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Abstract

Power-switching devices require low on-state conduction losses, high-switching speed,
high thermal stability, and high input impedance. Using gallium nitride (GaN) based
field-effect transistors, these properties for switching devices can be satisfied. GaN-based
High Electron Mobility Transistors (HEMTSs) are emerging as promising candidates for
high-temperature, high-power (power electronics) and radio-frequency (RF) electronics
due to their unique capabilities of achieving higher current density, higher breakdown
voltage, higher operating temperatures and higher cut-off frequencies compared to sili-
con (Si). Conventional GaN HEMTSs with an aluminium gallium nitride (Al1GaN) barrier
are of depletion-mode (d-mode) or normally-on which require a negative polarity power
supply to turn off. On the other hand, enhancement-mode (e-mode) or normally-off Al-
GaN/GaN HEMTs are attracting increasing interest in recent years because no negative
gate voltage is necessary to turn off the devices. This leads to the advantage of simple
circuit design and low stand-by power dissipation. For power electronics applications,
power switches which incorporate e-mode devices provide the highly desirable essential

fail-safe operation.

In this research, a new high performance normally-off GaN-based metal-oxide-
semiconductor (MOS) high electron mobility transistor (HEMT) that employs an ultra-
thin sub-critical 3nm Aly.o5Gag. 75N barrier layer and relies on an induced two dimen-
sional electron gas (2DEG) for operation was designed, fabricated and characterized.
The device consists of source and drain Ohmic contacts nominally overlapped by the
gate contact and employs a gate dielectric. With no or low gate-to-source voltage (Vas),
there is no two dimensional electron gas (2DEG) channel at the Al1GaN/GaN interface
to allow conduction of current between the drain and source contacts as the AlGaN bar-
rier thickness is below the critical thickness required for the formation of such channel.
However, if a large enough positive bias voltage Vggs is applied, it causes the formation
of a quantum well at the AlIGaN/GaN interface into which electrons from the source and
drain Ohmic regions are attracted (by the positive gate voltage), effectively creating a

2DEG channel, and so the structure is a normally-off field effect transistor.

Normally-off GaN MOS-HEMT devices were fabricated using plasma enhanced chemical
vapour-deposited (PECVD) silicon dioxide (SiO2) as the gate dielectric. They demon-
strated positive threshold voltages (Vi) in the range of +1V to +3V, and very high
maximum drain currents (Ipsmax) in the range of 450 mA /mm to 650 mA /mm, at high
gate voltage (Vgg) of around 6 V. The devices also exhibited breakdown voltages in the
range of 9V and 17V depending on the gate dielectric thickness, making them suit-
able for realising high current low voltage power devices required, for instance, for buck

converters for mobile phones, tablets, laptop chargers, etc.
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CHAPTER 1

INTRODUCTION

Since the production of the first silicon transistor by Gordon Teal in 1954 [1], silicon (Si)
has assumed a central role in the development of semiconductor devices. Silicon has been
the dominant semiconductor of choice for high-voltage switching applications to date.
Recently, however, silicon technology is fast approaching its theoretical limits imposed by
the intrinsic material properties such as low saturation velocity, low breakdown voltage,
low inversion layer mobility and high device resistance [2]. Due to these limitations, there
is growing interest in research activities in modern electronics towards new materials
which are able to satisfy the specific needs of higher operating frequencies, higher output
power and higher operating voltages. Wide-bandgap semiconductors such as gallium
nitride (GaN) and silicon carbide (SiC) have demonstrated the potential for meeting the
requirements for high-temperature and high-power switching applications. Figure 1.1
shows the roadmap of the life-cycle of the main semiconductors used in power device
technologies, Si, GaN and SiC [3]. It can be seen that wide-bandgap semiconductors such
as GalN and SiC are expected to dominate the modern era of power device technology
for the foreseeable future. Figure 1.2 shows the relevant material properties for Si, SiC
and GaN which include the energy gap, (breakdown) electric field, thermal conductivity,
electron velocity, and melting point. This figure gives a good indication of the advantages
of GaN over its main competitors in the semiconductor market. The large bandgap
energy results in a high electric breakdown field, which is an order of magnitude higher
than that of Si. The high electric breakdown field enables the possibility to sustain
the application of high bias voltages, thus making GaN suitable for the fabrication of
high-voltage devices.

