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Abstract 

Adhesive-bonded applications are widely used in industry, because of significant advantages 

such as uniform stress distribution, design flexibility and suitability to bond similar and 

dissimilar structural materials. This study focuses the adhesive-bonded long overlap of 

steel/carbon fibre reinforced polymer (CFRP) composite double lap shear (DLS) joints.  

The purpose of the work is to predict and assess the structural failure and behaviour of the 

DLS joint, including delamination of the composite, and to determine the effects of the 

design parameters of adherend thickness, overlap length and fabric orientation on the joint’s 

failure. There are different ways for such a joint to fail, which makes predicting failure very 

difficult. Another important difference is the failure mode of composites, where the 

relatively low interlaminar shear or tensile strength of the resin system causes failure of the 

composite before failure of the adhesive bondline occurs.  

Both experimental and numerical methods were used for the analysis. The experimental 

programme includes fabrication, mechanical testing and failure examinations of various 

joints. The numerical methods are based on 2D models, using strength of materials and 

cohesive zone modelling (CZM) approaches. In order to model adhesive joints accurately 

and efficiently, fracture tests were implemented to determine the fracture criteria. Mode-I 

and mode-II fracture energies were obtained by double cantilever beam (DCB) and end 

notched flexure (ENF) tests. An inverse method was used to define the cohesive parameters 

of the bilinear relation, fitting the numerical and experimental load-displacement curves.  

The DLS model has been created in Abaqus software, and results for each approach have 

been presented.  Critical locations of stress concentrations in the DLS joint were identified, 

and the CZM successfully predicted the delamination initiation and propagation region 

observed in the experiment. As a result, it was concluded that the data obtained from the 

analysis showed good agreement with the experimental results, and in addition to the fibre 

orientation angles of the CFRP laminate markedly affecting the failure load of joints, the 

failure mode and stress distributions appeared in adhesive and composite.  

Furthermore, the study shows that the cohesive elements enable the numerical results to be 

obtained in shorter simulation times than the strength of materials approach, which should 

encourage use of CZM to analyse large structural applications. 
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Chapter 1 

1 Introduction 

1.1 Motivation and scope 

Hybrid joints, like metal/polymer composite structures, have great potential for application 

in a large number of engineering sectors. These material systems are opening up new 

possibilities for advanced applications such as marine, aircraft and automobile application, 

as well as load-bearing structural parts, continuous long fibre polymer matrix composite 

laminates; therefore these are going to be highlighted in this thesis. The high specific 

stiffness and physic-chemical resistance of polymer composites are combined with the 

traditional strength of metals in these advantageous combinations. The joints can be 

produced by mechanical fasteners or by means of adhesive bonding [1]. Fasteners such as 

bolted joints introduce considerable stress concentration which often requires the thickness 

of adherends to be increased, compromising weight saving.   Adhesive bonding is a material 

joining process in which an adhesive, placed between the adherend surfaces, solidifies to 

produce an adhesive bond.  Adhesive bonding is the most suitable method of joining, and 

joint structural efficiency can be should be maximised at minimum weight [2, 3]. The 

reasons why adhesive bonding are so desirable compared to other joining methods have been 

given by Vinson, Adams and others [4, 5].  

 Often, thinner gauge materials can be used with attendant weight and cost savings. 

 Number of production parts can be reduced. 

 Manufacturing procedures like milling, machining, forming, and riveting can be 

reduced or eliminated. 

 Adhesive bonds can potentially provide a high strength-to-weight ratio with three 

times the shearing force of riveted joints. 

 Improved aerodynamic surfaces and visual appearance. 

 Excellent electrical and thermal insulation properties. 

 Superior fatigue resistance at moderate loading conditions. 
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 Often, the adhesive is sufficiently flexible to allow for variations in the coefficients 

of thermal expansion when joining dissimilar materials. 

 Adhesive joints can distribute the load over a larger area, and take advantage of the 

ductile response of the adhesive to reduce peak stresses. 

 Large area bonds can be made with a minimum work force without special skills. 

 Damping characteristics and noise reduction are superior to riveted assemblies. 

 Reduction of corrosion, due to absence of fasteners, and the additional benefit of the 

adhesive acting as a sealant within a joint. 

 Elimination of welding and drilling processes where joining is required in explosion-

proof environments, e.g. steel repair on offshore oil installations. 

 

It can be seen that there are many advantages to using adhesive bonding compared to 

mechanical fasteners, but it is, however, difficult to analyse, design, and optimise adhesive 

bonded joints. 

Carbon Fibre Reinforced Polymer (CFRP) materials are increasingly being used for 

structural retrofitting or repair of steel members in recent years [6, 7]. Adhesively bonded 

joints have become more important, since the CFRP strips can be conveniently and 

efficiently joined to the steel elements by using structural adhesives. CFRP has shown some 

unique advantages above other construction materials, such as excellent resistance to 

corrosion and environmental degradation, high longitudinal strength, high fatigue endurance 

and reduced weight. These features have made the CFRP adequate for reinforcing structures 

that are being affected by degradation.  

Cross-ply laminates are composed of unidirectional layers (with parallel aligned fibres). The 

direction of the layers alternate in mutually perpendicular directions, such as 0/90/0/90..., 

where the angle given is relative to the load direction. When a cross-ply laminate of, for 

example, carbon/epoxy is loaded in tension along the longitudinal direction, it often exhibits 

several distinguishing modes of deterioration such as transverse matrix cracks, delamination 

and debonding of fibres preceding final fracture under loading. Matrix cracking is the first 

stage of damage, and although it is not catastrophic in nature, its presence can influence the 

overall mechanical behaviour of the structure [8, 9]. The existence and multiplication of 

matrix cracks can degrade the life of the structure by introducing other more severe damage, 

such as delamination and fibre breakage [9, 10]. 
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The stress analysis of adhesive joints is primarily based on two approaches: the strength of 

materials approach and the linear elastic fracture mechanics (LEFM) approach. The former 

approach generally utilises a maximum stress or maximum strain as a failure criterion. 

Failure is assumed to occur when the maximum stress or strain at the end of the bonded 

overlap reaches a critical value. The LEFM approach assumes that flaws are present in 

materials but that they are very small and uniformly distributed. The strength of materials 

approach is more complicated than it seems for several reasons. One complexity arises in 

the determination of local stresses in the adhesive joint. 

In addition, stresses typically occur from the application of loads on a system; however, 

deformation of adherends with respect to the adhesive and stress concentrations in the joint 

can also produce large local stresses. Another reason for complications is that each joint 

geometry or design can produce different types of stresses and in different locations. 

Adhesive materials, as well as all polymers, inherently contain flaws such as porosity voids 

or micro cracks. The realisation that these voids actually govern the performance of the 

material has led to the application of linear elastic fracture mechanics in the study of adhesive 

joints. The LEFM approach was used by Fernlund and Spelt [11, 12] and Papini and Spelt 

[13], who employed an energy-based fracture mechanics criterion to predict failure of elastic 

adhesive joints which contain a substantial plastic zone, occurring ahead of the macroscopic 

crack tip of the adhesive layer. However, when the adherends deform plastically, the 

application of the LEFM is inappropriate, because the plastic deformation of the adherends 

will, in general, affect the crack tip stress field, and thus the fracture process occurring in the 

adhesive layer. Although it has been well recognised that the influences of adherend 

plasticity are significant [14, 15], analytical tools are far from being established.  

Tvergaard and Hutchinson [16, 17, 18, 19] made great progress in developing a cohesive 

zone modelling (CZM) approach to analyse the interfacial failure of bi-material systems. 

The CZM is characterized by the traction-separation relation that describes the fracture 

process occurring ahead of the crack tip. It was shown that this modelling approach is a 

promising tool for analysing interfacial failure in the presence of extensive plasticity in the 

surrounding materials, which is similar to the case of plastically deforming adhesive joints. 

A detailed review of the strength of materials approach, the fracture mechanics approach 

and the cohesive zone modelling approach will be given in Chapter 2 
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1.2 Aims and objectives    

The aim of this thesis is to evaluate and assess failure and behaviour of long double lap shear 

(DLS) joints, based on thick adherend carbon fibre reinforced polymer (CFRP) materials 

and steel in ambient conditions. The study is based on experimental and numerical 

programmes. The experimental programme is based on a mechanical testing method, which 

compared with the numerical method, both use strength of material and cohesive zone 

modelling (CZM) approaches.  The main goals of this work are: 

 To conduct mechanical testing and assess failure of various DLS joints using a 

standard fabrication method and materials 

 To determine strength and fracture materials properties using standard materials 

testing methods. 

 Perform the more tests according to testing standards to obtain the strain energy 

release rate for pure mode I and pure mode II.  

 To conduct numerical modelling including modelling the adhesive-adherend 

interface and composite matrix layers using the principles of CZM. 

 To validate the developed methodologies and test apparatus by comparing the 

experimental results with CZM numerical models. 

 To analyse how interfaces with different properties affect the response of 

steel/carbon composite double lap shear joints under tensile loading. 

 To understand how load transfer and failure occur along the adhesive layer and epoxy 

resin layers in CFRP composite under tensile loading condition. 

 To perform a damage initiation and propagation analysis in the DLS joint using 

cohesive elements containing the intrinsic CZM. 

 To obtain stress distributions, damage initiation and propagation. 

 To predict and assess the structural failure of the joint, including delamination of the 

composite. 

 To determine the effects of the design parameters of adherend thickness, overlap 

length and fabric orientation on the joint’s failure. 

 To compare the prediction of joint failure, using CZM approach with strength limit 

approach. 
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1.3 Outline of the thesis  

The structure of the thesis is as follows: 

Chapter 2: Literature review - Review on bonded joints covering lap joint theories, 

adhesive modelling, experimental/numerical modelling. The main parameters effect on the 

adhesive bonding design and the failure mechanisms are explained. The background 

research about hybrid joints is considered. Finally, a discussion of strength of materials 

approach and cohesive zone modelling are used for failure prediction.  

Chapter 3: Experimental work (material properties) – Explains the experimental 

procedures on various materials used in this research to obtain essential mechanical 

properties. Rule of mixtures equation and experimental testing are used. Also, this chapter 

focuses on experiments issued from fracture mechanics, dedicated to characterisation of the 

damage and fracture behaviour of adhesive and resin. The double cantilever beam (DCB) 

test is used to measure the fracture resistance of adhesive and resin joints under mode I 

(tensile), and ENF test is used to measure the mode II (in plane shear) conditions. The 

method used is British Standard (BS 7991:2001). 

Chapter 4: Experimental investigations of DLS joint - Considers the experimental 

fabrication and testing of the DLS joints with different overlap, outer adherend thickness 

and orientation angle.  The preparation of the specimen, the test procedure and the 

instrumentation is described. Additionally, the experimental results, including load-

displacement curves and failure surface for each different type of hybrid joint, are presented. 

Finally, the strain gauges attached to the composite laminate and steel adherends at the 

specified position are illustrated, and load strain curves are presented. A high speed camera 

was also used in an attempt to locate where failure initiates in the DLS joint. 

Chapter 5: Numerical simulation of DLS joint based on strength of material approach 

- This chapter presents the geometry and configuration of the double lap shear (DLS) joint, 

meshing methodology and mesh convergence. This chapter attempts to identify the critical 

stress locations that occur in a steel/CFRP hybrid.  

Chapter 6: Numerical investigation of pure mode I and mode II - This chapter presents 

a finite element modelling with cohesive elements of the tests of fracture mechanics already 

discussed in chapter 3, and a comparison between the results of the modelling and those 

obtained from the experimental tests. The tests considered in this chapter for modelling are 
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the DCB test (mode I) and the ENF test (mode II). The analysis was carried out with the 

commercial finite element software ABAQUS 6.9-1. 

A two-parameter bilinear cohesive law was used in the study to define the interfacial 

behaviour under both mode I and mode II loadings. A stress-based quadratic criterion was 

used. The inverse technique was used to identify the cohesive parameter values by prediction 

of load-displacement curve matching with the experimental measurement. The convergence 

study on mesh density and the convergence study on the cohesive element viscosity for both 

model I and II was studied. The numerical simulation and the results of DCB and ENF 

models are under discussion. 

Chapter 7:  Numerical analysis of DLS joint based on cohesive zone model - This chapter 

presents the geometry of 2D DLS joint model, mesh type, cohesive zone model parameters 

in ABAQUS, and the simulation and results for different types of joint geometry. FEA 

results were compared with experiments and numerical analysis.  

Chapter 8: Discussion, conclusion and future work - Provides overall discussion on the 

experimental results, numerical modelling and their failure modes. This chapter explains the 

FEA results of both strength of the material model and cohesive zone model, and compares 

them with experimental results. Also discussed is the prediction failure of DLS joints. 

Finally, this section concludes with an overview of this thesis, followed by proposals for 

future work.  
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Chapter 2 

2 Literature review 

2.1 Introduction 

Fibre reinforced polymer (FRP) composites are finding increased usage in structural 

applications, in particular for aerospace, marine, construction and automotive purposes. One 

of the critical issues in these applications is the associated damage and failure mechanisms 

of FRP laminate composite/structures bonded joints under tensile loading. 

In this chapter there is background information on composite materials, adhesive joint design 

and application of adhesive joints and carbon fibre reinforced polymer (CFRP) in some 

fields. The main parameter effects on adhesive bonding design and the failure mechanisms 

of composite joints are explained. Finally, a discussion of strength of materials approach and 

cohesive zone modelling are used for failure prediction, and the background research about 

double lap shear (DLS) joint is considered. In addition, the chapter reviews some studies 

regarding the application of numerical simulation technique used for steel/CFRP joints. 

2.2 Composite materials 

This section gives explanations for the general characteristics of the composite materials. 

The composite materials can be defined as materials, obtained from the combination of two 

or more materials, whose properties are different from their individual components [20]. 

These materials consist of two or more physically and/or chemically distinct, suitably 

arranged or distributed phases, with an interface separating them. Composite materials have 

two phases, which are continuous, known as the matrix, and non-continuous, known as the 

reinforcement. The dimensions and shapes of reinforcement constituents are very important 

in determining the mechanical properties of the composite. Also, the different fibre 

orientation and stacking sequences have many effects on the structural response and failure 

mechanisms of the composite. 
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2.2.1 Matrices 

Most composite materials use a polymeric matrix in their construction. These matrices can 

be divided into two categories, which are thermosetting resins and thermoplastic resins, 

depending on reaction to heat. The two main thermosetting resins used commercially are 

epoxy-based and polyester. Other thermosetting resins include vinyl-ester, silicone and 

phenolic. The matrix material plays an important role in the overall function of the composite 

and must be able to satisfy a number of somewhat conflicting demands regarding strength, 

toughness, moisture and environmental resistance, elevated temperature properties, and cost 

[21]. Their main role is to bond the reinforcement fibre together, keeping them aligned and 

protecting them from damage. Alignment is crucial to prevent the creation of complex 

loading systems within the material. A common problem experienced with polymeric 

matrices is the shrinkage associated with them when undergoing curing [22]. Shrinkage 

during curing and thermal contraction during cooling introduces residual stresses within the 

material, and hence will have a detrimental effect on the FRP’s mechanical properties.  

Epoxy resins are widely used for a variety of applications, such as some of the most effective 

engineering adhesives and water resistant coatings. Epoxies are formed by condensation of 

epichlorohydrin and polyhydroxy compounds. Epoxy resins have higher strength and 

adhesion to fibres than polyester. This however comes at a higher cost relative to polyesters, 

especially in processing. Resins are normally based a two part resin consisting of an epoxide 

polymer mixed with a hardening agent, and are cured by a chemical reaction between the 

two, usually under elevated temperature conditions.   

Polyester resins are the most widely used of all resin systems in FRP materials. Polyesters 

are formed by a condensation reaction between a glycol and an unsaturated dibasic acid. 

Their effectiveness follows from their moderate cost. In general the resins have good 

performance in a marine environment, ease of use within hand lay-up or spray-up fabrication 

processes [23]. The chemical reaction itself generates exothermic heat which, although 

helping to cure the resin, can damage it if the resin is too thick, by producing voids. Also, 

this resin suffers from high shrinkage during curing, which will have a detrimental effect on 

the strength of the finished laminate.  

Typical mechanical properties of some commercially available resins are found in Table 2.1, 

which shows the superiority of epoxy over polyester in terms of mechanical properties and 

adhesion (shrinkage). The selection of matrix material type depends on the mechanical and 

chemical properties. 
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Table 2.1: Comparison of resin properties [23, 24] 

Material Young's 

Modulus 

(GPa) 

Poisson's 

Ratio 

Tensile 

strength 

(MPa) 

Failure 

strain 

(%) 

Heat 

distortion 

temp 

(°C) 

Relative 

cost 

Shrinkage 

(%) 

Polyester 3.6 0.36 60 2.5 95 1 4-7 

Vinyl 

ester 
3.4 - 83 5 110 1.8 6-10 

Epoxy 3 0.37 85 5 110 2.3 3-4 

Phenolic 3 - 50 2 120 0.8 8-10 
 

2.2.2 Fibres 

Fibres are a type of filler which are added to the matrix to improve its qualities. While 

matrices are generally ductile and have good fracture toughness, fibres provide stiffness and 

resistance to both creep and wear. They can either be short, continuous or woven within the 

matrix material, and aligned in a variety of different ways. The short, discontinuous fibres 

exist as chopped strands and can either be aligned in a particular direction or randomly 

dispersed, whereas the continuous fibres will have a distinct orientation. Chopped fibre 

composites will lower values of strength and stiffness compared to composites with 

continuous fibre reinforcement.  

The fibre orientation is a vital component of the fibre material strength as they are much 

stronger when loaded longitudinally than transversely. The fibre alignment has a significant 

effect on the failure load of a joint and its associated mode of failure. Many applications will 

impose a combination of different stresses and load directions upon the structure, which is 

of particular importance when considering the anisotropic nature of composite fibre 

reinforcement. A way of countering this would be to lay up layers of varying orientation to 

obtain quasi isotropy within the composite material.  

Carbon fibres have good strength-to weight and stiffness-to-weight ratios which has 

encouraged their widespread use within the aerospace industry, and also in some applications 

of sporting goods. This high strength and stiffness, combined with low density and an 

intermediate cost, have made their use second only to glass fibres [21]. Different 

manufacturing processes allow for variety in the properties of the carbon fibres. 

Intermediate-modulus and high-strength fibres are usually made using the synthetic resin 

polyacrylonitrile (PAN) as the raw material. The PAN is heated and stretched to achieve 

proper alignment and to remove any non-carbon material. Fibres with a higher modulus can 
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be manufactured at a reduced cost using petroleum pitch, but those produced in this manner 

have much lower strength and so are not suitable in structural capacities.  

2.2.3 Fibre Orientation  

Having inspected the common constituents of a composite material, details will now be 

given of the various possible arrangements of these parts within the material, see Figure 2.1. 

As mentioned before, the fibres used for reinforcement can be arranged within the matrix 

material as randomly dispersed chopped strands, woven into a cloth or in unidirectional 

layers. The latter configuration will be used within this investigation and described in further 

detail.  

 

2.2.4 Unidirectional Lamina 

Unidirectional lamina (ply) consist of long continuous fibres all orientated parallel to one 

another and bound together by the matrix. For analysis they can be idealised to be arranged 

in a uniform manner as can be seen in Figure 2.2. In reality, most unidirectional lamina 

contain many voids which have detrimental effects on the mechanical properties of the 

composite. As mentioned above, unidirectional laminas have very good tensile strength in 

the direction of the fibres, however their transverse strength is significantly lower. For this 

and other reasons, unidirectional laminas are used to build up laminates. Here, the 

unidirectional layers are bonded together with the fibre directions of each layer, typically 

 

 

Figure 2.1: Fibre arrangement patterns in the layer of a fibre-reinforced 

composite [25] 
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orientated in different directions, to give different strengths and stiffness of the laminate in 

different directions.  

 

 
Figure 2.2: Unidirectional lamina lay-up to produce cross ply laminates  

 

2.2.5 Cross ply Laminate 

Carbon fibres cross ply composite laminates are formed by combining individual layers 

(lamina) into a multi layered structure. Continuous fibre composites combine unidirectional 

lamina (fibres aligned) into a structure with different layers in a laminate, generally having 

the fibres oriented in different directions. Figure 2.3 shows the carbon fibres cross ply 

composite prepared by vacuum infusion processing of monolayers with rich resin regions 

between the individual layers. 

 

 

 
Figure 2.3: Illustration of a) the lay-up of a 5 layer cross ply laminate and b) 

optical micrograph of layer cross ply laminate [26] 
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2.3 Carbon fibre reinforced polymers   

Carbon fibre reinforced polymer (CFRP) can be defined as a composite material consisting 

of carbon fibres, which provide strength, stiffness, and load carrying capacity, and a polymer 

matrix [27]. During the past few decades the aerospace, marine and automobile industries 

have witnessed expanded use of advanced composite materials. More recently, the 

construction industry has started to use composites as strengthening materials [28]. While 

the strengthening and rehabilitation of concrete structures by CFRP composites have 

attracted considerable interest [29], the first application of bonding CFRP material to 

metallic structure was in mechanical engineering applications [30]. 

The mechanical properties of CFRP composites depend on the type and orientation 

(transverse or longitudinal direction) of carbon fibre, percentage of resin material and curing 

conditions. Some researchers have focused on the effect of the adhesive materials because 

of the fact that the success of this technique depends mainly on the ability of the adhesive 

material to keep transferring the load between the adherends, e.g. CFRP composite 

laminates. This transferring is affected by many factors, such as surface preparation, bonded 

length, type of adhesive material, and thicknesses of adhesive and laminate. 

CFRP laminates have been successfully used to repair damaged aluminium and steel aircraft 

structures [31, 32]. Bonding of composite laminates has also been shown to have many 

advantages for marine structures [33, 34]. Bonding techniques are critical to the success of 

attaching CFRP to steel members. To provide a strong bond between the CFRP composite 

and a steel member, the steel surface needs to be prepared by using an abrasive disk or sand 

blasting to remove rust and paint, and then cleaned by acetone to obtain a rough and clean 

surface [35]. At the same time, the surface of CFRP laminate can be treated by light grade 

P120C sandpaper to clean the bond area, and then acetone used to clean the bonding surfaces. 

2.4 Moulding processes 

Continuous fibre materials are available in a number of different forms, with the specific 

form utilised depending on the manufacturing process. The majority of composite laminates 

using infusion technology use epoxy resin or polyester in this process. Prepreg technology 

is currently exclusively epoxy based. A simplistic overview of the fundamentals of specific 

manufacturing techniques is presented in the following sections. 
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2.4.1 Infusion moulding 

The general principal of infusion technology is to draw a resin into the reinforcing fibres and 

fabrics using a vacuum. The vacuum reduces the pressure at one end of the fabric stack 

allowing atmospheric pressure to force the resin through the stack. The speed and distance 

with which you can infuse a fabric stack will be dependent on the viscosity of the resin and 

the pressure gradient acting on the infused resin. 

 

As shown in the vacuum bagging illustration Figure 2.4, the metal panel was coated by a 

mould release agent before stacking the peel ply, preform, flow media and vacuum bagging 

film on top of it. The vacuum bag with inlet and exit was set up and sealed with circuitous 

and occlusive mastic tape and vacuum bagging film. 

2.4.2 Autoclave moulding 

This section will briefly describe the manufacturing process used when building laminates. 

The individual lamina themselves usually come in “prepreg” form. Prepregs are a partially 

cured mixture of fibre and resin which are lined with a removable paper and wound onto 

spools. These prepregs come in either unidirectional tape or as woven cloth which, once 

partially cured, must be refrigerated to prevent further curing. Because the individual fibres 

are relatively straight, the use of unidirectional prepreg provides a method, along with 

filament winding, of achieving finished products with good mechanical properties [21]. 

 

 

Figure 2.4: Vacuum infusion moulding showing the vacuum bag, sealant, outlet to 

vacuum pump, inlet to resin supply and the preform surrounded by peel ply 
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Figure 2.5: Prepreg moulding showing the vacuum bag, sealant, outlet to vacuum 

pump and the preform surrounded by peel ply 

 

 

The curing routine for the prepreg panels’ autoclave moulding was much easier than for 

Vacuum infusion. The prepreg panel was bagged by peel ply and release film on both sides, 

as shown in Figure 2.5. A breather fabric was placed on the top of this package in order to 

provide venting for gas in the vacuum bag. A full vacuum was applied before placement in 

the autoclave. To ensure a good bond between the laminas, the sequence of stacked plies are 

cured in a vacuum under pressure and at elevated temperatures, in an autoclave. Prior to the 

part being placed in the autoclave, it is placed inside a vacuum bag and the air is expelled. 

The purpose of this is to consolidate the lay-up, and draw out any gasses given off during 

the curing process. 

2.5 Adhesive bonding     

Adhesive bonding is desirable in many circumstances, because it eliminates the stress 

concentration factors associated with mechanical means of joining. Introducing holes into a 

structure, in order to accept mechanical fasteners, significantly reduces the strength of the 

composite, and therefore composite materials are prime candidates for adhesive bonding. In 

this section the adhesion and properties of adhesives, such as wetting and surface 

preparation, are all discussed.  

2.5.1 Adhesion 

Adhesion occurs when the adhesive interlocks the parts by an interlocking action around the 

surface roughness of the parts [36], as shown in Figure 2.6. The mechanism of adhesion is 

not fully understood, and several theories have been proposed. The main mechanisms has 
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been proposed by Kinloch [37] through absorption theory. This states that the parts are 

initially joined together by intermolecular contact. This intermolecular contact is achieved 

through molecular forces on the surface of adhesive and adherend.  Kinloch [38] also found 

that mechanical interlocking and surface irregularities are the main source of adhesion.  

Bikerman [39] suggests that the mechanical inter-locking between the bonded surfaces was 

sufficient to have a strong interface. Voyutskii [40] proposed that the adhesive particles 

dispersion established adhesion across the interface. Deryaguin [41] suggests that the 

electrical charge layer at the interface formed adhesion. Staverman [42] pointed out that the 

adherend surface forces, due to chemical composition at the interface, followed adhesion. 

Perhaps the most important factor that can determine the adhesive’s strength is the ability of 

the material to be wetted. Wetting can simply be described as the contact angle between a 

fluid and a surface when they are brought into contact. If a surface is said to have high surface 

energy, then a drop of liquid will be seen to spread over the surface, or wet the surface 

effectively. On the other hand, if the surface energy is low, then the droplet will remain as a 

droplet on the surface. Therefore, in order to achieve effective wetting, there needs to be 

strong attraction between the adhesive molecules and the substrate surface [43].  

 

 

 

Figure 2.6: Mechanical Inter-locking [37] 

 

Several authors [44, 45] have noticed the wetting behaviour and proposed different 

hypotheses, which differentiate the wetting features between smooth and rough surfaces. 

The degree of wetting can be measured by the contact angle in which the adhesive drop is 

plunged on the adherend surface, with the assumption that the adhesive drop should not 

interact with the surface. The size of adhesive drop is in tens of micro litres, measured by a 

goniometer. Such measurements are based on direction i.e. receding and advancing contact 

angles. The contact angle hysteresis is obtained under receding and advancing contact angle 
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conditions. Surface roughness and molecular changes in the adherend surface with the 

interaction of the adhesive are the possible reasons for contact angle hysteresis [44].  

2.5.2 Surface preparation 

Surface preparation plays an important role in a joint’s strength and durability. For the 

development of a strong bond joint, intermolecular contact at the interface is very important. 

Moreover, thorough surface preparation is also imperative if an acceptable joint strength is 

to be achieved. Any sort of contaminant can ingress into the adhesive and have an adverse 

effect on the overall strength of the joint. However, no amount of preparation will ever be 

completely free a surface of contamination; even if the material surface has been newly 

machined, there may still be a surface film present due to metal oxides, carbon dioxide or 

water vapour [43].   

To ensure full utilisation of the applied CFRP material, surface preparation of the steel must 

be undertaken to enhance the formation of chemical bonds between the adherend and the 

adhesive. This requires a chemically active surface that is free from contaminants. Most 

surface treatment involves cleaning, followed by removal of weak layers and then re-

cleaning [46, 47]. Degreasing is a necessary first step in preparing most metals to remove 

oils and other potential contaminates. Brushing, ultrasonic or vapour degreasing systems are 

claimed to be most efficient in removing this surface contamination, especially when 

sufficient amounts of solvent are used (Hashim [34]). Contamination may then be removed 

with the excess solvent, rather than simply red posited on the surface as the solvent 

evaporates. 

As stated previously, the surface needs to be such that high wettability can occur by initiating 

high surface energies on the surface. This cannot occur on smooth surfaces, and so the 

surface of joints often needs to be prepared in order to maximize surface energy and ensure 

thorough wetting. Some of the methods often used are: mechanical abrasion, sandblasting, 

acidic etching and solvent degreasing, but some methods are restricted to composite 

material.  

The most effective means of achieving a high-energy steel surface is by grit blasting. 

Hollaway and Cadei, [6]. Baker [48] found that for composite joints, those that were grit 

blasted had higher peel strengths than those that were hand abraded. Shahid et al. [49] 

revealed that the surface roughness produced by grid blasting improved the strength of 
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cleavage joints. Harris et al. [50] also suggests that grit blasting along with degreasing or 

solvent will achieve good strength in dry conditions. 

All methods change the chemical composition of the surface as reported by Pocius [51]. 

Boone et al. [52] reported that whichever method is chosen, all result in changes in surface 

tension, surface roughness and surface chemistry, which in turn affect the bond strength.  It 

has been proven that roughening the surfaces prior to adhesion actually enhances the joint 

strength, and the effect of this is that any loose contaminant particles are removed from the 

surface.  This enhances mechanical interlocking with the adhesive [52]. Baker [48] proposed 

improved joint strength when the argon ion etching technique is used for surface cleanliness 

after grit blast. Wingfield [53] and Brockmann [54] pointed out that the joint bond strength 

is directly related to proper surface preparation of the parts to be joined. 

Sandblasting is unsuitable to prepare a composite surface prior to bonding. This is due to the 

fact that the extremely harsh abrasion caused by sandblasting would have actually damaged 

the fibres, and therefore the reinforcing nature of the composite material. Ultimately, this 

would have reduced the mechanical properties of the composite. 

Parker [55] suggests that in composite adherends, the initial bond strength is directly related 

to the surface preparation to remove all surface contaminations. Guha et al. [56] conclude 

that acrylic and urethane adhesives give better strength with only a wipe of the surface. Also 

epoxy adhesives give good strength with abrasion or flaming the joining surface. 

Wingfield [53] suggests various surface preparation methods for composites, which are as 

follows:  

“Dry clean rag wipe: good to remove surface dust only. 

Solvent wipe: solvent wipe is better than dry cleaning, but still oil /grease exists on the 

surface after the solvent wipe. 

Abrasion with emery paper: ideal for GFRP composites. 

Grit blasting: good for epoxy resin composites. 

Flame, laser, plasma: good for low surface energy thermoplastic.” 

2.6 CFRP and adhesive bonding applications  

CFRP offers high specific stiffness and strength in comparison with materials such as steel 

and aluminium. CFRP parts are currently used in aero-structures and assembled by 

mechanical fasteners. The first applications of hybrid (composite/metal) joints are met in the 
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aerospace structures, with the use of composite patch repairs of aluminium structures [57]. 

This type of design implies weight penalties emanating from the need to deal with the stress 

concentrations developed around the bolts. Moreover, bolts and rivets damage the 

continuous reinforcing fibres and, consequently, can greatly affect the overall load-carrying 

capacity of the structure [58].   

Adhesive bonding of aerospace components is a fabrication technique which has increased 

markedly in popularity during the last two decades. While adhesives have been used in a 

number of repair and maintenance operations they have yet to make a great impact.  

