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Introduction  

The present thesis attempts to investigate the importance of regime-switching utilization in 

option pricing models. In this attempt, we construct and test a variety of regime-switching 

option pricing models in order to derive conclusions on the improvements that those models 

can consist in the option valuation process. 

Many researches in the past have provided evidence that financial series can occasionally 

exhibit breaks in their behavior, e.g. due to a financial crisis or changes in the financial 

policies. For example, it is known that under financial crisis the volatilities and correlations 

between different assets tent to be higher compare to their long-run levels.  

A common technique to represent this dynamic behaviors of data series is to employ linear 

models such as Autoagressive models, ARMA models or Moving Average models. However, 

this models fail to capture nonlinear dynamic patterns.  

Markov switching models, commonly known as regime-switching models are the most 

popular non-linear time-series in financial modeling. These models aim to incorporate the 

dynamic breaks in financial series behavior into the financial modelling. By permitting the 

model’s parameters to switch values according to the regime the economy is in, regime-

switching models manage to be more flexible and thus to capture more accurately the data 

series. More precisely, regime-switching models consists of multiple equations each of which 

represents a different state, regime, in the economy. Thus, each equation captures a 

different behavioral pattern of the time-series and by allowing switches among the equations 

the models are able to capture more complex dynamic patterns. The mechanism by which 

these switches occur is controlled by an unobservable Markov chain variable, the state 

variable. This state variable follows an   state first-order Markov chain; where   is the 

number of different regimes assumed to be in the economy. Thus, the value of the state 

variable at each time   depends only on its value at time    . 
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Thus, under regime-switching models the dependent variables’ behavior is state-dependent 

since the unobservable prevailing state determines the process which generates the 

dependent variables’ values.  

In the present thesis we consider a two-state first-order Markov models. This means that we 

assume that the economy is divided in two states and that the prevailing state at any point of 

time depends only on the most resent state and not on the states prevailing before this. The 

unobservable state variable thus takes only two values, indicating the state the time-series is 

in, and its switches are controlled by the so called transition probabilities. The transition 

probabilities give the probability of being in one of the two states in the future given the 

present prevailing state. For example, if the state variable is    and can take the values 

     or     , than 

                                                  

and          .  

So in contrast with single regime models where we have to estimate the parameters of a 

single equation, structure, in regime-switching models we have to estimate the parameters 

of multiple structures as well as the transition probabilities of switching between these 

structures. This requires a much higher computational effort which is probably the main 

drawback of these models. Moreover, other critics on Markov switching models relay on the 

fact that the regime switching is exogenous, i.e. the transition between states depends only 

on the current state and not on the parts of the model, the realization of the time-series and 

the past states. This can be considered as an unrealistic assumption since we would expect 

the prevailing state in the future to depend on the realization of the time series as well as the 

current and past states. However, besides the critics, the regime-switching models have 

been proven to better present the switching economic environment than single-regime 

models.  



4 

 

The present thesis tries to address the importance of regime switching into option pricing as 

well as to develop new option evaluation models in an attempt to contribute to the existing 

literature new sophisticated and accurate option pricing models. To the best of our 

knowledge, the models developed in this thesis are novel. Moreover, the numerical 

examples in the end of each chapter provide evidence that regime switching models are able 

to provide us with more accurate option evaluation models.  

The thesis is divided into two parts, in the first part we work on district-time framework while 

in the second part we focus on continuous-time models. Beginning by structuring district-

time regime switching option pricing models in the first part and examining how the 

consideration of regime-switching can improve the estimations of a lattice style option model, 

we continue in the second part with the development of a class of continuous time regime-

switching option evaluation models. Thus, in the first part we develop an experimental option 

pricing model which allows us to search in deep the contribution of regime switching into 

option pricing. Having gained a positive feedback on the effects that regime switching 

consideration has on the option pricing process from the first part, we then develop in the 

second part of the thesis a class of sophisticated option pricing models for options written on 

commodities. 

In Part I the thesis mainly focuses on the effect that the regime-switching in the correlation 

between the risk-free interest-rate and the underlying returns has on the option prices. We 

try to investigate whether the consideration of regime-switching correlation between the 

interest-rates and the underlying asset’s returns can improve the accuracy of our 

estimations. For this purpose we develop a pentanomial lattice model where the parameters 

are allowed to switch values over time. This part allows all the model parameters, including 

the mean and variance of the stock returns and risk-free interest rates, to change values 

over different regimes. Later in this part, aiming to isolate the effect of the regime-switching 

correlation on the option values from the effect of the rest regime-switching parameters, we 

develop and test a second model where only the correlation is allowed to follow a regime-
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switching process. The findings in this part suggest that the option values indeed capture the 

regime-switching correlation. More precisely, our findings suggest that a regime switching 

option pricing model in most of the cases outperform the classic Black-Scholes model while 

the option prices appear to be sensitive to the regime switching parameters.  

In the second part of the thesis we focus on continuous-time regime-switching option 

evaluation models and more specifically on options written on commodities. Because of the 

nature of commodities, the commodities’ prices are assumed to follow mean-reverting 

stochastic processes. In this part we first develop novel three models without assuming 

regime-switching and then we transform the models into Markov switching models. The 

models are one-, two-, and three-factor models according to the number of stochastic factors 

considered. In the first model only the underlying commodity price is assumed to follow a 

mean-reverting stochastic process. In the second model we add an extra stochastic factor, 

the convenience yield. Finally, in the three-factor model we assume that the risk-free interest 

rate also follows a stochastic process. In all the models the volatilities and correlations 

between the stochastic factors are assumed to follow a two-state Markov chain.  The 

findings indicate that by assuming regime-switching and increasing the stochastic factors in 

the models we increase the flexibility and thus the accuracy of the models. Moreover, the 

findings suggest that the models can provide with accurate results for option written on a 

great variety of commodities.   

This research provides with novel models of option evaluation and evidence that the 

consideration of the dynamic breaks in option pricing can improve the financial modeling. 

Therefore, this thesis is a proof that the observed market option values reflect the regime-

switches that occur in the underlying option asset returns and the risk-free interest rate time-

series as well as in the correlation between them. More precisely, in this thesis we prove that 

the traded option prices reflect the regime-switches that occur during the life-time of an 

option not only in the underlying asset driving process’ parameters but also in the interest 
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rate and convenient yield driving processes’ parameters as well as in the correlations 

between these processes.  
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Part I 

A Lattice Method for Option Evaluation with Regime-Switching in 
the Correlation between Underlying Returns and Risk-Free Interest 

Rate 

 

Abstract: 

This chapter develops a lattice method for option evaluation aiming to 

investigate whether the option prices reflect the shifts in the 

distributions of the underlying asset returns and the risk-free interest 

rate. More precisely we try to investigate whether the option prices 

reflect the switches in the correlation between the underlying and risk-

free bond returns that characterise different states of the economy. 

For this reason we develop and test two models. In the first model we 

allow all the parameters to follow a regime-switching process while in 

the second model, in order to isolate the regime-switching correlation 

effect on the option prices, we allow only the correlation to follow a 

regime-switching process. The models developed use pentanomial 

lattices to represent the evolution of the regime-switching underlying 

assets. Our findings suggest that the option prices reflect the regime-

switches and that a model which considers these switches could 

produce more accurate results than a single-regime model. 

1. Literature Review  

During the two last decades regime-switching models have become accepted and widely 

used in finance due to their ability to reflect the random economic environment better than 

single-regime models. These models can capture the shifts in the distribution of economic 

variables by allowing the values of the parameters to change in different time periods. Many 

studies have found evidence that a regime-switching model can better capture the time 

series behaviour of a wind range of financial and economic variables. For example, it is well-

known that the short-term interest rates exhibit switches in their distribution over time. 

Hamilton (1988) and Gray (1996) use regime-switching models to describe the dynamics of 

the US short-term interest rates. Other studies like Schwert (1989) and Turner, Startz, and 

Nelson (1989) present regime-switching models to describe the dynamics of equity returns.  
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In option valuation, the classic Black-Scholes formula, the most widely used model for option 

pricing, assumes that the underlying assets follow a geometric Brownian motion with 

constant mean return and volatility. The Black-Scholes formula fails to reflect the stochastic 

variability of the underlying asset's parameters. One of the problems caused by this is the 

failure of the model to capture what is known as "volatility smile". This disadvantage of the 

classic Black-Scholes model generates the need of a more accurate model which would 

allow for the parameters to change over time. Such a model could be a regime-switching 

model. An additional advantage of regime-switching models compare to stochastic volatility 

models is that the former can capture the "volatility clustering" effect that appears in the 

empirical data of asset returns. However, if the regimes are unobservable, the option 

evaluation using regime-switching models is more complicated than a single-regime model. 

Naik (1993) derives option prices by developing a model in which the volatility of the returns 

of the underlying risky assets is subject to random shifts. Naik (1993) presents a closed form 

solution for the option evaluation which derives the option prices recursively based on an 

expectation of the usual Black-Scholes formula, where the expectations are over the future 

variance of the underlying asset. His model is a simplified regime-switching model which 

uses the expected duration of each regime over the option's life. 

Bollen (1998) develops a lattice method for option evaluation in regime-switching models. In 

his paper he approximates the underlying stock returns by a two-regime model in which the 

returns are normally distributed in both regimes but with different mean and variance. For the 

option evaluation, instead of using the classic binomial lattice of Cox, Ross, and Rubinstein 

(1979) he introduces a pentanomial lattice. In his five-branch lattice the one regime is 

represented by a trinomial and the other by a binomial lattice in every brunch. Bollen, Gray, 

and Whaley (2000) examine the ability of Hamilton’s (1988-1990) Markov regime-switching 

model to capture the dynamics of exchange rates and exchange-traded option prices. 

Developing a four-regime model with independent shifts in the mean and variance they find 

that a regime-switching model can better fit and forecast the variance of foreign exchange 
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rates than a single-regime model. To evaluate the options they follow the numerical method 

introduced by Bollen (1997). In each node the option value is the maximum between the 

proceeds of the early exercise and the discounted expected option value on the next node. 

This expectation is calculated using the regime probabilities. Bollen et al. (2000) found that 

the observed in the market American option prices are significantly different from those 

determined by their regime-switching option evaluation model. However, they show that a 

trading strategy based on their regime-switching option evaluation generates higher profits 

than the single-regime alternatives. 

