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Abstract 

Trypanosoma brucei is a parasitic protozoan that can cause human African 

trypanosomiasis (HAT) and Nagana in cattle. Human African trypanosomiasis is deadly 

when left untreated, and thus there is an urgent need to develop new drugs against this 

disease. As trypanosomes are early diverged eukaryotes, it is anticipated that studying their 

metabolism can identify novel drug targets. The main drug currently in use against the late 

encephalitic stage, Eflornithine, was shown to inhibit an essential pathway in 

trypanosomes (Yarlett and Bacchi, 1989). 

 

In this Thesis three approaches were used to apply metabolomic and proteomic techniques 

for protein function identification and to investigate metabolic pathways. The genome of T. 

brucei has been published (Berriman et al., 2005) and data is available via databases, such 

as TriTrypDB, a database dedicated to the trypanosomatids (Aslett et al., 2009). An 

estimated 40% of the identified genes in this organism are annotated with an unknown or 

putative function. In 2006, Saito et al.
 
developed a systematic method to ascertain enzyme 

function based on an in vitro assay, in combination with metabolite profiling. This 

approach was successfully applied in several other studies. Here, I investigate the use of 

this method for its application in a high throughput approach for unknown enzyme 

identification in trypanosomes. Seven putative identified enzymes were randomly selected 

from TriTrypDB, cloned and expressed in E. coli and a function could be attributed to at 

least one of the enzymes. Furthermore, the amino acid metabolism in trypanosomes was 

investigated; using stable isotope labelling combined with metabolomics. The flux of 

labelled compounds could be traced through the organism showing the active metabolic 

pathways of L-methionine, L-proline and L-arginine in T. brucei. 

 

Two T. b. brucei strains used in this study, GVR35 and 427, cause different forms of 

infections in their mammalian host. GVR35 causes a chronic infection and invades the 

central nervous system (CNS) with varying parasitemia in mice, whereas infection with 

strain 427 presents an acute form with high parasitaemia, causing high mortality, without 

invading the CNS. What causes this difference in the progression of infection? Secreted or 

excreted proteins from the parasites, referred to as the secretome, have been described as 

being important factor for virulence and avoiding the host immune response (Geiger et al., 

2010) and Garzon et al. (2006) showed that excreted/secreted proteins can inhibit the 

maturation of dentritic cells and stop them from inducing a lymphocytic allogenic 
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response. Significant differences in proteins secreted from these two strains are discussed; 

although the results are preliminary. 
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Chapter 1 

1. Introduction 

1.1. Human African trypanosomiasis 

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic 

disease endemic to sub-Saharan Africa.  The disease is fatal when untreated and it affects 

mainly rural populations.  

 

HAT belongs to the neglected tropical diseases (NTDs), a group of 17 diseases affecting 

mainly the world’s poorest population in 149 countries. Included in those are infections 

caused by protozoan parasites, leishmania, Chagas disease and HAT, as well as others 

caused by bacteria (like leprosy), viruses (including dengue and rabies) and helminths (e.g. 

onchoceriasis and schistosomiasis). The World Health Organisation (WHO) estimates that 

about 1.4 billion people are affected by at least one of those diseases 

(http://www.who.int/neglected_diseases/diseases/en/). As those NTDs only affect 

populations in underdeveloped countries, little resources are spent to develop drugs or 

vaccines.  

 

In the case of HAT, the WHO estimated that about 70 million people are at risk of 

acquiring this disease in sub-Saharan Africa. While the risk for the population varies 

depending on the location, five million people live in high risk areas for HAT (Figure 1.1) 

(Franco et al., 2014). Several major HAT outbreaks have been reported since the late 19th 

century and, although HAT was thought to be under control in the mid-20th century, HAT 

re-emerged in the 1990s due to political instabilities in the affected regions (Barrett, 2006; 

Brun et al., 2010). Recent figures show the numbers of reported cases of HAT dropping 

below 10,000 since 2009 after being as high as over 30,000 in the late 1990s (Franco et al., 

2014). 

 

HAT is caused by an infection with subspecies of the protozoan parasite Trypanosoma 

brucei. The parasite is transmitted to the human host by the bite of the tsetse fly (Genus 

Glossina). As it is a vector borne disease, the occurrence of HAT is limited to the 

distribution area of the tsetse fly.  

http://www.who.int/neglected_diseases/diseases/en/
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Figure 1.1: Population at risk from infection of HAT.  HAT caused by T.b.gambiense is marked in red 

and infections caused by T.b.rhodesiense in blue. Distribution area of the tsetse fly is highlighted in yellow  

(Simarro et al., 2012).  

 

The occurrence of HAT in Africa can be divided in two areas: Central-west Africa, where 

Trypanosoma b. gambiense causes a chronic form of HAT and east Africa for 

Trypanosoma b. rhodesiense causes an acute form of HAT. Only in Uganda are both 

subspecies present. After the parasites get transmitted by the tsetse fly they proliferate at 

the site of infection, causing an inflammatory nodule. This trypanosomal chancre rarely 

occurs in infections caused by T. b .gambiense, but in 50 % of infections with T.b. 

rhodesiense (Barrett et al., 2003). 
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The disease manifests itself in two stages: 

Stage 1, also early haemolymphatic stage, starts when the parasites spread from the 

trypanosomal chancre to the lymph nodes and enter the bloodstream. Multiple organs 

might also be infected (Barrett et al., 2003; Kennedy, 2004). Early symptoms of HAT are 

non-specific, including episodes of fever, malaise and headaches. A typical symptom for 

HAT is lymphadenopathy, which develops in T. b. gambiense infections after several 

weeks. Slave traders in the 18th century used neck swellings as signs for this infection, as 

described by Thomas Masterman Winterbottom (Barrett et al., 2003). Stage 2, also called 

late encephalitic stage, starts when the parasites invade the central nervous system (CNS). 

In infections caused by T. b. rhodesiense this happens within a few weeks, while it could 

occur between several months and years when infected with T. b. gambiense. Symptoms 

during second stage of HAT include disturbances to sleeping patterns, which gives the 

disease its name of ‘sleeping sickness’.  Other symptoms can include mental and 

psychiatric disturbances (Rodgers, 2009). Untreated HAT will lead to coma and eventually 

death. Although treatment of early stage HAT is relatively effective (Rodgers, 2009), HAT 

becomes more symptomatic during the second stage. 

 

There are currently four licensed drugs for the treatment of HAT, which can be 

administered depending on sub-species and stage of the disease. The drugs for the 

treatment of stage 1 HAT are suramin and pentamidine. Suramin was first used against 

HAT in 1922 (Miézan et al., 1994) and can be used against both sub-species. Pentamidine, 

a drug from the early 1940s, is only effective against T. b. gambiense. Both drugs are easy 

to administer and are also relatively safe compared to their counterparts for stage 2 

treatment (Barrett et al., 2007). However, due to HAT becoming more symptomatic during 

the second stage of the disease safer drugs are urgently needed. 

 

Once the parasites invade the CNS the drugs available are melarsoprol and eflornithine. 

Melarsoprol was first synthesised in 1949 and acts against both T. b. gambiense and T. b. 

rhodesiense. However, it has severe side effects that can result in the death of about 5% of 

the patients (Blum and Burri, 2002). Eflornithine, a drug developed as a potential 

antineoplastic agent in the 1970s, is recommended by the WHO for the treatment of HAT 

caused by T. b. gambiense. Recently a combination therapy of eflornithine and nifurtimox 

(a drug used for the treatment of Chagas disease) has been developed and has been shown 

to cure 98% during clinical trials (Priotto et al., 2007). 
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Of all the drugs available for HAT treatment, only eflornithine has a known mode of action 

(Poulin et al., 1992; Vincent et al., 2012) 

 

1.2. Trypanosomes 

Trypanosomatida is a group of kinetoplastid protozoa that are exclusively parasitic and are 

mainly found in insects. However, a few do have a two host life cycle and can infect a 

wide range of hosts, from vertebrates to invertebrates and plants. Species of this order 

known to infect humans are members of the genus Leishmania, with approximately 12 

million people in South America, Middle East and India infected (Singh et al., 2012). 

Trypanosoma cruzi, causing Chagas disease in South America, affecting an estimated 10 

million people (Barfield et al., 2011) and Trypanosoma brucei, causative agent of sleeping 

sickness in Africa (Barrett et al., 2003). Trypanosomes are ubiquitous parasites that can 

cause disease not only in humans but also in animals. They occur mainly in Africa; 

however, species are also known to cause human disease in South America and other 

animal disease outside Africa (Gibson, 2007). 

 

The species Trypanosoma equiperdum, which causes dourine in equines, is thought to be 

closely related to T. evansi, (causative agent of surra in equines). Both T. equiperdum and 

T. evansi have a wider distribution than other trypanosome species, being reported in 

Africa, most of Asia, Russia, parts of the Middle East, South America and southeastern 

Europe ((Gibson, 2007); Animal Health Information Database). T. equiperdum is thought 

to be the only member of the trypanosome family to be exclusively sexually transmitted.   

Trypanosoma cruzi, as mentioned above, is only found in South America and causes 

Chagas disease in humans.  

 

1.2.1. Trypanosoma brucei 

There are three subspecies of T. brucei, two of which are infectious to humans and are 

associated with the disease HAT.  

T. b. gambiense, responsible for 98% of all cases, causes a chronic form of HAT in Central 

and West sub-Saharan Africa.  

T. b. rhodesiense, accounts for 2% of HAT, causing an acute infection in East sub-Saharan 

Africa. 
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 T. b. brucei causes nagana in cattle and other wild and domestic animals; however it fails 

to infect humans due to its sensitivity to an innate immune complex found in human serum.  

There are two trypanolytic factors (TLF) found in human serum, TLF1 and TLF2, causing 

lysis of trypanosome parasites. TLF1 is a component of high density lipoprotein (Hajduk et 

al., 1994) and TFL2 is an apolipoprotein-A1/IgM complex (Tomlinson et al., 1995). The 

lytic component in both is Apolipoprotein L-1 (APOL1)(Vanhamme et al., 2003). Lysis of 

the parasites occurs after uptake of the TLFs into the parasite when APOL1 is taken up into 

endosomal and lysosomal membranes, causing osmotic swelling and lysis by forming 

cation selective pores in membranes (TLF1) (Molina-Portela et al., 2005). The human 

infective subspecies T. b. gambiense and T. b. rhodesiense show resistance against lysis by 

human TLFs. In T. b. gambiense reduced TLF binding or uptake was described due to 

reduced expression of HpHbR (Kieft et al., 2010). In T. b. rhodesiense resistance of 

APOL1 is achieved by expression of a serum resistance-associated protein (SRA).  

 

1.2.2. Life cycle 

Trypanosoma brucei has a two host life cycle; an insect host (tsetse fly) and a mammalian 

host (see Figure 1.2). The two subspecies infectious to humans, T. b. gambiense and T. b. 

rhodesiense, can also infect wild animals. Although they do not fall ill, animals can serve 

as a reservoir for these parasites. This is particularly true for T. b. rhodesiense (Enyaru et 

al., 2006); while T. b. gambiense is more reliant on human to human transmission via the 

tsetse fly (Brun et al., 2010).  

 

Trypanosomes get transmitted during the blood meal of the tsetse fly. Transmition to the 

mammalian host is in form of metacyclic trymastigotes present in the saliva of the tsetse 

fly. In the mammalian (or human) host, metacyclic trypomastigotes differentiate into 

bloodstream trymastigotes (long, slender form) and proliferate at the site of infection for a 

few days, forming a trypanosomal chancre. From there, the fast dividing bloodstream form 

trypomastigotes spread to the lymph nodes and the bloodstream where they can also infect 

multiple organs. The long slender bloodstream form rapidly multiplies and the parasitemia 

in the blood increases. The parasites then differentiate into non-dividing short stumpy 

trypomastigotes which can be taken up by the tsetse fly during a blood meal. In the midgut 

of the tsetse fly the parasites differentiate into procyclic trypomastigotes and proliferate. 

Epimastigotes leave the midgut and differentiate into metacyclic trypomastigotes, 
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migrating to the salivary gland where they can be transferred to the mammalian host when 

the tsetse fly takes another blood meal. 

 

 

Figure 1.2: Representation of the two host life cycle of Trypanosoma brucei in the tsetse fly and human 

host (Blum et al., 2008).  Permission to reproduce this image has been granted by Elsevier. 

 

1.2.3. Trypanosoma brucei strains (used in research) 

From the three subspecies of Trypanosoma brucei only two cause the human disease 

sleeping sickness. However, the human infectious strains T. b. gambiense and T. b. 

rhodesiense share >99% genome sequence identity with T. b. brucei  (Jackson et al., 2010) 

making the non-infectious form a safe model organisms to use in research. 

 

Trypanosoma brucei brucei strains commonly used in the laboratory environment:   

 ‘TREU 927’ originated in Kiboko, Kenya, is a pleomorphic strain that was used for 

the whole genome sequencing program (Berriman et al., 2005) Although the strain 

427 is more commonly used in laboratories the ability of TREU 927 to complete 

the whole two host life cycle made it a better candidate for the sequencing project 

(Peacock et al., 2008). 
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 ‘427’ or ‘Lister 427’ is a monomorphic strain, which lost its ability to differentiate 

into short stumpy forms reportedly due to frequent passage in the lab (Peacock et 

al., 2008). There are mixed information in the literature regarding the origin of the 

‘commonly used 427’ strain. ‘Lister 427’, a T.b.brucei strain, was isolated from 

cattle in former Tanganyika (now Tanzania) in 1956. ‘s427’, is thought to be 

T.b.rhodesiense, isolated from sheep in 1960 (South East Uganda).  

(http://tryps.rockefeller.edu/trypsru2_pedigrees.html) 

 GVR35, originally isolated from wildebeest in the Serengeti (1966), causes a 

chronical infection in mice and when infected mice are left untreated the parasite 

manifest itself in the CNS within 21 days. This makes it a good model organism for 

studying trypanocidal drugs for the late encephalitic stage of this disease (Frevert et 

al., 2012; Jennings et al., 2002) 

 

1.3. Biology of trypanosomes 

Trypanosomes are considered to be very early diverged eukaryotes and make very good 

model organisms for studying biological processes. But what makes trypanosomes good 

model organisms? First, reliable culture methods exist for both life cycle stages. Host-

pathogen interaction can also be studied in suitable animal models - tsetse fly for the insect 

stage and rodents, mice or rat, for the bloodstream form. There is a wide range of 

molecular techniques available for trypanosomes; gene knockout by homologous 

recombination can be performed, as well as RNA interference for gene knockdown 

(Alsford and Horn, 2008). Trypanosomes also have some very distinctive features and 

organelles, making them an interesting model to study and compare biological processes in 

eukaryotes (Smith and Bütikofer, 2010). A few biological processes initially described in 

trypanosomes are antigenetic variation for evading the immune system (Cross, 1975), 

glycosylphosphatidylinositol (GPI) anchoring for VSGs (Ferguson and Williams, 1988), 

trans-splicing (Sutton and Boothroyd, 1986) and RNA editing (Benne et al., 1986). Their 

unique method of evading the human immune system through antigenetic variation has 

been extensively studied and uncovered several other aspects about this parasite, such as 

mechanisms of exocytosis. The genome, sequenced in 2005, is organised differently from 

other eukaryotes and they have a streamlined metabolism, consistent to their parasitic 

lifestyle. 
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1.3.1. Genome of trypanosomes 

The nuclear genome of T. brucei is composed of three classes of chromosomes, which are 

distinguished by size. It contains 11 pairs of diploid megabase chromsosomes, which have 

been sequenced and published (Berriman et al., 2005), a variable number of intermediate 

chromosomes (IC) and between 50-100 mini-chromosomes (MC) (Melville et al., 1998). 

The megabase chromosomes contain housekeeping genes as well as telomeric VSG 

expression sites (Melville et al., 2000). Approximately 9,000 genes were discovered, with 

around 900 pseudogenes. Around 1,700 genes are thought to be T. brucei specific genes 

(Berriman et al., 2005). In most T. brucei strains the copy number of ICs are 1-7 and the 

size varies between 200-700 kb, while the MCs are more numerous and between 30-150 kb 

(Wickstead et al., 2004). Both ICs and MCs play a major role in the recombination of 

bloodstream form VSGs and therefore the parasites ability to avoid the human immune 

system. While the ICs contain VSG expression sites, MCs contain non-transcribed basic 

copies of VSG genes (Melville et al., 1998). 

 

The results of whole genome sequencing project has been made available from several 

sources, the most commonly used is the trypanosomatidae specific database TriTrypDB, 

which grants easy access to genome annotations (Aslett et al., 2010). Recently ‘-omics’ 

datasets have been added to this database. 

 

1.3.2. Evading the immune system 

The bloodstream form T.brucei is a solely extracellular parasite, exposing them to the 

mammalian immune system. Therefore trypanosomes need to have a mechanism in place 

to avoid destruction. Variant Surface Glycoproteins (VSG) are expressed by the parasites, 

during their life cycle in the mammalian host, which form a dense surface coat covering 

the cell (Englund et al., 1982). Each trypanosome expresses only one VSG gene at any 

given time from a telomeric expression site (Horn and McCulloch, 2010). Those VSGs can 

be detected by the host’s immune system and antibodies are produced against those. 

However, trypanosomes use antigenic variation of their surface coat to change the 

composition of those VSGs, which allows some parasites to evade the immune system 

(Horn, 2004).  
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1.3.4. Organelles 

Trypanosomes are single celled flagellates, with an elongated cell shape which is defined 

by their microtubule cytoskeleton (Sherwin and Gull, 1989). Their organelles differ in 

some aspects to most eukaryotic cells (Figure 1.3). Morphological features of this parasite 

include two areas of DNA, one the nucleus and the other the kinetoplast, giving the group 

kinetoplastidae (which trypanosomes belong to) their name. The kinetoplast is a DNA 

containing region at the posterior end of a single elongated mitochondrium which is 

another striking morphological feature of trypanosomes (Kilgour, 1980). 

 

 

Figure 1.3: Schematic diagram of bloodstream form T. brucei illustrating major organelles. This picture 

originally appeared in ILRAD Reports. Vol7 (1), January 1989 and is available online 

http://www.ilri.org/InfoServ/Webpub/fulldocs/Ilrad90/Trypano.htm  

 

The kinetoplast accounts for 10-20% of the cell’s DNA and is arranged in mini and maxi 

circles (Stuart and Gelvin, 1982). The maxi circles (~30-50 copies/cell) contain genes 

encoding for some mitochondrial proteins, whereas the mini circles (~10,000 – 50,000 

copies/cell) encode for short guide RNAs which are used as templates for the post-

transcriptional editing of maxi circle transcripts (Simpson and Shaw, 1989).  The single 

mitochondrion stretches from the posterior to the anterior end of the cell. The form and 

function of the mitochondrion differs between the different life stages of trypanosomes. In 

bloodstream form the mitochondrion lacks cristae, folds of the inner membrane, reflecting 

the absence of mitochondrial respiration (Matthews, 2005).  
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At the posterior end of the trypanosome lies the flagellar pocket, the only site for endo – 

and exocytosis in trypanosomes (Overath and Engstler, 2004). Also, the flagellar pocket is 

the exit point for the flagellum, which is an essential organelle for the viability of 

trypanosomes (Kohl et al., 2003). The flagellum is not only the sole means of motility, but 

also plays an important factor in development, transmission and pathogenesis (Langousis 

and Hill, 2014). 

A unique feature to trypanosomatidae is the glycosome, an organelle where part of the 

glycolysis takes place.  

 

1.3.5. Metabolism 

Due to their complex life cycle (switch between mammalian and insect host), 

trypanosomes must have the ability to adapt quickly to their changing environment. This is 

not only important for the developmental cell biology (Matthews, 2005) but also applies to 

the changes in metabolism between procyclic and bloodstream form cells. Also, 

trypanosomes show a reduced metabolism coinciding with their parasitic life style (Nerima 

et al., 2010). They lack pathways for purine biosynthesis and until recently it was thought 

that they rely solely on the host for components such as fatty acids and sterols as well 

(Fairlamb, 1989). However, it was shown that trypanosomes are capable of de novo 

synthesis of fatty acids (Smith and Bütikofer, 2010). 

 

Lipids make between 11-18% of the dry weight of T. brucei, with a distribution similar to 

the range of lipids found in other eukaryotes, namely phospholipids, neutral lipids, fatty 

acids, isoprenoids and sterols (Smith and Bütikofer, 2010). After discovering that the fatty 

acid molecules of the glycosylphosphatidylinositol (GPI) anchors of the VSGs are 

exclusively myristate (Ferguson and Cross, 1984), it was speculated that bloodstream form 

trypanosomes could indeed synthesize myristate as there would be a higher demand on 

myristate from the parasite than provided in the blood (Lee et al., 2007). Trypanosomes 

mainly synthesise fatty acids through an endoplasmic reticulum (ER) based elongase 

(ELOs) pathway instead of type I or type II fatty acid synthesis (Stephens et al., 2007). 

Type II fatty acid synthesis pathway does exist in the mitochondrion, but is not the main 

source of myristate (Lee et al., 2006). In bloodstream form trypanosomes myristate is the 

endpoint of fatty acid synthesis (Smith and Bütikofer, 2010), while procyclics produce 

stearate (Stephens et al., 2007). 
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Energy metabolism in trypanosomes has been well studied in both life cycle stages. It 

differs from its host’s, due to localisation of glycolytic enzymes in organelles called 

glycosomes (Opperdoes and Borst, 1977), reduced metabolic pathways and the regulation 

of glycolytic enzymes (Nwagwu and Opperdoes, 1982). Energy metabolism also differs 

between the two life stages of the parasite. Some of the features are described below.  

The most unusual aspect of the trypanosome energy metabolism is the 

compartmentalisation of the first nine glycolytic enzymes in the glycosomes. In 

bloodstream form 90% of the proteins found in the glycosomes are glycolytic enzymes 

(Aman et al., 1985). Although the glycosomes were named after presence of glycolytic 

enzymes, other metabolic pathways are also localised within those organelles. Pathways 

(other than glycolysis) described to be localised within the glycosomes include the pentose 

phosphate pathway (PPP), β-oxidation of fatty acids, purine salvage and biosynthetic 

pathways for pyrimidines, ether-lipids and squalenes, although activity varies between 

trypanosomatids (Michels et al., 2006). 

 

In bloodstream form trypanosomes, glycolysis is the only source of ATP production and 

pyruvate the endproduct of glycolysis (van Hellemond et al., 2005). In contrast, procyclic 

trypanosomes can use L-proline as energy source, which is more readily available in the 

midgut of the tsetse fly than glucose (Bursell, 1963) and, to a lesser extent, L-threonine 

(Bringaud et al., 2006); however, they do prefer D-glucose when available (Lamour et al., 

2005). But even when glucose is used in procyclics, the energy metabolism differs as is 

seen by the end products, which are succinate, acetate and alanine (Cazzulo, 1992). It has 

been shown in cultured trypanosomes that they are able to adapt very quickly to changes in 

nutrition offered and they can switch between L-proline metabolism and D-glucose 

metabolism within one hour (Coustou et al., 2008). 

 

The redox metabolism also differs from their mammalian host as trypanosomes rely on the 

thiol trypanothione, a metabolite unique to trypanosomes. Trypanothione is produced via 

the conjugation of two glutathione molecules with one spermidine (Fairlamb et al., 1985). 

The metabolites playing a role in the synthesis of trypanothione are putrescine, the 

precursor to spermidine, from L-ornithine and the formation of spermidine from 

decarboxylated S-adenosylmethionine. Enzymes involved in polyamine and trypanothione 

biosynthesis are essential for parasite growth in T. brucei (Willert and Phillips, 2012) and 

the identification of pathways involved have gained a lot of research interest due to their 

potential in drug discovery. The drug eflornithine for example, which is currently in use 
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against stage 2 HAT, is a suicide inhibitor of the enzyme ornithine decarboxylase, blocking 

the formation of putrescine from L-ornithine leading to the death of the parasites. 

Formation of decarboxylated S-adenosylmethionine from S-adenosylmethionine is 

regulated by the enzyme S-adenosylmethionine decarboxylase. The human S-

adenosylmethionine decarboxylase is stimulated by putrescine. However the trypanosome 

enzyme is allosterically activated by the formation with a catalytical dead paralogue, 

termed prozyme, and is not affected by putrecine (Willert et al., 2007). The appearance of 

inactive enzyme homologues (prozymes) has been observed in a variety of enzyme 

families during a genome search of metazoan species (Pils and Schultz, 2004). In 

trypanosomes so far three enzymes have been found where prozymes increase the function 

of enzymes, namely hexokinase (Chambers et al., 2008; Morris et al., 2006), 

deoxyhypusine syntethase (Nguyen et al., 2013) and the above mentioned S-

adenosylmethionine decarboxylase. 

 

1.4. Metabolomics 

Metabolomics is an emerging field of postgenomic biology that aims to identify and 

quantify small cellular metabolites (Mr < 1200) within a given biological sample.  

The ‘-omics’ technologies comprises genomics for identification of the genome, 

transcriptomics for studying gene expression, proteomics for the analysis of all proteins 

present in the cell and metabolomics. Transcriptomics, proteomics and metabolomics are 

considered more dynamic fields than genomics as they can vary in response to 

environmental conditions (van der Werf et al., 2005), with metabolomics being described 

as the closest representation to the phenotype. Originated as recently as the early 1990s, 

Metabolomics is considered the latest contribution to the ‘-omics’ technologies. The rising 

interest in metabolomics in recent years can be seen in the rise in the number of 

publications in the area. In 1999 three publications with the keyword 

metabonomic/metabolomic could be found, but this number reached 203 in 2004 (Dettmer 

et al., 2007). In a similar search using the medline trend website (Web resource at 

URL:http://dan.corlan.net/medline-trend.html) with the terms “Metabolomics” or 

“Metabonomics” a similar rise in publications could be found from the years 2000 to 2013 

(see Fig 1.4). 
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Figure 1.4: Medline trend created for publications using the term “Metabolomics” or ”Metabonomis”. 

Publication number was normalised against the total number of publications in that year. Trend was obtained 

from: Alexandru Dan Corlan. Medline trend: automated yearly statistics of PubMed results for any query, 

2004.  

 

However, the rising number of publications can also be explained as a ‘knock on effect’, as 

more technology and method development in the field of metabolomics are being made 

available, the more it becomes applicable to a wider range of research areas. Metabolomics 

is increasingly applied to investigate microbial, plant, environmental and mammalian 

systems (Brown et al., 2011). However, the wide range of chemical diversity and range of 

concentrations (dynamic range) of different metabolite classes makes it difficult to produce 

a single analytical platform. Metabolites represent a more diverse set of chemical diversity 

when compared to proteins (constituted by the 20 amino acids) and the nucleic acids and 

therefore provides wide variations in chemical and physical properties (Dunn and Ellis, 

2005). Consequently, it is necessary to use a variety of techniques for complete coverage 

of all cellular metabolites (Castle et al., 2006).  

 

1.4.1. Nuclear magnetic resonance spectroscopy (NMR spectroscopy)  

NMR was one of the first techniques to be used for a broad untargeted metabolite profiling 

since the 1970s (Beckonert et al., 2007). Many NMR-based applications for metabolomics 

have been published but NMR has been commonly utilized for biomarker discovery by 

investigating numerous diseases and toxic processes studying body fluids (Nicholson et al., 
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2002). The main benefits for using NMR include highly reproducible quantitation even 

across different instruments and simple sample preparation without the need for 

derivatization (Creek et al., 2012a). Limitation of NMR includes the relatively poor 

sensitivity compared to mass spectrometry (Creek et al., 2012a).  

 

1.4.2. Mass spectrometry (MS) 

MS is a well established analytical technique that measures the mass to charge ratio of 

charged particles and has been established as one of the most essential tools for 

metabolomic research (Baran et al., 2009). The principle of mass spectrometry consists of 

ionizing chemical compounds to create charged molecules (or fragments). These charged 

molecules can then be detected by analysing the mass to charge ratio. A MS instrument can 

be divided into three different parts; an ion source, a mass analyser, and a detector. As the 

“-omics” approaches require the analysis of complex mixtures, novel analytical methods / 

techniques had to be introduced. A variety of mass spectrometry based approaches are 

commonly used, such as mass spectrometry coupled to liquid chromatography (LC-MS), 

gas chromatography (GC-MS) and capillary electrophoresis (CE-MS) with different types 

of mass spectrometers (Barrett et al., 2010). 

 

1.4.2.1. Chromatography 

Direct injection of samples into the mass spectrometer (MS) has the advantage that no 

metabolites are lost during sample preparation. However, in complex samples and samples 

with high salt content ion suppression can occur, as well as adduct formation during the 

electrospray process (Dettmer et al., 2007). Combining chromatography with mass 

spectrometry can reduce ion suppression as complex samples are separated before entering 

the MS. Which chromatography system to use depends on the kind of molecules studied, 

the two most popular systems are Gas chromatography-MS (GC-MS) and Liquid 

chromatography-MS (LC-MS). 

 

Gas chromatography-MS is often described as the gold standard for metabolomics (Garcia 

and Barbas, 2011). Ion suppression of co-eluting compounds rarely occurs, compared to 

LC-MS (Koek et al., 2011). Other benefits of using GC-MS are the capacity for high 

quantitative accuracy and reproducibility of samples, as well as the use of ‘libraries’ to 

identify compounds by their mass spectra (Schauer et al., 2005). As samples have to travel 

through the column in gas form with temperatures around 350°C, compounds suitable for 
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the GC-MS platform are low molecular weight (<350Da), volatile and thermally stable 

metabolites (Dunn, 2008). However, compounds can be made volatile and thermally stable 

by chemical derivatisation, and here lies the drawback of GC-MS. Sample preparation can 

be complex and lead to multiple derivatisation products. Furthermore, sample stability is 

not guaranteed (Dunn and Ellis, 2005).  

 

Liquid chromatography-MS is the more prominent technology due to ability for greater 

coverage of the metabolome (Garcia et al., 2008) and is becoming increasingly popular for 

the use in metabolomics. Sample preparation is less complex than GC-MS as samples do 

not need to be derivatised. Samples go through the column in liquid phase and are 

separated according to their polarity. Reversed-phase LC-MS is well established in 

metabolomics. However, many polar or charged metabolites are not retained. Therefore, 

another form of LC, hydrophilic interaction liquid chromatography (HILIC) with the 

introduction of robust and reproducible stationary phases has recently gained popularity in 

metabolomics studies (Cubbon et al., 2010). More recently approaches to combine 

reversed phase colums with HILIC in a single run has been successfully performed and it 

was shown, with the example of beer samples, that a greater coverage of metabolites was 

achieved (Haggarty et al., 2015). 

 

1.4.2.2. Ionisation 

Soft ionisation techniques have been the milestone in applying mass spectrometry to 

biological studies, such as metabolomics and proteomics. Electron impact (EI) ionisation is 

mainly applied to GC-MS studies. The spectra obtained contain many fragments which can 

be used for compound identification as fragmentation patterns are very reproducible 

(Watson, 2010). Electrospray ionisation (ESI) is commonly coupled to LC-MS. Ions are 

formed by transferring the solvents through a capillary, which is held at high voltage. Ions 

enter the mass analyser after exiting the capillary and transferred from liquid into gas state. 

ESI can be performed in both positive and negative mode, which gives a wider coverage of 

the metabolome (Dettmer et al., 2007). 

 

1.4.2.3. Mass analysers 

The mass analyzer is used to sort the ions by their masses by applying electromagnetic 

fields. A detector measures the mass to charge ratio (m/z) of the ions and provides data for 

calculating the abundances of each ion present. 
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For the analysis of biomolecular samples, the Fourier transform ion cyclotron resonance 

mass spectrometry (FT-ICR-MS) and the Orbitrap are currently able to achieve high 

resolution and mass accuracy in the 1 ppm range (Breitling et al., 2006a). In FT-ICR-MS, 

trapping of ions is achieved by a strong magnetic field which confines the charged particles 

to a circular path. The Orbitrap, which was exclusively used in this study, is a powerful 

mass spectrometer that can examine a variety of types of chemical systems which makes it 

an appropriate analysing platform for studies such as proteomics and metabolomics. The 

Orbitrap was invented by Alexander Makarov as a new type of mass spectrometer and 

patented in 1999. It uses dynamic trapping of ions in an electrostatic field (Makarov, 

2000), more specific orbital trapping based on the Kingdon trap (Kingdon, 1923). The trap 

consists of an outer barrel like electrode and a central spindle like electrode along the axis. 

Ions are injected tangentially into the electric field between the electrodes and trapped. The 

electrostatic attraction to the inner electrode is balanced by centrifugal forces which makes 

the ions cycle around the central electrode in rings. Additionally, the ions also move back 

and forth along the z-axis of the central electrode. The main distinction of the Orbitrap is 

that the mass to charge ratio is derived from the frequency of the ion oscillations along the 

axis of the field which can then be determined using image current detection and fast FT 

algorithms (Makarov, 2000). The image current is detected on split outer electrodes and 

then amplified by a differential amplifier. Orbitraps have a high mass accuracy (1–2 ppm), 

a high resolving power (up to 200,000) and a high dynamic range (around 5000) (Hu et al., 

2005; Makarov et al., 2006). 

 

1.5. Applications for metabolomics 

The term metabolomics can be identified as the identification and quantification of all 

small molecules within a biological system (Dettmer et al., 2007). However, to date there 

is not a single analytical platform that can achieve this. The metabolome (which is 

identified as the complete set of all metabolites within an organism) represents a broad 

variety of compound classes and analytical platforms can be biased against one or more of 

them. Therefore, different approaches are in use to make the most of metabolomics 

technologies and depending on the research question asked. Below are the most common 

strategies used (Dettmer et al., 2007; Dunn, 2008; Dunn and Ellis, 2005). 
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Metabolite footprinting, also described as the exometabolome, is the analysis of the 

uptake of extracellular metabolites and the secretion of intracellular metabolites. The 

samples can be taken non-invasively. 

Metabolite fingerprinting, also defined as intracellular metabolome, provides a snapshot 

of the global metabolism. Aims to sort samples from different biological origin or status 

intro groups rather than get a good identification and quantification of metabolites. 

Metabolite profiling, aims for an untargeted analysis of the metabolome within a 

biological sample. To obtain a wide coverage of the metabolome multiple analytical 

platforms (or extraction methods) can be used. 

Metabonomics, aims to show quantitative changes to the metabolome in response to 

pathophysiological stimuli or genetic perturbations.  

Metabolome is the definition of the complete set of all metabolites present in an organism. 

Stable isotope labelling, combined with metabolomics has gained an enormous research 

interest over the last few years. With the use of 
13

C labelled compounds in metabolomics it 

is possible to track the carbon flux through a cell and get a much better inside of the 

metabolic pathways than with metabolomics alone. 

The distribution of labelled carbons gives an indication of what metabolic pathways are 

active, new metabolites (or pathways) can be discovered.  

 

The simplest way is to divide studies into two different approaches: targeted or untargeted. 

The targeted approach already requires knowledge about the metabolite(s) of interest and 

this approach is useful to gain knowledge of metabolite quantification or information about 

specific metabolic pathways. The untargeted approach is described as hypothesis 

generating (Creek et al., 2011). 

