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Chapter 1, Introduction. 

Abstract 

Physiological, clinical and empirical studies suggest that visual input is 

functionally segregated (e.g. Livingstone and Hubel, 1988; Hubel and 

Livingstone, 1987; Zeki, 1973). Moreover, this functional processing results in 

concurrently presented feature attributes being processed and perceived at 

different times (Moutoussis and Zeki, 1998). However, findings from the 

attentional and categorisation literature call into question a fixed account of 

feature processing (posner, 1980; Stelmach and Herdman, 1991; Carrasco and 

McElree, 2001; Oliva and Schyns; 2000; Goldstone, 1995). In particular, 

previous research has demonstrated a processing advantage for attended 

information. From this literature it seems likely that the enhanced saliency of an 

attribute will accelerate the processing time of this dimension and consequently 

should modulate any perceptual asynchrony between concurrently presented 

features. Moreover, if attention offers a selective processing advantage this 

should induce processing asynchrony between attended and unattended 

information across the visual field. The present research set out to examine how 

the visual system constructs a seemingly unified and veridical representation 

from this asynchronous information. Results add weight to the proposal that 

visual processing is not synchronous. Secondly, because this asynchrony is 

revealed in perception it seems that the visual system fails to account for these 

asynchronies. Finally, asynchrony does not appear to be fixed. Instead the 

experimental or attentional demands of the task seem to modulate the perceptual 

processing of attribute or localised information. 
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Chapter 1 

Introduction 

1. Evidence for Asynchrony of visual processing. 

Chapter 1, Introduction. 

Visual processing is not synchronous. Firstly, neural activity transduced 

by the retina from photons entering the eye is immediately divided for the 

analysis of visual information (Livings tone and Hubel, 1988, Zeki 1973). From 

the offset visual structures are stratified for parallel and functional analysis of 

different types of visual information (for example, colour, motion and form). It 

seems quite unlikely that these different functional streams will process 

information in exactly the same time. Presumably temporal asynchrony will 

arise from physiological differences between different functional areas, such as 

transient versus sustained neuronal responses and slow versus fast conduction of 

neural information. Moreover, factors that accelerate information proces~ing by 

increasing the saliency ofan attribute (for example, attention, categorisation, task 

constraints) could also introduce temporal asynchrony. To illustrate, it is now 

well established that attention selectively speeds up information processing 

resulting in temporal asynchrony between attended and unattended information. 

Surely, if this processing advantage is offered to one attended stimulus attribute 

then this dimension will be processed faster than a second concurrently presented 

but unattended attribute. 

Processing asynchrony between object attributes is not the only possible 

source of visual asynchrony. Attentional acceleration of visual information also 
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Chapter 1, Introduction. 

presents a problem for attended versus unattended information across the visual 

field. Thus it seems likely that spatial information is also processed 

asynchronously. 

Yet, despite these sources of temporal asynchrony our phenomenological 

experience of the world is temporally unified and veridical. We do not perceive 

a dislocated patchwork across the visual field. Moreover, our representation of 

the world allows successful interaction with our environment implying that the 

output of the visual system is temporally veridical. It is this achievement of the 

visual system, a seemingly unified and veridical representation derived from 

temporally asynchronous information that is considered here. 

2. Asynchronous processing of feature attributes. 

2.1. Physiological evidence for the functional processing of feature attributes: 

Livingstone & Hubel and Zeki's account. 

The notion of the visual system as an ensemble of subsystems functionally 

processing information in parallel has emerged from neurological, physiological 

and empirical studies. In their seminal paper Livingstone and Hubel (1988) cited 

physiological evidence to claim that the visual system consists of s~veral 

anatomically distinct subdivisions that functionally process visual input in 

parallel and independent processing streams. 

It is well established that the division of retinal input occurs early in 

visual processing (Livingstone and Hubel, 1988). After entering the retina visual 

input is transmitted to the stratified lateral geniculate nucleus (LGN) where 

information is functionally divided between the first two small cell layers 
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Chapter 1, Introduction. 

(parvocellular laminae) and four layers of large cells (magnocellular laminae) 

(DeValois and DeValois, 1990i. Importantly, these magno and parvo cells 

differ in four functional respects, wavelength, speed, acuity and contrast 

sensitivity. 

Approximately ninety percent of parvo cells are colour-opponent 

combining information from the short, medium and long wavelength cone 

photoreceptors into the following three distinct wavelength channels. The red-

green channel (which takes the difference between medium wavelengths from 

long), the blue-yellow channel (which takes the difference between long and 

medium wavelengths from short) and the luminance channel (which adds long 

and medium wavelengths) (Gegenfurtner, 1997). In addition, cells of the 

parvocellular system have smaller receptive fields than cells of the magnocellular 

system therefore they possess higher spatial resolution for any given eccentricity. 

In contrast magno cells are effectively colour-blind2 displaying no wavelength 
. . 

sensitivity, their transient response is faster than that of the parvocellular system 

and they are more sensitive to low-contrast stimuli. Thus from the outset it 

seems that the parvocellular system is optimally designed for enco~ing colour 

information whereas the magnocellular system seems better suited to processing 

information about motion. 

1 There is recent evidence for an additional retino-genicular-striate pathway that innervates the 
Koniocellular (K) layers of the LGN and further projects to the blobs in layers 2 and 3 of VI. 
Although the role of this pathway is currently the subject of controversy it is potentially 
important for colour vision (Hawken and Gegenfurtner, 2(01). 

2 It should be noted that some magnocellular cells do respond to flickering colour stimuli 
however these cells display a "frequency-doubled" response that is chromatically uninformative 
because it responds to either direction of polarity (e.g. red-green and green-red) (Gegenfurtner 
and Hawken, 200 I). 
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Chapter 1, Introduction. 

This subdivision of visual input continues in the laminated primary visual 

cortex (primate VI, Brodmann's area 17 or striate cortex), located in the 

calcarine sulcus, where cells of the magnocellular system arborize with cells in 

area 4 Ca. and on to area 4B. This system further projects to the middle temporal 

lobe (MT or V5) (Zeki, 1980). As the cells of this processing stream respond to 

speed and direction of movement MT is commonly regarded as the motion centre 

of the brain and the magnocellular pathway leading to it as the motion pathway. 

Disparity tuned cells, which make their first appearance in VI (see 

Cumming and De Angelis, 2001 for a review), also project to area MT. 

Histological mapping ofV2 reveals three anatomically distinct regions, thick 

dark, thin dark and pale stripes. Single cell recording studies (Livingstone and 

Hubel, 1988) reveal that these disparity tuned cells found in area 4B of VI 

arborize with the thick stripes of area 18 (V2) on their way to MT. By definition, 

the response of these cells depends critically on the horizontal position of the 
. . 

stimulus in the two eyes. There are several classes of disparity tuned cells 

(poggio, 1995). Tuned excitatory (T.E.) cells respond maximally to zero or near-

zero disparity and are subdivided into tuned zero (respond at zero ~isparity), near 

cells (respond at uncrossed disparity) and far cells (which respond at crossed 

disparity). In addition, tuned inhibitory cells display the inverted response to 

T.E. cells. Livingstone and Hubel (1988) claim that in addition to motion 

perception the magnocellular branch of the visual system may also carry out 

depth perception. 
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Chapter 1, Introduction. 

In parallel, cells of the parvocellular system further proj ect to area 4CP of 

VI. At this point histological mapping of the cortex using cytochrome oxidase 

(CO) staining reveals a further anatomical division between the blobs and the 
., 

interblobs of the upper area of the primary visual cortex. From single cell 

recording studies Livingstone and Hubel (1988) report a functional distinction 

consistent with this anatomical division. Optimum cell responses implicate the 

blobs in colour perception and the interblobs in the perception of form. In 

particular, three types of un oriented cells predominant the CO blobs namely, 

colour opponent, broad band and double opponent cells. Colour opponent (or 

Type 2) cells elicit an on response to wavelengths in one part of the 

electromagnetic spectrum and an off response to wavelengths in another part. 

Broadband cells show no such colour opponency and display either centre on or 

off with an antagonistic surround. Double opponent cells display both a 

receptive field versus surround antagonism and colour opponency. Together 
. . 

these cells provide the information necessary for colour processing implicating 

this division of the parvocellular system in colour perception. 

This wavelength sensitive subdivision further projects to t~e thin stripes 

ofV2 where all three types of un oriented cells can be found. In addition, Hubel 

and Livingstone (1987) report finding complex unoriented cells that are also 

found in broadband and colour opponent varieties. These cells respond to an 

optimally placed spot placed anywhere within their receptive field (as 

distinguished from the uncomplex broadband and colour opponent cells of VI 

which only respond to a spot placed in a particular position). This system further 
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projects to V 4 and V 4 alpha which is regarded by many as the colour centre of 

the cortex (Zeki, 1973). Moreover, recent imaging evidence suggests that this 

area selectively responds to colour as a property of objects (Zeki and Marini, 

1998; Tanaka, 2001). 

Hubel and Livingstone (1987) and Livingstone and Hubel (1988) 

postulate a third functionally distinct pathway this time specialising in fonn 

perception. This second, CO interblob, subdivision of the parvocellular system 

further projects to the pale stripes ofV2 and is populated by specialised oriented 

cells. Firstly oriented complex cells respond to an optimal stimulus placed 

anywhere within their receptive field (as distinguished from simple cells that are 

phase dependent excited solely by an optimal stimulus in a particular region of 

their receptive field). In addition, this pathway is characterised by end-stopped 

cells that share functional characteristics with oriented complex cells but also 

respond to the length of a stimulus. This characteristic that makes these cells 

ideal edge detectors. Recall that smaller cells of the parvocellular system also 

have higher acuity than the cells of the magnocellular system. Thus, this highly 

acute subsystem seems well suited for the perception of fonn. The fact that these 

cells are not explicitly colour-coded and only seem to respond to colour 

infonnation constituting an oriented boundary supports this theory. 

To conclude, Livingstone and Hubel (1988) suggest that these three main 

functional divisions constitute three subsytems of visual processing. These three 

distinct subsystems seem to be specialised for processing infonnation about 

motion/stereopsis, colour and fonn in pa~allel pr~cessing streams. 
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Chapter 1, Introduction. 

This supposition that the brain functionally divides information receives 

ardent support from Zeki's theory of micro consciousness (2001). Zeki contends 

that the brain is a collection of autonomous micro-systems each acquiring 

information about different types of knowledge. Accordingly, the properties of 

cells in each region reflect the type of knowledge processed. Clear examples of 

the information specific properties of different neural areas were discussed 

above. The early division between the temporally non-veridical 3 wavelength 

sensitive cells of the parvoceIIular laminae and the transient, colour blind cells of 

the magnoceIIular system to more complex cells such as the colour-opponent, 

end-stopping and stereoscopic cells ofV2 illustrates this information specific 

division. Clearly, this division of information is necessary. In order to process 

different types of information the brain must consist of subsystems each capable 

of encoding the distinct types of knowledge required for vision. Cells with quite 

different properties (e.g. wavelength sensitivity, temporal veracity, response from 

both eyes) are required to encode each distinct type of information that is 

required for visual processing (e.g. colour, motion and depth perception). 

Moreover, this parallel processing of different types of information offers 

efficient and fast information processing. In Zeki' s theory there is no need for 

the visual system to "bind" these quite different processing streams. Rather, each 

subsystem gives rise to its own micro-consciousness' that when appreciated 

3 Remember that the parvocellular pathway carries slow, high contrast information. Moreover, 
this is a slow conducting pathway. Consequently, we might expect information carried by this 
pathway to be perceiVed later than information carried by the magnocellular pathway. 
Therefore, this information should be less temporally reliable (Moutoussis and Zeki, 1997a; 
1997b). 



Chapter 1, Introduction. 

together give us the rich and varied experience that constitutes our visual world. 

This leads us to the interesting proposal that the unitary nature of consciousness 

is itself an illusion. 

2.2. Physiological evidence for the functional processing of feature attributes: a 

note of caution. 

As we might expect recent evidence suggests that the story is not this 

simple and the parallel processing account of visual processing does not receive 

unequivocal support. 

To illustrate, Gegenfurtner et al (1996) hypothesise that the anatomically 

distinct pathways of the visual cortex do not reflect a corresponding functional 

segregation. In an anatomical study reminiscent to Livingstone and Hubel's 

these authors took single cell recordings from V2 of macaque monkeys followed 

by histological mapping this brain region. Despite contending the functional 

segregation theory these authors found that specialised cells did occur more 

frequently in the CO compartment associated with the corresponding stimulus 

attribute. In particular, they found that end-stopped cells were more frequently 

found in the inter-stripe region (41 %) than in the thin (19%) or thick stripes 

(13%). Colour- selective cells were more frequent in the thin stripes and more 

cells in the thin stripes were not responsive to colour (27%) than in any other 

region. These findings are remarkably similar to those reported by Hubel and 

Livingstone (1987). However, these authors claim that they found few cells that 

were solely responsive to one attribute and accordingly cell classification cannot 
. . . 

be made on this basis. Yet, the cells they do report as being, for example, both-
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colour and motion selective are just marginally responsive to one of these 

attributes. Therefore, this weak secondary response does not seem ample to 

justify ruling out a specialised account of cell processing. Gegenfurtner et al 

(1995) freely admit that the interpretation of their data varies more from Hubel 

and Livingstone's account than the data itself The functional processing account 

would consider this secondary neural response as noise. If cells and neural areas 

become functionally specialised as an organism develops (as is most certainly the 

case in the primate visual system) then it seems highly improbable that each 

functional area and indeed each individual cell will display a pure response to a 

single attribute. Rather, one would expect an optimal response for a higher 

proportion of cells in a given area. Indeed, one would expect the results reported 

in the studies discussed above. 

However, cells that display an equal response to two attributes have 

recently been reported. 10hnson et al (2001) studied colour selective cells in the 

macaque primary visual cortex. They measured spatial frequency response 

functions by stimulating 167 cells with a drifting sinusoidal grating. Luminance 

and colour sensitivity was examined by measuring response curves to either 

black-white or equiluminant red-green gratings. They reported that 19 of the 

cells responded solely to the equiluminant gratings. Fourteen of these chromatic 

cells were low-pass and thus similar to parvocellular neurons of the LGN. 

Whereas, 60% of the neurons responded preferentially to luminance. However, 

perhaps surprisingly, 48 cells, found in layers 2 and 3, responded to both 
. . . 

luminance and chromatic information. 83% of these colour-luminance cells were 
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spatially selective. Moreover, these cells were double opponent The authors 

conclude that these spatially selective chromatic neurons may respond to cues for 

form such as boundaries. Therefore, they posit them as colour and form selective 

cells. However, such cells are functionally suited to computing colour constancy 

(Gegenfurtner, 2001). This ability of the visual system to attach constant colours 

to objects despite differences in luminance conditions has long presented a 

quandary to vision scientists. Cells responsive to both colour and luminance 

information may enable the visual system to disentangle colour information from 

inconstant luminance information. So perhaps these cells are another variety of 

specialised colour cells. 

Lennie (2001) proposes perhaps the most ardent view against the 

functional processing account He proposes that each neuron is tuned to more 

than one attribute. In this view a neuron can be thought of as occupying a 

position in a multi-dimensional space. Lennie cites contingent after-effects such 

as the McCullough effect (a colour after-effect contingent on orientation 

patterns) as evidence for this "close-coupled" account of neural processing. 

Moreover, this author concludes that neurons display a response to more than one 

attribute in many single unit studies. 

To conclude, it is important to note that the evidence for distinct 

functional pathways is not unequivocal. In view of recent literature the account 

proposed by Livingstone and Hubel (1988) and Zeki (1973) seems 

oversimplified at best. However, the criticisms posited against this theory do not 

. . . 
falsify it and a complete alternative account has not yet been proven. Indeed it is 
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still widely accepted that some degree of functional processing exists in the 

visual cortex. 

2.3. Neuroimaging evidence for the functional processing of feature attributes. 

One criticism of the stuclies cited above is the subject under study. For 

obvious reasons physiological studies have mapped the visual cortex in non­

human primates (most commonly the macaque monkey). Although such 

investigations have undoubtedly furthered our understanding of neural 

functioning caution must be taken when making assertions about the human brain 

based on these findings. For this reason the emergence ofneuroimaging 

techniques, which can be directly applied to the human brain, offers a welcome 

alternative means of investigating neural processing. Here, two such imaging 

techniques are discussed, Positron Emission Tomography (PET) which measures 

changes in regional cerebral blood flow and Functional Magnetic Resonance 

Imaging (fMRl) which is an indirect measure of neural activity that measures 

changes in the local blood oxygenation level. A change in the oxygenated to 

deoxygenated blood ratio produces a local magnetic field which is picked up by 

the MRI scanner. This second means of neuroimaging offers a superior spatial 

resolution to PET (Wandell, 2003). We are just beginning to learn whether the 

functional properties of the human visual cortex are the same as those described 

in monkeys. So far both (PET) and (fMRI) studies provide encouraging data. 

Using PET Zeki (1990) identified a region in the human brain that is 

sensitive to moving stimuli. By subtracting and comparing scans derived from 

exposure to stationary versus moving bla~k and ~hite squares Zeki found an area 
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Chapter 1, Introduction. 

of maximal activity in Broadmann's areas 19 and 37. Zeki proposed that area 

should be referred to as human area V5 based on its homology with macaque 

area V5. Zeki also reported activity in areas corresponding to monkey VI and 

V2 when the moving stimulus was presented concluding that these areas appear 

to feed the motion centre in much the same way as they do in the macaque 

'cortex. Tootell etal (1995) also identified this motion selective region of the 

human brain by stimulating the visual system with a flickering checkerboard. In 

addition, they also reported a strong signal between the primary visual cortex and 

this area known as MT+ (because it is unclear whether the recorded signal is also 

derived from areas just outside MT). 

Again by exploiting PET, Zeki (1990) and Bartels and Zeki (2000) have 

reported activation in the lingual and fusiform gyri when participants view multi­

coloured Land Mondrian displays versus equiluminant grey and white patches. 

Zeki proposes that this area is the human homologue of macaque area V 4, the 

colour centre of the brain. Again, area VI and V2 were also activated by the 

coloured stimuli suggesting that these areas feed the colour centre of the human 

brain. Wandell (2003) also report activation of the fusiform gyrus with coloured 

stimuli in an fMRI study. They presented participants with checkerboards 

composed of two opponent colours. They also report activity in areas VI and 

V2. 

However, once more a note of caution. Some authors point out that 

neuroimaging data based on the subtractive method does not conclusively 

support the functional segregation theory. "In parti~ular, Wandell et al (2001) 

-20 -



Chapter 1, Introduction. 

point out that the existence of one large difference does not mean that smaller 

differences should be ignored. Indeed, authors favouring a distributed account 

would use this evidence to conclude that the presence of activity in more than 

one area provides evidence for this alternative theory. 

On the whole these neuroimaging studies suggest that the human brain is 

functionally divided in a homologous manner to the macaque brain. The human 

brain seems to accommodate a homologue of both the motion and colour centres 

discovered in the macaque cortex. However, the evidence does not 

unequivocally support the functional segregation account and more studies 

employing these relatively new techniques are required. 

