
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Kwanashie, Augustine (2015) Efficient algorithms for optimal matching
problems under preferences. PhD thesis.

http://theses.gla.ac.uk/6706/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study

This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/6706/

Efficient Algorithms for Optimal

Matching Problems Under

Preferences

Augustine Kwanashie

Submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computing Science

College of Science and Engineering

University of Glasgow

September 2015

c© Augustine Kwanashie 2015

Abstract

In this thesis we consider efficient algorithms for matching problems involving pref-

erences, i.e., problems where agents may be required to list other agents that they find

acceptable in order of preference. In particular we mainly study the Stable Marriage

problem (sm), the Hospitals / Residents problem (hr) and the Student / Project Allo-

cation problem (spa), and some of their variants. In some of these problems the aim

is to find a stable matching which is one that admits no blocking pair. A blocking pair

with respect to a matching is a pair of agents that prefer to be matched to each other

than their assigned partners in the matching if any.

We present an Integer Programming (IP) model for the Hospitals / Residents problem

with Ties (hrt) and use it to find a maximum cardinality stable matching. We also

present results from an empirical evaluation of our model which show it to be scalable

with respect to real-world hrt instance sizes.

Motivated by the observation that not all blocking pairs that exist in theory will lead

to a matching being undermined in practice, we investigate a relaxed stability criterion

called social stability where only pairs of agents with a social relationship have the

ability to undermine a matching. This stability concept is studied in instances of

the Stable Marriage problem with Incomplete lists (smi) and in instances of hr. We

show that, in the smi and hr contexts, socially stable matchings can be of varying

sizes and the problem of finding a maximum socially stable matching (max smiss and

max hrss respectively) is NP-hard though approximable within 3/2. Furthermore we

give polynomial time algorithms for three special cases of the problem arising from

restrictions on the social network graph and the lengths of agents’ preference lists.

We also consider other optimality criteria with respect to social stability and establish

inapproximability bounds for the problems of finding an egalitarian, minimum regret

and sex equal socially stable matching in the sm context.

We extend our study of social stability by considering other variants and restrictions

of max smiss and max hrss. We present NP-hardness results for max smiss even

under certain restrictions on the degree and structure of the social network graph as

well as the presence of master lists. Other NP-hardness results presented relate to the

problem of determining whether a given man-woman pair belongs to a socially stable

matching and the problem of determining whether a given man (or woman) is part of

at least one socially stable matching. We also consider the Stable Roommates problem

with Incomplete lists under Social Stability (a non-bipartite generalisation of smi under

social stability). We observe that the problem of finding a maximum socially stable

matching in this context is also NP-hard. We present efficient algorithms for three

special cases of the problem arising from restrictions on the social network graph and

the lengths of agents’ preference lists. These are the cases where (i) there exists a

constant number of acquainted pairs (ii) or a constant number of unacquainted pairs

or (iii) each preference list is of length at most 2.

We also present algorithmic results for finding matchings in the spa context that are

optimal with respect to profile, which is the vector whose ith component is the number

of students assigned to their ith-choice project. We present an efficient algorithm for

finding a greedy maximum matching in the spa context — this is a maximum matching

whose profile is lexicographically maximum. We then show how to adapt this algorithm

to find a generous maximum matching — this is a matching whose reverse profile is

lexicographically minimum. We demonstrate how this approach can allow additional

constraints, such as lecturer lower quotas, to be handled flexibly. We also present

results of empirical evaluations carried out on both real world and randomly generated

datasets. These results demonstrate the scalability of our algorithms as well as some

interesting properties of these profile-based optimality criteria.

Practical applications of spa motivate the investigation of certain special cases of the

problem. For instance, it is often desired that the workload on lecturers is evenly dis-

tributed (i.e. load balanced). We enforce this by either adding lower quota constraints

on the lecturers (which leads to the potential for infeasible problem instances) or adding

a load balancing optimisation criterion. We present efficient algorithms in both cases.

