represented different profiling

scenarios. The hardware set-up and benchmarks were described previously in Sec-

tion 3.1.1 and Section 5.1 respectively. The parameters and granularity setting of the

benchmarks are summarised in Table 5.5.

From the eventlogs we present the overhead of HdpHProf tracing in the form

of ratio of HdpH trace events to the GHC trace events. The reported figures are

the median of 5 executions with standard deviation around the median [93]. Data was

collected by measuring the total number of trace events in the eventlog then separating

the HdpH trace events from the GHC trace events. We calculate the ratio of GHC and

HdpH trace events as follows:

EventlogTraceEvents = GHCTraceEvents +HdpHTraceEvents (5.2)

HdpHRatio =
HdpHTraceEvents

EventlogTraceEvents

∗ 100 (5.3)

HdpH Tracing Discussion. Table 5.5 shows a a summary of the HdpH tracing

overhead experiments. It presents the benchmarks parameters and the granularity

settings. Also, it summarises the percentages of HdpH and GHC trace events recorded

into the eventlogs. HdpHProf trace events ranges between 0.26% and 1.67% where

thread granularity is appropriate. However, we found that small and large granularity
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(a) Mandelbrot (b) Summatory Liouville

(c) Fibonacci (d) SumEuler

Figure 5.24: Stacked view GHC vs HdpH Trace Events.

can increase tracing overhead more than appropriate thread granularity. For example,

with small thread granularity HdpHProf trace events overheads are high, and at most

13.85 for the SumEuler benchmark.

Table 5.5: Eventlog, GHC vs HdpH Trace Events.
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5.7 Summary

This chapter demonstrates that a correct and valid profiler can be constructed using

the host language tools to profile a distributed-memory parallel DSL. We validated

HdpHProf for functional correctness and profiling performance. We validated HdpH-

Prof’s code instrumentation, time synchronisation, and trace file merge. In addition,

we validated the functional correctness of the Spark Pool Contention Analysis and

the Registry Contention Analysis tools using both hand crafted and real trace files

fragments (Section 5.2). Moreover, we have shown that HdpHProf can profile long

running programs and programs running on relatively large scale architectures: up to

32 Beowulf cluster nodes and 192 cores (Section 5.3). We also characterised and com-

pared HdpHProf overheads in terms of profiling data size (Section 5.4) and profiling

execution runtime overhead (Section 5.5), based on our study in Chapter 3. Finally,

we measured the ratio of HdpH trace events in the GHC-PPS eventlog (Section 5.6).
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Evaluating HdpHProf for

Applications

This chapter investigates how effectively HdpHProf can be used to profile and tune the

behaviour of HdpH applications. We investigate whether HdpHProf can help identify

performance problems (Section 6.2). Moreover, we show how HdpHProf can be used

to tune the thread granularity of HdpH applications (Section 6.3). Also, we specify

how to control shared-memory and distributed-memory thread granularity with two

thresholds (Section 6.4).

6.1 Experimental Methodology

This section presents the methodology of collecting the experimental data for this

chapter. We present the experimental set-up and experiment measurements.

6.1.1 Experimental Set-up

HdpHProf is used to measure performance of HdpH benchmarks on a Beowulf cluster

comprising of 32 nodes with 8 cores each. The hardware set-up and benchmarks were

described previously in Section 3.1.1 and Section 5.1 respectively.

6.1.2 Experiments

The investigation regarding the evaluation of HdpHProf for profiling application is

divided into two parts. First, HdpHProf will be evaluated by illustrating how it can

identify performance problems. Second, HdpHProf will be evaluated by examining how
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it can help tuning thread granularity in HdpH applications. For this purpose we used

different HdpH benchmarks, Mandelbrot, Liouville, Fibonacci, NBody, Queens, and

SumEuler. Performance evaluation was based on visual inspection of profiles and anal-

ysis of speed up, efficiency and average task duration. The visual performance profiles

were generated by the standard Haskell time-line threads activity browser Thread-

Scope [134]. The performance graph of ThreadScope is divided into two parts. First,

the overall activity graph which shows execution time on the x-axis and the overall

activity of multiple Haskell Execution Contexts (HECs) on the y-axis. Second, is a

list of per-core HECs status used in the evaluation over the x-axis using colours, i.e.

green (active), orange (garbage collecting), and white (idle). In addition, the total run

time of the application was used to measure the speed up, efficiency, and average task

duration. Speed up presented in this evaluation is the relative speed up and calculated

as follows [92]:

S(P ) =
Ttotal(1)

Ttotal(P )
(6.1)

Where S(P ) is speed up, Ttotal(1) is runtime of the parallel application executed on one

core and Ttotal(P ) is the run time of the application executed on P cores. Efficiency

presented in this evaluation is calculated as follows [92]:

E(P ) =
S(P )

P
(6.2)

Average task duration shown in this evaluation is calculated as follows:

ATD(P ) =
Ttotal(1)

NTtotal(P )
(6.3)

Where ATD(P ) is average task duration executed on P cores, NTtotal(P ) is the total

number of tasks executed on P cores.

Benchmarks are mostly run on 4 cluster nodes with only 6 cores each to reduce

variability in the results (total 24 cores), following common practice [88]. The limit

of 4 nodes is used to reduce the size of the graphical profile so it can fit on one page

when printed. In addition, we considered 4 nodes to be enough to illustrate the typical

performance issues of applications. On the contrary, we had some cases where we had

to illustrate some performance issues that need to be run on a large number of nodes,

e.g. Section 6.2.4. For these cases the benchmarks were run on 16 cluster nodes with

6 cores (total cores 96).
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6.2 Identification of Performance Problems

This section investigates how effective HdpHProf is at identifying common parallel

performance issues.

6.2.1 Excessively Small Thread Granularity

We started investigating small thread granularity using the Liouville benchmark. HdpH

Liouville is a flat data parallel algorithm which gives the user control over thread

granularity by a chunk size argument. We profiled the Liouville benchmark with a

chunk size deliberately set to produce small thread granularity, to see how HdpHProf

identifies this performance problem.

(a) Overall Activity

(b) Some HECs

Figure 6.1: Summatory Liouville 10,000,000 Chunk Size 10,000 (24 Cores).

Figure 6.1 presents a performance profile of the Liouville benchmark on 4 nodes

with 6 cores. From the overall activity bar (Figure 6.1(a)) it can be seen that the paral-

lel machine was under-utilised. This meant that the program was not performing well

and there was a performance problem. For instance, Figure 6.1(b) demonstrates how

the majority of the HECs behaved during the program execution. The HECs bars show

that there were tiny threads getting active and inactive in small periods of time during

execution. If the bar is green this means there is an active thread running; whereas,

white means the HEC is idle. What the profiler tells us here is that the task granularity

was too small for the program to perform parallel tasks efficiently. Moreover, the run

time shows that the application has only a speed up of 6.4 with efficiency 0.26. Also,

there are 10,000 tasks with average task duration of 5.67ms. As thread granularity is

so small the coordination aspects of the parallel algorithm outweigh the computation

of the real problem. This experiment illustrates that HdpHProf can provide suitable

information to help programmers identify excessively small thread granularity.
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6.2.2 Excessively Large Thread Granularity

We investigated the information HdpHProf provides for programmers with very large

thread granularity using the SumEuler benchmark. The HdpH SumEuler benchmark

has a flat data parallel algorithm and thread granularity is set by the user before

execution. The user can select thread granularity by passing a chunk size argument

to the program. Therefore, we profiled the SumEuler benchmark with a deliberately

large chunk size to show how HdpHProf visualises the behaviour of HdpH applications

with large grain thread granularity.

(a) Overall Activity

(b) Some HECs

Figure 6.2: SumEuler [10000-42000] Chunk Size 800 (24 Cores).

Figure 6.2 shows a performance profile for HdpH SumEuler application. The

application was executed with chunk size set to produce large thread granularity. From

the figure it can be seen that the activity bar (Figure 6.2(a)) indicates that the parallel

machine was utilised efficiently at the first part of execution up to about 6s. After that

the activity bar starts to drop down gradually till the machine becomes significantly

under-utilised at the end of the program execution. To see exactly what caused this

problem we can see the HECs bars. For example, Figure 6.2(b) shows the behaviour of

2 representative HECs; the majority of the HECs used for evaluation in this execution

show similar behaviour. From this we can see that each HEC is active at the beginning

of evaluation. However, after a certain point this starts to change and HEC bars start

showing an idle state, which means that they started running out of work. What the

profile shows here is clear sign of the effect of large thread granularity. In addition,

the run time shows that the application had a speed up of 12.8 with efficiency 0.53.

Also, there are only 41 tasks with average task duration of 4.16s. This phenomenon is

called starvation which is caused by the large grain thread granularity where each PE

has enough work to perform efficiently at the beginning of the evaluation. However,

it becomes very hard for HECs to find more work to do toward the end of evaluation.
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This experiment illustrates how HdpHProf can show the performance behaviour of

HdpH applications with large thread granularity.

6.2.3 Sequentialisation bottleneck

This section investigates how HdpHProf can profile performance behaviour of an HdpH

application that has sequentialisation phases during parallel evaluation. For this demon-

stration we used an NBody HdpH benchmark. The HdpH NBody benchmark runs a

simulation of X bodies for Y time steps and uses chunk size Z for parallelising each

time step. In other words, the benchmark is phases of data parallel problems where

each time step is data parallel. However, time steps sequentially follow each other,

which requires sequential synchronisation. The benchmark arguments, including the

chunk size, are supplied to the program by the user before execution. We used HdpH-

Prof to profile the benchmark with different combinations of arguments to see how it

behaved on our parallel machine and what its performance profile looked like.

