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Abstract 

The principal aim of this project was to investigate mechanisms of drug resistance in 

Trypanosoma bruce;, the causative agent of disease in humans (sleeping sickness) and 

livestock (nagana), which affects large areas of sub-Saharan Africa. While recent figures 

suggest that the number of infections in humans may have declined in the last 10 years, the 

emergence of resistance to some of the first line drugs threatens to undermine this 

progress, as no acceptable alternative treatments exist. By understanding the mechanisms 

of resistance, the usefulli fe of current therapies (of wh ich there are only a few) may be 

extended, diagnostics to identify resistant parasites could be developed and the design of 

novel therapies aided. We therefore developed parasites with high levels of resistance to 

the clinically important drug pentamidine, which is the first-line treatment for early stage 

West African sleeping sickness and is closely related to the main veterinary treatment 

diminazene aceturate (Berenil). The characterisation of this strain revealed that the 

resistance phenotype was at least in part due to the loss of the previously characterised 

high affinity pentamidine transporter (HAPT). To investigate the protein(s) responsible for 

HAPT activity, and to identify any other proteins contributing to the resistance phenotype, 

we employed a proteomic approach. To achieve this, a series of plasma membrane 

separation and protein digestion techniques as well as various membrane protein 

enrichment techniques were established. To aid us in estimating success of each technique 

we performed whole genome bioinformatic analyses. By combining the data from all these 

approaches and removing proteins localised to other compartments associated with, but 

unlikely to be part of, the plasma membrane (e.g. cytoskeleton and flagellum), the plasma 

membrane sub-proteome (TbPM) of long slender bloodstream form trypanosomes was 

defined. A number of interesting observations were made from TbPM, and it will no doubt 

be of benefit to the greater scientific community. One example is the positive identification 

of many proteins hitherto designated as putative. A quantitative approach was then 

employed to analyse the resistant parasites using isotope-coded affinity tagging (I-CAT) 

and difference gel electrophoresis (DiG E), including a novel combination ofDiGE and 16-

BAC protein separation technologies. Both the plasma membrane subproteome and the 

soluble proteome were investigated, and a number of regulated proteins identified. No 

confirmed transporters were differentially expressed in the resistant strain, and therefore no 

HAPT candidate identified. However, when the differentially regulated proteins were 

classified by function, relatively few functional classes were represented. The role of some 

proteins, with potentially relevant functions, such as a kinase, adenylate cyclase and a 

protein involved in kinetoplast stability, should be further investigated as they might have a 



modulatory effect on the intracellular target of pentamidine or on HAPTI activity. While 

time constraints prevented the further elucidation of the role of these proteins in the 

resistance phenotype, the work described in this thesis provides us with important new 

tools and information to achieve that goal. 
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1 

Chapter 1 

General Introduction 

Trypanosomes are the causative agent of Human African Trypanosomiasis (HAT) a 

disease that if left untreated is invariably fatal. A number of control measures aimed at 

alleviating the disease burden of this parasite through reducing vector numbers etc have 

been very successful at various times. However, chemotherapies remain the core method of 

combating this disease. Unfortunately, drug resistance to current therapies is seriously 

undermining this stronghold. New drugs are being developed. However, even these are 

susceptible to cross-resistance with the existing agents. It is therefore of interest that unlike 

all other drugs, pentamidine resistance in the field is yet to be reported, although it has 

been generated in vitro. By understanding the mechanism(s) of resistance to this drug, we 

are likely to gain insights into rationally designed therapeutic strategies to evade current 

resistance mechanisms, target systems whereby resistance acquisition is reliant on a series 

of adaptations rather than a single mutation, or where it is associated with a fitness cost. 

1.1 The Kinetoplastida 

Trypanosomes belong to the order - kinetoplastida, which possess a unique organelle 

consisting of an intercatenated DNA network that resides within the mitochondrial matrix 

called the kinetoplast. Interestingly the kinetoplast can be absent (dyskinetoplastidy) and 

parasites remain viable (Shapiro and Englund, 1995). One of the sub-orders within the 

kinetoplastida is the trypanosomatid family (Maslov et al., 2001). The trypanosomatids are 

a group of extracellular and intracellular protozoan parasites with a single flagellum and a 

small kinetoplast. Their hosts may be plants (Phytomonas), invertebrates (Crithidia and 

Leptomonas) or vertebrates (Trypanosoma and Leishmania). The latter two genera cause 

important human disease, are spread by insect vectors, and have plagued man over the 

millennia. 

The genus Trypanosoma is capable of infecting every vertebrate class (Maslov et al., 

2001), however only two species cause human disease. Trypanosoma cruz; is exclusively 

located in South and Central America where it causes Chagas' disease. On the other hand 

Trypanosoma bruce; is isolated to the African continent where it causes sleeping sickness 

throughout sub-Saharan Africa (Barrett et al., 2003). 
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1.2 Trypanosoma brucei species 

There are three morphologically indistinguishable subspecies of Trypanosoma brucei (T. b. 

brucei, T. b. rhodesiense and T. b. gambiense) that differ in their host specificity and range, 

clinical onset of disease and geographical localisation (Barrett et al., 2003). Interestingly, 

only two groups of tsetse fly can transmit this parasite, with the G. palpa/is and the G. 

morsitans group responsible for the majority ofthe propagation of T. b. gambiense and T. 

b. rhodesiense respectively. 

1.2.1 Lifecyc/e 

Trypanosomes have a di-genetic Iifecycle split between their mammalian host and their 

insect vector - the tsetse fly (from the genus Glossina). A number of different lifecycle 

stages can be found each with a specialised biochemistry and morphology (Figure 1.1). 

The cycle begins with an infected tsetse fly taking a blood meal. From this meal, 

metacyclic trypomastigotes are introduced into the mammalian host (A). These transform 

into the replicative human infective long slender (LS) bloodstream form trypanosomes (B), 

which then disseminate throughout the host vasculature. A small proportion ofLS 

trypanosomes continue to the non-replicative insect-infective short stumpy (SS) stage (C). 

Unlike the LS trypanosomes that cause the disease symptoms, it is thought that the 

transition from LS to SS developed in part to prolong an infection by reducing the parasite 

burden on the host, and therefore increasing the chances of transmission (Seed and Wenck, 

2003). To continue the lifecycle, a tsetse fly ingests some of the SS form trypanosomes 

while taking a blood meal (D). Inside the fly midgut, the short stumpy forms transform into 

the proliferative metacyclic insect infective form (E). Over time, these cells exit the 

midgut, to transform into epimastigotes (F). These epimastigotes migrate to the salivary 

gland of the fly where they replicate to once again generate the human infective metacyclic 

trypomastigote form (G) ready for transmission to the next mammalian host. The entire 

lifecycle is extracellular and therefore trypanosomes are constantly exposed to the immune 

system of both hosts. 
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B~ 

c~ 

Figure 1.1 - The digenetic lifecycle of T. bruce; in the mammalian host and tsetse fly insect 
vector. A number of lifecycle stages have been identified some of which are replicative (B), 
(E) & (F), while others are non-replicative (C) & (G). See text for details. 
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1.2.2 Host Range 

The three T. bruce; subspecies have different host ranges. T. b. bruce; is unable to infect 

humans, but is able to infect a wide range of ungulates including many domestic and game 

animals, where along with T. b. rhodesiense, and other salivarian trypanosomes such as T. 

congolense and T. vivax it causes trypanosomiasis or nagana (the Zulu name). Nagana is a 

chronic illness that prevents or reduces milk production, calving, and very often results in 

death. Over time, local cattle breeds have adapted and developed an innate resistance to the 

parasite, where infection occurs but leads to very limited pathology as long as the animal is 

otherwise healthy (Murray et ai., 1990). However, trypanosomiasis still claims a high toll 

on milk and meat production in Africa and prevents the introduction of high yield breeds to 

endemic areas. Both T. b. rhodesiense and T. b. gambiense, in contrast to T. b. brucei, can 

infect both humans and animals, with T. b. rhodesiense essentially having the same animal 

reservoir as T. b. brucei (Njiru et ai., 2004). This ability relates to their development of 

human serum resistance, although the exact identity ofthe trypanolytic factor(s) found in 

human serum remains controversial (Hager and Hajduk, 1997; Tomlinson and Raper, 

1996; Vanhamme et al., 2003). T. b. gambiense is also a zoonotic disease, though rarely if 

ever found in cattle. The main animal reservoir appears to be various wild fauna (Njiokou 

et al., 2006) and domestic pigs (Mehlitz et al., 1982). Interestingly, the first case of human 

trypanosomiasis caused by Trypanosoma evansi was reported last year (Joshi et al., 2005). 

1.2.3 Clinical presentation 

Following the bite of an infected tsetse fly, a localised chancre or trypanome may develop, 

but this occurs predominantly in T. b. rhodesiense infections (Barrett et al., 2003). From 

the bite, parasites rapidly disseminate throughout the body causing a systemic illness that 

progresses through two defined clinical stages. This early-stage infection presents as a 

general malaise with a non-specific fever that not only prevents straightforward diagnosis, 

but also enables carriers to remain mobile, thereby increasing the chances of disease 

propagation. Historically, slave traders identified sleeping sickness sufferers by their 

enlarged posterior cervical lymph nodes; Winterbottom's sign - a phenomenon that is 

generally only observed in T. h. gambiense infections (Barrett et ai., 2003). Over time the 

parasite crosses the blood brain barrier (BBB) to invade the central nervous system, 

causing late stage or second stage sleeping sickness. At this point due to irreversible 

demyelination and the compromised integrity of the BBB, a number of various 

neurological dysfunctions become manifest (Enanga et al., 2002). These include profound 
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disturbances in circadian sleep / wake patterns (hence the derivation 'sleeping sickness'), 

reduced higher cognitive functions and an increasingly pronounced lethargy. Ifleft 

untreated, victims inexorably slide into a terminal somnolent state that culminates in coma 

and death (Stich et al., 2002), although possible self-cure may occur in T. b. gambiense 

infections (anecdotal evidence). Unfortunately, acquiring a definitive diagnosis of early or 

late-stage HAT in the field, particularly with T. b. gambiense, is often difficult due to the 

low levels of paras it aemi a in the CNS (for review see (Chappuis et al., 2005». 

Both human infective trypanosomes generate an identical clinical disease, however they 

vary markedly in their rate of onset. T. b. rhodesiense tends to present as an acute disease 

with a rapid onset of only a few weeks to late stage disease. However there is considerable 

geographical variation, which could relate to regional differences in parasite virulence or 

reflect differences in human genetics of the different populations. In contrast T. b. 

gambiense can take months or years to manifest late stage trypanosomiasis, during which 

time carriers remain asymptomatic. Considering that the host reservoir associated with this 

species is small, low transmission rates would be expected, and therefore protracted 

infections would maximise propagation to the insect vector and subsequent host. 

1.2.4 Geographical distribution 

HAT is found in 36 sub-Saharan countries in around 250-300 distinct foci (Figure 1.2B). 

The two human-infective sub-species of T. bruce; have a distinct geographical distribution. 

T. b. gambiense is restricted to central and western sub-Saharan Africa, whereas T. b. 

rhodesiense is found in eastern and southern Africa (Figure 1.2A). However the two sub

species are both found in close proximity to one another in Uganda and any small 

expansion could lead to an overlap, creating complications in diagnosis and treatment 

(Picozzi et al., 2005). 
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Figure 1.2 - Geographical distribution of T. b. gambiense and T. b. rhodesiense in Africa, indicating relative risk (A) and major endemic foci of sleeping 
sickness in 1995 (B). Reproduced from (WHO, 2000a) and (WHO, 1998), respectively. 
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1.2.5 History 

Sleeping sickness is a controllable disease when a combined approach employing vector 

population control, wild animal reservoir culls, peri-domestic vegetation clearance, human 

screening, use of insecticides and effective treatment of infected individuals is instigated 

(Seed, 2000). Indeed such was the success of these implementations in the early 20th 

century that HAT was practically wiped out, with less than 100 cases per 100,000 in all 

endemic countries (TOR Strategic Direction for Research, 2002). This success story was 

achieved through well-funded colonial-power established programmes that centred on 

active surveillance and subsequent treatment of infected individuals (Cattand et al., 2001). 

From the 1950s onwards, independence was gradually declared across Africa. 

Unfortunately with independence came a general funding crisis in many of these fledgling 

economies. Combined with the outbreak of a number of wars and the AIDS epidemic that 

continues to ravage the continent, attention has shifted increasingly further away from 

sleeping sickness. The result has been a dramatic increase in the disease, with an estimated 

300 - 450,000 cases today, and probably in the order of 100,000 new cases per annum 

(Barrett, 1999). In some areas, prevalence rates have reached in excess of 70% (Ekwanzala 

et al., 1996). Large sections of the population are now at risk of contracting HAT, with 

current estimates of -55-60 million people being generally accepted (WHO, 1998). 

Although the numbers of cases of HAT are small in relation to malaria and some other 

infectious diseases, the cost in terms of disability adjusted life years (DALY's) lost to HAT 

stands at around 2 million (WHO, 2000b), making it a far greater problem than it at first 

appears. At present, only trivial attempts have been made to control this epidemic, and 

little improvement can be expected until the full scale of the problem is accepted and 

politically addressed (Stich et al., 2003). In addition to the required political Willpower, 

research has increasingly focused away from the clinical disease, providing us with 

exquisite insights into the lifecycle and biochemistry ofthe parasite, but failing to address 

the desperate clinical need that exists. As a disease predominantly of the rural poor, such 

clinical research is unlikely to attract interest from pharmaceutical companies and so 

research needs to be directed to maximise results (Seed, 2001). 

1.3 Trypanosomiasis Control 

Due to the relatively complex lifecycle oftrypanosomes, a number of control measures 

have been developed to target the various stages or interfere with transmission. 

Historically, the most effective method that various African tribes have employed, 
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particularly those who rear cattle, is the avoidance of tsetse-infected areas. This is 

dramatically shown in Figure 1.3, and hints at the economic impact that nagana has on 

many sub-Saharan countries, restricting not only cattle farming, but also the use of draught 

animals such as horses, oxen and donkeys which are vital to proper agricultural 

development. A less radical approach than avoidance is to reduce numbers of tsetse flies. 

Historically, the use of bush clearance and game culling provided an effective albeit 

environmentally unsound solution. These methods have now been superseded by the 

development of traps that specifically attract tsetse flies (Torr et al., 2005), and which are 

effective on a local scale as long as properly maintained and regularly impregnated with 

insecticide. More controversially, Sterile Insect Technique (SIT), which involves breeding 

large numbers of single sex flies for release into the wild, where they out compete their 

wild counterparts thus reducing the tsetse population (Vreysen, 2001), has been proposed 

as a means of eradicating tsetse flies from Africa (Schofield and Maudlin, 2001). Aside 

from its use in the removal of tsetse from the island of Zanzibar (Reichard, 2002), the 

Southern Cone Initiative (Schofield and Dias, 1999) rolled out in South America to control 

Triatominae is used as an example of the power of SIT. However, opinion on the potential 

effectiveness of such an approach even when combined with other techniques remains 

divided (Molyneux, 2001; Rogers and Randolph, 2002; Vinhaes and Schofield, 2003). The 

reason for this division is that treatment is very costly, it needs to be applied 

simultaneously across the continent to prevent re-invasion, it also needs to be individually 

applied to each tsetse species. Unfortunately, the feasibility of such a massive global 

approach considering the infrastructure and funding in many African nations remains poor. 

In terms of agriculture, attempts have been made (through in-breeding and cross-breeding) 

to produce trypanotolerant dairy cattle (D'Ieteren et al., 1998), although this solution 

completely fails to address the human disease and has had very limited success to date. All 

of these approaches help to combat this disease and are underpinned by chemotherapeutic 

options that form the mainstay of trypanosomiasis control. 
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Figure 1.3 • Map of Africa illustrating the effect of the presence of tsetse flies on 
sustainability of rearing cattle. Taken from 
http://www.iaea.org/AboutiPolicy/GC/GC45/SciProg/sftsetse.htmI 
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1.3.1 HAT Diagnosis 

Since identifying trypanosomes as the causative agent of sleeping sickness, microscopy has 

formed the backbone of diagnostic techniques. However analysis of blood films, lymph 

aspirates, and CSF often fail to identify infections with low parasitaemias. Advances in 

concentrating parasites e.g. using mini-anion exchange columns, quantitative buffy coat 

analysis (Bailey and Smith, 1994), or microhaematocrit centrifugation techniques have 

improved detection rates, although many infections (principally T. b. gambiense) still fall 

below the level of detection. Serological diagnosis using the card agglutination test for 

trypanosomiasis (CA TT) or the more sensitive LATEX (Penchenier et al., 2003), remains 

problematic where only weak positive identifications are made. PCR represents a highly 

sensitive and specific diagnostic technique for detecting the presence of Trypanosoma spp. 

DNA (Penchenier et al., 2000), but confirmation of living parasites is still required, and it 

can only be applied where suitable laboratories exist. Considering the difficulty in 

implementing PCR in Africa, it is perhaps at first surprising that proteomic fingerprinting 

has been successfully used to diagnose infections (Papadopoulos et al., 2004). However, 

this technique is more likely to identify diagnostic markers for which specific tests can be 

designed, rather than being applied as a diagnostic tool (Agranoff et al., 2005). Despite 

obvious advances, challenges remain in ensuring that diagnostic techniques are highly 

sensitive, specific, affordable and field robust. This is likely to become crucial in Uganda 

where a potential overlap of the two human infective sub-species, with their different 

treatment regimes is likely to cause major problems (Picozzi et al., 2005). 

1.3.2 HAT treatment 

There are four drugs that are currently used to treat HAT and have been the focus of a 

number ofin-depth articles (see references (Docampo and Moreno, 2003; Pepin and 

Milord, 1994; Wang, 1995)for reviews). All of these compounds have one or more serious 

drawbacks in terms of their activity / safety profile, cost, availability or drug resistance, 

and clearly there is a desperate need for new affordable, safe and effective drugs. 

It is interesting to note that all of these therapeutic agents (Figure 1.4) have been shown to 

be active against neoplastically transformed cells, posing an interesting association 

between cancer and HAT (Barrett and Barrett, 2000). 
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Figure 1.4 - Chemical structures of Suramin (A), MeJarsoprol (B), Eflornithine I OFMO (C) and 
Pentamidine (0), the four drugs used to treat HAT. 
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Historically, the first trypanocide used was Suramin - a symmetrical polyanionic 

sulfonated naphthylamine (Figure I.4A) discovered in 1916, by chemically modifying the 

dye trypan red (Bouteille et al., 2003). Suramin is very effective against T. b. rhodesiense 

in early stage disease, where it rapidly clears parasites from the blood. It also has a long 

half-life and trypanocidal drug levels remain at prophylactic levels for up to 3 months from 

a single dose (Apted, 1970). However, suramin can cause immediate life-threatening 

collapses involving renal damage, haemolytic anaemia and severe diarrhoea (Fairlamb, 

2003). 

Drug resistance has been well documented in the field (Matovu et al., 200lc), but, despite 

a number of resistance mechanisms being proposed e.g. TbMRPA (Shahi et al., 2002), the 

basis of field resistance remains undefined (Delespaux and De Koning, 2006). Suramin has 

been shown to bind to and inhibit a series of enzymes, including all nine glycolytic 

enzymes found in T. brucei. Glycolysis, as the sole energy source in BSF trypanosomes, is 

essential, but drug access to these enzymes appears unlikely as they are sequestered away 

in the glycosome (Opperdoes and Borst, 1977). The mode of action of this drug therefore 

remains unknown. 

1.3.2.2 Pentamidine 

The aromatic diamidine pentamidine (Figure 1.40) was developed in 1937, and forms the 

basis of a number of closely related compounds e.g. diminazene aceturate (DA), which is 

used to treat trypanosomiasis in domestic animals including cattle, sheep, and goats. 

However during prolonged drug shortages, DA has been used for T. b. gambiense and T. b. 

rhodesiense infections in humans (Van Nieuwenhove, 1999). Pentamidine is used to treat 

early stage T. b. gambiense infections, and like suramin, is likely to exert its effect via 

multiple cellular targets as it reaches millimolar concentrations within the cell (Damper 

and Patton, 1976a; Damper and Patton, 1976b). Whilst the mechanism of action in T. 

brucei remains unclear, studies in Saccharomyces cerevisiae suggest that the target is of 

mitochondrial origin (Ludewig et al., 1994). 

Pentamidine, along with a number of other nitro-heterocyclic compounds such as ethidium 

bromide, strongly binds to the minor groove of DNA, where in combination with type II 

topo-isomerase's, mini-circle protein cleavable complexes may form. Interestingly, these 

complexes only form with kinetoplast DNA (kDNA) and not genomic DNA despite drugs 
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reaching similar levels (as measured by fluorescence of intercalated DNA) in both 

compartments (Shapiro and Englund, 1990). Indeed, the fluorescent properties of some of 

the diamidine drugs when intercalated with DNA now forms the basis of a diagnostic test 

for identifying drug resistant parasites, who acquire fluorescence at a far slower rate 

(Stewart et al., 2005). Overall then this all suggests that the mechanism of action of 

pentamidine centres on its interaction with kDNA, possibly via interrupting opening / 

closing of the circular kDNA (Wilson et al., 2005), although the exact mechanism remains 

unknown. 

1.3.2.3 Melarsoprol 

A huge breakthrough was made in the 1940's, with the discovery of the melaminophenyl 

arsenical compounds, of which melarsoprol (Figure I.4B) was the prototypic member. For 

the first time, a trypanolytic agent that was able to cross the blood-brain barrier could be 

administered, and therefore effect a cure in late-stage HAT. Unfortunately this class of 

drugs contains arsenic, a highly poisonous heavy metal. As a result melarsoprol's safety 

profile is very poor, as it causes Post Treatment Reactive Encephalopathy's (PTRE) in 

around 5-10% of patients, with a 50% mortality rate (Docampo and Moreno, 2003). In 

addition, melarsoprol is poorly soluble in aqueous solutions and is therefore administered 

in propylene glycol, which destroys tissue and veins at the injection site. Anti

inflammatories such as prednisolone are therefore often co-administered to reduce drug 

toxicity (Legros et al., 2002). Data on the pharmacokinetics of the trypanolytic drugs 

remains scarce. As a result most treatment regimes are based on empirical data and remain 

relatively unchanged since their introduction. Modem studies are likely to reveal ways to 

minimise side-effects, reduce hospitalisation times and identify more effective 

formulations. For example a new melarsoprol treatment schedule for late-stage T. b. 

gambiense sleeping sickness that reduced hospitalisation time (down to 10 days) and drug 

quantity (by 30%), was trialled in Angola and found to be as effective as the standard 

schedules (Burri et ai., 2000). Unfortunately resistance has occurred for some time in the 

field (Bales, Jr. et ai., 1989; Ogada, 1974), and appears to be on the increase (Brun et ai., 

2001), threatening treatment in many areas. 

1.3.2.4 DFMO 

Discovered in 1977, DFMO (Figure lAC) was nicknamed the 'miracle drug' or 

'resurrection drug' for its ability to cure patients with severe late stage T. b. gambiense 

HA T unresponsive to melarsoprol. To date, DFMO is the only trypanocide whose 
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mechanism of action has been elucidated: it is an irreversible inhibitor of ornithine 

decarboxylase (ODC), most probably via covalent binding of the drug to a residue within 

the active site of the enzyme (Metcalf et al., 1978). ODC is an essential enzyme that 

converts ornithine to putrescine as the first committed step in polyamine biosynthesis. 

Inhibition of this pathway in vivo, reduces cellular putrescine levels to undetectable levels 

after 12hours (Fairlamb et al., 1987). The result is the complete abrogation of cell 

proliferation and perhaps more importantly a huge reduction in VSG synthesis (Bitonti et 

al., 1988; Li et al., 1998). Thus although the parasites remain viable in the presence of this 

trypanostatic drug, their ability to replicate and evade the immune system is removed, 

enabling the host to rapidly overcome the infection. DFMO also blocks mammalian ODC, 

however this is turned over far more rapidly than the T. brucei ODC (approximately every 

20 min). This combined with the short drug half-life ensures that the parasite is selectively 

targeted. An additional factor may be that mammalian cells (unlike trypanosomes) are able 

to effect high-affinity polyamine uptake when facing polyamine starvation, thus bypassing 

the effect of eflornithine (Fairlamb, 2003). The inherent resistance observed in T. b. 

rhodesiense to eflornithine (Iten et al., 1995) is likely to be due to increased ODC turnover 

in this subspecies, relative to T. b. gambiense. 

Unfortunately DFMO's short half-life requires correspondingly high dosages i.e. 400 

mg/kg-I per day, the administration of which (four 2 hour intravenous infusions per day for 

7 or 14 days) requires extensive hospitalisation (Fairlamb, 2003). DFMO is also very 

expensive - with costs in excess of$300-500 per treatment (TDR Strategic Direction for 

Research, 2002), and its supply has not been secured in the long term (Wickware, 2002). 

Although clinical resistance to this drug has not yet been documented, given that increased 

ODC turnover would be expected to confer resistance, it is unlikely that this will continue 

indefinitely. 

1.3.2.5 Future Drugs and Prognosis 

As outlined above, all of the drugs currently registered for treatment of HAT have 

associated problems, stressing the desperate need for new drugs. However, the 

development of drugs is long, expensive (estimated at $800 million per drug), and 

increasingly difficult (Croft et al., 2005). Considering that HAT is a disease exclusively 

associated with the developing world, with a small commercial market worth <£ 1 million 

p.a. in 1983 (Gutteridge, 1985), the incentive for the large pharmaceutical companies to 

tackle this disease remains low. Indeed, despite very substantive advances in trypanosome 

research, most notable the publication of the T. brucei genome (Berriman et al., 2005), 
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knowledge has not been translated into new therapies and progress on the whole has been 

disappointing (Naula and Burchmore, 2003; Wirth, 2001). One exception to this trend is 

the discovery of a new orally administered pro-drug; DB-289 (Yeates, 2003), which is now 

undergoing stage III human trials in Angola (Mathis et al., 2006). If clinically proven in 

the field, the ease of oral administration would go some way to aiding treatment. 

Combination therapies also need to be further investigated (Legros et ai., 2002), for 

example DFMO has been found to act synergistically with 9-deazainosine or suramin to 

treat late-stage T. h. rhodesiense (Matovu et al., 2001 c). Clinical trials are also under way 

using the longstanding Chagas disease treatment nifurtimox (Lampit®) in combination 

with melarsoprol or DFMO (Delespaux and De Koning, 2006; Van Nieuwenhove, 1992). 

1.3.2.6 Vaccine 

As extracellular and therefore immune-accessible parasites, it was hoped that a unique T. 

brucei protein marker could be found from which a vaccine could be developed. However, 

the parasite has the ability to alter its antigenic signature by switching expression from one 

variable surface glycoprotein (VSG) to another (see (Donelson, 2003) for review) - a 

process called antigenic variation. The VSG coat forms a dense surface array that sterically 

hinders the approach of antibodies, thus protecting against complement attack and 

exposure of highly conserved membrane proteins. There are around 1000 VSG genes, 

although many of these are pseudo- or truncated genes. Indeed the VSG complement is 

constantly changing through mosaic recombination, creating an almost limitless stock of 

antigens. VSG transcription is very tightly regulated, possibly in an extra-nucleolar body, 

so that only one VSG is transcribed at anyone point. This vast immunogenic repertoire 

enables the parasite to evade the immune response, and makes development of a vaccine 

highly unlikely. However, VSGs are anchored to the membrane via a unique 

glycophosphatidyl (GPI) anchor, and differences between mammalian and parasitic OPI 

biosynthetic pathways have revealed a number of potential (Ferguson et ai., 1999) and 

validated (Smith et ai., 2004) drug targets, prompting new hope ofa vaccine, although 

current efforts are aimed towards chemotherapies. 

1.4 Drug resistance 

There are essentially two mechanisms by which an organism can become resistant to a 

drug. The first involves a change in the drug target whereby the drug interactions are 

abolished / altered so that the drug no longer has the desired effect, or the target is over

expressed to compensate for the drugs effect. The second involves a reduction in the level 
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of active drug in the target compartment. This may be effected by reduced uptake, drug 

inactivation / activation failure, sequestration, or increased drug efflux. Excluding drug 

inactivation, all of these mechanisms involve transporters. Transporters can potentially 

mediating drug resistance through a number of mechanisms. Such mechanisms are most 

likely to be observed where a drug elicits its effect(s) via multiple intracellular targets or 

with a invariable target e.g. DNA, that cannot alter its structure to affect drug interactions. 

In this case, it could be envisaged that the most effective acquisition of resistance would be 

through altering the action of a single transporter to prevent drugs accessing, or remaining 

in, the compartment where they elicit their effect. 

1.4.1 Drug resistance in T. brucei 

Before looking at drug resistance in T. brucei, it is important to bear in mind that a 

refractory / relapse case does not definitively indicate the emergence of drug resistance 

(Brun et al., 2001). More subtle parasitic mechanisms such as sequestration in the CNS or 

other tissue niches that are relatively drug-inaccessible may be involved. The other obvious 

aspect is the occurrence of differences between hosts: e.g. CNS drug levels may vary from 

patient to patient thus promoting or preventing a relapse. 

Pentamidine, suramin, and melarsoprol have all been in widespread clinical use for more 

than 50 years. Considering such protracted and extensive applications using treatment 

schedules that have not been optimised to reduce selection for resistance, it is no surprise 

that drug resistance has emerged (Bacchi, 1993). For example, melarsoprol relapse rates 

across Africa have historically been in the region of 5-8%. Regrettably, far higher relapse 

rates are now being reported e.g. 30% in Arua, Uganda (Legros et al., 1999), although 

fortunately melarsoprol resistance has only been observed in T. b. gambiense, where 

eflornithine remains as a backup drug. The chilling thought is that if resistance also 

develops in T. b. rhodesiense there will be no alternative treatment (Kaminsky and Maser, 

2000). Indeed, there are anecdotal reports of this already being the case, but as a result of 

the massive underreporting of East African HAT, reliable data are not available. Perhaps 

more surprising is the case of pentamidine, which - apart from its curative use - has been 

used prophylactically to treat almost entire populations for a number of decades and yet 

resistance has not been observed in the field (Bray et al., 2003), although along with 

Melarsoprol (Carter and Fairlamb, 1993), Cymelarsen (Scott et al., 1996) and DFMO 

(Phillips and Wang, 1987), pentamidine resistance has been successfully induced in vitro 

(Berger et al., 1993). While it is difficult to quantify the selection pressure that 
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pentamidine exerts on trypanosomes in the field this observation suggests that multiple 

mutations are required to confer resistance. 

Interestingly, there are examples of cross-resistance between diamidines and melarsoprol 

(Frommel and Balber, 1987), suggesting a common mode of action (Barrett and Fairlamb, 

1999). In this particular paper, resistance appeared to be achieved via reduced cellular 

accumulation of the drug. Another strain of me larsen-resistant T. brucei displayed 

increasing diamidine cross-resistance as interatomic distance between amidine carbons 

decreased (Fairlamb et al., 1992). 

1.4.2 Drug Efflux 

Drug efflux as a mechanism of resistance has been intensely studied in human cancers. 

Many of these ABC (ATP binding cassette) transporters (Klein et al., 1999), which include 

P-glycoprotein proteins (pgp) from the MRP family (Borst el al., 1999; Borst el al., 2000), 

have been shown to affect human tumour chemosensitivity and are capable of extruding a 

diverse range of compounds from tumour cells to confer multi-drug resistance. A number 

of inhibitors and functional knock-down strategies have been developed to ore-sensitize' 

these cells although no effective method has so far been found to do so therapeutically 

(Fojo and Bates, 2003). 

T. brucei contains at least three ABC transporters, which were found by data mining its 

genome (Maser and Kaminsky, 1998). 100-fold over-expression (not confirmed by 

Western blot) of one of these transporters (TbMRPA) in vitro was shown to mediate a 10-

fold increase in melarsoprol resistance (LUscher et al., 2006; Shahi el al., 2002), although 

so far no drug resistant lab- or field-derived strains have been shown to up-regulate 

TbMRPA expression. Nevertheless, this work demonstrates the potential role that efflux 

transporters may play in resistance. 

There are, however, many well-documented examples of drug resistance being mediated 

by efflux pumps in other parasitic protozoa (see (Klokouzas et al., 2003; Ullman, 1995) for 

overview). Some of the best examples comes from Leishmania, where a pgp antibody was 

used to detect a putative pgp protein in L. donovani, that conferred arsenite-resistance 

when over-expressed (Kaur and Dey, 2000). Similarly a genetic screen identified an ABC 

transporter that conferred pentamidine resistance in L. major (Coelho et al., 2003), and 

while not confirmed, evidence does suggest that efflux pumps are also important in the 

field (Singh, 2006). Likewise, in P. Jalciparum, an efflux pump has been shown to mediate 
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resistance via the verapamil sensitive extrusion of chloroquine (Sanchez et al., 2003; 

Sanchez et al., 2005), although this the gene responsible for this component of transport 

does not belong to the ABC super-family (Howard et al., 2002). 

1.4.3 Nucleoside Transporters 

Trypanosomes are incapable of de novo purine synthesis, and along with all parasitic 

protozoa scavenge these compounds from their host (see (De Koning et al., 2005) for 

review). In T. b. bruce; bloodstream forms, purine nucleoside uptake consists of two 

components (PI and P2), which can be differentiated based on their kinetics and substrate 

affinities: whereas PI is sensitive to competitive inhibition by inosine, P2 is selectively 

inhibited by adenine. A loss of P2 transport was observed in an arsenical-resistant line 

(Carter and Fairlamb, 1993), suggesting its involvement in drug uptake. This is confirmed 

by the ability of the P2 transporter to recognise a range of diverse unrelated structures e.g. 

melarsoprol, adenosine, and pentamidine (De Koning and Jarvis, 1999). Further work 

using a range of structural analogues to determine each compound's binding energy for PI 

or P2 allowed substrate recognition profiles for both transporters to be formulated. The P2 

recognition criteria were satisfied by both pentamidine and the melaminophenyl arsenicals 

(Barrett and Fairlamb, 1999; De Koning and Jarvis, 1999). 

The gene responsible for the P2 component of purine transport was identified and named 

as TbA T1 (T. b. brucei adenosine transporter I). This was achieved by transforming yeast 

defective in purine biogenesis with a T. b. bruce; cDNA library and then selecting for 

clones that grew in media containing adenosine as the sole purine source (Maser et al., 

1999). This study also sequenced the TbATl genes from a T. b. brucei isogenic pair. Two 

alleles were defined which could be differentiated by restriction fragment length 

polymorphism (RFLP) analysis using the restriction enzyme SfaNI. This RFLP analysis 

was then used on some culture-adapted field isolates from Uganda, where a significant 

association was found between RFLP status and relapse, although the correlation was not 

perfect (Matovu et al., 200Ia). Further work using a combination ofRFLP analysis, SSCP 

(single strand conformation polymorphism) and direct sequencing has revealed a 

remarkably small number ofTbA T1 variants. In fact, a common set of nine mutations were 

found in different T. brucei subspecies and from different geographical locations (Matovu 

et al., 200 I b). However a number of relapse patients retained the wild-type TbA Tl gene 

suggesting that additional factors were involved. Nonetheless all of this was strong 

evidence ofTbA T1 's involvement in drug resistance. Definitive verification came with the 

generation of a TbATI knock out (KO) line, which showed a significant reduction in 
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sensitivity to various arsenicals and diamidines (Matovu et al., 2003), confirming a 

mechanism of cross-resistance between these two classes of structurally distinct drugs. 

Perhaps what was most surprising however was that the resistance phenotype varied 

considerably from drug to drug. For example while TbATl KO cells showed almost a 20-

fold increase in resistance to diminazene, pentamidine resistance had only increased by 2-3 

fold. While the functional loss ofTbATI may be clinically relevant, this result clearly 

demonstrates that TbA Tl is not the only gene capable of modulating pentamidine 

resistance. Diminazene on the other hand appears to be almost exclusively transported via 

the P2 transporter and hence the acquisition of resistance is far simpler (De Koning et al., 

2004). 

1.4.4 Additional Pentamidine Transporters 

For a while, it has been known that pentamidine can enter trypanosomes via transporters 

other than TbATl (De Koning and Jarvis, 2001). This transport is adenosine-insensitive 

and has two components of transport termed the high and low affinity pentamidine 

transporters (HAPTl and LAPTI respectively). Although the genes encoding these 

putative transporters are yet to be identified, a biochemical characterisation has enabled 

some crucial kinetic details to be elucidated (Table 1. I), from which an overall picture of 

pentamidine transport in T. brucei has now been formulated (Figure I.5). These kinetic 

details allow insights and predictions to be made as to the relative importance of the 

different components in terms of their impact on drug transport (Table 1.1). For example, 

the P2 component of transport due to its low Km is the primary route of entry at low 

pentamidine concentrations (lOnM). HAPTl is also important at low pentamidine 

concentrations, however its low V max means that it is soon saturated. LAPTI, on the other 

hand with its high V max and low Km becomes very important at higher drug concentrations. 

The mere presence of these three pentamidine transport components helps to explain why 

resistance to pentamidine has so far not been observed in the field. This becomes even 

more understandable when it can be seen how rapidly their contribution to pentamidine 

transport changes with drug concentration - a situation that would very likely occur 

spatially and temporally in a patient undergoing treatment. Similarly it is easy to see why 

cross-resistance to pentamidine in arsenical- and diminazene-refractory strains is also rare 

(De Koning, 200 I), although as stated previously, some cross-resistance via loss of a 

functional TbA Tl is possible. 

Frustratingly, the physiological substrates ofHAPTI and LAPTI remain unknown despite 

testing a wide range of purines, pyrimidines (De Koning, 2001; De Koning and Jarvis, 
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2001) and other unrelated molecules including choline (De Koning et al., 2005). This is in 

contrast to P. Jalciparum, where the choline transporter in combination with the New 

Permeation Pathway (NPP) has been shown to be the major route of entry into the parasite 

(Biagini et al., 2004). Intriguingly, the first arginine transporter characterised from L. 

donovan; can be inhibited by pentamidine, although the drug itself doesn't seem to be 

transported (Shaked-Mishan et al., 2006). Considering that the T. bruce; genome so far 

contains 43 ORFs annotated as amino acid transporters, it is possible that one or more of 

these could encode HAPTI and or LAPTI. 

It is intriguing to note that a gene (PNTl) that confers resistance to pentamidine in S. 

cerevisiae, is not a transporter (Ludewig and Staben, 1994). PNTI may however be 

involved in membrane protein expression. 
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HAPT1 LAPT1 P2 

Kinetic Parameters 
Km (11M) 0.036 ± 0.06 56.2 ± 8.3 0.26 ± 0.03 
Vmax 

a 0.0044 ± 0.0004 0.85 ± 0.15 0.068 ± 0.007 

KI values for inhibitors 
Adenosine N.E. N.E. 0.8 ± 0.12 
Propamidine 4.6 ± 0.7 >250 1.9 ± 0.8 

Component of uptake (%) 
at 10nM 26 4 69 
at 111M 6 20 74 
at 10llM 2 65 33 

• in pmol.(1 07 cellsr1.s·1 

Table 1.1 - Summary of kinetic parameters, inhibition constants (J.1M) and component of 
substrate uptake (%) of the three pentamidine transporters in T. brucei. HAPT1: high-affinity 
pentamidine transporter 1; LAPT1: low-affinity pentamidine transporter 1; P2: purine 
transporter 2 encoded by TbAT1 (GeneDB name AF152369). N.E. - No Effect. Values are 
taken from (Bray et at., 2003; De Koning, 2001). 

Adenosin9 
Ad~nlne 
Me'l nophenyl· 
arnonlcaJs 

PMD 
Oi n ne 
Propamidine 
S barni e 

Figure 1.5 - Pentamidine uptake routes in T. brucei. Adapted from (Bray et at., 2003). LAPT1, 
low affinity pentamidine transporter 1; HAPT1, high affinity pentamidine transporter 1; PMD, 
Pentamidine; N, Nucleus; M, Mitochondrion; K, Kinetoplast. 
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1.5 Proteomics 

The genomic era has revolutionised biosciences, with molecular biology forming the 

cornerstone of most laboratory techniques, indeed the large and ever increasing number of 

genomes that have been sequenced is testament to the importance of such information. 

However, though genomes give an array of vital information, it is becoming increasingly 

clear that little functional data is evident from the genome sequence alone. Micro-array 

analysis, while useful, is unable to give definitive data on the expression of a protein due to 

the poor correlation between mRNA and protein levels. In the kinetoplastids such as T. 

brucei, this correlation is likely to be even weaker than in other eukaryotes due to their 

polycistronic gene expression, where gene regulation takes place almost entirely at the 

post-transcriptional level (Clayton, 2002). To ask meaningful biological questions in these 

organisms, in the context of analysing changes in protein expression, a de novo protein 

analysis must be performed. The quest to achieve this has given rise to the advent of the 

next 'omics - Proteomics (see (Aebersold and Mann, 2003; Mann et al., 2001) for 

overview). 

The proteome is defined by describing the entire panoply of protein isoforms, 

polymorphisms and modifications, as well as the various protein-protein interactions that 

are present in a cell under specific conditions, (see (Pandey and Mann, 2000) for review). 

While the genome is a simple blueprint, the proteome is the physical design defined both 

spatially and temporally. It quickly becomes apparent, this objective is far more 

challenging than sequencing a genome. Virtually none of the genomic techniques can be 

applied to proteomics - there is no base-pairing system and thus proteins cannot hybridize 

with each other nor act as templates for replication. This means that many of the 

methodologies, such as PCR and subtractive hybridisation that are key to genomic 

technology are not applicable to study of the proteome. Instead, proteomics relies on the 

separation of the various protein species in a sample, followed by protein identification 

using mass spectrometry. Proteomics as a discipline is rapidly evolving although no 

complete proteome has yet been described, even for comparatively simple prokaryotes. 

This is testament to the challenge posed by such an approach and a number of obstacles to 

harnessing the power of proteomics remain (Tyers and Mann, 2003). 
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1.5.1 Instability 

Unlike static genomes, proteomes are highly dynamic and can alter dramatically in 

response to stimuli or simply as a function of time. Ifanswering a biological question, it is 

therefore important to analyse the proteome under biologically relevant conditions and 

within a biologically relevant timeframe. In the context oftrypanosomes, the relevant 

lifecycle stage needs to be defined as well as the environment that the parasite is 

maintained in. 

1.5.2 Complexity 

It is worth noting that an organism's proteome is far more complex than its corresponding 

genome due to protein isoforms, alternative splicing of introns, alternative recombination 

of subunits, glycosylation, phosphorylation, proteolytic cleavage and other post

translational modifications. For example, the human genome contains around 30,000 

genes, yet the number of protein species thought to be present in human serum alone is 

likely to far exceed this number, despite only a relatively small subset of the total human 

genome being expressed in this cell type (Aebersold, 2003). In the same way, many T. 

brucei proteins will only be expressed in a specific lifecycle stage or under certain 

environmental cues, but the total number of protein species expressed is likely to be far 

greater than the number ofORF's in the genome. Virtually none of this complexity can be 

accessed purely through knowledge of the genome sequence. This tremendous knowledge 

gap drives the need to study cells at the protein level. 

1.5.3 Dynamic Range 

Protein expression levels (both in terms of absolute, active, and local levels) can vary 

tremendously. For example 50% of the total protein content in yeast comes from just 100 

genes, while low abundance proteins make up 80% of the predicted yeast proteome 

(Pedersen et al., 2003). Different proteins have a huge dynamic range, with some present at 

less than 50 copies per cell through to highly abundant proteins present at > 106 copies per 

cell. 

1.5.4 Pre-fractionation 

To reduce the complexity of a sample and to focus in on certain protein classes, sample 

pre-fractionation is highly desirable. It is particularly advisable where the target class of 
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proteins are poorly expressed. In this case pre-fractionation will serve to enrich the sample 

for those target species, by removing many of the others. 

There are a large number of ways to pre-fractionate a sample (see (Righetti et al., 2005) for 

review). Many proteomic investigations focus on a particular organelle or cellular 

structure. In this case a physical fractionation approach is favoured e.g. cell lysis followed 

by differential centrifugation (Schirmer et al., 2003). Where a specific class of proteins are 

being investigated, fractionation based on the physicochemical properties of the proteins 

can be performed. For example hydrophobic I hydrophilic proteins can be separated due to 

their differential solubilisation in detergent e.g. Triton X-II4 (Brusca and Radolf, 1994). 

Chromatographic separations are able to utilise a wide range of solid-phase materials to 

enable separation based on size-exclusion, anion I cation exchange, reverse-phase etc. 

Indeed, stacked sorbents combine a number of these different chemistries in series to sort 

the entire proteome into discrete sub-fractions, each with a different proteome bias 

(Righetti et al., 2005). In some cases, where a handful of proteins dominate the proteome, 

rather than trying to enrich for the underlying target proteins, it may be more effective to 

try and deplete the highly expressed proteins. For example in T. brucei, there are -107 

copies of a single VSG gene per cell membrane (Ferguson et al., 1999). 

1.5.5 Protein Separation 

Even with pre-fractionation, any sample is likely to contain a great many protein species. 

To be able to identify each of these, it is necessary to separate them. Fortunately, proteins 

are highly heterogeneous, for instance they all have different hydropathies, isoelectric 

points (pI), molecular weights and post-translational modifications. All of these differences 

can be utilised to resolve a proteome. Historically, proteomics has been synonymous with 

the use of two dimensional polyacrylamide sodium dodecyl sulphate gel electrophoresis 

(2D-GE), first described in 1975 (O'Farrell, 1975). This technique separates proteins based 

on their pI (first dimension) and molecular weight (second dimension). Proteins in the gel 

can then be visualised by staining e.g. with Coomassie blue, before picking spots for 

protein identification. On a typical 2D-GE gel-1000 spots, each containing a different 

protein species, may be seen depending on the stain used. By running samples on a series 

of narrow pH gradient (zoom) gels, proteome coverage can be maximised. These advances 

have made 2D-GE an attractive technique when interrogating the soluble proteome. 

Unfortunately hydrophobic (i.e. membrane bound I associated) proteins are generally 

poorly represented on 2D-GE due to their tendency to aggregate during the electrofocusing 

step. The addition ofa co-solvent appears to improve the situation (Deshusses et al., 2003), 
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however questions over the validity of a 2D-GE approach for membrane proteins remains, 

although many still believe it to be the best technique available (Fey and Larsen, 2001). 

The shortfalls of2D-GE has forced some groups to return to using ID-GE, despite its 

reduced resolution, because of its enhanced compatibility with hydrophobic poly topic 

membrane proteins (Galeva and Altermann, 2002). 

Liquid chromatography (LC) represents the other main method for separating proteins or 

peptides. A sample can be separated in this way based on hydrophobicity, charge, size, etc. 

The real advantage of using an LC approach is that any number of separation procedures 

can be performed in sequence- the so-called multi-dimensional protein identification 

technology (MuDPIT) (Liu et al., 2002; Washburn et a/., 2001). Conventionally MuDPIT 

is performed using a two-dimensional separation, although a three-dimensional approach 

has also been used (Wei et al., 2005). LC systems are also now highly automated, enabling 

accurate and reproducible analysis. A MudPIT based approach may even have greater 

resolution that 2D-GE. In addition it is able to identify proteins across a dynamic range of 

10,000 to 1 (Wolters et al., 2001). 

1.5.6 Membrane Proteins 

This class of proteins performs a large number of functions including cell-signalling, 

substrate transport, maintaining ion gradients, cellular interactions, cell 

compartmentalization, and energy generation. Such is the importance of this class of 

proteins that despite representing at most 30% of a given proteome, they constitute 70% of 

all known pharmaceutical drug targets (Wu and Yates, III, 2003). With such interest in 

these proteins, their proteomic analysis has been a high priority, but technically demanding 

for a number of reasons. Firstly, membrane proteins are typically of very low-abundance. 

Fortunately, fractionation of cells, to isolate the organelle or structure of interest (Taylor et 

al., 2003), combined with selective enrichment for hydrophobic proteins (Bordier, 1981; 

Jones, 1999; Jones et at., 1990) can often solve this problem. A far greater challenge lies in 

the manipulation of the proteins post-isolation. This is due to the fact that all membrane 

proteins by definition interact with the lipid bilayer, and to do so have regions that are 

highly hydrophobic. Most proteomic techniques were developed for hydrophilic proteins 

and employ aqueous environments where hydrophobic regions (unless stabilised) will tend 

to aggregate together causing the protein to precipitate. As a result a number of solutions, 

have been developed to enable proteomic projects directed at membrane proteins to be 

successfully pursued (Blonder et al., 2004; Molloy et al., 2000). 
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1.6 Mass spectrometry (MS) 

Mass spectrometry lies at the heart ofproteomics and while there are a huge array of 

different instruments available all with their own inherent advantages and disadvantages 

(see (Baldwin, 2005) for review), all MS machines are based on the same fundamental 

design. While the MS analysis of intact proteins (the so-called top-down approach) looks 

extremely attractive it is difficult to introduce intact proteins to the MS machine. In 

addition, MS of intact proteins requires very high mass resolution and, at present, this can 

only be achieved by the use of very expensive Fourier transform ion cyclotron resonance 

(FT-ICR) machines (Guerrera and Kleiner, 2005; Loo et 01., 1990). Currently developed 

high throughput techniques amenable for global proteome analysis therefore focus almost 

exclusively on peptides. 

MS is built around four steps. Firstly the peptide sample is introduced into the machine and 

then it is ionised. Ions of a particular mass and charge ratio pass through a mass analyser 

before the ion detector measures their mass charge ratio (mlz). It is important to note that 

mlz is measured rather than mass. 

1.6.1 Ionisation 

In terms of ionisation, high-energy ionisation was historically used in MS. Unfortunately 

this sort of ionisation caused labile molecules such as proteins to be degraded. It was 

therefore only after the introduction of 'soft' ionisation techniques that MS could be 

applied to protein samples. Soft ionisation transfers protein sample from the solid / liquid 

phase into the gas phase while imparting a charge to the molecule, without fragmenting it. 

By applying a potential difference across the generated ion field, the ions will 'fly' in a 

direction relative to the polarity of the voltage applied. MS can therefore be performed in 

positive or negative mode. Most proteins are analysed under positive ionisation conditions. 

There are essentially two ionisation techniques that achieve this in two very different ways, 

although they are complementary, and the advantages and disadvantages of each should be 

examined in relation to the experimental aims. 

1.6.1.1 Electrospray Ionisation (ESI) 

ESI (Fenn et al., 1989) uses sample in the liquid phase. It is an extremely efficient 

technique at ionising sample and, for proteomic studies, is typically combined with a High 

Pressure Liquid Chromatography (HPLC) system which makes its application very 
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powerful (Romijn et af., 2003). To generate ionic species, the analyte is dissolved in a 

volatile solvent and sprayed out of a fine needle at a high electrical potential. This 

produces a stream of fine droplets that are aimed towards the counter electrode at the 

opening of the MS. As the solvent evaporates, the ensuing droplets shrink, and electrical 

charge increases until electrostatic repulsion exceeds the surface tension (Rayleigh limit) 

and the droplet blows apart. This either creates smaller droplets (for which the whole 

process can be repeated) or discrete solvated ions (Lane, 2005). 

1.6.1.2 Matrix Assisted Laser Desorption I Ionisation (MALOI) 

MALOI (Hillenkamp and Karas, 1990) involves co-crystallising peptide sample with an 

excess of organic matrix onto a target plate. MALOI is therefore essentially an off-line 

technique that allows a user to repeatedly analyse the same sample and therefore focus on a 

particular spectral region or ion species (Baldwin, 2005). The matrix contains a 

chromophore that can be excited with a laser beam. Upon laser excitation, a portion of the 

matrix along with the co-crystallised sample is vaporised and ionised, although the exact 

mechanism remains unclear (Karas and Kruger, 2003). Pulses of laser are used to generate 

discontinuous ion packets. MALDI is therefore often coupled to an MS instrument that can 

trap all ions or measure a complete mass spectrum (see section 1.6.3). The matrix absorbs 

almost all of the laser energy (being in vast excess) thus preventing sample degradation. 

Different matrices favour the formation oflarger or smaller ions (Wysocki et af., 2005), 

due to differences in how much energy is imparted to the analyte. In addition, this form of 

ionisation invariably produces only singly charged ions (Karas et al., 2000). 

1.6.1.3 Ambient MS 

Both MALO I and ESI require sample preparation. To study living systems in situ a new 

class of techniques e.g. desorption electrospray ionisation (DES I) has emerged that can 

perform MS analysis on native samples (Cooks et al., 2006). It is easy to envisage how this 

technology can be applied to imaging mass spectroscopy (Guerrera and Kleiner, 2005), 

where different proteomes are defined across a section of tissue. 

1.6.2 Fragmentation 

Both soft ionisation techniques ionise and vaporise sample, but due to the low internal 

energy transfer, do not fragment the sample. Without fragmentation only intact peptide 

masses can be measured. When working with simple peptide mixtures, a protein identity 
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may be assigned from this information alone, however as sample complexity and therefore 

spectral complexity increases (even with high mass accuracy) protein assignments will be 

harder to make (see section 1.6.5). Many machines therefore now fragment peptides to 

yield primary structure amino acid sequence information (Figure 1.60). This process of 

scanning the mass range, selecting a specific ion, fragmenting it and then measuring the 

resultant fragments is called tandem mass spectrometry (MS/MS). 

When proteins are fragmented a series of different daughter ions are created from the 

parent, although b andy ions (Figure 1.6E) generated by breakage of the amide bond are 

generally favoured. MSIMS data from ESI is often superior to MALOI MSIMS as ESI 

generates multiply charged peptides, the fragmentation of which in tum generates more 

ionic species than from singly charged peptides. 

Fragmentation massively increases spectral complexity and therefore needs to be 

exclusively applied to the selected species, otherwise the spectra generated will contain so 

much data that an 10 can not be assigned. Fragmentation itself is normally achieved via 

collision induced dissociation (eIO). This involves colliding the analyte with another 

molecule (usually an inert gas e.g. N2 or argon). To do this the ion must be isolated, 

fragmented and the resultant ions detected. MS/MS can be achieved in a number of ways 

inherent to the design of each MS machine. 
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Figure 1.6 - Standard MS and tandem MS (boxed) proteomic analysis workflows. Firstly sample protein is cleaved (A) e.g. with trypsin, to produce peptides (8). 
These are analysed by MS (C) to generate a peptide mass fingerprint (PMF) for protein 10 assignment. Alternatively in tandem MS, individual peptides (D) are 
selected for fragmentation by collision induced dissociation (CID). Fragmentation can occur anywhere along the peptide backbone (--), with the resultant ions 
named accordingly. For simplicity a single band y ion pair is shown (E). Daughter ions are detected (F) to enable peptide and subsequently protein 
identification. 
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1.6.3 MS Instruments 

The key component in any MS machine (apart from the ionisation source - see section 

1.6.1) is the mass analyser, which enables the selection and detection of target ion species. 

There are many types of MS instruments, although these can be summarised into four 

types - In the interests of brevity, Fourier transform ion cyclotron resonance (FT-ICR) MS 

machines will not be discussed here. No single MS machine can perform every type of 

analysis and the use of more then one instrument is likely to provide greater sample 

coverage. This is because the type of instrument used will have both strengths and 

weaknesses in terms of its resolution, sensitivity, mass accuracy, and dynamic range (see 

(Domon and Aebersold, 2006) for summary). For example quadrupole ion traps 

discriminate against product ions that are less than 30% of the precursor ion mlz (Wysocki 

et al., 2005). In the same way the activation energy used may favour certain cleavage 

pathways of the fragment ion e.g. the CID in a MALDI TOF-TOF being high energy may 

favour high energy fragmentation pathways such as side-chain cleavage (Wysocki et al., 

2005). Some MS instruments are therefore combined to take advantage of the relative 

strengths of the different formats (see below). 

1.6.3.1 Time of Flight (ToF) 

ToF instruments apply a high voltage to accelerate ions into a field-free tube (i.e. under 

vacuum), where their time-of-flight is measured and from it their mlz measured. Because 

samples are under vacuum, they are generally MALDI-based instruments, and have a 

characteristically high mass accuracy. This is achieved through the use of delayed 

extraction (voltage is applied after a laser pulse), a process that helps to Iinearise the spatial 

and temporal distributions of the ions, as well as reflectrons, which linearise the various 

ion energy distributions (Lane, 2005). ToF instruments allow the entire range of ions to be 

detected. By placing two TOF instruments and a CID cell in series (along with the 

necessary optics) tandem MS (TOF-TOF) can be performed (for review see (Vestal and 

Campbell, 2005». 

1.6.3.2 Quadrupoles 

A quadrupole instrument consists of four exactly parallel rods arranged around a central 

axis through which the ion stream passes. There are two positive rods (facing each other) 

and two negative rods. Both pairs have a direct current (DC) as well as an alternating 

current or radio frequency (RF) voltage component (Lane, 2005). A high (positive rods) 
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and low (negative rods) mlz filter can be applied to the ion beam, by manipulating the 

voltage (higher voltage increases the mlz value) and DC / RF (resolution) components. 

Similarly to TOF instruments, multiple quadrupoles can be put in series to perform tandem 

MS. In this case, three units are required (triple-quadrupole), where the first and third scan 

the ion beam, while the second performs CID. Quadrupoles can even be combined with 

TOF instruments to generate a hybrid Q-ToF. Such a machine is extremely versatile as it is 

suitable for ESI or MALDI generated ion sources (for review see (Ens and Standing, 

2005». 

1.6.3.3 Ion Traps 

Ion traps, as the name suggests, trap ions in a defined space. These machines have been 

referred to as 'quadrupole ion traps' as they can be thought of as a reworked quadrupole 

(Lane, 2005). Like standard quadrupoles, ions are manipulated by altering the RF 

frequency applied. However mlz ratios are measured through the selective ejection of ions 

into the detector. Therefore if a particular mlz ratio is left unobserved, over time ions 

within that mlz range will accumulate. This retention of ions enables analytes present at 

low concentration to be pooled. Unlike other MS machines that require multiple units to 

perform MS analysis, by manipulating the radio frequency and voltage across the trap, all 

ions bar the target species can be selectively discarded. The target can then be fragmented 

and all daughter ions measured by the detector. This allows ion traps to perform multiple 

rounds of fragmentation (MSn). 

Ion traps do suffer from low mass accuracy, and although linear ion traps (larger volume) 

have improved this (Lane, 2005), again a hybrid system with quadrupoles offers many 

more benefits (Hopfgartner et al., 2004). 

1.6.4 Proteolysis 

Before MS analysis, proteins are cleaved into a series of peptides. Proteolysis can either be 

specific i.e. cleavage occurs after a particular residue or sequence, or non-specific. The two 

will produce two different peptide populations, with the latter generating a far more 

complex population of overlapping peptides. This can be an advantage as it provides 

increased sequence coverage, however increased computing power is needed to cope with 

the sample complexity (Wu and Yates, III, 2003). Cleavage is therefore conventionally 

performed using the enzyme trypsin due to its high cleavage specificity. This high 

specificity enables the compilation of in silico generated peptide spectra for comparison 
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and therefore protein identification. Trypsin cleaves at arginine and lysine residues, except 

if followed by proline. This means that the amino terminal residue of all tryptic peptides is 

basic, and as a result these often carry a double or triple charge, which is good for tandem 

MS. Other proteolytic agents include enzymes e.g. proteinase K and chemicals e.g. 

cyanogen bromide. Each cleaves at different amino acid residues, with the relative 

abundance of these residues in any organism therefore having a bearing on the peptide 

sizes generated by the different proteolytic agents. 

When considering the proteolysis of native membrane proteins it is possible that enzymes 

may have difficulty accessing all cleavage sites, particularly if they are located in a 

transmembrane a.-helix. In this case, steric hindrance may prevent complete proteolysis and 

therefore a reduction in protein coverage. Small molecules e.g. CNBr, or alternative 

proteolysis conditions e.g. trypsin digestion in 60% MeOH may be pursued to counteract 

this effect. 

1.6.5 Data Analysis 

There are a number of different programmes for automatically assigning protein 

identifications from MS or MSIMS spectra. Two of the most widely used are SEQUEST 

(http://www.thermo.com) and MASCOT (http://www.matrixscience.com/). Although the 

details vary from program to program, they all compare the experimentally derived mass 

spectrum against a theoretical spectrum. When using MS data this consists of identifying 

all peptide masses in a sample and then determining all proteins that could have generated 

that specific series of peptide masses. This is known as peptide mass fingerprinting (PM F) 

and when analysing simple samples a diagnostically unique series of peptide masses and 

therefore the protein identity can usually be identified. However as sample complexity 

increases, PMF searching becomes unreliable, if at all possible, and has therefore been 

largely superseded by tandem MS analysis. When searching tandem MS data, a number of 

different models (classified as descriptive, interpretative, stochastic or probability-based 

matching) can be used (see (Sadygov e/ al., 2004) for review). For example, the 

fragmentation ion series of all peptides with a similar mass to the parent ion can be 

compared. Alternatively the ion intensity of the theoretical spectrum can be calculated 

based on peptide fragmentation theory or empirically derived data. Whichever method is 

used, deriving a protein identity from high quality tandem MS data is relatively 

straightforward. However dealing with lower quality data is far more problematic and must 

take into account the limitations of the MS instrument used. Care must also be taken to 
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apply the correct search criteria to reduce false positives and negatives (Keller et al., 

2002). 

1.6.6 Post-translational modifications 

The positive detection of a protein within a simple sample is fairly trivial based on 

identifying a few peptides unique to that protein. However, many proteins undergo post

translational modifications (PTM) e.g. phosphorylation or glycosylation. These may be 

very important in regulating protein function. Therefore while total protein content may 

remain level, the functional species may vary tremendously. Discriminating between the 

two (or more species) by MS is not possible unless the peptides incorporating the PTM are 

detected by the MS (Guerrera and Kleiner, 2005). Even if a PTM peptide is detected it may 

be very difficult to identify that a PTM is present, particularly if the stoichiometry is low or 

if it is a complex sample. This is because many search programs will be unable to process 

the additional potential spectral complexity ofPTM's. By including a range ofPTM's in 

the searches (and there are a huge number of them) particularly in combination with poor 

data, protein ID assignment is likely to be reduced (Mann and Jensen, 2003). One therefore 

has to generally look for a PTM to see it. However some PTM's e.g. phosphorylation, 

appear to be 'more important' than others, although this may simply reflect current 

understanding. Many researchers have therefore focused on isolating these 'more 

interesting' species (Mann and Jensen, 2003). This can be achieved through the chemical 

derivitisation of the modifying group to allow subsequent affinity purification (Guerrera 

and Kleiner, 2005). An alternative to enrichment is to perform two rounds of MS. Initially 

unmodified peptides are searched to generate a list of protein identities in the first round. 

This list is then used in the second round to search for all possible modifications of the 

proteins on the list (Lane, 2005). Care must also be taken to ensure that the mass 

differences observed are not artefacts that are introduced during the analysis e.g. free 

cysteine residues can react with a variety of compounds to effect a mass change (Wysocki 

et af., 2005). 

1.6.7 Quantitative analysis 

All of the above techniques have focused on the qualitative identification of proteins. 