Table 1.1 shows the values of the fundamental material properties of GaN and com-

peting semiconductor materials in power electronics [4-6]. Due to its superior intrinsic



CHAPTER 1. INTRODUCTION

Silicon
SiC
GaN

Unipolar

Field Effect Transistors

Thyristor & MOSFET era Si IGBT era GaN & SiC era???
1970

F1cURE 1.1: Roadmap of the life-cycle of competing semiconductor materials, Si,
GaN and SiC, indicating a new generation every 20 years.

High voltage Electric Field —

operation (MV/cm)
5 .1 —S5iC
4 —Gal
Thermal
Energy gap (eV) - . Conductivity
(W/em.*C)

High T°

L SRR applications
Electronvelocity  ~  Melting point PP

(x107 cm/s) (x1000°C)
\ J
Y
High Frequency
switching

FIGURE 1.2: Summary of Si, SiC and GaN relevant material properties.



CHAPTER 1. INTRODUCTION 3

physical properties including wide bandgap (Ey) of around 3.4eV, high breakdown elec-
tric field (E.) of 3.3 MV /cm, high electron saturation velocity (vsq¢) of 2.5 x 107 cm/s
and high density carriers in the form of two-dimensional electron gas (2DEG) with high
mobility (i) of around 2000 cm?/Vs [5], GaN is considered an outstanding material for
high-frequency and high-power devices as well as in the area of opto-electronics. Wide-
bandgap semiconductor power devices offer great performance improvements and can
work in harsh environments where silicon power devices cannot function. One of the
main advantages of IIl-nitride materials such as gallium nitride (GaN) is the ability
to form a heterojunction with a ternary alloy made from another IIl-nitride semicon-
ductor material such as aluminium gallium nitride (AlGaN). Due to the strong polar
material properties, the modification of the material composition results in dramatic
modifications of the polar crystal properties and thus of available carrier concentrations
obtained at the heterojunction interfaces in the devices. The huge success of III-N
materials is not mainly due to the intrinsic bulk material properties, but due to the het-
erojunction interface properties. In III-N heterostructures, the interfaces allow for the
formation of n-channels and intrinsically provide extremely high carrier concentrations
> 10'3 em~2 through polarization engineering without impurity doping [7]. The result-
ing two-dimensional electron gas (2DEG) at the heterojunction serves as the conductive

channel.

The high electric breakdown field of GaN is a result of the wide bandgap of 3.44eV
at room temperature of the material and enables the application of high supply volt-
ages on GaN-based devices, which is one of the two requirements for high-power device
performance. The wide bandgap of the material also allows it to withstand high oper-
ating temperatures of 300°C to 700°C. Large drain currents of greater than 1 A/mm,
which are the secondary requirement for a power device, can be achieved due to the high
electron mobilities of around 2000 cm?/Vs and high electron sheet densities of around
1 x 10'3 em™2. These material properties clearly indicate why GaN is a serious candidate

for next-generation microwave high-power/high-temperature applications.

Other important parameters that describe the quality of a semiconductor material are
the relative permittivity or dielectric constant (e,) and the thermal conductivity (x).
The thermal conductivity describes the ease of which heat is conducted in the material,
and hence, the possibility to efficiently extract the dissipated power from the device.
Materials with lower thermal conductivity typically lead to device degradation at ele-
vated temperatures. Although III-V semiconductors have relatively moderate value of
thermal conductivity (), GaN has a thermal conductivity of (1.3 Wem ™' K~1) which
is comparable to that of Si (1.5 Wem ™ 1K ~!), which is the dominating semiconductor

material of choice in the present electronics industry.
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TABLE 1.1: Properties of GaN and competing semiconductor materials in power elec-

tronics.