2.4. Clinical Evidence for the Functional processing of Feature Attributes 

Further evidence for functional processing in the human brain comes 

from the selective loss or sparing of attribute processing after neural damage. 

This clinical evidence reveals that each type of visual knowledge can be lost or 

spared in isolation strongly suggesting that each type of knowledge is processed 

independently. 

Cerebral achromatopsia, first reported by Steffan in 1881, is a syndrome 

in which patients loose the ability to perceive colour (Zeki, 1990). Such patients 

report a world that varies in shades of grey. Although reported since as early as 

1881 the proposal that this syndrome reveals a colour centre in the cortex 

provoked much controversy until recently. This was partly due to the common 

co-occurrence of a scotoma or hemianopia with the inability to perceive colour. 

Before the neuroanatomy of the visual system was mapped it made sense to 
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attribute any visual disorder that co-occurred with a scotoma to damage in the 

primary visual area. However, it is now known that the lower border of the 

primary visual cortex, which represents the upper field of view, extends onto the 

lingual gyrus next to which lies the fusiform gyrus. Thus the coincidence of 

these symptoms does not rule out a colour centre in the cortex. Rather, it makes 

sense in terms of current knowledge about neural physiology. Moreover, clean 

cases of this disorder have been reported. Oliver Sacks (1995) reports the visual 

world of a painter who acquired a pure achromatopsia after a car accident, 

"as soon as he entered, he found his entire studio, which was hung with 

brilliantly colored paintings, now utterly grey and void of color. His canvases, 

the abstract color paintings he was known for, were now greying or black and 

white. His painting once rich with associations, feelings, meanings now looked 

unfamiliar and meaningless to him." 

Zeki (1990) also reports that the fusiform and lingual gyri have been 

reported in every reported case of cerebral achromatopsia adding weight to his 

proposal that this area is the human homologue of macaque V 4. 

It seems that the colour system can also operate autonomously. Selective 

sparing of colour vision has also been reported. Zeki et al (1999) report PB a 

patient who suffered from blindness after prolonged respiratory arrest induced by 

an electric shock. Yet, despite apparently suffering from blindness PB still 

reported being consciously aware of colour. This phenomenon is commonly 

reported after carbon monoxide poisoning and has long been thought to result 

from the selective sparing of the metabolically more active and vascular 
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wavelength sensitive blobs of VI and stripes ofV2. However, when PB's colour 

constancy ability was tested using Land's Mondrian experiments it became clear 

that he was not able to discount the illuminant and that his colour perception was 

actually purely wavelength based. Further fMRI analysis revealed that chromatic 

stimuli significantly activated VIand not area V4. Thus, although PB was still 

able to see colour this perception was based on spared VI processing enabling 

perception of wavelengths. However, it seems that damage to his fusiform gyrus 

has diminished his ability to attribute constant colours to objects despite 

differences in luminance conditions. 

Selective loss and sparing of motion perception has also been reported. 

Zihl et al (1983) reported a case of m.otion blindness know as akinetopsia in his 

patient LM. LM suffered from bilateral lesions including the human homologue 

of area V5. In contrast, Riddoch's syndrome, the selective residual ability to 

perceive motion, was first reported in first world war patients by Riddoch in 

1917. Despite appearing to have lost their vision these patients could 

consciously detect the presence of motion (as distinguished from blindsight, a 

phenomenon reported by Weiskrantz (1990) whereby patients are unconsciously 

aware of residual vision). Their perception was that of a shadowy "something 

moving" devoid of form or colour. In particular, Zeki (1997) reports a patient, 

GY, who could detect whether high contrast, fast moving stimuli was moving to 

the left or to the right A PET study revealed that areas V3, V5 and the parietal 

cortex were activated by this motion. Thus, Zeki postulates that this residual 

motion results from a second motion system that bypasses VI and projects 
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directly to MT from the LGN and from the pulnivar (which receives input from 

the superior colliculus). 

The selective loss of form perception has also been reported. Patients 

suffering from apperceptive visual agnosia loose the ability to name objects 

despite being able to report their colour, motion, luminance and being able 

identify them from tactile, olfactory or auditory cues (Farah, 2000, p98). 

However, these patients can identify visually presented stimuli if they are drawn 

slowly (Bender and Feldman, 1972) leading Zeki (1990) to the conclusion that 

their perception ofform is supplemented by part of the magnocellular pathway 

that projects to V3 and constructs form from motion. 

In conclusion, these clinical cases provide convincing evidence for 

functional· specialisation of the human cortex. The selective sparing or loss of 

the perception of individual attributes makes a strong case for the autonomy of 

these attributes and their parallel processing. Moreover, post-mortem and 

neuroimaging data from these cases indicate that the functionally specialised 

areas of the human brain corresponds to those discovered in physiological studies 

of the macaque cortex. 

2.5. Empirical Evidence for the Functional Processing of Feature Attributes 

If the visual system is divided into parallel processing streams of colour, 

form and motion then the perception of each of these attributes should mirror the 

characteristics of each processing stream. We know that cells of magnocellular 

system are effectively colour-blind, fast and have large receptive fields (thus 

offering poorer visual acuity). Conversely, cells of the parvocellular system are 
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wavelength sensitive, smaller and their response is slower. Thus the perception 

of colour and motion should have different temporal and spatial resolution and 

wavelength sensitivity. Perception of motion should be colour blind, fast and 

" 

have a low acuity. Remember that stereoscopic cells were also found in the 

magnocellular system therefore these characteristics may also apply to this 

attribute too. Conversely, perception of colour and form should be slower. In 

addition, recall that the interblob sub-pathway of the parvocellular system does 

not appear to explicitly code colour therefore this attribute should not be 

necessary for form perception. Moreover, this subsystem has a higher visual 

acuity than the blob system. Thus form perception should have a higher spatial 

resolution than not just motion and stereo perception but also colour perception. 

Several psychophysical studies confirm these predictions. Campbell and 

Maffei (1980) reported that motion perception is impaired at high spatial 

frequencies. Observers were required to match the frequency of rotation of a 

square wave grating of varying spatial frequencies with a high contrast reference 

grating. The spatial frequency of the reference gratings was set at 

1cycles/degree. They found for frequencies greater than 2-4 c/deg th~ apparent 

motion of the test grating appeared slower than that of the reference grating. 

Indeed, at 16-32 c/deg the test grating was perceived as almost stationary. This 

effect was even more pronounced for peripheral stimuli. These findings suggest 

that high spatial frequency information is processed by neurons with slower 

temporal properties a finding that concurs with the above predictions. Impaired 

motion processing at high spatial frequencies presumably reflects the temporal 

- 25-



Chapter 1, Introduction. 

limitations of the parvocellular system that processes this information. 

Conversely, veridical processing of low spatial frequencies probably reflects the 

temporally accurate magnocellular pathway. 

Moreover, Cavanagh et aT (1984) reported that perceived speed is 

dramatically reduced for equi-luminant stimuli. Observers were required to 

match the motion of a sinusoidal luminance grating presented in the top half of 

the visual display with a test sine-wave of variable chrominance and luminance 

modulation presented in the bottom half of the visual display. The gratings, 

which were equated in spatial frequency, moved in opposite directions. All 

observers showed pronounced slowing of perceived velocity at a preset equi­

luminance point for low spatial frequency stimuli. Indeed, the gratings often 

appeared to stop. Thus, when only colour information is available perception of 

speed is dramatically impaired. This is presumably because of the temporal 

limitations of the colour processing parvocellular system. Lu and Fender (1972) 

report a similar result for perception of depth (although some evidence 

contradicts this finding, Kingdom and Simmons (2000». Thus as predicted it 

seems that perception of both movement and steroscopic depth fail at. 

equiluminance. 

However, Gegenfurtner and Hawken (1996) expose a significant problem 

occurs with studies that compare chromatic stimulus that have been equated in 

luminance contrast with luminant stimuli. In particular, they point out that the 

sub tractive nature of colour processing means that colour contrast cannot be 

directly compared with luminance contrast. Indeed, the maximum cone contrast 
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that can be produced for isoluminant gratings is about 30% significantly lower 

than the 100% contrast that can be produced for luminance gratings. Therefore, 

they suggest that it may be this reduction in contrast that diminishes the 

processing of motion and depth in Cavanagh etal (1984) and Lu and Fender's 

(1972) studies. This is obviously an important criticism that undermines the 

impact of this psychophysical evidence. 

Finally, Zeki (1997) reports that the phenomenon of colour bleeding 

provides evidence of separate colour and form processing systems. Colour 

bleeding is a phenomenon in which a stimulus' colour leaks beyond its defining 

edges. Zeki suggests that this phenomenon is a product of the higher resolution 

form system producing a pattern that is too fine for the relatively low acuity of 

the colour system. Therefore, the colour "leaks out" of the more accurately 

represented form. 

Together the physiological, neuroimaging, clinical and empirical studies 

discussed above provide compelling evidence for the parallel processing of 

object information in functionally specialised pathways. 

3. Asynchronous perception of feature attributes 

If the different attributes of an object are processed in parallel then it 

seems unlikely that each pathway would process information in exactly the same 

time. In particular, the magnocellular pathway responds faster to stimuli and 

conducts this activity at a faster rate than the parvocellular system. Therefore, 

temporal synchrony of neural processing seems to be a quite unlikely property of 

a functionally distributed system. This has led to some interesting studies of 
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perceptual asynchrony pioneered by Moutoussis and Zeki (1997). These studies 

have produced perhaps the most compelling evidence for the parallel processing 

account of colour, form and motion revealing that these attributes are actually 

perceived at different times. Moreover, this finding suggests that any temporal 

asynchrony introduced by parallel processing of different types of visual 

information is not compensated for at a later stage in visual processing. 

In their seminal paper, Moutoussis and Zeki (1997a, 1997b) employed a 

psychophysical method revealing perceptual asynchrony between colour, form 

and motion. The stimuli were composed of two features (e.g. motion and colour) 

alternating between two values each (e.g. up versus down and green versus red). 

Observers were required to report which feature changed in value first for 

different asynchronies between the stimulus alterations. From these subjective 

reports, the authors derived the physical asynchrony required between the 

stimulus dimensions for synchronous perception. Remember that the 

magnocellular pathway thought to carry information about motion responds more 

transiently than the parvocellular pathway that carries information about colour 

and form. Therefore, Moutoussis and Zeki expected to find a perceptual 

advantage for motion over colour and form. Surprisingly the authors found that 

colour is perceived 118msec before motion and 63ms before orientation, whereas 

orientation has a 52ms perceptual advantage over motion. The authors proposed 

that this perceptual advantage, the antithesis to the expected asynchrony, might 

reflect a compensatory mechanism introduced by the visual system to 

counterbalance the faster neural processing of motion. However, there are 
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several methodological problems with this study. In particular, the participants 

task was difficult and subjective providing a subjective measure of temporal 

asynchrony. Moreover, the relative salience was not controlled across attributes 

and the CIE chromaticity coordinates of the colours employed were not reported 

making it unclear if luminance levels were controlled. 

Arnold et al (2001) exploited the colour-contingent motion after effect to 

demonstrate a perceptual advantage for colour over motion. When observers 

view a given direction of motion subsequently viewed objects appear to move in 

the opposite direction. This effect can be made contingent with another attribute 

for example colour. To illustrate, after viewing a green object moving in a 

clockwise direction subsequently viewed green objects appear to rotate in a 

counter-clockwise direction. These authors found that a physically asynchronous 

direction of motion and colour gave rise to such a colour-contingent motion after 

effect. Using this effect they revealed an 80 ms advantage of colour over motion. 

Thus despite being physically asynchronous, the attributes were perceptually 

synchronous substantiating Moutoussis and Zeki's (1997) finding. This finding 

also calls into question one ofLennie's (in Gegenfurtner and Hawken, 2001) 

main criticisms of distinct functional processing. He cites contingent effects as 

evidence against the parallel processing account. However, this evidence 

suggests that such contingent effects occurs post attribute processing and 

therefore do not support his 'close-coupled' account of neural processing. 

More, if quantitatively different, evidence for perceptual asynchrony of 
. . . 

object attributes comes from Viviani and Aymoz (2001). In a study reminiscent 
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ofMoutoussis and Zeki (1997) these authors pitted colour, fonn and motion 

against each other in pair-wise comparisons. Again each attribute alternated 

between two values with differing asynchrony and observers were required to 

report which attribute changed first. They estimated perceptual processing time 

by solving a convolution equation and found that perceptual processing times for 

colour and fonn are equivalent whereas motion perception requires an additional 

50ms. 

The findings from studies probing perceptual asynchrony are far from 

unequivocal. Holcome and Cavanagh (2001) report that observers could 

correctly identify spatially superimposed pairings of orientation with colour or 

luminance patterns even for remarkably high rates of presentation. Consequently 

they claim that such features are combined very early in the visual system 

eliminating the "Binding Problem". 

Nishida and lohnston (2002) also found that perceptual asynchrony 

depends critically on the alteration rate of stimulus changes. When the alteration 

rate was slowed down to a change every 2000ms perceptual asynchrony between 

colour and fonn almost disappeared. Whereas for alteration rates significantly 

faster than 250ms judgements about the temporal relationship between colour 

and motion were impossible. In addition, they found that the subjective 

asynchrony reported is not found in reaction time measures or if response is 

measured with a motor response using a mouse rather than a key press. These 

findings have led Nishida and lohnston (2001) to propose an alternative to the 
. . . 

"processing delay" account of perceptual asynchrony. These authors postulate 
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that the processing delay account, which assumes an implicit coding of stimulus 

timing, raises some philosophical problems. They contend instead that temporal 

coding is time locked to events by "metaneurons" which are sensitive to the time 

course of neural processing in the brain. Perception of temporal order is 

achieved by comparing temporal markers of which there are two types. 

Transitions which are first order changes requiring measurement at two points in 

time, for example a change in colour and turning points which are second order 

changes that require measurements at three points in time, for example motion. 

At high alteration rates (250ms) asynchronies arise because transitions (of e.g. 

colour) are more salient than turning points (of e.g. motion). However, this 

theory does not account for the reported perceptual asynchrony between two 

temporal markers of the same type (transitions, e.g. colour and form). 

Alternatively, the discrepancy between these studies could be accounted 

for by a non-fixed account of attribute processing. If one assumes that more 

salient attributes are processed faster then factors such as task, attention and 

categorisation will influence which attribute enjoys the perceptual advantage. 

Such an account could explain why different perceptual asynchronies are 

reported when different tasks are employed both between studies (e.g. 

Moutoussis and Zeki, 1997 and Viviani and Ayrnoz, 2001) and within the same 

study (e.g. Nishida and Johnston, 2002) and why under certain circumstances no 

such asynchrony is reported at all (Holcombe and Cavanagh, 2001). It is to these 

possible determinants of perceptual asynchrony that we now turn. 
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In the studies discussed above different experimental conditions yield different 

temporal asynchronies between attributes. This anomaly has led us to the 

proposal that rather than a fixed account of attribute processing the perceptual 

processing time may be flexible. Although physiological differences between 

processing streams may introduce constant temporal asynchronies between 

information "higher level" factors may modulate asynchrony by selectively 

speeding up information processing. This modulation of perceptual processing 

may account for the different perceptual asynchronies reported across and 

between studies. Here, factors that may influence the perceptual processing time 

of an attribute are considered. 

Attention seems an obvious source of processing acceleration. The 

notion that attending to a stimulus brings forward its perception in time dates 

back as far as Tichener (in Pashler, 1999) who included the law of prior entry in 

his laws of attention. 

The attention literature suggests that attention speeds up info~ation 

processing. For example, in a seminal study Posner et al (1980) demonstrated 

that the knowledge of an objects location significantly enhances its detection. In 

this study reaction time was significantly decreased when an objects location was 

given prior to presentation. Studies of temporal order also suggest that attention 

speeds up information processing (Pashler, 1999). To illustrate in one such study 

(Stelmach and Herdman, 1991) direction of attention was manipulated while 
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observers judged the temporal order of two stimuli. Observers were directed to 

fixate centrally and attend either to the left, right or to the centre. On each trial 

two brief flashes of light were then presented one to the left and one to the right. 

Observers were required to indicate which light flashed first. The SOA between 

the first and second flash was adjusted until each location was selected 50% of 

the time, in other words until the temporal order of the stimuli was 

indiscriminable. The authors found that in the attend-centre condition temporal 

order was indiscriminable (i.e. mean performance was at the 50% level at SOA = 

Oms) at Oms. Thus, attention was directed equally to both stimulus locations. 

Whereas, in the attend right condition temporal order was indiscriminable when 

the left stimulus preceded the right stimulus by about 40ms. The same but 

converse effect was found for the attend left condition. These findings are 

consistent with the idea that an attended stimulus is processed faster. 

However, some authors contend that studies of temporal order and of 

reaction time are susceptible to response bias (pashler, 1999) or may reflect a 

change in decision criterion rather than attentional acceleration of information 

(Carrasco and McElree, 2001). Recent work by Carrasco and McElree (2001) 

attempts to overcome these failings using the speed-accuracy trade-off procedure 

(SAT). 

Carrasco and McElree (2001) asked observers to respond to either the tilt 

(feature condition) or the tilt and spatial frequency (conjunction condition) of an 

oriented gabor patch presented amongst zero, three or seven gabor distracters. 

On 50010 of the trials a cue was presented which indicated the target location. On 
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the remaining trials a neutral cue was presented. The authors measured 

disriminability and speed of information co-jointly by presenting a tone at one of 

7 intervals ranging from 40-2000ms. Observers were required to respond within 

300ms of the tone. In the SAT paradigm the effect of attention on accuracy and 

processing time can be examined by pitting these variables against each other. 

Theoretically, if cueing only increases response accuracy then optimal 

performance (i.e. when accuracy reaches an asymptote) should be higher in the 

cueing condition. Whereas, if cueing solely increases speed of processing then 

optimal performance should be reached earlier in the cueing condition although 

given enough time it will be the same in both cued and uncued conditions. In 

other words, the rate of approach to asymptote is higher. Carrasco and McElree 

found that a peripheral cue increased both accuracy and, more importantly for 

our purposes, speed processing dynamics in both feature and conjunction 

conditions. In particular, in the feature condition, cueing the target reduced 

processing time by 45ms. In the conjunction condition, where processing time 

slowed with increasing set size, peripheral cueing reduced processing time for 

each set size (by 38, 84, and 106ms for set sizes of 1, 4 and 8 gabor pa~ches 

respectively). Therefore, this study strongly supports the idea that attention 

speeds up information processing. 

Attention then seems like a probable determinant of perceptual 

asynchrony. Moreover, if attention speeds up information processing then tasks 

that require an observer to selectively attend to information should also modulate 

perceptual asynchrony. 
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The categorisation literature has established that observers selectively 

attend to an attribute that is relevant for the task at hand. To illustrate, previous 

literature suggests that both spatial scale and colour can be selectively attended 

to. 