 

Although terminology of metabolomics techniques used varies between different research 

groups, metabolomics is increasingly applied to the study of microbial, plant, 

environmental and mammalian systems (Brown et al., 2011). Applications include 

biomarker discovery, studies of gene function and the effects of drug therapy and toxicity 

(Nicholson et al., 2002). 
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1.6. Metabolomics and enzyme function identification 

The full functional annotation of all genes (or gene products) within an organism displays a 

great challenge in the post-genomic era. Although the number of whole genome sequences 

available is rising, even in a well described organism like E. coli 40% of the genes have no 

confirmed function (Keseler et al., 2009). In other organisms the number is even higher. In 

the tritryps (T. brucei, T. cruzi and Leishmania major) this number reaches up to 70% 

combining the unknowns in all three species, although their genome sequences were 

published nearly 10 years ago (Choi and El-Sayed, 2012). With the data available from the 

whole genome sequencing projects, the potential function of a hypothetical protein can be 

determined by bioinformatics approaches, such as BLAST or Pfam domain searches. An 

alternative approach is the prediction of a protein’s function based on the structure. This 

method is well described by (Whisstock and Lesk, 2003)which gives an overview of 

automated structure-based function prediction. However, it has been shown in the past that 

these annotations can be incorrect. In a study, Barrett et al. found that the trypanosome 

enzyme Tb927.8.2020, which had been putatively annotated as an arginase, did not show 

classic arginase activity (Hai et al., 2015; Vincent et al., 2012).  

 

One of the tasks in functional genomics is to search for novel enzymes but also to provide 

functions for genes where bioinformatics can only give putative function. Metabolites can 

be used to assign or validate the function of enzyme activities as these are often the final 

downstream products or substrates of gene expression (Baran et al., 2009). Enzymatic 

reactions play an important role, not only in the regulation of all processes of life but also 

as biocatalysts in industrial processes or as targets in the discovery of new drugs (Liesener 

and Karst, 2005). 

  

Traditional approaches to establish enzyme activity include enzyme assays, but the main 

drawback to this technique is that the enzyme function has to be known (Liesener and 

Karst, 2005). Integrated ‘omics’ approaches can be used to facilitate the identification of 

unknown enzymes (Fridman and Pichersky, 2005), however, prior biochemical knowledge 

was still essential.  Mass spectrometry based analysis of small molecular metabolites has 

become a valuable method for the discovery and validation of functional assignments for 

enzymes (Baran et al., 2009).  
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1.6.1. Enzyme function identification by in vitro assay with recombinant protein 

A systematic method to discover novel enzymes based on an in vitro assay in combination 

with metabolite profiling was introduced by Saito et al. (2006). Proteins of interest were 

purified and used for an in vitro reaction with a complex metabolite mixture. Bacto yeast 

extract, Bacto malt extract and Nutrition Broth were tested as a suitable metabolite source 

for their ease of preparation and low cost while still containing a large variety of 

compounds. The advantages of using natural and complex metabolite mixtures also include 

the possibility for screening of unknown type of reactions and an environment closer to the 

physiological conditions than standard in vitro essays (Saito et al., 2006). After the reaction 

the mixture was purified and analysed by CE-MS. The metabolite profiles of the reaction 

mixture incubated in the presence and absence of the protein of interest were compared. 

The idea is that the compound whose level decreases following incubation with the protein 

can be considered a likely substrate for the enzyme, and a compound with increasing levels 

after incubation a likely product. The identification of those compounds can therefore 

directly report on the enzyme’s activity. This procedure should be effective for discovering 

novel activities of enzymes as well as identifying unknown enzymes in an unbiased 

manner. The results demonstrated that it was possible to monitor several known enzymatic 

reactions by observing the changes in substrates/products levels in a complex mixture of 

metabolites. This method was further applied to identify the unknown E. coli protein YihU 

as a novel hydroxybutyrate dehydrogenase, involved in an alternative succinic 

semialdehyde metabolism (Saito et al., 2009). In a similar approach, termed ‘activity based 

metabolomic profiling’, using LC-MS, the protein Rv1248 from Mycobacterium 

tuberculosis was identified as a 2-hydroxy-3-oxoadipate synthase (de Carvalho et al., 

2010). The same group later identified the gene product of Rv1692 from M. tuberculosis. 

Originally annotated as a nucleotide phosphatase, applying the activity based metabolomic 

profiling method, it was shown that the enzyme is in fact a D,L-glycerol 3-phosphate 

phosphatase (Larrouy-Maumus et al., 2013). That this approach is also applicable outside 

the research of microorganisms was shown by the identification of a methyltansferase in 

the plant Madagascar periwinkle (Catharanthus roseus). The identified S-

adenosylmethionine dependent N-methyltransferase plays a role in the biosynthesis of the 

anti cancer drug vindoline (Liscombe et al., 2010). 
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1.6.2. Metabolite profiling by disrupting enzyme activity 

Metabolite profiling on mutants, with a gene of interest either knocked out or knocked 

down by RNA interference (RNAi), can also determine the function of that gene when 

compared to wild-type (Saghatelian et al., 2004). The most ideal case shows one 

metabolite increasing (the substrate of that reaction) and one metabolite decreasing (the 

product of that reaction). However, unless the gene of interest is essential for that 

organism, visible changes to the dataset can be numerous or nonexistent. Organisms could 

have the ability to bypass the blocked reaction and changes in the dataset can be non- 

conclusive. In the case of RNA interference, a complete knock-down of the gene might not 

be achieved and therefore not show changes in substrate and product. Compared to the in 

vitro assay (1.6.1) results from genetic mutant assays can not only give information about 

the gene of interest and its function, but also if that gene is essential and if loss of function 

causes changes to the phenotype.  

 

1.6.3. Stable isotope labelling for pathway identification 

The use of stable isotope labelling combined with untargeted metabolomics has shown to 

improve the interpretation of data regarding pathway identification. Normally, untargeted 

metabolomics lacks the information that is needed to assign detected metabolites to 

pathways, as metabolites can participate in multiple pathways (Fan et al., 2012). The use of 

labelled compounds makes it possible to follow the fate of a single metabolite within the 

cell. For example, by adding uniformly labelled 
13

C glucose (U-
13

C glucose) to the culture 

medium, the carbon contribution from glucose into other metabolites can be traced and its 

flux can also be determined (Winder et al., 2011). The uses of stable isotope labelling for 

novel metabolite or pathway discovery has the advantage of being independent from 

genetic modifications or studies with recombinant protein, therefore making it a faster 

approach for pathway identification (Prosser et al., 2014). 

 

1.7. Trypanosome metabolomics 

Many applications for metabolomics analysis of trypanosomes have been developed in 

recent years. Early trypanosome metabolomics experiments were performed with NMR, 

for example the assessment of the end products of anaerobic glycolysis using U-
13

C 

labelled glucose (Mackenzie et al., 1983) and the tracing of polyphosphates in T. brucei, T. 



21 

 

cruzi and L. major (Moreno et al., 2000). The identification of the enzyme 

Acetyl:succinate CoA transferase and its role in carbohydrate metabolism in procyclics  

was performed using gene knock down and NMR (Rivière et al., 2004). 

 

Earlier studies on trypanosome metabolomics was performed using direct infusion and 

approximately 1,000 peaks were detected, with a high percentage of peaks associated to 

lipid compounds (Breitling et al., 2006b).The use of LC-MS with HILIC columns 

optimised the identification of polar compounds in trypanosome extracts (Kamleh et al., 

2008). Recently, LC-MS, using HILIC (or pHILIC) columns has emerged as the main 

analytical platform for trypanosome metabolomics used (in Glasgow) (Barrett et al., 2010). 

 

Development of a minimal media (CMM) for trypanosome growth has further advanced 

the metabolomics platform in Glasgow, as CMM reduces background noise on the LC-MS 

platform used while not affecting the ability of T. brucei’s growth (Creek et al., 2013). 

  

For the analysis of the metabolome it is crucial to quench the parasites metabolism as 

rapidly as possible before extracting metabolites. The first method to achieve this was to 

add boiling ethanol to trypanosomes (Kamleh et al., 2008). A drawback of this method was 

that trypanosomes were still in media at that point, making it necessary to distinguish 

between intra- and extracellular metabolites.  The development of new extraction methods 

has greatly improved the number of metabolites discovered and metabolite extraction for 

metabolomics is now achieved by rapidly chilling the cells in culture to 0°C by suspending 

them in a dry ice/ethanol bath. The medium can be removed by gently spinning the culture 

and washing steps before extracting the trypanosome metabolites from a cell pellet by 

adding a mix of chloroform:methanol:water (t’ Kindt et al., 2010; Robinson et al., 2007). 

 

Metabolomics studies lead to a better understanding of the metabolism of trypanosomes, 

the earlier understanding of the fatty acid synthesis metabolism could be revised and with 

metabolomic approaches it was shown that trypanosomes are indeed capable of fatty acid 

synthesis and that they use a unique mechanism to do so (Smith and Bütikofer, 2010; 

Stephens et al., 2007). Also, metabolomics approaches have been employed to investigate 

the energy metabolism in procyclic and bloodstream form trypanosomes (Coustou et al., 

2008; Ebikeme et al., 2010; Mazet et al., 2013; Rivière et al., 2004). Recently it was shown 

that intermediates from glucose enter many branches of the metabolism, by combining 

stable isotope labelling with metabolite profiling (Creek et al., 2015). 
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Another application for the uses of metabolomics in trypanosomes are mode of action 

(MOA) studies for drug discovery. The recent example of Eflornithine (an inhibitor of the 

enzyme ornithine decarboxylase), showed that by adding Eflornithine to cultured cells and 

comparing treated and non treated samples, L-ornithine increased significantly in drug 

treated cells, while levels of putrescine decreased significantly (Vincent et al., 2012).  

 

1.8. Secretome and Host Pathogen Interaction 

1.8.1. Secretory pathway in trypanosomes 

Despite trypanosomes being early divergent eukaryotes the classical secretory pathway in 

trypanosomes is similar to that of other eukaryotes and has been well studied for the endo- 

and exocytosis of VSGs. The organelles involved in the classical secretory pathway are 

typical eukaryotic organelles, including endoplasmic reticulum (ER), Golgi, endosomes 

and lysosome which are located nearby the posterior flagellar pocket (Silverman and 

Bangs, 2012). That trypanosomes use this secretion pathway was demonstrated for VSGs 

using immunogold labelling. VSGs could be traced in ER, golgi cisternae, trans-golgi 

network, transport vesicles, flagellar pocket and, ultimately, on the cell surface (Duszenko 

et al., 1988). The secretion of VSGs is linked to the modification of VSGs with the GPI-

anchor within the ER, as deletion of the GPI anchor leads to mis-sorting into lysosomes 

(Triggs and Bangs, 2003).  

 

Endocytosis is up regulated in bloodstream form trypanosomes (compared to procyclics) 

and important for recycling of VSGs and clearance of VSG recognising immunoglobulins 

(Engstler et al., 2007; Field and Carrington, 2004)(Field and Carrington, 2004). 

Endocytosis and exocytosis where thought to be restricted to the flagellar pocket, however, 

a recent study indicates that exocytosis might be possible through microvesicles (Geiger et 

al., 2010), a mechanism already described in T. cruzi (da Silveira et al., 1979). 

 

1.8.2. Secretome 

The term secretome describes a subset of the proteome, including all proteins actively 

secreted from the cell and the components of the cellular machinery used for protein 

secretion. The term (and this definition) was first used in a study that tried to predict all 

secreted proteins from Bacillus subtilis using computational methods (Tjalsma et al., 
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2000). Verifying these results with proteomic approaches showed that 50% of the secreted 

proteins were correctly identified (Antelmann et al., 2001). 

  

The secretome has been the focus on many studies of human pathogens to better 

understand the host-pathogen interaction (Ranganathan and Garg, 2009), as well as a 

research tool for biomarker discovery in cancer (Grønborg et al., 2006). The use of 

proteomic techniques for the identification of excreted/secreted proteins (ESPs) started in 

the1990s and became more popular from 2004 , with the first paper regarding the 

trypanosome excreted/secreted proteins (ESPs) or secretome published in 2008 

(Holzmuller et al., 2008). 

 

1.8.4. Host pathogen interaction 

Shedding of extracellular vesicles (EVs) was demonstrated for infective trypomastigotes of 

Trypanosoma cruzi. It was further shown that shedding occurred independent from 

proteins present in the culture medium, but in a time and temperature dependent process 

(Gonçalves et al., 1991). One major component of those EVs was Tc85, a trans-

sialidase/gp85 glycoprotein, which is involved in host cell adhesion and invasion (Alves 

and Colli, 2008). As T. cruzi, in contrast to T. brucei, has intracellular location in the 

mammalian host interaction with the host cell is necessary for infection.  

 

During second stage HAT T. brucei crosses the blood brain barrier (BBB) in a mechanism 

not yet fully understood. However, secreted proteases from the bloodstream form 

trypanosomes, in particular cysteine proteases Cathepsin B and Cathepsin L (‘Brucipain’), 

play a vital role in the pathogenesis of T. brucei. RNAi cell lines targeting those proteases 

have successfully stopped the lethal infection in mice (Abdulla et al., 2008). The proteases 

are important for the parasites to invade the mammalian tissue after infection (Huet et al., 

1992).  

 

Secreted/excreted proteins from the parasites have been described as being important 

factor for virulence and to avoid the host immune response (Geiger et al., 2010). Garzon et 

al. (2006) showed that excreted/secreted proteins can inhibit the maturation of dentritic 

cells and stop them from inducing a lymphocytic allogenic response.  
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1.8.5. Trypanosome secretome 

ESPs from pathogens can have a variety of functions, from protecting the cell from the 

host immune system, advancing the pathogenesis and to provide nutrients for cell survival.  

In the case of the protozoan parasite T. brucei the primary secretory cargo are 

glycosylphosphatidyl inositol anchored variable surface proteins (VSGs) which are 

essential for the parasite to evade the immune system (Bangs et al., 1996; Engstler et al., 

2004). Several metabolic enzymes have been described as being secreted from bloodstream 

form trypanosomes, such as enzymes belonging to the nucleic acid metabolism, in 

particular IAG nucleoside hydrolase, which has been detected in bloodstream form 

trypanosomes (Parkin, 1996). 

 

Bioinformatic approaches to identify ESPs exist, but are not always reliable. Proteins must 

have a transit peptide sequence to be secreted via the classical secretory pathway, therefore 

it is essential to know the secretory pathways used in a particular organism. A study on 

different strains of trypanosomes showed less than 20% of experimentally identified 

secreted proteins were predicted using bioinformatic approaches (Geiger et al., 2010). 

Endocytosis and exocytosis in trypanosomes occur through the flagellar pocket, but 

evidence has been found that trypanosomes possibly also use exocytosis of microvesicles 

to release proteins from cells (Geiger et al., 2010). 

 

Proteomic approaches have been shown to give good results for the analysis of secreted 

proteins in leishmania and trypanosomes. Gel based proteomic analysis, like difference gel 

electrophoreses (DiGE), is a two-dimensional gel electrophoresis (2-DE) approach that 

allows for good separation of complex protein mixtures (O’Farrell, 1975). Proteins are first 

separated according to their charge (isoelectric focusing), followed by their size on a 

polyacrylamide gel. Proteins of interest can be selected from the gel, digested with trypsin 

and analysed using peptide mass fingerprinting. This approach, combined with fluorescent 

dyes is a useful tool for comparing two different sets of proteomes. A gel free approach 

also exists, where complex protein mixtures are digested into peptides and analysed with 

LC-MS/MS.  
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1.9. Aims 

Human African trypanosomiasis is a neglected tropical disease that affects mainly the 

poorest regions in Africa. The disease is fatal when left untreated and drugs currently in 

use are old and some have undesirable side effects. 

 

The causative agent of HAT is the parasitic protozoan T. brucei. The genome of this 

parasite has been sequenced and published. However, an estimated 40 % of the genes still 

have no assigned function. 

 

This project focuses on metabolomic and proteomic approaches to determine the function 

of unknown metabolic enzymes and pathways in trypanosomes with three approaches 

being investigated: 

 

 High throughput approach for enzyme function identification in an untargeted 

approach. Putatively identified metabolic enzymes from T. brucei strain 427, as 

identified from the trypanosome database TritrypDB, were used in this study.  

After the recent success stories of an unbiased, untargeted enzyme assay (Saito et 

al., 2009; DeCavalho et al., 2010) this approach was tested for its uses of a high 

throughput approach applicable to trypanosome genes. 

 

 The use of stable isotope labelling combined with metabolomic techniques for the 

study of amino acid metabolism in trypanosomes, specifically the pathways 

involving L-methionine, L-proline and L-arginine in bloodstream form 

trypanosomes. 

 

 Identification of secreted/excreted proteins from two different T. brucei strains, 

namely 427 and GVR 35, using proteomic approaches. 
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Chapter 2 

Methods 

2.1. Cell culture 

2.1.1. Cell culture of T. b. brucei 

T. b. brucei bloodstream form (strain 427) were cultured in HMI-9 medium (Gibco) 

(Hirumi and Hirumi, 1989) supplemented with 10% FBS Gold (PAA) or tetracycline-free 

FBS (Gibco), unless stated otherwise. Trypanosomes strain GVR35 were originally 

cultured in modified HMI-9 (from P. Voorheis; Appendix A,Table A1) supplemented with 

20% FBS Gold or tetracycline-free FBS and 20% Serum plus (SAFC bioscience). For 

metabolomic and proteomic analyses, parasites were cultured in Creek’s ‘Minimal’ Media, 

CMM ((Creek et al., 2013); Appendix A, Table A2) with 10% FBS Gold. The 2T1 cell line 

(Alsford and Horn, 2008) was cultured in HMI-9 medium with 10% tetracycline-free FBS 

and maintained in 2 µg ml 
-1 

puromycin and 2.5 µg ml 
-1

 phleomycin selection until 

transfection, when antibiotic selection was changed to 5 µg ml 
-1

 hygromycin and 2.5 µg 

ml 
-1

 phleomycin after 24 h to select for successfully transfected parasites.  

 

For continuous growth, cell densities were kept between 5 x 10
4
 and 2 x 10

6
 cells ml

-1
. The 

cell density was checked every 48 hours using an improved Neubauer haemocytometer. 

For growth curves, cells were counted every 24 hours and cell counts performed in 

triplicate. 

 

Stabilates of bloodstream form trypanosomes were routinely prepared by mixing cells in 

mid-log phase 1:1 (v/v) with a freezing mix containing 80% culture medium and 20% 

glycerol. Samples were stored overnight at -80°C, before being transferred to liquid 

nitrogen for long term storage.  
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2.2. Molecular Methods  

2.2.1. DNA isolation 

Genomic DNA (gDNA) was extracted using the DNeasy Blood & Tissue Kit (Qiagen). 

Bloodstream form trypanosomes (strain 427) were grown to mid-log phase. 5 x 10
6
 cells 

were harvested by centrifugation for 5 min at 1,800 rpm. The resulting cell pellet was 

resuspended in 200 µl of 1 x PBS, and DNA was extracted following manufacturer’s 

instruction.
 

 

2.2.2. RNA isolation 

RNA was extracted from bloodstream form trypanosomes using the RNeasy Mini Kit 

(Qiagen). Mid-log phase parasites (5 x 10
7
 cells) were harvested by centrifugation for 10 

min at 1,300g. The pellet was resuspended in 1 ml Trizol (Invitrogen) and samples stored 

at -80°C until RNA isolation. 

 

For RNA isolation, to 1 ml of cells in Trizol 200 µl of chloroform was added and mixed 

thoroughly. After centrifuging at 12,000g for 15 min (4°C), the mixture separated into a 

lower red phenol – chloroform phase, an interphase, and an upper colourless aqueous 

phase. The upper colourless aqueous phase was removed and the RNeasy Mini Kit was 

used from this step, according to manufacturer’s instruction. After RNA extraction, 

samples were treated with DNase (Finnzymes). RNA concentration was measured using a 

Nanodrop 1000 spectrophotometer (Thermo Scientific), NanoDrop 1000 software (version 

3.7.0) and the method RNA-40. 

 

2.2.3. Polymerase chain reaction 

DNA amplification by polymerase chain reaction (PCR) was used to produce desired 

regions of DNA for molecular cloning, using appropriately designed primers, or to screen 

for successful transformations using vector specific primers. All oligonucleotides used 

where obtained from Eurofins MWG Operon (Ebersberg, Germany), and are listed in 

Appendix B, Table B1. 
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The standard PCR reaction used for colony screening was performed in 10 µl volume 

reactions using GoTaq DNA polymerase (Promega) and vector specific primers (T7 

promoter (forward) and HIS tag (reverse)). 

 

Cycling conditions: 

1 – Polymerase activation 94°C for 5 min 

2 – Denaturation  94°C for 30 s 

3 – Annealing   42°C for 30 s 

4 – Extension   68°C for 1 min 

5 – Repeat step 2-4  30 cycles 

6 – Final extension  68°C for 5 min 

PCR reactions for cloning were performed in 50 µl volume using either KOD HotStart 

proofreading polymerase (Novagen/Merck) or Phusion HiFi proofreading polymerase 

(NEB). Conditions were applied as by manufacturers' instruction.  

 

Cycling conditions (KOD HotStart proofreading polymerase): 

1 – Polymerase activation 95°C for 2 min 

2 – Denaturation  95°C for 20 s 

3 – Annealing   54.2°C for 10 s 

4 – Extension   68°C for 30 s (<1,500bp), 50 s (>1,500bp) 

5 – Repeat step 2-4  30 cycles 

6 – Final extension  70°C for 20 s 

 

Cycling conditions (Phusion) 

1 – Polymerase activation 98°C for 3 min 

2 – Denaturation  98°C for 30 s 

3 – Annealing   75°C for 30 s 

4 – Extension   72°C for 30 s 

5 – Repeat step 2-4  35 cycles 

6 – Final extension  72°C for 10 min 

 

2.2.4. Reverse transcription 

To determine the knockdown efficiency of tetracycline induced RNAi lines, reverse 

transcription coupled to real-time PCR (2.2.5) was applied. For reverse transcription 
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reaction, 1 µg of RNA sample was mixed with 250 ng random primers (Invitrogen), 1 µl of 

dNTPs (10 mM) and dH2O to a final volume of 14 µl. To remove secondary structures, the 

sample mix was heated to 65°C for 5 min and immediately placed on ice. To synthesise 

cDNA 6 µl RT-mix (containing 5x First-Strand Buffer, 0.1 M DTT and SuperScript III 

reverse transcriptase (Invitrogen)) was added to the sample and incubated for 25 min at 

25°C, and then for a further 60 min at 50°C. The transcriptase was inactivated for 15 min 

at 70°C. Finally, complementary RNA was removed by adding E. coli RNaseH (2U) for 20 

min at 37°C. Samples were prepared in duplicate, with one sample set containing dH2O 

instead of SuperScript III RT as negative control.  

 

2.2.5. Real-time PCR 

Complementary DNA (cDNA) obtained from reverse transcription reaction (2.2.4) of 

tetracycline induced and uninduced RNAi lines were used as template DNA. SYBR® 

Green PCR Mastermix (Applied Bioscience) and 96-well plates were used for relative 

quantitative PCR. Sample setup included three replicates of each sample (+/- reverse 

transcription reaction) for the transcript of interest. The constitutively expressed GPI-8 

transcript was chosen for comparison (Lillico et al., 2003) and water controls were used to 

check for contamination. Amplification of cDNA (see 2.2.4) was performed using Applied 

Biosystems Prism 7500 Real Time PCR system, following the ‘ddCT’ program for 

absolute quantification and marker set to SYBR. Raw data was analysed using Applied 

Biosystems 7500 SDS Real-Time PCR systems software.   

Specific real-time PCR primers for target genes were designed using primer express 

software from Applied Biosystems. Primers should amplify a region of the gene in the 

range of 50 to 150 bp.  Primer efficiency was tested and an ideal primer should have an 

efficiency of > 90% (Table 2.1) 

 

Gene ID Forward primer Reverse primer Primer 

efficiency 

Tb927.7.5680 GTGTGCGTGATCGCGAAA 

 

TGTGCCAATGCGTGATACG 

 

98.62% 

Tb427tmp.02.3040 TGTTGGAGCCGCTATTCGA 

 

TTCACGAGAATGAAAAGCTCAAAG 

 

96.06% 

Tb427.05.3820 GCCACTGCACTGAAGGAGAAG 

 

TGCGACCCTCAAGAAAACGT 

 

115.08% 

Table 2.1: Real-time PCR primers and their efficiency for the use in determining the knockdown effect 

of induced RNAi lines. 
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Data was obtained using Applied Biosystems 7500 Real-Time system software and relative 

abundance of RNA was calculated against control transcript GPI-8. 

 

2.2.6. Plasmid generation 

2.2.6.1. Plasmids for recombinant overexpression 

A ligation independent cloning kit (pET 30 Xa/LIC, Novagen) was used to obtain the 

expression vectors for all recombinant proteins used in this study, unless stated otherwise. 

Constructs used are listed in Table 2.2 (a) and 2.2 (b). Primers were specifically designed 

for ligation independent cloning (see Appendix, Table B1) as the cloned DNA needs a 

vector specific overhang which can be created by treating the obtained PCR product with 

T4 DNA polymerase, following the manufacturer’s instructions. 

 

The annealing reaction typically contained 1 µl of Xa/LIC vector and 2 µl (0.02 pmol) of 

insert DNA. The reaction volume was 4 µl and included 1 µl of 25 mM EDTA. 

 

Gene ID Gene name Plasmid ID 

 

Tb427.01.1130 Glycerol-3-phosphate dehydrogenase (FAD-

dependant) 

 

pMB-G190 

Tb427.06.4920 S-adenosylmethionine synthetase (putative) 

 

pMB-G191 

Tb427.08.3800 Nucleoside phosphatise (putative) 

 

pMB-G192 

Tb427.10.13130 UTP-glucose-1-phosphate  

uridyltransferase 2 (putative) 

 

pMB-G193 

Tb427.10.13430 Citrate synthase (putative) 

 

pMB-G194 

Tb427tmp.02.0530 Phosphoribosylpyrophosphate synthase (putative) 

 

pMB-G195 

Tb427tmp.02.3040 Aldo/keto reductase 

 

pMB-G196 

Tb427.05.3820 Aspartate carbamoyltransferase (putative) 

 

pMB-G197 

Tb427.10.2010 Hexokinase I pMB-G198 

 

Table 2.2 (a): Plasmids created for recombinant protein over expression. Proteins were used for the high 

throughput enzyme identification approach. 
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Gene ID Gene name Plasmid ID 

 

Tb09.160.0810 Kynureninase (putative) 

 

pMB-G157 

Tb927.10.2750 Deoxyhypusine synthase (putative) 

 

pMB-G158 

Tb927.7.5680 Deoxyribose-phosphate aldolase (putative) 

 

pMB-G159 

Tb927.5.287b Galactokinase, Pseudogene 

 

pMB-G160 

Tb927.2.3080 Fatty acid desaturase (putative) 

 

pMB-G161 

Tb11.01.6500 NAD+ synthase (putative) 

 

pMB-G162 

Tb927.8.2020 Arginase/agmatinase-like protein pMB-G131 

 

Table 2.2 (b): Plasmids created for recombinant protein over expression. Proteins were used in this study 

either for the high throughput enzyme identification approach or targeted investigation. Plasmids were 

created by B. Nijgal, with the exception of pMB-G131, which was created by E. Kerkhoven. Tb927.5.287b 

was annotated as Galactokinase, pseudogene. The gene sequence shows several stop codons, however, 

protein is produced by E. coli when overexpressed. 

2.2.6.2. RNA interference constructs 

Target sequences and oligonucleotides for cloning were designed using the program 

TrypanoFAN RNAit (Redmond et al., 2003) and oligonucleotides are listed in Appendix 

B, Table B2. Target sequence was amplified from T. b. brucei strain 427 gDNA using 

Phusion high fidelity polymerase and cloned into plasmid pGL2084 (Jones et al., 2014) in 

a BP recombinase (Invitrogen) reaction following manufacturer’s instructions. Resulting 

plasmids were transformed using DH5α max efficiency cells (Invitrogen), purified and 

digested with AscI (NEB) prior to transfection.  

 

2.2.7. Plasmid Purification 

The pET30 Xa/LIC was transformed into NovaBlue GigaSingles competent cells 

(Novagen) and grown on LB (Luria Broth, Sigma) agar plates supplemented with 30 µg/ml 

kanamycin (KAN). Up to five colonies were selected and screened by PCR for presence of 

the insert. A 5 ml overnight culture from a single colony, that tested positively for presence 

of the insert, was set up (LB medium + 30 µg/ml KAN) and the plasmid isolated using 

QIAprep Miniprep Kit (Qiagen GmbH, Hilden, Germany). The yield of plasmid was 
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assessed using Nanodrop 1000 Spectrophotometer (Thermo Scientific), using the 

NanoDrop 1000 software, version 3.7.0 and the method DNA-50. 

 

2.2.8. Transformation 

2.2.8.1. Competent cells 

Competent cell lines were produced chemically. E. coli cells were streaked out on LB agar 

plate containing appropriate antibiotic (chloramphenicol for pLysS lines) and incubated 

overnight at 37°C. A single colony was inoculated in 5 ml LB broth (with appropriate 

antibiotic if required) and incubated overnight at 37°C. Overnight cultures were diluted 

1:1000 in LB broth to a final volume of 200 ml and grown at 37°C to OD600 0.6. The 

culture was divided into 50 ml falcon tubes, incubated on ice for 15 min, and centrifuged 

for 15 min, 2,000 rpm, at 4°C.  The resulting cell pellets were resuspended in 16 ml RF1 

buffer (Table 2.3), incubated on ice for 15 min, and centrifuged for 15 min at 1800 rpm, at 

4°C.  The cell pellets were pooled by resuspending in 4 ml of RF2 buffer (Table 2.3), 

incubated for 1 h on ice, and divided into 200 µl aliquots on dry ice. Aliquots were then 

stored at -80°C. 

RF1 buffer RF2 buffer 

    

100 mM rubidium chloride 10 mM MOPS pH 6.8 

50 mM MnCl2.4H2O 10 mM rubidium chloride 

30 mM potassium acetate 75 mM calcium chloride 

10 mM calcium chloride 15% glycerol 

15% glycerol   

    

pH 5.8 pH 6.8 

  
Table 2.3: RF1 and RF2 buffers for chemically competent cells 

 

2.2.8.2. Bacterial transformation 

NovaBlue GigaSingles competent cells (Merck Bioscience, UK) were used for cloning. 

For over-expression, several E.coli strains were used, depending on the protein (see 2.3.1). 

E. coli BL21 (DE3) (Merck Bioscience, UK) and Rosetta (DE3) pLysS were used for the 

majority of proteins.  
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For bacterial transformations 1-10 ng of plasmid DNA was used to transform 20 μl of 

competent cells. The mixture was incubated on ice for 5 min. The cells were heat shocked 

for 30 s at 42°C, and then chilled on ice for 2 min. A 250 µl aliquot of pre-warmed SOC 

medium was added to the mixture, and the cells were incubated for 60 min at 37°C with 

shaking. Typically, 150 μl of transformed bacteria were spread evenly over the surface of 

an LB agar plate containing the appropriate antibiotic, and incubated at 37°C overnight to 

select for transformed cells. 

 

2.1.4. Glycerol stocks 

Transformed E. coli stocks were prepared by adding glycerol 1:1 (v/v) to the E. coli culture 

at OD600 0.6 -1.2. Glycerol stocks were stored at -80°C. 

 

2.2.8.3. Transfection of parasites 

T. brucei strain 2T1 was used for transfection (Burkard et al., 2007). Briefly, 4 x 10
7
 cells 

from a mid-log culture were resuspended in 100 µl transfection buffer (90 mM sodium 

phosphate, 5 mM potassium chloride, 0.15 mM calcium chloride and 50 mM HEPES, pH 

7.3 (Schumann Burkard et al., 2011)) and 10 µg linearised DNA (in sterile dH2O) were 

added. Cells were electroporated in 2 mm gap cuvettes (Biorad) using the Amaxa 

Nucleofector II (Lonza, Germany) and the program X-001. Cells were diluted 1:20 or 1:40 

in HMI-9, and seeded in 24-well plates. Appropriate antibiotics were added 12 hours post-

transfection. To obtain stable clones a serial dilution on a 96-well plate was performed and 

clones selected and tested for the correct selection markers (Alsford and Horn, 2008). 

 

2.3. Protein methods 

2.3.1. Overexpression 

For protein overexpression different strains of E.coli (all derived from BL21 (DE3)) were 

used. In general E.coli BL21 (DE3) and Rosetta (DE3) pLysS were used for most proteins. 

However, if protein overexpression failed, E. coli C41 (DE3) pLysS or C43 (DE3) cells 

were used, due to their reported ability to overexpress toxic or membrane bound proteins 

(Dumon-Seignovert et al., 2004). The Rosetta (DE3) pLysS, C41 (DE3) pLysS and C43 

(DE3) were kindly provided by Nathaniel Jones, from the University of Glasgow.  Cells 

were grown in LB medium at 37°C, unless stated otherwise. 
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Large scale overexpression was performed by inoculating 1 litre of LB (plus appropriate 

antibiotic) with an overnight culture, at 37°C in an orbital shaker, until an OD600 between 

0.6 and 1.2 was reached. To induce overexpression, IPTG was added to a final 

concentration of 1 mM and cultures were incubated overnight at 18°C. Cells were 

harvested by centrifugation and the pellet was stored at -20°C if not used immediately. For 

small scale overexpression 70 ml of LB (plus appropriate antibiotic) were used and treated 

as above. 

 

2.3.2. Protein purification 

For small scale purifications, Ni-NTA Spin Columns (Qiagen GmbH, Hilden, Germany) 

were used, and manufacturer's instructions were followed. Large scale purifications were 

performed with immobilised metal affinity chromatography (IMAC) using a Poros MC20 

column, stripped with 50 mM EDTA and 1 M NaCl (pH 8.0) and recharged with 0.1 M 

nickel sulfate prior to every run. Cells were lysed using a bacterial protein extraction 

solvent (B-Per, Thermo Scientific) and purified under native conditions with SB buffer (20 

mM phosphate buffer plus 500 mM NaCl, pH 7.5) and increasing concentrations of 

imidazole (50 mM for the washing step to remove non-specific binding and 500 mM to 

elute the his-tagged protein of interest). 

 

2.3.3. SDS-PAGE 

Samples for SDS-PAGE were boiled in SDS buffer (50 mM Tris-HCl, pH 6.8; 2% SDS; 

10% glycerol; 1% β-mercaptoethanol; 12.5 mM EDTA and 0.02% bromophenol blue) for 

10 min at 95°C. Up to 20 µl protein solution was separated on NuPAGE 4-12% Bis-Tris 

Gel (Novex) in 1x NuPAGE MES SDS running buffer (Novex) at 125V. 

 

2.3.4. Western blotting 

Samples were run on SDS-PAGE (section 2.3.3) and transferred to a nitrocellulose 

membrane (Hybond-ECL) at 100 mA, for 1-2 h, at 4°C. Membranes were blocked using 

phosphate buffered saline/0.1% tween (PBStween) plus 5% milk powder for 1 h at room 

temperature, and probed with primary antibody RAD51 (1:1,000) for 1 h. Membranes were 

washed with PBS/tween (0.1%) three times for 10 min, incubated with secondary antibody 

anti-Rabbit (1:5,000) for 1 h, and washed as described. 1 ml of Piece ECL Western blotting 

substrate (Thermo Scientific) was added and left for 5 min before the blot was analysed.  
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2.3.5. Bradford assay 

Protein concentrations were determined by Bradford assay using the Bio-Rad protein assay 

(Bio-Rad Laboratories). 50 µl of sample were mixed with 1 ml of Bradford reagent (in 1:5 

dilution with dH2O) in a 1 ml disposable cuvette. A standard curve was prepared with 

bovine serum albumin (BSA, Sigma-Aldrich), where 50 µl of BSA standards were also 

mixed with 1 ml Bradford reagent, with concentrations from 0.5 mg/ml – 0.1 mg/ml, and 

dH2O as blank. The solutions were incubated for 5 min at room temperature to allow for 

the colour of the dye, responding to the concentration of the protein, to change. The 

absorbance (OD595) was then determined using an Eppendorf spectrophotometer 

(Eppendorf, Germany). Experimental OD595 were plotted against concentrations of 

standards using an Excel spreadsheet template kindly provided by Alan Scott (Glasgow 

Polyomics). 