Property GaN | Si | GaAs | SiC | InP
Electron mobility, 2000 | 1300 | 5000 | 260 | 5400

ft (em?/V.s)
Dielectric constant, 9.5 114 13.1 9.7 | 12.5

Er
Bandgap, 3.4 1.1 14 2.9 | 1.35
E, (eV)

Electric breakdown field, 3300 | 300 400 2500 | 500

E. (kV/cm)
Saturated electron drift velocity, | 2.2 1.0 1.0 2 1.0

Vsat (X107 cm/s)

Thermal Conductivity, 1.3 1.5 0.46 4.9 0.7

x (W/emK)

Beyond the individual material properties, several figures of merit (FOM) have been
proposed to benchmark the merit of different semiconductor materials for a given appli-
cation, with the higher the figure of merit number the better the performance is likely
to be. These figures of merit combine the most relevant material properties with respect
to high-power and high-frequency applications into one number that represents a rough
measure of the relative strengths of the other competing materials. One of the most
commonly used is Johnson’s Figure of Merit (JFOM), which gives an idea of material
suitability for high-power applications at high frequencies and can be calculated using
Equation (1.1) [8].

2
JFOM = <EQ“7Tt> (L.1)

where E. is critical electric field and vy, is saturation electron velocity.

Baliga’s Figure of Merit (BFOM), on the other hand, was developed to compare the
ultimate performance of field-effect transistors for low-frequency power-switching appli-

cations where conduction losses dominate [9]:
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BFOM = &,uE} (1.2)
where p is the electron mobility and e, is dielectric constant of the semiconductor.

Baliga’s High-Frequency FOM (BHFOM) benchmarks these devices at high-frequency,

where switching losses dominate [9]:

BHFFOM = uE2V}? 2v3)? (1.3)
where Vg is the gate drive voltage and Vppg is the breakdown voltage. The latter can be

related to an experimental figure of merit involving the on-state specific resistance Ry,

of the device and its critical electric field, FE,:

FOM = Vig/Rop = e,nE2 /4 (1.4)

Other FOMs have been proposed for more specific cases. Amongst these, Keyes FOM

considers thermal limitations due to transistor switching [9]:

0.5
KFOM =y (ZZ;”) (1.5)
T

where x is thermal conductivity and c is the speed of light.

Finally, a Combined FOM (CFOM) was developed to simultaneously account for high-

frequency, high-power and high-temperature performance [10]:

CFOM = Xsr,uvsatEcz (1.6)

Table 1.2 compares several figures of merit for the possible high-power and high-
frequency performance of GaN relative to other competing semiconductor materials.
This table shows that GaN is an excellent candidate for high-frequency power appli-
cations. For GaN, the JFOM is about 270 to 480 times that of silicon (Si), about
135 to 240 times that of gallium arsenide (GaAs) and about 1.5 times that of silicon
carbide (SiC) [9]. From these figures, it is clear that GaN offers much better high-
power /high-frequency performance possibilities than Si, GaAs and SiC. The BFOM of
GaN is about 17 to 34 times that of Si, about 1.5 to 2.5 times that of GaAs and about 3
times that of SiC [9]. No matter what FOM is used, wide-bandgap semiconductors offer

better performance characteristics for high-frequency, high-power applications. The use
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of wide-bandgap materials can be considered amongst one of the best solutions that
can meet the requirements of modern day power electronics. Amongst wide-bandgap
semiconductors, GaN-based materials are arguably the most matured ones in terms of
wafer-size availability, technology and market prospects.

TABLE 1.2: Figures of merit of GaN and competing semiconductor materials in
power electronics.

Property GaN Si | GaAs SiC
Johnson’s Figure of Merit, 270-480 | 1.0 2 324-400
(JEFOM)
Keyes Figure of Merit, 1.4 1.0 0.4 4.5-4.8
(KFOM)
Baliga’s Figure of Merit, 17-34 1.0 13 6-12
(BFOM)
Baliga’s High Frequency Figure of Merit, | 86-172 | 1.0 10 57-76
(BHFFOM),
Combined Figure of Merit, 108-290 | 1.0 4 275-310
(CFOM)
Traz, 700 300 | 300 600
(°C)