Military applications initiated the use of adhesively bonded advanced composites, and 

aircraft such as the F-18 and the F-22, which employed significant amounts of bonded 

polymer matrix composite laminates at wing skins and control surfaces [59]. Similar 

applications may be found on many types of commercial aircraft, whose economic operation 

benefits considerably from the reduced weight offered by the bonded composite assemblies 

(e.g. AIRBUS A380) Figure 2.7, where around 42% of the joints are based on adhesive 

bonding structure [60]. Another example of the extensive use of CFRP is in Figure 2.8, 

which shows a fuselage section of the A350 with skin panels, doublers, joints and stringers 

entirely made of carbon fibre composites. 

 

 

Figure 2.7: Adhesive bonding applications at the new AIRBUS A380 [60] 
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Figure 2.8: A fuselage section of the A350 
 

 

Composite and adhesive bonding has been adopted by the marine industry since the 1980s. 

The construction of composite superstructures has been increasing in the use of composite 

materials for naval superstructures [61]. The French navy have implemented such a 

superstructure on their La Fayette class frigate in the form of a helicopter hangar [62, 63]. It 

has been a field of research by several scientists since then, with the design of adhesive joints 

in marine structures (deck-to-hull joints) gaining the greatest focus. Specific structural parts 

of a ship, such as superstructures, bulkheads, masts or even the entire deck, may be replaced 

by composite materials [61, 64, 65, 66], properly designed and adhesively bonded either to 

composite or metal parts. The study of composite hybrid joints has been extended to 

applications in the marine industries [62, 63, 61, 67]. Figure 2.9 presents a modern large-

scale application where a composite deck is adhesively bonded to a steel hull.  

Additionally, modern adhesive bonding technologies offer many techniques for 

repairing defected structural elements. By using an adhesively bonded patch, the repair is 

much easier and quicker to carry out. The design of each repair is a very promising technique 

in marine applications, where carbon, glass or combined fabric patches are either directly 

laminated, or cured composite patches are adhesively bonded on the cracked or corroded 

area of metallic parts, for example, the fuel tank, water tank, or hull of an oil tank. 

This technology is advantageous in the marine industry [67, 68] since the hot work of 

welding is avoided, thus reducing the risk of a fire. Also, if a composite material is used for 
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the patching of steel, then the materials used are easy to transport and handle, with no need 

of heavy lifting machinery.  

 

 

Figure 2.9: Composite deck adhesively bonded to steel hull [69] 

 

Adhesives are used in the construction industry in repair and strengthening of existing 

structures and new built structures. During the 1950’s and 1960’s an enormous amount of 

new constructions were built and, as these structures age, many faults have become evident. 

The repair substrate may be ordinary concrete or polymer concrete, with or without 

reinforcement. If increased structural capacity is needed then external plate bonding can be 

an alternative.  

 

 

Figure 2.10: CFRP used to strengthen bridges [70] 

 

During the 1970s and up to the end of the 1990s, steel plate bonding was not unusual; 

however in the last decade, the use of advanced composites for external strengthening has 
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become quite common ( a photo of a bridge strengthened this way is shown in Figure 2.10 

[71]). Also a great number of models for debonding have been presented [72, 73].  

 

 

 
Figure 2.11: World’s largest carbon composite bridge in Paris (left) and Composite 

bridge on UK motorway (right) [70] 

 

At the 2007 JEC-fair in Paris (the largest European exhibition on composite materials), the 

world's largest carbon composite bridge was shown. The carbon composite bridge is 24.5 

meters long and 5 meters wide and weighs only 12 metric tonnes. This makes the bridge 

about 30 times lighter than a comparable concrete bridge (Figure 2.11).   

Gradually, bridges are also being introduced on highways, where load-carrying capacity is 

much larger. A fibre-reinforced polymer bridge was constructed over the M6 motorway in 

the UK, carrying 40 tonnes which is the standard for road bridges on the highway network. 

The bridge uses a glass fibre composite deck on steel girders, placed on reinforced concrete 

substructures (Figure 2.11). 

 

 

Figure 2.12: External strengthening of concrete structures [70] 
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Finally, composites are an attractive solution for repair of damaged concrete structures. 

Carbon fibre-reinforced strips are glued on the exterior surface of the structure and help in 

taking up the loads of the structure (Figure 2.12). 

2.7 Adhesive joint design  

Many early bonded joint and repair designs were based on their joint strengths and optimal 

overlap lengths determined from lap shear tests.  With the analysis of adhesive bonds within 

certain limits of overlap length and adherend thickness, bonded joints can be designed so 

that the load capacity of the bond is greater than the unnotched strength of the adherends 

material [71]. 

2.7.1 Effects of adherend thickness 

Figure 2.13 shows a series of typical bonded joint configurations. Adhesive joints in general 

are characterised by high stress concentrations in the adhesive layer. These originate, in the 

case of peel stresses, because of unequal axial straining of the adherends, because of 

eccentricity in the load path. Considerable ductility is associated with shear response of 

typical adhesives, which is beneficial in minimising the effect of shear stress joint strength. 

Response to peel stresses tends to be much more brittle than that to shear stresses, and the 

reduction of peel stresses is desirable for achieving good joint performance. 

 

 

Figure 2.13: Different joint geometry of adhesive joints [72] 

 

From the standpoint of joint reliability, it is vital to avoid letting the adhesive layer be the 

weak link in the joint; this means that, whenever possible, the joint should be designed to 
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ensure that the adherends fail before the bond layer. This is because failure in the adhesive 

is resin dominated, and thus subject to effects of voids and other defects, such as thickness 

variations, environmental effects, deficiencies in surface preparation and other factors that 

are not always adequately controlled. 

This is a significant challenge, since the adhesives are inherently much weaker than the 

composite or metallic elements being joined. However, the objective can be accomplished 

by recognising the limitations of the joint geometry being considered, and placing 

appropriate restrictions on the thickness dimensions of the joint for the geometry. 

Figure 2.14, which has been used by Hart-Smith [74] to illustrate this point, shows a 

progression of joint types, which represent increasing strength capability from the lowest to 

the highest in the figure.  

When the adherends are relatively thin, the results from stress analyses show that for all of 

the joint types in Figure 2.14, the stresses in the bond will be small enough to guarantee that 

the adherends will reach their load capacity before failure can occur in the bond. As the 

adherend thicknesses increase, the bond stresses become relatively large until a point is 

reached at which bond failure occurs at a lower load than that for which the adherends fail. 

 

 
Figure 2.14: Joint geometry effects [74] 
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This leads to the general principle that for a given joint type, the adherend thicknesses should 

be restricted to an appropriate range relative to the bond layer thickness. As a result, each of 

the joint types in Figure 2.13 and Figure 2.14 corresponds to a specific range of adherend 

thicknesses, and therefore of load capacity. As the need for greater load ability increases, it 

is necessary to change the joint configuration to one of higher efficiency, rather than 

increasing the adherend thickness indefinitely. 

2.7.2 Joint geometry effects 

Single and double joints with uniformly thick adherends (Figure 2.13: Joints A, B, D and E) 

are the least efficient joint type, and are suitable primarily for thin structures. Single lap 

joints are the least capable, since the eccentricity of this type of geometry creates important 

bending of the adherends that magnifies the peel stress. Peel stresses are also present in the 

case of symmetric double lap strap joints, and become a limiting factor on joint performance 

when the adherends are relatively thick. 

Tapering of the adherends (Figure 2.13: Joints C, and F) can be used to reduce peel stresses 

in areas of the joint where the peel stresses are tensile, which is the cause of primary concern. 

No tapering is needed at ends of the overlap where the adherends butt together, because the 

transverse normal stresses at that location is compressive and small. For double strap joints 

under compressive loading, there is no concern with peel stresses at either location, since the 

transverse extensional stresses that do develop in the adhesive are compressive in nature 

rather than tensile; indeed, where the gap occurs, the inner adherends bear directly on each 

other, and no stress concentrations are present for the compression loading case. 

For joints between adherends of identical stiffness, the scarf joint (Figure 2.13: Joint H) is 

in theory the most capable, having the possibility of complete elimination of stress focus. In 

practice, scarf joints may be less durable, because of a tendency toward creep failure 

associated with a uniform distribution of shear stress along the length of the joint, unless 

care is taken to avoid letting the adhesive become stressed into the non-linear range. In 

theory, any attractive load capacity can be achieved in the scarf joint by making the joint 

long enough and thick enough. However, scarf joints tend to be used only for repairs of very 

thin structures.  

Step lap joints (Figure 2.13: Joint G) represent a practical solution to the challenge of 

bonding thick adherends. These types of joint provide manufacturing by taking advantage 
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of the layered structure of composite laminates. In addition, high loads can be transferred if 

a sufficient number of short steps and small increase in each step are used. 

2.7.3 Behaviour of composite adherends 

Polymer matrix composite adherends are affected much more by interlaminar shear and 

tensile stresses than are metals; as a result there is an important need to account for such 

effects in stress analyses of joints. Transverse shear and thickness of the adherends have an 

effect similar to the bond layer thickness. In addition, the adherend matrix is often weaker 

than the adhesive in shear and transverse tension. As a result, the limiting element in the 

joint may be the interlaminar shear and transverse tensile strengths of the adherend rather 

than the bond strength.  

The effect of the stacking sequence of the laminates making up the adherends in composite 

joints is important. For example, 90o layers placed adjacent to the bond layer theoretically 

act largely as additional thicknesses of bond material, leading to lower peak stresses, while 

0o layers next to the bond layer give stiffer adherend response, with higher stress peaks. In 

practice it has been observed that 90o layers next to the bond layer tend to critically fail the 

joint, because of transverse cracking which extends through those layers.   

2.7.4 Influence of fibre architecture on joint strength   

The fibre architecture (including tow size and fibre length) interaction with the fibre 

orientation was interesting, as this demonstrated that the choice of tow size and fibre length 

only become significant if the loading of the adhesive joint was away from the principal fibre 

direction. The laminate lay-up or fibre architecture has a great impact on the bonded 

composite joint strength and failure modes. The mechanical properties of many composite 

materials   are strongly dependent on fibre architecture and orientation, fibre volume fraction 

and matrix properties [75]. The problem with having varying orientations in the composite 

laminate is that stress concentrations that can arise from having differing local stiffness 

between the layers, that can cause premature failure of adhesive joints manufactured using 

a composite laminate. Mortensen [76] studied the effect of changing the stacking sequence 

of the plies in a laminate numerically. The findings demonstrated that the transverse normal 

stresses within the adhesive layer increased by up to 58% at the overlap ends when the 

stacking sequences were changed from 0˚ to 45˚. The shear stresses also increased by up to 
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39% when the stacking sequences were changed. This highlights the importance of having 

a 0˚ surface layer, as this limits the deformation in the top layer of the composite laminate, 

which in turn reduces the stresses imparted into the adhesive layer. 

Taib et al. [58] studied the effect of fibre orientation on the joint strength of single lap-joints 

using two different fibre orientations. Using [0˚, 90˚]s and [+/- 45˚]s composite laminates, 

the failure loads were 29% higher for those laminates using a [0˚, 90˚]s stacking sequence. 

The failure modes also changed with the fibre orientation, from a cohesive failure initiating 

in the spew fillet for the 0˚ surface fibre orientation to an inter-laminar failure for those 

specimens with a 45˚ surface fibre orientation. The elongation to failure was higher for the 

45˚ specimens, as the fibre orientation allowed for more deformation of the substrate, despite 

the failure load being lower [58].  

Lee et al. [75] presented the experimental investigation of pultruded GFRP decks under static 

load. Two types of fabric architecture were used, one fabric architecture with a [45o,90o,-

45o] and the other with a [0o,90o] fibre orientation. The general purpose finite element 

package ABAQUS was used for the verification of experimental results. It was found that 

the behaviour of all specimens showed linearly elastic and brittle fracture. They concluded 

from the experimental results that [45o,90o,-45o] deck exhibits higher stiffness and strength 

than [0o,90o] specimen. 

Meneghetti [77] modified the near surface layers of a composite material to change the 

adhesive/substrate interface. The static and dynamic properties of the joints were then 

analysed. The authors manufactured 2 different types of substrate, one substrate with a 

[+45°, 0°, 0°] near surface fibre orientation, and the other with a [+45°, +45°, 0°] fibre 

orientation. The presence of the extra 0° layer changed the failure mechanism of the samples 

when tested. In the [+45°, 0°, 0°] samples, simultaneous damage occurred in both the bond 

and within the substrate. For the [+45°, +45°, 0°] samples, the failure occurred entirely 

within the substrate itself. 

de Goeij [78] observed that when composite joints were subject to cyclic loading, the fatigue 

life of specimens was larger when the surface fibre orientation was 0˚ compared to +/- 45˚ 

surface laminates, which still outperformed those with a 90˚configuration. The failure modes 

were also similar to those observed by Taib et al. [58], with the 0˚ surface laminates failing 

at the interface or in the adhesive, whilst for the +/-45˚ orientations, the failures occurred 

either in the surface ply or between the +/-45˚ layers as inter-laminar failures [78]. 
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When investigating the effect fibre orientation has on the bond strength of a fibre, reinforced 

composite multiple researchers have found that lay-up patterns with larger effective moduli 

carry greater loads [79, 80, 78, 77, 81].  

2.8 Previous work on hybrid connections 

Many experimental works and theoretical studies address the bonding of CFRP composite 

on steel members, each dealing with a different parameter to discover more advantages of 

the material and its suitability for steel structures. 

Mertz and Gillespie [82] investigated the advantages of using advanced materials in the 

rehabilitation of deteriorated steel bridges. In their small-scale tests, they retrofitted eight 

1.52 m long W8×10 steel beams with a yield strength of 250 MPa using five different 

retrofitting schemes. They reported an average 60% increase in strength for carbon-

retrofitted specimens. They also concluded that in order to avoid the possibility of galvanic 

corrosion, an electrically insulating layer of composite, such as GFRP, could be placed 

between CFRP and steel. 

A number of researchers have studied the effect of overlap length of CFRP strips bonded to 

steel structures. Miller et al. [83] determined where force transfer occurs within the bond of 

CFRP to steel from tension tests, performed with steel plates reinforced on each side with 

CFRP laminate strips. Test results and an analytical model, validated by strain gauges on 

one sample specimen, and indicated that 98% of the force transfer occurs within 100 mm of 

the end of the CFRP strips. With similar materials, Lam et al. [84] concluded that increasing 

the overlap bond length from 100 mm to 300 mm for a series of steel/CFRP double lap shear 

joints did not significantly increase the bond strength of the joint. This was due to the 

presence of significant bond stress concentrations near the end of the CFRP and steel 

materials. Increasing the bond length did however increase the maximum ductility of the 

joints. 

Fawzia et al. [85] examined different bond lengths of normal modulus CFRP to find an 

effective bond length by testing CFRP/steel double strap joints. The effective bond length 

of CFRP is a certain value “beyond which no significant increase in load carrying capacity 

will occur”. This study shows the test results for different bond lengths, and shows the 

plotting of ultimate load capacity verses the bond length. According to the results, the 
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effective bond length is 75 mm on each side of the joint, which means 75 mm on notch right 

side and 75 mm on notch left side. 

Lenwari et al. [86] studied analysis predictions of development length by testing seven steel 

beams strengthened with conventional modulus CFRP laminate strips using three different 

lengths. The different strip lengths considered were 500 mm, 650 mm and 1200 mm. Both 

of the shorter lengths failed by debonding at the same applied moment, while the 1200mm 

length failed by rupture of the CFRP strip. Measured strains at a distance of approximately 

100 mm from the end of the CFRP were required to achieve conformance with the predicted 

strains obtained from an elastic-plastic section analysis. The measured 100 mm length was 

also required to conform to the predicted adhesive shear stresses obtained from a stress-

based analysis, which uses differential equilibrium and compatibility to predict the shear 

stresses in the adhesive layer. For the stress-based analysis, this 100 mm length was found 

to be independent of the length of the CFRP. 

Liu et al. [87] report a study of the direct tension fatigue behaviour of bonded CFRP sheets 

used to create “strap joints” between two steel plates. This study reported an apparent fatigue 

limit of 40% of the ultimate static strength of the strap joint specimens. Below this limit, 

specimen failure and steel-CFRP bond behaviour were not affected by the applied fatigue 

loads. 

Schnerch [88] conducted an extensive research program into the performance of CFRP in 

strengthening steel monopoles and steel-concrete composite beams. A major component of 

this program was testing a series of epoxies to determine the optimal one for CFRP to steel 

bonding. An optimal one was selected through an elimination process by which the 

development length of the CFRP to steel was reduced with each test until the shortest length 

with CFRP rupture was determined. The tests were performed with CFRP bonded to the 

tensile flange of a Super Light Beam (SLB) 100x4.8 and tested under four-point bending. In 

this study, development length was defined as the length of bonded CFRP in the varying 

moment region. 

Roy et al. [89] have reported that a unidirectional laminate has more ultimate strength than 

cross–ply laminates in their examination of double lap shear joint. The effect of laminate 

stacking sequence on crack initiation was studied by employing a strain gauge on the 

specimen. The failure was within the laminate itself, well before the adhesive showed any 
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sign of cohesive or interfacial failure; very few specimens were tested for this strength 

prediction. 

Hashim et al. [90] proposed design guidelines for the structural integrity of composite pipe-

work systems. They tested adhesively bonded taper/taper connections (GRE) and a double 

lap shear joint (steel) under a monotonic loading of 0.5 mm/min in an Intron universal testing 

machine. Two failures, adhesive layer and failure in composite adherend just outside the 

edge of the joint, were reported. von Mises criterion was used for numerical validation. 

However, the assumption made here is that the behaviour of double-lap shear joints might 

realistically simulate pipe joints of larger diameters. 

Altus [91] has analysed the double lap joint three dimensionally to observe the singularities. 

He pointed out that a 3D singularity exists at the corner point of the double lap specimen for 

the multi-material cases, which was not found in the 2D case. The shear energy, which 

represents the tendency for yielding, is observed at the 3D corner. Both the plane stress and 

plane strain solutions give higher bounds for the critical values, by which the need for 3D 

analysis is emphasised. 

McGeorge [92] used a fracture mechanics approach to develop a new model to predict the 

fracture load of bonding overlap joints. To understand the mechanical behaviour of bonded 

overlap joints and the effects of short and long overlap, McGeorge was able to derive simple 

formula for elastic energy in the adherends and adhesive, as well as for inelastic energy in 

the bondline. These formula could be derived to obtain the energy release rate G occurring 

at the most loaded end of the bondline for unbalanced single butt strap joint with long 

overlap. 

Wright et al. [67] investigated a fibre-reinforced composite–steel connection for transverse 

ship bulkheads. These joints were tested in tension, compression and lateral bending. They 

found that a suitable connection could be made, and that symmetric rather than asymmetric 

joints provide better strength characteristics. 

Boyd et al. [63] performed the experimental and numerical investigation of a similar hybrid 

joint, based on the design for the hangar-to-weather deck connections on La Fayette class 

frigates. They characterised the fatigue life of the hybrid joint and assessed the residual 

strength of the joint under in-plane and out-of-plane loading. They developed a stress 

reduction model to account for the nonlinear behaviour of the joint after their initial failure. 
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2.9 Analytical solutions of adhesive joints 

Before finite element analysis was widely available to researchers, stress distributions in the 

adhesive layer in bonded joints were analytically investigated. An analytical method is 

important to study critical parameters, and thus closed form solutions, in the preliminary 

design stage. Therefore, considerable efforts have been devoted to the development of 

theoretical and analytical methods for studying adhesively bonded joints. One of the most 

common adhesive joints that can be found in practice is the single lap shear joint [5]. In this 

analysis, the adhesive is considered to deform only in shear, and the adherents to be rigid. 

The adhesive shear stress (τ) is constant over the overlap length, and is given by τ = P/bl, 

where P is the applied load, b is the joint width and l is the overlap length. The value of the 

shear stress can be interpreted as the average shear stress acting on the adhesive layer.  

For a single lap joint in tension, Volkersen [93] derived a simple solution considering only 

shear stress in the adhesive layer and tensile load in the adherends. His shear-lag combined 

these elastic deflections with the shear deformation of the adhesive, and predicted that the 

shear stress should peak towards the ends of the adherends, as shown in Figure 2.15. In the 

middle of the joint, the shear stress will be a minimum. The tensile stress in the upper 

adherent is maximum at A and decreases to zero at B, so the strain must progressively reduce 

from A to B. The reduction of the strain in the adherends along the overlap and the 

adhesive/adherend interface cause a non-uniform shear strain and stress distribution in the 

adhesive layer.  

 

 

Figure 2.15: Deformations in single lap shear joints with elastic adherends [94] 

 

De Bruyne [95] adapted Volkersen’s single lap theory for double lap joints. De Bruyne 

modelled the adherends as bars which are allowed to deform in the longitudinal direction, 

uniformly through the thickness of the adherends. The adhesive layer was considered to be 
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a shear spring carrying only the shear stresses needed to transfer the longitudinal forces from 

the inner to the outer adherends. 

 

 
Figure 2.16: Deformations in single lap joints predicted with Goland and 

Reissner’s model [94] 

 

Goland and Reissner [94] made a significant contribution by taking into account the 

adherend bending moment and adhesive peeling effects, as well as adherends large 

deflection. Figure 2.16 illustrates the joint deformation they predicted under tensile loading. 

It can be clearly seen that the peel stresses peak at the ends of the overlap. This work has 

been widely used and evaluated experimentally and numerically by many investigators. 

Hart-Smith [96] proposed an improved model which removes the lumped overlap (assumed 

by Goland and Reissner analysis) restriction, by treating the adherends as beams on an elastic 

foundation, and providing stress solutions for linear elastic and elastic plastic adhesives. 

Hart-Smith has also applied his theory on composite laminated adherents, validating his 

results with respective numerical and experimental studies. There is no doubt that the earlier 

work done by Volkersen [93] and Goland and Reissner [94] was a major step forward in the 

stress analysis of adhesively bonded joints. But, according to da Silva et al. [97] their work 

has several limitations: they do not account for variations of the adhesive stresses through 

the thickness direction, especially the interface which are important when failure occurs 

close to the interface. The authors also support that the peak shear stress occurs at the ends 

of the overlap, which violates the stress-free condition, as presented in Figure 2.17. Analyses 

that ignore the stress free condition overestimate the stress at the ends of the overlap, and 

tend to give conservative failure load predictions. Crocombe and Adams adopted Goland 

and Reissner’s formulation [98]. Ojalvo and Eidinoff used a more complete 

strain/displacement equation for the adhesive layer to investigate the influence of adhesive 

thickness on stress distribution [99]. 
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Figure 2.17: Adhesive shear stress distribution when the stress free 

condition at the ends of the overlap is verified [97] 

 

Tsai et al. [100], improved the theoretical solutions of Volkersen and De Bruyne and Goland 

and Reissner’s for double lap and single lap adhesive joints, respectively. This study is based 

on the assumption of linear shear stress distributions through the thickness of the adherends.  

Additionally, other researchers have made contributions to theoretical analysis for 

adhesively bonded joints incorporating composite or steel adherends [100, 101, 102, 103, 

104].   

Zou et al. [101] presented an analytical tool for joint design. This tool is based on classical 

laminated plate theory, in conjunction with an adhesive interface constitutive model for 

balanced composite joints subjected to in-plane and out-of-plane loads. According to the 

authors, this promising tool can be easily extended to the application of various types of 

joints. 

Luo and Tong [105] presented closed-form solutions that predict accurate edge moment and 

adhesive stresses for an isotropic single lap joint. Their study is also based on the use of 

Euler beam theory. However, their analysis of adhesive joints can be highly complex if 

composite adherents are used, the adhesive deforms plastically, or if there is an adhesive 

fillet.  

In these cases, several differential equations of high complexity might be obtained for the 

non-linear and non-homogeneous. For these cases, numerical methods are more adequate. 
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2.10 Numerical solutions of adhesive joints 

Finite Element Analysis (FEA) is the most common technique used in adhesively bonded 

joints for stress analysis. One of the first applications for the use of FEA was to assess the 

influence of the spew fillet. Joint rotation and adherends and adhesive plasticity are other 

aspects where it is easier to use FEA. Adams et al. were among the first to have used FEA 

for analysis of adhesive joint stresses (Adams and Peppiatt [106], Crocombe and Adams 

[98], Adams and Harris [107], Adams et al. [108] and Adams and Davies [109]). The 

meshing of the FEA model is an important factor to obtain accurate results for the analysis. 

In FEA modelling there are methods to reduce the simulation time, such as submodelling, 

mesh refinement and symmetry boundary conditions.  

2.10.1 Strength of materials approach 

In the strength of materials approach, the maximum values of stress, strain or strain energy, 

predicted by the FEA, are usually used in the failure criteria, and are compared with the 

corresponding material allowable values. Initially, the maximum principal stresses were 

proposed for very brittle materials whose failure mode is at right angles to the direction of 

maximum principal stress. Establishing the failure modes in lap joints bonded with brittle 

adhesives, Adams et al. [5] extensively used this criterion with success to predict joint 

strength. However, because of the singularity of stresses at re-entrant corners of joints, the 

stresses depend on the mesh size used and how close to the singular points the stresses are 

taken. Although the criterion is sensitive to the mesh size used, the physical insight into the 

failure process is very clear, as the maximum principal stress is the most responsible for the 

failure of joints bonded with brittle adhesives. 

von Mises proposed a yield criterion, which states that a material yields under multi-axial 

stresses when its distortion energy reaches a critical value. This criterion was used by 

Ikegami et al. [110] to study the strength of scarf joints between glass fibre composites and 

metals. Hashim et al. [90] also used the von Mises criteria, at a prescribed distance from the 

point of singularity to predict joint strength, and to deduce scaling effect in pipes. It should 

be noted that this criterion is more applicable to material yielding than strength. 

Shear stresses have been extensively used to predict lap joint strength, especially in closed-

form analyses, considering a limiting maximum shear stress equal to the bulk adhesive shear 
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strength. These are also described here for a complete description of the continuum 

mechanics approach. 

John et al. [111] used shear stresses with a critical distance to predict the strength of double 

lap joints. Lee and Lee [112] also used the maximum shear stress in tubular joints. da Silva 

et al. [113] showed that for single lap joints, this criterion is only valid for brittle adhesives 

and short overlaps. This approach ignores the normal stresses existing in lap joints. 

When ductile adhesives are used, criteria based on stresses are not appropriate, because joints 

can still endure large loads after adhesive yielding. For ductile adhesives, Adams and Harris 

[107] used the maximum principal strain as failure criteria for predicting the joint strength. 

This criterion can also predict the failure mode. da Silva et al. [113, 114] have shown, for 

single lap joints, that the maximum shear strain criterion is very accurate for ductile 

adhesives. Crocombe [115] studied the failure of cracked and un-cracked specimens under 

various modes of loading, and used a critical peel stress at a distance from the singularity 

with some success. A critical damage zone has been suggested as an alternative criterion. 

Clark and McGregor [116] proposed that cohesive failure could be predicted when the 

maximum principal stress over a finite length exceeds the adhesive's allowable tensile stress.  

However, it was found for the latter criterion, the critical distance at which it should be 

applied varied with different modes of loading, because of the change in the plastic zone 

size. No general criterion for a given adhesive was presented. As most of them are dependent 

on parameters such as adhesive thickness, overlap length and adherend thickness, no general 

criterion of failure is available within these methods.  

The strain energy is the area under the stress-strain curve. Therefore, both stress and strain 

criteria can be related to strain energy. However, it should be noted that criteria based on 

strain energy take account of all the stress and strain components. As a result, they are more 

suitable as a failure criterion than either stresses or strains alone. 

2.10.2 Damage mechanics approach 

Generally fracture mechanics is suitable for showing separation due to the separation of two 

parts of the continuum, and is related to a crack which has been initiated and has known 

locations in the continuum. When the location of crack initiation and its propagation 

direction are unknown, fracture mechanics cannot be applied, as determining the crack 

propagation from which cracking initiates is required. Damage mechanics is suitable to 

predict the location of this critical flaw [117]. 
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The damage mechanics approach permits the simulation of step by step damage and fracture 

at a pre-defined crack path, or arbitrarily within a finite region, up to complete structural 

failure [118]. However, this approach is still under development, regarding more accurate 

modelling techniques, simple parameter determination methods, increase of toughness and 

elimination of convergence issues [119], and it is also under heavy operation in commercial 

FEA software packages such as ABAQUS [120]. The techniques for damage modelling are 

limited to a zero volume line or surface, allowing the simulation of an interface failure 

between materials, e.g. between the adhesive bond and the adherend [121], the interlaminar 

failure of stacked composites [122] or the interface between solid phases of materials [123]. 

Also, the damage is modelled over a finite region, within solid finite elements of structures 

to simulate a bulk failure [124] or along an adhesive bond to model a cohesive fracture of 

the adhesive bond [125]. 

 Cohesive zone model     

The cohesive zone model (CZM) regards fracture as a gradual phenomenon in which 

separation takes place across an extended crack tip, or cohesive zone and is resisted by 

cohesive tractions [17]. Thus, cohesive zone elements do not represent any physical material, 

but describe the cohesive forces which occur when material elements (such as adhesive) are 

being pulled apart. Therefore cohesive zone elements are placed between the adherends, and 

the implementation and calibrations of the models is mainly via FEA. The main asset of this 

approach is that it mixes the stress-based approach used to model the elastic range with the 

energy fracture approach used to model the degradation of the adhesive properties.  

An alternative method to linear elastic fructure mechanics (LEFM) exists in the form of 

CZM technique, which was first formulated by Dugdale and Barenblatt (1960 & 1962 

respectively) [126, 127]. This approach works by collating tractions (T) and displacement 

jumps (Δ) across cohesive surfaces on a crack line into which the fracture process has been 

combined. This relation works with the increase in separation across relative surfaces, 

meaning an increase in traction before a maximum traction is obtained (peak cohesive 

strength, σo), which is then followed by a softening curve describing the post-peak behaviour 

that eventually vanishes, allowing for traction-free crack surfaces to be created [128].The 

process of using CZM originates from the 1960’s; however, with the advances in modern 

FEA software, this technique is gaining momentum in terms of applicability and use in the 

field of progressive damage mechanics. An important aspect to the successful 
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implementation of a CZM involves the determination of the traction-separation relation 

used. This incorporates fracture parameters such as the fracture strength, σo, and the relevant 

fracture energy which is specific to the mode of loading. Due to the complexities faced in 

trying to obtain accurate values for the respective peak strength and fracture energy, many 

workers in this field have opted to compare these fracture parameters with idealised 

numerical simulations in order to achieve a best fit (Blackman et al  [129], Liljedhal et al 

[119] and Alfano [128]). The most common traction-separation relations that have been 

developed are the bilinear model, the exponential model and the trapezoidal model [128, 

130] as shown in Figure 2.18. 

 

 
Figure 2.18: Schematic of bilinear, exponential and trapezoidal CZM [128] 

 

Where σo represents the peak stress of the traction-separation relation, which has been 

argued to be of the same order as the tensile yield stress of the material used for the mode I 

loading case, which is something which will be analysed later in this report, when 

considering the mode I loading of the double cantilever beam (DCB) specimen [119]. The 

subsequent critical displacement jump at the peak stress is shown as ∆o, with the resultant 

failure point seen as ∆f (for the trapezoidal relation an extra displacement point, ∆2, is added 

at the end point of an additional plateau in the softening region, which aims to capture the 

softening behaviour in more detail in order to represent the ductility of the material more 

adequately).  

In FEA, the  cohesive zone model is represented by cohesive elements to connect the two 

surfaces of materials. Normally this connection is achieved by boundary constraint or 

sharing common nodes. In the simulation, cohesive elements hold the surfaces together until 



 

Chapter 2. Literature review 

 

 

37 

 

the stress value at any cohesive element reaches the critical value to initiate the crack, and 

then complete the failure. 