 

2.3.6. Sample preparation for proteomics 

The secretome was prepared using the method described by Holzmuller et al. (2008) and 

Grébaut et al. (2009). Trypanosomes were incubated at 2x10
8
 parasites/ml for 2 hours at 

37°C in serum free modified HMI-9 (Voorheis, Table A1). The supernatant was separated 

from trypanosomes by centrifugation (1,000g, 10 min, 4°C) and filtered using a 0.22 µm 

low-binding protein filter. A mixture of protease inhibitors (Protease inhibitors complete 

Mini (Roche)) were added to the samples prior to storage at -80°C. Protein concentrations 

were measured using the Bradford assay and proteins were precipitated to concentrate the 

protein solutions for DiGE analysis, but also to remove protease inhibitors added to the 

sample sets after secretome preparation. 

 

2.3.7. Protein precipitation 

Protein precipitations for secretome sample analysis were performed by mixing the cell-

free spent media with 100% acetone (1:4 v/v) and incubating overnight at -20°C, followed 

by 2 washes with 80% acetone at 4°C and 13,000 rpm for 10 min. Pellet was resuspended 

in DiGE lysis buffer (Appendix C) and stored at -80°C.  
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2.3.8. DiGE 

Protein samples for DiGE analysis were labelled with cyanine dyes at an alkaline pH. T. b. 

brucei strain 427 was labelled with Cy5 and strain GVR 35 with Cy3. 50 μg of protein 

sample in 83.3 µl (GVR35) or 71.4 µl (427) DiGE lysis buffer were mixed with 400 pmol 

CyDye and incubated in the dark for 30 min on ice. The labelling reaction was quenched 

by adding 1 μl of 10 mM lysine and by incubating it for an additional 10 min. Samples 

were mixed, adjusted to 460 µl with DiGE rehydration buffer (Appendix C), applied to an 

immobilised pH gradient iso-electric focusing strip, IEF, (pH 4.0-7.0, linear range, 24cm) 

and run overnight according to protocol #9 (see Table 2.4). 

 

Step 1 30V       step ‘n’ hold    10h 

2 300V     step ‘n’ hold     2h 

3 600V           gradient      2h 

4 1000V         gradient      2h 

5 8000V         gradient      2h 

6 8000V     step ‘n’ hold   9h 

7 1000V     step ‘n’ hold 

Table 2.4: Protocol #9 for IEF 

 

Following IEF, Strips were dipped into 0.1% SDS solution and incubated in 10 ml strip 

equilibration buffer (SEB) + DTT (10 mg/ml) for 15 mins, and for a further 15 mins in 10 

ml SEB + iodoacetamide (25 mg/ml). The equilibrated IEF strips were placed on top of a 

12% SDS-polyacrylamide gel and sealed with 0.5% agarose NA in 1x running buffer 

(Table S5) containing a trace of bromophenol blue to act as a dye front. Gels were run at 

1W per gel overnight in an Ettan DALT II system for 2-D gel electrophoresis (Amersham 

Bioscience). This was done with the help of Alan Scott (Glasgow Polyomics). 

 

2.3.9. Gel imaging and image analysis 

The 2-D DiGE gel was scanned using a Typhoon 9400, following manufacturer’s 

instructions. Wavelength was set to 532 nm (Cy3) and 633 nm (Cy5) for two sequential 

scans and the scanner was set to high resolution scan (100 µm pixel). 

Spot detection was performed using DeCycler 2D software, set for 1,000 spots recognition. 

Protein spots with a minimum of 2-fold difference between strain GVR 35 and strain 427 



37 

 

were picked for analysis. The preparatory gels were stained with Colloidal Coomassie, and 

images were matched with DiGE image. Protein spots of interest were manually excised 

from the preparatory gel in a laminar flow hood. Gel pieces were washed, first with 250 µl 

100 mM ammonium bicarbonate (ABC) (twice for 30 min), followed by washes with 200 

µl 50% acetonitrile (ACN) / 100 mM ABC for 45 min (wash was repeated until gel pieces 

were destained). 50 µl of ACN was added to gel pieces and left for 10 min before samples 

were dried in speed vac. Dried gel pieces were re-hydrated with 10 µl trypsin (0.02µg/µl in 

25 mM ABC) and 20 µl 25 mM ABC was used to cover the gel pieces for overnight 

incubation. Digested proteins were dried and analysed by LC-MS/MS. Separation was 

achieved using an UltiMate 3000 Rapid Separation LC system (Dionex, Thermo Scientific) 

coupled to electrospray ionization tandem mass spectrometry (AmaZon ETD ion trap mass 

spectrometer; Bruker Daltonics). Raw MS/MS data were submitted to Mascot server and 

searched against Trypanosoma brucei database TriTrypDB (version 5.0).  

 

2.3.10. Filter aided sample preparation for trypsin digest (FASP) 

To analyse the whole secretome from T. b. brucei strain GVR 35 and strain 427, samples 

were prepared with FASP (Filter Aided Sample Preparation method) using an Ultracel 

YM-10 filter (Millipore). 

 

20 µl of strain 427 sample (14 µg protein) and 25 µl of strain GVR 35 (15 µg protein) were 

used for trypsin digest. Sample volume was made up to 30 µl by adding SDT buffer (4% 

SDS, 100 mM Tris-HCl pH 7.6 and 0.1 M DTT). Samples were mixed with 200 µl of UA 

solution (8 M urea in 0.1 M Tris-HCl buffer pH 8.5), loaded into the filtration device and 

centrifuged for 40 min at 13,000 rpm. An additional 200 µl UA solution was added to the 

filter and centrifugation repeated. 100 µl of 50 mM iodoacetamide in UA solution was 

added to the filter and incubated at room temperature for 5 min, before being centrifuged 

for 30 min at 13,000 rpm. 120 µl of a solution of ammonium bicarbonate containing 0.02 

µg/ml of trypsin were added to the filter and samples were incubated overnight at room 

temperature. Following digestion, peptides were collected by centrifugation of the filter 

unit for 40 min at 13,000 rpm. Samples were acidified using trifluoroacetic acid (FA), 

desalted and dried down for analysis in Concentrator 5301 by LC-MS/MS (UltiMate 300 

Rapid Separation LC System coupled to AmaZon ETD ion trap mass spectrometer). Raw 

MS/MS data were submitted to Mascot server and searched against T. brucei database 

TriTrypDB (version 5.0).  
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2.3.11. Dimethyl-labelling for proteomics 

Protein samples were treated as previously stated (2.3.10) and resulting peptides were 

resuspended in 100 mM triethyl ammonium bicarbonate (TEAB, Sigma-Aldrich). The 

GVR 35 strain sample was light-labelled with 4% formaldehyde (Sigma-Aldrich) and 600 

mM sodium cyanoborohydride (Sigma-Aldrich), whereas strain 427 sample was heavy-

labelled with 4% deuterated formaldehyde (Cambridge Isotope) and 600 mM sodium 

cyanoborohydride (Sigma-Aldrich). Samples were incubated for 1 h at room temperature 

after which the reaction was stopped using 1% ammonium hydroxide (Sigma-Aldrich). 

Labelled samples were acidified with 5% FA, dried in Concentrator 5301 and analysed by 

LC-MS/MS (2.3.10). The raw data was analysed with Mascot Distiller (Version 2.5.1.0). 

The Mascot search engine set against T. brucei protein database from TritrypDB. The 

settings were: Fixed modification was set to Carbamidomethyl (C), while Oxidation (M) 

was set as a variable modification. For protein identification, peptide and fragment mass 

tolerances were set to ± 0.3 Da allowing for two missed cleavages. 

 

2.4. Metabolite profiling 

2.4.1. In vitro investigation of unknown enzymes sample setup 

Commercial yeast extract powder (Foremedium Ltd., Hunstanton, England, UK) was used 

as metabolite source. 1-2 mg of yeast extract per sample was used, and metabolites were 

extracted using Chloroform/Methanol/Water (ratio1:3:1 v/v/v) containing 1 µM internal 

standards (theophylline, 5-fluorouridine, Cl-phenyl cAMP, N-methyl glutamine, 

canavanine and piperazine). Samples were dried using a speed-vac and dried extracted 

metabolites were resuspended in 100 µl 10 mM MOPS buffer plus 5 mM MgCl2 and 

pooled to provide an even metabolite source for control / treatment. Enzyme cofactors 

obtained from Sigma are listed in Table 2.5. The final concentration for each cofactor was 

0.1 mM. Two sets of cofactor mixes were prepared fresh as supplements to the metabolite 

mix. 

 

Cofactor 1 NAD+ NADP+ ADP GDP CoA FMN FAD+ PP TPP 

Cofactor 2 NADH NADPH ATP GTP Acetyl CoA FMN FAD+ PP TPP 

Table 2.5: The two sets of cofactors mixtures used for in vitro assay for enzyme function identification 

at a working concentration of 1 mM (see S1 for abbreviations). 
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Reactions were performed in 10 mM MOPS buffer plus 5 mM MgCl2 and included the 

metabolite mix, cofactors for the control sample and additionally purified enzyme in the 

treatment sample. The mix was incubated at 37°C for 30 min and the reaction was 

quenched with 400 µl acetonitrile. A blank sample (10 mM MOPS buffer plus 5 mM 

MgCl2) was similarly processed in parallel each time. Each sample included: the 

metabolite mix, the cofactor 1 (or 2) mix and the enzyme. Samples without the enzyme and 

blank samples were also prepared (Table 2.6). 

 

Table 2.6: Sample preparation for in vitro investigation.  

 

2.4.2. Intracellular metabolite extraction from parasites 

Trypanosomes were grown to mid-log phase and a sample volume equivalent to 5 x 10
7
 

cells was rapidly cooled to 4°C by submerging the 50 ml falcon tube into a dry ice/ethanol 

bath. Samples were kept on ice (or 4°C) from this step onwards. Samples were centrifuged 

at 1,250g for 10 min, and most supernatant, except 1 ml, was removed. The pellet was 

resuspended in the remaining 1 ml of medium. This was transferred to an Eppendorf tube 

and briefly centrifuged to completely remove the supernatant. The cell pellet was washed 

in cold 1xPBS and metabolites extracted by resuspending in 100 µl 

chloroform:methanol:water (ratio1:3:1 v/v/v) with internal standards (2.4.1) and by 

vigorously shaking for 1 h at 4°C.  Samples were centrifuged at 16,000g for 10 min and the 

supernatant collected and stored at -80°C under argon. 

 

2.4.3. 
13

C – labelled tracking 

T. b. brucei strain 427 was grown in CMM + 10% FBS Gold (PAA, Piscataway, NJ) for U- 

13
C-labelled tracking. For L-methionine studies, 50% of U-

13
C L-methionine (50 µM L-

methionine and 50 µM U-
13

C L-methionine) was added to the parasite culture medium 

(starting density of 2 x 10
4
 cells ml

-1
). For L-proline and L-arginine, 100% labelled 

Metabolite mix Cofactor mix 1 Cofactor mix 2 Enzyme ACN Enzyme

Sample 1 -E 86 µl 10 µl 4 µl 400 µl

Sample 1 - C 86 µl 10 µl 400 µl 4 µl

Sample 2 -E 86 µl 10 µl 4 µl 400 µl

Sample 2 - C 86 µl 10 µl 400 µl 4 µl

Blank - Mops 400 µl
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compound was used at a concentration of 200 µM. Cells were incubated at 37°C for 48 h, 

and metabolites extracted as previously described (2.4.2). Samples were prepared in 

triplicate and for every labelled setup a control with the equal concentration of unlabelled 

compound was set up, also in triplicate. Fresh medium and spent medium controls were 

also collected and 5 µl were added to 100 µl extraction solvent (CMW 1:3:1) prior to 

analysis. 

Labelled compounds were obtained from Cambridge Isotope Laboratory, Inc.: 

L-methionine, 
13

C5, enrichment 99%, cat: CLM-893-H-0.1 

L-proline, 
13

C5, enrichment 99%, cat: CLM-2260-H 

L-arginine, 
13

C6, enrichment 99%, cat: CLM-2265-H-0.1 

 

2.4.4. Standards 

Internal standards were added to the extraction solvent as previously described (2.4.1): 

during the analysis the stability of the samples can be tracked by comparing the total ion 

current (TIC) profile of samples and internal standard. With each experiment a set of 

authentic standards was run prior to the sample set (Appendix D, Table D1). The authentic 

standards are used for metabolite identification and retention time prediction in IDEOM as 

described by Creek et al. (2011).  

 

2.4.5. Liquid chromatography-mass spectrometry 

The sample platform chosen for this project was liquid chromatography coupled with mass 

spectrometry. All samples were separated with high performance liquid chromatography 

(HPLC) on either ZIC-HILIC (Hydrophilic Interaction Liquid Chromatography column, 

Merck) or ZIC-pHILIC (polymer based - Hydrophilic Interaction Liquid Chromatography 

column, Merck) prior to mass detection on an Exactive Orbitrap mass spectrometer 

(Thermo Fisher). Analysis was performed in positive and negative mode, using 10 µl 

injection volume and a flow rate of 100 µl/min. For HPLC gradient, ZIC-HILIC solvent A 

was 0.1% formic acid in water and solvent B was 0.08% formic acid in acetonitrile.  ZIC-

pHILIC solvent A was 20 mM ammonium carbonate in H2O, and solvent B was 100% 

acetonitrile. 
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2.4.6. Data analysis 

The analysis was performed using IDEOM software (Creek et al., 2012b). IDEOM uses the 

software MZmatch (Scheltema et al., 2011) and the statistical platform R to analyse the 

raw data. First, the raw data is converted to mzXML files using the software msconvert. 

The program XCMS can use the mzXML files to identify peaks and convert the data into 

peakML files. MZmatch uses peakML files to group peaks across replicate samples, filter 

peaks by removing groups with high variability in peak intensity, and annotate related 

peaks. Those MZmatch files will be used by IDEOM to run an automated identification 

procedure based on exact mass and retention time. Furthermore, IDEOM assigns 

confidence levels to the identifications, relying on authentic standards run within each 

experiment. 

 

mzXML files can also be used for analysis of metabolite tracking with uniformly 
13

C-

labelled compounds. The open source software mzMatchISO (Chokkathukalam et al., 

2013) works within MZmatch.R. The labelled compounds have the same retention time as 

their unlabelled counterparts, but differ in the mass of the heavy/light carbons when 

labelling occurs. To assign the detected mass shift, it requires a tab-delimited text input file 

containing the compounds of interest to be matched against the dataset, to search for the 

labelled compounds and their labelling pattern. The output file is in pdf format, showing 

the detected labelling pattern and peak shapes. 

 

2.5. Enzyme assays 

2.5.1. Hexokinase 

Hexokinase (Sigma) activity was assayed in a coupled reaction with glucose-6-phosphate 

dehydrogenase (Figure 2.1). The reaction mix included 50 mM Tris-HCl, pH 8.0, 13.3 mM 

magnesium chloride, 670 mM glucose, 16.5 mM ATP, 6.8 mM NADP
+
 and 1 IU glucose-

6-phosphate dehydrogenase. The reaction mix was run at 25°C for 6 min on a UV-VIS 

spectrophotometer (UV-2550, Shimadzu) before hexokinase was added and changes in 

absorbance (A340) measured over time.  
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Figure 2.1: Coupled enzyme assay for hexokinase. The phosphorylation of D-glucose was measured by 

production of NADPH at 340 nm. 

 

2.5.2. Glucose dehydrogenase 

Glucose dehydrogenase (Figure 2.2) was ordered from Sigma and made up to 1 U/mg with 

10 mM Tris-HCl buffer (pH 7.2). Activity was tested using a UV-VIS spectrophotometer 

(UV-2550, Shimadzu) the reaction mix included: 100 mM Tris-HCl buffer, 1 M glucose 

and 20 mM NAD
+
.  

Reaction mix was run on the spectrophotometer at 25°C for 5 min before glucose 

dehydrogenase was added. Changes in absorbance (A340) were measured over time. 

 

Figure 2.2: Reaction catalysed by glucose dehydrogenase. The formation of NADH was measured at 340 

nm. 

 

2.5.3. NAD
+
 synthase 

NAD
+
 synthase activity was assayed in a coupled reaction assay (Figure 2.3). In the first 

reaction NAD
+
 was synthesised by either (1) reaction mix containing  2 mM ATP, 5 mM 

magnesium chloride, 50 mM Tris-HCl, 56 mM potassium chloride, 1 mM deamido-NAD
+
, 

20 mM L-glutamine and 0.2 mg/ml BSA, pH 8.0 (Wojcik et al., 2006), or (2) reaction mix 

including 2 mM ATP, 2 mM ammonium chloride, 20 mM magnesium chloride, 2 mM 

potassium chloride, 1 mM deamido-NAD
+
 and 0.2 mg/ml BSA (Ozment et al., 1999).  

In both cases the reaction volume was 100 µl. 
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Reaction mix was incubated for 1 h at 37°C with recombinant protein and the reaction 

stopped by boiling the mix for 3 min and immediately cooling it down on ice. Reactions 

were spun down for 10 min at 12,000 rpm (4°C) and 90 µl were used for further analyses.  

 

To determine if the putative NAD
+
 synthase had produced NAD

+
, 90 µl of reaction mix 

obtained from the first assay were used instead of NAD
+
 in a glucose dehydrogenase assay 

(2.5.2). 

 

Figure 2.3: Coupled enzyme assays for NAD
+
 synthase. (1) Glutamine dependend NAD

+
 synthase assay 

(Wojcik et al., 2006) and (2) Ammonia dependent NAD
+
 synthase assay (Ozment et al., 1999).    In both 

assays the formation of NADH from NAD
+
 was measured at 340nm. 
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Chapter 3 
 

3.1. Introduction 

In this chapter the use of metabolomics for enzyme function identification will be explored 

and discussed. Although bioinformatics studies can help to identify the function of a 

protein, using tools such as BLAST alignments and domain searches, having experimental 

proof is required and important when studying the metabolism of any organism.   

 

Enzymes used for this study were chosen randomly from a list of putative enzyme that was 

obtained from the trypanosome database TritrypDB. The only objective for the chosen 

‘enzymes’ was that they should have a predicted metabolic function, relatively small size, 

so the cloning and over-expression would not cause too many difficulties, and that their 

function had not been determined before using recombinant or purified protein. The goal 

was to set up a workflow that would allow a high throughput approach to screen putative 

trypanosome proteins for enzymatic reactions. Certain compromises had to be made to 

make this approach fast with relatively low costs. The choice for a good over expression 

system was one of the compromises. E. coli is a well established organism to over express 

proteins; however, the lack of post translational modifications could cause problems for the 

functionality of the enzymes. Other over expression systems, for example trypanosomatid 

expression systems (Tetaud et al., 2002), would therefore be more suitable. However, high 

cost of culture media and lower levels of over expression was seen as too big a 

disadvantage compared to E. coli. Several E. coli strains were tested in this study. 

Originally, BL21 (DE3) were used (E. Kerkhoven, thesis), but Rosetta (DE3) cells showed 

higher yield and allowed for a higher number of expressed proteins and from 21 proteins 

originally selected for the screen, seven could be analysed. 

 

The metabolite basis of this assay was a commercially available yeast extract. 

Trypanosome extract would have been preferred, but as with the expression system, the 

cost of media and the low density of cells in culture (compared to yeast or E. coli) made 

other metabolite sources better suited.  E. coli extract, marmite and several stock cubes 

were also tested for their use, but the commercial yeast extract seemed the better choice for 

this screening method. 

(1) Yeast extract was commercially obtained at a high quantity, meaning the standard 

condition was highly controlled for all experiments.  
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(2) Yeast extract was treated to remove all proteins; therefore it was certain that the only 

protein added to that mix was the intended purified enzyme. 

(3) Yeast extract provided a high number of detected metabolites on both ZIC-HILIC and 

ZIC-pHILIC while being fast and easily prepared (compared to E. coli extract). 

 

3.1.1. In vitro assay combined with metabolite profiling 

Using the screening method developed by Saito et al. (2006), seven (out of 21) putative 

identified enzymes from T.b.brucei (see Table 3.1) were tested for their function using 

metabolite profiling by Liquid Chromatography – Mass Spectrometry (LC-MS).  The 

enzymatic activity is determined by monitoring the changes in metabolite levels between 

control (no enzyme) and treatment (incubated with enzyme) samples.  

 

Yeast extract was used as the metabolite source and to ensure that possible essential 

cofactors needed for enzymatic reactions were present, mixes of most common cofactors 

(as listed in method 2.4.1) were added to every reaction mix. As described, two cofactor 

mixes were prepared and samples were set up in two batches each containing a different 

cofactor mix. 

 

Table 3.1: Identification of putative identified enzymes used in high throughput approach 

 

Ideally, decreasing level of a specific metabolite indicates the substrate of an enzymatic 

reaction, while an increasing level indicates the product of that reaction. However, due to 

the ability of mass spectrometry to simultaneously identify a large number of metabolites 

(the LC-MS approach of this study routinely detects around one thousand metabolites per 

experiment), changes in several, unrelated, metabolites will be detected. This is due to 

sample variation between either a set of controls or even between conditions. To keep 

those changes to a minimum, samples were run in triplicate. 

Gene ID Gene name Plasmid ID

Tb927.10.2750 Deoxhypusine synthase, putative pMB-G158

Tb927.7.5680 Deoxyribose-phosphate aldolase, putative pMB-G159

Tb11.01.6500 NAD synthase, putative pMB-G162

Tb427.06.4920 S-adenosylmethionine synthetase, putative (METK1) pMB-G191

Tb427.10.13430 citrate synthase, putative pMB-G194

Tb427tmp.02.3040 aldo/keto reductase, putative pMB-G196

Tb427.05.3820 aspartate carbamoyltransferase, putative pMB-G197
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To validate the enzyme assay two commercially available enzymes were tested using this 

approach.  The enzymes chosen were glucose dehydrogenase and hexokinase (both 

Sigma).  

 

3.1.2. RNA interference 

To further assess potential function of the proteins, when the in vitro assay approached 

failed, and to establish if the protein is essential to bloodstream form trypanosomes, RNA 

interference (RNAi) lines were created. T. brucei strain 2T1 were transfected with plasmid 

pGL2084 (Jones et al., 2014) containing a fraction of the gene of interest in a stem loop 

construct (Alsford and Horn, 2008) and RNAi was induced with either 1 µg ml
-1

 or 5 µg 

ml
-1

 tetracycline. To determine whether protein was essential or not, growth curves were 

made by counting uninduced and induced cells every 24 h. To establish a possible function 

of the protein, metabolite profiling on extracted metabolites from induced cultures were 

compared to the metabolite set of uninduced cultures. 

 

RNAi lines were created for four putative identified enzymes: deoxyribose-phosphate 

aldolase, NAD
+
 synthase, also alpha/keto reductase and aspartate carbamoyltransferase. 

With the exception of NAD
+
 synthase, which did not obtain puromycin sensitivity and was 

therefore not further analysed, all cell lines showed the correct selection markers and 

knock down effect was assessed using reverse transcription RT-PCR.  

 

Using metabolite profiling on RNAi lines, ideally, a decreasing metabolite (comparing 

induced cell line to uninduced cell line) should indicate the product of an enzymatic 

reaction, while an increasing metabolite should indicate the substrate of that reaction. 

However, as the whole cell metabolome is analysed, blocking one enzyme in the system 

could have a knock on effect on other reactions, therefore making it difficult to see the 

primary reaction. 
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3.2. Results 

3.2.1. Validation of in vitro method 

3.2.1.1. In vitro investigation of glucose dehydrogenase by metabolite profiling  

 

Glucose dehydrogenase is an enzyme belonging to the family of oxidoreductases and acts 

on the CH-OH group of the donor molecule. It catalyses the following reaction: 

Glucose + acceptor        D-Glucono-1,5- lactone + reduced acceptor 

The acceptor can be FAD, NAD(P) or pyrroloquinoline quinine (PQQ) and depending on 

the cofactor use the enzyme is categorized into EC group 1.1.1, 1.1.99 or 1.1.5 respectively 

(Ferri et al., 2011). Glucose dehydrogenase used here was obtained from Sigma and was 

isolated from Pseudomonas sp. with the EC 1.1.1.47, suggesting NAD
+
 and NADP

+
 the 

cofactors used by this enzyme according to BRENDA.  

 

Data analysed using IDEOM showed five metabolites significantly increased (Figure 2.1, 

a) in both samplesets. This would suggest either that NAD(P)
+
 was either already present 

in the yeast extract or the use of a different cofactor present in both sampleset (for example 

FAD). From the putatatively identified metabolites, only D-glucono-1,5-lactone was a 

basepeak. The related peak function from mzMatch assigned the putatatively identified 

metabolites 2,5-Dioxopentanoate, Vicianose and 2-O-alpha-L-Rhamnopyranosyl-D-

glucopyranose to the D-glucono-1,5-lactone basepeak. The very similar retention times and 

of all four metabolites makes it likely that the changes are related or even that the peaks 

resemble the same metabolite, with differences in mass caused by fragmentation or 

complex formation. 2,5-Dioxopentanoate seems to be a fragment of D-glucono-1,5-lactone 

as the peak intensity pattern of every individual replicate is identical. Furthermore, the two 

metabolites 2-Dehydro-3-deoxy-D-gluconate and citraconate show the same pattern. 

Interestingly, 2-Dehydro-3-deoxy-D-gluconate has the same mass as D-glucono-1,5-

lactone, as have citraconate and 2,5-Dioxopentanoate. However, the retention times are 

different. A possible explanation for this is that D-glucono-1,5-lactone comes of the 

column at two different times, as sometimes seen with D-glucose. However, as D-glucono-

1,5-lactone is not in the authentic standard list, there is no proof for this. Only one 

metabolite was decreased significantly in this dataset. It was putatatively identified as 2-C-

Methyl-D-erythritol 4-phosphate. However, closer investigation revealed that this is most 

likely an adduct of D-glucose, as the retention time of 14.65 min matches the authentic 

standard. 
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As this assay was performed with a known enzyme, the decrease in glucose levels (Figure 

3.1, b) and the increase of D-glucono-1,5-lactone (Figure 3.1., c) can be seen as 

confirmation for the validation of this assay. However, it also highlights the problematic of 

using complex datasets, such as metabolomics, to identify enzyme functions.  
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Figure 3.1: Significant changes in the metabolomics dataset of glucose dehydrogenase assay. Assay was 

set up as described in 2.4.1. and analysed with IDEOM.  (a) Screenshot of IDEOM spreadsheet showing the 

most significantly increased metabolites in the dataset (highlighted in red) compared to a no enzyme control. 

(b) peak intensity of the substrate and (c) peak intensity of the product of glucose dehydrogenase. 

Abbreviations: Cf1_C: Cofactor 1, Control (no enzyme); Cf1_E: Cofactor 1, Treatment (with enzyme); 

Cf2_C: Cofactor 2, Control and Cf2_E: Cofactor 2, Treatment. 

 

3.2.1.2. In vitro investigation of hexokinase by metabolite profiling  

 

Hexokinase is the starting enzyme of the glycolysis and catalyses the following reaction: 

Glucose + ATP        Glucose 6-phosphate + ADP 

Previous datasets on commercial enzymes (data not shown) showed many changes, 

specifically many metabolites decreasing in the treatment samples (most of them peptides), 

making an analysis difficult. The enzymes used for those assays had been already in use in 

our lab for a while, so enzymes were ordered fresh and assays were repeated. However, 

due to the changes mentioned above observed only in enzyme treated samplesets, a second 

extraction step was added to the workflow to test if those changes might disappear. For the 

hexokinase assay results shown here, four replicates for each condition were prepared and 
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two of the replicates were vortexted in the cold room (4°C) for 30 min after the enzymatic 

reaction was quenched with acetonitrile (ACN). Data analysis comparing those two 

conditions showed overall fewer ‘missing’ metabolites in both conditions. However, peak 

intensities were increased in samples with the added extraction step.  

 

Unlike the results of glucose dehydrogenase, as shown above, this dataset did not show the 

distinction in changes between the product and the substrate, which could be attributed to 

the high levels glucose in the sample mix and the fact that ATP was not detected. As ATP 

was added to the sample set 2, the explanation for no peak being detected in IDEOM might 

be that due to low intensity that peak was filtered out by IDEOM. However the product of 

the reaction, glucose 6-phosphate is only detected in enzyme treated cofactor mix 2 (Figure 

3.2 (b) and (d)). Also important, the enzyme treated cofactor 2 sample shows high levels of 

ADP, which is not present in cofactor 2 control sample (Figure 3.2 (a) and (c)). These 

results conclude that the added enzyme is indeed a hexokinase, as both products can be 

detected in the dataset.  
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Figure 3.2: Significant changes in the metabolomics dataset of hexokinase assay. Assay was set up as 

described in 2.4.1. and analysed with IDEOM. Most significant changes in the hexokinase dataset were ADP 

and glucose-6-phosphate (G6P) increased in the sample set 2. Sample set 2 had ATP added, which is required 

for hexokinase activity. Metabolite levels shown on the right (ADP or G6P) are the peak intensities from the 

control sample without ATP. (a) and (b) shows peak intensities of compounds without second extraction step, 

while (c) and (d) were incubated for 30 min at 4°C after enzymatic reaction was quenched.   
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3.2.2. Cofactor stability 

 

As cofactors were not consistently detected using IDEOM for data analysis and cofactors 

present in the authentic standard mixes reliably failed to be detected, a study was done to 

investigate the stability of the cofactor stock solutions (stored at -20°C). The two cofactor 

mixes were made fresh and an aliquot was taken for metabolite extraction and immediate 

analysis by LC-MS. The remaining samples were stored at -20°C and reanalysed every 

week for 4 weeks. 

 (a) (b) 

Figure 3.3: Decreasing levels of detected cofactors from cofactor mix 1 (a) and 2 (b) over a time course 

of four weeks. Samples were tested fresh at Day 1 and re-tested after 8,15,23 and 29 days. Analysis was 

performed by normalising the identified metabolite against an internal standard (N-methyl glutamine) using 

IDEOM. 

 

Figure 3.3 shows the detected levels of the cofactors decreasing dramatically from day 1 to 

day 8. If the cofactor mixtures degrade at -20°C or if the freeze/thaw cycles have an impact 

on the compounds being detected is not clear. However, this clearly indicates that cofactor 

mixes must be freshly prepared for the use in the in vitro enzyme assay. The stability test 

shows that the cofactors used can be detected (except for PP and TPP) on the LC-MS 

platform using ZIC-pHILIC columns. However, why are they not as easily detected in the 

IDEOM spreadsheets for the in vitro assays?  

 

One possible explanation is that the cofactor mixes used only contain 1mM of each 

cofactor, while the cofactor stability used the stock solution of 10mM. At the end of each 

enzyme assay incubation the sample was further diluted which would make the cofactor 

concentration in the analysed sample even lower. Figure 3.4 shows the differences in peak 

intensities of ATP, when run at 10mM and 1mM. It also seems plausible that in complex 

mixtures IDEOM filters the cofactor peaks out as they might appear under the threshold 

limit.  
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Figure 3.4: Peak intensities of ATP, 10mM and 1mM at day 1 of the time course. 

 

The cofactors, as listed in Methods section (or Table 3.2), are present in the standard mixes 

that are analysed with every MS run. However, in complex mixtures they are only rarely 

detected and it would be beneficial to have an idea of the retention time and also how 

reliable the detection of these compounds is. Table 3.2 shows the mass and retention time 

detected for each cofactor over a time course of four weeks. As this experiment was 

targeted (only one cofactor per sample) and as mentioned above cofactors in the standards 

are only rarely detected the confidence of the peak identification was judged by detected 

mass, retention time similar to the expected one and peak intensities. ATP and ADP were 

consistently detected over 4 weeks, but also traces of ADP and AMP were detected in the 

ATP sample, and ATP and AMP in the ADP sample. Although these findings are not 

necessarily surprising it is important to keep in mind when using different cofactor mixes 

for enzyme assays.  GDP, GTP, NAD and NADH were consistently detected, except for 

the last time point where GTP and NAD were not. NADP could not be detected in an early 

time point in the IDEOM spreadsheet (Day 7), which was surprising as the following time 

points showed clear levels of NADP in the sample. Coenzyme A, acetyl-coenzyme A, 

FAD and FMN were consistent in mass and retention time. Only PP and TPP were 

inconsistently detected and those compounds might be not suitable for pHILIC separation. 
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Table 3.2: Detected mass and retention time from each cofactor during a timecourse of four weeks. 

Timepoint 1: Day 1 (when cofactor stocks were prepared), Timepoint 2: Day 8, Timepoint 3: Day 15, 

Timepoint 4: Day 23, Timepoint 5: Day 29. 
 

 
Table 3.3: Monoisotopic molecular weight of the cofactors used in this study, taken from metacyc.org 

  

1 2 3 4 5

Mass RT Mass RT Mass RT Mass RT Mass RT

ATP 506.995 18.949 506.995 18.933 506.995 18.792 506.995 18.971 506.995 19.268

ADP 427.03 17.388 427.03 17.394 427.03 17.34 427.03 17.787 427.03 18.065

GTP 522.99 21.843 522.99 21.851 522.99 21.669 522.99 21.949

GDP 443.024 20.205 443.024 20.269 443.024 20.188 443.024 20.531 443.024 20.78

NAD 663.109 16.076 663.109 16.108 663.109 15.92 663.109 15.98

NADH 665.125 15.316 665.125 15.263 665.125 15.169 665.125 15.24 665.125 15.43

NADP 743.075 18.772 743.075 18.673 743.075 18.748 743.075 18.914

NADPH 745.091 19.079 372.545 19.093 372.546 18.922 372.545 18.954 745.091 19.195

CoA 767.115 15.544 383.558 15.595 767.115 15.357 767.115 15.482 767.115 15.778

Acetyl-CoA 809.126 14.226 809.126 14.233 809.126 14.014 809.126 14.09 809.126 14.275

FAD 785.157 13.159 785.157 13.217 785.157 12.975 785.157 12.978 785.157 13.109

FMN 456.105 13.128 456.105 13.167 456.105 12.941 456.105 12.962 456.105 13.121

PP 247.025 21.124 247.025 21.288

TPP 424.037 17.102 424.037 17.449

Monoisotopic molecular weight

Acetyl-CoA 809.126

ADP 427.029

ATP 506.996

CoA 767.115

FAD 785.157

FMN 456.105

GDP 443.024

GTP 522.991

NAD  664.117

NADH  665.125

NADP 744.083

NADPH 745.091

PP 247.025

TPP 425.045
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3.2.3. Results putative enzymes 

 

From 21 genes originally selected from TritrypDB, 16 were successfully amplified using 

PCR. Those PCR products were treated with T4 DNA polymerase and annealed into pET 

30 Xa/LIC over expression vector, except for gene Tb927.8.2020, which was cloned into 

pET28 vector (Kerkhoven, PhD thesis, 2012). Five PCR products did not get the DNA 

amount needed for T4 DNA polymerase treatment and these were not included in further 

experiments (for all gene ID, see Table 3.4). 

Plasmid DNA of the cloned constructs were transformed into E. coli BL21(DE3) for 

overexpression, followed by small scale protein purification using nickel affinity columns 

(Ni-NTA Spin Columns (Qiagen)) for initial over-expression screen. 

Clones pMB-G161, pMB-G192, pMB-pMB-G195 did not over-express in BL21(DE3) or 

Rosetta (DE3) pLysS.  

Over-expression of clones pMB-G157, pMB-G190, pMB-G193 and pMB-G198 was 

achieved in Rosetta (DE3) pLysS, however, protein was not detected in soluble fraction 

and therefore those proteins were not used for further analyses. 