Yao et al. (2003) study the pricing of European options with the rate of return and volatility of 

the underlying depending on the state the economy is in. By assuming a finite number of 

regimes they formulate their regime-switching model for the underlying asset price as a 

geometric Brownian motion and they evaluate the options by using risk neutral evaluation. In 

their paper, Yao et al. (2003) present two alternative ways for the option evaluation. The first 

evaluation method derives a system of partial differential equations with a smooth boundary 

condition. This smoothness condition is to ensure the uniqueness and differentiability of the 

solution. The second approach is a successive approximation based on fixed points of an 

integral operator with a Gaussian kernel. 

Duan (1995) develops an option pricing model where the underlying volatility follows a 

generalized GARCH process and the option evaluation is based on the locally risk-neutral 

valuation relationship. Duan, Popova, and Ritchken (2001) develop a class of option pricing 

models in which the underlying asset price is modelled by a Markov regime-switching 

process. Duan et al’s (2001) asset pricing model is a regime-switching model with feedback 

dynamic. The term feedback dynamic refers to the ability of the model to determine whether 

or not the process of the asset price will switch to a new volatility state not by a constant 

transition matrix but by an updating function together with the current volatility level. Duan et 

al. (2001) option evaluation models include the GARCH option evaluation method developed 

by Duan (1995), a lattice method, and a weighted average of Black-Scholes values which 
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correspond to different regimes and with the weights to be determined by the transition 

probabilities of moving to another regime.  

In the present chapter we develop an option evaluation model in which we use a regime-

switching processes to drive of the option underlying parameters, i.e. the underlying asset 

price and the risk-free rate which under risk-neutral evaluation is used in the option 

evaluation. We assume that the underlying stock and bond prices are governed by two 

correlated geometric Brownian motions in which the drifts, volatilities, and correlation change 

over different regimes.  

It is known that during different periods in the economic cycle the correlation between bonds 

and equity returns changes. We model the equity and risk-free bond returns by using a two-

regime model. Our findings show that the economy can be divided into two states, a stable 

and an unstable state. In the stable state we have low volatilities in the stock and bond 

returns while in the unstable state we have higher volatilities. Alternatively, the two states 

can be defined by the prevailing correlation value; the numerical examples in this chapter 

show that by assuming two-stage regime-switching the one regime is characterized by low 

or negative correlation and the other by high or positive correlation between the underlying 

asset returns and the interest rate.  

The purpose of this chapter is to investigate whether these shifts in the distributions of the 

underlying asset return and risk-free rates are reflected in the option prices. We try to 

investigate whether an option evaluation model in which the underlying option parameters 

are modelled by a regime-switching process provides with more accurate results than a 

classic option evaluation model. More precisely we try to find whether the option prices 

reflect these switches in the correlation between stocks and risk-free bonds that characterize 

the different states of the economy, i.e. whether the option prices capture the regime-

switches of the economic environment. To give our analysis more focus; after we have 

estimated our model in which all the underlying option parameters are allowed to follow a 

regime switching process; we run a second model in which only the correlation is allowed to 
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switch over different regimes. In this way we are able to investigate whether the option 

values are sensitive to the regime switching correlation. Finally, in the last part of this 

chapter we estimate our model using the Kim Filter.  

The rest of the chapter is organized as follows: section    presents the mathematical 

formulation of the regime-switching model which governs the underlying asset and risk-free 

bond returns. In section    we describe the lattice method used for the option evaluation 

when the underlying option parameters follow a regime-switching process. In section    we 

briefly discuss the optimization techniques used for the model estimation and in section    

we present numerical examples of the model. In section    we present and test an alternative 

method for estimating the model’s parameters using the Kim Filter. Finally section    

includes the conclusions and comments on our findings. 

2. Mathematical Formulation 

2.1. Continuous-time formulation 

Most financial models describing stochastic variables like interest rates or asset returns 

assume a stationary distribution from which the changes in the variables are drawn. 

However, there is evidence that most financial variables cannot be accurately described by a 

stationary distribution because of the shifts that occur in their behavior over different time 

periods. Regime-switching models are able to capture this behavior of the financial variables 

by allowing the parameters of their data-generating processes to take different values in 

different time periods.  

In this thesis we consider a two-regime model in which at any point in time the regime is 

given by an unobservable discrete Markov chain variable   . The evolution of the discrete 

variable    depends only upon      and can take only two values indicating in which of the 

two regimes we are in at time  , i.e. the process of    is a two-state first-order Markov 

process.  
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Under these assumptions we specify of the rate of return of the stock and the risk-free bond 

as follows:  

We assume that the bond and stock prices follow two correlated geometric Brownian 

motions. Thus, the bond returns (risk-free interest rates) and stock returns are given as 

follows:  

   
  

   

  
      

        
   

         

   
  

   

  
      

        
   

         

     
 and      

 are the drift of the bond and stock return processes respectively and      
 and 

     
 are the volatility of bond and stock returns, respectively.  

Finally, the correlation between the two driving Brownian motions is given as: 

   
    

     
          

2.2. Discrete-time formulation 

By considering that the stock and bond returns evolve according to the above model, the 

discrete-time approximation of the interest rate at time t is given by: 

  
  

       

    
       

 
 

 
     

               

where             
      

and the stock return is given by: 

  
  

       

    
       

 
 

 
     

               

where             
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2.3. Matrix representation  

Representing the above in a matrix format with       
   

  
 
, we have: 

      
                       

         

where 

    
  

      
 

 

 
     

    

      
 

 

 
     

    
         

 
 
         

  
     

                            
     

     
  

     
     

     
                            

   
  

where      
    

 is the correlation between the stock return and risk-free interest rate in the 

corresponding regime.  

2.4. Transition Probabilities 

The discretised two-state first-order Markov-switching variable    evolves according to the 

following transition probabilities:  

                    
       

         
 

                    
       

         
 

The transition probabilities matrix is:  

    
      

      
  

where          ,          ,          , and          . 

So by letting          , we have that   
      

 . 

If we let    to be the steady-state probability vector, we have: 
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3. Option Evaluation and Pentanomial Lattice 

For the option evaluation we use a generalized version of the pentanomial lattice proposed 

by Bollen (1998) for option evaluation when the underlying returns follow a regime-switching 

process. In section      we briefly review the binomial lattice proposed by Cox, Ross, and 

Rubinstein (1979). In section       we discuss the pentanomial lattice of Bollen (1998). In 

section      construct two correlated lattices, one for the underlying stock price and one for 

the risk-free bond price. And in section      we explain how we evaluate an option in a 

regime-switching environment based on two correlated pentanomial lattices.  

3.1. The Binomial Lattice 

Cox, Ross, and Rubinstein (1979) developed a numerical discrete-time model for option 

evaluation by using binomial lattices. The so called CRR model uses a binomial tree to 

model the geometric Brownian motion that governs the underlying stock price process. The 

binomial lattice uses a two dimensional grid of nodes to illustrate the evolution of the key 

option's underlying variables in a finite number of time steps between the valuation time and 

the option expiration date.  

Under the CRR model the stock price follows a geometric Brownian motion and so the stock 

returns are normally distributed. 

               

Each node in the binomial lattice approximates the normal distribution of the stock's returns 

using the binomial distribution. In each time step the underlying asset price will move up or 

down by a specific factor u or d, respectively. Thus, in each node of the tree we denote by   

the probability of moving to the upper branch, making a positive upwards jump u, and by   

the continuously compounded rate of return of the stock moving to the upper branch. 

Likewise, in each node the probability of moving to the lower branch, by making a negative 

downward jump d, is     and the continuously compounded rate of return   .  
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From the CRR model we have:  

  
         

      
         

               

where           and      .  

 

Figure 1: Binomial Tree 

 

3.2. The Pentanomial Lattice  

Bollen (1998) first constructs a pentanomial lattice to represent the variable's distribution 

when this is governed by a regime-switching process1. This lattice reflects the possible 

regime-switching of variables.  

In the pentanomial lattice both regimes are represented by a trinomial instead of a binomial 

lattice. In every node there are two pairs of branches and one middle branch. The inner pair 

of branches corresponds to the regime with the lower volatility, the outer to the regime with 

the higher volatility, and the middle branch is shared by the two regimes. The branch 

probabilities and the continuously compounded rate of return are such that each trinomial 

                                                
1
 In this thesis the Bollen (1998) pentanomial lattice has been adjusted for the needs of the present 

model. In particular in Bollen (1998) pentanomial lattice the rate of return   in one of the regimes is 
adjusted so that the nodes recombine. In the present paper this would be impossible to be 
implemented because, as we prove later, there are additional conditions the   has to satisfy. 
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lattice approximates the corresponding regime's distribution. These branch probabilities are 

now conditional probabilities, conditional on being in a particular regime, and so Bollen 

(1998) calls them conditional branch probabilities.  

In each node of the lattice we have two conditional option values corresponding to the two 

different regimes.  

Figure 2: Pentanomial Tree 

 

3.3. Construction of Lattice with two Correlated Assets 

In the pentanomial lattice option evaluation method of Bollen (1998) only the stock return 

follows a regime switching process. However, in this paper we examine the regime-switching 

correlation between stock returns and risk-free interest rates (government bond returns). 

Thus, we assume that the risk-free interest rate process is also governed by a regime-

switching model. Therefore, we have to develop a second pentanomial lattice for the bond 

price correlated with the pentanomial lattice for the underlying stock price. To do so we first 

construct two correlated trinomial lattices, ignoring the regime-switching in the parameters, 

and later we transform these correlated trinomial lattices into two correlated pentanomial 

lattices, taking into consideration the regime-switching. 
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In section        we develop the trinomial model for a single underlying asset with no regime 

switching and in section        we develop two correlated trinomial lattices for the two 

correlated underlying assets.  

3.3.1. One underlying asset 

For the underlying tree we consider a three-jump process instead of two-jump process used 

in CRR model. Thus, starting with the initial underlying price  , the continuous distribution is 

approximated by a discrete distributions as follows [11]:  

Table 1: 

Jump Probability Underlying Asset Price 

Up       

Horizontal       

Down       

  

To obtain the suitable values for the probabilities   ,   , and    there are three conditions:  

1. The sum of the probabilities is one: 

                   

2. The mean of the discrete distribution is equal with the mean of the mean of the continuous 

lognormal distribution:  

                                

3. The variance of the discrete distribution is equal with the variance of the continuous 

lognormal distribution: 

                   
 
                    

 
                     

 
          

 
                 

By solving the above three equations we get the following expressions for    ,   , and 

  [11]: 
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 For convenience we will use the following notifications:  

             

             

We denote the price of the underlying stock    and the price of the risk-free bond with   . 