Figure 6.3 shows a performance profile of the NBody benchmark: the number

of bodies is 2048, steps are 8, and chunk size is 64. We profiled the application with

different inputs. We found that generally all profiles look similar to each other except

the execution time increased as the number of steps increased and the middle section

of the profile took longer in time. We can see that in each parallel machine one HEC

is active before the other HECs until up about 1.5s where HdpH RTS starts, i.e. HEC

0, HEC 6, HEC 12, and HEC 20. This is an artefact of the benchmark; random input

data is generated on every node –though it is needed only on the root node– before

HdpH even starts. Then other HECs in each machine start evaluating. After that, all

the HECs stop together at about 2.2s, then the main node (first one from the top) is

the only one who has work until the program terminates. Artefact of the benchmark:

main node computes final states.

To investigate this phenomenon further we zoomed in the profile (Figure 6.4) to

see what happens during execution in the middle part of the profile. As the figure

shows on both the activity bar (Figure 6.4(a)) and the HECs bars (Figure 6.4(b)),

there were points in time where the activity bar and all the HECs showed no acting

at all. These gaps are the sequential synchronisation phases of the parallel application

where all HECs need to stop to synchronise.

Using HdpHProf can help the programmers with such applications by consider-

ing the following. Shortening the initialisation and finalisation phases of the parallel
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algorithm, e.g. the profile shows that the parallel application spent significant time

of the total execution run time on these phases. Furthermore, care must be taken

with how often the program should synchronise as the profile shows that during these

phases the parallelism was lost. In addition, the parallelism phases should utilise the

parallel machine efficiently. Here we have profiled the NBody benchmark to show how

sequentialisation bottlenecks can be spotted using HdpHProf.

Figure 6.3: nBody 2048 Steps 8 Chunk Size 64 (24 Cores).
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(a) Overall Activity

(b) Some HECs

Figure 6.4: Zoomed in nBody 2048 Steps 8 Chunk Size 64 (24 Cores).

6.2.4 Insufficient Work for Machine Architecture

This section presents profiles of HdpH applications where the parallel machine runs with

insufficient work. For this experiments we used two benchmarks for demonstration, i.e.

SumEuler and Liouville. Both benchmarks are flat data parallel and take as arguments

the length of the input interval along with the chunk size for thread granularity. First,

we tuned the applications to run on 4 nodes, 24 total cores efficiently with good speed

up (Section 6.3). This was because we wanted to be sure that we had the right thread

granularity for the problem size. Then we ran the applications with the same inputs

on a larger number of cores i.e 16 nodes and 96 total cores; to illustrate how HdpHProf

can reveal insufficient work.

SumEuler. The SumEuler application was executed with these inputs [10000-42000]

and chunk size of 400. With these settings the application produced 80 tasks with

average task duration of 2s. 80 tasks is not a sufficient number to be evaluated on

96 cores. For this run the execution time showed a good speed of 23.4. However,

the efficiency with this number of cores was 0.24 which indicates that there was a

performance problem.

Figure 6.5 demonstrates the profile for SumEuler where the problem size is in-

sufficient for the parallel architecture. As the activity bar shows (Figure 6.5(a)) per-

formance increased incrementally until it reached certain level of utilising –less than

half the number of HECs– of the parallel machine. The activity bar remained steady

from about 2.2s to 3s. This indicates that the parallel program was not able to utilise

the parallel machine efficiently. After that, the activity bar decreased gradually up to

the end of the program.

To explore this problem further we examine the per-core HEC bars from the

profile (Figure 6.5(b)). This figure shows only 6 HECs of one node out of 16 nodes.

This pattern of behaviour is representative for the HECs in other nodes involved in
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the evaluation of the program. There are about two to three HECs which have enough

work to keep busy most of the time. On the contrary, the rest of the HECs show that

they spent significant time of their state as idle, which means they had no work to

do. This means that the work was distributed on all machines. However, the work

that each machine received was not sufficient to keep all of machine’s HECs busy.

Such performance may be considered a waste of computing resources. Therefore, the

efficiency of the parallel application dropped down to 0.24.

(a) Overall Activity

(b) Some HECs

Figure 6.5: SumEuler [10000-42000] Chunk Size 400 (96 Cores).

Liouville. The benchmark was executed with these inputs, Liouville 10,000,000 and

chunk size 100,000, and it produced 100 tasks with average task duration of 0.56s. This

number of tasks is too small to be executed on 96 cores of the parallel machine. As

a result, despite the fact that the program has a speed up of 15, the efficiency of this

parallelism is 0.16, which is too low. Figure 6.6 presents the performance profile of

this execution. We can see that the activity bar (Figure 6.6(a)) shows that the parallel

program is trying to utilise the parallel machine gradually. However, the utilisation

reaches its peak at about half the number of available HECs. To see what caused this

problem we have to see how the HECs on the parallel machine behaved. Figure 6.6(b)

is an extract of the profile for this execution that only shows 6 representative HECs

on a single node of the parallel machine (16 nodes 96, total cores). By examining

the HEC bars from the profile it can be seen that there are two to three HECs that

were able to keep busy most of the evaluation time. In contrast, the rest of the HECs

show that they spent much of their time in an idle state. This means that the work
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was distributed among all nodes. However, the work that each node received was not

enough to keep all of its cores busy, leading to the low efficiency of the program.

Insufficient Work for Machine Architecture Discussion. From the two experi-

ments profiling SumEuler and Liouville with insufficient work to be done in parallel we

were able to see how such problems can be seen in HdpH profiles. Both experiments

showed similar results where the parallel machine was under-utilised, which can be seen

form the activity bars from the profiles. In addition, most of the nodes of the parallel

machine show that only two or three of its HECs were busy for most of the evaluation

time. The other HECs spent a significant amount of their time in an idle state.

(a) Overall Activity

(b) Some HECs

Figure 6.6: Summatory Liouville 10,000,000 Chunk Size 100,000 (96 Cores).

6.2.5 Combination of factors

In this section we demonstrate profiling the Queens, a nested data parallel benchmark.

The benchmark tries to solve a chessboard problem by placing N queens on an NxN

board such that no queen can attack any other queen. The program takes as arguments

the number of queens and a chunk size for thread granularity. We will show one

representative profile because ranging input parameters does not significantly alter the

performance.

Figure 6.7 shows the performance profile of HdpH Queens application. The ac-

tivity bar shows the application did not perform well and the parallel machine was

under-utilised. Also, the application run time shows a very low speed up of 2 with
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an efficiency of 0.08. From the HECs bars we noticed some points. One of the nodes

behaved differently from the other nodes in the parallel machine (node 4 last 6 HECs).

The other three nodes show similar behaviour with some of the HECs active most of

their time. In contrast, some HECs show that they had tiny threads active and inactive

over a small period of time which is an indication of small thread granularity, e.g. HEC

3, HEC 12, HEC 13, and HEC 16. Also, some HECs were in idle state most of the

time which means that they had no work to do, e.g. HEC5, HEC 8, and HEC 11. The

profile apparently shows irregular parallelism with small thread granularity caused by

the complex coordination specified by the nested parallelism.

6.3 Tuning Thread Granularity

This section will investigate how effectively HdpHProf can be used to determine an

appropriate thread granularity in HdpH applications. The section is divided into two

parts. First, we will discuss tuning thread granularity for HdpH applications with

flat data parallel algorithms. Then we will present how to tune thread granularity for

HdpH applications with divide and conquer algorithms.

6.3.1 Data Parallel Chunk Size

In this section we will present tuning thread granularity for an HdpH flat data parallel

benchmark, Liouville. Thread granularity is controlled by a chunk size argument which

is passed by the user to the application. We will illustrate how HdpHProf can be used

to help identify the best chunk size for parallel performance.

To determine the right thread granularity the application must be executed and

profiled to solve a required problem with a preliminary chunk size. Then after exam-

ining the profile the user can decide if the thread granularity is too small, appropriate

or too large.
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Figure 6.7: Queens 13 Chunk Size 1600 (24 cores).

Chunk Size too Small. Figure 6.8 presents a performance profile of Liouville

10,000,000 with chunk size set to 1000. As the activity bar shows (Figure 6.8(a)) the

application did not perform well. It shows only about one fourth of the parallel machine

was utilised during evaluation. The application produced 10,000 tasks with an average

task duration of 5.67ms. In addition, the run time shows that the application had only

a speed up of 4.9 with efficiency 0.2. By examining the HECs bars from the profile
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(Figure 6.8(b)) it can be seen that there are tiny threads becoming active and inactive

in small periods of time. This is an indication of small grain thread granularity which

we discussed earlier in Section 6.2.1. From this performance profile we can see that the

chunk size we set was too small for this problem size. As a result, thread granularity

needs to be increase by passing a larger chunk size for the application.

(a) Overall Activity

(b) Some HECs

Figure 6.8: Summatory Liouville 10,000,000 Chunk Size 1,000 (24 Cores).

Appropriate Chunk Size. After seeing that a chunk size of 1000 generated

small thread granularity with Liouville 10,000,000 we increased the chunk size to 10,000.

Figure 6.9 shows the performance profile of Liouville 10,000,000 with the new chunk

size. From the activity bar we can see that (Figure 6.9(a)) the performance of the

application changed significantly from the previous run when the chunk size was 1000.

The application produced 100 tasks with an average task duration of 0.56s. Also, the

application run time showed better speed up of 13.9 with efficiency 0.57. Moreover,

by examining the HECs bars (Figure 6.9(b)) we can see that most of them were busy

working from the beginning of evaluation until the program terminated. This is an

indication that the new chunk size gives a appropriate thread granularity; which led to

a balance between coordination aspects of the parallel algorithm and its computation

aspects. To see if this was best granularity for this problem size we increased the

chunk size to see if the performance would improve or get worse because of large

thread granularity.