Clone pMB-G160 is unnotated as a pseudo-gene in TriTrypDB, meaning that additional 

stop codons were found. Protein over-expression showed a much smaller protein than 

originally expected and this was not analysed further. For the nine proteins remaining, 

higher yield was achieved in E. coli Rosetta pLysS and were therefore used for the in vitro 

assay (Figure 3.5)    

 
Figure 3.5: Whole cell extract of Rosetta (DE3) pLysS pre (-) and post (+) induction with IPTG (1mM 

final). Expected recombinant protein sizes were G157: 53kDa, G158: 55kDa, G159: 35kDa, G160: 55kDa 

(Pseudogene), G162: 38kDa, G190: 71kDa, G191: 49kDa, G193: 59kDa, G194: 59kDa, G196: 40kDa, 

G197: 41kDa and overexpressed proteins are indicated with an arrow. 

 

Originally, over expressed proteins were purified using Ni-NTA Spin Columns (Qiagen). 

However, the resulting eluates showed high contamination with other proteins. Proteomic 

analysis of one set of purified proteins contained from the spin columns even showed 

enzymes from E. coli and changes to the metabolomics dataset could be traced to one of 

them. Therefore, protein purification was changed to use HPLC with a Poros MC20 

column (2.3.2).  
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Gene ID Gene name (putative) 
Plasmid 

ID PCR for cloning Protein over expression 
Metabolomics 

assay 

Tb927.8.2020 Arginase/agmatinase-like protein pMB-G131 
E. Kerkhoven, PhD thesis, 
2012 High levels overexpression see 3.2.3.8 

Tb09.160.0810 Kynureninase pMB-G157 performed by B. Nijgal Not soluable n.a. 

Tb927.10.2750 Deoxyhypusine synthase pMB-G158 performed by B. Nijgal High levels overexpression see 3.2.3.3 

Tb927.7.5680 Deoxyribose-phosphate aldolase pMB-G159 performed by B. Nijgal High levels overexpression see 3.2.3.4 

Tb927.5.287b Galactokinase, Pseudogene pMB-G160 performed by B. Nijgal smaller size than expected n.a. 

Tb927.2.3080 Fatty acid desaturase pMB-G161 performed by B. Nijgal No over expression n.a. 

Tb11.01.6500 NAD
+
 synthase pMB-G162 performed by B. Nijgal High levels overexpression see 3.2.3.5 

Tb427.01.1130 Glycerol-3-phosphate dehydrogenase pMB-G190 0.2 pmol No over expression n.a. 

Tb427.06.4920 S-adenosylmethionine synthetase pMB-G191 0.2 pmol High levels overexpression see 3.2.3.1 

Tb427.07.4390 Threonine synthase n.a. No positive PCR n.a. n.a. 

Tb427.08.3800 Nucleoside phosphatase pMB-G192 0.2 pmol No over expression n.a. 

Tb427.10.12980 Methyltransferase n.a. No positive PCR n.a. n.a. 

Tb427.10.13130 UTP-glucose-1-phosphate uridylyltransferase pMB-G193 0.2 pmol Not soluable n.a. 

Tb427.10.12430 Citrate synthase pMB-G194 0.2 pmol High levels overexpression see 3.2.3.2 

Tb427tmp.01.3640 Acyl-CoA dehydrogenase n.a. No positive PCR n.a. n.a. 

Tb427tmp.02.0530 phosphoribosylpyrophosphate synthetase pMB-G195 0.2 pmol Not soluable n.a. 

Tb427tmp.02.3040 Aldo/keto reductase pMB-G196 0.2 pmol High levels overexpression see 3.2.3.6 

Tb427.10.2490 Glucose-6-phosphate 1-dehydrogenase n.a. No positive PCR n.a. n.a. 

Tb427.05.3820 Aspartate carbamoyltransferase pMB-G197 0.2 pmol High levels overexpression see 3.2.3.7 
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Gene ID Gene name (putative) 
Plasmid 

ID PCR for cloning Protein over expression 
Metabolomics 

assay 

Tb427.10.2010 Hexokinase pMB-G198 0.2 pmol Not soluable n.a. 

Tb427.05.4560 Guanine deaminase n.a. No positive PCR n.a. n.a. 

      
Table 3.4: Trypanosome genes selected for in vitro enzyme identification assay. Gene ID represents the identification number given by TritrypDB. All genes chosen represented 

putative identified enzymes, except for glycerol-3-phosphate dehydrogenase, glucose-6-phosphate 1-dehydrogenase and hexokinase which were already descript to be present in 

trypanosomes, but were chosen as positive controls. Plasmid ID shows the identification number in our lab, when applicable. For Plasmid ID n.a. (not applicable) no plasmid was 

created due to failed PCR. PCR for cloning shows the concentration (in pmol) of DNA used for T4 DNA polymerase treatment, when performed during this project. When already 

created plasmids were used for protein over expression the person who created the original plasmid is named. Protein over expression indicates if the over expression was successful 

and Metabolomics assay refers to the appropriate chapter in this thesis.       
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3.2.3.1. S-adenosylmethionine synthetase, putative (G191) 

 

The enzyme S-adenosylmethionine synthetase catalyses the formation of S-

adenosylmethionine (AdoMet) from methionine and ATP, and is the starting enzyme in the 

methionine cycle (Figure 3.6).  

 

Figure 3.6: First step in the methionine cycle, adapted from Metacyc (http://metacyc.org). 1  S-

adenosylmethionine synthetase (EC 2.5.1.6) catalyses the first step from L-methionine to S-adenosyl-L-

methionine, using ATP as the adenosyl-group donor, leaving diphosphate and phosphate. Trypanosome 

genome shows nine genes coding for S-adenosylmethionine synthase. 

 

S-adenosylmethionine is the key branch point in cell metabolism. Most of the intracellular 

methionine is converted into S-adenosylmethionine (Nozaki et al., 2005) and there are 

three known downstream reactions for AdoMet:  

 

(1) AdoMet acts as the methyl group donor for most cellular methyltransferase reactions, 

in fact all biological methylation reactions with the exception of the methylation of 

homocysteine (Stipanuk, 2004). 

(2) AdoMet can also be used for the formation of polyamines via decarboxylated AdoMet. 

It serves, in trypanosomes, as the aminopropyl group donor in the synthesis of polyamines, 

including Spermidine (Reguera et al., 2007). 

(3) AdoMet can be recycled back to Methionine, via S-adenosyl homocysteine and 

homocysteine, a process known as the methionine cycle. 
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Activity of the reaction has been measured in cell extract of T. brucei and two isoforms of 

the enzyme are present in the bloodstream form (Bacchi and Yarlett, 1993).  TritrypDB 

shows nine copies of a putatively annotated gene in T. brucei (Tb427.06.4840 / 4850 / 

4860 / 4870/ 4880/ 4890/4900/ 4910/ 4920), but no experimental data with recombinant 

protein exists to confirm the correct annotation. 

 

A gene encoding for S-adenosylmethionine synthetase was cloned from T. b. brucei strain 

427 using the ligase independent cloning system pET30 Xa/LIC with primers specifically 

designed to create an overhang compatible with this system. 

Primers GGTATTGAGGGTCGCATGTCCGTGCGCCAG (MB0729, fwd)   and 

AGAGGAGAGTTAGAGCCCTACTGCACGTCACTAAGACC (MB0730, rev) were 

designed to produce the desired insert (introduced overhang is underlined).  

 

The activity of recombinant S-adenosylmethionine synthetase was investigated using an in 

vitro assay combined with metabolite profiling. The recombinant protein was purified 

using an Immobilised Metal ion Affinity Chromatography (IMAC) protocol (Figure 3.7). 

(a)          (b)  

Figure 3.7: Purification of recombinant putative S-adenosylmethionine synthetase (SAM synthetase). 

SAM synthetase was heterologously expressed and purified using immobilised metal affinity 

chromatography (IMAC).  (a) Purification profile using IMAC, with the protein of interest being eluted with 

500mM imidazole. (b) Protein verification by SDS-PAGE. 

 

The raw data was analysed using IDEOM (2.4.6). A heatmap was created in IDEOM using 

all identified basepeaks (Figure 3.8 (a)) and shows a minority of metabolites changing 

between the sample sets. Principal component analysis (PCA) of the dataset shows a less 

defined separation between control and treatment samples (Figure 3.8 (b)). The dataset 

showed a significant increase in S-adenosylmethionine in the sample set containing ATP 

(Figure 3.9 (a)). A low increase was also detected in the enzyme treated sample set 
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containing ADP (Figure 3.9 (a)). Whether that is because the commercially available ADP 

from Sigma was contaminated with ATP or because low levels of S-adenosylmethionine 

were present in the yeast extract is unknown. 

(a) (b) 

 

Figure 3.8: Heatmap and principal component analysis (PCA) of metabolomics dataset from SAM 

synthetase assay. (a) Heatmap created with the statistical software R in IDEOM from all identified 

metabolites with a confidence level between 5 and 10. The total number of detected metabolites was 1324. 

(b) PCA analysis of the same dataset. Abbreviations: Co1_C control sample of cofactor 1 metabolite mix, 

Co1_E enzyme treated sample of cofactor 1 metabolite mix. Co2_C / Co2_E cofactor 2 metabolite mix 

control (C) and enzyme treated (E) sample. In the heatmap the last digits representing the replicate number 

(1-3). Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly 

decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).  

(a) (b) 

Figure 3.9: Peak intensity of S-adenosylmethionine and L-methionine. Assay was set up as described in 

2.4.1. and analysed with IDEOM. (a) S-adenosylmethionine (the product of s-adenosylmethionine 

synthetase) and (b) L-methionine (the substrate of the reaction). Comparing the intensities of those two 

metabolites, it shows that L-methionine is highly abundant in the yeast extract which probably explains why 

the levels of L-methionine do not decrease in this experiment. 
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Unfortunately, no decrease in L-methionine levels was detected, however, as seen in 

Figure 3.9 (b), L-methionine was highly abundant in the yeast extract and it seems that the 

high levels of that compound masked the decreasing levels in the enzyme treated sample 

set containing ATP.  

 

3.2.3.2. Citrate synthase, putative (G194) 

 

Gene Tb427.10.13430 has been putatively identified as citrate synthase, which is the first 

enzyme in the citric acid cycle and synthesizes citrate from acetyl-CoA and oxaloacetate 

(Figure 3.10). 

 

 

Figure 3.10: Reaction catalysed by Citrate synthase. Citrate and Coenzyme A are being produced from 

acetyl-CoA, oxaloacetate and water. Adapted from Metacyc.org. 

 

Gene Tb427.10.13430 was cloned from T. brucei strain 427 using the ligase independent 

cloning system pET30 Xa/LIC with primers specifically designed to create an overhang 

compatible with this system. 

Primers GGTATTGAGGGTCGCATGTGCATGCGTGCTCG (MB0739, fwd)   and 

AGAGGAGAGTTAGAGCCCTACGCTATGTTGTACTTTGTG (MB0740, rev) were 

designed to produce the desired insert (introduced overhang is underlined). Protein was 

heterologously expressed in E. coli Rosetta (DE3) pLysS and purified using IMAC 

protocol described in method section (Chapter 2.3.2). 
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The in vitro assay combined with metabolite profiling showed very few changes in the 

metabolite mix between control and treatment samples. Heatmap and PCA analysis (Figure 

3.11) show no pattern that would show sample separation from treatment vs control; 

however, a few changes indicated that there might be a reaction in the cofactor 2 treatment 

samples. The citrate synthase reaction, as shown in Figure 3.9., was not evident in this 

dataset. Due to the large sample variation (Figure 3.12 (b)), it is difficult to detect any 

possible changes in levels of citrate, but also the levels of acetyl CoA do not seem to 

change significantly between control and treatment samples (Figure 3.12 (a)). 

 

(a)        (b) 

 

Figure 3.11: Heatmap and principal component analysis (PCA) of metabolomics dataset from citrate 

synthase assay. (a) Heatmap created with the statistical software R in IDEOM from all identified metabolites 

with a confidence level between 5 and 10. The total number of detected metabolites was 1310. 

Abbreviations: Co1 cofactor 1  metabolite mix, Co2 cofactor 2  metabolite mix  with control (C) and enzyme 

treated (E) sample for each set and the last digits representing the replicate number (1-3). (b) PCA analysis 

created by the statistical software R using IDEOM, shows no clustering of sample sets (treatment vs control). 

Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly 

decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).  
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Figure 3.12: Peak intensities of metabolites predicted to change in the dataset according to putative 

annotation of enzyme. However, as seen in (a) levels of Acetyl-CoA (in samples containing cofactor 2 mix) 

do not seem to change significantly when sample mix is treated with enzyme compared to control sample and 

citrate levels are similar between control and treatment samples (b). 
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Figure 3.12 c: Peak intensity of significantly increased metabolite in G194 dataset putatively annotated 

as 2S-amino-tridecanoic acid. Changes in yeast extract with cofactor 1 mix, untreated (Control), treated 

(Treatment) with enzyme are represented on the left and changes in yeast extract with cofactor 2 mix, 

untreated, treated, are shown on the right. Structure of this compound is shown next to the changes. 

 

The most significant change in this dataset was a compound with the mass of 229.20 and a 

retention time of 4.31 min, which has been putatively identified as 2S-Amino-tridecanoic 

acid (basepeak) with a confidence of 7 (Figure 3.12 (c)). However, 5 isomers are assigned 

to this compound (Table 3.5); with 2S-Amino-tridecanoic acid showing a retention time 
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(rt) closest to the predicted rt. This metabolite was only detected in the enzyme treated 

samples, with higher change detected in the cofactor 2 treated sample set (Figure 3.12 (c)).  

Isomers 

ppm 

error predicted RT error 

2S-Amino-tridecanoic acid 0.72 -7.70% 

[FA amino(13:0)] 13-amino-tridecanoic acid 0.72 -28.10% 

[FA amino(13:0)] 2R-aminotridecanoic acid 0.72 -7.90% 

[FA amino(13:0)] 2-amino-tridecanoic acid 0.72 -7.90% 

Capryloylcholine 0.72 -49.40% 

   Table 3.5: Isomers of detected compound showing significant increase in treatment samples. Putative 

identification was 2S-Amino-tridecanoic acid, which showed the lowest retention time error to the predicted 

retention time.     

 

2S-Amino-tridaconic acid is an amino fatty acid belonging to the 13C-carbon saturated 

fatty acids. Searches in metacyc.org, KEGG and PubMed have not indicated the possible 

existence of a pathway containing this metabolite in trypanosomes. Therefore, it is possible 

to give a possible function for this protein on this one significant increase found in the 

dataset. 

 

3.2.3.3. Deoxyhypusine synthase, putative (G158) 

 

Tb927.10.2750 is putatively identified as a deoxyhypusine synthase, which catalyses the 

spermidine-dependent modification of hypusine in a lysine residue for the essential 

translation factor elF5A. This reaction is performed in two steps, the first step 

deoxyhypusine synthase transfers the butylamine moiety from spermidine to a specific 

lysine residue of the of the eIF5A precursor protein with NAD+ as a cofactor (Joe et al., 

1995). However, if the elF5A precursor protein is absent, the reaction releases 1-pyrroline. 

Decreasing levels in Spermidine with corresponding increasing levels in 1-pyrroline could, 

in theory, be detected using the LC-MS platform used in this study. Gene Tb927.10.2750 

was cloned from T. brucei strain 427 using the ligase independent cloning system pET30 

Xa/LIC with primers specifically designed to create an overhang compatible with this 

system. 

Primers GGTATTGAGGGTCGCATGGCTGAGTTGGCCAAGAG (MB0639, fwd)   and 

AGAGGAGAGTTAGAGCCTCACGAGCGGATATTCTCCT (MB0640, rev) were 

designed to produce the desired insert (introduced overhang is underlined) and cloning was 

successful and confirmed by sequencing. 
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As described above the changes I would have expected to see during this experiment, if 

this protein is indeed a deoxyhypusine synthase, are decreasing levels of Spermidine and 

NAD+ and increasing levels of 1-pyrroline. However, only a minimal change in 

spermidine levels was observed during the in vitro metabolite profiling (Figure 3.12. (a)). 

The sample set containing yeast metabolites and Cofactor mix 1 (which includes NAD+), 

treated with enzyme showed a slight decrease in levels of spermidine. However, 1-

pyrroline and NAD+ were not detected. These results are not conclusive enough to identify 

the gene Tb927.10.2750 as an deoxyhypusine synthase coding gene.  

 

After this experiment was performed it was shown that this protein is indeed a 

deoxyhypusine synthase but also that this enzyme’s activity is increased 3000-fold by 

forming a heterotetramer with a catalytically dead paralog (Nguyen et al., 2013). This 

would explain why the results were inconclusive using the metabolite profiling approach.  
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Figure 3.13: Spermidine peak intensities and heatmap of metabolomics dataset from deoxyhypusine 

synthase assay. (a) Average peak height of spermidine from three sample replicates with standard deviation 

and (b) Heatmap of untargeted metabolite profiling approach with yeast extract and two cofactor mixes (3 

replicates) of Deoxhypusine synthase. No significant changes in metabolite levels between control and 

treatment samples were detected in this dataset. Abbreviations are: Co1 for cofactor 1 / metabolite mix, Co2 

for cofactor 2 / metabolite mix  with control (C) and enzyme treated (E) sample for each set and the last 

digits representing the replicate number (1-3). Heatmap colours are represented in a gradient from dark blue 

(metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and 

red (significantly increased).  

 

As shown in the heatmap of this experiment (Figure 3.13) there seem to be some changes 

in the data set. However, after analysis it became clear that those changes demonstrate the 

variance between samples more than sample groups (control/treatment). This was evident 

from replicates not showing similar intensities. As IDEOM uses the average peak intensity 
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to compare control to treatment, a metabolite not detected in one replicate could indicate a 

change when indeed it is just sample variation. 

 

3.2.3.4. Deoxyribose-phosphate aldolase, putative (G159) 

 

The gene Tb927.7.5680 codes for a protein that is putatively annotated as deoxyribose-

phosphate aldolase, an enzyme which catalyses the following reaction: 

2-deoxy-D-ribose 5-phosphate → D-glyceraldehyde 3-phosphate + acetaldehyde  

To investigate the function of this protein, the gene Tb927.7.5680 was cloned from T. b. 

brucei strain 427 using target gene specific primers  and a ligase independent cloning 

system (as described in the methods section), using primers 

GGTATTGAGGGTCGCATGACCGACCTTCACATGAG (MPB0641, fwd) and 

AGAGGAGAGTTAGAGCCTTAGTATTTACTGCGGGAGC (MPB0642, rev), to create 

vector specific overhang (Introduced overhang is underlined). The untargeted 

metabolomics approach showed no significant changes regarding any potential enzyme 

activity. The substrate and product have not been detected, although previous data sets 

have shown those metabolites to be present in the yeast extract. Although the PCA analysis 

(Figure 3.14 (b)) shows a grouping of samples treatment vs control, the dataset showed no 

significant changes in individual metabolite levels between those groups (Figure 3.14 (a)). 

(a) (b) 

 

Figure 3.14: Heatmap and principal component analysis (PCA) of metabolomics dataset from 

deoxyribose-phosphate aldolase assay. (a) Heatmap of untargeted metabolite profiling approach with yeast 

extract and two cofactor mixes (3 replicates) of deoxyribose-phosphate aldolase. (b) PCA analysis of same 

data set shows clustering of treatment vs control samples (treatment samples in red and dark blue). 

Abbreviations are: Co1 for cofactor 1 / metabolite mix, Co2 for cofactor 2 / metabolite mix  with control (C) 

and enzyme treated (E) sample for each set and the last digits representing the replicate number (1-3). 

Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly 

decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).  
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To establish if this protein is essential for bloodstream form trypanosomes, a deoxyribose-

phosphate aldolase
RNAi

 cell line (G159
RNAi

) was created and the transcription of the gene 

knocked down by RNA interference.  

 

Induction of knock down with 1 µg ml
-1

 and 5 µg ml
-1

 tetracycline showed no change in 

growth phenotype (see Figure 3.15 (a)). Reverse transcription with RT-PCR showed only a 

knockdown effect of about 10% (Figure 3.15 (b)). Therefore it could not be determined 

whether this protein is essential for cell survival. 
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Figure 3.15: Growth curve of G159
RNAi

 cell line (a) and relative RNA abundance in G159
RNAi

 cell line, 

as determined by rt RT-PCR (b) 

(a) Culture of G159
RNAi

 , induced every 24 h with 1 µg ml
-1

 tet (+) and without tet (-) , was monitored for six 

days for differences in growth rate. As seen, no differences in growth could be detected. Cell flasks were set 

up in triplicate.  

(b) Two cultures of G159
RNAi

 were set up, one was induced with 5 µg ml
-1

 tetracycline (+tet) every 24 hours. 

Samples were taken ( 5 x 10
7
 cells) at timepoint 48h, 72h and 96h and RNA extracted and relative RNA 

abundance of transcript of interest was assessed by rt RT-PCR (in triplicate). Timepoints were combined for 

graph as there were no changes in RNA abundance between different timepoints. Protein GPI-8 was used as 

standard.  
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3.2.3.5. NAD
+ 

synthase, putative (G162) 

 

NAD
+
 synthase catalyses the last step in the NAD

+
 biosynthesis pathway and the reaction 

involves either the transfer of an amino group from glutamine or ammonia to form NAD
+
 

from nicotinic acid adenine dinucleotide (NaAD or Deamido-NAD
+
) (Ozment et al., 1999). 

The reactions are shown in Figure 3.16 (glutamine dependent NAD
+
 synthase) and Figure 

3.17 (ammonium dependent NAD
+
 synthase). 

 

 

 

Figure 3.16: Reaction of L-glutamine dependent NAD
+ 

synthase, adapted from metacyc.org. In this 

reaction an amino-group is transferred from L-glutamine to deamido-NAD+ to form L-glutamate and NAD+.  
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Figure 3.17.: Reaction of ammonium dependent NAD
+
 synthase, adapted from metacyc.org. In this 

reaction ammonium and deamido-NAD
+  

form NAD
+
. 

 

E. coli favours the ammonia dependent reaction (Spencer and Preis, 1966), while 

eukaryotic NAD
+
 synthase seems to be glutamine dependant (Wojcik et al., 2006). In 

trypanosomes, gene number Tb11.01.6500 is putatively annotated as an NAD
+
 synthase 

and was investigated for its biological function using in vitro metabolite profiling and 

targeted enzyme assays. To study the function of the encoded protein from gene 

Tb11.01.6500, it was cloned from T. brucei strain 427 using target gene specific primers  

and a ligase independent cloning system (as described in the methods section), using 

primers GGTATTGAGGGTCGCATGCCGAAGGAGCCCATTCT (MPB0647, fwd) and 

AGAGGAGAGTTAGAGCCTACAGGTTCACAATACCGT (MPB0648, rev), to create 

vector specific overhang (Introduced overhang is underlined). Over-expression was 
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achieved using 1 litre cultures of transformed E. coli Rosetta pLysS cells as well as E. coli 

BL21 (DE3). The over-expression of the putatative NAD
+
 synthase showed consistently 

high amounts of protein produced, but purification, using IMAC, showed contamination in 

the eluate (see Figure 3.18). 

(a)     (b) 

Figure 3.18: Purification of recombinant putative NAD
+
 synthase. NAD

+
 synthase was heterologously 

expressed and purified using immobilised metal affinity chromatography (IMAC).   (a) Purification profile of 

recombinant protein G162 over-expressed in E. coli Rosetta pLysS, using IMAC, washed with 50 mM 

imidazole and eluted with 500 mM imidazole and (b) protein verification by SDS-PAGE, m=Marker, 

L=Lysis, FT= Flowthrough and MC=pool of eluate. 

 

Heatmap and PCA are shown in Figure 3.19 and show little variance between the samples, 

except for the QC samples. However, the pattern of decreasing metabolites throughout the 

run indicates that the volume of QC sample was too low and sample could not be picked 

up. 

(a) (b) 

 

Figure 3.19: Heatmap and principal component analysis (PCA) of metabolomics dataset from NAD
+
 

synthase assay.  (a) Heatmap of untargeted metabolite profiling approach with yeast extract and cofactor 

mix 2 (3 replicates). The visible changes occur in the quality control (QC) samples, which are run at the 

beginning, in the middle and at the end of the run, with decreasing detected metabolites from QC1 to QC 3. 

Those changes are most likely due to sample degradation. (b) Correlation between sample groups 

(control/treatment) was analysed by PCA. No clear separation is apparent between the two groups. Heatmap 

colours are represented in a gradient from dark blue (metabolite not present or significantly decreased, green 

(decreased, not significant), yellow (unchanged) and red (significantly increased).  
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Metabolic profiling by mass spectrometry did show decreasing levels of deamido-NAD
+
 or 

L-glutamine, however those changes do not seem to be significant (Figure 3.20). ATP and 

NAD
+
 were not detected in the IDEOM spreadsheet. 
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Figure 3.20: Average peak intensities of L-glutamine, L-glutamate and Deamido-NAD
+
 in 

metabolomics dataset. Detected average intensities of metabolites, assumed to be involved in reaction, of 

cofactor 2 treatment (Co2_E) and control (Co2_C) samples (three replicates). Although it appears that L-

glutamine levels go slightly down in treatment samples (a), those changes are not significant. L-glutamate 

levels show no corresponding increase (b). Deamido-NAD
+
 (c) also shows no significant decrease in 

intensity, however, when one control sample, showing significantly lower peak intensity than the other 

samples, was removed, decrease of Deamido-NAD
+
 seems to be significant (d). 3 replicates were used in this 

study. 

 

As the detected changes in the metabolomics dataset would not immediately point to this 

enzyme being a NAD
+
 synthase, a spectrophotometric enzyme assay was performed to 

determine the activity of the purified protein using an adapted coupled enzyme assay from 

Wojcik et al (2006). Instead of alcohol dehydrogenase (suggested enzyme for coupled 

reaction), glucose dehydrogenase was used. Protein purified from Rosetta pLysS seemed to 

produce NAD
+
, while protein produced in BL21 did not. 
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Figure 3.21: Results of NAD
+ 

-synthase assay on spectrophotometer. A glutamine-dependent enzyme 

assay was performed, as described by Wojcip et al (2006). Positive control with 20mM NAD
+
 was plotted 

against left y-axis and is marked in black. Negative control, enzyme assay reaction mix 1 (as described in 

method section) without enzyme is shown in dark blue. Coupled enzyme assay, reaction mix 1 and glucose 

dehydrogenase assay is shown in triplicate (light blue, light purple and pink) and plotted against the right y-

axis. Glucose dehydrogenase was added to all samples at 120 seconds. 

 

As shown in Figure 3.21, the increase of absorbance was minimal in the NAD
+
 synthase 

treated samples. However, although minimal changes in absorbance indicate that gene 

Tb11.01.6500 is indeed an NAD
+
 synthase, it is not clear if the enzyme is an ammonium 

dependent or glutamine hydrolysing NAD
+
 synthase. A spectrophotometric enzyme assay 

for ammonium dependent NAD
+
 synthase showed no activity when performed with protein 

purified from E. coli BL 21 (DE3). It is likely though, that the trypanosome NAD
+
 

synthase is ammonium dependent, but that L-glutamine can still act as an amino group 

donor, albeit not as efficiently (Spencer and Preiss, 1967). If so, it would explain the 

minimal changes in the glutamine dependent enzyme assay. A bioinformatics search on the 

predicted protein sequence (EFICAz
2.5

) suggested that the gene Tb11.01.6500 codes for 

the ammonium dependent enzyme. A further Pfam (http://pfam.xfam.org/) search for 

active domains revealed that the gene Tb11.01.6500 only contains one domain associated 

for NAD
+
 synthase activity. This result is consistent with E. coli NAD

+
 synthase. Human 

NAD
+
 synthase on the other hand shows two domains. The ‘CN hydrolase’ domain 

appears to be necessary for the glutamine dependant activity. This domain is missing from 

trypanosomes NAD
+
 synthase, however, it is found in trypanosome gene Tb927.9.1960, 

which is putatively annotated as a nitrilase. 
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3.2.3.6. Aldo/keto reductase, putative (G196) 

 

The aldo/keto reductase superfamily includes NADPH dependant oxidoreductases (Bohren 

et al., 1989). Gene Tb427tmp.02.3040 was cloned from T. b. brucei strain 427 using the 

ligase independent cloning system pET30 Xa/LIC with primers specifically designed to 

create an overhang compatible with this system. 

Primers GGTATTGAGGGTCGCATGGACCGTATTCCATATTTGG (MB0745, fwd)   

and AGAGGAGAGTTAGAGCCTTAATCTATCGTGTTGCTATGCC (MB0746, rev) 

were designed to produce the desired insert (introduced overhang is underlined).  

Protein was heterologously expressed in E. coli Rosetta (DE3) pLysS and purified using 

IMAC protocol described in method section (2.3.2). The recombinant T. brucei enzyme did 

not show any significant changes in the dataset that could lead to function of this enzyme. 

Heatmap and PCA analysis (Figure 3.22) showed no difference in control vs treatment 

samples. NADPH dependent changes should have been seen in cofactor mix 2, however, 

NADPH or NADP were not detected. 

 (a) (b) 

 

Figure 3.22: Heatmap and principal component analysis (PCA) of metabolomics dataset from 

aldo/keto reductase assay. (a) Heatmap created from dataset using R. Changes in metabolite levels show the 

variance between samples as levels vary within the replicates more than between the sample groups. (b) PCA 

analysis shows separation between the individual samples, indicating random changes between the samples. 

Abbreviations are: Co1 for cofactor 1 / metabolite mix, Co2 for cofactor 2 / metabolite mix  with control (C) 

and enzyme treated (E) sample for each set and the last digits representing the replicate number (1-3). 

Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly 

decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).  

 

To establish if this protein is essential for bloodstream form trypanosomes an Aldo/keto 

reductase
RNAi

 cell line (G196
RNAi

) was created and the transcription of the gene knocked 

down by RNA interference. Induction of knock down with 1 µg ml
-1

 or 5 µg ml
-1

  

tetracycline showed no change in growth phenotype. Reverse transcription with RT-PCR 

showed a knockdown effect of about 40% (Figure 3.23).  
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No further studies were performed, as it was concluded that 40% knock down is not 

enough to establish if the protein is essential and therefore further metabolomics studies 

seemed uninformative.  

 

G196

G196 - tet G196 + tet
0

50

100

150

re
la

ti
v
e
 R

N
A

 a
b

u
n

d
a
n

c
e

 
Figure 3.23: Relative RNA abundance in G196

RNAi
 cell line, as determined by rt RT-PCR 

Two cultures of G196
RNAi

 were set up, one was induced with 5 µg ml
-1

 tetracycline (+tet) every 24 hours. 

Samples were taken (5 x 10
7
 cells) at timepoint 48h, 72h and 96h, RNA extracted and relative RNA 

abundance of transcript of interest was assessed by rt (reverse transcription)RT-PCR (in triplicate). 

Timepoints were combined for graph as there was no change in RNA abundance between different 

timepoints. Protein GPI-8 was used as standard.  
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3.2.3.7. Aspartate carbamoyltransferase, putative (G197) 

 

Aspartate carbamoyltransferase catalyses the first step in the pyrimidine biosynthetic 

pathway. It belongs to the enzyme class of transferases and the reaction fuses L-aspartate 

with a carbamoyl-group to form N-carbamoyl-L-aspartate (Figure 3.24). In bloodstream 

form trypanosomes, pyrimidine biosynthesis from glucose has been observed when 50 % 

U-
13

C-labelled glucose was added to the growth medium (Creek et al., 2015).  

 

Figure 3.24: Reaction of aspartate carbamoyltransferase. Adapted from metacyc.org 

 

Gene Tb427.05.3820 was cloned from T. brucei strain 427 using the ligase independent 

cloning system pET30 Xa/LIC with primers specifically designed to create an overhang 

compatible with this system. 

Primers GGTATTGAGGGTCGCATGGCGGAGCTGCAACCTG (MB0749, fwd)   and 

AGAGGAGAGTTAGAGCCTTAGGCGAGAACACTATAAAG (MB0750, rev) were 

designed to produce the desired insert (introduced overhang is underlined).  

Protein over-expression was achieved consistently with high yield in both E. coli Bl21 

(DE3) and Rosetta (DE3) pLysS.  However, Rosetta (DE3) pLysS cells were used for this 

study and 1 litre culture was induced with 1mM IPTG overnight at 18°C and protein 

purified using IMAC (Figure 3.25). 

 

(a)  (b) 

Figure 3.25: Purification of recombinant putative aspartate carbamoyltransferase. Aspartate 

carbamoyltransferase was heterologously expressed and purified using immobilised metal affinity 

chromatography (IMAC). (a) Purification profile of recombinant protein using IMAC, protein was washed 

with 50 mM imidazole and eluted with 500 mM imidazole. (b) Protein verification by SDS-PAGE, 

m=Marker, L=Lysis, FT= Flowthrough and E= eluates. 
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In vitro assay combined with metabolite profiling showed no differences between the 

control and treatment samples as shown in the heatmap and PCA (Figure 3.26). One 

Control sample (Co1_C_1) showed irregularity to the rest (see Figure 3.26 (a)). However, 

when this sample was excluded from analysis, no significant changes were seen. 

 

 (a) (b) 

 

Figure 3.26: Heatmap and principal component analysis (PCA) of metabolomics dataset from 

aspartate carbamoyltransferase assay. (a) Heatmap crerated from dataset using R. (b) PCA analysis 

created from dataset using R. Samples were analysed in triplicates. Co1_C = Control samples cofactor mix 1, 

Co1_E = Treatment samples cofactor mix 1, Co2_C= Control samples cofactor mix 2, Co2_E= Traetment 

samples cofactor mix 2 and QC= pooled samples. Heatmap shows that one Cofactor 1 control sample seemed 

not to have been picked up proper as the majority of the metabolites seemed decreased compared to the other 

samples. This sample should be discarded for analysis. No clear separation is apparent between the two 

groups. Heatmap colours are represented in a gradient from dark blue (metabolite not present or significantly 

decreased, green (decreased, not significant), yellow (unchanged) and red (significantly increased).  

 

 

To establish if this protein is essential for bloodstream form trypanosomes an aspartate 

carbamoyltransferase
RNAi

 cell line (G197
RNAi

) was created and the transcription of the gene 

knocked down by RNA interference. Induction of knock down with 1 µg ml
-1

 tetracycline 

showed no change in growth phenotype, but induction with and 5 µg ml
-1

 tetracycline did 

(see Figure 27 (a)). Reverse transcription with RT-PCR showed a knockdown effect of 

about 70% (Figure 3.27 (b)).  
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Figure 3.27.: Growth curve of G197
RNAi

 cell line (a) and relative RNA abundance in G197
RNAi

 cell line, 

as determined by rt RT-PCR (b) 

(a) Culture of G197
RNAi

 , induced every 24 h with 5 µg ml
-1

 tet (+) and without tet (-) , was monitored for five 

days for differences in growth rate. Cell flasks were set up in triplicates.  

(b) Two cultures of G197
RNAi

 were set up, one was induced with 5 µg ml
-1

 tetracycline (+tet) every 24 hours. 

Samples were taken ( 5 x 10
7
 cells) at timepoint 48h, 72h and 96h and RNA extracted and relative RNA 

abundance of transcript of interest was assessed by rt RT-PCR (in triplicate). Timepoints were combined for 

graph as there was no change in RNA abundance between different timepoints. Protein GPI-8 was used as 

standard. 