However to investigate the cellular response to a defined variable e.g. the introduction of a 

drug, a quantitative analysis must be performed, whereby two cell populations can be 

quantitatively compared. Historically this was achieved by running each sample on a 

separate 2D gel. After staining, the spot patterns could be compared and quantitative 
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differences estimated. Unfortunately gel-to-gel reproducibility often leaves much to be 

desired, making it difficult to reconcile multiple gel spot patterns and therefore preventing 

any firm conclusions from being drawn. As a result, an increasing number of techniques 

are becoming available that allow the differential labelling of two samples. While labelling 

can be performed using a variety of tags and targets, the key point is that they allow the 

two samples to be mixed and analysed in combination thus enabling direct comparisons 

between them to be made. Labelling can take place at any stage during sample preparation 

e.g. in culture, post sub-cellular fractionation etc. The earlier that labelling is performed the 

less likely that artefacts will be introduced, as samples can be combined post-labelling, and 

all subsequent steps performed on the mixture. 

One technique, called stable isotope labelling with amino acids in culture (SILAC) labels 

cell populations while in culture (for review see (Julka and Regnier, 2005»). It does this by 

growing the two cell populations in defined media, one of which exclusively contains an 

isotopically 'heavy' essential amino acid, while the other contains the corresponding 

isotopically 'light' essential amino acid (Ong et al., 2002). By using an essential amino 

acid and growing cells long enough in the defined media, all proteins (and therefore all 

peptides) from each population that contain one or more residues of the essential amino 

acid will be tagged as 'light' or 'heavy'. This complete labelling of sample allows smaller 

samples to be used than a non-saturation labelling technique. However there are a few 

drawbacks to this technique. Firstly, the spectra produced from the samples will be more 

complex due to the additional isotopic peaks, often making it necessary to perform 

additional fractionation to enable spectral deconvolution. In addition if labelling is not 

100% in the 'heavy' sample, then any unlabelled 'heavy' sample will add to the 'light' 

(Ong et al., 2003a). However the biggest drawback to this technique is its expense, and as 

a result has in the main only really been successfully applied to mammalian cell lines (Ong 

et al., 2003b), although recent papers show it can be applied to A. thaliana (Gruhler et al., 

2005), C. elegans and D. melanogaster (Krijgsveld et al., 2003). 

There are now a large number of ways to chemically modify a protein sample. For 

example, isotope-coded affinity tagging (I-CAT) reagents react with free cysteine residues 

creating 'light' and 'heavy' mass tagged samples (Gygi et al., 1999a), with a solid-phase 

labelling format also having been developed (Zhou et al., 2002). One advantage of the 1-

CA T technology is that the label contains a biotin moiety allowing the selective 

purification oflabelled peptides, thus reducing sample complexity. This is likely to 

improve proteome coverage, although proteins that do not contain a cysteine obviously 

cannot be detected. Fortunately this is unlikely to be a big problem e.g. 96.1 % of all genes 
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in the human proteome contain a cysteine residue (Yan and Chen, 2005), therefore to 

increase proteome coverage other techniques targeting more abundant residues may need 

to be used. For example I-TRAQ labels lysine residues and terminal amine groups (Zieske, 

2006), however targeting more abundant residues can lead to over-complex spectra, 

requiring a balance to be struck between complexity and information yielded. To address 

this issue an 1-TRAQ like system that only targets the terminal amines has also been 

devised (Kuhn et al., 2005). There are now four different I-TRAQ mass tags allowing 

multiple sample analysis (Yan and Chen, 2005). Another interesting system involves 

trypsin digesting one sample in 180 enriched water. During peptide bond hydrolysis, the 

180 is transferred to the peptide thus labelling it (Wang et al., 2001). An alternative 

approach to mass tagging is difference gel electrophoresis (DiGE), that involves tagging 

protein samples with different charge and mass matched fluorophores (for overview see 

(Wu, 2006». Multiple samples can then be run and fluorescence intensity compared from a 

single gel (OnIO et al., 1997). Being a gel-based separation technique, there is the added 

benefit that different species of the same protein arising from post-translational 

modifications are likely to be resolved on the gel due to a change in mass / pI. 

All of the above techniques are excellent in defining the relative change in protein 

expression, but they are unable to give precise information regarding the absolute level of a 

protein. Absolute quantitation (AQUA) was therefore developed and involves the addition 

of a defined amount of synthetic labelled peptide that is diagnostic for a specific protein. 

The synthetic peptide acts as an internal calibrant to define the amount of endogenous 

protein in the original sample (Gerber et al., 2003). These peptides are however expensive 

and therefore can only be used in a focused rather than proteome wide analysis. 

It is worth bearing in mind that with any quantitative approach where the comparative 

samples undergo manipulation in isolation, it is possible to introduce variability, although 

the high reproducibility of most of these techniques does not preclude such an approach. 

1.6.8 Target Validation 

In summary it can be seen that proteomics represents a suite of techniques to interrogate 

organisms at the molecular level. It is a particular powerful technique in terms of its ability 

to define quantitative differences across the entire proteome of two cell populations. 

However as with any technique it is not infallible and does require confirmation (e.g. by 

western blot) and phenotype validation (e.g. by RNAi knock-down) post analysis. 
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1.7 Parasite proteomics 

Finally it is worth mentioning the power of proteomics with regard to developing therapies 

to parasitic diseases. Most parasitic diseases (and HAT is a classic example) affect the 

poorest people of the developing world. Their inherent lack of money means that diseases 

like HAT will never attract large scale investment from the pharmaceutical industry. Any 

money put into studying these diseases must therefore be fully utilised (Cowman and 

Crabb, 2003). Value for money and clinically relevant results both in terms of prolonging 

the life ofa therapy and developing novel therapies are therefore of key concern 

(Klokouzas et al., 2003). Analysing drug resistance mechanisms is likely to fulfil both 

criteria. Firstly by understanding a resistance mechanism, diagnostics tests can be 

developed to enable appropriate treatment regimes to be implemented on a patient-to

patient basis. Indeed, the identification ofTbATl as a factor in arsenical resistance has led 

to the development of a diagnostic test capable of detecting the presence or absence of a 

functional TbA T1 gene (Stewart et al., 2005). Ifpossible, potential modulators of 

resistance may also be gained once the underlying molecular mechanism has been 

elucidated (Pradines et al., 2005). In cancer therapy, this approach has undergone various 

trials and while the clinical results have so far been disappointing (Fojo and Bates, 2003), 

it should be easier to specifically target parasitic cells rather than cancer cells (Pradines et 

a/., 2005). Finally, analysing drug resistance mechanisms will inevitably lead to the 

identification of new drug targets. As a by-product of pursuing a proteomic approach, a 

large amount of information regarding the protein composition of the T. brucei plasma 

membrane will be generated. This will range from simple confirmation of the expression of 

ORF's identified in the genome as putative ORF's through to more relevant identification 

of which proteins are expressed in a particular lifecycle stage. Defining the plasma 

membrane proteome in this way is analogous to defining the T. brucei genome sequence in 

terms of the information it is likely to yield. 

1.7.1 Investigating resistance mechanisms 

There are a huge number of ways in which drug resistant mechanisms can be investigated, 

particularly when working with a system where resistance has been induced under 

controlled conditions in vitro. Strains developed in vitro from a clonal parent, should be 

truly isogenic i.e. identical to the parent line except in relation to changes relating to its 

ability to survive in the presence of drug. Free from the difficulties of working with field

derived strains, it is possible to compare isogenic lines. A number of options were 
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available to us to investigate the acquisition of resistance, from classical genetics whereby 

genes are positionally cloned, through to proteomic approaches. Each approach offers 

advantages and disadvantages, and some have already been successfully applied to T. 

bruce; (Maser et at., 1999), however a number of mechanisms remain unknown and are 

unlikely to be uncovered by repeating previous work. To that end a novel approach 

utilising proteomics was investigated. The aim of this approach was to develop isogenic 

pentamidine-sensitive and resistant lines from both wild-type s427 strain and the TbA Tl 

KO strain generated from s427. Pentamidine resistance is thought to be multifactorial. So 

far though only TbATl has been demonstrated to be involved, although the deletion of this 

gene only resulted in a 2 to 3-fold loss of sensitivity. However by using the TbA Tl-KO 

strain as the parent, it is anticipated that higher resistance levels may be induced more 

easily than in a wild-type parent. Defining the mechanism(s) of resistance may also shed 

light on the antiparasitic action of pentamidine as well as possible reasons for high-level 

pentamidine resistance not being observed in the field. 

When looking at mechanisms of resistance, it is important to use isogenic lines. These lines 

consist of a drug resistant line, generated by the application of a selective pressure (Le. 

sub-curative drug doses), and its parental line. In theory this isogenic pair will only differ 

in one respect - their sensitivity to a chosen drug, thereby allowing easier identification of 

a drug resistance mechanism. 

1.8 Aims 

There is a desperate requirement for more effective HAT therapies in the field due to 

increasing drug resistance. There are very few drugs being developed and novel 

approaches are therefore required to tackle HAT. The aim of this project is therefore to use 

proteomics, particularly aimed at the plasma membrane to try and define the mechanism(s) 

of pentamidine resistance in T. bruce; parasites. Our aims can be summarised as follows:. 

tJ Develop / employ proteomic techniques to specifically analyse membrane proteins 

tJ Define a T. bruce; plasma membrane proteome 

tJ Generate isogenic pentamidine resistant and sensitive lines 

tJ Perform a quantitative proteomic analysis on the isogenic lines 
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t:I Confirm any target proteins identified from the isogenic lines by conventional 

technologies e.g. RNAi 



Chapter 2 

Analysing the T. bruce; genome for rare 

poly topic membrane proteins 

2.1 Introduction 

39 

T. brucei has been the focus of prolonged intense biochemical and genetic study, 

culminating in the publication of the T. brucei genome in 2005 (Berriman et al., 2005). It 

was therefore a surprise that of the 9-10,000 open reading frames (dependant on genome 

release version), approximately 50% had no known function. This suggested that there are 

as yet a huge number of pathways and functions that remain unknown. It was therefore 

highly likely that many of these proteins would be encountered in an analysis of the 

trypanosome plasma membrane sub-proteome. Characterising membrane proteins is highly 

challenging, and we therefore needed a way to assess our success in identifying this class 

of proteins. In a similar manner when investigating the pentamidine resistant strains, we 

wanted to exclude proteins not associated with the phenotype. To do this we therefore 

needed to try and classify all proteins, even if they were annotated as having an unknown 

function. Fortunately a huge number ofbioinformatic approaches exist that harness 

advanced computing power, apply it to large data sets e.g. an entire genome, and from 

primary DNA sequence alone make various predictions. In terms of defining the 

trypanosome membrane proteome, we needed to be able to predict all integral membrane 

proteins, together with their relative expression levels. This information would then allow 

us to measure the efficiency with which our proteomic analysis had covered the potential 

membrane protein repertoire. In the same way, when asking biological questions in a 

quantitative analysis (e.g. of drug resistant / sensitive lines), this would allow us to reduce 

the number of targets based on their properties. For example where a transporter was 

thought to be involved in the drug resistance phenotype, all non-poly topic proteins could 

be excluded. 

2.1.1 Transmembrane Prediction 

Perhaps the most useful bioinformatic tool that has been developed for membrane protein 

characterisation is transmembrane prediction software. A number of these programmes 

have been developed, all with the aim of successfully predicting the presence of a 
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transmembrane domain. They do this by looking for two things. The first attempts to 

define membrane spanning regions i.e. hydrophobic regions that would interact favourably 

with the lipid environment. This can be achieved in a number of ways, but has classically 

focused on using a very simple sliding window approach, where residues are assigned a 

hydrophobic value from a weighting matrix (Edelman, 1993) or neural network (Casadio et 

ai., 1996). Areas that satisfy a hydrophobic criteria e.g. + 1.6 hydrophobicity, for a 

particular length e.g. 15-25 residues (although many fall outside this accepted length (Chen 

and Rost, 2002», then qualify as a transmembrane domain (TMO). Another 'clue' to 

identifying TMO's includes the association of positive charge with the cytoplasmic side of 

the protein (von Heijne, 1994). Many analyses are now employing even more sophisticated 

knowledge ofTMO signatures e.g. preference for amphipathic aromatic amino acids at the 

membrane solute interface (Ulmschneider and Sansom, 2001). 

Knowledge of these TMO signatures has given rise to a plethora of prediction methods, 

many of which have been evaluated against each other (Cuthbertson et ai., 2005; Moller et 

ai., 2001). Unfortunately, no poly topic T. bruceimembrane protein structure has been 

solved yet, although the structure for the membrane-anchored VSG has been (Blum et al., 

1993; Chattopadhyay et ai., 2005). There is therefore no polytopic protein dataset of 

known TMD's against which the various prediction software programmes can be 

evaluated. In the same way the lipid composition of the T. brucei membrane has not been 

extensively studied. However there is no reason to suppose that TMO predictions cannot 

be made in T. brucei using these methods. However no single prediction method is 

infallible (Moller el ai., 2001), and for maximum accuracy it is therefore advisable to use 

more than one programme to aid in assigning TMO's. To that end, we decided to test two 

Hidden Markov Models (Ikeda et al., 2002; Tusmidy and Simon, 1998), that consistently 

appear to be the best prediction programmes (Cuthbertson et ai., 2005). It is worth noting 

that none of the above algorithms are able to predict the presence ofJ3-barrel TMO's 

(although prediction software does exist (Bigelow et ai., 2004» and they are therefore 

exclusively concerned with a-helix TMD predictions. However J3-barrel TMD's have only 

been observed in bacterial outer membrane proteins (Schulz, 2002), and none have so far 

been found in T. brucei. 

2.1.2 Codon Adaptation Index 

DNA's limited four base repertoire requires a DNA triplet to encode each of the 20 amino 

acids. As a result, each amino acid may be defined by one or more codons e.g. methionine 
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is encoded for exclusively by one codon (A TO), whereas there are six different codons that 

encode the amino acid leucine. These synonymous codons are completely interchangeable 

and doing so does not affect protein sequence. However, certain synonymous codons have 

been observed to be preferentially used in high abundance proteins. The association 

between the synonymous codon usage in a protein and its expression level is known as a 

translational bias. I f present, the translational bias can be used to predict any proteins 

expression level. To make these predictions quantitatively, the codon adaptation index 

(CAl) was developed (Sharp and Li, 1987). This index uses a reference set of highly 

expressed proteins (the original set in yeast comprised of 16 ribosomal proteins, 7 enzymes 

and one elongation factor (Sharp et al., 1986)). Each codon in this set is assigned a 

'weight' (Equation 2.1) based on the observed frequency against the expected frequency 

(assuming equal usage of all synonymous codons). 

Equation 2.1 - Calculation of relative synonymous codon usage (RSCU). Where XI) Is the 
occurrence of jth codon for ith amino acid. From (Sharp and L1, 1987). 

This reference table can then be used to describe the 'relative adaptiveness' of any codon. 

The 'relative adaptiveness' of any ORF is determined by calculating the mean RSCU score 

for each codon in that ORF, and dividing by the maximum possible CAl score i.e. using 

RSCUimax for each codon. 

Equation 2.2 - The relative adaptiveness of a codon (wlj) is defined by its relationship to the 
most frequently used synonymous codon (imax). from (Sharp and Li. 1987). 

In S. cerevisiae, where most protein expression levels have been experimentally 

determined (Ohaemmaghami et al., 2003), CAl analysis was shown to reliably predict 

protein expression levels. CAl analysis thus represents a powerful tool, but it does make 

two major assumptions. The first is the assumption that there is a translational codon bias 

in the genome under analysis. Calculating CAl alone gives no indication as to whether this 

is a valid assumption. Indeed, considering the number of genomes that have been / are 

being sequenced, there may be little corroborating biological evidence to test the 

confidence of the results. The second assumption is that the chosen reference set of highly 

expressed proteins is representative of the codon bias i.e. that their codon usage is typical 
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of highly expressed proteins - again this may be hard to validate. To address these 

concerns, a relatively new approach using the CAl algorithm (albeit a revised version that 

accounts for the increased gene length in eukaryotes) was employed that aims to detect the 

existence of a dominating codon bias, by iteratively finding a set of genes (S) that have the 

highest CAl values (Carbone et al., 2003). By consistently detecting the same S, the 

presence of a codon bias and the identity of a representative set of genes expressing that 

codon bias can be confidently assumed. Once S has been identified, biological data is 

needed to determine whether the bias is translational or not. Therefore ifS is comprised of 

genes known to be highly expressed the bias can be assumed to be translational. 

Interestingly the molecular basis of a translational CAl bias remains enigmatic (Sharp et 

al., 1993). It has been postulated that the different codons have higher or lower efficiencies 

in binding and effecting protein translation i.e. high efficiency codons are reserved for high 

copy number genes to enable sufficient expression. Alternatively, it is possible that the bias 

merely reflects the relative levels of the different tRNA species e.g. rarely used codons 

have correspondingly low tRNA levels. What is clear however is that whatever the 

mechanism a large number of genomes display a codon bias. Whether this codon bias 

always gives rise to a translation bias seems to vary in different organisms (Oygi et al., 

1999b; Stenoien, 2005). 

2.1.3 Other Indices 

A number of other indices have been proposed such as the Grand Average score of 

Hydrophobicity: ORA VY (Kyte and Doolittle, 1982). This defines the hydrophobicity of a 

protein based on a composite score of the hydrophobicity of each amino acid, and has 

previously been used in proteomic investigations (Marmagne et al., 2004). However 

ORA VY scores can only indicate the overall nature of the protein and not its membrane 

association. Indeed many of the most hydrophobic proteins contain none or very few 

TMD's (Blonder et al., 2002). It is therefore potentially useful in evaluating the 

compatibility of a technique with hydrophobic proteins, but in the context of this analysis 

is unlikely to be very informative. Therefore in the interests of being able to simplify and 

summarise data, we decided to limit the number of parameters associated with each 

protein, and concentrated solely on TMD and CAl predictions. 
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2.2 Materials and Methods 

Although a number of different T. brucei genome releases were used during these 

investigations, all gene IO's used in this thesis are derived from the latest T. bruce; genome 

release (version 4 downloaded from 

ftp://ftp.sanger.ac.uklpub/databaseslT.brucei_sequences/ T.brucei~enome_ v41), to prevent 

confusion. However, it is worth noting that two files were used from the release. The first 

(TbProt) contains the amino acid sequence of every ORF predicted to be expressed by the 

Sanger Centre (9210 genes). The second (TbDNA) contains the DNA sequence of all 

predicted ORFs (11,049 genes). The gene number discrepancy is due to the inclusion of all 

pseudogenes and genes located on unordered contigs. This set is therefore likely to contain 

all potential genes, with some redundancy. 

Various Perl scripts were written to concatenate, re-format, and extract proteins of interest 

during the various analyses. 

2.2.1 Transmembrane prediction 

The T. brucei genome was analysed using two TMD prediction programmes - HMMTOP 

(Tusmldy and Simon, 2001) (run on a local server - http://fun-gen.gla.ac.uk) and TMHMM 

v 2.0 (Krogh et al., 2001) (available from http://www.cbs.dtu.dklservicesITMHMM/). 

2.2.2 CAl 

gCAI values were calculated from TbONA using a Java script (Carbone el al., 2003) 

(http://www.ihes.frl-materials/cai_dominant.html). while standard CAl values were 

generated from a codon usage table (produced using Emboss). Both programmes were 

implemented by Janssen Genomics (Glasgow, UK). 

2.2.3 tRNA analysis 

All genes annotated as a tRNA were identified from the T. brucei genome by searching for 

the word 'tRNA' using an in-house perl script. 
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2.3 Results 

2.3.1 Transmembrane predictions 

Analysis of all ORFs predicted to be expressed from the T. bruce; genome using the two 

algorithms revealed few meaningful differences as shown in Figure 2.1. It can be seen that 

total numbers of proteins predicted to have up to 12 TMD's show a strong correlation 

between the two methods, with TMHMM consistently being slightly more conservative in 

its assignments. Above 12 TMD's, the two predictions vary more markedly. 

To test whether individual proteins were assigned similar values from both algorithms and 

whether the predictions made sense biologically, all 43 predicted amino acid transporters 

(which are assumed to contain between 10 and 12 TMD's) were compared using the two 

methodologies. 32 of these transporters were assigned an identical number ofTMD's, 

while of the remainder; only one differed by more than one TMD between the two values. 

As stated above, TMHMM was slightly more conservative with an average of 10.7 TMD's, 

compared to 11.1 from HMMTOP. 
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• HMMTOP 
• TMHMM 

Figure 2.1 - Number of TMO's per protein as predicted by HMMTOP or TMHMM. Proteins 
predicted to contain 20 or more TMO's were excluded form the graph for clarity. 
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Number of proteins Proteins with one or more predicted 
#TMD's TMD's (%) 

HMMTOP TMHMM HMMTOP TMHMM 
0 6194 8311 40.5 20.1 
1 2380 1007 17.6 10.5 
2 751 394 10.4 6.7 
3 398 174 6.6 5.0 
4 187 116 4.8 3.9 
5 102 65 3.8 3.3 
6 74 64 3.1 2.7 
7 48 37 2.6 2.3 
8 36 42 2.3 1.9 
9 34 29 2.0 1.6 
10 43 52 1.5 1.1 
11 69 62 0.9 0.5 
12 39 24 0.5 0.3 
13 16 13 0.4 0.2 
14 24 11 0.1 0.1 
15 2 1 0.1 0.1 
16 3 - 0.1 0.1 
17 1 - 0.1 0.1 
18 2 2 0.0 0.0 
20 - 1 0.0 0.0 
22 - 2 0.0 0.0 
24 1 - 0.0 0.0 
25 - 1 0.0 -
27 1 - 0.0 -
32 1 - 0.0 -
43 1 - 0.0 -
47 1 - - -

Table 2.1 - Number of TMO's predicted per protein for the entire T. b. bruce; genome, using 
the HMMTOP and TMHMM algorithms. 
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2.3.2 CAl Values 

A codon usage table was derived from Equation 2.1. However, instead of using a reference 

set (as in (Sharp and Li, 1987», the entire putative proteome was analysed to compile a 

'pseudo' codon usage table. From this table, a 'pseudo CAl' value was then generated for 

each ORF. These could then be ranked to enable easy identification (Figure 2.2A) of all 

ORFs with a synonymous codon usage that deviated from the normal codon usage 

observed across the entire genome. For example, in the T. bruce; genome almost all genes 

had a ORF CAl value of 0.82 - 0.86, while some had values as low as 0.72 and as high as 

0.9. 

As outlined previously (Carbone e/ at., 2003), an iterative approach was also implemented, 

with a total of 15 iterations undertaken. A stable set (S) was identified after 9 iterations and 

is summarised in Table 2.2 (see Appendix I for gene identities). S was then used to 

generate an RSCU table again allowing all ORFs to be ranked in terms of their codon 

usage bias (Figure 2.28). 

From these two analyses, it can be seen that there is a very clear codon bias present in the 

T. brucei genome. 8y plotting the percent usage of the various synonymous codons for a 

particular amino acid, information on the range i.e. the presence of a bias for that amino 

acid can be gained. For example the six codons that encode leucine show very strong 

preferential usage, whereas there doesn't appear to be a bias in the overall usage of codons 

encoding serine (Figure 2.3A). This doesn't appear to be related to the overall usage of an 

amino acid as all three ofthese amino acids are highly expressed throughout the genome 

(Figure 2.38). 

We also compared the number oftRNA's for each amino acid against the genome codon 

usage table, and noted that there was a correlation (Figure 2.4). 
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Figure 2.2 - CAl values for entire T. bruce; genome calculated from the codon usage table 
(A) and from the iterative gCAI approach (8). 
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Type of Protein 

Ribosomal Proteins 
(405, 60s, and S27a) 

Histones 
(2A, 2B and 4)* 

Paraflagellar Rod Proteins 
(69 and 73 kDa) 

Tubulins 
(a and P) 

Elongation Factors 
(1a and 2) 

Glycolytic enzymes 
(Aldolase , GAPDH', PFK+) 

Kinetoplastid Membrane Protein 
Heat Shock proteins 
(Hsp 70 and Hsp 83) 

Number 

37 

37 

10 

9 

5 

5 

3 
2 

Universal minicircle binding protein 1 
S-adenosylhomocysteine hydrolase 1 

• Histone 3 genes are found in the top 3% gCAI 

, GAPDH - Glyceraldehyde 3 -phosphate dehydrogenase 

• PFK - Phosphofrructoklnase 

Total = 110 
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Table 2.2 - Summary of reference set of proteins (S) derived from iterative gCAI approach 
(Carbone et al., 2003). 
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Figure 2.3 - Preferential synonymous codon usage for three amino acids (A) and overall 
amino acid usage (B). Values were generated using the gCAI approach that analyses the 
entire genome. 
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Figure 2.4 - Frequency of tRNA copies (expressed as a % of total number of tRNA copies) 
for each amino acid against the total usage of all codons encoding that amino acid. Codon 
usage is shown in black, and tRNA in red . 
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2.4 Discussion 

2.4.1 Transmembrane Prediction 

There are a number of different methods for predicting the existence ofTMD's. The best 

consistently employ hidden Markov models and we assessed two of these for the T. brucei 

genome. It is worth noting that despite the fact that even the best prediction methods only 

identify all membrane helices in about 70% of proteins (Chen and Rost, 2002), they are 

likely to identify the majority of helices. For the purposes of this investigation the exact 

location of a TMD or indeed the exact number of helices (most errors under- or over 

predict by just one TMD (Chen et af., 2002» is by and large irrelevant. To that end, either 

prediction method was acceptable, and the high level of agreement between the two 

models gives confidence in the result. However in the interest of reducing list complexity, 

only one method could be chosen. To reduce the likelihood of false positive assignments, 

the more conservative TMHMM v2.0 algorithm was chosen as the prediction method of 

choice. 

2.4.2 CAl Calculations 

Like a number ofprokaryotes, but unlike other eukaryotes, trypanosomes employ 

polycistronic transcription and regulate expression primarily at the post-transcriptional 

rather than translational level (for review see (Clayton, 2002». Regulation appears to be 

conferred in the main by a 3' untranslated region (UTR) in the transcript. While this does 

not negate the potential for predictive information to be gained from CAl, the unusual 

nature oftrypanosomes gene regulation (in relation to other eukaryotes) suggests that 

caution should be exercised in applying dogma derived from eukaryotic systems. Therefore 

before employing the predictive ability of CAl it was crucial to determine the presence or 

absence of a bias in the usage of synonymous codons in T. brucei. Two different 

methodologies (,pseudo-CAl' and iterative gCAI) were therefore employed. The 'pseudo

CAl' gives information on the frequency that each of the synonymous codons are used in 

the proteome. Due to the simple theory behind this analysis, only genes that have a gross 

non-normal synonymous codon usage are identified i.e. the range of values is compressed 

(see Figure 2.2A). However despite the naivety ofthis approach, it does strongly indicate 

the presence of a codon usage bias. The gCAI approach represents a far more refined 

iterative system that also identified a strong codon bias (see Figure 2.2B). The presence of 

a bias in codon usage could therefore be confirmed with confidence. We then also looked 
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at whether amino acid usage related to the number oftRNA's present in the genome and 

indeed, in general the more an amino acid is seen in the genome the more tRNA copies for 

that amino acid there are (Figure 2.4). 

To identify whether the codon bias conferred a translational bias the stable reference set (S 

- summarised in Table 2.2), identified by the gCAI approach was investigated. 

Approximately equal numbers of H2A, H2B and H4 histones are present in S, although 

none have all members of each family present. These proteins along with a fourth histone -

H3, form octamers which associate with DNA in complexes called nucleosomes 

(Felsenfeld, 1978). H3 was not found in the reference set S, however all members were 

found very close to S (within the 300 most biased genes). Similarly we looked at the 

tubulins that were identified, and indeed only the highly expressed a and p tubulin were 

identified in S, rather than other tubulins e.g. "( tubulin, which are known not to be highly 

expressed (Gallo and Precigout, 1988). The identification of kine top las tid membrane 

protein in S was at first unexpected, but closer examination revealed that this group of 

proteins are also known to be highly expressed (Stebeck et al., 1995). In summary we were 

confident that S consisted ofa group of highly expressed genes. None were hypothetical, 

all are annotated, and all have been extensively studied. Certain multiple arrays of very 

similar / identical ORFs are over-represented in S, but this is also likely to reflect their 

translational bias. From this and the 'pseudo CAl' parameter (neither of which require nor 

use any biological information on gene expression), we suggest that CAl relates directly to 

a translational bias, and that the gCAI parameter can therefore be used to predict the 

expression level of any protein from the T. brucei genome. 

It is worth noting that CAl values reflect a translational bias, but cannot predict when a 

gene may be expressed. For example, gene x and y have identical CAl values, however 

gene x is highly expressed during cellular stress, whereas gene y is only (highly) expressed 

in the absence of gene x. The application of this observation is important when considering 

that T. brucei has a digenetic Iifecycle. Any protein identification technique is therefore 

highly unlikely to identify all proteins with a high CAL However the predictive CAl value 

appears to be a strong indicator of a protein's expression level in T. brucei. 
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Chapter 3 

Inducing pentamidine-resistance 

3.1 Introduction 

The aromatic diamidine pentamidine has been one of the mainstays of HA T treatment for 

the last five decades or so (Pepin and Milord, 1994). Our aim in this project was to identify 

proteins involved in pentamidine resistance. In terms of defining a clinically relevant 

resistance mechanism, it would be advantageous to use field isolates. Unlike many of the 

other trypanocides e.g. melarsoprol (Brun et al., 200 I; Ogada, 1974), or the closely related 

veterinary diamidine diminazene (Geerts et al., 2001), these isolates are not available as 

resistance has not been observed in the field. Even if such resistant lines were identified, 

they must be adapted to axenic culture and are often difficult to maintain in vitro. More 

importantly however, when performing a comparative analysis isogenic lines are required, 

but are unlikely to be found in the genetically heterogeneous T. bruce; spp. field 

population. 

Even though field resistance remains conspicuous by its absence, there can be little doubt 

that resistance will ultimately arise with the continued use of pentamidine. Confirmation of 

this comes from the relative ease with which resistance has been induced by applying a 

drug selection pressure in the laboratory to generate isogenic lines (Berger et al., 1995; 

Damper and Patton, 1976a). It would be na'ive to assume that resistance can only occur via 

a single mechanism, and indeed a number of targets have been implicated in pentamidine 

resistance (Berger et al., 1993). Of these targets, only TbA Tl has been definitively shown 

to be involved in resistance, although TbA Tl alone does not confer high-level resistance 

(Matovu et al., 2003). This suggests that several genes are involved in resistance. In the 

same way we expect that lines undergoing multiple rounds of exposure to ever-increasing 

concentrations of pentamidine will acquire multiple adaptations of varying importance. To 

ensure that a further investigation of pentamidine resistance mechanisms would not just 

identify the link with TbA Tl again, we considered it prudent to develop isogenic lines 

from both the TbA Tl KO line and the wild-type s427 line from which it was derived. By 

using both lines we hoped to increase the likelihood of success in generating drug resistant 

strains and gain new insights in potential mechanisms of diamidine resistance. 
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Once generated, it was important to try and define the basis of resistance e.g. via a change 

in drug access to the cell, through altered access of the drug to its target or through changes 

to the intracellular target. To that end we needed to fully characterise the drug resistance 

phenotype. Considering the structural similarity of the diamidines we expected to observe 

a degree of cross-resistance. In contrast, we did not necessarily expect to see cross

resistance to the melaminophenylarsenicals such as melarsen oxide. These compounds are 

structurally distinct from the diamidines and while both are recognised by the P2 / TbA Tl 

transporter (De Koning and Jarvis, 1999), there was no evidence to suggest that they 

shared a second route of entry or drug target. 

We were particularly interested in the involvement of membrane proteins i.e. transporters 

or efflux pumps, in the drug resistance phenotype. A wide range of diamidines, including 

the widely used DNA stain DAPI (4',6-diamidino-2-phenyl-indole, Figure 3.1A) and the 

early diamidine trypanocide stilbamidine (Fig. 1.1 B), are transported across the plasma 

membrane into cells, where they bind to nuclear and kinetoplast DNA (Kapuscinski, 

1995). Both of these compounds are strongly fluorescent and act as DNA probes, allowing 

convenient visualisation of both the nucleus and kinetoplast in trypanosomes. In terms of a 

functional analysis, monitoring the time taken for fluorescence acquisition can identify 

variations in membrane permeability to these compounds between different cell lines. 

Indeed, this forms the basis of a new diagnostic drug resistance test, assessing the presence 

or absence ofP2 transport activity (Stewart et al., 2005). Unfortunately pentamidine is one 

of the few trypanocidal diamidines that does not fluoresce. However, two other closely 

related diamidines do fluoresce; stilbamidine and DB75, whose structures are shown in 

Figure 3.1 A. Previous work identified a reduced accumulation of a number of diamidines 

(including another DNA stain called Hoechst 33342; Figure 3.1B) in melarsoprol resistant 

T. b. brucei and T. b. rhodesiense (Frommel and Balber, 1987). Analysis of the 

accumulation of these compounds was postulated to identify differences in membrane 

permeability between the isogenic lines. 
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Figure 3.1 • Oiamidine structures of selected trypanocides. (A) OAPI; (B) pentamidine (PMO), 
stilbamidine (SMO) and OB75; (C) Hoechst stain 33342. With the exception of pentamidine, 
all of these compounds are fluorescent. 
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3.2 Materials and Methods 

3.2.1 Culturing trypanosomes 

All blood stream form trypanosomes were cultured in vitro in HMI-9 media supplemented 

with 10% foetal bovine serum as previously described (Hirumi and Hirumi, 1989). For 

transport experiments, cells were either cultured on a large scale in vitro, or from infected 

Wistar rats. Adult female rats were infected by intraperitoneal injection, and blood 

collected by cardiac puncture at peak parasitaemia under terminal anaesthesia. Blood was 

centrifuged (600 x g, 10 min) to generate a buffy coat. Parasites were separated from the 

buffy coat on a DEAE-52 (Whatman, Maidstone, UK) anion-exchange column that had 

previously been pre-equilibrated to pH 8 with PSG buffer (45 mM Na2HP04; 4 mM 

NaH2P04 ; 43.5 mM NaCI; 60mM Glucose [pH 8]) as the mobile phase. 

3.2.2 Generation of resistant clones 

Trypanosoma brucei brucei strain s427 and the TbA Tl KO (Matovu et al., 2003) clone 

derived from this strain, were selected for resistance to the diamidine drug pentamidine by 

stepwise selection in vitro. Initially, the parental strains were exposed to a range of 

pentamidine concentrations to identify the maximum tolerated drug concentration. During 

selection, cells were maintained in the maximal tolerated pentamidine concentration and in 

parallel exposed to double the drug concentration. As soon as a strain became viable in the 

higher concentration of drug, the strain was then maintained in that concentration and in 

parallel exposed to double the drug concentration. Strains were grown in 24 well plates in a 

volume of 1.5 ml. Cultures were diluted down to -2 x 105 cells Iml in a fresh well 

whenever they reached 2-3 x 106 cells I ml. Cells were stabilated in liquid nitrogen at each 

stage. Additionally, strains were cloned when their resistance phenotype had increased 25 

fold. Strains were cloned by limiting doubling dilution. This consists of taking a dilute 

culture (l x 105 cells I ml) and serially diluting them two-fold across a 24-well plate. 

Isolated wells (in regards to the dilution series) were considered to contain a clonal 

population. From this work, four lines (labelled A to D) were initially established for drug 

selection for each of the two strains, thus aiming to provide a number of independently 

derived lines for analysis. Only a sub-set of the 8 lines initially established acquired a 

stable drug resistance phenotype (Figure 3.2). 
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Figure 3.2 - Lineage of cell lines selected for drug resistance. The s427 line is labelled as 
TbAT1 WT in this figure. The drug concentration that each cell line was able to survive in is 
shown in parentheses and after each lettered clone (in ng/ml). Each arrow represents a 
number of rounds of constant drug selection followed by limiting dilution to clonality. 
Further selection pressure was then only applied to the subsequently derived clone. 
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3.2.3 Characterisation of lines 

3.2.3.1 Alamar Blue assays 

Alamar blue assays were performed as previously described (Raz et al., 1997). Briefly, 

drugs were serially diluted in 100 J.l1 of complete HMI-9 media across a 96-well micro-tire 

plate. Unless limited by solubility the top drug concentration used was 1 mM. BSF cultures 

grown to a maximum density of2 x 106 cells/ml were washed twice in complete HMI-9 

media, re-suspended at 2 x 105 cells/ml, and 100 J.l1 added across the plate. Plates were 

then incubated for 48 h at 37°C, before the addition of20 J.lIIO% Alamar Blue® or 5 mM 

Resazurin (Sigma) solution in PBS (pH 7.4). Plates were incubated for an additional 24 

hours at 37°C, before fluorescence was measured using a LS 55 Luminescence 

Spectrometer (Perkin Elmer Instruments at 530 nm excitation and 590 nm emission 

wavelengths). 

3.2.3.2 Growth Curves 

Growth curves were performed in vitro using an initial concentration of 1 x lOs cells/ml. 

Parasite concentrations were determined using a haemocytometer. 

3.2.3.3 Transport Assays 

Transport assays were performed using a rapid oil stop protocol. Trypanosomes were 

harvested, washed twice in assay buffer (14 mM Glucose, 33.5 mM HEPES, 24 mM 

MOPS, 24 mM NaHC03, 4.6 mM KCI, 300 J.lM MgCl, 97.5 mM NaCI, 5.8 mM NaH2P04, 

275 J.lM CaCh, 80 J.lM MgS04, pH 7.3), and resuspended at 1 x 108 cells/ml. Cells were 

then incubated with eH]-Pentamidine (3.4 TBq/mmol; Amersham, UK) in the presence or 

absence of an unlabelled inhibitor, or for varying lengths of time on top of a bed of oil. To 

arrest uptake, 1 ml of ice-cold 1 mM pentamidine in AB was added, followed by 

centrifugation (13,OOOg, 1 min) to pellet the cells below the oil layer. The cell pellet was 

collected by flash freezing the tube with liquid nitrogen and cutting off the base, including 

the cell pellet. Radioactivity measurements were made after solubilisation in 2% SDS, 

using liquid scintillation counting. 
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3.2.3.4 Uptake of fluorescent diamidines 

T. brucei cells were pelleted (600 x g, 10 min at room temperature) before being re

suspended in fresh HMI-9 media containing OAPI, OB75 or Hoechst 33342. Cells were 

incubated at room temperature and assessed by fluorescence microscopy. Glass slides of 

the culture were prepared and visualised using differential interference contrast (OIC) and 

fluorescence microscopy (Aex=365nm, Aem=445nm) on an Axioplan 2 imaging microscope (Carl 

Zeiss, Germany) using Volocity v 3.7 software (lmprovision, Coventry). Where necessary, 

parasites were fixed by incubating in PBS containing 2.5% glutaraldehyde, for 20 min. 

Cells were then washed in 0.05 M glycine in PBS, before being mounted on slides. 

3.2.3.5 In vivo characterisation 

Two in vivo characterisation procedures were performed as follows, with assistance from 

M.Gould. 

The first procedure consisted of infecting groups of 5 female Wistar rats (weighing -200 g 

each) with} x } 04 cells via i.p. injection. A total of 6 groups were infected (B6, Group A; 

B48, Group B; 06- Group C; 048- Group D; TbA Tl KO, Group E; TbA TI KO - Group 

F). TbAT} KO cells derived from continuous culture during drug resistance acquisition 

(group E) and cells grown up fresh from stabilates (group F) where tested. 

The second procedure used female feR mice (weighing -30 g) that had been pre-treated 

with 250 mg/kg cyclophosphamide 24 hours prior to infection. This time, 3 groups 

(TbA Tl KO, Group A; B48, Group B; 048, Group C) of three mice were inoculated with 

1 x 104 trypanosomes by i.p. injection. 

Parasitaemia in both experiments was estimated daily by the rapid "matching" method 

(Herbert and Lumsden, 1976) from examinations of wet blood films on microscope slides, 

collected from tail pricks, using a phase-contrast microscope. 

3.2.4 Data Manipulation 

All graphical manipulations were performed using Prism version 4.00 software 

(GraphPad). 
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3.3 Results 

3.3.1 Acquisition of resistance 

A number of drug-adapted Trypanosoma brucei lines have been previously developed, e.g. 

(Carter and Fairlamb, 1993; Phillips and Wang, 1987; Scott et al., 1996), including one 

developed for pentamidine resistance (Berger et al., 1993). In this paper, a change in the 

intracellular drug target was postulated to be the basis of resistance. However this relied on 

indirect evidence as pentamidine's cellular target(s) has not been established (other than its 

ability to bind to DNA). We therefore decided to generate new isogenic pentamidine 

resistant cells, by pursuing a similar approach, but using two different parental strains 

(wild-type s427 and a genetically altered s427 clone where the TbA T1 gene had been 

knocked out (Matovu et a/., 2003)) on which to apply the selection pressure. Both strains 

were exposed to increasing concentrations of pentamidine during continuous in vitro 

culture. To maximise the potential for the successful generation of drug resistant lines, we 

applied our selection pressure to four independent cultures (labelled A to D) for each of the 

two parental strains. From these 8 cultures that were initially established, only 3 lines 

(TbA Tl WT D, TbA T1 KO Band TbA T1 KO D) went on to develop a stable high-level 

drug resistance phenotype. During selection an strain exhibiting an intermediate 

pentamidine resistance phenotype was also isolated (see Figure 3.2). The strains displaying 

the highest levels of resistance, remarkably, were able to survive in pentamidine 

concentrations eighty-fold higher than those tolerated by their parental strain. During each 

round of selection, it was observed that the initial acquisition of resistance in the presence 

of drug was associated with a reduced growth phenotype (Figure 3.3A), both in terms of 

doubling time and maximum cell density. This was reversed to a parental growth 

phenotype by maintaining the same selection pressure for an additional period of time 

(Figure 3.3B). Once the resistance phenotype was well established, removal of 

pentamidine from the media had no effect on growth. It was also observed that resistance 

acquisition was non-linear (Figure 3.4A). For example the B clone apparently increased 

from 20-fold to 89-fold more resistant than the parent within 48 hours. This suggests that a 

finite number of discrete adaptations were responsible for the total increase in resistance, 

with individual adaptations mediating each sudden increase in resistance. In a comparable 

study that generated diminazene resistance in T. evans; (Osman et al., 1992), a similar 

trend of exponential increases in resistance were observed (Figure 3.4B). 
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Figure 3.3 - Growth curves of B48 in the presence (_) and absence (0) of pentamidine when 
first clonally isolated (A) and 2 months later after being maintained in 80nM pentamidine (B). 
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Figure 3.4 - Acquisition of resistance over time to pentamidine, in TbAT1 KO 848 (_),TbA T1 
KO 048 ( .A. ) and TbAT1 WT 024 (e) T. b. brucei in vitro cultured strains, (A), and to 
diminazene in T. evansi (x) cultured in immunocompromised mice (8) (taken from (Osman 
et al., 1992)). 
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3.3.2 Drug resistance phenotype 

3.3.2.1 Alamar Blue assays 

Following drug adaptation, the drug resistance profile for each of the strains needed to be 

determined. The Alamar blue assay is a convenient test that measures the metabolic 

activity of intracellular enzymes via their conversion of a non-fluorescent blue dye to a 

pink fluorescent dye. This simple, fast, reproducible, and non-invasive technique has been 

validated as a measure of cellular activity in a host of different organisms, including BSF 

trypanosomes (Raz et al., 1997). This assay was therefore employed to determine the ICso 

values of a series of diamidine (pentamidine, propamidine, stilbamidine and diminazene) 

and melaminophenyl arsenical (melarsen oxide and phenylarsine oxide) compounds, along 

with isometamidium, of both parental (s427 and TbA TI KO) strains, and the two high 

resistance clones (B48 and D48) generated from TbAT1 KO. ICso values were obtained by 

non-linear regression to a sigmoidal curve with variable slope and defined as the value that 

reduced the maximum fluorescence by 50% of the difference with the minimum 

fluorescence (Figure 3.5). 

Due to unknown reasons, the profiles for stilbamidine and isometamidium in these cell 

lines failed to give reproducible results. However profiles were generated for all other 

compounds and are summarised in Table 3.1. From this table, a number of observations 

can be made. Firstly, the profiles of s427 and TbA Tl KO are in good agreement with their 

previously published profile (Matovu et al., 2003), although the exact ICso values do vary 

slightly. The drug resistance profiles for 848 and 048 were remarkably similar, with 

resistance to pentamidine having dramatically increased for both, in this case 35- and 22-

fold respectively. A far more interesting result from the Alamar blue analysis was the 

modest increase in resistance to melarsen oxide. It is highly likely that this effect was 

related to changes in melarsen oxide transport, as sensitivity to phenylarsine oxide, which 

is membrane permeable, was unchanged. This result does not distinguish between a change 

in drug export or import. However, me larsen oxide and pentamidine have previously been 

shown to share at least one route of entry (namely via the P2 transporter), despite their 

disparate chemical structure (Matovu et al., 2003). In addition, pentamidine protects 

against melarsen-oxide induced lysis ofTbA TI KO bloodstream forms, with a potency 

that suggests involvement of HAPTl (Matovu et al., 2003). However, melaminophenyl 

arsenicals do not display high affinity for either the HAPTI or LAPTI component of 

transport (De Koning, 200 I). The only way to reconcile both sets of data is to postulate 

that these cells take up melaminophenyl arsenicals very slowly through HAPT1, consistent 
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with the low affinity, but when exposed for a sufficiently long time, as in an Alamar Blue 

assay, still succumb to the drug. Consistent with this model, we also observed an increased 

resistance to propamidine in B48 and 048. This hypothesis is further supported by the 

propamidine-insensitive accumulation of eH]-pentamidine in B48 (Figure 3.7B). In 

contrast, there was no significant difference in diminazene sensitivity in B48 or D48. This 

is in keeping with previously reports, in which diminazene was shown to enter the 

trypanosome almost exclusively via the P2 transporter (Oe Koning el al., 2004) and was 

unable to affect HAPTI or LAPTI transport (De Koning, 2001). 

3.3.2.2 Phenotype Stability 

To assess the relative stability of the resistance phenotype, B48 and 048 were cultured in 

vitro in the absence of pentamidine. After 3 months without any exposure to pentamidine, 

the drug resistant phenotype to diminazene, propamidine, pentamidine and me larsen oxide, 

was re-tested and found to be unchanged (data not shown). This suggests that the 

adaptation(s) to pentamidine are most likely to be defined at the genetic rather than protein 

level. In terms of performing a proteomic analysis (see later chapters) this stability is very 

important. 

It was necessary at this point to select one clonal line for further biochemical and 

proteomic analysis. The high-resistance phenotype (B48 and 048) were preferred over the 

intermediate resistance phenotype (B6 and 06), as they were likely to contain more drug 

adaptations. In the same way, B48 displays a higher resistance phenotype than 048 and 

was therefore selected for all further analyses. 
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Figure 3.5 - Representative Alamar blue assay result demonstrating the differences in drug 
sensitivities between the four strains, s427 (.); TbAT1 KO (0); 048 (T ); and 848 ( .l ). 



A 
Pentamidine Propamidine Oiminazene 

Cell line 
ICsa (nM) SEM 

Fold 
ICsa (nM) SEM 

Fold ICsa (nM) SEM 
Fold 

Resistance Resistance Resistance 

s427 2.1 0.2 - 66.4 6.0 - 64.9 14.0 -
TbAT1 KO 7.9 1.1 3.7 317.8 26.6 4.8 1155.2 238.0 17.8 

848 274.8 17.3 128.4 813.4 33.9 12.3 1229.8 301.2 19.0 
048 176.1 13.4 82.3 627.5 60.1 9.5 _. J.Q.?9.}_ 51.7 15.9 

. --- ----- --- -- - -

B 
Melarsen Oxide Phenylarsine Oxide 

Cell line 
ICsa (nM) SEM 

Fold 
ICsa (nM) SEM 

Fold 
Resistance Resistance 

s427 7.3 0.7 - 1.0 0.1 -
TbAT1 KO 18.3 1.3 2.5 0.8 0.1 0.8 

848 112.7 31.1 15.4 0.8 0.1 0.8 
048 78.2 15.7 10.7 0.9 0.1 1.0 

_.-

Table 3.1 - Summary of drug sensitivity for wild-type (s427), parental (TbA T1 KO) and drug-resistant strains (848 and 048) to various diamidine (A) and 
arsenical (8) drugs determined using the Alamar blue assay. Fold resistance for the two drug resistant lines (848 and 048) and the TbAT1 KO line are 
calculated relative to the s427 cell line. All assays were performed in triplicate (minimum). 
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Figure 3.6 - Graphical summary of drug sensitivity (using IC60 values ± SEM) for wild-type (s427), parental (TbAT1 KO) and drug-resistant strains (848 and 048) 
to various diamidine and arsenical drugs determined using the Alamar blue assay. MelOx, melarsen oxide; PhenArsOx, phenylarsine oxide. 
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3.3.2.3 Radiolabelled pentamidine uptake in vitro 

To look for any changes in the relative rates of pentamidine uptake between the parental 

(TbA Tl KO) and drug adapted (848) line, radiolabelled eH]-pentamidine uptake was 

determined over 5 minutes (Figure 3.7A). This figure clearly shows massively reduced 

pentamidine accumulation in the pentamidine adapted 848 line. This suggests that either 

uptake has become compromised, or that pentamidine is being removed from the cell 

following entry. A very similar difference was observed between the two lines when 

parasites grown in rats were used (Figure 3.8). To further examine this transport 

phenotype, the effect of propamidine on pentamidine accumulation was investigated. As 

stated in chapter 1 (see Figure 1.5), this diamidine has previously been shown to block the 

HAPTI component of pentamidine transport (De Koning, 2001). By incubating with an 

excess of propamidine, this component of transport can therefore be ablated. As shown in 

(Figure 3.7B), pentamidine accumulation in 848 is propamidine-insensitive. This suggests 

that the HAPTl component oftransport is no longer functional, and therefore entry into 

these cells is exclusively via LAPTl. 

3.3.2.4 Radiolabelled pentamidine uptake in vivo 

Almost all previous publications used in vivo derived cells for transport studies. To 

confirm that the uptake phenotype we observed was not exclusively associated with axenic 

culture conditions, a control experiment was performed using trypanosomes isolated from 

blood. These trypanosomes showed specific accumulation of eH] pentamidine over time in 

a saturable manner (Figure 3.8). Moreover, the difference between 848 and the parental 

TbATI-KO strain was very similar with in vitro and in vivo grown parasites (compare 

Figure 3.7 A and Figure 3.8). 

3.3.2.5 Kinetic characterisation 

To determine the accumulation characteristics of this transport phenotype, a series of 

experiments were performed to determine Km and V max values. Unfortunately, the low 

level of accumulation at the very low label concentration required to detect any HAPTI 

activity gave a poor signal to noise ratio, and it is not possible to say with certainty whether 

the HAPTI transport activity had disappeared or merely drastically diminished. However, 

it was clear that LAPTl activity was not affected in 848 cells. Figure 3.10 shows eH]

pentamidine transport by 848, at 0.015 J.lM, which in wild type or TbATI KO cells would 

show, a biphasic inhibition curve with unlabelled pentamidine, depicting >50% HAPTI 
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activity (De Koning, 200 I; Matovu et ai., 2003). In B48, however, little or no HAPTI 

activity was observed in three different experiments, but a Km value for LAPTI activity 

could be determined as 55.6 ± 6.6 J.lM with a Vmax of 0.82 ± 0.20 pmol(107 cells·l)s·1 (n=3). 

These values are virtually identical to those previously reported for LAPTI in WT 

bloodstream forms (De Koning, 2001). 

3.3.2.6 Radiolabelled 2-deoxy-glucose (2DG) uptake in vitro 

To test whether the transport phenotype observed regarding pentamidine accumulation was 

indicative ofa general down-regulation in transport, it was important to look at transport in 

an unrelated system. BSF trypanosomes rely exclusively on glucose as their energy source 

(Opperdoes and Borst, 1977). Glucose transport in this lifecycle stage is correspondingly 

high and has been well characterised (Albert et al., 2005). To confirm that transport 

activity had not as a whole been down regulated, we looked at the uptake of the glucose 

analogue eH]-2DG in B48 and the parental TbA Tl KO line (Figure 3.9). The rates of2DG 

uptake in the two strains were not significantly different, suggesting that the reduction in 

pentamidine accumulation is not due to a general down regulation in transport activity. 

This is not surprising considering that both strains replicate at equivalent rates and 

therefore their glucose requirements would be expected to be the same. 
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Figure 3.7 -(A) Transport of 0.5 f.1M rH] pentamidine over 5 min in TbA T1 KO (_) and 848 
( . ). (8) Uptake of 0.5 f.1M rH] pentamidine in 848, in the presence (. ) and absence (.) of 1 
mM propamidine. Representative experiments are shown (n=2). 
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Figure 3.8- Transport of 0.5 ~M rH] pentamidine in in vivo derived B48 cells over 10min in 
the presence (0) and absence (_) of 1mM cold Pentamidine. 
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Figure 3.9- Transport of 100~M rH] 2-deoxy-glucose (2DG) in in vitro derived BSF 
trypanosomes over 30 seconds. Parental TbA T1 KO (-) and B48 ( £ ) cells, in the absence of 
inhibitor, and in the presence of 1 mM cold 2DG (0 and tJ. respectively). 
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Figure 3.10 - Pentamidine uptake in T. bruce; B48 is mediated only by a low affinity 
transporter. Transport of 0.015 ~M rH]-pentamidine over 2.5 min was assayed in the 
presence or absence of increasing concentrations of unlabelled pentamidine (A). The data 
was fitted to a sigmoid curve using non-linear regression. Conversion of the inhibition data 
in frame A to a Michaelis-Menten plot (B). Data shown are the average of triplicate 
determinations; error bars are SE. Pentamidine uptake is expressed as pmol(107 cellsr1s·1• 
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3.3.2.7 Fluorescence microscopy 

The route(s) of entry for the many fluorescent diamidines, with the exception ofTbA T1 for 

0875 (Stewart et 01.,2005), remain largely unknown. A previous publication reported that 

melarsoprol resistant trypanosomes displayed reduced diamidine accumulation. To 

ascertain whether 848 cells displayed a change in membrane permeability from their 

parent lines, accumulation ofthe various compounds was measured at a series of time 

points. 

3.3.2.7.1 0875 

In agreement with previous work (Stewart et 01., 2005), all s427 cells were seen to 

fluoresce within 1-2 minutes. While TbATI KO cells took significantly longer, strong 

fluorescence was clearly visible after 10 mins. 848 fluorescence acquisition was 

indistinguishable from TbA T1 KO cells and also fluoresced by 10 minutes. For all cell 

lines, intense fluorescence was initially observed in the kinetoplast, followed by more 

diffuse nuclear localised fluorescence (see Figure 3.11). 

3.3.2.8 Hoechst 33342 

In the presence of 1 J-lg/ml Hoechst 33342 s427 cells intensely fluoresced almost 

immediately (less than 3 minutes). TbATI KO cells showed reduced fluorescence intensity 

in comparison to s427 cells at initial time points, but also appeared to fluoresce very 

rapidly (less than 3 minutes) within. In contrast, 848 cells took around IOmin to fluoresce. 

The fluorescence in all three lines was indistinguishable after 15min incubation with 

Hoechst 33342. 

3.3.2.8.1 OAPI 

As with D875, s427 and TbA Tl KO cells displayed virtually identical fluorescence 

pictures over time (Figure 3.12) in the presence of2.8J-lM OAPI. 8y 5 minutes, 

fluorescence could clearly be seen, and by 10 minutes, staining was very intense in both 

nucleus and kinetoplast. In contrast, 848 cells showed only very weak fluorescence in both 

the kinetoplast and nucleus after 20 min staining. Even after 60 min incubation, 

fluorescence intensity was still far below that observed in the s427 and TbA TI KO lines at 

10 minutes. This reduced accumulation ofDAPI in the cells was not observed in dead 848 

cells (Figure 3.13). 
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In an attempt to ascertain whether DAPI fluorescence could be selectively blocked by 

pentamidine, cells were incubated with 2.8J..lM DAPI in the absence or presence of a low 

(lOJ..lM) or high (lmM) concentration of pentamidine, and fluorescence acquisition in 

living cells was observed over time (Figure 3.l4A). Unfortunately due to high motility it 

was very difficult to capture well-focused fluorescent DAPI images, hence images from 

live cells are slightly blurred. To show true fluorescence levels, gluteraldehyde-fixed 

specimens following 60 min incubation are also shown (Figure 3.148). This figure clearly 

shows that the presence of a low concentration of pentamidine has little or no effect on 

DAPI fluorescence. In contrast incubating with a large excess ofpentamidine practically 

abolishes the acquisition of fluorescence over the time analysed. 
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c 

Figure 3.11 - Ole, fluorescence (Ae,,: 365nm, Aem-445nm) and overlay microscopy pictures after 5 
min incubation with 10J,1M 0875 in (A) s427, (B) TbAT1 KO, and (C) 848. To enable image 
overlay, trypanosomes had to be non-motile and samples were therefore fixed in 
glutaraldehyde for 20 min. Fluorescence is clearly visible in the nucleus (n) and kinetoplasts 
(arrow), of which there are two in 848, as the cell is in the early stages of cell division. 
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Figure 3.12 - Acquisition of DAPI (at 2.8~M) fluorescence over time in live cell lines; s427 (A), TbA T1 KO (8) and 848 (C). Cells were highly motile and only DAPI 
fluorescence was measured (Aex=365nm, Aem=445nm). 
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Figure 3.13 - Accumulation of DAPI (at 2.8j.1M) in dead and alive B48 pentamidine resistant 
cells after 20min incubation. Images shown are Die (A), DAPI (B) and the overlay image (e). 
The DAPI and ole images do not overlay perfectly for the living cell, as it was motile and 
image acquisition was consecutive not simultaneous. 
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Figure 3.14 - DAPI fluorescence acquisition in live 848 cells incubated in the absence or 
presence of a low (O.01mM) or high (1mM) concentration of pentamidine over time (A). 
Separate images (DIC, DAPI and combined overlay) from gluteraldehyde fixed parasites 
after 60min incubation with DAPI 1: pentamidine (B). Penta, pentamidine; Comb, combined 
overlay. 
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3.3.2.9 In vivo characterisation 

During in vivo culturing, it was observed that the drug resistant strains appeared to exhibit 

reduced virulence in comparison to the parental wild type. To assess this observation 

further, two larger scale studies were performed as described in section 3.2.3.5. 

Infections in rats were tracked for a minimum of20 days and are summarised in Figure 

3.15. A number of observations can be made from this study. Firstly there appears to be a 

slight difference between the medium and high resistant strains from each line, i.e. B6 vs. 

B48 and D6 vs. D48 (Figure 3.15A/B and C/D respectively), with the higher resistant 

strain appearing to be more virulent. However all animals infected with the pentamidine 

adapted lines survived, and due to the small sample size, this conclusion cannot be 

confidently confirmed. What is clear however is the marked difference between any ofthe 

adapted lines and the parental TbA Tl KO lines, strongly suggesting that the pentamidine 

resistant lines have reduced in virulence. However this conclusion must be tempered by the 

difference, between the TbA Tl KO parental line carried in cell culture during drug 

acclimatisation and the TbA TI KO line derived from fresh stabilates. In terms of the speed 

of progression of infection, and the absolute peak parasitaemia reached, the freshly derived 

TbATI KO line is more virulent. This suggests that maintaining cells in axenic culture for 

such a prolonged time has reduced virulence, as has previously been reported (Berger et 

al., 1995). 

When working with the immunocompromised mice, due to licensing restrictions all mice 

were sacrificed 14 days post cyclophosphamide treatment, but were tracked up to this point 

(Figure 3.16). This time constraint prevented confirmation of whether infections had truly 

cleared or just dropped to undetectable levels. 
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Figure 3.15 - Progression of infections in groups of 5 rats following i.p. inoculation with B6 
(A), 8 48 (B), 0 6 (C), 0 48 (0), TbAT1 KO (maintained in culture) (E), TbAT1 KO (freshly 
resurrected from stabilates) (F) strains. Animals reaching a parasitaemia (cell count) of 8 
(log) or more were euthanased (X). Each colour represents an individual rat within each 
group. 
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Figure 3.16 - Progression of T. bruce; infections in groups of 3 immunocompromised mice 
following i.p. inoculation with TbAT1 KO (A), B48 (B), or 048 (C). Animals reaching a 
parasitaemia load of log 8 or more were euthanased (X). Each colour represents an 
individual rat within each group. 



Daniel J Bridges, 2006 Chapter 3, 83 

3.4 Discussion 

A number of strains were generated from various parental lines and of varying pentamidine 

resistance (Figure 3.2). Lines displaying maximal drug resistance were most likely to 

contain the largest number of pentamidine resistance adaptations. Attention therefore 

focused on these strains, and in particular those derived from the TbA TI KO parent as they 

lacked the P2 component of transport, the impact of which has already been well 

documented in drug resistance (Matovu et al., 2003). For the same reasons, the higher 

pentamidine resistant clone B48 was selected over 048 for complete characterisation. Drug 

sensitivities were determined as ICso values after a 72 hour period of incubation with drug. 

In agreement with other reports however, cells were unable to be maintained in drug 

concentrations at 10% of the calculated ICso values (Lanteri e/ al., 2006). 

From the transport kinetics, pentamidine accumulation is clearly massively reduced in B48 

(Figure 3.7), although general transport (as measured by hexose uptake) was unaffected 

(Figure 3.9). Indeed accumulation of pentamidine was so reduced as to prevent 

determination of the kinetic parameters associated with this accumulation. However we 

were able to define accumulation as being propamidine insensitive (Figure 3.8). This 

strongly suggests that the HAPTI component of transport has been lost or in some way 

functionally compromised. 

To further validate our uptake experiments, we wanted to see if we could observe 

alterations in the accumulation of any other compound in B48. We therefore analysed the 

acquisition of fluorescence for a number of closely and distantly related diamidines. While 

some showed no change in accumulation (e.g. OB75), others showed a marked reduction 

in accumulation (e.g. OAPI). This suggests firstly that these diamidines enter the cell via a 

number of different routes, some of which are exclusive, and some of which are shared. It 

also suggests that the drug resistance phenotype is at least in part associated with a change 

in the membrane. In terms of the development ofOB75 as a drug for HAT, it does suggest 

that pentamidine-refractory trypanosomes may still be sensitive to OB75. To further 

analyse the OAPI phenotype, two concentrations of pentamidine were used to test whether 

fluorescence could be selectively blocked. At the low (lOJ..1M) concentration of 

pentamidine only HAPTI (if present) would be saturated, while at the higher concentration 

(1 mM) LAPTI would also be saturated (De Koning, 200 I). The fluorescence strongly 

suggests that a low affinity transporter is responsible for uptake of OAPI into the cell. 



Daniel J Bridges, 2006 Chapter 3, 84 

The observation that B48 and 048 displayed reduced virulence in vivo was not entirely 

unexpected, as it had previously been observed in diminazene resistant T. brucei (Egbe

Nwiyi et al., 2005). The question was whether this reduction in virulence was associated 

with the resistant phenotype or with the strains having been maintained in axenic culture 

for more than a year. It appears from the control study using TbATI KO cells maintained 

in culture and fresh cells resurrected from stabilates stored in liquid N2 that both have a 

role to play. Our interpretation of this data is that the pentamidine adaptations are more 

important in determining the avirulent phenotype than being carried in culture, although 

the latter does appear to reduce virulence (Figure 3.15). This is further supported by the 

observation that B48 is more virulent in immunocompromised mice than 

immunocompetent rats. Only in immunocompromised animals did the parasitaemia reach a 

terminal level, and high parasitaemia levels were maintained for longer. This strongly 

suggests that the avirulent phenotype is immune-mediated. 