Where the stock returns are normally distributed with   
               ,       

 

 
  

 ; and 

the bond returns (risk free interest rate)   
              ,        

 

 
  

 . 

3.3.2. Two underlying assets 

Now, in the case of two correlated underlying assets, based on Boyle (1988), we 

consider a five-jump process:  

Table 2: 

Event Probability Underlying Assets Value Given Event 

  Asset 1 Asset 2 

E1              
E2              
E3              
E4              
E5          

From the properties of the joint lognormal distribution we have that [11]: 

                                      

This gives: 
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By eliminating     this gives:  

                                                       

                              

To obtain suitable values for the probabilities there are three conditions:  

1. The sum of the probabilities is one: 

                         

2. The mean of the discrete distributions is equal with the mean of the mean of the 

continuous lognormal distributions:  

                                                 

                                                

3. The variance of the discrete distribution is equal with the variance of the continuous 

lognormal distribution: 

                                                                             

             
              

                          
 
                     

 
                            

 
  

         
 
    

              

We can note that there is a connection between equations     ,     , and      and 

equations     ,     , and     . In fact the probabilities        ,   , and         are 

the new probabilities   ,   , and    for the underlying stock price, respectively. In the 

same manner,        ,   , and         are the new probabilities   ,   , and    for 

the underlying bond price, respectively. Thus, we can obtain:  
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From the above we have two expressions for   :            , and           . 

Thus, we have that:  

                  

This gives a relationship between    and    that must be satisfied. 

Now, from equation      and equations      to      we can get the following expression for 

  : 

   
                                                                     

                
        

Having solved for    , we can solve for         and     using equations      to     :  

                 

                 

                 

Thus, given       we have explicit expressions for the probabilities          and    .  

Note here that the two trees provide the possible stock values and bond values in any time 

step. However, the risk-free rate, i.e. the return of the bond, in any time step can take only 

three possible values,       or    , with the relative probabilities as calculated above.  

Since in the present paper we consider a two regime model, the analysis in section        

has to be repeated for both regimes, i.e. the conditional branch probabilities (          ) 

and rates of return (   and   ) must be calculated separately for both regimes. In this way 

we can develop two correlated pentanomial lattices. 
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3.4. Option Evaluation  

In a lattice the present value of an option is given as its discounted expected payoff which is 

determined by the expected value of its underlying asset. In risk-neutral valuation this 

discounting is made by using the risk-free interest-rate. However, by assuming a random 

switching in the regimes we introduce an additional risk in the evaluation procedure. 

Following Hull and White (1987) and Bollen (1998), we assume that the market does not 

price this additional regime-risk. 

In the terminal nodes of the lattice the option value is calculated as the maximum between 

zero and the payoff if the option is exercised. The option is then valued iterating backwards. 

In the earlier node of the lattice the option values are calculated conditionally on the 

prevailing regime. Thus, in any earlier node we have two conditional option values; one for 

each regime. Here we notate by      the option price at time   and in regime  . 

This value is calculated conditional on being in regime   time   and it is equal to the weighted 

average of the discounted expected values of the option at time     in each regime with 

the weights to be the transition probabilities. So the conditional on regime   option price at 

time   (    ) will be equal to the discounted conditional on regime   option price at time     

multiplied by the probability of staying at     at regime   (   ) plus the discounted 

conditional on regime   option price at time     multiplied by the probability of switching at 

    to regime   (   ). 

For example the conditional option value of a European call option at time  , conditional on 

regime 1, is given as:  

                                         

where    here denotes the discounted expected values.  

The transition probabilities of staying in regime 1 in time-step     or switching to regime 2 

determine the conditional option value by weighting the discounted expected future 
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conditional option prices. The discounted expected future option values are calculated by 

using the appropriate regime's branches and the relative conditional branch probabilities. 

                               
                       

         
              

  

                     
                       

           

                               
                       

         
              

  

                     
                       

           

where           ,        ,             ,           ,        ,             . 

In the same manner, the conditional option value of a European call option at time  , 

conditional on regime 2, is given as:  

                                         

Thus, in the initial node two conditional option values are recorded, one for each regime. 

When the current regime is known, we know which of the two conditional option values in the 

seed node is correct. However, when regimes are not known with certainty, the European 

option value is the weighted average of the two conditional values where the weights are the 

initial regime probabilities. 

4. Optimization techniques and model estimation 

To estimate the model parameters we calibrate the model to the observed market option 

values. The two optimization techniques used in this paper are grid search, and pattern 

search.  

Starting with the grid search we obtain a set of 10,000 plausible combinations for the model 

parameters. The best combinations of model parameters produced by grid search feed the 

pattern search which produces our final estimations for the parameters.  
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5. Numerical Example 

To test our model we calculate the prices of European Call options on the iPath Goldman 

Sachs Crude Oil return Index ETN, which is a crude oil based exchange traded fund at 

NYSE Arca and compare our results with the actual option prices observed in the market. 

Since the lattice model developed is a general option pricing model, there is no particular 

reason here for choosing the specific option to test our model.  

The day the data were collected the share value of the fund had been at $19.96. The options 

evaluated are options with different expiration date and strike prices. Since the interest rate 

distribution changes for each maturity, the models have been estimated separately for 

different maturities. Moreover, since the underlying asset distribution is influenced through 

correlation by the risk-free interest rate distribution, the parameters of the process driving the 

underlying asset price also change in different maturities.  

We consider options with three different maturity dates and for each maturity we evaluate 

ten options; options in-the-money, approximately at-the-money and out-of-the money. In this 

way we manage to test the model's performance on options with different life expectancy 

and distance of the underlying asset price to the strike price. More precisely, we evaluate 

options with maturity in 54,144 and 235 days which were the options' maturities on the data 

collection date. 

Note here that because of limitation in computer memory we cannot construct lattices with 

as many steps as the days to expiration. Thus, for each maturity we assume different 

number of steps and length of time steps. However, in order the results to be comparable we 

present the parameters of the underlying distributions in daily basis.   
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5.1. Model parameters 

5.1.1. Maturity in 54 days 

We first calculate the optimum parameters for the model. The parameters above are 

presented in a daily basis. The best fit parameters based on our data are:  

  Regime 1 Regime 2 

mean (μ) 
Stock 0.1336% 0.1073% 

Bond 0.0341% 0.2476% 

volatility (σ) 
Stock  3.3926% 0.6621% 

Bond 0.9251% 0.4373% 

correlation (ρ) 1 0.30493 

 

And the transition probabilities:  

p11 98.20% p12 1.80% 

p22 99.38% p21 0.62% 

We can see that in Regime 2 we have lower volatility than in Regime 1 in both stock and 

bond returns. We can also notice that the correlation between stock and bonds is higher in 

the high volatile regime than it is in the low volatile regime.  

Now we have to calculate the   for the bond and the stock in both regimes so that equation 

     is true by assuming three time steps of length 18 days. In Regime 1 we have that for  

             and for              the condition is satisfied. In particular: 

   0.54573 

   0.54563 

   0.41336 

   0.41346 

In Regime 2 we have that for             and for              the condition is satisfied. 

In particular: 

   0.77647 

   0.22257 

   0.95996 

   0.03907 
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And the conditional branch probabilities are: 

                 

Regime 1 0.24267 0.30306 0.11040 0.30296 0.04092 

Regime 2 0.74242 0.03405 0.00503 0.21754 0.00097 

 

5.1.2. Maturity in 144 days 

The best fit parameters based on our data are:  

  Regime 1 Regime 2 

mean (μ) 
Stock 0.0489% 0.0036% 

Bond 0.0015% 0.0028% 

volatility (σ) 
Stock  2.0335% 0.7879% 

Bond 0.0004% 0.000001% 

correlation (ρ) 0.032848 0.9999 

And the transition probabilities:  

p11 59.63% p12 40.37% 

p22 71.53% p21 28.47% 

We can see that in this maturity the volatilities in both assets’ returns are higher in 

Regime 1 than in Regime 2. Moreover, in Regime 1 we have low and positive correlation 

while in Regime 2 we have correlation almost one. 

Now we have to calculate the φ for the bond and the stock in both regimes so that 

equation      is true by assuming three time steps of length 48 days. In Regime 1 we 

have that for               and for              the condition is satisfied. In 

particular: 

   0.54525 

   0.45280 

   0.98268 

   0.01537 
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In Regime 2 we have that for             and for              the condition is 

satisfied. In particular: 

   0.49471 

   0.48782 

   0.93390 

   0.04863 

The conditional branch probabilities are: 

                 

Regime 1 0.53656 0.00869 0.00667 0.44612 0.00195 

Regime 2 0.46630 0.02841 0.02022 0.46760 0.01747 

5.1.3. Maturity in 235 days 

The best fit parameters based on our data are:  

  Regime 1 Regime 2 

mean (μ) 
Stock 0.11130% -0.14230% 

Bond 0.10695% 0.00025% 

volatility (σ) 
Stock  1.46930% 0.83009% 

Bond 0.09795% 0.00000% 

correlation (ρ) 0.00037 -0.25952 

And the transition probabilities:  

p11 73.24% p12 26.76% 

p22 64.20% p21 35.80% 

We can see that in this maturity in Regime 1 we have higher volatilities while the 

correlation is positive. In contrast, in Regime 2, where the volatilities are lower, the 

correlation is negative.   

Now we have to calculate the φ for the bond and the stock in both regimes so that 

equation      is true by assuming five time steps of 47 days. In Regime 1 we have that 

for              and for              the condition is satisfied. In particular: 

   0.11035 

   0.88956 

   0.99971 

   0.00020 
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In Regime 2 we have that for             and for              the condition is 

satisfied. In particular: 

   0.70645 

   0.29346 

   0.99528 

   0.00463 

And the conditional branch probabilities are: 

                 

Regime 1 0.70306 0.00339 0.00124 0.29222 0.00009 

Regime 2 0.11026 0.00009 0.00011 0.88945 0.00008 

5.2. Presentation and Analysis of the Results 

The tables 3 to 5 present the results for the maturities 54, 144, and 235 days respectively. 

