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one, because the elliptical beam causes a stronger modulation of the ruby. The

e↵ect of beam shape on the slow-light e↵ect is studied in more detail in Chapter 5.

I have shown the importance of eliminating fluorescence when studying slow light

in ruby, because the illumination from fluorescence can mask the actual slow-light

e↵ect. With fluorescence present, any observed dragging could not confidently be

ascribed to the e↵ects of slow light in ruby. I confirmed the ability of fluorescence

to mask the desired e↵ect with a simple model. When fluorescence is removed and

other experimental parameters are carefully controlled, the measured rotation can

be studied to learn about the e↵ects of slow light in ruby.

Due to power limitations of the laser used in this experiment, the ruby was not

fully saturated. This leaves open the question of whether a more powerful laser

that could fully saturate the ruby would increase the slow-light e↵ect and therefore

the rotation angle. Future work should be done in this area to fully understand

the exact relationship between laser power and the slow-light e↵ect in ruby.



Chapter 5

Rotating Orbital Angular

Momentum

5.1 Introduction

Much of the work in this thesis has involved the rotation of images. Another path

to understanding how an image is rotated is by considering orbital angular mo-

mentum (OAM). When linearly polarised light is transmitted through a spinning

window, the plane of polarisation is rotated. This rotation arises through a phase

change that is applied to the circularly polarised states corresponding to the spin

angular momentum (SAM). Here I show an analogous e↵ect for OAM, where a

di↵erential phase between the positive and negative modes (±`) is observed as a

rotation of the transmitted image. For normal materials, this rotation is on the

order of a micro radian, but by using a slow-light medium, I show a rotation of a

few degrees. I also note that, within the bounds of these experimental parameters,

this rotation angle does not exceed the scale of the spatial features in the beam

profile.
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Appendix B

Additional Rotated Patterns

a b

Figure B.1: Rotation of pattern of an E made by a metal mask. Images shown
were taken when the ruby was rotating (a) anticlockwise and (b) clockwise.

a b

Figure B.2: Rotation of pattern made by a metal mask. Images shown were
taken when the ruby was rotating (a) anticlockwise and (b) clockwise.
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a b

Figure B.3: Rotation of a square pattern made by a metal mask. Images
shown were taken when the ruby was rotating (a) anticlockwise and (b) clock-

wise.

a b

Figure B.4: Rotation of a pattern of horizontal lines made by a metal mask.
Images shown were taken when the ruby was rotating (a) anticlockwise and (b)

clockwise.
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a b

Figure B.5: Rotation of a pattern of vertical lines made by a metal mask.
Images shown were taken when the ruby was rotating (a) anticlockwise and (b)

clockwise.
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