Chunk Size too Large. We have seen that Liouville performed well with a

chunk size of 100000. To see if that was the best thread granularity that we could get we

needed to run the application with a larger chunk size and see the performance profile.

Figure 6.10 demonstrates Liouville 10,000,000 performance profile with larger chunk

size of 300,000. As can be seen from the activity bar (Figure 6.10(a)), the performance
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(a) Overall Activity

(b) Some HECs

Figure 6.9: Summatory Liouville 10,000,000 Chunk Size 100,000 (24 Cores).

of the application dropped down noticeably after 4.1s. The application produced 34

tasks with average task duration of 1.6s. The run time shows that the speed up also

dropped down to 10.6 with efficiency of 0.44. What the activity bar shows is that

after 4.1s the parallel machine started running out of work sharply. Also, the HECs

bars (Figure 6.10(b)) illustrate more clearly what is happening. A large number of

HECs from the full profile show similar behaviour to HEC 14 from the figure. HEC

14 shows that it was able to evaluate and had work at the beginning of the program.

However, it starved and ran out of work after about 4.2s. This is an effect of large

thread granularity as we discussed previously in Section 6.2.2.

(a) Overall Activity

(b) Some HECs

Figure 6.10: Summatory Liouville 10,000,000 Chunk Size 300,000 (24 Cores).

Data Parallel Chunk Size Discussion. Overall, in this section we have demon-

strated how to tune thread granularity for a flat data parallel HdpH application. The

Liouville benchmark was used for demonstration. To tune thread granularity for flat

data parallel application we had to profile the application with different chunk sizes

for the same problem size. Chunk size is normally a large number which is provided

by the user to the application as a cut-off for parallelism. By examining the perfor-

mance profiles it was possible to identify whether thread granularity was fine grain,
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appropriate grain or coarse grain.

6.3.2 Divide and Conquer Threshold

This section demonstrates tuning thread granularity for HdpH applications with divide

and conquer parallel algorithms. For this purpose we used the Mandelbrot benchmark.

In divide and conquer programs thread granularity is controlled by a threshold number

that is used as a cut-off for parallel evaluation. Providing the application with the

right threshold is very important for parallel performance.

Mandelbrot. The Mandelbrot HdpH benchmark is a divide and conquer parallel

application. It takes four arguments, X, Y , Depth, and threshold. The threshold

is used by the application to determine when to start to evaluate sequentially. In

other word, it is used to control thread granularity. To demonstrate how to tune

thread granularity for Mandelbrot we first set the problem size that we would like the

application to solve, which is Mandelbrot X=4096 Y=4096 Depth=1024. Then we

profiled the application with different thresholds.

Small Thread Granularity. Figure 6.11 presents the performance profile of

Mandelbrot with the threshold set to 0. As the activity bar illustrates (Figure 6.11(a))

the application had inconsistent behaviour where the green jagged activity bar went up

and down repetitively. Also, by looking at the HECs bars (Figure 6.11(b)) we can see

that there are some parts show there were tiny threads becoming active and inactive.

However, because the application ran for such a long time these tiny threads are not

very clear in the picture. The application generated 4095 tasks with an average task

duration of 0.13s. In addition, the application run time shows that it had a speed

up of 15.7 with 0.6 of efficiency. We suspect the application behaved in this manner

because of the small size thread granularity. To see if this is true we had to increase

the threshold then examine the performance profile again.

Appropriate Thread Granularity. Figure 6.12 presents the performance

profile of Mandelbrot after increasing the threshold to 4. As can be seen from the

activity bar (Figure 6.12(a)) the performance was better and the application behaved

more consistently than before. Moreover, most of the HECs bars show they were busy

during the program execution, e.g. see Figure 6.12(b). Also, the number of tasks

dropped to 1023 and the average task duration increased to 0.53s. The application run
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(a) Overall Activity

(b) Some HECs

Figure 6.11: Mandelbrot X=4096 Y=4096 Depth=1024 Threshold 0 (24 Cores).

time shows a speed up of 18.6 with an efficiency of 0.77, which is better than the pre-

vious run. From this we can see that increasing the threshold gave appropriate thread

granularity, which improved the performance of the parallel application. To see if this

is the best thread granularity for this problem size we need to profile the application

with a bigger threshold and examine its performance again.

(a) Overall Activity

(b) Some HECs

Figure 6.12: Mandelbrot X=4096 Y=4096 Depth=1024 Threshold 4 (24 Cores).

Large Thread Granularity. Figure 6.13 demonstrates performance profile of

Mandelbrot after increasing the threshold to 10. The activity bar (Figure 6.13(a))

shows that the application performed well up to 24s. However, after that the activity

bar started to drop down dramatically until it reached a very low level, from 31s to

40s. The application generated 511 tasks with average task duration of 1.06s. Also,

the run time shows that the speed up dropped to 14.7 with an efficiency of 0.61. By

examining some of the HECs bar (Figure 6.13(b)) it can be seen that they were active

from the beginning of the program and when they reached 30s they ran out of work.

This is a sign of large thread granularity as discussed earlier in Section 6.2.2. As a

result, the large thread granularity changed the application performance and speed up

dropped down to 14 with an efficiency of 0.6.
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(a) Overall Activity

(b) Some HECs

Figure 6.13: Mandelbrot X=4096 Y=4096 Depth=1024 Threshold 10 (24 Cores).

6.4 Co-location and Sequential Granularity

Fibonacci. The Fibonacci benchmark has two cut-off options, i.e. two thresholds to

control task granularity. First, is a co-location threshold which is used to determine

the granularity of tasks that always execute on the same node. In other words, when

reaching this threshold, generated tasks are only distributed to cores of the current

node, and they are not allowed to spawn tasks on other nodes. This means that it

controls the size of the computation so that it cannot migrate to other nodes. As a

result, the threshold controls not just one thread granularity; instead, it controls the

granularity for a group of threads, none of which can migrate. Therefore, we call this

a co-location thread granularity. Second, is a sequential threshold which is used to

determine thread granularity for sequential evaluation.

As a consequence, Fibonacci can be executed with 9 different combinations of

granularity settings. We are interested in 8 cases; the case which we are eliminating

is where sequential granularity is larger than co-location granularity. This is because

the sequential threshold will override the co-location threshold if it is larger. Table 6.1

illustrates these granularity settings which will be used for profiling and demonstration

in this section. We reached these settings through multiple experiments until we found

the settings that presented small, appropriate, and large granularity.

This section demonstrates how profiling the Fibonacci application can help un-

derstand how it behaves with different granularity settings, and how to identify the

appropriate granularity for best performance. The section is divided into four sections

based on the similarities between results of granularity settings. Each shaded colour

of the table represents one of these groups.
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Table 6.1: Fibonacci Co-loc. and Seq. thresholds settings.

6.4.1 High Co-ordination Overheads

High co-ordination overhead happens when a small sequential threshold is used. The

orange shaded combinations of granularity settings in Table 6.1 cause this performance

problem. Figures 6.14, 6.15, and 6.16 show the performance profiles where the thread

granularity settings introduced excessive overheads creating parallel tasks. From the

overall activity of the figures, e.g. Figure 6.14(a), it can be seen that the applications

ran for significantly long time. It generated 1596 tasks with an average task duration

of 42.9ms. Also, the application showed poor speed up and efficiency is very low, less

than 0.05. As the applications ran for between 53s and 74s, it is really hard to see

clearly what was happing in the HECs without zooming in. As a result, we zoomed in

–about 1ms– to the profiles to see how the HECs behaved with such settings, e.g. see

Figure 6.15(b). The figure shows that there were threads becoming active and inactive

repeatedly, with many small garbage collection periods in between. We observed that

when sequential granularity was too low, the execution time went up. This is because

there are high overheads of creating threads and running them for many tiny tasks.

Moreover, when large co-location granularity is combined with small sequential

granularity the performance gets worse, e.g. see Figure 6.16. The profile shows that

the application ran for a longer time. This was due to the large co-location granular-

ity; the parallel machine started to starve early and less nodes had to complete the

computation. To sum up; small sequential granularity introduces high co-ordination

overheads and decreases the performance of the parallel application. Moreover, when

used with large co-location granularity, this will cause starvation and further degrade

the performance.
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(a) Overall Activity

(b) Some HECs

Figure 6.14: Fibonacci 45 Co-loc. 30 Seq. 5 (Small, Small) (24 Cores).

(a) Overall Activity

(b) Some HECs (Zoomed 1ms)

Figure 6.15: Fibonacci 45 Co-loc. 35 Seq. 5 (Appr., Small) (24 Cores).

(a) Overall Activity

(b) Some HECs

Figure 6.16: Fibonacci 45 Co-loc. 40 Seq. 5 (Large, Small) (24 Cores).

6.4.2 Fine Grained Tasks

Fine grained task parallelism happens when granularity settings are as in the yellow

shaded combination of thresholds from Table 6.1. Figure 6.17 shows the performance

profile where granularity options were set to be fine grained for co-location granularity

and appropriate for sequential granularity. As it can be seen from the overall activity

(Figure 6.17(a)) the application did not perform well with these granularity settings. It
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generated 1596 tasks with an average task duration of 42.9ms. Also,the runtime shows

that the application had a speed up of 7.3 with a low efficiency of 0.3. To investigate

further what caused this problem we can examine the HECs activities (Figure 6.17(b)).

The figure shows that HECs were not performing optimally as they were idling repeat-

edly. As discussed earlier in Section 6.2.1, this is a sign of small thread granularity.

Consequently, the small co-location granularity caused the machine to coordinate too

much.

(a) Overall Activity

(b) Some HECs

Figure 6.17: Fibonacci 45 Co-loc. 30 Seq. 19 (Small, Appr.) (24 Cores).