A previous publication has shown that developing resistance to a trypanocide is greatly 

aided in vivo by compromising the immune system (Osman el al., 1992). Considering that 

these trypanosomes have essentially not been exposed to a functional immune system, it 

may be that the adaptations acquired in vitro, are essential for in vivo virulence. 

From all of the transport, Alamar blue data and fluorescence microscopy work, a summary 

diagram of relevant transporters in T. brucei (Figure 3.17) has been constructed. In the 

drug-adapted B48 line, the transport components that are proposed to remain are shown in 

Figure 3.17C. We therefore propose that the B48 line has lost the high affinity pentamidine 

transporter (HAPTl). 
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Figure 3.17 - Summary diagram oftransporters involved or potentially involved in the pentamidine resistance phenotype. TbA T1; T. bruce; Adenosine 
Transporter 1 (A) is known to transport a wide range of trypanocides and purine sources. HAPT1; High affinity pentamidine transporter 1 (8) is able to 
transport pentamidine, propamidine and we propose DAPI. LAPT1, other uptake mechanisms and any possible drug extrusion pumps (C) remain completely 
unknown. 
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Proteomics has traditionally focused on defining soluble proteomes. By definition these 

proteins are stable in the aqueous phase and are thus readily extracted and amenable to 

separation and identification by conventional proteomic analysis. Membrane proteins on 

the other hand, are stabilised in complex heterogeneous biological membranes consisting 

of lipid, protein and carbohydrate. To be able to study these proteins, they need to be 

dissociated from the membrane. This is generally achieved with detergents, which need to 

disrupt the membrane structure and replace bipolar lipids to solubilise the membrane 

proteins (for review see (Helenius and Simons, 1975; Jones, 1999». In addition to the 

solubilisation challenges, membrane proteins are also constrained in a 2-dimensional 

compartment within which their concentration may be relatively high, but in the context of 

the 3-dimensional cell, overall expression is low. To successfully define the membrane 

sub-proteome of T. bruce; and then interrogate it when asking biological questions, both of 

these issues must be addressed. 

4.1.1 Fractionation & Enrichment 

A small fraction of total cellular material is contained within the plasma membrane, with a 

number of membrane proteins expressed at low levels within this structure. To realistically 

stand any chance of 'seeing' these proteins in a mass spectrometry based approach it 

quickly becomes apparent that it is necessary to fractionate / enrich for these components. 

Fortunately a robust reproducible method for fractionating T. bruce; plasma membranes 

has been reported (Voorheis et al., 1979). By using a combination of hypotonic swelling 

and shear force, the structural integrity of the cells is compromised, but sheets of 

membrane remain intact. These can then be separated from the cellular milieu by sucrose 

density centrifugation. Serendipitously, this technique also removes almost all variable 

surface glycoprotein, of which there are an estimated 107 copies per cell (Ferguson et al., 

1999), from the plasma membrane preparation presumably via the action of phospholipase 
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C (Carrington el aI., 1998). It is therefore likely that most other GPI-anchored proteins will 

also be removed from the plasma preparation. 

Trypanosomes, being motile flagellated organisms, have a highly structured cytoskeleton 

that is intimately associated with the plasma membrane, and is co-purified with the plasma 

membranes. The majority of the cytoskeletal components are structural proteins, although 

a number of other species are present (Gull, 1999). To maximise our potential to identify 

rare poly topic membrane proteins, we hoped to test a series of techniques to selectively 

enrich for plasma membrane proteins over cytoskeletal proteins. Such separation 

techniques generally isolate membrane proteins based on hydrophobicity. Many of these 

utilise detergents to differentially solubilise membrane proteins. For example the non-ionic 

detergent Triton X-114 can be used to enrich for membrane proteins by promoting phase 

partitioning between aqueous and detergent phases (Bordier, 1981; Brusca and Radolf, 

1994), and this technique has already been used to investigate GP) anchored proteins in 

Chagas disease (Afiez-Rojas el al., 2005). 

Another approach effectively combines the fractionation and enrichment steps by exposing 

live cells to a reactive compound that is membrane-impermeable and therefore only tags 

proteins exposed to the extracellular fluid. Surface exposed proteins can then be isolated by 

affinity purification (Zhang el al., 2003). However this approach would not be able to 

identify any intracellular anchored proteins or proteins whose extracellular domains are 

very small. In trypanosomes this approach would also isolate the entire VSG coat, which 

would then dominate the proteome. 

To identify the most appropriate technique(s) described above, a simple method for 

evaluating each technique was proposed. This consisted of developing a T. bruce; cell line 

expressing an epitope-tagged T. brucei membrane protein and then comparing the relative 

enrichment of each of these techniques by Western blot analysis. There are a large number 

of poly topic plasma membrane proteins. However, in view of our aim of quantitatively 

comparing the membrane proteomes of drug resistant vs. drug sensitive T. brucei (as 

described in chapter 3), we chose to tag TbA Tl - so far the only gene shown to be 

definitively involved in pentamidine uptake in trypanosomes (Matovu el al., 2003). 

One of the challenges of defining the PM sub-proteome, was to exclusively focus on the 

PM rather than the combined PM and cytoskeleton proteome. To that end, as well as 

pursuing the above enrichment strategies, we decided to also employ a subtractive 

approach. In this we wanted to define the cytoskeletal sub-proteome and therefore from it 
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define which proteins from the PM sub-proteome were actually of cytoskeletal origin. To 

aid us in this approach, the publication of the flagellar proteome, which has recently been 

defined was also used (Broadhead et al., 2006). 

4.1.2 Membrane Proteomics 

As mentioned in the general introduction, there are a number of different proteomic 

techniques available. To successfully interrogate the membrane proteome we focused our 

attention on techniques reported to be compatible with poly topic hydrophobic proteins. To 

maximise membrane sub-proteome coverage, we considered it prudent in view of other 

reports (Friso et al., 2004) to pursue as many different complementary techniques as 

possible. 

4.1.2.1 Gel-based separations 

Gel-based separations have the potential to resolve complex protein samples with high 

resolution. Almost without exception this has been achieved with 2DGE where proteins are 

separated based on pI and mass (O'Farrell, 1975). One of the real strengths of2DGE is its 

ability to resolve various post-translational modifications i.e. different protein species, by 

virtue of their different migration on the gel. These subtle modifications are usually not 

identified by mass spectrometry. In addition, spot patterns can be used to identify changes 

in gross protein expression levels, although gel-to-gel comparisons are often tricky despite 

the commercial production of electrophoresis materials e.g. IPG strips. Gels have a limited 

resolution; however, large format (24 cm) gels are generally able to resolve more than a 

1000 of the most abundant spots per gel. By running multiple gels and a combination of 

zoom gels that focus on a constricted pI range e.g. pH 4-7, excellent resolution and highly 

reproducible proteome coverage can be achieved. Unfortunately, in terms of defining the 

membrane proteome, 2DGE is very poor at resolving poly topic proteins, forcing 

alternative methodologies to be employed (Wilkins et al., 1998). 

A two dimensional system that separates proteins on mass alone in both dimensions was 

developed by Macfarlane et al in the late 1990's (Macfarlane, 1989), although its 

application to membrane proteins was only recognised some time later (Hartinger et al., 

1996), when it was realised that 16-BAC rivalled SDS in its ability to solubilise membrane 

proteins. Despite proteins being separated by mass alone, the different conditions under 

which the two dimensions are run (cationic 16-BAC at pH 2 for the first dimension 

compared to anionic SDS at pH 9 for second dimension) ensures that many proteins 
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deviate to a greater or lesser extent from their theoretical migration pattern in one or more 

of the dimensions. Although the reasons for such 'aberrant' migration are poorly 

understood, it is likely that charge and differential detergent binding are important factors. 

This gel-based system therefore does provide an environment compatible with membrane 

protein separation, however in comparison to 2DGE the resolution i.e. the total number of 

spots that can be identified per gel, is greatly reduced. This technique therefore absolutely 

requires sample pre-fractionation. In addition, protein isoforms of the same Mwt are 

unlikely to be separated. However when examining very low abundance membrane 

proteins, this could be an advantage, as all species of a single protein are likely to be 

concentrated together, enabling them to be visualised and identified (Zahedi et al., 2005). 

Several groups have recently used the 16-BAC system (Coughenour et at., 2004; Dreger et 

al., 2001), and a modified methodology aimed at providing more efficient stacking and 

therefore better resolution has also been described (Kramer, 2006). 

4.1.2.2 Gel free separations 

Gel-free separations utilise high-pressure liquid chromatography (HPLC) coupled to mass 

spectrometry in a technique termed Multi-Dimensional Protein Identification Technology 

(MuDPIT) (Washburn et al., 2001). This technique separates peptides rather than whole 

proteins, although whole protein LC separations are now being developed (Wang and 

Hanash, 2005). By digesting proteins to peptides prior to separation, solubility issues 

associated with poly topic or amphipathic proteins can be minimised, as even highly 

hydrophobic proteins will generate a number of soluble peptides from which a protein 

identification may be made. However, MuDPIT based approaches can only differentiate 

between different protein isoforms if the modification is contained within a peptide 

identified by MS. In the same way when presented with a set of peptides common to two 

or more closely related proteins, it is impossible to differentiate between them. This is in 

contrast to gel-based systems that can distinguish different protein isoforms by virtue of 

their differential gel migration, irrespective of the peptides identified. 

MuDPIT does massively increase sample complexity, although a number of developments 

have made MuDPIT a routinely applicable technique. Micro fluidic HPLC technologies are 

now able to deliver highly reproducible flow rates and therefore separations. Monolith 

column technologies are drastically improving throughput (Hart and Gaskell, 2005). 

Finally, advances in modem computing power and MS instrumentation have enabled 

MuDPIT approaches to become accessible. 
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4.1.2.3 Peptide generation 

The high cleavage specificity of trypsin and other proteolytic agents is very useful for 

digesting unfolded proteins. However cleavage of sites located close to or inside TMD a

helices in natively folded proteins could potentially be sterically hindered. This is most 

likely to be observed in MudPIT experiments, where proteins are often digested in their 

native state. We therefore decided to pursue trypsin digestion in denaturing conditions e.g. 

60% MeOH (Blonder et al., 2004), along with proteolytic small molecules e.g. CNBr in 

combination with trypsin (van Montfort et al., 2002b). In the same way, to increase 

solubilisation of hydrophobic peptides and therefore membrane proteome coverage, in-gel 

digestions were performed in the presence of octyl-p-glucopyranoside (n-OO) 

(Bierczynska-Krzysik et al., 2006; van Montfort et al., 2002a), a detergent which does not 

significantly inhibit trypsin activity at a low concentration. 

4.1.2.4 Data Analysis 

All of our mass spectrometry data was analysed using the MASCOTiIl search engine 

(Perkins et al., 1999). This engine assigns protein identifications using the MOWSE 

(molecular weight search) algorithm (Pappin et al., 1993). Firstly, the experimentally 

derived peptide masses are used to isolate a list of all peptides from the organism's genome 

that could encode such a mass. By altering the mass tolerance of this search a larger or 

smaller list will be created. For peptide mass fingerprint (PMF) searching, the presence of 

multiple peptides from the same protein is used to assign an 10. If performing tandem MS 

analysis, empirically defined data is then used to theoretically fragment each peptide in the 

list and compare it to the experimental tandem MS data using probability based matching 

to define a score. While Mascot is not the most efficient protocol in terms of its ability to 

utilise all the information in a mass spectrum, it is well suited to high throughput, fully 

automated protein identification (Resing et a/., 2004). The default significance threshold 

for a score in Mascot is set at p = 0.05 i.e. a false positive would only be expected to occur 

at random at a frequency of 5%. However it is possible to change this threshold to higher 

confidence levels (summarised in Table 4.1). 
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Search Type 
Significant score threshold 

p = < 0.05 p = < 0.01 p = < 0.005 p = < 0.0001 
PMF 53 60 63 70 

MS/MS 32 39 42 49 

Table 4.1 - Significant threshold MOWSE scores for the T. bruce; proteome as defined by 
Mascot at various confidence levels for peptide mass fingerprint (PMF) and tandem mass 
spectrometry (MS/MS) data. These values were generated for standard trypsin digestion 
(maximum 1 missed cleavage) with variable methionine oxidation and no fixed 
mod ifications. 
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4.2 Materials and Methods 

All materials were acquired from Sigma Aldrich unless otherwise stated. 

4.2.1 TbAT1-myc expression 

4.2.1.1 TbAT1 in pRM481-myc construction 

The primer pair MYC F (CGC GTG GCG CCG AAC AAA AAC ITA TIT CTG AAG 

AAG ATC TGT AGC A TG) and MYC R (CTA CAG A TC TTC TTC AGA AA T AAG 

TTT TTG TTC GGC GCC A) were annealed to each other (95°C, 2 min; 95°C, 20 s -

repeat 45x dropping the temperature by 1 °c each round; 50°C, 5 min; 25 °c, 10 min). 

This annealed primer pair was then ligated into MluI digested pRM481 (Promega) using 

T4 DNA Ligase (Promega). 100 JlI of competent JM I 09 cells (Prom ega) were transformed 

(as per manufacturers instructions) with the ligation mixture, and then plated out on LB 

Agar plates containing 100 Jlg/ml ampicillin. 4 clones were selected (no clones grew on the 

plate transformed with pRM48 1 MluI cut plasmid) and grown up in 5 ml LB + Amp DIN. 

Plasmid mini-preps were made from the 4 clones and following digestion with BglII 

(Prom ega) all clones were shown to contain the expected insert and therefore designated 

pRM481-myc. 

TbA Tl was PCR amplified from the genomic DNA isolated from s427 T. bruce; strain 

(prepared by Richard Burchmore) using TbA Tl F (CGG ACA CGC GT A TGC TCG GGT 

TTG ACT CAG CC) and TbA Tl R (CTT GGG AAG CCC CTC A TT GAC AGC C) 

primers and Pfu polymerase (Promega) as follows: 94°C, 1 min; [92°C, 1 min; 50°C, 1 

min; 72 °c, 4 min] for 30 cycles; 72 °c, 7 min. PCR products were run on a gel. The lAKb 

band was excised, gel purified, digested with MluI (Promega) to give 5' MluI overhangs, 

and then purified (Qiagen PCR clean-up kit). 

The pRM481-myc vector was sequentially digested with SfoI (Promega) and MluI 

(Promega) to generate a 5' MluI overhang and a 3' blunt end. The Mlul treated TbA Tl 

gene was then ligated into the vector and 50 JlI JM 1 09 cells were transformed with the 

ligation reaction and unligated Mlul I Sfol pRM481-myc vector alone. Cells were plated 

out on LB + Amp and incubated overnight. 5 colonies were selected from the ligation plate 

and digested with SphI to test for the presence of the insert. All of the clones were positive. 
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The construction of the pRM481-myc vector and the insertion ofTbA Tl are summarised 

in Figure 4.1. 
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Figure 4.1 - Construction of TbAT1 in pRM481-myc for expression in T. brucel. All samples 
were run on 0.8% acrylamide gels. PCR +ve, complete mix for PCR amplification; PCR -ve, 
complete mix except for primers. 
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4.2.1.2 T. bruce; transformation 

Bloodstream form s427 strain T. brucei cells were grown to a density of -5 x lOs cells / ml 

in vitro. Cells were then pelleted (600 g, 10 min) before being re-suspended in ZPFMG 

buffer (132 mM NaCl, 8 mM KCI, 8 mM Na2HP04.(H20h, 1.5 mM K2HP04.(H20)2, 1.5 

mM Magnesium acetate, 90 J..lM Calcium acetate, and Ig/L Glucose) at a concentration of 

1 x 108 cells / mt. 0.5 ml of cells were mixed with 20 J..lg ONA in sterile water, as 

calculated using Nanodrop (Amersham Biosciences) in a 0.2 cm electro-cuvette. Cells 

were then SUbjected to a single electrical pulse (1500 volts /25 J..lF capacity), before being 

immediately added to 10 ml ofHMI-9 medium (pre-warmed to 37°C). Cells were then 

incubated for 24 hours at 37 °C. Cells were then counted, pelleted (600 g, 10 min) and re

suspended in HMI-9 media containing 2.5 )..lg/ml phleomycin in two 18 ml cultures 

containing either 1 x 107 cells or 5 x 106 cells. Both cultures were plated out into 24 well 

plates and checked for growth after 5 - 7 days. Cells were considered to be clonal, where 

only 1 to 3 of the 12 wells contained living cells. 

4.2.1.3 Western Blot analysis 

TbATI-myc in pRM481 transformed T. brucei cells were pelleted (600 g, 10 min) and all 

excess liquid removed before re-suspending in sample buffer (85 mM Tris-HCI pH 6.8, 30 

% Glycerol, 2.7 % SOS, 0.01 % Bromophenol blue, and 0.35 M dithiothreitol). Cells were 

lysed by sonication (MSE soniprep) and then stored at -20°C or immediately used. A 

positive control consisting of a recombinant protein; CXCR-myc, purified from E. coli was 

also used (kindly provided by ProfG. Milligan, University of Glasgow). 

Samples were incubated at 60°C, 10 min, prior to loading onto gels (prepared in-house). 

These gels consisted of an 8 % separating gel and a 5 % stacking gel (both containing 0.4 

M Tris, 0.1 % SOS [pH 8.8]), polymerised using APS / TEMEO. Proteins were transferred 

onto nitrocellulose membrane (Amersham Hyband ECL), using the Mini-Trans Blot Cell 

(Bio-Rad, UK) in transfer buffer (20 % MeOH, 137 mM NaCI, 20 mM Tris-HCI [pH 7.6]) 

at 4°C, and a constant voltage (140 V, 45 min). Membranes were then blocked in 20 ml 

TBS (137 mM NaCl, 20 mM Tris-HCl [pH 7.6]) containing 0.1 % Tween20 and 5 % milk 

(1 hr, 37°C). The primary mouse anti c-myc antibody (Oncogene, USA) was applied at a 

dilution of 1 : 100 in 20 ml TBS buffer containing 0.1 % Tween20 and I % milk, and 

incubated at 4 °c overnight. Membranes were then washed four times (15 min per wash) in 

20 ml TBS buffer containing I % milk at room temperature. Secondary anti-mouse total 

JgG (Oncogene USA) was then incubated (2 hr at RT) with the blot at a 1 : 50 dilution in 
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20 ml CTBS buffer (1.37 M NaCl, 200 mM Tris-HCl [pH 7.6D containing 1 % milk. The 

blot was then washed four times (15 min per wash) in 20 ml TBS buffer containing 1 % 

milk at room temperature, before developing using the ECL kit (Amersham Biosciences). 

4.2.2 Preparation of Plasma Membranes 

Plasma membranes were prepared in collaboration with P. Voorheis as previously 

described (Voorheis et al., 1979), with a few alterations. Briefly, BSF trypanosomes were 

cultured in vivo in adult female Wistar rats infected by intraperitoneal injection. Blood was 

collected by cardiac puncture at peak parasitaemia under terminal anaesthesia. Blood was 

centrifuged (600 g, 10 min) to generate a parasite-enriched buffy coat. Parasites were 

separated from the buffy coat on a DEAE-52 (Whatman, Maidstone, United Kingdom) 

anion-exchange column that had been pre-equilibrated with TSB (44 mM NaCl, 5 mM 

KCl,3 mM NaH2P04, 57 mM Na2HP04, 118 mM Sucrose, 10 mM Glucose, 0.2 mM 

Adenosine [pH 8.0]). Cells were then osmotically stressed by addition of water (at 4°C), 

and swelling monitored by phase-contrast microscopy until a specific morphology had 

been achieved. Cells were then homogenised in an AO Cell Disruptor (Stansted Fluid 

Power, Stansted, UK), in the presence of protease inhibitors (5 J.lM Leupeptin, 250 J.lM 

TPCK, and 0.1 mM PMSF). The homogenate was then returned to a normal osmotic 

potential (140 J.lM) through the addition of3 M KCl, before pelleting the cells. Cells were 

then treated with 240 units of DNAse in TES minus buffer (20 mM TES, 150 mM KCI, 5 

mM MgCh, 1 mM 2-mercaptoethanol [pH 7.4]), for 5 min at 20°C. The reaction was 

terminated by the addition of 5 volumes ofTES buffer (20 mM TES, 150 mM KCl, 1 mM 

EDT A, 1 mM 2-mercaptoethanol [pH 7.4 D. Cells were pelleted and then re-suspended in 

40 % sucrose before being layered on a linear 40-60 % sucrose gradient (in TES Buffer). 

Samples were then centrifuged for 3 hr at 70,000 g on a SW28 rotor (Beckman Coulter). 

The most prominent dense white band was isolated and washed twice in TES buffer to 

remove sucrose, before being aliquoted and stored in TES buffer at -80°C. All procedures 

were performed at 4 °C unless otherwise stated. 

4.2.3 Preparation of Cytoskeleton Preparations 

Cytoskeleton samples were kindly prepared and donated by P. Voorheis as follows. In vivo 

derived bloodstream form T. brucei isolated from whole blood (as described in section 

4.2.2), were suspended in 30mM Tes-sucrose buffer (30 mM TES; 10 % w/v sucrose) 

containing protease inhibitors (340 J.1M PMSF; 0.1 mM TLCK; 42 J.lM Leupeptin; 3 J.lM 
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Pepstatin). An equal volume of the same buffer containing Triton-X 100 (2%, w/v) was 

then added and incubated for 5 min at 37 'C. Samples were then layered onto a 70 % (w/v) 

sucrose cushion (30mM TES), centrifuged (l0 min, 2500 x g), and the cytoskeletal band 

retained. This step was then repeated in 10mM Tes-sucrose buffer (10 mM Tes; 10 % w/v 

sucrose) to further wash the cytoskeletons. The crude cytoskeletons were then re

suspended in 10 ml ofTES buffer (10 mM Tes; llOmM KCI; 5mM MgCh) and warmed to 

30·C. 240 units of DNAase was then added per ml of buffer and incubated for 5 min at 37 

·C. DNAse activity was terminated by the addition of an equal volume of ice-cold 30mM 

TES-sucrose buffer, containing 6 mM EOTA. Cytoskeletons were then washed in 30mM 

Tes-sucrose buffer on a sucrose cushion as above. To remove pellicular microtubules, 

cytoskeletons were re-suspended in 30mM Tes-sucrose buffer, to which an equal volume 

of 30mM TES-sucrose buffer containing 200 JlM CaCI2 and bovine brain calmodulin (50 

IJg I ml final) was added and incubated for 30 min at 30 'C. Treated cytoskeletons were 

then washed in 30mM TES-sucrose buffer containing 100 JlM CaCI2 at 0 ·C and then 

twice more in 30mM TES-sucrose at 0 'C. The final pellet contained the cytoskeletons 

stripped of the pellicular microtubules. 

4.2.4 Protein concentration determination 

Protein concentrations were calculated using the 20 Quant Kit (Amersham Biosciences) as 

per manufacturers instructions, or with the Quick Start Bradford protein assay (BioRad) as 

per manufacturers instructions. 

4.2.5 Gel-based approaches 

4.2.5.1 1 DGE 

Samples were either run on NuPAGE 4-12 % gels with MES running buffer and LOS 

sample preparation buffer (Invitrogen, UK) as per manufacturers instructions, or on gels 

prepared in-house. These gels consisted of an 8 % separating gel and a 5 % stacking gel 

(both containing 0.4 M Tris, 0.1 % SDS [pH 8.8]), polymerised using APS I TEMEO. 

Samples were solubilised in sample buffer (85 mM Tris-HCI pH 6.8, 30 % Glycerol, 2.7 % 

SOS, 0.01 % Bromophenol blue, and 0.35 M dithiothreitol). In both cases samples were 

incubated to 60 °c for 10 min prior to loading. Samples were then run until the dye had 

just run off the end of the gel. Protein bands were visualised by staining with colloidal 
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Coomassie (1.25 M ammonium sulphate, 20 % MeOH, 1.6 % ortho-phosphoric acid, 1.6 % 

Coomassie blue G250) for 48 hours and then washing in ddH20. 

4.2.5.2 2DGE 

Samples were run as follows: 

4.2.5.2.1 1st Dimension - Isoelectric focusing 

Pelleted PM samples (500 J..lg) were re-suspended in 450 J..lI of rehydration buffer (8 M 

Urea, 2 M Thiourea, 2 % CHAPS, 0.02 % Bromophenol blue, 10 mg OTT, 5 J..lI IPG 

buffer), loaded onto plate holders with the relevant IPO strip (Amersham Biosciences), and 

covered with Orystrip cover fluid. Strips were then run with the following cycle on an 

IPGPhor machine: 10 - 15 hr rehydration, 20 °c IEF parameters 50 J..lA / strip; 500 V (500 

Vhr); 1000 V (1000 Vhr); 8000 V (3975 Vhr); 8000 V (-5 - 10 hrs). 

4.2.5.2.2 2nd dimension - 50S PAGE 

After IEF, gel strips were equilibrated for 15 min in 10 ml SOS equilibration buffer (75 

mM Tris-HCI pH 8.8, 6 M Urea, 30 % Glycerol, 2 % SOS, 0.002 % Bromophenol blue) 

plus 100 mg DIT, and then 15 min in 10 ml SOS equilibration buffer plus 250 mg 

iodoacetamide. Equilibrated gel strips were then placed on top of a vertical slab gel and 

held in place by the addition of molten agarose. Gels were then loaded in a OALT 12 gel 

tank filled with SOS electrophoresis buffer (25 mM Tris-HCI, pH 8.3, 192 mM Glycine, 

0.2 % SOS), and run at 15 Watts per gel (at 25 0c) until the dye front reached the end of 

the gel. 

4.2.5.2.3 Spot Picking 

Gels were scanned and spots selected using the 20-Elite software (Amersham 

Biosciences). A pick list was generated from this and used by the Ettan Spot Handling 

Workstation (Amersham Biosciences) to pick, digest and spot samples. 
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4.2.5.3 16-BAC 

4.2.5.3.1 Gel Preparation 

Gels were prepared as with standard SDS-PAGE slab gels, complete with a stacking gel on 

top of a separating gel. An 8 % separating gel was prepared (3 M urea, 7.3 % acrylamide, 

0.3% bis-acrylamide, 3.75 mM ascorbic acid, 7.5 JlM ferrous sulphate, 2.4 mM 16-BAC, 

70 mM potassium phosphate [pH 2.1]), polymerised by the addition ofH202 (final 

concentration 28 J.lM), and overlaid with 75 mM potassium phosphate [pH2.1] overnight to 

allow complete polymerisation. A 4 % stacking gel (as above, with acrylamide / bis

acrylamide adjusted) was then prepared on top of the separating gel (H202 final 

concentration of 60 JlM). 

4.2.5.3.2 1 at Dimension 

Plasma membrane pellets were re-suspended in an appropriate volume of sample buffer 

(3.75 M urea, 125 JlM 16-BAC, 0.7 M glycerol, 37.5 mM DTT, 0.025 % Pyronin Y) and 

incubated at 60°C for 5 min. Before loading onto the gel, samples were spun down (3 min, 

13k rpm) to remove any residual insoluble material. Gels were run towards the cathode in 

running buffer (2.5 mM 16-BAC, 150 mM Glycine, 50 mM Phosphoric acid) at 30 rnA 

(for 30 min), before increasing to 140 rnA until the dye front reaches the end of the gel. 

Gels were then fixed for 1 hour in 35 % isopropanol, 10 % acetic acid (change solution 

every 15 min), before being stained for 30 min (0.15 % Brilliant blue R-250, 7.5 % Acetic 

acid, 50 % MeOH). Gels were then destained (I x 15 min) in wash solution I (50 % EtOH, 

7.5 % Acetic acid, 5 % Glycerol), before being further destained (3 x 20 min) in wash 

solution II (5 % EtOH, 7.5 % Acetic acid, 5 % Glycerol). 

4.2.5.3.3 2nd Dimension 

Gels were re-equilibrated (2 x 10 min) in 100 mM Tris-HCl [pH 6.8], the relevant lanes 

excised (taking care to ensure a straight edge is cut for linear association with the second 

dimension gel). Gel lanes were then treated as IPG strips and equilibrated / run as above. 

Spots were either picked using the Ettan Spot Handling Workstation (as above) or by hand, 

and placed in a 96-well plate. 
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4.2.5.3.4 Picking and digest 

Spots or bands of interest were excised either manually or with the Ettan Spot Handling 

Workstation (Amersham Bioscience) into 96-well plates. Samples were then digested with 

trypsin as follows. Brietly, gel pieces were washed five times (3 x 100~150 mM AmBic, 

50 % MeOH; 2 x 100 ~175 % ACN), before being dried for 60 min at 37°C. Samples 

were then re-hydrated by the addition of 0.5 ~g trypsin (in 25 ~120 mM AmBic), and 

incubated for 240 min at 37°C. Peptides were extracted from the gel plugs, by washing 

twice (2 x 100 III 50 % ACN / 0.1 % TF A) and transferred in solution to a fresh 96 well 

plate, where samples were dried down in a SpeedVac (EppendorfConcentrator 5301) until 

ready for MS analysis. 

4.2.6 MuDPIT based approaches 

4.2.6.1 Trypsin Digestion of PM sheets 

Plasma membrane pellets were re-suspended in 200 ~I 25 mM AmBic, 0.1 % n-OO 

containing 400 ng trypsin, by repeated vortexing and pipetting. Samples were then 

incubated for 12 - 16 hours at 37°C, before being dried down in a SpeedVac (Eppendorf 

Concentrator 5301) until ready for MS analysis. 

4.2.6.2 CNBr and trypsin digestion of PM sheets 

Pelleted plasma membrane sheets were dried down in a SpeedVac (Eppendorf 

Concentrator 5301) before being re-suspended in 50 III 75 % tritluoroacetic acid (TFA). 

Two small crystals ofCNBr were then added to the sample and incubated for 12 - 16 hours 

at room temperature (with the lid closed). Samples were then incubated for a further 6 

hours at room temperature with the lids open in the fume cupboard to allow complete 

evaporation of contents. To neutralise the pH, samples were re-suspended in 250 ~l 100 

mM tri-ethyl ammonium bicarbonate (TEA B), and then dried down in a SpeedVac 

(Eppendorf Concentrator 5301). 

To digest with trypsin, samples were re-suspended in 20 J . .t.I 6 M Urea, 1 % n-OO, 100 mM 

TEAB by vortexing and pipetting, before being diluted 1 : 10 with 25 mM TEAB 

containing 400 ng trypsin. After incubating at 37°C for 12 - 16 hours samples were dried 

down in a SpeedVac (EppendorfConcentrator 5301) until ready for MS analysis. 
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4.2.6.3 Trypsin digest in 60% MeOH 

PLASMA MEMBRANE pellets were re-suspended in 40 J..lI 50 mM AmBic and placed in 

a sonicator bath for 20 min (vortexing regularly), before being incubated at 60°C for 20 

min. Samples were then placed on ice for 3 min, before adding 60 J..l1 MeOH and 

incubating for a further 5 min in the sonicator bath (with vortex in g). Trypsin was then 

added (16 J..l1 at 20 J..lg/ml in 25 mM AmBic), before the addition of24 J..lI MeOH to give a 

final concentration 0[60 % MeOH. After briefvortexing, samples were then incubated at 

37°C for 12 - 16 hours. The digested sample was dried down to -5 J..lI volume in a 

SpeedVac (EppendorfConcentrator 5301), adjusted to 85 J..lI with 1 % Formic acid and 

then stored at -20°C until MS analysis. 

4.2.7 Mass Spectrometry Analysis 

4.2.7.1 MALO I 

Samples undergoing MALDI analysis were spotted onto target plates using the Ettan Spot 

Handling Workstation (Amersham Biosciences). Briefly, dried samples were re-suspended 

in 3 J..lI 50 % acetonitrile (ACN), 0.5 % TF A and 0.3 J..lI spotted onto the target plate. 

Immediately, 0.3 J.lI of the matrix; ex cyano-4-hydroxycinamic acid (10 mg/ml CHCA in 50 

% ACN, 0.5 % TFA) was then added to the sample on the target and mixed. Samples were 

analysed using the Voyager-DETM PRO workstation (Applied Biosystems) or the 4700 

proteomics analyser (Applied Biosystems). For the Voyager, an average 200 shots per 

spectrum were collected. Approximately 3,000 laser shots were fired for peaks selected for 

MSIMS analysis on the 4700 proteomics analyser. 

4.2.7.2 ESI-MS/MS 

Peptides undergoing electrospray ionisation (ESI) MS (on a QST AR® XL Hybrid 

LCIMSIMS System) were separated on an LC system (Famos I Switchos I Ultimate, LC 

Packings). Simple peptide mixtures i.e. those from gel-resolved samples, were separated 

on a single dimension using a Pepmap CI8 reverse phase column (LC Packings), using a 5 

- 85 % acetonitrile gradient (in 0.5 % formic acid) run over 45 min. In the case of more 

complex samples i.e. MuDPIT based approaches, samples were separated on 2 dimensions 

by a strong cation exchange column (SCX, 1 D 0.5 mm, LC Packings), using 0, 20, 40, 60, 

80, too, t 50, 300 and t 000 mM KCl cuts in the first dimension and then on a Pepmap C 18 



Daniel J Bridges, 2006 Chapter 4, 102 

reverse phase column (LC Packings) in the second dimension using a 5 - 85% acetonitrile 

gradient (in 0.5 % formic acid) run over 90 min. Flow rate was maintained at 0.2 JlI / min. 

Mass spectrometry analysis was performed using a duty cycle consisting of a 3 second 

survey MS scan, followed by up to four MS/MS analyses of the most abundant peptides (3 

second per peak). 

4.2.8 MS Data Analysis 

Data generated from the Voyager-DE ™ PRO, and the Q-STAR® XL hybrid mass 

spectrometers were analysed using Applied Biosystems Data Explorer (v 4.0) and Analyst 

QS (v1.1) software respectively via the automated Mascot Daemon server (v2.1.06). Data 

generated from the 4700 mass spectrometer was analysed using GPS Explorer (v3.5). All 

of these systems define protein identifications using the Mascot search engine (Perkins el 

al., 1999) to assign probability based MOWSE scores, based on comparisons using a local 

database containing the T. bruce; genome (version 4 downloaded from 

ftp:/lftp.sanger.ac.uk/pub/databaseS/T.brucei_sequences/ T .brucei~enome _ v4/). In all 

cases variable methionine oxidation, and carbamidomethylation as a fixed modification 

(where iodoacetamide treated), was used for searches. An MS tolerance of 70 ppm 

(Voyager-DE ™ PRO) or 1.2 Da for MS and 0.4 Da for MS/MS analysis (Q-STAR® XL 

and 4700) was used. MALDI data was baseline corrected, noise filtered, de-isotoped and 

mass calibrated using the auto-proteolytic trypsin fragments. Only proteins identified with 

a significant score (p = < 0.05) were included. Where the same protein was identified 

multiple times, only the highest scoring identification was included in the results. 

4.2.9 Protein Analysis 

Quality control analysis was performed on the experimental protein lists derived from the 

cytoskeleton and plasma membrane preparations as follows. Initially all genes were 

scanned for keywords (see Table 4.2) that localised the protein to a particular cellular 

compartment or region. Any genes not containing a keyword in their annotation, but being 

predicted to contain 5 or more TMD's were assigned a 'Membrane' localisation. Each 

remaining gene's cellular localisation was then manually curated against 

www.genedb.com. In each case the evidence for the localisation assigned was also 

recorded (Table 4.3). 
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Localisation 

Acidocalcisomes 
Cytoplasm 

Cytoskeleton 

Endosome 
ER 

Flagellum 

Glycosomal 
Golgi 

Intracellular 
Kinetoplast 
Lysosome 
Membrane 

Mitochondria 

Nucleus 

Peroxisome 
Plasma 

membrane 

Unknown 

Keyword 

acido 
tryparedoxin 

actin, tubulin, kinesin, dynein, centrin, microtubule-associated 

endos 
endoplasm 

flag ell 

glycosom 
golgi 

ribosome, calpain, DNA, RNA, adrenodoxin 
kineto 
Iyso 

adenylate I adenylyl cyclase, cytochrome, GPI 
mitochon, metacaspase 

nuclear, nucleolar, nucleoporin, histone, retrotransposon 

perox 

VSG 

adenylate kinase, ADP ribosylation factor, chaperone, arginine 
kinase, calmodulin, heat-shock protein, leucine rich repeat 

protein 
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Table 4.2 - Localisations assigned to proteins containing a keyword. Case Insensitive 
searches were performed using an in-house generated PERL script. 

Evidence 

Annotated as 

GeneDB 

TbFP 

5+TMD 

Gene Name 

Explanation 
Cellular localisation contained in gene annotation. These genes 

have not been checked against GeneDB. 
Localisation derived from GeneDB 

Previously identified in the flagellar proteome (Broadhead et 
al. , 2006) 

Contains 5 or more TMD's and therefore are assumed to be 
membrane proteins 

Contains a keyword that suggests it is localised to a particular 
cellular location e.g. actin assigned to cytoskeleton. These 

genes have not been checked against GeneDB 

Table 4.3 - Explanation of the type of evidence used to assign each gene a cellular 
localisation. 
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4.3 Results 

4.3.1 Tagged TbAT1 

We generated a myc- tagged TbA T1 gene by modifying and then inserting the gene into 

the pRM48 1 vector (McCulloch and Barry, 1999) for overexpression in T. brucei. This 

vector targets the u- p- tubulin locus for genomic integration. Unfortunately, despite using 

a number of different antibodies (data not shown) and analysing multiple transfonnants, 

apart from the positive control, we were unable to identify any tagged protein in the cell 

extracts (Figure 4.2). There are a number of potential reasons for this. Firstly it is possible 

that the tagged construct was at such a low level that detection was not sensitive enough to 

generate a signal. However the strong signal generated by the positive control suggests that 

the TbA T I-myc protein was not expressed. Very little is known about the stability of 

TbA Tl in the plasma membrane and the -myc tag could have affected protein stability, 

tertiary folding or insertion into the membrane. Whatever the cause, for a lack of functional 

TbAT1-myc, we were left without a convenient tool to identify the most effective 

techniques for enriching for membrane proteins. We therefore had to switch to a mass 

spectrometry based approach whereby proteomic techniques and subsequently enrichment 

techniques were evaluated based on the proteins that were identified from them. 
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1 2 3 4 5 6 

Figure 4.2 - Western blot analysis of cell extracts probed with mouse anti c-myc primary 
antibody and anti-mouse totallgG secondary antibody, and visualised by ECL. Cell extracts 
are present in lanes: 1, CXCR-myc tagged protein (positive control); 2 - 5, Clones 1-4 TbAT1 
in pRM481-myc; 6, pRM481-myc transformed cells (negative control). Blot was exposed to 
film for 30min. 
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4.3.2 Membrane Preparations 

Of all the fractionation or enrichment techniques available, in terms of analysing the 

plasma membrane, we considered the most logical approach to absolutely require 

fractionation. Without a high throughput screen (Le. the TbA Tl-myc tagged line) we 

decided to concentrate on developing the proteomic techniques for visualising membrane 

proteins using plasma membrane preparations as previously described (Voorheis et al., 

1979). Once established, we would then be able to judge whether further enrichment was 

required or whether fractionation was sufficient. 

Three plasma membrane preparations were made from the s427 cell line. To examine 

reproducibility of the three samples, 15 /-lg of each were run on a 10 SOS PAGE gel 

(Figure 4.3). From this gel, it would appear that the sample reproducibility, at least at the 

gross level, is very high. In addition, it can be seen that the vast majority of proteins have a 

Mwt of 50 kDa or more, with a particularly high density of proteins at just over 50 kOa. 

4.3.3 Gel-based Approaches 

4.3.3.1 2DGE 

115 /-lg or 500 J.lg of PM prep (Figure 4.4) and the equivalent of9 x 10' cells of 

cytoskeleton prep (Figure 4.5) underwent a 20GE analysis; using pH 3-lONL IPG strips 

and 12% second dimension gels. A total of 341 and 161 visible spots were picked from the 

plasma membrane and cytoskeleton prep gels respectively. For the PM gels, where samples 

yielded good PMF data, but where identifications were either not made or with low 

confidence, samples were re-run on the ESI-MSIMS Q-ST AR instrument. 

A total of 139 protein identifications representing 99 different proteins were made from the 

PM prep gels (see Appendix II). In comparison 356 protein identifications were made from 

the cytoskeleton prep gel, yet this represented only 83 different proteins (see Appendix 

III). This suggests that the cytoskeleton samples contain a relatively small number of 

proteins, but many of which are present as a variety of different protein isoforms i.e. as a 

result of post-translational modifications or truncations. In a similar manner, 72 out of 161 

spots picked from the cytoskeleton prep gel gave one or more proteins identifications, 

whereas only a minority (84 out of341) of the spots from the PM prep gels gave positive 

protein identifications. This was despite additional attempts using tandem mass 

spectroscopy to improve protein identifications from the PM 20GE spots. 
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By comparing the two different protein datasets, we found that 52 proteins were common 

to both (see Appendix II or III). In view of the methods used to generate the samples and 

the propensity for 2DGE systems to preferentially resolve soluble hydrophilic proteins, 

these proteins are most likely to be of cytoskeletal origin. By comparing the spot migration 

patterns of the two samples a number of similarities are immediately identifiable, 

suggesting that the PM preps are contaminated with cytoskeleton proteins. 

4.3.3.2 16-BAC Gels 

A number of gels were run with plasma membrane preparations, both to define the loading 

capacity of the gel and to perfect the 'art' of running 16-BAC gels. It was noted that 

particular care needed to be taken to ensure that the polymerisation process had reacted to 

completion. All of the spots from two gels (334 spots) were excised and analysed by 

MALDI. Where samples yielded good PMF data, but where identifications were either not 

made or with low confidence, samples were re-run on the ESI-MSIMS Q-STAR 

instrument. In addition, 9 gel sections with dense Coomassie staining were excised and 

analysed by 2D LC-MSIMS. From both analyses, a total of281 unique proteins were 

identified (see Appendix IV) 
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35 

25 

Figure 4.3· Three samples offractionated plasma membranes from s427 cells run on a 12% 
50S PAGE gel. Each lane was loaded with 15/lg of protein and stained with colloidal 
Coomassie. Molecular weight (MwJ markers (kOa) are shown on the left-hand side. 
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Figure 4.4 - 20GE of PM preps derived from s427 cell line. Proteins separated in 2 dimensions over a broad non-linear pH range (pH 3-10) and molecular 
weight. Gels were loaded with 115"'9 (A) or 500",g (8) of protein and stained with colloidal Coomassie blue. 126 and 215 spots were picked from (A) and (8) 
respectively for protein Identification. 
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Figure 4.5 - 20GE of cytoskeleton preparation derived from s427 cell line. Proteins separated in 2 dimensions over a broad non-linear pH range (pH 3-10) and 
molecular weight. Gel was loaded with the equivalent of 9 x 107 cells and stained with colloidal Coomassie blue. 160 spots were picked from the gel for protein 
Identification. 
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Figure 4.6 -16-BAC mini-gel loaded with 100119 of PM prep. Separation is based on Mwt in 
both directions, giving rise to a diagonal line across the gel along which the majority of 
proteins lie on or close to. 
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Figure 4.7 -10 PAGE gel loaded with 20J'g of plasma membrane sample (A) or cytoskeletal 
sample (B). Gels were stained with colloidal Coomassie, and molecular weight (kOa) 
markers (Mwt) are shown on the left hand side. Representative bands common to both gel 
lanes (- ) or uniquely found in a single lane (- ) are also shown. 
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4.3.3.3 1 DGE 

Both plasma membrane and cytoskeleton-enriched (generated by P. Voorheis) samples 

were analysed by lOGE (Figure 4.7). The banding pattern from the two samples is 

different e.g. there are a number of bands in the 100-150 kDa range present in the PM 

sample, but absent in the cytoskeletal preparation, although a number of prominent bands 

e.g. at 50 kOa and 75 kDa are common to both. 

For MS analysis, a single lane loaded with 115 Jlg of protein from either sample was 

sectioned and analysed. From the PM sample, 2721 protein identifications representing 

1233 different proteins were observed (see Appendix V), whereas for the cytoskeletal prep, 

792 protein identifications representing 719 different proteins were made (see Appendix 

VI). The cytoskeletal prep is therefore considerably simpler in number of proteins present, 

however from the general similarity in the banding pattern, it would appear these proteins 

are present in high copy number as they also dominate in the PM sample prep. 

4.3.4 MudPIT Approaches 

Due to unknown technical difficulties, we were unable to generate any protein 10's from a 

standard trypsin digest followed by 20 HPLC coupled to an ESI-MS/MS instrument. This 

was probably due to technical issues with the mass spectrometer rather than sample 

generation, but due to time constraints this was not pursued further. However, trypsin 

digestion in 60% MeOH or in combination with CNBr was successful. From the former 

analysis, 306 different proteins were made (see Appendix VII), compared to 202 different 

proteins (see Appendix VIII) in the latter. 147 proteins were common to both datasets. 

4.3.5 Technique comparisons 

To allow comparisons to be made between the different techniques, only a single 

experiment e.g. results from one gel or one MuD PIT experiment are used to compare the 

different approaches, and are summarised in Figure 4.8. From these Venn diagrams, it can 

be seen that the lOGE approach far exceeded any other approach in the number of proteins 

it was able to identify. This may in part have been due to all samples having been analysed 

by ESI-MSIMS, which is known to generate more information than a MALOI MSIMS 

system. However, only a few hundred spots were visualised and picked from the 20 gels, 

while the entire lOGE lane was sectioned and submitted for analysis. In addition, the 

limitations of20GE in relation to the iso-electric focusing step being unable to resolve 
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membrane proteins was always likely to limit the ability of this technique to resolve this 

sample. In contrast the l6-BAC system was able to identify a sub-set of proteins that were 

not identified by any other approach. In the same way, while the gel-based approaches 

identified the majority of all proteins, a significant number were uniquely identified by gel

free based systems. From this analysis, for a high-throughput analysis, lDGE would be the 

technique of choice, however to maximise proteome coverage (as aimed for in this 

chapter), as many different techniques as is practical need to be performed. 
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Figure 4.8 - Summary of protein identifications from all proteomic approaches applied to the 
plasma membrane enriched sample. All gel-based (A), gel-free I MuDPIT analyses (8) and a 
comparison between the two (C) are shown. 
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4.3.6 The plasma membrane sub-proteome 

All experiments performed were pooled and analysed together. We were aware of the 

number of potentially contaminating proteins in the plasma membrane fraction, and 

therefore pursued a subtractive approach to remove potential contaminants. This approach 

consisted of the analysis of three proteomic datasets derived from the plasma membrane 

preparations, the cytoskeleton preparations, and the flagellar proteome, as previously 

reported (Broadhead et al., 2006). The latter two datasets were combined into a single one 

termed TbCF (see Appendix IX), predicted to be primarily composed of cytoskeletal and 

flagellar proteins. 

A total of 1321 proteins were identified from the plasma membrane enriched sample using 

the various proteomic techniques. Many of these proteins were obvious cytoskeletal 

contaminants. We therefore applied a subtractive approach where all proteins identified in 

TbCF were removed from the plasma membrane list. While it is possible that a small 

subset of proteins are integral to both the flagellum / cytoskeleton and plasma membrane, 

we felt that these would be extremely limited in number. All remaining genes were then 

analysed (by annotation or keyword searching) for any indication as to their cellular 

localisation. Proteins localised to intracellular non-membrane location were then also 

removed from the list (see Appendix X). This gave a final list of 566 proteins constituting 

the core sub-proteome oflong-slender bloodstream forms of T. bruce; (TbPM). The 

complete list is presented in Appendix XI, and summarised in Table 4.7. 

In addition to analysing the localisation of proteins identified from the plasma membrane 

enriched preparation, we also looked at the cytoskeleton enriched sample (summarised in 

Table 4.4). This table clearly shows that there is contamination of both preparations with 

proteins that have been localised to regions other than the plasma membrane or 

cytoskeleton. However it does show that there is considerable enrichment for membrane 

proteins in the plasma membrane preparation. 

By predicting cytoskeletal / flagellar proteins to be predominately soluble high-copy 

number proteins in contrast to poly topic low-copy number plasma membrane proteins, we 

predicted proteins identified in the TbPM to be characterised by a high number of trans

membrane domains and a lower average gCAI (see Chapter 2). On the other hand proteins 

shared between the plasma membrane prep and TbCF would comprise relatively few 

poly topic membrane proteins with a higher average gCAI. Both of these characteristics can 
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be seen, with an abundance of poly topic membrane proteins found in the plasma 

membrane prep (Table 4.5) and an overall reduced geAI value for the same protein set 

(Table 4.6). 
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Localisation 
Number 

PM TbCF 
Cytoskeleton & 

16 123 
Flagellum 

Intracellular 117 222 
Membrane 79 7 

Plasma Membrane 46 13 

Unknown • 441 425 

Total 699 790 

• - Includes all proteins annotated as hypothetical 

Table 4.4 - Summary table of all proteins identified from the plasma membrane (PM) 
enriched sample and cytoskeleton sample combined with the flagellar proteome (TbCF). 

Number of TMO's All Protein 10's 
Proteins found in 

TbPM TbCF Shared 
0 1289 379 798 596 
1 110 75 25 15 
2 50 39 4 2 
3 18 10 5 3 
4 11 9 1 1 
5 7 7 
6 6 5 
7 7 6 
8 6 6 
9 7 5 2 2 
10 7 7 
11 10 10 
12 2 2 
13 1 
14 4 4 
22 1 1 

Total 1536 566 837 621 

Table 4.5 - Distribution of proteins in the different fractions demonstrating the enrichment of 
poly topic membrane proteins identified in the plasma membrane sub-proteome (TbPM), the 
cytoskeletall flagellar proteome (TbCF), against proteins identified in both the TbPM and 
TbCF (Shared). 
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Average 
Min 
Max 

Total 

All 
Proteins 

67.5 
0.1 

100.0 

1536 
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Proteins found in 
TbPM TbCF Shared 
57.4 73.2 74.8 
0.1 1.5 3.4 

99.2 100.0 100.0 

566 837 622 

Table 4.6 - Average, minimum (Min) and maximum (max) gCAI values for proteins found in 
the plasma membrane fraction (TbPM), the cytoskeletall flagellar proteome (TbCF), or 
proteins identified in both (Shared). 

TbPM 
Number of TMO's Total Proteome 

Number identified % 

0 8311 379 4.6 
1 1007 75 7.4 
2 394 39 9.9 
3 174 10 5.7 
4 116 9 7.8 
5 65 7 10.8 
6 64 5 7.8 
7 37 6 16.2 
8 42 6 14.3 
9 29 5 17.2 
10 52 7 13.5 
11 62 10 16.1 
12 24 2 8.3 
13 13 1 7.7 
14 11 4 36.4 
15 1 
18 2 
20 1 
22 2 1 50.0 
25 1 

Total 10408 566 5.4 
>4 406 54 13.3 

Table 4.7 - Comparison of all ORF's present in the T. bruce; genome (Total Proteome) 
against all experimentally identified proteins found in the plasma membrane sUb-proteome 
of bloodtream forms of T. bruce; (TbPM). Values are expressed as a total number (Number 
identified) and as a percentage (%) of the Total Proteome. 
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To examine whether the biophysical properties of membrane proteins make their 

identification in a sample more difficult, we looked at the effect of increasing the 

confidence level on protein identifications made (Table 4.8). In fact it appears that 

increasing the threshold for a score to be considered significant has a fairly linear effect on 

all proteins, as the confidence level is increased. Interestingly the impact on average gCAI 

is most pronounced when increasing the confidence threshold from 95 to 99 % confidence 

(Table 4.9). This suggests that proteins with lower gCAI values (and subsequently those 

predicted to be expressed at a lower level) are harder to confidently identify by MS. This 

would most likely be due to only identifying one or two peptides, which fail to give a 

significant score. This correlates well with other reports, whereby protein abundance 

correlated directly to number of pep tides identified (Liu et al., 2004). 
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Number Confidence threshold (p = » 
ofTMO's 

0.05 0.01 0.005 0.001 
0 379 255 227 191 
1 75 68 61 56 
2 39 35 34 27 
3 10 9 9 5 
4 9 8 6 5 
5 7 7 6 5 
6 5 4 3 3 
7 6 5 4 4 
8 6 5 5 5 
9 5 5 5 5 
10 7 5 5 5 
11 10 9 9 9 
12 2 2 2 2 
13 1 0 0 0 
14 4 4 4 4 
22 1 1 

>4 54 47 44 43 
Total 566 422 381 327 

Table 4.8 - Effect of increasing the confidence level associated with a significant score on 
the number of proteins identified in the membrane sub-proteome (TbPM). Proteins in the 
table have been differentiated by the number of trans-membrane domains (TMO's) that they 
are predicted to encode. 

gCAI 
Confidence threshold (p = » 

0.05 0.01 0.005 0.001 

Average 57.4 60.9 61 .5 63.0 
Min 0.1 0.4 0.4 5.1 
Max 99.2 99.2 99.2 99.2 

Table 4.9- Effect of increasing the confidence level associated with a significant score on 
the gCAI of proteins identified in TbPM. Values are given as average, minimum (Min) and 
maximum (Max). 



Daniel J Bridges, 2006 Chapter 4, 122 

4.3.6.1 Hydrophobic peptides 

As mentioned above, within the TbPM a number of highly hydrophobic proteins were 

identified. Perhaps the most intriguing finding was the presence of a 22 TMD protein 

encoding a putative calcium channel (Tb 1 0.70.4 750). There are only 5 proteins in the 

entire genome that are predicted to have more TMD's. Initially we thought it possible that 

the protein that had been identified was a truncation of the full transcript and that perhaps 

only half or so (i.e. 11 TMD) was expressed. However closer examination revealed 

peptides identified along almost the entire length of the protein (Figure 4.9), suggesting 

that the entire ORF is translated. The sheer number of peptides identified would suggest 

that this protein is present in the sample at high levels (Liu et 01.,2004). 

Much has been made of the inability of hydrophobic peptides to be ionised and therefore 

seen by MS. For this reason Xiang et 01 (Xiang et 01.,2004) purposefully aimed to deplete 

these peptides from their samples. However, other groups have reported the identification 

ofTMD-containing peptides (Fandifto et 01.,2005), although they were working with 

purified membrane proteins. Interestingly two of the identified peptides covered regions 

predicted to be part of a TMD (Figure 4.9). Looking closely at one of these peptides 

(Figure 4.10), while there is an almost complete y ion series, there does appear to be better 

ion fragment representation in non-TMD predicted regions e.g. ANDPETG. This does 

suggest that ionising and therefore identifying these peptides is rare. Interestingly the 

identification ofthese peptides from a trypsin digest of 1 D SDS-PAGE gel band 

automatically proves that trypsin has been able to cleave both very close to and within a 

predicted TMD. 



Daniel J Bridges, 2006 

1 MAEPPPPQPL RKGFFRADPH GLRPPESPRD AEEPENHDIV EDPPLPSSRN 
51 LPPPRLRPMG GGPPLAGAEA AATSHSNNRP SPGEVPPLPR PGTTTAVTSA 

101 QYNSLTPRQE LFSSPQTAVE ENIPAGYDNQ MNVTSNDFSH SQDTGI KRIG 
151 DGATGSSAKT RSTIAHAPSG RFSEVVQERP PIESVEQLCQ LQTLAHPVER 
201 FFVEYQPMAT RGCRSTQVPV EEDEALFNHL AEYTDDDSFF SSGSAVLEED 
251 TRRLQNDPLR GRAIRSVFET LSLRSLTKGR IPYELEDQER SSAPWLKQVH 
301 QRAIALHHSS FFIFPAGMKA RvlIAYNILHH WLTEMLLMLI ILvylsMMTAA 
351 WSRDTWPTLE KPSWMFFADV FFLCIYAIEF VARLFTISGAV SHSRAYFRSP 
401 WHCLD§AVLL LMILNCTNLQ SMWNFSAF~L IRVLKSSTYV PIPINMKLLA 
451 KSLLRSTSNR VKVSTILFYV LLFFSLVGLQ LF~GVLQHRC VSPTTKNVTN 
501 QLCRFNHSEK NESYYHGATC PSPHLCVADT YGNPHHGYRS FDSVPHSFLSI 
551 §FQIMTFQGW TSLLPETSDT TSVAAI~YFF LAILICAWII PSLYLGVFI~ 
601 KIEKTRRLFV QKQLQLFDGM LLEQRQRLNE AIKLRDFVER DESGKLRRHP 
651 IELIRSASRR IQRSKLSNSQ TSIATESESG EPAVVVKKPI GDTTKGRSRW 
701 TDEQRVQLHL SLTRQRDIAS GGERRRRVVI KNDGEISGGT AGLHSQRKGS 
751 ESIGERAMMV TGDFALGGRV GVVQHHPLTH TIGAAHGTDL PLAVRLDNEE 
801 EQLRFLKDYQ NPIDNDIMRR TNTFEDTNGN LHPSFVLTST QRRGGSFDEA 
851 SNTIRTTTEA AGVIPSRHSA TLNGHNTSRM DSNGSLDEPT SKTQTVSKRG 
901 SPMPRLSSGQ VPEVIIHDPE GGDFRFAETR SQKWGIVRNI LHMFTEGYPR 
951 IITQYIREHR RMQRRFGLTP LNYVNKYEDD VLRKLRQRRV LQVKEPGAPS 

1001 QTSRASGDEE LVEVNGNKVI LTDSDDIGDL SPIQMATNIV RNRpVTPFGN 

1051 RMLVIVIVNG IFNAT~YFQQ PEYWETA~FV LGIIFTSFFV LEIVVRVIGY 
1101 GLVSFLLDFN NLLDRTVTIL GFVELAYARS NVVTVL~ LLRLFRTLPF 
1151 APMRRVSRVL ~LGFADMLYA LFFFSIYMFM WILIIGMSFFG GPNGMVDHTF 

1201 QD~YTRGNFD TFSGASFAVS QAFSY~REEW VYLTWNGMQS RGEYTRLYF@ 
1251 ~VVGVAFIAR YFFVAVF~A WQSEEEEEEN YAAIAKGGSG GRREVTRLRW 
1301 FDFTVWRSFK HIHGGFERRD VAPDEVFHLN EDMRKQLRIA EAKERFTKEA 
1351 LAQTDLAMSQ RRMGSPMASP SATMGYNTDG YAPAAQVGTA PRYVNVGGQL 
1401 QRHINPSVDF VDAQVPPLNA PISQFQAENA QLRFARRYST VPASVYTPVI 
1451 QDDGIDRPSP SARSSPSDAG ERSGELGGES QQNGQEEGDG QYSPRGVSPN 
1501 GTGGRATSTG LQRKSSVLGR FPRLGYDRAA GKKDGGSRSV SASAMQQTGD 
1551 GNELRGDYVN EGEVNGGSMV YEHILYPGPR LRYKHVMRNQ YVRVFERCLD 
1601 CNTYQQMPLR APPNVQQRTP EELHAEHCHM AAVRSSRQLV LNAIMGYVRL 
1651 QKDINQPPTR DAVETVLGQA WSCGMLLFET IEYLSCSDIE QREYRTWDRT 
1701 LEALQLQQWL IGLHVGEEQV GRATLAYTLA HRKREKLAVE HKSFELSWRQ 
1751 RSFFFISPSN PVRRLSTRII QSR~FDIFIL TVIFIASFCL CFHIP~ 
1801 PETG[VVLRA FDGIFTCIFL VEMI~KWISM GVILFRPE~Y FWHWWNVFDFI 
1851 RIVIVSLIGL NPQHSALRSI KVLRCFRILI PMRVSNFNRS LSKISSALLD 
1901 CLPTRANILL LFFINYFVWA VLAVRLL~GL THSCSDPSFV DITACEDAKH 
1951 EWLPKVRNFD SFFQSLLTMI EVSVGSKWLD VIYTGVNGRT SEHAPMDDHY 
2001 LARGFWFIVY YYVSHLILFS LFTASMIYlsy LLTKNAAEGV LGITFEHQLW 
2051 IRMQRMTLQL KPRVKLVPLC NHVSQFLHNV VIRPIIFEVVG ASVLLLNILTj 
2101 BALHWYG~TK SKASVLA§FQ YVWMFYFTVE AAMKIGAH~ RAFSRIWAFSFI 
2151 IDFFVLLLSFI GLIVDAASlsE GMPFNVNVLR MLRLGRFFSA AKVFKPMRKQ 
2201 FSLLHEVLIR SAVSLANVT~ ILFLGVFVFT VLGLHLVGGV PvpEGGYFDD 
2251 RYTNFNNFGN SLMMTFRLTT LENWSPSLRE GMNVTRKCTE DDCSVNYGSA 
2301 IFYCLLLLVFL GLIVLSFYMA VlvpHYVTAA RMNTSITRIE DLRRFRDLWS 
2351 EFDPNGALVL HTHELPKLLE SLRPPLGLTS RHNRVELLRL LREYDIPNHR 
2401 GKVHYHEVLL PLARRVLAMA FSRDTMDYRT TFDTLWRHSE KSLRALPTVL 
2451 GKRSHATAAQ HFAASYVQAV CRRKKACREV QRVRSELWHE GRAVCDELGL 
2501 PYADYGFGNL LLEGPDPMRD LVPRSASAAS SGGKGTRKGA SEAENAASSP 
2551 LWRAGQAESP SSPRSEGETI DGRAPAARLP GAYQPAIEER EKRFGPDVPN 
2601 ALRRHETRSE KLRRKDEERM LQSTPDDAVS SPVSNVRSNS QRVNVGEYQP 
2651 PLGTDPTSWL GSNVNRGSTV GGPTTESRTS SVMPAPQGPT APE 
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Figure 4.9 - Amino acid sequence of a putative calcium channel (Tb10.70.4750) highlighting 
all peptides (in red) identified by mass spectrometry with 17% sequence coverage and a 
score of 1118 and all trans-membrane domains predicted by TMHMM v2.0 (boxed). The 
peptides ANDPETGFWLR (see Figure 4.10), and IGAHGMRAFS both contain regions 
predicted to form a trans-membrane domain. 
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Figure 4.10 - MS/MS fragmentation data from which the peptide ANDPETGFWLR was 
identified with a score of 69 from a putative calcium channel protein (Tb10.70.4750; see 
Figure 4.9). If completely fragmented 114 fragment ions would be generated consisting of a 
band y ion series (A). 23 of these potential fragment ions were identified by MS (in red) from 
their relative ion intensities (B). The error of the calculated Mwt against the experimental 
Mwt for each of the fragment ions (C) shows very tight association (less then 0.40a 
variation over the entire mass spectrum). 
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4.4 Discussion 

Our aim in this chapter was to try and define the plasma membrane proteome of BSF T. 

brucei. Physical fractionation by shearing T. brucei cells and isolating the membrane 

sheets was key to isolating enriched plasma membrane protein samples for mass 

spectrometry analysis. However we were aware that these samples would contain a range 

of proteins non-specifically or indirectly associated with the membrane. To identify 

methods for further enriching the sample a system was devised, using a myc-tagged 

membrane protein, to characterise additional enrichment techniques. Unfortunately this 

system was unsuccessful and therefore further enrichment strategies were not pursued. 