We compare our results to those obtained by the Black-Scholes model. For each maturity 

Bloomberg provides with the appropriate interest-rate to be used for the relevant options 

calculations. Thus, the interest rate used in Black-Scholes model for maturity in 54 days is 

0.19%, in 114 days is 0.29% and in 235 days is 0.39%. The volatility used in Black-Scholes 

model was estimated by the same optimization process used for the lattice model 

parameters by calibrating the model to the option data. The Black-Scholes daily volatilities 

for each maturity, as these obtained by the optimization, are 1.6523%, 1.5656% and 

1.4428% for the maturities 54, 144, and 235 days respectively. 

 The first column of the tables has the strike price, the second column contains the observed 

option market prices, the third column contains the option prices as there were calculated by 

the model and the last column contains the option prices by Black-Scholes model. In the end 

of the predicted values it is presented the sum of absolute percentage differences between 

the predicted option values and the observed ones. 
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Table 3 

 

 

Table 4 

Strike 
Price 

Market 
Price 

Predicted 
by Lattice  

Predicted 
by BS 

16 4.5 4.34865943 4.1725616 

17 3.6 3.5642556 3.35169784 

18 2.75 2.57296396 2.62325745 

19 2 1.93626598 1.99996353 

20 1.45 1.46448434 1.48590397 

21 1.05 1.01660883 1.07684673 

22 0.61 0.73864212 0.76221078 

23 0.35 0.47745972 0.52773376 

24 0.5 0.4942085 0.35800034 

25 0.25 0.22325247 0.23834467 

Sum of absolute 
differences  0.85790036 1.30846523 

Strike 
Price 

Market 
Price 

Predicted 
by Lattice  

Predicted 
by BS 

16 4.9 3.881616 3.9936 

17 2.85 3.127282 3.0613 

18 2.35 2.373772 2.2162 

19 1.65 1.629733 1.5029 

20 0.95 0.949999 0.9500 

21 0.4 0.399999 0.5587 

22 0.2 0.200003 0.3059 

23 0.2 0.136097 0.1565 

24 0.1 0.105053 0.0750 

25 0.15 0.088113 0.0339 

Sum of absolute 
differences  1.110163 2.573241 



32 

 

 Table 5 

Strike 
Price 

Market 
Price 

Predicted 
by Lattice  

Predicted  
by BS 

16 5 4.4153631 4.3208036 

17 3.8 3.7998973 3.5464351 

18 2.4 2.3996588 2.8585724 

19 2.25 1.9270998 2.2636265 

20 1.6 1.5997621 1.7622281 

21 1.35 1.3087541 1.3499542 

22 0.95 1.0205032 1.0186664 

23 1.05 1.1713058 0.7580323 

24 0.6 0.6000609 0.5569055 

25 0.5 0.4960518 0.4043912 

Sum of absolute 
differences  0.4890502 1.1145081 

 

The results indicate that the model works accurately. In particular it seems to outperform the 

Black-Scholes model in most of the cases especially in the case of Out-of-the-Money options. 

However, it seems that there are few cases when the options are in-the-money that Black-

Scholes model provide option prices slightly closer to the real prices that the lattice regime-

switching model. Nevertheless, the sum of absolute differences between the estimated option 

values and the real observed ones is in all the cases significantly lower in the case of the regime 

switching model. This could be an indication that the consideration of regime-switching in the 

parameters’ values during the option evaluation can improve our results.  

We can also observe here that the regime switching model works more accurately as the time to 

maturity increases. The reason for this can be that the probability of switches in the underlying 

parameters' value to occur increases with the time expectancy. In other words, we could 

conclude here that the consideration of regime switching makes more sense or that it is more 

important as the time horizon under consideration expands.  
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5.3. Sensitivity of Option Values to the Regime Parameters 

After having proved that the current model can accurately calculate the option prices, we need 

to test how the regime-switching affects the option prices, i.e. how important is the consideration 

of regime-switching in the option prices calculation. To test this we need to test the sensitivity of 

the option prices to the regime parameters. To do so we consider an option on US Oil with 

expiration in 235 days and strike price $19.  

The option value increases as the volatility increases. Thus, when the regime resistance of the 

regime with the high volatility increases, i.e. when the     increases, the option value must 

increase as well. On the other hand when the regime resistance of the regime with the low 

volatility increases, i.e. when     increases, the option value should decrease. We test this 

hypothesis by evaluating a European Call option for different values of     and    , setting the 

initial regime probabilities to 50%. The results are displayed on Figure 3. 

Since the option value increases when the volatility is higher, the option value should increase 

as the initial regime probability of being in Regime 1 increases. This relationship should be 

weaker as the regime resistance decreases. We test this hypothesis by evaluating a European 

Call option for different values of regime resistance and initial regime probabilities, setting 

       . The results are displayed on Figure 4. 

5.4. Sensitivity of Option Prices to the Regime Correlation  

The results above indicate that the option prices are sensitive to the regime parameters of the 

model. However, the main purpose of this paper is to investigate whether the regime switching 

in the correlation between the riskless interest rate and the return of the underlying asset affect 

the option price, and if the consideration of this regime switching can improve our estimation on 

the option prices. Thus we have to isolate this influence of the regime switching correlation in 

the option prices in order to test whether this on its own affects the option prices. To do so we 
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estimate the model for options with maturity in 54 days again considering regime switching only 

in the correlation between the returns of the underlying index and riskless bond. The model we 

have to estimate now is:  

                           
          

where 

    
    

 

 
  

    

    
 

 
  

    
         

 
 
         

  
  

                          
      

   
                             

   
  

The underlying asset has mean return 0.110% and volatility 10.081%. The risk-free interest rate 

has mean return 0.019% and volatility 5.544%. We first calculate the optimum parameters for 

the model, i.e. the parameters that give the maximum likelihood function. The best fit 

parameters based on our data are:  

  Regime 1 Regime 2 

Correlation  0.0444 0.800 

Regime Resistance 99.75% 91.35% 

So in Regime 1 the correlation between the underlying stock and riskless bond is positive and 

low while in Regime 2 is positive and high.  

Now we have to calculate the φ for the bond and the stock for which equation      is true. Since 

φ is independent of the correlation between the bond and the stock, it remains the same in both 

regimes. For            and for           the condition is satisfied. In particular: 

   0.542452 

   0.145266 

   0.328477 

   0.359241 
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For these values the conditional branch probabilities are:  

                 

Regime 1 0.212032 0.33042 0.028821 0.116446 0.312281 

Regime 2 0.910673 0.01986 0.015211 0.01714 0.037115 
 

To test the sensitivity of option prices to the regime parameters, i.e. the correlation between the 

underlying stock and riskless bond we evaluate a European Call option for different values of 

    and    , setting the initial regime probabilities of both regimes to 50%. The results indicate 

that as the regime resistance of Regime 1 (the regime with the lower correlation) increases the 

option price decreases and as the regime resistance of Regime 2 (the regime with the higher 

correlation) increases the option price increases. The results are displayed on Figure 5. 

To further test the sensitivity of the option price to the regime switching correlation between the 

underlying stock and riskless bond, we evaluate the option for different values of regime 

resistance (setting         ) and initial regime probability of being in Regime 1. The results 

indicate that as the initial regime probability of being in Regime 1 increases, the option value 

decreases, i.e. as the correlation between the stock and the bond returns decreases, the option 

value decreases as well; and as the initial probability of being in regime 2 increases the option 

price increases. This relationship becomes stronger as the regime resistance increases. The 

results are displayed on Figure 6. 
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Figure 3: Sensitivity of Call Option value to Transition Probabilities 

 

Figure 4: Sensitivity of Call Option Value to the Regime Parameters 
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Figure 5: Sensitivity of the option price to the regime resistance of the two regimes 

 

Figure 6: Sensitivity of Option Price to the regime switching correlation  
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6. Further Discussion: Kim Filter 

As discussed before, the model has been calibrated according to the observed option values. 

By doing this we can say that the option values are used to forecast the distributions of the 

underlying asset return and the interest-rate. However, the parameters can be estimated by 

historical data, this can be done by employing state space models and utilizing Kim Filter.  

6.1. State Space Representation 

We first consider our model as a state-space model. State-space models deal with dynamic 

time series and are employed to make inferences about unobserved variables. In our case the 

unobserved variable,   , is normally distributed and its dynamics are described by the 

"Transition equation". Then, the returns of the stock and the bond, i.e. the matrix   , is given by 

the "Measurement equation" which describes the relationship between the observed variable   , 

and the unobserved state-variable   .  

We consider the following representation for our state-space model with switching in both 

measurement and transition equations:  

Measurement Equation:                                   
      

Transition Equation:                                       
    

        
   

 
  

  
       

   
 

    

   

In our specific case    
 is a       identity matrix,    

 is a       matrix of zeros, and 

      
 are as determined in §1.3.  

Moreover, we set    equal to a       matrix of zeros and    equal to a       identity matrix. 

Thus, for      the variance of the process comes only from the measurement equation and it 
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is equal to    while for      the variance of the process comes from both state and 

measurement equations. Then, by setting    
    and    

       for both states, the 

variance in state 1 is    and the variance in state 2 is     

6.2. Transition Probabilities 

The discretised two-state first-order Markov-switching variable    evolves according to the 

following transition probabilities:  

                    
       

         
 

                    
       

         
 

The transition probabilities matrix is:  

    
      

      
  

where          ,          ,          , and          . 

So by letting          , we have that   
      

 . 

If we let    to be the steady-state probability vector, we have: 

    
        

        
   

   

   
  

Then, by definition of the steady-state probabilities we have           and        . And as 

Kim and Nelson (1999)[2] show                     , where    is a     vector of zeros. 

Thus,  
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and by setting    
     

  
   , we have that the              

  

 
 . In other words,    equals the 

last column of          . 