The cohesive zone model is a great tool to simulate the initial crack and crack propagation 

along the interface between materials. Researchers determine cohesive zone parameters in 

several ways. In the beginning, researchers assumed the values of parameters depending on 

which value could make the best results compared with the test results. Later, Yang et al. 

determined these parameters via DCB or end notch flexure (ENF) experiments, but needed 

to compare their results with tests of bulk materials [121]. This typical approach was also 

applied by Andersson and Stigh [131]. Liljedahl et al. used the cohesive zone for their mixed-

mode flexure (MMF) simulation via determination of the initial traction stress from the test 

curve of load-displacement, then determining the fracture energy by correlation of the 

predicted failure load with the experimental failure load [119]. 

In this work, the sensitivity of the bilinear CZM parameters are tested for an adhesive joint 

consisting of a DCB specimen in order to monitor crack initiation and propagation using the 

British Standard (BS 7991:2001) [132]. Also, an end notched flexure (ENF) test was used 

to determine the parameteres of mode II. These help to find the model parameters before 

implementing them into the double lap shear joint model.   

 Determination of cohesive zone parameters     

Finite element analyses that include CZM techniques offer a powerful means to account for 

the largely nonlinear fracture behaviour of modern adhesively bonded joints, but the CZM 

parameters require careful calibrations by experimental data and respective validation in 

order to accurately simulate the failure process. Despite this fact, standardised methods for 

the definition of the critical stresses are not yet available. In recent years, many works have 

been published regarding the definition of the CZM parameters (GIC, σo and GIIC, τo in Mode 

I and II, respectively) and a few data reduction techniques are currently available (e.g. the 

property determination technique, the direct method and the inverse method) that enclose 

varying degrees of complexity and expected accuracy of the results. 

By the direct method, the complete CZM law and the respective shape for a given material 

strip or interface can be precisely estimated by differentiation of the G-Δ curve [131]. The 

most commonly used experimental set-ups in order to measure Mode I and Mode II cohesive 

laws are the DCB and the ENF test, respectively, as shown in Figure 2.19.  Ji et al. [133] 

measured the Mode I cohesive laws of a bonded DCB joint, trying to provide data for the 
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parameter calibrations in numerical models, and also to investigate the relation between 

adhesive thickness and interface toughness. The same authors [134] have conducted 

experiments for measuring the Mode II cohesive laws by testing bonded ENF specimens. In 

both cases LOCTITE Hysol 9460 was utilised as the adhesive material system. 

 

 
Figure 2.19:  Double Cantilever Beam (a) and End Notch Flexure (b) 

specimens for measurement of the pure Mode I and II cohesive laws 

 

Andersson et al. [131] used a direct method to determine the continuum CZM parameters in 

Mode I of a ductile adhesive bond of Dow Betamate® XWI044-3 in a DCB test 

configuration, after approximation of the G-Δ data to a series of exponential functions to 

reduce errors in the measured data. In the work of Carlberger et al. [135], the continuum 

CZM laws of a thin bond of a ductile adhesive (Dow Betamate® XWlO44-3) were 

determined in tension and shear using the DCB and ENF test configurations, respectively. 

The values of GΙC and GΙIC were derived by a J-integral formulation to accurately capture the 

large plastic straining effects present at the crack tip of the ductile adhesive [136].  

For the measurement of mixed mode cohesive laws, different experimental set-ups have been 

used. Efforts have been made to find a test set-up that will allow testing under the full range 

of mode-mixed, which means from pure Mode I to pure Mode II, with just one type of 

specimen geometry. One of the most used experiment set-ups is the Mixed Mode Bending 

(MMB), shown in Figure 2.20, providing an easy variation of the mode ratio by just altering 

the lever length of the loading lever [137]. The MMB test can be considered as a 
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superposition of the DCB and the ENF tests, used for the fracture characterisation of pure 

Mode I and pure Mode II, respectively. 

 

 
 

Figure 2.20: Mixed Mode Bending specimen [137] 

 

Apart from the MMB specimen, other configurations have also been used. A promising one 

was presented in Choupani [138], where the author used modified Arcan specimens. This 

test set-up consisted of various combinations of adhesive, composite and metallic adherents 

with a special loading fixture, in which by altering the loading angle, a full range mode 

mixity loading was achieved. Choupani [138] was able to obtain Mode I, Mode II and mixed 

mode fracture data, and perform numerical analyses of the experiments, and almost any 

combination of Mode I and Mode II loading, to be tested with the same test specimen 

configuration. His main goal was to determine the stress intensity factors KIC and KIIC and 

then derive formulas for the derivation of energy release rates GIC and GIIC. Figure 2.21 

shows the experiment set-up with modified Arcan test.  

 

 
Figure 2.21: Modified Arcan test specimen and loading fixture [138] 
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By the inverse method, using an iterative curve fitting procedure between experimental data 

and the FEA predictions, considering a precise description of the experimental geometry and 

approximate cohesive laws, can be established based on the typical behaviour of the material 

to be simulated [139]. The inverse characterisation of adhesive bonds should be applied 

individually for each tested specimen to account for slight geometric variations between 

specimens [140]. By this technique, the value of GIC or GIIC - which corresponds to the 

steady-state value of GI or GII during crack propagation in the respective R-curve built from 

the fracture characterisation test data - is input in the FE model. To define the other 

parameters of CZM law, approximate bulk values can be used for the cohesive strength in 

tension and shear σo and τo respectively for the initiation of the trial and error iterative 

process [140, 141]. Tuning of the cohesive parameters is performed by a few numerical 

iterations until an accurate prediction of the experimental data is achieved. Examples of 

reliable experimental data for the iterative fitting procedure are the crack opening profile 

[142], and more commonly, the P–Δ curve [143]. 

2.11 Comparing cohesive zone model with strength of material 

approach  

On the strength prediction of adhesive joints, two different methods of analyses were 

developed over the years: the strength of materials and fracture mechanics-based methods.  

The strength of materials approach is based on the evaluation of allowable stresses [144, 

145] or strains [146], by theoretical formulations or numerical analysis, especially in FEA. 

The joint strength can be predicted by comparing the equivalent stresses or strains at the 

critical regions, obtained by stress or strain-based criteria, with the properties of the structure 

constituents. These criteria are highly mesh dependent, as stress singularities are present at 

the end of the overlap region due to the sharp corners [147, 148, 149].  

As for fracture mechanics, using LEFM, an inherent flaw is required for the calculation of 

the stress intensity factor or strain energy release rate [150, 151, 152]. However, LEFM can 

only be used with the assumed presence of an initial crack concurrent with a relatively small 

size of the non-linear zone at crack tip, compared to the overall dimensions of the specimens.  

  The limitations of the reported approaches are surpassed by CZM, combining elements of 

strength and fracture approaches to derive the fracture loads [152, 153] . 
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The main advantage of CZM is related to their ability to simulate crack initiation and 

propagation damage without the requirement of an initial flaw, unlike classical fracture 

mechanics approaches. 

An important feature of CZM is that they can be easily incorporated in conventional 

FEA software to model the fracture behaviour in various materials, including adhesively 

bonded joints [133, 154]. CZM is based on the assumption that one or multiple 

fracture interfaces/regions can be artificially introduced in structures, in which damage 

growth is allowed by the introduction of a possible discontinuity in the displacement field. 

To date, CZM has been successfully applied to model fracture for a wide class of 

materials, e.g. metals, concrete, polymers, ceramics, composites [124, 143, 155, 156], and 

its range of applications continue to expand. 

2.12 Failure mechanisms of composite adhesive joint      

The major failure types are shown in Figure 2.22.  Specifically, cohesive failure is obtained 

if a crack propagates in the bulk polymers which represent the adhesive, and as such, is 

evident when adhesive remains on the surfaces of both the adherends after the debonding.  

The crack may propagate in the centre of the layer or near an interface. In the last case, the 

failure can be said to be ‘cohesive near the interface’. Most quality control standards consider 

a good adhesive bond to be cohesive [60]. 

The failure is adhesive or interfacial when debonding occurs between the adhesive and the 

adherend in most cases, the occurrence of interfacial fracture for a given adhesive going 

along with lower fracture toughness. Other types of fracture include the mixed type, which 

occurs if the crack propagates at some spots in a cohesive, and in others in an interfacial 

manner, the alternating crack path type which occurs if the crack jumps from one interface 

to the other. 

There are several reasons which contribute to the escape of the crack out of the adhesive and 

lead to cohesive/interfacial failure. The most common is reduced bonding quality, usually 

caused by insufficient treatment of the adherends’ surface, or by physio-chemcial in 

compatibilities between the composite and the adhesive. In addition, the higher through –

thickness tensile strength of the laminate, compared with that of the adhesive laminate, 

compared with that of the adhesive/laminate interface, is also a possible reason for moving 

the failure location outside the adhesive [157].   
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Figure 2.22: Major fracture types [60] 

 

The failure in adherends is dependent on a variety of factors. This is where the adherend 

used fails before the adhesive layer. Generally this is caused by using materials that have  

less strength than the adhesive bond. When a composite is used in an adhesive joint, 

composite laminates are subjected to different types of failure. The fracture process is quite 

complex and involves intralaminar damage mechanisms, such as matrix cracking or fibre 

fracture, and interlaminar damage, which is delamination. 

Zhao and Zhang [158] explained the possible failure modes associated with bonding of FRP 

composite to a steel system subjected to a tensile force. These failure modes are shown in 

Figure 2.23 and can include: 

(a) Interfacial debonding between the steel and adhesive layer, 

(b) Failure of the adhesive layer, 

(c) Interfacial debonding between CFRP and the adhesive layer, 

(d) Delaminating of CFRP composites, 

(e) Rupture failure of CFRP composites, 

(f) Yielding of steel members. 

Failure mode type (b) is a common failure which is usually associated with a low quality 

adhesive layer. Failure mode type (d) can happen when there is a separation of carbon fibres 

from the resin matrix of CFRP, which means low elastic modulus CFRP composite, while 

failure mode type (f) rarely happens because there is usually a sufficient thickness of the 
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steel member. So, elastic modulus of CFRP, elastic modulus of steel, and the quality of 

adhesive material can all affect the failure mode of this technique. 

 

 
 

Figure 2.23: Possible failure modes in a CFRP bonded to steel system [158] 

 

The study of delamination is usually approached by the analysis of its two components: the 

onset of delamination and its propagation when already started. Analysis of the first point is 

based on study of the interaction of the interlaminar stresses, whereas, in prediction of the 

propagation, fracture mechanic approaches are usually considered, in order to avoid 

problems due to the singularity of the stresses in the tip of the crack. 

2.13 Delamination failure of composite  

Delamination failure is generally accepted as the most common mode when failure occurs 

in the laminated composite adherend. Experimental tests and theoretical analyses have been 

carried out for a wide range of composite laminated structures, including glass reinforced 

polyester, glass reinforced epoxy, carbon reinforced epoxy, etc. Standard tests, such as lap 

shear and double lap shear tests, are used to identify the strength of simple joints in 

composite materials, and are well documented [65]. 

 The remaining dominant characteristic of adhesive-bonded joints is the peel stress, 

developed in association with the shear stresses. Like the shear stresses, these peak at the 

ends of the joint. While this phenomenon has long been known for single-lap joints, it is 

only recently that its impact on inducing laminate failures in thick double-lap joints has been 

recognised. The low interlaminar tension strength of composite laminates limits the 

thickness of the adherends which can be bonded together efficiently by lap joints. The 
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interlaminate splits apart locally due to peel stresses, thereby destroying the shear transfer 

capacity between the inner and outer plies. This overloads the outer filaments, which break 

in tension, and the failure progresses as portrayed [73] in Figure 2.24.  

 

 
 

Figure 2.24: Stages of delamination failure [73] 

 

Understanding of failure mechanisms and behaviour in composite bonded joints is important 

for accurate and reliable failure prediction. Failure prediction requires complete 

understanding of failure initiation, growth and modes. Finite element analysis (FEA) with a 

suitable failure criterion can be used for predicting the failure initiation of laminate 

composite structures. Different failure criteria have been reported for joints and are active in 

the literature, e.g. Maximum Stress or Strain criteria, Tsai-Hill, Tsai-Wu and the Hashin 

failure criteria etc. (see Appendix E). 

In 1967, Hayashi proposed the first analytical mode1 to compute the interlaminar shear 

stresses [159]. Then, much research has been devoted to this problem, and focused on the 

calculation of edge effect stress field and the development of failure criteria [160]. Basically, 

there are two distinct approaches to predict the delamination onset in laminated composites, 

one related to mechanics of materials, and the other related to fracture mechanics. The 

mechanics of materials approach is based on local three-dimensional stress analysis in 

conjunction with stress-based failure criteria [161, 162]. The development of analytical and 

numerical solution techniques to calculation of interlaminar stresses at free edges has made 

stress analysis more convenient. However, because of a weak interlaminar stress singularity 

at free edges, an average stress approach, similar to [163] for the strength of notched 
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composites, must be adopted by averaging interlaminar stress components over a 

characteristic length from the free edges. Usually, the characteristic length is viewed as a 

material constant, even though it seems to be dependent on the laminate's configurations 

[164]. Moreover this approach suffers from the difficulties in measuring the interlaminar 

strength components. 

 The fracture mechanics technique is based on the assumption that delamination is modelled 

as an edge crack, and thus either stresses the intensity factor or strain energy release rate, 

which can be determined by the classical elasticity approach to be compared with their 

critical values [165]. Due to the difficulties in computing the interlaminar stress intensity 

factor, the strain energy release rate approach is more popular. The advantage of the strain 

energy release rate approach is that there have been convenient test methods to reliably 

measure the critical values for al1 the three interlaminar fracture modes, and no critical 

length is required to characterise interlaminar stress concentrations. This approach can also 

be extended to predict delamination growth, because the strain energy release rate remains 

nearly constant during delamination propagation [166, 167]. For instance, laminated 

composites can further carry loads beyond the free edge delamination onset which is caused 

by the interlaminar normal stress component [168], while a disintegration failure of 

laminated composites takes place immediately after delamination onset which is caused by 

the interlaminar shear stresses [169]. Also, experimental results indicate that matrix 

transverse cracks subsequently occur after delamination onset, and are followed by the 

simultaneous growth of transverse cracks and delamination areas [170]. Delamination 

growth depends on the mixed-mode strain energy release rates GI, GII and GIII governed by 

the stress state at the crack tip. Under static loading conditions, the generation of new surface 

area at initiation could be evaluated by some failure criteria in terms of three distinct fracture 

modes of strain energy release rates and their corresponding critical values [171, 172, 173, 

174]  

2.14 Summary of the literature review 

Hybrid assembly combines the structural and architectural features of components made 

from different materials. In hybrid assembly, various materials may work independently or 

act together homogeneously, but are always better than a single material. The advanced 

materials, such as carbon fibre reinforced polymer (CFRP) composite laminates are being 
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used in aerospace, marine and automotive components. These materials are providing 

opportunities to reduce component weight and connections between components.  Previous 

research on systems consisting of FRP bonded to steel indicates that the adhesive bond is 

the most important design concern. Because of the high strength and rigidity of steel, CFRP 

may be more effective in strengthening steel structures compared with other FRP materials, 

due to its higher strength and rigidity.  

Having reviewed the literature relating to adhesive bonding for composite materials, there is 

a lack of available resources pertaining to adhesive joining of CFRP/steel. With the 

development of these materials for use in structural applications, an understanding of their 

bonded behaviour is necessary. The double lap shear joint (DLS) was used in the 

investigation, as there is an established understanding of the expected behaviour of the 

hybrid joints with regard to metallic and composite adherends. However, understanding of 

the performance of hybrid joints in structural engineering applications is important to the 

successful design of adhesive connection . This will be addressed through test evaluation of 

static performance under tensile loads. The joint assessment cannot be completed without 

the detailed understanding of the fracture mechanics used to measure the mechanical 

properties of the adhesive joints. The stress analysis of adhesive joints further enhances the 

full understanding of how the joints behave when subjected to a different loading conditions, 

and where the failure is likely to be initiated, due to various stress distributions. 

The mechanical method used consists of performing a test that describes the damage 

initiation, and another energy parameter to describe the damage propagation. This damage 

initiation and damage propagation is called the traction separation law. The tests that are 

used in this work to identify the traction-separation laws of the adhesive used are the DCB 

and ENF test. Once the traction-separation laws have been obtained, it is possible to simulate 

and predict the behaviour of adhesively bonded specimens. 

Mechanical strength  modelling may be based on strength of materials, fracture mechanics 

or continuum damage mechanics failure criteria. A number of studies of joint strength 

prediction, based on various methods of modelling, have been presented in the literature. 

In the literature, most workers highlight variations of joint strength with overlap length, 

adherend thickness and surface preparation before bonding. In addition to this, the layup and 

stacking sequence of adherends and other parameters are studied in many different ways, 
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but further research is needed to improve joint design and increase the strength of the 

adhesively bonded joints.  

The analysis and design of adhesively bonded joints is  not complete. However,for  the 

effects of design parameters on the joints’ failure, very few models can predict failure and 

damage evaluation.  

The numerical methods are based on 2D models, using strength-limit and cohesive zone 

modelling methods, taking into consideration the composite properties of the plies and the 

resin layers separating them. Although these approaches have been used in some areas of 

engineering applications, especially automotive structures, the current research is more 

relevant to thick-adherend hybrid connections, where the scale and behaviour are markedly 

different from standard bonded constructions. Large structures can benefit greatly from the 

reliability and computing economy associated with cohesive zone modelling stress analysis. 
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Chapter 3 

3 Experimental work (Material properties) 

3.1 Introduction   

This chapter introduces the materials and joints studied in this thesis. The main experimental 

techniques and loading spectra used will also be discussed. These analytical and 

experimental procedures on materials were used in this work to obtain essential mechanical 

properties. The main materials used in this research are carbon fibre reinforced (CFRP) 

composite, epoxy adhesive Araldite 2015 and mild steel. The main constituent materials 

used in the fabrication of CFRP laminates are based on carbon fibre and epoxy resin. Since 

a composite material is not isotropic, it is impossible to predict exact properties, as there are 

too many variables. The rule of mixtures Tsai and Hahn relationships are used to determine 

the material properties. In this chapter two types of experimental tests are used. The adhesive 

properties are based on previous work at Glasgow University [175] in addition to a standard 

steel butt joint and thick adherend shear test. The main focus of the experiments in this 

chapter is related to fracture mechanics, and dedicated to the characterisation of the damage 

and fracture behaviour of adhesives (Araldite 2015) and the matrix epoxy resin (Araldite 

LY3505/XB3405). 

3.2 Composite material properties    

Carbon fibre can be classified into different categories based on modulus, strength and final 

heat treatment temperature. The selection of any polymer system will be a function of the 

design criteria including operating environment, cost, fibre type and manufacturing method. 

The main constituent material used in the fabrication of CFRP composite is based on carbon 

fibre as a reinforcement and epoxy resin as a binder.  

Cross ply carbon fibre/epoxy composite laminate was used as the material in this work, 

joined adhesively with mild steel. The cross ply composite laminates were produced and 
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supplied by the Norwegian Defence Research Establishment (FFI), Norway. These were 

produced by infusion molding of lightly stitched UD high strength carbon fibre mats/plies 

and epoxy resin. 

3.2.1 Resin system - Epoxy resin LY3505/Hardener XB3405  

Epoxy resin LY3505 with hardener XB3405, manufactured by Huntsman Advanced 

Materials [176], was used for the coupon manufacture. The manufacturer’s recommended 

resin / hardener ratio is 100:35 (see Appendix A). The reaction between these two 

components, classified as an amine/epoxy reaction, enables the resin system formulation to 

be adjusted to give a wide range of properties. The properties of this system are presented in 

Table 3.1, using a fast hardener (XB3405) type. The choice of hardener determines the final 

mechanical properties of the mix, as shown in Table 3.1, as it was not a requirement to 

optimise the mechanical properties of the parts. 

Table 3.1: Properties for LY3505 epoxy with hardener XB3405 [176] 

Matrix systems LY3505/XB3405 

Mix ratio by weight 100:35 

Gel time at 60°C, (min) 18-26 

Tg (glass transition temperature), (°C) 87-92 

Tensile modulus, Em (GPa) 3.5-3.9 

Poisson’s ratio, νm 0.35 

Tensile strength, YmT (MPa) 80-90 

Ultimate elongation, mT (%) 5.0-6.2 

Density at 25oC, (g/cm3) 0.95-1.2 
 

3.2.2 Fibre properties  

Cross ply carbon fibre/epoxy composite laminate was chosen as the material to be studied 

in this work, joined adhesively with mild steel. The mechanical properties of the carbon fibre 

have been obtained from the relevant manufacturers and literature data [177], as provided in 

Table 3.2. The modelled fibre properties contribute to the mechanical properties of the 

composite in the fibre direction only. Therefore, the mechanical properties of the modelled 

matrix include contributions from the resin and fibre in the remaining transverse directions. 

Classical laminate analysis has been used to obtain the required transverse ply properties, 

but first requires the fibre volume fraction to be a known quantity. In this work, the rule of 
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mixtures is used to calculate the composite properties based on the volume fraction of carbon 

fibre and resin, which are 60% and 40% respectively. 

Table 3.2: Properties of single carbon fibre [177] 

Fibre type High Strength 

Longitudinal modulus, Ef1 (GPa) 230 

Transverse modulus, Ef2 (GPa) 15 

In-plane shear modulus, Gf12 (GPa) 15 

Major Poisson's ratio, νf12 0.2 

Transverse shear modulus, Gf23 7 

Longitudinal tensile strength, XfT (MPa)   2500 
 

3.2.3 Unidirectional composite material coordinates 

Unidirectional fibres are the simplest arrangement of fibres to analyse. The basic element of 

a unidirectional composite is a thin sheet (ply). They provide maximum properties in the 

fibre direction, but minimum properties in the transverse direction. By convention, the 

principal axes of the ply are labelled ‘1, 2, and 3’. This is used to denote the fact that ply 

may be aligned differently from the Cartesian axes x, y, z. Material axes are defined as 

follows: 

 Longitudinal direction (1) – parallel to fibres 

 Transverse direction (2) – perpendicular to fibres in plane 

 Through thickness direction (3) – out of plane 

 

 

 

Figure 3.1: Composite ply coordinate system 
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3.2.4 Rules of mixture 

Rules of Mixtures are mathematical expressions which give some property of the composite 

in terms of the properties, quantity and arrangement of its constituents. It is one of the ways 

to estimate composite material, by summarising the properties of the individual constituents 

based on their contribution to the overall material volume. In the case of a continuous fibre-

reinforced composite layer, a fibre volume fraction Vf and a matrix volume fraction Vm, must 

satisfy. 

1 mf VV
 

(3.1) 

The values for the volume fractions of the components can be used to make estimations on 

the longitudinal and transverse Young’s modulus, Poisson’s ratio and shear modulus of the 

corresponding composite. The procedures to make these calculations are given below. 

The longitudinal elastic modulus E1 of the composite lamina can be calculated from the 

Young’s moduli of the constituents Ef1 and Em, using the rule of mixtures as follows: 

mmff VEVEE  11  
(3.2) 

The Poisson’s ratio (υ12) of an unidirectional reinforced composite can be calculated by the 

following formula:  

mmff VV  12  
(3.3) 

Where: 

Ef1 is the longitudinal modulus of elasticity for the fibres 

Em is the modulus of elasticity for the matrix (resin) 

Vf is the volume fraction of the fibres 

Vm is the volume fraction of the matrix (resin) 

Tsai and Hahn stress that a partioning parameter [178] is used for better value estimation in 

transverse directions. The transversal modulus of elasticity E2 can be calculated using the 

following equation: 

2

2

fmfmy

myf

m
EEVV

VV
EE










 

(3.4) 

Ef2 is the transverse modulus of elasticity for the fibres. 

Shear modulus G12 and G23 can be calculated using the following expressions: 
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(3.6) 

  Where: 

 Volume fraction of matrix 

fm VV 1
 

(3.7) 

 Shear modulus of matrix. 

 mmm EG  12
 

(3.8) 

Stress partitioning parameters ηy, ηs, and ηG are the additional parameters in the rule of 

mixtures to measure the accurate transverse properties of laminate introduced by Tsai and 

Hahn [178]. ηy , ηs and   ηG   are  calculated through the relation: 

 215.0 fmy EE
 

(3.9) 
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(3.11) 

Tsai and Hahn used the assumption of transversely isotropic material for calculating the 

other transverse properties like E2 = E3,   υ13 = υ12, G12 = G13, and G23, υ23 is given by the 

relation. 

 23223 12  EG  (3.12) 

 

  12 23223  GE
 

(3.13) 

The CFRP lamina properties using the rule of mixtures, Tsai and Hahn, and transversely 

isotropic materials assumption, as mentioned above, are tabulated in Table 3.3. The values 

in this table are calculated from equations (3.1-3.13) by using the materials properties in 

Table 3.1and Table 3.2.  
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Table 3.3: Material properties of CFRP laminate 

Property CFRP laminate 

Young’s modulus (GPa) 
E11 139.4 

E22=E33 7.66 

Shear modulus (GPa) 
G12= G13 3.68 

G23 2.94 

Poisson's ratio 
ν12= ν13 0.26 

ν23 0.304 
 

3.3 Adhesive properties   

In this section, selection of the adhesive and its properties used in finite element analysis are 

all discussed. Clearly, the use of proper adhesive has many advantages to offer, such as it 

allows excellent joint strength, assemblies of similar and dissimilar adherend, and they can 

often result in cost reduction [43]. There is no ‘universal’ adhesive that will bond every 

substrate together, and so the choice of adhesive is always involved. 

3.3.1 Adhesive selection 

Araldite 2015, a two parts epoxy paste adhesive, was chosen for adhesive bonding in this 

research. In general, the epoxy based adhesives offer strong bond strength and exhibit good 

stability. The two part epoxy adhesives are good candidates for the bonding of composites 

rather than single part adhesives. The choice of Araldite 2015 was based on the following 

key properties: 

 Ideal for bonding FRP (fibre reinforced polymers) to itself and many other 

dissimilar adherends.  

 Excellent adhesion to metals and thermoset composites. 

 It is thixotropic and non-sagging up to 10 mm thickness. 

 High shear and peel strength which are particularly important given the nature of 

the types of tests performed it has low shrinkage properties. 

 It can either be cured at room temperature or at elevated temperature. 

 Araldite 2015 exhibits good gap filling properties. 

Araldite 2015 is stored in a refrigerator controlled at the low temperature of 5oC. The 

recommended temperature set by the manufacturer is 2-8oC. Shelf life established by the 
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manufacturer at this temperature is 2 years, and should be replaced within 6 months after 

being used, prior to the expiry date. The adhesive preparation work requires more care, 

especially before applying. The adhesive needs to be placed at room temperature for at least 

30 min.  This process is essential to promote effective adherend surface wetting. Araldite 

2015 exhibits good gap filling properties, so the first thin coat of adhesive was applied by a 

knife- coating procedure, and the following coats by a normal smooth pressure. Bonding 

pressure on the joint was applied by using specially designed bonding jigs. 

3.3.2 Tensile testing of adhesive butt-joint specimens   

In order to verify the bulk adhesive results using the steel butt joint, British Standards were 

used (BS 5250-C3) [179]. The butt joint specimen consists of two steel adherends bonded 

together at end faces using adhesive. Each butt joint specimen was fabricated and tested 

(Figure 3.2).  

 

 
Figure 3.2: Steel butt joint 

 

These were bonded with Araldite 2015 adhesive with 0.5 mm bondline thickness. These 

were tested under monotonic tensile loading, with a Zwick/Roell tensile testing machine at 

a constant cross head speed of 0.5 mm/min at ambient temperature. Specimen 2 and 

specimen 3 have comparable and better strength than specimen 1, as shown in the stress-

strain curve of Araldite 2015 (Figure 3.3).  Araldite 2015 tensile strength using butt joint 

gave 35 MPa, much closer to the claim by the supplier (30 MPa). The specimens were tested 

to failure and the best specimen results were selected. The main reason for this is voids, and 
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the specimen being defect free. Specimen 1 data was rejected as after testing voids were seen 

in the adhesive layer. Consequently, the manufacture of joints requires careful control and 

minimisation of void contents. 

 

 
Figure 3.3: Stress strain curves from steel butt joint 

3.3.3 Extrapolation of data 

Since the adhesive displays both the plastic and elastic regions, these properties had to be 

included in the finite element analysis.  

 

 

 
Figure 3.4: Stress-strain curves for Araldite 2015 [175] 



 

Chapter 3. Experimental work (Material properties) 

 

 

56 

 

Therefore it is necessary to produce elasto-plastic data, based on available test and 

manufacturer data and relevant engineering assumptions. The stress-strain curve for Araldite 

2015, the small dashed line is the true stress-strain curve from the Huntsman technical data 

sheet (Appendix B) for the stress-strain curve. 

In order to calculate the strain at the adhesive failure load, the true curve is extrapolated to 

40 MPa. This is the large-dash line. The extrapolated true stress-strain curve is then 

converted to an elastic-plastic stress strain curve: the continuous line (Figure 3.4 and Table 

3.4). 

 At 30 MPa, strain is 0.044 (Appendix B -data sheet). 

 Properties assuming perfect elastic / perfect plastic at 40 MPa & 1.8 GPa 
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For the elastic plastic model, the adhesive fails at a stress of 40 MPa. The adhesive is in the 

elastic region between a strain of 0 and 0.022. After 0.022, the adhesive is in the plastic 

region, until 0.06, where it fails. Plastic properties are tabulated in Table 3.4. The adhesive 

elastic properties are quite comparable to the HUNTSMAN Adhesive data sheet, as shown 

in Appendix B. 

 

Table 3.4: Plastic properties of Araldite 2015 

Yield stress (MPa) Plastic strain 

39.999999 0 

40.000000 0.022 

40.000001 0.044 

40.000002 0.060 
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3.3.4 Thick adherend shear test (TAST) 

 The thick adherend shear test is a lap shear specimen with high thickness of the steel 

adherends chosen to determine shear strength. It is prepared in accordance with the standard 

NF-EN 14869-2 and ISO 11003-2 represented in Figure 3.5. The specimen has an overall 

length of 155 mm, a width of 25 mm and an overlap length of 5 mm. The adherend thickness 

is 6 mm and the bondline thickness is typically 0.2 mm. 

 

 
Figure 3.5: Geometry and dimensions (in mm) of the thick adherend shear test 

 

The high thicknesses of the steel adherends make them very stiff, and their shape avoids 

bending during the load history. This reduces the peel stress in the adhesive joint as well as 

plastic deformations in the adherends. Preparing a TAST specimen requires perfect control 

of the geometry of adherends, as well as the application and curing process of the adhesive. 

Indeed, steel adherends must be milled to ensure a gap of 0.2 mm corresponding to the 

adhesive thickness. Adhesive must be applied carefully to avoid spew fillets around the small 

overlap area. In addition, the bonding must be carried without any aligning defect. Finally, 

the adhesive curing process must also controlled, since the warming of adherends influences 

the curing time of the adhesive (1 hour at 80oC). The cured assembly is then ready for testing, 

as represented in Figure 3.6.  

 

 

Figure 3.6: Thick adherend shear test specimen 

 

These were tested under monotonic tensile loading with a Zwick/Roell tensile testing 

machine at a constant cross head speed of 0.5 mm/min at ambient temperature. The load-
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displacement curves from the lap shear test and a picture of the specimen at failure are shown 

in Figure 3.7 and Figure 3.8 respectively.  

 

 

Figure 3.7: Load-displacement curves of the TAST specimen 

bonded with Araldite 2015 

 

The shear stress τ is obtained by: 

bl

F


 
(3.15) 

Where F is the measured force, b is the specimen width and l is the bonded overlap length. 

The average shear stress computed according to equation (3.15) from three specimens 1, 2 

and 3 as shown in the force-displacement curves of Araldite 2015 (Figure 3.7). The average 

shear stress for Araldite 2015 adhesive using TAST specimen gave 24 MPa.  

 

 

Figure 3.8: Failure of TAST specimen 
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3.4 Damage and fracture experiments  

The following sections focus on experiments issuing from fracture mechanics, and are 

dedicated to characterisation of the damage and fracture behaviour of adhesive and resin. 