A diverse range of proteomic techniques were successfully used to define the proteome of 

the plasma membrane enriched fraction. While all techniques employed identified a large 

number of proteins, it very quickly became clear that some were superior, both in terms of 

the absolute number of proteins identified and their ability to identify membrane proteins. 

In this regard, lOGE was definitively the most successful technique employed (Figure 

4.8). However it is important to note that for maximum proteome coverage a number of 

complementary techniques needed to be employed. Furthermore, because lOGE does not 

fuBy resolve complex proteomes into their component proteins, it does not provide the 

information on relative protein abundance that is required for a comparative proteomic 

analysis. In contrast 20GE, which readily gives information about relative abundance, was 

very poor at resolving membrane proteins from our plasma membrane preparations. This is 

in agreement with current literature (Galeva and Altermann, 2002). Recent improvements 

have been suggested for the 16-BAC system (Kramer, 2006) although in our hands the 

system worked very weB, and we were able to identify proteins with up to 9 predicted 

TMO's. In comparison to 2DGE, 16-BAC gels have a far inferior resolving power. 

However by reducing sample complexity (Le. using plasma membrane enriched rather than 

whole celllysates), this was limited as much as possible. Indeed, considering 20GE's 

inability to resolve poly topic membrane proteins, for an analysis focusing on poly topic 

proteins, the 16-BAC approach appears to be far superior. 

In tandem with analysing the membrane preparations, we were also able to interrogate a 

cytoskeletal preparation, and combine these IO's with the previously published flagelIar 

proteome (Broadhead et ai., 2006) to define a cytoskeleton / flagellum protein dataset 

(TbCF). This was used in a subtractive approach to identify all proteins that partitioned 

exclusively in the plasma membrane fraction. Unlike in the flagellar proteome, where an 
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isoelectric point cut-otT was used to remove basic ribosomal protein contaminants 

(Broadhead et al., 2006), we found very few ribosomal proteins with a pi of> I 0.2 (6). We 

then removed all proteins that were localised to non-membrane locations. In summary, 566 

proteins were identified in our plasma membrane sub-proteome (TbPM) for long slender 

blood stream form T. brucei. While a large number of these proteins contained multiple 

transmembrane domains (54 with 4 or more TMD's), there were a surprising number of 

proteins containing 0 to 3 TMD's (S03). Some, although not all, of these proteins are 

probably not true plasma membrane components. Therefore despite removing all potential 

contaminants through our subtractive approach, our definition of the plasma membrane 

proteome is likely to require further refinement. It is worth noting however that it is highly 

unlikely that non-plasma membrane poly topic integral membrane proteins will be present 

in the PM prep by virtue of the physical separation used to isolate the plasma membrane 

over other organelle membranes. Four poly topic proteins (S+ TMD's) do appear to be 

associated with the cytoskeleton (Table 4.S), as they were identified in both the plasma 

membrane and cytoskeleton preparations (although not in the TbFP). Unfortunately 3 of 

these proteins are annotated as hypothetical preventing much insight into their function to 

be made. Intriguingly, though, the fourth (Tb927.8.2380) encodes a putative ABC 

transporter. It is difficult to imagine a role for such a protein in the cytoskeleton 

considering its role in membrane transport, suggesting that it is in fact a contaminant of the 

cytoskeleton preparation. Nevertheless for this protein to have been retained in the 

cytoskeletal prep it must be intimately associated with some cytoskeleton proteins, perhaps 

as part of a scaffold. 

Genes annotated as hypothetical were very difficult to assess in terms of their function, 

although hydropathy analysis does permit a prediction to be made about possible integral 

membrane location. A number of these proteins were investigated by BLAST analysis 

(http://www.ncbLnlm.nih.govIBLASTI). However very little insight into their function was 

gained and data was therefore not presented here. This lack of gene annotation makes an 

analytical assessment of the PM proteome coverage very difficult. Fortunately, in budding 

yeast a global analysis of protein localisation has been performed (Ghaemmaghami et al., 

2003; Huh et al., 2003). This analysis indicates that the dominant protein localisations are 

in the nucleus and cytoplasm, with less than 7% of proteins localised to extracellular 

membranes i.e. lipid particles, cell periphery, bud or bud neck (Table 4.1 0). This compares 

favourably with the TbPM where -6% of all T. brucei genes were identified (Table 4.7). 

Considering that trypanosomes are likely to have a more complex plasma membrane due to 

cell polarity etc, one might expect this to have been higher, however in terms of total 

numbers, significantly more proteins were identified in TbPM (S66 in TbPM compared to 
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354 in the yeast PM). In addition, the yeast analysis is likely to be more comprehensive as 

each gene was analysed in isolation. 

A large number of proteins annotated as 'putative' were unambiguously identified during 

this analysis. While all MS identifications are made on a statistical basis, for a number of 

these identifications, the score generated is so high as to essentially exclude the possibility 

that any other protein could have generated the same MS spectrum e.g. TbI0.70.4750. This 

knowledge, and in combination with other proteomic approaches, a complete proteomic 

map can be built up, which would be analogous to the published genome (Berriman et al., 

2005), but even more useful. 

Approximately 13.3% of all proteins with 4 or more TMDs are identified in TbPM. This 

represents good proteome coverage considering cells have undergone subcellular 

fractionation and therefore almost all intracellular membranes have been removed. The 

trypanosome has a complex subcellular architecture that is defined by membrane 

compartments. The great majority of expressed poly topic membrane proteins will be 

localised to discrete intracellular membranes of which there are a number in Trypanosoma 

(Figure 4.12) such as the nucleus, mitochondrion, lysosome, glycosome, acidocalcisome, 

endoplasmic reticulum, Golgi apparatus etc. As indicated above, while soluble proteins 

might readily contaminate our plasma membrane preparations, it is less likely that integral 

membrane proteins from organelles might transfer to the sheets of cytoskeleton-associated 

plasma membrane fragments that we have characterised. While there is limited data on 

trypanosome membrane proteins, we have not identified known integral membrane 

proteins from other organelles in our plasma membrane preparations, although we have 

identified (and removed) a number of soluble factors localised to other cellular 

compartments. Furthermore, trypanosomes have a digenetic lifecycle, with many proteins 

known to be expressed in a single lifecycIe stage only, or induced under particular 

environmental conditions e.g. in response to substrate depletion (Mussmann et al., 2004). 

The current study exclusively used long slender blood-stream form parasites. Identifying a 

small fraction of the total number of proteins is therefore to be expected and suggests that 

TbPM represents good coverage of the long slender BSF T. bruce; membrane sub

proteome. 

In TbPM there is an exceptionally high representation of nucleobase / nucleoside 

transporters (Figure 4.11). This is perhaps not too surprising in view of the absolute 

requirement oftrypanosomes to scavenge purines from their external environment (De 

Koning et ai., 2005). It is interesting, however, considering that TbATl is the only gene 
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definitively shown to be involved in pentamidine resistance (Matovu et al., 2003), and 

suggests that a quantitative analysis on strains exhibiting a resistance transport phenotype 

(as presented in Chapter 3) would be applicable. In contrast to the nucleobase / nucleoside 

transporters, there is a relative paucity of amino acid transporters identified (one 

identification which was unable to differentiate between 3 genes). This is surprising 

considering there are more than 46 amino acid transporters present in the genome (C. 

Ebikeme, Personal communication). When cultured in HMI-9 media, which is rich in a 

variety of carbon sources, it might not be surprising to imagine the parasites only 

expressing a small subset of their potential nucleobase / nucleoside or amino acid 

transporter repertoire. However these samples were generated from parasites cultured in 

vivo (albeit from an in vitro generated innoculum), and the lack of amino acid transporter 

expression suggests that amino acids are not extensively utilised in vivo. This is in contrast 

to procyclic trypanosomes which can be grown exclusively on proline as their carbon 

source (Bringaud et al., 2006). 

In addition to the enrichment of poly topic membrane proteins in TbPM, there is a 

reduction in the average gCAl, although the maximum and minimum values as outliers are 

very constant (Table 4.6). The reduction in the average gCAI is statistically significant 

with a p value of <0.00 1 (using a Mann-Whitney one-tailed non-parametric test). It is 

perhaps surprising that the average gCAI does not vary more between the other datasets. 

This could be due to a sub-set of non-PM proteins skewing the data. Alternatively, it is 

perhaps nai've to assume that all PM proteins are expressed at low levels, considering many 

will be PM associated, but not integral to the membrane. In this case the proteins may 

mediate a variety of functions such as signalling for which high activity may need to be 

rapidly achieved. gCAI is very useful for monitoring entire datasets, however its 

application to individual proteins, in the absence of gene annotation is potentially suspect. 

This is particularly well illustrated, by the average gCAI of all proteins predicted to have 5 

or more TMD's as being 81.3%, despite a large proportion of these genes expected to be 

present at relatively low copy numbers. Nevertheless it can be seen that low-copy / 

translationally unbiased proteins are being identified (Table 4.9) and that a significant 

proportion ofTbPM are weakly expressed. Considering the proportions of the plasma 

membrane as a 2-dimensional sheet, and therefore the finite limit in the number of integral 

membrane proteins that can be inserted into the membrane, particularly when taking into 

account the hyper-abundance ofGPI-anchors associated with the VSG coat, this suggests 

that TbPM contains a number ofrare poly topic membrane proteins. 
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In summary, a working version of the T bruce; blood-stream form plasma membrane sub

proteome is presented here. 
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Figure 4.11 - Phylogenetic tree of T. bruce; nucleobase and nucleoside transporters adapted 
from (De Koning et al., 2005). Proteins identified by mass spectrometry are highlighted (0). 
Where data was unable to differentiate between closely related transporters, all potent ially 
identified t ransporters are included in the same box. 
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Cell Localisation 
Proteins localised 

Number % 
CJ102lasm 1821 32.4 
S~ndleRole 66 1.2 

Punctate composite 141 2.5 
Mitochondrion 527 9.4 

Vacuole 163 2.9 
Vacuolar membrane 60 1.1 

Nuclear Reriphery 61 1.1 
Endosome 49 0.9 
Bud neck 98 1.7 

Microtubule 20 0.4 
ER 296 5.3 

Goigi 43 0.8 
ER to Golgi 6 0.1 
Early Goigi 55 1.0 
Late Golgi 46 0.8 

Peroxisome 21 0.4 
Actin 32 0.6 

Nucleolus 164 2.9 
Nucleus 1455 25.9 

Lipid particle 23 0.4 
Cell periphery 160 2.8 

Bud 73 1.3 
Ambiguous 237 4.2 

Total 5380 95.8 

Table 4.10 - Global analysis of protein localisation in budding yeast. Extracted from 
http://yeastgfp.ucsf.edu/ (Ghaemmaghami et at., 2003; Huh et al., 2003). 
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Figure 4.12 - Fine structure of the Trypanosome cell, generated from transmission electron 
microscopy (Taken from http://www.gsbs.utmb.edu/microbook/ch077.htm (Vickerman and 
Tetley, 1977)) 



Chapter 5 

Quantitative analysis of the proteome of 

Pentamidine resistant lines 

5.1 Introduction 

133 

To identify the proteins responsible for the transport mediated drug resistance phenotype 

described in Chapter 3, a quantitative analysis of the parental TbA Tl KO and drug 

resistant B48 line was performed using the techniques developed in Chapter 4. From the 

work presented in Chapter 3, it was concluded that the phenotype was, at least in part, 

mediated by altered drug transport. Thus it was essential to include an analysis of the 

membrane proteins that might mediate this transport component. While it is possible that 

the transport phenotype was due to a point mutation(s) in the relevant transporter (which 

would be not be seen in a quantitative proteomic approach) the muti-drug resistant 

phenotype of the B48 strain suggests that a change in protein expression formed the basis 

of the resistance phenotype. From the resistance acquisition profile of B48, resistance is 

most likely conferred by multiple mutations / modifications in addition to the postulated 

transporter. Considering that soluble proteins might modulate transport activities and/or 

transporter expression, and might also account for part of the observed resistance 

phenotype through other means, the soluble proteome was also examined. 

5.1.1 Plasma membrane enrichment 

One of the main conclusions drawn from Chapter 4, was the inclusion in the plasma 

membrane preparations of a relatively large number of 'contaminating' non-plasma 

membrane proteins derived from the cytoskeleton, which is intimately associated with the 

plasma membrane in these preparations. While robust quantitative techniques have been 

developed (see below), it is always advisable to reduce sample complexity wherever this is 

possible without compromising representation of genuine membrane proteins. 

We therefore pursued a number of techniques to enrich for 'true' plasma membrane 

proteins, including Triton X-114 solubilisation, which selectively partitions hydrophilic 

and hydrophobic proteins into an aqueous and detergent phase respectively (Bordier, 1981; 

Brusca and Radolf, 1994). Other partitioning systems such as the organic solvent 
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separations using chloroform / methanol have also been used and in some cases have been 

shown to be more effective (Zhang et 01., 2005). This particular system has even been 

applied to the enrichment of plasma membrane proteins from crude whole cell extracts 

(Ferro et 01.,2000; Ferro et 01.,2002). Despite this techniques success, during the 

procedure, hydrophobic proteins are precipitated out of solution, the re-suspension of 

which probably leads to the preferential solubilisation of proteins with lower numbers of 

TMD's, and potentially a reduction in membrane proteome coverage. Other enrichment 

. strategies include interfering with the non-specific protein-protein / protein-lipid 

interactions on the membrane sheet. By altering pH e.g. by incubating with sodium 

carbonate (Fujiki et 01., 1982), charge repulsion can be used to disrupt non-specific 

binding. A final approach that was employed for plasma membrane protein enrichment 

involved incubating the sample in a calcium / calmodulin buffer (P. Voorheis, Personal 

Communication). Calmodulin is a highly promiscuous protein that binds to an array of 

target proteins, predominantly via a hydrophobic patch (Rhoads and Friedberg, 1997; 

Yamniuk and Vogel, 2004). By incubating the plasma membrane samples with calmodulin 

it may be possible to disrupt various interactions thereby releasing soluble proteins from 

the membrane. 

5.1.2 Quantitative techniques 

Mass spectrometry itself is essentially a quantitative technique, whereby MS peak 

intensities can be used to measure protein abundance to within a factor of four, if three or 

more peptides are included in the analysis (Steen and Mann, 2004). However, in biological 

systems, this level of resolution will fail to identify subtle proteomic changes and as a 

result a number of enhanced quantitative mass spectrometry-based techniques have been 

developed, each of which have often been refined or developed for novel applications. For 

example, protein mass tagging has been developed to target a number of residues e.g. 

cysteine, and lysine. The frequency of these residues in protein samples is very different; 

therefore by selecting an appropriate target residue, biological questions can be more 

readily answered. 

There are essentially three quantitative techniques available and these are summarised in 

Figure 5.1 (although there generally a large number of variations on each, for review see 

(Beynon and Pratt, 2005; Ong et 01., 2003a; Van and Chen, 2005». Unfortunately it was 

not possible to implement some of these, due to financial costs e.g. SILAC (Figure 5.IA) 

or experimental incompatibilities. For example iTRAQ (Figure 5.1 B) labels peptides rather 

than proteins limiting the subsequent analysis to MuDPIT based experiments. Our T. 
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bruce; PM-enriched samples analysed by MuDPIT did not give acceptable proteome 

coverage (see Chapter 4), although other groups working with different samples have 

demonstrated how effective this technique can be (Hu et al., 2006). We therefore decided 

to focus on two quantitative techniques - differential in-gel electrophoresis (DiGE) and 

isotope-coded affinity tag (I-CAT), both of which are post-isolation quantitation strategies 

(Figure 5.1 B). 

5.1.2.1 DiGE 

DiGE compares two samples by tagging each sample with different charge and mass 

matched fluorophores (Cy3 and Cy5 CyOyes). Both samples can then be run on the same 

gel and visualised by virtue of their different excitation / emission spectra (OnIU el al., 

1997). To increase confidence in changes in expression, multiple samples are run on 

replicate gels. However as with standard 2DGE, spot migration patterns can vary 

dramatically from gel-to-gel. To enable easy comparisons of the same spot in multiple 

gels, a standard sample, tagged with another fluorophore (Cy2), is added to every gel in a 

multiplexed experiment. The standard sample is composed of a pool of every sample in the 

analysis, and thus enables normalisation of individual spot volumes on each gel. The spot 

pattern from the pooled standard can be used to match mUltiple gel images, so that 

artifactual changes that are due to technical variability can be excluded from biological 

changes and spot modulations can be quantified relative to a similar standard that is present 

on every gel (for an overview of the technique see (Wu, 2006)). Being a gel-based 

separation technique, there is the added benefit that different species of the same protein 

arising from post-translational modifications are likely to be resolved on the gel due to a 

change in mass / pI. 

5.1.2.2 I-CAT 

Isotope-coded affinity tagging (I-CAT) was the first truly quantitative proteomic MS 

method developed (Gygi et al., 1999a), and as a result has probably been used more 

extensively than any other. The technology works by the covalent attachment of a reactive 

isotopically 'heavy' or 'light' mass tag to free cysteine residues, and is therefore amenable 

to labelling peptides or whole proteins. Recent developments in this approach include the 

incorporation of a cleavable affinity moiety for the purification of tagged peptides, and the 

development of a solid-phase isotope tagging system (Zhou et al., 2002). The main issue 

when using I-CAT relates to the distribution of cysteine residues in the sample. 

Considering that only cysteine-containing I-CAT labelled peptides provide the 
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quantitation, proteins containing no cysteine residues cannot be analysed by this approach. 

Furthermore, one can either purify the labelled peptides or analyse the labelled and 

unlabelled peptide mixture. In reality the complexity of analysing all labelled and 

unlabelled peptides often reduces quantitative data produced, and coverage can be 

improved by purifying and analysing the labelled peptides alone. However, by purifying 

only labelled peptides, the likelihood of identifying enough peptides for confident protein 

assignments is reduced (unless all peptides from a protein contain a cysteine residue). To 

ensure that the J-CA T procedure would be applicable to the T. brucei proteome, the 

number of proteins devoid of cysteine residues was determined using a bioinformatics 

approach. 
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Figure 5.1 . Quantitative mass spectrometry approaches currently described in the 
literature. Labelled whole cells, proteins and peptides are designated in red (light mass tag) 
or blue (heavy mass tag). 
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5.2 Methods 

5.2.1 Plasma Membrane enrichment 

5.2.1.1 Triton X-114 solubilisation 

PM samples were suspended in 2 mIl % Triton X-114 in TBS containing a protease 

inhibitor cocktail (Sigma, P2714) and incubated on ice for 1 hour with gentle stirring. 

Insoluble material was pelleted (16,000 x g, 5 min, 4°C) and discarded. The supernatant 

was then incubated at 30°C for 10 min before centrifuging (16,000 x g, 5 min, 30°C), 

separating the two phases and restoring them to their original homogenate volume (2 ml) 

with ice-cold TBS (detergent phase) or ice-cold 10 % Triton X-114 in TBS (aqueous 

phase). Both samples were then incubated on ice for 1 hour and then at 30°C for 10 min, 

before again separating the two phases in the two samples. The aqueous phase from the 

detergent wash and the detergent phase from the aqueous wash were discarded. 

5.2.1.2 Sodium Carbonate solubilisation 

PM samples were suspended in 300 j.ll of 100 mM sodium carbonate (Na2C03) pH 11.5, 

containing a protease inhibitor cocktail (Sigma, P2714) and stirred on ice for 90 min, 

before centrifuging (16,000 x g, 5 min, 4°C) and removing the supernatant. Any protein in 

the supernatant was precipitated out of solution by the addition of 4 volumes of ice-cold 

acetone, incubation for 1 hour at -20°C, and centrifugation (10 min, 16,000 x g, 4°C). 

The resultant pellet was then washed with 80 % acetone in distilled water, before air

drying and re-suspending in sample running buffer. 

5.2.1.3 Chloroform I Methanol partitioning 

PM samples were diluted 1:9 with ice-cold chloroform / methanol (5:4), incubated on ice 

for 15 min, and centrifuged (12,000 x g, 20 min, 4°C). The pellet (composed of the plasma 

membrane sheets) was retained, while the supernatant (composed of soluble proteins) was 

completely dried down in a SpeedVac (EppendorfConcentrator 5301). 

5.2.1.4 Calcium I Calmodulin solubilisation 

PM samples were suspended in calcium wash buffer (30 mM TES, 140 mM NaCI, 4 mM 

KCI, 1 mM calcium acetate) containing 250 units of calmodulin (Sigma, UK) for 30 min at 
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30°C, and then centrifuged (16,000 x g, 5 min, at room temperature). The supernatant 

(containing soluble proteins) was retained, while the pellet was washed twice in calcium 

wash buffer. 

5.2.2 DiGE Analyses 

5.2.2.1 2DGE sample preparation 

Four 150 ml cultures of T. brucei TbA Tl KO and 848 cell lines were grown under 

identical conditions to a cell concentration of -2 x 106 cells / ml and harvested by 

centrifugation (600 x g, 10 min, at room temperature). Cells were then washed twice in 

ice-cold PBS before being re-suspended in DiGE Lysis buffer (7 M urea, 2 M thiourea, 4 

% CHAPS, 25 mM Tris- HCI [pH 8.5]) supplemented with Protease Inhibitor Cocktail 

(Sigma, P2714). To completely lyse cells, samples were rapidly freeze-thawed by cycling 

5 times between liquid nitrogen and a heat block set to 25°C. Insoluble material was 

removed by centrifugation (16,000 xg, 5 min, at room temperature). Protein was then 

precipitated out of solution by the addition of 4 volumes of ice-cold acetone, incubation for 

1 hour at -20°C, and centrifugation (10 min, 14000 x g). The resultant pellet was then 

washed with 80 % acetone, before air-drying and re-suspending in 20 J.l1 ofDiGE Lysis 

Buffer. Protein concentration was determined using the 2D Quant Kit (Amersham 

Biosciences) as per manufacturers instructions. All protein concentrations were adjusted to 

whichever was lower of either the lowest replicates protein concentration or to 5 mg/mt. 

Finally all samples were confirmed to be at pH 8-9 using broad range pH indicator paper 

(Whatman pic, UK) in preparation for CyDye labelling. 

5.2.2.2 PM sam pie preparation 

Replicate PM preparations (see Chapter 4 for method) ofTbA Tl KO and B48 cell lines 

were pelleted and re-suspended in DIGE lysis buffer, at 5 mg/mt. Finally all samples were 

confirmed to be at pH 8-9 in preparation for CyDye labelling. 

5.2.2.3 CyDye labelling 

For each DiGE experiment a pooled standard (composed of all experimental samples), 

sufficient to run 50 J.lg per gel, along with 50 J.lg aliquots for each sample was generated. 

Samples were incubated on ice for 10 min before 400 pmol ofCyDye was added to each 

50 J.lg aliquot and mixed immediately. Aliquots were then incubated on ice for 30 min in 
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the dark. To stop the reaction 1 J.lI of 10 mM Lysine was added and incubated on ice for a 

further 10 min in the dark. 

For the soluble proteome DiGE analysis using whole cell extracts, four gels were run. Each 

gel contained one TbA Tl KO and one 848, Cy3 / Cy5 labelled sample, as well as the Cy2 

labelled pooled standard (50 J.lg each). A fifth preparative gel containing 500 J.lg of 

unlabelled pooled protein as well as 50 J.lg Cy2 labelled pooled standard was run for 

picking spots to identify proteins. 

For the 16-BAC DiGE analysis, only two PM enriched samples from the TbA Tl KO and 

848 lines were able to be prepared. Two comparative gels were therefore run as well as a 

third preparative gel (as with the soluble proteome DiGE approach). 

5.2.2.4 is-BAC and 2DGE 

16-8AC or pH 3-10 NL 2DGE gels were run as described in chapter 4. 

5.2.2.5 Protein Visualisation 

Each gel was scanned at the three excitation / emission wavelengths relevant to Cy2 

O~xcitation= 491 nm, /.emission= 509 nm) Cy3 (J'excitation= 553 nm, /.emission= 569 nm) and Cy5 

(/.excitation= 645 nm, /.emission= 664 nm) on a TyphoonTM 9400 variable mode imager (GE 

Healthcare, UK). Preparative gels were stained with Sypro Orange (diluted 1 :10,000) after 

fixing (7 % acetic acid, 10 % methanol, 2 hours) and then scanned (/.excitation= 553 nm, 

/.emission= 569 nm). 

5.2.2.6 Gel image analysis 

DeCyderTM software v5.01 (Amersham Biosciences) was used for automated gel image 

analysis. Using the Differential In-gel Analysis (DIA) software module, spots were 

identified and spot intensity quantified separately for each CyDye gel image. Optimally, 

2000 spots were scanned for on the 2DGE images and 1000 on the 16-BAC. Once defined, 

multiple gel-to-gel comparisons were performed using the Biological Variation Analysis 

(BVA) module, using a Cy2 image as the master gel to which all others were matched. 

From this analysis, a statistical analysis was applied to identify all up or down regulated 

spots. These spots were matched to the preparative gel were identified for MS protein 
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identification, and a pick list was generated. Minimal user intervention, in the form of 

matching gel images, was maintained. 

5.2.2.7 Digestion and MS analysis 

Using the picklist generated by the BVA module, the Ettan Spot Handling Workstation 

(Amersham Biosciences) picked the relevant spots and loaded the gel plugs into 96-well 

plates. Samples were then digested with trypsin as follows. Samples were washed five 

times (3 x 100 fll 50 mM AmBic, 50 % MeOH; 2 x 100 fll 75 % ACN), before being dried 

for 60 min at 37°C. Samples were then re-hydrated by the addition of200 ng trypsin (in 10 

fll20 mM AmBic), and incubated for 240 min at 37°C. Peptides were extracted from the 

gel plugs, by washing twice (2 x 100 fll 50 % ACN I 0.1 % TF A) and transferred in 

solution to a fresh 96 well plate, where samples were dried down until ready for MS 

analysis. 

Samples were initially prepared for MALDI analysis by spotting onto target plates using 

the Ettan Spot Handling Workstation (Amersham Biosciences). Dried samples were re

suspended in 3 fll 50 % ACN, 0.5 % TF A and 0.3 fll spotted onto the target plate. 

Immediately, 0.3 fll of the matrix (10 mg/ml CHCA in 50 % ACN, 0.5 % TFA) was then 

added to the sample on the target and mixed. Samples were analysed using the 4700 

proteomics analyser (Applied Biosystems), where approximately 3,000 laser shots were 

fired for peaks selected for MS/MS analysis. 

Where no protein was identified, samples were analysed by MS using electrospray 

ionisation (on a QSTAR® XL Hybrid LC/MSIMS System). Samples were separated in one 

dimension on an LC system (Famos I Switchos I Ultimate, LC Packings), using a Pepmap 

C18 reverse phase column (LC Packings). A 5 - 85 % acetonitrile gradient (in 0.5 % 

Formic acid) was used to elute the peptides over a period of 45 min. Mass spectrometry 

analysis was performed using a duty cycle consisting of a 3 second survey MS scan, 

followed by four MSIMS analyses of the most abundant peptides (3 second per peak, with 

dynamic peak exclusion). 

Protein identifications were made using the MASCOrill search engine described in Chapter 

4. 
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5.2.3 I-CAT 

5.2.3.1 Cysteine containing proteins 

The T. brucei genome (version 4 downloaded from 

ftp://ftp.sanger.ac.uklpub/databaseslT.brucei_ sequencesl T.brucei~enome _ v4/) was 

digested in silico using the 'Proteogest' Perl script (Cagney et al., 2003), downloaded from 

(http://www.utoronto.calemililab/proteogest.htm). Cysteine-containing peptides were 

extracted using self-written Perl scripts and tabulated in Microsoft Excel. 

5.2.3.2 Labelling 

PM samples were initially washed in 50 mM Tris-HCI pH 8.5 at 4 °c to remove all p
mercaptoethanol, before re-suspending in 80 J.l.1 denaturing buffer (50 mM Tris-HCI pH 

8.5,8 M Urea, 2 % Triton X-lOO, 0.1 % SDS). Proteins were reduced by the addition of2 

J.l.1 TCEP and incubating at 20°C for 30 min. 1 unit each of light J-CA T reagent and heavy 

I-CAT reagent (Applied Biosystems, UK) were allowed to reach room temperature before 

being re-suspended in 20 J.tl acetonitrile. The TbA T1 KO PM sample was then added to the 

light reagent vial, and the B48 PM sample to the heavy reagent vial. Both tubes were 

vortexed before incubating in the dark for 2 hours at 37°C, after which, the tube contents 

were combined. 

5.2.3.3 Gel separation 

Samples were run on gels prepared in-house. These gels consisted of an 8 % acrylamide 

separating gel and a 5 % stacking gel (both containing 0.4 M Tris, 0.1 % SDS [pH 8.8]), 

polymerised using APS I TEMED. Samples were solubilised in sample buffer (85 mM 

Tris-HCI pH 6.8, 30 % Glycerol, 2.7 % SDS, 0.01 % Bromophenol blue, and 0.35 M 

dithiothreitol). Samples were then incubated at 60°C for 10 min prior to loading onto the 

gel and then run until the dye front reached the end of the gel. Gels were then fixed for 1 

hour in 35 % isopropanol, 10 % acetic acid (change solution every 15min), before being 

stained for 30 min (0.15 % Brilliant blue R-250, 7.5 % Acetic acid, 50 % MeOH) to 

visualise protein bands. Gels were then destained (1 x 15min) in wash solution I (50 % 

EtOH, 7.5 % Acetic acid, 5 % Glycerol), before being further destained (3 x 20 min) in 

wash solution 11(5 % EtOH, 7.5 % Acetic acid,S % Glycerol). Each lane was then 

sectioned into a series of2 mm slices, each of which was divided into 3 squares. 
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5.2.3.4 Protein digestion and linker cleavage 

I-CAT samples underwent a standard in-gel trypsin digest and subsequent peptide 

extraction as described in Chapter 4. Extracted peptides were then re-suspended in 200 III 

PBS [pH 7.5] and transferred to a 96-well SigmaScreen™ high capacity streptavidin 

coated plate (Sigma, UK). Samples were incubated on the plate at room temperature for 2 

h. Supernatant was removed and dried down in a SpeedVac (EppendorfConcentrator 

5301). To remove excess unbound peptides, wells were washed 3 x with 0.05 % Tween in 

PBS. Peptides were then eluted from the plate with 70 % ACN, 5 % Formic acid, 1 mM 

Biotin, transferred to a fresh 96-well plate and dried down in a SpeedVac (Eppendorf 

Concentrator 5301). The acid-labile linker was then cleaved by re-suspending samples in 5 

% TF A and incubating for 4 hours at 37 °C. Finally peptides were dried down in a 

SpeedVac (EppendorfConcentrator 5301) and stored at -20°C. 

5.2.3.5 Mass Spectrometry 

I-CAT samples were analysed by MS using electrospray ionisation (on a QSTAR® XL 

Hybrid LC/MS/MS System). Samples were separated in one dimension on an LC system 

(Famos I Switchos I Ultimate, LC Packings), using a Pepmap C 18 reverse phase column 

(LC Packings). A 5 - 85 % acetonitrile gradient (in 0.5 % Formic acid) was used to elute 

the peptides over a period of 90 min. Mass spectrometry analysis was performed using a 

duty cycle consisting of a 3 second survey MS scan, followed by four MS/MS analyses (3 

second per peak) of the most abundant peptides, subject to dynamic exclusion. 

5.2.3.6 Data analysis 

Mass spectrometry data generated from the labelled and unlabelled I-CAT fractions was 

analysed using the MASCOT® search engine described in Chapter 4 (albeit with I-CAT 

heavy and light mass tags as fixed modifications for the labelled fraction). Additionally, 

the labelled I-CAT fraction was quantitatively analysed using Pro I-CAT software v 1.1 

(Applied Biosytems, UK) and results viewed using ProGroups Viewer v 1.0.5 (Applied 

Biosytems, UK). Scores generated from the Pro I-CAT software differ from the standard 

MASCOT® algorithm, and are summarised in Table 5.1. 
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Confidence 
Protein Score 

threshold 
p > 0.01 99% 2.0 
P > 0.05 95% 1.3 
P > 0.10 90% 1.0 
P > 0.33 66% 0.47 

Table 5.1- Significant threshold scores for identifications made from the Pro I-CAT software 
at various confidence levels for tandem mass spectrometry data. 
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5.3 Results 

5.3.1 Enrichment strategies 

As stated in Chapter 4, the PM preps contained a number of proteins also identified in the 

cytoskeletal / flagellar proteome, and are considered to be protein contaminants of the PM 

preparations. A number of experiments were therefore performed that aimed to 'strip' the 

membrane of any proteins not intimately associated with or inserted into the plasma 

membrane. To enable rapid comparisons to be made between different enrichment 

techniques, 1 DGE-banding patterns were compared and where necessary bands were 

excised and analysed. 

5.3.1.1 Triton X-114 solubilisation 

One of the major difficulties working with triton-solubilised proteins was its blurring effect 

on gel bands (see Figure 5.2). Triton's low critical micelle concentration made removal of 

any excess detergent very difficult (Furth, 1980; Jones, 1999). Attempts using commercial 

detergent removal kits e.g. Extracti-Gel D Detergent Removing Gel (Pierce, USA), failed 

to remove sufficient detergent to restore band resolution. Nevertheless 6 bands that 

displayed differential fractionation in the two phases were excised and analysed (see 

Figure 5.2), and the proteins identified (Table 5.2). By comparing proteins identified in 

bands 1-3 against bands 4-6, we can see that there are more poly topic membrane proteins 

in the latter than the former (2 versus 0). This suggests that hydrophobic proteins are 

preferentially partitioning in the Triton X-114 phase. However the band blurring is likely 

to be significantly reducing our ability to identify proteins as it effectively reduces the 

protein concentration of anyone species, reducing the chance of identifying poorly 

expressed proteins. Comparable bands were not picked from the two lanes for comparison, 

making it difficult to identify the extent to which partitioning has occurred, although the 

inherent variability in MS would still only be semi-quantifiable. 

5.3.1.2 Sodium Carbonate solubilisation 

Washing the membranes with sodium carbonate appears to remove a band around 75 kDa 

(Figure 5.3). Bands were therefore excised from the gel and analysed by MS (Table 5.3). 

From this analysis, the most likely identity of the 75 kDa band is paraflagellar rod protein. 

It would therefore appear that incubating the membrane with the sodium carbonate buffer 

does remove some hydrophilic proteins, however it seems to be very selective in the 
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protein species that are removed. In addition, the vast majority of protein is retained in the 

PM pellet with only a fraction being removed by the enrichment. This effect does seem 

fairly specific, whereas one would expect the carbonate treatment to have a global effect. It 

is therefore possible that the proteins lost from the 75 kDa band are merely being diluted 

out of the sample. 

5.3.1.3 Chloroform: Methanol solubilisation 

After solubilising the plasma membranes in the chloroform/methanol mix, both the 

supernatant and the pellet were run on aID SDS-PAGE gel. However the supernatant lane 

did not contain any visible protein bands (data not shown). In addition there was no visible 

difference in banding pattern or intensity between the untreated membranes and the 

washed membranes. 

5.3.1.4 Calcium I Calmodulin solubilisation 

Washing the PM samples with calcium / calmodulin had a fairly large effect on protein 

banding in aID gel (Figure 5.4). In addition, washing in this way removed significantly 

more protein from the PM samples than the other techniques. To try and identify the 

proteins that were retained after washing, 9 bands were picked from the gel and analysed 

by ESI-MS/MS. Unfortunately these bands gave very poor MS data, and only a few 

identifications, none of which were integral membrane proteins (data not shown), were 

possible. 
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Figure 5.2 - Analysis of Triton X-114 treatment of T. bruce; plasma membrane preparations 
run on a 10% 1 OGE. Lanes consist of untreated plasma membrane samples (A), proteins 
insoluble in 1% Triton X-114 (B), proteins solubilised in the hydrophilic aqueous phase (C) 
and proteins soluble in the hydrophobic detergent phase (0). Protein bands that partitioned 
differentially in the detergent and aqueous phases were selected for analysis by mass 
spectrometry (highlighted with an arrow). Molecular weight (kOa) markers (Mwt) are shown 
on the left hand side. 



No. Sequence 
gCAI value TmPred 

Band Number Accession Number Gene annotation Score peptides Coverage 
identified (O/~ 

(%rank) (TMHMM) 

2 lb11 .02.5450, lb11 .02.5500 Glucose regulated protein 795 20 35 98.7 0 
2 lb10.6k15.2290 BS2 protein disulfide isomerase 318 10 29 95.5 0 

lb927.3.4290, lb927.3.4300, lb927.3.4310, lb927.3.4320, lb927.3.4330 I 
PFR-1 I PFR-2 146 5 11 99.4 0 2, 3 lb927.8.4970, lb927.8.4980, lb927.8.4990, lb927.8.5000, lb927.8.5010 

2 lb927. 7 .2650 Hypothetical 119 5 5 40.3 0 
2 lb10.70.4200 Fatty acyl CoA synthetase 58 2 1 76.3 0 

2,3 lb927.6.3740, lb927.6.3750, lb927.6.3800 HSP70 54 1 3 97.6 0 
3 lb927.1.2340, lb927.1.2360, lb927.1.2380, lb927.1.2400 Alpha tubulin 377 9 32 99.9 0 ! 

3 lb09.211 .3550, lb09.211 .3560, lb09.211 .3590, lb09.211 .3540 Glycerol Kinase 334 11 17 98.2 0 I 
3 lb927.5.4980 VSG 278 13 14 45.6 1 I 

3 lb927.4.5010, lb927.8.7410 Cal reticulin 150 4 14 97.6 1 
3 lb927.3.3270 PFK 81 4 11 99.3 0 
3 lb11 .02.5450, lb11 .02.5500 Glucose regulated protein 80 2 4 98.7 0 
3 lb927.5.1780 Hypothetical 72 2 5 95 0 
3 lb927.6.5070 Hypothetical 63 1 1 47.7 0 I 
3 lb10.70.5650, lb10.70.5670 Elongation factor 57 2 4 99.9 0 I 

3 lb927.8.6660 Hypothetical 56 1 2 96.8 0 
3 lb927.5.2850 Hypothetical 44 2 4 91.9 0 
3 lb10.6k15.2290 BS2 protein disulfide isomerase 39 2 3 95.5 0 
4 lb10.61 .0540 Hypothetical 208 4 19 94.7 0 
4 Tb09.211 .0680 CAM prenyl protease 96 3 9 94.2 5 
4 lb10.70.1370 Aldolase 79 3 7 99.1 0 
4 lb927.8.5440, lb927.8.5460, lb927.8.5470 Calcium binding protein 45 1 6 96.8 0 
4 lb927.2.6150 lbNT2 42 1 1 85.8 11 
5 lb10.6k15.3640 Altemative oxidase 98 3 11 95.9 1 
5 lb927.5.1210 Short-chain dehydrogenase 92 3 15 95.6 2 
5 lb09.211 .1750 Mito carrier protein 73 2 4 96.8 1 
6 lb927.8.5440, lb927.8.5460, lb927.8.5470 Calcium binding protein 136 3 12 96.8 0 
6 lb11 .02.0010 Hypothetical 50 1 4 67.2 0 

- - - -

Table 5.2 - Table of all proteins identified from protein bands that partitioned differentially in the Triton X-114 aqueous and detergent phases (see Figure 5.2). 
Score, MOWSE score defined by MASCO~ at p = 0.05; gCAl, genomic codon adaptation index (see Chapter 2); TmPred, trans-membrane prediction defined by 
TMHMM algorithm (see Chapter 2). 
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Figure 5.3 - Analysis of sodium carbonate treatment of T. bruce; plasma membrane 
preparations run on a 12% 1DGE. Lanes consist of untreated plasma membrane samples 
(A), and proteins that were insoluble (8) or soluble (C) in aqueous sodium carbonate. 
Protein bands that displayed differential solubility were selected for analysis by mass 
spectrometry (highlighted with an arrow). Each lane was loaded with -35~g of protein. 
Molecular weight (kDa) markers (Mwt) are shown on the left hand side. 



Sand 
No. Sequence 

geAI value TmPred 
Number 

Accession Number Gene annotation Score peptides Coverage 
(%rank) (TMHMM) 

identified ' %1 
1 Tbll .02.5450 Tbl1.02.5500 Glucose regulaled protein 771 24 39 98.7 0 
1 Tb927.3 .4290 Tb927.3.4300 Tb927 .3.4310 Tb927 .3.4320 Tb927.3.4330 PFR 307 8 19 99.3 0 
1 Tbl0.70.4200 Tb09.160.281O Fatty acyl coA synthetase 240 11 17 76.3 0 
1 Tb927.1.2340 Tb927.1.2360 Tb927.1.2380 Tb927 .1.2400 Alpha tubulin 205 6 19 99.9 0 
1 Tbll .0l .2530 Kinesin-like protein 135 7 10 84.1 0 
1 Tbl1 .01 .3110 HSP 70 115 6 9 99.3 0 
1 Tbl1.02 .5280 Glycerot 3 phosphate deh'idroaenase 114 6 13 95.6 0 
1 Tb927 .8 .4970 Tb927 .8.4980 Tb927 .8.4990 Tb927 .8.5000 Tb927 .8.5010 PFR-2 73 6 11 99.4 0 
1 Tb927.6 .3740 Tb927 .6.3750 Tb927 .6.3800 HSP70 72 2 5 97.6 0 
1 Tb927 .5.890 oliaosaccharvt transfer unit 69 4 8 85.1 10 
1 Tbl0.61 .3130 Iypothetical 63 2 5 91 .9 0 
1 Tb927.8 .6660 Iypothetical 61 1 2 96.8 0 
1 Tbl' .0' .3290 Iypothetical 59 4 8 90.7 0 
1 Tbl' .01.0480 f Iypothetical 56 2 6 90.6 9 
1 Tbl0.6kI5.1690 Hypothetical 56 3 4 78.7 7 
1 Tb927 .7.265O Hypothetical 53 2 6 40.3 0 
1 Tbll .01 .1680 Po/vIJbiQuitin 51 1 2 98 0 
1 Tb927.4 .1920 GPiandlor 50 1 2 78.2 2 
1 Tb927.7.1400 Hypothetical 46 3 7 33.5 2 
1 Tb" .03 .0030 ABC transporter 41 1 2 54.7 3 
1 Tbl1 .01 .165O SRPunit 38 2 4 68.7 0 
3 Tb927.3 .4290 Tb927 .3.4300 Tb927.3.4310 Tb927 .3.4320 Tb927 .3.4330 PFR-l 96 5 5 99.3 0 
3 Tb927.6.3840 Retiajon domain protein 80 2 12 95.1 3 
3 Tb927.7.3410 Centrin 39 2 14 92.8 0 
3 Tb09.244.1980 leucine rich repeat protein 38 4 2 5.4 0 

2 
Tb927 .3.4290. Tb927.3.4300. Tb927.3.4310. Tb927.3.4320. Tb927.3.4330 I 

PFR-l I PFR-2 1096 42 43 99.3 0 
Tb927.8.4970. Tb927.8.4980. Tb927.8.4990. Tb927.8.5000. Tb927 .8 .5010 

2 Tbl1.02.545O Tbl1.02.5500 Glucose reQulated protein 332 9 18 98.7 0 
2 Tb05.5KS.130 Tb927.S.4480 PFR Par4 134 6 9 56.3 0 
2 Tb927.7 .265O Hypothetical 126 3 7 40.3 0 
2 Tb927.6.3740 Tb927.6.375O Tb927 .6.3800 HSP 70 107 3 7 97.6 0 
2 Tb927.5.2850 Hypothetical 96 3 7 91 .9 0 
2 Tb927.8 .6660 Hypothetical 88 3 8 96.8 0 
2 Tbl0.6klS.2290 BS2 proteiin disulfide isomerase 84 3 6 9S.S 0 
2 Tbl1.02 .0170 Hypothetical 83 4 11 42.4 0 
2 Tb927 .1 .. 2340 Tb927.1.2360 Tb927.1.2380 Tb927.1.2400 Alpha tubulin 74 2 6 99.9 0 
2 Tb927.1.4180 Hypothetical 70 1 2 88.7 0 
2 Tb" .0' .5'00 PFR 66 3 7 93.7 0 
2 Tbl0.6k15.2670 Hypothetical 63 2 3 71 .2 0 
2 Tbll .0l .2530 Kinesin-~l<eprotein 61 2 3 84 .1 0 
2 Tb927.1.2330 Tb927 .1.2350 Tb927.1.2370 Tb927 .1.2390 Tb927.1.2410 Beta tubulin 52 1 2 99.9 0 
2 Tbll .0l .1680 Po/vubiQuitin 47 1 2 98 0 
2 ---- Tbl1.01 .3960 J::M><>tIl.etical __ 38 . 3 8 69.8 0 

Table 5.3- Table of all proteins identified from protein bands that were insoluble (Bands 1 and 3) or soluble (Bands 2 and 4) in sodium carbonate solution (see 
Figure 5.3). Score, MOWSE score defined by MASCO~ at p = 0.05; gCAI, genomic codon adaptation index (see Chapter 2); TmPred, trans-membrane 
prediction defined by TMHMM algorithm (see Chapter 2). 
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Figure 5.4 - Analysis of calcium calmodulin washed (A) and unwashed (8) T. bruce; plasma 
membrane preparations. Samples were run on an 8% 1DGE until the 50kDa marker had 
reached the end of the gel. Nine corresponding bands from each lane that displayed 
differential solubility were selected for analysis by mass spectrometry. Molecular weight 
(kDa) markers (Mwt) are shown on the left hand side. 
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5.3.2 DiGE Analyses 

5.3.2.1 20 PAGE 

A total of III spots were identified as being differentially regulated between the parental 

TbAT! KO and the drug resistant 848 cell lines (Figure 5.5). To enable easy gel-to-gel 

comparison, BVA and DIA-analysed data can be viewed in a variety of ways. For each 

spot, these include a 3-dimensional view and a graphical summary of all gels in which the 

spot was identified (Figure 5.6). Of the III spots that were statistically validated as being 

up or down regulated relative to the two cells lines, only 28 spots (representing a total of 

43 proteins) were positively identified by mass spectrometry (Table 5.4). Interestingly, it 

appears that there are two blocks of co-localised proteins that are essentially exclusively 

expressed only in the TbA Tl KO line or in the 848 cell line (Figure 5.5). The different 

masses and iso-electric points of this block of proteins suggest that the blocks represent 

two differentially expressed sets of proteins rather than the effect being mediated by post

translational modifications to a single group of common proteins. We analysed for any 

commonality in proteins identified in these two groups, but did not find any duplication. 

A major problem with running T. bruce; whole cell extracts was consistently poor gel 

resolution in the second dimension i.e. when separating by molecular weight. Despite 

repeating the experiment several times and adding additional protease inhibitors, we were 

unable to resolve this issue. When running purified PM samples (see Chapter 4) the 

resolution was excellent. This suggests that despite supplementing with multiple protease 

inhibitors, protein degradation was occurring during sample preparation, and that the 

streaking was not a result of technical errors in running the samples on the gels. This 

phenomenon was not observed when performing a very similar analysis on procyclic T. 

bruce; whole cell extracts (Foucher et ol., 2006). This suggests that there could be an 

additional proteolytic factor associated exclusively with the bloodstream form stage, which 

is resistant to standard protease inhibitors. Additionally, the fractionation protocol appears 

to remove this factor thus preventing PM sheet proteolysis. 
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Figure 5.5 - Differential protein expression analysis of T. bruceiwhole cell extracts isolated 
from TbAT1 KO cells labelled with Cy3 (A) or pentamidine resistant 848 cells labelled with 
Cy5(8) separated by pi and mass on a pH 3-10 non-linear 2DGE. These images are derived 
from a single gel, but are representative of the replicate gels. Spots outlined in black were 
identified as being statistically up or down regulated in the two samples and were selected 
for MS analysis. A large discordant block of proteins between the two gel images is also 
highlighted (0 ). 
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Figure 5.6 - Down regulation of spot 2621 in drug resistant 848 T. bruce; compared to the 
parental TbAT1 KO strain. Location of the spot in the 848 gel image (A), its 3D intensity 
representation (8) and gel-to-gel intensity comparisons (C) are shown. This spot was 
identified as heat shock protein 70 (Tb11.01.311 0) by mass spectrometry. 
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Spot Access ion 
No. 

TmPred Av. 
10 Number 

Gene Annotat ion peptide Score 
(TMHMM ) Rat io 

Gene Function 
ID's 

1558 
Tbl1 .01 0230 Hypothetical protein , conserved 3 ~3 0 

4876 Unknown 

Tb92763090 Hypothetical protein conserved 2 34 0 Unknown 
Tb11 22 .0007 Hypothetical protein, conserved 3 32 0 Unknown 

1547 
Tb927 8 7590 

Receptor-type adenylate cyclase 
5 

GRESAG 4, putat".e 
47 1 

2694 
Signalling 

Tb10 .~ 0095 
Vanant surface glycoprotein (VSG ), 3 42 a Antigenic Vanatlon 

putati ..... 
Tb927 4 5020. RNA polymerase IIA largest subunit 2 38 a Transcnptlon I Translation I 

1626 Tbn 7 8.7400 235 DNA repair 
Tb927.52990 Hypothehcal protein , conserved 2 32 a Unknown 

Tb927 8.7590 
Receptor-type adenylate cyclase 4 32 1 Signalling 

GRESAG 4, putati ..... 
1545 Tb11.02 1540 Hypothetical protein, conserved 3 37 0 23.44 Unknown 

Tb09 .160 0930 Protein kinase, putatl'~ 2 39 0 Signalling 
1521 

Tb92787590 Receptor-ty pe adenylate cycla.e 3 37 1 
221 

Signalling 
GRESAG 4, putali ..... 

1515 Tb09 ~ 0184 
Vanant surface glycoprotein (VSG , 

2 37 0 925 Antigenic Vanatlon 
pseudogene). putatl"" 

1331 Tb9275 320 Receptor-type adenylate cyclase 
2 34 1 506 Signalling 

Tbl1 01 5310 GRESAG 4, putati ..... 
2669 Tb10 .61.2680 PYK 1 pyruvate kinase 1 1 32 0 4.42 Energy Metabolism 
2353 Tb927.5 3240 1iYP0thelicai protein , conserved 2 32 0 4 13 Unknown 

1286 Tb09 .244 0780 
Vanant surface glycoprotein (VSG , 

pseudogene), putative 
1 46 a 389 Antigenic V.nation 

Tb10 .70 5650, TE F 1 elongation factor 1-alpha 6 123 a Transcnption I Translation I 

1400 Tb1070.5670 343 DNA repa" 

Tbl0 ~ . 0047 
Variant surface glycoprotein (VSG , 3 33 0 Antigenic Veriatlon 

pseudogene) putatlll8 
1404 Tb9277.6670 Hypothetical protein , conserved 1 32 3 2.71 Unknown 
1422 Tbll .03.0340 Protein kinase , putatlll8 3 37 0 -207 S ignalling 

2621 Tbll .013110 Heat shock protein 70 2 ee 0 -2 Ie Protein F aiding I 
Degradation 

2584 Tb927.1.5320 
Variant surface glycoprotein (VSG , 

pseudogene) 
4 35 0 -2.33 Antigenic Vartat ion 

1146 Tb92761480 Hy pathetical prOtein, conaeMd 2 31 1 ·241 Unknown 

1003 Tb92765710 
Vanant surface glycoprotein (VSG, 4 3e 0 -337 Antlganlc Vartat lon 

pseudogene), putatlll8 

1368 
Tbll .0l .5310, Receptor-type adenylate cyclase 

1 31 2 ·347 S ignalling 
Tb927.5.320 GRESAG 4, putah .... 

1032 Tbll .02 .0490 KREPS4 RNA·editing complex protein 1 33 0 ·382 
Transcnptlon I Translation I 

DNA repair 

2485 
Tbll .01.5310, Receptor-type adenylate cycla .. 

1 33 2 -42 S igneiling 
Tb927.5.320 GRESAG 4, putati .... 

Tb09 .244.0780 
Vanant surface glycoprotein (VSG , 

e 233 0 Ant igenic Vartatlon 
pseudogene) 

2642 Tbl0.70.<l740 Enolase 5 175 0 -471 Energy Metabolism 

Tbl1 .01 .2000 
hslVU complex proteolytic subunit, 1 49 0 Protein F aiding I 

putatl .... Degradat ion 
Tb09 .~ . 0142 Variant surface glycoprotein 2 33 0 Antigen ic Variat ion 

26<14 
Tbll .02 .0490 KREPS4 RNA-editinO complex protein 7 36 0 

-S 06 Tran.cnphon I Tr.nllet lon I 
DNA repair 

Tb10.26.0090 Hypothetica l protein, conaeMd 3 41 0 Unknown 

Tb927.5.S90 
Protein phosphatase 1, regulatory 

3 40 0 Signalling subunit, putathe 

2450 Tb927.8.4970, ·513 
Tb927 .8.4980, PFR·S I 2 69 kOa paraftagellar rod 
Tb927 .8.4990, protein 3 40 0 Cytolkeleton Auoclated 
Tb927 .85000, 
Tb9278.5010 

2582 Tb927 .3.930 Dynein heavy chain , putati .... 3 37 0 -618 Cytoskeleton Auoclated 

Tb09 .244.0780 
Variant surface glycoprotein (VSG, 5 312 0 Antigenic Vanatlon 

pseudogene), putatill8 
2668 Tb9274.5330 Hypothetical protein 1 33 0 -644 Unknown 

Tb927.8.7590 
Receptor-type adenylate cyclase 5 35 1 Signall ing 

GRESAG 4, putatl .... 

1328 Tb927 .5.4780 
Variant surface glycoprotein (VSG, 

pseudogene), putatl .... 
3 31 0 -004 Antiganlc Variation 

2422 Tbll .0l .6420 
PIF1 DNA napalr and recombination 2 32 0 ·057 

DNA repair and 
helicase protein PIF1 , putati .... recombination 

Table 5.4 - Differentially regulated proteins identified from DiGE analysis performed on T. 
bruce; whole cell extracts. Spots are arranged according to average fold -regulation relative 
to the parental TbAT1 KO line. Proteins up regulated in 848 are highlighted in green, while 
those down regulated in 848 are highlighted in red. 
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5.3.2.2 16-BAC 

The enrichment strategies outlined above were not completed in time to be used for the 16-

BAC DiGE analysis. The experiment was therefore performed on PM samples generated 

from the fractionation procedure. To compensate for the reduced resolution of the 16-BAC 

gels in comparison to standard 2DGE, gels were scanned at two PMT voltages to 

effectively increase the dynamic range of the scanner. 

A total of 16 differentially regulated spots were identified from the analysis, of which 10 

spots gave positive protein identifications by MS. 3 of these spots yielded single protein 

identifications, while two or more protein identifications were made in the other 7 spots. 

All protein identifications are shown in Table 5.5. The majority of spots showed consistent 

up or down regulation (Figure 5.8), however one in particular (spot 365) showed very 

different spot intensities for the replicate samples (Figure 5.9). Initially this was thought to 

be a contaminant e.g. keratin introduced by the user during sample preparation. However 

when searched against the NCBI human genome database no significant hits were 

returned. 
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A 

B 

Figure 5.7 - Differential protein expression analysis of T. bruce; PM samples isolated from 
TbAT1 KO labelled with Cy3 (A) or pentamidine resistant B48 cells labelled with Cy5 (B) 
separated by mass on both dimensions on a i6-BAC gel. Outlined spots indicate spots 
selected for MS analysis as they were identified as being up or down regulated between the 
two samples. 
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Spot 
No. 

TmPred Av. 
Accession Number Gene Annotation peptide Score Gene Function 

ID 
ID's 

(TMHMM) Ratio 

Tb927.1.2340, Tb927.1.2360, 
Alpha Tubulin 28 1024 0 

Cytoskeleton 

733 
Tb927.1.2380.Tb927.1.2400 

5.67 
Associated 

Tb927.1.2330, Tb927.1.2350, 
Beta Tubulin 22 713 0 

Cytoskeleton 
Tb927.1.2370, Tb927 1.2390 Associated 

Tb927. 2. 2160 Hypothetical protein , consen.ed 16 608 0 Unknown 

Tb10.70.1370 
ALD fructose-bisphosphate aldolase, 

5 154 0 
Energy 

glycosomal , putatil.e metabolism 
Tb927.1.2340, Tb927.1 .2360, 

Alpha Tubulin 5 151 0 
Cytoskeleton 

Tb927.1.2380,Tb9271 .2400 Associated 
Tb10.6k15.0140 Hypothetocal protein. conser.ed 3 88 0 Unknown 

818 Tb927.1.2330, Tb927.1.2350, 
3 73 

4.42 Cytoskeleton 
Beta Tubulin 0 

Tb927.1.2370. Tb927.1.2390 Associated 
Tb10.70.4540 Hypothetical protein , conseMd 1 32 0 Unknown 
Tb927.1.1330 Hypothetical protein, consen.ed 1 32 0 Unknown 

Eukaryotic initiation factor 4a, Transcription I 
Tb09.160.3270 

putati..e 
1 31 0 Translation I 

DNA repair 

183 Tb927.3.930 Dynein hea"" chain, putatiw 4 44 0 1.26 
Cytoskeleton 
Associated 

Tb10.70.5800 I Tb10.70.5820 HK 1 I HK2 hexokinase 1 38 0 Energy 

483 -1.39 
metabolism 

Tb927.1.2340, Tb927.1.2360, 
Alpha tubulin 2 33 0 

Cytoskeleton 
Tb927.1.2380, Tb927.1.2400 Associated 
Tb927.3.3770, Tb927.3.3790 Hypothetical protein, consen.ed 1 46 0 Unknown 

863 
Tb927.3.930 Dynein hea"" chain, putatlw 2 32 0 

-1,48 Cytoskeleton 
Associated 

555 Tb927.8.3530 
Glycerol-3-phosphate dehydrogenase 

4 115 0 -2.07 
Energy 

[NAD+] , glycosomal metabolism 

Tb10.70.5820 HKl hexokinase 27 787 0 
Energy 

metabolism 

Tb10.70.5800 HK2 hexokinase 23 730 0 
Energy 

metabolism 
Tb927.1.2340, Tb927.1.2360, 
Tb927.1.2380, Tb927.1.2400 

Alpha tubulin 24 728 0 
Cytoskeleton 
Associated 

Tb11 .01 .2460 Hypothetical protein , conseMd 3 72 1 Unknown 

Tb927.3.930 Dynein hea"" chain, putatlw 4 55 0 
Cytoskeleton 
Associated 

Tb927.8.7590 
Receptor-type adenylate cyclase 

4 42 1 Signalling 
GRESAG 4, putatiw 

Tb927.5.2270 Hypothetical protein, consen.ed 2 40 0 Unknown 

432 
Tb11 .01 .2090 Hypothetical protein, conseMd 2 36 0 

-2,3 
Unknown 

Transcription I 
Tb927.4.5020, Tb927.8.7400 RNA polymerase IIA largest subunit 4 36 0 Translation I 

DNA repair 

Tb11 .01 .3110 Heat shock protein 70 1 35 0 
Protein Folding 
I Degradation 

Elongation factor 1-alpha, putatlw; 
TranSCription I 

Tb09.211 .2110 hsp70 subfamily B suppressor 1 
2 33 0 Translation I 

DNA repair 

Tb11 .44.0001 
Expression site-associated gene 

5 32 0 Unknown 
(ESAG, pseudogene), putatiw 

Tb927.4.S040 
Dihydrolipoamide dehydrogenase, 

1 31 0 
Energy 

putati..e metabolism 

Table 5_5 - Differentially regulated proteins identified from i6-8AC DiGE analysis performed 
on T. bruce; PM samples. Spots are arranged according to average fold-regulation relative 
to the parental TbATi KO line. Proteins up regulated in 848 are highlighted in green, while 
those down regulated in 848 are highlighted in red . 
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Figure 5.8 - Two-fold down regulation of spot 555 in drug resistant 848 T. bruce; compared 
to the parental TbAT1 KO strain. Location of the spot in the TbA T1 KO gel image (A), its 3D 
intensity representation (8) and gel-to-gel intensity comparisons (C) are shown. This spot 
was identified as glycerol-3-dehydrogenase. 
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Figure 5.9 - Potential up regulation of spot 365 in drug resistant 848 T. bruce; compared to 
the parental TbA T1 KO strain. Location of the spot in the 848 gel image (A), its 3D intensity 
representation (8) and gel-to-gel intensity comparisons are shown. This spot was not 
identified by MS analysis. 
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5.3.2.3 Comparison of the DiGE approaches 

A number of proteins were identified as being up or down regulated in both of the DiGE 

approaches employed (see Table 5.6). However there does not seem to be much harmony 

between the two experiments in terms of the change in protein expression. For example, 

the RNA Polymerase IIA large subunit proteins (Tb927.4.5200 / Tb927.8.7400) are 

identified as being modestly down regulated (-2.3) in the 16-BAC experiment, but 

massively up regulated (23.5) in the whole cell extract 2DGE DiGE experiment. This may 

be due to a number of reasons. Firstly, in the 16-8AC gel, these two proteins were 

identified in the highly heterogeneous (i.e. containing mUltiple proteins) spot 432. Changes 

in expression within a single spot are cumulative, and therefore it is possible (depending on 

the relative contribution of each protein species to spot intensity) that a protein was up 

regulated, but within the gel region it migrated to, the down regulation of other proteins 

give an overall reduction in spot intensity. In fact, the only protein that displays a 

consistent change in expression between the two experiments is liSP 70 which is down 

regulated -2-fold in the resistant 848 strain. Another reason for the discordance between 

the two DiGE approaches is that they used two different samples. 8y fractionating to 

generate an enriched PM sample (in the 16-BAC DiGE approach), proteins were 

specifically enriched / depleted, causing a 'pseudo' up or down regulation ora protein 

relative to the whole cell extract. It is therefore perhaps not possible to directly compare 

these two approaches. 

To try and see if classes of proteins were being modulated, genes were classified by 

function. Although excellent gene function databases exist for the human genome e.g. 

FunCat at the Munich Information Centre for Protein Sequences (MIPS -

http://mips.gsf.de/), there is no centralised classification for T. bruce; genes. However, the 

T. bruce; genome is annotated by the gene ontology (http://www.geneontology.org/) and 

GeneDB (http://www.genedb.org/) websites. A combination of these sites was used to 

classify each gene's cellular function. Interestingly, of the wide variety of gene functions 

only 6 functional classes (besides 'unknown') were identified (Table 5.7), perhaps 

suggesting that despite the different sample preparation procedures, the overall picture is 

remarkably consistent. 
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Av. Ratio 
Gene 10 Gene Annotation 

16-BAC DIGE ID's 2DGE DIGE ID's 
Tb927 .3.930 Dynein heavy chain , putative 1.26 -1.48 -2.3 -6.16 

Tb927.4.5020 I RNA polymerase IIA largest 
-2.3 23.5 

Tb927.8.7400 subunit 

Tb927.8.7590 
Receptor-type adenylate cyclase 

-2.3 26 .94 22 .1 -6.44 
GRESAG 4, putative 

Tb11 .01 .3110 Heat shock protein 70 -2.3 -2.16 

Table 5.6 - Proteins identified as being up or down regulated in both the standard 2DGE 
whole cell extract and 16·BAC plasma membrane fractionated DiGE experiments. Where 
proteins were identified multiple times within an experiment, unique identifications are 
shown first. 