At any point in time   the probability that each regime will govern the next observation based on 

the information available,     , is called regime probability                     . Gray (1996) 

shows that the regime probabilities at any point in time are related to the prior regime 

probabilities as follows: 

                                      

 

   

                  

where 

                          

                                             

            
         

and  

                                
 

        
     

  
 

      
 

 
      

      
      

       
      

     
                     

                    

 

   

 

   

                                                      

6.3. Kim's Filter and Model Estimation 

To estimate the parameters of the model we have to maximise the likelihood function with 

respect to the model's parameters. The basic tool to estimate the parameters of a state space 

model is the Kalman filter. The Kalman filter is a recursive procedure for estimating the 

unobserved state vector at time  , based on all the available information at that time. Moreover, 

via Kalman filter we estimate the likelihood function which we have to maximize. Kim (1994)[1] 

combines the Hamilton (1989) filter for regime-switching models estimation with the Kalman 
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filter and develops a method to estimate the parameters of the state-space models with regime-

switching. We follow the Kim's filter to estimate the parameters of our model; its steps are 

presented in the next section.  

We represent with   the        vector with the parameters of the model we want to estimate, 

i.e.                                                        
 
. 

Setting        at the beginning of the iteration, the following steps are repeated for   

       : 
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Kalman Filter 

Step 1: Prediction 

      
     

              
    : prior estimation of state vector 

      
     

           
   

            : prior estimation of state vector covariance 

Step 2: Prediction Error 

      
     

            
     

   : prediction error 

      
     

         
     

  
       : conditional variance of prediction error 

Step 3: Updating 

    
     

       
     

       
     

  
        

     
 
  

      
     

   : posterior estimation of state vector 

    
     

          
     

  
        

     
 
  

         
     

   : posterior estimation of state vector covariance 

 

Hamilton Filter 

Step 4 

                                                                            

where                   is the transition probability    .  

Step 5: Conditional and marginal density of    
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Step 6: Update the probability term 

                       
                                                  

            
            

                                      

 

   

 

 

Approximation 

Step 7: Collapse terms to make filter operable 

    
 

 
                       

 
       

     

              
 

    
 

 
                       

 
        

     
      

 
     

     
      

 
     

     
 

 
 

              
 

Log Likelihood Function 

                    

 

   

 

6.4. Numerical Example 

In order to examine how this method works we estimated the optimal parameters by maximizing 

the likelihood function and then estimated the option values with maturity in 54 days. The data 

used for the parameters estimation are the daily US Oil prices and the US 10-year Treasury 

Bond yield for the time period 26/10 /2010 to 24/10/2014, when the option prices were 

observed. The best fit parameters of the model are:  
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  Regime 1 Regime 2 

mean (μ) 
Stock 0.1131% 0.0424% 

Bond 0.0545% 0.0648% 

volatility (σ) 
Stock  0.6744% 1.6390% 

Bond 0.2630% 0.2216% 

correlation (ρ) -0.40045 -0.26764 

 

And the transition probabilities:  

p11 93.60% p12 6.40% 

p22 43.41% p21 56.59% 

 

Now we have to calculate the   for the bond and the stock in both regimes so that equation 

     is true by assuming three time steps of length 18 days. In Regime 1 we have that for  

           and for             the condition is satisfied. In particular: 

   0.68280 

   0.30739 

   0.72707 

   0.26313 

In Regime 2 we have that for             and for             the condition is satisfied. In 

particular: 

   0.35893 

   0.35051 

   0.60743 

   0.102025 

And the conditional branch probabilities are: 

                 

Regime 1 0.41988 0.26293 0.00020 0.30719 0.00981 

Regime 2 0.26634 0.09259 0.00944 0.34108 0.29055 

According to the above values, the predicted option prices for options with expiration in 54 days 

are presented in table 6. 
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Table 6 

Strike Price Predicted  

16 4.9 1.625144372 

17 2.85 1.269327353 

18 2.35 0.940833993 

19 1.65 0.626509398 

20 0.95 0.420399871 

21 0.4 0.245524212 

22 0.2 0.158808617 

23 0.2 0.079890983 

24 0.1 0.045583587 

25 0.15 0.023566284 

 

As it can be seen the results here are significantly less accurate than those estimated above. 

This is because the parameters of the model now are calibrated based on the historical 

underlying data rather than the option data.  

7. Conclusion  

In this chapter we showed how to evaluate options considering the shifts in the distribution of 

the returns of the underlying stock and the risk-free interest rate and in the correlation between 

them. The numerical examples proved that the consideration of these switches in our 

calculations improves the accuracy of the results. More precisely, we proved that the option 

prices are indeed sensitive to the regime switches in the correlation between the returns of the 

underlying stock and riskless bond. The numerical example also saw that the present model 

may provide with more accurate results that the classic Black-Scholes model especially when 

the options are out-of-the-money.  
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Part II 

Closed-form Option pricing formulas for Mean-Reverting Commodity 
Prices with Regime-Switching 

Abstract: 

This part develops a class of closed-form models for options on 

commodities evaluation under the assumptions of mean-reversion in the 

commodity prices and factors’ values and regime-switching in the 

volatilities and correlations. At first we develop novel closed-form 

solutions of the 1-, 2- and 3-factors models and later in the paper these 

three models are transformed into regime switching models. The six 

models (three with and three without regime-switching) are then tested 

and compared on real market data. Our findings suggest that the by 

increasing the stochastic factors and assuming regime-switching in the 

models their flexibility and thus their accuracy increases.    

 

1. Introduction and Previous Bibliography  

In order to evaluate claims on commodities we have to consider the stochastic behavior of 

commodity prices. Because of the nature of commodity market, the commodity prices tend to 

exhibit mean reversion. As Schwartz (1997) explains, we would expect that if the commodity 

prices are relatively high, more producers would enter the market increasing the supply and 

putting a downward pressure on the price. On the other hand, if the commodity prices are at 

some point relatively low, the higher cost producers would exit the market decreasing the supply 

and causing an upward lift on the prices. Thus, while Geometric Brownian motion is an 

appropriate model to formulate stock prices, in the case of commodity prices we need a mean-

reverting stochastic process. Evidence on the mean-reverting nature of commodity prices has 

been provided in a number of papers; see Gibson and Schwartz (1990), Cortazar and Schwartz 

(1994), Bessembinder et al. (1995), Baker et al. (1998). 
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An important aspect when evaluating claims on commodities is the convenience yield. The 

convenience yield on the commodity can be defined as the profit that occurs by the ownership 

of the physical commodity (see Brennan and Schwartz (1985)). This profit may arise by the 

volatility of the market price or by the maintenance of a production process due to the ownership 

of the physical commodity. The convenience yield can be thought as the premium of holding the 

underlying commodity (physical good) rather than holding a contract or derivative contract on 

the commodity. This is because the users of consumption assets are able to obtain benefits by 

physically holding the asset as inventory from temporary shortages and the ability to keep a 

production process running; clearly these benefits cannot be obtained by holding a contract. 

Gibson and Schwartz (1990) develop a two-factor model for pricing contingent claims on oil. In 

their model the two factors are the spot oil price and the instantaneous convenience yield. They 

assume that the spot price and the convenience yield follow two joint diffusion processes. More 

precisely, they formulate the spot price by a Geometric Brownian motion and the convenience 

yield by an Ornstein-Uhlenbeck process and assume that the two stochastic processes have 

correlated increments. Using It  ’s Lemma and under the standard perfect market assumptions 

they derive the partial deferential equation that the claim should satisfy and apply their model to 

determine the present value of a barrel of oil delivered in the future. By adopting the Gibson and 

Schwartz (1990) assumptions of the economy, Bjerksund (1991) provides an analytical solution 

for pricing European call options. The author considers the two-factor model described by 

Gibson and Schwartz (1990) and derives a Black-Scholes option pricing formula.  

Schwartz (1997) extends the previous models by introducing an third stochastic factor, the 

instantaneous interest rate. In particular he develops and compares a class of mean-reverse 

models to describe the stochastic behaviour of commodity prices and to price future contracts 

on commodities. Schwartz (1997) compares three models; one-, two-, and three-factor models. 

The first model is a one-factor model in which the spot commodity price is assumed to follow a 
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mean-reverting process. The second model is similar to the Gibson and Schwartz (1990) model 

and has as additional stochastic factor the convenience yield of the commodity which is 

assumed to follow a mean-reverting process. Finally, the third model is a three-factor model in 

which the stochastic factors are the spot commodity price, the convenience yield, and the 

instantaneous interest rate.  

Based on the previous works, Miltersen and Schwartz (1998) develop a closed-form Black-

Scholes/Merton pricing formula for options written on commodity future contracts. Their model is 

developed in the presence of stochastic interest rate and convenience yield.   

Swishchuk (2008) produces a closed-form option pricing formula for mean-reverting assets in 

the energy market. The author considers the one factor model of Schwartz (1997) and by 

employing the change of time approach (see Ikeda and Watanabe (1981) and  Swishchuk 

(2007)) he derives an explicit expression for European option prices both in real and in risk-

neutral world. 

1.1. Regime-Switching in Commodity prices 

The last decade, many researchers have employed regime-switching models to describe the 

stochastic behaviour of commodity prices and to investigate whether such models could perform 

better than classic single-regime models.  Chen and Insley (2010) provide evidence that a 

regime-switching model can more closely matches the future prices of lumber prices than a 

single-regime model. In their paper they use prices of derivatives on lumber to calibrate their 

model and their analysis shows that there are significant differences in the optimal tree harvest 

thresholds between single and regime switching models.  

Alizadeh et al. (2008) employ Markov regime-switching to determine the time-varying minimum 

variance hedge ration in energy future market. The results indicate that the hedge ratios 

provided by the regime-switching model outperform the hedge ratios by alternative single-

regime methods. Thus, their study provides evidence that by using Markov regime-switching 
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models investors may be able to increase the performance of their hedges measured in terms of 

variance reduction and increase in utility.  

Almounsour (2012) develops an one-factor regime-switching model in order to evaluate future 

contracts on crude oil market and they compare their model’s performance with the Gibson and 

Schwartz (1990) two-factor model (G&S model). Their findings suggest that even if G&S model 

outperforms the regime-switching model for short-term maturities, the regime-switching model 

outperforms the G&S model for long-term maturities. This may suggest that the assumption of a 

unique equilibrium level, which implies that the future structure should revert to one slope at all 

times, is not correct. 

In this part we develop a class of closed-form option pricing models under regime switching for 

pricing options on commodities. In the first chapters of this part we develop three novel closed-

form option pricing models for options written on mean-reverting commodities without 

considering regime-switching, while later we turn these models into regime-switching models. 