 

To establish the function of this protein knockdown was induced in G197
RNAi

 and after 72 

hours metabolites were extracted from uninduced and induced cells and analysed on LC-

MS. The most significant changes in this dataset were L-glutamate (increasing levels in 

RNAi line) and UDP and uracil (decreasing levels in RNAi line). The pathway involving 

aspartate carbamoyltransferase and metabolite levels are shown in Figure 3.28. This 

pathway has been shown to be active in bloodstream form trypanosomes and a recently 

performed study with U- 
13

C D-glucose showed labelling of L-aspartate from D-glucose 

and the downstream metabolites of the pyrimidine biosynthesis (Creek et al., 2015). 
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Figure 3.28: Pyrimidine biosynthesis pathway, adapted from metacyc.org. Red cross indicates reaction 

catalysed by aspartate carbamoyltransferase. Metabolites changing significantly in knockdown line are 

shown. L-glutamate increases in knockdown line, while uracil and UDP decrease. Abbreviations: PPP: 

Pentose phosphate pathway, PRPP: Phosphoribosyl pyrophosphate, UDP: Uridine diphosphate, UMP: 

Uridine monophosphate. 
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3.2.3.8. Arginase / Agamtinase-like protein, putative (G131) 

 

Vincent et al. (2012) discovered that the gene Tb927.8.2020, putatively annotated as 

‘arginase’ in TritrypDB, has no arginase activity. The annotation was later changed to 

agmatinase-like protein, however, several untargeted metabolite profiling approaches have 

failed to show this (Figure 3.29).  

 

(a) (b) 

 

Figure 3.29: Heatmap and principal component analysis (PCA) of metabolomics dataset from arginase 
assay. (a) Heatmap of untargeted metabolite profiling approach with yeast extract and two cofactor mixes (3 

replicates). The visible changes occur in the quality control (QC) samples, which are run at the beginning, in 

the middle and at the end of the run, with decreasing detected metabolites from QC1 to QC 4. Those changes 

are most likely due to sample degradation. (b) PCA analysis of dataset. Except for QC samples, no clear 

differences between the sample groups. Heatmap colours are represented in a gradient from dark blue 

(metabolite not present or significantly decreased, green (decreased, not significant), yellow (unchanged) and 

red (significantly increased).  

 

 

To investigate the possibility of metal-ion dependency of Tb927.8.2020, heterologously 

expressed protein from E. coli Rosetta (DE3) pLysS was purified and incubated with yeast 

extract and three additional metal-ions (10 µM: manganese (Mn
2+

), cobalt (Co
2+

) and zinc 

(Zn
2+

)). Although the availability of Mn
2+

 and Co
2+

 is very low in trypanosomes, it has 

been shown in the case of phosphoglycerate mutase that replacement of a native metal by 

an alternative can increase the activity of a metalloenzyme (Fuad et al., 2011). A heatmap 

of the created dataset of ‘arginase’ with added metal-ions (Figure 3.30) clearly shows 

changes between control and treatment samples. In total, about 20% of metabolites 

detected showed changes in levels between control and treatment samples. 
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(a) (b) 

 

Figure 3.30: Heatmap and principal component analysis (PCA) of metabolomics dataset from arginase 
assay with metal-ions added. (a) Heatmap of untargeted metabolite profiling approach with yeast extract 

and a mix of three metal ions (3 replicates). Metal-ions used were Co2+, Mn2+ and Zn2+. Changes detected 

in the quality control (QC) samples are probably due to sample degradation. However, Samples treated with 

enzymes show decreased levels in metabolites, mainly in amino acid metabolism. (b) PCA analysis of dataset 

shows a clear separation between control, treatment and QC. Heatmap colours are represented in a gradient 

from dark blue (metabolite not present or significantly decreased, green (decreased, not significant), yellow 

(unchanged) and red (significantly increased).  

 

 

According to putative metabolite annotation, a high proportion of changes taking place in 

the amino acid metabolism and a few biochemical reactions could be plausible: 

 L-histidine + NADH → L-histidinal + NAD, catalysed by histidinal dehydrogenase 

(Figure 3.31). 
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Figure 3.31: Significant changes in metal-ion ‘arginase’ dataset. (a) L-histidine and (b) L-histidinal. 

 

However, L-histidinal seems to be a fragment of the dipeptide N-glycyl L-leucine and has 

been annotated as a possible fragment in IDEOM.  

 Imidazole-5-pyruvate  

Imidazole-5-pyruvate is a metabolite within the L-histidine and imidazole-lactate 

degradation pathway. 

Reaction involving this metabolite (as taken from metacyc.org): 

(1) L-histidine + 2-oxoglutarate ↔ L-glutamate + imidazole-5-pyruvate 
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(2) imidazole-lactate + NAD(P)
+
 ↔ imidazole-5-pyruvate + NAD(P)H 

(3) L-histidine + pyruvate  ↔ imidazole-5-pyruvate + L-alanine 
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Figure 3.32: Significant changes in metal-ion ‘arginase’ dataset. (a) 2-oxoglutarate, (b) L-hsitidine, (c) 

imidazole-pyruvate and (d) L-glutamate. 

 

A peak annotated as imidazole-5-pyruvate shows increasing peak intensity in the enzyme 

treated sample. But imidazole-5-pyruvate elutes within the basepeak of S-methyl-1-thiol-

D-glycerate and has therefore been annotated as a fragment of that metabolite (Figure 

3.32). Furthermore, the reaction involving imidazole-5-pyruvate does not appear to happen 

in this dataset. Imidazole-lactate was not detected, but listed as an isomer of 4-

Imidazolone-5-propanoate, but again this metabolite seems to be a fragment of Adenosine. 

Also, levels of imidazole-lactate increases in enzyme treated sample set. Pyruvate had 2 

isomers, one increasing slightly, the other one decreasing slightly, both possible fragments 

of another metabolite. L-alanine was not detected.  

 (S)-1-Pyrroline-5-carboxylate  

(S)-1-Pyrroline-5-carboxylate could be produced from L-glutamate in an NADH or 

NADPH dependent reaction. No cofactors were added to this sample set, however, it is 

possible that NADH or NADPH was present in the yeast extract. But, similar to imidazole-

5-pyruvate, it elutes within the basepeak of S-methyl-1-thiol-D-glycerate (Figure 3.33 and 

3.34). 

  



80 

 

L-glutamate

Control Treatment
0

1100 5

2100 5

3100 5

4100 5

5100 5

In
te

n
s
it

y

 (a) 

(S)-1-Pyrroline-5-carboxylate

Control Treatment
0

2100 5

4100 5

6100 5

8100 5

In
te

n
s
it

y

 (b)  

Figure 3.33: Average peak intensities of metabolites (S)-1-Pyrroline-5-carboxylate (a) and L-glutamate 

(b). 
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Figure 3.34: Detected basepeak S-methyl-1-thiol-glycerate (a) with the two potential fragments, 

detected as imidazole-pyruvate (b) and (c) (s)-1-pyrroline-5-carboxylate. 

 

Although the function of the enzyme could not be determined from this experiment, the 

protein annotated as ‘arginase’ appears to decrease the levels of several amino acids. This 

could have been an indication of the enzyme being a non-specific deaminase. However, the 

corresponding keto acids were not detected or showed no differences in control and 

treatment samples. In the next step to determine the function of this enzyme, the ‘arginase’ 

was incubated in yeast extract, spiked with uniformly labelled 
13

C-L-methionine and in a 

reaction mix with metal-ions and u-
13

C-labelled L-methionine on its own. L-methionine 

was chosen as it was one amino acid decreasing the most in the previous dataset. The 

results are shown in Figure 3.35, but as previous results it only shows the decreasing level 

of the amino acids (in this case L-methionine), but no labelled product was detected. There 

could be several explanations for this, (1) ZIC-pHILIC is not a suitable column for this 

compound. (2) the levels of product are too low to be detected as a peak. As seen in Figure 

3.31. (b) the detected labelled 13C L-methionine was quite low due to the high levels of 

unlabelled L-methionine in the yeast extract. (3) product does not ionise well and was 

therefore not detected. All metabolites significantly changed in the metal-ion ‘Arginase’ 

dataset are listed in Table 3.6. 
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Mass
RT 

(in mins)
Formula

Is
o

m
e

rs

Putative metabolite identification Treatment Control

160.085 7.433 C6H12N2O3 4 D-Alanyl-D-alanine 9.44 1.00

139.075 7.361 C6H9N3O 3 L-Histidinal 3.63 1.00

195.053 7.601 C9H9NO4 9 Dopaquinone 3.32 1.00

154.038 7.690 C6H6N2O3 2 Imidazol-5-yl-pyruvate 3.28 1.00

113.048 7.703 C5H7NO2 6 (S)-1-Pyrroline-5-carboxylate 2.71 1.00

145.074 7.667 C6H11NO3 9 6-Amino-2-oxohexanoate 2.28 1.00

72.021 7.857 C3H4O2 4 Methylglyoxal 1.27 1.00

117.079 8.948 C5H11NO2 16 Betaine 1.19 1.00

193.074 4.919 C10H11NO3 10 Phenylacetylglycine 0.88 1.00

179.058 6.883 C9H9NO3 6 Hippurate 0.84 1.00

169.085 9.440 C7H11N3O2 5 N(pi)-Methyl-L-histidine 0.76 1.00

188.116 6.734 C8H16N2O3 7 N6-Acetyl-L-lysine 0.73 1.00

131.058 10.391 C5H9NO3 14 trans-4-Hydroxy-L-proline 0.73 1.00

103.063 10.800 C4H9NO2 14 4-Aminobutanoate 0.72 1.00

165.079 8.362 C9H11NO2 7 L-Phenylalanine 0.71 1.00

220.085 8.672 C11H12N2O3 3 5-Hydroxy-L-tryptophan 0.70 1.00

142.074 9.817 C6H10N2O2 1 Ectoine 0.69 1.00

160.048 8.965 C5H8N2O4 2 N-Formimino-L-aspartate 0.69 1.00

116.047 4.629 C5H8O3 9 5-Oxopentanoate 0.66 1.00

216.111 8.096 C9H16N2O4 3 γ-Glutamyl-γ-aminobutyraldehyde 0.65 1.00

227.079 8.357 C10H13NO5 1 L-Arogenate 0.65 1.00

218.127 6.826 C9H18N2O4 5 N2-(D-1-Carboxyethyl)-L-lysine 0.64 1.00

145.085 10.887 C5H11N3O2 3 4-Guanidinobutanoate 0.62 1.00

133.037 10.072 C4H7NO4 4 L-Aspartate 0.59 1.00

130.063 4.274 C6H10O3 17 4-Methyl-2-oxopentanoate 0.58 1.00

204.111 7.497 C8H16N2O4 5 N6-Acetyl-N6-hydroxy-L-lysine 0.56 1.00

147.053 9.914 C5H9NO4 14 L-Glutamate 0.54 1.00

200.977 11.135 C3H7NO5S2 1 S-Sulfo-L-cysteine 0.50 1.00

226.107 8.227 C9H14N4O3 3 Carnosine 0.49 1.00

181.074 9.880 C9H11NO3 11 L-Tyrosine 0.46 1.00

119.058 10.344 C4H9NO3 11 L-Threonine 0.46 1.00

165.046 9.620 C5H11NO3S 4 L-Methionine S-oxide 0.45 1.00

129.043 10.173 C5H7NO3 6 1-Pyrroline-4-hydroxy-2-carboxylate 0.44 1.00

75.032 10.980 C2H5NO2 3 Glycine 0.44 1.00

175.048 9.676 C6H9NO5 4 N-Acetyl-L-aspartate 0.42 1.00

146.069 10.575 C5H10N2O3 6 L-Glutamine 0.38 1.00

164.047 4.251 C9H8O3 13 Phenylpyruvate 0.36 1.00

131.095 8.742 C6H13NO2 12 L-Leucine 0.36 1.00

155.069 10.478 C6H9N3O2 5 L-Histidine 0.34 1.00
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Table 3.6: Significant changes detected in amino acid metabolism in MI sample set. Control samples had 

purified recombinant enzyme added after reaction was quenched, while the treatment had the enzyme added 

for 30min incubation. Metabolites identified with confidence 10 (matching authentic standard) are 

highlighted in grey. 

 

  (c) 

Figure 3.35: In vitro assay with 
13

C-labelled L-methionine. (a) Uniformly 
13

C-Methionine in 10 mM 

MOPS buffer + MI was incubated at 37°C for 30 min without (left) and with (right) ‘Arginase’. (b) Yeast 

extract in 10 mM MOPS + MI was spiked with U-
13

C-Methionine and incubated at 37°C for 30 minutes 

without (left) or with (right) ‘Arginase’. (c) shows the trend plot of labelled L-methionine between the 

different sample sets. 

 

Crystallography studies first suggested that the arginase-like protein is indeed a 

metalloenzyme and it was indicated that it binds significant quantities of Fe(II) ions, at 

least to a 1:1 ratio. The hypothesis is that Fe(II) could be liganded by a Try-His-Asp triad 

in the active site of the enzyme (Dr. David Christianson, University of Pennsylvania, 

personal correspondence). However, although changes in the dataset are evident using 

additional metal-ions as cofactors, it has recently been shown that the T. brucei ‘arginase’ 

does not bind metal-ions as previously thought (Hai et al., 2015). The observed binding of 

Fe(II) to the enzyme turned out to be  weak binding to the HIS-tag of that protein. Why the 

changes, specifically to the amino acids, occur in the metabolomics dataset is unclear.   

132.053 10.669 C4H8N2O3 6 L-Asparagine 0.32 1.00

105.043 10.983 C3H7NO3 3 L-Serine 0.31 1.00

87.032 10.535 C3H5NO2 3 2-Aminoacrylate 0.31 1.00

149.051 9.102 C5H11NO2S 5 L-Methionine 0.28 1.00

174.112 18.361 C6H14N4O2 2 L-Arginine 0.27 1.00

175.096 10.983 C6H13N3O3 3 L-Citrulline 0.26 1.00

246.133 10.931 C9H18N4O4 2 N2-(D-1-Carboxyethyl)-L-arginine 0.23 1.00

132.090 10.962 C5H12N2O2 6 (2R,4S)-2,4-Diaminopentanoate 0.17 1.00
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3.3. Discussion 

The use of metabolomics for enzyme function identification is well documented, with this 

application used in multiple studies (de Carvalho et al., 2010; Larrouy-Maumus et al., 

2013; Liscombe et al., 2010; Saito et al., 2006, 2009). However, in this project, I tried to 

apply this method to a variety of putatative enzymes to investigate its use in a high 

throughput approach for genome wide annotations and to establish a workflow to do so. 

The focus was put on protein over expression, purification and assay optimisation. For 

cloning a ligase independent cloning system was used to cut down on time spent. 

Although, the use of Xa/LIC cloning system seemed initially more expensive, the time 

saved and the benefit of not having to use restriction enzymes made this approach more 

suitable. Protein over expression was performed in E. coli Rosetta (DE3) or Rosetta (DE3) 

pLysS, due to the speed and low cost of this system. As a lot of proteins could not be over 

expressed, for future work the use of trypanosomatids over expression systems is worth to 

be considered for proteins that cannot be obtained using E. coli. Protein purification was 

optimised by changing from Ni-NTA Spin Columns (Qiagen) to Poros MC20 column 

HPLC system. The quality of purified proteins was increased, which has to be considered 

as a vital part of this workflow. A few changes were also made to the assay as it was 

originally used in our lab (E. Kerhoven, thesis). The concentration of MOPS buffer was 

lowered from 40mM to 10mM, as MOPS was seen to block the ZIC-pHILIC column used 

(K. Burgess, Glasgow Polyomics). The change of concentration did not seem to affect the 

enzyme assays, although it was not directly tested, the results obtained from S-

adenosylmethionine synthetase were performed in 10mM MOPS. A second extraction step 

was included, which increased the quality of the obtained dataset slightly. Data analysis 

was solely performed using IDEOM, as the obtained datasets were very complex, normally 

with around 1,000 putatively identified metabolites. The use of IDEOM showed to make 

those datasets manageable and easy to screen for changes in the dataset. The identified 

enzyme functions in this study, two commercial enzymes and a putative S-

adenosylmethionine synthetase, showed the most significant changes in the metabolomics 

dataset straight away, although data still needed investigation, as the changes did not 

always immediately show the ‘correct’ metabolite identification. 

 

Besides the S-adenosylmethionine synthetase, were the function could be shown, six 

additional enzymes were investigated.  Four of them showed no significant changes in the 

datasets. For deoxyhypusine synthase it was recently shown that this enzyme’s activity is 
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regulated by a catalytically dead paralogue (Ngyuen et al., 2013), which might explain why 

no changes were seen. 

 

Deoxyribose-phosphate aldolase and aldo/keto reductase also showed no significant 

changes in the dataset. RNAi lines were created to further investigate their function, but the 

knock down achieved was only 10% and 40% respectively, so no metabolomics 

experiments were performed. The putative aspartate carbamoyltransferase showed no 

significant changes in the sample set with the in vitro assay approach. However, the RNAi 

line created showed growth defect by 70% knock down. Metabolomics analysis showed 

decreasing levels in UDP and uracil and increasing levels in L-glutamate (Figure 3.27) 

indicating that the enzyme is involved in the biosynthesis of pyrimidines. 

 

The putative NAD synthase and citrate synthase need further investigation. Changes were 

seen in the obtained metabolomic datasets. However, a definite function could not be 

assigned to them. 

 

The created workflow in this project took 7 days to complete for one protein, starting with 

PCR for cloning and finishing with samples for LC-MS analysis. Although two proteins 

could be prepared at the same time, the need for the Poros MC20 column HPLC system 

slows protein purification down as proteins cannot be purified at the same time (as was 

possible with the Ni-NTA Spin Columns). As purified proteins were used immediately 

after preparation two in vitro assays could be performed per week.  
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Chapter 4 

4.1 Introduction 

Metabolomics has proven to be an excellent tool for quantitative and qualitative analysis of 

low molecular weight metabolites and their interaction within a living cell (Dunn et al., 

2011). Areas of research which have benefited from this approach include drug 

development, biomarker discovery and the exploration of new metabolic pathways. Whilst 

many metabolites can be easily identified, suggesting which pathways may be active, 

direct proof of this is missing. One possible method to circumvent this problem has been to 

combine an untargeted metabolomic approach with stable isotope labelling. This 

method has successfully been employed to study metabolic pathways in trypanosomes 

(Creek et al., 2012c); providing not only a snapshot of cellular metabolism, but also 

of direct pathway identifications by tracing labelled compounds. 

 

Trypanosomes have different life stages and can adapt quickly to changes in their 

environment. Procyclic trypanosomes utilise L-proline instead of D–glucose as an energy 

source, as their environment in the mid-gut of the tsetse fly provides amino acids more 

readily (Bursell, 1963). The glucose metabolism has been very well studied in bloodstream 

form and procyclic trypanosomes and Creek et al (2015) have recently provided an 

extended form of glucose metabolism in bloodstream form trypanosomes by combining 

stable isotope labelling with metabolomics. It was shown that glucose enters many 

branches of metabolic pathways, including for example polyamine biosynthesis (via 

glucose labelled ATP, which enters the methionine cycle), succinate fermentation pathway 

(forming malate, fumerate and succinate) and nucleotide synthesis (via ribose phosphate). 

 

In this chapter the metabolic pathways of L-methionine, L-proline and L-arginine are 

investigated using stable isoptope labelling combined with metabolomics to investigate 

their distribution within trypanosomes. 

 

L-methionine was thought to be salvaged from methylthioadenosine (MTA) via the MTA 

cycle in trypanosomes (Berger et al., 1996); however, the absence of labelled L-methionine 

from glucose (Creek et al., 2015) indicates the lack of an active MTA cycle. Data obtained 

from U-
13

C glucose showed 3-C labelled succinate and malate, which is consistent with 

their production via the succinate fermentation pathway. However, a significant amount of 
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malate and succinate were not labelled from glucose. Further experiments using U-
13

C L-

glutamine showed the labelling of malate and succinate from L-glutamine, contributing to 

the intracellular presence of those metabolites. L-proline could also contribute to the 

production of malate and succinate, but so far the use of L-proline for metabolic purposes 

was only shown for procyclic trypanosomes.  

 

Another well studied pathway is the biosynthesis of polyamines in trypanosome. L-

ornithine and putrescine are important precursors leading to the production of 

trypanothione, the main thiol in trypanosomes (Fairlamb et al., 1985). In fact, inhibition of 

the enzymes ornithine decarboxylase, which catalyses the conversion of L-ornithine to 

putrescine, by the drug eflornithine, leads to cell death (Fairlamb et al., 1989; Vincent et 

al., 2012). The classical route for biosynthesis of L-ornithine is via L-arginine and is 

catalysed by the enzyme arginase. Previous work has shown that arginase activity is absent 

in bloodstream form trypanosomes (Hai et al., 2014), but also indicated that L-ornithine 

can still be produced from L-arginine (I. Vincent, thesis). To investigate the L-arginine 

metabolism in bloodstream form trypanosomes U-
13

C L-arginine was used. 

 

4.1.1. L-methionine 

The sulfur containing amino acids L-methionine and L-cysteine play an important role in 

protein synthesis, methylation processes in the cell (L-methionine only) and biosynthesis 

of polyamines and glutathione. The importance and role of these two compounds has been 

widely discussed in several reviews for trypanosomes and other organisms (Nozaki et al., 

2005; Stipanuk, 2004; Walker and Barrett, 1997; Willert and Phillips, 2012). Not only does 

L-methionine play a vital role in cell survival, but the polyamine pathway has also been in 

research focus, due to the unique features it possesses in trypanosomes that can be useful 

for drug development against trypanosomiasis. Eflornithine, one of the drugs currently in 

use against this deadly disease, is known to inhibit the biosynthesis of polyamine pathway 

and causes cell death of the parasites (Yarlett and Bacchi, 1988; Vincent et al., 2012). In 

this chapter, I explore the metabolism of L-methionine in T. brucei, using U-
13

C L-

methionine and metabolomics. 
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4.1.1.1. Protein synthesis 

L-methionine is the starting amino acid in protein synthesis. It also plays a vital role in the 

active site of proteins as, due to its sulphur atom, it is easily oxidised (L-methionine to 

methionine sulfoxide), but does not seem to have the same importance to structure and 

stability as L-cysteine, whose highly reactive thiol-group has a big impact on structure and 

stability of proteins (Nozaki et al, 2005).  

4.1.1.2. Methylation processes and methionine cycle 

The L-methionine intermediate S-adenosylmethionine is an important methyl donor in 

many methylation processes of the cell. Binding of an adenosyl-group from ATP to the 

sulphur in L-methionine puts a positive charge to the sulphur and activates the methyl-

group to be reactive with other compounds. It is estimated that about 95% of the acquired 

S-adenosylmethionine pool gets used for methylation processes in the cells, at least in 

mammals (Walker and Barrett, 1997). For trypanosomes the estimated figure is 90% 

(Bacchi and Yarlett, 1993). The resulting S-adenosylhomocysteine is toxic to cells, so is 

quickly being converted to L-homocysteine (see Figure 4.1, reaction 3). L-homocysteine 

can be converted back to L-methionine (see Figure 4.1, reaction 4) and therefore 

concluding the methionine cycle. An alternative route for L-homocysteine is the 

transulfuration pathway, where it is being converted to cystathionine and further to L-

cysteine (Figure 4.1, reaction 5 and 8). 
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Figure 4.1: Methionine cycle as adapted from metacyc.org. This represents the parasitic protozoan 

pathway as described by Walker and Barrett (1997) Key to enzymes:  1- S-adenosylmethionine synthetase; 2-

various methyltransferase; 3- S-adenosylhomo-cysteine hydrolase; 4- 5’-Methyltetra-

hydrofolate:homocysteine methyltransferase (methionine synthase). For reaction 4 a different enzyme is 

indicated for mammalian host (Betaine:homocysteine methyltransferase, EC 2.1.1.5). Reaction involves L-

homocysteine and betaine to form L-methionine and dimethylglycine. This enzyme is supposedly absent in 

trypanosomes.  5- Cystathione β-synthase (EC 4.2.1.22), 6/8-γ-Cystathionase (EC 4.4.1.1), 7- spontaneous 

reaction 

 

In T. brucei strain 927, a gene annotated as encoding for S-adenosylmethionine synthase 

exists in multiple copies. S-adenosylmethionine synthase activity has been shown to be 
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present in trypanosome extracts (Bacchi and Yarlett, 1993) and results from an in vitro 

assay using metabolite profiling on a recombinant S-adenosylmethionine synthase 

expressed from E. coli confirms the presence of this enzyme in trypanosomes (see chapter 

3.2.3.1). When S-adenosylmethionine gets converted to S-adenosylhomocysteine various 

methyltransferases play a role in this reaction. A search in the trypanosome database 

TritrypDP (version 8.1) reveals 41 genes annotated as methyltransferases, some of them 

putative. S-adenosylhomocysteine to L-homocysteine is being catalysed by S-

adenosylhomocysteine hydrolase (or adenosylhomocysteinase (EC 3.3.1.1)). The 

trypanosome genome contains one gene that has been putatively identified as S-

adenosylhomocysteine hydrolase (Tb927.11.9590). This is the second branchpoint in the 

methionine cycle, as L-homocysteine can be converted back to L-methionine or into L-

cystathionine. To convert L-homocysteine back to L-methionine, two genes have been 

putatively identified in T. brucei strain 927 to catalyse this reaction.  

(1) Homocysteine S-methyltransferase (EC 2.1.1.10, Tb927.1.1270). This enzyme transfers 

a methyl-group from S-adenosylmethionine to L-homocysteine.  

(2) 5’-Methyltetra-hydrofolate:homocysteine methyltransferase (EC 2.1.1.14, 

Tb927.8.2610), as shown in Figure 4.1.) transfers a methyl-group from 5’-

methyltetrahydropteroyl tri-L-glutamate to form L-methionine from L-homocysteine. 

L-homocysteine can be converted to cystathione by cystathionine β-synthase. This 

pathway belongs to the biosynthesis of L-cysteine, where L-cysteine can be produced from 

L-cystathione by γ-cystathionase. 

 

4.1.1.3. Biosynthesis of polyamines 

S-adenosylmethionine can be converted into S-adenosyl-5’-deoxy-3’,5’-methylthio-

adenosine (decarboxylated S-adenosylmethionine, dSAM) by S-adenosylmethionine 

decarboxylase  (AdoMet decarboxylase) (Figure 4.2). This is where L-methionine enters 

the biosynthesis of polyamines. In comparison to the mammalian AdoMet decarboxylase, 

the trypanosome enzyme is only weakly activated by putrescine (Bitonti et al., 1986), but it 

is activated by dimerization with an inactive paralogue (Prozyme) of the active AdoMet 

decarboxylase (Pegg, 2009; Willert and Phillips, 2012). Decarboxylated S-

adenosylmethionine gets converted to 5-methylthio-adenosine and spermidine by 

spermidine synthase (Figure 4.3) 
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Figure 4.2: Methionine entering the biosynthesis of polyamines. S-adenosylmethionine gets converted to 

decarboxylated S-adenosylmethionine by SAM decarboxylase (1) 

 

 

Figure 4.3: dSAM and putrescine get converted to spermidine and S-methyl-5’-adenosine by 

Spermidine synthase (EC 2.5.1.16) (1). Spermidine is being utilised further in the synthesis of polyamines, 

while S-methyl-5’-adenosine is entering the L-methionine salvage pathway (MTA or Yang cycle). 

 

Spermidine is being further metabolised to the trypanosomatid specific trypanothione 

(Fairlamb, 1989), which is essential to those parasites by protecting them from oxidative 

stress. As seen in Figure 4.4, spermidine and glutathione form glutathionylspermidine, this 

reaction is catalysed by glutathionylspermidine synthase (EC 6.3.1.8).  
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Figure 4.4: Formation of glutathionylspermidine from spermidine and glutathione, as adapted from 

metacyc.org. 1- Glutathionylspermidine synthetase (EC 6.3.1.8) 

 

Trypanothione is formed by adding an additional glutathione to glutathionylspermidine, 

catalysed by trypanothione synthase (EC 6.3.1.9) as seen in Figure 4.5. Both trypanothione 

synthase and glutathionylspermidine synthase require ATP.  

 

Figure 4.5: Last step in biosynthesis of trypanothione. Glutathionylspermidine and glutathione form 

trypanothione, reaction adpted from metacyc.org. 1- Trypanothione synthase (EC 6.3.1.9).  
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4.1.1.5. Methiolthioadenosine or Yang cycle 

The methylthioadenosine (MTA) or Yang cycle is an L-methionine salvage pathway. Over 

seven steps the cell toxic product methylthioadenosine can be converted back to L-

methionine (see Figure 4.6). Aspartate aminotransferase has been identified as the amino 

group donor of the final step in this pathway (2-oxo-4-methylthiobutyrate to L-methionine) 

for trypanosomes (Berger et al., 2001). 

 

Figure 4.6: methylthioadenosine (MTA) or Yang cycle as adapted from metacyc.org. Enzyme key: 1-S-

adenosylmethionine synthetase, 2-SAM decarboxylase, 3-spermidine synthase, 4-methylthioadenosine 

nucleosidase, 5- methylthioribose kinase, 6- methylthioadenosine phosphorylase, 7- 5-methylthioribose-1-

phosphate isomerase, 8- 5-methylthioribulose-1-phosphate dehydratase, 9- 2,3-diketo-5-methylthio-1-

phosphopentane enolase, 10-2-hydroxy-3-keto-5-methylthio-phosphopentene phosphatase, 11- acireductone 

dioxygenase, 12 – methionine oxo-acid transaminase (metacyc). Expected carbon contribution from L-

methionine throughout this cycle is indicated by a red dot. 
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4.1.2. L-arginine metabolism 

L-arginine is reportedly involved in several metabolic pathways in trypanosomatids 

(Pereira, 2014). 

 Urea cycle 

L-arginine gives an amidino group to form urea. Catalysed by the enzyme arginase, 

L-arginine is converted to L-ornithine and urea. Arginase is present in two isoforms 

in most mammals. Arginase I is primarily located in the liver and takes part in the 

urea cycle, while Arginase II is located in the mitochondria and regulates L-

arginine and L-ornithine concentration within the cell (Morris, 2002). Arginase is 

known to be present in Leishmania parasites, but does not seem to be present in T. 

brucei. 

 Polyamine biosynthesis 

L-ornithine is converted to putrescine which is the starting diamine in the 

biosynthesis of the polyamines spermidine and trypanothione (Fairlamb et al., 

1985; Tabor and Tabor, 1984). 

 Alternative pathway for L-proline biosynthesis 

L-proline can be synthesised via L-ornithine and L-glutamate 5-semialdehyde (Hird 

et al., 1983) 

 Phosphagen synthesis 

L-arginine transfers an amidino group to an amino acceptor, forming guanidine 

derivates (Hird, 1986). Those phosphagens can be used for energy storage. Studies 

on T. cruzi and T. brucei have shown that arginine phosphates are important for 

energy storage and at least in the case of T. cruzi can protect the parasite against 

oxidative stress (Pereira, 2014) 

 Nitric oxide synthesis 

L-arginine is the precursor for the production of nitric oxide by nitric oxide 

synthase (NOS). NOS and arginase compete for L-arginine pools. 

 

4.1.2.1. Urea cycle and polyamine synthesis from L-arginine 

Previous studies from I. Vincent (University of Glasgow, thesis) have shown that arginase, 

the classical enzyme to produce L-ornithine from L-arginine, seems to be absent from T. 

brucei. Metabolomic studies using recombinant ‘arginase’ from T. brucei (Chapter 3) and 

an arginase knockout line (Hai et al., 2014) has shown no arginase activity. 
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Although it was evident that L-ornithine could be produced from L-arginine, it is unlikely 

that L-ornithine biosynthesis happens via arginase as no urea could be detected in 

bloodstream form trypanosomes cell extract using a commercial arginase detection kit 

(Vincent, thesis). That would lead to the conclusion that Ornithine is produced via a 

different pathway than the arginase route, but speculation that the urea cycle could be 

operative in bloodstream form trypanosomes in reverse direction (Arginine – Citrulline – 

Ornithine) could not be proven.  

 

Figure 4.7: Predicted metabolites involved in the biosynthesis and degradation of L-ornithine. Carbons 

transferred between metabolites, originating from L-arginine, are highlighted in red. Enzymes involved in 

those reactions are shown in italic. * Two enzymatic steps are shown in Figure 4.4 and 4.5. 
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4.1.2.2. Phosphagens from L-arginine 

Phosphoarginine has been shown to be an important phosphagen in many organisms and 

has been studied in T. cruzi where it has shown to protect the cells from oxidative stress 

(Miranda et al., 2006). T. brucei genome encodes for three arginine kinases, TbAK1-3, 

each of the isoforms is found in a specific subcellular compartment. TbAK1 is only present 

in the flagellum, while TbAK2 and TbAK3 in the glycosome and cytosol respectively 

(Voncken et al., 2013). When oxidative stress is induced in T. cruzi, levels of 

Phosphoarginine increase (Pereira, 2014). However, when a similar experiment was 

performed in T. brucei, this was not confirmed and arginine kinase knock out lines showed 

that they are not essential in T. brucei (D H Kim, unpublished data). 

 

4.1.3. L-proline 

In procyclic trypanosomes L-proline can be utilised as main carbon source for the energy 

metabolism when glucose supply is limited in the insect host (Bursell, 1963). It has been 

shown that procyclics can switch their energy metabolism regarding ATP production very 

quickly between substrate phosphorylation (D-glucose) and oxidative phosphorylation (L-

proline) and reverse when nutrition supply is changed (Coustou et al., 2008). However, in 

bloodstream form trypanosomes L-proline has not been indicated for the use in energy 

metabolism, as parasites in the bloodstream depend on the uptake of D-glucose and 

glycolysis for ATP production (Bringaud et al., 2006). The classical TCA cycle does not 

seem to be functional in trypanosomes, but part of this cycle seem to be operative 

nonetheless (van Weelden et al., 2005). L- Proline enters the TCA cycle in proline 

degradation (van Hellemond et al., 2005), with succinate and acetate being the endproducts 

(Van Weelden et al., 2005). Tracking 
13

C labelled glucose in bloodstream form 

trypanosomes also revealed malate, succinate and fumarate being labelled (Creek et al, 

2015). Malate, succinate and fumarate were also labelled from L-glutamine (DH Kim and 

F Achcar, unpublished), however, glucose and L-glutamine combined still did not account 

for the three compounds labelled. But could L-proline in bloodstream form trypanosomes 

also contribute to the production of succinate, fumarate and malate as in procyclics?  

L-proline enters the cell and gets converted to (S) 1-pyrroline-5-carboxylate by proline 

dehydrogenase. (S) 1-pyrroline-5-carboxylate forms L-glutamate-5-semialdehyde in a 

spontaneous reaction and gets further converted to L-glutamate by 1-pyrroline-5-
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carboxylase. L-glutamate enters the TCA cycle by being converted to 2-ketoglutarate, a 

reaction catalysed by glutamate dehydrogenase. 2-ketoglutarate is transformed to succinyl-

CoA and further to succinate, fumarate and malate.  

 

L-glutamate can also be involved in the biosynthesis of L-arginine, via N-acetyl-L- 

glutamate, N-acetyl-L-ornithine, L-ornithine, Citrulline, L-arginino-succinate and lastly L-

arginine. However, the above mentioned dataset from trypanosome cultures incubated with 

13
C-glutamate did not show any labelled L-arginine from L-glutamate. Vincent (thesis) 

also showed no labelling of L-arginine or L-ornithine occurring from L-proline when cells 

were incubated with 
15

N-Proline. This concludes that L-proline does not seem to play a 

part in L-arginine or L-ornithine biosynthesis. To fully investigate if bloodstream form 

trypanosomes utilise L-proline for metabolic purposes, cells were cultured and incubated 

for 48h with 
13

C-labelled L-proline. 
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4.2. Results 

Metabolomics with uniformly 
13

C-labelled compounds was used to study the metabolic 

pathways of L-methionine, L-arginine and L-proline in the bloodstream form T. brucei. 