In particular, the use of different spatial scales appears to be 

diagnostically driven (Oliva and Schyns, 1997; Schyns and Oliva, 1999). 

Because spatial frequency channels can be selectively impaired in their contrast 

sensitivity it is commonly thought that such channels can operate independently 

(see Morrison and Schyns, 2001, for a review). Schyns and Oliva (1999) 

exploited hybrid stimuli in a neat demonstration of the flexible usage of these 

channels. Each hybrid stimulus was comprised of a low and high component, for 

example, a low pass spatial frequency (LSF) filtered image of a neutral female 

was superimposed with a high pass spatial frequency (HSF) filtered angry male 

face. They found that observers were biased to HSF when performing an 

expression judgement whereas observers performing a categorisation judgement 

(happy versus unhappy) were biased to LSF. Importantly, when subsequently 

asked to categorise the gender (an unbiased task) of hybrid stimuli the. observers' 

response significantly depended on the original task. Thus despite being 

presented with identical stimuli observers reported the stimuli as being male or 

female depending on whether they had initially performed an expression or 

categorisation judgement. In other words, it seems that observers select the 

spatial scale that supplies the perceptual cues required to determine the 

categorisation judgement. 
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Recent evidence adds support to this flexible account of spatial frequency 

processing. Sowden et al (in Press) used hybrid plaids to demonstrate that 

observers selectively attend to a cued spatial frequency component. In a study 

reminiscent of Schyns and Oliva (1999) observers were presented with hybrid 

plaids comprised of a left and right oriented component either 4 octaves or 0.5 

octaves apart. The authors found that observers selectively attended to the spatial 

frequency that was cued by a tone. However, this finding only held true when 

the components were sufficiently separated to be processed by two different 

spatial frequency 'channels (i.e. in the 4 octave condition). This finding strongly 

suggests that observers can selectively attend to a spatial frequency channel. 

The categorisation literature also suggests that colour can be selectively 

attended to. Oliva and Schyns (2000) found that colour mediates scene 

recognition when it is diagnostic for the task at hand. In particular, these authors 

found enhanced recognition of diagnostic scenes when they were properly 

coloured. However, they found no such advantage for categorisations that did 

not depend on colour. 

The phenomena known as acquired distinctiveness and equiva~ence also 

reveals that the properties of an attribute can be modified with categorisation 

experience. Research has shown that training can improve an observers' ability 

to discriminate between two stimuli (Goldstone, 1994). This perceptual learning 

is manifested in one of two ways, either the observers' perceptual space is shrunk 

and within category information is compressed (acquired equivalence). In this 

case any information between two distinctive values is easily confused. 
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Alternatively the perceptual space is stretched (acquired distinctiveness) and the 

observer is better able to discriminate between different values of a dimension 

that were previously indiscernible. These categorical effects have been 

demonstrated for colour perception (Goldstone, 1995; Ozgen and Davies, 2002). 

To illustrate, Ozgen and Davies, (2002) trained observers to discriminate 

between two colours that were previously within a category (e.g. blue 1 and blue 

2). Post training same-different judgments revealed improved discrimination 

between pairs of colours that cross this new boundary (e.g. acquired 

distinctiveness ). 

In sum, these studies suggest that different classifications of a stimulus 

will influence the attribute extracted by the visual system. If the categorisation 

task can influence which attribute is attended it seems likely from the attention 

literature that this diagnostic dimension will be processed faster. 

To conclude, it seems likely that both attention and categorisation tasks 

requiring the observer to selectively attend to one attribute will accelerate the 

perceptual processing time of an attribute. Accordingly, these factors will 

modulate the perceptual asynchrony between different attributes. In other words, 

these factors seem probable determinants of perceptual asynchrony. 

4.2. Treisman's Feature Integration Theory 

From the literature discussed above it seems plausible that attention may serve to 

modulate the perceptual asynchrony between two attributes by selectively 

increasing the perceptual processing time of one attribute. However, the story is 
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not this simple. Previous literature suggests that selectively attending to a 

location enhances the integration of information at this locus. 

Although previously unconsidered in the perceptual asynchrony literature 

the role of attention on the integration of stimulus attributes has been extensively 

examined. Indeed it is the subject of Treisman's Feature Integration Theory 

(FIT) (Treisman, 1980). According to FIT the role of attention is to correctly 

integrate the features of an object. Treisman and Gelade (1980) postulate that 

features are registered early and their processing is automatic. However, the 

integration of these features into a coherent object is a later process requiring 

focused attention. When an object is selected its properties and location are 

actively represented. This momentary assembly of the object's defining 

characteristics allows these attributes to be integrated correctly. Conversely, 

without focused attention, feature attributes "free float" and may lead to incorrect 

feature conjunctions known as "illusory conjunctions". 

The most compelling evidence for FIT comes from visual search 

experiments. In a visual search experiment the target can be defined either by 

separate features (e.g. pink or 0) or by feature conjunctions (a pink 0). In such 

studies, the time required to search for a single feature does not typically increase 

with the number of distracters present in the stimulus array. This is a finding that 

one would expect if features were processed automatically and in parallel. 

Whereas, the time required to search for a conjunction of features (e.g. a pink 0) 

scales linearly with the number of distracters presented in the array. One would 
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expect such an increase in search time as possible locations are added if feature 

conjunction requires focal attention to be delivered serially to each location. 

Further evidence for FIT and indeed for the parallel processing of feature 

attributes comes from illusory conjunctions (Treisman, 1982). To illustrate 

Treisman (1982) found that observers performed well in a primary task requiring 

them to report two black digits. However, they frequently make conjunction 

errors in a secondary task requiring them to describe anything they had observed 

about concurrently presented coloured letters. Conjunction errors combining two 

simultaneously presented features significantly exceeded those combining one 

correct feature and one that was not present in the display. Similar results were 

found for a stimulus-matching task. Treisman (1982) concludes that these 

recombination errors further demonstrate that without time to attend the brain 

cannot correctly integrate features. 

Clinical evidence also supports FIT. Damage to the parietal lobes results 

in a disorder of attention known as Balint's syndrome (see Rizzo and Vecera, 

2002 for a review). Patients with this disorder make conjunction errors during 

free viewing. Moreover, recent FMRI studies show that, in normal observers, 

regions of the parietal cortex are more engaged in feature conjunction tasks than 

when multiple objects are presented (Shafritz, 2002) implicating this region of 

the cortex, commonly thought to be involved in attention, in feature conjunction. 

To conclude, from these studies it seems that attention enhances the 

integration of attribute information. Moreover, recent empirical and neurological 

work suggests that attention may enhance feature integration by increasing 
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spatial resolution thereby conserving information about the location of attended 

information. 

4.3. Spatial Resolution Theory of Attention 

Recent, neurological evidence supports the hypothesis that attention facilitates 

the integration of attnbute information (Reynolds and Desimone, 1999). It seems 

that attention modulates the competition between simultaneously presented 

information. When two stimuli are present within the receptive field of a single 

cell (here, in V 4) the neural response to an attended stimulus is as large as when 

this stimulus is presented alone. In other words, attention appears to filter out the 

competition and effectively increases the spatial resolution of the cell. Indeed, 

attention seems to play a different role depending on the levels of processing. 

Early in the visual system it seems to increase the strength of the attended 

stimulus. However, later attentional effects seem to filter out any response to the 

unattended stimuli. 

The theory that attention facilitates feature integration by increasing the 

spatial resolution of attended features makes sense in terms of the attentional 

literature. To illustrate, Yeshurun and Carrasco (1998) report an interesting 

study that strongly supports the spatial resolution theory of attention. These 

authors employed a task in which perfonnance was diminished by heightened 

spatial resolution. For this stimulus it is likely that performance is poorer when 

the stimulus is foveated because the average size of the spatial filters at the fovea 

are too high for the size of the stimulus. However, around the mid-peripheries 

the average size of the filters is probably optimal. Observers were required to 
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detect a texture target composed of 9 oriented lines appearing at a large range of 

eccentricities in a background of orthogonally orientated lines. Peak 

performance for this task occurs at mid-peripheries, in other words at a medium 

" 

spatial resolution. The authors found that attention enhanced performance for 

peripheral stimuli. Interestingly, they also found that attention actually impaired 

performance for foveated stimuli. Thus, attention improved performance when 

the spatial resolution of the stimuli was too low (for peripheral stimuli) but 

diminished performance when the spatial resolution was too high (for foveated 

stimuli). 

To conclude, behavioural and physiological evidence suggests that 

attention to a location should enhance the integration of an object's features by 

increasing spatial resolution at an attended location. However, attention also 

seems to selectively speed up information processing. Therefore, selectively 

attending to one attribute might actually enhance the perceptual asynchrony 

between an object's attributes. These possible orthogonal influences of attention 

on the integration of object information across time are investigated here. 

5. Asynchronous processing across the visual field 

Temporal asynchrony induced by functional processing does not present the only 

problem to vision. If attention speeds up information processing then visual 

processing of information from across the visual field must also be 

asynchronous. This proposal is neatly demonstrated in the motion line illusion 

(Hikosaka et ai, 1993). When attention is directed to a cue presented above a line 

observers perceive motion propagated from the cued location. Motion centres 
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seem to construct a motion sensation from the asynchronously processed 

information around the attentional focus. This illusion suggests that attention 

does produce temporal asynchrony across the visual field. Moreover, this 

asynchrony seems to be mirrored in perception. This proposal is further 

considered in the current investigation. 

6. The present research. 

Together the physiological, neuroimaging, clinical and empirical studies 

discussed above provide compelling evidence for the parallel processing of 

object information in functionally specialised pathways. Moreover, this 

functional processing of object attributes results in concurrently presented 

attribute information, for example colour and form, being processed and 

perceived at different times (Moutoussis and Zeki, 1998). However, 

discrepancies between the different empirical studies of perceptual asynchrony 

call into question a fixed account of attribute processing. For example, wher~as 

Moutoussis and Zeki (1998) reported a 63ms temporal advantage for colour over 

form Viviani and Aymoz (2001) found no such perceptual asynchrony. Indeed it 

seems likely from studies of attention and categorisation that enhanced saliency 

of an attribute may accelerate the processing time of this dimension and 

accordingly should modulate the perceptual asynchrony between concurrently 

presented features. In other words, the perceptual asynchrony between attributes 

is probably flexible reflecting the relative saliency of each dimension. It is this 

possibility that is examined in Chapter 2. In Experiment 1 we developed a novel 

method to examine the temporal dynamics of feature integration. We employed 
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this paradigm in Experiment 2 to examine whether the requirements of the task at 

hand can modulate the perceptual asynchrony between two attributes, here colour 

and orientation. In Experiment 3 we replicated this experiment in a between 

participants design and in Experiment 4 for colour and spatial frequencies. 

From the literature discussed above one would expect that selectively 

attending to one attribute could modulate perceptual asynchrony by selectively 

accelerating the processing time of this dimension. However, unfortunately, the 

role of attention is not this simple. Attention also seems to play a role in the 

integration of features most likely by enhancing the spatial resolution of an 

attended location. Evidence suggests that selectively attending to a location 

enhances the integration of information at this location. We examined the 

influence of attention on the integration of colour and form in Chapter 3. In 

Experiment 5 we modified the method developed in Chapter 2 to examine how 

attention modulates th.e integration of coloured shapes arranged in a line. In 

Experiment 6 we extended this design across the visual field. 

That attention accelerates information processing also has interesting 

implications for the temporally veridical integration of information across the 

visual field. If attention to a portion of the visual field can speed up the 

processing of information within its focus this will result in temporal asynchrony 

between attended and unattended information. In Chapter 4 we examined 

whether this asynchrony across the visual field is mirrored in perception. In 

Experiment 7 we investigated how attention modulates the threshold of 
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asynchrony that is tolerated between the elements ofa line stimulus. We 

extended this paradigm to a square stimulus in Experiment 8. 

We extended these studies in Chapter 5 to examine whether the 

integration of information across the visual field is time dependent around the 

focus of attention. In Experiment 9 we examined the influence of attention on 

the integration of identical desynchronised elements to form the orthogonal 

perceptions of a two vs a five. We extended this further in Experiment 10 to 

examine how attention modulates the exact temporal relationships required 

between the elements of these figures. 
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Chapter 2 

Investigating the influence of task requirements on feature 

integration. 

In the introductory chapter we argued that functional processing of object 

attributes results in different processing times for distinct attributes (such as 

color, form and motion). Moreover, the visual system does not seem to 

compensate for this temporal asynchrony and consequently it is revealed in 

perception (Moutoussis and Zeki, 1997a; 1997b; Arnold et aI, 2001; Viviani and 

Aymoz, 2001). In short, functional processing induces perceptual asynchrony 

between different attributes. 

Current literature (Moutoussis and Zeki, 1997) assumes a fixed 

processing account of perceptual asynchrony. However, findings from the 

attention and categorisation literature suggest that these factors could modulate 

the perceptual processing of an attribute. 

In particular, studies of reaction time (posner, 1980), temporal order 

(Stelmach and Herdman, 1991) and using the speed-accuracy trade-off 

procedure (Carrasco and McElree, 2001) have revealed a temporal processing 

advantage for attended information. Moreover, the categorisation literatUre has 

established that participants selectively attend to an attribute that is relevant for 

the task at hand. For example, the use of different spatial scales appears to be 

diagnostically driven (Oliva and Schyns, 1997) and colour mediates scene 

recognition when it is diagnostic for the task at hand (Oliva and Schyns, 2000). 

Together these studies suggest that the task at hand will influence the attribute 
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extracted by the visual system. If the categorisation task can influence which 

attribute is attended it seems likely from the attention literature that this 

diagnostic dimension will be processed faster. 

Intuitively then it seems likely that the task at hand could modulate 

perceptual asynchrony by differentially modulating the perceptual processing of 

each attribute. In other words, these factors may determine temporal integration 

by modulating the perceptual asynchrony between attributes. In the current 

chapter we examined how the task at hand modulates the integration of two 

stimulus attributes into a unitary perception. In Experiment 1 we developed a 

novel method to examine feature integration. We employed this method in 

Experiments 2, 3 and 4 to examine whether perceptual asynchrony can be 

modulated by the task at hand. 

To examine feature integration a novel method was designed. By 

desynchronising the attributes (for example, colour and orientation) of two . 

alternating orthogonal stimuli (e.g. red-left and green-right) we developed a 

method to examine the time that participants require to perceive a stimulus (e.g. 

red-right) emerging as a result of this asynchrony. The perception of this 

emergent stimulus crucially depends on the integration of both attributes. 

Therefore we can examine the time scale of binding itself rather than the time­

scale of perceived simultaneity (Moutoussis and Zeki, 1997) or a response to a 

target presented from the offset as a conjunction of features (Treisman and 

Gelade, 1980; Yershurun and Carrasco, 1998). Moreover, by manipulating the 

direction of asynchrony (colour first or orientation first) we can examine the 
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time-scale of binding for each attribute independently. Consequently we can 

compute any perceptual advantage offered to either attribute by comparing these 

conditions. 
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Experiment 1. 

Investigating the temporal integration of colour and orientation. 

In a study of perceived simultaneity Moutoussis and Zeki (1997) 

reported that participants perceive colour changes 60 ms before orientation 

changes. In particular, these authors presented participants with two stimulus 

attributes (for example, colour and orientation) alternating between two values 

(for example, red and green and left and right). Each attribute was presented in 

different halves of the same screen. The phase of each attribute alteration was 

manipulated and participants had to decide which two attribute values were 

presented simultaneously. Specifically, participants were requested to report the 

colour of an alternating checkerboard presented in one half of the screen whilst a 

bar on the other side of the checkerboard was tilted to the left and which colour 

it was whilst the bar was tilted to the right. From this response the authors 

computed the asynchrony required between the changes in each attribute to . 

perceive these changes as occurring simultaneously. 

In Experiment 1 we examined this finding with the novel method 

described above. Using this paradigm we found that colour and form are 

perceived at the same time. Therefore, we found no perceptual asynchrony 

between these attributes. These results are discussed in relation to the 

methodological problems of previous studies of perceptual asynchrony. 

Method 

Participants. 11 University of Glasgow students (6 male and 5 female under 

35 years of age) with normal or corrected to normal vision were paid to 
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participate in the experiment. All participants were screened for colour blindness 

using the Ishihara tests for coloured blindness (1978) to exclude any with colour 

blindness. 

The data of one deuteranomolous participant was analysed separately. 

Materials. The experiment ran on a Macintosh G4 using the 

Psychophysics and Pyramid Toolbox for Matlab (Brainard, 1997; Simoncelli, 

1997; Pelli, 1997). The frame rate of the monitor was 75 Hz. 

We examined the integration of orientation and colour, using the emergence 

ofa new perception from binding. To illustrate, consider Figure 1. in which two 

orientations (right, 450 and left, -450 relative to the horizontal) alternate with two 

colours (green and red, see Figure 1). The stimulus sequence alternates between 

green-rightlred-left when these attributes are presented in synchrony (Fig 1, 

synchronous). Desynchronising these attributes produces an emergent 

perception. In Figure .1. (Colour First, or Form First conditions), the red-righ.f 

perception (in Colour First) or green-left perception (in Orientation First) 

emerges when orientation and colour are asynchronous. Perception of this 

emergent stimulus4 (e.g. red-right) crucially depends on integrating a new value 

of the leading attribute (e.g red) with an existing value of the orthogonal 

dimension (e.g. right). Therefore, the time required to perceive this emergent 

stimulus is the time required to bind colour and orientation. Specifically, we can 

manipulate the physical asynchrony (in Figure 1, lag (n» between orientation 

4 The notion emergent perception should not be confused with the illusory conjunctions 
perceived in Triesman's (1982) experiments. Here, the emergent stimulus is physically 
presented. 
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and colour and use the emergent perception (red-right vs. green-left) to 

determine the criticallag (c) at which the attributes are successfully integrated. 

A B c 
Stimulus Sequence Perceptual Sequence 

n<c 

Synchronous 

n>c 

n<c 
Color .J!­
First 

n>c 

Orientation 
First ..ll-. n<c 

n>c 

Figure 1. The Emergence ofa Perception from Binding. 

A depicts the two attributes to be bound (colour, alternating between green 

and red and orientation, alternating between right and left). CIE 
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chromaticity coordinates: green [L= 7.77, x = 0.31, Y = 0.52] and red [L = 

7~, x = 0.54, y = 0.32]. (Luminance values measures in candelas per square 

metre). 

B The physical sequence, depicts the stimulus sequence presented to 

participants. When colour and form alternate in synchrony the stimulus 

sequence is green-right, red-left. When a lag is introduced between the 

attributes a new perception emerges (green-left or red-right). 

e The perceptual sequence, illustrates that we can manipulate the physical 

asynchrony (n) between the attributes and determine the criticallag (c), 

required for the emergent perception. This criticallag equals the time 

required to bind the new colour (or orientation) to the old orientation (or 

colour) providing a means to quantify the time scale of feature integration. 

Importantly, Figure 1. illustrates that when colour leads orientation the 

resultant stimuli sequence is green-right, red-right, red-left whereas when 

orientation leads colour the sequence is green-right, green-left, red-left. 