More precisely, in chapters 2 to 4 we produce three option pricing models; the first model is an 

one-factor model in which the only stochastic factor is the underlying commodity spot price, the 

second model is a two-factor model in which the stochastic factors (or state variables) are the 

spot commodity price and the spot convenience yield, and the third model is a three-factor 

model which has as an additional stochastic factor the instantaneous interest rate. Thus, in the 

first two models we assume that the interest rate is constant at all time (from the time of the 

option evaluation till the time of the option expiration) while in the third model we drop this 

assumption by introducing a third stochastic factor (or state variable) in the model, the 

instantaneous interest rate. Later in section 5 we transform our option pricing models into 

discrete-time regime-switching models. Finally, in section 6 we compare and test the six option 

pricing models developed in the previous sections by evaluating options on different 

commodities and comparing the calculated values with the real market option values.  
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In contrast with most of the bibliography till now which develops models for options on 

commodity future contracts; here we produce models on options on commodities. However, 

assuming the spot commodity price is a reasonable fit for the closest future price, the models 

developed here can be also used to evaluate options on commodity future contracts. 

1.2. Assumptions  

Before moving to the mathematical part we first have to state the assumptions under which the 

models are developed. The approach to evaluate the options is based on the following 

assumptions:  

1. The trading takes place continuously. 

2. The commodity is tradable at the spot price continuously. 

3. There is no transaction cost, fees, or taxes.  

4. There are no arbitrage opportunities in the market    

5. It is possible to borrow and lend any amount of cash (even fractional) at the risk-free 

interest rate.  

6. It is possible to buy and sell any amount of the commodity (even fractional).  

7. Short selling is permitted.  
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2. One-Factor Model 

2.1. The model 

Following Schwartz (1997) we assume that the commodity spot prices follow a mean-reverting 

stochastic process given as: 

                               

Defining         and applying Ito’s lemma, this implies that the log price follows an Ornstein–

Uhlenbeck process:  

                         

    
  

  
         

2.2. Risk Adjustment 

Let   be the physical measure and   be the equivalent martingale measure. Under standard 

assumptions, the dynamics of Ornstein–Uhlenbeck process under the equivalent martingale 

measure can be written as:  

                      
        

where   is the market price of risk. Equivalently,     can be written as: 

                   
        

where      
 

 
 and   

  is a Brownian motion under the equivalent martingale measure. The 

term 
 

 
 is the normalized risk-premium subtracted from the long-run mean. 

In equation     the conditional expectation of   at time   under the equivalent martingale 

measure is normal with mean and variance [16]:  
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Since       , the spot price of the commodity at time   is log-normally distributed under the 

martingale measure with the above parameters.    

2.3. Closed-form solution for 1-factor model 

The SDE in equation     is known to have the solution:  

                                  
 

 

 

       

which has the same distributions as:  

                        
       

  
   

          

For convenience, we will set     
     

       

  
    

Thus the call option value at time     is given as:  

                     

                                       
       

                   
                         

 
  

  

              

where      is the standard normal distribution probability density: 

     
  

  

 

   
         

It is clear that the function under the integral is non-negative if and only if the folllowing 

inequality holds:  
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Thus,  

  
                          

     
               

So      becomes:  

                                              

  

  

        

                                      

  

  

                  

  

  

 

                             
        

  

 

   
  

  

  

          

                             
 
 
   

   
  

 
          

 

   
  

  

  

           

    
  

 
 
  

   
  

  

        

           

                        

                            

where we define           ,            , and    
     

       

  
 .  
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In the above equation we have substituted                             
 

 
   

  
 with     This is 

because                         
 

 
   

          and under the martingale measure             

   

 Theorem 1:  

Under the equivalent martingale measure  , if we assume that the log price of the underlying 

asset follows a Ornstein–Uhlenbeck process:  

                   
     

the price of an European call option on the asset is given as: 
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3. Two-Factor Model 

3.1. The model 

The two-factor model is based on the ones developed by Gibson and Schwartz (1990) and 

Schwartz (1997). In this model the first factor is the spot commodity price and the second is the 

convenience yield,  . These factors are assumed to follow two correlated stochastic processes 

given by:  

                                

                              

where: 

                       

Thus, in the two-factor model the spot commodity price follows a standard process allowing for 

stochastic convenience yield, which is assumed to follow an Ornstein-Uhlenbeck stochastic 

process. Moreover, we can note here that if we set the convenience yield, instead of being 

stochastic, to be a function of the spot price:         , the two-factor model is identical with 

the one-factor model.  

3.2. Risk Adjustment  

As we did in the one-factor model, we want to find a probability   equivalent to the physical 

measure  . We can note here that by      we can regard the commodity as an asset that pays 

a stochastic dividend yield   . Thus, the risk adjusted drift in the commodity spot price process 

will be     . And because the convenience yield cannot be hedged, we have to attribute a 

market price of risk to it2. Thus, under the equivalent martingale measure, equations      and 

     become:  

                        
         

                                                
2
 See Bjerksund (1991) and Schwartz (1997) 
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and: 

     
      

              

where   is the market price of convenience yield risk.  

By setting      
 

 
 we can rewrite      as:  

                      
          

3.3. Closed-form solution for 2-factor model 

Bjerksund (1991) has derived a close form solution for the two-factor model. With some 

modifications3, we follow Bjerksund (1991) methodology to derive the option price.   

From the SDE in equation      we have that:  

                         
       

  
     

      

So we have that:  

      
                                  

 

 

     
         

And from      we have that: 

            
 

 
  

           

 

 

           
 

 

 

         

By following Bjerksund (1991), we define the cumulative convenience yield rate from time   to 

time  :  

                                                
3
 Bjerksund (1991) based on Gibson and Schwartz (1990) assumes that                     while in 

this paper based on Schwartz (1997) we assume that                         . 



59 

 

         

 

 

          

By integrating equation      we have that:  

    

 

 

            

 

 

    

 

 

     
     

                

 

 

         
 

 

 

          

Note that:  

    

 

 

                

And from      we have that:  

      

 

 

              

By substituting      and      into      we have that:  

                                
 

 

 

        

Substituting      into      and solving for    results:  

              
 

 
                    

  

 
         

 

 

     
  

  

 
      

 

 

 

        

If we consider now a self-financing portfolio with initial value       where the convenience 

yield is continuously re-invested, its value at time   will be:  
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And by assuming no arbitrage opportunities in the market, at time   the value of such a self-

financing portfolio will be:  

                  

Now, substituting      into      we have that:  

               
 

 
  

           

 

 

           
 

 

 

          

And from      this is:  

            
 

 
  

                   
 

 

 

 

          
 

 
  

                
 

 

 

            

Under the equivalent martingale measure   we know that:  

                                          
 

 
  

                
 

 

 

             

From      we have that the discounted future price of the commodity can be expressed as:  
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And from      this is:  

                   
 

 
  

                        
 

 

 

  

Substituting      into the above equation we get:  

                   
 

 
  

           
 

 
                    

  

 
         

 

 

     
 

 
  

 
      

 

 

 

         
 

 

 

                   

We can see that under the equivalent martingale measure4:  
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4
 See Bjerksund (1991) 
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Equations      to      imply that the variance of    is:  

                     

 
  

 

   
           

  
  

  
 

  
        

        
  

 

              

  
 

  
                   

 

 
           

 
  

 

   
           

  
   

  
 

  
   

   
 

 
              

 

  
      

  
 

                       

Thus, the variable              with    and    given by      and      respectively. Therefore, the 

right-hand side of      is log-normally distributed and so:  

                   
  

           
 

 
            

It is known that if   is a standard normal deviate, then        will have a normal distribution 

with mean   and standard deviation  . So the option price will be given as:  
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It is clear that the function under the integral is non-negative if and only if the following inequality 

holds:  

   
                   

Thus,  

  
                  

  
                   

Therefore,      becomes:  
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Theorem 2:  

Under the equivalent martingale measure, if we consider a two-factor model, in which the 

factors are the commodity spot price and the convenience yield which are given by:  

                        
  

                      
  

and: 

     
      

      

the price of a European Call option on the commodity is:  

      
   

 
 
   

                     

where:  
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4. Three-Factor Model 

4.1. The model 

The three factor model is an extension of the two-factor model above. In the three-factor model 

the stochastic factors (state variables) are the spot commodity price, the instantaneous 

convenience yield and the instantaneous interest rate. The first two factors, the spot price and 

convenience yield, follow the stochastic processes described in the two-factor model while the 

additional factor, the instantaneous interest rate, is formulated according to the Vasicek model 

(Vasicek 1977).  

The joint stochastic processes of the factors can be presented as: 

                                

                              

                             

and:  

                  ,                   ,                          

4.2. Risk Adjustments  

Under the equivalent martingale measure, the joint stochastic processes of the factors can be 

expressed as: 

                         
         

                      
          

                      
         

 and:  

     
      

         ,      
      

         ,      
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Where   and    are respectively the speed of mean reversion and the risk-adjusted long-term 

mean of the instantaneous interest rate.  

So we have that:  

           
 

 
  

           

 

 

      

 

 

           
 

 

 

         

      
                                  

 

 

    
         

      
                                 

 

 

    
          

4.3. Closed-form solution for 3-factor model 

From the two-factor model we know that:  

      

 

 

               
 

 
                    

  

 
         

 

 

     
  

  

 
      

 

 

 

 

Similarly, in the case of the spot interest rate, we have that:  

      

 

 

         
 

 
                    

  

 
         

 

 

     
  

  

 
      

 

 

 

       

So we have that:  

      

 

 

                      

where:  
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The option value is then given as:  

                

 

 

          

       
  

                    
 
         

We can see that     
  

                     is positive for 

              
 

  
          

where 

 
  

       
      

  
 
    

       
       

   

Where    here denotes a 2-dimensional Gaussian distribution function.  

Here,     is the    from two-factor model. So we have to calculate the values     (which is the 

variance of       ) and      (which is the covariance of   and       ).  

We have that:  
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So equations      to      imply that the variance of        is:  

                
 
             

 
 

  
 

   
                   

  
   

  
 

                     

The covariance between    and        is calculated as: 
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So the option price is:  

        
  

                
 

  
           

                                     
 

  
                   

where      is 1 if     is true and 0 otherwise.  