Experimental design, as described in methods 2.4.2. and 2.4.3., involved adding 50 % U-

13
C L-methionine (50µM final concentration) and 100%  U-

13
C L-arginine or L-proline (at 

a final convcentration of 200 µM) to the culture medium (CMM + 10% FBS gold). 

Cultured T. brucei strain 427 were incubated for 48 hours in the presence of the labelled 

compounds, with a starting concentration of 2 x 10
4
 cells ml

-1
. After 48 hours, cells were 

cooled down rapidly to 0°C by placing the falcon tube in dry ice / ethanol bath and cells 

were collected by slow centrifugation (to avoid cell lysis). Cell pellets were resuspended in 

extraction solvent (Chloroform Methanol Water, 1:3:1) and metabolites analysed by LC-

MS (ZIC-pHILIC). Data analysis was achieved using mzMatch and mzMatch.ISO, using 

authentic standards and KEGG database for metabolite identification. 

 

 

4.2.1. Global L-methionine metabolism  

In total 17 labelled metabolites were detected in this dataset, belonging to the methionine 

cycle, L-cysteine and polyamine biosynthesis and the MTA or Yang cycle. Six metabolites 

seem to be a product of methylating processes from S-adenosyl-L-methionine and are 

shown in 4.2.6, the other metabolites were mapped into global metabolite map (Figure 

4.8). Some intermediate metabolites belonging to the pathways were not detected, but were 

mapped nonetheless to give a better understanding of the L-methionine metabolism in the 

bloodstream form trypanosomes.  
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Figure 4.8: Overview of metabolites labelled from 13C L-methionine in bloodstream form 

trypanosomes. This basic metabolic network shows the metabolites mapped into their pathway (according to 

metacyc). Yellow nodes indicate 5 carbon labelling, orange nodes: 4 carbon labelling, green nodes: 3 carbon 

labelling, blue nodes one carbon labelling and none carbon labeeling is presented in grey nodes. Metabolites 

expected to be there but not detected are marked by white nodes. Met: L-methionine, SAM: S-adenosyl-L-

methionine, SAH: S-adenosyl-L-homocysteine, HCys: L-homocysteine, Cysta: Cystathionine, amb: (2Z)-

2aminobut-2-enoate, Cys: L-cysteine, dSAM: decarboxylated S-adenosyl-L-methionine, SPMD: Spermidine, 

Glu-thio-SPMD: glutathionyl-spermidine, MTA:5’-methylthioadenosine, MTR: 5’-methylthioribose, MTR-

P: 5’-methylthioribose-1-phosphate, MTRRibu-P: 5’-methylthioribulose-1-phosphate,  P-diketo-mt-pen: 1-

Phospho-2,3-diketo-5’-methylthiopentane, H-mt-oxopent-P: 2-hydroxy-5-(methylthio)-3-oxopent-1-enyl 

phosphate, dih-mt-pent-1-en-3-one: 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one, MTOB: 2-oxo-4-

methylthiobutyrate. 

 

4.2.1.1. Methionine cycle and L-cysteine biosynthesis 

L-methionine was added to cultured BSF trypanosomes in a 50% mixture of 
12

C and U-

13
C-L-methionine for 48 h. The intracellular L-methionine content was approximately 

35%. In fresh CMM this amount was about 30%. Although, the added L-methionine to the 

media was 50% labelled/unlabelled, the added FBS gold seems to dilute the L-methionine 

concentration in the fresh media. From the four metabolites that make the methionine cycle 

only three were detected in this dataset (Figure 4.9). 
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Figure 4.9: Labelling trend of the first three metabolites of the methionine cycle. (a) L-methionine, 5-C 

labelled in fresh media with 50% added U-
13

C L-methionine, trypanosome cell extract and spent media; (b) 

S-adenosylmethionine, detected in cell extract, 5-C labelled in cell extract from 50% U- 
13

C L-methionine 

culture; (c) S-adeosylhomocysteine, 4-C labelled in trypanosome extract incubated in CMM with 50% U-
13

C 

L-methionine. CMM: Fresh medium sample, Extract: Trypanosome cell extract and Spent: Spent medium 

analysis. Numbers indicate samples with and without 
13

C L-methionine (1 with 
13

C compound, 2 

without).Orange equals 5-C labelled, brown 4-C labelled and blue 1-C labelled carbons. As natural 

abundance of 
13

C occurs, when 1-C is detected it needs to be compared to the unlabelled control.  

 

As shown in Figure 4.10 formation of S-adenosylmethionine could be detected from L-

methionine, with the labelling pattern as expected (5-C). S-adenosylmethionine to S-

adenosylhomocysteine showed a resulting labelling pattern of 4-C for S-

adenosylhomocysteine. Methylated compounds were also detected and are shown in 

4.2.1.4. Conversion of S-adeosylhomocysteine to homocysteine would show a labelling of 

4-C, however L-homocysteine was not detected (the authentic standard was also not 

detected). The formation of L-methionine from L-homocysteine could not be detected. 

Although 4-C labelled L-methionine was detected in the cellular metabolome, it was only 

shown in small amounts with a very similar percentage of 4-C labelled methionine in the 

fresh culture medium. Therefore, it seems that the 4-C labelled L-methionine originates 

from a small fraction of 4-
13

C present in the supplied U-
13

C L-methionine. Therefore it 

seems unlikely that the full methionine cycle is active in cultured bloodstream form 

trypanosomes or just with a very low flux, when large quantities of methionine are 

presented to the cell. Cysteine biosynthesis can occur from L-homocysteine, which has 

been produced from L-methionine via the methionine cycle. L-homocysteine and L-serine 

form L-cystathionine (catalysed by cystathionine β-synthase), which can be transformed to 

L-cysteine and (2Z)-2-aminobut-2-enoate by cystathionine γ-lyase. L-homocysteine would 

be expected to show a 4-C labelling pattern. L-cystathionine did show a 4-C labelling 

pattern expected when labelling occurs from L-homocysteine. As L-cysteine only gets the 

sulphur-group from L-cystathionine, I cannot say for certain if L-cysteine is being 
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produced from L-methionine. However, a peak was detected and putatively annotated as 2-

aminobut-2-enoate which shows the expected labelling pattern from this reaction. It was 

shown by (Bacchi et al., 1995) that when 
35

S-methionine was added to culture medium the 

35
S-label shows up in L-cysteine, confirming that this pathway is active in T. brucei.  

 

Figure 4.10: Methionine cycle and L-cysteine biosynthesis in trypanosomes as seen from labelling data. 

Expected labelled carbons are shown in red and when compound was detected in the dataset, labelling pattern 

is shown next to the structure. Orange equals 5-C labelled, brown 4-C labelled and blue 1-C labelled carbons. 

As natural abundance of 
13

C occurs, when 1-C is detected it needs to be compared to the unlabelled control. 

Key to enzymes:  1- S-adenosylmethionine synthetase; 2-various methyltransferase; 3- S-adenosylhomo-

cysteine hydrolase; 4- 5’-Methyltetra-hydrofolate:homocysteine methyltransferase (methionine synthase). 5- 

Cystathione β-synthase (EC 4.2.1.22), 6/8-γ-Cystathionase (EC 4.4.1.1), 7- spontaneous reaction. 
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4.2.1.2. Polyamine biosynthesis 

The conversion of S-adenosylmethionine to decarboxylated S-adeosylmethionine (dSAM) 

is the first step in the synthesis of polyamines from L-methionine.  dSAM was not detected 

in this dataset. dSAM and putrescine get converted to spermidine. However, spermidine 

does not retain well on ZIC-pHILIC columns. As seen with the authentic standard of 

spermidine (see Figure 4.11) no defined peak is detectable, but many over the time period 

of about 7 to 20 min. Therefore, no identification of the compound spermidine can be 

made for analysis.  

 

Figure 4.11: Spermidine from authentic standard mix on ZIC-pHILIC column.  

 

The only metabolite detected in this pathway was trypanothione disulfide, which was 3-C 

labelled from methionine. As seen in Figure 4.12 , the detected labelling pattern for 

trypanothione is shown to be 1-C, 3-C and 4-C labelled. The detected 4-C labelled is most 

likely an artefact from the 3-C originating from L-methionine and the natural occurring 1-

13
C.  
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Figure 4.12: Polyamine biosynthesis from L-methionine. dSAM and putrescine are converted to 

spermidine and S-methyl-5’-adenosine by 1- Spermidine synthase (EC 2.5.1.16). Spermidine is utilised 

further in the synthesis of polyamines, while S-methyl-5’-adenosine enters the L-methionine salvage pathway 

(Yang cycle). Formation of glutathionylspermidine from spermidine and glutathione is catalysed by 2- 

Glutathionylspermidine synthetase (EC 6.3.1.8).  Glutathionylspermidine and glutathione form 

trypanothione, catalysed by 3- Trypanothione synthase (EC 6.3.1.9). Expected labelled carbons are shown in 

red and when compound was detected in the dataset, labelling pattern is shown next to the structure. Brown 

equals 4-C labelled, green 3-C labelled and blue 1-C labelled carbons. 
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4.2.1.3. Recycling of methionine  

It has been previously described in trypanosomes that methionine can be salvaged via the 

methylthioadenosine (MTA) pathway (Berger et al., 1996; Nozaki et al., 2005). S-methyl-

5-thioadenosine (1-C labelled from L-methionine) being converted back to L-methionine, 

going through a seven step pathway including 5’-methylthioribose-phosphate, 5’-

methylthioribulose-1-phosphate, 1-phospho-2.3-diketo 5’-methylthiopentane and 2-oxo-4-

methylthiobutyrate (see Figure 4.14.). However, in this labelling data only the 

intermediates S-methyl-5-thioadenosine and methylthioribose are being labelled. L-

methionine was detected in 1-C labelled form. However, that seems to be attributed to the 

normal natural abundance detection. Figure 4.9 (a) shows the detected L-methionine plus 

labelling pattern and there is no increase in 1-C labelled L-methionine between cells 

incubated in media with and without 13-C labelled L-methionine.  

  

Analysis of spent media from bloodstream form trypanosomes have shown, that 

methylthioribose seems to be secreted from the cells after 48 hours (D. H. Kim and F. 

Achcar, unpublished data). Methylthioribose was also detected in spent media during this 

experiment, however, only one replicate of spent media was analysed and the peak was ill-

defined. Nonetheless, together with the spent media analysis (Figure 4.13) data from Kim 

and Achcar it seems plausible that 5’-methylthioribose gets secreted from bloodstream 

form trypanosomes when L-methionine is highly abundant in the culture medium.  

 

Figure 4.13: Spent media analysis (performed by D. H. Kim and F. Achcar), shows increasing levels of 

methylthioribose secreted from the cells, starting after 48h. Trypanosomes were grown in HMI-9 and 

CMM.  Figure kindly provided by F. Achcar 
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Creek et al. (2015) showed that when bloodstream form trypanosomes were incubated with 

13
C-labelled Glucose, S-adenosylmethionine got labelled from ATP and those labelled 

carbons were transferred to MTA. However, from that point onwards no labelled carbons 

were detected.  

 

Figure 4.14: Methionine salvage pathway via 5’Methylthioadenosine and 5’Methylthioribose. Enzyme 

key: 1-S-adenosylmethionine synthetase, 2-SAM decarboxylase, 3-spermidine synthase, 4-

methylthioadenosine nucleosidase, 5-methylthioadenosine phosphorylase, 6- 5-methylthioribose-1-phosphate 

isomerase, 7- 5-methylthioribulose-1-phosphate dehydratase, 8- 2,3-diketo-5-methylthio-1-phosphopentane 

enolase, 9-2-hydroxy-3-keto-5-methylthio-phosphopentene phosphatise, 10- transaminase. Expected labelled 

carbons are shown in red and when compound was detected in the dataset, labelling pattern is shown next to 

the structure. Red equals 6-C labelled, orange 5-C labelled and blue 1-C labelled carbons. 
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Berger et al (1996) reported that the last step in methionine production via methylthio-

adenosine takes place, converting 2-oxo-4-methylthiobutyrate into L-methionine. 

However, this is inconsistent with the conclusion of this experiment. A compound 

putatively annotated as 4-methylthio-2-oxobutanoate with 5-C labelling was detected in the 

13
C l-methionine dataset in cell extract and spent media samples. So it seems more likely 

that 2-oxo-4-methylthiobutyrate is being produced from L-methionine and secreted from 

the cell, rather than the MTA cycle being active and salvaging L-methionine from 

methylthioadenosine. However, 5’methylthioadenosine phosphorylase activity was 

measured in T.b. brucei crude extract (Ghoda et al., 1988) highlighting the presence of the 

methylthioadenosine pathway. A compound putatively identified as 1,2-dihydroxy-5-

(methylthio) pent-1-en-3-one was found 1-C labelled. This compound is described as an 

intermediate of the Yang cycle for L-methionine salvage and can either be a precursor to 4-

methylthio-2-oxobutanoate or 3-(methylthio)propanoate (Figure 4.15 (b)). This reaction 

has been described to happen in bacteria, and is thought to provide a mechanism for L-

methionine regulation in vivo (Dai et al., 2001). 

 

  (1)  (2) 

Figure 4.15: 1,2-Dihydroxy-5-(methylthio) pent-1-en-3-one (1) Detected peak for 1,2-dihydroxy-5-

(methylthio) pent-1-en-3-one. Although the peak is ill-defined, the 1-C labelling appears clear in cell extract 

grown in 50% U-
13

C L-methionine for 48 hours (a) and not in the cell extract lacking the U-
13

C L-methionine 

(b).  (2) Possible fate of 1,2-dihydroxy-5-(methylthio) pent-1-en-3-one in bloodstreamform trypanosomes. 3-

(methylthio)-propanoate was not detected. enzyme key: 1- acireductone dioxygenase. 

 

 

 

4.2.1.4. Methylated metabolites 

Six methylated compounds with 
13

C labelling were detected in this dataset. Labelled 

methylated amino acids with 1-C, 2-C and 3-C labelled and 1-C labelled methylguanine. 
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Various methyltransferases use S-adenosylmethionine as a methyl donor and their targets 

include tRNA, proteins, DNA and lipids. However, those compounds are too big to be 

analysed on this platform. 41 genes are annotated as putative methyltransferases in the 

published T. brucei genome and about 90% of the SAM produced in trypanosomes is 

thought to be used for methylation processes. However, as for this study the methylated 

products were seen as by-products of the metabolic pathways associated with L-

methionine, it was not further investigated. The six compounds were: 

N6,N6, dimethyl-L-arginine,  N6 methyl L-arginine, N6 methyl L-lysine, N6, N6, N6 

trimethyl L-lysine, N-methylhistidine and 7-methylguanine (see Figure 4.16) 

 

 

Figure 4.16: Methylated metabolites detected in trypanosome cellextract, incubated with (L) or 

without (U) 
13

-C L-methionine. 
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4.2.2. U- 
13

C - L-arginine metabolite tracking 

Trypanosomes can take up L-ornithine and L-arginine, but potentially the L-ornithine 

uptake could be sufficient enough for trypanothione synthesis (I. Vincent, PhD thesis, 

2011), which could explain the absence of an arginase in trypanosomes. However, as it 

was shown that L-arginine can be converted to L-ornithine, when L-ornithine was absent 

from the incubation medium (I Vincent, thesis) an alternative route for L-ornithine 

production from L-arginine could be present. To further probe the L-arginine metabolism 

in trypanosomes, U-
13

C-L-arginine was used in an untargeted metabolomic approach. 13 

labelled compounds were detected in U-
13

C labelled L-arginine dataset, six of which were 

related to the metabolites shown and mapped in Figure 4.7. 

 

4.2.2.1. Urea cycle – Biosynthesis of L-ornithine 

L-arginine was found 6-C labelled in fresh CMM (with 200µM U-
13

C L-arginine added), 

labelled cell extract, spent labelled CMM, but also in small amounts in unlabelled cell 

extracts. The most reasonable explanation for finding labelled L-arginine in unlabelled cell 

extract is sample contamination, either during sample preparation or sample carry-over on 

the LC-MS platform. After checking the sample running order on the LC-MS platform it 

was shown that unlabelled cell extract samples (three replicates) were run directly after 

samples containing labelled L-arginine. As the L-arginine peaks are the only peaks 

showing contamination it is likely that the relatively high concentration of L-arginine 

caused minimal contamination to show up in the datsaset, while possible other 

contaminations were too low to show. L-ornithine was detected 5-C labelled from L-

arginine. It is unclear whether the reaction happened within the cells or in the medium. 

Spent media showed equally high amounts of L-ornithine 5-C labelled as cell extract, 

while fresh media only showed traces of 5-C labelled L-ornithine. However, since other 

metabolites labelled inside the cell do not show outside and the concentration of labelled 

L-ornithine was similar in cell extracts and in spent medium, it seems L-arginine converts 

to L-ornithine outside the cell by an arginase found in the added serum. A low percentage 

of 6-C labelled L-citrulline was detected in the labelled cell extract. This labelling pattern 

could only occur directly from L-arginine, as L-ornithine was 5-C labelled. The 

intermediate metabolite L-arginino-succinate was not detected in this dataset. N-acetyl-L-

ornithine and N-acetyl-L-glutamate 5-semialdehyde were detected as 5-C labelled from L-

arginine. They are pathway intermediates in the biosynthesis of L-ornithine from L-
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glutamate. L-glutamate was not labelled in this dataset so the pathway does not occur to be 

fully functional. The enzyme Acetylornithine deacetylase, which converts L-ornithine to 

N-acetyl-L-ornithine, has been putatively identified in the trypanosome genome. The 

labelling pattern for N-acetyl-L-glutamate 5-semialdehyde was ill-defined (see Figure 

4.17.). Furthermore, the enzyme Acetylornithine transaminase has not been reported to be 

present in T. brucei, so it is unclear if the detected labelling is indeed from N-acetyl-L-

glutamate 5-semialdehyde. Also, traces of labelled N-acetyl-L-glutamate 5-semialdehyde 

were detected in the cell extract from cultures without added 
13

C L-arginine.  

 

 

Figure 4.17: N-acetyl-L-glutamate 5-semialdehyde (a) Trend plot of 5-C labelled N-acetyl-L-glutamate 5-

semialdehyde in fresh and spent media (with added U-
13

C L-arginine) and labelled and unlabelled cell 

extract. Orange equals 5-C labelled and blue 1-C labelled carbons. As natural abundance of 
13

C occurs, when 

1-C is detected it needs to be compared to the unlabelled control. (b) Detected peaks from those samples.  

 

From L-ornithine, the production of trypanothione (4-C labelled) could be detected, 

although the intermediates putrescine, spermidine and glutathionylspermidine were not. 

However, putrescine, spermidine and glutathionylspermidine do not retain well on zic-

pHILIC columns. All the metabolites described here with their expected and actual 

labelling pattern are shown in Figure 4.18. 
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Figure 4.18: Predicted metabolites to be involved in L-ornithine biosynthesis and degradation (Urea 

cycle and polyamine biosynthesis included). Carbons labelled from L-arginine are highlighted in red and 

enzyme names are in italic. * Two enzymatic steps are shown in Figure 4.4 and 4.5. 
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4.2.2.2. Energy storage in T. brucei 

L-arginine phosphate (or phosphoarginine) is important for trypanosomes for energy 

storage. In this experiment phosphoarginine was found to be labelled from L-arginine at 

38% (see Figure 4.19), when about 45% labelled L-arginine was detected in fresh media 

and 40% labelled L-arginine within the cell. 

 

 

Figure 4.19: Detected peak of L-arginine phosphate, with a mass of 254.07 and retention time of: 11.08 

min. 

 

4.2.2.3. Other metabolites labelled from L-arginine  

 Methylarginine and dimethylarginine, both 6-C labelled from L-arginine, could 

have their origin from methylated proteins.  

A recent study highlights the importance of arginine methylated proteins. Five 

putative arginine methyltransferases in T. brucei genome have been described and 

proteomic analysis showed 167 arginine methylproteins which have a wide range 

of function, including metabolism, chaperoning, RNA processing, DNA 

replication, translation and function in transport. Some of those methylations are 

trypanosome specific, while others are conserved modifications (Fisk et al., 2013) 

 Ketoarginine, which has also been identified as 6-C labelled from L-arginine, could 

be a precursor for 3-methylarginine synthesis or L-arginine degradation. 

 N5-(L1-Carboxyethyl)-L-ornithine formed from L-ornithine and pyruvate. This 

compound was seen to be increased after cells were treated with Eflornithine 
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(Vincent et al., 2012). Additionally, N5-(L1-Carboxyethyl)-L-ornithine was also 

detected in U-
13

C labelled Glucose data (Creek et al.,2015). Although this is a 

metabolite known from bacteria, its function in trypanosomes is unknown (reaction, 

see Figure 4.20 (a)). 

 A metabolite with the mass of 173.069 and a retention time of 9.7 min, putatively 

identified as L-N2-(Carboxyethyl)-L-arginine (D-octopine). D-octopine plays a role 

in NAD/NADH regulation and is formed by D-octopine synthase using pyruvate 

and L-arginine (Figure 4.20 (b)). 

 

 

Figure 4.20: Labelling pattern and origin of carbons in reaction leading to (a) N5-(L1-Carboxyethyl)-

L-ornithine and (b) D-ocyopine. (a) Enzyme catalysing the reaction from pyruvate and L-ornithine to N5-

(L-1-Carboxyethyl-) L-ornithine is N5-(carboxyethyl)ornithine synthase (EC1.5.1.24). (b) Synthesis of D-

octopine by octopine dehydrogenase (EC1.5.1.11) from pyruvate nd L-arginine. Blue dots indicate carbon 

originated from D-glucose (Creek et al, 2015) and red dots indicate carbons labelled from L-arginine. 
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4.2.3. U- 
13

C - L-proline metabolite tracking 

Although L-proline seems to be taken up by bloodstream form trypanosomes, the 

intracellular concentration of labelled L-proline was very low using 50% of labelled L-

proline (50 µM final concentration U-
13

C L-proline) in growth medium for 48 hours. 

Under those conditions downstream metabolites from L-proline were not labelled to a high 

enough percentage for analysis and therefore the experiment was repeated with 100% 

added labelled L-proline (200 µM U-
13

C L-proline). Recycling of L-proline from 

protein/peptide breakdown seems a plausible explanation for the dilution of labelled L-

proline within the cell and would also explain why the first experiment was not successful.  

 

Seven labelled compounds were detected in U-
13

C labelled L-proline dataset, all with 

relatively low percentage of labelling (except for L-proline). Figure 4.7 shows the detected 

meatbolites including the percentage of labelling. 

 

The results of this experiment conclude that except for protein synthesis, L-proline seems 

to be playing a minor role in the metabolism of bloodstream form trypanosomes.  

Trypanothione was detected to be 5-C labelled from L-proline, but only 1.2%. The 

pathway for this is shown in Figure 4.21 and the intermediates are (S)-1-pyrroline-5-

carboxylate and L-glutamate-5-semialdehyde (not detected), L-glutamate (0.5% labelled, 

 

 

Figure 4.21: Distribution of labelled carbons (C13) from L-proline (Fiona Achcar).        

Colours representing the number of carbons contributed from L-proline. Red: 5-C, green: 4-C, blue: 3-C and 

pink: 2C. Not detected compounds are (S)-1-pyrroline-5-carboxylate, L-glutamate-5-semialdehyde, 2-

oxoglutarate and Succinyl-CoA. 
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5-C) and Glutathione (0.2% labelled, 5-C). The detected labelling of trypanothione 

therefore results from L-glutamate and glutathione, rather than L-ornithine and putrescine. 

Other metabolites labelled were hydroxyglutarate (0.8%) and succinate and malate (0.8% 

4-C labelled both and 0.06% (succinate) and 0.09% (malate) 3-C labelled). 
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4.3. Discussion 

4.3.1. L-methionine 

Here, the sulphur containing amino acid L-methionine and its metabolism in T. brucei was 

investigated, with the focus on the methionine cycle, polyamine biosynthesis and the MTA 

cycle. 

 

The methionine cycle shows three out of the four metabolites present. Although L-

homocysteine was not detected, due to downstream metabolites being present 

(cystathionine) it only seems plausible that it would be 4-C labelled. Interestingly, the 

methionine cycle does not seem to be a cycle at all as the lack of 4C-labelled methionine 

indicates that L-homocysteine is not being converted back to L-methionine. This 

contradicts previous published material that L-homocysteine can be converted back to L-

methionine (Walker and Barrett, 1997). It seems more likely that L-homocysteine gets 

converted to L-cysteine, over cystathionine (which showed 4-C labelling), in agreement 

with Bacchi et al (1995), who could show, with 
35

S-labelled L-methionine, the reverse 

transulfation pathway being present in trypanosomes. The trypanosome specific polyamine 

thiol conjugate trypanothione was detected as being 3-C labelled from L-methionine. 

Unfortunately, no intermediate metabolite in this pathway was detected (dSAM, 

spermidine, glutathionylspermidine). However, methylthioadenosine (a byproduct of 

spermidine synthesis from dSAM and putrescine and starting point of the MTA cycle) was 

detected 1-C labelled. The production of methylthioribose was also detected in 

bloodstream form trypanosomes when incubated with 
13

C glucose (Creek et al, 2015) and 

here it was 5-C labelled from S-adenosylomethionine (via ribose and the resulted labelling 

of ATP), which confirms the finding in the methionine labelled dataset.However, the full 

functionality of the MAT cycle could not be confirmed in either dataset. The production of 

methylthioribose from methylathioadenosine was detected, with both compounds 1-C 

labelled from L-methionine. But, it looks like methylthioribose gets secreted from the cell 

and not converted to methylthioribose 1-phosphate. Although the intermediates in the 

MTA pathway, from 5’methylthioribose-5-phosphate to 2-hydropxy-5-(methylthio)-3-

oxopent-1-enyl phosphate, were not detected, the second last metabolite (1,2-dihydroxy-5-

(methylthio)pent-1en-3-one) was. The 1-C labelling suggests that the pathway is active, 

but after that point is unclear what happens. 2-oxo-4-methylthiobutanoate is not 1-C 

labelled as would be expected. Instead 2-oxo-4-methylthiobutanoate is 5-C labelled from 
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L-methionine and seems to be secreted from the cell. As it is the corresponding keto-acid 

and it has been shown that trypanosomes are capable of doing this reaction (Creek et al., 

2013). These results conflict with research from Berger et al (1996) and Bacchi et al 

(1991), who showed that T. brucei is capable of producing L-methionine from 2-oxo-4-

methylthiobutanoate, preferably from the transamination of aromatic amino acids (Berger 

et al., 1996; Berger et al., 2001). However, as shown in the presented dataset, under the 

conditions used, L-methionine does not seem to be recycled by either methionine cycle or 

MTA cycle, which is consistent with findings from U-
13

C glucose labelling (Creek et al., 

2015). 

 

4.3.2. L-arginine 

L-ornithine is an important precursor for the synthesis of the diamine putrescine in T. 

brucei. Putrescine is involved in the synthesis of spermidine, which can be synthesised, 

with glutathione, to the trypanosome specific thiol trypanothione (Fairlamb and Cerami, 

1992). Vincent et al (2011) also found the metabolite N-acetyl-L-ornithine being increased 

after bloodstream form trypanosomes were treated with Eflornithine. N-acetyl-L-ornithine 

is the precursor of L-ornithine in the biosynthesis of L-ornithine from L-glutamate. 

Tracking metabolites using stable isotope labelling has been successfully applied before, 

most recently with 13C-labelled glucose in bloodstream form trypanosomes, resulting in a 

much better understanding of the glucose metabolism (Creek et al., 2015). It has been 

reported that bloodstream form trypanosomes can convert L-arginine into L-ornithine, 

however without the production of urea (Vincent, thesis). Using 
13

C L-arginine for 

metabolite tracking could lead to the identification of a different pathway for L-ornithine 

biosynthesis is active in bloodstream T. brucei that excludes the most direct route via 

‘arginase’.  

L-ornithine was detected as 5-C labelled from Arginine in this experiment (see 4.2.2.1). 

However, it seems that this conversion happens in the media. Possible bovine arginase 

activity in the media could explain the 5-C-labelled L-ornithine. Labelled L-ornithine was 

detected in spent media in similar high concentration (about 10%) as within the cell (about 

12%). Fresh media with added U-
13

C L-arginine only showed traces of 5-C Ornithine, 

however, this sample was prepared immediately after production and therefore the bovine 

arginase activity was stopped very quickly. As bloodstream form trypanosomes can take L-

ornithine up this seems the most reasonable explanation for the presence of 5-C-Ornithine 

within the cell. 
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Incubating U-
13

C L-arginine in cell free media with 10% FBS also showed 5-C labelled L-

ornithine after 48 hours (F. Giordani, data not shown), concluding it is most likely that L-

arginine gets converted to L-ornithine in the media by arginase activity from serum. 

However, L-citrulline has been detected as 6-C labelled, albeit at small levels. L-citrulline 

is part of the urea cycle, a precursor in L-arginine production from L-ornithine. It is 

possible that in bloodstream form trypanosomes the urea cycle is operative in the reverse 

direction; leading from L-arginine via L-citrulline to L-ornithine and this data could 

support this hypothesis.  L-citrulline was 6-C labelled, which could only occur from L-

arginine, not L-ornithine. The intermediate L-arginino-succinate was not detected in the 

dataset.  

 

L-arginine phosphate has been described to be of use in energy storage in trypanosomes, 

with three arginine kinases being described in the T. brucei genome.  

The main phosphagen for energy storage in vertebrates is creatine, but trypanosomes do 

not seem to encode a creatine kinase and use arginine phosphate instead (Canepa et al., 

2011). 

 

4.3.3. L-proline 

The percentage and labelling pattern from L-proline suggests that L-proline is only 

minimally involved in the synthesis of polyamines. The data shows that L-proline is not 

involved in the synthesis of L-ornithine, but rather transfers carbons via L-glutamate and 

glutathione to trypanothione. However, the low percentage of labelled compounds detected 

in labelled cells, imply that the main purpose for L-proline in bloodstream form 

trypanosomes is for protein synthesis.  
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Chapter 5 

5.1. Introduction 

The two described causative subspecies of HAT are T. b. rhodesiense (acute form) and T. 

b. gambiense (chronic form), with both forms present in the Central Nervous System 

(CNS) in the late stage of the disease. For T. b. brucei infections in mice, it has been shown 

that different strains of trypanosomes can manifest themselves as acute and chronic 

diseases as well. In this project, the T. b. brucei strains GVR35 (Jennings et al., 2002) and 

427 (Melville et al., 2000) were used, as GVR35 causes a chronic infection in mice and 

invades the CNS with varying parasitemia while 427 shows an acute infection with high 

parasitemia causing high mortality within days without invading the CNS (see 1.2.3). What 

causes this difference in the progression of infection? Secreted/excreted proteins from the 

parasites (secretome) have been described as being important factor for virulence and to 

avoid the host immune response (Geiger et al., 2010). Garzon et al. showed that 

excreted/secreted proteins can inhibit the maturation of dentritic cells and stop them from 

inducing a lymphocytic allogenic response (Garzón et al., 2013). Furthermore, secreted 

cysteine peptidases are thought to be an important factor in the crossing of the blood brain 

barrier (BBB). Analysing and comparing the secretome from both strains may therefore 

give an inside of what causes the difference in virulence between 427 and GVR35. 

 

Two approaches were used to determine the secretome of the two different T. b. brucei 

strains: (1) differential secreted proteins between the two strains were investigated by 

DiGE and (2) the whole set of secreted proteins for each strain using Filter Aided Sample 

Preparation (FASP) with in solution trypsin digest.  

 

 

5.2. Results 

Two strains of bloodstream form trypanosomes were grown up from stabilates. To keep the 

conditions for both strains the same, different media (HMI-9, CMM and modified HMI-9, 

see 2.1.1.) were tested for cell culture. Strain GVR35 was directly grown in modified HMI-

9 medium, while strain 427 was passaged once in HMI-9 before changed to modified 

medium or both strains were adapted to CMM + 10% FBS gold. However, strain GVR35 

did not grow in HMI-9 + 10% FBS gold. Adaption to the modified media took several 
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passages for strain 427 or strain GVR35 to adapt to CMM. To reach the desired cell count 

of 2x10
8 

(as described by Holzmueller et al., 2008) cell culture volumes were between 120 

- 150 ml for strain 427 and 150 - 170 ml for strain GVR35. Cell viability was checked 

using microscopic examination during incubation in serum-free modified medium every 30 

min for two hours. Cell morphology looked normal in strain 427 and cells had good 

motility. Strain GVR35 showed cell clumps forming after 60 min, which suggests that cells 

were starting to die. After secretome sample preparation an aliquot of the sample was run 

on SDS-PAGE to ensure a detectable amount of protein was present. 

 

5.2.1. Sample preparation for DiGE 

For quantification purposes and to determine the strain specific differences in secreted 

proteins a gel-based proteomic approach was tested. 2D-DiGE is an excellent tool to 

compare different strains of pathogens. Samples are run on one gel, which minimises the 

chances of seeing dissimilarities in proteins detected due to differences in gel running 

conditions. A drawback of this method is that a large amount of protein is needed to run 

the 2D-DiGE with two prep-gels. 550 µg protein is required per sample set to obtain 

optimal results. The amount of protein obtained from the secretome preparation for strain 

GVR35 was determined by Bradford assay and was 461.15 µg ml
-1

, while 427 was 451.97 

µg ml
-1

 with a sample volume of 1 ml. To obtain a high enough protein concentration 

samples were precipitated with acetone and resuspended in 200µl DiGE lysis buffer. Final 

protein concentration was 600 µg ml
-1

 for strain GVR35 and 700 µg ml
-1

 for strain 427. 

Therefore, even after acetone precipitation a high sample volume had to be used to reach 

desired amount of protein (50 µg for DiGE gel). For the prep gels a lesser amount of 

sample had to be used; instead of 500 µg protein, only around 90 µg was loaded onto the 

prep gels. That resulted in a loss of protein spots showing in the prep gels as compared to 

the DiGE gel. Therefore not all protein spots showing differences could be analysed.  

 

5.5.2. DiGE analysis 

Protein spots with a minimum of twofold difference between strain GVR35 and strain 427 

were picked for analysis. 35 protein spots were picked from the prep gel of strain GVR35 

and 21 were picked from the strain 427 gel (Figure 5.1.). From the 35 spots picked from 

the GVR35 prep gel 28 proteins could be identified, while for strain 427, 17 of the 21 

showed protein identification (Table 5.1. (427) and Table 5.2. (GVR35)).  
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 (a) 

 

 (b) 

Figure 5.1.: Image (DiGE) for T. b. brucei strain 427 (a) and GVR35 (b). 2-D separation was obtained 

using two step separation with an IEF strip pH 4-7 followed by SDS-Page size separation. Images were 

scanned and compared using DeCycler 2D software. Protein spots identified to show at least a twofold 

difference between the two strains were extracted from the prep gel, digested with trypsin and analysed by 

LC-MS. Protein spots extracted are marked in the images by a circle and the spot identification number for 

those were an identification could be made. The protein identifications can be seen in Table 5.1. for 427 and 

Table 5.2. for GVR35.  
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Spot 

No. 
ID Accession no. 