Another consideration is the fact that certain projects may require a minimum number

of students to become viable. This can be handled by enforcing lower quota constraints

on the projects (which also leads to the possibility of infeasible problem instances). A

technique of handling this infeasibility is the idea of closing projects that do not meet

their lower quotas (i.e. leaving such project completely unassigned). We show that the

problem of finding a maximum matching subject to project lower quotas where projects

can be closed is NP-hard even under severe restrictions on preference lists lengths and

project upper and lower quotas. To offset this hardness, we present polynomial time

heuristics that find large feasible matchings in practice. We also present ip models

for the spa variants discussed and show results obtained from an empirical evaluation

carried out on both real and randomly generated datasets. These results show that

our algorithms and heuristics are scalable and provide good matchings with respect to

profile-based optimality.

Table of Contents

1 Introduction 1

2 Literature Review of Matching Problems 5

2.1 Introduction . 5

2.2 The Stable Marriage problem (sm) . 7

2.2.1 Introduction . 7

2.2.2 Structure of stable matchings in sm 9

2.2.3 Stable Marriage problem with Incomplete lists 12

2.2.4 Stable Marriage problem with Ties 12

2.2.5 Stable Marriage problem with Ties and Incomplete lists 13

2.2.6 Other optimality criteria . 14

2.3 The Hospitals/Residents problem (hr) 15

2.3.1 Introduction . 15

2.3.2 Hospital/Residents with Ties 16

2.3.3 Cloning hr instances . 18

2.4 The Stable Roommates problem (sr) 19

2.4.1 Rotations in the Stable Roommates problem 20

2.4.2 Structure of stable matchings in sr 20

2.4.3 Stable Roommates with Incomplete lists 20

2.5 Locally Stable Matchings . 21

2.5.1 Introduction . 21

2.5.2 Locally Stable Matchings in the Job Market Context 22

2.5.3 Other results relating to Locally Stable Matchings 24

2.6 The Student/Project Allocation problem 24

2.6.1 Introduction . 24

2.6.2 Two-sided preferences and stability 25

2.6.3 One-sided preferences and profile-based optimality 27

2.6.4 Other spa models and approaches 29

2.7 Integer Programming approaches to matching problems 30

3 An Integer Programming Approach to the Hospitals/Residents Prob-

lem with Ties 32

3.1 Introduction . 32

3.2 An IP model for max hrt . 33

3.3 Implementing the model . 35

3.3.1 Reducing the model size . 35

3.3.2 Improving optimisation performance 37

3.3.3 Testing the implementation . 38

3.4 Empirical evaluation . 39

3.4.1 Using random instances . 40

3.4.2 Using real instances . 43

3.5 Open problems . 44

4 Socially Stable Matchings in the Hospitals/Residents Problem 46

4.1 Introduction . 46

4.2 Preliminary definitions and results . 47

4.3 Reduction from hrss to hr+sn . 48

4.4 Hardness of max smiss . 50

4.5 Approximating max hrss . 51

4.5.1 Approximation results . 52

4.5.2 Inapproximability result . 57

4.6 Some special cases of hrss . 58

4.6.1 (2,∞)-max smiss . 59

4.6.2 hrss with a constant number of unacquainted pairs 62

4.6.3 hrss with a constant number of acquainted pairs 63

4.7 Empirical evaluation . 67

4.7.1 Introduction . 67

4.7.2 Varying instance size . 69

4.7.3 Varying the density of the social network 69

4.8 Conclusion . 71

5 Further Algorithmic Results on Socially Stable Matchings 73