 

Following Kim (2001), we apply:  

Lemma (Kunitomo and Takahashi (1992)): Let          , where    is a 2-dimensional 

Gaussian distribution function. For arbitrary 2-dimentional vector   and scalars   and c the 

following is true:  

              
 

         

                
 

 
       

              

               
  

where    is a 2-dimensional Gaussian density function and   is a standard Gaussian 

distribution function. 

If we apply the above lemma on the first part of      for      and          we have that:  

     
  

                
 

  
           

    
    

 
 
     

 

 
 
 
                 

 
  

         

                

 
 
 
 

        



70 

 

And if we apply the lemma on the 2nd part of      for      and           we have that:  

                                    
 

  
           

   
 
 
 
            

 

 
 
 
                 

 
  

         

                

 
 
 
 

        

Thus, the option price is:  

      
    

 
 
     

        
 
 
 
            

               

where  

   
   

  
                       

  
           

and                     

Theorem 3: 

Under the equivalent martingale measure, if we consider a three-factor model, in which the 

factors are the commodity spot price, the convenience yield, and the interest rate which are 

given by:  

                         
   

                      
   

                      
   

 and:  
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the price of a European Call option on the commodity is:  
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5. Option Evaluation under Regime-Switching 

To evaluate the options under the regime switching assumption we work based on Duan et 

al. (2002). Thus, the option value results as a weighted average of the BS formula values 

corresponding to different regimes with weights determined by the probabilities of the 

regimes.  

Note here that by assuming a random switching in the regimes we introduce an additional 

risk in the market. Following Hull and White (1987) and Bollen (1998), we assume that the 

market does not price the additional regime-risk (or stochastic volatility risk) and so the risk-

neutral valuation is proper to be used. 

We consider a 2-state model, where    is a Markov process representing the state in the 

business cycle.  Let:  

    
                                          
                                       

  

The two-state first-order Markov-switching variable    evolves according to the following 

transition probabilities:  

                    
       

         
 

                    
       

         
 

So the transition probabilities matrix is:  

    
      

      
  

where          ,          ,          , and          . 
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Now let   
  be the number of visits to state   in   trials (      ), given that at time     

the prevailing state is state   (i.e.           ). Also, assume that     
  is the probability 

under the equivalent martingale measure   that in   periods starting from state   the number 

of visits to state   and   are     and     respectively. Moreover, we denote by            

the density function under   of the total log return after   periods starting from state   and by 

          
   we denote the normal density function with mean   and variance   

 . Thus, we 

have that5:  

                
          

  

 

   

                 

where,  

  
                                                                            

    
         

                                         

The Option price can now be written as the weighted average of the BS formula values 

corresponding to different regimes:  

  
            

     
 

 

   

       

So we need to derive expressions for     
 . We start by developing equations for     

 . For 

          we have:  

    
      

    
        

                     

                                                
5
 See Appendix 1 
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To compute the remaining probabilities, we first consider the probabilities of the first 

passage of state 0. Let       be the probability that the 1st visit to state   occurs after   

periods, given that the initial state is  :  

          

            
                        

Therefore, for          , we have that: 

    
                

 

     

   

                        

Similar expressions we can be computed for     
 . 

5.1. One-factor model 

Under the regime-switching assumption, the log underlying commodity price follows a discrete-

time stochastic differential equation with regime switching6 in the volatility:  

        
                

  
      

  
           

where        is the indicator variable of the regime that we are in at each time   and it is 

independent of          .  

When volatility   remains unchanged between different states, it is difficult to observe   . If we 

assume that the volatility in different states is distinct, then without loss of generality we can 

assume that    is observable. Thus, the filtration    generated by      contains the filtration    

generated by     . 

                                                
6
 The proof for the discretization of the OU process can be found in Appendix 2. 
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So the option price is given as:  

  
            

     
 

 

   

 

where  

    
                         

     
                         

  

     
 

                

   
      

      
       

5.2. Two-factor model 

Under the regime-switching assumption, the underlying commodity price and the convenient 

yield follow the discrete-time stochastic differential equations7:  

                         
                

                         
              

where        is the indicator variable of the regime that we are in at each time   and it is 

independent of  
    

    
      

    

   
 

 . To generate      and      with correlation    
 we take two 

independent standard normal variables    and    and we set         and         
    

      
   . 

Hence, the option price is given as:  

                                                
7
 The discretisation here has been done by employing the Euler method. For the proof see Appendix 3. 
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and:  

     
          

 
 
   

 

       
 
 

   
 

   
 

              

                     

   
      

      
       

5.3. Three-Factor model  

Under the regime-switching assumption, the underlying commodity price, the convenient 

yield, and the interest rate follow the discrete-time stochastic differential equations:  

                                 

                              

                              

where        is the indicator variable of the regime that we are in at each time   and it is 

independent of  

    

    
    

       

       
      

       
       

      
      

 
       . To generate     ,      and      with 

pre-specified correlation between them, we take a vector of uncorrelated Gaussian variables,  . 
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Then, by using the Cholesky decomposition, we find the square root of  , i.e. a matrix   such as 

     . Finally, we create the target vector as:  

    

    
    

      . 

The option price is given as:  
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6. Numerical Example 

To test the models developed we evaluate options on three different types of commodities; 

one agricultural, one precious metal and one industrial metal.  Namely, we evaluate options 

on corn, gold, and copper brass. The reason we have chosen these types of commodities is 

to test how the models perform on a range of different kind of commodities. The results 

above indicate that by increasing the stochastic factors of the models and assuming regime-

switching in the volatilities and correlations the model accuracy increases. The results also 

illustrate that the models developed above can provide with accurate results on options 

written on a wide range of commodities.  

The options considered are options on Teucrium Corn ETF (CORN US), traded in NYSE 

Arca, on Randgold Resources Ltd (GOLD US equity) traded in NASDAQ, and Global Brass 

& Copper Holdings Inc. (BRASS US equity) traded in NYSE Arca. The data have been 

collected from Bloomberg on the 24th of October 2014. The options evaluated are options 

with different expiration date and strike prices while the interest rate for each maturity used 

in 1- and 2- factor models were provided by Bloomberg for the evaluation of the options 

depending on their specific expiration date. For the 3-factor models the stochastic 

differential equations which drive the interest rates have been calculated for each maturity. 

For each commodity we consider options with different maturity dates and for each maturity 

we evaluate one option in-the-money, one approximately at-the-money and one out-of-the 

money. At the end of each table there is the sum of absolute differences between the 

market price and the models’ predicted prices.  

The best fit parameters of the models can be seen in Appendix 4.  
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6.1. Options on Corn  

Table 6.1. 

So=£24.9 

Strike Price 
1-factor 

Reg.-Swit. 
1-factor 
Non-R.S 

2-factor 
Reg.-
Swit. 

2-factor 
Non-R.S 

3-factor 
Reg.-Swit. 

3-factor 
Non-R.S 

T r 

24 1.300 1.1796 1.0613 1.2532 1.2192 1.2653 1.2509 

26 0.15 25 0.650 0.5859 0.4552 0.6771 0.6478 0.6818 0.6799 

26 0.320 0.2635 0.1450 0.3192 0.2945 0.3200 0.3200 

24 1.450 1.4500 1.3903 1.4581 1.4659 1.4500 1.4499 

54 0.19 25 0.850 0.8980 0.8391 0.9069 0.9305 0.8728 0.8927 

26 0.550 0.5323 0.4629 0.5224 0.5500 0.4808 0.5043 

20 4.950 4.9611 4.9329 4.9476 4.8600 4.9500 4.9148 

82 0.22 25 1.020 1.0994 1.0911 1.0936 1.1410 1.0200 1.0200 

30 0.100 0.1114 0.0702 0.0737 0.0923 0.0631 0.0488 

24 1.800 1.8234 1.8516 1.8121 1.8512 1.8098 1.8000 

116 0.26 25 1.350 1.2990 1.3316 1.2861 1.3500 1.2831 1.2981 

26 0.880 0.9021 0.9260 0.8800 0.9557 0.8800 0.9065 

24 2.280 2.2114 2.3014 2.1850 2.2307 2.2800 2.2800 

200 0.35 25 1.800 1.7044 1.8000 1.6756 1.7534 1.7313 1.7405 

26 1.250 1.2928 1.3844 1.2595 1.3575 1.2826 1.2978 

sum of abs. 
difference 0.71222352 1.156012 0.5745461 0.753827 0.3735554 0.439678 
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6.2. Options on Gold  

Table 6.2. 

So=£64.69 

Strike Price 
1-factor 

Reg.-
Swit. 

1-factor 
Non-R.S 

2-factor 
Reg.-
Swit. 

2-factor 
Non-R.S 

3-factor 
Reg.-Swit. 

3-factor 
Non-R.S 

T r 

62.5 3.800 3.5490 3.2899 3.7764 3.7131 3.7994 3.7950 

26 0.15 65 2.450 2.1761 1.8943 2.4387 2.3664 2.4500 2.4500 

67.5 1.450 1.2335 0.9731 1.4746 1.4051 1.4777 1.4802 

62.5 4.800 4.6179 4.4646 4.7047 4.7012 4.7915 4.7020 

54 0.19 65 3.400 3.3214 3.1618 3.4357 3.4260 3.4000 3.4000 

67.5 2.250 2.3131 2.1554 2.4346 2.4212 2.4465 2.3781 

62.5 5.400 5.3176 5.2426 5.3971 5.4230 5.1905 5.2169 

82 0.22 65 3.900 4.0540 3.9771 4.1701 4.1899 3.9544 3.9493 

67.5 2.950 3.0277 2.9500 3.1629 3.1773 2.9500 2.9216 

62.5 6.700 6.5131 6.5450 6.5505 6.5685 6.7000 6.7000 

144 0.29 65 5.400 5.2922 5.3259 5.3885 5.4000 5.2477 5.2477 

67.5 4.000 4.2540 4.2868 4.3928 4.3989 4.0227 4.0227 

62.5 7.900 7.9000 8.0263 7.7934 7.6755 7.9000 7.9000 

235 0.39 65 6.700 6.7179 6.8482 6.7000 6.5772 6.6929 6.6929 

67.5 5.600 5.6801 5.8109 5.7352 5.6100 5.6327 5.6327 

sum of abs. 
difference 2.025813 3.446769 1.656649 1.939336 0.712097 0.736817 
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6.3. Options on Copper Brass 

Table 6.3. 

So=£13.9 

Strike Price 
1-factor 

Reg.-Swit. 
1-factor 
Non-R.S 

2-factor 
Reg.-
Swit. 