Gene Function 

Cytoskeleton Associated 
Energy metabolism 
Antigenic Variation 

Protein Folding I Degradation 
Signalling 

Transcription I Translation I DNA repair 
Unknown 

Total 

Experimental Approach 
Soluble DiGE 16-BAC DiGE 

2 9 
2 6 

11 
2 1 

11 1 
S 3 
10 9 

43 29 

Table 5.7 • Functional analysis of the genes identified as being differentially expressed by 
DiGE analysis in the B48 drug-resistant strain in comparison to the parental TbAT1 KO 
strain in whole cell extracts (Soluble DiGE) and PM preparations (16·BAC DiGE). 
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We also noticed that a large number of the regulated proteins were identified as adenylate 

cyclases. By collating these identifications together (Table 5.8) it immediately becomes 

obvious that in fact potentially only three AC's are represented (two of which could not be 

differentiated due to sequence homology). All three of these proteins have been previously 

observed in proteomic experiments performed on procylic T. brucei (Jones et al .• 2006). 

and they are all predicted to contain one (Tb927.5.320 / Tb927.8.7S90) or two TMD's 

(Tb 11.01.5310) as well as a signal peptide for trafficking to the plasma membrane. These 

proteins are therefore likely to be true plasma membrane proteins. 
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Gene Accession TmPred 
No. 

Annotation Number (TMHMM) 
Source Spot ID peptide Score Av. Ratio 

ID's 

2DGE 1547 5 47 26.94 

Receptor-
2DGE 1626 4 32 23 .5 

type Tb927.8.7590 1 2DGE 1521 3 37 22 .1 

adenylate 16-BAC 432 4 42 -2.3 
cyclase 2DGE 2668 5 35 -6.44 

GRESAG 4, 
2DGE 1331 2 34 5.06 

putative Tb927.5.320, 
1/2 2DGE 1368 1 31 -3.47 Tb11 .01 .5310 

2DGE 2485 1 33 -4.2 

Table 5.8 - Regulation of proteins identified as putative adenylate cyclase's identified by 
standard 2DGE DiGE and 16-BAC DiGE. Av. ratios are expressed relative to KO. TmPred, 
Number of predicted TMD's. 
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5.3.3 I-CAT 

From the Proteogest analysis (Cagney et al., 2003),300 proteins i.e. less than 3% of the 

proteome were identified as lacking cysteine-containing residues. Apart from a lack of 

poly topic membrane proteins containing 4 or more predicted TMD's, analysis of these 

proteins did not reveal any obvious associations i.e. they appeared to be a random selection 

of proteins from the proteome. This suggests that I-CAT should theoretically give good 

overall proteome coverage. However, it would have been beneficial to extend this analysis 

to map the number of cysteine containing peptides per protein. By manipulating the 

theoretical probability of anyone peptide being detected by MS, the likely coverage could 

have been better calculated i.e. if a protein generated 3 cysteine containing peptides and 

there was a 50% chance that anyone peptide would be measured by MS, on average only 1 

of these peptides would be observed, which would be unlikely to generate a significant 

score. In the absence of such an analysis, we felt it would be prudent to analyse both the 

affinity purified cysteine-derivitised peptides and the unlabelled peptides. 

MS data derived from PM fraction / calmodulin washed PM fraction, for both labelled and 

unlabelled peptides were analysed by MASCOT®. From all of the I-CAT labelled 

fractions, only two proteins - alpha tubulin (Tb927.1.2340, Tb927.1.2360, Tb927.1.2380, 

Tb927.1.2400), and paraflagellar rod protein (Tb927.3.4290, Tb927.3.4300, Tb927 .3.4310, 

Tb927.3.4320, Tb927.3.4330) were confidently identified. However when analysed using 

the Pro I-CAT software, the only significant hit (with a total score of 1.3 i.e. 95% 

confident) was to Gim5B (Tb09.211.2740), which has been localised to the glycosome. In 

contrast,72 proteins were identified from all of the unlabelled fractions. 
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5.4 Discussion 

In order to perform a quantitative analysis on the PM proteome of T. brucei, the initial aim 

was to remove the contaminating cytoskeletal proteins that were identified in the PM 

preparations in Chapter 4. While a number of techniques have been developed for such an 

approach, in our hands their ability to selectively enrich for specific proteins (as 

determined by I D SDS-PAGE) overall was not very effective. Further complications e.g. 

removal of the detergent Triton X-114 proved a major problem. It was also difficult to 

quantify the effect that each enrichment technique had on the proteome, as banding 

patterns were often difficult to compare. A recombinant line expressing a tagged 

membrane protein would have been immensely useful in determining the optimum 

enrichment protocol, although attempts to generate such a line (Chapter 4) were 

unsuccessful. 

With hindsight, it would have been useful to examine the effect of combining multiple 

enrichment techniques on the proteome. It has been reported that the various techniques 

differ in the type of protein they select (Zhang e/ al., 2006). For example chloroform / 

methanol partitioning was identified as being the most selective in terms of retaining 

hydrophobic, but not low-abundance proteins. In comparison, Triton X-114 was able to 

enrich for low-abundance proteins, but was less capable in resolving highly hydrophobic 

proteins (Zhang et aI., 2006). By combining these two procedures, it may be possible to 

select for low-abundance hydrophobic proteins. An alternative approach would be to try 

and prevent the non-specific association of proteins to the plasma membrane. Therefore, 

although cells need to be sheared in a hypo-osmotic buffer, by immediately elevating the 

pH post-lysis it might have been possible to prevent protein adhesion which has been so 

difficult to reverse. 

It was surprising to see a number of VSGs identified as being differentially regulated in the 

soluble DiGE approach (i.e. using a whole cell extract), considering trypanosomes exhibit 

tight regulation on VSG gene expression to ensure that only a single VSG is transcribed at 

anyone time (Donelson, 2003). However, a closer inspection of the MS data reveals that 

with the exception ofTb09.244.0780 (which was definitively identified twice), all other 

VSG identifications had scores close to the confidence threshold (although they were 

unambiguously identified). To confirm the presence of these additional VSG proteins, it 

would be necessary to repeat the experiment, as it is possible that they are false positives. 

Another explanation is that a subset of the total population oftrypanosomes has switched 
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expression to one of the other VSGs present in the genome. If so, then these additional 

isoforms would appear as regulated spots. As expected, no VSG's were identified from the 

16-BAC approach. 

The 16-BAC DiGE approach employed in this chapter has not previously been published. 

This new application of the DiGE technology promised to deliver the advantages of a gel

based system i.e. resolution of different protein isoforms (although most likely only 

molecular weight variants e.g. truncations etc), while removing traditional2DGE-based 

impediments e.g. hydrophobic protein incompatibilities. In summary, 16-BAC DiGE is 

able to identify changes in the proteome, including poly topic membrane proteins (although 

none were identified as being regulated in this analysis). There are limitations in terms of 

this technique's ability to resolve highly complex mixtures, and this approach is therefore 

envisaged to be only applicable for highly fractionated / simple samples. However, it is 

important to consider that most poly topic integral membrane proteins (by virtue of the 

limited space that is available for them to occupy) are expressed at very low levels, and 

would therefore only be identified if highly enriched, for example by subcellular 

fractionation. One of the issues that may be resolvable is where multiple proteins are 

identified in a single spot, and therefore where the relative contribution of each to the total 

fluorescence is unknown. While it would be impossible to determine the fluorescence 

contribution of each protein, the relative abundance ofthe different protein species may be 

estimated following an association being identified between the number of pep tides 

identified and the relative abundance of that protein (Uu et al., 2004). Taking this to its 

ultimate conclusion, it should be possible to run gels with different sample ratios and use 

changes in the number of peptide identifications to determine protein abundance. 

It would have been interesting to analyse the physicochemical properties of proteins in 

relation to their deviation from the theoretical diagonal expected when separating proteins 

by MW in two dimensions on the 16-BAC gels, to test whether particular protein classes 

were specifically affected. Time permitting, applying the same approach to the newly 

developed J6-BAC multiphasic buffer system (m 16-BAC) (Kramer. 2006) could also have 

enabled the development of protocols to selectively isolate particular protein classes by 

virtue of their gel migration, as a result of the different conditions employed within the two 

dimensions. 

In comparison to the soluble DiGE analysis, a far greater proportion of the spots selected 

for MS analysis were identified in the 16-BAC DiGE approach. This could be due to the 

reduced resolution in the 16-BAC gels that results in proteins being located far closer to 
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one another. In addition, the permissive 16-BAC conditions enable many more 

(particularly hydrophobic) proteins to enter the gel phase, which would have been lost 

during the IEF stage in 20GE. Any spot picked at random would therefore be more likely 

to contain more than one protein, making a protein identification of one (or more) of the 

proteins also more likely. Indeed, the relatively large number of proteins that are identified 

from certain spots supports this hypothesis. For example 14 proteins were identified from 

spot 432. Interestingly, when searching against the NCBI database, this spot was the only 

one found to contain keratin contamination. On the other hand it is likely that a number of 

spots do in fact only contain a single protein. However, unlike 20GE spots, all species ofa 

specific protein possessing the same or a similar molecular weight will co-migrate. This 

would lead to more intense spots i.e. higher local protein concentrations, which in tum 

would improve the chance of identifying that specific protein. 

The dynamic range of protein regulation is far smaller in the 16-DAC over the 20GE 

OiGE analysis (-6 fold versus -48 fold respectively). This could be due to two reasons. 

Firstly, if a regulated protein co-migrates with a number of other (unregulated) proteins 

into a single spot, only the cumulative change in spot intensity will be measured. Therefore 

the other proteins present in the same spot will mask even large changes in expression ofa 

single protein species. Another possibility is that instead of regulating protein copy 

number, the ratio of different protein isoforms is regulated. If these protein species 

essentially do not vary in molecular weight e.g. phosphorylation, they are unlikely to be 

separated on the 16-BAC gel, and therefore as long as total protein concentration remains 

constant, no change in protein levels will be identified. 

The I-CAT analysis was extremely disappointing in terms of its ability to provide 

quantitative data. Originally heralded for its ability as a technique to reduce sample 

complexity (by virtue of selective retention of cysteine containing residues), in fact this 

very reduction has reduced sample complexity to such an extent that only three proteins (a

tubulin, paraflagellar rod, and Gim 58) were identified, and none with quantitative data. 

Compared with the plasma membrane sub-proteome (as defined in Chapter 4), this number 

of identifications very obviously does not reflect the true sample complexity. While some 

peptides have no doubt been lost during the separation of labelled and unlabelled peptides, 

the majority of the labelled peptides should have been retained for analysis. A large 

number of I-CAT labelled peptides were identified, although virtually none were useful for 

protein identification, most probably due to a lack of corroborating peptides. In addition, 

the results from the two search engines; Pro I-CAT and MASCOTiIl did not correlate. This 

was despite both being given the same search parameters (e.g. MS tolerance, cleavage 
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specificity etc} and raw MS data files. This is perhaps not surprising considering that 

MASCOTiIil and Pro I-CAT use different algorithms: MOWSE and INTERROGA TORTM 

respectively. However, one would expect a certain amount of consistency between the two 

engines. 

Attention therefore focused on the unlabelled peptide set, from which a considerable but by 

no means exhaustive set of proteins were identified (72 compared to 1233 proteins in 

Chapter 4). This reduced number must, at least in part, be due to the removal of cysteine

containing peptides, although judging by the average peptide score it does appear that the 

MS data quality was slightly inferior. It is possible that specifically labelling membrane 

proteins was poor in this experiment, and if repeated it would be advisable to label (in the 

presence ofSDS and Urea) denatured proteins (Ramus el al., 2006). However, although 

MASCOTiIil is able to identify heavy and light I-CAT tags on cysteine containing peptides, 

it is unable to quantify changes in expression. Frustratingly, there therefore appears to be 

enough information in the two data sets to both identify proteins (unlabelled) and quantify 

(labelled) their expression levels, however there is no software capable of combining the 

two. It would seem then that the greatest limitation to I-CAT is the inability to integrate 

these two complementary data sets, without which (particularly when focusing on low 

abundance poly topic membrane proteins) success would seem far from guaranteed. 

The DiGE approaches identified a number of proteins that were expressed at different 

levels in the 848 pentamidine resistant strain compared to the parental TbA Tl KO line. 

Considering the resistance phenotype outlined in Chapter 3, it was difficult to imagine a 

direct role for any of the proteins identified in pentamidine uptake, considering none were 

predicted to contain more than 3 TMD's, and were therefore unlikely to represent 

pentamidine transporters or channels. 

Despite the lack of poly topic integral membrane proteins identified, it is possible that one 

or more could modulate the transporter(s) responsible for drug transport, or its expression. 

Transport activity could be altered by protein-protein interactions or protein modifications, 

e.g. phosphorylation to induce protein conformational change. While more than 150 

kinases have been identified in the T. brucei kinome (Berriman el aI., 2005) most have 

only been identified by homology searching, and therefore their roles remain unknown. 

Interestingly, the T. bruce; kinome lack a number of kinase families, e.g. there are no 

receptor-linked kinases, but other kinase families are expanded, possibly to cope with 

environmental stress factors (Naula et al., 2005). Two putative protein kinases were 

identified as being differentially regulated in the 2DGE DiGE approach. One in particular 
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(Tb09.160.0930) was massively up regulated in the 848 strain. Kinases, as with most 

enzymes are able to catalyse reactions extremely rapidly. Assuming that this kinase 

phosphorylates HAPTl to either reduce its activity, substrate specificity or propensity to be 

internalised, all of which would result in a reduction in pentamidine accumulation, up 

regulating this kinase would provide one route to down regulation of the transporter 

activity. A kinase-activated cascade to changes in gene expression is another possibility. 

What is clear from the 16-8AC analysis is that there have been extensive changes in the 

pellicular cytoskeleton associated with the plasma membrane. For example a number of 

tubulins have been up regulated in the drug resistant strain. It is difficult to see that 

reinforcing the structural integrity of the cells in this way assists the parasite in adapting to 

the drug. Alternatively this response may be a common stress response to the effect of the 

pentamidine. 

A large group of proteins identified as being differentially regulated are the receptor-type 

adenylate cyclases (AC's). This class of proteins synthesise a second messenger molecule

cyclic adenosine monophosphate (cAMP), which is found in almost all living organisms, 

including trypanosomes. Interestingly the structure of trypanosoma I AC's differ markedly 

from their mammalian hosts, and consist of a highly variable extracellular N-terminal 

domain and an intracellular catalytic domain linked by a single trans-membrane domain 

(Naula and Seebeck, 2000). In addition, while mammalian AC's are stimulated by G

protein coupled receptors (GPCR), no GPCRs have yet been detected in any of the 

trypanosomatids. This suggests that trypanosomal AC's, of which more than 60 genes are 

annotated as AC's in the published genome (Berriman et al., 2005), may be enzyme linked 

receptors, and therefore represent novel drug targets (Seebeck et al., 2004). From Table 

5.8, a maximum of three AC's are regulated (two ORF's are identified from the same set of 

peptides). These genes are identified as being differentially regulated in multiple spots i.e. 

there are multiple protein isoforms. Indeed the vast majority of identifications are made 

from the soluble proteome (separated by 2DGE), whereas only one identification is made 

from the PM preps separated on a 16-BAC gel. Furthermore, the level of regulation in the 

2DGE approach is far greater e.g. >20 fold, than in the 16-BAC approach e.g. -2.3 fold. All 

this suggests that total protein abundance of each of AC might be approximately constant, 

and that regulation of these AC's therefore alters the abundance of specific AC isoforms. 

This explains why there is both up and down regulation of the same protein. For both 

proteins these isoforms consist of either a relatively small truncation product «50 kDa), or 

a protein series with slight variations in molecular weight and I or isoelectric point. 

Unfortunately due to the low sequence coverage the exact modifications could not be 
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identified. However for both proteins, the heavily truncated product (2668 and 2485) was 

down regulated in B48 and with the exception of spot 1368, all other isoforms up 

regulated. From the size of the truncation, this isoform obviously can not retain full AC 

function, therefore this would give an overall increase in the functional full-length 

transcript. Assuming that the full-length protein isoforms are differentially active, we 

postulate that this specific AC, Tb927.8.7590, and maybe one or two others, could in some 

way regulate HAPTlactivity. This could be via a number of mechanisms including altering 

protein expression, sequestering HAPTI from the plasma membrane to intracellular 

vesicles, or directly modulating HAPTlactivity. It is not very plausible that these AC 

isoforms are regulated as a result of directly sensing extracellular levels of pentamidine, as 

one would expect the resistance phenotype to be reversible over time and the PM 

preparations were derived from cells grown in the absence of pentamidine. We consider 

that these signalling proteins are very important and are likely to be able to elicit a number 

of cellular and/or metabolic effects, many of which could ablate the activity of HAPT, the 

physiological function of which is still unknown. 

A number of the regulated proteins are involved in transcription, translation or DNA 

repair. This is interesting considering pentamidine's minor groove DNA binding affinity 

(Shapiro and Englund, 1990), and the subsequent implication that its mode of action 

involves DNA damage (Wilson et al., 2005). This mode of action is supported by the 

finding that pentamidine is excluded from the mitochondria in a pentamidine resistant L. 

mexicana strain (Basselin et al., 2002). We therefore looked at the localisation of all these 

proteins and found that the majority are localised to the nucleus or cytoplasm. Interestingly 

though, the helicase - Pift (Tb 11.01.6420), which was shown to be -I O-fold down 

regulated in our drug resistant strain is predicted to be present in both the nucleus and 

mitochondrion. Pift-like proteins have been studied in many different organisms, but were 

first identified in Saccharomyces cerevisiae (Lahaye et al., 1991). Although not essential, 

Pift helps mediate nuclear genomic stability by the inhibition (Zhou et al., 2000) and 

removal (Boule et al., 2005) oftelomerase to reduce telomere elongation and de novo 

telomere formation (Schulz and Zakian, 1994). In addition to these roles, Pift helicases 

mediate other events in nuclear DNA replication, although its function in these processes is 

less well characterised (for review see (Boule and Zakian, 2006». In the mitochondria, 

Pift is heavily involved in maintaining mitochondrial genome stability (O'Rourke et al., 

2005), and if absent in yeast, the mitochondrial DNA is lost (Boule and Zakian, 2006). 

From the fluorescence work in Chapter 3, it is clear that down regulation of Pift does not 

give rise to an obvious loss of mitochondrial DNA. However it possible that pentamidine-
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bound DNA promotes Pift helicase activity in the kinetoplast to generate mini-circle 

linearisation. Indeed this outcome has previously been observed in T. equiperdum (Shapiro 

and Englund, 1990) and can lead to dyskinetoplastidy (i.e. the loss of the kinetoplast / 

mitochondrial DNA). We therefore hypothesise that Pift detects, unwinds, and maintains 

pentamidine-bound DNA in a linear conformation, creating a barrier to replication. By 

down-regulating expression ofPifl, mitochondrial DNA is not Iinearised and this 

replication block can be bypassed. This mechanism is likely to be associated with a fitness 

cost in terms of the parasite's ability to withstand oxidative stress (Doudican et al., 2005). 

This hypothesis could be tested by assessment of the sensitivity of the parental and drug 

resistant strains to hydrogen peroxide. 

The lack of in-depth functional annotation of many of the genes identified means that 

approximately 30% (21 175) of all the regulated proteins are simply annotated as 

hypothetical. This group of proteins represent the hardest to investigate, after all, where 

does one start characterising a protein without any indication of its role or function? 

Fortunately, a huge variety of techniques are available to interrogate gene function in 

trypanosomes e.g. RNAi, gene knockout, over-expression, as well as good assays for 

characterisation of these manipulated strains. Nevertheless there are many challenges in 

analysing this class of genes, but perhaps these genes represent the most exciting findings 

considering their potential for mediating a range of novel functions, possibly even 

including completely new biochemical pathways. 

In summary then it can be seen that a number of proteins have been identified as being 

differentially regulated in the B48 strain. The potential role of many of these in the drug 

resistance phenotype remains unclear and it is unlikely that all are directly linked to the 

phenotype. Many may be differentially regulated to compensate for those that mediate the 

resistance phenotype e.g. it is difficult to envisage structural proteins such as tubulin 

having a direct role in resistance. Alternatively, regulation of these proteins may simply 

reflect proteomic drift over time. Considering the dynamic nature of the proteome, and the 

fact that each sample analysis effectively represents a proteomic 'snapshot', a component 

ofthe differential regulation observed may fall within the homeostatic thresholds of the 

cell and despite the experimental replicates may represent natural variation within the 

population (e.g. with VSG switching, or differences in the cell cycle phase between 

populations). Despite these caveats, there are a number of interesting proteins e.g. Pifl, 

whose identification hints at their role in pentamidine resistance. Further investigation of 

these proteins is now required. 
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Chapter 6-

General Discussion 

A number of different strands of research have culminated in the production of this thesis. 

This chapter aims to combine the different strands to integrate the research into the current 

models of drug resistance in trypanosomes and highlight areas of further interest and where 

attention needs to be focused to ultimately elucidate the mechanism(s) of pentamidine 

resistance in our lab derived B48 T. bruce; strain. 

6.1 The Problem 

HAT is a disease that affects the rural poor throughout Africa. While the World Health 

Organisation has recently revised the number of people infected with 

trypanosomiasis(WHO, 2006), prompting new hopes to eradicate this disease (Darrett, 

2006), it is likely to be with us for the foreseeable future and drug resistance is a major 

factor in this. In addition, trypanosomiasis in livestock is still an acute problem holding 

back agricultural and, hence, economic development in the tsetse belt. In the interests of 

eradicating African trypanosomiasis, new tools are required to combat it. While the impact 

of active surveillance and the establishment of continent-wide treatment is no doubt the' 

key to success, drug resistance threatens to undennine any control strategy. Understanding 

resistance with a view to implementing better diagnostics for the application of appropriate 

treatments (Stewart et al., 2005) as well as developing resistance reversers and new 

therapies must therefore be a priority (Pink et al., 2005). 

6.2 The approach 

Our approach of developing resistance by exposure to sub-curative levels of drug is by no 

means a new idea, and has previously been applied a number of times to trypanosomes 

(Barrett et al., 1995; Berger et al., 1995; Fairlamb et al., 1992; Frommel and Balber, 1987; 

Rollo and Williamson, 1951; Scott et al., 1996). However with the exception of the P2 

(TbAT1) transporter (Matovu et al., 2001b; Matovu el al., 2001a), no other proposed 

resistance mechanism has been validated in the field. For example over expression of 

TbMRPA has been shown to mediate resistance (Shahi et al., 2002), but this has not yet 

been observed in the field (P. Maser, Personal Communication). Identifying resistance 

detenninants from field isolates is possible if a candidate resistance marker has previously 
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been identified. However, in the current study we chose to induce resistance in a controlled 

environment as no candidate genes for pentamidine resistance other than P2 have been 

suggested and our comparative approach necessitates the use of a parental reference strain. 

In view of the resistance phenotype based on reduced intracellular accumulation, observed 

with TbA TI and TbMRPA (which do not act synergistically (LUscher el 01., 2006», and 

the identification of additional pentamidine routes of entry (HAPT and LAPT (De Koning, 

2001» we hypothesised that further resistance might well be achieved in a similar fashion. 

Consistent with this model, we show here that the drug resistant trypanosomes thus 

generated had massively reduced pentamidine transport, and crucially, appeared to lack the 

HAPT transporter. The loss of this transporter allowed us to investigate transporter 

selectivity, and show that DAPI is transported by HAPT. This finding could easily be 

combined with other fluorescence tests (Stewart el 01.,2005) for resistance analysis in the 

field. The increase in pentamidine resistance coincided (albeit to a lesser extent) with 

increased resistance to other drugs e.g. melarsen oxide. Considering the structural diversity 

of these compounds, it is difficult to imagine how cross-resistance arises, except if 

transport-related (as seen with TbATI). We therefore propose that another transporter, i.e. 

HAPT, contributes the largest component of resistance. Analysing the status of this 

transporter in drug refractory strains would be of very considerable value in determining 

the level of drug resistance in a population. 

Considering the relative ease with which resistance was generated makes the absence of 

pentamidine resistance in the field rather perplexing, considering the long-term use of the 

drug (Bray et ai., 2003). This would suggest that the loss ofHAPT is detrimental to the 

parasite, although its endogenous substrate remains undetermined (De Koning, 2001). 

Indeed, difficulties in establishing infections in vivo (Chapter 3) strongly suggest that 848 

has reduced virulence. Such a reduction in fitness would conceivably prevent the spread of 

such a strain in the wild. 

The proteomic approach that we applied to identifying resistance determinants such as 

HAPT focused intensively on the plasma membrane. This previously uncharacterized 

proteome required the development of pre-fractionation and proteomic separation 

techniques as well as the implementation of various bioinformatic approaches. Our 

characterisation of the plasma membrane sub-proteome (TbPM) is a working definition 

and as such will no doubt be revised as improvements in HPLC separations, MS 

instrumentation and novel techniques continue to impact proteomics (Tyers and Mann, 

2003). Considering the number of techniques and repeated experiments that were 

performed, and the proportion of the total predicted trypanosome membrane proteome that 
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we have observed, we feel that most of the core proteins have been identified. The TbPM 

therefore represents a great resource for further analysis of the T. brucei plasma membrane. 

A large number of proteins that were annotated as putative were identified in the analysis, 

enabling more questions to be asked about their function and role. Even without functional 

data, a brief analysis of the TbPM raises a number of intriguing questions from which new 

insights into the biology oftrypanosomes will no doubt be gained. For example: why were 

so few amino acid transporters identified? Why were so many nucleoside I nucleobase 

transporters expressed? On the other hand, there is a huge gap in our understanding, with 

so many genes completely lacking any annotation. This is a problem common to almost all 

shotgun proteomic investigations, and at the moment it is the bottleneck in fully utilizing 

the power ofproteomics. Unfortunately these genes often represent dead ends for gaining 

further insights into an organism's biology, and in the absence of data compelling enough 

to warrant functional analysis (with far from guaranteed success), will probably remain so 

for the time being. This is particularly likely in such a divergent organism like T. brucei, 

where so many novel processes have been elucidated and yet where potentially so many 

more remain. 

In addition to the integral membrane proteins identified, there are obviously a large number 

of accessory I membrane associated proteins. One of the challenges in this approach was 

defining whether a protein was truly or non-specifically associated with the membrane as a 

result of the fractionation procedure. Even where proteins have been localised to a specific 

cellular compartment e.g. the flagellum I cytoskeleton (TbCF), it is always possible that a 

small proportion of the protein is distributed in other locations. Our definition ofTbPM is 

therefore conservative in its definition as it excludes proteins previously identified in 

TbCF, however we felt that the TbPM would predominantly define integral or membrane

anchored proteins and therefore decided to apply this subtractive approach. 

Having identified HAPT as being absent in the B48 drug resistant strain, it was 

disappointing not to find any differentially regulated proteins that could be recognized as a 

drug channel or transporter (as judged by the number of predicted TMDs and/or 

annotation). However there are a number of reasons that could explain this result. One of 

the most obvious is simply that the approach failed to identify a change in expression in the 

spot in which the transporter was present. This could have been due to sample variation, 

obscurement by juxtaposed spots or even software errors in matching spots across multiple 

gels. There were also a relatively large number of regulated spots that were not identified 

by MS, any of which could have contained HAPT. Unfortunately there wasn't enough time 

to run additional preparative gels to increase protein identification, although this would 
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almost definitely have improved coverage (Liu et al., 2004). Another possibility is that 

HAPT is present at such low levels that it would be essentially impossible to identify by 

MS from these samples unless further enrichment was performed. Indeed this may be 

crucial to the success of a quantitative membrane approach such as performed here, and 

combining multiple enrichment techniques would no doubt improve coverage of integral 

membrane proteins (Zhang et ai., 2006). However it is difficult to quantify a technique's 

ability to enrich for certain proteins as MS runs can vary quite considerably (even with the 

same sample) making comparative analyses challenging. It was therefore frustrating that 

our attempts to tag a 'prototypic' membrane transporter e.g. TbAT1, and analyse its 

selective enrichment by Western blot, which would circumvent MS variability, was 

unsuccessful. 

This result may also have been due to the 'Achilles heel' ofproteomics - the general 

inability to distinguish between subtly different protein species. It is entirely possible that 

mutations to one or a few key residues that alter substrate affinity in HAPT account for the 

dramatic reduction in pentamidine accumulation in strain B48. If so, HAPT protein 

abundance could have remained constant, while any minor protein modifications / 

mutations, that confer the phenotype would not have affected protein migration, especially 

in the 16-BAC system. Obviously, no change in protein expression would be identified in 

this case unless peptide(s) containing the mutations were unambiguously identified by MS 

or if the mutations affect the stability or location of the protein. Additionally, both the 

mutated and the original sequence would need to be identified otherwise divergence from 

the genome (as sequenced from strain 927) would probably be attributed to strain variation. 

It is also possible that HAPT is modified into an inactive form e.g. by covalent 

modifications such as phosphorylation. It is possible that such an event could occur as a 

result of dramatic changes in the expression of regulatory proteins and the identification of 

mUltiple regulated kinases in the DiGE analyses merits their further analysis. In the same 

way the removal of an accessory protein could also disable the transporter, although the 

existence of such a protein remains hypothetical. 

Despite these potential problems, we feel that because accumulation of the structurally 

distinct DAPI and pentamidine (albeit both are diamidines) was so markedly reduced, and 

combined with the highly stable drug resistance phenotype, this strongly suggests the basis 

for drug resistance is a genetic lesion, resulting in the functional loss of the HAPT 

transporter activity. 
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6.3 Future directions 

How then can we identify HAPT? DiGE analyses on further enriched plasma membranes 

i.e. using a combination of techniques, could potentially solve many of the problems 

highlighted above. In contrast, until I-CAT can utilize all of the MS information in the two 

peptide sets (i.e. labelled and unlabelled fractions) the likelihood of identifying quantitative 

differences in membrane protein expression using this technique is poor. Concerns over 

artefactual differences introduced post-sample isolation can best be answered by the use of 

a metabolic labelling technique (for review see (Beynon and Pratt, 2005». For example, 

SILAC as a form of metabolic labelling has been used for many unicellular organisms, 

however while trypanosomes are unicellular, to generate a sufficient quantity of plasma 

membrane protein, they need to be cultured in vivo. This is a far harder task and was not 

feasible to attempt in the time available, although recent reports suggest it may be possible 

(Wu et al., 2004). 

Another approach that could help to identify HAPT is photoaffinity labelling (Ji, 1977), 

which has most successfully been applied to the analysis of glucose transporters (Holman 

and Cushman, 1994; Klip et al., 1984). Synthesis of these photoactive (and radiolabelled) 

compounds can be difficult; however a number of polyamine photoreactive compounds 

(Felschow el at., 1997) have been developed suggesting that this would be an achievable 

goal. 

If time had allowed we would have wanted to confirm some of the quantitative findings. 

To do this there are a whole range of techniques that could be employed. Raising 

antibodies to the target proteins would enable Western blots to be performed to confirm the 

regulation of protein expression in the two cell lines. Antibodies could also be used to 

analyse protein cellular localisation. However this approach is very low-throughput and 

can only really be considered when targeting a few proteins. Considering the number of 

proteins that were identified in this project, and in the absence of a 'prime' candidate, the 

time taken to pursue this approach would be prohibitive. Additionally, while it would be 

useful to confirm the quantitative proteomic findings, the up- or down-regulation of a 

protein does not prove its involvement in the phenotype. The key test in validating any of 

the regulated proteins would be to 'knock-down' e.g. by RNAi or conventional gene 

knockout strategies (e.g. as taken with TbA T1 (Matovu el at., 2003» to confer drug 

resistance or 'knock-in' to reverse the resistant phenotype. Again, due to the relatively 

low-throughput of gene 'knock out' and 'knock-in' strategies, we would have liked to 
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pursue an RNAi approach to selectively target each of the regulated proteins. This 

technique has been used extensively in T. bruce; (Beverley, 2003), and in this case could 

be used to confer resistance in the parental line (for genes identified as down-regulated in 

B48) or restore drug sensitivity in B48 (for genes identified as up-regulated in B48). It is 

highly likely that the drug resistance involves a number of genes and therefore RNAi 

performed on anyone gene would not be expected to confer total resistance or conversely 

to restore a parental sensitivity phenotype entirely. Where necessary, overexpression of a 

protein implicated in the resistance phenotype could also be performed, as with TbMRPA 

(LUscher et al., 2006; Shahi et al., 2002). 

In respect to the potential for some of the regulated proteins to elicit the resistant 

phenotype through modulation of another protein e.g. phosphorylation, we would have 

liked to investigate functional protein-protein interactions. For example, running proteins 

in their native confirmation on 20 blue-native gels, which has been applied to membrane 

proteins (Brookes et al., 2002; Fandino et al., 2005), would no doubt reveal some of the 

integral membrane protein binding partners. 

Another more directed approach to further analysing the drug resistance phenotype would 

be to investigate proteins closely related to TbATI, i.e. TbAT-like E, A and G (see Figure 

4.11), the substrates for which remain unknown (De Koning et al., 2005). Intriguingly, 

initial experiments involving the expression ofTbAT-A in Xenopus laevis oocytes or 

Saccharomyces cerevisiae suggested that pentamidine was a substrate for TbAT-A, 

however a formal identification of HAPT or LAPT through kinetic analysis was not 

possible in these expression systems (De Koning, unpublished). 

6.4 Summary 

Within this thesis a working draft of the plasma membrane sub-proteome of bloodstream 

form T. bruce; is presented. In addition, a transport-mediated drug resistant strain of T. 

bruce; was developed and a number of proteins in this strain were identified as being up

or down-regulated, using conventional techniques and the novel 16-BAC DiGE approach. 

Despite the clear link with loss ofHAPT activity, we were unable to identify the exact 

mechanism of drug resistance, although a number of interesting regulated proteins were 

identified. The work that is described in this thesis will no doubt pave the way for such a 

finding. 
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Appendices 

Appendix I 

Gene 10 Gene Annotation 

Tbl0.70.2650 Elongation factor 2 

Tbl0.70.2660 Elongation factor 2 

Tbl0.70.5650 TEFl elongation factor 1-alpha 

Tbl0.70.5670 TEFl elongation factor 1-alpha 

Tbl0.70.5680 TEFl elongation factor 1-alpha 

Tbl 0.70.1370 ALO fructose-bisphosphate aldolase , glycosomal , putative 

Tbll .02.3210 TIM triose phosphate isomerase 

Tb927.3.3270 TbPFK ATP-dependent phosphofructokinase 

Tb927.6.4280 GAPDH glyceraldehyde 3-phosphate dehydrogenase, glycosomal 

Tb927.6.4300 GAPOH glyceraldehyde 3-phosphate dehydrogenase, glycosomal 

Tbl0.406.0330 Histone H2B, putative 

Tbl0.406 .0340 Histone H2B, putative 

Tbl0.406 .0350 Histone H2B, putative 

Tbl0.406 .0360 Histone H2B, putative 

Tbl0.406.0370 Histone H2B, putative 

Tbl0.406.0380 Histone H2B, putative 

Tbl0.406.0390 Histone H2B, putative 

Tb10.406.0400 Histone H2B, putative 

Tb10.406.0410 Histone H2B, putative 

Tb10.406 .0420 Histone H2B, putative 

Tb10.406.0430 Histone H2B, putative 

Tb10.406.0440 Histone H2B, putative 

Tb10.406 .0450 Histone H2B, putative 

Tb10.406.0460 Histone H2B, putative 

Tb927.5.4170 Histone H4 , putative 

Tb927 .5.4180 Histone H4, putative 

Tb927.5.4190 Histone H4, putative 

Tb927.5.4200 Histone H4, putative 

Tb927.5.4210 Histone H4, putative 

Tb927 .5.4220 Histone H4, putative 

Tb927 .5.4230 Histone H4, putative 

Tb927 .5.4240 Histone H4, putative 

Tb927.5.4250 Histone H4, putative 

Tb927 .5.4260 Histone H4, putative 

Tb927.7.2820 Histone H2A, putative 

Tb927.7.2830 Histone H2A, putative 

Tb927.7.2840 Histone H2A, putative 

Tb927.7.28S0 Histone H2A, putative 

Tb927.7.2860 Histone H2A, putative 

Tb927.7.2870 Histone H2A, putative 

Tb927. 7 .2880 Histone H2A, putative 

Tb927. 7 .2890 Histone H2A, putative 

Tb927. 7 .2900 Histone H2A, putative 

Tb927.7.2910 Histone H2A, putative 

Tb927.7.2920 Histone H2A, putative 

Tb927. 7 .2930 Histone H2A, putative 

Tb927. 7 .2940 Histone H2A, putative 

Tb09.211 .4S11 Klnetoplastld membrane protein KMP-11 

Tb09.211 .4S12 Kinetoplastid membrane protein KMP-11 

Tb09.211 .4S13 Kinetoplastid membrane protein KMP-11 
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Tb927.3.4290 PFR1 PFRC 73 kOa paraflagellar rod protein 

Tb927.3.4300 PFR1 PFRC 73 kOa paraflagellar rod protein 

Tb927 .3.4310 PFR1 PFRC 73 kOa paraflagellar rod protein 

Tb927.3.4320 PFR1 PFRC 73 kOa paraflagellar rod protein 

Tb927.3.4330 PFR1 PFRC 73 kOa paraflagellar rod protein 

Tb927.8.4970 PFR2 PFR 69 kOa paraflagellar rod protein 

Tb927.8.4980 PFR-B PFR-A 69 kOa paraflagellar rod protein 

Tb927.8.4990 PFR-B PFR-A 69 kOa paraflagellar rod protein 

Tb927.8.5000 PFR-B PFR-A 69 kOa paraflagellar rod protein 

Tb927.8.5010 PFR2 PFR 69 kOa paraflagellar rod protein 

Tb09 .160.0815 60S ribosomal protein L38 , putative 

Tb09 .211.2650 RPL27A; RPL28; RPL29 60S ribosomal protein L27a 

Tb09.244.2730 60S ribosomal protein L5, putative 

Tb09 .244.2740 60S ribosomal protein L5, putative 

Tb09.v1 .0640 RPL27A; RPL28; RPL29 60S ribosomal protein L27a 

Tb10.05.0220 60S ribosomal protein L 1 Oa 

Tb10.26.0560 60S ribosomal protein L6, putative 

Tb10.61 .1960 RPS2 40S ribosomal protein S2, putative 

Tb10.61 .2070 RPS2 40S ribosomal protein S2, putative 

Tb10.61.2090 60S ribosomal protein L 17, putative 

Tb1 0.6k15.051 0 60S ribosomal protein L22 

Tb10.6k15.3340 40S ribosomal protein S24E, putative 

Tb10.6k15.3350 40S ribosomal protein S24E, putative 

Tb1 0.70.2170 Ubiquitin/ribosomal protein S27a, putative 

Tb1 0.70.3360 40S ribosomal protein S3a, putative 

Tb1 0.70.3370 40S ribosomal protein S3a, putative 

Tb10 .70.7020 RPS23 40S ribosoma l protein S23, putative 

Tb1 0.70.7030 RPS23 40S ribosomal protein S23, putative 

Tb1 0.70.7695 40S ribosomal proteins S11, putative 

Tb11 .01 .1920 60S ribosomal protein L22 , putative 

Tb11 .01 .3675 40S ribosomal protein S17, putative 

Tb11 .01 .3676 40S ribosomal protein S17, putative 

Tb11 .02 .0740 60S ribosomal protein L44 

Tb11 .0290 40s ribosomal protein S14, putative 

Tb11 .0390 40s ribosomal protein S14, putative 

Tb11.46.0001 60S acidic ribosomal subunit protein, putative 

Tb11.46.0002 60S acidic ribosomal subunit protein, putative 

Tb927.1.3180 40S ribosomal protein S11 , putative 

Tb927.6.2100 40S ribosomal protein S30, putative 

Tb927 .6.2110 40S ribosomal protein S30, putative 

Tb927.7 .1730 60S ribosomal protein L7 , putative 

Tb927.7.5000 60S ribosomal protein L 19, putative 

Tb927.7.5020 60S ribosomal protein L 19, putative 

Tb927 .7.5170 60S ribosomal protein L23a 

Tb927.8.6030 60S ribosomal protein L 12, putative 

Tb927.8.6150 40S ribosomal protein S8, putative 

Tb927.8.6160 40S ribosomal protein S8 , putative 

Tb11 .01 .1350 S-adenosylhomocysteine hydrolase, putative 

Tb927.1.2330 Beta tubulin 

Tb927.1.2340 Alpha tubulin 

Tb927.1.2350 Beta tubulin 

Tb927.1 .2360 Alpha tubulin 

Tb927.1.2370 Beta tubulin 

Tb927 .1.2380 Alpha tubulin 

Tb927 .1.2390 Beta tubulin 

Tb927 .1.2400 Alpha tubulin 

Tb927.1 .2410 Beta tubulin 

Tb10.70.0800 ZFP universal minicircle sequence binding protein (UMSBP), putative 
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Appendix II to IIX 

See attached CD-ROM 
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Appendix IX 

Accession Identifted In 
gCAI Number 01 Sequlnce Numb.rof 

localisation 
Number 

Gene Annotation Protein ICOil Vltu. (% predlcted Prolein Mwi Cov.,tg. peptide. Evidence 
Rink) TMO'I (%) Identified 

PM FP 

Cytoskeleton Tb927.1.2360 Alphl tubulln · · 29a5 999 0 '9758 83 1~ TbFP 
Flagellum Tb927.2.S660 Adenyille Idn ... . putative · · 513 85 0 28.n '3 12 TbFP 
Flagellum Tbl0.70.7330 Adenylale kinas • . putative · · 3" 3U 0 28a80 38 7 TbFP 
Flagellum Tb927.S.3970 Ad.nyllte kinase, putative · · 102 5H 0 30082 20 • TbFP 

Flagellum Tbl0 .70.1880 AOP·riboly'etion r.ctor , putlttv, · · '2 81.3 0 305U 8 2 TbFP 

Flagellum Tb927.M990 
ATP .ynth ... , epsilon chain . 

putative · · 183 82 0 20382 28 • TbFP 

Flagellum Tb927.1.2330 eeta bJbulin · · 3983 9gg 0 ' 11072 5. 2a8 TbFP 

Flagellum Tb927.8 .2720 Calcium-binding protein, putatiyt · · 188 583 0 UOS1 12 • TbFP 

Flagellum Tbl1.01.4S21 Calmodulin · · 555 9a 5 0 1882S 11 13 TbFP 

Flagellum Tb09.180 .• S20 CllmoduHn, putative · · 19' 9H 0 17aU 33 a TbFP 

Flagellum Tbll .02.S800 Cllmodulln. putative · · 95 72.7 0 178'8 12 2 TbFP 

Flagellum Tb09211 .25' 0 
Calmodulln·llke protein, putative: · · 125 n .l 0 15807 2' 3 TbFP EF hind containing protein 

Cllpain-lik. cyst.ine peptidase, 
Flagellum Tb827.12100 putative; CYltelne peptidall , Clan · · 38 81.5 0 1270.8 3 3 TbFP 

CA, I 

Flagellum Tb927.12230 
Calplk\~lik. protein hgment, · · 22. 288 0 13881 32 5 TbFP pU,.tivl 

Flagellum Tb927.1.2260 
Calp.ln ~l1ke protein fragment, · · 212 73.3 0 Uln 31 8 TbFP putative 

Flageltum Tb92H.38S0 
CAPS.S cytoak.leton~."oclaled 

ptOltln CAPS.S, putativ. · · 118 au 0 9573. 8 5 TbFP 

Flagenum Tb82H2280 CenlJin, putative · · 11 728 0 21182 15 3 TbFP 

Flagellum Tbl1.01.5.70 Cenbin, putaHve · · 91 31.1 0 20a12 18 2 TbFP 

Chaperone protaln DNAJ, putative: 
Flagellum Tbl1.01 .6710 heat .nock proteln~like proleln, · · . 08 au 0 3552e 35 8 TbFP 

putaH 

Flagellum Tbl0.8kI5.3150 Chromatin binding protein , putative · · ' 0 882 0 522~ U 5 TbFP 

Flagellum Tb827.1.6910 cydoph~n , pulative · · 17 30 0 218118 12 2 TbFP 
Flagellum Tb927.H760 Oynamil , putative · · . 8 se8 0 73103 I • TbFP 

Flagellum Tb927.7.120 
Dyneln arm light chain , "on,mll, 

pula'ive · · 58 83.7 0 3' 829 22 8 TbFP 

Flagellum Tbl1.02.3200 
Dyneln arm light chain , .. one mil, 

putative · · 157 U .8 0 27582 18 • TbFP 

Flagellum Tbl1 .01.0390 Dyneln heavy chain , putatNe · · 122' 805 0 . n898 15 .. TbFP 

FlageHum Tb9272.S270 Oyneln heavy ch.In , putative · · .11 18.3 0 '18tt8 7 28 TbFP 

Flagenum Tb927.3.830 Oyneln h.avy chain , putative · · lMO 95.2 0 53.558 18 75 TbFP 
Flagellum Tb927.7.920 Oyneln heavy chain, putatNe · · 1152 757 0 H17aO 18 .a TbFP 
Flagellum Tb827.a.32S0 Dyn.1n heavy cham. putative · · .,1 n8 0 ~1071 8 28 TbFP 
Flagellum Tbl 0.70.1720 Dynel" heavy cham, putattY, · · 7110 au 0 HU21 11 38 TbFP 
Flagellum Tbl1 .01 .3010 Dyneln heavy chain, putative · · 1017 808 0 .a380' 13 ' 5 TbFP 
Flagellum Tb" .02.0760 Dyn.ln heavy Chain, putative · · 2025 n .' 0 535352 12 22 TbFP 

Flagellum Tb927.HOSO Dyne," Intermediate chain, putative · · W IU 0 95205 7 8 TbFP 

Flagellum Tbl1.02.28'0 Dyneln Intermediate chlln, putative · · 2U 185 0 74103 U a TbFP 

Dyneln light chain 2B, cytoplasmic, 
Flagellum Tb927.' .5370 putative: pr,dlcted dyn.1n · · 13' 25.7 0 131U U • TbFP 

modulator. 
FlageUum Tbl0.70 .00&0 Dyneln Rght chain , putative · · ~ n5 0 14'4, 21 2 TbFP 

FlageUum Tbl1 .02.3390 Dyne'n light thain , putative · · 73 8a 0 2. 118 13 2 TbFP 
Flagellum Tbl1.50.0007 Dyneln Ught chain , putative · · 222 U 0 10H8 38 • TbFP 

Flagenum Tbl1.01 .S810 Oyneln , putative · · lU a8 .' 0 8U58 5 2 TbFP 

Flagellum Tb827.S.1730 Ecotin, putative · · U n .3 0 111015 13 3 TbFP 

Flagellum Tb927.S.1S10 Ecotin, puteltve · · 203 829 0 17813 29 3 TbFP 

Flagellum Tb08211 .1370 
Glyceraldeh'tde-~olphat. 

dehydrogenase, putative · · 301 n .9 0 39238 27 8 TbFP 

Flagellum Tbl1.01 .3110 Heat shock protein 70 · · ' 81 18.3 0 75718 20 11 TbFP 

Flagellum Tb927.7.3"0 lie lulolntigen · · 385 18.1 0 27281 35 8 TbFP 

Flagellum Tb'27 .7 .3" ~0 I,." autoandgen · · 18 59,5 0 21571 22 • TbFP 

Flagellum Tb927.7.8290 Klnesln , putadve · · 321 82.3 0 873.8 17 13 TbFP 

Flagellum Tb827.8.2830 Kinelm. putative · · 7 .. 72.2 0 8 .. 80 21 20 TbFP 

Flagellum Tbl0.8U020 Klntlm, putative · · 87 35.2 0 12'515 3 3 TbFP 

FlageUum Tb927.7.1920 
Leuclne..fich repeal protein · · 173 . 8.1 0 80773 11 5 TbFP 

(LRRP), pulative 

Flageltum Tbl0 .• OS.058O 
Mlaotubul.-aslOd.ted protein, · · 109 n .• 0 2373.9 3 a TbFP putativ. 

FlageUum Tbl0 .• 08.OSS0 
Mlcrotubul ••• aocl.ted protein , · · 109 93.3 0 25 .. 81 3 a TbFP 

putative 

Flagellum Tb09211 .2580 
Nucleoside diphosphate kinase , · · 91 27.8 0 37787 11 2 TbFP 

putativ. 

Flagenum Tb927.4.1720 
Nudeoslde diphosphate kinas. , · · 180 101 0 393aO 15 • TbFP 

putaliv. 
Flagellum Tb8272.' 230 NUP-, protein , putative · · 820 ... 0 .. ona.t 8 31 TbFP 
Flagellum Tb08.180.2380 Poly(A) export protein, putltive · · U 2U 0 38327 9 • TbFP 

Flagellum Tb927.H020 PP2C protein phoaphatall 2C, · · 208 53.1 0 78130 11 8 TbFP pulativ. 
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Flagellum Tb927.8.5230 PPiase cydophilin-type peptidyl-
protyt cis-trans isomerase. putative · · 85 83.2 0 2&78. 9 2 TbFP 

Flagellum Tbll .• 7.003. 
Radial spoke prolein 3, pUlati'll' ; 
radial spoke 3 protein. putative · 177 773 0 39353 1& 5 TbFP 

Flagellum Tb927.2 .3.0 
Retrotransposon hot spot (RHS) 

prolein , putative · · . 0 21 .• 0 98350 2 2 TbFP 

Flagellum Tb927.5.520 Siomatln-like protein, putative · · 59 81.1 0 56401 2 1 TbFP 

Flagellum Tbl 0.70 .5610 
TEFl elongation factor 1-.lphl; EF 

I-alpha · · 291 9gg 0 .9H. U 8 TbFP 

Flagellum Tb09.1&0 .• 2aO TRYPI tryparedoxln peroxlda'l · · 2.9 97.2 0 22752 . 3 & TbFP 

FlageUum Tb927.8.1990 TRYP2 trypar.doxln peroxldsse · · 35& 9H 0 257a8 31 a TbFP 

Flagellum Tbl0.70.0.80 Trypanin · · 108 &02 0 5.119 8 3 TbFP 

Flagellum Tb09 .244 .2eOO Trypanin-related protein, putative · · 258 &0& 0 54303 14 & TbFP 

Flagellum Tbl1.02 .1380 TRYPARP aetin, pulative · · 5& 72 . 0 .7529 12 • TbFP 

Cytoplasm Tb09.211.05.0 
FB? ... fructose-I .e- · 101 909 0 38&&1 11 2 GeneOB blsphosphate, cytolollc: 

Hypoxanthine-guanlna 
Cytoplasm Tbl0.70.6880 phosphoribolyttransf.r .. l , · 199 7&& 0 2&515 3. 8 GenlOB 

putative 

Cytoplasm Tb09.180.3630 
POE cAMP-specific · · 330 &U 0 10.085 12 13 GlnlOB phosphodlester •• e 

Cytoplasm Tbl0.&1.2600 PYK1 pyruvate kin ... 1 · . 0 909 0 39170 3 1 GlneOB 
Cytoplasm Tbl0.70.5&50 TEF1 elongation factor I -alpha · 291 99.9 0 . 9H. U & GenlOB 

Cytoplasm Tbl0.70.5800 
TEFt elongation factor 1-atpha: EF · 122 100 0 38126 7 3 GeneOB l -olphl 

Cytoplasm Tb09.160 .• 250 lRYPI tryparedoxln peroxldase · 249 87.2 0 22752 . 3 0 GlnlDB 

Cytoskeleton Tb09.211.0820 ActinA + 209 98.2 0 .2U. 1& • GeneOB 
Cytoskeleton TbD27.1.2340 Alpha lubulin · 2985 9gg 0 . 97511 &3 1M GenlOB 
Cytoskeleton Tb927. 7.3. 1 0 Centrln, putalivi · 133 9a 0 1&M2 .9 • GonlOB 

Axoneme central apparatul 
Flagellum Tb927.1.2670 protein , pulativ.: Importln alphl-l + · 32. 72.5 0 511091 2& 9 GlneOB 

lubunlt. pu 

Flagellum Tbl1.01..822 Calmodulin · 555 98.5 0 1&82& &1 13 OlnlOB 

Flagellum Tbl1.01..623 Calmodulin · 555 90.5 0 1&&20 &1 13 GeneOB 
Flagellum Tbl1.01..82. Calmodulin · 555 9a & 0 1&&28 01 13 GlnlOB 
Flagellum Tb927.B.8070 lBSC balll body compon,nt · 390 57.3 0 18. 300 13 17 GlnlOB 

GlycOlome Tb927.3.3270 
TbPFK ATP-dep.ndent · 1072 993 0 53997 . 2 20 GeneOB pholphofTuc1oklnll' 

Glycosome Tbl1.02.3210 TIM trloupholphate Isomer .. e · 318 88 0 2&813 23 5 GlnlOB 
Intracellular Tb927.8.&330 C.lpaln, pUlatill'1 + .19 &7.1 0 99535 U 9 GeneOB 

Intracellular Tbll .02.2210 
PKA-R protein kina.e A regul.lory 

lubunlt · .9. &3 .3 0 57212 2. 12 GlneOB 

Mitochondrion Tb09.211.1320 AMP deamlna .. , putative · 192 13.8 0 la.323 5 7 Gen.OB 

Nucleus Tbl0.81.1920 Fibrillarin, putalive · 33 82.7 0 31053 7 2 GlnlOe 

Nucleus Tbl1.02.5250 
H2BVAR histone H2B variant, 

putativ. · &2 83.2 0 1583. U 2 GenlOB 

Nucleus Tbl 0.81.1 090 h3vaR histone H3 vlriant · 97 35.2 0 1&128 12 2 O.n.OB 

Nucleus Tb927.H50 
R.uotranlpolon hot Ipot (RHS) 

protein , putative · 87 20.2 0 98338 5 • GlnlOB 

Nucleus Tb09.1&H090 TOP2 ONA topoisomer .. e II · 255 &02 0 138218 9 9 GlnlOB 
Unknown Tb927.1.H 90 Acetytuansferase, putative · 170 &9.5 0 1972& 20 • Gen,OB 

Adenosine monophOlphatl 
Unknown Tb09.160.5250 deamlnaSl, putatill. ; AMP · 199 7&.3 0 191075 5 6 GlnlOB 

durnln.lt , putative 

Unknown Tb09.211 .H 80 AOP-t'ibosylation factor, putative · U7 97.8 0 20753 15 3 G.neDB 

Unknown Tbll .0l .7390 AMP deamlnest, putative · lU 80. 0 1&. 131 • & Gln,OB 
Unknown Tb11.01.1550 C.lmodulin. putative · 12. 215 0 18513 22 3 GlntOB 
Unknown Tb927.5.&00 Casein kin ... , put.tivl · 113 7U 0 3&522 12 3 GentOB 

Unknown Tb09.211.2150 Poly(A)-blndlng prote'" 1; PABP2 · 218 98.5 0 &2335 20 9 G.n.OB 

Unknown Tb11.01.HS80 Polyub(qultln. putative · UO 95 0 7&5511 8 7 GtnlOB 

Unknown Tb927.6.690 
Sman GTP-blndlng protein Rlb1, · 315 95.7 0 22929 37 7 GenlOB 

putative 
Unknown Tb92H.2070 Antigenic prolein, putativl + .13 24.9 0 513177 3 15 GlneOB 
Unknown Tbl0.70.2650 Elongation factor 2 · 195 9s.. 0 95300 11 7 GlnlOB 

Unknown Tb10.70.2680 Elongation fac10r 2 · 195 9s.. 0 95300 11 7 OlneOB 

Unknown Tb11.0U390 
Leucine·dch repeat protein 

(lRRP), putative · 220 &7 .1 0 70a. . 12 0 GlntOB 

Unknown Tb927.H570 Nucleoside hydrolall , putative · 133 &0 .3 0 3970& 1. 3 G.ntOB 
Unknown Tbl 0.&1.1900 Protein kkl .. e, putative · 187 7& 0 71001 13 7 OtnlOB 

Unknown Tb 11.01.3320 lrlehohyalln, putative · 511 .4.9 0 78820 11 6 GenlOB 
Cytoskeleton Tb09.211.0630 Actin A · · 208 H .3 0 . 215. 16 • Olne naml 
Cytoskeleton Tb09.160.3980 Actin, putative · · 109 18.5 0 H3H 5 2 Oenl n.me 
Cytoskeleton Tbl1.01.1870 Actin-tike protein , putative · + 80 90.9 0 . 3H9 2 1 G.n, n.me 
Cytoskeleton Tb927.1.23&0 Alpha tubulin · 29a5 99.9 0 .97511 &3 1M G,nl name 
Cytoskeleton Tb927.1.2.00 Alpha tubulln · 29a5 99.9 0 .97511 83 1M G.nt name 
Cytoskeleton Tb927.1.2350 Beta tubulin · 3983 99.9 0 40872 5. 2&9 Gtne nlml 

Cytoskeleton Tb927.1.2370 Beta tubulin · 3983 99.9 0 . H72 5. 2as Gen. name 
Cytoskeleton Tb927.1.2390 Bet. lobul." · 3983 99.9 0 . H72 5. 2as Gtne nlml 
Cytoskeleton Tb927.1.2.10 Beta tubulin, pseudogene · 17as 99.9 0 33050 53 U. Oln. nlml 
Cytoskeleton Tbl0.6k15.1830 Centrln, putative · 181 83.3 0 18790 .8 5 Oenl nlml 
Cytoskeleton Tb92H .870 Dyneln heavy chain, putalive · 1212 9U 0 513U5 1. .9 Oene nlme 

Cytoskeleton Tb927.&.0950 Dynek1 light chain 28, cytopla.mic, · 13. 25.8 0 13183 . 3 • Gtnl nlmt 
putative 
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Dyneln light chain 2B, cytoplnmic, 

Cytoskeleton TbI0.389.0350 
putative; predicted dynein · 138 47 0 12818 3S • G.nt nlme modulator; roadbiockllC7 family 

member 

Cytoskeleton TbI0.70.2520 Dynein light chlln, putative · 87 aDI 0 13191 18 2 G,nl n.m. 
Cytoskeleton Tbll .02.5820 Dynein light chain. putative · 57 205 0 13183 13 I G.n. nlm. 
Cytoskeleton Tbll .03.0815 Dynein light chein , putative · 89 952 0 10477 32 2 Gin, name 
Cytoskeleton Tbl1.08'5 Dyneln light chain , putative + 222 9. 0 10479 3S • atne n.m. 

Cytoskeleton TbOO.211 .'020 Oyneln·assoclat.d protein, putative · 8. as 0 11237 '3 2 Gtne nlm. 

GB" mltotubule-... oclated protein 
Cytoskeleton Tb09.ISO.1200 Gb4, putative; dynein heavy chain , SO 558 0 927802 0 3 G,n, n.m. 

cytOIOJiC. putative 

Cytoskeleton Tbll .02.0700 
Klnesln , putative ; MCAK-Uk. 

kin,aln , pulltiv. · 231 7S 3 0 80S48 IS 8 aene nlm. 

Cytoskeleton TbIO.v4.0052 MICfobJbull-.. ,odated prote"" 2 · 288 847 0 581328 I II Gtne nlm. 

Intracellular Tbl0.70.1670 
40S ribosomal protein 510, · 50 88 0 18331 I' 2 aenl nlm. putative 

Inuacellular Tb027 .2.59 I 0 40S ribosomal protein 513, 
putative · . 1 81 I 0 17412 5 I Gt n. name 

Intracellular Tb10.S1.I390 
405 ribosomal protein 513, 

+ ' 1 putative 
841 0 17412 5 I Gtn. namt 

Intracellular Tb927.7.2340 
405 ,[bOlomal protein 515, 

+ 57 9as 0 17.S3 10 I Gen. nlm. putative 

Intracellular Tb027.7.2370 
405 rlbolomal protein 515, · 57 

putative 
97.5 0 20083 8 I Gen. n.m. 

Intracellular Tb927.7.1040 
40S ribolomal protein S18, 

+ 201 9at 0 17101 38 S Gent namt putative 

Intracellular Tb927. 7.1050 
40S ribolomal protein SHS, 

+ 201 98.8 0 17101 38 S G.n. n.m. putative 

Intracellular Tbll .01 .3675 
40S ,iboaomal protein 517 , 

+ 55 88.7 0 IS212 8 I Gtn. nlme putative 

Intracellular Tbll .01 .3S7S 
40S ribosomal protein 5 17, 

putative · 55 897 0 IS212 8 I Gent name 

Intracellular TbI0 .70.IHO 
40S riboaomal prolein 518, · 111 88) 0 17814 27 • Gtnt name putativt 

Intracellular TbII.01 .1475 
40S rlboaomal protein S27. · 178 U8 0 8IU 'S ) Gtnt name putotive 

Intracellular TbI0.70.3360 
405 rlbOlomal protein S3a , 

putativt 
+ 1)5 89.2 0 2ta32 8 3 G.n. nlm. 

Intrlcellullr Tbll .02.IOS5 401 ribolomal prot"n $ 4, put.tlv. + S2 97.7 0 307)9 10 3 G.nt nlm. 

Intracellular Tbll .02.1090 405 ribolom.1 prol"n 5 4. putative + S2 87.5 0 30738 10 3 Gtn. name 

Intracellular TbOO.2' • . 2630 405 ribOlomal protein se, putative · '0 U 0 2151S 8 2 atn. namt 

Intracellular Tbl 0.1 OO.OOSO 40S rlbOlomal protein 58. putative + .0 ta9 0 284S0 I 2 G.n. nlm. 

Intracellular Tb927.I .1110 405 ribosomal prot.ln 58, put,lIve · U 8at 0 22209 I' 3 Gtn. name 

Intracellular TbI0.70.13aO 405 ribolom.1 protein 58, pul.tiII, · U 888 0 2.2208 I' 3 Gtn. n.m. 

Intracthular Tbll .012580 405 r!bosom.1 prot.in SA. pul.tiv. · 112 888 0 27820 13 3 G.n. n,m. 

Intracellular Tbll .01 2SS0 40S rlbolomal prot.in SA. putative 11 2 883 0 31582 II 3 Gtnt name 

Intr.cellular TbI0 .70.7695 
40S rlboaomal prot.,"s S1 1. 

putative · \3. . .. 0 2030) 17 3 G.n. name 

Intracellular Tb10.05.0220 GOS ribosomal protein l101 · 38 88 0 25037 7 2 G.n. name 

Intracellular Tb927.3.3320 
50S ribolomal protein L 13, · 71 9a.7 0 25.1 2 IS 3 Gtn. name putative 

Intr,cellular Tb10.S12000 
80S rlbolomal proleln LI7 . 

putative 
+ 3S 89.3 0 18083 14 2 Gtn. nlm. 

Intracellular Tbll.022430 
80S ribosomal prot.ln l17 , · 38 9as 0 180n 14 2 Gtn. name 

putative 

Intlacellular Tb082 11 .2S30 
80S rlbolomal protein L23 , 

pullIN. · a2 lIa 0 15087 23 3 G.n. nlrM 

Intracellular Tb09.21 1.26'0 
80S riboaomll protein L23 , · 82 U .7 0 15087 2) 3 Oene nlm. 

putative 

IntraceHular Tb927.7.5170 80S ribosomal protein L23a a7 882 0 11158 23 ) G.n. nlme 

Intracellular Tb927.7.5taO 
150S ribOlomal protein 113a, 

putative · as 97.5 0 2475. 17 3 G.n. n.m. 