Therefore, from these emergent perceptions (i.e., red-right or green-left) we can 

explore the timing required to bind a new colour value to an existing form value 

and vice versa. A comparison of these conditions should reveal any perceptual 

advantage offered to one of the dimensions. 

We manipulated the leading dimension (colour vs. orientation) to reveal 

any perceptual asynchrony between these attributes. Here, we attribute any 
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modulation in the threshold required to perceive the emergent perception as 

arising from a modulation in the perceptual processing of the leading attribute. 

The test stimuli spanned 5.S x.5.S degrees of visual angle. The orientations 

and colours used were selected from opposing poles of their attributes to try and 

control their relative salience. 

To investigate temporal integration, the stimuli alternated between e.g. green­

right and red-left over a 667 ms interval. In other word, on a given trial there 

was one alternation between the two main stimuli. We manipulated the 

temporal asynchrony between colour and orientation by randomly sampling 

amongst 7 possible temporal asynchronies ranging from 0 ms to 156 ms by 

equal increments. We introduced an Sth asynchrony of390 ms to ensure 

discrimination of the emergent perception on at least one trial. To illustrate, the 

sequence of green-right, red-right, red-left appeared when colour preceded 

orientation (Colour First, see Figure 1). The sequence of green-right, green-~eft, 

red-left appeared when orientation preceded colour (Orientation First). The 

sequence of green-left, red-left, red-right, (colour preceding orientation) or 

green-left, green-right, red-right (orientation preceding colour) were included to 

counterbalance the main stimuli. Likewise the order of both of these conditions 

was reversed to control for stimulus driven effects. 

Participants were tested in two blocks, the trials in which the target 

stimuli were green-left and red-right (half) were combined. Likewise the trials 

in which the target stimuli were red-left and green-right (half) were combined. 

This gave a 2-AFC task in which participants had to indicate either whether a 
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red-right or a green-left appeared or they had to indicate whether a green-right 

or a red-left appeared. For example, participants made one key press on a 

keyboard if they perceived a red-right and different key-press if they perceived a 

green-left. For both colour and form first trials there were 40 repetitions for 

each of the eight temporal lags giving 1280 trials in total. 

Colour First and Orientation First trials were randomly interleaved. 

Participants were instructed to guess if they were unsure. A headrest maintained 

viewing distance at one metre. 

Results 

Figure 2 illustrates that for each participant we fitted a cumulative Gaussian 

curve to the temporal asynchrony data to determine the 75% discrimination 

threshold of the emergent perceptions (the critical lag). 
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1 

0.9 

0.8 

I 0.7 

o 0.6 

.~ 0.5 
1:: 
& 0.4 

£ 0.3 

0.2 

0.1 

o 

--

26 52 78 104 130 

Temporallag (ms) 

Figure 2. The 75% threshold lag required for target detection was deriv~d 

by fitting a cummulative Gaussian curve to the temporallag data for each 

participant. 

A cummulative Gaussian curve was employed because it is a standard 

and simple psychometric function with two free parameters (standard deviation 

and slope) which provided a good fit to the participants' data. 

The data from one participant who did not reach threshold performance 

was discarded. An additional participants' data had to be discarded because his 

performance was above threshold from the offset. The distribution for 
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orientation and colour first trials across the remaining 8 participants is depicted 

in Figure 3. 

2001r----------------------------~ 

150 

75% threshold 100 
for discrimination 
of emergent 
perception 
(ms) 

50 

2 3 4 5 6 7 8 ave 

Observer 

--0- Orientation 

--<>--- Colour 

Figure 3. 75% threshold discrimination of the emergent perception for 

colour and orientation .... rst trials for 8 participants. On average 

participants required the same time to bind a new colour value to an 

existing form value and vice versa. Therefore, these results do not support 

a perceptual asynchrony between the perceptual processing of colour and 

form. The error bars here and throughout this thesis depict the standard 

deviation from the mean. 
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On average, it took participants 102 ms (s = 24 ms) to bind a new 

orientation value to an existing colour value. Whereas, it took 104 ms (s = 59 

ms) to bind a new colour with an existing orientation value. Therefore there was 

no perceptual asynchrony between colour and orientation. 

Discussion 

The data from Experiment 1 did not reveal a perceptual asynchrony 

between colour and form. We propose that the discrepancy between Moutoussis 

and Zeki's (1997) findings and our results may reflect the fact that in general the 

experimental task at hand can modulate the perceptual processing of stimulus 

dimensions independently. Consequently, the perceptual asynchrony between 

attributes should also be flexible. 

Other studies lend support to this hypothesis. In particular, Viviani and 

Aymoz (2001) also found no perceptual asynchrony between colour and form in 

a study reminiscent ofMoutoussis and Zeki's. Moreover, some findings 

contradict this perceptual asynchrony theory (Holcombe and Cavanagh, 2001) or 

contend that it is only revealed in certain tasks (for example, at high alteration 

frequencies, Nishida & Johnston, 2002). A flexible account of perceptual 

processing and consequently of perceptual asynchrony would account for the 

discrepancy between these results. 

It seems likely that perceptual asynchrony between attributes will depend 

on the relative salience of these dimensions. Specifically, previous literature 

suggests that the perceptual processing time of an attribute should depend on 

how informative this dimension is for the task at hand (Oliva and Schyns, 2000; 
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Goldstone, 1994; Goldstone, 1995; Ozgen and Davies, 2002). If observers can 

easily discriminate between the opposing values of one attribute (e.g. colour; red 

and green) but have more difficulty discriminating between the values of the 

other dimension (e.g. orientation; left and right) then this could lead to a 

difference in processing times between these dimensions. This is because the 

easily discriminable attribute will enjoy the perceptual advantage. In the current 

study we selected values from opposing poles of each dimension in an attempt to 

control the relative salience of colour and orientation. This control of salience 

may have diminished any perceptual processing advantage offered to one 

attribute because observers could discriminate equally between the two values of 

colour and of orientation. Likewise, the perceptual asynchronies reported in 

previous studies may have arisen because salience was not controlled between 

dimensions in this way. 

An additional methodological difference between the methodology 

employed in the current experiment and previous studies may account for the 

current findings. In the current paradigm the participants' task is a 2AFC 

discrimination task. Recall that Moutoussis and Zeki' s (1997 a; 1997b). 

participants were requested to report the colour on one half a screen that 

corresponded with an orientation on the other half of the screen. This task is 

difficult and subjective. Whereas i~ our design the perceptual asynchrony was 

derived objectively therefore it provided us with a direct measure of this 

phenomenon. 
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Experiment 2 

Investigating the effect of task requirements on the temporal integration of 

colour and orientation. 

The results from Experiment 1 were inconsistent with previous findings of 

perceptual asynchrony between colour and form (Moutoussis and Zeki, 1997). 

To account for the discrepancy between these results and previous findings we 

proposed that perceptual processing of distinct visual information (for example, 

colour and orientation) is flexible. Consequently, the perceptual asynchrony 

between these attributes should also be flexible. 

Moreover, although the direction of asynchrony is largely in agreement 

across previous studies of perceptual asynchrony they differ in magnitude. 

To recap, Moutoussis and Zeki (1997a; 1997b) revealed a 60 ms temporal 

asynchrony between color and orientation attributes, and a 118 ms asynchrony 

between color and motion. In addition, they reported a 50 ms advantage of 

orientation over motion. Whereas, using the color-contingent motion after effect 

Arnold et al (2001) found an 80 ms advantage of color over motion. In addition, 

Viviani and Aymoz (2001) reported a 50 ms advantage of color over motion, 

and of form over motion. However, they did not find such asynchrony between 

color and form. Moreover, some findings contradict the perceptual asynchrony 

theory entirely (Holcombe and Cavanagh, 2001) or contend that it is only 

revealed in certain tasks (for example, for high alteration frequencies, Nishida & 

Johnston, 2002). To account for these differences we suggest a flexible rather 
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than fixed account of attribute processing and consequently of perceptual 

asynchrony. 

Several lines of evidence converge to suggest that the processing time of 

attributes is flexible. In particular, studies of reaction time (posner, 1980), 

temporal order (Stelmach and Herdman, 1991) and using the speed-accuracy 

trade-off procedure (Carrasco and McElree, 2001) have revealed a temporal 

processing advantage for attended information. The categorisation literature has 

established that participants selectively attend to an attribute that is relevant for 

the task at hand. For example, the use of different spatial scales appears to be 

diagnostically driven (Oliva and Schyns, 1997) and colour mediates scene 

recognition when it is diagnostic for the task at hand (Oliva and Schyns, 2000). 

The phenomena known as acquired distinctiveness and equivalence also 

reveals that the properties of an attribute can be modified with categorisation 

experience. Research has shown that training can improve an observers' abil~ty 

to discriminate between two stimuli (Goldstone, 1994). This perceptual learning 

is manifested in one of two ways, either the observer's perceptual space is 

shrunk and within category information is compressed (acquired equivalence). 

In this case any information between two distinctive values is easily confused. 

Alternatively the perceptual space is stretched (acquired distinctiveness) and the 

observer is better able to discriminate between different values of a dimension 

that were previously indiscernible. These categorical effects have been 

demonstrated for colour perception (Goldstone, 1995; Ozgen and Davies, 2002). 

Furthermore, research has demonstrated a perceptual advantage when the values 
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ofan attribute can be easily discriminated (Goldstone, 1994; Goldstone, 1995; 

Ozgen and Davies, 2002). To illustrate, Ozgen and Davies, (2002) trained 

observers to discriminate between two colours that were previously within a 

category (e.g. blue 1 and blue 2). Post training same-different judgements 

revealed improved discrimination between pairs of colours that cross this new 

boundary a phenomenon known as acquired distinctiveness. Therefore, one 

way to manipulate the perceptual processing time of an attribute might be to 

manipulate how discriminable the values along this dimension are. By 

differentially manipulating the number of values of two attributes we should be 

able to differentially modulate the perceptual processing time of each attribute. 

In turn, we might also modulate the perceptual asynchrony between these 

attributes. 

In sum, categorisation studies suggest that the task at hand will influence 

the attribute extracted by the visual system. If the task can influence which 

attribute is attended it seems likely from the attention literature that this attribute 

will be processed faster. Here, we examined how the task at hand modulates the 

integration of two stimulus attributes (namely, colour and spatial frequency) into 

a unitary perception. 

Therefore, in Experiment 2 we examined whether the perceptual 

processing of colour and orientation can be modulated by task requirements. 

Consequently, we can also examine whether the perceptual asynchrony between 

these attributes is modulated. The paradigm developed in Experiment 1 was 
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employed to examine whether task requirements can modulate the perceptual 

processing time of two attributes. 

In a between-participants design participants were randomly assigned to 

one of two conditions, Multi-colour (Figure 7) or Multi-orientation (Figure 8) in 

which multiple values of this attribute were employed to decrease 

discriminability of this dimension. We predicted that by decreasing how 

discriminable one attribute was (e.g. multi-colour) participants would depend 

more on the orthogonal dimension (e.g.orientation) to perform the task. 

Consequently, perceptual processing of the "less discriminable" dimension 

should be slowed relative to the orthogonal dimension. 

Method 

Participants. 20 University of Glasgow students (9 male and 11 female under 

35 years of age) with normal or corrected to normal vision were paid to 

participate in the experiment. All participants were screened for colour 

blindness using the Ishihara tests for coloured blindness (1978) to exclude any 

with colour blindness. 

Stimuli. Stimuli spanned 4 x 4 degrees of visual angle. Stimuli were 

generated from 2D white noise using a rectangular filter (i.e. without 

attenuation). Oriented white noise rather than gratings were employed because 

it is more difficult to match noise across frames therefore apparent motion across 

trials is less likely. 
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We investigated 7 possible temporal asynchronies ranging from 13 ms to 93 

ms by equal increments. An 8th asynchrony of200 ms was also investigated. 

The paradigm developed in Experiment 1 was employed. 

To investigate the effect of task requirements on perceptual asynchrony 

we employed this paradigm in two conditions, one in which we decreased the 

discriminability of orientation (multi-orientation condition) and one in which we 

decreased the discriminability of colour (multi-colour condition). We employed 

QUEST (Watson and Pelli, 1979) to calibrate psychologically equi-distant 

colour and orientation values. 

QUEST (Watson and Pelli, 1979) is a Bayesian psychometric adaptive 

method that was used in the current experiment to determine 8 psychologically 

equi-distant colours and 8 psychologically equi-distant orientations. For this 

procedure, on a given trial, participants made same-different judgements about 

two simultaneously pr~sented colours or two simultaneously presented 

orientations. They made one key press if they perceived the simultaneously 

presented stimuli as the same and a different key press if they perceived these 

stimuli as different. Using a linear function colours were manipulated from red 

to green along the x-y axis of the cm colour space. The cm chromaticity co­

ordinates of the original red and green between which the equi-distant values 

were calibrated are (red, L = 8, x = 0.54, y = 0.32 and green, L = 8, x = 0.34, y = 

0.54). Orientation was similarly manipulated in radians from the vertical origin 

to 0.78 radians (45°). Four equi-distant values that deviated to the left of the 

vertical and four values that deviated to the right of the horizontal were selected 
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independently. Using QUEST eight values of colour and orientation were 

calibrated for three observers in both the colour and orientation conditions. We 

selected the data from the participant that was intermediary between the two 

other observers to determine the colour and orientation values for the 

experiment. Figure 4. and Figure 5. display the CIE chromaticity coordinates of 

the colours and the angles of the eight orientations employed respectively. The 

eight orientations and colours were equally divided into left or right attribute 

values and red or green attribute values respectively. 

Groon Colour Red Colour 

8,0.338,0504 8,0.540,0.320 

8,0.3 .0.498 8} 0.507.0.350 

8,0 .366,0.478 8.0.472,0.382 

8. OA06, 0.442 8,0.4 9,0.412 

Figure 4. cm chromaticity coordinates (L.x.y.) of the psychologically 

equi-distant colours (j.n.d. = 75%). 

Figure 4. illustrates that in the multi-colour condition the eight colours were 

paired with orientation 1 (left, -33) and orientation 8 (right, 35). 
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l .f Orlen atlon Right Ori ntaf on 

-33 degrees 35 degrees 

-26 d grees 27 degrees 

·20 degrees 21 degrees 

-8 degt es 12 degree 

Figure 5 . Angles of the psychologically equi-distant orientations (j.n.d. = 

75%) 

Figure 5. illustrates that in the multi-orientation condition the eight 

orientations were paired with colour 1 (green, CIE chromaticity coordinates 8, 

0.338, 0504) and colour 8 (red, CIE chromaticity coordinates 8, 0.540, 0.320). 

This gave eight red and eight green stimuli of decreasing discriminability (with 

respect to orientation) in the multi-orientation condition and eight left and eight 

right stimuli of decreasing discriminability (with respect to colour) in the multi­

colour condition. Thus as in Experiment 1 four categorizations were possible: 

green-right, green-left, red-right and red-left. 

For the multi-colour condition the 16 stimuli of decreasing 

discriminability (with respect to colour) were split into four pairs of colours. In 
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the multi-orientation condition the 16 stimuli of decreasing discriminability 

(with respect to orientation) were split into four pairs of orientations. Figure 6. 

illustrates that we paired colour 1 with 8, 2 with 7,3 with 6 and 4 with 5 in the 

multi-colour condition. 

Pair 1 Pair 2 Pair 3 Pair 4 

2 3 4 5 6 7 

Figure 6. Multi-colour pairs, we paired colour 1 with 8, 2 with 7, 3 with 6 

and 4 with 5. The orientations employed were orientations 1 (left) and 8 

(right). 

Figure 7. illustrates that we paired orientation 1 with 8,2 with 7, 3 with 6 

and 4 with 5 in the multi-orientation condition. From Figure 8 it is clear that the 

stimuli with extreme colours (pair 1, colours 1 and 8) in the multi-colour 

condition were physically identical to the stimuli with the extreme orientations 

(pair 1, orientations 1 and 8) in the multi-orientation condition. 'Pherefore, for 

the purpose of our analysis data from these trials could be compared directly. 
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There were 28 stimuli in total. For each condition each colour-orientation pair 

was employed, and randomly presented, in the paradigm described in 

Experiment 1. 

Pair 1 Pair 2 Pair 3 Pair 4 

2 3 4 5 6 7 

Figure 7. Multi-orientation pairs, we paired orientation 1 with 8, 2 with 

7, 3 with 6 and 4 with 5. The colours employed were colours 1 (green) and 8 

(red). 
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Figure 8. This figure depicts the stimuli employed in Pair 1 in both the 

multi colour and multi orientation conditions. This pair was identical 

across conditions. 

Procedure. The experiment ran on a Macintosh G4 using the Psychophysics and 

Pyramid Toolbox for Matlab (Brainard, 1997; Simoncelli, 1997; Pelli, 1997) 
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Participants were randomly assigned to one of two conditions (multi­

colour or multi-orientation). The multi-colour participants were shown the 16 

stimuli comprising the 4 multi-colour pairs. The multi-orientation participants 

were shown the 16 stimuli comprising the 4 multi-orientation pairs. In a 2-AFC 

task, participants had to indicate whether either a red-left or a green-right or 

either a green-right or a red-left appeared. 

Participants were tested in two blocks, the trials in which the target 

stimuli were green-left and red-right (half) were combined. Likewise the trials 

in which the target stimuli were red-left and green-right (half) were combined. 

There were 16 repetitions for each of the eight temporal lags (16*8=128). This 

was replicated for each colour-orientation pair (4* 128=512). Colour First and 

Form First trials were interleaved giving 1024 trials in total. Participants were 

instructed to guess if they were unsure. A headrest maintained viewing distance 

at one metre. 

We predicted that observers should be faster at processing the attribute 

which is easier to discriminate (the attribute with only two values) than the 

attribute which is difficult to discriminate (the attribute with multiple values). 

Consequently, observers should require less time to perceive the emergent 

perception when it results from the integration of a new value of the easily 

discriminable attribute with an old value of the less discriminable attribute. In 

addition, if the requirements of the task modulate the perceptual processing for 

colour and spatial frequency by an unequal amount then the perceptual 

asynchrony between these attributes should also be modulated. 
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Results 

Data from stimuli Pair 1 (i.e. when the stimulus was identical across 

experimental condition) in each condition was extracted for analysis. For 20 

participants, we fitted a cumulative Gaussian curve to this temporal asynchrony 

data to determine the 75% threshold detection of the emergent perceptions 

separately for colour and orientation first trials. We then averaged the critical 

lags derived across participants for both the multi-colour and the multi­

orientation conditions. Figure 9. illustrates that for colour first trials participants 

required 101 ms to discriminate the emergent perception in the multi-orientation 

condition and 136 ms in the multi colour condition. 
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200~--------------------------~ 

Colour first trials 150 
75% threshold 
for discrimination 
of emergent 
perception 
(ms) 

100 

1 2 3 4 5 6 7 8 9 10 aye 

Observer 

--0-- Multi-orientation condition 

~ Multi-oolour condition 

Figure 9.75% threshold discrimination of the emergent perception for 

colour first trials for 1 0 participants in the multi-orientation and multi- . 

colour conditions. 