These tests enables measurement of the fracture resistance of adhesive joints under mode I 

(tensile) and mode II (in plane shear) conditions, as shown in Figure 3.9. The other mode of 

fracture is mode III (out of plane shear), which is neglected compared to the two other modes, 

and generally not studied. 

 

 

Figure 3.9: Fracture modes 

 

The fracture energy of a particular adhesive experimental method (known as GIC and GIIC 

for mode I & II respectively) may also be referred to as the critical strain energy release rate 

or fracture toughness, and hence is a material property of the adhesive [180]. The double 

cantilever beam (DCB) specimen, as shown in Figure 3.10, is dedicated to the 

characterisation of the adhesive under mode I loading of fracture, whereas the end notched 

flexure (ENF) specimen is dedicated to the study of mode II as shown in Figure 3.23. 

3.4.1 Double cantilever beam experiments   

The double cantilever beam (DCB) test is widely used as an experiment to test the strength 

of adhesive joints. The method used is based upon the British Standard (BS 7991:2001) 

[132], in which linear elastic fracture mechanics (LEFM) are used for the determination of 

the fracture resistance of structural adhesive joints under an applied mode I opening load. 

The adhesive fracture energy GIC can be calculated in order to produce a resistance to 

fracture curve (R-curve) i.e. a plot of the magnitude of adhesive fracture energy GIC versus 
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crack length [132]. Figure 3.10, the basis of the DCB test, is to place two mild steel substrates 

under a cleavage load to initiate and propagate a crack through the adhesive layer adjoining 

both substrates, with this adhesive layer being the same thickness as desired for latter 

purposes in evaluating the DLS joint. 

  

 
Figure 3.10: Illustration of DCB specimen 

Where: 

ao = 70 mm, L = 200 mm, h = 20 mm, ta = 0.2 mm, and the width = 25 mm. The values of a 

is parameter measured throughout the test (i.e. crack length measurements). 

 

 Specimen Preparation 

In order to prepare the specimens for use with Araldite 2015 and with resin 

LY3505/XB3405, one must prepare the surface of each substrate to ensure that the bond 

achieves suitable strength and durability, as these parameters should be kept to a minimum 

in order to allow the DCB test to be minimally affected in a negative manner. The grit-

blasting allows the surface topography to be roughened in order to increase the mechanical 

adhesion properties [181]. The use of Acetone to clean the surface will help to reduce the 

presence of any debris such as grease, chemical contaminates or metal particles from the 

grit-blasting process. As can be seen from Figure 3.11 a PTFE sheet was used to control the 

thickness of the adhesive. The adhesive being used is Araldite 2015, in Figure 3.11c before 

applying a primary layer, followed by a secondary layer of adhesive using a spatula. Once 

the adhesive had been fully applied, the specimen was then placed into a containment jig, 

which was used to clamp the substrates together as seen in Figure 3.11d. Figure 3.12 shows 

the bonding surfaces of the adherends cleaned with acetone and the resin LY3505/XB3405. 

Thin Polytetrafluoroethylene (PTFE) sheeting was applied to one of the steel adherends to 

achieve the correct bonding thickness along the DCB specimen. 
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Figure 3.11: DCB Specimen preparation and bonding in jig 

 

The resin and hardener were mixed together, according to the mix ratio defined in 

Figure 3.12, and degassed to remove air. This step was performed to remove any gaseous 

components entrapped in the resin, which could lead to void formation within the specimen 

affecting its mechanical properties. 

 

 

Figure 3.12: Steel adherends with PTFE sheet and the resin LY3505/XB3405 

 

Afendi et al. [182] have recommended 15 min degassing, followed by 1 hour at atmospheric 

pressure, in order to let the bubbles diffuse to the surface. After a mix time, the resin was 

applied to bond the steel adherends as a DCB specimen, and then placed into a containment 

jig, which was used to clamp the adherends together, as seen in Figure 3.11d. 
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The specimen was cured in the oven for 1 hour at 80°C. To reduce the possibility of any 

thermal shock or residual stresses accumulating within the adhesive layer, the entire 

assembly was left in the oven to slowly cool to room temperature.  

 

 

Figure 3.13: DCB specimen and loading blocks 

 

As stated in BS 7991:2001, the specimen was accurately measured using a micrometer 

before and after bonding, to find the variation in bondline thickness across the length of the 

specimen [132]. The front surfaces of the upper and lower mild steel substrates were stained 

with correction fluid (suitable for use with mild steel) and then finely marked using a 

microscope and a metallic scribe. As seen in Figure 3.13, markings have been made every 1 

mm up to 65 mm in total along the edge of the specimen, in order to aid with crack growth 

monitoring. The crack length should be measured along the edge of the specimen to an 

accuracy of at least ± 0.5 mm, done via a travelling microscope in this instance, as shown in 

Figure 3.14. 

 

Figure 3.14: Experimental setup using a travelling microscope 
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 Test results of DCB specimen bonded with adhesive 2015 

The testing was performed using a Zwick/Roell universal tensile testing machine with a 250 

kN load cell and wedge grips. The loading rate was 0.5 mm/min, and the tests were 

performed at room temperature.  

For testing in this work, four specimens were conducted in order to initially analyse the 

accuracy of these methods with the laboratory equipment available, and to illustrate the 

inherent difficulties associated with this testing protocol. In Figure 3.15 shows the load-

displacement curves for four DCB specimens tests.  

As is evident from the fracture surface profiles of the DCB test results shown in Figure 3.16, 

the fracture surface consists of cohesive failure within the adhesive, as matching patterns of 

adhesive still remain on both substrates. This proof of cohesive failure within the adhesive 

is important, as it confirms that the actual fracture process occurs within the adhesive and, 

as such, the fracture toughness deduced from this test is characteristic of the adhesive being 

evaluated, as opposed to fracture occurring at the adhesive-substrate interface, or if the 

fracture was both cohesive and adhesive [183]. 

 

 

Figure 3.15: Load-displacement curves of DCB specimen bonded with 

Adhesive 2015 

 

A feature that became apparent when tracking the crack propagation using the travelling 

microscope involved the actual crack evolving in a manner where the tip appeared to jump 

from one interface to another as it propagated along the specimen. This phenomenon may 

be attributed to the crack tip (or crack front) being diverted in its direction of propagation by 

the rubber inclusions within the epoxy adhesive that act as a toughening mechanism [184]. 
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Figure 3.16: Failure surfaces from DCB test 

 Test results of DCB specimen bonded with resin LY3505/XB3405 

The same geometry of the DCB specimen in Figure 3.10 was used in measuring the 

experimental values of GIC .The testing was performed using a Zwick/Roell universal tensile 

testing machine with a 250 kN load cell and wedge grips. The loading rate was 0.1 mm/min, 

and the tests were performed at room temperature. Three tests were used to measure the 

experimental values of GIC from the DCB tests. Figure 3.17 shows the load-displacement 

curves for three DCB specimens test. The fracture surface of a DCB specimen with resin 

LY3505/XB3405 is shown in Figure 3.18 . It is clear that the fracture is cohesive in failure 

and the resin is remained in both adherends. 

 

 
 

Figure 3.17: Load-displacement curves of DCB specimen bonded with Resin 

LY3505/XB3405 
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Figure 3.18: Failure surfaces of DCB test with resin LY3505/XB3405 

 Mode I Fracture Energy of Adhesive 2015, GIc  

The following methods used to ascertain the magnitude of GIC from the DCB tests all require 

the need for simultaneous measurements of the load, displacement and relative crack 

propagation, in order to be utilised.  

There are three methods that will be presented for obtaining the value of GIC from the DCB 

test are:  

1- Simple Beam Theory (SBT) 

2- Corrected Beam Theory (CBT) 

3- Experimental Compliance Method (or Berry’s Method) 

 (1): Simple Beam Theory  

The value of adhesive fracture energy GIC may be found from: 

da
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B

P
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2

  (3.16) 

Where C is the compliance and is given by (displacement/load). For relatively thin adhesive 

layers it has been illustrated from SBT that dC/da may be shown as: 
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With Es representing the flexural modulus of the mild steel substrate used, hence combining 

the above equations we can deduce GIC from:  
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Where P is the load applied, B is the width of the substrates, a is the crack length and h is 

the thickness of the substrates. 

(2): Corrected Beam Theory   

The SBT theory shown above takes into account the deflections of the beam due to bending 

and shear, but does not account for the effects of beam root rotation [150]. Root rotation 

affects both the compliance of the beam and the subsequent values of GIC. Also, as stated in 

BS 7991:2001, the SBT expression for the compliance of a perfectly built-in DCB will in 

fact underestimate the compliance of the beam, as the beam is not actually perfectly built for 

this test. In order to remedy this effect, we can treat the beam as having a slightly longer 

crack length than that which is actually measured, i.e. (a + |Δ|). The term |Δ| may be found 

by plotting the cube root of the compliance (C1/3), as shown in Figure 3.19. By extrapolating 

a linear fit through the data we can deduce the value of Δ as the negative x-axis intercept 

value. 

Therefore in order to find the value of GIC from CBT we can use: 

 


aB

P
GIC

2

3 
 (3.19) 

 

 
Figure 3.19: Linear regression data used for CBT method 

  

(3): Experimental Compliance Method (or Berry’s Method) 

Another method used to calculate the value of GIC from this test involves plotting the 

logarithm of the compliance (C) versus the logarithm of the crack length (a), as shown in 

Figure 3.20. The slope of this plot, n, can then be used to obtain GIC using: 
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(3.20) 

Where: P the load, δ the displacement, a the crack growth and B the width of the specimen. 

The experiments consisted of using adhesive thickness ta = 0.2 mm. In Figure 3.21 the values 

of the fracture energy obtained from the limited number of measurement points are 

illustrated. The curve shown in Figure 3.21 represents the fracture energy obtained from the 

third test of the DCB experiment. As can be seen, the ECM and CBT methods provide 

consistent results, but the SBT method produces a fracture energy that is much lower than 

the others. This is because the SBT method assumes a perfect specimen, which is not the 

case, so the values produced from the ECM and CBT methods are much more accurate.  

 
Figure 3.20: Linear regression data used for ECM method 

 

 

 

Figure 3.21: R-Curve for adhesive 2015 using SBT, CBT and ECM 
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The extracted values from the experiments are summarised in Table 3.5. The values of the 

fracture energy obtained from the tests are between minimum and maximum range; the final 

values will be found later with the use of the numerical analysis. 

 

Table 3.5: Results of the DCB experiments of Adhesive 2015 

Test No. GIC (N/m) 

Specimen 1 353-502 

Specimen 2 338-475 

Specimen 3 340-480 

Specimen 4 363-498 
 

 Mode I Fracture Energy of Resin LY3505/XB3405, GIc  

The British Standard 7991:2001 [132] was used, repeating the same methods in section 

3.4.1.4 to measure the magnitude of GIC of the epoxy resin LY3505/XB3405.  

The curve shown in Figure 3.22 represents the fracture energy obtained from test 1 of the 

DCB experiment. The curves of the ECM and CBT methods provide consistent results, but 

the SBT method produces a fracture energy that is lower than the others. So the values 

obtained from the ECM and CBT methods are more accurate.  

 

 
Figure 3.22: R-Curve for Resin LY3505/XB3405 using SBT, CBT and 

ECM 

 

The experiments’ values of fracture energy GIC for epoxy resin LY3505/XB3405 are 

summarised in Table 3.6. The values of the fracture energy obtained from the three tests are 

between minimum and maximum range; the final value will be found later with the use of 

the numerical analysis. 
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Table 3.6: Results of the DCB experiments of resin LY3505/XB3405 

Test No. GIC (N/m) 

Specimen 1 141-165 

Specimen 2 135-160 

Specimen 3 144-161 
 

3.4.2 The end notched flexure specimen (ENF) 

In this section, the end notched flexure (ENF) specimen for determining mode II is 

introduced. In the ENF test, the specimen is simply supported at the ends and a load applied 

in the middle of the specimen Figure 3.23. This specimen was used by e. g. Carlsson et al. 

(1986) and Chai (1988) to study both brittle and ductile adhesive layers [185, 186]. In the 

ENF specimen, stress distribution in the adhesive layer is essentially pure shear, except at 

the loading point, where some compressive stresses appear. The specimen geometry is 

represented in Figure 3.23. The steel was used for the substrates where the adherend 

thickness H is 16 mm, the width B is 32 mm, and the length between the supports 2L is 1000 

mm. The geometry of the ENF specimen must satisfy some conditions. Indeed, as reported 

in Leffler (2005) [187], the ENF specimen is conditionally stable, and estimates based on 

beam theory with elastic beams and rigid adhesive layer show that the initial crack length 

must be at least equal to 350 mm.  

 

Figure 3.23: Illustration of ENF specimen 

 

Where: 

ao = 350 mm, L = 500 mm, H = 16 mm, ta = 0.2 mm, and the width = 32 mm  
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 Specimen preparation        

The bonding surfaces of the adherends were sand papered and degreased with acetone. Good 

alignment of the two adherends was secured with the use of a fixture. To achieve correct 

adhesive thickness along the entire specimen, steel wire with a diameter of 0.2 mm was 

adhesively bonded to one of the adherends. A Polytetrafluoroethylene (PTFE) sheet was 

inserted between the two steel adherends to make a mid-plane pre-crack, which lead to the 

350mm total initial crack at one end of the specimen. 

This ensures the thickness of the adhesive layer, and also minimises friction between the 

adherends during the experiment. Once the adhesive had been fully applied, the specimen 

was then placed into a containment jig, and clips were used to add pressure to both surfaces 

of specimens after bonding, as seen in Figure 3.24. To ensure good adhesion between the 

adhesive and the adherends, a small compressive force was applied to the specimens during 

the curing; the specimen was then cured for 1 hour at 80°C. After curing, the specimens were 

left in the oven to slowly cool to room temperature to avoid serious inner stress. When the 

joint had cooled, it was removed from the jig, and any excess adhesive was removed from 

the joint with the use of a scraper, which leaves a smooth level adhesive layer, as seen in 

Figure 3.25. 

 

 

 
Figure 3.24: The ENF specimen preparation and bonding in jig 

 

 

 
Figure 3.25: ENF specimen 
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 Test processing of ENF specimen  

The testing was performed using a Zwick/Roell universal tensile testing machine with a 250 

kN load cell and upper wedge grip. The cross head velocity rate was 0.5 mm/min and the 

tests were performed at room temperature. The specimens were placed over a test fixture 

consisting of two supporting semi cylinders. A third semi cylinder connected to the load cell 

of a tensile machine was used to bend the sample at its mid-point. Figure 3.26 shows a 

photograph of the ENF test. The span between the two supports was 1000 mm, and the initial 

crack length was 350 mm. The force and relative displacement between the centre loading 

point and the supports can be recorded through the actuator displacement of the machine, as 

the specimens were deformed. 

 

 

Figure 3.26: Photograph of ENF test setup 

 Test results of ENF specimen bonded with adhesive 2015 

For testing in this work, four specimens were conducted in order to initially analyse the 

accuracy of these methods with the laboratory equipment available, and to illustrate the 

inherent difficulties associated with this testing protocol.  

Figure 3.27 shows the load-displacement curves for ENF specimen tests. A typical fracture 

surface is displayed in Figure 3.28. The fracture pattern was classified as partly adhesive and 

partly cohesive.   
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Figure 3.27: Load-displacement curves of ENF specimen bonded 

with Adhesive 2015 

 

As is evident from the fracture surface profiles of the ENF test results shown in Figure 3.28, 

the fracture surface consists of cohesive failure within the adhesive, as matching patterns of 

adhesive still remain on both substrates. It is clear that the fracture is still a cohesive domain 

failure. This proof of cohesive failure within the adhesive is important, as it confirms that 

the actual fracture process occurs within the adhesive and, as such, the fracture toughness 

deduced from this test is characteristic of the adhesive being evaluated, as opposed to 

fracture occurring at the adhesive-substrate interface, or if the fracture was both cohesive 

and adhesive [4]. 

 

 

Figure 3.28: Failure surfaces of ENF test 
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 Test results of ENF specimen bonded with resin LY3505/XB3405 

The same geometry and dimensions of ENF specimens in Figure 3.23 were used to measure 

the experimental values of GIIC .The testing was performed using a Zwick/Roell universal 

tensile testing machine with a 250 kN load cell and wedge grips. Three tests were used to 

measure the experimental values of GIIC from the ENF tests. The tests were performed at 

room temperature. In Figure 3.29 is shown the load-displacement curves for specimens test. 

The fracture surface of ENF specimen with resin Ly3505/XB3405 is shown in Figure 3.30. 

 

 

 

Figure 3.29: Load-displacement curves of ENF specimen bonded 

with Resin LY3505/XB3405 

 

 

 

 

Figure 3.30: Failure surfaces of ENF test with resin LY3505/XB3405 
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 Data analysis 

According to linear elastic fracture mechanics,  

da

dC

B

P
GC

2

2


 

(3.21) 

Where the C is the compliance defined by C = Δ/ P, B is the joint width and P is the load for 

crack growth. Using the beam theory and the above equation, 
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(3.22) 

Where, GIIC is the fracture toughness of mode II. Also the toughness in mode II can be 

determined by the partial derivative of the compliance with crack length by analytical 

equation, and fits the experimental data completely to the crack length. However, 

experimental measurement of the crack length is very difficult, and at the crack tip - the 

fracture process zone (FPZ) - damage of the material occurs by plasticity.  An equivalent 

crack length (ae) that takes the FPZ into account should be used. De Moura and Morais [188] 

proposed a method that does not require crack length measurement, and that takes into 

account the FPZ, they called the compliance based beam method (CBBM). 
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The modulus E refers to the adherends. The compliance of adhesive depends on the 

thickness, and can affect the compliance of the specimen. So, the flexural modulus can be 

estimated considering the initial of crack length a0 and compliance C0 
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An equivalent crack length (ae) is the sum of crack length a and the correction (ΔɑFPZ)  
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Combining the equations (3.24) and (3.25), the equivalent crack length can be obtained as, 
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Where:  
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Put the value of ae in equation (3.23) 
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This method does not require crack length monitoring during growth. 

The extracted values from the experiments are summarised in Table 3.7. The values of the 

fracture energy obtained from the tests are between minimum and maximum range; the final 

values will be found later with the use of numerical analysis. 

 

Table 3.7: Results of the ENF experiments of Adhesive 2015 and resin 

LY3505/XB3405 

Test No. 
Adhesive 2015 

GIIC (N/m) 

Resin LY3505/XB3405 

GIIC (N/m) 

Specimen 1 3750-4345 1187-1410 

Specimen 2 3600-4225 1292-1406 

Specimen 3 3605-4215 1305-1418 

Specimen 4 3652-4335 - 
 

3.5 Comments 

Section 3.4 presented the tests of fracture mechanics carried out for one of aims of this thesis. 

They were a mode I test, DCB, and a mode II test, ENF. 

The specimens were manufactured from steel as adherends and two types of bonding 

materials, adhesive (Araldite 2015) and epoxy resin (LY3505/XB3405), the consolidation 

happening under a hot press. All the manufacturing processes of the specimens have shown 

positive characteristics of repeatability.  

From each of these two tests, the force versus displacement curve has been obtained. 

Moreover, the tests for mode I and mode II were used for calculation of the interlaminar 

fracture toughness for the relevant mode of delamination. The experimental tests showed 

accordance with the typical results of these tests. They can therefore be considered a good 

starting point for the comparison with finite element modelling with cohesive elements 

discussed in Chapter 6. 
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Chapter 4 

4 Experimental investigations of DLS joint 

4.1 Introduction     

This section will describe the bonding characteristics of structural adhesives. However, lap 

shear joints are the most common form to be investigated, and perhaps the easiest to prepare. 

In this work, the Double Lap Shear (DLS) joint was chosen to study adhesive behaviour, 

because this geometry minimises bending moments. Tensile testing experiments have been 

undertaken on two steel members in the same plane  joined to CFRP plates, in which two 

CFRP plates are bonded to the steel plates, one each side. 

Strains were measured to provide information on the longitudinal profiles over a chosen 

bond length on both the steel and CFRP adherends, and on the load transfer mechanism 

across the two adherends. The overall extensions of the joints were also measured. The 

average thickness of the adhesive was 0.2 mm for all joints. In general, at least three 

nominally identical specimens were tested for each case. 

Several failure mechanisms were observed, which were generally a mixture of cohesive 

failure within the adhesive, adhesive failure at the bondline with either the steel or CFRP 

adherend, and composite delamination.  

4.2 DLS joint preparation     

This section will give details of the bonding procedure used during the preparation of test 

specimens. It is important maintain the same conditions when constructing the joints to 

enable an accurate comparison of strength. The adhesive thickness is kept the same for all 

joints using a wire insert method. Care is also taken during alignment of the adherends to 

ensure symmetrical joints are produced. The geometry of the DLS test specimen is shown in 

Figure 4.1. This is made up of two thick mild steel inner adherends and two CFRP straps at 
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the outer adherend. The width of the specimens was 25mm and the length of joint overlaps 

(OL = 25, 50, 75, 100 and 125 mm). 

 

 

 

Figure 4.1: DLS Joint (Steel/CFRP) 

4.2.1 Surface preparation    

The bonding surfaces of all the mild steel inner adherends were grit blasted using a jet air 

suction blast cleaning machine to improve the effectiveness of the adhesive bond [51]. The 

grit blasted was chilled iron grit, G24 (0.6-1.0 mm) particle sizes. The grit blasting machine 

and the steel surfaces can be seen before and after treatment in Figure 4.2. The ends to be 

positioned in the centre of the joint then had pre-cut PTFE sheets applied to them in order to 

prevent bonding of these surfaces. This ensured that the joint was subjected only to shear 

loading during testing. The composite adherends could not be prepared in this way due to 

the possibility of damaging the fibres.  

 

Figure 4.2: Grit blasting used to treat steel adherends 
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Light grade P120C silicone carbide paper was used for the composite adherends to clean the 

bond area and eliminate unevenness in the bonding surfaces. To maintain consistency, 10 

strokes were performed along the length of the strap, and another 10 strokes across the 

breadth.  After abrading the mild steel and composite adherends, it was necessary to clean 

all of the bonding surfaces to remove any potential bond contaminants. This was achieved 

using the commercially available organic solvent, acetone. The cleaning agent was applied 

using a polyethylene wash bottle and wiped from the surface using paper towels Figure 4.3 

. When cleaning was complete, reference points were marked on the adherends to aid 

alignment when positioning the specimens in the bonding jig. 

 

 

Figure 4.3: Acetone used to clean the adherends surfaces of DLS joint before bonding 

4.2.2 Adhesive application  

The epoxy adhesive used in the bonding process was Araldite 2015. The two-part adhesive 

was mixed using an Araldite application gun with a mixer nozzle and putting the mixed 

adhesive into a clean plastic tray; see Figure 4.4. After mixing the adhesive, the following 

steps were followed: firstly, a thin layer of adhesive was applied to the surface of adherents 

using a spatula, shown in Figure 4.4b.  

The process was repeated, but more quantities of adhesive were applied to the surface 

bonded area than was required. This was done to prevent air entrapment, which would lead 

to void development within the adhesive. When pressure was applied by the jig, the adhesive 

flowed outward from the centre, forcing the air out of the joint. Most of this excess adhesive 

was removed using the wooden stick, with the rest being removed after curing using a file. 

The adhesive thickness was controlled by four 0.2 mm steel wires inserted vertically into the 

joint and withdrawn at the end of clamping.   
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Figure 4.4: Picture of applying adhesive to adherends 

4.2.3 Clamping  

The specimens were placed in the jig and separated with steel bars, see Figure 4.5. The jig 

was then tightened by hand to apply equal pressure along the bond, to produce a constant 

adhesive thickness within the joint with the help of the wire insert. As the jig was tightened, 

corrections for slippage were performed to maintain alignment of the joint components. This 

was aided by the reference points previously marked on the components. 

 

 

Figure 4.5: Two test specimens clamped in the jig, ready for curing 
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4.2.4 Curing  

The adhesive needs to be heated to cure, in order to gain a strong durable bond, so the 

specimens - including the jig - were placed in a standard laboratory oven and heated at a 

constant temperature of 80°C for one hour Figure 4.6 . After that time, the oven was switched 

off and the door opened, and the contents were left to cool gradually over 24 hours. This 

process of slowly cooling the joints reduces the presence of residual stresses forming in the 

joint and ensures the cure is completed. When the joint had cooled, it was removed from the 

jig and any excess adhesive removed from the joint with the use of a scraper, which leaves 

a smooth level adhesive layer. 

 

 

Figure 4.6: Laboratory oven used to cure the adhesive joints 

4.3 DLS joints testing procedure 

The DLS joint geometry and dimensions are represented in Figure 4.7. The joint was made 

up of two mild steel inner adherends and two outer adherends made from the CFRP 

materials. The width of all specimens was 25 mm, adhesive thickness, ta=0.2 mm and the 

thickness of inner adherends is 10 mm. The overall length remained constant i.e. 430 mm 

varies overlaps were used. Two different values of outer adherend thickness, namely 3 mm 

and 6 mm for 12 layers and 24 layers respectively, and five values of overlap length OL (25, 

50, 75, 100 and 125 mm) were evaluated, see Figure 4.8. 
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Figure 4.7: DLS Joint geometry and dimensions 

 

Also, various ply orientations for the composite were used, including [0o,90o], [+45o,-45o] 

and [90o,0o]. For example, the first ply of the [0o,90o] lay-up had the UD fibers orientated at 

0o relative to the direction of the applied load. The type and details of the specimens used 

for tensile testing are presented in Table 4.1. The designations for the CFRP adherend are 

used to describe the types of the specimens. This also indicates the orientation of the UD 

fibre and total laminate thickness. 

 

 

 

Figure 4.8: Bonded specimens showing [0o,90o]6 specimens with various overlap 

lengths 
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Table 4.1: Type and number of specimens 

Specimen type Overlap length 

(mm) 

CFRP adherend 

thickness (mm) 

Number of 

specimens  

[0o,90o]6 

25 3 5 

50 3 6 

75 3 6 

100 3 5* 

125 3 4** 

[90o,0o]6 

25 3 6 

50 3 6 

75 3 6 

100 3 4* 

125 3 3** 

[+45o/-45o]6 

25 3 5 

50 3 5 

75 3 5 

100 3 4* 

[90o,0o]12 
25 6 4* 

50 6 3** 

* One of these was discarded due to bonding defects. 

** Limited number due to materials availability. 

 

4.3.1 Tensile testing Set-up 

The setup for the experiments can be seen in Figure 4.9. The testing used a Zwick/Roell 250 

kN Universal testing machine which provided load and extension data for each test. Each 

specimen was gripped at 50 mm from the edge at both ends. The loading rate was 0.5 

mm/min, and all tests were performed at room temperature. The load and displacement 

values were recorded to give the failure load. The specimens were clamped at either end and 

then pulled apart until failure. 

This process was completed for all different joints. The reasoning for this was to find the 

effects of increasing the joint overlap, changing the laminate direction and outer adherend 

thickness on the type of fracture, and the peak load of the joint. During the testing of DLS 

joints, the failure path of the specimens occurred in the form of an S-shape or U-shape, as 

shown in Figure 4.10a and b. 
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Figure 4.9: Tensile test of [0o,90o]6 specimen with 75 mm overlap length 

 

 

 

Figure 4.10: Failure shapes: a) S-shape, b) U-shape 

 

4.3.2 Test Results 

 Effect of fibre orientation  

As mentioned in the literature review section, assessed fibres are strongest when loaded 

along their length. Experiments were conducted to the effect of fibre direction was 
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considered in relation to the 75 mm overlap with 3 mm outer adherend thickness at different 

orientations. Figure 4.11 shows the test results for types [0o,90o]6 , [90º,0º]6 and [+45o,-45o]6 

specimens, and indicate these are maximum values for respective test specimens. 

 

 

Figure 4.11: Load displacement curves for different orientation angle with 75 mm 

overlap length and 3 mm thickness of CFRP adherend 

 

This shows that the failure load for [0o,90o]6 specimens produced 5% and 70% higher 

strength than the [90º,0º]6 and [+45o,-45o]6 specimens, respectively.  

 

 

 

Figure 4.12: Experimental fracture surfaces for: (a) [0o,90o]6 specimen, (b) [90o,0o]6 

specimen and (c) [+45o,-45o]6 specimen 
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The failure surfaces of the specimens were inspected to speculate on where the crack may 

have been initiated. A large amount of adhesive can be seen on the steel adherend [0o,90o]6 

specimen with fragments of the fractured composite, as shown in Figure 4.12a. This suggests 

that failure was initiated in the adhesive either by cohesive failure or lack of adhesion. The 

high failure load of the joint suggests cohesive failure, as failure by lack of adhesion usually 

occurs at low loads. From Figure 4.12b it can be seen that in the [90o,0o]6 specimen, the bond 

area of the steel is completely covered by layers of the composite laminate, which suggests 

that failure initiated within the CFRP adherend. This supports the argument that failure of 

the joint was within the carbon fiber laminate, and the likely cause is delamination in the 

composite material. For the [+45o,-45o] specimen, the failure can also be characterised as 

delamination, as shown in Figure 4.12c. This could have started in the first or second ply 

due to in-plane shear and transverse stresses. As would be expected, the joint with [+45o ,-

45o]6 specimen also fails at a much lower load than the [0o,90o]6  specimen. After initial 

failure, it continues to carry a substantial load as shown in Figure 4.11. This load-carrying 

capacity gradually decreases until final failure is reached. The failure occurs at a greater 

extension than both of the other configurations. This is demonstrated in Figure 4.11, which 

shows that extension of the [+45o ,-45o]6 specimen is approximately 2 mm greater than that 

of the [0o,90o]6  specimen. The failure load of this type fibre alignment is so low due to the 

fibres being delaminated in line with the direction of the applied load. This results in high 

shear stresses in the laminate.  

Also, from Figure 4.12c it can be seen that the failure surface of the joint with [+45o ,-45o]6 

specimen is similar to the [90o,0o]6  specimen, and shows a large amount of the composite 

covering the steel surface with a smaller portion of adhesive also visible. This suggests that 

failure initiation for this joint was also within the composite laminate.   

 Effect of overlap length 

 Tests were also conducted to determine what effect the overlap length of the composite 

adherend has on the strength of the joint. Specimen overlap lengths of 25, 50, 75, 100, and 

125 mm based on [0o,90o]6 and [90o,0o]6 specimens were considered. The test results for 

these are shown in Figure 4.13 and Figure 4.14, demonstrating that increasing the length of 

the overlap bonding increases the load at which the joint will fail. As the length is increased, 

a greater extension of the joint before failure can also be seen.  
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Figure 4.13: Load-displacement curves for [0°,90°]6 specimens at varying 

overlap lengths 

 

 

 

Figure 4.14: Load-displacement curves for [90°,0°]6 specimens at varying 

overlap lengths 

 

However, studies into the effects of overlap length have shown that this trend is limited. For 

each type of joint there exists a plateau at which point the strength of the joint cannot be 

influenced by further lengthening of the CFRP adherend. Also, from Figure 4.15 can be seen 

that with shorter overlaps (25-50 mm), the load seems to be proportional to overlap length. 

For longer overlaps, the failure load tends to reach a plateau independent of overlap lengths. 
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 Effect of CFRP adherend thickness  

Tests were also conducted to determine the effect of the thickness of the CFRP laminate 

adherend on the strength of the DLS joint. The joints were based on [90o,0o]6, and [90o,0o]12 

specimens were used. The overlap length for both cases was 50 mm. 

 

 
Figure 4.16: Load-displacement curves for specimens with different 

outer adherend thickness 

 

The experimental results show that the [90o,0o]12 specimen has 15% higher strength than the 

[90o,0o]6 specimen, as can be seen in Figure 4.16. In this case the failure for both specimens 

 

 

Figure 4.15:  Influence of the overlap length on the failure load for 

[0°,90°]6 specimens 
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took place at top ply, possibly initiated by transverse cracks in the ply next to the resin layer. 