Intracellular Tb09.211.4S50 
80S ribolomll protein U8, 

putative · . 0 11.1 0 lea15 S I G.n. nlm. 

InUlceliular Tb927.a.6IaO 
80S ribolomal protein L2S. 

putative 
+ . 0 87.1 0 Isse5 8 I G.n. name 

Intrlcellular Tb027.3.5050 80S rlbolomal protein L4 + eo 88,5 0 . 1844 8 2 Oen. name 

Intracellular Tb027.S.1330 
80S ribolomal prottln L7a , 

+ '1 11.5 0 )OUO IS S O.ne nlm. put.tiv. 

Intrac.llular Tb927.8. \3'0 
SOS ribo,om,1 proleln L71. 

PUI,"'" 
+ .1 88.5 0 lOUO IS S G.ne name 

Cllpain. putativ. ; cysteln. 
Intracellular Tb10.70.5950 p.plidall, Clan CA. family C2, + ' 37 a28 0 110312 II 15 O.ne name 

putative 

Calp.ln, putativ.; cysteln. 
Intr.cehular Tbl1.47.003S peptid .... Clan CA. !amlly C2. · . 53 412 0 1803S7 18 3. G.n. n.m. 

putative 

Intracellular Tb927.7.' oeO 
Calpaln·lik. cysteln. ptptidalt , 

+ 140 ta.3 0 12879 38 5 Gtn. name putotiv. 

Calpaln·~k. cystelne peptidase , 
Intracellular Tbll .01 .5S00 putativ. ; cyst.in. p.ptida ... Clan · 350 ' U 0 IU849 10 14 G.ne nlme 

CA. ! 
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Calpain-like prolein . putative: 
intracellular Tbll ,57.0008 cytoskeleton assoccdated proleln , · 548 8& 5 0 85121 1 4 35 Gene nlme 

pUlati 

Intracellular Tb09.160,3670 
NHP2 ribosomal protein 56, 

putative; NHP2IRSS·like protein · 102 &S 8 0 13620 1& 3 Gen. nam, 

intracellular Tb09.160,2550 Ribosomal protein 57. pulative · 40 &U 0 23883 9 2 Gene nlm. 

Intracellular Tbll ,01.1HO 
RPl1 OA 80$ ribosom al protein 

L lOa , putativI · 3& &8 ,& 0 25037 7 2 Gen, name 

Intracellular Tbl0 ,70 ,3160 RPl30 80S ribosomal prol.in L30 · S8 &8 0 1258& 8 1 Glne name 

Intracellular Tbl0.70,3170 RPL30 80S ribosomal protein l30 · 511 &7 ,& 0 11733 & 1 atne n.m. 

intrace llular Tb927.M980 RPS14 40S ribosomal protein 514 · 234 &U 0 !5e7. 1& 4 Gen. n.m. 

Intracellular Tbl1.0290 
RPS1'( .tOt ribosomal Pfoilin 514 , 

putative · 23' 9& 1 0 ISS7. 1& • Gen. n.~ 

Intracellular Tbl1 .03GO RPSI •• 0. ribosomal protein 514. 
putative · 23. && .1 0 15874 1& 4 Gtn, nlm. 

Intracellular Tbl0.70.1730 RPS18 40S ribosomal proleln 518. 
putatlv. · 178 &81 0 17814 27 4 G.n. nlm. 

Intra ce llular Tbl0.81.1960 RPS2 "OS ribosomal protein 52. 
putative · 188 && 4 0 28785 28 5 G.nt nlme 

Intracellular Tbl0.61.2070 
RPS2 "OS ribosomal protein 52. · 188 && 4 0 287&5 28 5 G.n. nlm. putattve 

Intracellular Tb09 ,180.4450 
RPS3 .. OS ribosomal protein 53. · 144 &7 ,3 0 30724 21 4 Gtn. nlm. pul.live 

Intracellular Tbl0 ,2e.o370 
RPS3 .. 05 ribosomal protein 53. · 144 &84 0 24372 28 4 Gtn. nlm. putative 

Plasma 
Tbl1.Y4,0035 

Va,iant l urfae. glycoprotein · 38 54 0 515111 1 8 G.nt nlmt Membrana (VSG) , pU1.tive 

Plasma 
Tbl0,v4 ,0185 

Variant surface glycoprotein (VSG. · 42 201 0 553&1 4 2 G.n. name Membrane paeudogene) . putative 
Plasma 

Tbll ,1320 
Variant IUrfaC' glycoprotein (VSG. · 48 138 0 48453 8 3 G.n. nlm. Membrane paeudogene), putative 

Plasma 
Tb927 ,3.300 

Variant lurface gtycoproteln (VSG. · 58 27 ,& 0 58431 15 8 G.nl nlme Memb,ane pseudogene), putative 
Plasma 

Tb927.5.4900 
Variant surfact glycoprotein (VSQ, · 38 U 0 58202 8 5 G.nt nlmt Membrane p.eudogent) , pu1ltive 

Plasma 
Tb09.244.0780 Membran. 

Variant lurface glycoprotein (VSG, 
plOudogent), pu11ltive · 50 17 0 51570 5 2 O.n. nlm. 

Nucleus Tb927.".3810 
ONA·directed RNA polymer ... II · 38 87,5 0 135 102 4 5 G.n. nlm. lubunlt 2. putltive 

Nucleus Tb927.7 ,8360 Hlslon, H2A. putative · 101 &7,3 0 1178& 17 4 G.n. nlmt 
Nucleus Tb927 ,7,2820 Hislone H2A. putlllV. · 335 &V 0 H203 U 3 O.n. ntm. 
Nucleus Tb927 ,7.2330 Hlslont H2A. putatlvt · 335 &&8 0 14203 43 8 O.n. nlm. 
Nucleus Tb927 ,7.2340 Hlslone H2A, putative · 335 &&,8 0 14203 43 3 Gen. nam. 
Nucleus Tb927 ,7.2350 Hlstont H2A. puldvt · 335 8&8 0 14203 43 8 Gen. nlm. 
Nucleus Tb927 ,7,2860 Histone H2A. putative · 335 &&,7 0 1'203 43 8 G.n. nlm. 
Nucleus Tb927 ,7,2870 Hislon' H2A. putative · 335 &&,7 0 14203 43 8 G.nt nlm. 
Nucleus Tb927 ,7,2830 Hlslone H2A. putative · 335 9&,8 0 14203 ' 3 3 O.n. nlm. 
Nucleus Tb927 ,7,2890 Hlltone H2A. putltiv. · 335 && ,8 0 14203 43 8 Gtn, nlm. 
Nucleus Tb927,7,2900 Hilltone H2A. putative · 335 && ,8 0 14203 43 3 G.n. "1m. 
Nucleus Tb927.7.2910 Histone H2A. putative · 335 &&8 0 14203 43 3 G.n. nlm. 
Nucleul Tb927} ,2920 Histone H2A, putative · 335 &&.8 0 14203 43 8 G.n. name 
Nucleus Tb927.7.2930 Histone H2A. putalive · 335 8&,8 0 14203 U 8 G.n. name 
Nucleus Tb927.7.29'0 Histone H2A. putltive · 335 &&,7 0 14203 U 8 G.n. name 
Nucleus Tbl0 .406.0330 Hislone H28. PUtltiv. · 2&1 &&.8 0 12582 38 11 G.n. nlm. 
Nucleus Tbl0 ,406 ,0340 Hlslone H28. putative · 2&1 &&,7 0 12570 38 11 Oen. name 
NuCleus Tbl0.4oa.0350 Histone H28. putaltve · 2&1 && 3 0 12582 38 11 G.ne n.m. 
Nucleus Tbl0 ,406.0360 Histone H2B, putative · 2&1 &&.7 0 125112 38 11 O.n. name 
Nucteus Tbl0.406 ,0370 Hlltone H2B. putdv. · 2&1 9& 8 0 12582 38 11 O.n. name 
Nucleus Tbl0 ,406.0380 Histone H28. putative · 2&1 && ,8 0 12582 38 11 G.nt name 
Nucleus Tbl0.408.0390 Histont H28. putative · 2&1 &U 0 1258& 38 11 O.n. nlme 
Nudeul Tbl0 ,408 ,0400 Histone H28. putative · 2&1 898 0 12582 38 11 G.ne name 
Nudeul Tbl0 ,406.0410 Histone H2B. put.tive · 2&1 80a 0 12582 38 11 Oen. nlm. 
Nucleus Tbl0.406 ,0420 Histon. H28, putative · 2&1 &U 0 12582 38 11 G.ne nlm. 
Nudeul Tb10."08.0430 Histon. H28. put.liv. · 2&1 &U 0 125112 38 11 G.n. naml 
Nucieul Tbl0.406 ,0440 Histone H28. putldv. · 2&1 g& ,7 0 12582 38 11 G.nt nlme 
Nucleus Tbl0.406 ,0450 Histone H2B. putalive · 211 && 8 0 12582 38 11 C.n. n.m. 
Nudeus Tbl0,406 ,0460 Histon. H28. putative · 2&1 &&.8 0 12582 38 11 G.nl name 
Nucleus Tb&27 ,1,2430 Histone H3 . putative · 130 &7 .4 0 14855 25 3 G.n. name 
Nucleus Tb&27,1.2450 Histon. H3 . putllivl · 130 &7 ,4 0 14355 25 3 a.n. name 
Nudeus Tb927 ,1.2470 Histone H3 . putativt · 130 &7 .4 0 14855 25 3 O.ne n.m. 
Nucleus Tb927 ,1.2490 Histone H3 . putative · 130 &7 .1 0 14355 25 3 G.n. nlm. 
Nudeus Tb927, 1.2510 Histone H3 . putativl · 130 &7 .4 0 14355 25 3 alne nam. 
Nudeus Tb&27,1,2530 Histon. H3 . putative · 130 &H 0 14355 25 3 Oene nlm. 
Nucleus Tb927 ,1,2550 Hlltone H3 . putative · 130 &7 ,4 0 14855 25 3 Gent naml 
Nudeus Tb&272,2670 Histone H .. , putative · 280 &5,3 0 11248 45 8 Oln. nlme 
Nudeus Tb927.5.4170 Histone H .. . putative · 3&0 &&,1 0 11135 H 10 G.n. nam. 
Nucleul Tb927.5."1 80 Hiltone Hot . putltlve · 3&0 &&2 0 11135 H 10 O.n. nam. 
Nucleus Tb927,5,4190 Histone H .. . putllive · 3&0 &&2 0 11135 47 10 G.nl name 
Nucleus Tb927,5.4200 Histone Hot . putatlv. · 3&0 && ,1 0 11135 H 10 G.ne name 
Nucleus Tb927,5,4210 Histone H4 . putatlv. · 3&0 && ,2 0 11135 47 10 G.nt nam. 
Nucleus Tb927 ,5,4220 Histone H .. . putative · 3&0 && ,2 0 11135 H 10 Gene nlme 
Nucteus Tb&27.5.4230 Histone H4 . putative · 3&0 &92 0 11135 H 10 Cent name 
Nucleus Tb927,5,4240 Histone Hot . putative · 3&0 && ,1 0 11135 H 10 Oen. nlm. 
Nucleus Tb927.S.4250 Histone H4 . putltive · 3&0 &&,1 0 11135 H 10 Gene nlm. 
Nudeus Tb927,5.4280 Histone ~, putative · 3&0 98.1 0 11135 H 10 G.n. nlme 

Nudeus Tb927,H70 
RetJotranlpolon hot spot (RH5) · 78 18,7 0 &878& 4 4 G.nt nlm. protein . putative 
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Retrotransposon hot apot (RHS) 
Nucleus Tb927.1.120 protein, putative; retrotranspo.on · 80 12.8 0 98534 • 3 Gene name 

hot spot 

Nucleus Tb927.2.1120 RetroD'ansposon hot spot protein · 31 19< 0 815<3 • 2 Gen. nlml (RHS. pS8udogene), putative 

Unknown Tb09.211."70 ADP·ribosylation hlctor. putative · "7 87 .• 0 20725 15 3 G.n, n.m. 

Unknown Tb0921' ..... eO ADP·ribolylation factor, putative · "7 97.2 0 20725 15 3 Oen. name 

Unknown Tb0921 t , .... 90 AOP-ribosylation factor, putative + " 7 97.' 0 20725 15 3 Gen. name 

Unknown Tb927.1.'300 Chaperone protein DNAJ , putati\le · 33 58.1 0 55"2 7 2 Oen. name 

Unknown Tb927 .3 .S310 Hypothetical protein , conserved + 31 79.2 0 2.:).128 1 2 Gen, nama 

Unknown Tb09.211 .3"0 Hypothetical protein , conserved + 32 71.7 0 110855 1 2 OInt nlm. 

Un known Tb927.3.3220 Hypothetical protein, conserved + 32 '9.8 0 102<79 2 3 Gent nlm. 

Unknown Tb927.' .28S0 Hypothetic.1 prot.in, conserved · 32 80.1 0 225<'9 0 • Gen, name 

Unknown Tbl 0.70.'S60 Hypothetical protein, conserved · 33 85.7 0 115<10 2 2 Glne name 

Unknown Tb10.70.3'60 Hypothetical protein , con.erved · 3' 58.' 0 238985 0 2 aene neme 

Unknown Tb927.42820 Hypothetical protein, conserved · · 34 58.0 0 109658 2 2 Oene name 

Unknown Tb927.U250 Hypothetical protein , conserv.d · 3' 24.1 0 78739 • 2 Gen. nlm. 

Unknown Tb927.2.2650 Hypothetical protein , cons.rv.d · 35 82.3 0 387.88 0 3 Gen. nlm. 

Unknown Tb09.160.2860 Hypothetical prot.ln, conserved · 37 . 8.8 0 39800 3 1 G.n. nlm. 

Unknown Tb10.61.0820 Hypoth.tica' protein , conllrved · 37 50.' 0 377010 0 1 G.n. n.m. 

Unknown Tb11.01 .52'0 Hypothetical protein, conserved · 37 58.2 0 183500 0 1 G.n. nlm. 

Unknown Tb927.3.5290 Hypothetical prot.ln, conserved · · 37 O. 0 10$1.0 • 5 Gen. name 

Unknown Tb09.21 1.1800 Hypothetical protein , conserv.d + 38 882 0 53801 4 2 Gen, nlm. 

Unknown Tb927.4.'040 Hypothetical protein, conltrv.d · 38 .8.9 0 30'13 15 3 G.n. nlm. 

Un known Tb927.7.5690 Hypoth.tical protein, conserved · · 38 33.5 0 08791 • 5 G.n, nlme 

Unknown Tb" .0' .3520 Hypothetical proleln, conserv.d · · 39 73.0 0 111275 1 1 G.nl nlm. 

Unknown Tb10.61.2190 Hypothetical protein , conserv.d · ., . 03 0 53018 3 1 O.n. nlm. 

Hypothetical Pfotein, conl.rved; 
Unknown Tb11.0H5'0 predicted tetrab"lcopeptid. r.p.at + ., 31 . 0 4580. 7 2 Gen. nlm. 

(TPR) 

Unknown Tb927.72350 Hypothetical protein , conltrv.d · ., 5<7 0 1182.5 2 3 Gtne nlm, 

Unknown Tb927.8.2"0 Hypothetical prol.in , conserved · . 2 80.$ 0 23'8' • 1 G.n. nlm. 

Unknown Tb" .02.0'60 Hypothetic.1 protein, conl.rv.d · .. 87.3 0 89897 5 3 G.n, name 

Unkn own Tb10.70.1570 Hypothetical prot.in , conserv ed · . 5 57.8 0 1078$4 1 1 G,ne n.me 

Hypothetical proleln, conserved: 
Unknown Tb09.2" .32'0 leuclne~h rep.at protein (LRRP), · · ' 9 '12 0 32738 5 1 O.n. nlm. 

putative 

Unknown Tb10.61.1550 Hypothetical protein , conl.rved · · .8 OU 0 .7872 11 3 G.n. nlm, 

Unknown Tb10.6k15.0'60 Hypotheticil protein , conserv,d · · 50 88.2 0 17297 13 2 G.n. n.m. 

Unknown Tb927.' .620 Hypotheticil protein , conserved · 51 53.3 0 279"3 1 5 G.n. nlm, 

Unknown Tb11.52.0004 Hypoth.tical protein , conserv.d · · 52 84.3 0 35207 5 2 Cene n.me 

Unknown Tb927.U800 Hypothetical protein , conserved · 53 8U 0 3"57 20 • Cene nlme 

Unknown Tb927.8.3990 Hypothetical pfoteln , conlerved + 53 32.' 0 330.2 3 I GIn. nlme 

Unknown Tb" .0' .'850 Hypothetical protein, conserved + · 5< 71.1 0 .8965 4 2 G.n. nlm. 

Unknown Tb11 .02."20 Hypothetic.1 protein , cons.rved · · 5$ 9' .5 0 270'0 8 1 G.n. nlm. 

Unknown Tbl1 .01 .5280 Hypothetical protein, conserved · · 58 26.3 0 22308 11 2 Gene nlme 

Unknown Tb927.8.8000 Hypoth.tica' protein , conltrved · 57 52.1 0 61787 5 2 Oen, nlme 

Unknown Tb10.70.3090 Hypothetica' pfoteln, conserved · 58 " .5 0 29:W89 2 7 G.ne nlme 

Un known Tb927.5.2330 Hypothetica' protein, conserved · 58 ' 2.4 0 .92358 1 • Gene nlme 

Unknown Tb927.7.4220 Hypothetical protein , con.erved · 59 83 0 122027 7 8 Gene name 

Unknown Tb" .02.2350 Hypothetica' pfoteln , conserved · 60 752 0 585. 7 3 2 Genl name 

Unknown Tb927.5.4150 Hypothetica' protein, conserved · · 60 89.3 0 . 2583 18 5 Gene nlme 

Unknown Tb092" .2700 Hypothetical protein, conserved · · 61 9' .2 0 50755 2 1 G.n, name 
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Unknown Tb927.4.2060 Hypothetical protein, conserved + 51 91 9 0 57023 10 5 Gtnl name 

Unknown Tb927.7.760 Hypothetical protein, conserved + + 51 715 0 54370 7 3 Gen, n.m. 

Unknown Tbl1.02.3680 Hypothetical protein, conserved + + 52 33.5 0 24738 7 2 Ganl nlm. 

Unknown Tb927.4.670 Hypothetical protein, conserved + + 83 4 1.7 0 74518 2 2 Cant name 

Unknown Tb927.7.<870 Hypothetical protaln, conserved + + 53 S02 0 30655 10 2 Genl name 

Unknown Tb09.180.0600 Hypothetical protein , conserved + 84 82.8 0 eaSli4 10 3 Gene name 

Unknown Tb927.4.3330 Hypothetical protein . conserved + + 54 51.5 0 20059 7 1 Gane nlm. 

Unknown Tb09.21' .060D Hypothetical protaln , conserved + 88 515 0 20154 11 2 G.nl nlm. 

Unknown Tbl1.02.4380 Hypothetical protein. conserved + + 87 72 .5 0 45179 2 1 a,n, nlma 

Unknown Tbl0.70.1380 Hypothetical protein, conserved + + 85 70 I 0 21587 10 2 Gtne name 

Unknown Tb927.4 .3130 Hypothetical protein , conserved + + 85 75.2 0 30733 5 2 Gtnl naml 

Unknown Tb927.5.570 Hypothetical prolein , conserved + + 88 795 0 "8~" '5 4 Glnt nam. 

Unknown Tb927.5.1540 Hypothetical protein, conserved + 70 57.7 0 13052 3 3 Olnl n.m. 

Unknown TbI0.70.7980 Hypothetical protein , conlerved + + 75 855 0 34 112 7 2 G.n. nlml 

Unknown Tbl1.022130 Hypothetical protein , conserv.d + . 75 70& 0 35a38 10 4 Gtn. nlm. 

Unknown Tb927.a.810 Hypothetical protein , conserved + + 77 45.7 0 ;a708 3 3 Gtnt nlmt 

Unknown TbI0.70.0310 Hypothbc.1 protein , conserved + ao 132 0 1;a32 II 2 G.n. ",m. 

Unknown Tbl0.70.' 990 Hypothetical protein, conserved + + al 31.8 0 13757 19 2 G.nt nlm. 

Unknown Tb927.3.49aO 
Hypothetical proleln , conlerved 

+ al 57 0 83339 5 3 Gtn. nlm. (p.eudogene) 

Unknown Tb927.4.3060 Hypothetica' protein , con.erv.d + 12 SO.I 0 17722 12 2 Gene ",m. 

Unknown Tb927.3.3040 H~oth8tica' protein , conserv.d + + 83 40.' 0 29200 14 3 G.nt namt 

Unknown Tb927.8.4510 Hypothetical prolein, conlerv.d + + a3 47.7 0 <8410 7 3 G.ne name 

Unknown Tbl0.70.2730 Hypothetical protaln, conservad + a7 324 0 115873 • < G.ne n.me 

Unknown Tbl 0.y4.0039 Hypothetical protein, conserved + a7 32.5 0 lI85a8 • < Otn. namt 

Unknown Tb927.3.1990 Hypothetical protein, conserved + + aa 12.7 0 54090 3 2 Oen. nam. 

Unknown Tbll.01.0840 Hypothetical protein , cons.rved + 89 « .1 0 33533 t8 3 Oent namt 

Unknown Tbl1.02.0352 Hypothetical profeln , conserved + a9 838 0 31aOO 12 2 Gen, nam. 

Un known Tbl 0.812 11 0 HypOthetical protein , conserved + + 90 834 0 7575' II 4 Gin. nlm. 

Unknown Tbll .01.5400 Hypothetical protein , conserved + 91 48.3 0 U088 7 3 Gtn. name 

Unknown Tbl1.02.3900 Hypoth etical protein , conservtd + + 91 847 0 49587 17 5 Otn, namt 

Unknown Tb11 .02.47GO Hypothetical protein , conserved + 91 51 .5 0 187905 2 4 Otn. nlmt 

Hypothetical protein , conserved; 
Unknown Tb927.5.5030 leuclne-rich repest protein (lRRP). + + 91 33.9 0 85091 9 4 G.n. nlm. 

putative 

Unknown Tb09.180.1890 Hypothetical protein , con.erved + 92 « .8 0 8390 28 2 G.nt nlm. 

Unknown TbI0.70.181 0 Hypothetical protein. con.erv.d + + 92 33.5 0 1~13 5 4 Otnt ",m. 

Unknown Tb09.211.0890 Hypoth.tlcal protein . conserved + 94 85.4 0 39231 10 2 Ot"' nlm. 

Unknown Tbl1 .01.8050 Hypothetical prot.ln. conservtd + 95 54.3 0 85971 3 2 O.nt "tm. 

Unknown Tbtt .50.0001 Hypothetica' proleln, conservtd + + 95 31.2 0 30219 19 4 Otn. ",mt 

Unknown Tb927.S.2930 HypotheUcal protein , conserved + + ;a 71.3 0 433tle II 4 Otn. ",m. 

Unknown Tb927.7.4910 Hypothetlca' protein, conserved + + tle 95.4 0 ,'02a 9 3 Otn. n.m, 

Unknown Tb927.a .a280 HypotheUca' protein, conserved + tle 57.5 0 30384 7 2 Oen. ",m. 

Unknown Tb09.180.tt80 HypotheUca' protein, conserv.d + 9a 71.5 0 58218 28 20 G.n. n.mt 

Unknown Tbl0.406.0270 HypotheUcal protein, conserved + + 9a 52.2 0 2;a37 21 5 G.nt n.m. 

Unknown Tbl1.03.0470 Hypothetical protein, conserved + + 9a 57.5 0 40745 8 3 Oln. n.m. 

Unknown Tbl0.70.8570 HypottleUcl' protein , conservtd + 100 41.4 0 333e07 1 < Gen. n.m. 

Unknown Tb927.2.2770 Hypothetical protein , conserv.d + 100 87.4 0 13885 t3 2 Gene nlmt 

Unknown TbOg.211 .3470 Hypothetica' prot.ln. conservtd + '0' 90.7 0 17558 18 3 G.n. n.mt 

Unknown Tb927.7.4840 Hypothetical protein, cons.rv.d + 10< 58.7 0 38488 12 3 Gtnt "1m. 

Unknown Tbl1 .01 .3000 Hypothetic.1 protein , conltrved + 100 58.1 0 42313 9 3 G.n. n.m. 
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Unknown Tb " .01.4850 Hypothetical protein, conserved + 107 21 0 30257 14 3 Gtnt name 

Unknown Tb927 .2.2510 Hypothetical protein , conseNed + 109 97.1 0 2ue84 11 2 Gent name 

Unknown Tb927.2.2520 Hypothetical protein , conseNed + 109 97.1 0 2geS. 11 2 Gen. nlme 

Unknown Tb09.160.S060 Hypothetical protein . conseNed + 110 41.5 0 41 385 31 13 Gene nlm. 

Unknown Tb927.4.1890 H'tPothetical proleln, conserved + + 110 35.7 0 28588 8 2 Gene nlme 

Hypothetical Pfoleln, conserved; 
Unknown Tb927.7.7240 leuclne-rlch repeat protein (tRRP), + + 111 829 0 79780 5 3 Gene nlm. 

putative 

Unknown Tb927.8.3UO Hypothetical protein . conserved + 112 37 .3 0 10843 29 2 Gent nlm. 

Unknown Tbl0.70.1080 Hypothetical protein. conserved + + 113 4U 0 lU58 38 4 Gene n.me 

Unknown Tb927.8.8920 Hypothetical protein, conserved + + 114 43 .a 0 20898 19 3 Gent nlm. 

Unknown Tb927.82030 Hypothetical Pfoleln , conserved + + lIS 85.7 0 48208 8 4 Oint n.m. 

Unknown Tbl0.70.0600 Hypothetical protain . con .. rved + 11 8 741 0 78175 4 3 Gent nlm. 

Unknown Tb927.7.3920 Hypothetical protein. conserved + + 118 35.5 0 3U47 15 3 G.n. nlm. 

Unknown Tb927.8.1S80 Hypothetica l protein , conserved + + 118 8U 0 89182 12 5 G.n. n.m. 

Unknown Tb05.5K5.120 Hypothetic.1 protein , conserved + 119 84.8 0 91130 1 5 Gtnt nlmt 

Unknown Tb927 .5.4410 Hypothetical protein , conltrvtd + + 119 GU 0 97130 1 5 Gtnt naml 

Unknown Tb09.1GO.3930 Hypothetical protein , conservtd + + 120 90.9 0 34421 13 3 Glnl nlml 

Unknown Tbl1.01 .5060 Hypothetical protein, conserved + 122 G8.1 0 58088 8 3 Gin. naml 

Unknown Tb927.4.1300 Hypothetical protein , consernd + + 122 98 0 42444 13 4 Glnl n.ml 

Unknown Tb927.7.6890 Hypothetical protein, conltrved + + 122 08.5 0 29001 20 3 Gen. nlme 

Unknown Tbl0.488.0550 Hypothttlcal protein , conltrved + + 123 38.2 0 20338 21 4 Gin. n.m, 

Unknown Tbl0.488.8840 Hypothetical protein , conltrved + 123 398 0 20338 21 4 G.n. name 

Unknown Tb927.32890 Hypothetical protein , conltrved + 123 83.8 0 31381 35 9 G.n. name 

Unknown Tb09.211 .1790 Hypothetic.1 protein, eon.erved + + 124 M1 0 40nO 8 2 aen. nama 

Unknown Tb921.1.4280 Hypothetical prot.ln , con.erved . 124 28 4 0 78031 5 3 Oen. n.me 

Unknown Tb09.21' .2250 Hypothetical protein , conl.rv.d + + 1211 52.9 0 31883 18 4 Gtn, nlm. 

Unknown Tb927.7.50S0 Hypothetical protein , cons.rv.d + + 128 n .3 0 10517 1 1 e G.n. n.m. 

Unknown Tbl0.8kI5.3330 Hypothetical protein , conltrv.d + 129 M .2 0 200550 4 8 G.n. n.m. 

Unknown Tb09.211.0110 Hypothetical protein , conltrv.d + + 131 80.9 0 29240 22 4 G.n. nlm. 

Unknown Tb927.8.8980 Hypothetic.1 protein, conllrvld + 131 52 0 95510 1 8 Glnl n.m. 

Unknown Tb09.21 1.0890 Hypothetical prole In, conserved + + 132 14.2 0 201 48 14 3 O.na n.ml 

Unknown Tbl0.Gl .2920 
Hypothetical protein , conllrved; 

PF20 
+ + 133 12.1 0 88328 8 3 Ganl n.ma 

Unknown Tbl1 .18.0012 Hypothetical protein, conserved + + 134 00.5 0 123911 5 4 Oanenama 

Unknown Tbl1 .41.0026 Hypothetical protein, conserved + 138 25." 0 53588 II 8 Gantn.ml 

Unknown Tbl0.70.4840 Hypothetical prot.ln, conserved + 137 90.3 0 39021 9 3 Gantnam, 

Unknown Tbl0.70.SS80 Hypothetical protein , conllrved + + 131 90.9 0 34159 18 4 Ganlntme 

Unknown Tb921.3.2050 Hypothetical protein, conllrvad + 131 14.8 0 173101 4 1 Gtn.nam, 

Unknown Tb09.160.0120 Hypothetical protein , conltrvld + + 138 1U 0 83183 1 3 Gln,n.mt 

Unknown Tb092 1U780 Hypothetical protein , conserved + + 138 90.5 0 83418 e 4 G.n, nlm. 

Unknown Tbl0.8kI5.0710 Hypothetical protein , conltrvld + + 138 23.8 0 39551 14 3 G.nt n.m. 

Unknown Tbl0.10.4780 Hypothetical protein, conllIVed + + 140 89.1 0 85230 8 4 Gin, n.m. 

Unknown Tb921.Hl00 Hypothetical protein , coollIVed + 140 82.8 0 58971 12 5 G,ne nlm, 

Unknown Tbl0.812810 Hypothetica' prot.in , conserved + + 142 898 0 51170 18 5 G,n, nam, 

Unknown Tbl0.70.7580 Hypothetical prOle," , connrved + + 143 83.1 0 25144 20 5 Gtn, n'm. 

Unknown Tb921.3.5880 Hypothetic,l protein , conltrv.d + 143 80.4 0 39501 10 3 Oen. n.m. 

Unknown Tb927.8.1540 Hypoth.tical protein , con,erv.d + 144 02 0 98830 4 4 Gent nlme 

Unknown Tbl1.01.7750 Hypothetical protein , conllrved + + 145 13.1 0 12"4 10 5 Gene nlme 

Unknown Tb927.U e90 Hypothetical protein , conserved + + 145 74 0 31831 15 5 Gene name 

Unknown Tb092 11 .0175 Hypothetical protein, conlerved + 148 91.8 0 9840 34 4 Gena ntme 
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Unknown Tb927 .3.2490 Hypothetical protein. conserved · 148 77. 0 l1oe8G 7 8 Gin. nlm. 

Unknown Tb927 .7.2300 Hypothetica' protein. con.erved · · 147 SG 0 .33G3. 5 5 Gent nlm. 

Unknown Tbl0.70.4130 Hypothetical proleln, conserved · · 148 425 0 •• oe85 7 8 Gent name 

Unknown Tb927.4.2840 Hypothetical protein. conserved · · 148 G5 0 2848G 18 3 G.n. nlm. 

Unknown Tb09.' 60.1660 Hypothetical proleln, conserved · .50 84.' 0 G322 33 3 Gent n.me 

Unknown Tb927 .2.3020 Hypothetica' proleln , conserved · · 150 8ze 0 .U330 8 7 Gtne n.me 

Unknown Tb927.S.22S0 Hypothetica' protein , conl.rved · · .54 GO' 0 .. eegO 13 4 Gtnt name 

Unknown Tb927.2.4780 Hypothetica' protein, conserved · .55 50 < 0 107824 8 5 Gtne nlm. 

Hypothetica' prot.ln, con,.rved; 
Unknown Tbl1.0' .8640 leucln • ..,1ch repeal protein (LRRP). · · 157 7. 8 0 71271 7 8 Gtnt nlm' 

putattve 

Unknown Tb927.7 .3310 Hypothetica' protein. eon"Ned · • 57 83' 0 3G08 • 11 4 atne "1m. 

Unknown Tb927.4.1810 Hypothetica' prot.In, con,.rved · .8. 85. 0 3GU2 11 • Otne "erne 

Unknown Tb09.211.0180 Hypothetlca' protein , connIVed · .85 222 0 71770 8 < G.n. nlm. 

Unknown Tb927.4.1880 Hypothetical protein , conserved · · .88 83.' 0 52555 .0 4 G.nt nlme 

Unknown Tb5l27.l .17"O Hypothetical prolaln , con,e",ed · · 188 50B 0 7754G .2 8 Gin. nlm. 

Unknown Tb927.12290 Hypoth.tlcal ptoteln , con,e",ed · · 170 7U 0 2384. 24 4 G.n. name 

Unknown Tb'0.8k15.08GO Hypothetical protein, conse""d · · 172 78 0 155288 e 7 G.n. nlm. 

Unknown Tbl1 .01 .2390 Hypoth.tlcal protein . conse",.d · · 175 .8 4 0 22550 27 5 G.nt nama 

Unknown Tbl1 .01.8S10 Hypothetica' protein , conse",ed · · .78 G4 .7 0 4.175 11 C G.n. nlm. 

Unknown Tbl0.3B9.0eeO Hypotheticl' proteln, conlt",.d · · .77 30.7 0 105205 7 8 G.n. nlm. 

Unknown Tb927.S.1230 Hypothetical protein , conse",.d · · 177 <sa 0 5BU3 G 5 G.n. nlm. 

Unknown Tb927.72390 Hypoth.tlcl' protein , conse",ed · 177 781 0 lonGS 8 G G.n. name 

Unknown Tbl1.01.4030 HypothetiCiI protein , con .. ",.d · 181 8U 0 32752 30 7 G.n. nlm. 

Unknown Tb927.32GSO Hypothetical prot.ln , conserved · 182 878 0 84154 1 G 8 Gene nlmt 

Unknown Tbl1 .02.0140 Hypothetlca' protein , conserved · 183 711 0 33841 24 8 Oana nlme 

Unknown Tbl1.02.1500 Hypothetical prot."" con .. rv.d 183 432 0 U324 .2 5 Oen. nlm. 

Unknown Tbl1.01.1210 Hypothetlc.1 prot.m, conltrved · · 18< 784 0 82353 2' G Oln. nlm. 

Unknown TbG27.080 Hypoth.tlcal prot.ln. conltrved · 184 53 0 33821 18 5 Otn. nlm. 

Unknown Tb927 .1S.41"O Hypothttlcal protem. COI1ltrv.d · · 185 83. 0 1322G 42 8 G.n. name 

Unkno¥lT1 Tb927.4.1740 Hypothttlcat protein , conserv.d · · lG' sa.4 0 47G1G 17 8 G.n. name 

Hypothetica' protein , con .. ",ed; 
Unknown Tb09.21 1.3955 predict.d hilt ,hock factor binding · lG3 U .• 0 n<4 80 3 G.n. namt 

protein 

Unknown Tbl ' .02.SSS0 
Hypothtlical protein, conltrvtd: 
pr.dlcted WO. O repeat protein · · In G4.S 0 87853 'G 11 Otn. n.m. 

Unknown Tb92H 2 U O Hypothetical ptoteln , conserved · · .n 8a. ' 0 115150 11 G Oen. name 

Unknown Tbl1.012870 Hypothetlc.1 protein , consernd · · In 735 0 .0030. 11 8 O.n. nam. 

Unknown TbG27.7.U 80 Hypoth.tical protein , conserved · · .GI se c 0 125'0 .0 8 Otn. nam. 

Unknown Tb927.3.S01 0 Hypoth.tical protein , conltrvtd · · 20. 44 .8 0 23488 22 7 Oen. n.m. 

Unknown TbG27.7.S680 Hypoth,tic.1 prolein , conserved · · 201 sa.8 0 8se13 15 7 O.n. name 

Unknown Tb927.8.37GO Hypothetical protein , conserved · · 203 327 0 25503 34 5 G.nt nlm. 

Unknown Tbl0.81.0940 Hypothetica' prottln , conserved + · 207 30.1 0 32822 22 5 G.n. nlm. 

Unknown TbG27.S.28S0 Hypoth.tlca' prol.ln , conserved · · 208 81.8 0 57838 21 8 G.n. nlm. 

Unknown Tbl1 .' 8.0003 Hypothetica' plot.ln , conserved · · 20G 70.8 0 81081 8 8 G.n. nlm. 

Unknown Tbl1 .02.2530 Hypothetical protein , conserved · · 211 BU 0 310es 20 4 Gtnt nlmt 

Unknown Tb927.1.32S0 Hypoth.tlca' prot.m, conltrved · 211 8G 1 0 .G8548 7 .2 G.nt name 

Hypothetical pfotein, conltrv.d; 
Unknown Tbl 0.812080 leucln ... i<:h r.pul protoln (LRRP). + · 2.2 84.7 0 12280G 11 8 G.n. nem. 

putatlv. 

Unknown TbG27.7.8810 Hypoth.tical prot.ln , con.erv.d + 2.8 SO.7 0 88325 8 7 Gen. nlm. 

Unknown Tbl1.01.3070 Hypoth.tical protein . con,erv.d · 217 81.1 0 • 2.G21 8 10 G.n. nlm • 

Unknown Tb927.8.3820 Hypotheticel protein , conltrved · · 218 B7.8 0 G4228 8 5 aene nlm. 



190 

Unknown Tb927.6.3220 Hypothetical protein. conserved + · 222 511.8 0 117280 10 10 Glne name 

Unknown Tb927.8.3870 Hypothetical protein , conserved + 227 883 0 127828 • 8 G,nt nlm. 

Unknown Tb927.3.5020 Hvpothetical proleln, conserv ed · 228 788 0 158445 11 8 Gan. nama 

Unknown Tb927.' .660 Hypothetical protein, conserved + · 230 75.8 0 78501 18 8 Gana nlm. 

Unknown Tb927 .«5.4670 Hypothetica' protein, conserved + · 230 90.3 0 41 003 15 8 Gin, nlm. 

Unknown Tbl0.81 .0560 Hypothetical protein, conserved + 231 32.3 0 107418 • 7 Gant nlm. 

Unknown Tbl1.02.2'90 Hypothetica ' proleln. conserved + + 238 81.8 0 30253 30 5 Gena name 

Unknown Tbl1 .02 .S-460 Hypothetica' protetn , con •• rved + · 238 47.7 0 2835. 31 8 Gtn. nlm. 

Unknown Tb05.5K5 .' 0 Hypothetical protein, conserved + 238 48.1 0 15188 ' 0 • Gen. n.m • 

Unknown Tb927.5.' 390 Hypothetical protein, conserved + 238 48 .1 0 15188 ' 0 • GIna name 

Unknown Tb927 .... 700 Hypothetical prot.ln, con.,Nld + · 241 81 .7 0 31151 30 8 Gtnl name 

Unknown Tb927.8.1680 Hypothetical prot.in, conserved + · 241 75.1 0 85. 85 23 8 Olna "1m. 

Unknown Tb927.3.1900 Hypothetica' prot.in, conserved + + 2. 5 881 0 8587 1 8 7 alnl nama 

Unknown Tbl0.61.1200 Hypothetical proleln, conn Ned + · 247 55.1 0 132758 11 10 alnl n.m. 

Unknown Tbl 0.612 100 Hypothetical prolein, con.erved + · 241 88 0 11888 13 8 G.nl n.m. 

Unknown Tb927.1.7250 Hypothetical prot.In , conn Ned + + 255 88.7 0 I,U t03 I 10 aln. name 

Unknown Tb927.U480 Hypothetical protein, conltrved · + 255 ' 9.3 0 11 081MS 11 I G.n. nlm. 

Unknown Tb927.3.5370 Hypothetical protein, con.erved + 251 2408 0 34290 23 8 Gen. nlm. 

Unknown Tb927.1.81 0 Hypothetical protein, conserved + + 283 18.8 0 3718. 25 1 G.nt nlm. 

Unknown Tbl0.8klS. " 50 Hypothetical protein, cons.rved + 288 90.1 0 17587 38 8 Gent nlm. 

Unknown Tb821.8.5010 Hypothetical protein, conserved + + 288 ' 7.7 0 52188 13 6 G.n. nlm. 

Unknown Tbl1 .02.3810 Hypothe tical protein , conserved + 270 87.5 0 191888 10 14 Gene naml 

Unknown Tb927.8.6230 Hypothetica' protein , conllrved + + 270 82.' 0 37530 21 11 G.ne name 

Unknown Tb927.S.500 Hypoth . tlcal protein, conserved + · 272 83.8 0 U 4811 10 11 G,ne nlme 

Unknown Tb921.6.4520 Hypothetical proleln, conllrved + + 275 61.1 0 52872 23 8 Oen. name 

Unknown Tbl0.389.1320 Hypothetici l protein, conserved + + 278 83.' 0 2' 828 •• 7 aenl nlme 

Unknown Tbl0.70.7320 Hypothetlca' prot.ln, con .. rved · 282 239 0 l1MS727 7 12 G.ne n.m. 

Unknown Tbl1.02.5150 HypOthetlc.1 proleln, con" rved · 28' 84 3 0 58750 18 8 G.n. n.mt 

Unknown Tbl1 .02.0610 Hypothetical proleln, con .. rved · + 285 8U 0 10802. 15 13 Oent nlm. 

Unknown Tb927.2.' 520 Hypothetical protein, con'erved + + 217 555 0 ,.. 780 10 12 Oent nlm. 

Unknown Tb927.7.3330 Hypothetica' protein, con.erved · 283 65.6 0 504911 3 18 G.nt name 

Unknown Tbl0.8kI5.0640 
Hypothetical proleln, con .. rved: · 308 526 0 13385' 18 15 G.ne nlm. predicted C2 domain protein 

Unknown Tbl0.8kI5.2870 Hypothetic.1 protein, cons.rved · + 308 71.2 0 77 188 8 7 G.n. n.me 

Unknown Tbl1 .02.0210 Hypothetic.1 protein , con.erved + 308 173 0 51021 28 9 Gen. nlm. 

Unknown Tb927.' .10'0 Hypothetical protein, conl.rved + + 312 22.5 0 lU58 57 9 Gene n.m. 

Unknown Tb927.U870 Hypothetical protein, conllrved + + 313 5e.4 0 137720 8 10 Oene nlm. 

Unknown Tb921.3.5e20 Hypothetical protein, conserved + 323 7, .3 0 113215 17 13 G.nt name 

Unknown Tb927.3.1040 
Hypothetical protein, con .. rvad 

+ + 325 27.5 0 . 8. 07 22 I G.n. nama (p.eudogene) 

Unknown Tb 11.01.6790 Hypothetical protein, conllrved + 328 81.3 0 825e. 18 11 Gant name 

Unknown Tb 1 0.6kI 5.2630 Hypothetical protein, conllrv. d + + 330 54.8 0 26306 30 6 G.n. nlme 

Unknown Tbl1.01.2200 Hypothetical protein, conltrved + 330 49.7 0 83808 20 1 Gene name 

Unkno'Nfl Tb927.3.1810 Hypothetical proleln, conaeNed + + 332 11.6 0 11 3170 18 12 Gen. name 

Unknown Tbl1 .02.0990 Hypothetica' protein, conaerved + + 335 87.8 0 11 8021 21 ,. Gene nlm. 

Unknown Tbl 0.6kI 5.0140 Hypothetica' protein, conltNed + 337 89.3 0 374.7 2. 7 G.n. neme 

Unknown Tbl0.26.0090 Hypothedcal protein, conaerved + 338 58.5 0 131878 15 ,. Gene nlme 

Unknown Tbl 1.01 .1960 Hypothetical proleln, conaerved + 3. 3 34 .5 0 53514 22 g Oene nlm. 

Unknown Tbl1 .02.01 70 Hypotheticel protein, con .. rved + 3. 3 ' 2.4 0 n817 2. 10 Gen. nlme 

Unknown Tb827.3.3770 Hypothetica' protein, con .. rved + + 34' 94.3 0 31821 21 g Gen. name 
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Unknown Tb927.3.3790 Hypothetical protein . conllrved · 3 •• 9. 3 0 31927 27 8 Gen. name 

Unknown Tb927.7.2650 Hypothetical protein , conserved · 3 .. .03 0 622.6 10 6 Gen. n.m. 

Unknown Tb927.5.1660 Hypothetical protein , conserved · · 3. 6 606 0 198se9 7 13 Gen, n.me 

Unknown Tb927.7.2790 Hypothetical protein, conserved · · 352 5U 0 78598 
" 

I G,n. nlm. 

Unknown TbI0.6kI 5.1500 Hypothetical protein , conserved · · 36. 85.1 0 45371 .. 28 G.n. name 

Unknown Tb927.3.2310 Hypothetical protein , conserved · · 369 683 0 33835 . 7 12 Gen. nlm. 

Unknown Tb09.211 .1810 Hypothetical protein , conserved + 373 . 21 0 118498 15 14 G.n. nlm. 

Unknown Tb927.3.1010 Hypothetical protein , cona,rved · 375 61 I 0 8"472 18 10 G,n, n.m. 

Unknown Tbl1 .02.03s,c Hypothetical protein , conltrved · · 380 61 a 0 a0555 22 11 G.nt name 

Unknown Tb927.3.1DeO 
Hypothetic.1 protein , conserved 

(p •• udogene) · · 3aa 221 0 .UO., 32 13 G.ne nlm. 

Unknown Tb927.3.3750 Hypothetical protein, conserved · · 386 866 0 20018 . 6 8 Gent nlme 

Unknown Tbl0.26.06aO Hypothetical protein, conserved · · 382 77.2 0 14'33 57 8 Gen. nlm. 

Unknown Tbl1.02.0a60 Hypothetical protein, conserved · · 385 se .7 0 10~H 13 11 Gene nlml 

Unknown Tb927.3.1200 Hypothetical prot.ln, conserved · 396 50.7 0 64794 13 a Oen. name 

Unknown Tbl1.01 .4370 Hypothetical protein, conserved · 388 a7.1 0 8og8a la 11 Genl nlm. 

Unknown Tb09.211 .1470 Hypothetlcl' protein, con.erved · · 388 SO.1 0 35510 ' 8 12 Gene nlml 

Unknown Tbl1.02.11 90 Hypothetical prot.ln , conserved · '0' a17 0 a1204 25 12 Gen. nlml 

Unknown Tb09.211 .4280 Hypothetical protein , con.erved · . 05 a5 0 178535 10 15 Glnl nlme 

Unknown Tb09.2" .3a90 Hypothetical prot.ln , conserved · 406 37.7 0 1455a6 11 13 G,ne name 

Hypothetical protem, conserved; 
Unknown Tbl1.01.06aO 'eucine-rjch repeat protein (LRRP), · · 41 0 " .2 0 78598 25 18 Oen. name 

putatlv. 

Unknown Tbl1.01.1170 Hypothetical protein, conserved · · 415 a1.3 0 98703 la 11 Oene name 

Unknown TbI0.a1 .2210 Hvpotheticai proltln, conserved · · 418 8H 0 37S18 33 8 Glne name 

Unknown Tb1 0.6k15.1510 HypotheUc:a' protein, con.erved · . 22 '68 0 811aO 20 13 Olnl nlme 

Unknown Tbl0.61.0540 Hypothetical prot.ln , con.erved · · ' 31 047 0 36731 30 10 Oene n.me 

Unknown Tbl0.6kI5.25'0 Hypothetical Pfot.ln, con.ervld · . 33 a7S 0 152230 12 13 Genl name 

Unknown Tbl0.81.2450 Hypothetical protlln , con.ervld · · . 35 778 0 12286a 23 la Gene naml 

Unknown Tbl1 .39.0004 Hypothetica' prot.ln, conllrvtd · · .4a 81.5 0 4sa06 27 11 Oln, name 

Unknown Tb1t.0t.I!5UO HypothelK:a' protlln , con,.rved · + ' 53 70 0 128361 8 14 Gent nam. 

Unknown Tb927.7.0280 Hypothetica' prot.ln , con.lrved · · '53 751 0 72682 le 12 Oenl nam. 

Unknown Tb11.01 .6a40 Hypothetical protlln , conllrv.d · · ' 54 753 0 77410 2' 13 Genl name 

Unknown Tb10.61.2220 Hypothetical protein, conserved · · ' 55 ao. 0 46762 18 9 Gent n.me 

Unknown Tb927.8.6660 Hypothetical protein , conllrved · · 45a 98a 0 88012 23 12 Gene name 

Unknown Tbl0.26.07aO Hypothetical protekl , conllrvld · · . 65 383 0 101358 20 14 0.,,1 name 

Hypothetica' !)foteln, con.erved; 
Unknown Tb927.1.41 aO '.ucin.-rk:h repeat prot.1n (LRRP) , · 486 aS7 0 ale7' 16 10 Genl nlme 

putative 

Unknown Tb927.' .2aOO Hypothetica' protein , con.erved · · 47. a.a 0 163147 12 17 Oenl nlml 

Unknown Tbl0.70.5350 Hypothetical protein, conltrved · · . al 587 0 120351 18 16 Oln. n.m. 

Unknown Tb92H.53aO Hypothetical protein, conltrved · · 533 . 05 0 la7413 10 " G.n. nlm. 

Unknown Tb927.a.69.0 Hypoth.tical protein, conserved · 533 . o.a 0 107477 10 14 G.nl name 

Unknown Tbl1.01.2aOO Hypothetic.' protein, conserved · · 535 94.5 0 41a27 41 15 Oene nlme 

Unknown Tb927.6.a200 Hypothetical protein , con.ervld + 537 86.' 0 100080 20 14 Gene name 

Unknown Tb927.3.3300 Hypotheticl' protein , con.erved + 538 53.8 0 68U7 20 12 G.nl nlme 

Unknown Tb927.3.4870 Hypothetica' protein , con.erved · · 551 568 0 lla142 22 18 Gin. name 

Unknown Tb927.a.62'0 Hypothetica' protlln, conllrvld · · 554 8SS 0 303a5 60 la G.n. name 

Unknown Tb09.180.0780 Hypoth.ticl' proteln , con.erv.d · sa3 agg 0 77653 21 14 Gen. name 

Unknown Tbl1.01 .1a25 Hypoth.tical protein , conllrved · ~ a7.6 0 11872 72 17 Oen. name 

Unknown Tb927.U130 Hypoth.tic.1 protein , con.erved · · sea 65.3 0 l002e3 25 17 G.ne nlml 
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Hvpothetical protein , conserved; 
Unknown Tbl1.01.3960 calmodulin-like protein containing · · 570 89.e 0 87399 23 14 Gen, name 

EF hand domain 

Unknown Tb927.e .4580 Hypothetical protein, conserved · · 577 82 e 0 58220 28 19 G.n, n.me 

Unknown Tb927.2.2160 Hypothetica' protein , conserved · 581 75 0 38221 40 15 Gtn. nlm. 

Unknown Tbl0.6kI 5.2920 
hypothetical protein , conserved: 

rib72 protein-like protein · · 585 7U 0 83470 28 18 Glne nlm. 

Unknown Tb09.160.0650 Hypothetical protein , conserved · 588 77.4 0 508 129 8 2e Gin. n.m. 

Unknown Tb927 .4.3740 Hypothetical protein, conserved · 587 sa .9 0 193592 10 22 Gent name 

Unknown Tb927.5.2950 Hypothetical prot.in, conserved · · 589 58 0 89227 2' 18 Otn. n.m. 

Unknown Tb l 1.01.2310 Hypothetlca' protein , con •• rved · · 804 755 0 99725 23 19 Gtnl n.me 

Unknown Tb927.6 .620 Hypothetical protein, conserved · 813 88 0 304434 13 27 G.nl nlm, 

Hypothetical protein. conserved; 
Unknown Tbl1.02.4230 leuctnl-rlch repeat prote6n (LRRP) , · · 815 77 .• 0 98506 20 14 Gtn. name 

putative 

Unknown Tbl1 .02.1280 Hypothetica' protein , conurv.d · · 835 873 0 29138 53 11 Gtne "1m. 

Hypothetical protein, conllrved; 
Unknown Tbl 1.01.8770 leuclne-rlch repeat protein (lRRP) , · · 575 95 .4 0 111 078 21 I V Glnl nlml 

putatlvl 

Unknown Tb927.5 .3150 Hypothetical protlln, conserved · · 591 47 .1 0 505384 II ' 0 G.nl naml 

Unknown Tb927.7.3560 Hypothetical proleln , conserved · 705 55.1 0 201249 15 25 Oen. naml 

Unknown Tb927.5.4400 Hypothetical protein , canlerved · · 705 52.9 0 7828e 25 13 Glnl nlml 

Unknown Tb927.7.69 10 Hypothetical protein , conserv.d · · 720 87.8 0 92484 24 17 Gin. name 

Unknown Tbl 0.6kI5 .1760 Hypothetical protein , conllNld · 781 79.2 0 247538 18 37 O.nl "I me 

Unknown Tb927.2.4810 Hypothetical protein, conlerved · 778 88.7 0 151320 22 24 Gtnt nlm. 

Unknown Tb927.7.t310 Hypothetical protein, conllrved · · 875 87.7 0 153588 24 27 Gtn. n.me 

Unknown Tb l 0.6kI 5.3460 Hypothetical proteln, conllrv.d · · 889 50.3 0 287544 16 33 Otn, nlmt 

Unknown Tb927.7.3550 Hypothetical protein , conserv.d · · 919 83.1 0 138785 18 23 G.n. n.m. 

Un known Tb927.42080 Hypothetica' protein , conllrved · · 1012 14,8 0 105048 28 27 G.nt nlm. 

Unknown Tb927.7.3740 Hypothetical prot.ln , conserv.d · · 1057 82.4 0 93536 28 21 G.ne nlme 

Hypothetical protein , conllrved; 
Unknown Tbl0.6kI5 .081 0 leuclne-rlch reptal protein (lRRP). · · 1084 33.5 0 120018 34 28 Gene nlm. 

putallve 

Unknown Tb927.1.4310 Hypothetical protein, con,.rved · · 1091 78.8 0 184338 24 40 Gen. nlme 

Un known Tbl' .02.4320 Hypothetica' prolekl , conserved · · 1184 92 .2 0 101744 37 29 G.n. nlm. 

Unknown Tbll .47.0006 HypothetiCiI protein , conllrvtd · · 1190 8U 0 87200 49 38 Otn. nlm. 

Unknown Tb09.180.1180 Hypothetical protein, conserved · · 1235 eo.l 0 88488 38 31 Otne n.m. 

Unknown Tb927.8.4780 Hypothetical prottin, conltrved · 1337 74.1 0 471038 13 50 O.ne namt 

Unknown Tb927.8.1550 Hypothetical proleln. conltrv.d · 1837 958 0 88488 51 43 Gtnt nlm. 

Unknown Tb09211 .2160 Hypothetical protein · 58 438 0 2 1858 9 2 Oln. name 
Un known Tbl1.0840 Hypothetical protein · 95 29,9 0 21848 19 4 Oln. nlml 
Unknown Tbl1.01.4380 Hypothetical prot,." · · 115 34.7 0 44181 17 5 Oln, nlml 
Unknown Tbl0 .• 4.0053 Hypothetical protein · 317 9U 0 483570 2 II G.nt name 
Unknown Tbll .1380 Hypothetical protem · 441 VU 0 45808 27 11 O.n, nlml 
Unknown Tbll .1220 Hypothetical protein · 581 75.2 0 58219 28 12 G,n. nlm. 

Cytoplasm Tb927.8.3060 
Cylo,ollc Ilucy! amlnopeptida,e , 

putatNe · 471 89.5 0 71726 22 13 Annottltd II 

CAP 15 miaotubul.· . .. ociattd 
Cytoskeleton Tbl1.01.3805 protein; cOl'1et-aSloclaled prolein · 237 55 0 14082 30 8 Annot.ted " 

15 

Flagellum Tb927.8.4840 
Flagellar protoNament ribbon · · 237 protein , putative 

92.1 0 48837 19 5 Annotat.d II 

FlageUar radial .poke component, 
Flagellum Tb" .02 .2060 putative; flagenar radial apoka · · 427 82.5 0 87377 18 10 Annotat.d " 

protei 

Flagellum Tb927.3.3890 
Flagellar radi.1 spoke protein-ilk., · · 287 91.2 0 81 411 19 9 Annotat.d a. 

pUllti'" 

Flagellum Tb05.5K5.130 
Para flagellar rod component P.r4, · 805 58.3 0 88443 35 17 Annotat.d " putative 

Flagellum Tb927.5.4480 
Paraftagellar rod component Par4, · · 805 55.4 0 88443 35 17 Annotat.d " putative 

Flagellum Tbll.01.5100 
Paraftagellar fod component. · · 1453 93 .1 0 88934 52 51 Annot.ted II 

putative 

Flagellum Tb927.2.4330 Pareftagellar rod protein, putative · · m 83.6 0 87717 10 e Annotatld II 

Flagellum Tb927.3.4320 
PFR1 73 kOa parlftagellar rod · · 1580 911 .3 0 89098 48 75 Annotatld II 

prOloln; PFRI 

Flagellum Tb927.3.4290 
PFR1 13 kOa plraftagellar rod · 1580 99 .3 0 89098 48 75 Annotatld .. protein: PFR1 
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Flagellum Tb927.3 .4300 
PFRI 73 kOa pa(aR'genar rod · 15M 993 0 89og8 48 75 Mnotsled .. 

protein ; PFRI 

Flagellum Tb927.3 .4310 
PFRI 73 kOa para8agellar rod · 1580 

protein ; PFRI 
99.3 0 89og8 48 75 Annotated .. 

Flagellum Tb927.3 .4330 
PFRI 73 kOa paraflagellar rod · 1580 

protein : PFRI 
9U 0 89_ 48 15 Annotaled •• 

Flagellum Tb921 .8.S000 
PFR2 89 tOa paranlgsnar rod 

protein; PFRI · · 1710 99 .4 0 89953 48 99 Annolated •• 

Flagellum Tb927.8.4970 
PFR2 69 kOa paraflagellar rod · 1110 99 4 0 89953 08 99 Annotated •• 

protein; PFRI 

Flagellum Tb921.8.4960 
PFR2 69 kOa paraflagellar rod 

protein; PFRI · 1710 89.' 0 8 •• 53 08 99 Annotated •• 

Flagellum Tb927.8 .0990 
PFR2 69 kOa paranag,lIa, rod · 1710 9U 0 89953 48 99 Annotated II protein; PFRI 

Flagellum Tb921.8.S010 
PFR2 69 tOa paratlagellar rod 

protein; PFRI · 1710 99 4 0 89953 48 99 Annotated I' 

Flagellum Tb927.8.5470 
TB·17 flagellar calclum-blnding · 342 ;e.2 0 25128 20 8 Annotat.d II 

protein 

Flagellum Tb927 .8.5.40 TB-24 ftagellar calclum-blnding · · 342 ;e.8 0 20580 21 8 Annotated •• proleln T8-24 

Flagellum Tb927.8 .5460 
TB ..... A nagallar calcium-binding 

---'protein TB...t4A · 338 ;e o 0 08317 11 8 Annotltld I' 

Glycosome Tbl0.70.1370 
ALO fructose-blsphosphate · 929 99.1 0 4 1045 38 22 Annot.lld II aldolase , glyco.omal, putative 
GAPDH glyceraldehyd. 3-

Glycosome Tb927.8 .4280 phosphate dehydrogenase . · · 1824 99 0 39023 84 148 Annotatld II 
glyco.omal 

GAPDH glyceraldehyde 3· 
Glycosome Tb921.6 .0300 phosphate dehydrogen .. e , · 1824 99 0 39023 84 146 Annot.t,d II 

glycosomal 

Glycosome Tb09.211 .3SS0 glk1 glycerol kinase. glycolomal · 8al 98.2 0 51011 2. 10 Annolaled al 

Glycosome Tb09.211 .35e0 glk1 glycerol kinase, glycoloma' · 881 98.2 0 57111 2. 10 Annotat,d .. 

Glycosome Tb09.211 .3S10 glkl glycerol kina .. , glycoloma' · 881 98 .2 0 51111 28 14 AnnOlll,d .. 

Glycosome Tb09.211 .3S90 glk1 glycerol kin ... , glycolomal · eel 98.1 0 51111 28 14 Annotat,d .. 

Glycosome Tb09.211 .3S00 Gtk1 glycerol kina .. , gtycosomat · 337 91.3 0 51041 17 9 Annolilid I' 

Glyclfol·3i>hosphl l. 
Glycosome Tb927.8 .3530 dehydrogenase (NAD+I, · · 359 989 0 31408 l e 8 Annotlted .. 

glyco.omal 

Glyc060me Tb09.180.3S90 
PDf2C cAMP-specinc · · 860 n .l 0 100128 22 20 Mnotlt.d .. phosphodieslera.1 

Kinetoplast Tbll .0l .a090 
KinetopllSt ONA·a .. odalld 

prolein , putative · 45 51 .5 0 38m 25 13 Annota led II 

Membrane Tb09.211 .4S11 
Kln,topla.tld membrane protein · 312 go o 0 llce9 80 18 Annol,tld II 

KMP· ll 

Membrane Tbog.211 .4S12 
Klnetoplastid membrane protein · 312 9U 0 llce9 04 16 Annotltld II KMP· ll 

Membrane Tb09.211 .0S1 3 
Klnetopl8ltid membrane prot.ln 

KMP· ll · 312 99.5 0 llce9 04 18 Annolltld II 

Mitochondrion Tbl0.10.0280 
HSP60 chaperonln HspeO, · · 818 98.1 0 59751 Ii 21 Annotated II mitochondria' precursor 

Mitochondrion Tb921.5.2190 
Pol be1a· PAK mnochondrill DNA · 218 88.3 0 81289 9 8 Annot.lld II polymera .. beta·PAI( 

Nucleus Tbl0.6klS.23S0 
Nude.r pori complex protlln · · 53 89.2 0 10U15 2 3 Annol.tld II (NUPt 55), putativI ; nucl,oporln 

Nucleu. Tb927 .8.37S0 Nucleolar protein, putltlve · 105 955 0 54123 8 2 Annot.ted II 

Nucleus Tbl0.6klS.3670 
Nudeoporln Interacting compon.nt 

(NUP83). putative · 114 80.8 0 97:we a 5 Annot'ltd II 

Nucleus Tb927.4.S020 
RNA polymer .. e IIA large.t · 35 ea.l 0 191193 1 3 Annotatld II 

. ubunlt 

Nucleu. Tb927.B.7400 
RNA polymerISe IIA largest · 35 ea8 0 191802 1 3 Annotat.d II 

subunit 

Nucleus Tb921.3.1120 
rtb2 GTP·blndlng nudear protein · 188 e8.4 0 24132 29 3 Annotatld II 

rtb2 , putative 
Flagellum Tbl0 .10.2920 Prohibltin. putative · · 200 81 .' 1 32386 3 1 1 TbFP 

Mitochondrion Tbl0.8klS.3840 AOX alternative oxidISe · 089 95.9 1 31138 38 14 G.nIOB 

Unknown Tb927.4.24S0 Thloredoxln, putative · 118 941 1 04148 5 4 OeneOB 

Intr,cellular Tbl0.10.1690 
.OS ribosomll prolein S10. 

putativl · 50 9S.9 1 208e4 11 2 G,n' nlml 

Nucleus Tb927.2.1100 
Retrotran. po.on hot . pot prot.in 

(RHS. p.eudooan.), putative · 44 3.4 1 89048 5 0 G.nl nlml 

Unknown Tbl 0.61.31 00 Chaperonl protein ONAJ, putative · 33 88.3 1 272 11 3 1 G.nl nlm. 