F or orientation first trials participants required 73 ms to discriminate the 

emergent perception in the multi-orientation condition and 85 ms in the multi 

colour condition (see Figure 10.). 
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Orientation first 
trials 
75% threshold 
for discrimination 
of the emergent 
perception 
(ms) 

150 -w----------------, 

100 

-0-- Multi-coloW' condition 

--<>-- Multi-orientation condition 

50 

1 2 3 4 5 6 7 8 9 10 aye 

Observer 

Figure 10.75% threshold discrimination of the emergent perception for 

orientation first trials for 10 participants in the multi-orientation and 10 

participants on the multi-colour condition. 

However, an ANOV A revealed no significant interaction between the 

experimental conditions F(I, 18) = 1.479,p = 0.23. 

Discussion 

We found no significant interaction between experimental conditions. 

From the data there does seem to be a general trend for an increased perceptual 

lag in colour first trials in the multi colour condition. However, there is clearly 

no such trend for orientation first trials. In retrospect it seems plausible that on 

orientation first trials, apparent motion may have arisen from changes in the 
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value of orientation between stimuli which participants could have used to 

complete the task. We attempted to overcome this confound in Experiment 4 by 

replacing orientation with spatial frequency. Firstly, in Experiment 3, we 

decided to employ the above design in a within participants design to control for 

inter-participant variability. 
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Experiment 3 

Investigating the effect of task requirements on the temporal integration of 

colour and orientation in a within participants design. 

In Experiment 3 we replicated Experiment 2 in a within participants design in an 

attempt to control the variability between participants. 

Methods. 

Participants. 4 University of Glasgow students (1 male and 3 female 

under 35 years of age) with normal or corrected to normal vision were paid to 

participate in the experiment. All participants were tested for colour blindness 

using the standard Ishihara tests for colour-blindness. 

Procedure. 

The experiment ran on a Macintosh G4 using the Psychophysics and 

Pyramid Toolbox for Matlab (Brainard, 1997; Simoncelli, 1997; Pelli, 1997). 

This experimen~ differed from Experiment 2 only in that the same 

participants were tested in both the multi orientation and the multi colour 

conditions. Half of the participants were tested in the multi colour condition 

first and the remaining participants were tested in the multi orientation condition 

first. Therefore, there were 2048 trials in total (1024 multi orientation and "1024 

multi colour trials). 

Results 

For each participant, we fitted a cumulative Gaussian curve to the temporal 

asynchrony data to determine the 75% threshold detection of the emergent 

perceptions separately for colour and orientation first trials. We then averaged 
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the critical lags derived across participants. For orientation first trials (see 

Figure 11) participants required 36 ms to discriminate the emergent perception 

in the multi-orientation condition and 35 ms in the multi colour condition. 

Clearly, there was no increase in the time required to integrate a new colour 

value with an existing orientation value between experimental conditions. 

75% threshold 
discrimination 
of emergent 
perception (ms) 

60,-------------------------------------------------~ 

50 

40 

30 

20~-----r-----,--------r_----~----~----~ 

2 3 4 aye 

Observer 

-0-- Orientation, multi-colour 

--<>-- Orientation, multi-orientation 

Figure 11. 75% threshold discrimination of the emergent perception for 

Orientation first trials for 4 participants tested in both the multi-orientation 

and multi-colour conditions. There was no modulation of orientation 

between conditions. 

For colour first trials (see Figure 12) participants required 51 ms to discriminate 

the emergent perception in the multi-orientation condition and 52 ms in the multi 
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colour condition. Again, there was clearly no increase in the time required to 

bind a new orientation value with an existing colour value between experimental 

conditions. 

75% threshold 
discrimination 

of emergent perception 
(ms) 

9O-r---------------, 
80 

70 

60 ---0- Colour, multi colour 

50 ~ Colour, multi-orientation 

40 

30 

2 3 4 aye 

Observer 

Figure 12. 75% threshold discrimination of the emergent perception for . 

Colour first trials for 4 participants tested in both the multi-orientation and 

multi-colour conditions. There was no modulation of colour between 

conditions. 

Discussion 

Clearly the integration of colour and orientation was not modulated by the 

experimental task. In retrospect because participants were sensitised to one 

dimension (e.g. colour) and then a second dimension (e.g. orientation) the null 

effect may have arisen from cross over effects induced by testing the same 
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participants in both tasks. Specifically an observer that initially learned to use 

colour to perform the task (multi orientation condition) may continued to rely 

more on colour when subsequently tested in the condition (multi colour 

condition) where we would expect them to rely more on orientation. 
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Experiment 4 

In Experiment 4 we examined whether the perceptual asynchrony in binding two 

sources of information can be modulated by task requirements. In Experiment 2 

we found that the integration of a new colour value with an existing orientation 

val ue was significantly modulated by the task at hand. It seems likely that the 

attentional demands of the task sped up the perceptual processing of colour 

when this attribute was more reliable for the task. Therefore, feature integration 

was accelerated in this condition. However, no such effect was found for 

orientation first trials. In retrospect, an experimental confound may account for 

this null effect for orientation processing. Apparent motion may have arisen 

from changes in the value of orientation across stimuli which participants could 

have used to complete the task. 

In Experiment 4 we set out to override this methodological problem. Here, 

we replicated Experiment 2 however the multi-orientation condition was 

replaced by a multi-spatial frequency condition. 

Method 

Participants. 16 University of Glasgow students (5 male and 11 female under 

35 years of age) with normal or corrected to normal vision were paid to 

participate in the experiment. All participants were tested for colour blindness 

using the Ishihara tests for coloured blindness (1978). 

Stimuli. Stimuli spanned 4 x 4 degrees of visual angle. Once more stimuli 

were generated from 2D white noise using a rectangular filter (i.e. without 

attentuation). 7 possible temporal asynchronies ranging from 13 ms to 93 ms by 
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equal increments-the 8th asynchrony was 200 ms were investigated using the 

paradigm developed in Experiment 1. 

To investigate the effect of task requirements on perceptual asynchrony we 

employed this paradigm in two conditions, one in which we decreased the 

discriminability of spatial frequency (multi-spatial frequency condition) and one 

in which we decreased the discriminability of colour (multi-colour condition). 

Six of the eight psychologically equi-distant colours employed in 

Experiment 2 were used in the current experiment. In addition, using QUEST 

six psychologically equi-distant spatial frequencies were calibrated for a 

threshold performance of75%. Figures 12 and 13. display the crn chromaticity 

coordinates of the six colours and the low-pass cut-off for each of the six 

orientations employed respectively. The six colours and six spatial frequencies 

were equally divided into red or green and fat or thin attribute values 

respectively. 
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Green Colour Red Colour 

8,0.344,0.498 8,0.507,0350 

8,0.366,0.478 8,0.472,0382 

8,0.406,0.442 8, O. 439, 0.412 

Figure 13. CIE chromaticity coordinates (L.LY.) of the psychologically 

equi-distant colours (j.n.d. = 75%). 

Figure 13. illustrates that in the multi-colour condition the six colours 

were paired with spatial frequency 2 (cut-offat 7.5 cycles per degree) and spatial 

frequency 5 (cut-offat 13.75 cycles per degree). 

- 79-



Chapter 2, Experiments 1, 2, 3 and 4 

-Fat" Spatial Frequency -rhin- Spatial Frequency 

7 cycles/degree 17 cycles/degree 

7.S cycles/degree 13.75 cycles/degree 

9.25 cycles/degree 12.25 cycles/degree 

Figure 14. Low pass cut-off for each of the psychologically equi-distant 

spatial frequencies (j.n.d. 75%). 

Figure 14. illustrates that in the multi-spatial frequency condition the six 

spatial frequencies were paired with colour 2 (green, cm chromaticity 

coordinates 8, 0.366, 0.478) and colour 5 (red, cm chromaticity coordinates 8, 

0.472,0.382). This gave six red and six green stimuli of decreasing 

discriminability (with respect to spatial frequency) in the multi-spatial frequency 

condition and six fat and six thin stimuli of decreasing discriminability (with 

respect to colour) in the multi-colour condition. Thus as in previous the 

experiments four categorizations were possible: Jat-green, thin-green,Jat-red 

and thin-red. Figure 15 illustrates that the stimuli with extreme colours (pair 2, 

colours 2 and 5) in the multi-colour condition were physically identical to the 
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stimuli with the extreme spatial frequencies (pair 2,spatial frequency 2 and 5) in 

the multi-spatial frequency condition. Therefore, once more for the purpose of 

our data analysis these trials could be compared directly. 

Figure 15 This figure depicts the stimuli employed in Pair 2 in both the multi 

colour and multi spatial frequency conditions. This pair was identical across 

conditions. 
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For the multi-colour condition the 12 stimuli of decreasing 

discriminability (with respect to colour) were split into three pairs of colours. In 

the multi-spatial frequency condition the 12 stimuli of decreasing 

discriminability (with respect to spatial frequency) were split into three pairs of 

spatial frequency. We paired colour 1 with 6, 2 with 5, and 3 with 4 in the 

multi-colour condition. We paired spatial frequency 1 with 6, 2 with 5, and 3 

with 4 in the multi-spatial frequency condition. Note that the stimuli with 

central colours, (pair 2, colours 2 and 5) in the multi-colour condition were 

physically identical to the stimuli with the central spatial frequency (pair 2, 

orientations 2 and 5) in the multi-spatial frequency condition. Thus once more 

for the purpose of our data analysis data derived from these trials could be 

directly compared. There were 20 stimuli in total. F or each condition each 

colour-spatial frequency pair was employed, and randomly presented, in the 

paradigm described in Experiment 1. 

Procedure. The experiment ran on a Macintosh G4 using the Psychophysics and 

Pyramid Toolbox for Matlab (Brainard, 1997; Simoncelli, 1997; Pelli, 1997) 

Participants were randomly assigned to one of two conditions (multi­

colour or multi-spatial frequency). The multi-colour participants were shown 

the 12 stimuli comprising the 3 multi-colour pairs. The multi-spatial frequency 

participants were shown the 12 stimuli comprising the 3 multi-spatial frequency 

pairs. In a 2-AFC tas~ participants had to indicate whether either a thin-red or a 

Jat-green or either a thin-green or aJat-red appeared. 
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Participants were tested in two blocks, the trials in which the target 

stimuli were thin-red andfat-green (half) were combined. Likewise the trials in 

which the target stimuli were thin-green andfat-red (half) were combined. 

There were 32 repetitions for each of the eight temporal lags (32*8=256). This 

was replicated for each colour-spatial frequency pair (3*256=768). Colour First 

and Form First trials were interleaved giving 1536 trials in total. Participants 

were instructed to guess if they were unsure. A headrest maintained viewing 

distance at one metre. 

Results 

For 16 participants, we fitted a cumulative Gaussian curve to the temporal 

asynchrony data to determine the 75% threshold detection of the emergent 

perceptions separately for colour and spatial frequency first trials. We then 

averaged the critical lags derived across participants for both the multi-colour 

and the multi-spatial frequency conditions. 

Figure 16. illustrates that for colour first trials participants required 49 ms to 

discriminate the emergent perception in the multi-spatial frequency condition 

and 76 ms in the multi colour condition. 
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75% threshold 
discrimination 
of emergent 

perception (ms) 

l25,---------------------------~ 

100 

75 

50 

25 

2 3 4 5 6 7 8 aye 

Observer 

--0- Colom, multi-spatial frequency 
condition 

--<>-- CoIOlU', multi-colour condition 

Figure 16.750/0 threshold discrimination of the emergent perception for 

colour first trials for 16 participants in the multi-spatial frequency and the 

multi-colour conditions. 

Figure 17. illustrates that for spatial frequency first trials participants required 50 

ms to discriminate the emergent perception in the multi-spatial frequency 

condition and 51 ms in the multi colour condition. 
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75% threshold 
discrimination 
of emergent 

perception (ms) 

120 -,----------------, 

100 

80 

60 

40 

2 3 4 5 6 7 8 aye 

Observer 

--0-- Spatial Frequency, multi-spatial 
frequency condition 

~ Spatial frequency, 
multi-colour condition 

Figure 17. 75% threshold discrimination of the emergent perception for 

spatial frequency first trials for 16 participants in the multi-spatial 

frequency and the multi-colour conditions. 

Once more an ANOV A did not reveal a significant interaction between the 

two experimental conditions, F(l, 14) = 2.4,p = 0.14. 

Discussion 

Once more we found no significant interaction between experimental 

conditions. Again, there does seem to be a general trend for an increased 

perceptuallag in colour first trials in the multi colour condition. However, there 

is clearly no such trend for spatial frequency first trials. Therefore, it seems 
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plausible that a for spatial frequency first trials there may be a residual confound 

of apparent motion. 
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General Discussion 

In Experiment 1 we developed a novel paradigm to examine the temporal 

dynamics of feature integration. This technique was employed to examine the 

perceptual asynchrony between colour and orientation. In contrast with 

Moutoussis and Zeki's (1997a; 1997b) study of perceptual asynchrony we found 

no asynchrony between these attributes. We propose that a flexible account of 

attribute processing and consequently perceptual asynchrony may explain the 

discrepancy between our findings and these results. 

In Experiment 2 we developed this paradigm to examine the effect of 

task requirements on feature integration. However, in this experiment we found 

no significant interaction between experimental conditions. There did seem to 

be a general trend for increased temporallag in colour first trials between 

conditions. However, we found no such trend for orientation (in Experiment 2) 

or spatial frequency (in Experiment 4). In retrospect, this null effect may have. 

been produced by an experimental confound. Namely, on a given trial 

presenting a sequence of changing orientations or spatial frequencies may have 

given rise to apparent motion. 

In Experiment 3 no effect of the task on the integration of colour and 

orientation was found. It seems likely that testing the same participants in both 

conditions produced cross over effects. 
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Chapter 3 

Investigating the influence of attention on feature integration. 

In Chapter 2 we examined how the requirements of the task modulate the 

perceptual asynchrony between two attributes to be bound into a unitary 

perception. Presumably any such modulation would arise because observers 

selectively attend to the attribute that is more infonnative for the task at hand. In 

Chapter 3 we examined the influence of attention on perceptual asynchrony 

directly. 

Several lines of evidence converge to suggest that attention plays an 

important role in the integration of functionally processed infonnation 

(Treisman and Gelade, 1980; Reynolds and Desimone, 1999; Yershurun and 

Carrasco, 1998). However, exactly how attention modulates the temporal 

integration of infonnation remains unclear. Studies suggest that attention speeds 

up the processing of attended infonnation (Posner et al,1980; Stelmach and 

Herdman, 1991; Carrasco and McElree, 2001). Presumably attention can 

operate on each processing dimension independently. Therefore, attention could 

potentially modulate perceptual asynchrony by differentially speeding up the 

processing of each dimension. In other words, attention may enhance temporal 

integration by decreasing the perceptual asynchrony between attributes. 

Alternatively, attention may speed up the perceptual processing of each attribute 

by an equal amount thereby having no effect on perceptual asynchrony .. 

Using the paradigm developed in Chapter 2, in Chapter 3 we examined 

how attention modulates the integration of color and fonn into a unitary 
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perception in an attempt to tease apart these possible influences of attention on 

feature integration. In Experiment 5 we examined the influence of attention on 6 

stimuli arranged in a line. In Experiment 6 we extended this study to stimuli 

arranged radiaIly across the visual field. 

Results suggest that attending to the location of an object decreases the 

time that observers require to integrate its defining attributes. In addition, we 

found a perceptual advantage for form over colour in both attended and 

unattended conditions. Consequently, the perceptual asynchrony between these 

attributes was not significantly modulated by attention. We conclude that 

attending to the location of an object enhances the integration of its defining 

attributes by speeding up the perceptual processing of each attribute. Moreover, 

the perceptual asynchrony between attributes remains constant across attended 

and unattended conditions because attention seems to offer each processing 

dimension an equal processing advantage. 
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Experiment 5 

Investigating the influence of attention on the integration of colour and 

form. 

To examine the possible influence of attention on feature integration we 

employed the methodology developed in Chapter 2 for 6 stimuli arranged in a 

line. Here, we were interested in how attention modulates the integration of 

colour and form. 

Using the paradigm developed in Chapter 2 we derived the temporal 

asynchrony observers required to discriminate the emergent perception 

independently for each stimulus location. Two variables were manipulated. The 

first variable was the leading attribute, (colour vs form). The second variable 

was spatial attention (left and right of the line of stimuli). Consequently, we 

could compute the influence of attention on each attribute independently. 

Moreover, we can compute any perceptual advantage that attention offers to . 

either dimension by comparing these conditions. 

Methods 

Participants Twenty observers (under 30 years of age), with normal or 

corrected to normal vision participated in the experiment. All observers were 

tested for colour blindness using the standard Ishihara tests for color blindness. 

Materials. The experiment ran on a Macintosh G4 using the Psychophysics 

and Pyramid Toolbox for Matlab (Brainard, 1997; Simoncelli, 1997; Pelli, 

1997). 
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In Experiment 5 we examined how spatial attention modulates the integration 

of form and oolor, using the paradigm we developed in Chapter 2 (illustrated in 

Figure 18). This paradigm was employed independently in each of the six shape 

positions. 

Synchronous 

Color 
First 

Form 
First 

A B 

DO 

DO 
11 lie 

DO lIee 

Figure 18. The Emergence of a Perception from Binding. 
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A depicts the two attributes to be bound (color, alternating between green 

and red and form, alternating between square and circle). CIE chromaticity 

coordinates: green [L= 8, x = 0.338, Y = 0.504] and red [L = 8, x = 0.540, y = 

0.320]. 

B The physical sequence, depicts the stimulus sequence presented to 

observers. When color and form alternate in synchrony the stimulus 

sequence is green-square, red-circle. When a lag is introduced between the 

attributes a new perception emerges (green-circle or red-square). 

C The perceptual sequence, illustrates that we can manipulate the physical 

asynchrony (n) between the attributes and determine the criticallag (c), 

required for the emergent perception. This criticallag equals the time 

required to bind the new color (or form) to the old form (or color) 

providing a means to quantify the time scale of binding. 

In Experiment 5 two variables were manipulated. The first variable is the 

leading dimension (color vs. form). A comparison between these conditions 

should reveal whether attention modulates the perceptual asynchrony between 

these dimensions. An additional variable is spatial attention (left and right of the 

line of stimuli). We expected a significant reduction in the time required to 

integrate color and form into a unitary perception in the attended condition. In 

addition, we were interested in the effect of attention on the perceptual 

asynchrony between these attributes. 
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The test stimuli (spanning 7.4 x.69 degrees of visual angle) comprised 6 equi­

distant shapes (spanning 0.69 x 0.69 degrees of visual angle) arranged in a line. 