5.1 Introduction . 73

5.2 Fair socially stable matchings . 74

5.2.1 Introduction . 74

5.2.2 Egalitarian socially stable matchings 75

5.2.3 Minimum regret socially stable matchings 77

5.2.4 Sex-equal socially stable matchings 78

5.3 Further restrictions of com smiss . 80

5.3.1 Restrictions on the degree of the social network graph 80

5.3.2 Restrictions on the structure of the social network graph 83

5.3.3 Restrictions on the ordering of preference lists 84

5.4 Minimum socially stable matchings . 86

5.5 Further hardness results for smiss . 89

5.6 The roommates problem under social stability 90

5.6.1 Introduction . 90

5.6.2 max sriss with a constant number of unacquainted pairs 92

5.6.3 max sriss with a constant number of acquainted pairs 92

5.6.4 2-max sriss . 95

5.7 Conclusion . 98

6 Profile-based optimal matchings in the Student/Project Allocation

problem 99

6.1 Introduction . 99

6.2 Preliminary definitions . 100

6.3 Greedy maximum matchings in spa . 103

6.4 Generous maximum matchings in spa 116

6.5 Integer Programming models for spa 117

6.5.1 Introduction . 117

6.5.2 Model with exponential coefficients (Model1) 117

6.5.3 Model with hierarchical objectives (Model2) 118

6.6 Empirical evaluation . 120

6.6.1 Introduction . 120

6.6.2 Testing for correctness . 121

6.6.3 Feasibility analysis of the mcmf approach 123

6.6.4 Real-world data . 124

6.6.5 Random data . 126

6.6.6 Concluding remarks . 130

6.7 Conclusion . 131

7 Further Algorithmic Results for spa and its Variants 133

7.1 Introduction . 133

7.2 Lecturer lower quotas and load balancing 134

7.2.1 Introduction . 134

7.2.2 Lecturer lower quotas . 134

7.2.3 Minimising matching span . 139

7.2.4 Minimising span with lower quotas 141

7.3 Project lower quotas . 142

7.3.1 Introduction . 142

7.3.2 Hardness of max spa-pl . 143

7.3.3 Heuristics for max spa-pl . 145

7.4 Extending the spa IP model . 148

7.5 Empirical evaluation . 149

7.5.1 Introduction . 149

7.5.2 Lecturer lower quotas . 150

7.5.3 Minimising matching span . 151

7.5.4 Evaluating Heuristics for max spa-pl 152

7.6 Conclusion . 154

8 Further Experimental Results for sm and sr 156

8.1 Introduction . 156

8.2 Implementation . 157

8.2.1 The AlgBreakmarriage algorithm 157

8.2.2 The GetAllStableMatchingsSM algorithm 159

8.2.3 The GetAllStableMatchingsSR algorithm 159

8.3 Empirical Evaluation . 160

Bibliography 164

List of Tables

3.1 Percentage solvable instances (100% for omitted td values) 40

3.2 SFAS IP Results . 43

4.1 Mean runtime (ms) produced by both algorithms and cplex 70

4.2 Mean matching sizes produced by both algorithms and cplex 70

6.1 Real-world spa instances . 125

6.2 Real-world spa results . 125

6.3 Mean matching profile and cost . 131

7.1 Span of matchings in real-world spa instances 151

7.2 Mean sizes of matchings produced by various heuristics and CPLEX . . 154

List of Figures

2.1 An instance of the Stable Marriage problem 8

2.2 An instance of the Stable Marriage problem with Ties 13

2.3 An instance of the Stable Marriage problem with Ties 13

2.4 An instance of the Hospitals/Residents problem 16

2.5 An instance of the Stable Roommates problem 19

2.6 An instance of the Stable Roommates problem with Incomplete Lists . 21

2.7 A spa instance I . 28

3.1 Model1: A hrt IP model . 34

3.2 Mean runtime vs td . 41

3.3 Median runtime vs td . 41