Unknown Tb921.4.11SO Hypothetical protein , con.erved · 75 52.1 1 U784 8 4 Oenl nlme 

Unknown Tb921.8 .4S00 Hypothetical protein . conserved · 234 98.3 1 22748 28 8 O.nt nlml 

Unknown Tb927.3.3200 Hypothetical protein. con.erved · · 303 41.4 1 45491 17 8 Oant nlme 

Unknown Tbl0.81.2200 Hypoth,tical protein, con.erved · 315 10.9 1 95188 11 10 Glnl name 

Unknown Tbl1.01.4810 Hypothetica' protein, con.erved · · 318 8U 1 24238 29 5 O.ne name 

Unknown Tbl 0.10.461 0 Hypothetical protein, conserved · · 322 41.4 1 209350 11 18 atnl nlml 

Glycosome Tb09.211 .2730 
Glm5A Gim5A protein; gtycoloma' 

membrane protein · 322 90.0 1 28190 30 11 Annot.lld ,I 
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Gtycosome TbOS.211.2740 
Gim5B Glm5B protein; glycosomat · 273 929 1 25529 30 10 Annolaled II membrane protein 

Mitochondrial carrier protein. 
Mitochondrion TbOS.2" .1750 putative; mitochondrial phosphate · 475 985 1 34729 35 10 Annotated II 

transporter 

Unknown TbS27.5.1900 Hypothetical protein. conserved · · 54 90.3 2 75115 4 2 Gena nlm. 

Glycosome Tbl1 .01.3370 
PEX 11 glycotomal membrane 

protein , putative · 155 97.4 2 24240 14 4 Annolated II 

Unknown Tb09.211 .1550 Chaperone protein ONAJ, put. live · 43 599 3 55575 1 1 Gtn.DB 

Mitochondrial carrier protein, 
Mitochondrion Tbl 0.61.1510 putative; AO P/ATP tTanslocase 1. · 188 987 3 34053 30 19 Annotated II 

putative 

Mitochondrial earrler proleln. 
Mltochonci'ion Tbl0.61 .1520 putative: ADP/ATP transloclll i . · 185 98.7 3 34053 30 19 Annotated II 

putative 

Mitochondrial carrier protein. 
Mitochondrion Tbl0.61.1630 putative: AOP/ATP transloel" 1, · 186 987 3 34053 30 19 Annotated •• 

putative 

Membrane Tb927.3.1640 3Mollo-5-alph ..... t.rold 4-
dehydrogenase, putative · 143 942 4 33619 6 4 GeneoB 

Unknown Tbl0.70.3750 Hypothetical protein . conserved · 117 61 .' 5 3157 1 8 2 Genl nlm. 

Unknown Tbl1 .02.3050 Hypothetical proleln. conslrved · 11 4 38.7 7 77727 7 4 Gtnl n.m. 

Unknown Tbl 1.01.0460 Hypothetical prolein . conserved · 120 90.5 9 54353 7 4 Gen. n.m. 

Membrane TbS27 .8.2380 ABC transporter. putative · 36 752 9 126959 0 1 5. TMO 
Flagellum Tbl1.01.4160 Ankyrln r.p.at prolein, putative · 37 75.6 0 17648 13 2 TbFP 

Flagellum Tb09.160.2070 
Cyelophilin lype peptldyt1'roJyl ell· 

trans Isomerase. putative · 34 61 .1 0 38327 2 1 TbFP 

Protein transport protein Secl3. 
Flagellum Tb l0.81.2830 putative; cytolollc coat protein . · 54 76.9 0 42046 6 2 TbFP 

putative 

TbFP Tbl0.6k152590 Hypoltletlcal protein , conserved · 93.1 0 TbFP 

TbFP Tbl 0.6k l 5.3580 Hypoltletlcal protein, conserved · 65.3 0 TbFP 

TbFP Tbl0.70.0920 Hypoltletical prote"'. conlerved · 36.4 0 TbFP 

TbFP Tbl0 .70.3720 
NADH-dependent fUmarlte · 84.1 0 TbFP r.duct .... putative 

TbF P Tbl0.70.4340 Hypoltleticat protein , conserv.d · 505 0 TbFP 

TbFP Tbl0.70.4370 Hypoltletical protein, conserved · 45 4 0 TbFP 

TbFP Tb l0.70.' 530 Hypothetical protein, conlerved · 533 0 TbFP 

TbFP Tbl0.70.8980 
Oynein Irm light chain , .. onem.l , · 6U 0 TbFP pul.live 

TbFP Tbl1 .01.0180 Hypothetical protein, conserved · 38 0 TbFP 

TbFP Tb11.01. .. 210 Hypothetical protein. cons.rved · 59.8 0 TbFP 

TbFP Tb l 1.01 .4400 Hypothetical protein · 73 0 TbFP 

TbFP Tb l 1.01 .5770 Hypothetical protein, coolerved · 80 0 TbFP 

TbFP Tb11.01 .8040 Hypothetical protein , conllrv.d · 566 0 TbFP 

TbFP Tb11.01.8670 
Calpaln-lik. cyste"'e peptidase. · 92.1 0 TbFP putative 

TbFP Tbl 1.01 .7370 Hypothetical protein , con.erved · 31.1 0 TbFP 

TbFP Tb1 1.01.7810 Hypothetical protein. conlerved · 87 0 TbFP 

TbFP Tb11.01 .8370 Hypothetical protein. con.erved · 52.6 0 TbFP 

TbFP Tbl1.02.11 35 Dyneln light chain. putatlv. · 83.9 0 TbFP 

TbFP Tb l1.02.41 50 
PPDK pyruvate phosphite · 836 0 TbFP 

dlkin .. e 

TbFP Tbl 1.02.4620 Hypotheticil protein , conserved · 624 0 TbFP 

TbFP Tbl 1.02.4660 Hypothetic.1 protein , conserved · 722 0 TbFP 

TbFP Tbl 1.02.5590 Hypothetical protein, conserved · 51 0 TbFP 

TbFP Tbt 1.03.081 0 Hypothetical protein , conserved · 57.1 0 TbFP 

TbFP Tbl1 .0330 Hypothetical protein · 45.7 0 TbFP 

TbFP Tb927.3.3540 Hypothetical protein , conserved · 902 0 TbFP 

TbFP Tb927.3.5140 Hypothetical protein . conserved · 53.5 0 TbFP 

TbFP Tb927.5.2270 Hypothetical protein . conserved · 36.1 0 TbFP 

TbFP Tb927.5.2320 Hypothetic.1 protein , conserved · 78.6 0 TbFP 

TbFP Tb927.5.2530 Hypothetical protein . conserved · 54 0 TbFP 

TbFP Tb927.5.3830 Hypothetical protein . conaerved · 36.9 0 TbFP 

TbFP Tb927.8 .1720 Hypothetlcl' protein. conserved · 57.6 0 TbFP 

TbFP Tb927.5.3g20 Hypothetical protem. conserved · 51 .3 0 TbFP 
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TbFP Tb927.7.1000 Hypothetical protein. conserved + 7U 0 TbFP 

TbFP Tb927. 7.(510 Hypothetical protein. conserved + 81 .5 0 TbFP 

TbFP Tb927.7.5650 Klnesln , putative + 48 • 0 TbFP 
TbFP Tb927. 7 .6830 Trans·slalidas8, putative + &1.6 0 TbFP 
TbFP Tb927 .7.6850 TbTS trans-staUdase + 87.2 0 TbFP 

TbFP Tb927 .7.8950 Hypothetica' protein. conserved + 734 0 TbFP 

TbFP Tb921 .8.3780 Hypothetical protein , conltrved + 80 & 0 TbFP 

TbFP Tb927 .8.4810 Prohibltin + 71.8 0 TbFP 

TbFP Tb927 .8.6260 Hypothetical protein , conserved + 40 .4 0 TbFP 

TbFP Tb927.8.640 Hypothetical protein , conaerved + 34.3 0 TbFP 

TbFP Tb927.8.6740 DNA repair protein, putative + 4U 0 TbFP 

TbFP Tb927.8.780 Hypothetical protein , conaerved . 32 0 TbFP 

Cytoplasm Tb927.8.5880 Euklryotic translation initillion 
47 &6 .8 0 1&434 13 2 O,n.08 factor tA. putative 

Cytoplasm Tbl0.6k15.3850 
GAP glyceraldehyde 3-pho.ph." 3& &7 .3 0 35780 2 1 GeneOB dehydrogenall , cylololle 

Golgl Tbl0.8k'5.2500 
BAD 1 adapt!n compl ... 1 subunit. 

33 U .I 0 76S88 1 1 GeneOB putative; bela-edaptin , hgment 

Intracellular Tb927.4.3570 Translation elongation 'actor t · 
73 &7 .1 0 21814 I 2 GoneDB beta , putative 

Intracenutar Tb927.4.3590 
Translation .Iongatlon 'ador 1- 73 U 0 21588 • 2 G,n.OB bela. putative 

Intracellular J 
Tb927 .8.15&0 

upl3 ublquitln-proteln IIgue, l8 71.1 0 475321 0 3 a,n.08 Mitochondria putattv. 

Mitochondrion Tb09.180.3520 
Radical SAM domain protem, 57 81.3 0 45710 13 4 GenoDB putative 

DNA repair hellCise and 
Nudeus Tb927.3.5.00 transcription factor prolein. l8 75 .l 0 106155 2 3 G.n,08 

putative 

Nucleus Tbl0.8k15.l110 Fibrillartn .0& 54.7 0 31794 I 2 G.n.08 

Nuclaus Tbl 1.01.5570 
NRBDl RNA-binding protein: .. &7.7 0 21759 9 2 OonoDB NRBDl 

Nucleus Tb" .0' .5590 
NRBD2 RNA-binding protoln; .. &7.9 0 30206 9 2 GonoDB NRBD2 

Nucleus TbOQ.24U790 rRNA processing prot.in. putative 3& 8V 0 25488 3 1 GenoDB 

Nucleus Tb927.U70 InoRNP protein gar1 . putative 55 8&3 0 21770 11 • 01n.08 

Nucleus Tb927.3.3490 
TOP1 hIgh mobility group protein . 4& 13 0 30847 2 1 OtnlOB putativo 

Unknown Tb927.8.2020 Argln .. e, putative 53 10.7 0 38722 t5 4 GonoDB 
Unknown Tbl0.6k15.l780 Caltractin. putativ, 79 2&.3 0 20725 to 2 aeneOB 

Guanine nucleotlde-blndlng prottln 
Unknown Tb" .0' .3'80 beta subunit-like protein: activated &0 U .4 0 35tl1 22 7 Oene08 

p 

Unknown Tb927.6.1400 
PPI ... cyclophilin-lype pepUdyI-

241 34.1 0 21989 20 8 GonoDB protyl cis-traniliomerase, putative 

TRACK guanine nucleoUdt-blndlng 
Unknown Tb" .01.3170 protein beta subunit- lik. prot.ln; 90 &8 .4 0 35111 22 7 G.n.OB 

activated protein 

Membrane Tb" .0' .2420 
eeta-adaptin 3, putative; edaplin 

34 87 0 101210 0 1 G.neOB complex 3 IUbunlt. putelive 

Unknown Tb09.v4 .0172 
ExpressIon Ilte-assodated gen. 

37 1.8 0 38223 2 3 G.n.OB (ESAG, p .. udogone) , putative 

Unknown Tb927.7.3420 
PPla .. poptidyl-prolyl cIo-trln. 

67 71& 0 12388 2t 3 Gon.DB Isomeras., putative 
Unknown Tb927.2.5230 Protein kina .. , putatlv. 48 712 0 31174 4 1 G.n.De 

Unknown Tb927.7.2440 Pyrroline-S-carboxylate reduct .... 49 845 0 28852 8 3 Gon.DB putative 
Cytoskeleton Tb05.5K5.90 Dyneln light chain , putative 55 &6 0 105&5 23 1 Gtn. "em. 
Cytoskeleton Tb927.5.4UO Dyneln Uoht chain. pUlativt 55 95.7 0 105&6 23 1 Otnt nlm. 

50S rlbolomal protein 12, 
Intracellular Tb" .0' .7960 putative; 60S ribosomal protein LS , 59 &8.8 0 288&5 It 3 Otnt nlm. 

putative 

60S ribosomal protal" L2. 
Intracellular Tb927.5.1110 putativ.: 50S ribosomal protein LS , 58 9U 0 288&5 11 3 G.nt nlmt 

putative 

Intracellular Tb927.8.720 
405 ribosomal protein L 14 , 87 &8.7 0 21801 15 3 Gent nlmt putative 

Intracellular Tbl1.01 .l020 
405 ribolomal protein L 14, 87 87.& 0 2t827 15 3 G.nt nlme putative 

Intrlcellular Tb927.1.31BO 405 ribolomal protem 51' , 
85 &8.1 0 20275 14 3 G.nt nlmt put. ttve 

Intracellular Tbl0.8k15.3340 
405 ribosomll prolein S24E, 

170 U .! 0 15731 21 5 Oent nlme 
putative 

Intracellular Tbl0.6k15.3l50 
40S ribosomal protoln S24E, 

170 &9 .l 0 15731 21 5 G.ne nlmt 
putative 

Intracellular Tbl0.70.3370 
405 ribosomal protein 531. 

13& U .3 0 2&618 21 5 Gtn. name putatfve 

Intracellular Tb" .02.4170 40S ribosomal protlMn 55. putative 138 U .8 0 21487 27 5 Gene nlm. 

Intracellular Tb927.8.1150 40S ribosomal prot"n sa. putativt 138 U2 0 24979 14 2 Gtnt nlm. 



196 

Intracellular Tb927.8.6180 40S ribosomal protetn sa, putative 138 991 0 24979 14 2 Gt n, nlm. 

Intracellular Tb927.4.750 
50S ribosomal protein l7Ae, 

putative 
33 88e 0 18424 7 1 Gtnt nlm. 

Intracellular Tbl0.70.4060 
60S addlc ribosomal protein P2, 

putative 
33 Del 0 "042 7 1 Gena name 

Intraceltular Tbl0.70.4070 
60S acidic ribosomal prot.in n . 

33 De .l 0 11842 7 1 Gananama 
putative 

Intracellular Tb09.160.4200 
80S acidic ribosomal protein , 

40 9U 0 11140 2. 2 atnt "1m. putative 

Intracellular Tb927.5.1120 
SOS acidic rlbOlomat prottln , 

De 87.1 0 10113 13 1 Gan, nlm. 
putative 

Intrlcellular Tb" .46 .000' 
80S acidic ribOlomallubunit 192 99.5 0 3-4891 13 3 a.nenam. proleln . pu1>lIv. 

Intracellular Tb" .46.0002 
80S acidic ribolOmallubunit 

'92 995 0 34891 13 3 Gtn, nlm. protein, putative 

Intracellular Tbml2t 1.4550 
60S ribosomal prot.in L 12. 

68 De7 0 2'287 8 2 atn. nama pu .. lIv. 

Inttacellul.r Tb927.1 .6030 SOS ribosomal protein L12. 
88 993 0 1786& 9 2 atn. nama putative 

Intrlc.lular Tb927.3 .3310 
60S ribosom.1 prote'" L1 3. 

195 97.9 0 28737 20 5 Oene naml Dut.llve 

Intrlce.ular Tb927.4.3550 
80S riboloma' proteJn L 13a. 

'07 De 0 38358 7 2 Gene nlmt putative 

Intrecenular Tb927.5.1810 
80S rlbOlomal protein LI 3a, 

putative 
107 98 0 25887 11 2 Oene nlm. 

Intracenular Tbl0.70.3510 
80S ribosomal protein Llea, 

188 De8 0 21119 32 & Glnt nlml 
putative 

Intracellular Tb927.7.5000 
80S ribosomal prot.ln LUI , 

12 99.5 0 294'8 3 1 Gtnt name putalive 

Intracellular Tb927.7.S020 
eos ribOlomal prot.ln LIS , 

putadv. 
12 995 0 294. 8 3 , Gent name 

Intracellular TbI1 .0880 
80S riboaomal prot.ln L21 E, 

107 97 0 182'9 11 2 Gtne nlml pulallvl 

Intrac.llular Tb 1 0.70.1540 
80S ribOlomal prole ... L2. , 42 98 0 14700 11 1 Gen. name ",,1>liv. 

Intracellular Tbl0.70.1580 
80S ribosomal prol.1n L2. , 42 98.1 0 14730 11 1 Gene nlme pu1>1Iv1 

Intracellular Tb092 44.2590 eos rlbolom.1 protein l32 90 De3 0 16400 34 8 Oene name 

Intracellular Tbl0.l00.0155 
eos ribosomal protein L32. 

90 935 0 16443 34 8 Oent nlm, 
putative 

Intracellular Tb927.4.2180 
eos ribOlomal protein L35A. 

80 98.1 0 1112' IS 2 O.ne name pU1>livo 

Intracellular Tb09.244.2730 eos ribosomal proleln L5. putative 54 9U 0 3' 072 2 1 Gene name 

Intracellular Tb09244.2740 60S ribOlomal protein L5 . putaltv, 5' 99.7 0 34872 2 1 Gen. nlme 

Intracellular Tbl020.0580 eos riboloma' protein Le , putattw 04 996 0 21229 12 2 Oenl name 

IntlaceRular Tbl1 .01 .5120 Ribolomal protein Lie , putative 188 97.4 0 21119 32 8 Oen, name 

Intracenular Tb927.4.11 00 
Rlbosomll prol.'n L21 E (80S). 107 De7 0 18232 17 2 aen. nlm. 

putatJve 

Intrlcenular Tb 11 .50.0005 
Rlboeomll ",ol.'n L21 E (80S) . 107 97 0 18219 17 2 Otn, name 

putativa 

Intracanular Tb927.7.1130 Ribosomal protein L7 , putative 177 992 0 27110 28 8 Gen. name 
Intracellular Tb;27.7.1UO Riboaomal protein L7 , putative 177 983 0 29458 27 e Gin, name 
Intracellular Tb927.7.1750 RibolOmai protein L7. putativ. 177 983 0 29' 58 27 6 Glnl name 
Intracellular Tb927.4.1880 Rlbo.omal protein S 1 g, putative 86 987 0 19118 '3 2 Otne nlm. 

Intracellular Tbl0.8kI5.2050 
RPS12 .OS ribo.omal protein 512, 

7' 9s.e 0 18279 '8 , Oent naml 
pu1>lIv. 

Plasma 
Tbl1 .• 4.0029 

Variant .urfac. glycoprotein 
34 38.9 0 52580 3 2 G.n, n.m. Membrane (VSG). putati •• 

Plasma 
Tb927.5.5330 

Vanant lurfaCt glycoprotein (VSG , 
41 152 0 57Mo 3 3 Gent nlml Membrane Plludogene). putatN. 

PI .. ma 
Tbl1 .0950 

Variant .urflce gtycoproteln (VSG . 
3' 28.1 0 S0801 5 2 a.nt nlme Membrane pseudog.ne), putative 

Plasma 
Tbl0 .• 4.0027 

Variant .urfaee gtyCOPfotek\ (VSG, 35 219 0 05472 7 4 G.nt name Membran. plOudogenl). pu1>lIv. 

Plasma 
Tbl1 .43.0005 

Vartlnt lurflce gtycoproteln (VSG. 
35 17 0 84&11 2 2 Gen. name M.mbran. ps.udogonl). pu1>IJVI 

Plasma 
Tbl0 .••. 0189 Verilnllurfllce gtycoproteln (VSG. 36 297 0 55184 4 2 Gen. nlme Membrane plludogen.), putatlv. 

Nucleu. Tb927.4.1330 
DNA topotsomera.a 18, larg. 

lubunit 
el 702 0 79608 3 2 Gen. name 

Nucleus Tbl0.389.0110 
ONA-dlrtCied RNA polymera ... II 

80 798 0 25479 8 1 G.n. nlma 
.ubunlt, pulltive 

Nucleu. Tb927 .5.11 SO 
Pr.-mRNA splicing faClor ATP- 42 782 0 uen 2 1 G.n. nlma 

dependent RNA hlliea .. , putative 

Nucleus Tb09 .• 4.0087 
Retrotrln.po.on hot Ipot prot.ln, 85 141 0 83417 3 2 O.n. nlm. 

plludogen. 

Nucleus Tb09.2112970 SMClltruetural maintenance of 1& 54.1 0 1457e2 2 3 Otn. name chromo.ome 1, putative 

Nucleus Tb927.5.3510 SMC3 .tructural malntenlnce of 
chromosome 3 , putative 

. 22& 23.5 0 137200 7 7 Gin. nam. 

Nucleus Tb9272.1810 Tran.cription activator, putative 149 8ea 0 133531 4 5 Gen. naml 

Intracellular Tb09211 .4S40 RNA-blnding prol.'n . pulallv.; U 709 0 34711 10 3 G.na nlma 
DRBD2 

Intracellular Tb 11 .03.0020 
UBPI RNA-binding prol.in. 

49 72.9 0 24394 7 1 alnt nlm. 
",,1>1Iv1 

Intracellular Tbl1.03.0580 
UBP2 RNA-binding prOloin . 49 799 0 lDe04 9 1 Oint nlme 

putative 

Intracellular Tb927.4.4980 Adrenodo.1n precursor, putative 31 88.5 0 ,a007 a 2 Oln. namt 
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Unknown TbOB.160.2400 Hypothetical prote in. conserved 31 58.1 0 57_ 3 2 Gent nlm. 

Unknown Tbl 0.38B.l SBO Hypothetical protein , conserved 31 80.3 0 50423 1 1 Gene nlm. 

Unknown Tbl 0.70.1420 Hypothetical protein , conserved 31 19 0 38111 5 2 Gtnt nlm. 

Unknown Tb" .02.4270 Hypothetical protein , conserved 31 8B.3 0 153938 1 2 Oent nlm. 

Unknown TbB27.8.4700 Hypothetical protein , conserved 31 71.7 0 38110 8 2 G.n. n.m. 

Unknown Tb927.7.800 Hvpothetical proleln , conserved 31 78.3 0 81130 4 3 G.n. nlm. 

Unknown Tb09.180.3020 Hypothetical protein , conserved 32 18.5 0 48917 8 1 Gen. nlm. 

Unknown Tbl1.49.0006 Hypothetical prot.ln, conserved 
32 15 0 35404 7 2 Oen. nlm. (pseudogene) 

Unknown TbB27.7.7480 Hvpothelicll protein , conserved 32 53.1 0 22888 8 1 Gtn. "1m. 

Unknown Tbl 1.012885 Hypothetical protein , conserved 33 83.9 0 Uogse 1 1 G.n, nlm. 

Unknown TbB27.8.4210 Hypothetical protein , conserved 33 74.9 0 48908 3 2 Gtnt nlm. 

Unknown Tb927.22550 Hypothetical protein, conserved 34 518 0 58082 5 2 Genl nlm. 

Unknown TbB27.82120 Hypothetical protein , conserved 35 29.2 0 27711 8 2 Gtnt nlm. 

Unknown Tbl 0.70.1880 
Hypothetic.1 protein , conserved: 

38 81 .0 0 141732 1 2 Genl naml predicted WO.O proteIn 

Unknown Tbl 0.70.2950 Hypothetical protein , conllrved 38 58.9 0 31928 3 1 Olnl nlml 

Unknown Tbl0.70.5410 Hypothetica' proteIn, conservld 38 82.4 0 41723 4 1 Glnl nlml 

Unknown TbB27.82870 Hypothetical protein , conserved 37 18,8 0 108088 2 3 Glnl naml 

Unknown TbB27.8.5100 Hypothetical protein , conserved 31 82.7 0 318944 1 5 Gtnl naml 

Unknown Tbl0.70.3580 Hypothetical protein . conserved 39 29.3 0 112233 1 1 Olnl nlme 

Unknown Tbl 0.70.7350 Hypothetical protein, conurved 39 41.3 0 37808 2 1 O.nt name 

Unknown TbB27.2.5870 Hypothetica l protein , conurved 40 21.4 0 217912 1 3 G.n. nlm. 

Unknown TbQg.160.1740 Hypothetical prolem, conllrved 41 74.1 0 47029 4 2 Oene nlme 

Unknown Tb09 .11S0.47 10 Hypothetlca' proleln, cons'Ntd 41 58.1 0 171 553 2 3 G.n. ".m. 

Unknown Tb" .01 2 ' 00 Hypothetical protein , conseNed 41 54.1 0 70919 3 1 Oent name 

Unknown Tb927.4.790 Hypothetical protein, conurved 41 21 0 25419 7 1 Oen. "1m. 
Unknown TbB27.7.1830 Hypoth.tical protein . conllrv.d 42 32.7 0 41231 3 1 Oln. n.m. 

Unknown TbB27. 7 .1870 Hypothetical protein , conserved 42 32.5 0 41231 3 1 G.n. name 

Un known Tbl0.70.1800 Hypothetical protein, conserv.d + 44 59.3 0 3288 1 8 2 G.n. nlm. 

Unknown TbOB211.0110 Hypothetical proleln, conserved 41 18.1 0 78857 2 2 G.n. "1m. 
Unknown TbOB.2" .' 770 Hypothetical protein , conserved 50 88 0 23588 9 2 Gen. n,me 

Unknown TbB27.8.31 80 Hypothetica' prolein , coneerved 50 38.8 0 18192 10 1 G.n. nlm. 

Unknown Tbl0.389.0810 Hypothetical protein , conserved 52 87,3 0 41888 4 1 G.n. nlm. 

Unknown Tb" .02.3870 Hypothetical protein , cons.N.d 54 39 0 84501 12 5 G.nl nlm. 

Unknown TbB27.3.1820 Hypothetical proleln , conS'Ned 54 12.7 0 25417 9 2 G.nt name 

Unknown Tbl 0.38B.1890 Hypothetical prot.ln , conserved 55 77 0 37044 19 5 G.n. n,m. 

Unknown Tb927.1.890 Hypoth.tic,1 prol. in, cons.Ned 55 15 0 27801 11 2 G.nl nlml 

Unknown Tbl 1.03.0530 Hypothetical prot.ln, conserv.d 58 95.1 0 31330 8 1 G.nt namt 

Unknown Tb05.5K5.80 Hypoth.tical protein , coo.ernd 57 92 0 23893 11 2 G.n. nlmt 

Unknown Tbll .0l .7830 Hypothetic,l protein , conserved + 57 73.7 0 110848 1 1 G.nt nlml 

Unknown Tb927.5.4410 Hypothetical prot.in . conserved 57 92 0 23893 11 2 G.n. namt 

Unknown Tbl0.38B.0280 Hypothetical protein , conserved 58 89.1 0 137887 1 2 Gen. nlmt 

Unknown Tbl 1.02.5340 Hvpothetici l protein. conserved 59 13.1 0 23128 4 1 Gen. nlm. 

Unknown TbB27 2 .581 0 Hypothetical prot.ln, con.erved 80 51 .7 0 175790 2 2 G.nt name 

Unknown Tb09.2" .3340 Hypothetical protein , con •• rved 82 90.3 0 18107 9 2 Gen. nlm. 

Unknown Tbl 1.012960 Hypothetical protein , conltrved 14 92.5 0 19583 13 2 Gen. nlm. 

Hypothetical prot.in , conseNed: 
Unkno'Nll Tb" .48.00" leuclne-rlch repeat protein (lRRP). + 84 49 0 48041 8 3 C.n. name 

putative 

Un known Tb927. 7 .5040 Hypothetical protein , conserved 88 72.5 0 70318 15 7 Gtne name 
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Hypothetical pt'oteln , conserved; 
Unknown Tb927.3.1770 leuclne-rich repeat protein (LRRP) . · 87 211 0 101a07 • 3 Gtnt nlm. 

putative 

Unknown Tb927 ... . 53 .. 0 Hypothetical prolein , con"rved · aa 3S 1 0 GSIS. • • Gen, nlm. 

Unknown Tbl0.05.0270 Hypothetical proleln, conserved 78 3U 0 1'7310 3 2 Gtnt nlm. 

Unknown Tbl0.6klS.3al0 Hypothetical protein , conserved · a2 GOS 0 360GO 27 7 G,ne nlm. 

Unknown Tb11 .S2.0002 Hypothetical prolaw. , conserved 43 70.3 0 . 3;620 1 • Gtnl nlme 

Unknown Tb927.S.19'0 Hypothetica' protein, conserved · 66 7<6 0 218U 23 • Gen, nlm. 

Unknown Tbl1.01 .6600 Hypothetical protein , conserved ae .a.7 0 7G2.2 6 3 Gtne nlm. 

Unknown Tb927.6.1'70 Hypothetical protein, con"rved GO 2U 0 27505 13 3 Gen. nlme 

Unknown Tb927.6 .'330 Hypothetical prol.in , con,.rved U 356 0 2. 276 11 2 atn. name 

Unknown Tbl1 .012570 Hypothetical protein , con"rved · GG 2U 0 303GI 18 • Gtna nlm. 

Unknown Tbl0.81 .13'0 Hypothetical protein , connrved 105 8'7 0 77e21 • 2 Gtnt name 

Unknown Tbl0.70.6810 Hypothetical protein, conserved 110 G3.1 0 2HGJ .. 3 Oene nlm. 

Unknown Tbl0.6k l S.U70 Hypothetical protein, conl,rved 112 22 0 2e81t 8 2 Cine "1m' 

Unknown TMI27 .1.3310 Hypothetical protein, con • • rved · 161 3S.1 0 217" 24 6 Gen, "1m. 

Unknown Tbl0.26.06'0 Hypothetica' prot,", conslrvld · 171 71 . 0 25112 23 • Gen. ",ml 

Unknown Tb927.' .2030 Hypothetical protein, conllrvld 178 G7 .3 0 226Gl " 6 Gen, ".m. 

Unknown Tb927.'-20.0 Hypothetical protein, conserv.d 221 G7 .7 0 207G6 21 • Gin. nlm. 

Unknown Tb927.7.2170 Hypothetica' protein , conltrvtd 363 86 ' 0 16GSG7 10 13 Gin. nlm. 

Unknown Tb09. "2.0260 Hypothetica' protein (plludogen.) 31 11 0 . 0061 5 3 G.n. n.m. 

Unknown Tbl0.v'-D2'1 Hypolh.tical p<OItIn 73 IG G 0 3SGSI 23 6 Gin. "1m, 
Klnetopl., t Tbl0.8kI5.1600 

Kk'lttopll.IONA·lllodattd 125 2S.G 0 23603 17 3 AnnOtilld II 
protein , putative 

Nucteul Tbl1 .02.0620 
NOGt nucleola, GTP·blndK1g 

" 82< 0 75220 • 3 AnnOlll.d II 
prottln 1 

Flagellum Tb927.5 .G.0 
NAOH·dependent tum.r.t. · '0 878 1 85S. 6 0 1 TbFP 

redud ••• , putative 

TbFP TbG27 .3.551 0 Hypothetica' protein , cons.rved · 502 1 TbFP 

TbFP TbG27.7.6100 HypothedcI' proleln · 135 1 TbFP 

Membrane Tbl1 .02.0530 
PRS pho.phoriboaylpyrophoaph.,. 

" 835 1 50237 2 1 G ... OB 
synthetase, putative 

Unknown Tb05.5K5.510 
Pholphoglycan bet, t ,3 

32 2.3 1 .. 6G5 5 2 G.n.DB O.,.cto.yttr.n.f.' .... dlg.n".,. 

IntIaceliullr Tb927.7.270 
Ribosome bk)genesll pt'oteln. .0 833 1 "88'" 1 1 O.n. nlm. 

putative 

Pilsml 
Tb10.v" .0122 

Variant lurface glycoprot.in (VSG, 
33 17 .5 1 57037 6 3 G.n. nllN Membrane atypical). putative 

R.trotrln'polon hot apol prot.1n 
Nudeu. Tbll .0820 (RHS , PlludoOtnt). putady.; Gl t3 .7 1 G25G8 1 1 Oent nlme 

r.trotranlposon h 

Unknown Tb927.5.G20 Hypoth.tical protein , conllrvtd 31 8t.5 1 57408 1 1 Oen, name 

Nudeu. Tb09.1 eO.3120 
Nucleoli' RNA binding p<OIt1n . IS GO 1 5SS.0 I 2 AMOtll.d., 

putatfv. 

TbFP Tb927.U010 FI.t 'aoelum-acl1t1lon 
gtycop<ol.in · 751 2 TbFP 

Unknown Tbl0.3a9.13'0 Hypothetlca' prol.ln, conserved · 121 27 2 ' 2018 U • Otn. nlm. 

Unknown Tb927.7.8670 Hypothetlca' prole 'n . con,.rvtd 31 768 3 335283 0 2 G.nt nlm. 



199 

Appendix X 
Sequenc 

Number of gCAI 
Number 

Localisation Accession 
Gene Annotation 

Proleln e 
peplldes 

Protein 
Value 

of 
Evidence 

Number Mwt Coverag 
Identified 

score 
(% Rank) 

predicted 
e(%) TMD's 

Centrosome Tb927 .8.1080 Centrin, putallve 21778 10 1 64 96 0 GeneDB 

Cytoplasm Tbl0.6kI5.2290 
BS2 protein disulfide Isomerase; bloodslream-

55887 26 13 423 95.5 0 GeneDB specific protein 2 precursor 
Cytoplasm Tbl' .0' .6880 Cytosollc coat protein , putative 25663 13 3 121 SO.3 2 GeneDB 
Cytoplasm Tb" .0' .8470 Dlhydrollpoyl dehydrogenase 51085 5 2 69 98.6 0 GeneDB 

Cytoplasm Tb" .0' .57'0 
Phenylalanyl-iRNA synthetase alpha chain, 

57305 5 3 32 83.5 0 GeneDB 
putative 

Cytoplasm Tb" .0'.85'0 
TCP-l -alpha t-complex protein " alpha subunit, 

54875 1 1 36 97.5 0 GeneDB 
pulative 

Cytoplasm Tb" .42.0003 
TCP-l -bela t-complex protein " beta subunll, 

putallve 
58383 3 1 39 90.6 0 GeneDB 

Cytoplasm Tb" .0' .5860 
TCP-l -epsilon t-complex protein " epsilon 60199 1 1 37 96.1 0 GeneDB 

subunil, putative 
Cyloplasm Tb927.3.3760 TRYPl tryparedoxin 16025 24 3 123 97.4 0 GeneDB 

Cyloplasm Tb927.3.3780 Tryparedoxln 15995 24 3 123 97.5 0 GeneDB 

Cyloplasm Tb09.160.3270 Eukaryotic Initiation factor 4a, putative 45447 6 2 114 96.6 0 GeneDB 

Cytoplasm Tb927.8.5710 Recombination initiation protein NBS1, pulatlve 101 283 3 3 57 36.5 0 GeneDB 

Cytoplasm I ER Tb" .0' .1650 
Signal recognition particle receptor alpha 

64057 4 2 77 88.7 0 GonaDB 
subunit, putative 

Cytoskeleton Tb927. 7 .3160 Dyneln heavy chain, cytosollc, putative 596261 0 4 55 64.3 0 
Gene 
name 

Cytoskeleton Tbl' .02.0030 Dynein heavy chain, putative 464882 1 5 53 92.5 0 
Gene 
name 

Cytoskeleton Tbl0.406.0615 Dyneln light chain, putative 12438 28 3 65 80 0 
Gene 
name 

Cytoskeleton Tb927.3.2020 Kinesin, putative 63164 2 2 30 78.2 0 
G ne 
name 

Cytoskeleton Tb927.3.3390 Kinesln , putative 66375 3 2 32 81 .9 0 
Gene 
name 

Cytoskeleton Tb927.3.4960 Kinesln, putative 182360 2 3 32 52.1 0 
Gene 
name 

Cytoskeleton Tbl' .02.2260 
Kinesln, putative; MCAK-like klnesln, putative; 

790SO 4 3 54 39 0 
Gene 

klnesln family member 6, putative name 

Cytoskeleton Tbl' .0' .2530 Kinesin-like protein, putative 70562 18 12 430 64 .1 0 
Gane 
name 

Cytoskeleton Tb927 .8. 7640 Dynein heavy chain, cytosolic, putative 90695 1 1 44 53.4 0 GeneDB 

Cytoskeleton Tbl0.61 .0990 Kinesin , putative 189641 1 2 88 SO.6 0 GeneDB 

Cytoskeleton Tb927.5.2090 OSM3-like kinesln, putative 123105 2 2 84 91.4 0 GeneDB 

Cytoskeleton Tbl0.61 .1750 TBKIFCI C-terminal motor kinesin, putative 91485 8 5 165 95.7 0 GeneDB 

Cytoskeleton Tb927.5.2300 Fonmln, putative 101988 2 2 30 42.5 0 GeneDB 

Endosomes Tb927.8.4330 TbRABll small GTP-bindlng proleln Rabl1 23741 11 2 122 97.7 0 GeneDB 

Endosomes Tb927.6.3500 Endosomal trafficking protein RME-8, putative 258904 2 4 54 74.8 0 
Annotated 

as 
Endosomes I 

Tb927.5.1810 
Lysosomal/endosomal membrane protein p67; 

73028 3 2 73 95.2 2 
Annolated 

Lysosomes lysosomal membrane glycoprotein as 
Endosomes I 

Tb927.5.1830 
Lysosomal/endosomal membrane protein p67; 73387 3 2 73 94.1 2 

Annotated 
Lysosomes lysosomal membrane glycoprotein as 

ER Tb927.8.4890 Endoplasmic reticulum oxidoreductin , putative 49912 10 4 235 43.6 1 
Annotated 

as 
VCP valosin-containlng protein homolog; Annotated 

ER Tbl0.70.11 90 Transitionat endoplasmic reticulum ATPase, 86570 7 4 38 94 0 
putative 

as 

ER Tbll .02.5450 
Glucose-regulated protein 78, putative; luminal 

71505 44 35 1149 98.7 0 GeneDB 
binding protein 1 (BiP), 

ER Tbl' .02.5500 
Glucose-regulated protein 78, putative; luminal 

binding protein 1 (BiP), 
71505 44 35 1149 98.7 0 GeneDB 

ER Tb927.6.3640 Reticulon domain protein 21285 12 3 133 95.1 3 GeneDB 
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ER/Golg i Tbl0 .70.01 20 
COP-coaled vesicle membrane protein erv25 

28285 13 3 54 88 2 
Annotaled 

precursor, pulative; ER--goigi as 
ER/ Golgi Tbll .55.001 2 Vesicular-fusion protein SEC18, putative 98304 1 2 65 48.8 1 GeneDS 

Flagellum Tb927.8.4060 Flagellum-adhesion glycoprotein, pulative 64947 10 6 161 73.4 2 
Annolated 

as 

Flagellum Tb927.8.4110 Flagellum-adhesion glycoprotein, putative 64787 2 1 74 69.6 2 
Annotated 

as 

Ftagellum Tb l 0.6kI5.1950 FTZC flagellum transition zone component 135112 3 4 62 395 0 
Annotated 

as 

Gtycosome Tb927.2.4210 Gtycosomal phosphoenolpyruvate carboxykinase 58927 17 7 277 97.9 0 
Annotated 

as 

Glycosome Tb927.1.3830 
PGI glucose-6-phosphale isomerase, 

67744 32 16 474 74 .9 a Annotaled 
Qlycosomal as 

Glycosome Tb 1 0.70.5820 HKl hexokinase 51776 35 18 718 97.5 0 GenaDS 
Glycosome Tbl0.70.5800 HK2 hexokinase 51630 28 16 783 97.7 0 GeneDS 
Glycosome TbQ27.1.720 PGKA phosphoglycerate kinase 56054 15 7 184 62.8 0 GeneDS 

Glycosome TbQ27.1.710 PGKS phosphoglycerate kinase 45560 33 12 433 93 0 GeneDS 
Glycosome Tb927 .1. 700 PGKC phosphoglycerale kinase 47216 46 13 528 95.2 0 GeneDS 

Goigil 
Tb927.8.1 870 tGLPI GolglAysosome glycoprotein 1 68353 11 6 155 92.9 1 

Annotated 
Lysosomes as 

Intracellutar Tb927.3.5090 Tryparedoxin, putative 22394 32 8 315 59.1 1 
Gene 
name 

Intracellular Tb l1 .02.4000 405 ribosomal protein 515a, putative 14884 20 3 98 97.9 0 
Gene 
name 

Intracellular Tb927.3.1370 405 ribosomal protein 525, putaUve 12666 23 2 70 98.4 0 
Gene 
name 

Intracellular Tb927.6.4690 60S ribosomal protein L9, putative 21705 12 2 54 97 0 
Gene 
name 

Intracellu tar Tbl0.70.7010 60S ribosomal protein L9, putative 21901 12 2 54 98.4 0 
Gene 
name 

Intracellu lar Tbl1 .47.0035 
Cal pain-like cysteine peptidase, putative; 

antigen, putative; cysteine peptidase 
665259 2 11 225 49.4 0 

Gene 
name 

Intracellular Tb09.244.2720 Ribosomal protein L 15, putative 26360 7 2 33 98.6 0 
Gene 
name 

Intracellular Tb927.6.5040 Ribosomal protein L 15, putative 24418 7 2 33 98.7 0 
Gene 
name 

Intracellular Tbl0.70.4600 Ribosomal protein 525, putative 12666 23 2 70 97.7 0 
Gene 
name 

Intracellutar Tb09.160.2490 Ribosomal protein 57, putative 23853 9 2 40 94.6 0 
Gene 
name 

tntracellular Tb927.2.460 
DNA-directed RNA polymerase, pseudogene, 

74902 3 3 35 2.7 0 
Gene 

putative; DNA-directed RNA polymerase n me 

tntracellular Tbll .02.2930 
SNF2 DNA repair protein, putative; 5NF2 family 

107 104 0 1 31 52 .2 0 
Gene 

protein name 

Intracellular Tb927.8.5090 
TRPII DNA-directed RNA polymerase I largest 

197249 7 8 58 80 0 
Gene 

subunit name 

Intracellu lar Tb927.2.540 
DNA-directed RNA polymerase , pseudogene, 

72024 6 4 32 2.5 2 
Gene 

putative; name 

Intracellular Tb927.1.2120 
Catpain, putative; cysteine peptidase, Ctan CA, 

fam~y C2, putative 
83537 21 13 555 69.2 0 GeneDS 

Intracellutar Tb927.6.2370 Ubiquitin-proteln ligase, putative 129734 1 2 35 70.7 1 GeneDS 
Intracellular Tb927.4.760 Gamma-adaptin 1, putative 86088 7 5 84 94.4 0 GeneDB 

Intracellu lar Tb927.5.4500 ADP-ribosylatlon factor, putative 21814 38 4 197 81 .9 0 GeneDS 

Intracellular Tb927.7.3620 Tyrosy~tRNA synthetase, putative 76609 1 2 88 93.9 0 
Gene 
name 

Intracellular Tbl1 .01 .3550 
2-oxoglutarate dehydrogenase, E2 component, 

41117 9 4 31 98.4 0 GeneDS 
dihydrolipoamide succinyllransferase, putative 

Intracellutar Tbl0.70.4660 Eukaryotic translation initiation factor 5, putative 42918 2 1 31 95 0 
Gene 
name 

Intracellular Tbl1 .39.0006 
Translation Initiation factor elF2S delta subunit, 

putative; 
68539 1 1 32 62.1 0 

Gene 
name 

Intracellular Tbl0.70.0830 CHC clatMn heavy chain 192158 10 13 266 97.5 0 GeneDS 

Kinetoplast Tb927.8.7260 Kinetoplast-associated protein , putative 114493 6 7 177 62.4 0 
Annotated 

as 
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lysosomes Tb927.8.6390 TblysoPLA Iysophospholipase, putative 30245 10 3 67 66.9 0 
Annotated 

as 

Mitochondrion Tbl 0.70.5250 
MCA4 metacaspase MCA4; cysteine peptidase, 

39626 29 10 347 66 0 
Gene 

Clan CD, family C13, putative name 

Mitochondrion Tb927.6.940 Metacaspase MCA2 36496 5 1 69 63.3 0 
Gene 
name 

Mitochondrion Tb l 0.6k15.0960 54 NDH2 NADH dehydrogenase 54774 7 2 99 76 0 GeneDB 

Mitochondrion Tb927.2.3030 
ATP-dependent Clp protease subunit, heat 

shock protein 76 (HSP76) , putative 
90951 9 6 163 90.7 0 GeneDB 

Mitochondrion Tbl0.70.4280 
Delta-l -pyrroline-5-cartloxylate dehydrogenase, 

62624 4 3 78 95.5 0 GeneDB 
putative 

Mitochondrion Tbll .02.5280 Glycerol-3-phosphate dehydrogenase, putative 67747 44 32 111 3 95.6 0 GeneDB 

Mitochondrion Tbll .0l.2oo0 
hslVU complex proteolytic subunit, putative; 

22896 10 2 126 96.2 0 GeneDB 
hslVU complex proteolytic subunit 

Mitochondrion Tbl0.70.1750 KREPB2 RNA-editing complex protein ; KREPB2 66597 1 1 34 37 .4 0 GeneDB 

Mitochondrion Tbl 1.02.3130 Malic enzyme, putative 83650 11 4 55 89.6 0 GeneDB 

Mitochondrion Tbl 1.02.0730 
meal metaeaspase; cysteine peptidase, Clan 

40895 5 2 133 90 1 GeneDB 
CD, family C13 

Mitochondrion Tb927.6.2420 p22 protein precursor 25391 10 2 143 87.4 0 GeneDB 

Mitochondrion Tbl0.v4.0045 Prohibitin , putative 32368 31 7 200 92 1 GeneDB 

Mitochondrion Tbl0.6k15.3080 
Dihydrolipoamide acetyltransferase precursor, 

48077 15 5 48 96.5 0 GeneDB 
putative 

Mitochondrion Tb927 .4.491 0 
3,2-trans-enoyl-CoA Isomerase, mitochondrial 

45478 7 2 54 94 .8 0 
Annotated 

precursor. putative as 

Mitochondrion Tb927.3.860 
Acyl carrier protein, mitochondrial precursor, 

16577 21 2 92 85.8 0 
Annotated 

putative as 

Mitochondrion Tb927.8.1420 
acyl-CoA dehydrogenase, mitochondrial 

56915 5 2 75 28.8 0 
Annotated 

precursor, putative as 

Mitochondrion Tb927. 7.7420 
ATP synthase alpha chain. mitochondrial 

63862 15 9 307 97.8 0 
Annotated 

precursor as 

Mitochondrion Tb927.7.7430 
ATP synthase alpha chain, mitochondrial 

63862 15 9 307 97.8 0 
Annotated 

precursor as 

Mitochondrion Tb927.3.1380 
ATP synthase beta chain, mitochondria l 

55969 13 7 295 98.7 0 
Annotated 

precursor as 

Mitochondrion Tbll .55.0oo9 
GBP21 mitochondrial RNA binding protein 1; 

23353 6 1 45 83.7 0 
Annotated 

gBP21, MRPl as 

Mitochondrion Tb927.6.3740 
heat shock 70 kDa protein, mitochondrial 

72000 22 13 550 97.6 0 
Annolated 

precursor, putative as 

Mitochondrion Tb927.6.3750 
heat shock 70 kDa protein, mitochondrial 

72000 22 13 550 97 .7 0 
Annotated 

precursor, putative as 

Mitochondrion Tb927.6.3800 
heat shock 70 kDa protein, mitochondrial 

72000 22 13 550 97.7 0 
Annotated 

precursor, putative as 

Mitochondrion Tbll .02.0250 
Heat shock protein , mitochondrial precursor, 

84832 15 8 384 97.2 0 
Annotated 

putative; TNFR-assodated pr as 

Mitochondrion Tbl 0.70.0430 
HSP60 chaperonln Hsp80, mitochondrial 

59751 49 21 876 98.2 0 
Annotated 

precursor as 

Mitochondrion Tb927.4.3300 
Mitochondrial ATP-dependent zinc 

79451 1 1 50 65.6 1 
Annotated 

metallopeptidase, putative as 

Mitochondrion Tb927.2.2970 Mitochondrial carrier protein. putative 34283 6 2 79 40.9 0 
Annotated 

as 

Mitochondrion Tb927.7.3940 
Mitochondrial carrier protein, putative; ADP/ATP 

mitochondrial translocase 
36803 5 1 56 61 .9 0 

Annotated 
as 

Mitochondrial carrier protein, putative; 
Annotated 

Mitochondrion Tb l 0.389.0690 mitochondrial 2-oxoglutarate/malate carrier 33395 12 3 96 94.5 4 

protein 
as 

Mitochondrion Tb927 .6.2740 TbRBP36 mitochondrial RNA binding protein 38474 31 10 123 89.8 0 
Annotated 

as 

Mitochondrion Tb l 1.02.2070 
l ong-chain-fatty aeld-CoA ligase protein, 

73959 3 1 40 75.5 0 GeneDB 
putative; acyl-CoA synthetase, 

Mitochondrion Tb09.160.0680 Sl Yl secl family transport protein, putative 69321 13 5 102 71 0 GeneDB 

Mitochondrion I 
Tbl1.02.4730 

PIFl DNA repair and recombination helicase 
102443 0 34 66.5 0 GeneDB Nudeus protein PIF1 , putative; mitochondrial precursor 

1 
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Nucleus Tb927 .8. 760 Nopp44/46 nucleolar RNA-binding protein 35022 5 2 43 78.1 0 
Annotated 

as 

Nucleus Tb927.4.3840 Nucleolar protein , putative 59000 4 2 34 81.3 0 
Annolated 

as 

Nucleus Tb927 .8. 7 40 Nucleolar RNA-binding protein, truncaled 14875 12 2 45 244 0 
Annotated 

as 

Nucleus Tbll .03.0140 
Nucleoporin, putative; serine peptidase, Clan 

159537 1 2 41 91 0 
Annolaled 

SP, family S59, putative 20 as 

Nucleus Tb09.211 .1510 SNAP50 small nudear RNA gene activation 
51958 1 1 39 558 0 

Annolated 
protein (SNAP) SO, putative; small nuclear R as 

Nucleus Tbll.0050 
Retrotransposon hot spot protein (RHS, 

3 2 37 389 0 
Gene 

pseudogene), putative name 

Nucleus Tb927.1.300 
Retrotransposon hot spot protein (RHS, 

252873 3 7 31 8.4 3 
Gene 

pseudogene) , putative name 

Nucleus Tb927.1.450 
Retrotransposon hot spot protein (RHS, 

240302 2 5 32 13.5 0 
G ne 

pseudogene), putative name 

NUCleus Tb927. 1.500 
Retrotransposon hot spot protein (RHS, 

21 3634 2 5 31 13.1 0 
Gene 

pseudogene) , putative name 

Nucleus Tb927.2 .1050 
Retrotransposon hot spot protein (RHS, 

55552 19 10 32 3.1 1 
Gene 

pseudogene) , putative name 

Nucleus Tb927.2.480 
Retrotransposon hot spot protein (RHS, 

94992 5 4 32 3.9 0 
G ne 

pseudogene) , putative name 

Nucleus Tb927.6.5160 
Retrotransposon hot spot prote!n (RHS, 

pseudogene), putative 
87354 4 3 31 10.6 0 

Gene 
nome 

Nucleus Tb927.6.5170 
Retrotransposon hot spot protein (RHS, 

38994 8 2 34 12 0 
Gene 

pseudogene) , putative nama 

Nucleus Tbll .02.1930 
ATP-dependent RNA hellcase, putative ; 

248230 2 
OEAO/DEAH box RNA helicase, putatlv 

4 32 80.1 0 Gon DB 

Nucleus Tbl0.70.6220 
DAC 1 histone deacetylase 1; histone 

43087 2 1 32 25.3 0 G n DB 
deacetylase-like 1 protein 

Nucleus Tb927.8.3290 DNA polymerase zeta catalytic subunit, putative 220112 1 3 34 63.1 0 G n 08 

NUCleus Tbl0.61 .2040 Flbrillar!n , putative 24982 10 2 33 88.9 0 GeneD8 
NUCleus Tb927.3.3090 Helicase, putative 106100 3 3 31 !1M 0 Gono08 

Nucleus Tbl1 .01.7810 
minlchromosome maintenance (MCM) complex 

82124 0 1 31 54.8 0 Gin 08 
subunit, putative 

Nucleus Tb927.8.6840 MLHI mismatch repair protein MLHI 97105 3 3 30 88.7 0 GoneD8 
Nucleus Tb09.211 .2260 Protein kinase, putative 119500 2 2 34 286 0 Gono08 

Nucleus Tbl l .0l .6260 RNA helicase, putative; DEAD/DEAH box 
157905 0 1 39 73.8 1 GoneD8 

hellcase, putative 
Nucleus Tb927.2.4710 RNA-binding protein, putative 50466 6 2 66 79.5 0 GonaDB 

Nucleus Tbl0.406.0600 
SMC2 structural maintenance of chromosome 2, 

putative 
134550 4 7 39 80 0 Gene08 

Nucleus Tb927 .6.930 TbMCA4 metacaspase MCA3 39454 5 1 69 72.6 0 Gane08 
Nucleus I 

Tb927.7.2500 Cytoplasm Proteasome regulatory ATPase subunit 1 48730 1 1 39 94 0 G no DB 

Peroxisome Tb09.160.0620 Peroxisomal membrane protein 4 , putative 34973 6 2 103 87.6 3 Annotated 
II 
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Appendix XI 

Sequence 
Number 

gCAI Number 
Accession Proleln of Protein of Localisation 

Number 
Gene Annotation 

Mwt 
Coverage 

peptides V.'ue 
predicted 

EVIdence 
(%) 

acore 
(% Rank) Idenbfted TMO', 

Membrane TbI0.70.4750 Calcium CI'Iannel protein. putative 305238 17 39 1118 113 S 22 6- TMO 

Membrane Tb927.4.43S0 PPasel vacuolar. type proton translocating 
85880 I 3 76 07e ,. 5- TMO pyrophosphatase I . putative 

Membrane Tb927.8.7980 
TVPI vacuolar.type proton ttanslocating 

85948 1 3 76 973 U 5- TMO pyrophosphatase I 
Unknown Tb927.3.40S0 Hypothetical protein. conserved 63290 9 • 131 93 . U Gene name 
Unknown Tb927.3.4100 Hypothetical prole In. conserved 63951 9 4 131 922 U Gene name 
Unknown Tb927.3.4090 Hypotheticel prole In. conserved 63594 18 11 37 937 13 Gene nlme 
Unknown Tb927.3.4070 Hypothetical proleln. conserved 649118 II 3 1117 918 12 Gene name 
Unknown Tb927.8.4380 Hypothetical protein, conserved 153116 6 7 199 378 12 Gene name 

Membrane Tb927.3.590 Adenosine transporter, putative 50720 8 5 31 92 11 6+ TMO 
Membrane Tb927.4.483O Amino acid transporter. putative 48495 5 2 71 VII 11 5+ TMO 
Membrane Tb927.4.4850 Amino acid transporter, putative 48495 5 2 71 VII 11 5- TMO 
Membrane Tb927.4.4870 Amino acid transporter. putative 48625 5 2 71 917 11 6-TMO 

Membrane Tb927.5.900 Otigosaccl1aryl transferase subun~. putative 93085 7 5 146 861 11 5- TMO 

Membrane Tb927.2.6150 TbNT21927 adenosine transporter 2 51198 7 5 165 85 e 11 5+TMO 
Membrane Tb927.2.62OO TbNT3 adenosine transporter 2, putative 51584 8 5 1112 60 11 5+ TMO 
Membrane Tb927.2.6240 TbNT5 adenosine transporter 2 51302 8 a 182 715 11 5-TMO 
Membrane Tb927.2.6320 TbNT6 adenosine transporter 2, putative 50823 11 7 108 772 11 5+ TMO 
Membrane Tb927.2.62S0 TbNT7 edenoslne transporter 2. putative 51795 8 5 182 822 11 5+ TMO 

Membrane Tb927.5.34oo 
Calcium·translocating P·type ATPase; calcium 

pump 
111331 37 34 1374 048 10 5+TMO 

Membrane Tb927.5.890 Oligosaccl1aryl transferase subun~, putative 90031 8 6 225 851 10 5- TMO 

Membrane Tb927.5.910 Ollgosaccl1aryl transferase lubunh, putauve 93208 4 4 133 854 10 5+TMO 

Membrane Tb927.8.12oo TbA2 vacuolar. type Ca2+·ATPaae 2 119892 16 16 745 780 10 a-TMO 
Membrane Tb927.2.6220 TbNT 4 adenosine trensporter 2. putative 51848 7 4 132 617 10 5- TMO 
Membrane Tb927.8.1160 Vacuolar·type Ca2'·ATPaae. putative 122134 0 I 31 1176 10 5+ TMO 
Unknown Tb927 .8.1460 Hypothetical protein. conserved 45038 10 5 71 73 10 Gen. n.m. 

Membrane Tbl 1.02.11oo 
NT8.1 nucieobaseinucieoslde transporter 8.1; 

48234 12 3 147 034 0 e. TMO nucieobase transporter 

Membrane Tbl1 .02.1105 
NT8.1 nucieobaseinucieoslde trensporter 8.1; 

48248 12 3 147 038 0 5' TMO nucleobase transporter 
Membrane Tbl1.02.1106 Nucieobase transporter, putative 48884 7 2 77 021 0 6' TMO 

Membrane Tb" .02.41oo 
Prettanslocatlon protein, alpha subunit. 

54080 12 7 203 98 0 6' TMO putative; SEC61·like 
Unknown Tbl1 .01 .6990 Hypothetical proleln. conserved 71335 8 C 58 520 0 Glne name 

Membrane Tb09.244.2570 Calcium motive p.type ATPase. putative 11 5271 17 12 38t 981 6 5' TMO 
Membrane Tb927.8.650 Cation· transporting ATPa58, putative 142132 7 6 132 786 8 6. TMO 

Membrane Tb927.4.4490 
MRPE; PGPA mul1idrug resistance proleln E; 

lG5184 1 2 32 820 8 5- TMO P-glycoproteln 
Membrane Tb927.8.1180 TbA 1 vacuolar. type Ca2+·ATPase 1 122578 Ie 16 717 788 8 6+ TMO 
Unknown Tb09.211 .1830 Hypothetical protein, conserved 147438 5 5 121 378 8 Gin. nama 
Unknown Tbl0.389.0140 Hypothetical protein, conserved 411158 2 1 51 787 8 Gina nama 

Membrane Tb927.6.3550 Phosphollpld·ttanslocating P·type ATPase 134073 3 3 37 60 7 e. TMO (nippaSe). putative 
Membrane Tbl0.406.0290 Protein tyrosine phosphatase. putative 29828 0 3 142 888 7 S'TMO 
Membrane TbI0.389.1170 P·type H'·ATPase, putative 101597 31 29 1138 ~ag 7 5+TMO 
Membrane Tbl0.389.1180 P·type H'·ATPase, putative 101075 23 to 816 058 7 6+ TMO 

Unknown Tbl0.6kI5.1690 Hypothetical protein. conserved 87074 7 3 98 787 7 Gin. nama 

Unknown Tbl0.70.5220 Hypothetical protein. conserved 84592 8 3 41 283 7 G.n. nama 

Membrane Tbl0.61 .2650 
Aquaglyceroporin (small solute channel), 

33016 3 1 75 018 6 5+ TMO putative 
Membrane Tbl0.61 .2840 Aquaporin 9, putative 33572 4 1 41 808 8 5+ TMO 

Membrane Tb927.5.1300 
Vacuolar proton tr_nslocating ATPase subunit 

90372 5 2 08 905 0 5+TMO 
A, putative 

Unknown Tbl' .02.3570 Hypothetical protein. conserved 32240 3 1 34 810 0 Gane name 
Unknown Tb927.1.4500 Hypothetical protein. conserved 32980 4 1 67 577 6 Gin. name 

Membrane Tb09.211 .0680 
CAAX prenyl protease 1, putative; metallo-

49045 20 8 389 042 6 6' TMO peptidase, Clan M· Family M4 
Membrane Tb927.7.4180 Fatty acid elongase, putative 34077 11 4 100 94 5 5- TMO 
Membrane Tbl 0.1 00.0090 Vacuolar ATP synthase, putativa 10538 7 1 5t 046 5 5' TMO 
Unknown Tbl 0.70.6830 Hypothelical protein. conserved 37944 9 3 113 042 5 G.ne nama 
Unknown Tb927.3.3820 Hypothetical protein, conserved 45772 2 1 42 755 5 Gen. name 
Unknown Tb927.7.7320 Hypothetical protein. conserved 81430 3 2 41 70 5 Gan. name 
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Unknown Tb927.8.2460 Hypothetical protein. conserved 31167 16 3 110 83 I 5 Gene name 

Membrane Tb927.4 .4420 
Adenylyl cyclase. pseudogene. putative; 143846 3 5 73 107 4 Gena nlm. 

adenylyl cyclase, frameshift 

Membran. Tb927.6.270 
Receptor-type adenylat. cyclase GRESAG 4, 

139855 3 5 34 39 4 Gene name 
pseudogene. putative 

Membrane Tb927.8.7860 
Receptor-type adenylate cyclase GRE5AG 4. 

,.S86O 4 5 44 36 4 Gene name 
putative 

Membran. Tb927.8.2100 
Vacuolar ATP synthase 16 kOa proteolipid 

17085 9 I 52 96 4 GeneOB subunit, putative 

Unknown Tb09.21' .0220 
Rhomboid-like protein; serine peptidase, Clan 

37048 4 I 41 553 4 GeneOB S- , family 554 , putative 
Unknown Tbll.O l .OIIO Hypothetical protein, conserved 32630 4 I 41 455 4 Gen. name 
Unknown Tb927.4 .2530 Hypothetical protein. conserved 16881 24 /I 213 98 4 4 Gene name 
Unknown Tb927.7.1420 Hypothetical protein, conserved 176218 6 8 222 702 4 Gene name 
Unknown Tb927.7.4470 Hypothetical protein. conserved 22441 12 2 lOS 281 4 GIne name 

Membrane Tb927.6.390 Adenylyl cyclase, pseudogene, putative; 
139200 7 6 44 4 5 3 Gene neme adenytyl cyclase 

Plasma 
Tbl' .03.0030 ABC03 ABC transporter. putative 78261 9 Membrane Ii 170 647 3 GeneOB 

Unknown TbI0.61 .3180 
CalB calcium-dependent lipid binding protein, 

putative; synaptotagmln, putative 
67685 4 2 54 849 3 GeneOB 

Unknown Tb09.211 .1220 Hypothetical protein, conserved 38895 5 2 46 453 3 Gene name 

Unknown Tbl 0.6klS.241 0 Hypothetical protein, conserved 30619 3 1 44 39 4 3 GIne name 

Unknown Tbl0.6kl S.3930 Hypothetical protein, con5erved 34575 13 3 52 90 3 GIne name 

Unknown Tbl0.70.1640 Hypothetical protein, conserved 66331 12 5 146 379 3 GIne name 

Unknown Tbl0.70.2450 Hypothetical protein. conserved 27369 9 2 54 952 3 GIne name 

Unknown Tb927.4.5080 Hypothetical protein, conserved 14743 13 1 44 25 I 3 Gene nlme 
Unknown Tb927.5.286O Hypothetical protein, conserved 46936 2 1 31 558 3 GIne name 

Membrane Tbll .0l.4701 
MBAPI membrane-bound acid phosphatase 1 

precursor 
80479 7 4 81 676 2 

Annotated 
e. 