Each shape comprised two attributes (here, color and form) with two possible 

values (red or green and square or circle) to form the four basic red-square, red­

circle, green-square and green-circle stimuli (see Figure 19). 
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1000ms 

177ms 

time (ms) 

67ms 

83ms 

13ms 

327ms 

Figure 19. A sample trial for which second shape was asynchronous. This 

element is removed for a randomly selected lag, n (here, 13 ms) in the 

middle of each trial (lasting a total of 667 ms). A cue (here, to the left) is 

presented for 67 ms, 150 ms prior to asynchrony onset. 
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To investigate temporal integration, the shapes alternated synchronously 

between e.g. green-square and red-circle over a 667 ms interval in five of the 

positions. For one randomly selected position we changed the temporal 

asynchrony n of the color or form presented in this location. We randomly 

sampled amongst 7 possible temporal asynchronies ranging from 13 ms to 93 ms 

by equal increments. We introduced an 8th asynchrony of200 ms to ensure 

discrimination of the emergent perception on at least one trial. To illustrate, the 

sequence of red-circle, green-circle, green-square, appeared when color 

preceded form (Color First, see Fig 16). The sequence of red -circle, red-square, 

green-square appeared when form preceded color (Form First). The sequence 

of red-square, green-square, green-circle, (color preceding form) or red-square, 

red~ircle, green-circle (form preceding color) were included to counterbalance 

the main stimuli. Likewise the order of both of these conditions was reversed ~ 

control for stimulus driven effects. 

To manipulate attention, each trial started with presentation of a central 

fixation cross presented for 1000 ms. This was followed by a 67ms non-

predictive attentional cue to the left (above position 2) or to the right (above 

position 5), presented 150 ms prior the onset of the asynchrony, to prevent a 

saccadic eye movement to the cues. The cue measured 5 pixels in radius (the 

monitor resolution was 1280 by 1024 pixels) and 1.83 candelas per square 

metre. Observers were tested in two blocks, the trials in which the target stimuli 

s 1bis cue to stimulus latency is consistent with previous studies of visual attention (e.g. 
Yeshurun and Carrasco, 1998; 1999; Carrasco and McElree, 200 1) 
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were green-square and red-circle (half) were combined. Likewise the trials in 

which the target stimuli were red-square and green-circle (half) were combined. 

Again, this gave a 2-AFC task in which observers either had to indicate either 

whether a red-square or a green-circle appeared or they had to indicate whether 

a green-square or a red-circle appeared. For both colour and form first trials, 

there were 4 repetitions for each of the eight temporal lags (2*4*8=64). This 

was replicated for each position (6*128=384) and for each cue type 

(384*2=768) giving 768 trials in total. Color First and Form First trials were 

interleaved. Observers were instructed to guess if they were unsure and to 

attend to the cues without eye movement A headrest maintained viewing 

distance at one meter. 

Results 

F or each observer, and for each stimulus position, we fitted a cumulative 

Gaussian curve to the temporal asynchrony data to determine the 75% 

discrimination threshold of the emergent perceptions (the criticallag), separately 

for left and right conditions ofattentional cueing (see Figure 20). We then 

averaged the critical lags derived for each observer and position, in the left and 

right cueing conditions. For our analysis we collapsed and compared trials in 

which the cue appeared at the same side as the target stimuli (cue concurrent) 

with trials in which the cue appeared at the opposite side to the target (cue non­

concurrent). A t-test6 comparing the difference between cue concurrent with 

element position (51 ms) vs non-concurrent with element position (62 ms) 

reveals a significant enhancement of cueing t(119) = 3.59, P < .001. 
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Figure 20. Attention modulates the criticallag required for emergent 

perception. This figure depicts the criticallag required for the emergent 

perception across 20 observers for each position (left, position 1,2 and 3; 

right positions 4,5 and 6), by cueing condition (left and right). 

To examine the influence of attention on color and form in more detail we 

analysed the data from color leading and form leading trials independently. 

Splitting the data into colour and form trials for independent analysis obviously 

reduced the number of trials by half This did not provide enough trials to fit a 

6 All t-tests condicted in this thesis were I-tailed. 
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cummulative Gaussian curve to. Therefore, we had to collapse the data. We did 

this by collapsing the cue concurrent with element position trials and the cue 

non-concurrent with element position trials. Data from position 1 and 6, 2 and 

3, 4 and 5 was collapsed. This way we could maintain any effect of spatial 

eccentricity. For each observer, and each collapsed position we fitted a 

cumulative Gaussian curve to the form first and to the color first data 

independently. We then averaged the critical lags derived for each observer and 

position in the cued and uncued conditions. A t-test comparing the difference 

between cue concurrent (56 ms) vs non-concurrent (74 ms) with element 

position for color first trials reveals a significant enhancement of cueing t(59) = 

2.218,p < .01. Likewise there was a significant difference between cue 

concurrent (44 ms) vs non-concurrent (55 ms) with element position for form 

first trials t(59) = 1.924,p =.03. In addition, we found a significant perceptual 

advantage for form first trials in both attended (12 ms) 1(59) = 3.242,p <.001 . 

and unattended (19 ms) conditions t(59) = 2.133,p =0.02. This asynchrony was 

not significantly reduced by attention. 

From this data it seems that attention enhances the integration of color and 

form. However, it does not significantly reduce the perceptual asynchrony 

between them. 

Discussion 

We set out to disentangle the influence of attention on the integration of 

two information sources into a unitary perception. These results demonstrate 

that attention enhances the integration of two information sources into a unitary 
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perception. Attention decreases the time that observers require to bind for 

example, a color attribute (e.g. red) to a shape attribute (e.g. square) to produce 

the unitary perception of a red square. 

From our results it seems that attention does not enhance the integration 

of attribute information by decreasing the perceptual asynchrony between the 

attributes comprising the stimuli. Observers were faster at perceiving an 

emergent perception that resulted from a change in form (form first trials) in 

both attended and unattended conditions. Thus attention must enhance feature 

integration either by speeding up the perceptual processing time of each attribute 

by an equal magnitude or by speeding up an additional "binding stage". 

Evidence converges to support the former theory (Carrasco and McElree, 2001; 

Hiosaka et aI, 1992; Stelmach and Herdman, 1991; Posner et aI, 1980). In 

particular, Carrasco and McElree (2001) demonstrated that attention accelerates 

processing time and improves accuracy for conjunction targets using the spee<l­

accuracy trade-off procedure (SAT). 

We found a significant perceptual advantage ofform with respect to 

color in both attended and unattended conditions. As discussed earlier, 

Moutoussis and Zeki (1997 a; 1997b) reported a 50 ms perceptual advantage of 

color with respect to form. In addition, Viviani and Aymoz (2001) reported no 

such perceptual synchrony between these attributes. We propose that the 

discrepancy between these findings and our results may reflect the fact that the 

task, more specifically, the attentional requirements of a task, can modulate the 

perceptual processing of stimulus dimensions. Thus, the perceptual processing 
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of dimensions appears to be flexible, rather than fixed. In particular, it seems 

likely that perceptual asynchrony between dimensions will depend on the 

relative salience of these dimensions. 

Nishida and Johnston (2002) provide an alternative to the processing 

delay account of perceptual asynchrony. These authors contend that temporal 

coding is time locked to events. Perception of temporal order is achieved by 

comparing temporal markers (transitions, first order changes requiring 

measurement at two points in time versus turning points second order, requiring 

measurements at three points in time). At high alteration rates (250ms) 

asynchronies arise because transitions (of e.g. color) are more salient than 

turning points (of e.g. motion). However, we report perceptual asynchrony 

between two temporal markers of the same type (as did Moutoussis and Zeki, 

1997) (transitions). Thus to account for these findings the temporal marker 

hypothesis must explain temporal asynchrony between temporal markers of th~ 

same type. 

The idea that attention enhances binding is not new (Reynolds & 

Desimone, 1999; Treisman & Gelade, 1980) indeed this proposal is the main 

contention ofTreisman's Feature Integration Theory. However, our studies 

provide a direct measure to quantify modulation of perceptual processing. This 

modulation could explain the intervention of attentional mechanisms in binding 

the separate attributes of an object into unified perceptions. 
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Experiment 6 

Investigating the influence of attention on the integration of colour and form 

across the visual field. 

Previous literature suggests that attention does not operate symmetrically across 

the visual field. In particular, a recent study mapped visual attention using a 

change detection paradigm (fse, in preparation). In this study, change 

blindness, the failure of the visual system to detect changes in a scene that occur 

with blank interferences was exploited to map attention. Results from this study 

suggest that attention is biased to the horizontal axis. Therefore, we decided to 

examine the influence of attention across the visual field. In particular, in the 

current experiment we replicated Experiment 5 for stimuli arranged radially 

across the visual field. 

Method 

Participants Two observers (under 30 years of age), with normal or correct~d 

to normal vision participated in the experiment. Both observers were tested for 

colour blindness using the standard Ishihara tests for color blindness. 

Materials. The experiment ran on a Macintosh. G4 using the Psychophysics 

and Pyramid Toolbox for Matlab and the Matlab Pyramid Toolbox (Brainard, 

1997; Simoncelli, 1997; Pelli, 1997). 
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Figure 21. A sample trial for which second shape was asynchronous. This 

element is removed for a randomly selected lag, n (here, 13 ms) in the 

middle of each trial (lasting a total of 667 ms). A cue (here, to the left) is 

presented for 67 ms, 150 ms prior to asynchrony onset. 

Figure 21 illustrates that in Experiment 6 we extended Experiment 5 

radially across the visual field. The same experimental design was employed for 

24 positions and 4 types of cue (north, south, east and west). Specifically, the 

cue was located above the second element of the north, south, east and west 
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radii. The cue measured 5 pixels in radius (the monitor resolution was 1280 by 

1024 pixels) and 1.83 candelas per square metre. Stimuli spanned 5.3 by 5.3 

degrees of visual angle. Again, for both colour and form first trials there were 4 

repetitions for each of the eight temporal lags (2*4*8=64). This was replicated 

for each position (24*64=1536) and for each cue type (3072*4=6144) giving 

6144 trials in total. 

Results 

For both observers, and for each stimulus position, we fitted a cumulative 

Gaussian curve to the temporal asynchrony data to determine the 75% 

discrimination threshold of the emergent perceptions (the criticallag), separately 

for each of the four conditions ofattentional cueing. For our analysis we 

compared trials in which the cue appeared at the same direction as the target 

stimuli (cue consistent) with trials in which the cue appeared at the opposite side 

to the target (cue non-consistent) for north versus south and east versus west . 

cueing conditions. 

Figure 22. illustrates that for one observer cueing reduced the time 

required to perceive the emergent perception. A t-test comparing the difference 

between cue concurrent with element position vs non-concurrent reveals a 

significant enhancement of cueing t(ll) = 3.24,p = 0.008. 
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75 o/c. threshold 
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emergent perception 
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k::::J 
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cue opposite 

Figure 22. Observer 1, this figure depicts the criticallag required for the 

elnergent perception averaged across 9 positions when cueing is concurrent 

versus opposite emergent perception position. Clearly, cueing enhanced 

feature integration for this observer. 

However, Figure 23 illustrates that for a second observer there was not 

significant enhancenlent of cueing tell) = 0.57, P = 0.58. 
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300 ~------------------------------~ 

75 % threshold 
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emergent perception 
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[J cue concurrent 

[Z] Clle opposite 

Figure 23. Observer 2, this figure depicts the criticallag required for the 

emergent perception averaged across 9 positions when cueing is concurrent 

versus opposite emergent perception position. However, cueing did not 

enhance feature integration for this observer. 

Discussion 

For observer 1 we found that attention enhances the integration of forn1 

and colour into a unitary perception. Consistent with Experilnent 5 attention 

decreases the tin1e required to bind a colour attribute (e.g. red) to a shape 

attribute (e.g. square) to produce the unitary perception of a red-square. 
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However, this effect was not found in Observer 2's data. It seems possible 

that the large number of trials may account for the results from this experiment. 

For each observer there were 6144 trials in total. Because the cue was non­

predictive Observer 2 may have learned not to use the cue throughout the 

experiment. 

In addition, Observer 1 was not naive and therefore may have either been 

more motivated to perform the task or this knowledge could have otherwise have 

influenced this observers response. 

The thresholds obtained in this experiment were approximately three times 

higher than in Experiment 5. In the current experiments the target was likely to 

occur at 1 of 24 possible locations where as in Experiment 5 the target was 

likely to occur at one of 6 possible location. It seems likely then that this 

fourfold increase in the possible location of the target caused the increase in 

discrimination threshold. 
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General Discussion 

In this Chapter we set out to disentangle the influence of attention on the 

integration of two information sources into a unitary perception. The results 

from Experiment 1 demonstrated that attention enhances the integration of two 

information sources into a unitary perception for stimuli arranged in a line. This 

result was replicated across the visual field for an observer in Experiment 2. 

However, it seems possible that the large number of trials prevented this result 

from being replicated for a second observer in this experiment. 

The results from Experiment 1 suggest that attention does not enhance 

the integration of attribute information by decreasing the perceptual asynchrony 

between the attributes comprising the stimuli. Observers were faster at 

perceiving an emergent perception that resulted from a change in form (form 

first trials) in both attended and unattended conditions. From the attentional 

literature (Carrasco and McElree, 2001; Hiosaka et aI, 1992; Stelmach and 

Herdman, 1991; Posner et aI, 1980) it seems likely that attention enhances 

feature integration by speeding up the perceptual processing time of each 

attribute by an equal magnitude 

In addition to the findings from Chapter 2 the current experiments add 

weight to our proposal that perceptual processing of dimensions appears to be 

flexible, rather than fixed. Consequently, the perceptual asynchrony between 

feature attributes should also be flexible. 
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Chapter 4 

Investigating the influence of attention on the integration of information 

across the visual field. 

We have established that attention speeds up the processing of attended 

information. To recap studies of reaction time (posner, 1980), temporal order 

(Stelmach and Herdman, 1991) and using the speed-accuracy trade-off 

procedure (Carrasco and McElree, 2001) have revealed a temporal processing 

advantage for attended information. In particular, in Chapter 3 we examined the 

influence of attention on the perceptual asynchrony between two information 

sources (e.g. colour and form). However, in Chapter 1 we also noted that the 

selective acceleration of attended information presents a problem of temporal 

integration across the visual field. Specifically, attention to a portion of the 

visual field speeds up the processing of information within its focus resulting in 

temporal asynchrony between attended and unattended information. Because.it 

is the nature of our visual experience it is often assumed that vision reduces such 

asynchronies to construct a temporally veridical perception of the input. 

However, perhaps our perceptions mirror the temporal asynchronies that result 

from the allocation of attention. It is this possibility that is considered here. 

-108 -



Chapter 4, Experiment 7 and 8. 

Experiment 7 

Investigating the influence of attention on the integration of information into a 

line stimulus. 

To investigate the influence of attention on the integration of information 

across the visual field we desynchronised in time the segments forming a line. 

We then cued either the left or right of the line and examined the gradient of 

temporal asynchrony tolerated by the visual system around the focus of 

attention. We propose that if the attentional acceleration of visual information 

processing is mirrored in perception then gradient of asynchrony for left versus 

right elements of the line should depend on where attention is directed. 

Conversely, if the asynchronous nature of visual processing is compensated for 

then the elements comprising the line should be uniformly integrated regardless 

of attentional focus. Results suggest that attention does modulate the integration 

of information comprising the line. As a consequence, the observers' perception 

depends on where their attention is focused. 

Method 

Participants. 12 University of Glasgow students (under 30 years of age) 

with normal or corrected to normal vision were paid to participate in the 

experiment. 

Materials. The experiment ran on a Macintosh G4 using the 

Psychophysics and Pyramid Toolbox for MatIab and the MatIab Pyramid 

Toolbox (Brainard, 1997; SimonceIli, 1997; PeIli, 1997). 
. . . 

Four juxtaposed elements making a line were randomly desynchronised 

when attention was directed to a cue (to the left, or right above the line). 
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Observers had to indicate whether they perceived a continuous, or a 

discontinuous line (see Figure 24). To investigate the gradient of temporal 

asynchrony tolerated around the focus of attention we teSted 8 temporal 

asynchronies at four spatial locations (one per element of a line). The critical 

variable is the cued location (left vs. right for the line). Specifically, the cue was 

located above the line either one or three quarters along it. Again the cue 

measures 5 pixels in radius (the monitor resolution was 1280 by 1024 pixels) 

and 1.83 candelas per square metre. 

Specifically, we predicted that if the visual system accurately integrates 

information across the visual field then observers should require the same 

temporal asynchrony, for any given element, to perceive discontinuity regardless 

of the focus of attention. However, if the visual system does not compensate for 

attentional processing advantages then attention should modulate the asynchrony 

required for perception of discontinuity. 

Stimuli. On any given trial, a line was constructed from 3 synchronous 

elements presented simultaneously throughout the trial, and one asynchronous 

element. This element comprised one quarter of the line selected at random. 

The temporallag was randomly sampled from 7 temporal lags ranging from 27 

ms to 187 ms by equal increments of27 ms--the 8th lag was 400 ms (see Figure 

24 for two examples of trials with an asynchronous second element of the line). 

The randomly selected element was removed for the randomly selected lag, (in 

Figure 24, 27ms) in the middle of each trial (lasting a total of 667 ms). The 

stimuli spanned 5.45 x 5.43 degrees of visual angle. They were generated from 
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2D white noise and were low-passed (cut-off of at 2 cycles per degree). They 

were composed ofa centred greyscale horizontal line (subtending 1.36 x .57 

degrees of visual angle). The stimulus measured 7.04 candelas per square metre. 

+ 
lOOOms 

170ms 

time (ms) 

67ms 

83ms 

26ms 

320ms 
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Figure 24. This figure illustrates a sample trial from Experiment 7. Here, 

the second element is asynchronous, this element is removed for a randomly 

selected lag, (here, 27ms) in the middle of each trial (lasting a total of667 

ms). A cue (here, to the left) is presented for 67 ms, 150 ms prior to 

asynchrony onset. 

Procedure. Each trial started with the presentation of a fixation cross for 

1000 ms. To examine the modulation of attention on perception of continuity 

we presented a non-predictive cue above the line, to the left (between elements 1 

and 2) or to the right (between elements 3 and 4). The cue was presented for 67 

ms, at most 150 InS prior to the onset of the asynchronous element, to prevent a 

saccadic eye movement to the cue. In a 2-AFC task, observers had to indicate 

whether each presented line was continuous or discontinuous. 

As there were a total of 4 separate line segments, 8 temporal lags, and. 

two conditions of attention (left vs. right), the experiment comprised a total of 

128 trials (64 basic trials each repeated twice). A headrest maintained viewing 

distance at one meter. Observers were instructed to guess if they were unsure, 

and to attend to the cues without making eye movements. 