6.4.3 Good Performance

Good performance can be produced with appropriate granularity. The result in this

section shows the green shaded combination of granularity settings in Table 6.1. Fig-

ure 6.18 presents the performance profile of the application with task granularity op-

tions set to appropriate co-location and appropriate sequential. The overall activity

bar (Figure 6.18(a)) shows that the application performed very well. In addition, the

number of tasks decreased to 143, and the average task duration increased to 0.47s.

The runtime shows a speed up of 17.6, with 0.73 of efficiency. By examining the HECs

from the profile (Figure 6.18(b)) it can be seen that there is no sign of a problem and

they evaluated continuously most of the time with no visible gaps or dense garbage

collection. This means that the granularity settings were right as the performance pro-

file showed significantly better results than the previous experiments. This is a clear

indication that tuning granularity, i.e. co-location and sequential to appropriate values

is crucial to a good performance.
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(a) Overall Activity

(b) Some HECs

Figure 6.18: Fibonacci 45 Co-loc. 35 Seq. 19 (Appr., Appr.) (24 Cores).

6.4.4 Coarse Grained Tasks

Large thresholds produce coarse grained task parallelism, this section presents the

blue shaded cases of thread granularity settings Table 6.1. Figure 6.19 presents a

performance profile where granularity settings were set to appropriate co-location and

large sequential. From the overall activity (Figure 6.19(a)) it can be seen that the

performance was good until before the end of the execution, when the overall activity

started to drop gradually. This means that HECs inside each node started to run out

of work due to the large sequential granularity. Moreover, the application generated

143 tasks with an average task duration of 0.47s. The runtime shows a speed up of 17,

with 0.7 of efficiency. This did not seem to significantly impact on the performance

as it all happened at the last moments of the program evaluation. However, for larger

problems or longer runs it might have a more significant impact on the performance of

the application. Therefore, this granularity setting is not recommended.

(a) Overall Activity

(b) Some HECs

Figure 6.19: Fibonacci 45 Co-loc. 35 Seq. 33 (Appr., Large) (24 Cores).

Figure 6.20 shows the performance profile where granularity options were set to

large co-location with appropriate sequential. The overall activity (Figure 6.20(a))

shows that the application performed well at the beginning of the evaluation. After
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that, the performance started to drop sharply at certain points, e.g. 3.2s, 4.5s, and 5.1s.

Moreover, the number of tasks decreased to 12 tasks with a high average task duration

of 5.71s. The speed up dropped down to 12.87, with an efficiency of 0.53. Some HECs

from the profile show that they ran out of work at about 3.2s of the evaluation time,

then became idle until the program terminated (Figure 6.20(b)). This behaviour was

repeated among other HECs in the profile; except some of the HECs ran out of work

at different times. What the performance profile shows here is an indication of coarse

grained task granularity, as presented earlier in Section 6.2.2. Consequently, the large

co-location granularity affected the performance of the application, even though an

appropriate sequential granularity was used.

(a) Overall Activity

(b) Some HECs

Figure 6.20: Fibonacci 45 Co-loc. 40 Seq. 19 (Large, Appr.) (24 Cores).

Figure 6.21 shows the performance profile where granularity settings were set

to large co-location with large sequential. As can be seen from the overall activity

(Figure 6.21(a)) there were two stages of starvation. First, nodes of the parallel machine

ran out of work, i.e. the nodes starved. Second, cores inside each node ran out of work,

i.e. the cores starved. The application produced 12 tasks with an average task duration

of 5.71s. The speed up dropped down to 11.95 with an efficiency of 0.49.

(a) Overall Activity

(b) Some HECs

Figure 6.21: Fibonacci 45 Co-loc. 40 Seq. 33 (Large, Large) (24 Cores).
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6.4.5 Discussion

Overall, this section demonstrates using HdpHProf to understand the behaviour and

tuning thread granularity for a divide and conquer HdpH application, i.e. Fibonacci,

which has two thresholds as a mechanism to control thread granularity. We examined

all possible scenarios by profiling the application behaviour with all combinations of

granularity settings. We found that the performance of the application is very sensitive

to these thresholds as changing one of them can change the performance drastically. In

addition, our results show that the best performance is only achieved when both gran-

ularity settings are appropriate. Without HdpHProf it would be difficult to determine

the behaviour of such applications when the run times are close. Table 6.2 summarises

the findings from these experiments and illustrates the problems and gains of using

different granularity settings.

Table 6.2: Analysis of Fibonacci Co-loc. and Seq. Granularity Settings.

6.5 Summary

This chapter shows that a profiler which was constructed from the host language tools is

effective and efficient use for performance analysis and tuning of a distributed-memory

parallel DSL. We investigated how effectively HdpHProf can be used as an application

profiler for the DSL HdpH. The study used several benchmarks, Queens, NBody, Man-

delbrot, Liouville, SumEuler, and Fibonacci, to show how HdpHProf is used identify

performance problems; for instance, too small/large thread granularity, synchronisa-
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tion bottlenecks, and a combination of these factors (Section 6.2). Moreover, it demon-

strates using HdpHProf for tuning thread granularity in HdpH applications with flat

data parallelism (Section 6.3.1) and applications with divide and conquer parallelism

(Section 6.3.2). Lastly, HdpHProf was used to study and tune thread granularity for

an HdpH application, with two granularity thresholds. We found that it is crucial to

set both thresholds to an appropriate granularity as the application performance is

very sensitive to these values (Section 6.4).
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Evaluating HdpHProf for HdpH

Internals

This chapter investigates the potential for using host language profiling tools to profile

the parallel DSL implementation. It does so by evaluating HdpHProf for profiling

the HdpH implementation. HdpH uses mutable data structures in Haskell, e.g. the

spark pool (a concurrent deque) and the registry (a concurrent map) [84]. As a lazy

functional language, Haskell provides alternative implementations of data structures

with different properties of strictness [58]. To understand which functions or data

structures perform better for the HdpH RTS implementation we use HdpHProf to

investigate the performance of alternative implementations. For this purpose we use

the HdpHProf analysis tools from Sections 4.2.6 and 4.3.2, the Spark Pool, and Registry

Contention Analysis. Using the Spark Pool Contention Analysis we investigate how

the spark pool implementation behaves with highly concurrent access (Section 7.1) and

how contention changes in respect to changes in task granularity (Section 7.2). We use

the Registry Contention Analysis tool to evaluate the performance of three more or

less strict implementations of the HdpH RTS registry to help debug and improve HdpH

performance (Section 7.3).

7.1 Spark Pool Contention

HdpH is implemented in a layered fashion to ensure easy maintainability with coordi-

nation aspects such as, communication, global references management, sparks manage-

ment, and scheduling; each realised in an independent module [84]. Figure 7.1 depicts

HdpH architecture design in terms of state. HdpH maintains state using mutable data
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IO Threads
Scheduler Scheduler

Sparkpool

ThreadpoolThreadpool

Registry

Node 1

Msg Handler Msg Handler

Haskell Heaps

Scheduler Scheduler

Sparkpool

ThreadpoolThreadpool

Registry

Node 2

Figure 7.1: HdpH System architecture [84].

structures in Haskell and agents (Haskell IO Threads). Multiple nodes collaborate to

do work; each node runs multiple scheduler threads, normally one per core. Each sched-

uler has a dedicated thread pool that can be accessed concurrently by other schedulers

for work stealing. Nodes also have message handlers (one per node) that share access

to the spark pool with schedulers on the node. In addition, each node has a registry

for global IVars that are shared between the message handler and schedulers.

7.1.1 Spark Management

HdpH manages sparks at the Haskell level, where each HdpH node stores sparks in a

spark pool. A spark enters the spark pool, either when being sparked by a scheduler,

or when being received by the message handler. Sparks from the spark pool can be

transferred to a local thread or can be sent to another node in the form of a SCHEDULE

message. When a node’s spark pool runs low on sparks it sends a FISH message to a

random node, or it directs the message to a node known to have excess sparks.

The spark pool is an essential and important component of the HdpH RTS that

is used to coordinate parallelism. A spark represents possible future work and when

created it goes to the spark pool. Schedulers running out of work concurrently access

the spark pool looking for sparks. Therefore, schedulers that are looking for sparks

might compete to access the spark pool and contention becomes a performance problem,

as discussed in Section 4.2.6. This section presents how spark pool contention changes

in respect to an increase in the number of schedulers. We will use the Spark Pool

Contention Analysis tool to produce performance profiles and study the behaviour of

HdpH. For this study we are interested in the following aggregated values of the profile:
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• Conflict ratio.

PCR =
PCTotal

SETotal

∗ 100 (7.1)

Where PCR is productive conflicts ratio, PCTotal is total productive conflict, and

SETotal is total spark pool entries.

• Conflict duration.

• Conflict mean duration.

• Conflicts grouped by number of schedulers involved.

7.1.2 Experiments

Using the Spark Pool Contention Analysis tool we studied how increasing the number

of schedulers changed contention on the HdpH RTS spark pool. Experiments were

executed on a Beowulf cluster of multicores using the Fibonacci and SumEuler bench-

marks. The hardware set-up and benchmarks were described previously in Section 3.1.1

and Section 5.1 respectively. We used these benchmarks as they gave us control over

task granularity so we could induce contention. These are the benchmarks used to

collect performance data:

• A divide and conqueror benchmark, the Fibonacci 35 with Threshold 17.

• A flat data parallel benchmark, the SumEuler 10,000 with Chunk size 1.

We deliberately set low thresholds and chunk sizes for the benchmarks to trigger con-

tention by creating fine grain tasks. The number of schedulers was increased gradually

from 1 to 7 on a multicore with 8 cores. We followed standard practice of not using

the 8th scheduler to reduce the variability of the results [88]. We analysed the col-

lected data to produce figures that present different aspects of contention on the spark

pool, reporting the median of 5 executions, and that use error bars to represent sample

standard deviation relative to the median [93].