Membrane Tb927.7.7520 
Receptor-type adenylate cyclase GRE5AG 4, 

138933 7 6 136 519 2 Gene n.me 
putative 

Membrane Tb927.7.7S3O 
Receptor-type adenylate cyclase GRESAG 4. 

139003 7 6 136 518 2 Gene n.me 
putative 

Membrane Tb927.8.7870 
Recaptor-type adenylat. cyclase GRESAG 4, 

140838 7 8 276 430 2 Gene n.me putative 

Membrane Tb927.8.7900 
Receptor-type adenylat. cyclase GRESAG 4, ,.2111 12 12 385 460 2 Gene name putative 

Membrane Tb927 .8. 7920 
Receptor-type adenylate cyclase GRESAG 4, ,.2118 8 10 308 478 2 Gene nlme 

putative 

Membrane Tb927.8.7930 
Receptor-typa adenylate cyclase GRESAG 4, 

142391 8 10 358 458 2 Gene nlml 
putalive 

Membrane Tb927.8.7940 
Receptor-type adenylate cyclase GRESAG 4, 

139630 8 11 382 401 2 Gene n m. 
pulalive 

Membrane Tb09.v4.0009 
Receptor-type adenyl ate cyclase, putative, 138301 2 2 80 91 2 Gene nlme adenylyl cycl .... putetive 

Membrane Tbl1.01 .7400 GPI transamJdase component Ttal 42288 e 2 71 87 t 2 OtntOB 
Membrane Tbl1 .01.1780 Short-chain dehydrog.nas., putative 34279 5 I 63 382 2 GentoB 

Plasma 
Tb927 .5.390 75 kOa Invariant surface glycoprotein, putative 58157 8 5 134 53 e 2 GIneoB Membrane 

Plasma 
Tb927.4.1920 

Glycosylphosphatidyllnos~oI (GPI) enclnOr, 76557 7 4 101 782 2 GIne n.me Membrane putative 

Unknown Tb09.211 .2020 Synaptojanln (N-tenmlnal domeln), putative 83905 1 1 43 502 2 GeneoB 

Unknown Tb927.5.610 Acidic phosphatasa, putative 47653 2 1 45 817 2 GIneoB 

Unknown Tb927.4.4210 
ATP-dependent zinc metanopeptidall, 

96448 7 4 G& 888 2 GeneOB 
putative 

Unknown Tb927.7.160 
Expression site-associated gene (ESAG, 

58918 3 2 44 0 4 2 GeneoB pseudogene), putative 

Unknown Tb09.244.2380 
Exprasslon slte-assodated gane 4 (ESAG4) 138326 2 2 80 813 2 GIneoB 

protein, putative 
Unknown Tb927.5.1210 Short-chain dehydrogenase, putative 34083 34 8 353 ~8 2 GIneoB 

Unknown Tb927.5.3710 Sphingomyelin phosphodiesterase, putative 64978 5 3 39 42 4 2 GenaOB 

Unknown Tbl1 .01 .4960 
Regulator of nonsense transcripts I , putative 

237335 2 7 44 88 2 GIneOB 
(pseudogane); nonsense mRNA 

Unknown I 
Tb09.211 .3650 Phospholipase A2-like protein, putative 49879 8 4 32 58 2 OtneOB 

Membrane 
Unknown Tb05.5K5.210 Hypothetical protein 89801 9 7 232 677 2 GIne name 

Unknown Tb05.5K5.220 Hypothetical protein 89464 10 9 365 766 2 GIne name 

Unknown Tb09.160.2370 Hypothetical protein, conserved 24334 18 3 88 587 2 GInt name 

Unknown Tb09. v1.0650 Hypothetical protein, conserved 62906 8 3 log 89 4 2 GIne""m. 
Unknown TbIO.61.1070 Hypothetical protein, conserved 205801 3 5 42 178 2 GInl""m. 

Unknown Tbll .0l .1330 Hypothetical protein, conserved 33340 12 3 33 852 2 GIne nom. 

Unknown Tbl' .02.3760 Hypothetical protein, conserved 11271 21 2 45 878 2 G.ne""m. 
Unknown Tbl1 .02.3770 Hypothetical protein, conserved 15558 16 2 45 928 2 Gene name 

Unknown Tb927.2.1700 Hypothetical protein, conserved 85062 6 3 58 477 2 GInt""me 
Unknown Tb927.3.2420 Hypothetical protein. conserved 14252 19 5 34 88 4 2 Gene name 
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Unknown Tb927.3.4950 Hypothetical prolein, conserved 52749 20 7 57 537 2 Gene nlme 
Unknown Tb927.5.4570 Hypothetical protein, conserved 89667 9 7 232 722 2 Gen. name 
Unknown Tb927.5.4580 Hypothetical protein, conserved 894304 to 9 385 771 2 Gen. name 
Unknown Tb927.6.2600 Hypothetical protein, conserved 16099 12 2 31 931 2 Gen. name 
Unknown Tb927.6.41 80 Hypothetical protein, conserved 16317 24 2 IDe 839 2 Gen. name 
Unknown Tb927.7.1400 Hypothetical protein, conserved S0830 7 3 91 335 2 Gene name 
Unknown Tb927.7.2190 Hypothetical protein, conserved 29338 16 5 170 83 2 Gen. name 

Membrane Tbll .02.5420 CPR NAOPH-cy1ochrome p450 reduCUlH, 70570 4 3 53 68 I Gene nlml putallve 

GRESAG 4.4B receptor-type adenylate 
Membrane Tb927.4.4460 cyclase GRESAG 4, putative; receptor-type 145252 4 4 81 35 4 1 Gin. name 

adenylat 

Membrane Tb927.8.7910 
Receptor-type adenylate cyclase GRESAG 4 

1304802 7 8 289 219 1 Glne name (pseudogene), putative 

Membrane Tb927.7.60SO 
Receptor-type adenylate cyclase GRESAG 4, 

140200 2 2 32 769 1 Glne nlme putative 

Membrane Tb927.4.4410 Receptor-type adenylate cyclasa GRESAG 4, 
139307 10 9 189 49 1 Gin. neme putative 

Membrane Tb927.4.443O 
Receptor-type adenylate cyclase GRESAG 4, 

139320 4 4 81 487 1 Gin. nim. putative 

Membrane Tb927.4.4440 
Receptor-type adenyl ate cyclase GRESAG 4, 

139753 4 4 al 475 1 Gene nlme putative 

Membrane Tb927.4.4450 
Receptor-type adanylate cyclase GRESAG 4, 

139040 4 4 61 432 1 Gene nlme putallve 

Membrane Tb927.4 .4470 
Receptor-type adenylate cyclase GRESAG 4, 

1430H 4 4 60 313 1 Gen. n.ml putative 

Membrane Tb927.7.6070 
Receptor-type adenylate cyclase GRESAG 4, 

1403042 7 6 76 783 1 Gene naml putative 

Membrane Tb927.8.7590 
Receptor-type adenyl ate cydase GRESAG 4, 14De91 3 15 197 64 1 Genl naml putative 

Membrane Tb927.5.3580 
VAMP veslcle-assocleted membrana protein, 

24672 5 1 41 821 1 Gene n.ml putallve; synaptobrevin, putalJVe 

Membrane Tbll .0l .68oo 
l -acyl-sn-glycerot-J..phosphate Icy«ransfer .. e 

306a2 10 2 58 843 1 GenlOB protein, putative 

Membrane Tbll .0l .0HO 
CPR NAOPH-cy1ochrome P4SO redudase, 71586 5 4 64 757 1 GenlOB putative 

Membrane Tbl1 .01 .S360 
Metalloprotease, putallve; cell division protein 74771 4 2 46 721 1 Glne08 FtsH homologue, putative 

Membrane Tb927.5.3320 Protein kinase. putative 138785 4 4 43 761 1 GenioB 
Membrane Tbl0.61 .1980 Putallve syntaxln 38500 4 2 53 375 1 GeneOB 

Plasma 
Tb09. v4.0145 

Vanant surface glycoprotein (VSG, 
50412 18 6 54 199 1 Gene n ml 

Membrane pseudogene), putative 
Plasma 

TblO.v4.0026 
Variant surface glycoprotein (VSG, 45907 5 3 40 151 1 Glnl n.m. 

Membrane pseudogena), putabve 
Plasma 

Tb927.5.4980 
Variant surface glycoprotein (VSG, 

53967 14 It 457 456 1 Gene n.m. Membrane pseudogene), putative 
Plasma 

Tb927.2.3270 65 koa Invanant surface glycoprotein 48696 14 Membrane 6 159 251 1 GlnlOB 

Plasma 
Tb927 .2 .3280 Membrane 65 koa Invarianl surface glycoprotein 48594 14 6 159 233 1 GeneOS 

Plasma 
Tb927.2.3290 65 koa Invariant surface glycoprotein 48498 14 

Membrane 6 159 246 1 GlnloB 

Plasma 
Tb927.2.33oo 65 koa Invariant surface glycoprotein 48512 14 6 159 24 1 Gen.OS Membrane 

Plasma 
Tb927.2.3310 65 kOa Invariant surface glycoprotein 48468 14 6 146 235 1 GenioS Membrane 

Plasma 
Tb927.2.3320 65 koe Invariant surface glycoprotein 48466 3 Membrane 1 52 363 1 GenlOB 

Plasma 
Tb927.5.1390 65 koa Invanant surface glycoprot8ln, putative 47213 8 4 94 222 1 GenlDB Membrane 

Plasma 
Tb927.5.380 ISG75 75 kOa Invarianl surface glycoprotein 58648 21 9 175 . 21 GeneoS Membrane 1 

Plasma 
Tb927.5.3SO ISG75 75 kOa invariant surface glycoprotein, 69128 4 3 77 425 1 GenlOB Membrane . p~tatlve 

Plasma 
Tb927.5.370 

ISG75 75 kOa Invenent surface glycoproleln, 
59069 7 5 67 518 1 GenlOS 

Membrane putative 

Unknown Tb09.160.3090 
Heat sheck proleln, putative; HSP70-like 91357 13 9 278 613 1 Gene naml 

protein 
Unknown Tbl0.70.0HO Chaperone protein ONAJ, putative 313SO t4 3 17 602 1 GlneoB 

Unknown Tbl0.70.3240 Short-chaln dehydrogenase, putative 38591 8 2 73 785 1 GeneOB 

Unknown Tb927.5.630 Acidic phosphatase, putative •• 264 13 7 268 7. 1 GentoB 
Unknown Tb927.8.7410 Calrellculln, putative 4.994 57 27 187 978 I GeneOS 
Unknown Tb927.4.5010 CalretJculon, putabve 452.2 14 4 150 976 1 GentOB 
Unknown Tbl1 .01 .0290 CartJonic anhydras.,ike prolain 48148 5 2 41 906 1 GentOB 

Unknown Tb927.7.6860 
Expression sit.assodated gene (ESAG) 52337 5 3 61 665 1 GeneOB 

protein, putative 

Unknown Tb09.244.1 01 0 
Expression sit ... socIated gene 3 (ESAG3, 

38731 11 3 32 1 1 GenlOS 
pseudooena), putabve 

Unknown Tb927.4.2230 Glycosylbransfe,.s. ALG2, putative 57662 5 2 68 67 4 1 GlneOB 

Unknown Tb927.3.3580 
LPG3 llpophosphoolycan blosynlhetic protein, 

87712 2. 18 512 96 4 1 GeneoB putative 
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Unknown Tb09.211 .2460 Hypothetical protein, conserved 101940 4 3 66 173 1 Gene name 
Unknown Tb09.211 .2530 Hypothelical proleln, conserved 41 696 10 2 79 472 I Gene name 
Unknown Tb09.v1.0510 Hypothetical protein, conserved 32616 2 1 35 116 1 Gene name 
Unknown Tb09. vl.0540 Hypothetical protein, conserved 32616 2 I 35 116 1 Gene n.me 
Unknown TbI0.OS.0040 Hypolhetical protein, conserved 11 3901 0 I 34 589 I Gene name 
Unknown Tbl0.05.0050 Hypothetical protein, conserved 18500 4 1 39 918 I Gene name 
Unknown Tbl0.389.0310 Hypothetical protein, conserved 97290 I 2 39 t92 1 Gene n.me 
Unknown Tbl 0.61 .2720 Hypothetical protein, conserved 22373 5 1 38 223 I Gene name 

Unknown Tbl0.6kI5.2270 Hypothetical protein, conserved 30993 8 2 33 23 I Gene name 

Unknown Tbll .Ol .1980 Hypothetical protein, conserved 12901 16 2 95 14 7 I Gene name 
Unknown Tbl 1.01 .2460 Hypothetical protein, conserved 45<430 14 5 245 70 I Gene n.m. 
Unknown Tbll .01 .4740 Hypothetical protein, conserved 61457 12 5 85 877 1 Gene name 
Unknown Tbl1.01 .5120 Hypothetical protein, conserved 105831 3 4 40 50 I Gene name 
Unknown Tbl' .02.0800 Hypothetical protein, conserved 166840 13 15 357 607 1 Gene name 
Unknown Tbll .02.5660 Hypothetical protein, conserved 46550 21 5 257 852 1 Gene name 
Unknown Tb927.3.3130 Hypothetical protein, conserved 179339 I 3 55 699 I Gene name 
Unknown Tb927.3.3650 Hypothetical protein, conserved 69219 6 3 58 60 1 I Gene name 
Unknown Tb927.3.S3S0 Hypothetical protein, conserved 11649 18 2 99 364 I Gene name 
Unknown Tb927.4.1390 Hypothetical protein, conserved 103631 1 I 41 88 1 Gene name 
Unknown Tb927.4.1540 Hypothetical protein, conserved 55ne 10 3 126 819 I Gene name 
Unknown Tb927.4.1800 Hypothetical protein, conserved 27048 21 7 48 38 1 Gene name 
Unknown Tb927.4.590 Hypothetical protein, consarved 88425 11 8 232 798 1 Gene name 
Unknown Tb927.5.1930 Hypothetical protein, conserved 24400 6 2 46 91 4 I Gene name 
Unknown Tb927.5.310 Hypothetical protein 45019 10 4 71 533 1 Gene name 
Unknown Tb927.5.660 Hypothetical protein, conserved 12370 7 I 66 907 I Gtne name 
Unknown Tb927.6.1850 Hypothetical protein, conserved 59744 4 2 45 433 I Gene name 
Unknown Tb927.6.4320 Hypothetical protein, conserved 44510 9 3 107 8eg 1 Gene name 
Unknown Tb927.7.5700 Hypothetical protein, conserved 45807 II 5 205 32 I I Gene name 
Unknown Tb927.7.900 Hypothetical protein, conserved 64872 12 5 148 82 I Gene name 
Unknown Tb927.8.1290 Hypothetical protein, conserved 121121 3 4 87 491 I Gent name 
Unknown Tb927.8.30S0 Hypothetical protein, conserved 82728 5 2 88 048 I Gent namt 
Unknown Tb927.8.3540 Hypothetical protein, conserved 107424 5 5 99 687 I Gene namt 
Unknown Tb927.8.5760 Hypothetical protein, conserved 5<4459 6 3 7~ a94 I Gene name 
Unknown Tb927.8.7720 Hypothetical protein, conserved 2511 4 12 2 121 19 I Gene name 

Membrane Tbl0.81 .3060 
GPI-anchor transamldase subun~ 8 (GPI6), 37231 4 2 ~9 877 0 Gent n.me cySielne peptidase, Clan CO, tamlly C13 

Membrane Tb927.2.6000 
GPI-PLC 9lycosylphosphatidyllnosltol-specinc 41093 13 4 lal 15 9 0 Gent ntm. phospholipase C 

Membrane Tb927.4. I 30 
Receptor-type adenylate cyClase GRESAG 4, 

109850 5 5 38 14 0 Gent namt pseudogene, putative; 
Membrane Tbl 0.70.6790 Mismatch repair protein, putative 128951 2 3 31 781 0 GentOB 
Membrane Tb09.160.2770 ACSI tany acyl CoA synthetase 1 79785 8 5 140 743 0 GentoB 
Membrane Tb09.180.2810 ACS3 tany acyl CoA synthetase 3 79603 15 13 353 93 4 0 GentOB 
Membrane Tb09.160.2640 ACS4 tany acyl CoA synthet .. e 4 78507 10 8 166 937 0 atntOB 

Membrane Tbl O. 100.0070 
ATP synthase Fl subunit gamme prole In, 

34483 13 2 74 72 0 GentoB putative 

Membrane Tb927.s.3220 Signal peptidase type I, putative 23662 18 3 147 532 0 GeneOB 
Plasma 

Tb09.354.0090 Variant surface glycoprotein (VSG), putative 52791 I 1 32 577 0 Gent n.m. Membrane 
Plasma 

Tb927.1.S300 Variant surface glycoprotein (VSG), putative 50179 3 2 39 376 0 Gent n.mt Membrane 
Plasma 

Tb09.244.0020 
Variant surface glycoproteln (VSG, 

58551 3 4 36 171 0 Gent n.m. Membrane pseudogene), putative 
Plasma 

Tb09.244.0610 
Variant surface glycoproteln (VSG, 

59803 14 13 3S ", 0 Gene n.m. Membrane pseudogene), putabve 
Plasma 

Tb09.244.0630 
Variant surface glycoprotein (VSG, 

55980 5 4 43 157 0 Gent n.m. Membrane pseudogene~JlUtative 
Plasma 

Tb09.244.0960 
Variant surface glycoproteln (VSG, 57403 7 5 42 13 0 Gent nlm. 

Membrane pS8udogene), putative 
Plasma 

Tb09.244 .1310 
Variant surface glycoprotein (VSG, 

5<4302 1 I 32 137 0 Gent n mt 
Membrane pseudogeno), putative 

Plasma 
Tb09.354 .0240 

Variant surface glycoprotein (VSG, 56892 3 2 34 23 t 0 Gent nlm. 
Membrane pseudogene), putative 

Plasma 
Tb09.v4.0068 

Variant surface glycoprotein (VSG, 
3482 1 8 2 32 8 4 0 Gene namt Membrane pseudogene), putabve 

Plasma 
Tb09.v4.0081 

Variant surface glycoprotein (VSG, 58244 35 4g 8 0 Gent namt Membrane pseudogene), putative 3 2 

Plasma 
Tb09.v4.0190 

Variant surface glycoproteln (VSG, 
50064 8 5 37 333 0 Gent nlm. Membrane pseudogene), putative 

Plasma 
Tbl0.v4.0020 

Variant surface glycoprotein (VSG, 
58149 3 3 33 342 0 Gent namt Membrane pseudogene), putative 

Plasma 
Tbll .S7.0030 

Variant surface glycoprotein (VSG, 
5<4072 32 128 0 Gtnt nlmt Membrane pseudogene), putative 8 8 

Plasma 
Tbll .v4.0026 

Variant surface glycoprotein (VSG, 
58823 39 77 0 Gent name Membrane pseudogene), putative 3 3 
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Plasma 
Tb" .v4.0039 

Valiant surface glycoprotein (VSG, 
5 3 32 &6 0 Gone nlme Membrane pseudogene), putative 

Plasma 
Tb" .v4.0044 

Valiant surface glycoprotein (VSG, 
53653 4 3 32 131 0 Gene name Membrane pseudogene), putative 

Plasma 
Tb" .v4.0046 

Variant surface glycoprotein (VSG, 
52590 5 4 46 155 0 Gene name Membrane pseudogene), putative 

Plasma 
Tb927.3.5850 

Variant surface glycoprotein (VSG, 
51906 4 2 38 8 5 0 Gene name Membrane pseudogene), putative 

Plasma 
Tb927.4.5620 

Variant surface glycoprotein (VSG, 
57897 9 5 50 72 0 Gene name Membrane pseudogene), putative 

Plasma 
Tb927.5.4850 

Variant surface glycoprotein (VSG, 
57973 4 2 34 3e 0 G.ne name Membrane pseudogene), putative 

Plasma 
Tb927.5.5290 Variant surface glycoprotein (VSG, 

59767 5 3 30 16 0 Gene name Membrane pseudogene), putative 
Plasma 

Tb927.5.5300 Variant surface glycoprotein (VSG, 
5<1288 4 2 30 tH 0 Gene nlm. Membrane pseudogene), putative 

Plasma 
Tb927.5.5320 Variant surfece glycoprotein (VSG, 

55607 3 6 34 231 0 Oene nlme Membrane pseudogene), putative 
Plasma 

Tb927.6.5390 
Variant surface glycoprotein (VSG, 

57910 4 3 32 71 0 Gene nlme Membrane pseudogene), putative 
Plasma 

Tb927.7.120 
Variant surface glycoprotein (VSG, 

57796 3 2 45 134 0 Gene name Membrane pseudogene), putative 
Ptasma 

Tb927.7.140 
Variant surface glycoprotein (VSG, 

59082 7 7 52 51 0 Gen. name Membrane pseudogene), putative 
Plasma 

Tb927.3.310 
Variant surface glycoprotein (VSG, 

59176 6 3 34 102 0 Gene name Membrane pseudogene), putative 
Ptasma 

Tb927.3.500 
Varian t surface glycoprotein (VSG, 

58631 2 4 40 56 0 Gene name Membrane pseudogene), putative 
Plasma 

Tb927.5.180 
Variant surface glycoprotein (VSG, 

57482 2 I 33 93 0 a.ne name Membrane pseudogene), putative 
Plasma 

Tb927.S.4800 
Variant surface glycoprotein (VSG, 

21839 11 5 32 181 0 Gene nama Membrane pseudogene), putative 
Unknown Tb09.160.4570 AK arginine kinase 4185e 18 6 199 $69 0 Gene name 
Unknown Tb09.160.4590 AK arginine kinase 40457 18 5 198 871 0 Gena nlml 
Unknown Tb927.6.4710 Calmodulin, putative 74990 12 7 303 78 4 0 Gene nama 
Unknown Tbl0.26.1080 Heat shoel< protein 83 81169 9 5 218 992 0 a.n. nama 

Unknown Tb927.5.1S20 
Heat shoel< protein HsIVU, ATPase .ubun~ 

52612 7 3 78 832 0 Gene n.me HsIU, putative 

Unknown Tb927.7.1320 HSPIO 10 kOa heat shocl< protein, putative 10864 70 8 240 87 I 0 Gen. nama 

Unknown Tb927.7.1340 HSP10 10 kOa heat shocl< protein, putative 10864 70 8 240 97 I 0 Gen. nama 

Unknown Tb927.2.5980 
HSP100 ATP-dependent Clp protease subunit 

87283 3 3 40 828 0 Gene nlm. 
heat shock protein 100 (HSPIOO), putative 

Unknown Tb927.7.710 HSP70 heat shocl< 70 kOa protein, putative 701&8 4 3 37 908 0 Gen. n.ma 

Unknown Tb927.1.480 Leucine-rich repeat protein (LRRP), putative 1&3922 3 6 38 172 0 Gene nama 

Unknown Tb927 .1.5030 Leucine-rich repeat protein (LRRP), putative 82206 8 6 172 237 0 Gen. nama 

Unknown Tb927.7.7110 Lauclna-rich rep.at protein (LRRP), putative 84HI2 4 3 32 5<18 0 Gene nama 

Unknown Tb09.244.1980 Leucine-rich repeat protein (LRRP, 
2 4 38 5 4 0 a.n. n.m. pseudogene), putative 

Unknown Tb927.2.1310 
Leucine-rich reps at protein (LRRP, 184434 2 • . 2 &4 0 Gen. n.m. pseudogene), putative 

Unknown Tb927.4.160 
Leucine-rich repeat protein (LRRP, 1&761. 3 5 .4 55 0 Gen. n.m. pseudogene), putativa 

Unknown Tb09.21 1.4960 
Leucine-rich repeat protein (LRRP, 184550 2 3 32 10 I 0 aene n.m. pseudogene), putative; point mutation 

Unknown Tb927.1.4830 Phospholipase A I , putative 32782 4 I ee 285 0 aeneOB 

Unknown Tbl0.70.4200 
Fatty acyl CoA synthetase, putative; Long-

80017 17 II 270 7& 3 0 GoneOB chain- fatty-acid- CoA lig ... 4 

Unknown Tb10.G1.0150 
Inosine-5'-monophosphate dehydrogenlS.; 48984 12 8 27& 858 0 Gone DB 

IMP dehydrogenase 

Unknown Tb927.8.7170 
Inositol polyphosphate 1-phosphatase, 42055 2 1 39 818 0 GlneOB 

putative 

Unknown TbI0.6kI5.3990 
VPS45 vacuolar protaln sorting.,tsSOCiat.d 65875 3 2 38 859 0 GlneOB protein 45, putative 

Unknown Tb" .02.2550 AAA ATPase, putative 59858 3 2 33 458 0 GeneOB 
Unknown Tb927.8.3310 Acetyltransferase, putative 78588 1 I 31 &07 0 OeneOB 
Unknown Tb09.160.4560 AK arginine klnese 44973 16 6 199 $6 . 0 GentOB 
Unknown Tbl1.02.1160 Celmodulln, putative 17721 III 2 73 7411 0 GentOB 
Unknown Tb927.7.540 Chaperona protaln ONAJ, putative 51126 2 1 32 ee7 0 GeneOB 
Unknown Tb927.7.990 Chaperone protein ONAJ, putative 66833 2 2 38 3Ig 0 GeneOB 
Unknown Tb927.6.2170 Co.chaperone GrpE, putative 23977 16 3 92 797 0 GeneOB 

Unknown Tb09.21 1.0560 ORB03 RNA-binding protein, putative; ORB03 36$61 & 2 37 $65 0 GentOB 

Unknown Tbl0.70.6300 Dual specificity protein phosphatasa, putative; 
&0420 4 2 68 &Ig 0 G.neOB serineithreonine protein 

Unknown Tbl' .02 .4030 Eukaryotic release factor 3, putative 76900 3 3 31 8S8 0 G.neOB 



208 

Unknown Tbl0.05.00aO Glucosidase, putabV<l 91887 7 7 87 836 0 GeneOe 

Unknown Tbl0.6kI5.2930 GTPase activating protein, putative 601 27 7 3 .1 889 0 GeneOe 

Unknown Tb927.3.3330 Heat shock protein 20. putative I S946 22 2 52 8e l 0 GeneOB 
Unknown Tb l 1.01 .3060 Heat shock protein 70, putative 73566 9 6 39 892 0 GeneOB 

Unknown Tb927.1.370 Leucine-rich repeat protein (LRRP), putati ve 163515 2 3 46 193 0 GeneOB 

Unknown Tb927.8.3550 Mitogen-activated protein kinase 3, putative 42600 7 2 36 426 0 Gene De 

Unknown Tbl0.70.1320 
NATI N-acetyltransferase subunit Natl , 

82138 I 1 31 826 0 GeneOB putative 
Unknown Tbll.47.0002 Phosphatidylinosltol (3,5) kinase, putative 162330 1 2 32 641 0 GeneOB 

Unknown Tbl 0.70.2440 
Phosphatidyl lnos~ol-4-pho.phate 5-kinase, 

51624 2 1 43 668 0 GeneOe putative 
Unknown Tbl 0.70.5520 piwl-lika protaln I 1241 97 9 9 66 53 4 0 GeneOe 

Unknown Tb09.211 .2410 
PKACI protein kln .. e A catalytic subunit 

38015 3 1 37 799 0 GeneOe isoform 1; protein kinase A catalytic . ubunit 

Unknown Tb09.211 .2360 
PKAC2 protein kinase A catalytic subunit 

38545 3 1 37 728 0 GenlOe Isoform 2; protein kinase A catalytic subunH 

Unknown Tb927.7.4770 
PPlase cyelophllln-type peptldyl-pnolyt els- 18635 32 & 157 969 0 GlnlOB trans Isomerase, putative 

Unknown Tb927.7.1300 Protein disulfide Isomerase, puta tivI 42256 18 7 327 961 0 GeneOB 
Unknown Tb927.7.S790 Protein dlsutfide lsomerase, putative 15505 23 4 114 701 0 GenoOB 
Unknown Tb927.7.3210 Protein kinase, putative 70896 7 3 76 412 0 GeneOB 
Unknown Tb927.7.3580 Protein kinase, putative 8e7B5 13 6 53 656 0 GenlOB 

Unknown Tbl0.70.2070 
Protein kinase, putative; mitogen-activated 49710 12 4 32 765 0 GeneOB protein kinase 2, putative 

Unknown Tbl l .02.4630 
Protein kinase, putative; serinelthreonlne 

67076 7 4 43 422 0 Gen.OB protein kinase, putative 

Unknown Tbl0.369.0550 
RAB5A ras-related protein rab-5; smalt 

24641 28 5 193 815 0 GeneOB GTPase. putative 

Unknown Tb09.211 .2330 
RAB7 smell GTPase, putative; GTP-blndlng 

241 03 27 5 191 513 0 GeneOB protein, putative 
Unknown Tbll .01.831 0 RNA-binding protein, putative 49800 3 2 40 743 0 GeneOB 

Unknown Tb927.5.4360 Serine/threonine protein phosphatase, putative 72009 1 1 50 122 0 GeneOB 

Unknown Tb927.6.71 10 Serlnelthreonlne-proteln kinase A, putative 49587 7 3 42 773 0 GentOB 

Unknown Tb927.6.6140 Small GTP-blndlng rab protein, putative 66928 5 3 46 508 0 GeneOe 
Unknown Tb09.160.0780 Syntaxtn binding protein I , putative 72297 7 4 148 488 0 GentOB 
Unknown Tb09.160.2020 Thloredoxln (trx) 12298 &3 5 57 157 0 GeneOB 

Unknown Tbl1 .01 .2280 
Ubiquinone biosynthesis methyttrensferase, 

32302 3 1 49 820 0 Gen.OB putative 
Unknown Tb927.3.4720 Oynamln, putative 73216 6 4 48 645 0 GeneDB 

Unknown Tbl 0.26.0070 33 kOa Inner dyneln arm tight chi in, axonemll, 42408 10 3 51 283 0 Gen.DB putative 
Unknown Tb927.6.30S0 Aldehyde dehydrogenase family, putative 59937 17 8 124 41 0 GeneOB 
Unknown Tb927.6.4210 ALOH aldehyde dehydrogenase, putative 65286 8 4 108 693 0 G.n.OB 
Unknown Tb927.4.410 Cell differentiation pnoteln, putative 35300 3 I 32 1168 0 GeneDB 

Unknown Tb927.2.1260 
Expression site-associated gene (ESAG, 

116146 5 0 3; 167 0 GeneDB pseudogena), putative 

Unknown Tbl I .57.0010 
Expression site-associated gene (ESAG, 

47038 4 2 42 13 0 Gen. DO p.eudogene), putative: 

Unknown Tbl 1.57.00S0 
Expression slle-associated gene (ESAG, 

43030 9 4 32 01 0 Gen.OB pseudogene), putative; 

Expression site-associated gene (ESAG, 
Unknown Tbl1 .14.0030 pseudogene), putative: (ESAG3), frlmeshlfted 38633 5 2 30 1 4 0 Gen.OB 

and degenerate 

Unknown Tb927.7.3500 
Glutathlone-S- 35812 5 I 45 81 4 0 Gen.OB transferase/glutaredoxin,putatlve 

Unknown Tb927.S.2080 
Inoslne-S'-monophosphate dehydrogenesa, 52778 10 2 117 945 0 Gen.OB putative 

Unknown Tb927.6.2790 L-throonlne 3-dehydrogenase, putative 37333 ; 2 116 955 0 G.neOB 
Unknown Tbl 0.70.6450 NOTt 281017 I 3 30 927 0 G.neOB 

Unknown Tb927.3.S520 
RPNI 26S proteasome regulatory non-ATPase 10051; 4 2 38 878 0 G.neDB 

subunit 
Unknown Tb927. I .40S0 SerlThr protein phosphatase, putative 1072.25 5 4 93 110; 0 GeneOB 

Unknown Tb05.SKS.30 Serinelthreonlne protein phosphatase, putative 72009 I 1 50 718 0 GeneDB 

Unknown Tb05.5KS. 150 Small GTP-bindlng protein, putative 21814 38 • 191 82 0 GeneOB 

Unknown Tb927.6.3630 
Sphingosine phosphate lyase-like protein, 

80343 3 2 100 436 0 Gen.DB 
putative 

Unknown Tb927.8.920 Ublquitin-conjugellng enzyme E2, putative 19379 6 1 80 187 0 G.neOe 

Unknown Tb927.2.6404 UOP-Gal or UOP-GlcNAc-dependent 
2 2 35 1G 0 GeneOB 

glycosyltrensferase (pseudogene), putabve 

Unknown Tb05.5K5. I 60 Hypothetical protein, conserved 108136 3 4 38 241 0 Gene neme 
Unknown TbOS.SK5.50 Hypothetical protein, conserved 47543 6 2 79 465 0 Gene nem. 
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Unknown Tb07.11L3.100 Hypothetical protein, conserved 139292 2 3 33 629 0 Gene name 
Unknown Tb09.142.0350 Hypothetical protein 20751 34 4 56 103 0 G.ne name 

Unknown Tb09.160.0350 Hypothetical protein, conserved 60062 11 6 254 3O~ 0 Gene name 

Unknown Tb09.160.0520 Hypothetical protein, conserved 183684 3 5 82 302 0 Gene name 

Unknown Tb09.160.0610 Hypothetical protein, conserved 52918 9 3 47 451 0 Gene name 

Unknown Tb09.160.1110 Hypothetical protein, conserved 21647 8 1 31 262 0 Gene name 

Unknown Tb09.160.1250 Hypothetical protein, conserved 122569 3 2 39 649 0 Gene name 

Unknown Tb09.160.1610 Hypothetical protein, conserved 55277 9 3 120 619 0 Gena name 

Unknown Tb09.160.1710 Hypothetical protein, conserved 4341 8 3 1 38 722 0 Gene name 
Unknown Tb09.160.2180 Hypothetical protein, conserved 30255 4 1 52 361 0 Gene name 

Unknown Tb09.160.2470 Hypothetical protein, conserved 80550 7 3 71 552 0 Gene name 
Unknown Tb09.160.3740 Hypothetical protein, conserved 12364 36 3 118 573 0 Gene name 

Unknown Tb09.211 .0080 Hypothetical protein, conserved 3 3 31 465 0 Gene nlme 
Unknown Tb09.211 .0290 Hypothetical protein, cons.rved 67362 15 8 204 622 0 Gene name 
Unknown Tb09.211 .0360 Hypothetical protein 38508 5 2 36 279 0 Gene name 
Unknown Tb09.211.11 50 Hypothetical protein, conserved 20679 52 9 242 59 0 Gene name 

Unknown Tb09.211 .1230 Hypothetical protein, conserved 11 5220 4 4 31 ~9 3 0 Gene name 

Unknown Tb09.211.1240 Hypothetical protein, conserved 36499 7 2 46 922 0 Gen. name 

Unknown Tb09.211 .1390 Hypothetical protein, conserved 80094 9 4 145 164 0 G.n. name 

Unknown Tb09.211 .1630 Hypothetical protein, conserved 91764 5 4 33 578 0 Gene name 

Unknown Tb09.211 .2450 Hypothetical protein, conserved ~2548 5 2 61 333 0 Gen. nome 

Unknown Tb09.211 .3490 Hypothetical protein, conserved 144056 2 2 34 29 0 Gen. nama 

Unknown Tb09.211 .3690 Hypothetical protein, conserved 46805 20 5 81 212 0 Gen. name 

Unknown Tb09.21 1.3750 Hypothetical protein, conserved 121004 4 3 37 475 0 Gene neme 

Unknown Tb09.211.4100 Hypothetical protein, conserved 18541 8 1 41 203 0 G.n. name 

Unknown Tb09.211 .4380 Hypothetical protein, conserved 41 521 25 6 56 630 0 Gen. name 

Unknown Tb09.244.2880 Hypothetical protein, conserved 36648 5 2 37 57 1 0 G.ne name 

Unknown Tbl0.26.0630 Hypothetical protein, conserved 156828 3 4 35 472 0 Gen. name 

Unknown Tbl0.26.0960 Hypothetical protein, conserved 184001 5 7 90 878 0 Gene name 

Unknown Tbl0.26.1020 Hypothetical protein, conserved 11254 11 1 d 835 0 G.n. name 

Unknown Tbl0.389.0080 Hypothetical protein, consarved 121421 0 1 32 388 0 Gen. name 

Unknown Tbl0.389.0150 Hypothetical protein, conserved 293641 2 4 41 1189 0 Gen. nama 

Unknown Tbl0.369.0360 Hypothetical protein, conserved 51112 3 1 49 50e 0 Gen. name 

Unknown Tbl0.389.0570 Hypothetical protein, conserved 35139 11 3 66 767 0 G.ne name 

Unknown Tbl0.369.1030 Hypothetical protein, conserved 25238 20 4 151 erg 0 G.na name 

Unknown Tbl0.369.1780 Hypothetical protein, conserved 14897 13 1 52 9116 0 Gena name 

Unknown Tbl 0.61 .0370 Hypothetical protein, conserved 19159 to 2 38 23 0 Gen. name 

Unknown Tbl0.61 .0680 Hypothetical protein, conserved 66128 5 3 78 487 0 Gen. name 

Unknown Tbl0.61 .0800 Hypothetical protein, conserved 132341 1 2 38 408 0 Gen. name 

Unknown Tbl0.61.1260 Hypothetical protein, conserved 58233 5 2 103 744 0 Gen. name 

Unknown Tbl0.61.1790 Hypothetical protein, conserved 83811 1 1 38 235 0 Gen. name 

Unknown Tbl0.61 .1930 Hypothetical protein, conserved 44321 11 3 137 626 0 Gen. name 

Unknown Tbl0.61.1970 Hypothetical protein, conserved 37878 7 2 34 747 0 Gen. name 

Unknown Tbl0.61 .2370 Hypothetical protein, conserved 81065 3 2 42 693 0 Gen. name 

Unknown Tbl0.61 .2430 Hypothetical protein, conserved 127715 9 9 200 353 0 Gen. name 

Unknown Tbl0.61 .2670 Hypothetical protein, conserved 55505 12 5 164 93 0 Gen. name 

Unknown Tbl0.61 .2850 Hypothetical protein, conserved 50899 16 5 127 184 0 G.n. name 

Unknown Tbl0.61 .3130 Hypothetical protein, conserved 75312 7 3 82 810 0 Gent name 

Unknown Tbl0.6kl5.0310 Hypothetical protein, conserved 109928 2 2 30 871 0 Gtn. name 

Unknown Tbl0.6kI5.0400 Hypothetical protein, conserved 97988 8 II 91 84 0 G.nt name 

Unknown Tbl0.6kI5.0670 Hypothetical protein, conserved 111384 1 2 30 85 4 0 Gtne name 

Unknown Tbl0.6klS.l040 Hypothetical protein, conserved 57952 5 1 89 827 0 G.nt name 

Unknown Tbl0.6k15.1720 Hypothetical protein, conserved 85447 9 5 50 567 0 Gen. name 

Unknown Tbl0.6kI5.1900 Hypothetical protein, conserved 39748 5 1 83 788 0 G.n. name 

Unknown Tbl0.6kI5.2090 Hypothetical protein, conserved 415900 0 3 34 842 0 Gene name 

Unknown Tbl0.6kI5.2280 Hypothetical protein, conserved 43181 1 1 30 158 0 Gen. name 

Unknown Tbl0.6kI5.2340 Hypothetical protein. conserved 128183 3 3 31 1183 0 Gent name 

Unknown Tbl0.6kI5.2450 Hypothetical protein, conserved 82057 9 4 103 88 0 Gen. name 

Unknown Tbl0.6k15.2510 Hypothetical protein, conserved 28818 8 2 39 97 0 Gen. name 

Unknown Tbl0.6k15.3050 Hypothetical protein, conserved 41451 7 4 48 375 0 Gen. ",me 

Unknown Tbl0.6kI5.3110 Hypothetical protein, conserved 3 3 32 48 0 Gen. ",m. 

Unknown Tbl0.6kI5.3900 Hypothetical protein, conserved 36953 25 5 82 645 0 Gen. name 

Unknown Tbl 0.70.0470 Hypothetical protein, conserved 55490 4 1 41 802 0 Gene name 
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Unknown Tbl 0.70.0760 Hypothetical protein, conserved 82202 2 2 59 ~8 6 0 Gene n.me 
Unknown Tbl 0.70.0870 Hypothetical protein, conserved 129127 1 2 32 699 0 Gene name 
Unknown Tbl0.70.0890 Hypothetical protein, conserved 173623 1 3 31 47~ 0 Gene name 
Unknown Tbl 0.70.1 030 Hypothetical protein 87 133 12 6 121 ~1 9 0 Gene name 
Unknown Tbl 0.70.1070 Hypothetical protein, conserved 52245 11 5 132 715 0 Gene name 
Unknown Tbl0.70.1150 Hypothetical protein, conserved 59726 9 4 161 71 0 Gene name 
Unknown Tbl 0.70.2380 Hypothetical protein, conserved 38366 3 1 32 259 0 Gene name 
Unknown Tbl 0.70.3380 Hypothetical protein, conserved 53278 7 2 89 eo 0 Gene name 
Unknown Tbl0.70.3540 Hypothetical protein, conserved 235841 7 14 295 0462 0 a.ne name 
Unknown Tbl0.70.3550 Hypothetical protein, conserved 65476 1 1 38 581 0 Gene neme 
Unknown Tbl 0.70.4540 Hypothetical protein, conserved 134333 10 10 376 457 0 Gene name 
Unknown Tbl0.70.5010 Hypothetical protein, conserved 133827 2 3 53 695 0 Gene name 
Unknown Tbl0.70.5860 Hypothetical protein, conserved 15811 4 9 11 236 887 0 Gene name 
Unknown Tbl0.70.7180 Hypothetical protein, conserved 205417 3 7 128 404 0 Gene name 
Unknown Tbl0.70.7490 Hypothetical protein, conserved 11 8813 2 3 63 546 0 Gane name 
Unknown Tbl 0.70.7530 Hypothetical protein, conserved 33445 8 6 35 47 0 Gene name 
Unknown Tbl0.70.7600 Hypothetical protein, conserved 81218 2 2 45 245 0 Gene nema 
Unknown Tbl0.70.7770 Hypothetical protein, conserved 37550 11 2 92 218 0 Gene name 
Unknown Tbl 0.70.7950 Hypothetical protein, conserved 16581 33 3 158 295 0 Gen. name 
Unknown Tbll .0l .0250 Hypothetical protein, conserved 73826 6 3 122 495 0 Gene nlme 
Unknown Tbl1 .01 .0510 Hypothetical protein, conserved 48446 16 6 72 451 0 Gene name 
Unknown Tbll .0l .0980 Hypothetical protein, conserved 206529 2 3 63 366 0 Gene nlme 
Unknown Tbll .0l .l020 Hypothetical protein, conserved 46311 3 1 36 67 4 0 Gene name 
Unknown Tbl1 .01 .1140 Hypothetical protein, conserved 88630 1 1 39 528 0 Gene name 
Unknown Tbll .01 .1300 Hypothetical protein, conserved 63938 3 2 31 832 0 Gen. name 
Unknown Tbll .01 .1880 Hypothetical protein, conserved 100303 6 7 249 37 0 Gene name 
Unknown Tbl1 .01 .2150 Hypothetical protein, conserved 43150 13 4 37 3117 0 Gene name 
Unknown Tbll .0l .2550 Hypothetical protein, conserved 31225 7 3 59 54. 0 Gene name 
Unknown Tbl1 .01 .2730 Hypothetical protein, conserved 314478 2 9 125 557 0 Gene name 
Unknown Tbl1 .01 .3290 Hypothetical protein, conserved 69583 9 5 167 907 0 Gen. name 
Unknown Tbl1 .01.3410 Hypothetical protein, conserved 47126 2 1 42 872 0 Gen. name 
Unknown Tbl1 .01.3720 Hypothetical protein 5365<1 8 4 66 552 0 G.n. nlml 
Unknown Tbl1 .01 .5270 Hypothetical protein, conserved 88591 • 3 40 355 0 Gin. name 
Unknown Tbl1 .01 .6280 Hypothetical protein, conserved 122855 2 3 34 195 0 Gene nema 
Unknown Tbll .0l .6610 Hypothetical protein, conserved 94359 2 2 .6 34 0 Gen. nem. 
Unknown Tbll .01 .6770 Hypothetical protein, conserved 78607 7 5 74 288 0 Gene nome 
Unknown Tbll .0l .6900 Hypothetical protein, conserved 67653 5 3 58 375 0 Gena nama 
Unknown Tbl1 .01 .6960 Hypothetical protein, conserved 81767 8 5 91 458 0 Gen. name 
Unknown Tbl1 .01 .7450 Hypothetical protein, conserved 903117 6 4 71 431 0 Gena name 
Unknown Tbl1 .01 .8600 Hypothetical protein, conserved 102378 1 2 34 821 0 Gen. name 
Unknown Tbl 1.01.8650 Hypothetical protein, conserved 23068<1 9 15 377 343 0 Gen. name 
Unknown Tbl1 .02.0010 Hypothetical protoln, conserved 2.706 31 4 255 872 0 Gene name 
Unknown Tbll .02.0110 Hypothetical protein, conserved 148279 1 3 34 78 0 Gene name 
Unknown Tbll .02.0190 Hypothetical protein, conserved 122437 3 3 37 282 0 Gena nama 
Unknown Tbl1 .02.0350 Hypothetical protein, conserved 53529 8 4 97 473 0 Gen. name 
Unknown Tbll .02.0358 Hypothetical protein, conserved 118140 8 5 89 312 0 Gena name 
Unknown Tbl1 .02 .0610 Hypotl1etical protein, conserved 32275 2 1 34 628 0 Gane name 
Unknown Tbl1.02 .1490 Hypothetical protein, conserved 35201 5 2 71 839 0 Gen. name 
Unknown Tbl1 .02.1670 Hypothetical protein, conserved 59131 2 9 40 63 1 0 Gen. nlm. 
Unknown Tbll .02.1900 Hypothetical protein, conserved 85124 5 3 61 55 0 Gen. name 
Unknown Tbll .02.1980 Hypothetical protein, conserved 59824 8 3 82 818 0 Gene name 
Unknown Tbll .02.2B40 Hypothetical protein, conserved 28017 8 3 39 75 4 0 Gen. name 
Unknown Tbll .02.3065 Hypothetical protein, conserved 10017 1& 1 51 02& 0 Gen. name 
Unknown Tbll .02.331 0 Hypothetical protein, conserved 13589 15 3 02 741 0 Gen. name 
Unknown Tbll .02.3500 Hypothetical protein, conserved 104532 8 7 10<1 313 0 Gene name 
Unknown Tbll .02.4790 Hypothetical protein, conserved 81018 5 4 33 728 0 G.n. neme 
Unknown Tbll .02.5030 Hypothetical protein, conserved 73312 3 2 .4 66& 0 Gen. name 
Unknown Tbll .03.0210 Hypothetical protein, conserved 138888 3 5 38 .& 4 0 Gen. name 
Unknown Tbl1 .03.0475 Hypothetical protein, conseNed 12130 21 1 57 050 0 Gen. name 
Unknown Tbll .03.0520 Hypothetical prolein, conserved 57991 9 4 48 58 0 Gen. name 
Unknown Tb 11 .03.0690 Hypothetical protein, conserved 90151 I 1 36 208 0 Gen. name 
Unknown Tbl1 .03.0830 Hypothetical protein, conserved 76098 3 2 34 228 0 Gen. name 
Unknown Tbl1 .1400 Hypothetical protein 88539 I 1 32 81 8 0 Gen. nlme 
Unknown Tbll .1410 Hypothetical protein 2 1 31 418 0 Gene name 
Unknown Tbll .22.0004 Hypotl1eUcal protein, conserved 58854 4 2 44 7es 0 Gene name 
Unknown Tbl 1.39.0007 Hypothetical prolein, conserved 2 1 31 418 0 Gen. name 
Unknown Tbll .47.0011 Hypotl1etical protein, conserved 330695 3 10 119 53 4 0 Gane name 
Unknown Tbl l .52.0006 Hypothetical protein, conserved 139679 9 10 220 82 0 Gen. name 
Unknown Tbll .55.0010 Hypothetical protein, conserved 81708 7 2 47 85 0 Gen. name 
Unknown Tbl1 .5S.0017 Hypothetical protein, conserved 21842 14 2 135 9<18 0 Gen. name 
Unknown Tbll .55.0021 Hypothetical protein, conseNed 3 1 37 289 0 Gen. name 
Unknown Tb927.1.3450 Hypothetical protein, conserved 85915 1 1 48 007 0 Gen. name 
Unknown Tb927. 1.990 Hypothetical protein, conserved .2181 11 4 57 588 0 Gen. nem. 



211 

Unknown Tb927.2.17 40 Hypothetical protein, conserved 3 1 31 593 0 Glne name 
Unknown Tb927 .2.2090 Hypothetical protein 110449 3 3 32 227 0 Gen. nlme 
Unknown Tb927.2.2370 Hypothetical protein, conserved 152536 8 9 53 686 0 Gene name 
Unknown Tb927.2.2530 Hypothetical protein, conserved 88891 2 2 39 41 2 0 Gen. name 
Unknown Tb927.2.3000 Hypothetical protein, conserved 47454 4 1 52 69 0 Gene name 
Unknown Tb927.2.3180 Hypothetical protein, conserved 3 3 32 66 0 Gene name 
Unknown Tb927.2.4050 Hypothetical protein, conserved 129529 4 3 60 896 0 Gene name 
Unknown Tb927.2.4160 Hypothetical protein, conserved 93560 5 4 52 252 0 Gene name 
Unknown Tb927.2.S010 Hypothetical protein, conserved 55064 3 1 32 409 0 Gene name 
Unknown Tb927.2.S760 Hypothetical protein, conserved 332716 5 17 425 665 0 Gene name 
Unknown Tb927.2.6100 Hypothetical protein, conserved 53247 7 4 55 168 0 Glne name 
Unknown Tb927.3.1190 Hypothetical protein, conserved 259181 2 5 67 53 tI 0 Gene name 
Unknown Tb927.3.1480 Hypothetical protein, conserved 33722 15 3 30 8 4 0 Gen. name 
Unknown Tb927.3.2070 Hypothetical protein, conserved 151144 3 5 115 68t1 0 Gene nlml 
Unknown Tb927.3.2200 Hypothetical protein, conserved 39377 31 7 71 72 0 Gene name 
Unknown Tb927.3.3000 Hypothetical protein, conserved 65592 7 3 42 961 0 Gene name 
Unknown Tb927.3.3120 Hypothetical protein, conserved 48083 9 3 95 817 0 Gene name 
Unknown Tb927.3.3180 Hypothetical protein, conserved 9831 4 3 2 37 853 0 Gene name 
Unknown Tb927.3.4580 Hypothetical protein, conserved 96523 2 1 49 6tltI 0 Gen. name 
Unknown Tb927.3.4620 Hypothetical protein, conserved 180066 0 1 34 709 0 Gene name 
Unknown Tb927.3.4710 Hypothetical protein, conserved 59491 5 2 40 39 0 Gen. name 
Unknown Tb927.3.880 Hypothetical protein, conserved 27457 11 2 83 195 0 Gene name 
Unknown Tb927.4.1240 HypOthetical protein 13308 24 3 34 104 0 Gen. name 
Unknown Tb927.4.2300 Hypothetical protein, conserved 81850 5 3 75 44 0 Gen. name 
Unknown Tb927.4.2400 Hypothetical protein, conserved 158021 6 7 lt15 52 0 Gene name 
Unknown Tb927.4.2640 Hypothetical protein, conserved 146478 3 4 40 373 0 Gene name 
Unknown Tb927.4.2850 Hypothetical protein, conserved 72764 2 2 55 735 0 Gene name 
Unknown Tb927.4.2920 Hypothetical protein, conserved 107526 tI 6 176 68 4 0 G.ne name 
Unknown Tb927.4.2990 Hypothetical protein, conserved 144613 3 4 49 443 0 Gen. name 
Unknown Tb927.4.310 Hypothetical protein, conserved 743666 0 5 33 399 0 Gen. name 
Unknown Tb927.4.3360 Hypothetical protein, conserved 49350 2 1 33 910 0 Gen. name 
Unknown Tb927.4.4540 Hypothetical protein, conserved 13774 10 1 59 431 0 Gtn. name 
Unknown Tb927.4.5000 Hypothetical protein, conserved 97016 18 11 358 739 0 Gen. name 
Unknown Tb927.4.5130 Hypothetical protein, conserved 28794 9 2 32 805 0 Gen. name 
Unknown Tb927.4.S80 Hypothetical protein, conserved 47444 7 3 3& 451 0 Gene n.me 
Unknown Tb927.5.1690 Hypothetical protein, cons.rved 51987 18 8 305 878 0 Gen. name 
Unknown Tb927.5.1780 Hypothetical protein, conserved 49168 20 7 441 95 0 Gen. name 
Unknown Tb927.5.1920 Hypothetical protein, conserved 70882 2 9 33 709 0 Gene ,,!me 
Unknown Tb927.5.2190 Hypothetical protein, conserved 49690 13 4 164 901 0 Gene name 
Unknown Tb927.5.2220 Hypothetical protein, conserved 49690 13 4 t64 901 0 Gen. name 
Unknown Tb927.S.2500 Hypothetical protein, conserved 75939 5 3 41 232 0 Gen. nlm. 
Unknown Tb927.5.3290 Hypothetical protein, conserved 129925 1 2 34 409 0 Gen. name 
Unknown Tb927.S.3330 Hypothetical protein, conserved 521434 0 3 33 407 0 Gen. name 
Unknown Tb927.S.3660 Hypothetical protein, conserved 56029 2 1 50 201 0 Gen. name 
Unknown Tb927.S.4090 Hypothetical protein, conserved 28551 8 2 101 287 0 Gen. name 
Unknown Tb927.S.4400 Hypothetical protein, conserved 47543 6 2 711 46 5 0 Gene name 
Unknown Tb927.5.4520 Hypothetical protein, conserved 1081 3& 3 4 3& 241 0 Gtn. name 
Unknown Tb927.5.570 Hypothetical protein, conserved 235296 7 13 218 498 0 Gen. name 
Unknown Tb927.S.870 Hypothetical protein, conserved 6729 44 2 96 903 0 Gen. name 
Unknown Tb927.5.980 Hypothetical protein, conserved 35043 2 1 32 3&9 0 G.n. name 
Unknown Tb927.6.1180 Hypothetical protein, conserved 141 903 20 20 80 703 0 Gen. name 
Unknown Tb927.6.1220 Hypothetical protein, conserved 85870 3 2 39 187 0 Gene name 
Unknown Tb927.6 .1920 Hypothetical protein, conserved 42395 5 3 43 44 6 0 aen. name 
Unknown Tb927.6 .1940 Hypothetical protein, conserved 73827 4 2 69 39 0 Gene name 
Unknown Tb927.6.2090 Hypothetical protein, conserved 78931 8 3 82 686 0 Gen. name 
Unknown Tb927.6.2220 Hypothetical protein, conserved 15032 12 1 73 682 0 Gen. name 
Unknown Tb927.6.2230 Hypothetical protein, conserved 87159 1 1 82 83 t 0 Gen. name 
Unknown Tb927.6.2760 Hypothetical protein, conserved 168791 0 1 50 431 0 Gen. Mme 
Unknown Tb927.S.2930 Hypothetical proleln, conserved 59855 8 3 92 25 ~ 0 Gene name 

Unknown Tb927.S.3640 Hypothetical protein, conserved 64572 10 ~ 88 133 0 Gen. name 
Unknown Tb927.6.3670 Hypothetical protein, conserved 364916 12 29 tI60 382 0 Gen. name 

Unknown Tb927.6.4230 Hypothetical protein, conserved 55178 4 2 37 257 0 Gent name 
Unknown Tb927.6.4770 Hypothetical protein, conserved 83881 8 4 103 816 0 Gen. name 
Unknown Tb927.6 .S90 Hypothetical protein, conserved 12269 6 1 42 as 9 0 Gene name 
Unknown Tb927.7.1430 Hypothetical protein, conserved 48300 4 2 99 748 0 Gent Mm. 
Unknown Tb927.7.2630 Hypothetical protein, conserved 100617 0 1 33 82 0 Gene Mmt 
Unknown Tb927.7.3080 Hypothetical protein, conserved 5 2 118 339 0 GeneMme 
Unknown Tb927.7.3130 Hypothetical proleln, conserved 102765 1 2 34 680 0 Gen. namt 
Unknown Tb927.7.3540 Hypothetical protein, conserved 29782 10 2 59 28 5 0 Gent namt 
Unknown Tb927.7.510 Hypothetical protein, conserved 39971 11 4 37 333 0 Gene namt 
Unknown Tb927.7.S300 Hypothetical protein, conserved 73234 3 2 39 505 0 Gene name 
Unknown Tb927.7.S320 Hypothetical protein, conserved 83949 5 3 40 61 0 Glntname 
Unknown Tb927.7.5340 Hypothetical protein, conserved 56959 25 12 285 911 0 Gent name 
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Unknown Tb927 . 7.541 0 Hypothetical protein, conserved t00337 2 3 59 68 0 Gene Nlme 

Unknown Tb927 .7.5430 Hypothetical protein, conserved 100220 2 3 59 676 0 Glne name 
Unknown Tb927.7.6250 Hypothetical protein, conserved 49011 3 2 39 327 0 Gene Nlme 

Unknown Tb927.7.6260 Hypothetical protein, conserved 36n4 4 1 52 697 0 Gene name 
Unknown Tb927.7.650 Hypothetical protein, conserved 105866 0 1 31 644 0 Gene neme 
Unknown Tb927.7.6640 Hypothetical protein, conserved 173130 8 11 201 72 4 0 Gene Nlme 
Unknown Tb927.7.7oo0 Hypothetical protein, conserved 17721 9 7 9 136 567 0 Gene name 
Unknown Tb927.7.7400 Hypothetical protein, conserved 249044 0 2 40 256 0 Gene Nlme 
Unknown Tb927.7.B60 Hypothetical protein, conserved 117832 1 2 38 251 0 Gene Nlme 
Unknown Tb927.B.l050 Hypothetical protein, conserved 295070 5 12 128 67 0 Gene name 
Unknown Tb927.8.1360 Hypothetical protein, conserved 472876 1 4 34 395 0 Gene n.me 
Unknown Tb927.8.1740 Hypothetical protein, conserved 62618 7 3 41 896 0 Gene name 
Unknown Tb927.8.1790 Hypothetical protein, conserved 17429 12 5 46 903 0 Gene name 
Unknown Tb927.8.2060 Hypothetical protein, conserved 328056 1 4 34 527 0 Gene ""me 
Unknown Tb927.B.2070 Hypothetical protein, conserved 22184 33 5 167 656 0 Gene name 
Unknown Tb927.8.2080 Hypothetical protein, conserved 20362 30 5 168 627 0 Gene name 
Unknown Tb927.8.2130 Hypothetical protein, conserved 57640 6 3 73 569 0 Gene name 
Unknown Tb927.B.2260 Hypothetical proleln, conserved 22154 33 5 167 645 0 Gene name 
Unknown Tb927.8.2270 Hypothetical protein, conserved 22152 33 5 167 663 0 Gene naml 
Unknown Tb927.8.22BO Hypothetical proleln, conserved 22154 33 5 167 645 0 Gene name 
Unknown Tb927.8.2430 Hypothetical protein, conserved 131586 2 2 45 476 0 Gene Nlme 

Unknown Tb927.8.2550 Hypothetical protein, conserved 70218 1 1 49 854 0 Gene Nlme 

Unknown Tb927.8.2620 Hypothetical protein, conserved 9361 1 6 4 175 409 0 Gene Nlm. 
Unknown Tb927.B.3OO0 Hypothetical protein, conserved 57787 6 3 72 363 0 Gene Nlme 

Unknown Tb927.8.3590 Hypothetical protein, conserved 72481 4 2 53 561 0 Gene name 

Unknown Tb927.8.3950 Hypothetical protein, conserved 103041 1 1 30 59 0 Gene Nlme 

Unknown Tb927.8.4320 Hypothetical protein, conserved 166856 2 5 69 286 0 Gene Mml 

Unknown Tb927.8.4510 Hypothetical protein, conserved 703t9 5 3 116 697 0 Gen. Nlme 

Unknown Tb927.8.4900 Hypothetical protein, conserved 115096 1 1 33 19 0 Gene Nlme 

Unknown Tb927.B.4960 Hypothetical protein, conserved 163037 0 1 33 468 0 Gene Nlm. 

Unknown Tb927.B.5020 Hypothetical protein, conserved 50820 2 1 48 738 0 Gene "!mt 
Unknown Tb927.8.5140 Hypothetical protein, conserved 635t5 4 3 67 729 0 Gene nlme 
Unknown Tb927.8.5170 Hypothetical protein, conserved 136598 4 6 111 803 0 Gen. nlm. 

Unknown Tb927.8.540 Hypothetical protein, conserved 270011 0 2 35 349 0 Gene neme 
Unknown Tb927.8.S830 Hypothetical protein, conserved 36681 11 2 79 858 0 Gene neme 
Unknown Tb927.8.5940 Hypothetical protein, conserved 54644 6 2 61 117 0 Oen. n.me 
Unknown Tb927.8.6270 Hypothetical protein, conserved 69923 5 3 71 363 0 O.n. name 
Unknown Tb927.8.6640 Hypothetical protein, conserved 681 41 1 1 38 &42 0 Gtne Nlm. 

Unknown Tb927.8.7040 Hypothetical protein, conserved 21523 23 3 164 561 0 OInt Nlm. 

Unknown Tb927.8.7060 Hypothetical protein, conserved 171163 1 2 42 23 4 0 Gin. Nlme 

Unknown Tb927.8.7080 Hypothetical protein, conserved 178805 4 8 35 48 0 Otne Nlm. 

Unknown Tb927.8. 7 420 Hypothetical protein, conserved 97015 18 11 356 747 0 Otnt Nlmt 
Unknown Tb927.8.7790 Hypothetical protein, conserved 13055 10 I 35 823 0 O.ne Nlmt 
Unknown Tb927.8.7800 Hypothetical protein, conserved 131 530 1 3 45 &45 0 Gen. Nlmt 
Unknown Tb927.8.790 Hypothetical protein, conserved 146362 3 8 38 464 0 Otn. namt 
Unknown Tb927.8.7960 Hypothetical protein 48374 6 2 56 27 1 0 Gent nam. 
Unknown Tb927.8.7970 Hypothetical protein 53692 9 4 142 678 0 Gin. Nlm. 

Unknown Tb927.8.8120 Hypothetical protein, conserved 30408 3 1 49 85 4 0 Gen. Nlm. 
Unknown Tb927.8.8150 Hypothetical protein, conserved 19734 7 2 45 785 0 Gen. nam. 

Unknown Tb927.8.8160 Hypothetical protein, conserved 88948 2 2 82 44 0 Gent nam. 
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