Other advantages of wide-bandgap semiconductor-based power devices compared with

silicon-based power devices are as follows:

e Wide-bandgap semiconductor-based power devices can operate at high tempera-
tures of up to 600 °C whilst silicon devices can only operate at a maximum junction
temperature of 150 °C although a silicon on insulator (SOI) gate drive integrated

circuit (IC) has been demonstrate to operate up to a temperature of around 200 °C
[11].

e Due to their higher electric breakdown field, wide-bandgap semiconductor-based
power devices have higher breakdown voltages; thus the first commercial SiC
schottky diodes are already rated at 600V compared to silicon schottky diodes
which are commercially available typically at 300V.
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o Wide-bandgap semiconductor-based unipolar devices have lower on-resistances, as
the on-resistance of a power device is inversely proportional to the cube of the
electric breakdown as given by Equation (1.7) [9, 12]. Lower R,, means higher

overall converter efficiency is attainable.

4(Vpr)?

Ron = T T2
57“:“(Ec)3

(1.7)

e Wide-bandgap devices such as SiC have a higher thermal conductivity (4.9 W/cm-
K for SiC, as opposed to 1.5W/cm-K for silicon). Therefore, wide-bandgap
semiconductor-based power devices have a lower junction-to-case thermal resis-
tance Ry—j.. This means that heat is more easily transferred out of the device,

and thus the device temperature increase is slower.

1.1 Brief History of GaN Technology

The history of GaN began during the early decades of the last century, when in 1930,
Johnson et al. prepared gallium nitride by passing ammonia gas on metallic gallium at
high temperatures of 900°C — 1000°C [13]. In 1938, Juza and Hahn synthesized GaN
by passing ammonia (NHs) over liquid gallium at elevated temperatures. This method
resulted in a powder consisting of small needles and platelets. Their purpose was to
investigate the crystal structure and lattice constant of GaN [14]. However, it was only
in 1968 that the first large area GaN epitaxially grown on sapphire substrates by Hydride
Vapour Phase Epitaxy (HVPE) was demonstrated [15, 16].

After that discovery, a rapid progress was made in GaN technology leading to 1991 when
Khan et al. reported the first evidence of two-dimensional electron gas (2DEG) forma-
tion at an AlyGa;_«N/GaN heterojunction grown by metal organic chemical vapour
deposition (MOCVD) on sapphire [17]. The first GaN metal semiconductor field-effect
transistor (MESFET) and heterostructure field-effect transistor (HFET) grown by metal
organic chemical vapour deposition (MOCVD) on sapphire substrates were reported in
1993 and 1994, respectively by Khan et al. [18, 19].

Since the discovery by Khan et al. in 1994, excellent progress has been made in the
development of GaN technology. In 2000, Al1GaN/GaN HEMT technology was success-
fully transferred to silicon substrates by Kaiser et al. by growing the heterostructure
using Metal Organic Chemical Vapour Deposition (MOCVD) [20].

Another important step in GaN technology was achieved by Tripathy et al. in 2012,
by reporting the epitaxial growth, characterization, and device characteristics of crack-
free AlGaN/GaN heterostructures on a 200 mm (8 inch) diameter Si(111) substrate [21].
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Some of the most important highlights of the scientific research on GaN technology are

listed below:

10.

11.

. In 1930, Johnson et al. demonstrated the first synthesis of GaN [13].

. In 1938, Juza and Hahn powdered GaN consisting of small needles and platelets

in order to study the crystal structure and lattice parameters of GaN [14].

. In 1959, Grimmeiss at al. conducted the first photo-luminescence measurement on

small GaN crystals [22].

. In 1969, Maruska et al. grew the first single crystal film of GaN, epitaxially

grown on a centimetre-sized sapphire substrate using hydride vapour phase epitaxy
(HVPE) [15].

. In 1971, Pankove et al. fabricated the first GaN light emitting diode (LED) [23, 24].

. In 1972, Maruska et al. fabricated the first hydride vapour phase epitaxy (HVPE)

GaN LED using magnesium (Mg) as a p-type dopant, which emits at a wavelength
of 430 nm (violet) [25].