7.1.3 Conflict Ratio

Figure 7.2 shows how the ratio of productive conflicts changed as the number of sched-

ulers increased. For Fibonacci increasing schedulers linearly introduced more conflicts

by an average of 33% points. SumEuler was similar, conflicts increased by an average
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Figure 7.2: Spark Pool Conflict Ratios.

of 30% points with each scheduler. Fibonacci had higher conflict ratios than SumEuler.

Overall, increasing the number of schedulers increased spark pool conflicts.

7.1.4 Conflict Duration

Figure 7.3 shows how the durations of productive conflict changed as the number

of schedulers increased. The duration presented is the total elapsed waiting time in

productive conflicts. For Fibonacci increasing the number of schedulers linearly raised

conflict duration by an average of 45%. Similarly, increasing the number of schedulers

by 1 increased conflict duration by an average of 23%. Moreover, in both benchmarks

increasing the number of schedulers introduced more variability to the results as the

error bars show. SumEuler shows less conflict duration than Fibonacci.

7.1.5 Mean Conflict Duration

Figure 7.4 shows how the mean duration of productive conflict changed as the num-

ber of schedulers increased. The data is noisy as can be seen from the error bars.

The Fibonacci results suggest that increasing the number of schedulers increases the

mean conflict duration and increases variability. However, the results for SumEuler are

inconclusive.
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Figure 7.3: Spark Pool Conflict Durations.

Figure 7.4: Spark Pool Mean Conflict Duration.

7.1.6 Maximum Conflict Duration

Figure 7.5 shows how the maximum conflict duration of a productive conflict changed

as the number of schedulers increased. For Fibonacci the maximum conflict duration

increased sharply. On the contrary, for SumEuler it increased steadily.

150



Chapter 7. Evaluating HdpHProf for HdpH Internals

Figure 7.5: Spark Pool Maximum Conflict Duration.

7.1.7 Grouping Conflicts by Schedulers

This section studies how spark pool conflict duration is distributed between groups

of conflicting schedulers. We investigated how many schedulers participate in each

conflict, and the associated conflict duration. We will only show three cases out of

the six due to similarities of the results. Figures 7.6, 7.7 and 7.8 compare conflict

occurrence with conflict duration grouped by the number of schedulers involved in a

conflict. The date for these figures was derived from the third section of the Spark

Pool Contention Analysis tool (Section 4.3.5). This section of the tool shows conflicts

grouped by number of schedulers involved in a conflict. Each conflict group has an

occurrence percentage and a conflict duration percentage, where occurrence percentage

is the ratio of conflicts with a particular number of schedulers to the amount of conflicts

on spark pool. Duration percentage is the ratio of total conflict duration for a particular

group to the total conflict duration on the spark pool.

151



Chapter 7. Evaluating HdpHProf for HdpH Internals

(a) Fibonacci (b) sumEuler

Figure 7.6: Conflicts Grouped by No. Schedulers involved (3 Schedulers).

(a) Fibonacci (b) sumEuler

Figure 7.7: Conflicts Grouped by No. Schedulers involved (5 Schedulers).

(a) Fibonacci (b) sumEuler

Figure 7.8: Conflicts Grouped by No. Schedulers involved (7 Schedulers).

From this study we can see that increasing the number of schedulers for evaluation

resulted in more conflicting groups of schedulers within the spark pool. However,

the results reveal that conflicts occurrence and conflicts duration were not distributed
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evenly between conflicting groups. In the case of conflicts’ occurrence, the group of

2 schedulers was the one that dominated the other groups. For instance, in all cases

the group of 2 schedulers was never lower than 90% of the conflict occurrence. On the

contrary, groups of 3 to 7 schedulers had a small percentage of the conflict occurrence,

less than 9%. Also, conflict durations were distributed between groups of schedulers

differently as the number of schedulers increased.

Notably, when the number of schedulers is greater than 2, some groups can have

significantly longer conflict durations that exceed the occurrence ratio. For example,

with Fibonacci on 3 schedulers (Figure 7.6(a)) the 3-scheduler conflicts had an oc-

currence of 4.3%, with conflict durations of 32.8%; in SumEuler with 5 schedulers

(Figure 7.7(b)) the 4-scheduler conflicts had an occurrence of 4%, with a conflict du-

ration of 30%; and Fibonacci on 7 schedulers (Figure 7.8(a)) revealed the 7- scheduler

conflicts had an occurrence of 1.3%, with conflict durations of 38.5%. Consequently,

increasing the number of schedulers used for evaluation can significantly increase the

conflict durations for groups of conflicting schedulers. This is because conflicts with

large number of schedulers involved make it more probable that there will be a greater

conflicts’ duration, even though the occurrence of these conflicts is very low.

7.2 Spark Pool Contention and Granularity

This section presents how contention of the spark pool changes in respect to task

granularity. Again we used the Spark Pool Contention Analysis tool to collect the

performance data of HdpH. In ordinary settings, where the costs of computation and

communication can be determined, granularity can be defined as the ratio of compu-

tation in relation to the amount of communication [75].

TraditionalGranularity =
ComputationT ime

CommunicationT ime

However, in some systems communication time is hard to determine, e.g. GUM [138]

or HdpH [84]. To measure granularity for such as systems the communication time is

assumed to be the same for all tasks. Therefore, the granularity of a parallel program

is defined as ”the average computation cost of a sequential unit of computation in the

program. [79]” In other words, granularity is measured by computation time only and

the communication time is dropped out. Hence, for systems like GUM and HdpH a

task granularity is the computation time, which is normally presented in milliseconds.
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It is important to choose the right task granularity in parallel execution as it

can significantly affect the performance of the parallel program. For instance, fine

grain parallelism causes a high communication overhead and is less likely to increase

performance because of the low computation to communication ratio. On the other

hand, it is easier to get performance gains with coarse grain parallelism, but this may

cause load imbalance problems [9]. Therefore, it is important to choose the appropriate

task granularity for a parallel program and the choice is dependent on the parallel

algorithm and parallel architecture.

7.2.1 Experiments

To study how contention changed in respect to granularity, we needed to know what

the task granularity was for the applications that we used as benchmarks for these

experiments. We did this by sequentially executing and measuring execution times

of the applications. Then we measured the contention by running the applications in

parallel with gradually increasing task granularity. After that, we analysed the data

to study how contention on spark pool changed as task granularity increased. We

executed the experiments on a Beowulf cluster of multicores using two benchmarks,

the hardware set-up and benchmarks were described previously in Section 3.1.1 and

Section 5.1 respectively:

• Fibonacci, to control task granularity the parameters for this benchmark were

varied as shown in Table 7.1.

• SumEuler, similarly, to control task granularity the parameters for this bench-

mark were varied as shown in Table 7.2.

To measure task granularity both benchmarks were executed sequentially on a single

core of a multicore node for 11 runs. The mean value of these runs was used to

calculated average task granularity as follows:

Granularity =
SequentialRuntime

NumberOfTasks
(7.2)

Contention data was obtained by profiling the benchmarks running on 6 cores of an

8-core Beowulf node. We chose to run on 6 cores to minimise the variability in the

result. On the presented figures we report the mean of 51 runs for each input and

we do not report error bars here because the figure has a logarithmic scale. We ran
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the benchmarks 51 times because the data is noisy so we needed many data points for

accuracy.

Fib Threshold No. Tasks
35 21 986
37 23 986
39 25 986
41 27 986
43 29 986
45 31 986
47 33 986
49 35 986

Table 7.1: Parameters of Fibonacci Benchmark.

SumEuler Chunk Size No. Tasks
[10000 .. 11000] 1 1000
[10000 .. 12000] 2 1000
[10000 .. 14000] 4 1000
[10000 .. 18000] 8 1000
[10000 .. 26000] 16 1000
[10000 .. 42000] 32 1000
[10000 .. 74000] 64 1000
[10000 .. 138000] 128 1000

Table 7.2: Parameters of SumEuler Benchmark.

7.2.2 Conflict Ratio and Granularity

Figure 7.9 shows how the frequency of productive conflicts changed as task granularity

increased. The figure includes curves for two benchmarks, Fibonacci and SumEuler.

Fibonacci is measured between granularities of 1.09ms and 256ms, and SumEuler be-

tween granularities of 2.5ms and 1900ms. The results indicate that low granularity

increases conflicts on spark pool in both benchmarks where conflicts are high at gran-

ularity below 16ms. However, conflicts fall below 0.03% when granularity is greater

than 16ms, and remain stable thereafter.

7.2.3 Conflict Duration and Granularity

Figure 7.10 shows how the duration of productive conflicts changed in respect to

increases in task granularity over the same interval as before. Both Fibonacci and

SumEuler show that conflict duration declines most between granularity of 30ms and

100ms. This shows that granularity below 16ms increases conflicts duration on the
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Figure 7.9: Conflict Ratio and Granularity.

spark pool. Moreover, for SumEuler large granularities, i.e. beyond 256ms, there is

a slight increase in conflict durations. Therefore, appropriate granularity of between

30ms and 100ms keeps conflicts’ duration at the lowest level.

7.2.4 Contention and Granularity Discussion

The experiments demonstrate how task granularity can affect contention within the

spark pool. Results of the two benchmarks show that with low task granularity con-

flict occurrence and duration are high. However, increasing task granularity to an

appropriate value, e.g. more than 16ms, significantly reduces both conflict occurrence

and duration (by more than 90%).

7.3 Registry Contention

This section presents experimental results of two changes to the registry of the HdpH

RTS. Originally, the registry was implemented by using a lazy Map with a lazy glob-

alise operation. To investigate how the performance of HdpH might be improved, we

changed these lazy aspects of the registry to be strict. After that, we examined the

behaviour of the HdpH RTS in terms of contention on the registry to see whether

strictness improved the performance or not.
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Figure 7.10: Conflict Duration and Granularity.