Volume 

Ratio 
Matches Score 

13 heat shock protein 83 Tb10.26.1080 -2.39 2(1) 37 

54 69 kDa paraflagellar rod protein Tb927.8.4970 -4.65 24(7) 186 

374 hypothetical protein, conserved Tb10.70.1130 -7.2 21(11) 313 

502 protein phosphatase 2C, putative Tb11.03.0390 -2.43 1(1) 38 

539 arginine kinase Tb09.160.4560 -2.37 2(1) 40 

544 adenosine kinase, putative Tb927.6.2360 -2.23 9(5) 119 

549 arginine kinase Tb09.160.4590 -9.33 46(17) 467 

560 beta tubulin Tb927.1.2330 -5.93 6(2) 71 

571 asparagine synthetase a, putative Tb927.7.1110 -5.66 4(0) 23 

649 
guanine nucleotide-binding protein beta 

subunit- like protein 
Tb11.01.3170 -4.09 4(0) 28 

677 
nascent polypeptide associated 

complex subunit, putative 
Tb09.211.0120 -2.37 4(1) 50 

759 
translation elongation factor 1-beta, 

putative 
Tb927.4.3570 -7.27 27(13) 328 

765 
translation elongation factor 1-beta, 

putative 
Tb10.70.1100 -7.24 26(12) 305 

804 
hypoxanthine-guanine 

phosphoribosyltransferase 
Tb10.70.6540 -3.33 4(2) 66 

888 profilin Tb11.01.5350 -2.95 10(3) 139 

891 60S acidic ribosomal protein, putative Tb09.160.4200 -2.14 13(5) 164 

Table 5.1.: Identified proteins from T. b. brucei strain 427 as extracted from gel (Figure 5.1. (a)). Spot 

no. can be matched to the location of the gel in Figure 5.1.(a). Identifications and accession no. were matched 

from mascot to TritrypDB. The volume ratio shows decreased/increased protein spot intensitiy and matches 

are the peptides matched against the protein sequence with the number in brackets hits indicating homology 

or identity. Score > 28 indicates homology or identity with p > 0.05. 
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Spot 

No. 
ID Accession no 

Volume  

Ratio 
Matches Score 

105 
2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase 
Tb10.6k15.2620 5.59 13(6) 192 

111 
2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase 
Tb10.6k15.2620 4.74 

 

16(5) 

 

144 

112 73 kDa paraflagellar rod protein Tb927.3.4290 4.11 16(7) 199 

176 
S-adenosylhomocysteine hydrolase, 

putative 
Tb11.01.1350 17.29 19(8) 198 

199 RuvB-like DNA helicase, putative Tb927.4.2000 8.69 4(1) 48 

213 hypothetical protein, conserved Tb927.7.3090 27.52 2(1) 40 

246 malic enzyme, putative Tb11.02.3130 7.14 2(1) 38 

279 hypothetical protein, conserved Tb927.7.3090 17.21 1(1) 41 

286 
variant surface glycoprotein (VSG, 

atypical), putative 
Tb927.5.4950 9.76 1(1) 34 

358 
variant surface glycoprotein (VSG, 

pseudogene), putative 
Tb927.6.5230 12.06   

371 enolase Tb10.70.4740 3.05 29(17) 445 

372 alpha tubulin Tb927.1.2340 11.24 1(1) 33 

417 heat shock protein 70 Tb11.01.3110 4.57 2(1) 54 

498 alpha tubulin Tb927.1.2340 17.61 1(1) 68 

519 alpha tubulin Tb927.1.2340 2.71 37(14) 406 

527 alpha tubulin Tb927.1.2340 21.49 2(1) 57 

547 arginine kinase Tb09.160.4560 8.19 6(2) 55 

678 alpha tubulin Tb927.1.2340 3.1 14(7) 218 

694 alpha tubulin Tb927.1.2340 32.44 1(1) 31 

695 alpha tubulin Tb927.1.2340 5.19 23(13) 434 

701 beta tubulin Tb927.1.2330 7.52 12(6) 193 
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Spot 

No. 
ID Accession no 

Volume  

Ratio 
Matches Score 

802 elongation factor 1 gamma, putative Tb11.01.4660 4.25 6(1) 32 

818 
ADP-ribosylation factor-like protein 3A, 

putative 
Tb927.3.3450 2.59 18(10) 216 

862 
translation elongation factor 1-beta, 

putative 
Tb10.70.1100 7.27 8(3) 84 

901 hypothetical protein, conserved Tb10.26.0680 34.16 10(1) 62 

 

Table 5.2.: Identified proteins from T. b. brucei strain GVR35 as extracted from gel (Figure 5.1. (b)). 

Spot no. can be matched to the location of the gel in Figure 5.1.(b). Identifications and accession no. were 

matched from mascot to TritrypDB. The volume ratio shows decreased/increased protein spot intensitiy and 

matches are the peptides matched against the protein sequence with the number in brackets hits indicating 

homology or identity. Score > 28 indicates homology or identity with p > 0.05. 

 

The proteins identified in both strains included one hypothetical protein in 427 and two 

hypothetical proteins in GVR35.  

 

Four proteins were identified in both datasets; however, comparing the ‘protein spot’ 

location in the gel (Figure 5.1) strongly indicates a difference between the two strains. Two 

isoforms of arginine kinase (AK) were extracted from 427 and one AK in GVR35. 427 

contained AK1 and AK2, which are located in the flagellum and cytosol respectively, 

while in GVR35 only AK1 was detected. Heat shock protein 83, beta tubulin and 

translation elongation factor 1-beta (putative) were also detected in both datasets. 

 

A first analysis of the detected proteins showed that most proteins were highly abundant in 

trypanosomes (M. Barrett, personal communication) and raised the question if the 

secretome samples might have been contaminated with proteins from lysed trypanosome 

cells. Although contamination from lysed cells cannot be excluded, a visual comparison 

between a trypanosome lysate 2-D gel and the two secretome 2-D gels showed differences 

in protein spot patterns and spot abundance. The secretome gel showed fewer spots and 

was biased towards low molecular weight proteins compared to a lysate gel (Dr R. 

Burchmore, personal communication).  

 

To further investigate whether the contained proteins could be seen as a secretome sets, the 

obtained data were compared to already published trypanosome secretome sets. 
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Except for a small number of proteins in the two sets (profilin (427), RuvB-like DNA 

helicase, translation elongation factor 1-beta and malic enzyme (GVR35)), most proteins 

identified here have been described as being secreted from different strains of trypanosome 

before.  

 

The role of profilin, identified in strain 427 dataset, in trypanosomes is unclear. It might be 

involved in the phosphoinositide signal transduction pathway in trypanosomes (Wilson and 

Seebeck, 1997). If the finding of the proteins  RuvB-like DNA helicase, translation 

elongation factor 1-beta and malic enzyme in strain GVR35 are strain specific markers or 

just the result of contamination from dead cells still needs to be determined. Microscopical 

examination of the cells during incubation in serum free medium showed that GVR 35 was 

less tolerant to the conditions than 427. 

 

RuvB-like DNA helicase, in complex with hsp 90, might be involved in cell proliferation, 

as suggested for leishmania and plasmodium (Ahmad et al., 2013) but the reason for this 

protein being potentially secreted is unclear. 

 

To get a better overview of the whole set of secreted proteins in the sample set used, 

remaining sample was prepared for a gel free proteomics approach, using FASP (2.3.10). 

The minimum amount of protein that can be analysed with this method is 5µg. For strain 

427 14µg protein was used and for strain GVR35 14µg. Analysis of the secretome 

prepared by FASP showed only a small number of proteins detected for strain 427 and 

those samples were not further analysed. As very similar amounts of proteins were used 

and the samples were on the same LC-MS/MS run, a possible explanation for this is an 

experimental error using the FASP method. The most likely reason is that the proteins 

were not completely removed from the filter, but an error during LC-MS/MS run (For 

example sample not picked up properly) cannot be excluded. 
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5.2.2. T. b. brucei strain GVR35 secretome 

After sample preparation and trypsin digest (as described in 2.3.10.), 109 proteins were 

significantly identified using MASCOT (p-value <0.05), with the identifications obtained 

from TritrypDB.  

 

23 proteins were identified as hypothetical proteins and two unspecified products. The 

remaining 84 proteins had putative identifications belonging to different classes of proteins 

and were compared to published datasets (T. congolense (Grébaut et al., 2009) and T. 

gambiense (Geiger et al., 2010)). Proteins, detected in all three datasets (T. brucei, GVR35; 

T. congolense and T. gambiense) were divided into 10 groups (as seen in Figure 5.2.), 

namely Binding, Cytoskeleton organisation and flagellar proteins, Defence, Metabolism, 

Movement, Protein degradation, Protein folding, Protein synthesis, Signalling and 

Trafficking.  

 

 

 

Figure 5.2.: Pie chart of classes of secreted proteins from T.b.brucei strain GVR35. 69 proteins were 

included in this analysis, as those proteins were also found in published secretome sets. Proteins were divided 

into classes, in accordance to published data. 23 % of the secreted proteins found in GVR 35 belonged to 

metabolism, representing the biggest group of secreted proteins. 20% of secreted proteins are involved in 

protein synthesis, the second biggest group. 13 % each belonging to Binding and Protein folding. Proteins 

belonging to the froup Defence, Protein degradation and Cytoskeleton organisiation and flagellar proteins 

were making 10%, 7% and 6% respectively. The rest (6% in total) are Signalling, Binding and Trafficking. 
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The largest group was represented by proteins involved in metabolism. This group can be 

divided into the following subgroups: Carbohydrate metabolism (9), amino acid 

metabolism (3), glutathione metabolism (2) and nucleic acid metabolism (2).   

 

The presence of enzymes related to carbohydrate metabolism, also represent the largest 

protein group that the datasets had in common (6 out of 22 proteins). 

 

Most enzymes of the glycolysis in trypanosomes are located in organelles called 

glycosomes, however, three glycolytic enzymes are described to be outside the glycosome 

(Enolase, phosphoglycerate mutase and pyruvate kinase; (Albert et al., 2005)) and those 

three enzymes were detected in all three compared datasets. A comparison between the 

GVR35 secretome and a published proteome of the glycosome (Colasante et al., 2006) 

showed 12 proteins in common (approximately 11% similarity between the two sets). The 

two sets shared five glycolytic enzymes namely fructose-bisphosphate aldolase, 

triosephosphate isomerase, glycerol kinase, glyceraldehyde 3-phosphate dehydrogenase 

and glycerol-3-phosphate dehydrogenase.  

 

Enzymes belonging to the nucleic acid metabolism, in particular IAG nucleoside 

hydrolase, are important for bloodstream form trypanosomes, as they depend on the 

salvage pathway for purines (Parkin, 1996). Two were found in the GVR35 dataset (IAG 

nucleoside hydrolase and nucleoside diphosphate kinase), while in T.b.gambiense 

secretome the nucleotide metabolism proteins made up to 14% of the secreted proteins 

(Geiger et al., 2010). 

 

The protein synthesis group is the second largest group. It is composed of ribosomal 

proteins and elongation factors. The role of these proteins in the secretome is unknown. 

 

Proteins involved in protein folding and degradation have been previously described to 

have an effect on the immune system of the host, for example cyclophilin A and hsp (heat 

shock protein) (Calderwood et al., 2007; Kim et al., 2005), both being present in GVR35 

secretome. Furthermore, it has been shown that cysteine peptidases play an important role 

in the pathogenesis of trypanosomes and it is suspected that it also helps the parasite to 

cross the blood brain barrier. However, T.b.brucei has been said to be less efficient than 

T.b.gambiense (Nikolskaia et al., 2006). The GVR35 dataset contained a calpain-like 

cysteine peptidase (Tb.927.7.4060) and metacaspase 4 (Tb10.70.5250). Metacaspase 4 
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(MCA4) belongs to the cysteine peptidases, but lacks peptidase activity (Proto et al., 

2011). However, MCA4 knockout lines showed a reduced virulence in mice (Proto et al., 

2011). Other proteins that reportedly have an impact on pathogenesis were calreticulin 

(Ferreira et al., 2004) which was not present in the GVR35 dataset and α/β-tubulin, who 

have shown to be T-cell stimulating antigens in leishmania infections (Probst et al., 2001). 

Both were detected in GVR35. Oligopeptidase B, an important virulence factor has been 

shown not to be secreted from cultured trypanosomes (Morty et al., 2001) and was also not 

detected in GVR35. A full list of all detected proteins can be found in Appendix E, Table 

E1. 

 

Although the majority of proteins present in the GVR35 secretome set have also been 

described as being secreted from other trypanosome species, the high occurrence of 

glycolytic enzymes in the GVR35 secretome data was surprising and again raised the 

question if the presented dataset could be contaminated by proteins from lysed cells. 

 

A western blot, using RAD51 (a cytosolic protein) as a control, showed minimal 

contamination in the secretome samples after 2 hours incubation (Figure 5.3). As cell 

viability during incubation in serum free medium was only checked using microscopic 

examination and strain GVR 35 showed cell clumps (sign for cell death) at the end of the 

incubation period, it cannot be ruled out that the secretome got contaminated with intra-

cellular proteins. 

 

 

Figure 5.3: Western blot after secretome preparation, using cell pellet as control and Rad51 antibodies 

to check for contamination with dead cells. 
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5.2.3. FACS and cell survival 

The original prepared and analysed secretome sets (by DiGE and FASP) indicated possible 

sample contamination from lysed parasites, due to the high number of glycolytic enzymes 

and highly abundant proteins present. To determine how many cells died during incubation 

in serum-free medium two different methods were tested: Fluorescent- activated cell 

sorting (FACS) using a MASCQuant and a propidium iodide (PI) assay based on (Gould et 

al., 2008). 

FACS analysis was kindly done by S. Sabir (University of Glasgow), with propidium 

iodide used as a live/dead stain. The data showed that during incubation in serum free 

CMM about 5% of T. brucei strain 427 cells were measured as dead with the last 

measurement showing up to 8% dead cells. Strain GVR35 revealed about 18% cells as 

dead (Figure 5.4).  

 

Figure 5.4.: FACS analysis on T. b. brucei  strain 427wt and strain GVR35 during incubation in serum 

free CMM. Samples were taken every 30mins from beginning of incubation period. FACS analysis was 

kindly done by S. Sabir (University of Glasgow). 

 

The propidium iodide assay was based on a method developed by Gould et al., who used it 

to monitor drug action in kinetoplastidae in real-time. For my purposes, cells of a known 

concentration were added to a 96 well plate and incubated with propidium iodide with 

measurements taken every 3 min. To determine the number of dead cells control samples 

of varying cell concentration were incubated with digitonin and propidium iodide. A 

standard curve with the fluorescent measurements taken from the dead cells was created, 

so the number of dead cells could be calculated (Figure 5.5). 
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Figure 5.5: Real-time PI assay showing the increase of dead trypanosomes (427) during incubation in 

serum free CMM. Live/dead stain was achieved with propidium iodide and cells were incubated at a 

concentration of 5x10
7
. Four sample sets were used. 

 

Cell death started to increase rapidly after 100 min. However, cell counts performed during 

cell incubation showed that cells kept on dividing even after being washed and kept in 

serum-free media. The analysis for the PI assay was performed for a static number of cells 

and as cell counts cannot be performed once the 96 well plate is set up for measurement 

this method does not seem accurate enough to determine the most accurate percentage of 

dead cells in the secretome. However, it did show the tolerance of the cells to serum free 

media, as shown by the rapid cell death after 100 minutes. As a consequence to this cell 

incubation time was reduced to 100 mins, however, results shown in 5.2.1 and 5.2.2 

originated from sample incubated for 2 hours. 
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5.2.4. Dimethyl-labelling strain 427 and strain GVR35 

As one aim was to compare the secretome of the strains 427 and GVR35, I made several 

attempts to repeat the DiGE secretome experiment. However, a protein concentration high 

enough to repeat the 2D-DiGE has not been achieved.  

 

Dimethyl-labelling (Hsu et al., 2003) is a useful approach to get quantitative proteomics 

data with a smaller starting quantity of protein. Differentiation between two samples is 

achieved by labelling of the α- and ε-amino group of lysine residues via reductive 

amination. 11 µg of protein from each 427 and GVR35 were used, with 427 being heavy 

labelled and GVR35 light labelled.  

 

Hit Accession Score L/H SD(geo) Description 

13 Tb09.211.3550 31 10.53 3.521 glycerol kinase, glycosomal 

 

14 Tb09.211.3540 31 10.53 3.521 glycerol kinase, glycosomal 

 

11 Tb11.01.3110 37 8.596 8.831 heat shock protein 70 

 

17 Tb11.01.3080 26 8.596 8.831 heat shock protein 70, putative 

 

28 Tb09.160.4560 16 6.108 1.593 arginine kinase  

 

18 Tb11.03.0250 25 5.746 4.287 CYPA cyclophilin a; cyclophilin 

type peptidyl-prolyl cis-trans 

isomerase 

 

2 Tb10.v4.0053 116 4.562 1.051 hypothetical protein 

 

22 Tb10.70.5650 24 4.013 2.92 elongation factor 1-alpha 

 

3 Tb10.70.4740 97 3.552 1.346 enolase 

 

5 Tb10.70.5250 89 3.442 3.252 MCA4 metacaspase  

10 Tb10.70.1370 54 3.304 1.611 fructose-bisphosphate aldolase, 

glycosomal, putative 

 

1 Tb927.1.2330 124 2.793 1.432 beta tubulin 

Table 5.3 Identified and quantified proteins from sample dimethyl-labelling. Proteins in bold have 

changed significantly between the two datasets. T. b. brucei strain GVR35 was light labelled and 427 

was heavy labelled, significant changes in proteins are down in strain 427.  
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LC-MS/MS data analysed with Mascot distiller identified 30 proteins, 12 proteins with 

quantification of which 4 were significantly changed between datasets (Table 5.3). 

 

The hypothetical protein Tb10.v4.0053 is listed as an unspecified product in TritrypDB for 

strain 427. For strain 927 and other trypanosome species and leishmania orthologs are 

identified as microtubule-associated protein. However, it needs to be taken as unidentified 

as not enough information exists to make a better annotation. 

 

The enzyme enolase has been identified before in the 427 and GVR35 datasets. The DiGE 

approach showed enolase being increased in the GVR35 data and dimethyl-labelling 

confirmed this finding. Enolase, a glycolytic enzyme, catalyses the reversible conversion 

of D-2-phosphoglycerate and phosphoenolpyruvate. In trypanosomes, the enzyme is 

located outside the glycosomes and for leishmania can also been found bound to the cell 

surface where it displays no ‘enolase’ activity (Quiñones et al., 2007).  However, enolase is 

also present on the cell surface of several mammalian cells and prokaryotic and eukaryotic 

pathogenic organisms (Avilán et al., 2011). It was found that enolase can act as a 

plasminogen-binding protein. The leishmania enolase seems to bind abound 60% of 

plasminogen to the cell surface (Vanegas et al., 2007). Plasminogen, a zymogen of serine 

protease plasmin, is part of the fibrinolytic system and it has been shown that pathogens 

can use this protease after binding it to their surface and activating it (Avilán et al., 2011).   

 

Fructose-bisphosphate aldolase was detected in the GVR35 secretome data (5.2.2) and also 

in a T. b. gambiense secretome set (Geiger et al., 2010).  However, a possible moonlighting 

function for this enzyme (similar to enolase) has not been described for trypanosomes. 

Beta tubulin has a known association with the exosomes of various cell types (Olver and 

Vidal, 2007) and has also been identified in trypanosome secretome data. 
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5.3. Discussion 

Proteomic approaches were used to identify proteins secreted from two different strains of 

T. b. brucei (namely strain 427 and strain GVR35) with the aim to establish (1) differences 

in secreted proteins between the two strains and (2) to obtain a profile of secreted proteins. 

Strain 427 and GVR35 show different pathogenesis in mice. While strain 427 causes an 

acute infection with high mortality within a few days, GVR35 establishes a chronic form 

of the disease with invasion of the CNS. Excreted/secreted proteins could be the key for a 

better understanding of the pathogenic process of those parasites, specifically in regards to 

invasion of the central nervous system. 

 

This chapter introduced three different approaches to investigate the secretome of 427 and 

GVR35. However, the data is peliminary and does only indicate the possible set of secreted 

proteins. The rising cost of proteomic samples put a stop to this experiment before enough 

data was obtained to get comprehensive results.  

 

5.3.1. Secretome production 

Secretomes were produced by incubating the cells in serum free modified medium for two 

hours at a density of 2 x 10
8
 cells ml

-1
 as described by Holzmueller et al. (2008). Cell 

viability was checked by microscopic examination throughout the incubation period. 

During the initial experiment (results 5.2.1 and 5.2.2) 427 cells showed good motility and 

minimal ‘clumping’. However, GVR35 showed less tolerance for these conditions and cell 

‘clumping’ was observed during the end of the incubation period.  

 

FACS analysis and a propidium iodide real-time assay on a repeat dataset confirmed that 

cells start to die after 100 min of incubation and a western blot analysis of secretome and 

cell lysate, using RAD51 as control, showed minimal contamination.  FACS analysis 

showed about 18% dead cells in the GVR35 incubation culture compared to 5% in 427. 

That could explain the detected glycolytic enzymes in the analysed secretome sets from 

GVR35.  

 

The propidium iodide assay indicated that cells were dying rapidly after 100 min. 

However, as cells kept on dividing in the serum free media (confirmed by cell counts) and 
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cell death was calculated assuming a static population this assay showed not to be accurate 

enough for the purpose of this experiment. 

 

As a general observation, strain GVR35 seemed to cope less well with high density 

incubation than strain 427 and continuous cell cultures had to be kept between 1.5 and 2 x 

10
6
 cells ml

-1
 to avoid GVR35 parasite death (E. Myburgh, correspondence and personal 

experience). To resolve the issue of cell death during incubation several ‘secretome 

productions’ were performed at a lower density than the suggested 2 x 10
8 

cells ml
-1

, 

density tested were 1 x 10
8
 and 5 x 10

7
. Although the total number of cells was kept close 

to 2 x 10
8 

used for the experiments, the protein amount gained was on average less than 

100µg. However, lower cell density during incubation lowered cell death. A quantitative 

study on secreted proteins of T. congolense and T.evansi showed that not all species secrete 

proteins at the same level. T. congolense secreted five times less proteins than T. evansi 

under the same conditions (Holzmuller et al., 2008). 

 

Secretome production has proven difficult to achieve in this study, but the reasons for this 

are unclear. It is possible, that the two strains used secrete lower level of proteins. Another 

possibility is the use of cultured cells. Published secretome compared to my own data had 

been isolated from rats and the interaction between host immune system and pathogen 

could trigger a higher amount of proteins being secreted. However, the classes of proteins 

detected in all sets were quite similar which suggest that trypanosomes do secrete proteins 

despite the lack of environmental pressure in culture. That leaves the amount of cells used 

for this study. Strain 427 and GVR35 grow well in cultures and 427 has been successfully 

grown in culture for decades.  But the amount of culture that would be needed to achieve a 

high enough cell count to get a high enough amount of secreted protein would get 

unmanageable quite quickly. For strain GVR35, 150 to 170 ml of culture is needed to 

achieve 2 x 10
8
 cells in total as cells start dying at densities over 2 x 10

6
 (for continuous 

culture). From that amount on average 100µg of protein could be obtained. That means for 

DiGE analysis close to 1 litre of culture would be needed to get enough protein for one gel. 

Include three replicates and about three litres of culture becomes necessary. From a 

practical point of view alone this becomes unfeasible. For future experiments the use of 

trypanosomes isolated from mice might be a better approach to avoid the complications of 

cultured cells. 
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5.3.2. Comparison of T. b. brucei strains 427/GVR35  

A comprehensive comparison between the strains 427 and GVR35 was not achieved due to 

the difficulties obtaining a high enough protein concentration for analysis with DiGE. 

Although some differences in protein presence was shown, the relatively small 

concentration of proteins in the secretome made it impossible to obtain enough protein to 

run the prep gels according to protocol and therefore made it difficult to analyse the data 

and pick spots from the prep gel. For the DiGE analysis protein spots showing an at least 

two-fold difference in ratio were extracted from the gel, digested with trypsin and analysed 

on a LC-MS/MS platform. Some proteins (for example alpha tubulin, GVR35 sample) 

were detected (or picked from the gel) several times as the two dimensional separation of 

the gel showed the protein in different positions (differences in charge and mass). 

However, this has been described for tubulins before (Bridges et al., 2008). Geiger et al 

showed modifications of proteins between different strains. This was evident from the 

DiGE approach between 427 and GVR35 as well, as four proteins were picked in both 

strains, but showed up as different spots on the DiGE gel. 

 

A dimethyl-labelling approach identified 30 proteins but quantification was only possible 

for 12 proteins, with four proteins showing significant changes.  

 

Both DiGE and dimethyl-labeling did show significant differences between the two strains. 

However, as experiments could not be repeated a comprehensive list of differential 

secreted proteins could not be obtained and further experiments are needed to support our 

hypothesis that secreted proteins are involved in the difference of virulence between the T. 

b. brucei strains 427 and GVR35. 

 

5.3.3. T. b. brucei strain GVR 35 secretome 

Although secretory processes in African trypanosomes have been studied and reviewed 

(Bangs, 1998; Clayton et al., 1995) certain aspects of the process still remains unclear. In 

trypanosomes, endocytosis and exocytosis occur through the flagellar pocket and require 

clathrin, actin and GTPase Rab proteins (Geiger et al., 2010). Clathrin heavy chain has 

been identified in the strain GVR35 dataset. Proteins associated with the exosome 

secretion pathway were identified and from the 22 proteins described (Olver and Vidal, 

2007) 10 of them were present in this dataset, namely glyceraldehyde-3-phosphate 
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dehydrogenase, 14-3-3-like protein, alpha and beta tubulin, clathrin heavy chain, 

cyclophilin A, enolase, HSP70, pyruvate kinase and ubiquitin-conjugating enzyme. 

 

A comparison between the strain GVR35 and other published secretome data has shown 

that from the 109 proteins identified 69 proteins were also found in other datasets. 

Secretome analysis from three different strains of T. b. gambiense revealed 50 % of 

secreted proteins belonging to the categories protein folding and degradation, nucleotide 

metabolism and unassigned function (Geiger et al., 2010). In comparison, in the two 

T.b.brucei strains tested here about 21% of the proteins were hypotheticals and proteins 

belonging to the category protein folding and degradation made up 20% of the analysed 

proteins in this dataset (see Figure 6.3). Only two enzymes belonging to the nucleic acid 

metabolism were detected, making it a significantly smaller proportion compared to the 

published datasets. 

   

The proteins identified are connected to various molecular functions. Including, enzymes 

from carbohydrate metabolism, amino acid metabolism and nucleic acid metabolism, as 

well as chaperone proteins, proteins involved in protein and nucleotide binding, protein 

synthesis and cellular communication/signal transduction, which are categories known to 

be present in the secretome of trypanosomes.  

 

Although some proteins are well described as being secreted by trypanosomes, others are 

not and finding evidence of them being secreted can lead to interesting new hypotheses 

about pathogenic role of secreted proteins. Geiger et al published in 2010 that three 

glycolysis related enzymes phosphoglycerate mutase, enolase, pyruvate kinase are found to 

be secreted (The strain GVR35 dataset contains all three). They suggest that those enzymes 

could have functions unrelated to glycolysis. 

 

Comparison between the strain GVR35 and published secretome datasets showed a high 

number of enzymes from the carbohydrate metabolism, but if glycolysis related proteins in 

particular, are in fact secreted by trypanosomes or if their appearance is due to 

contamination of the secretome by cell death during incubation is unclear. However, 

glycolysis enzymes have been found in all published datasets for blood stream and 

procyclic (Atyame Nten et al., 2010) form of trypanosomes.   
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In conclusion, the comparison between my dataset and published datasets has shown that 

T. b. brucei strain GVR35 and to an extent strain 427, secrete similar proteins than other 

species of trypanosomes.    
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Chapter 6 

Discussion 

Whole genome sequencing has nowadays become more readily available with the cost 

dropping rapidly and data being made available for a variety of organisms, from bacteria to 

plants and trypanosomatids. The genome of several trypanosome species and subspecies 

has been published (Berriman et al., 2005; El-Sayed et al., 2005; Jackson et al., 2010) and 

data are available via databases, such as TritrypDB, a database dedicated to the 

trypanosomatids (Aslett et al., 2010). Gene annotation using bioinformatic approaches can 

give an indication of the possible function of a gene, but it is not guaranteed that the 

detected homology between two (or more) sequences actually means the proteins have 

functional identities. The most popular bioinformatics approaches being used are BLAST 

or Pfam. BLAST (Basic Local Alignment Search Tool) compares either nucleotide or 

protein sequences to sequences in databases. Pfam is used for protein annotation by 

searching a protein sequence for known protein domains (Punta et al., 2012). Although 

bioinformatics approaches for homology based functional assignments of genes has shown 

to be a fast approach to obtain putative gene annotations, often these annotations are 

incorrect or only based on low sequence homology (Baran et al., 2009). Identifying 

functions of hypothetical proteins or even identifying wrongly annotated genes remains a 

major challenge in the post-genomic era. 

 

However, the field of metabolomics has created applications to overcome this challenge, 

which are (1) genes with no identified function and (2) metabolic pathways present but no 

encoded enzyme in the genome identified that could catalyse the reaction. However, 

metabolomics is the study of low molecular weight metabolites within the cell and 

metabolites are often the substrate or downstream product of enzymatic reactions, so 

seeing a reaction occur means there must be a gene present. 

 

The first approach of directly identifying protein functions can be done by using 

recombinant protein or gene knock out / knock down. Analysing the changes in metabolic 

datasets can indicate the function of the protein of interest. Although this is the most direct 

approach, it is also time consuming. 
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A different approach is to look at the pathways directly. By combining stable isotope 

labelling with metabolomics, the flux of labelled compounds can be traced through the 

organism. 

The metabolomic and proteomic approaches used in this study have shown to be highly 

applicable to study the system biology of trypanosomes. 

Metabolomics and proteomics approaches have been applied to the parasitic protozoa T. 

brucei to (1) test a high throughput approach for enzyme function identification using 

metabolomics techniques, (2) identify metabolic pathways with stable isotope labelling 

coupled to metabolomics and (3) applying proteomic techniques for identification of novel 

secreted proteins from cultured parasites. 

 

6.1. Enzyme assay / Enzyme ID 

In this project, I investigated the potential of an untargeted enzyme assay using 

metabolomics techniques for a high throughput. This method has been deployed to identify 

the function of novel enzymes for E. coli (Saito et al., 2009) and Mycobacterium 

tuberculosis (De Cavallho et al., 2009; Larrouy-Maumus et al., 2013). Furthermore, three 

trypanosome enzymes have been investigated in our group (E. Kerkhoven, thesis). 

 

In this project enzymes were chosen at random from a list of putative enzyme obtained 

from TritrypDB, as the aim was to determine whether this assay was applicable for a high 

throughput approach. The only criteria for the chosen ‘enzymes’ was that they should have 

a predicted metabolic function, relatively small size, so the cloning and over-expression 

would not cause too many difficulties, and that their function had not been determined 

before using recombinant or purified protein. The assay was designed to be fast and 

relatively cheap. The workflow developed took seven days to complete, from the initial 

PCR for cloning to purifying the protein for the assay. A way this was achieved was to use 

a ligase independent cloning system to standardise primer design and cut down on cloning 

time. When the system was applicable using E. coli over expression systems allowed easy 

and fast protein production. However, more than half of the proteins were either not over 

expressed or could not be purified (inclusion body formation), therefore alternative over 

expression systems should be considered for future work when over expression from E. 

coli is not possible. During this thesis, changes were made to optimise the workflow. 

Different E. coli over expression strains were tested to achieve high protein amounts. E. 

coli Rosetta (DE3) cells improved protein expression in number of proteins that could be 
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over expressed and their yield compared to BL21 (DE3) strains. A second extraction step 

was also added to the protocol to increase the quality of the metabolomics datasets (as was 

shown with the example of Hexokinase, Chapter 3). The concentration of the MOPS buffer 

used in the enzyme assay was lowered to 10 mM from originally 40 mM, to reduce the 

possibility of ion suppression and also because MOPS was seen to block the columns. 

 

For an initial screening approach, this method seems applicable as shown for the enzyme 

S-adenosylmethionine synthetase. Using the in vitro assay the function of this enzyme was 

directly linked to a purified protein. The presence of this reaction was previously achieved 

using trypanosome cell extract (Yarlett et al., 1993), but the function was not linked 

directly to a gene. 

 

But not all proteins showed changes indicating its function, highlighting the limitations of 

this method.  

 

Currently there is no MS platform fitting for all classes of metabolites, which causes a 

problem when the substrate/products fall outwith the parameters suitable for analysis on 

the LC-MS platform used in this project. For putative enzymes in this study it is hard to tell 

if that is the case, however, the commercial hexokinase, used for validation purposes 

shows that detection of sugars is not ideal on LC-MS, as the separation is not good enough 

to differential between glucose and fructose (for example). Most sugars and sugar 

phosphates are being identified with 57 isomers on the IDEOM spreadsheet.  

  

Yeast extract has shown to be a broad, reproducible source for metabolites, which has the 

benefit, in the high throughput approach, to limit the external variance factor. The 

drawback is that trypanosome specific enzymes might not be identified as specific 

metabolites, like trypanothione, might be missing. Also, highly abundant metabolites could 

mask changes, as was shown for S-adenosylmethionine synthetase, where levels of L-

methionine were unchanged between the treatment and control samples and for the 

commercial hexokinase assay, which showed no changes in D-glucose levels.  

 

One of the proteins investigated, putatively annotated as deoxhypusine synthase, was since 

shown to form a heterotetramer with a catalytically dead paralog to enhance its activity by 

3000-fold (Nguyen et al., 2013). This form of regulation, termed prozyme, has been 

described for other trypanosome enzymes as well, namely hexokinase (Morris et al., 2006) 
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and S-adenosylmethionine decarboxylase (Velez et al., 2013). The use of the untargeted 

enzyme assay with recombinant proteins will miss those enzymes as well. 

 

When the function of a potential enzyme cannot be determined using the in vitro assay 

approach, the production of knock-out lines or knock-down lines can be of use to further 

investigate the function (Saghatellian et al., 2004). However, this process can be very time 

consuming compared to the production of recombinant protein in a well established over 

expression system such as E. coli. The benefit of this approach, next to determine the 

function of the targeted gene, is to also provide further information about the target protein, 

such as how essential this protein is for cell survival.  

 

Metabolomics analysis of knock out or knock down lines does not always allow 

identification of the function. For example, the function of the trypanosome ‘arginase’ has 

eluded our group for years now. This protein has been investigated in three PhD studies 

and all we can say about it is that it does not have ‘arginase’ activity although BLAST and 

Pfam show significant homologies to other arginases. An ‘arginase’ knock-out mutant was 

produced and using an untargeted metabolomics approach comparing knock-out to 

wildtype gave no indication of arginase or ureohydrolase activity (Hai et al., 2014).  

 

6.2. Stable Isotope Labelling / Pathway ID 

Metabolomics combined with stable isotope labelling can provide an indirect approach for 

the detection of enzymatic activity (Dalluge et al., 2005). However, this approach is mainly 

used as a tool for pathway identifications, as by adding a labelled metabolite to the cell 

culture, downstream metabolites labelled from the added compound can be detected and 

lead to the identification of novel pathways. Extensive work has been done on the energy 

metabolism of procyclic and bloodstream form trypanosome. Recent work from Creek et al 

(2015) used U- 
13

C D-glucose to label cultured bloodstream form trypanosomes, showing 

that glucose can enter many branches of the trypanosome metabolism.  

 

ATP, labelled from U-
13

C glucose, was shown to be incorporated in S-adenosylmethionine. 

Trypanosomes were thought to be capable of recycling L-methionine via the 

methylthioadenosine cycle (MTA cycle or Yang cycle). However, L-methionine was not 

detected to be labelled from glucose, ruling out the use of L-methionine salvage via the 
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MTA cycle. To further investigate those findings, U-
13

C-L-methionine was used in an 

untargeted metabolomic approach. 

The main findings are: 

 The MTA (or Yang) cycle also does not seem to be involved in methionine salvage. 