3.4 |M | vs td for n1 = 300 . 41

3.5 Range vs td . 41

3.6 Mean and median runtime vs instance size 43

3.7 Optimal solution size vs instance size 43

4.1 An smiss instance (I,G) consisting of a hr instance I and a social

network G . 48

4.2 |Mopt|= (3/2).|M | . 58

4.3 A max hrss IP model . 68

4.4 Mean matching size vs n1 . 69

4.5 Mean runtime vs n1 . 69

4.6 Mean matching size vs dG . 70

4.7 Mean runtime vs dG . 70

5.1 No man-optimal socially stable matching in smiss instance (I,G) . . . 74

5.2 Rural Hospitals Theorem fails in smiss instance (I,G) 74

5.3 Preference lists in the constructed instance of com smiss. 81

5.4 Pictorial representation of the preference lists. 81

5.5 Preference lists in the constructed instance of com smiss-2ml. 85

5.6 A cycle of type-2 blocking pairs . 96

6.1 A spa instance I . 103

6.2 Some types of compound path in X ′ 107

6.3 Model1: IP model for finding a greedy maximum matching given a spa

instance . 118

6.4 Model2: IP model for finding a maximum matching given a spa instance 118

6.5 Mean runtime vs n1 . 122

6.6 Mean runtime vs n1 . 122

6.7 Mean runtime vs R . 122

6.8 mcmf feasibility results . 124

6.9 Mean matching degree vs n1 . 127

6.10 Mean runtime vs n1 . 127

6.11 Mean matching cost vs n1 . 127

6.12 Mean matching cost vs R . 128

6.13 Mean matching size vs R . 128

6.14 Mean matching degree vs R . 129

6.15 Mean matching cost vs popularity . 130

6.16 Mean matching size vs popularity . 130

6.17 Mean matching degree vs popularity 130

7.1 A spa-l instance I . 135

7.2 % solvability vs LL/CL . 150

7.3 Minimum span vs n1 . 152

7.4 Mean quality vs n1 . 152

7.5 Mean matching size vs n1 . 153

7.6 Mean runtime vs n1 . 153

7.7 Mean matching degree vs n1 . 153

8.1 Visualising the rotation poset of an sm instance 157

8.2 Mean |S| vs n lnn (sm) . 162

8.3 Mean |S| vs n (sr) . 162

8.4 Mean stable pairs vs n (sm) . 162

8.5 Mean stable pairs vs n (sr) . 162

8.6 Mean cost vs n (sm) . 163

8.7 Mean cost vs n (sr) . 163

8.8 Mean regret vs n (sm) . 164

8.9 Mean regret vs n (sr) . 164

8.10 Mean number of rotations vs n (sm) 164

8.11 Mean number of rotations vs n (sr) . 164

List of Algorithms

2.1 Alg-GS . 9

2.2 Alg-EGS . 9

3.1 Hospitals-offer . 36

3.2 Residents-apply . 36

3.3 Generate-max-hrt . 39

3.4 Choose . 39

4.1 Approx-smiss . 55

4.2 Mod-exgs . 55

4.3 (2,∞)-Max-smiss-alg . 60

4.4 BuildGraph . 60

5.1 2-max sriss-alg . 97

6.1 Greedy-max-spa . 109

6.2 Get-max-aug (method for Greedy-max-spa) 112

6.3 Hierarchy-spa-ip . 119

7.1 Greedy-max-spa-l . 138

7.2 Alg-min-span . 141

7.3 Heuristic-cps . 146

7.4 Heuristic-ops . 148

Abbreviations

chat Capacitated House Allocation problem with Ties

ha House Allocation problem

hr Hospitals/Residents problem

hr+sn Hospitals/Residents problem with Social Network

hr-lq Hospitals/Residents problem with Lower Quotas

hrost Hospitals/Residents problem with One-Sided Ties

hrss Hospitals/Residents problem under Social Social Stability

hrt Hospitals/Residents problem with Ties

ip Integer Programming

mcmf Minimum Cost Maximum Flow

NRMP National Resident Matching Program

SFAS Scottish Foundation Allocation Scheme

sm Stable Marriage problem

smi Stable Marriage problem with Incomplete lists

smiss Stable Marriage problem with Incomplete lists under Social Stability

smiss-1ml Stable Marriage problem with Incomplete lists under Social Stability and