2-factor 
Non-R.S 

3-factor 
Reg.-Swit. 

3-factor 
Non-R.S 

T r 

12.5 2.000 1.8784 1.5698 1.9305 1.8418 1.9403 1.9523 

26 0.15 15 0.650 0.6500 0.2771 0.7302 0.6496 0.7357 0.7687 

17.5 0.250 0.2298 0.0176 0.2472 0.1779 0.2500 0.2500 

12.5 2.100 2.1071 1.9083 2.0023 2.1026 2.1000 2.1000 

54 0.19 15 0.400 0.9039 0.6888 0.8190 0.9890 0.9143 0.9704 

17.5 0.600 0.4010 0.1896 0.3021 0.4204 0.3623 0.4014 

12.5 2.350 2.2624 2.2789 2.2419 2.2953 2.3500 2.1971 

100 0.22 15 1.050 1.0791 1.1133 1.0777 1.2733 1.0484 1.0512 

17.5 0.350 0.5309 0.4897 0.4793 0.6771 0.4044 0.4522 

12.5 2.750 2.4659 2.7088 2.7493 2.3905 2.7500 2.4785 

172 0.32 15 1.200 1.3085 1.5943 1.6022 1.4772 1.6051 1.5098 

17.5 0.900 0.7102 0.9000 0.9000 0.9000 0.9000 0.8998 

sum of abs. 
difference 1.731876 2.636123 1.635193 2.243782 1.358483 1.773185 

   

 

The above tables indicate that the Regime-switching models work significantly better than the 

single-regime ones. While the single regime models asign one value at the volatilities and 

correlation parameters so that the model values will best fit the market values, the regime-

switching model can asign two values in the volatilities and correlations parameters, depending 

on the regime the economy is in. This allows the regime-switching models to be more flexible 

and so to better fit the data. We can also observe that as the number of stochatsic parameters 

increases in the models, whether we assume regime-switching or not, the accuracy of the 

models increases. We can also colclude here that the number of stochastic factors considered 

in most of the cases influencies more the accuracy of the model than the consideration of 

regime-switching. Moreover, the results indicate that as the number of stochastic factors 

increases the influence of regime-switching in the accuracy of the results decreases. Indeed we 
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can observe that the reduction on the sum of absolut differences occured by adding regime-

switching in the modelling is greatest in the 1-factor model, less in the 2-factor model and least 

in the 3-factor model. In other words, it is more vital to consider regime-switching in the 1-factor 

model rather than in the 3-factor model. 

We can also see that even if the models fit in general well the data, the models’ predictability 

seems to be better in the cases of options on Gold and Corn while both regime-switching and 

single-regime models seem to perform the least in the case of options on Copper. However, 

even if the models seem to perform relatively worse in the case of Copper compare to the cases 

of Gold and Corn, we can still conclude that the models can be used and provide accurate 

prices for options written on a wide range of commodities. In fact, based on the results we can 

argue that the models work significantly well considering that they perform accurately pricing 

options on various types of commodities. Moreover, in contrast with traditional models like 

Black-Scholes option evaluation model, we can notice hare that the model does not seem to 

perform significantly different when the options are ITM or OTM.  
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Appendix 1 

Let   
  be the number of visits to state   in   trials (      ), given that at time     the 

prevailing state is state   (i.e.           ). Also, assume that     
  is the probability under 

the equivalent martingale measure   that in   periods starting from state   the number of 

visits to state   and   are     and     respectively. The probability density at time period   

of the log return will be:  

               
           

   

where,  

          
   

 

  
    

 
 

 
 
      

 

  
 

 

                                                                  

  
                                                                            

    
         

                                        

Thus, the density function under   of the total log return after   periods starting from state   is: 

                
           

  

 

   

           

which is the same with the density function of the total log return in Dual et al. 2002.  
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Appendix 2 

If   is an Ornstein-Uhlenbeck process  

                   
          

where        are positive parameters, its solution in        is: 

                
                         

   

 

          

Since              is a deterministic function, the stochastic integral appearing in the solution 

is a normal random variable with zero mean and variance:  

             
 
  

   

 

               
   

 

 
             

  
         

Therefore, 

                

              
  

        

    

            

where                  
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Appendix 3 

The system of PDF’s we have to discretise is given by: 

                        
         

                      
         

and: 

     
      

               

Discritisation of    (using Euler method) 

The SDE of    in       in integral form is: 

                    
    

 

           

    

 

         

The Euler discretization approximates the integrals using the left-point rule. Hence: 

           
    

 

                    

          

    

 

                                        

where                    

The right hand side involves with         instead of           , since at time   we do not 

know      . So the discretised form of       is: 
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Discritisation of    (using Euler method) 

The SDE of    in       in integral form is: 

                    
    

 

         

    

 

         

As before, the Euler discretization approximates the integrals using the left-point rule. Thus: 

           
    

 

                    

        

    

 

                                     

where                    

So the discretised form of       is: 

                                       

To generate      and      with correlation    
 we take two independent standard normal variables 

   and    and we set         and         
          

   . 

 

 

  



89 

 

Appendix 4 

The tables below contain the best fit parameters of the model which have been fitted to the 

observed option values.  

The table        contains the parameters of the stochastic differential equation of the interest 

rate which has been estimated for each maturity. The parameters k, m* and r remain the same 

for both regime-switching and single-regime models and only the volatility changes from the 

single-regime to the regime-switching model. 

Table  A.4.1. 

    

Regime-Switching Non-R.S. 

Maturity  k m*  r            

26 Days  7.98034 0.062805 0.390168 1.49E-08 0.061768 3.747225 

54 Days 3.85498 0.104736 0.599158 0.063815 0.174805 0.187073 

82 Days  6.005459 0.048513 0.509789 0.749549 2.516045 0.581979 

100 Days  4.863281 0.330078 0.585316 1.570313 1.585938 0.5336 

116 Days  7.762987 0.005371 0.385645 2.869141 0.826172 0.814862 

144 Days  6.304932 0.218384 0.153259 1.95752 0.928223 0.613251 

172 Days 9.850769 0.102753 0.220548 6.046722 4.677254 0.247192 

200 Days 5.495605 0.081299 0.021826 1.742142 1.581055 0.582001 

235 Days  8.692017 0.071472 0.105011 3.034424 0.145264 0.582001 

 

The tables below contain the best fit parameters of the models. Note here that even if for 

convenience we have used the same notations   and    in the 1-, 2-, and 3-factors models; the 

  and    in the 1-factor model are not the same with those in the 2-, and 3-factors models.  
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Table A.4.2./1-factor Model on Options on Corn  

  11.99979 
      3.173157 
   

 

  

  

 

                
Reg.Swit. 4.399719 0.85873 0.593567 0.965027 

Non.-R.S. 2.453932613 
   

Table A.4.3./2- and 3-factor Models on Options on Corn 

 
  31.030735 

      

 

   0.0131989 
      

 

  5.00E-16 
      

 
          

  

 

                                    

Reg.Swit. 0.818726 0.1170654 6.149292 3.785034 0.997984 -0.38745 0.356323 0.992798 

Non.-R.S. 0.282791138 2.744613647 0.413421631 
   

 Regime-Switching Model 
    Maturity 

(In Days) 

        
 

Non-Regime-Switching Model  

                        

 

Maturity          

26 0.95638 -0.87396 -0.75348 0.19257 
 

26 0.570399 -0.09949 

54 0.195004 0.614136 -0.938354 0.035034 
 

54 0.018677 5.21E-02 

82 -0.411457 0.831234 -0.472561 -0.011097 
 

82 -0.30862 0.080627 

116 -0.860352 -0.52832 -0.647461 0.049805 
 

116 -0.54718 0.080627 

200 0.091309 0.7182617 -0.120605 -0.003418 
 

200 -0.28212 0.080627 

 

Table A.4.4./1-factor Model on Options on Gold  

  14.7160 
      4.1749 
   

 

  

  

 

                

Reg.Swit. 5.0915 2.7499 0.4733 0.9689 

Non.-R.S. 3.156219482 
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Table A.4.5./2- and 3-factor Models on Options on Gold 

 

  2.063093 
      

 

   0.053386 
      

 

  0.001415 
      

 

          
  

 

                                  

Reg.Swit. 0.574066 0.376801 4.705982 0.500000 1.000000 0.351471 0.388214 0.998138 

Non.-R.S. 0.369644165 0.076675415 0.920240834 
   

 Regime-Switching Model 
     

Maturity 
(In Days) 

        
 

Non-Regime-Switching Model 

                        
 

Maturity 
(In Days)         

26 0.47081 -0.03055 0.76340 -0.08597 
 

26 -0.89598 -0.76822 

54 0.28513 -0.77502 0.130493 -0.5719 
 

54 0.690491 0.89679 

82 0.374749 0.231812 0.305298 0.016968 
 

82 0.215942 -0.48499 

116 0.311768 0.940186 -0.4 0.741943 
 

144 0.995789 -0.67 

200 0.942742 0.99231 -0.41609 0.421021 
 

235 0.691101 -0.97737 

 

Table A.4.6./1-factor Model on Options on Copper Brass  

  13.0727 
      2.6788 
   

 
  

  

 

                

Reg.Swit. 7.2427 0.000521 0.814575 0.992798 

Non.-R.S. 3.822180708 
   

  



92 

 

Table A.4.5./2- and 3-factor Models on Options on Gold 

 

  6.712534 
      

 

   0.003859 
      

 
  1.82E-12 

      

 

          
  

 

                                  

Reg.Swit. 3.016663 0.280457 2.932787 3.856812 0.232239 0.356262 0.411926 0.996887 

Non.-R.S. 0.822773695 2.254467991 0.918650628 
   

 Regime-Switching Model 
    

Maturity 
(In Days) 

        
 

Non-Regime-Switching Model 

ρ131 ρ132 ρ231 ρ232 

 

Maturity 
(In Days)         

26 -0.88392 -0.79996 0.880951 -0.21524 
 

26 -0.31528 -0.07132 

54 -0.97516 -0.78668 0.051436 -0.60712 
 

54 0.519714 -0.89923 

100 0.925781 0.582031 -0.27734 -0.07422 
 

100 0.434387 0.457703 

172 -0.534 0.99469 -0.69452 -0.0943 
 

172 0.848877 0.144775 
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