Figure 4.17 shows the failure surfaces. 

 

 

Figure 4.17: Failure surfaces for: a) [90o,0o]6 specimen, b) [90o,0o]12 specimen 

4.4 Testing of DLS joint using the strain gauges 

The double lap shear joint specimens were instrumented with foil type electrical resistance 

strain gauges at several points of interest. Gauges were attached to the CFRP laminate and 

steel adherends. Gauge numbering and the location of each gauge are illustrated in 

Figure 4.18. 

 A high speed camera was also used in an attempt to locate where failure initiates in the DLS 

joint. The strain gauges were used in the [0o,90o]6 specimen test study for assessing strain 

variation in the adherends (CFRP and steel) by means of monitoring the longitudinal strains 

at several points of interest. In addition, the strain gauges provided high sensitivity and 

detailed measurements of surface deformation, which can provide an information on the 

interaction between adherends and the adhesive layer, and yield the strain distributions in 

the adherends and adhesive. The DLS joint specimen was instrumented with uniaxial strain 

gages from Vishay (CEA-06-250UN-120) having a gauge length of 8 mm, which are capable 

of measurements up to 5% deformation. The manufacture data sheet is presented in 

Appendix C.  It is important that the surface of adherend is clean and the gauge is perfectly 

bonded to the adherend. Therefore, the preparation procedure consisted of abrading the 

surface with fine emery paper and cleaning with acetone. Vishay M-Bond AE-10 Epoxy 
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strain gauge adhesive was used to bond the strain gauge to the adherend at the specified 

position. The manufacturer data sheet of the strain gauge adhesive is given in Appendix D. 

The locations of strain gauges on the specimen are shown in Figure 4.18. All data was 

automatically recorded by an Orion data logger data acquisition system shown in 

Figure 4.19. Typical load strain curves are presented in Figure 4.20. 

 

 
Figure 4.18: The location of strain gauges on [0o,90o]6 specimen with 75 mm overlap 

length 

 

 

 

Figure 4.19: Strain gauges positions and test set up 
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Figure 4.20: Typical curves of load vs. strain measurement for [0o,90o]6 

specimen with 75 mm overlap length as experimentally registered on 

adherends. (Figure 4.18) 

 

Figure 4.20 shows the experimentally measured load-strains for double lap shear joint 

specimen. It shows a linear response up to the failure load. The strains at the measurement 

locations follow a linear shape, which denotes that they remain within the linear elastic 

region of either the CFRP or the steel substrates.  

The maximum strains in the CFRP have reached about 6480 μ as given by gauge SG-4 

attached to the CFRP adherend at the centre of the joint. From this Figure it can be seen that 

the strain value reached about 6254 μ as given by gauge SG-2, and that all perverse strains 

take only positive values.      

4.5 Testing of DLS joint using high speed camera 

The setup for the experiments can be seen in Figure 4.21. A specimen can be seen gripped 

in the Zwick/Roell Z250 Universal testing machine, which provided force and extension 

data for each of the tests. Each specimen was gripped at 50 mm from the edge at both ends, 

and the test was conducted at a rate of 0.5 mm/min. A high speed camera was also used in 

an attempt to locate where failure initiates in the joint. This was a Photron FASTCAM – 

Ultima APX by Nikon which comes with its own software to adjust the camera’s image 

settings and monitor the recorded data. When the shutter is open the camera is constantly 

recording, and there are various options to decide which data to retrieve. 
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Figure 4.21: Setup for experimental investigation 

 

The End Trigger capture option was used, which means that the record button must be 

clicked immediately after joint failure, and a set amount of time prior to this moment is saved 

to allow for editing. The higher frame rates used for this experiment allowed for about 4 

seconds of video to be recorded. Due to the lack of colour in the image and the black 

background of the testing machine, white paper had to be pinned behind the test specimen 

in order for the composite material to stand out in the image. 

The failure process of the [+45o,-45o] specimen was relatively slow compared with the other 

two configurations. As such, the crack could be seen initiating at the centre of the joint and 

propagating outwards towards the end of the overlap. This was impossible for the [0o,90o] 

and [90o,0o] specimens which failed abruptly. The high speed camera was necessary to 

identify the location of failure initiation for these joints. As for the [+45o,-45o] specimen, 

failure also initiated at the centre for both of these joints. Even at the highest frame rate used 

in this investigation, the failure process still occurs very quickly. The clearest videos were 

recorded with the camera set at 12500 frames per second. Setting the rate at lower levels 

made it impossible to identify where the crack initiates. Any higher and the resolution is 
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reduced to the point where the video is unclear. The software used with the camera allows 

settings such as brightness and contrast to be altered once the camera placement and zoom 

settings have been finalised. The failure of a [90o,0o] specimen with a 125 mm overlap length 

can be seen in a series of frames in the Figure 4.22. The images clearly show the crack 

initiating at the centre of the joint and propagating outwards towards the end of the overlap.  

 

 

Figure 4.22: Failure initiation and growth in the DLS joint 
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Chapter 5 

5 Numerical analysis of DLS joint based on 

strength of material approach 

5.1 Introduction    

Numerical modelling of the adhesive joints was carried out using the finite element method. 

Finite element analysis is a powerful tool used in the industry mainly to simulate stresses 

and strains in any structural part, given the material properties and loading configuration. 

The effectiveness of finite element methods for modelling adhesive joints has been 

demonstrated in recent years [189, 190, 191, 192, 193]. This chapter details numerical 

models of the double lap shear joint created and analysed during this study. A commercially 

available finite element code, ABAQUS, was used for the numerical analysis. The geometry 

and meshing of the two dimensional (2D) model was carried out using Abaqus/CAE. 

5.2 Geometry and boundary conditions  

The geometry and configuration of the double lap shear (DLS) joint used in this research is 

shown in Figure 4.1, and the nomenclature used with reference to DLS joint geometry is 

given in Figure 5.1. 

 In order to optimise the computational cost of the analysis, symmetry in the joint geometry 

and loading was employed. The joint can be simplified to one quarter of the specimen, thus 

making the model easier to create, and reducing the complexity of the FEA simulation and 

the computational time. The loading and boundary conditions are shown in Figure 5.1. 
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Figure 5.1:  Loading and boundary conditions of the DLS joint 

5.3 Meshing Methodology   

Meshing along the DLS joint is challenging, owing to the presence of a very thin adhesive 

layer, compared to the overall dimensions of the joint. The presence of a corner at the ends 

of the overlap further complicates the meshing requirements. There are numerical 

singularities of stresses at re-entrant corners of the DLS joints, the stresses depending on the 

mesh size used, and how close to the singular points the stresses are taken. 

The methodology considered in meshing the DLS joint is to use dissimilar meshes in the 

adhesive layer and adherends, and to join them using tie constraints. Tie constraints allow 

for translational and rotational motion, as well as all other active degrees of freedom, equal 

for nodes on both sides of the tie constraint. Therefore a coarse mesh may be used in the 

adherends and a fine mesh may be used in the adhesive layer. In this analysis, an attempt 

was made to model the CFRP laminate at its constituent level i.e. the resin layer and the 

unidirectional (UD) laminates.  

To gain a greater insight into the CFRP composite, a Normasky microscope was used, which 

provided an excellent view of the layers in the composite. Figure 5.2a shows an image taken 

from the Normasky microscope.  From this image we can see that the composite consists of 

fibre layers and very thin layers of epoxy based matrix between those fibre layers. The 
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average thickness of the layers was found to be 0.2 mm for the fibre layers and 0.05 mm for 

the epoxy matrix. Using these values, a 2D representation of the CFRP was created, as shown 

in Figure 5.2b.  

                              

 

 
Figure 5.2: Image of [0o,90o]6 CFRP laminate (a) using Normasky microscope, (b) 

modelled in Abaqus 

 

 

 

 

Figure 5.3: Finite element mesh of the DLS joint 
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Each ply was modelled to represent the fibre oriented in different direction. The epoxy 

matrix was modelled with its isotropic, elastic properties. The steel and adhesives were 

assigned elastic-plastic properties. A number of meshing methods are available in ABAQUS 

and the geometry was meshed based on its shape, as shown in Figure 5.3.  The 2D model 

was used taking into consideration the non-linear material and geometry factors, using the 

plane-strain quadratic elements and rectangular 8-noded elements, CPE8R (reduced 

integration). The coarse mesh was far from the overlap region that was the area of interest 

during the analysis. The adherends were meshed with multiple elements through thickness 

to capture their bending behaviour accurately. 

5.4 Material properties 

Composite laminates are formed by combining individual layers (lamina) into a multi-

layered structure. A laminate is a bonded stack of lamina with various orientations of 

principal material directions in the laminate, as in Figure 5.4. The layers of a laminate are 

usually bonded together by the same matrix material that is used in individual lamina. 

 

 

Figure 5.4: Schematic illustrations of laminates with various layup sequences 

 

The mechanical behaviours of fibre reinforced composite materials are highly dependent on 

the direction of loading. For instance, considering a unidirectional laminate, the elastic 

modulus parallel to the fibre direction, ELL, ( referred to as the longitudinal direction) is 

significantly different from the elastic modulus perpendicular to the fibre direction, ETT, 

(referred to as the transverse direction). 
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The L and T directions are referred to as the material axes. In this case, the L-axis is defined 

to be parallel to the fibres (0o), and the T-axis is defined to be perpendicular to the fibres 

(90o) see Figure 5.5a. If the plate is loaded parallel to the fibres, the modulus of elasticity 

E11 approaches that of the fibres. If the plate is loaded perpendicular to the fibres in the T-

axis or 90o direction, the modulus E22 is much lower. However, if the load is applied at an 

acute angle θ to the fibre direction, see Figure 5.5b, the elastic response along the loading 

axis (1 and 2 directions) can be calculated by the transformation rules [194, 20] from the 

properties measured along the materials axes (L and T) where; 
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Note that in equations (5.1) and (5.2) the material parameters needed include transformation 

angle (θ), in-plane shear modulus (GLT),  in-plane Poisson’s ratio (νLT) and the longitudinal 

and transverse elastic moduli (ELL and ETT). For unidirectional composites, in-plane shear 

modulus follows the “Rule of Mixtures” and can be determined from the constituent matrix 

and fibre properties (see Table 3.3).   

 

 

Figure 5.5: Illustration of shear strain produced by tensile loading of a fibre 

composite 

 

The transformation of (νLT) and (GLT) along the material axes into (ν12) and (G12) along the 

loading axes is given by: 
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The material properties assigned to each part are given in Table 5.1. This includes data from 

manufacturers, mechanical testing and calculation methods. 

 

Table 5.1: Material properties of carbon-epoxy composite, adhesives and mild steel,  

Property 

Carbon fibre lamina 

Adhesive 

Araldite 

2015 

Epoxy resin 

matrix  

LY3505/XB3405 

Mild 

Steel 

0o 

layer 

90o 

layer 

±45o 

layer 

   

Young’s 

modulus (GPa) 

E11 139.4 1 7.66 1 9.85 1 1.8 1 3.5 2 210 2 

E22 7.66 1 139.4 1 9.85 1 - - - 

E33 7.66 1 7.66 1 7.66 1 - - - 

Shear modulus 

(GPa) 

G12 3.68 1 3.68 1 7.07 1 0.662 1 1.296 1 80.7 1 

G13 3.68 1 2.94 1 2.94 1 - - - 

G23 2.94 1 3.68 1 2.94 1 - - - 

Poisson’s ratio 

ν12 0.26 1 0.014 1 0.34 1 0.36 2 0.35 2 0.3 2 

ν13 0.26 1 0.304 1 0.304 1 - - - 

ν23 0.304 1 0.26 1 0.304 1 - - - 

Tensile 

strength (MPa) 
 1400 2 - - 40 3 85 2 450 2 

Transverse 

strength (MPa) 
 86 2 - - - - - 

Shear strength 

(MPa) 
 137 2   24 3 51 2 270 2 

Note: 1- Calculation data, 2- Manufacture data, and 3- Test data.  

 

The maximum tensile strength of the adhesive is known to be 40 MPa. Using the maximum 

tensile strength and Young’s modulus of the material, the strain at which yielding occurs 

was calculated, and used to allow for plastic deformation in the model (see Table 5.2). 
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5.5 Mesh convergence    

A mesh convergence study was carried out with three different finite element meshes, as 

shown in Figure 5.6, Figure 5.7 and Figure 5.8. Therefore, the problem is considered to be 

two dimensional. The meshes were generated using eight-node quadrilateral 2D plane strain 

solid element (type CPE8R). Four elements were used through thickness of the adhesive, 

two for the resin layer and two for the carbon fibre layer. Three different mesh types were 

used to model the double lap joints and subjected to the same level of tensile loads.  

The maximum principal stress, shear stress and peel stress at the middle of the adhesive layer 

for 2D meshes are plotted in Figure 5.9, Figure 5.10 and Figure 5.11 respectively. The stress 

distribution by the three meshes were very similar in the middle of the overlap, with the 

differences seen in the region of the overlap edges. The results of Mesh 2 and Mesh 3 were 

in good agreement and Mesh 3 was selected for use in further analysis, as it was 

computationally less expensive. 

 

 

Figure 5.6: Mesh distribution in regions LHS and RHS for the [0o,90o]6 model, 

element ratio 0.5 (mesh 1) 

 

 

Table 5.2: Properties of Araldite 2015 in the plastic region 

Yield stress (MPa) Plastic strain 

39.999 0.000 

40.000 0.022 

40.001 0.044 

40.002 0.060 
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Figure 5.7: Mesh distribution in regions LHS and RHS for the [0o,90o]6 model, 

element ratio 1(mesh 2) 

 

 

 

 

Figure 5.8: Mesh distribution in regions LHS and RHS for the [0o,90o]6 model 

(mesh 3) 
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Figure 5.9: Maximum principal stress distributions along the centre of adhesive layer 

for [0o,90o]6 model with 50 mm overlap at different meshes. 

 

 

 

 

Figure 5.10: Shear stress distributions along the centre of adhesive layer for [0o,90o]6 

model with 50 mm overlap at different meshes. 
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Figure 5.11: Peel stress distributions along the centre of adhesive layer for [0o,90o]6 

model with 50 mm overlap at different meshes. 

 

5.6 Stress distributions  

The mechanical properties of various materials were based on the values in Table 5.1. As 

mentioned before, in this analysis an attempt was made to model the laminate as its 

constituent parts i.e. resin and UD plies. Each ply was modelled to represent the 0o and 90o 

directions. For the (+45o/-45o) joint, the ply was modelled with different fibre angles +45o 

and -45o considered for analysis. The mesh size was adjusted in all models for a similar 

element size at the overlap edges. This is to ensure that the comparative stresses are measured 

at the same locations. The stress magnitudes for the adhesive and resin matrix were 

subsequently evaluated at a prescribed distance from the free surface of the inner adherend. 

The node at the free edge of the adhesive was ignored, due to spurious effects at this point 

as a result of the stress tip singularity [195]. In addition, failure also took into consideration 

the spread of principal stresses at a level higher than maximum tensile stress over a finite 

zone at the joint edge, in accordance with Clarke and McGregor’s approach [196]. 

Singularity issues at the interface of the adhesive and laminate were dealt with according to 

the third-node stress consideration proposed by Gleich et al [197]. In this region the critical 

stresses in adhesive and composites are taken into consideration to assess joint failure.  
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5.6.1  Effect of stacking sequence  

[0º,90º]6, [90º,0º]6 and [+45º,-45º]6  models with 75 mm overlap were used to study the effect 

of orientations on stress distribution in each model. The mechanisms of failure of these 

models with different orientations are presented in Figure 5.12, which shows the contours of 

maximum principal stresses for these joints. As mentioned before, the maximum stresses 

occur at the centre of the joint (RHS-Figure 5.3). The maximum principal stress distribution 

along the upper interface of the adhesive layer is shown in Figure 5.13, with the peak stresses 

for the three cases at the RHS of the joint. In addition, Table 5.3 summarises the adhesive 

stresses which were taken at the middle of the adhesive and its interfaces with the adherends. 

The table highlights the stress values that exceed the relevant failure strength.   

 

 

Figure 5.12: Contours of maximum principal stress in the CFRP for different models 

with 75 mm overlap: (a) [0º,90º]6, (b) [90º,0º]6 and (c) [+45º,-45º]6 at failure loads (50 

kN,47.5 kN and 17 kN) respectively 
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Figure 5.13: Maximum principal stress distribution along the upper of adhesive layer 

for various models with 75 mm overlap at failure loads 

 

Figure 5.14-5.16 show the variation of the longitudinal (S11), transverse (S22) and shear 

(S12) stresses in the composite, at failure loads (from experiments). The stresses were taken 

at the middle of the top ply of laminates. All peak stresses are below the strength values for 

the composite given in Table 5.1. However, the longitudinal direct stress (S11) for the 

[90o,0o]6 model (Figure 5.15) is close to the ultimate transverse strength of the laminate, and 

hence there is a possibility of adherend failure in this case, as indicated earlier in Figure 

4.12b (Section 4.3.2.1). This transverse crack in the 90o ply may have extended to the resin-

rich interface between it and the 0o ply. Leading to delamination. Transverse cracking may 

also be initiated from defects in the matrix. 

In addition, Table 5.4 shows the maximum stress values in the composite, including the 

matrix resin at the RHS of the three models. The maximum tensile strength of the resin is 85 

MPa. As can be seen from the table, the resin tensile stress (S11) exceeds this for the [+45o,-

45o]6 model. Also, the tensile stress (S11) of the top ply, which is 165 MPa, can cause 

delamination failure either in shear or transverse stresses, or both. The maximum principal 

and tensile stress (S11) in the composite is 911 MPa for the [90o,0o]6 model, which is very 

close to ultimate tensile strength of the UD laminate. However, the values at the end of the 

table indicate that the shear (S12) and peel (S22) stresses in the matrix resin for the [90o,0o]6 

model are twice those for the [0o,90o]6 model. However, being well below the respective 

strength values of the matrix resin, these are unlikely to initiate failure. 
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Figure 5.14: Stresses distribution along the centerline of the ply next to the 

bondline for [0o,90o]6 model at failure load (50 kN) 

 

 

 

 

 

Figure 5.15: Stresses distribution along the centerline of the ply next to the 

bondline for [90o,0o]6 model at failure load (47.5 kN) 
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Figure 5.16: Stresses distribution along the centerline of the ply next to the 

bondline for [+45o,-45o]6 model at failure load (17 kN) 

 

 

 

 

Figure 5.17: Data path through the thickness of the adhesive and 

CFRP laminate (at RHS) 

 

A further data path was created through the thickness of the composite laminate near the 

centre of the DLS joint in order to show stress distribution through the various layers 

Figure 5.17. 
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Table 5.3: Stress results through the adhesive layer at failure loads (Figure 5.12), the 

numbers in bold indicate maximum critical stresses. 

 
Stress 

(MPa) 
Data path 

 [0o,90o]6 

model 

 [90o,0o]6 

model 

 [+45o,-45o]6 

model 

LHS RHS LHS RHS LHS RHS 
A

d
h
es

iv
e 

la
y
er

 

Max 

Principal 

Upper 13.3 54.5 15.2 49.8 2.05 50.2 

Middle 25.6 20.4 25.6 17.1 3.74 16.7 

Lower 40.1 13.9 37.5 17.3 5.07 17.1 

Max S11 

Upper 29.4 28.8 3.3 28.1 0.05 33.8 

Middle 0.56 -3.34 0.05 -4.76 0.06 -1.52 

Lower 10.5 -14.1 10.9 -76.3 2.14 -62.1 

Max S12 

Upper 3.52 14.8 1.81 16.4 0.26 19.1 

Middle 8.57 11.8 7.24 10.1 0.79 10.1 

Lower 17.6 24.5 15.9 24.2 2.1 24.1 

Max S22 

Upper 12.1 45.3 15.1 35.9 2.01 22.1 

Middle 22.7 8.3 23.5 24.4 3.4 -3.22 

Lower 29.3 -62.9 27.8 -72.8 3.56 -72.2 
 

 

   

Table 5.4: Stress results through the laminate and resin layers from numerical analysis 

at failure load (Figure 5.12), the numbers in bold indicate maximum critical stresses. 

 
Stress 

(MPa) 
Data path 

[0o,90o]6 

model 

[90o,0o]6 

model 

[+45o,-45o]6 

model 

LHS RHS LHS RHS LHS RHS 

C
o
m

p
o
si

te
 

Max 

Principal 

First resin 25.7 65.3 25.7 70.6 3.47 92.5 

First lamina 17.1 911 19.8 74.3 2.54 165 

Second resin 12.6 30.2 18.3 38.8 2.1 62.1 

Max S11 

First resin 8.6 50.1 10.2 58.4 1.56 85.6 

First lamina 6.45 911 2.5 71.6 0.4 165 

Second resin 5.2 28 6.04 34.7 0.82 61.5 

Max S12 

First resin 13.8 20.1 11.7 19.1 1.6 18.7 

First lamina 7.06 11.7 1.2 13 1.2 9.5 

Second resin 4.3 5.12 8.6 10.3 0.83 5.8 

Max S22 

First resin 14.6 37.9 16.8 39.5 2.1 40 

First lamina 12.2 11.5 1.4 12.1 1.9 11.4 

Second resin 9.9 7.72 12.3 14.6 1.57 7.6 
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(a) 

 

 

 (b) 

 

Figure 5.18: Stress distributions through the thickness of adhesive and CFRP laminate 

of [0o,90o]6 model; (a)Tensile stress (S11) , (b)Peel stress (S22) and Shear stress (S12) 

at data path (Figure 5.17) 

 



 

Chapter 5. Numerical analysis of DLS joint based on strength of material 

 

 

109 

 

 

 

 

(a) 

 

 (b) 

  

Figure 5.19: Stress distributions through the thickness of adhesive and CFRP laminate 

of [90o,0o]6 model; (a)Tensile stress (S11) , (b)Peel stress (S22) and Shear stress (S12) 

at data path (Figure 5.17) 
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(a) 

 

 

(b) 

 

Figure 5.20: Stress distributions through the thickness of adhesive and CFRP laminate 

of [+45o,-45o]6 model; (a)Tensile stress (S11) , (b)Peel stress (S22) and Shear stress 

(S12) at data path (Figure 5.17) 
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Different DLS joints subjected to failure tensile loading, tensile (S11), peel (S22) and shear 

(S12) stresses distribution,  through the thickness of adhesive and the CFRP laminate with 

different stacking sequences [0º,90º]6, [90º,0º]6, and [+45º,-45º]6 models,  are given in 

Figure 5.18- 5.20. The curves demonstrate the values obtained at the interfaces between each 

layer of the composite laminate. These curves show that the ply stacking sequences appear 

to have considerable influence on the stress distribution between layers of the composite 

laminate. In general, for the three models with different ply stacking sequences, it can be 

seen that the tensile stress results clearly show a step-wise distribution of stresses, due to 

discontinuities in material properties between plies. Important results obtained from these 

curves can be outlined as follows: 

- In all models, stress concentration decreases from the first layer to the last one.  

- When tensile stress (S11) distributions in load direction are examined, it can be seen 

that stress concentration is higher at 0o layers, see Figure 5.18a, and 5.19a.    

- When peel stress (S22) distributions, which are important for the failure of the joint, 

are examined, it can be detected that in [0º,90º]6 model stress is higher at the upper 

interface of the adhesive layer in (RHS) compared to the lower interface, see 

Figure 5.18b.  On the other hand, for [90º,0º]6, and [+45º,-45º]6 models the stresses 

are  lower than those occurring at the [0º,90º]6  model , see Figure 5.19b and Figure 

5.19b. This directly changes the mode of failure occurring in the joint. 

- In the adhesive layer of the [0º,90º]6  model, shear stress (S12) value near  the centre 

of the joint (RHS) is higher than that of other models, see Figure 5.18b, and 5.19b. 

5.6.2 Effect of overlap length 

One of the important parameters that influence the joint strength is the overlap length. The 

[0o,90o]6 models with various overlap lengths (25-200 mm) were used to study the effect of 

bonded length on stress distributions along the adhesive layer. An adhesive thickness of 0.2 

mm was used in each model. Every model analysed used identical boundary conditions, and 

the failure loads obtained from experimental tests were used to validate the finite element 

models. The same standard mesh was used in each model, as can be seen in Figure 5.3. 

The shear stress results in the adhesive at failure loads with respect to various overlap length 

are shown in Figure 5.21. The shear stress distribution along the upper interface of the 

adhesive for all models is high at the RHS near the centre of the joint. The adhesive reaches 

plasticity for all joints which display similar zones of plasticity in shear. The size of the 
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plastic zone may be taken as a measure to predict joint failure, which will be discussed in 

Chapter 8. 

 

 

Figure 5.21: Shear stress distributions along the upper of adhesive layer for 

different values of overlap length for [0o,90o]6 models at failure loads 

5.6.3 Effect of outer adherend thickness 

In this section the [0o,90o]6 , [0o,90o]12 and [0o,90o]18 models with different laminate 

thicknesses are examined  i.e. 3 mm , 6 mm and 9 mm respectively. The overlap is 75 mm. 

The same standard mesh was used in each model, as can be seen in Figure 5.3, with the 

additional thickness of the outer adherend b doubling the number of layers for other models 

(12, 24 and 36 layers). Every model analysed used identical boundary and loading 

conditions. Loading of each model was 50 kN, applied at the steel adherend as a tensile load. 

Table 5.5 presents the results of the stress distribution at the upper, middle and lower 

interfaces of the adhesive.  The table contains the peak stresses at the RHS and LHS of the 

different models. It can be seen that increasing the thickness of CFRP composite laminate 

has a significant effect on the distribution of stress. The greatest stress is no longer in the 

upper adhesive layer at the RHS near to the joint centre. The stress occurs in the lower 

adhesive interface towards the end of the overlap.  

The maximum principal stress at the upper RHS has decreased dramatically. The same can 

be seen for the peel stresses through the adhesive at the RHS, with the greatest decrease 

shown in the upper interface at the centre of the joint. The middle and upper regions at the 
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LHS of the adhesive are above this threshold for the thicker composite adherend, when 

previously they were below. The maximum peel stresses at these locations are also shown 

to have increased (highlighted in bold numbers). 

 

Table 5.5: Stress results through the adhesive layer at a load of 50 kN, the numbers in 

bold indicate maximum critical stresses. 

 
Stress 

(MPa) 

Data 

Path 

CFRP 

[0o,90o]6 

CFRP 

[0o,90o]12 

CFRP 

[0o,90o]18 

LHS RHS LHS RHS LHS RHS 

A
d
h
es

iv
e 

la
y
er

 

Max 

Principal 

Upper 13.3 54.3 19.1 31.7 23.6 25.3 

Middle 25.6 20.4 31.4 15.6 34.1 12.3 

Lower 40.1 14 52.1 32 53.9 34.1 

 

Max S12 

Upper 3.5 14.8 16.5 21.7 18.5 20.2 

Middle 8.6 11.8 16.5 23 17.7 23.7 

Lower 17.6 24.5 22.2 22.6 23.5 22.3 

Max S22 

Upper 12.1 45.3 18.7 18.7 23.5 11.3 

Middle 22.7 8.3 28.5 -7.3 31.8 -11.8 

Lower 29.3 15 41.1 9.2 42.5 8.5 
 

 

Data paths were created along the same node path as before to enable an accurate 

comparison. The path at the upper interface of the adhesive layer was used to plot the stresses 

distribution for three models.  

 

 

 
Figure 5.22: Maximum principal stresses distribution along the upper 

adhesive layer for different outer adherend thickness 
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Figure 5.23: Shear stresses distribution along the upper adhesive layer for 

different outer adherend thickness 

 

  

 

 
Figure 5.24: Peel stresses distribution along the upper adhesive layer for 

different outer adherend thickness 

 

 

It can be observed from Figure 5.22 - 5.24 that with increase in the outer adherend thickness, 

reductions in the values of maximum principle stress, shear stress and peel stress towards 

the centre of the joint RHS take place. Also, as the thickness increases, the maximum stresses 

at the end of the joint overlap are seen to increase. As for the maximum principal stress and 

the peak peel stress, a high increase of approximately 52% at the left hand side of the upper 

adhesive interface can be seen. One conclusion from these results is that the maximum stress 
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within the adhesive moves location, from the joint centre RHS to the end of the joint overlap 

LHS, as the stiffness of the outer adherend increases. 

5.7 Summary       

The methods employed in the development of the finite element models were discussed in 

this chapter. The model geometry for 2D models was selected based on their symmetry in 

joint geometry and the loading. The boundary conditions were based on tensile loading of 

the joints. A continuous mesh was used to discretise the geometry, where smaller elements 

were used in the adhesive layer and relatively larger elements used in the adherends. 2D 

models were based on a plane strain formulation, which provided good results. The sizes of 

2D meshes were finalised after a mesh convergence study, and the mesh with the least 

number of elements was selected after the convergence in stresses was achieved.  

In this study DLS joints with composite laminate with different orientation angles were 

subjected to tensile loading, and their mechanical behaviours were investigated numerically. 

Accordingly, the following conclusions might be drawn:  

- The numerical analyses gave a good indication of the likely areas where failure 

would initiate when compared with the specimens tested experimentally.  

- The fibre orientation and ply stacking sequence had a significant effect on the stress 

distribution.  

- The adhesive plastic shear zone at failure remains about 30 mm in length when 

increasing the overlap length of the DLS joint.  

- Increasing the thickness of the outer adherend significantly reduces the stress at the 

centre of the joint (RHS), particularly in the upper adhesive interface. However, 

increased thickness is seen in this layer at the left hand side towards the end of the 

overlap in the upper adhesive interfaces.  
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Chapter 6 

6 Numerical investigation of pure mode I and II 

6.1 Introduction  

This chapter uses experimental results introduced in Chapter 3 to identify the sets of material 

parameters required for FEA simulation of the confined structural adhesive. Numerical 

accuracy is ensured by modelling the adhesive layer using several solid continuum elements 

in the thickness. Such a mesh is not valid for large models since it is extremely time 

consuming. Consequently, computational efficiency is addressed using specific interface 

elements that run very fast. The FEA model was used in correlation with the experimental 

data, in order to obtain the  material parameters values for the cohesive zone for the DLS 

joint numerical model. These include fracture energy, interface strength and cohesive zone 

length. The formulation of the cohesive finite elements is based on the cohesive zone model 

(CZM) approach. The CZM approach [126, 198] is one of the most commonly used tools 

for the investigation of interfacial fracture.  

The tests considered in this chapter for the modelling are the following: 

Double Cantilever Beam (DCB) test for mode I.  

End Notched Flexure (ENF) test for mode II. 

The modelling has been done with the finite element code ABAQUS 6.9-1. For each model, 

the first step was a comparison between the loads versus displacement curve obtained from 

the modelling, with the equivalent curve obtained experimentally.  

Finally, the influence of interface cohesive parameters for the two models has been 

evaluated. 

6.2 Cohesive zone model concept  

The CZM offers an alternative method to linear elastic fracture mechanics for the simulation 

of damage evolution in materials. The cohesive zone model comprises of two parts that are 



 

Chapter 6.  Numerical investigation of pure mode I and mode II 

 

 

117 

 

separated by a material discontinuity. The CZM concept is useful to visualise the domain Ω 

shown in Figure 6.1. A material discontinuity, 𝛤𝑐, has been defined  as an interface bounding 

the regions 𝛺1 and 𝛺2 respectively. This interface surface is an internal surface in the domain, 

and hence represents a cohesive surface that has not yet been separated. Prescribed tractions, 

fi against the surface domain 𝛤𝑓, with the prescribed displacements on the boundary are 

denoted as 𝛤𝑢. If the body forces are neglected, the stress field can thus be related to the 

external loading and to the closing traction, T, in the material discontinuity. In the simplest 

formulation of CZM, the whole body volume remains elastic while the nonlinearity is 

embedded in the cohesive model, which dictates the boundary conditions along the crack 

line, 𝛤𝑐.The peak stress on the traction-separation relation is considered to be the cohesive 

strength, σo , of the material, while the area under the curve for the traction-separation 

relation is also equal to the critical fracture energy of the material [128, 199]. The fracture 

energy of an adhesive layer involves the intrinsic fracture energy (G0) needed for breaking 

the intrinsic bonding forces, and a viscos-elastic and/or plastic energy terms (ψ) that  

accounts for the energy dissipation in the surrounding adhesive layer [128, 200]. The plastic 

energy usually represents the main sources of energy absorption in a ductile adhesive such 

as Araldite 2015, and, as a result, the adhesive fracture energy is often characterised as; 

[200]. 