Instead MTR gets secreted from the cells, shown by rising levels of 1-C labelled 

MTR in spent medium. Also, the precursor metabolite to L-methionine (4-

methylthio-2-oxobutanoate) is 5-
13

C labelled from L-methionine, confirming the 

findings of Creek et al., 2015. 

 1,2-dihydroxy-5-(methylthio) pent-1-en-3-one from the MTA cycle is labelled       

1-
13

C, but no further information about what pathway this metabolite goes into was 

obtained. 

 The Methionine cycle, recycling S-adenosylmethionine to L-homocysteine back to 

L-methionine doesn’t seem to take place (lack of 1-C label in L-methionine) 

 

Future works, could include the detection of enzymes of the MTA cycle present in 

trypanosomes and further investigate the fate of 1,2-dihydroxy-5-(methylthio) pent-1-en-3-

one in bloodstream form trypanosomes. 

 

Another finding of the U-
13

C glucose study (Creek et al., 2015) was a significant level of 

aspartate, succinate and malate not made from glucose, suggesting alternative carbon 

source than glucose for their production. Data obtained from U-
13

C L-glutamine labelling 

in cultured trypanosomes (DH Kim and F Achcar, unpublished data) showed labelled 

carbon incorporation from L-glutamine. However, approximately 20% of aspartate, 

succinate and malate were still unaccounted for. As L-proline can be the main carbon 

source in procyclic trypanosomes, U-
13

C L-proline was used to investigate its possible 

involvement in bloodstream form trypanosomes. However, minimal labelling of 

compounds in the dataset suggests L-proline is not used as carbon source in bloodstream 

form trypanosomes. No carbon incorporation into those compounds was detected from L-

methionine and L-arginine. Further testing of other amino acids is required to answer for 

the unaccounted amounts of aspartate, succinate and malate. Enzymes for the oxidation of 

aromatic amino acids are absent from trypanosomes (Berriman et al., 2005) making their 

involvement unlikely. L-aspartate is not taken up by trypanosomes (Hasne, thesis) and 

work done by D Kim with 
13

C- L-cysteine (unpublished data) showed no labelling. 
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Previous work from I. Vincent on the L-ornithine biosynthesis showed that trypanosomes 

take up L-ornithine from the media. However, when cells were incubated in CBSS 

(Carter’s balanced saline solution) in the absence of L-ornithine and with added 
14

N-L-

arginine, labelling of L-ornithine occurred. The most direct route from L-arginine to L-

ornithine is via the enzyme arginase. T. b. brucei’s genome encodes for a gene annotated as 

arginase (or agmatinase-like protein), however, this enzymes has no arginase activity (Hai 

et al., 2014). To investigate an alternative route for L-ornithine production, but also to 

further probe the L-arginine metabolism in trypanosomes, U-
13

C-L-arginine was used in an 

untargeted metabolomic approach. 

The main findings are: 

 Although L-ornithine was 5-C labelled from L-arginine, equally high 

concentrations were seen intra- and extracellular (spent medium analysis). 

Therefore, it was assumed that the formation of L-ornithine happened outside the 

cell and labelled L-ornithine was taken up by the trypanosomes. This was later 

verified by Dr. F. Giordani by incubating medium with added U-C
13

 L-arginine 

without cells. 

 Arginine-phosphate is labelled from L-arginine. This has been described to be of 

use in energy storage in trypanosomes (Canepa et al., 2011), with three arginine 

kinases being encoded in the T. brucei genome. 

 

 

6.3. Secretome 

Proteomic techniques were used to identify secreted proteins from two different 

trypanosome strains, which differ in the course of disease, 427 causes an acute infection in 

mice while GVR35 remains as a more chronic form within the CNS of the mice. In this 

thesis, I showed significant differences in proteins secreted from strain 427 and GVR35, 

although the results are just preliminary. However, the preliminary data did show a high 

consensus between the possible secreted proteins from strain 427 and GVR35 to other 

published secretome datasets, including one from human infecting trypanosomes (Geiger 

et al., 2010). 

 

Although published trypanosome secretome datasets included ‘proof’ of minimal 

contamination of proteins from lysed cells by FACS and western blot analysis, the 
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occurrence of highly abundant proteins and glycolytic enzymes raises the questions if those 

proteins are actively secreted or not. 

 

Further work is needed to address this problem and for the strains used in this study 

alternative methods for secretome production are needed. 
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Appendix A 

Growth media for T. b.brucei 

 

(1) Modified HMI-9 
 

For 500 ml modified HMI-9: 

 

Iscoves modified Dulbecco’s medium  + glutamax (Gibco)    365 ml 

Methyl cellulose (Sigma)       0.55g 

add: 

 

Compound 
Concentration (mM) 

Stocksolution 

Concentration final 

in modified HMI-9 

Bathocuproinedisulfonic acid 5 0.5 µM 

L-cysteine 100 1 mM 

Sodium pyruvate 200 2 M 

Thymidine 16 160 µM 

Hypoxanthine  2 mM 

D-glucose  5.5 mM 

Adenosine  0.5 mM 

Guanosine  0.5 mM 

Mercaptoethanol  3 µM 

Pen/Strep  5000 Units 

FBS Gold (PAA)  20% 

Serum plus  20% 

 
 

Table A1: Modified HMI-9 (adapted from Paul Voorheis). 
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(2) Creek’s minimal medium (CMM) 

 

Compound Concentration (µM) 

Bathocuproine disulfonic acid 52 

Phenolsulfonphtalein 42 

HEPES 10,000 

NaCl 77,590 

CaCl2 1,490 

KCl 4,400 

MgSO4 814 

NaHCO3 35,950 

D-glucose 10,000 

L-glutamine 1,000 

L-cysteine 1,000 

Mercaptoethanol 192 

FBS Gold (PAA) 10% 

 

Table A2: Creek’s minimal media (CMM) (Creel et al., 2013).  If a different brand FBS does not 

support growth in this medium, L-arginine, L-tyrosine, L-methionine, L-leucine, L-phenylalanine and 

L-tryptophan should be added (100µM). 
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Appendix B 

Gene ID Gene name Description Sequence 

Tb427.01.1130 glycerol-3-phosphate dehydrogenase Recombinat expression, fwd GGTATTGAGGGTCGCATGGGTCGCTATACGCGCCG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTCATGTGAGAGCCGTGGCGG 

Tb427.06.4920 S-adenosylmethionine synthetase Recombinat expression, fwd GGTATTGAGGGTCGCATGTCCGTGCGCCAG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCCTACTGCACGTCACTAAGACC 

Tb427.07.4390 threonine synthase Recombinat expression, fwd GGTATTGAGGGTCGCATGCTCACCTTACGCG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTCAGCAAGAGCCCTCACTGG 

Tb427.08.3800 nucleoside phosphatase Recombinat expression, fwd GGTATTGAGGGTCGCATGTTGCACTCAAACCACCC 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTCACACACAGTGCTCCTCTAAGC 

Tb427.10.12980 methyltransferase Recombinat expression, fwd GGTATTGAGGGTCGCATGTGGAAACCGAAACAGCG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTCAAGGATCACGCACGTCTGGC 

Tb427.10.13130 UTP-glucose-1-phosphate uridylyltransferase Recombinat expression, fwd GGTATTGAGGGTCGCATGCCGCTAAACCCTCCTTCAGC 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCCTACTCGACTACCACAACC 

Tb427.10.13430 citrate synthase Recombinat expression, fwd GGTATTGAGGGTCGCATGTGCATGCGTGCTCG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCCTACGCTATGTTGTACTTTGTG 

Tb427tmp.01.3640 acyl-CoA dehydrogenase Recombinat expression, fwd GGTATTGAGGGTCGCATGTTTCGTCGTAGCCTTTCCC 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTCACCTAAGATCCCATGTCG 

Tb427tmp.02.0530 phosphoribosylpyrophosphate synthetase Recombinat expression, fwd GGTATTGAGGGTCGCATGGGTTGTGCCATGCATTTCGC 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCCTATGTGCGGAACAAAGAGG 

Tb427tmp.02.3040 aldo/keto reductase Recombinat expression, fwd GGTATTGAGGGTCGCATGGACCGTATTCCATATTTGG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTTAATCTATCGTGTTGCTATGCC 

Tb427.10.2490 glucose-6-phosphate 1-dehydrogenase Recombinat expression, fwd GGTATTGAGGGTCGCATGGACGGTGATCTTTCCC 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTTACAAATGATGAAGCTTCCGC 
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Gene ID Gene name Description Sequence 

Tb427.05.3820 aspartate carbamoyltransferase Recombinat expression, fwd GGTATTGAGGGTCGCATGGCGGAGCTGCAACCTG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTTAGGCGAGAACACTATAAAG 

Tb427.10.2010  Hexokinase I Recombinat expression, fwd GGTATTGAGGGTCGCATGTCTAGACGCCTAAACAATATCC 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCTTACTTGTCGTTCACCACCATTGCG 

Tb427.05.4560 guanine deaminase Recombinat expression, fwd GGTATTGAGGGTCGCATGNAAACCGCCGTGCCTGTGCG 

    Recombinat Expresssion, rev AGAGGAGAGTTAGAGCCCTAAAGTTCTACCCTCCCGTGGACC 

Table B1: Oligonucleotides used in this study for protein over expression. The inserted overhang necessary for ligase independent cloning is underlined.  

 

Gene ID Gene name Description Sequence 

Tb427.05.3820 aspartate carbamoyltransferase G197
RNAi

, fwd GGGGACAAGTTTGTACAAAAAAGCAGGCTGTGACGTACTTGTGCTGCGT 

    G197
RNAi

, rev GGGGACCACTTTGTACAAGAAAGCTGGGTAATGACGATATCCGCCTTTG 

Tb427tmp.02.3040 aldo/keto reductase G196
RNAi

, fwd GGGGACAAGTTTGTACAAAAAAGCAGGCTCATTGATTACGCCGATTGTG 

    G196
RNAi

, rev GGGGACCACTTTGTACAAGAAAGCTGGGTGCTCCCTCCGAGAAGAAACT 

Tb11.01.6500 NAD+ synthase G162
RNAi

, fwd GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGTTGGAGGAATACCGAAG 

    G162
RNAi

, rev GGGGACCACTTTGTACAAGAAAGCTGGGTGTAGCCATCCTCGTCCATGT 

Tb927.7.5680 deoxyribose-phosphate aldolase G159
RNAi

, fwd GGGGACAAGTTTGTACAAAAAAGCAGGCTCTAAAACCTGAGGCAACCCA 

    G159
RNAi

, rev 

 

GGGGACCACTTTGTACAAGAAAGCTGGGTGCAGCGACTGACAGGATACA 

Table B2: Oligonucleotides used in this study for creation of RNAi lines 
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Appendix C 

General buffers and solutions 

 
0.1% coomassie blue stain (200 mL) 

Coomassie blue 0.2 g   

Methanol  80 mL  

Acetic acid  20 mL   

dH2O   100 mL  

 

Destaining solution for protein gels (500 mL) 

Methanol  100 mL   

Acetic acid  50 mL    

dH2O   350 mL   

 

LB medium (Luria Bertani broth, pH 7) 

LB powder (Sigma-Aldrich)  25 g 

dH2O     1 L 

 

LB agar 

Luria Agar (Sigma-Aldrich)  35 g 

dH2O     1 L 

 

DiGE lysis buffer: 

Urea   6 M 

Thiourea  2 M 

CHAPS  4% 

Tris base  25mM 

 

Rehydration buffer: 

Urea    6 M 

Thiourea   2 M 

CHAPS   4% 

IPG buffer   0.5% 

DTT    65 mM 

Trace of bromophenol blue 
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Appendix D 

Table of the three authentic standard mixes run with every metabolomics experiment. 

Shown are the metabolite name and formula. The polarity mode (positive or negative) the 

metabolite was best detected in and the expected retention time. 

 

Mix Compound Name Formula Polarity Expected RT 

1 1-Naphthylacetic acid C12H10O2 + 4.21 

  Serotonin C10H12N2O + 4.28 

  Melatonin C13H16N2O2 + 4.67 

  Phenylhydrazine C6H8N2 + 5.08 

  Nicotinate C6H5NO2 + 6.99 

  Pyridoxine C8H11NO3 + 7.45 

  riboflavin C17H20N4O6 + 7.62 

  Glycerol C3H8O3 + 8.12 

  Adenine C5H5N5 + 8.34 

  Creatinine C4H7N3O + 8.42 

  L-Phenylalanine C9H11NO2 + 8.34 

  L-Leucine C6H13NO2 + 8.74 

  4-Aminobenzoate C7H7NO2 + 9.35 

  Inosine C10H12N4O5 + 8.96 

  2-Phenylglycine C8H9NO2 + 8.9 

  Selenomethionine C5H11NO2Se + 9.03 

  L-Methionine C5H11NO2S + 9.07 

  Imidazole-4-acetate C5H6N2O2 + 9.03 

  L-Tryptophan C11H12N2O2 + 9.35 

  N-Acetyl-D-glucosamine C8H15NO6 + 9.33 

  Cytidine C9H13N3O5 + 9.53 

  Guanine C5H5N5O + 9.98 

  L-Valine C5H11NO2 + 9.59 

  L-Proline C5H9NO2 + 9.75 

  sn-glycero-3-Phosphocholine C8H20NO6P + 10.23 

  L-Threonine C4H9NO3 + 10.4 

  trans-4-Hydroxy-L-proline C5H9NO3 + 10.52 

  L-Histidine C6H9N3O2 + 10.48 

  N2-Acetyl-L-lysine C8H16N2O3 + 10.57 

  D-Glucosamine C6H13NO5 + 10.72 

  L-Glutamine C5H10N2O3 + 10.65 

  Taurine C2H7NO3S + 10.94 

  L-Aspartate C4H7NO4 + 10.52 

  L-Asparagine C4H8N2O3 + 10.76 

  beta-Alanine C3H7NO2 + 10.94 

  Glycine C2H5NO2 + 11.13 

  dGMP C10H14N5O7P + 10.52 

  L-Serine C3H7NO3 + 11.09 

  Ethanolamine phosphate C2H8NO4P + 10.72 
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Mix Compound Name Formula Polarity Expected RT 

 1 L-Citrulline C6H13N3O3 + 11.04 

  L-Cystine C6H12N2O4S2 + 10.87 

  meso-2_6-Diaminoheptanedioate C7H14N2O4 + 11.8 

  Putrescine C4H12N2 + 11.56 

  L-2_4-Diaminobutanoate C4H10N2O2 + 12.27 

  Thiamin C12H16N4OS + 16.71 

  L-Lysine C6H14N2O2 + 15.38 

  L-Arginine C6H14N4O2 + 16.42 

  S-Adenosyl-L-methionine C15H22N6O5S + 0 

  Phenolsulfonphthalein C19H14O5S - 5.11 

 
Thymidine C10H14N2O5 - 6.79 

  MOPS C7H15NO4S - 6.73 

  Pyruvate C3H4O3 - 7.41 

  Deoxyuridine C9H12N2O5 - 7.52 

  4-Coumarate C9H8O3 - 7.39 

  pyrazinoate C5H4N2O2 - 7.72 

  (R)-3-Hydroxybutanoate C4H8O3 - 7.87 

  3'_5'-Cyclic AMP C10H12N5O6P - 7.93 

  Uridine C9H12N2O6 - 8.47 

  D-glucose C6H12O6 - 10.77 

  Orotate C5H4N2O4 - 8.58 

  L-Rhamnose C6H12O5 - 9.16 

  Xanthine C5H4N4O2 - 9.28 

  3_4-Dihydroxyphenylacetate C8H8O4 - 10.15 

  Pyridoxal phosphate C8H10NO6P - 0 

  Phthalate C8H6O4 - 10.24 

  D-Gluconic acid C6H12O7 - 10.17 

  UMP C9H13N2O9P - 9.93 

  Thiamin diphosphate C12H18N4O7P2S - 9.86 

  L-Glutamate C5H9NO4 - 10.34 

  IMP C10H13N4O8P - 10.15 

  Methylmalonate C4H6O4 - 10.54 

  CMP C9H14N3O8P - 10.43 

  (R)-2-Hydroxyglutarate C5H8O5 - 10.62 

  L-Cysteate C3H7NO5S - 11.08 

  D-ribose 5-phosphate C5H11O8P - 10.66 

  Malonate C3H4O4 - 10.95 

  D-Galacturonate C6H10O7 - 11.28 

  Fumarate C4H4O4 - 9.89 

  D-glucose 6-phosphate C6H13O9P - 11.12 

  D-Galactarate C6H10O8 - 11.48 

  Phosphoenolpyruvate C3H5O6P - 11.52 

  6-Phospho-D-gluconate C6H13O10P - 11.39 

  cis-Aconitate C6H6O6 - 11.77 

  Gallate C7H6O5 - 13.11 

  D-Erythrose C4H8O4 - 0 

  Maltose C12H22O11 - 0 
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Mix Compound Name Formula Polarity Expected RT 

 
2-oxobutanoate C4H6O3 - 0 

 1 2-Methylcitrate C7H10O7 - 0 

  Glyoxylate C2H2O3 - 0 

  glycolate C2H4O3 - 0 

  methylglyoxal C3H4O2 - 0 

  IDP C10H14N4O11P2 - 0 

  ADP C10H15N5O10P2 - 0 

  D-Fructose 1_6-bisphosphate C6H14O12P2 - 0 

  CoA C21H36N7O16P3S - 0 

  2_3-Bisphospho-D-glycerate C3H8O10P2 - 0 

  3-Hydroxyphenylacetate C8H8O3 - 0 

  Cholesterol C27H46O + 0 

 
1-Butanol C4H10O + 0 

  Oxaloacetate C4H4O5 + 0 

  Imidazole C3H4N2 + 0 

  glyceraldehyde C3H6O3 + 0 

2 Menadione C11H8O2 + 15.65 

  Dopamine C8H11NO2 + 8.28 

  Thiopurine S-methylether C6H6N4S + 6.35 

  5'-Methylthioadenosine C11H15N5O3S + 6.52 

  Nicotinamide C6H6N2O + 6.8 

  4-(beta-Acetylaminoethyl)imidazole C7H11N3O + 6.92 

  Pyridoxal C8H9NO3 + 7.74 

  6-Methylaminopurine C6H7N5 + 7.36 

  Deoxyadenosine C10H13N5O3 + 7.46 

  Pantothenate C9H17NO5 + 7.46 

  Uracil C4H4N2O2 + 7.85 

  Picolinic acid C6H5NO2 + 7.55 

  thymine C5H6N2O2 + 7.11 

  Adenosine C10H13N5O4 + 7.94 

  Hypoxanthine C5H4N4O + 8.75 

  5-Oxoproline C5H7NO3 + 8.36 

  HEPES C8H18N2O4S + 8.36 

  L-Kynurenine C10H12N2O3 + 8.81 

  Betaine C5H11NO2 + 9.03 

  cytosine C4H5N3O + 9.39 

  FAD C27H33N9O15P2 + 8.47 

  L-isoleucine C6H13NO2 + 9.3 

  Methylcysteine C4H9NO2S + 9.18 

  Ala-Gly C5H10N2O3 + 9.14 

  Guanosine C10H13N5O5 + 9.98 

  dAMP C10H14N5O6P + 9.14 

  1-Aminocyclopropane-1-carboxylate C4H7NO2 + 9.59 

  N(pi)-Methyl-L-histidine C7H11N3O2 + 9.47 

  L-Carnitine C7H15NO3 + 9.89 

  Eflornithine C6H12F2N2O2 + 9.98 

  L-Tyrosine C9H11NO3 + 9.98 
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Mix Compound Name Formula Polarity Expected RT 

 2 4-Trimethylammoniobutanoate C7H15NO2 + 9.77 

  S-Adenosyl-L-homocysteine C14H20N6O5S + 9.68 

  AMP C10H14N5O7P + 9.59 

  NAD+ C21H27N7O14P2 + 0 

  Glycylglycine C4H8N2O3 + 9.98 

  Phenol C6H6O + 0 

  D-Glucosamine-6-phosphate C6H14NO8P + 10.79 

  L-Alanine C3H7NO2 + 10.73 

  Choline phosphate C5H14NO4P + 10.21 

  dCMP C9H14N3O7P + 10.1 

  L-2-Aminoadipate C6H11NO4 + 10.38 

  L-homoserine C4H9NO3 + 10.75 

  N-Acetylornithine C7H14N2O3 + 10.7 

  4-Aminobutanoate C4H9NO2 + 10.94 

 
L-Cystathionine C7H14N2O4S + 11.22 

  agmatine C5H14N4 + 11.15 

  Spermine C10H26N4 + 12.23 

  Trypanothione disulfide C27H47N9O10S2 + 12.17 

  Choline C5H13NO + 15.65 

  1-Aminopropan-2-ol C3H9NO + 15.65 

  L-Ornithine C5H12N2O2 + 14.24 

  5-Methoxytryptamine C11H14N2O + 4.59 

  Methylguanidine C2H7N3 + 0 

  Biotin C10H16N2O3S + 0 

  L-2_3-Diaminopropanoate C3H8N2O2 + 11.31 

  1_3-Diaminopropane C3H10N2 + 14.04 

  Taurocholate C26H45NO7S - 4.54 

  Lipoate C8H14O2S2 - 4.54 

  Phenylacetylglycine C10H11NO3 - 5.89 

  Phenylpyruvate C9H8O3 - 4.6 

  D-Threose C4H8O4 - 8.27 

  succinate semialdehyde C4H6O3 - 8.27 

  N-Acetylglutamine C7H12N2O4 - 8.46 

  3-(4-Hydroxyphenyl)pyruvate C9H8O4 - 6.36 

  D-Ribose C5H10O5 - 8.91 

  FMN C17H21N4O9P - 8.52 

  L-Gulono-1_4-lactone C6H10O6 - 9.31 

  Orotidine C10H12N2O8 - 9.5 

  N-Acetylneuraminate C11H19NO9 - 9.74 

  dUMP C9H13N2O8P - 9.72 

  allantoin C4H6N4O3 - 11.02 

  dIMP C10H13N4O7P - 9.95 

  sn-Glycerol 3-phosphate C3H9O6P - 10.32 

  sucrose C12H22O11 - 10.78 

  D-Erythrose 4-phosphate C4H9O7P - 10.85 

  Succinate C4H6O4 - 10.61 

  D-Glucuronolactone C6H8O6 - 10.85 
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 2 Mesaconate C5H6O4 - 10.8 

  2-Oxoglutarate C5H6O5 - 10.91 

  GMP C10H14N5O8P - 10.67 

  (S)-Malate C4H6O5 - 11.04 

  UDP-glucose C15H24N2O17P2 - 10.95 

  Folate C19H19N7O6 - 11.1 

  DL-Glyceraldehyde 3-phosphate C3H7O6P - 0 

  NADP+ C21H28N7O17P3 - 10.78 

  ATP C10H16N5O13P3 - 10.85 

  3-Phospho-D-glycerate C3H7O7P - 11.19 

  Oxalate C2H2O4 - 12.02 

  GDP C10H15N5O11P2 - 11.56 

  citrate C6H8O7 - 11.85 

  CTP C9H16N3O14P3 - 11.67 

  GTP C10H16N5O14P3 - 12.11 

  2-Deoxy-D-glucose C6H12O5 - 8.65 

 
(R)-Lactate C3H6O3 - 5.37 

  Acetyl-CoA C23H38N7O17P3S - 0 

3 Dihydrolipoamide C8H17NOS2 + 8.11 

  lipoamide C8H15NOS2 + 4.94 

  2-Aminobutan-4-olide C4H7NO2 + 6.62 

  2-hydroxyethyldisulfide C4H10O2S2 + 6.8 

  Isonicotinic acid C6H5NO2 + 7.01 

  L-cysteine C3H7NO2S + 7.16 

  L-Noradrenaline C8H11NO3 + 7.42 

  Biopterin C9H11N5O3 + 7.86 

  O-Acetylcarnitine C9H17NO4 + 8.74 

  O-Acetyl-L-serine C5H9NO4 + 8.55 

  L-Homocysteine C4H9NO2S + 9.94 

  5-Aminolevulinate C5H9NO3 + 9.77 

  gamma-L-Glutamyl-L-cysteine C8H14N2O5S + 10.05 

  glutathione C10H17N3O6S + 10.05 

  Acetylcholine C7H15NO2 + 12.79 

  L-Cystine C6H12N2O4S2 + 10.84 

  Homocystine C8H16N2O4S2 + 0 

  S-glutathionyl-L-cysteine C13H22N4O8S2 + 0 

  Mercaptoethanol C2H6OS + 21.5 

  trypanothione C27H49N9O10S2 + 10.46 

  Glutathione disulfide C20H32N6O12S2 + 11.05 

  Bis-gamma-glutamylcystine C16H26N4O10S2 + 11.32 

  Benzoate C7H6O2 - 6.41 

  acetylcysteine C5H9NO3S - 7.11 

  D-Glucono-1_4-lactone C6H10O6 - 9.26 

  Acetoacetate C4H6O3 - 7.55 

  Maleic acid C4H4O4 - 9.86 

  D-Arabinose C5H10O5 - 10.42 

  D-Fructose C6H12O6 - 10.34 
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 3 Orthophosphate H3O4P - 10.64 

  NADH C21H29N7O14P2 - 9.44 

  L-Dehydroascorbate C6H6O6 - 11.81 

  N-acetyl-L-glutamate C7H11NO5 - 9.99 

 
ascorbate C6H8O6 - 10.64 

  Itaconate C5H6O4 - 10.64 

  D-Fructose 6-phosphate C6H13O9P - 10.74 

  Adenosine 2'_5'-bisphosphate C10H15N5O10P2 - 10.68 

  2-phospho-D-glycerate C3H7O7P - 11.11 

  pyrophosphate H4O7P2 - 11.49 

  NADPH C21H30N7O17P3 - 0 

 

Table D1: Authentic standard mixes run with every metabolomics experiment  



169 

 

Appendix E 

Chapter 5.2.2.: Table of secreted proteins from T. b. brucei GVR35, with 109 proteins 

significantly identified using MASCOT (p-value <0.05).   

 

Accesion no. 

 (TritrypDB) ID Matches Score 

Tb11.01.1290 14-3-3-like protein, putative 
a,b 10(6) 104 

Tb11.02.4700 14-3-3-like protein, putative 
a,b 9(2) 44 

Tb11.01.3020 40S ribosomal protein L14, putative 2(1) 32 

Tb10.6k15.3340 40S ribosomal protein S24E, putative 2(0) 17 

Tb10.70.3360 40S ribosomal protein S3a, putative 
b 5(2) 57 

Tb11.02.1085 40s ribosomal protein S4, putative 
a 3(1) 33 

Tb09.211.0110 60S ribosomal protein L10, putative 3(1) 42 

Tb09.211.4550 60S ribosomal protein L12, putative 6(2) 44 

Tb927.7.5170 60S ribosomal protein L23a 1(0) 24 

Tb09.244.2730 60S ribosomal protein L5, putative 6(1) 63 

Tb10.70.7010 60S ribosomal protein L9, putative 3(1) 33 

Tb09.211.3180 6-phosphogluconate dehydrogenase, decarboxylating, putative 2(1) 29 

Tb11.02.1120 adenylosuccinate synthetase, putative 
b 9(2) 57 

Tb09.211.4460 ADP-ribosylation factor, putative 
a 4(0) 26 

Tb927.3.3450 ADP-ribosylation factor-like protein 3A, putative 
a 1(0) 17 

Tb927.1.2340 alpha tubulin 
a,b 108(84) 2274 

Tb09.160.4590 arginine kinase 
a,b

 20(5) 116 

Tb10.70.3710 aspartate aminotransferase 
a,b 10(1) 37 

Tb927.1.2330 beta tubulin 
a 48(16) 524  

Tb927.7.4060 calpain-like cysteine peptidase, putative 
a 20(2) 48 

Tb10.70.0830 clathrin heavy chain 
a 36(5) 132 

Tb927.2.1560 cyclophilin type peptidyl-prolyl cis-trans isomerase precursor, putative 3(0) 14 

Tb11.03.0250 cyclophilin a 
a 12(6) 226  

Tb11.01.8470 dihydrolipoyl dehydrogenase 
a 2(0) 27 

Tb10.70.5650 elongation factor 1-alpha 
a,b 37(4) 116 

Tb11.01.4660 elongation factor 1 gamma, putative 
a 8(1) 28 

Tb10.70.2650 elongation factor 2 
a,b 58(33) 942 

Tb10.70.4740 enolase 
a,b 135(59) 1528 

Tb09.160.3270 eukaryotic initiation factor 4a, putative 
a,b 4(3) 91 

Tb10.70.1370 fructose-bisphosphate aldolase, glycosomal 
a 7(4) 153  

Tb11.02.5450 glucose-regulated protein 78, putative 
a 4(2) 53 

Tb10.6k15.3850 glyceraldehyde 3-phosphate dehydrogenase, cytosolic 
a,b

 4(1) 58 

Tb09.211.3540 glycerol kinase, glycosomal 
a 13(4) 168 

Tb927.8.3530 glycerol-3-phosphate dehydrogenase [NAD+], glycosomal 
a,b 7(0) 44 

Tb11.01.3170 guanine nucleotide-binding protein beta subunit- like protein 
a 3(0) 25 

Tb11.01.0120 haloacid dehalogenase-like hydrolase, putative 
a 5(2) 56 

Tb11.01.3110 heat shock protein 70 
a,b 113(41) 914 

Tb11.01.3080 heat shock protein 70 
a,b 19(7) 237  

Tb927.7.710 heat shock 70 kDa protein  6(4) 145 

Tb10.26.1080 heat shock protein 83 
a,b 38(15) 371 
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Tb10.389.0880 heat shock protein, putative 
a,b 14(3) 114 

Tb927.3.5340 Hsc70-interacting protein (Hip), putative  5(2) 42 

Tb927.7.1320 HSP10 10 kDa heat shock protein, putative 5(2) 77  

Tb10.70.0280 HSP60 chaperonin Hsp60, mitochondrial precursor 
b 7(5) 116 

Tb10.v4.0053 hypothetical protein  29(13) 280 

Tb10.70.1130 hypothetical protein 7(4) 150 

Tb927.2.2550 hypothetical protein, conserved 2(0) 23 

Tb927.4.2740 hypothetical protein, conserved 6(1) 78 

Tb11.01.5680 hypothetical protein, conserved 6(3) 77  

Tb09.160.5530 hypothetical protein, conserved 9(2) 72 

Tb927.6.4140 hypothetical protein, conserved 1(1) 55 

Tb11.01.1625 hypothetical protein, conserved 3(1) 51 

Tb927.6.5000 hypothetical protein, conserved 13(8) 47 

Tb10.389.0720 hypothetical protein, conserved 5(1) 37 

Tb927.8.4820 hypothetical protein, conserved 3(1) 35 

Tb11.47.0016 hypothetical protein, conserved 2(1) 35 

Tb10.406.0610 hypothetical protein, conserved 9(2) 35 

Tb09.211.3955 hypothetical protein, conserved 2(0) 34 

Tb927.7.1420 hypothetical protein, conserved 120(1) 30 

Tb09.211.1690 hypothetical protein, conserved 2(0) 27 

Tb10.61.2620 hypothetical protein, conserved 2(0) 24 

Tb927.6.3170 hypothetical protein, conserved 4(0) 24 

Tb10.26.0680 hypothetical protein, conserved 6(0) 23 

Tb927.1.4310 hypothetical protein, conserved 11(0) 22 

Tb927.8.6330 hypothetical protein, conserved 15(0) 22 

Tb11.01.4700 hypothetical protein, conserved 1(0) 18 

Tb10.70.3070 hypothetical protein, conserved 1(0) 17 

Tb927.3.3560 hypothetical protein, conserved 2(0) 16 

Tb10.6k15.1500 hypothetical protein, conserved 1(0) 15 

Tb10.61.0540 hypothetical protein, conserved 2(0) 13 

Tb09.160.0465 hypothetical protein, conserved 3(0) 13 

Tb10.6k15.0210 hypothetical protein, conserved  2(0) 14 

Tb927.7.3440 I/6 autoantigen 
a 

5(3) 68 

Tb927.3.2960 inosine-adenosine-guanosine-nucleosidehydrolase 
a 5(2) 56 

Tb11.02.2260 kinesin, putative  5(1) 45 

Tb10.61.1750 C-terminal motor kinesin, putative 
a 15(5) 118 

Tb10.70.5840 major vault protein, putative 10(0) 20 

Tb10.70.5250 metacaspase MCA4; cysteine peptidase, putative 
a 1(0) 26 

Tb09.211.0120 nascent polypeptide associated complex subunit, putative 
b 1(1) 50 

Tb11.01.7800 nucleoside diphosphate kinase 
a 19(2) 110 

Tb927.3.4290 PFR1 73 kDa paraflagellar rod protein 
a,b 7(1) 40 

Tb10.6k15.2620 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 
b 4(0) 29 

Tb10.70.5520 piwi-like protein 1  42(10) 75 

Tb11.01.1680 polyubiquitin, putative 
a 12(4) 91 

Tb927.7.4770 cyclophilin-type peptidyl-prolyl cis-trans isomerise 
a,b 4(3) 79 

Tb10.100.0170 proteasome alpha 2 subunit, putative 1(0) 19 
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Tb10.70.0850 proteasome alpha 1 subunit, putative 
a 2(0) 20 

Tb10.100.0120 proteasome alpha 5 subunit, putative 2(0) 20 

Tb11.02.4040 protein transport protein Sec31, putative 2(0) 15 

Tb10.61.2680 pyruvate kinase 1
a 8(5) 166 

Tb11.01.1350 S-adenosylhomocysteine hydrolase 
a,b 11(6) 159 

Tb10.70.7050 TCP-1-delta t-complex protein 1, putative 2(1) 32 

Tb09.211.2570 TCP-1-eta t-complex protein 1, putative 3(0) 14 

Tb927.8.3150 TCP-1-gamma t-complex protein 1, putative 5(0) 29 

Tb10.6k15.2330 TCP-1-theta t-complex protein 1, putative 3(0) 26 

Tb11.02.0750 TCP-1-zeta t-complex protein 1, putative 4(0) 18 

Tb11.03.0670 transcription factor, putative 7(1) 29 

Tb11.02.3210 triosephosphate isomerise 
a,b 

6(2)  73 

Tb927.3.3760 tryparedoxin 
a,b 22(3) 79 

Tb09.160.4250 tryparedoxin peroxidase 
a,b 23(0) 32 

Tb927.7.1120 

trypanothione/tryparedoxin dependent  

peroxidase 1, cytosolic 5(1) 55 

Tb10.406.0520 trypanothione reductase 
a,b 7(1) 41 

Tb09.211.3610 ubiquitin-activating enzyme E1, putative 
a 6(0) 30 

Tb11.02.0815 ubiquitin-conjugating enzyme 
a,b 12(8) 229 

Tb927.5.4950 variant surface glycoprotein (VSG, atypical), putative 14(1) 31 

Tb11.21.0005 variant surface glycoprotein (VSG, pseudogene), putative 2(0) 20 

Tb10.v4.0136 variant surface glycoprotein (VSG, pseudogene), putative 7(0) 14 

Tb10.v4.0124 variant surface glycoprotein (VSG, pseudogene), putative 9(0) 13 

Tb927.6.5630 variant surface glycoprotein (VSG, pseudogene), putative 7(0) 13 

 

Table E1: Secreted proteins from T. b. brucei strain GVR35 (obtained with FASP, 5.2.2.). 

Identifications and accession no. were matched by mascot to TritrypDB.  

Matches indicated the number of peptides matched against the protein sequence with the number in 

brackets showing significant hits, indicating homology or identity. Score > 29 indicates homology or 

identity to compared protein sequences with p > 0.05. 

a
 protein identified in T. gambiense (Geiger et al., 2010) 

b
 protein identified in T. congolense (Grébaut et al., 2009) 

 