7.3.1 Global References and Global IVars

HdpH uses global references to access a remotely hosted object in type-safe way. A

unique global reference consists of pair, a node ID identifying where the object is

hosted, and a unique name for the object on the hosting node that remains unique

during the life span of the host. Importantly, the relationship between global references

and their referenced objects is kept in the registry, a concurrent mutable look-up table

(concurrent Map) in Haskell. The operations on global references are as follows.

• Create new global reference (Globalising a local object)

• Dereference an existing global reference

• Free a global reference (To avoid garbage collection)

Conflicts can happen between these operations in the registry when a scheduler

holds the registry while one or more other schedulers must wait to access the the

registry as discussed in Section 4.2.6.

7.3.2 Experiments

Using the Registry Contention Analysis tool we studied how increasing strictness on the

registry implementation in the HdpH RTS changes the behaviour in terms of contention.
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We made two changes to the HdpH registry to introduce strictness, A strict function,

i.e. atomicModify, is used for the globalise operation instead of a non-strict one as was

previously used; a strict Map (newly introduced with the GHC 7.6.3 [47]) was used for

the registry instead of the standard lazy Map. To understand how these changes to

the HdpH RTS might change the behaviour, we took measurements before and after

each of these changes. We used the Registry Contention Analysis to gather data and to

study the behaviour for the Fibonacci and SumEuler benchmarks from Section 7.1.2.

We measured total, mean, and maximum conflict durations and two new measures:

• Conflict ratio.

CR =
CTotal

RETotal

∗ 100 (7.3)

Where RC is conflict ration, CTotal is total conflicts, and RETotal is total registry

entries.

• Ratio of conflict occurrence between operations categorised by type e.g. GG, FF,

DD and MIX, where GG is Globalise conflicting with Globalise etc.

We analysed the collected data and compared the results for all alternative implementa-

tions of the HdpH RTS registry. On the figures we report the median of five executions

and use error bars for the sample standard deviation relative to the median [93]. We

increased the number of schedulers gradually from 1 to 7 on a multicore node of 8

cores. We did not use 8 schedulers to reduce variability in the result as we did not use

the 8 cores in the node.

7.3.3 Conflict Ratio

(a) Fibonacci (b) sumEuler

Figure 7.11: Registry Contention Analysis: Conflict Ratio.
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This section studies how strictness changes the conflict occurrence between op-

erations on the registry. Figure 7.11 compares conflicts ratio of the three alternative

implementations of the registry and shows how conflict ratio changes as the number

of schedulers increases. For Fibonacci the Strict atomicModify shows that it has a

lower conflict ratio than the Non-Strict. On the other hand, the Strict atomicMod-

ify + Strict Map has a higher conflict ratio than the Non-Strict bars. For SumEuler

the results fluctuate and the data is noisy. In contrast, the Strict atomicModify +

Strict Map shows more conflict ratio than the Non-Strict. Both benchmarks show that

using strict globalise operations decreases the conflict occurrence between operations

on the registry. However, using the strict Map causes a higher conflict ratio than the

lazy Map. Consequently, the Strict atomicModify is a better implementation for the

registry to reduce conflict occurrence.

7.3.4 Total Conflict Duration

(a) Fibonacci (b) sumEuler

Figure 7.12: Registry Contention Analysis: Conflict Duration.

This section studies how strictness changes the conflict duration on the registry.

Figure 7.12 compares how total conflict duration changes as the number of schedulers

increases between the three alternative implementation of the registry. For Fibonacci

conflict duration on the Strict atomicModify and the Strict atomicModify + Strict Map

increased more rapidly than the Non-Strict. From the SumEuler conflict duration on

the Strict atomicModify and the Strict atomicModify + Strict Map show lower conflict

durations than the Non-Strict. The results of the two benchmarks were inconsistent

in terms of conflict duration where the Non-Strict appears to have lowest conflict

duration on the Fibonacci figure and the highest on the SumEuler figure. We think

this is because of the difference between parallel algorithms of these benchmarks and

the explanation for this phenomenon is as follows.
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For SumEuler all globalise operations are made at the beginning of the compu-

tation by one scheduler. This means that there is only one scheduler who accesses the

registry so no conflicts with other schedulers will occur. In addition, since all globalise

operations were evaluated strictly earlier, none of the proceeding conflicts would have

to wait for an unevaluated thunk to be evaluated. Therefore, the conflict duration

decreased with strictness.

In contrast, the Fibonacci globalise operations started from the beginning of

computation and progressed until the end. This means that globalise operations can be

in conflict with other operations at any time during the computation and these conflicts

can take longer to bring the registry into normal form. However, with globalising lazily

the operation creates a thunk and the real evaluation takes place later when the values

are required. With laziness there is only a small time penalty to globalise and skip

which reduces the chances that globalis operations will conflict with each other or

with other operations on the registry for a longer time. In this case many globalise

operations can take place without a long conflict duration unless an unlucky scheduler

hits a thunk, then it has to wait until it has been evaluated.

Globalising strictly means no thunks are left to be evaluated later by other op-

erations. This means that globalise operations need more time to fully evaluate and

leave the registry. In other words, when globalise operations conflict they will take

longer than if they were lazy. It seems that forcing globalise operations has a greater

cost than lazy evaluation. We think this is because leaving many globalise operations

in the form of thunks, and then evaluating them all at once, is cheaper than strictly

evaluating each globalise operation immediately.

7.3.5 Mean Conflict Duration

(a) Fibonacci (b) sumEuler

Figure 7.13: Registry Contention Analysis, Mean Conflict Duration.
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This section studies how strictness changes the mean conflict duration. Fig-

ure 7.13 shows a comparison of how mean conflict duration changes in respect to the

increase in the number of schedulers between three implementations of the registry. For

Fibonacci the mean conflict duration increases as the number of schedulers increases.

The Strict atomicModify and Strict atomicModify + Strict Map increase more dramat-

ically than the Non-Strict. On the other hand, the results from the SumEuler figure

show that increasing the number of schedulers does not increase the mean conflict du-

ration but makes it more variable. In addition, the Strict atomicModify and Strict

atomicModify + Strict Map show fewer mean conflict durations. Again, the Fibonacci

shows an increase in mean conflicts durations with strictness; whereas, SumEuler shows

a decrease. The mean conflict duration is derived from the total conflict duration.

Therefore, we think what makes these results contradictory are the same reasons we

have already stated in the conflict duration section.

7.3.6 Maximum Conflict Duration

(a) Fibonacci (b) sumEuler

Figure 7.14: Registry Contention Analysis, Maximum Conflict Duration.

This section studies how strictness changes maximum conflict duration. Fig-

ure 7.14 compares how maximum conflict duration of three implementations changes

as the number of schedulers increases. From the Fibonacci figure, it can be seen that

increasing the number of schedulers increases the maximum conflict duration. How-

ever, the data is noisy and as the number of schedulers increases the more variable it

becomes. From the SumEuler figure, data is very noisy and it is hard to determine

that increasing the number of schedulers increases the maximum conflict duration, or

rather it introduces more variability. Moreover, we think that the noisiness in the

results could be due to other HdpH factors, such as non-deterministic aspects in its
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implementation. Therefore, in term of the maximum conflict duration we cannot say

for sure which implementation is better, nor make any decision based on these results.

7.3.7 Conflicts By Operation Type

This section compares the three alternative implementations of the registry in terms of

conflict types that occur during evaluation. Conflicts are divided into various groups

by operation type. We are looking at the ratio of these conflicts and how they differ be-

tween the implementations. Performance data of the three versions are collected using

the Registry Contention Analysis tool, conflicts grouped by event type (Section 4.3.5).

From the profile we study how the occurrence of the grouped events changes as the

number of schedulers increases. Data from the three implementations are analysed

then results are presented to identify which version performs better in terms of reduc-

ing conflict occurrence of certain event types. Conflicts are categorised to four types

of conflicts which can occur between operations on the registry as follows:

• Globalise operations (Gops).

• Dereference operations (Dops).

• Free operations (Fops).

• Mixture of operations (Mops).

The Gops group occurrence increases when two or more operations of type Globalise

conflict with each other. Similarly, in the Dops and Fops groups occurrence increases

when two or more operations of the same event type conflict. However, the Mops group

occurrence increases when a conflict has different event types; for example, a globalise

operation and free operations.
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Globalise operations (Gops)

(a) Fibonacci (b) sumEuler

Figure 7.15: Conflicts Between Globalise Operations.

Figure 7.15 compares how conflict occurrence of the group Gops changes as the number

of schedulers increases between the three alternative implementations of the registry.

From the Fibonacci figure, conflict occurrence on the Strict atomicModify increased

by an average of 20% points more than the Non-Strict bars. Similarly, the Strict

atomicModify + Strict Map increased by an average of 32% points. From the SumEuler

figure, the absence of any Gops conflict is expected. This is because in SumEuler

globalisation happens at the beginning of computation by one scheduler only, so no

conflict of this type can happen.

Consequently, strictness increases the number of conflicts between events of type

Gops. This increase indicates that the globalise operations force evaluation so opera-

tions last longer to evaluate. Comparing the results from the two strict versions shows

that combining the strict globalise operations with the strict Map has increased Gops

conflicts. The increase induced with strictness is justifiable as operations need more

time to fully evaluate.
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Free operations (Fops)

(a) Fibonacci (b) sumEuler

Figure 7.16: Conflicts Between Free Operations.