 0GGC  (6.1) 

 

The traction on the discontinuity rises until the peak stress is reached, at which point a crack 

begins to form between the two parts. As separation between the two parts increases, traction 

at the surfaces decreases, following a specific relation until the traction free surfaces are 

created. At this point the crack has been fully developed [128]. Figure 6.1 visually describes 

the fracture processes in a CZM (from right to left in the figure); (1) the material initially 

assumes linear elastic  behaviour, (2) the peak stress is reached at the crack tip, and  at this 

point the crack begins to develop, (3) the two parts separate further and traction at the 

surfaces decreases, following a specific traction separation relation until the traction reaches 

zero, and (4) when the traction reaches zero, the parts have been separated and the crack has 

fully developed. 
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Figure 6.1: Illustration of cohesive zone model concept [128], at first a linear elastic 

material response prevails (1), as the load increases the crack initiates (T=σo) (2) and 

then, governed by the nonlinear cohesive law, it evolves from initiation to complete 

failure (3) with the appearance of new traction free crack surfaces (∆=∆f) (4). 

 

The use of cohesive elements in a numerical model allows crack onset and propagation to 

be modelled without the need for pre-defining an initial flaw as in LEFM. The crack 

evolution is being governed by the softening relationship adopted, which defines the stresses 

and relative displacements between crack faces. A negative aspect with respect to 

implementing a CZM through cohesive elements involves knowledge of the expected plane 

of damage, as the cohesive elements need to be aligned along this route, which can often be 

difficult to know beforehand [199].  

In the cases of DCB and ENF experiments, two steel adherends are joined by an adhesive 

layer. As the steel adherends have much higher strengths than the adhesive, it is clear that 

the crack will form in the adhesive layer. However, in the composite DLS joints, it is unclear 

as to where the joint will fail. It could fail in the adhesive or the composite layers, and 

therefore the crack path must be investigated before creating the model.  

CZM elements are not assigned any specific material properties and, as such, do not 

represent any particular material. Instead, the properties that are needed during the analysis 

are the required energy to cause fracture propagation, and normal stress in the adhesive layer. 
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By implementing this data, the FEA software ABAQUS is able to determine the amount of 

energy needed to cause failure and the development of fracture level.  

6.3 Numerical modelling using cohesive elements    

The ABAQUS FEA software used for the investigation uses three types of cohesive models. 

1- Traction Separation model 

2- Continum model 

3- Gasket model 

The traction-separation description of the interface is most commonly used for the modelling 

of bonded interfaces using composite materials. It uses the main assumption that the 

intermediate glue material is very thin, and can be typically assumed as having zero-

thickness, therefore allowing the possible illustration of interface; ‘debonding’ for example. 

With this method, the macroscopic material properties are not utilised in a direct manner, 

instead the fracture energy required to create new surfaces must be known a priori. The 

cohesive elements can model the initial loading, the initiation of damage and the propagation 

of damage which ultimately evolves to complete failure, without the need for an initial crack 

used with LEFM. If non-zero thickness cohesive elements are used with this constitutive 

response [128], the initial stiffness value is dependent on the actual thickness of the cohesive 

layer. 

As stated above, the traction-separation constitutive model requires description of the actual 

interface properties involved in a simulation, and is best suited to negligibly thin adhesive 

layers or zero-thickness layers. In Abaqus Standard however, the methods available for zero-

thickness mesh generation in 2D are severely limited without the use of a custom user 

defined element (UEL). For initial modelling using cohesive elements in the DCB model 

and ENF model, it was considered sufficient to regard the 0.2 mm thickness of adhesive. 

The  initial model, which encompasses the entire thickness with one layer of cohesive 

elements using the traction-separation response will be presented, taking the adhesive 

stiffness directly into account via the elastic moduli and thickness of the layer. The reasoning 

behind being able to use the traction-separation model with a 0.2 mm adhesive layer evolves 

from the fact that it is a small geometric dimension in relation to the other parts of the model 

geometry.  As a result, the adhesive layer will behave differently compared to a bulk 
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specimen of the adhesive, due to the influence of the much stiffer inner and outer substrates 

in the DLS joint directly affecting the actual macroscopic properties of the adhesive. 

If the adhesive is applied correctly, then the fracture should be of the so-called ‘cohesive’ 

type and propagate mainly within the adhesive. Therefore, it is acceptable to put just one 

layer of interface element of 0.2 mm thickness through the adhesive layer. When using 

cohesive elements with this method, a coarse indication of the damage distribution within 

the adhesive layer will be found, and for more accurate information i.e. discovering if the 

failure is in the vicinity of the interfaces or through the centre of the adhesive, more accurate 

modelling methods are required. This ability is, however, severely hindered if we wanted to 

model the adhesive with two very thin rows of cohesive elements above and below the 

adhesive layer (say 0.05 mm thick). This model needs knowledge of the respective fracture 

energy and cohesive strength of this specific thickness, as the cohesive elements require the 

properties of the adhesive at this thickness, in order to attempt to simulate damage occuring 

in the vicinity of the interface. The elements used in this analysis are 4-node plane strain 

quadrilateral CPE4R and cohesive COH2D4 elements. The COH2D4 element is basically 

two surfaces which are separated by a relevant thickness;this thickness is normally zero to 

model two joined parts, but in this case it is 0.2 mm to model the adhesive layer [128]. 

 

 

 

Figure 6.2: Independent meshes with tie constraints [201] 

 

When placing cohesive elements into the initial model geometry using the intrinsic approach, 

it is advisable to use independent mesh regions for the cohesive and bulk elements 

respectively. This is due to the fact that the cohesive zone needs to be sufficiently represented 
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by elements small enough to clearly capture the tractions in this zone; this zone can be 

considered to be small, hence suitably small cohesive elements are needed. However, to 

allow the fast computational and effectiveness traits associated with the use of cohesive 

elements, there is no need to match the mesh regions and use equally small bulk elements in 

the metallic adherends. In order to implement independent mesh regions, we therefore utilise 

a surface-based tie constraint in the numerical modelling, as depicted in Figure 6.2. 

6.3.1 Traction separation relations 

When using the traction separation method, there are three relations analysed in the 

literature.  

1. Bilinear  

2. Trapezoidal  

3. Exponential  

  

 

 

Figure 6.3: Diagram of the three most commonly used relations [128] 

 

All three relations shown in Figure 6.3 initially behave the same, in that the stress increases 

as displacement increases, until the cohesive strength is reached, at which point the traction 

decreases with the increase in displacement, and follows a particular softening curve, 

dependant on the relation used.  
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1. The bilinear relation - here the stress increases as the displacement increases linearly, until 

the cohesive strength is reached, at which point the traction decreases, following a linear 

path until zero traction is reached.  

2. The trapezoidal relation uses linear relations similar to the bilinear , except that once the 

cohesive strength is reached, the traction is held at a constant level until a second 

displacement is reached, at which point the traction decreases, following a linear path until 

zero traction is reached.  

3. The exponential relation follows the same pattern as the bilinear relation, except that an 

exponential curve is used for the increase and decrease of the tractions. Once the tractions 

return to zero, the element has completely failed, and so the crack has fully developed in that 

particular part of the surface.  

The bilinear relation will be used to model the traction-separation relation in this 

investigation. For the traction-separation constitutive response in the numerical modelling 

in the form of the bilinear relation, we must first ascertain the relevant cohesive parameters 

for mixed-mode loading in the DLS joint. This includes seven separate entities, and will be 

presented in the following sections: 

 Two elastic stiffness parameters Knn and Kss. 

 Two strength parameters σ0 and 𝜏0.  

 Two fracture energy parameters GIC and GIIC 

 One mixed-mode parameter η. 

 Linear elastic response  

The traction-separation law formulation in ABAQUS assumes an initial linear elastic 

behaviour, followed by initiation and subsequent evolution of damage, where the stiffness 

of the element is degraded according to a specific damage evolution law. The cohesive 

elements in ABAQUS exist in 2D and 3D versions, but only 2D analyses are conducted in 

this work. Elasticity is defined by an elastic constitutive matrix relating stresses and strains 

across the interface [120]. 











sssn

nsnn

kk

kk
KK ,  (6.2) 

The stiffness of the cohesive zone contributes a considerable effect to the functionality of 

the analysis. The stiffness terms Kns and Ksn are assumed to be zero, and the stiffness terms 
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Knn and Kss are a function of the Young’s/ shear moduli and thickness of the adhesive or the 

rich resin.The stiffness can be calculated by these equations:  

a

ss

a

nn
t

G
K

t

E
K  ,  (6.3) 

Where  G is the shear modulus and is found from:  

       
 


12

E
G  

 Damage initiation criterion      

The damage initiation criterion is generally stress-based or strain-based, and damage initiates 

when the maximum stress or strain value is reached.   

Under pure mode I and pure mode II loading, the onset of damage can be determined simply 

by comparing the traction components with their respective critical values.  

Under mixed-mode loading, damage onset and the corresponding softening behaviour may 

occur before any of the traction components involved reach their respective critical values 

in pure modes loading. The quadratic nominal stress criterion equation 6.4 signifies that the 

damage is assumed to initiate when either of the normal or shear components of the traction 

σ or 𝜏 exceeds the respective critical values (σ0 or τ0).  

1

2

0

2

0


































 (6.4) 

The quantity within the Macaulay bracket is put to zero when negative, 

signifying that a pure compressive deformation does not contribute to damage [202].  

 Damage evoluation  

Damage propagation is studied in terms of energy release rate and the fracture toughness. In 

order to accurately predict the mode-mix of the epoxy under loading [202] , the Benzeggagh 

Kenane (BK) criterion is used. 
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 (6.5) 

Where GI and GII are the energies released by the traction due to their respective separation 

in normal and shear direction respectively, and GIC and GIIC are the critical  energy release 
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rates in modes I and II , and η in the BK criteria can be regarded as a kind of material 

properties [121] 

Damage evolution describes the rate at which a material’s stiffness is degraded once the 

corresponding initiation criteriaion is reached. Figure 6.4 shows the bilinear traction 

separation law. For linear softening, ABAQUS uses an evolution of the damage variable (D) 

that reduces to:  

 
 0

max

0

max






f

f
D  (6.6) 

Where:  

Δmax - The effective displacement maximum value in the loading history  

Δo - Critical displacement jump of CZM at the peak stress. 

Δf – Displacement at failure. 

 

 

Figure 6.4: Bilinear traction-separation law 

 

A scalar damage variable D represents the overall damage in the material. Therefore, these 

parameters can be shown in the numerical simulations in terms of output variables  showing 

the ‘Status’ of the cohesive element i.e. if the status of an element is 1.0 then the element is 

fully active, and if it is 0 the element is not yet active. The overall value of the variable D 

defining the value of scalar stiffness degradation  (SDEG) can be determined [120]. If the 

value of  D is known during the full time of an FEA simulation, then a complete description 

of the damage history can be illustrated [203]. 
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6.3.2 Characteristic of the models    

This section describes the characteristics of finite element models presented in this chapter. 

In each model, the adherends of the specimen and the cohesive layer are each modelled with 

particular characteristics. The adherends of the specimen (mild steel) were modelled with 

two-dimensional elements with four nodes (CPE4R). The elastic parameters for these 

elements are shown in Table 6.1. 

 

Table 6.1: Young’s modulus (E) and Poisson’s ratio (ν ) used for the CPE4R elements 

Material E (GPa) ν 

Mild steel 210 0.3 
 

 

For the modelling of cohesive layer, four-node, two-dimensional cohesive elements 

(COH2D4) are used. These elements follow the constitutive law that has already been 

described in Section 6.3.1, and the parameters required for describing the cohesive law are 

shown in Table 6.2. 

 

Table 6.2: Young’s modulus (E), shear modulus (G), normal cohesive strength (σo), 

shear  cohesive strength (τo ), normal fracture energy (GIC) and shear fracture energy 

(GIIC) used for the COH2D4 cohesive elements 

Material 
E 

(MPa) 

G 

(MPa) 
𝜎0 

(MPa) 
𝜏𝑜 

(MPa) 
𝐺𝐼𝐶 

(N/m) 
𝐺𝐼𝐼𝐶 

(N/m) 

Araldite 2015 1800 662 40 24 400 4000 

Resin LY3505/XB3405 3500 1296 85 50 150 1300 
 

 

Some of these quantities are determined experimentally, while the other elastic parameters 

are assumed from the literature.  

The interface stiffness is the elastic modulus of the adhesive or epoxy resin per unit 

thickness, and is therefore given by dividing the elastic modulus of the adhesive or resin by 

the thickness of the cohesive layer. The values of the elastic modulus E and the shear 

modulus G of the adhesive and the resin are shown in Table 6.2, and the interface thickness 

is ta = 0.2 mm.  

The interface stiffness Knn for the mode I is given by the equation (6.3); 
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For adhesive (Araldite 2015);       312

3

6

/10*9
10*2.0

10*1800
mN

t

E
K

a

nn 


 

For resin (LY3505/XB3405);       312

3

6

/10*5.17
10*2.0

10*3500
mN

t

E
K

a

nn 


 

The interface stiffness Kss for the mode II is given by the equation (6.3); 

For adhesive (Araldite 2015);       312

3

6

/10*3.3
10*2.0

10*662
mN

t

G
K

a

ss 


 

For resin (LY3505/XB3405);       312

3

6

/10*5.6
10*2.0

10*1296
mN

t

G
K

a

ss 


 

All the analyses are nonlinear and under displacement control. 

6.4 Numerical simulation of the DCB specimen    

A DCB model was used according to the geometrical description given in Figure 6.5. The 

FEA model was used in correlation with the experimental data, in order to obtain the  

material parameters values for the cohesive zone for the DLS joint numerical model. For 

analysis of the DCB specimen, we began by incorporating a solitary row of cohesive 

elements through the entire thickness of the adhesive (Araldite 2015) layer or resin 

(LY3505/XB3405) layer, with the instrinsic properties of the adhesive and the resin 

contained therein by means of the bilinear CZM. The testing equipment used in the 

laboratory consisted of a grip attached to the upper adherened, and a vertical tensile force 

was applied, whilst the lower adherend was held fixed. Hence a reaction force was generated 

equal and opposite to the tensile force in magnitude and direction.   wehave replicated this 

test by fixing the lower adherend. Figure 6.5 shows the 2D model where the adhesive is 

modelled as a row of cohesive elements. The fracture processes are assumed to occur within 

the adhesive. The adherends (mild steel) were modelled using bulk continuum elements i.e. 

4-noded linear plane strain reduced integration continuum elements (CPE4R). The adhesive 

layer was modelled with a single row of 4-node cohesive elements (COH2D4) [201]. 

Numerical analysis of the DCB model began with a study on the effect of varying the normal 

cohesive strength of the bilinear CZM used through means of tailoring this model with 

experimental data. A sensitivity study was then performed on this mode I fracture parameter, 

also in order to gain a suitable best fit to the experimental data, which was then followed by 

searching for an optimal cohesive element length. Subsequent analysis of the effects of 
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varying all other relevant parameters involved was carried out, thus monitoring the load-

displacement curve in each case as a reference. 

 

 

Figure 6.5: a) Geometry and dimensions (in mm) of the DCB model and boundary 

conditions, b) DCB mesh used with single row of cohesive elements to represent the 

adhesive thickness 

6.4.1 Deducing the normal cohesive stength for bilinear CZM  

The method used in this study to obtain the normal cohesive strength of the bilinear CZM 

model involves an inverse identification method consisting of iteratively adjusting numerical 

load-displacement plots in order to obtain a match with the experimental data. This was 

mainly due to the methodology adopted to experimentally obtain the fracture parameters 

from the DCB specimen, as no stress-elongation expression was derived from using the 

British Standard (BS 7991:2001). This was due to  BS providing a clear and step by step 

guide to follow in the testing stage, which was not available  for the other methods, and it is 

simpler to conduct than other more complex methods of measuring the fracture energy GIC 

[150]. The tailoring of the CZM was based on the DCB test being the simplest test to conduct 

to extract GIc, but it provides a unique solution, and hence, other methods may be employed 

to gain a wider picture of the fracture parameters of Araldite 2015 and epoxy resin 

LY3505/XB3405, which will be discussed later in discussion of this topic [119]. It has been 

found that by iteratively adjusting the cohesive strength to gain a data fit, the resultant 

maximum tripping traction should be of the order of the maximum tensile yield stress of the 

bulk adhesive, which for Araldite 2015 is 40 MPa. In order to add a degree of accuracy to 

the iterative data fit procedure, it is sensible to use an extremely small cohesive element size. 
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Initially in this report, a cohesive element of 0.01 mm in length (along the direction of 

interface layer) was adopted in order to capture the size of the cohesive zone accurately, as 

the size isn’t fully known at this stage, and will change with a variation in tripping traction 

entered into the bilinear CZM iterative model. This element will not be smaller than 0.01 

mm from preliminary calculations, as it is recommended to have at least 3 cohesive elements 

in the cohesive zone in order to fully capture the tractions present [128]. An effect of 

lowering the estimate of cohesive strength is to increase the length of the respective cohesive 

zone in the model [204]. 

The meshes used for all of the sensitivity analyses have a finer discretisation of elements in 

the cohesive zone compared to the surrounding bulk elements. This is deemed to improve 

accuracy without comprising results, while allowing for fast computations to be achieved 

[201]. As mentioned earlier, by using surface-based tie constraints, the cohesive layer can 

be modelled with a much finer discretisation than the surrounding bulk elements, as the 

cohesive elements are effectively tied to the surface of the adherend throughout the analysis 

[201]. 

 

 

Figure 6.6: Study on effect of varying normal strength of Araldite 2015 

 

The experimental load-displacement curve that has been used for comparative purposes 

throughout this section is from the mode I pre-crack initiation stage. It gives an indication 

of the peak force reached, but ends soon after the loading was removed once the pre-crack 

was initialised, thus allowing for sensitivity studies to be conducted in comparison to the 

peak force observed in this plot from the 0.2 mm DCB experimental test. Figure 6.6 depicts 
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the effects of varying the cohesive normal strength whilst holding the fracture energy 

constant (at GIC = 410 N/m). As can be seen, this has the effect of increasing the peak load 

with an increase in the cohesive strength value input to the model. However the global energy 

(area under curve) differs only slightly. As the cohesive strength is altered, the stiffness 

degrades with respect to the experimental plot as the peak load is reached, with lowering the 

cohesive strength entered lowering the stiffness, and vice versa for an increase in evaluated 

cohesive strength. By modelling the DCB with the lower substrate fixed to evaluate the 

reaction force in the upper substrate, this is referred to as the force on all P-𝛿 curves in this 

section. The work presented here has only focussed on the use of the bilinear CZM relation, 

as from the literature the use of the exponential CZM relation is ill-suited for the ductile 

adhesive Araldite 2015 [130], and the trapezoidal relation requires the need for user-defined 

softening behaviour entered in a tabular form of displacements. However, this method alone 

requires an in-depth analysis of the displacement parameters, and then needs to be 

implemented via a custom scripting in Abaqus [130].  

The same geometry and dimensions of the DCB specimen was used as a numerical model to 

investigate the fracture parameters for resin LY3505/XB3405. The study is based on a 2D 

plane strain mesh used to model adherends and resin layer. Figure 6.7 shows the load-

displacement curves of the simulation and the experimental results for the DCB model with 

the effect of cohesive strength. 

 

 

Figure 6.7: Study on effect of varying normal strength of Resin LY3505/XB3405 
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6.4.2 Varying mode I fracture energy, GIC using bilinear CZM  

Figure 6.8 illustrates the effects of varying the mode I fracture energy whilst keeping the 

cohesive strength fixed at 32 MPa (as obtained from the previous study analysing this 

parameter). The range of fracture energies tested was chosen to match the spectrum of 

fracture energies obtained from the ECM and CBT tests found experimentally (as these are 

considered most accurate) [132], with additional simulations above and below this limit for 

extra clarity. From Figure 6.8 it can be seen that when the cohesive  strength is held constant, 

the fracture energy increases the area under the curve and the peak load increases, all relative 

to an increase in the fracture energy magnitude evaluated. The stiffness response of the slope 

is also constant with respect to variations in the fracture energy. It was also shown that the 

optimal fracture energy was around GIC = 410 N/m. 

 

 

Figure 6.8: Study on the effect of the varying mode I fracture energy of Araldite 2015 

 

The same dimensions of DCB geometry and the resin LY3505/XB3405 were used as 

interface of numerical model to investigate the cohesive strength parameters for resin 

LY3505/XB3405. The study is based on a 2D plane strain mesh used to model adherends 

and resin layer.  

Figure 6.9 shows the load-displacement curves of the simulation and the experimental results 

for the DCB model with the effect of fracture energy. It was also shown that the optimal 

fracture energy of resin was around GIC = 155 N/m. 

The data fits achieved in Figure 6.6 to Figure 6.9 are the result of iteratively adjusting the 

cohesive strength and fracture energy of the bilinear CZM until an acceptable match with 
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the experimental plot was achieved. The cohesive parameters used are those that give rise to 

the minimum deviation between the experimental and numerical simulations, as summarised 

in Table 6.3. 

 

 

Figure 6.9: Study on effect of the varying mode I fracture energy of Resin 

LY3505/XB3405 

 

Table 6.3: Cohesive parameters deduced from data fitting for mode I 

Material GIC (N/m) σ (MPa) 

Araldite 2015 410 32 

Resin LY3505/XB3405 155 45 
 

6.5   Numerical simulation of the ENF specimen    

For the analysis,  the ENF Model was designed according to the geometrical description 

given in Figure 6.10. The specimen was modelled with two-dimensional, plane strain 

elements using ABAQUS software. The adherends (mild steel) were modelled using 4-

noded linear plane strain reduced integration continuum (CPE4R) elements. The adhesive 

layer was meshed with interface elements as a row of cohesive elements (COH2D4) through 

the entire thickness of the adhesive layer, with the instrinsic properties of the adhesive 

contained therein by means of the bilinear CZM. 

In order to have a smooth response, avoiding numerical fluctuation and investigating 

convergence, the element size needs to be very small. However,  if the fine mesh is used in 

the whole model, huge computer resources are needed, as well as being time consuming. To 
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avoid this problem, an alternative meshing was created which would have a concentrated 

fine mesh along the crack path, and the rest of the model could have coarse meshing. The 

von Mises stress distribution and the damage propagation are shown in Figure 6.11 and 

Figure 6.12 respectively.   

 

 

 

Figure 6.10: a) Geometry and dimensions (in mm) of the ENF model and boundary 

conditions, b) ENF mesh used with single row of cohesive elements to represent the 

adhesive thickness 

 

 

 

Figure 6.11: Deformed 2D model of ENF mesh after crack propagation in the 

adhesive 
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Figure 6.12: Cohesive failure in the adhesive for ENF model using the bilinear CZM 

 

Numerical analysis of the ENF model begins with a study of the effect of cohesive strength 

on the response of the structure in crack propagation in a specimen with constant cohesive 

toughness. The bilinear CZM is used for tailoring this model with the experimental data. A 

sensitivity study is then performed on this mode II fracture parameter, also in order to gain 

a suitable best fit to the experimental data. This was followed by searching for an optimal 

cohesive element length, and subsequently analysing the effects of varying all other relevant 

parameters involved, thus monitoring the load-displacement curve in each case as a 

reference. 

 

 

Figure 6.13: Influence of the cohesive strength on the response of ENF numerical 

results of Araldite 2015 
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Figure 6.14: Influence of the fracture energy on the response of ENF numerical 

results of Araldite 2015 

 

 In Figure 6.13 and Figure 6.14, the 2D mesh with 2mm long interface elements provides a 

good fit between the experimental results and the results of the simulation. Good agreement 

between the experimental results and the result of simulation is seen in crack propagation, 

i.e. near the point of maximum force. Thereafter a difference between the curves is seen, and 

this disagreement could be justified by taking that into consideration according to the 

experimental curves.  

The same ENF specimen was used to investigate the fracture parameters for resin 

LY3505/XB3405. The study was based on a 2D with 4-node plane strain quadrilateral 

CPE4R and cohesive COH2D4 elements used to model adherends and resin layer 

respectively. Figure 6.15 and Figure 6.16 show the load-displacement curves of the 

simulation, and the experimental results for the ENF models with the effect of cohesive 

strength and fracture energy respectively.    

Based on the results, sensitivity analysis of the traction separation constitutive parameters 

on the numerical results was performed. Figure 6.13 and Figure 6.15 show that with 

increasing cohesive strength, the response of the structure become more linear in the first 

ascending part. In the softening part of the results, which is related to crack propagation 

before the half span of the beam length (length of ENF specimen), the cohesive shear stress 

at damage initiation o has a small influence only.  
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Figure 6.15: Influence of the cohesive strength on the response of ENF numerical 

results of resin LY3505/XB3405 

 

 
 

Figure 6.16: Influence of the fracture energy on the response of ENF numerical 

results of resin LY3505/XB3405 

 

In Figure 6.14 and Figure 6.16 it can be seen that when the cohesive shear strength is held 

constant, the fracture energy increases the area under the curve and the peak load increases, 

all relative to an increase in the fracture energy magnitude evaluated. The stiffness response 

is also constant with respect to variations in the fracture energy. It was also shown that the 

average fracture energy of mode II for the adhesive 2015 and resin LY3505/XB3405 was 
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around 3950 N/m and 1350 N/m respectively. In addition we can see the effect of cohesive 

toughness in mode II, GII has a large influence on the results. 

The cohesive parameters used are those that give rise to minimum deviation between 

experimental and numerical simulations of mode II. In Table 6.4 a summary of each of the 

cohesive parameters of Araldite 2015 and resin LY3505/XB3405 used in this study is 

illustrated.    

Table 6.4: Cohesive parameters used for traction-separation modelling using CZM 

Material GIIC (N/m)  (MPa) 

Araldite 2015 3950 23 

Resin LY3505/XB3405 1350 22 
 

6.6 Length of the cohesive zone     

Another important factor in the numerical simulation of delamination is the length of the 

cohesive zone, Lcz. As opening or sliding displacement increases, elements in the cohesive 

zone gradually reach the maximum interfacial strength and the maximum stress rises up to 

the critical interfacial stress ahead of the crack tip. The length of the cohesive zone, Lcz, is 

defined as the distance from the crack tip to the point where the maximum cohesive traction 

is reached. Figure 6.17 describes the length of the cohesive zone.  

 

 

Figure 6.17: length of the cohesive zone 

There are a number of different models that have been used in different literature, but the 

most commonly used models are Hillerborg’s model and Rice’s model. For Mode I and 

Mode II fracture, the cohesive lengths can be  approximated by the following equation [205]. 
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22 
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Where E is the Young’s modulus and M is a parameter that depends on the cohesive zone 

theory used to determine the cohesive zone length.  

Different M values are given in Table 6.5. 

Table 6.5: Different values of the parameter M in literature [205] 

Proposed by: M 

Hui et al. 0.21 

Irwin 0.31 

Dugdale and Barenblatt 0.40 

Rice and Flak et. al. 0.88 

Hillerborg et al. 1.00 
 

The length of the cohesive elements can be calculated from the following equations for Mode 

I and Mode II:  

e

II

CZ
e

e

I

CZ
e

N

L
Land

N

L
L   (6.8) 

Where Ne is the number of elements and Le is the length of the cohesive element. 

The cohesive zone length is directly related to the convergence issue that is the most crucial 

point for the CZM applications. Turon et al. [205] suggested that the minimum number of 

elements required for reaching converged solutions should be more than two. Therefore the 

resulting element length can be given as;  

33

II

CZ
e

I

CZ
e

L
Land

L
L   (6.9) 

From the inverse identification procedure, it is apparent that a cohesive strength of σ = 32 

MPa and a mode I fracture energy of GIC = 410 N/m returns the optimal solution in terms of 

correlating this model with the experimental DCB test. Using these values, we can therefore 

proceed to compute an estimate of the actual cohesive zone length in the numerical DCB 

model using equation (6.7). 
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CZL = 0.15 mm ; minimum using M = 0.21 

I

CZL  = 0.72 mm ; maximum using M = 1 
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As mode I is the fracture mode: M is a parameter ranging from 0.21 to 1.0 [205]. For Araldite 

2015, E = 1.8 GPa, and using the fracture energy and cohesive strength values for Mode I 

from Table 6.3, we can find the length of the fracture process zone in Mode I as; 0.15 mm < 

Lcz< 0.72 mm (by using M = 0.21 and 1.0 respectively). Many workers in this area have 

stipulated that in order to accurately characterise the cohesive zone (Lcz),  one must use at 

least 3 cohesive elements along the fracture process zone [128, 205]. The parameter M is of 

some ambiguity, as this value is used to gain an estimate of the cohesive zone, derived from 

methods such as estimating Lcz as a function of crack growth velocity or estimating the size 

of the yield zone ahead of a mode I crack. It is common for M to equal unity, but this may 

add a degree of conservatism to the analysis. One method of investigating the length of the 

numerically predicted cohesive zone length  is, for instance, by placing very fine (0.01 mm) 

cohesive elements along the length of the DCB bondline, then analysing the S22 (peel) stress 

ahead of the crack tip at the corresponding peak value of force (from the load-displacement 

plot found using 0.01 mm cohesive elements) [205].   

A preliminary investigation into this procedure has been conducted and illustrated in 

Figure 6.5, allowing for an accurate estimation of the numerically predicted cohesive zone 

length to be found for the DCB geometry used in this work. 

 

 

 

Figure 6.18: Illustration of S22 traction ahead of crack tip, with very fine mesh 

used to capture cohesive zone length 
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The S22 stress magnitudes obtained here are from the peak load (1640 N), and one can 

observe that the peak traction reached behind the crack tip will not exceed the cohesive  

strength set in the intrinsic bilinear CZM relation utilised here. 

In order to obtain the accurate results, the tractions in the cohesive zone must be represented 

properly by the finite element spatial discretisation and as such this can be illustrated as: 

     
e

cz
e

L

L
N   

 Where Ne is the number of cohesive elements in the cohesive zone. 

In Figure 6.18 the peak normal stress occurs at 0.6 mm from the crack tip and so the cohesive 

zone length, Lcz is approximately 0.6 mm. Although this method is not precise, it does give 

a good estimate to the cohesive zone length. For an effective model, a value which is lower 

than this cohesive zone length must be used for the element size. A good model usually 

consists of 3 or 4 elements within the cohesive zone length. In the current study, cohesive 

element length, Le is initially chosen to be 0.2 mm. By bisecting the element length in 

subsequently refined meshes along the crack path, Le finally equals 0.05 mm in the most 

refined mesh of DCB model.  

 

 

 

Figure 6.19: The effect of cohesive element length on the predicted load–

displacement curve of DCB model 

 

And the initially cohesive element length of ENF model was chosen to be 0.5 mm. 

Figure 6.19 shows a comparison of the simulation predictions of the load-displacement 

curves from meshes with Le = 1 mm, 0.5 mm, 0.4 mm, 0.2 mm, 0.1 mm and 0.05 mm. It is 
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observed that the load-displacement curves corresponding to the meshes with Le = 0.2 mm, 

0.1 mm and 0.05 mm are almost the same. Based on this observation, simulation solutions 

with Le= 0.2 mm or less are considered converged. 