1 Master Lists

smiss-2ml Stable Marriage problem with Incomplete lists under Social Stability and

2 Master Lists

smss Stable Marriage problem under Social Stability

smt Stable Marriage problem with Ties

smti Stable Marriage problem with Ties and Incomplete lists

spa Student/Project Allocation problem

spa-l Student/Project Allocation problem with Lecturer lower quotas

spa-p Student/Project Allocation problem with lecturer preferences over

Projects

spa pl Student/Project Allocation problem with Project Lower quotas

spa-s Student/Project Allocation problem with lecturer preferences over Stu-

dents

spa-(s, p) Student/Project Allocation problem with lecturer preferences over (Stu-

dent, Project) pairs

sr Stable Roommates problem

srf Stable Roommates problem with Free edges

sri Stable Roommates problem with Incomplete preference lists

sriss Stable Roommates problem with Incomplete preference lists under Social

Stability

ss pair-smiss Socially Stable pair in smiss

Acknowledgments

I would like to thank my parents Mike and Helen Kwanashie who sacrificed so much to

fund my graduate studies and my supervisor David for all his guidance and feedback.

Many thanks to Lisa and Judith for all their love and support. Thanks to Gethin

Norman, Rob Irving, Iain McBride and other colleagues and friends for their help

throughout my PhD. Thanks also to Daniel Paulusma and Kitty Meeks for their very

detailed feedback on the submitted version.

Declaration

This thesis is submitted in accordance with the rules for the degree of Doctor of Phi-

losophy at the University of Glasgow. None of the material contained herein has been

submitted for any other degree. Theorem 4.6.11 was due to Zoltán Király, Theorem

7.3.1 was due to David Manlove and Theorem 7.3.3 was due to Ágnes Cseh. Otherwise

all the results contained herein are claimed as original.

Publications

1. A. Kwanashie and D. F. Manlove. An Integer Programming approach to the

Hospitals/Residents problem with Ties. In Proceedings of OR 2013: the In-

ternational Conference on Operations Research, pages 263–269. Springer, 2014.

(This paper is based on Chapter 3.)

2. G. Askalidis, N. Immorlica, A. Kwanashie, D. F. Manlove, and E. Pountourakis.

Socially Stable matchings in the Hospitals/Residents problem. In Proceedings

of WADS 2013: the 13th Algorithms and Data Structures Symposium, volume

8037 of Lecture Notes in Computer Science, pages 85–96. Springer, 2013. (This

paper is based on Chapter 4.)

3. A. Kwanashie, R. W. Irving, D. F. Manlove and C. T. S. Sng. Profile-based

optimal matchings in the Student/Project Allocation problem. In Proceedings

of IWOCA 2014: 25th International Workshop on Combinatorial Algorithms

(to appear) (This paper is based on Chapter 6. A longer version of this paper

has been submitted to a special issue of the European Journal of Combinatorics

devoted to selected papers from IWOCA 2014).

4. U. Krähmer, A. Kwanashie, D. F. Manlove and M. Zelvyte. Student/Project

Allocation problem using Network Flow and Integer Programming. (in prepara-

tion) (This paper is based on Chapter 7).

1

Chapter 1

Introduction

Matching problems, in their most general form, involve assigning agents from one set to

those of another. In these problems some agents are required to have ordinal preferences

over a subset of the others. These problems find their applications in various centralised

matching schemes around the world. Matching problems were first introduced in the

seminal paper by David Gale and Lloyd Shapley titled “College Admissions and the

Stability of Marriage” [29]. Here, they gave a formal definition of the Stable Marriage

Problem (sm) which involves forming a one-one pairing of a set of n men to a set of n

women where no man and woman prefer each other to their assigned partners. They

generalised sm to a many-one problem called the Hospitals/Residents Problem (hr)

and gave polynomial time algorithms for solving both sm and hr. They also defined

a non-bipartite generalisation of sm called the Stable Roommates Problem (sr). Since

then research in the area has grown rapidly with a wide range of matching problems

and algorithms being described in the literature [38, 85].