Figure 7.16 compares the three registry implementations in terms of how Fops conflict

occurrence changes as the number of schedulers increases. From the Fibonacci figure,

Strict atomicModify bars have less conflict occurrence than the Non-Strict bars by an

average of 45% points. Similarly, on the Strict atomicModify + Strict Map bars conflict

declined from the Non-Strict by an average of 41% points. From the SumEuler figure,

both the Strict atomicModify and Strict atomicModify + Strict Map bars declined

by an average of 19% points from the Non-Strict. Therefore, strictness on globalise

operations reduces conflict occurrence between Fobs operations. In other words, free

operations no longer need to evaluate thunks left by globalise operations and are not

involved in more conflicts. Comparing the two strict versions shows that Strict atom-

icModify reduces Fobs conflicts more than when it is combined with Strict Map. As a

consequence, using strict atomicModify is the better alternative as it gives fewer Fobs

conflicts.
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Dereference operations (Dops)

(a) Fibonacci (b) sumEuler

Figure 7.17: Conflicts Between Dereference Operations.

Figure 7.17 compares three registry implementations in terms of how Dops conflict

occurrence changes in respect to the increase in number of schedulers. From the Fi-

bonacci figure, the Strict atomicModify introduces lower conflicts than the Non-Strict

by an average of 40% points. Likewise, the Strict atomicModify + Strict Map has

lower conflicts than the Non-Strict by an average of 35% points. From the SumEuler

figure, strictness also reduced conflict occurrence in both versions by an average of 20%

points. For example, at 4 schedulers conflicts dropped by 17% points from 27% for

Non-Strict, to 22.5% for both Strict atomicModify and Strict atomicModify + Strict

Map. Comparing using Strict atomicModify combined with Strict Map shows that

using Strict atomicModify alone reduces conflict occurrence more. Consequently, in

terms of reducing Dops conflict occurrence the implementation of globalise strictly is

the one that performs better for the HdpH RTS.

A Mixture of operations (Mops)

Figure 7.18 compares how Mops conflict occurrence changes in respect to the increase

in number of schedulers. From the Fibonacci figure, conflict occurrence increased for

the Strict atomicModify by an average of 29% points. Likewise, it increased for the

Strict atomicModify + Strict Map by an average of 20% points. From the SumEuler

figure, conflicts increased on both strict versions by an average of 18% points. For

instance, at 5 schedulers conflicts increased by 17% points from 54% for Non-Strict, to

64% for both Strict atomicModify and Strict atomicModify + Strict Map. Comparing

the results of the two strict versions shows that Strict atomicModify, in some cases,

increased conflicts more than when it was combined with the Strict Map, and in other
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(a) Fibonacci (b) sumEuler

Figure 7.18: Conflicts Between Mixture Operations.

cases it was the opposite. This increase in conflicts occurrence between Mops events

is expected because when globalise operations are strict, the chance that they could

conflict with other operations increases. As a consequence, globalising strictly increases

Mops conflicts.

Conflicts by Operations Types Discussion

We compared the results from all operations types Gops, Fops, Dops and Mops to see

how overall conflicts occurrence by types change. From the Fibonacci experiments we

have seen that strict globalise operations increased Gops and Mops conflict occurrence

by an average of 20% points and 29% points respectively. However, it reduced Fops

and Dops conflict occurrence by an average of 45% points and 40% points respectively.

Similarly, when strict gloabalise is combined with the strict Map, Gops and Mops

conflicts increased by an average of 32% points and 20% points respectively. On the

contrary, Fops and Dops conflict occurrence declined by an average of 41% points

and 35% points respectively. Moreover, from the SumEuler experiments both strict

globalise, and strict globalise combined with strict Map, increased only Mops conflict

occurrence by an average of 18% points. However, both reduce Fops and Dops conflict

occurrence by an average of 19% points and 20% points respectively.

7.3.8 Variability in Execution Time

This section compares the three alternative implementations in terms of variability

in execution time. This is to study how the changes that are made to the HdpH

RTS, strict globalise operations and strict Map change its execution time behaviour.

Variability in execution time data was obtained by executing the same benchmarks
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on the same computing architecture introduced in the beginning of Section 7.3. The

parameters for Fibonacci were 41 Threshold 19 and the parameters for SumEuler were

10,000 Chunk size 1. With these parameters both benchmarks finished execution in

close time, about 10 seconds. On the figures we report the median execution time

of eleven runs and variability on execution time. To measure variability on execution

time we use the sample standard deviation relative to the median [93].

(a) Fibonacci

(b) sumEuler

Figure 7.19: Variability in Execution Time.

Figure 7.19 compares the three alternative implementations of the HdpH RTS in

terms of variability in execution time. Figures on the left show execution time with

variability as error bars, whereas, figures on the right show variability as a percentage.

From Figure 7.19(a) Fibonacci (right), on the Non-Strict curve variability in-

creased by 5-fold from 4.5% at 1 scheduler to 28% at 7 schedulers. Also, the curve

peaked to 38% at 4 schedulers and most data points of the curve show high variability,

between 12% and 37%. On the contrary, variability on the Strict atomicModify curve

decreased by 87% points from 19% on 1 scheduler to 2.5% on 6 schedulers, then it

increased again by 55% points on 7 schedulers. Importantly, the majority of the curve

data points remained low, between 2% and 8%. The variability on the Strict atomic-

Modify + Strict Map curve remained the same, 10.5% on 1 and 7 schedulers. However,

most data points of the curve remained high; between 10% and 23%. As a result, the
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Fibonacci experiment shows that the implementation of the HdpH RTS registry with

the strict atomicModify exhibits less variability in execution time.

From Figure 7.19(b) SumEuler (right), on the Non-Strict curve variability in-

creased by 14-fold from 1.5% at 1 scheduler to 22.5% at 7 scheduler. Moreover, the

curve peaked to 74% at 6 schedulers and most data points were high between 12%

and 74%. However, variability on the Strict atomicModify curve increased by 621%

points from 1.1% on 1 scheduler to 8.2% on 7 schedulers. However, most data points

on the curve remained low between 1% and 8%. Similarly, on the Strict atomicModify

+ Strict Map curve variability grew by 420% points, from 1.9% at 1 scheduler to 10%

at 7 schedulers. Again most data points on the curve remained low, between 1% and

8%. Importantly, both strict versions show more consistent results than the non-strict

version. Consequently, the SumEuler experiment shows that the both strict implemen-

tation of the HdpH RTS registry exhibit less variability than the non-strict version.

Although both perform well, comparing the two strict versions together shows that the

one with strict globalise operations combined with strict Map has less variability in

execution time.

7.3.9 Registry Implementations Discussion

Comparing the registry implementations shows that strictness reduced conflict occur-

rence. On the other hand, we found the results of conflict duration were inconsistent;

the strictness reduced conflict duration for Fibonacci and increased it for SumEuler.

Also, we found that strictness increased some registry conflict types, e.g. Gops and

Mops, and reduced other conflict types, e.g. Fops and Dops. The results are not clear

cut and none of the strict registry implementations perform better than the other in

terms of reducing variability in execution time. However, the non-strict version is the

worst performer of the three versions in both benchmarks. Based on these results, it

is hard to conclude that one of the strict version is better than the other. This is be-

cause the registry implementation that used strict globalise operations is the one that

performed well for Fibonacci. On the other hand, the version with strict globalise com-

bined with strict map is best for SumEuler. Therefore, we only can say that, generally

speaking, with strictness on the registry operations it is more likely that variability in

execution will be reduced.
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7.4 Summary

This chapter investigates whether a correct and effective profiler can be constructed to

tune the parallel DSL implementation (HdpH RTS) using the host language profiling

tools (GHC-PPS). HdpHProf analysis tools are used for performance measurement of

HdpH internals and data collection. We used the Spark Pool Contention Analysis too

to characterise HdpH performance in terms of contention on spark pool. We showed

how increasing the number of schedulers in a computing node changes contention be-

tween schedulers who try to concurrently access the spark pool (Section 7.1). We found

that increasing the number of schedulers can increase the conflict ratio, and conflicts

with higher number of schedulers involved, i.e. 3 and more, can have significantly

longer conflict durations. Also, we used the tool to study how task granularity affects

contention on the spark pool. We showed how increasing the task granularity changes

contention on the spark pool, and found that an appropriate task granularity signif-

icantly reduced both conflict occurrence and duration (Section 7.2). In addition, the

Registry Contention Analysis tool was used to characterise and compare the perfor-

mance of three alternative implementations of the HdpH RTS registry. We investigated

how increasing strictness on the registry implementation can improve the behaviour

in terms of contention. Also we compared the implementations for variability in exe-

cution time (Section 7.3). We found that strictness can improve some aspects of the

implementation, such as reducing conflict occurrence and variability in execution time.

However, it can introduce other issues such as, increasing conflict durations and con-

flicts between some operation types, e.g. Gops and Mops. Moreover, even though it

was possible to construct the profiler to tune HdpH implementation, it required the

host language profiling tools to be extensible and a took lot of effort to construct the

profiler. We had to define appropriate trace events for the DSL, correctly code the DSL

implementation to emit the events into an eventlog, build analysis tools to analyse the

new events, and validate the correctness of these tools.
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Conclusion

This chapter summarises the thesis, discussing the main issues investigated and the

contributions (Section 8.1), gives some limitations of the work (Section 8.2), and gives

some suggestions for future work (Section 8.3).

8.1 Summary

A new approach for profiling the performance of parallel DSLs is needed to meet the

increasing number of parallel DSLs. This thesis addresses the challenge of using host

language profiling tools to provide an effective and efficient profiling for a parallel DSL.

We showed that it is possible to construct a profiler using the host language profiling

tools, by designing, implementing, and validating HdpHProf; a profiler for the HdpH

DSL.