For ENF model, the Figure 6.20 shows a comparison of the simulation predictions of the 

load-displacement curves from meshes with Le = 1 mm, 0.6 mm, 0.5 mm, 0.2 mm and 0.1 

mm. It is observed that the load-displacement curves corresponding to the meshes with Le = 

0.5 mm, 0.2 mm and0.1 mm are almost the same. 

 

 

Figure 6.20: The effect of cohesive element length on the predicted load–displacement 

curve of ENF model  

 

Based on this observation, simulation solutions with Le= 0.5 mm or less are considered 

converged. Thus, the cohesive element length is fixed at 0.2 mm in the numerical simulations 

of mode I and mode II stable crack growths. 

6.7 Viscous regularisation  

Material models exhibiting softening behaviour and stiffness degradation often leads to 

severe convergence difficulties in finite element analysis. The implemented cohesive zone 

model is distinctive of material softening after the characteristic separation is reached and 

practical applications in Abaqus/Standard often come up with convergence problems.  

A common technique to overcome some of these convergence difficulties is the use of 

viscous regularisation within the constitutive equations [206].  
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The regularisation process involves the use of a viscous damage variable, Dv, which is 

defined by the following evolution equation: 

 
dt

dD
DDD v







 1
 (6.10) 

Where µ is the parameter of viscosity, representing the relaxation time of the viscous system 

and D is the damage variable evaluated in the current cohesive zone model. 

A study has been conducted to estimate the effect of the numerical viscosity regularisation 

value used to force the convergence in highly non-linear analysis on the Abaqus cohesive 

elements. The numerical viscosity regularisation with connector elements in 

Abaqus/Standard is called through the program:  (Mesh module: Mesh- Element Type: 

Viscosity =µ). 

The study was carried on the DCB and ENF specimens tested to evaluate the cohesive 

properties of the adhesive (Araldite 2015) that has been analysed in this chapter. With a 

small value of the viscosity parameter, the viscous regularisation helps to improve the rate 

of convergence without compromising the results. In this study, the values of the viscosity 

(μ) of the cohesive elements are chosen from a set of small values starting from 10-3 and 

ending at 10-7. Each subsequent viscosity value is one order of magnitude smaller than the 

previous one, and the load displacement response is predicted for each choice of the viscosity 

value. The predicted load-displacement curves are then compared to seek a convergence 

trend, thus the choice of the appropriate viscosity values. Figure 6.21 and Figure 6.22 shows 

the effect of the viscosity regularisation values on the predicted load-displacement curves of 

DCB and ENF models respectively. Figures show that the predicted load-displacement 

curves are dependent on the selection of the viscosity value, until the viscosity value 

becomes sufficiently small. 

In particular, when the viscosity value changes from 10-5 to 10-6 and then to 10-7, the 

simulation results tend to overlap with each other and become independent of the choice of 

the viscosity value; hence they can be considered to have converged. 

It can be seen that when the value of µ=10-5 was used, this gave consistent convergence 

without affecting the predicted failure load. Therefore, in all models of the current work 

employing Abaqus Cohesive Elements, a viscosity regularisation factor larger than this value 

was never chosen. 
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Figure 6.21: The effect of viscous regularisation factor on the predicted load–

displacement curve of DCB model  

 

  

  

 

Figure 6.22: The effect of viscous regularisation factor on the predicted load–

displacement curve of ENF model  
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6.8 Summary 

In the numerical investigation of this work, the intrinsic modelling technique was initially 

conducted on the DCB and ENF models. This allowed for the adhesive Araldite 2015 and 

epoxy resin LY3505/XB3405 to be characterised by a tailored CZM, in the form of the 

bilinear relation.  

In order to evaluate the adequacy of the several data reduction schemes to measure GIC and 

GIIC for DCB and ENF tests respectively, a numerical study was carried out including a 

bilinear cohesive damage model to simulate the behaviour of adhesive and epoxy resin. An 

inverse method was used to define the remaining cohesive parameters of the bilinear relation, 

fitting the numerical and experimental load-displacement curves. This was done by 

comparing the peak force of the experimental load-displacement plot with the numerical 

output of the DCB model and ENF model, until a minimum deviation between the two plots 

was observed. 

 The peak strength was obtained by using a very fine cohesive element length (0.01 mm) in 

order to accurately capture tractions in the cohesive zone of the numerical model. The 

procedure of tailoring the CZM implemented in this work serves as an illustration of how to 

deduce the relevant mode I and mode II fracture parameters using this commonly used 

technique. It was verified that the ECM and CBBM methods render the most accurate results, 

and are suitable methods to measure the fracture energy for mode I and mode II respectively. 

Comparing pure mode I fracture energy and pure mode II fracture energy which were 

obtained from the DCB test and ENF test, respectively, it is found that mode II fracture 

energy is much higher than mode I fracture energy. This implies that the fracture energy is 

strongly dependent on mode of failure. 
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Chapter 7 

7 Numerical analysis of DLS joint based on 

cohesive zone model 

7.1 Introduction  

In order to obtain accurate predictions and cut the expense of repeated testing, 2D models 

with cohesive zone model (CZM) are presented in this chapter to predicate the failure load 

of double lap shear (DLS) joints. Progressive cohesive zone modelling will be used in the 

DLS joints simulations to detect damage initiation and growth. Since CZM plays a very 

important role in simulations, all parameters of CZM were determined via a series of 

numerical analysis and experimental results (see Chapters 3 and 6) and used in a 2D DLS 

joint. The finite element analysis program ABAQUS version 6.9-1 was used for numerical 

modelling. The effects of cohesive zone position on predicted failure load were studied. The 

numerical model allowed the simulation of damage initiation and propagation. The 

influences of the joint geometries are presented, including the effects of laminate thickness, 

orientation angle and overlap length.  

7.2 Modelling parameters and details    

7.2.1 Geometry and boundary conditions of model  

The DLS joint is a more complex model than the DCB or ENF specimens discussed in 

chapter 6. This is because (1) there are two stress modes present in this joint, namely mode 

I and mode II and (2) the joint consists of a CFRP adherend, which means there are more 

ways for the joint to fail, and additional complications as the composite properties are 

orthotropic.   

As in the case of the strength of material approach, only a quarter of the double lap shear 

joint was modelled due to its geometrical symmetry, thus making the model easier to create 
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and reducing the complexity of the FEA simulation and computational time. The geometry 

of the DLS model is shown in Figure 7.1, which shows a range of dimensions and boundary 

conditions.  

 

 

Figure 7.1: Geometry of DLS joint model and boundary conditions 

 

It should be noted that the numerical models include outer adherend (CFRP) thicknesses of 

3, 6 and 9 mm, and the inner adherend (steel) thickness is 10 mm. The thickness of adhesive 

was 0.2 mm. The models type/designation used for the numerical analysed in this chapter 

are presented in Table 7.1. All plies are identical (UD 0.25 mm thick), and their angles are 

taken with reference axis along the joint/model with the first angle at the bonding interface 

with outer adherend. 

 

Table 7.1: Type of models 

Model type Overlap length 

(mm) 

CFRP adherend 

thickness (mm) 

[0o,90o]6 25 to 200 3 

[0o,90o]12 75 6 

[0o,90o]18 75 9 

[90o,0o]6 75 3 

[+45o/-45o]6 75 3 
 

 

7.2.2 Mesh of model    

The finite element model shown in Figure 7.2 was developed in ABAQUS standard to 

predict the response of the DLS joint. The methodology considered in meshing the DLS joint 

is to use dissimilar meshes in the adhesive layer, steel adherend and the CFRP adherend to 
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join them using tie constraints, as shown previously in Section 5.3. Figure 5.2 shows the 

CFRP laminate consisting of fibre layers and very thin layers of epoxy based matrix between 

those fibre layers. In this analysis a 2D representation of the CFRP was created, as shown in 

Figure 7.2. Each ply was modelled to represent the fibre oriented in different directions. 

Four-node plane strain reduced integration continuum elements (CPE4R) were used for the 

steel adherend and the composite plies. The cohesive layer was modelled with a sweep mesh 

and four-node cohesive elements (COH2D4) with a bilinear traction separation response, to 

study progressive damage in the adhesive layer, and resin layers were modelled by a single 

row. There was only one element through thickness of the adhesive layer and of the rich 

resin zone between the two plies. The size of the cohesive element was 0.1x0.2 mm 

throughout the adhesive bond line, and 0.1x0.05 mm throughout the rich resin layers. The 

element size at the important points was determined by undertaking a mesh convergence 

study, and grew till 1 mm at the edges of the steel adherend. The 2D finite element mesh of 

DLS joint model is shown in Figure 7.2.   

 

 

 

Figure 7.2: Finite element mesh of DLS joint 

7.2.3 Material properties of model  

The materials’ properties considered for DLS joints were reported in Table 5.1, (see Section 

5.4). This data was obtained from manufacturers, laboratory tests and calculation methods. 

To model the CFRP adherend, the properties of each layer were defined, as was use with 
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strength of materials analysis. The properties of the CZM parameters of adhesive and rich 

resin layers were determined in Chapter 6.    

7.2.4 Cohesive zone model parameters  

To simulate the specimens in ABAQUS the DLS joint using the CZM approach, thus 

cohesive elements were used. Using cohesive elements implies that the choice of material 

properties and section type is consistent with the type of cohesive element. The elastic 

behaviour was defined using the command elastic, type=Traction. The quadratic nominal 

stress (Quads) failure criterion for given peak value of quadratic nominal stress was selected 

for damage initiation in the cohesive elements. The damage initiation behaviour was defined 

using the command damage initiation, criterion=Quads Damage. After damage initiation 

completes, damage evolution determines how the stiffness degrades. The damage evolution 

was defined by command, type=Energy, mixed mode behaviour=BK, power=1. As no 

relevant experimental data was readily available for which parameter to use in the 

Benzeggagh and Kenane (BK) criterion [207], this value was kept at the default value of 1 

used to govern the damage evolution of the model. Other parameters required for the FEA 

models were obtained using the open model for mode I loading and the shear model for 

mode II loading (see Chapter 6). 

Elasticity is defined by an elastic constitutive matrix relating the current stresses and strains 

in tension and shear across the interface (subscripts n and s, respectively) [208]. 











sssn

nsnn

kk

kk
KK ,  (7.1) 

 

Equation (7.1)  has the quantities of nominal tractions in the normal and in the two local 

shear directions at the left side of the equation. The matrix is the elasticity in terms of traction 

and separations for cohesive elements. To simulate the tests, ABAQUS needs the input of 

elastic properties of the adhesive layer and the rich resin layer. These are found by taking 

the thickness of the layer directly into account with the relevant moduli (E or G), as shown 

previously in Section 5.4. Table 7.2 summarises the cohesive parameters used in this study; 

these include the stiffness values of the adhesive and the rich resin. The quadratic nominal 

stress criterion was considered for the initiation of damage. Table 7.3 summarises the 

parameters introduced in ABAQUS for damage initiation in the adhesive layer and resin 
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layer. Damage initiation for normal and shear modes were defined, based on the critical 

normal strength (σ0) and shear strength (o). The critical fracture energies required for pure 

mode failure are given by GIC and GIIC for normal and shear loading, respectively. The values 

introduced in ABAQUS for the simulation of damage propagation of the adhesive and resin 

are given in Table 7.4. As the model used 2-dimensional elements, the interface stiffness 

(Ktt), nominal stress second direction (o) and shear mode fracture energy second direction 

(GIIIC) are not required, and the values are equal Kss, o and GIIC respectively. It should be 

noted that all models use the same BK parameter of η=1. The parameter η does not change 

the simulation results significantly, while the initial failure stresses and fracture energies are 

the major factors to change the simulation results. 

To improve the convergence rate of the iterative procedure, a viscous stabilisation scheme 

was implemented, as suggested by ABAQUS [201] for its cohesive element. In all the 

element types, the damage stabilisation cohesive was set as 10-5 to stabilise the process. 

 

Table 7.2: Elastic properties of the adhesive and resin layers 

Material E or Knn (N/m3) G1 or Kss (N/m3) G2 or Ktt (N/m3) 

Araldite 2015 9.0E12 3.31E12 3.31E12 

Resin LY3505/XB3405 70.0E12 25.9E12 25.9E12 
 

 

 

Table 7.3: Damage initiation (Quads Damage) 

Material 

Nominal stress 

normal mode   

σ0 (MPa) 

Nominal stress 

first direction   

0 (MPa) 

Nominal stress 

second direction 

0 (MPa) 

Araldite 2015 32 23 23 

Resin LY3505/XB3405 45 22 22 
 

 

 

Table 7.4: Damage propagation (Damage Evolution) 

Material 

Normal mode 

fracture energy  

GIC (N/m) 

Shear mode 

fracture energy 

first direction 

GIIC (N/m) 

Shear mode 

fracture energy 

second direction 

GIIIC (N/m) 

Araldite 2015 410 3950 3950 

Resin LY3505/XB3405 155 1350 1350 
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7.3 The effect of cohesive zone position  

An important feature of CZM is that it can be easily incorporated in conventional FEA 

software to model the fracture behaviour in various materials, including adhesively bonded 

joints [133]. This technique consists of the establishment of traction–separation laws to 

model interfaces. 

The CZM laws are established between paired nodes of cohesive elements, which can be 

used to connect superimposed nodes of elements representing different materials or different 

plies in composites, to simulate a zero thickness interface Figure 7.3a [209], or can be applied 

directly between two non-contacting materials to simulate a thin strip of finite thickness 

between them, e.g. to simulate an adhesive bond Figure 7.3b [210]. 

The [0o,90o]6 model with 75 mm overlap was studied to investigate the influence of two 

different failure models. These models chosen to study the CZM technique for the adhesive-

cohesive model and cohesive model are illustrated in Figure 7.3. In both models the material 

properties of the steel and the CFRP were modelled as solid elements. The adhesive layer in 

Figure 7.3a was modelled as 2 layers of solid homogeneous material with a thin layer of 

cohesive elements in the middle. The adhesive layer in Figure 7.3b was modelled completely 

as cohesive elements.   

 

 

 

Figure 7.3: Cohesive elements to simulate failure paths in adhesive bond; (a) Adhesive-

cohesive model and (b) cohesive model  
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In Figure 7.3a, the mesh size in the important points was 0.05x0.1 mm, but in Figure 7.3b 

there was only 1 element through the thickness of the adhesive layer. The overall mesh was 

0.2 mm. The load–displacement behaviour is shown in Figure 7.4.  

The Figure shows that two models have the same curves; the values of failure load have 

slight differences, which are that the adhesive-cohesive model converges to 52.2 kN while 

cohesive model converges to 50.08 kN. The relative error for this example is about 4%, 

which is very small. This comparison indicates that both models can be equivalent to each 

other. This conclusion is significantly useful to predict adhesive joints or other structures, 

since the failure path in practice is not clear and structures have very complicated geometry. 

The adhesive layer was modelled completely as cohesive elements to simulate the DLS joints 

in this work. 

 

 

Figure 7.4: Comparison of Load-displacement curves of different failure models 

7.4 Damage parameters sensitivity on DLS numerical results 

Numerical results’ sensitivity to damage constitutive parameters of the DLS joint loaded 

under tensile load are represented in Figure 7.5.  Results appear to be insensitive to moderate 

changes in mode I parameters GIC, σ0 and Knn. The sensitivity analysis shows that only the 

critical fracture energy parameter GIIC and the stress damage initiation 0 significantly 

influences the numerical results of the DLS model. This can be explained by the way in 

which the mode I parameters have no influence, which is consistent with the fact that the 

adhesive layer here is mainly loaded under pure mode II.  



 

Chapter 7. Numerical analysis of DLS joint based on cohesive zone model 

 

 

151 

 

 

 

Figure 7.5: Numerical results sensitivity to 10% increase in constitutive damage 

parametres 

7.5 Damage initiation and growth  

Simulation of the DLS joint was performed considering symmetry conditions. However, this 

depends on the CZM parameters determined from the DCB and ENF specimens, which were 

presented in Tables 7.2,7.3 and 7.4. The [0o,90o]6 model with overlap 75 mm was studied to 

investigate the location of the damage initiation and propagation. The failure predicted by 

the CZM was in the adhesive layer. The damage contour plots for the model at the beginning 

(50% of the failure load) and the end of the failure load are shown in Figure 7.6  and b.  

Cohesive modelling has an advantage in showing failure initiation and propagation. The 

value of scalar stiffness degradation  (SDEG) in the cohesive zone can be employed to show 

the joint failure history, and used to display the behavior of the interfacial element.  

In Section 6.3.1, the damage variable (D) was defined  in relation to the bilinear CZM model. 

A function that is available when using cohesive elements includes the ability to output the 

damage variable D, which is known as scalar stiffness degradation. The variable SDEG gives 

the value of the damage variable D for individual elements, a value of 0 indicates that 

damage has not initiated, and a value of 1 indicates that complete failure has taken place. 
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Figure 7.6: Contour, showing failure prediction of the [0o, 900]6 model: (a) damage 

initiation at the RHS (b) and propagation to the end of bond. 

 

As illustrated in Figure 7.7, if the damage history throughout the time period is up to the 

failure load, it can plot the damage history along the adhesive bondline in various fractions 

of the failure load. This feature of being able to plot the damage history through the adhesive 

bondline allows an indication of which segment of the joint overlap failure initiates. This 

also explains how the failure evolves along the overlap, up until the failure load is reached. 

Therefore, it is useful to investigate the growth of the degradation variable related to the 

applied load.  

Figure 7.7 shows the corresponding stiffness degradation, SDEG, for the whole joint (model) 

as a measure of damage propagation for the [0o, 900]6  model. As can be seen, when the load 

is applied, then full fracture occurs in the adhesive layer. By varying the load it can also be 

seen from the figure how the damage is initiated and propagated within the adhesive layer. 

This data shows that damage initiated at the RHS of the model, at the same point where the 

highest stress occurred in the strength of the material approach model. The failure initiation 

begins at the RHS of the adhesive layer at around 50% of the total failure load. The damage 

at the RHS begins to propagate, and at around 90% of the failure load, damage begins to 
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accumulate at the LHS. The respective damage at the centre and end of the overlap begins 

to grow, with a higher damage magnitude apparent at the RHS. 

 

    

 
Figure 7.7: Stiffness degradation curves at various percentage of maximum failure 

load (50 kN) for the [0o,90o]6 model with 75 mm overlap length 
 

7.6 Parametric studies 

This parametric study focuses on investigating the effect of the geometric parameters to the 

behaviour and strength of the DLS joint. Geometric parameters include the fibre orientation 

angle of the laminates, the thickness of the CFRP adherend and the length of the overlap. 

The finite element model based on the CZM has been used for the parametric analysis. 

7.6.1 Effect of stacking sequence 

Numerical analysis was performed with the commercial FE package ABAQUS to assess the 

effects of the fibre orientation angle of the laminates on failure prediction in DLS joint 

subjected to tensile loading. In this analysis, three DLS models using 0.2 mm adhesive 

thickness and the CFRP composite adherend with three different fibre orientation angles 

([0o,90o]6 ,[90o,0o]6 and [+45o ,-45o]6) were used. Also nonlinear geometric deformation of 

the DLS model was taken into account. All three models have similar FEA meshes as shown 

in Figure 7.2. The selected paths of damage initiation and propagation were decided in 
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accordance with failure modes from experimental results for corresponding joints with a 75 

mm overlap.  For the [0o,90o]6 model, the failure predicted by the CZM was in the adhesive 

layer, see Figure 7.6. While for the [90o,0o]6 and [+45o ,-45o]6 models, the failure was 

predicted to take place either in the adhesive or composite laminate. The latter occurred 

between the first and second layer of laminate.  Figure 7.8 and 7.9 illustrates the two modes 

of failure respectively.  

 

 

Figure 7.8: Contour, showing failure prediction of DLS joint in the adhesive and resin 

layers for the [90o, 00]6 model at load 48 kN 

 

 

 

 

Figure 7.9: Contour, showing failure prediction of DLS joint in the adhesive and resin 

layers for the [+45o, -450]6 model at load 17 kN 



 

Chapter 7. Numerical analysis of DLS joint based on cohesive zone model 

 

 

155 

 

7.6.2 Effect of adherend thickness 

Figure 7.10 shows the growth of the damage variable or the stiffness degradation variable 

vs. displacement curves for the first element that reached ultimate failure, for the [0o,90o]6 , 

[0o,90o]12 and [0o,90o]18 models with different laminate thicknesses, namely 3 mm, 6 mm 

and 9 mm. For each model, the first element along the interface reached the critical stress 

level which causes failure initiation.  

 

 

Figure 7.10: Stiffness degradation of the first element to fail in three models  

 

The figure indicates that damage initiation started in the model with the thinnest laminate, 

i.e. 3 mm [0o,90o]6 and followed by [0o,90o]12 and [0o,90o]18 models. In addition, it should 

be noted that although [0o,90o]12 and [0o,90o]18 models produced interfacial debonding, these 

occurred at applied loads that are much larger than are required for debonding of the [0o,90o]6 

model. 

The load-displacement curves for each model are shown in Figure 7.11. The numerical and 

experimental methods indicate an increase of joint strength with an increase in laminate 

thickness. For example there is an 18% increase in joint strength as a result of increasing the 

thickness from 3 mm to 9 mm. 
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Figure 7.11: Numerical load displacement curves for models with different thickness  

 

7.6.3 Effect of overlap length 

One of the most important geometric parameters that influences the joint strength is the 

overlap length. The failure loads for joints obtained by applying the numerical modelling 

CZM approach on the geometry of DLS joint, the cohesive properties were kept fixed for all 

models, and the length of the bonded length only varied. The models were based on [00,900]6 

laminates with thickness value of 3 mm. In the parametric analysis seven different overlap 

lengths were considered, ranging from 25 mm to 200 mm.  

In Figure 7.12 the change in the load-displacement curves with respect to the overlap lengths 

are represented. The effect of overlap length on the failure loads in the [0o,90o]6 model are 

shown in Table 7.5. Figure 7.13 shows that failure loads predicted from the numerical 

models increase nonlinearly with the increase in the overlap length.  The curve shows a 

plateau at 100 mm overlap which the joint load does not increase further. 
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Figure 7.12: Influence of overlap length on the load-displacement curve  

(Note: The overall length of the models are kept the same)  

              

 

Table 7.5: Effect of overlap length on the failure load in the [0o,90o]6 model 

Overlap length (mm) 25 50 75 100 125 150 200 

Failure load 

prediction (kN) 
25.89 43.47 50.08 54.31 54.36 54.38 54.38 

 

 

 

 

Figure 7.13: Numerical loads prediction for different overlap length 
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7.7 Conclusions 

This chapter studied numerically, interaction of interface delamination in DLS joint under 

tensile load of steel adherends bonded by CFRP adherends. A cohesive zone model approach 

was adopted to simulate the interface rupture between steel and CFRP and between the layers 

in CFRP adherend.  A cohesive element for adhesive and rich resin layers can be used to 

represent the propagation of pre-existing delamination, as well as the onset and propagation 

of delamination in modules that do not contain pre-existing cracks.  

It was found that the convergence difficulties that are typical of cohesive laws can be 

mitigated with the use of viscoelastic stabilisation, or by reducing the interfacial strength to 

enlarge the process zone.  

The main conclusions which arise from the present research can be summarised as follows: 

- Different failure modes were observed for CFRP adherends with different orientation 

angles: adhesive layer failure (cohesive failure) for the [0o,90o]6 model, CFRP delamination, 

which occurred between the first and second layer of carbon fibre for the [90o,0o]6 model, 

and CFRP delamination and adhesive interface debonding for the [+45o,-45o]6 model. 

- A critical bond length may be evaluated, beyond which any increase in bond length cannot 

increase the failure load, but provides an increase of ductility to the joint.  

- Increasing the thickness outer composite adherend leads to an increase in joint strength. A 

thickness increase from 3 mm to 9 mm resulted in an 18% increase in the failure load. 
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Chapter 8 

8 Discussion, conclusions and future work 

8.1 Discussion  

8.1.1 Properties of materials      

The structural adhesive used in this work to bond the specimens was two-part epoxy 

adhesive Araldite 2015. This type of adhesive was chosen based on many advantages such 

as; it allows excellent joint strength, exhibits good stability and assemblies of similar and 

dissimilar materials. According to research at University of Glasgow [203, 211], the 

adhesive has been found to provide an effective bond between the CFRP to steel material 

system. 

The Araldite 2015 is known to have elasto-plastic properties, but this was not shown from 

the tests. Therefore, it was important to use elasto-plastic properties for the numerical 

analysis, using supplier data in conjunction with lab tests and engineering assumptions. The 

adhesive failed at 35 MPa obtained from the butt joint lab test. Huntsman quoted 30 MPa 

and also mentioned the true failure stress of 30 MPa with 0.044 strain (see Appendix B). In 

order to calculate the strain at the adhesive failure load, the true curve was extrapolated to 

40 MPa. After interpolation in chapter 3 (see Section 3.3.3), the adhesive failure strain was 

0.06 at 40 MPa. Therefore, the adhesive is in the elastic region between a strain of 0 and 

0.022. After 0.022 the adhesive is in the plastic region, until 0.06, where it fails. There are 

still contradictory views about adhesive properties in general in much of the literature [211, 

212, 213, 214]. 

Tensile butt joint specimens were used to verify and support strength data for the bulk 

adhesive. The specimens were prepared carefully using the jig to ensure alignment of the 

butt joint adherends. Three out of five specimens were selected for testing, those which were 

apparently bubble- free. Some of the results were also discarded due to high bubble contents, 

as this always compromises the failure strength and strain.  

The thick adherend shear test (TAST) is also used to verify and determine the shear strength. 
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It is one of the most popular tests to identify the shear behavior of structural adhesive. When 

thick and very short metallic adherends are used, the adhesive is in a state of uniform shear. 

As regards specimen manufacture, ISO11003-2 recommends machining the specimens from 

two adherends bonded together. Overlap length in TAST joints was also controlled by the 

use of PTFE sheets. Specimens were also prepared carefully using the jig to ensure alignment 

of the shear test adherends. The TAST is probably the simplest and most reliable technique 

to use. The average shear stress for Araldite 2015 adhesive was 24 MPa obtained from the 

TAST specimen (see Section 3.3.4). On other hand, the shear stress can be converted into 

equivalent tensile values based on von Mises by multiplying by √3.  

The cross ply composite laminates were produced and supplied by FFI, Norway. These were 

produced by infusion moulding of lightly stitched UD high strength carbon fibre mats/plies 

and epoxy resin. The mechanical properties of the composite material were obtained using 

Rule of mixtures [20], Tsai and Hahn equations [178] and the transversely isotropic materials 

assumption for better estimation. The mechanical properties were obtained from calculations 

based on the volume fraction of carbon fibre of 60%.  

8.1.2 DCB and ENF tests        

The mode I and mode II fracture parameters are partially successful in determination of 

values of GIC and GIIC which have been reported elsewhere [133, 185], and as such are  a 

useful indicator of where the fracture energy of this specific thickness of Araldite 2015 and 

epoxy resin LY3505/XB3405 may be found. However, the range of values deduced via this 

method suggest that the mode I fracture energy becomes stable at around 400 N/m for 

Araldite 2015, and 160 N/m for epoxy resin LY3505/XB3405.  However, more 

measurements would need to be recorded to confirm this. BS 7991:2001 followed stipulates 

that at least 15 crack propagation measurements should be recorded before a total of 65 mm 

in crack length has been reached (from the PTFE insert).  All of these recommended values 

were obtained for the 0.2 mm test conducted, due to the stick-slip fracture behavior of 

polymers under constant applied extension rate loading conditions. Hence a coarser 

representation of the mode I fracture energy was apparent as a result. 

In many fracture tests, the measured fracture energy (as seen on a typical R-curve, 

Figure 3.21) will reach a plateau region which signals that the measured fracture energy has 

reached a constant level. This is termed steady state fracture energy, which is when the 

related plastic zone ahead of the crack tip is fully developed [119]. The reasons for such non-
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typical behavior reported in this work can largely be attributed to experimental error, as not 

only was the crack tip difficult to follow manually, but even when the tip was located, this 

may not have been the true location of the tip, due to plasticity effects [150]. 

 Also, an improvement which could rectify a proportion of the discrepancies mentioned 

would be the use of a high magnification video camera. The recording could be replayed 

retrospectively and subsequently correlated with the measured load-displacement curve to 

accurately collate the load, displacement and crack propagation values in a more organised 

manner. The crack measurements should be within ± 0.5 mm of the crack tip, which is 

challenging when using manual visual inspection such as a microscope. Also, the crack 

measurements strain gauge would have been more valuable, but these were not envisaged at 

the time of experimentation 

 The BS 7991:2001 does not provide a stress-elongation relationship, which is usually a 

common feature of CZM fracture parameter identification. In this work however, this was 

acceptable, as the fracture parameters were identified via means of an inverse identification 

procedure. The SBT described the deflections of the beam due to bending and shear, but 

does not account for important effects of the beam root rotation. The root rotation affects the 

resulting values of the fracture energy GIC. This is largely down to the fact that when using 

mild steel as a substrate material, the neglected crack roots rotation in the SBT method will 

lead to significant errors, and as such, these values are not indicative of the true fracture 

energy of the specimen [150]. Another feature of the BS 7991:2001 which could be 

improved is the fact that this technique relies upon the beam opening displacement being 

represented by the relative crosshead displacement of the testing machine. This could be 

improved by placing an extensometer across the neutral axis of each substrate as in [128], 

and subsequently this could also be used as an input for a more accurate methodology of 

obtaining the cohesive relation in mode I [119]. Another significant contributor to the 

discrepancies observed can be related to the system compliance effects of the testing 

equipment used. This is due to the componentry of the equipment having a finite compliance 

which can be seen to affect the measured values of GIC [150], and in this instance an 

assumption was made for the magnitude of system compliance. However, a more in-depth 

study of the specific compliance of the machine used could yield more accuracy in the 

overall results. As is evident from the analysis, the most accurate set of results were obtained 

using CBT and ECM; it is commonly held that the ECM method yields the most accurate 

results [132]. 
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The drawbacks with using SBT, ECM and CBT involve the simultaneous measurement of 

the applied force, load point displacement and subsequent crack length, but the crack length 

measurement can be dubious, as the fracture process zone (i.e. damaged zone ahead of the 

crack tip) is not very well defined and can extend several millimetres before a crack actually 

starts to propagate [215]. An alternative methodology to that of the BS 7991:2001 protocol 

involves use of the Compliance Based Beam Method (CBBM), which is based on beam 

theory, and utilises beam compliance in the data reduction scheme. As such, it does not 

require any crack length measurements to be recorded during the test. This is a relatively 

new approach and has promising signs for replacing the BS 7991:2001 protocol [216].  

The end notched flexure (ENF) test was usually used for measuring mode II fracture 

toughness of adhesive bonding. One remaining challenge of this test method is monitoring 

the accurate crack length during its propagation as the load increases [217]. For the ductile 

adhesive failure process, it is very difficult if not impossible to identify the exact location of 

the crack tip. The employment of high resolution observation equipment gives more detail 

of the crack tip, while only making it even more confusing to tell where the “true” crack tip 

is. In order to overcome this difficulty, the equivalent crack method [217, 213] has been 

developed recently, in which the crack length is calculated using the experimental 

compliance and a beam theory based relation. On the base of the J-integral theory, 

Alfredsson [218] presented a novel approach to calculate the mode II energy release rate. 

This theory avoided the measurement of crack length, while the crack tip deformation needs 

to be continuously monitored. The equivalent crack method was initially developed by 

Moura et al. [213].  