In some matching schemes (like school choice and labour markets) agents are allowed

to negotiate with each other directly and form pairs individually. However these free-

for-all markets have been shown to be prone to various problems in practice when

considering the number and satisfaction of the agents involved [101, 107, 106]. A

more sustainable approach is to adopt centralised matching schemes where a central

authority accepts agents’ preferences and computes a matching based on predefined

criteria.

As computational speed and network performance have increased over the years and

electronic forms of communication have become ubiquitous, the advantages of setting

up centralised matching schemes have became more obvious. This trend also means

that centralised matching schemes are involving an increasing number of participants

and a varying set of feasibility and optimality criteria thus leading to a host of research

problems. Due to the typical size and intricacy of these matching schemes, manual or

2

brute-force techniques for solving these matching problems have become infeasible in

practice and so algorithms are needed to solve these problems efficiently. Since execu-

tion time is a very important requirement in practice, a lot of the research effort has

gone into developing efficient (polynomial-time) algorithms for solving these matching

problems. These factors have led to a lot of research activity in the area.

Some of the applications of matching problems include the National Resident Matching

Program (NRMP) where medical residents are allocated to residency programs in the

US [101] and other similar schemes like the Scottish Foundation Allocation Scheme

(SFAS) [52]. Other matching schemes can be found in the context of allocating kidney

donors to patients such as the UK’s National Living Donor Kidney Sharing Schemes

[16]. Here, patients with chronic kidney disease obtain compatible donors by swapping

their own willing but incompatible donors. Assignment of pupils to schools [1, 2],

conference papers to reviewers [33] and students to final year projects [8, 87, 68, 9] are

also examples of the applications of matching problems.

In matching problems where agents have preferences, often a key requirement is for

a matching to be stable. However certain scenarios exist where stability is either too

restrictive or irrelevant. For example in two-sided matching problems where preferences

exist on one side only, stability cannot always be enforced. Also in scenarios where

agents are unable to abandon their partners (maybe due to existing rules or limited

information among agents), stability may be considered to be too strong a constraint.

In these scenarios a weaker form of stability may be more appropriate. This argument is

further strengthened by the observation that enforcing stability often tends to limit the

size of the matchings obtained. Indeed in some matching problems a stable matching

may be half the size of a maximum matching. Since maximising the number of assigned

agents is usually desired, it makes sense that weaker forms of stability that allow for

larger matchings should be investigated.

In this thesis we investigate two such weakened stability criteria, namely weak stability

(in the context of hr instances with ties) and social stability (in instances of hr and

other problems). In the case of weak stability, agents’ preference lists are allowed to

contain ties. Thus a pair can only block a matching if both agents strictly prefer each

other. In the case of social stability, we rule out certain agent pairs from blocking

any matching thus allowing socially stable matchings to be potentially larger than sta-

ble matchings. We demonstrate how adopting these stability definitions can improve

the size of the matchings obtained while discouraging agents from abandoning their

assigned partners. We also investigate a class of problems (in the domain of allocat-

ing students to projects) where stability is no longer appropriate and matchings are

considered valid only based on agents’ capacity constraints. This is because, in these

problems, preference lists are only provided by the students and so blocking pairs

3

cannot be formed.