Chapter 3 shows that the host language profiling tools, GHC-PPS and Thread-

Scope, perform well in terms of overheads and usability, so using them to profile the

DSL is feasible and would not have significant impact on the DSL performance. We

reported a critical analysis of parallel functional profilers [4, 5], comparing the host

language tools with a functional profiler, EdenTV [11], alongside four important im-

perative profilers, i.e. Vampir [139], Score-P [124], mpiP [141], and ompP [37]. The

comparison was based on the SICSA Concordance benchmark [23], covered both shared

and distributed-memory parallel languages, and was performed on common parallel ar-

chitectures. We compared the runtime overheads and amount of profiling data gener-

ated by the profilers, analysed whether the parallelism is shared or distributed memory,

and whether the profiler is imperative or functional, tracing or summative.
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The comparative study showed that summative profilers generated far less pro-

filing data. More interestingly both functional tracing profilers generated one or two

orders of magnitude less data than the imperative tracing profilers. While generating

so much data risks perturbing program execution, the benefit is that tools like Score-P

and Vampir can potentially assist the programmer by providing more detailed informa-

tion about the program execution (Section 3.2). More work is needed to establish the

cost/benefit trade-off between profiling data size and the programmer’s understanding

of program behaviour.

Both tracing functional profilers induce very low runtime overheads: an order of

magnitude less than the imperative tracing profilers. The functional profiler overheads

are no more than a factor of two greater than the imperative summative profilers, i.e.

296% for mpiP as compared with 9.4% for EdenTV, and 5.2% for ompP as compared

with 10.5% for GHC-PP (Section 3.3).

We systematically compared the profilers for usability and data presentation, and

found that the results reflected the design philosophy: summative tools provide key

information with minimal intrusion. The functional profilers provide more informa-

tion and some graphical visualisation, Vampir offers the greatest range of information,

and the most sophisticated and usable visualisation tools and maturity of the profil-

ers. Moreover, the results showed that the functional profilers are relatively immature

compared with tools like Vampir for popular imperative technologies (Section 3.4).

Chapter 4 shows that it is possible to construct a profiler for a distributed-

memory parallel DSL using the host language profiling tools. We presented the design

and implementation of HdpHProf which is a post-execution, multi-stage and extensible

profiler for the Haskell parallel DSL, HdpH. HdpHProf can profile both the DSL ap-

plications and the DSL implementation. HdpHProf can be extended to provide more

analysis tools and to present more performance profiles, e.g. how sparks travel between

nodes. Importantly, HdpHProf requires no change to the host language (GHC), or the

profiled HdpH applications.

HdpHProf uses new GHC platform features to profile the HdpH DSL. The GHC-

Events Library was extended to introduce new novel analysis tools to investigate spe-

cific performance issue of the DSL implementation, i.e. contention on HdpH internals.

It uses ThreadScope, the standard GHC trace browser, to visualise HdpH distributed-

memory eventlogs (Section 4.2). The implementation of HdpHProf introduces and

modifies different software artefacts to meet its design (Section 4.3). HdpHProf presents
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performance information using two ways; summative based profiles and performance

graphs. HdpHProf analysis tools produce two summative profiles, the Spark Pool Con-

tention Analysis, and the Registry Contention Analysis. The profiles show a summary

of statistical information about how multiple HdpH schedulers access its internals (Sec-

tion 4.3.5). We found that to introduce new analysis tools for profiling the DSL the

host language tool should be extensible like the GHC-PPS [67].

Chapter 5 illustrates that a correct and efficient profiler can be constructed using

the host language profiling tools. We validated HdpHProf for functional correctness

and profiling performance. We showed that HdpHProf code instrumentation, time

synchronisation, and trace file merging, all work correctly and give valid results. More-

over, we validated the functional correctness of the Spark Pool Contention Analysis

and the Registry Contention Analysis tools using both hand-crafted and real trace

files fragments (Section 5.2). In addition, we demonstrated that HdpHProf can profile

long running programs and programs running on relatively large scale architectures:

up to 32 Beowulf cluster nodes and 192 cores (Section 5.3). We also characterised

and compared HdpHProf overheads in terms of profiling data size (Section 5.4) and

profiling execution runtime overhead (Section 5.5), based on the study introduced in

Chapter 3. We found that the DSL profiling overheads were within an acceptable level

and comparable to other functional profilers, e.g. EdenTV. We measured the ratio of

HdpH trace events in the GHC-PPS eventlog and found that the DSL tracing occupied

a small percentage of the eventlog, less than 3% on average (Section 5.6).

Chapter 6 shows that a profiler constructed using the host language profiling tools

can effectively and efficiently profile a distributed-memory parallel DSL. We investi-

gated how effective HdpHProf is in identifying performance issues as an application

profiler for the DSL HdpH. We used several benchmarks, Queens, NBody, Mandel-

brot, Liouville, SumEuler, and Fibonacci, to show how HdpHProf is used to identify

performance problems; for instance too small/large thread granularity, synchronisation

bottlenecks, and a combination of these factors (Section 6.2). We demonstrated using

HdpHProf for tuning thread granularity in HdpH applications with flat data parallelism

(Section 6.3.1) and applications with divide and conquer parallelism (Section 6.3.2).

We used HdpHProf to study and tune thread granularity for an HdpH application with

both shared and distributed memory thresholds. We found that it is important to set

both thresholds to appropriate values as the application performance is very sensitive

to these values (Section 6.4).
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Chapter 7 demonstrates that a profiler built using the host language profiling

tools is effective and efficient for tuning the parallel DSL implementation (HdpH RTS).

We used HdpHProf analysis tools for performance measurement and data collection.

The Spark Pool Contention Analysis tool characterises HdpH performance in terms

of contention within the spark pool. We showed how increasing the number of sched-

ulers in a computing node changes contention between schedulers who try to access the

spark pool concurrently. We found that adding more schedulers can increase conflicts,

and conflicts with a higher number of schedulers can have significantly longer conflict

durations (Section 7.1). In addition, we used the tool to study how task granularity

affects contention on spark pool. We presented how increasing task granularity changes

contention on spark pool, and how an appropriate value for task granularity reduces

both conflict occurrence and duration (Section 7.2). Also, we used the Registry Con-

tention Analysis tool to characterise and compare the performance of three alternative

implementations of the HdpH RTS registry. We studied how increasing strictness on

the registry implementation impacts on contention and found that increasing strictness

reduces conflict ratio and variability in execution time but increases conflict duration

and conflicts between some types of the registry operations (Section 7.3). Moreover, we

found that to build the profiler for tuning the DSL implementation, the host language

profiling tools required to be extensible.

8.2 Limitations

This section discusses some limitations of the research. Though we found it feasible

to produce an effective, usable, and correct profiler for a parallel DSL, using the host

language profiling tools, the work has some limitations. First, deciding to use the host

language profiling tools restricted us to using those tools available which lacked some

important features. ThreadScope is built to profile the fairly simple programming

model of GHC shared-memory parallelism and we used it to profile a more elaborate

distributed-memory parallel DSL. ThreadScope does not show messages between cores

and nodes and hence we were not able to visualise HdpH communications, even though

HdpH’s messages were traced and emitted into the eventlog. Moreover, user defined

trace events in GHC-PPS are user-level messages and hence the DSL trace events are

second class citizens in the GHC eventlog. Therefore, extra post-processing is required

to analyse the DSL trace events. Second, our profiling approach is limited to profile
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applications on a relatively large number of Beowulf cluster nodes. However, we believe

that HdpHProf would not scale to large HPC architectures, e.g. HeCTOR [63], because

the trace files would become too large to be held and processed in the memory. Finally,

for the purpose of evaluating and validating the work of this thesis, we have used a

relativity small number of HdpH benchmarks rather than large real applications. This

is because HdpH is a new DSL and suitable applications are not available.

8.3 Future Work

It is unclear how much profiling technologies can be shared by the various parallel

Haskell DSLs like the Par Monad [89], Cloud Haskell [28], and HdpH [84]. Interesting

challenges lie ahead: functional profilers must soon address the issues of scalability

and heterogeneity. The scalability challenge is to collect useful information as the

number of cores grows exponentially and the bandwidth available to each core shrinks.

The challenge of heterogeneity is to profile a program which executes on a range of

computing resources, e.g. a combination of multicores and GPUs.

Current functional profilers suffer from immaturity when compared to the more

advanced imperative profilers like Score-P and Vampir that provide sophisticated trac-

ing and visualisation tools. Functional profilers could be improved in a number of ways.

Currently the data collection and visualisation options are relatively modest, and both

could be improved to reflect the advantages of leading tools like Vampir. Functional

profiling architectures could better exploit techniques proven by tools like Vampir. For

example, instead of different visualisation tools to visualise two variants of parallel

Haskell, e.g. ThreadScope for GHC and EdenTV for Eden, one tool could be designed

to visualise multiple variants. Similarly, instead of producing different trace formats

for each Haskell variant, a standard format is needed which can capture monitoring

data from a more generic abstract unit of computation resource. While GHC-PPS

represents a move in this direction, it is closely entwined with GHC and has a rela-

tively simple model of computation resources and, crucially for a distributed-memory

or heterogeneous system, does not model communication.

It would be interesting to investigate the feasibility of building a shared profil-

ing infrastructure for parallel functional DSLs. Here it would be important to use a

standardised tracing data format for trace files. It may be possible to develop a stan-

dardised tracing library that can be integrated with the language compilers to produce
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performance data. The tracing library can be shared among multiple variants of paral-

lel DSLs. This would allow the development of analysis and visualisation tools that can

be shared between different parallel DSLs. The tools should be able to present perfor-

mance for different models. The tracing library should allow selective events tracing to

reduce the overhead of tracing data size and the tracing runtime overhead. The library

should use an efficient standard data format to reduce time and space overheads. Such

an approach would require a coordinated community effort, including the designers

and developers of distributed-memory Haskells like Cloud Haskell and HdpH.
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