8.1.3 Numerical modelling of DCB and ENF      

In the numerical investigation of this work, the intrinsic modelling technique was initially 

conducted on the DCB model and ENF model. These allowed for the adhesive and epoxy 

resin to be characterised by a tailored CZM, in the form of the bilinear relation. The 

experimental cohesive parameters of the DCB and ENF specimens were determined by an 

inverse method, fitting the numerical and experimental load-displacement curves of each 

specimen. An inverse identification procedure was conducted in order to iteratively ascertain 

the peak strength and fracture energy, to create a tailored bilinear CZM for this specific 

testing scenario. This was done by comparing the peak force of the experimental load-
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displacement plot with the numerical output of the DCB model, until a minimum deviation 

between the two plots was observed. Using this procedure a good agreement between the 

numerical and experimental tests has been found, but one must note that by adopting this 

methodology that the resulting fracture parameters obtained via finely tuning the numerical 

response will be unique to that specific experimental test only. The peak strength was 

obtained by using a very fine cohesive element length (0.01 mm) in order to accurately 

capture the tractions in the cohesive zone of the numerical model. The procedure of tailoring 

the CZM implemented in this report serves as an illustration of how to deduce the relevant 

mode I fracture parameters using this commonly used technique. A much more in-depth 

analysis could be conducted by doing more DCB tests in order to accurately find the peak 

strength during the data fitting procedure, as each DCB test will be unique due to the 

difficulty in keeping such a thin layer perfectly constant (i.e. thickness deviation in substrates 

needing to be strictly controlled). The inverse identification procedure yields a unique 

solution for the respective mode I fracture energy and peak strength values, but serves as a 

useful illustration of this commonly implemented technique, and gives indicative 

magnitudes of what these values actually are.  

Other methods used in the literature to obtain the CZM parameters can lead to a wide array 

of quoted fracture parameters for similar adhesives. More complex methods of obtaining the 

CZM parameters can be obtained via a J-integral approach using the DCB specimen [133]. 

This method involves the use of extensometers in order to measure the end opening 

displacement at the neutral axis on the beam at the initial crack tip, and by differentiating 

the resultant calculated J-integral found from the load used, in order to obtain a cohesive law 

(i.e. for mode I; this is defined as peel stress versus peel separation and for mode II; this is 

the shear stress verses the shear displacement) [119]. A noteworthy result of these 

methodologies is that the maximum peak strength value (or tripping traction) found was of 

the same order of magnitude as the yield stress of the bulk adhesive, which bears a similarity 

to the obtained value of peak strength found using the inverse identification procedure in 

this work, as the obtained magnitude of peak strength was 32 MPa; compared to the tensile 

yield strength for the bulk adhesive used (Figure 3.4). The mode II cohesive parameters used 

were deduced via the CBBM technique [216, 195] and show that the often quoted ratio of 

fracture energies, GIIC/GIC = 2, can be inaccurate, and as such, much higher ratios for this 

relation can be observed for Araldite 2015 [195]. 
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8.1.4 Cohesive interface element technique   

Damage problems in adhesive joints remain a difficult task, and therefore engineering 

structures are often designed to be tolerant to reasonably sized flaws. However, interface 

delamination is generally very complex in nature and difficult to solve, because it involves 

not only geometric and material discontinuities, but also the inherently coupled Mode I, II 

and III fracture in layered material. A valuable approach from this point of view is 

represented by linear elastic fracture mechanics (LEFM) [151]. LEFM has proven to be a 

useful tool and allowed for a more rapid extension of adhesives technology applications. The 

major advantage of LEFM is its simplicity. So far, the single parameter treatment based on 

the stress intensity factor has been extensively and successfully applied to tackle fracture 

events in adhesive joints [150]. However, LEFM requires pre-existing crack-like defects or 

notches and, therefore, crack initiation cannot be treated directly. A valid alternative to 

LEFM for those problems in which these conditions may not be met consists of using CZM. 

In this thesis, a CZM with bilinear traction separation law is proposed to represent 

progressive damage occurring within the interface during the fracture process. The CZM is 

represented by cohesive elements to connect the two surfaces of materials.  

A built-in cohesive zone modelling capability is available in ABAQUS, which was 

employed in this research to predict the failure load of DLS joints under tensile loads. The 

cohesive zone model is implemented in FEA through the use of cohesive elements. A 

cohesive element may be considered as two faces separated by a distance, and the relative 

movement of the two faces is used to determine damage and failure. The geometric model 

development, problem setup and meshing of the 2D model was carried out using 

Abaqus/CAE. Two sets of parameters are required for application of the developed interface 

element, namely, interfacial strength and fracture toughness. The initiation of fracture is 

determined by the interfacial strength and the progression of fracture is determined by the 

interface fracture toughness. In the finite element modelling, these interface elements are 

positioned within the interface where potential delamination propagation is expected. 

Contact-type interface element is also developed to simulate contact behaviour in the 

delaminated region. 
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8.1.5 Verification of interface element model   

A verification process applying the developed interface element is presented with numerical 

simulations of standard fracture test configurations, namely DCB and ENF specimens, under 

Mode I and Mode II respectively. For all the simulations, the finite element solutions are in 

good agreement with the experimental results. Typical computational issues related to 

modelling with interface elements are discussed. Issues of mesh sensitivity, effects of 

interfacial strength and viscous regularisation factor are investigated.  

Generally,   zone modelling does not require very fine mesh near the crack front, since no 

singularity is present. However, in order to obtain a relatively smooth solution, the mesh 

should be sufficiently fine in the evolving process zone at the delamination front, and the 

element size needs to be less than the cohesive zone length. Slightly lowering the interfacial 

strength can reduce the burden on mesh refinement without sacrificing the accuracy of the 

prediction. It is found that when a small value of the viscosity parameter is used, the viscous 

regularisation helps improve the rate of convergence without compromising results, as 

shown in Figure 6.21 and 6.22.  A helpful experience from the current study is that 

simulations of stable crack growth events using the CZM approach require careful 

convergence studies, not just with respect to the standard finite element, but also with respect 

to the cohesive element length relative to the cohesive zone size. The cohesive zone length 

is directly related to the convergence issue that is the most crucial point for the CZM 

application [219]. The cohesive zone model implemented is distinctive of materials 

softening after their characteristic separation is reached, and practical applications in 

Abaqus/standard often come up with convergence problems. A common technique to 

overcome some of these convergence difficulties is the use of the viscous regularisation 

factor. Figure 6.19 and 6.20 show a comparison of the simulation prediction of the load-

displacement curves for DCB and ENF models respectively. Based on this observation, 

simulation solutions with cohesive element length 0.2 mm for mode I and mode II are 

considered to be converged.  

8.1.6 DLS joint modelling 

A 2D finite element model was created in order to analyse the behaviour of DLS joints under 

tensile loading. The numerical modelling of the DLS joint was selected based on the 

symmetry in joint geometry and loading, as shown in Figure 5.1. The model consists of steel 
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adherend, adhesive layer and CFRP laminate adherend, and the CFRP laminate modelled at 

its constituent level i.e. unidirectional laminates and the resin rich layers, as shown in 

Figure 5.3. Thus, this modelling gives a good representation of the material properties and 

the overall joints’ behaviour, especially when dealing with CZM of the resin within the 

laminate. A number of meshing methods are available in ABAQUS 6.9-1, and each 

geometric area was meshed based on the geometric shape. All the shapes were meshed with 

structured mesh, and used plane strain quadratic elements CPE8R (reduced integration). The 

minimum element size was at the overlap edges, and the coarse mesh was far from the 

overlap region, which was the region of interest during the analysis. These elements were to 

be joined by shared nodal points, which were used to create the mesh of the model. The 

stress and strain at each nodal point of each element can then be readily calculated. The 

strength of materials approach is the classical method. This aimed at providing the 

distributions of stresses and strains, and in particular the locus and value of maximal stresses 

and strains.  

The CZM was used in all DLS joint simulations; as shown in Figure 7.2, the numerical 

analysis was carried out using non-linear geometry. Four-node plane strain reduced 

integration elements (CPE4R) were used for the steel adherend and the composite plies. The 

adhesive layer and resin-rich layers were modelled with a sweep mesh and four-node 

cohesive elements (COH2D4), with bilinear traction separation. The cohesive element was 

only one element through thickness of the adhesive layer, and of the rich resin zones between 

the unidirectional laminates. The CZM parameters were determined by experimental tests. 

It was found that the results from the FEA model were in good agreement with results from 

the experimental tests. Both results matched the load-strain curves. These agreements also 

demonstrated that the determination of CZM parameters is correct, and thus these parameters 

can be extended to other simulations. 

The effects of cohesive zone position in 2D models were studied using the CZM technique 

for the adhesive-cohesive model and cohesive models, as shown in Figure 7.3. It was found 

that both models can be equivalent to each other, and did not affect the simulation results. 

This implies that the change of cohesive layer position does not affect the modelling results 

once the parameters of CZM are correct.   

The CZM approach enabled a diagnostic of the current damage state and an update of the 

strength prediction. The damage initiation is automatically localised due to the use of the 

strength of material approach, while the damage propagation is controlled through fracture 
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mechanics concepts, without assuming any initial cracks. Another advantage of CZM for the 

failure prediction of bonded joints comes from the fact that the required experimental 

characterisation investigates directly the mechanical behaviour of the adhesive layer, such 

as employed in the final bonded joints. The cohesive elements are used in the DLS joint 

model for FEA simulation, these elements saving computation time by modelling the 

adhesive as a single element layer, and preserve results’ accuracy. The numerical predictions 

are highly satisfactory, and validate the use of the constitutive model for FEA simulation of 

large industrial bonded structures [220]. Figure 8.1 shows the variation of CPU time with 

the overlap length for both the strength of material and the CZM models of the [0o,90o]6 

joint. All the simulations were run using a CPU (DELL OptiPlex 780, Intel® Core 2 Quad 

Q8400 @ 2.66 GHz). In general, the strength of the material model and cohesive zone model 

are almost the same, indicating the potential critical region in the DLS joint.  

 

 
Figure 8.1: Variation of CPU time with overlap length of the [0o,90o]6 models for 

both the strength of material and the CZM approaches. 

 

However, the 2D FEA based on the CZM model runs faster than the strength of material 

model. The computed time of CZM modelling saved about 34% to 40% of the computing 

time of the strength of material modelling, see Table 8.1. 
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Table 8.1: Percent saving in simulation time between strength of material and CZM 

approaches for the [0o,90o]6 models with different overlap lengths 

Overlap length 

(mm) 

CPU time (s) Saving in 

simulation 

time (%) 
Strength of 

material 

Cohesive zone 

model 

50 2250 1480 34% 

75 3002 1873 37% 

100 3723 2278 39% 

150 4380 2626 40% 

200 4861 2892 40% 
 

 

8.1.7 Prediction of failure of DLS joints   

In Chapters 4, 5 and 7, experimental and numerical results for hybrid (steel/composite) DLS 

joints were presented. In this chapter, predictions of the FEA numerical model are compared 

with the experimental results. A good agreement would increase confidence in the validity 

of the FEA model. Comparisons were made in terms of load-strain curves.   However, due 

to instrumentation and measurement constraints, it was not possible to compare FEA 

predictions for adhesive response with experimental values. Nevertheless, good agreement 

in the quantities compared should be seen as a partial validation of the FEA models. 

In the experiments, more detailed strain gauge instrumentation was attempted in order to 

compare results at strategic positions of the joint. Thus, strain gauges were bonded onto the 

CFRP and steel adherends at strategic positions, along the length at mid-width of joint, with 

strain gauge numbering corresponding to the diagram in Figure 4.17. Figure 8.2 compares 

the strain values for the [0o,90o]6 specimens and models, to validate the static response 

predicted by the 2D models in this study. The comparison provides good correlations for the 

numerical models with these experiments. According to this study there are two possible 

failure initiation modes in long DLS joints. One is in the adhesive, which includes cohesive 

or adhesive failure. The second mode is delamination failure of the outer composite 

adherend. The results from the numerical strength limit analysis showed that failure modes 

correspond well with the results from the experiments. 
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Figure 8.2: Comparison of the load versus strain curves for [0o,90o]6 specimens and 

models with overlap length of 75 mm 

 

The degree of correlation depends on the geometry of the joints in terms of adherend 

thickness, fibre orientation and length of overlap. Among the failure criteria that have been 

employed in this study are maximum peel or principal stresses of the adhesive and adjacent 

resin at the RHS of the joint and model (see Table 5.3 and 5.4). These are compared to 

corresponding strength values for the adhesive and resin. Also, the longitudinal and 

transverse tensile strength of the UD composite may be used as measures of failure. 

Another important measure of joint failure is the level of the plastic shear stress within a 

joint. Figure 5.21 showed the shear stress along the adhesive/composite interface for all 

joints [0o,90o]6 model with different overlap lengths, being high at the RHS near the centre 

of the joint. The length of plastic zone for the 25 mm and 50 mm overlap joints is about 50% 

of the overlap. For overlaps greater or equal to 75 mm, the maximum stress remained almost 

constant, the plastic zone length being about 30 mm. This has a good practical dimension;  

for example, structural joints (butt connection) in marine construction where overlaps are 

expected to be well in excess of a 100 mm (200 mm strap). 

The CZM approach has also shown a good failure prediction. This however depends on the 

CZM parameters determined from the DCB and ENF specimens, which are dependent on 

the test method and materials used in order to obtain the critical strain energy release rates 

(GIC and GIIC) of the adhesive and resin. The obtained values of the strain energy release rate 

GIC for experiments was 410 N/m, and the literature quoted value 430 N/m for the same 
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adhesive (Araldite 2015) [221] . Also, when the values of GIIC are unknown, it is common 

in the literature to assume a ratio of GIIC/GIC is 2, which is not realistic. However, the results 

presented here show a relation of approximately 9.5 for the adhesive.  Another study [221] 

has shown a ratio of approximately 10 for GIIC/GIC for this adhesive. Therefore, it is 

important to test not only in mode I but also test mode II for adhesive properties. 

The location of the damage initiation and propagation also matched the results from the 

experiments. Figure 7.7 showed the stiffness degradation curves at various percentages of 

maximum failure load for the [0o,90o]6 model. The failure initiates at the RHS of the overlap 

at about 50% of the total failure load. The damage then begins to grow, and at around 90% 

of the failure load, damage begins to accumulate in the model at the LHS. The respective 

damage at the centre and end of the overlap begins to grow, with a higher damage magnitude 

apparent at the RHS.  

 Effect of fibre orientation  

The influence of fibre orientation on the load-displacement response of the DLS joints is 

illustrated in Figure 4.11. This included three different stacking sequences of [0o,90o]6 , 

[90o,0o]6  and [+45o,-45o]6 specimens with 75 mm overlap length. It can be seen that the 

failure load for the [0o,90o]6 specimen is 5% and 70% higher than the [90o,0o]6  and [+45o,-

45o]6 specimens, respectively.  

Figure 4.12 showed the experimental failure surfaces for the three different specimens. It 

can be seen that the [0o,90o]6 specimen suggests that failure initiated within the adhesive 

layer, see Figure 4.12a. But when the stacking sequences are based on the [90o,0o]6 or [+45o,-

45o]6 specimens, the fractures have taken place at the top ply. From Figure 4.12b and c it can 

be seen that both specimens showed delaminated composite at the left on the steel adherend 

surfaces. 

In relation to numerical modelling, in the case of the [0o,90o]6 model the longitudinal tensile 

stress (S11) was very significant (911 MPa) and somewhat close to the tensile strength of 

the composite (1400 MPa). The failure initiation in this case was thought to be in the 

adhesive, where maximum principal stress and maximum shear stress (S12) at the RHS 

reached 54 MPa and 24.5 MPa respectively (see Table 5.3). In the case of the [90o,0o]6 

model, the longitudinal stresses (S11) reached 71.6 MPa (Table 5.4), which is very close to 

the ultimate transverse tensile strength of the laminate (86 MPa) given in Table 5.1. Another 

possibility for the failure initiation in this case is in the adhesive, where maximum principal 
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stress at the RHS reached 50 MPa (Table 5.3). This means that the initial crack in the joint 

could have started either in the laminate or adhesive. Assuming this had started in the 90o 

ply as seen in Figure 4.12b, the crack is then extended to the resin rich interface between the 

90o and 0o ply, leading to delamination. 

The [+45o,-45o]6 specimen and model clearly showed a significant drop in the failure load 

compared with the other two cases of fibre orientations (Figure 4.11). Nonetheless, the 

model produced significant stresses in the adhesive, resin and composite (Table 5.3 and 5.4). 

The maximum tensile strength of the resin is 85 MPa. As can be seen from Table 5.4, the 

resin tensile stress (S11) reached the failure limit. Also, the tensile stress of the top ply, 

which is 165 MPa, could have caused delamination failure due to in-plane shear stress, 

transverse stress, or both. The low global stiffness and strength of the outer adherend in 

comparison to the other specimens are main factors in this failure. Local stiffness is another 

factor which may influence joint strength. This is governed by the fibre orientation for the 

ply next to the adhesive. The effect of this seems small in comparison to the global stiffness, 

hence the small difference in the failure load between the [0o,90o]6 and [90o,0o]6 specimens 

and models. Perhaps having a thin ply (0.25 mm) next to the adhesive bondline (0.2 mm) 

does not affect joint strength significantly. However, thicker plies, e.g. in excess of 1 mm, 

may do so. 

The tensile (S11), peel (S22) and shear (S12) stresses distributions through the thickness of 

adhesive and the laminate are illustrated in Figure 5.18-5.20. From these figures it can be 

observed that the ply stacking sequences appear to have considerable influence on stress 

distribution through the thickness of the adhesive and CFRP composite laminate at RHS.  It 

can be seen from these figures that tensile stress (S11) distributions are higher at 0o layers, 

see Figure 5.18a and 5.19a. Also, the shear stress (S12) value in adhesive layer of the 

[0o,90o]6 model is higher than that in other models, as shown in Figure 5.18b and 5.19b.  

 Effect of overlap length  

To investigate the influence of overlap length on load-displacement response, DLS joints 

with 5 overlap lengths (25 mm, 50 mm, 75 mm, 100 mm and 125 mm) were tested. In this 

group, all the joints have the same stacking sequence of [0o,90o]6 and the same overall length 

(Figure 4.8). The load-displacement curves of the specimens with different overlap lengths 

are shown in Figure 4.13. As can be seen, the load-displacement curves are linear until 
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respective point of failure. Also, Figure 4.15 shows the ultimate failure load of the specimens 

with different overlap lengths. It is obvious that the ultimate failure load of the joints 

increases with the increase of overlap length. When the overlap length is less than 50 mm, 

the relationship between the ultimate failure load and overlap length is approximately linear. 

However, the increasing rate gets slower as the overlap length exceeds 50 mm. 

Figure 8.3 shows the experimental and numerical results from strength and CZM approaches 

for the [0o,90o]6 specimens and models with various overlaps. The agreements between the 

experimental and numerically predicated failure loads are very close. The average deviation 

from the measured load at failure is 7% and 5% for CZM and the strength of material 

approaches respectively.  

 

 

Figure 8.3: Comparison between the experimental and numerical curves for [0o,90o]6 

joint with different overlap length, experimental from Figure 4.15 and numerical from 

Figure 7.13 
 

 Effect of adherend thickness    

As for the outer composite adherend thickness, two different stacking sequences were 

considered. These are [90o,0o]6 and [90o,0o]12 specimens which represent 3 mm and 6 mm 

thickness,  respectively and for 50 mm overlap. Figure 4.16 shows the load-displacement 

curves for specimens with different CFRP laminate adherend thickness. As can be seen, the 

load-displacement curves also behave linearly with increasing the adherend thicknesses. 
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However, when the thickness is doubled, the ultimate failure load only increased by 15%. 

This indicates that the ultimate failure load is not directly proportional to the thickness of 

the adherend. Figure 4.17 shows that failures for both specimens have taken place at the top 

ply. It can be seen that the 90o ply is normally the weak link for delamination between 90o 

and 0o plies. This can be found in all of the specimens. 

The load-displacement curves of models with different adherend thicknesses are shown in 

Figure 7.11. As can be seen, the load-displacement curves were linear. It is obvious that the 

ultimate failure load of the models increases as the laminate thickness increases. On the other 

hand, it is obvious that the maximum principal stress at the upper RHS (Table 5.5) of the 

models decreases as the adhered thickness increases. Figure 5.22-5.24 show that with 

increase in the CFRP adherend thickness, reductions in the values of maximum principle, 

shear and peel stresses towards the centre of the joint RHS take place.  

 

 

Figure 8.4: Comparison between the experimental and numerical curves for [0o,90o] joint 

with different laminate thickness 

 

Figure 8.4 shows the failure load by both experimental and numerical techniques on 

increasing joint strength with an increase in laminate thickness. For example, there is an 18% 

increase in joint strength as a result of increasing the thickness from 3 mm to 9 mm. 
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8.1.8 General modelling and experimental issues    

The differences between the FEA models and experimental results are possibly caused 

by a number of reasons: 

a) The CFRP material properties were not determined experimentally, but were taken 

from published literature and supplied by the manufacturer. Consequently, some 

errors in this deference could have produced inaccuracies in the FEA modelling. 

b) The overall 2D geometry of the hybrid DLS joints was modelled reasonably 

accurately. However, the corners of the steel adherend and the CFRP laminate were 

shaped, but simply modelled as right angled. Therefore, both the steel and the CFRP 

adherends, which were bonded DLS joints, were affected by this approximation. 

Again, this would have had an effect on the local behaviours and the response of the 

adhesive joints. 

c) In order to have an effective aspect ratio in the finite elements which model the 

thickness of the adhesive layer, in the FEA models the thickness was taken as 0.2 

mm instead of the actual thickness in the experiments, which had some errors in the 

adhesive thickness from one specimen to another. 

d) The manufacturing technique applied in the fabrication of the DCB, ENF and DLS 

joints would invariably produce some non-uniformities and small deviations of the 

dimensions. This could possibly have produced slight differences when compared to 

the FEA model results. 

e) In the FEA models the boundary conditions were assumed to be perfect, which may 

not have been the case experimentally. 

Numerical issues  

a) It may not be appropriate to use maximum stress as a criterion in conjunction with a 

detailed finite element analysis. If the ends of adherends and the adhesive layer are 

modelled as sharp corners then the stresses become singular. If these features are 

smoothened, the maximum values are a function of the rounding used. The joint 

strength can be predicted by comparing the respective equivalent stresses at critical 

regions obtained by stress based criteria, with the properties of the structure. These 

criteria are highly mesh dependent, as stress singularities are present at the end of the 

overlap regions, especially at sharp corners. Singularity issues at the interface of the 



 

Chapter 8. Discussion, conclusions and future work 

 

 

175 

 

adhesive and laminate were dealt with according to the third-node stress 

consideration proposed in the research work by Gleich et al [222]. 

b) The common difficulty encountered in FEA analysis to simulate the crack 

propagation with CZM is the convergence issue. The complex constraints such as 

connection and ties, together with nonlinearities including softening constitutive 

relations, mean that the FEA model is often discouraged with non-convergence. 

Many researchers have noted this problem and come up with several solutions [206]. 

This problem is still active in research, and demands more investigation. In this work 

the viscous regularisation method was applied to help with numerical difficulties. A 

stabilisation technique was used for unstable finite element computations. When 

using the small value of the viscosity parameter, the viscous regularisation helps 

recover the rate of convergence without compromising the results. 

 

8.2 Summary and conclusions 

Tests and analyses related to thick-adherend steel/carbon composite double lap shear joints 

have been carried out in this work. The structural failure of the joint, including delamination 

of the composites at different overlap length, fabric orientation and adherend thickness have 

been investigated, both experimentally and numerically. The experimental programme 

includes fabrication, mechanical testing and failure examinations of various joints. The 

analysis methods developed in this thesis may potentially be employed for the development 

and assessment of hybrid joints and advanced composite structures. The numerical methods 

are based on 2D models using the strength of materials and cohesive zone modelling 

methods.  

There are two chapters presenting experiments in this work. Chapter 3 introduces the 

materials used in this research, and the rule of mixtures is used to determine the material 

properties of CFRP laminates. This chapter includes the test of a standard steel butt joint and 

thick adherend shear test to obtain the mechanical properties of an adhesive. Additionally, it 

describes the manufacture and fracture tests of steel DCB and ENF specimens, the results in 

this chapter being used to determine the parameters of cohesive zone model (CZM). Then, 

the CZM was applied to simulate DCB and ENF models in Chapter 6.  
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The cohesive parameters were determined by fitting the numerical results on the respective 

experimental data. These results were used to simulate the DLS model in Chapter 7. Chapter 

4 describes the manufacture and tensile test of DLS joints. It is noted that the results of 

Chapter 4 were compared with FEA simulation of Chapter 5 and Chapter 7. 

In this work, two failure tests were accomplished. These tests included the DCB test (mode 

I) and ENF test (mode II). The purpose of these tests was to determine the parameters in 

cohesive zone model applications. The bilinear cohesive zone model has been used, the 

critical strain energy release rate of which was the only parameter that was obtained from 

previous DCB tests and ENF tests. The cohesive strength values of the bonding materials 

were determined using the inverse method. This method includes fitting procedures for 

numerical and experimental load-displacement curves of fracture tests and models. 

Regarding the damage part of the model, the six parameters were also split into two groups. 

The three mode I parameters (GIC, σ0 and Knn) were identified with the DCB specimen by 

fitting measured and computed load-displacement results. The same procedure was used for 

the three mode II parameters (GIIC, τ0 and Kss) using the ENF specimen.  

The bilinear CZM was proven to be able to predict the initiation of crack and crack 

propagation in a DLS joint, and also suitable for predicting multiple cracks by placing 

cohesive elements between every two neighbouring solid elements. The stress analysis 

highlighted the regions of critical stresses within the DLS model, and using the deduced 

mode I and mode II fracture parameters, progressive damage analysis was conducted. This 

analysis concluded that damage initiates at the centre of the overlap at approximately 50% 

of the failure load, when the CFRP are used as outer adherend. In addition the analysis of 

DLS joints indicated that failure is to be expected within the adhesive layer for [0o,90o]6 

joint, and predicted a shift from adhesive failure to delamination failure in composite 

adherend for the [90o,0o]6 joint. Results obtained with the strength of material approach and 

cohesive zone model approach were found to be in good agreement with those obtained 

experimentally. The following main conclusions can be drawn in relation to this study: 

1) Failure initiation in long overlap steel/composite joints starts at the RHS of the joint 

at about 50% of the failure load.  

2) DLS joints made of thin ply laminates with [0o,90o] orientation produces only a 

slightly higher strength compared to the [90o,0o] equivalent. However, a joint with 

[+45o,-45o] orientation produces a significantly lower strength than the other two. 
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3) The adhesive plastic shear zone at failure remains at about 30 mm in length when 

increasing the overlap length of the DLS joint beyond 75 mm. Damage tolerance, 

however, increases with the increase in overlap length. 

4) Maximum principal, peel and shear stresses at the interface adhesive vary with fibre 

orientation, due to variation of local and global stiffness and strength. 

5) Increasing the thickness of outer composite adherend leads to an increase in joint 

strength. A thickness increase from 3 mm to 9 mm resulted in an 18% increase in the 

failure load. 

6) Joint failure mode depends on fibre orientation. While this is mainly cohesive failure 

in the adhesive for the [0o,90o] joint, it is largely interlaminar for the [90o,0o] joint. 

The failure for the [+45o,-45o] joint is largely in-plane delamination of tope ply. 

7) The cohesive zone modelling technique was found to be a powerful and economical 

analytical tool for the analysis of delamination in steel/CFRP laminated composite 

joints. 

8) For the ENF test, the proposed traction separation model with linear softening 

function as produced from the CBBM scheme is very helpful in numerical 

simulations for Mode II fracture growth. 

9) The computing time to simulate the numerical model of the DLS joint by the CZM 

approach can save 40% of simulation time when compared with the strength of 

materials approach. 

 

8.3 Future work 

Although the strength prediction of adhesively bonded between CFRP laminates and steel 

in double lap shear joints under tensile loading could already have been improved through 

this research, there are still areas for further research. More experimental and numerical work 

is recommended to optimise the material properties for adhesive and epoxy resin, to further 

understanding of the behaviour of adhesively bonded DLS joints. The study could be 

extended in future by considering the following important areas. 

 Extend experimental and FEA work to obtain the cohesive parameters for mixed-

mode fracture toughness. 



 

Chapter 8. Discussion, conclusions and future work 

 

 

178 

 

 Extensive experimental work has been performed in this research, and future work 

should focus on further FEA analysis, including 3D modelling of the DLS joint, to 

investigate the effect of stresses which act through the width of the joint. 

 Further investigation into damage shapes will be necessary to understand the damage 

development mechanisms. 

 DLS joint tests in this work were subjected to in-plane deformation. In practice, many 

varieties of out-plane deformation, such as bending and torsion of adhesively bonded 

joints, exist; therefore joints under more complex loads should be investigated. 

 The investigations presented in this thesis are only for specimens subjected to quasi-

static loading conditions. Further investigation of the effect of stacking sequences in 

the performance of CFRP under different loading scenarios, such as fatigue and 

impact, may be of interest. 

 The use of video microscopy to investigate the behaviour of the bond line in double 

lap joints could be more integrated, in a way where data can be recorded accurately 

and used as another means of measuring crack initiation strains in the adhesive layer. 

 To carry out 3D stress analysis modelling of actual butt connection (DLS joint), e.g. 

in ship application, to compare the computing time need for the CZM approach 

versus strength limit approach,  and in line with what is currently considered in 

automotive applications. 
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Appendices 

Appendix A: Technical data sheet (Araldite LY3505/Hardeners XB3405) 
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Appendix B: Technical data sheet (Araldite 2015) 
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Appendix C: Technical specification of Vishay strain gauges 
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Appendix D: Technical data sheet of strain gauge adhesive (M-bond AE-

10) 
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Appendix E: Failure Criteria 

 

Principal stresses failure criterion  

Failure takes place in any isotropic material like an adhesive, coating resin and matrix resin, 

when the maximum in plane principal stress is greater than the material’s yield stress. 

 

 

 

Maximum Stresses failure criterion  

Maximum stress failure criterion has been used for isotropic material failure [223] without 

the interaction of other stress components. Failure takes place when any of the stress 

components reaches its corresponding limits. i.e.  

 

 

 

 

 

Hashin Failure Criterion. [Hashin, 1973] 

Hashin failure criterion [224] identifies that failure takes place when the failure index 

exceeds unity for the subsequent failure modes as long as that the materials are elastic. Let 

us assume that σ11 (Longitudinal), σ22 (Transverse), and τ12 (In-plane shear) are the in-plane 

stresses within the lamina and in-plane strength along longitudinal (Xt, Xc), transverse (Yt, Yc) 

and shear Sc with T and C represents tension and compression respectively.   

 

1. Fibre failure:   
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2. Matrix failure: 

 

                 (Tensile)                                                    Matrix creaking 

                   

 

               (Compressive)                                             Matrix creaking              

       

 

 

Tsai-Hill failure criterion [225] 

Failure takes place within uni-directional lamina when the calculated value equals, or 

exceeds 1. 
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Where Xt, Xc, Sc are the tensile, compressive and shear strength of lamina. 

 

 

Damage initiation criterion for cohesive element [201]  

Damage initiation refers to the beginning of degradation of the response of a material point. 

For cohesive model, it indicates the start of the delamination damage. The process of damage 

begins when the stresses or strains satisfy certain damage initiation criteria that are specified. 

Abaqus provides several different criteria, which can be chosen by the users, such as 

maximum nominal stress or strain criterion, and quadratic nominal stress or strain criterion. 

In this study, the quadratic nominal stress criterion (QUADS) is used:  
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Where represents that compressive (negative) normal stress does not initiate any 

delamination damage. And the σ is the component of normal to the likely debonding surface, 
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while τ is the shear component on the likely debonding surface. Damage is assumed to 

initiate when the above quadratic interaction criterion is satisfied. 

Benzeggagh-Kenane (BK) criterion [B&K 1996] 

The Benzeggagh-Kenane fracture criterion [207] is particularly useful when the critical 

fracture energies during deformation purely along the first and the second shear directions 

are the same; i.e., 
C

III

C

II GG  it is given by, 
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Where: 

 
IIIT GGG  , and η is a material parameter.  

- GI  and GII  are the energies released by the traction due to the respective separation 

in the normal and shear directions. 

- GIC and GIIC are the critical  energy release rates in modes I and II.  
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