Results 

F or each observer, and for each element of the line, we fitted a 

cumulative Gaussian curve to the lag data to detennine the critical temporallag 

for 75% threshold discrimination of discontinuity, separately for the left and 

right conditions of attentional cueing. 
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We then averaged the temporallag across observers, for each line 

element, in the left and right cueing conditions. Figure 25. illustrates that to 

perceive a discontinuous line, observers cued to the left required, on average, 

temporal asynchronies of 50 ms, 29 ms, 45 ms, and 92 ms for elements one to 

four, respectively. When cued to the right, the temporal asynchronies required 

by observers were 72 ms, 54 ms, 30 ms, and 65 ms, for elements one to four, 

respectively. A t-test on the difference between cue concurrent (e.g. elements 1 

and 2 in the cue left condition and elements 3 and 4 in the cue right condition) 

with element position vs non-concurrent (e.g. elements 1 and 2 in the cue right 

condition and elements 3 and 4 in the cue left condition) with element position 

reveals a ~ignificant enhancement of cueing t( 47) = 3.17, P < .003. 
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Figure 25. The mean temporallag across 12 observers, for each line element 

(left, position 1 and 2; right positions 4 and 5), for right and left cueing 

conditions of Experiment 7 is depicted. 

There were only 2 repetitions of each type of trial for each observer 

therefore to ensure that the curve fitting was reliable we also analysed the data 

by pooling the data across the observers. F or each element of the line we fitted a 

cumulative Gaussian curve to this pooled lag data to determine the critical 

temporallag for 75% threshold discrimination of discontinuity, separately for 

the left and right conditions of attentional cueing. Figure 26 illustrates that this 

analysis produces the same effect as the previous analysis. 
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Figure 26. The temporallag, for each line element (left, position 1 and 2; 

right positions 4 and 5), for right and left cueing conditions derived from 

pooled data across aD 12 observers. 

These results reveal that attention does modulate the integration of the 

elements of a line. The visual system integrates the elements of a line 

orthogonally depending on whether attention is directed to the left or to the right. 

Discussion 

These results suggest that the visual system does not compensate for 

attentional acceleration of information processing. Rather, they imply that 

perception mirrors the selective processing advantage offered by attention. 

Because there was less than 150 ms between the cue and asynchrony onset it is 
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unlikely that these results could have arisen because of an eye movement to the 

cued location. 

To verify that these findings are consistent across the visual field we 

extended this study to a two dimensional square stimulus. 
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Experiment 8 

Investigating the influence of attention on the integration of information into 

a square stimulus. 

Experiment 8 extended the design of Experiment 7 from a line to a square 

stimulus, using a similar methodology. Here, we randomly changed the physical 

asynchrony of the four corners of a square when attention was directed to a non­

predictive cue to one of the corners. 

Participants. 11 University of Glasgow students (under 30 years of age) 

with normal or corrected to normal vision were paid to participate in the 

experiment. 

Stimuli. This experiment differed from Experiment 7 in only the spatial 

dimension, because we manipulated the perceptual asynchrony of the four 

corners ofa square (see Figure 26). We presented non-predictive attentional 

cues at the top-left, top-right, bottom-left and bottom-right corners of the square. 

The cue measured 10 pixels in radius (the monitor resolution was 1280 by 1024 

pixels) and 1.83 candelas per square metre. 
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Figure 27. A sample trial from Experiment 8. Here, the top-right element 

of the square is asynchronous. The experimental sequence is identical to 

Experiment 7. However, in this experiment, it is the four corners of the 

square that are randomly desynchronised. 

Stimuli (subtending 5.43 x 5.43 degrees of visual angle) comprised low­

pass spatially filtered white noise (cut-off of at 2 cycles per degree) and a square 
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(subtending 3.7 x 3.7 degrees of visual angle) located in the centre of the image. 

The stimulus measured 7.53 candelas per square metre. Four types of 

asynchronous squares could be generated by puncturing one of the four corners 

with a white noise gap subtending .46 x .46 degrees of visual angle (see Figure 

27). 

Materials and Procedure. Materials and procedure were identical to 

those in Experiment 7. As there were a total of 4 separate corners, 8 temporal 

lags, and four conditions of attention, the experiment comprised a total of 512 

trials (128 basic trials each repeated four times). 

Results 

As with Experiment 7 we fitted a cumulative Gaussian curve to determine the 

temporallag for 75% threshold discrimination of discontinuity, separately for all 

four conditions of attentional cueing (top left, top right, bottom left and bottom 

right). For each asynchronous corner, we averaged the temporal lags, across 

observers, in two conditions: when the cue is consistent with the asynchronous 

corner (here the mean physical asynchrony observers required for discrimination 

of discontinuity was 45 ms, 40 ms ,48 ms, 32 ms for the top-left, top-right, 

bottom-left and bottom-right corners, respectively) and when the cue is 

diagonally opposite to the asynchronous corner (here the mean physical 

asynchrony observers required was 69 ms, 46 ms, 67 ms, 45 ms for the top-left, 

top-right, bottom-left and bottom-right corners, respectively). These findings are 

illustrated in Figure 28. A t-test comparing the difference between cue 

concurrent vs non-concurrent with element changed reveals a significant 

enhancement of cueing t(43) = 4.92,p < .001. 

-119 -



Chapter 4, Experiment 7 and 8. 

125 

100 

75% detection of 75 

discontinuity --0- cue concurrent 

(ms) 
~ cue non-concurrent 

50 

25 

0 

0 2 3 4 5 

Figure 28. The mean temporallag across 11 observers, for cue concurrent 

with element discontinuity and cue non-concurrent with discontinuity for 

Experiment 8 is depicted. 

Discussion 

These results confirm that the findings of Experiment 7. Attention modulates 

the integration of elements into a square. Consistent with the results from 

Experiment 7 these results imply that rather than compensating for attentionally 

induced temporal asynchrony across the visual field the visual system yields a 

temporally asynchronous perception. 
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General Discussion 

By desynchronising a stimulus we found that increasing temporal 

asynchronies between the elements of a stimulus are tolerated with eccentricity 

from the focus of attention. In turn, the perception of a discontinuous stimulus 

as either a continuous versus discontinuous perception depends on where 

attention is focused. 

To conclude, we asked whether the visual system, accurately integrates 

asynchronously processed information. These studies imply that the visual 

system does not compensate for selective attentional acceleration of information 

processing across the visual field. Rather, it seems that perception mirrors the 

increase in processing time with eccentricity from the focus of attention. 

These studies suggest that our visual system provides us with a 

temporally non-veridical perception. This finding is in agreement with other 

studies revealing asynchronous integration of functionally processed feature . 

information, for example color, form and motion (Moutoussis and Zeki, 1997a, 

Moutoussis and Zeki, 1997b). 

In addition, these results support current theory about the motion line 

illusion (Hiosaka et aI, 1993). When attention is directed to a cue presented 

above a line observers perceive motion propagated from the cued location. Our 

findings support the hypothesis that this illusion occurs because motion centres 

seem to construct a motion sensation from the asynchronously processed 

information around the attentional focus. 
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The temporal dynamics of perception remain for the most part neglected 

(Walsh, 2002) yet these results yield many interesting implications that only 

future research can resolve. For example, besides the motion-line illusion what 

other failures of perception can be induced by the asynchronous nature in which 

information is processed? In addition, the categorization literature has 

established that people selectively attend to features to resolve complex object 

categorizations. Our results suggest that the perceptions of complex objects 

could themselves be temporally processed around the attributes that are most 

diagnostic in the task considered (Schyns, 1998). 

However, in retrospect there were several methodological problems with 

the studies in the present chapter. Firstly, in an attempt to measure the threshold 

of temporal asynchrony tolerated around an attentional cue we introduced a 

discontinuity in our stimulus for a randomly selected lag. However, observers 

may have resolved this task simply by detecting the gap in the stimulus. 

Moreover, the target discontinuity was removed in the middle of each trial 

and the cue was presented 150ms before in an attempt to control for saccadic eye 

movements. However, this also meant that there was different latencies to cue 

onset which may have influenced the results. 

The Experiments in Chapter 5 were developed in an attempt to overcome 

these methodological problems. 
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Chapter 5 

Investigating the temporal dvnamics of an attentionally induced 

bias. 

To recap, we have established that attention speeds up the processing of attended 

information (posner, 1980; Stelmach and Herdman, 1991; Carrasco and 

McElree, 2001). In Chapter 4 we set out to examine whether the visual system 

compensates for temporal asynchrony that arises between attended and 

unattended information versus whether this asynchrony is mirrored in 

perception. In particular, in Chapter 4 we found that by desynchronising a 

stimulus (a line and a square) increasing temporal asynchronies between the 

elements of a stimulus were tolerated with eccentricity from the focus of 

attention. Therefore, an observer's perception ofa discontinuous stimulus as 

either a continuous versus discontinuous perception depends on where attention 

is focused. Thus we concluded that the temporal asynchronies, induced by . 

selectively accelerating information processing, are not compensated for by the 

visual system. Rather they seem to be revealed in perception. 

In the current chapter we extended the work described in Chapter 4. 

Because a detection paradigm was employed in the experiments conducted in 

Chapter 4 it is possible that detection of the asynchrony may account for the 

results derived in these experiments rather than an attentional modulation of 

perception. Therefore, in the current chapter we set out to replicate the findings 

from this study. 
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Specifically, in Experiment 9 we examined whether we can induce 

orthogonal perceptions, despite presenting observers with an identical stimulus, 

by manipulating the cueing condition. In Experiment 10 we extended this 

methodology to examine whether these orthogonal perceptions are time­

dependent around the focus of attention. 
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Experiment 9 

Biasing the observers' response with an attentional cue. 

To examine whether attention modulates perception we desynchronised a 

stimulus that would induce orthogonal perceptions depending on which elements 

of the stimulus were perceived first. By employing such a stimulus it is possible 

to examine whether the accelerated processing offered to attended information 

modulates perception. If attended information is processed first and this 

perceptual advantage is mirrored in perception then despite being presented with 

an identical stimulus observers should report orthogonal perceptions depending 

on where their attention is focused. Crucially then attention will induce a 

perceptual bias depending on its focus. However, if the processing advantage 

offered to attended information is not mirrored in perception then we should 

expect no such bias. 

To this end, we desynchronised in time the line segments forming the' 

number "eight". To investigate the influence of attention on the observers' 

perceptions we cued one of four possible locations, top-left, top-right, bottom-

left, bottom-right. If attentional acceleration of information processing is 

mirrored in perception then we would expect orthogonal perceptions depending 

on the attention focus. For example, when the stimulus is cued at the top-left 

information in this position should enjoy the processing advantage. Moreover, 

from Experiments 7 and 8 we might expect that the time required to process 

information would increase with distance from this position. Therefore, this . . . 

processing advantage should be revealed by a perceptual bias. Because the top-
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left element discriminates a "five" from a "two" we might expect a biased 

response of "five" when the cue is in this location (or when cued bottom-right). 

Likewise, we would expect observers to respond "two" when the cue occurs at 

the top-right or bottom-left. However, if attentional acceleration of information 

processing is compensated for at some stage of visual processing then the 

observers' response should not be biased by cueing. 

Results suggest that observers' perceptions were directly correlated with 

the location of the cue. That is, observers were significantly more likely to 

respond "two" (vs. "five") when cued to the top-right and bottom-left (vs. top-

left and bottom-right) elements. Thus, rather than compensating for processing 

asynchronies across the visual field these orthogonal perceptions indicate a time-

dependent integration of information for the perception of two numbers induced 

by the location of the attentional cue. 

Method 

Participants. 3 University of Glasgow students (under 30 years of age) 

with normal or corrected to normal vision were paid to participate in the 

experiment. 

Materials. The experiment ran on a Macintosh G4 using the 

Psychophysics and Pyramid Toolbox for Matlab (Brainard, 1997; Simoncelli, 

1997; Pelli, 1997). 

Stimuli. On any given trial, observers were presented with a 

desynchronised "two" and "five" stimuli superimposed to create an "eight" 
. . 

stimulus (see Figure 29). Stimuli spanned 5.1 by 6.8 degrees of visual angle. 
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Two variables were manipulated. The sequence of line segments comprising the 

stimulus appeared desynchronized from either top to bottom or vice versa. 

Secondly, to examine the influence of attentional cueing on the observer's 

perception a cue was presented in one of four locations, top-left, top-right, 

bottom-left or bottom right. 

Procedure. Each trial started with the presentation of a fixation cross for 1000 

ms. To examine the effect of attention on the observers perception we presented 

a non-predictive cue to either the top-left, top-right, bottom-left or bottom right 

of the stimulus. The cue measured 10 pixels in radius (the monitor resolution 

was 1280 by 1024 pixels) and 1.83 candelas per square metre. The cue was 

presented for 27 ms and presentation of the randomly desynchronised stimulus 

began 13 ms after cue onset. The desynchronised elements of the stimulus were 

presented sequentially over five frames from the top to bottom or vice versa (see 

Figure 28). Each frame was presented for 13 ms and the total duration of each 

trial was 67 ms. Therefore, there was less than 150 ms between the onset of the 

cue and offset of the stimulus preventing a saccadic eye movement to the cued 

location. In a 2-AFC discrimination task, observers responded either "two" or 

"five". 

As there were a total of four conditions of attention, 2 orders of 

presentation and 15 repetitions the experiment comprised a total of 120 trials. A 

headrest maintained viewing distance at one metre. Observers were instructed to 

guess if they were unsure, and to attend to the cues without making eye 

movements. 
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Figure 29. A sample trial from Experiment 9, here a cue was presented to 

the top-left and the stimulus ("eight") was presented in a desynchronised 

sequence from the top to the bottom. 
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Results 

For each observer we computed the proportion of time that they responded 

~'five" and the proportion of time that they responded "two" in each cueing 

condition for both orders of presentation. These data were then averaged across 

observers. When the stimulus was desynchronised from top to bottom we found 

that cueing significantly biased the observer's perceptions (see Figure 30). A t­

test comparing the proportion of time that the observers response is consistent 

(e.g. a "five" when cued top-left or bottom-right) versus inconsistent with the 

cueing location (e.g. a "two" when cued top-right or bottom-left) reveals that 

cueing significantly biased the observers response t(ll) = 2.IS,p<O.03. 

Therefore, depending on the location of the attentional cue, an identical 

sequence of line segments appeared as a "two" or a "five". 
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Figu"e 30. The mean p"oportion of responding "two" versus "five" across 

three observers when the stimulus was temporally desynchronised from top 

to bottom for each cueing condition. 

However, Figure 31. illustrates that when the stimulus was desynchronised from 

the bottom to the top cueing did not significantly bias the observer's response 

t(ll) = 1.03,p = 0.3. 
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Figure 31. The mean proportion of responding "two" versus "fIVe" for 3 . 

observers when the stimulus was temporally desynchronised from bottom 

to top for each cueing condition. 

Discussion 

When the stimulus was temporally desynchronised from top to bottom 

the results suggest that the observer's perceptions were directly correlated with 

the location of the cue. Observers were significantly more likely to respond 

"two" (vs. "five") when cued to the top-left and bottom-right (vs. top-right and 

bottom-left) elements. Thus, these results add weight to the findings from 
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Chapter 4 that rather than compensating for processing asynchronies across the 

visual field these orthogonal perceptions indicate a time-dependent integration 

of information for the perception of two numbers induced by the location of the 

attentional cue. 

In retrospect it seems likely that top-down factors may have prevented us 

from finding similar results when the order of presentation was bottom to top. 

In particular, it seems unlikely that observers read a numerical figure from 

bottom to top and this additional "top-down" factor may have influenced 

performance in this condition. Moreover, it is possible that stimuli in the top­

down and bottom-up conditions were not temporally symmetrical. Because the 

bottom of the screen is drawn last the temporal gap in the bottom-up condition 

would have been less than in the top-down condition (Robs on and Carpenter, 

1997). 
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Experiment 10 

Experiments 7, 8 and 9 suggest that the visual system does not compensate for 

temporal asynchronies between attended and unattended information. Rather 

than accounting for the processing advantage offered to attended information it 

seems that perception mirrors this temporal asynchrony of information 

processing across the visual field. Consequently presentation of an identical 

stimulus can induce orthogonal perceptions depending on the focus of attention. 

In Experiment 7 and 8 a discontinuous line and square stimuli were perceived as 

either continuous or discontinuous depending on where attention was focused. 

Moreover, Experiment 9 demonstrated that orthogonal perceptions of a "two" 

versus "five" were induced by orthogonal cueing despite presentation of an 

identical desynchronised stimulus. 

The results from these studies indicate a time-dependent integration of 

information around the focus of attention. The present study sets out to examine 

how attention modulates the temporal integration of information into a unitary 

perception in more detail. Here we examined how attention modulates the 

temporal asynchronies required between the elements of a randomly 

desynchronised stimulus to induce orthogonal perceptions. 

In particular, we randomly desynchronised in time the stimulus presented 

in Experiment 9 (a figure "eight") to derive the optimal onset timing required for 

each element to induce orthogonal perceptions. Recall that this stimulus should 

induce orthogonal perceptions depending on ~ich el~ments of t~e stimulus are 

perceived first. For example, ifinformation in the top-left enjoys the perceptual 
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processing advantage observers should perceive a "five". This is because the 

top-left discriminates a "five" from a "two" (i.e. the top-left element). Thus, if 

attention speeds up information processing then we would expect that cueing the 

top-left will bias the observer's response to a "five". Indeed this bias was found 

in Experiment 9. 

In addition to biasing the observer's response cueing should induce 

orthogonal temporal asynchronies between the elements comprising the 

stimulus. To illustrate when cued at the top-left information in this location 

should be processed first Therefore, the observer's response bias should be 

optimal when information in this location appears earlier than the information in 

a spatial location that is further from the cue (e.g. bottom-right). Because two 

diagonally opposite elements are diagnostic for perception of a "five" (top-left 

and bottom-right) and a "two" (top-right and bottom-left) we can compare the 

optimal temporal onset for these two diagonally opposite elements to examine 

whether the integration of information is time-dependent around the focus of 

attention. Specifically, the observer's perception should be optimally biased 

when the diagnostic element nearest the cue appears before the diagonally 

opposite element. However, if attention does not modulate perception then we 

should find no such pattern in the temporal asynchrony between these elements. 

Method 

Participants. 3 University of Glasgow students (under 30 years of age) 

with corrected to normal vision were paid to p~icipate in the experiment. 
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Materials. The experiment ran on a Macintosh G4 using the 

Psychophysics and Pyramid Toolbox for Matlab and the Matlab Pyramid 

Toolbox (Brainard, 1997; Simoncelli, 1997; Pelli, 1997). 

Stimuli. On any given trial, observers were presented with a 

randomly desynchronised "two" and "five" stimuli superimposed to create an 

"eight" stimulus. Each element of this stimulus was desynchronised giving 

seven desynchronised elements in total. To examine the influence of attentional 

cueing on the observers perception a cue was presented in one of four locations, 

top-left, top-right, bottom-left or bottom right. Stimuli spanned 5 x 6.8 degrees 

of visual angle. 