Finding a feasible solution (for example, a stable matching) is often the first step in

solving some matching problems. The set of feasible solutions may be (exponentially)

large with each solution having varying measures with respect to certain desirable

properties. For example in the variant of hr where agents are allowed to be indifferent

between others on their preference lists, the set of solutions contains matchings of

varying sizes. In these cases we seek to find an optimal solution/matching (subject to

feasibility) based on predefined optimality criteria. One obvious optimality criterion is

the size of a matching. Others are based on the profile, cost and degree of a matching as

well as various notions of “fairness” of a matching. For example, in the case of assigning

students to projects, the profile of a matching indicates the number of students assigned

their 1st, 2nd, 3rd, etc project in the matching, the cost of a matching is the sum of the

ranks of the assigned students in the matching (where the rank indicates the position

of her assigned project on her preference list) and the degree of a matching is the worse

rank of any student in the matching. In this thesis we investigate a number of these

optimality criteria which are mainly motivated by practical applications. We provide a

wide range of algorithmic and experimental results relating to these optimal matching

problems.

The remainder of the thesis is structured as follows. Chapter 2 gives a review of the

literature on matching problems involving preferences with particular focus on the

variants that will feature in this thesis. In Chapter 3, an Integer Programming (IP)

model for the max hrt problem is presented along with implementation details and

results from empirical evaluations. These evaluations involved measuring the runtime

and matching size obtained as we varied the size and the density of ties of randomly-

generated hrt instances. Chapters 4 and 5 focus on a relaxed stability criterion called

social stability where only pairs of agents with a social relationship have the ability

to undermine a matching. In Chapter 4 we show that, in the sm and hr contexts,

socially stable matchings can be of varying sizes and the problem of finding a maximum

socially stable matching (max smiss and max hrss respectively) is NP-hard though

approximable within 3/2. Furthermore we give polynomial time algorithms for three

special cases of the problem. We also present results from an empirical evaluation of

the approximation algorithm described in the chapter. In Chapter 5, we focus on other

optimality criteria relating to fairness in the context of socially stable matchings and

prove some inapproximability results for problems involving computing three types of

fair socially stable matchings. Further algorithmic results for computing socially stable

matchings in variants of sm and sr are also presented.

In Chapters 6 and 7 we drop the stability criterion altogether and focus on profile-based

optimality criteria in the Student / Project Allocation problem (spa) which involves

4

assigning students to projects offered by lecturers on the basis of student preferences

over projects, and project and lecturer capacities. In Chapter 6 we provide efficient

algorithms for finding profile-based optimal matchings given spa instances. We present

IP models for spa and its variants. We also provide results from an empirical evaluation

of the techniques described in the chapter. These evaluations measure the size, cost and

degree of the matchings as well as the time taken while varying the size, preference list

lengths and other properties of randomly-generated spa instances. Chapter 7 considers

other optimality and feasibility criteria. These include minimising a load-balancing

objective, and introducing lower quotas on projects and lecturers. We provide IP

models, heuristics and efficient algorithms for the spa problems with these extensions.

We also perform an empirical evaluation were we measure the size, degree and other

properties of the matchings obtained as we vary the size of randomly-generated spa

instances.

Finally in Chapter 8 we present further experimental results for sm and sr. In par-

ticular we focus on the algorithms for finding the set of all stable matchings given

an sm or sr instance. These experiments involve measuring the quantity, egalitarian

cost and minimum regret of stable matchings obtained from randomly generated sm

and sr instances of varying sizes. In egalitarian stable matchings we seek to optimise

the satisfaction of all agents involved while in minimum regret stable matchings we

seek to minimise the worse-off agent in the matching. We also describe the algorithms

implemented as well as a tool for visualising the structures they produce (i.e., rotation

posets, rotation digraphs and Hasse diagrams).

5

Chapter 2

Literature Review of Matching

Problems

2.1 Introduction

Matching problems generally involve the assignment of a set (or sets) of agents to

one another. Some agents are required to list a subset of other agents that they find

acceptable in order of preference (thus forming preference lists) [38, 85]. Two agents

form an acceptable pair if they both appear on each other’s preference list. All agents

involved are subject to capacity constraints which specify the maximum number of

assignments they can have. A matching is a set of acceptable pairs in which all agents

involved obey their capacity constraints.