In 1986, Amano et al. fabricated improved GaN films, grown by metal organic

chemical vapour deposition (MOCVD) on sapphire substrates [26].

. In 1989, Amano et al. was also the first to grow p-type conducting GaN films [27].

. In 1991, Nakamura grew the first GaN on AIN buffer layer, and observed an

improvement in surface morphology which was attributed to the prior deposition
of the AIN buffer layer [28].

In 1991, Nakamura et al. also grew highly p-typed Mg-doped GaN films with
GaN buffer layers which demonstrated the highest hole concentration and lowest
resistivity reported to that date [29]. In the same year, Khan et al. made one
of the most important discoveries in AlGaN/GaN heterojunctions to date when
they reported the first evidence enhanced electron mobility in the form of two-
dimensional electron gas (2DEG) formation at an Al,Ga;_xN/GaN heterojunction
grown by MOCVD on sapphire [17].

In 1993, Khan et al. reported the first fabrication and characterization of a metal
semiconductor field effect transistor (MESFET) based on single crystal GaN. The
GaN layer was deposited over sapphire substrate using low pressure metal organic
chemical vapour deposition [18]. Bykhovski et al. also showed during that same
year that, strongly pronounced piezoelectric properties play a key role in GaN-AIN-

GaN semiconductor-insulator-semiconductor (SIS) and related structures [30].
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

In 1994, Khan et al. also reported the first microwave performance of an Al-
GaN/GaN heterostructure field-effect transistor(HFET) grown by MOCVD on a
sapphire substrate [19].

In 1995, Ozgur et al. fabricated the first high transconductance normallv-off GaN
based modulation-doped field-effect transistors [31].

In 1997, Asbeck et al. quantified the influence of piezoelectric effect on the de-
sign and behaviour of III-V nitride heterostructure field-effect transistors (HFETS)
grown by both MOCVD and molecular beam epitaxy (MBE) on sapphire and SiC
substrates [32].

In 1998, Ren et al. fabricated and characterized a GaN metal-oxide semiconductor
field-effect transistor (MOSFET) which demonstrates significantly reduced gate

leakage and improved I-V characteristics at elevated temperatures [33].

In 1999, Yoshida et al. grew the first bipolar junction transistor using only GaN
[34].

In 2000, Zhang et al. reported on the DC characteristics of the first pnp AlGaN/-
GaN heterojunction bipolar transistor (HBT) [35].

In 2001, Semond et al. reported on the growth of high-electron-mobility AlGaN/-
GaN heterostructures on silicon (111) substrates by MBE using ammonia as the

nitrogen source [36].

In 2006, Cai et al. fabricated a normally-off AlGaN/GaN HEMT which uses a
fluoride-based plasma treatment to control the threshold voltages (Vi) of the
device [37].

In 2009, Uemoto et al. developed a normally-off GaN-based transistor using con-
ductivity modulation, called a gate injection transistor (GIT). This device princi-
ple utilizes hole-injection from the p-AlGaN to the AlGaN/GaN heterojunction,
which simultaneously increases the electron density in the channel, resulting in a

dramatic increase of the drain current owing to the conductivity modulation [38].

In 2012, Tripathy et al. reported crack-free AlGaN/GaN heterostructures grown
on 200 mm diameter (111)-oriented silicon substrates and presented an in-depth

characterization study of epilayers grown by MOCVD [21].

In 2013, Zhang et al. demonstrated E-mode fluorinated MOS-HEMTs with a
Vi, higher than 3V, no current collapse and long-term stability at 250°C using a
dual-gate structure and an AlsOgz gate oxide deposited by atomic layer deposition
[39].
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1.2 Application Areas of GaN

The direct bandgap of GaN and its alloys enables the material to be used for both optical
and electronics applications. At a temperature of 300 K, the bandgap of GaN is 3.44eV
which corresponds to a wavelength of around 360 nm in the near ultraviolet (UV) region
of the optical spectrum [40, 41]. The relationship between the bandgap energy (E,) and
wavelength is given by Equation (1.8):

Bandgap Energy (Ey) = % (1.8)

where h is the Planck’s constan