Procedure. Each trial started with the presentation of a fixation cross 

for 1000 ms. To examine the modulation of attention on the observers 

perception we presented a non-predictive cue to either the top-left, top-right, 

bottom-left or bottom right of the stimulus. The cue measured 10 pixels in radius 

(the monitor resolution was 1280 by 1024 pixels) and 1.83 candelas per square 

metre. The cue was presented for 27 ms and presentation of the randomly 

desynchronised stimulus began 13 ms after cue onset. Each of the seven 

desynchronised elements of the stimulus were presented at one of seven 

randomly selected lags, ranging from 13 ms to 91 ms in equal increments, for 13 

ms. Therefore, there was always less than 150 ms between the onset of the cue 

and offset of the stimulus preventing a saccadic eye movement to the cued 

location .. In a 2-AFC discrimination task, obs~rvers responded ~ither "two" or 

"five". 
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As there were a total of four conditions of attention and 140 repetitions 

the experiment comprised a total of 560 trials. A headrest maintained viewing 

distance at one meter. Observers were instructed to guess if they were unsure, 

and to attend to the cues without making eye movements. 

Results 

To examine the temporal integration of information into each of the orthogonal 

perceptions we computed the proportion of time observers responded "two' 

versus "five" for each of the seven temporal lags independently for each of the 

seven elements in each of the cueing conditions. 

Firstly, to examine whether attentional cueing biased the observers' 

response we computed the proportion of time that observers responded j;j;two" 

versus j;'five" for each condition of attentional cueing. The proportion of time 

observers responded "two" and "five" was averaged across each of the seven 

temporal lags and across the seven desynchronised elements (see Figure 32 to 

34). 

Figure 32. illustrates that Observer 1 's perceptions were consistent with 

the cueing location. In other words, this observer's response was biased by 

attentional cueing. This observer was more likely to respond "five" when cued 

to the bottom-right Whereas cueing the top-right and the bottom-left was more 

likely to induce a "two" response. However, cueing the top-left did not bias this 

observers response. 
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80,-------------------------------, 

60 

D top left 

Proportion "five" D top right 
40 

~ bottom left 

[J bottom right 

20 

o----~--~----~ 
cued location 

Figure 32. The proportion of time that Observer 1 responded "two" and 

"five" averaged across all seven temporal lags and the seven elements that 

comprised the stimulus. This observer was biased by the condition of 

attentional cueing. Cueing the top-right or the bottom-left were more likely 

to induce a "two" response whereas this observer was more likely to 

respond "fIVe" when cued to the bottom-right. 

Figure 33. illustrates that Observer 2's response was also biased by the condition 

of attentional cueing. This Observer was more likely to respond "five" when 

cued to the top-left and bottom-right. Whereas cueing the top-right and the 
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bottom-left was more likely to induce a "two" response. The bias in these data 

was even more pronounced than that observed in Observer l' s data. 

80~--------------------------------------------------------~ 

cued location 

Figure 33. The proportion of time that Observer 2 responded "two" and 

"five" averaged across aD seven temporal lags and the seven elements that 

comprised the stimulus. This observer was also biased by condition of 

attentional cueing. Cueing the top-right or the bottom-left were more likely 

to induce a "two" response whereas this observer was more likely to 

respond "fIVe" when cued to the top-left or the bottom-right. 
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However, Figure 34. illustrates that Observer 3 's response was not biased by 

attentional cueing. 

80~----------------------------~ 

60 

B top left 

0 top right 
proportion "five" 40 

~ bottom left 

I] bottom right 

20 

O~----~~------
cued location 

Figure 34. The proportion of time that Observer 3 responded "two" and 

"five" averaged across aD seven temporal lags and the seven elements that 

comprised the stimulus. This observer was not biased by condition of 

attentional cueing. 

To further examine the data for each observer we pooled the temporallag 

data across cueing conditions for the diagnostic elements. We did this as a 

function of distance from the cued location. In particular, we pooled the trials 
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into four groups: when the cue occurred nearest to the element, at the opposite 

side, below and diagonally opposite the element. Furthermore, because the 

elements at the opposite side and below the cue contribute to perception when 

they are off we took the difference between these proportions and 1 to derive the 

lag for these elements that contributed to perception. Figures 35 to 37 illustrate 

this data for the 3 observers. 

Proportion of trials 
contributing to 
perception consistent 
with cue 

0.8 

0.6 

0.4 

0.2 

O~----~----r---~----~----~ 
o 20 40 60 80 100 

Temporallag (ms) 

--0-- nearest cue 

--<>-- I-opp side 

-0-- I-below cue 

A diag oP,POSite cue 

Figure 35. For observer 1 the temporallag data pooled according to 

distance from the cue. 
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Figure 35 illustrates that for observer 1 the elements that contribute to perception 

(nearest cue and diagonally opposite cue) both reach an asymptote at about 67 

ms. Because both of these elements seem to optimally contribute to perception 

at the same time there does not seem to be an effect of distance from the cue for 

this observer. The elements that contribute to perception when they are absent 

seem to be less important for perception because they never reach the same 

proportion as the other two elements. Moreover, they seem to optimally 

contribute to perception when they are off at approximately the same time as 

they other two elements are present. 

Proportion of trials 
contributing to 
perception consistent 
with cue 

0.8 

0.6 

0.4 

0.2 

04-----~----~----~--~~--~ 
o 20 40 60 80 100 

Temporallag (ms) 

-0- nearest cue 

~ l-oPpside 

-<>-- I-below cue 

I!J. diag opposite cue 

Figure 36. Observer 2 the temporallag data pooled according to distance 

from the cue. 
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Figure 36 illustrates that for observer 2 the elements that contribute to perception 

(nearest cue and diagonally opposite cue) also both reach an asymptote at about 

67 ms. Once more because both of these elements seem to optimally contribute 

to perception at the same time there does not seem to be an effect of distance 

from the cue for this observer. Likewise, the elements that contribute to 

perception when they are absent seem to be less important for perception 

because they never reach the same proportion as the other two elements. 

Moreover, one again they seem to optimally contribute to perception when they 

are off at approximately the same time as they other two elements are present. 

Proportion of trials 
contributing to 
perception consistent 
with cue 

0.8 

0.6 

0.4 

0.2 

O~----T---~~--~-----r----~ 
o 20 40 60 80 100 

Temporallag(ms) 

-0- nearest cue 

--0-- l-opp side 

-0- I-below cue 

b. diag opposite cue 

Figure 37. Observer 3 the temporallag data pooled according to distance 

from the cue. 
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Figure 37 illustrates that for observer 3 once again the elements that contribute 

to perception (nearest cue and diagonally opposite cue) reach an asymptote at 

about 67 ms. So once again because both of these elements seem to optimally 

contribute to perception at the same time there does not seem to be an effect of 

distance from the cue for this observer. However here, the elements that 

contribute to perception when they are absent seem as important for perception 

because reach approximately the same proportion as the other two elements. 

Moreover, they seem to optimally contribute to perception if they are off at 

approximately the same time as they other two elements are off. 
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Discussion 

Generally these results suggest an optimal onset time for elements 

should be present perception to contribute to perception and offset time for 

elements that should be absent to contribute to perception. This time seems to 

be around 67ms. However, because this time is common across all elements 

there does not seem to be an effect of spatial distance from the cued location. 

Rather it seems that optimal performance is reached when the onset and offset of 

the relevant elements is synchronous. 

It is possible that temporal constraints may have contributed to this null 

effect for spatial distance. In particular, the temporal scale of the experiment 

may have imposed limitations on our design. We searched 7 temporal lags 

ranging from 13 to 91 ms to find the optimallag for each element under 

different conditions of attentional cueing. However, it is possible that attention 

operates on a finer and shorter time scale than our equipment allowed us to . 

examIne. 
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General Discussion 

Experiment 9 suggests that the visual system does not compensate for 

processing asynchronies across the visual field. Instead, attention can induce 

orthogonal perceptions depending on its focus. This finding is consistent with 

the results from Experiment 7 and 8. 

However, the results from Experiment 10 suggest that the integration of 

information into a unitary perception is not time dependent around the focus of 

attention. It seems likely that mapping the temporal dynamics of attention 

requires a more sensitive measure than the current methodological constraints 

would allow. Future research, employing a more refined temporal scale are 

required to examine how attention modulates the temporal integration of 

information across the visual field. 
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Chapter 6 

Discussion 

Chapter 6, Discussion 

In brief, the primary aim of this thesis was to examine how the visual system 

constructs a seemingly unified and veridical representation from temporally 

asynchronous information. Physiological, clinical and empirical studies suggest 

that visual input is functionally segregated (e.g. Livingstone and Hubel, 1988, 

Zeki, 1973). Moreover, this functional processing results in concurrently 

presented feature attributes being processed and perceived at different times 

(Moutoussis and Zeki, 1997). However, findings from the attentional and 

categorisation literature call into question a fixed account of feature processing. 

In particular, previous research has demonstrated a processing advantage for 

attended information (e.g. Carrasco and McElree, 2001). From this literature it 

seems likely that the enhanced saliency of an attribute will accelerate the 

processing time of this dimension and consequently should modulate any 

perceptual asynchrony between concurrently presented features. Moreover, if 

attention offers a selective processing advantage this should induce processing 

asynchrony between attended and unattended information across the visual field. 

In an attempt to consider the temporal dynamics of perception, the 

present research set out to examine the influence of task demands and attention 

on feature processing (Chapter 2 and 3) and how attention modulates perceptual 

processing across the visual field (Chapter 4 an~ 5). 
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2. Chapter Summaries. 

2.1. Chapter 2. 

In Experiment 1 we developed a novel paradigm to examine the temporal 

dynamics offeature integration. We employed this method to examine the 

perceptual asynchrony between colour and orientation. In contrast with 

Moutoussis and Zeki's (1997a; 1997b) study of perceptual asynchrony we found 

no asynchrony between these attributes. Consequently, we propose that a 

flexible account of attribute processing and consequently perceptual asynchrony 

may explain the discrepancy between our findings and these results. 

In the remainder of Chapter 2 we developed this paradigm to investigate 

this proposal directly. In Experiment 2 and 4 we examined the effect of task 

requirements on feature integration. However, we found no significant 

interaction between the experimental conditions. In retrospect, this null effect 

may have been produced by an experimental confound. Namely, on a given trial 

presenting a sequence of changing orientations or spatial frequencies may have 

given rise to apparent motion. 

In Experiment 3 we found no effect of the task on the integration of 

colour and orientation. It seems likely that testing the same observers in both 

conditions produced cross over effects in this experiment. 

2.2. Chapter 3. 

In this Chapter we set out to disentangle the influence of attention on the 

integration of two information sources into a unitary perception. The results .. . . 

from Experiment 5 demonstrated that attention enhances the integration of two 
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information sources into a unitary perception for stimuli arranged in a line. This 

result was replicated across the visual field for an observer in Experiment 6. 

However, it seems likely that the large number of trials prevented this result 

from being replicated for a second observer in this experiment. 

The results from Experiment 5 suggest that attention does not enhance 

the integration of attribute infonnation by decreasing the perceptual asynchrony 

between the attributes comprising the stimuli. Observers were faster at 

perceiving an emergent perception that resulted from a change in form (form 

first trials) in both attended and unattended conditions. From the attentional 

literature (Carrasco and McElree, 2001; Hiosaka et aI, 1992; Stelmach and 

Herdman, 1991; Posner et al,1980) it seems likely that attention enhances 

feature integration by speeding up the perceptual processing time of each 

attribute by an equal magnitude 

The findings from these experiments add weight to our proposal that . 

perceptual processing of independent feature dimensions appears to be flexible, 

rather than fixed. 

2.3. Chapter 4. 

In Chapter 4 we examined the influence of attention on the integration of 

information across the visual field. By desynchronising a line (Experiment 7) 

and a square (Experiment 8) stimulus we found that increasing temporal 

asynchronies between the elements of a stimulus are tolerated with eccentricity 

from the focus of attention. In turn, the percept.ion of a. discontin':lous stimulus 
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as either a continuous or discontinuous perception depends on where attention is 

focused. 

These studies imply that the visual system does not compensate for 

selective attentional acceleration of information processing across the visual 

field. Rather, it seems that perception mirrors the increase in processing time 

with eccentricity from the focus of attention. These studies suggest that our 

visual system provides us with a temporally non-veridical perception. 

2.4. Chapter 5. 

In Chapter 5 we set out to extend the findings from Chapter 4. The 

findings from Experiment 9 also suggests that the visual system does not 

compensate for processing asynchronies across the visual field. Instead, 

attention can induce orthogonal perceptions depending on its focus a finding that 

is consistent with the results from Chapter 4. 

However, the results from Experiment 10 suggest that the integration of 

information into a unitary perception is not time dependent around the focus of 

attention. It seems likely that mapping the tempoml dynamics of attention 

requires a more sensitive measure than the current methodological constraints 

would allow. Future research, employing a more refined temporal scale are 

required to examine how attention modulates the tempoml integration of 

information across the visual field. 

3. Methodological Problems 

In Chapter 1 we developed a novel paradigm to .examine the time to integrate 

attributes into a new perception. However, it should be noted that the temporal 
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measure that we derive might include not only the time required to integrate 

attributes but also the time required to "unbind" previously bound attributes and 

the time required for binding itself if such a stage occurs. As yet we do not 

know whether such separate stages are involved in feature integration and a 

more refined measure would be required to detennine if this is the case. 

Therefore, at present we had to content ourselves with a general temporal 

measure of the binding process. 

Moreover, using this paradigm we attributed any modulation in the 

threshold required to perceive the emergent perception as arising from a 

modulation in the perceptual processing of the leading attribute. However, it 

could be argued that modulation might reflect a change in decision criterion 

rather than perceptual processing. Using the current paradigm it is impossible to 

disentangle these possible effects. 

The temporal characteristics of the equipment employed presented a 

consistent problem throughout our studies. Because observers make saccadic 

eye movements in around 150 ms the temporal distance between cue onset and 

asynchrony offset had to be less than this time. However, the frame rate of the 

monitor employed was 75Hz (13.3 ms). Therefore, only around 10 temporal 

points could be sampled within this range to detennine the temporal dynamics of 

perceptual processing. This imposed a considerable constraint on our studies 

that no doubt had consequences for our results. 

In addition, there seem to be large differep.ces between temporal measures 

between observers. This finding is consistent in literature studying temporal 
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perception (e.g. Moutoussis and Zeki, 1997a; 1997b) and throughout each of the 

experiments conducted in this thesis. As such it seems likely that the latter 

experiments carried out in Chapter 5 did not have enough observers to overcome 

this problem. Moreover, the Experiments carried out in Chapter 4 did not have 

enough trial repetitions to account for such discrepancies. 

Finally, in the paradigm employed in Chapter 1 and 2 a stimulus is 

presented in the same location as the target both before and after its presentation. 

This could lead to both forward and backward masking. Generally, masking is 

the reduction of performance when a bright field is presented in the same 

location as the target (Sperling, 1960). This effect is commonly attributed to 

erasure of iconic memory. Recent work suggests that low level factors (e.g. 

luminance) and higher level factors such as attention contribute to this effect (Di 

Lollo et a/2001). To illustrate possible masking effects in the current 

experiments consider a trial when the stimulus asynchronously alternate betw~en 

red-left and green-right with colour preceding orientation. Here, there may be 

forward masking of the colour of the target (green-left) with the initial stimulus 

and backward masking of orientation of the target with the final stimulus. 

However, any such effect would be consistent across all conditions therefore 

would be a constant variable. In the current experiments we were interested in 

the flexibility of processing under different experimental conditions rather than a 

definitive and fixed processing time. Therefore, any such constant variable does 

not seem relevant. 
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4. Conclusions. 

Three major points have emerged from the findings of the experiments reported. 

Firstly, these experiments add weight to the proposal that visual processing is 

not synchronous and that this asynchrony is revealed in perception. Temporal 

asynchrony between different visual attributes (e.g. colour and orientation) and 

across the visual field was a consistent finding across the experiments we 

conducted. Secondly, because this asynchrony is revealed in perception it seems 

that the visual system fails to account for processing asynchrony between feature 

information. In addition, the visual system does not appear to compensate for 

processing asynchrony across the visual field. Rather it seems our mistake lay in 

assuming that the visual system achieves a temporally veridical representation. 

Finally, any asynchrony between information processing does not appear to be 

fixed. Instead the experimental or attentional demands of the task seem to 

modulate the perceptual processing time of feature (or localised) information. 

Consequently, any temporal asynchrony between information can also be 

modulated 

5. Theoretical Implications. 

To return to our point of enquiry, how does the visual system provide us with a 

phenomenologically unified perception from asynchronous information? This 

question seems even more relevant in the light of the present observations. 

However, if we turn our findings on their head it seems plausible that the unified 

perception that is our experience arises as a consequence of processing 

flexibility. Perhaps, factors such as attention and categorisation serve to conceal 
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the temporal constraints of the visual system. These factors may provide the 

visual system with a representation that is "temporally veridical enough" for the 

beholder to successfully interact with the environment it evolved to represent. Of 

course an extensive program of future research examining the temporal 

dynamics of perception is required to qualify this proposal. 

This conclusion is reminiscent of literature concerned with the spatial 

properties of visual perception. Here, it is well known that the visual system 

does not construct a veridical perception. Recent phenomena, for example, 

inattentional blindness (Most et ai, 2001) and the failure of perception 

demonstrated in change detection tasks ("change-blindness") (O'Regan, 1992; 

Phillips and Singer, 1974; Rensink, 1999; Singer and Phillips, 1974) reveal the 

limitations of visual perception. 

In particular, future research is required to examine the effect of 

categorisation on perceptual processing in more detail. Future studies are als~ 

required to investigate whether for example, task requirements and colour 

categorisation modulate the speed with which attributes are processed. If these 

factors do modulate perceptual processing then how does this influence feature 

integration? 

In addition, we need to clearly establish whether attention can modulate 

perceptual asynchrony. For example, if attention is drawn to one attribute can 

the perceptual asynchrony between feature attributes be modulated? Moreover, 

do factors that increase salience modulate perceptual asynchrony in a similar 

way? 
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It would also be interesting to examine the extent to which perceptual 

asynchrony between object information results in "illusory conjunctions". If 

attention or salience increase perceptual processing and consequently modulates 

the perceptual asynchrony between different attribute features do these factors 

also induce ~~illusory conjunctions"? 

Moreover, temporal processing across the visual field warrants future 

examination. From our studies it seems that an attentional cue can induce 

orthogonal perceptions depending on its location. However, a finer temporal 

scale is required to directly measure the temporal dynamics of information 

processing across the visual field. 

Finally, this thesis, in retrospect somewhat naively, considered what 

seemed to be a unique quandary concerning the temporal integration of visual 

information. However, it is now clear that this issue incorporates a host of 

theoretical questions that merit empirical study. For example, Which factors' 

modulate perceptual processing? How do these factors influence perceptual 

asynchrony and perhaps conversely feature integration? What is the relationship 

between perceptual asynchrony and feature integration? These problems must 

be addressed independently and no doubt each one will lead to a generation of 

questions of their own. 

It seems that vision science has dedicated itself primarily to 

understanding how the visual system processes information across space perhaps 

at the cost of understanding the temporal dyna~ics of perception (Walsh, 2002). 
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However, understanding the "when" of perception may prove to be as much of a 

challenge. 
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