Two criteria commonly used in the literature for classifying matching problems are the

number of disjoint sets of agents involved and the presence of preference lists. Thus

the majority of matching problems in the literature can be grouped into the following

classes:

1. Bipartite matching problems with two-sided preferences. These problems involve

two disjoint sets of agents with the agents of each set providing preference lists

containing agents of the other. Examples arise from the assignment of doctors

to hospitals [101, 52] and pupils to schools [1, 2].

2. Bipartite matching problems with one-sided preferences. These problems also

involve two disjoint sets of agents but only agents in one set provide preference

lists containing agents of the other. Applications arise in assigning students to

campus housing [98] and conference papers to reviewers [33].

2.1. Introduction 6

3. Non-bipartite matching problems with preferences. These problems involve only

one set of agents with each agent’s preference list containing other agents in

the same set. Such problems occur in the context of kidney exchange schemes

[104, 103, 6] and pairing players in chess tournaments [78].

In this thesis we focus mainly on problems that fall under groups 1 and 3 above. We

also investigate a group of matching problems that can be regarded as extensions of

groups 1 and 2. In particular we consider problems involving the assignment of students

to projects offered by lecturers. These problems involve three disjoint sets of agents

with preference lists appearing in one or two of these sets. However, like in groups 1

and 2, the objective is to find bipartite matchings.

In each of the three groups identified above, matching problems may vary from one

another due to a number of properties. These include:

1. The capacity constraints involved. Agent capacity constraints may enable one-

to-one, many-to-one or many-to-many matchings to be found.

2. The lengths and structure of preference lists. Agents may be allowed to omit

others whom they find unacceptable from their preference lists thus leading to

incomplete preference lists [30, 61] and bounded-length preference lists [61]. They

may also be allowed to be indifferent between two or more agents on their pref-

erence lists thus leading to ties [64, 62, 58]. Cases may also exists where all

the preference lists from a given set of agents are derived from a uniform global

ranking of agents (also known as a master list) [63].

3. The solution/optimality criteria employed. A matching is stable if no two agents

would rather be assigned to each other than to their partners if any. In many

practical applications of matching problems, stability is a desired property of the

matchings generated [101]. However other feasibility and optimality criteria may

be employed either in conjunction with or in place of stability. Although a large

proportion of the literature in this area focuses on stability [38], research into

these alternative/complementary solution criteria continues to grow [85, chapters

6-8].

All of the matching problems we study in this thesis involve some optimality criteria

based on agents’ preferences. We seek to develop efficient algorithms to solve these

problems, that is, algorithms whose time complexity is a polynomial function of the size

of the given input. However some of these optimisation problems turn out to be NP-

hard (as shown in the literature or in this thesis). In these cases, we may seek to develop

approximation algorithms where possible. These are algorithms that produce solutions

2.2. The Stable Marriage problem (sm) 7

which are sub-optimal but are guaranteed to lie within some fraction of optimality. We

also prove inapproximability bounds for some of these NP-hard matching problems.

Other solution techniques for matching problems that may be theoretically inefficient

but practically feasible have also been investigated in the literature (and also in this

thesis) [114, 38, 108, 102, 109, 10, 105, 6, 113, 70, 20, 89, 17]. These techniques scale

well with typical problem instances despite their exponential worst-case running times.

They include Linear Programming (LP), Integer Programming (IP) and Constraint

Programming (CP).

This chapter surveys the various matching problems involving preferences investigated

in this thesis. Firstly, in Section 2.2, the classical Stable Marriage problem (sm) is

introduced. Its variants, involving ties and/or incomplete preference lists, are also dis-

cussed. The many-one generalisation of sm, the Hospitals/Residents problem (hr), is

also considered along with its variant involving ties, in Section 2.3. The non-bipartite

generalisation of sm, the Stable Roommates problem (sr) is then discussed in Section

2.4. We also review results relating to variants of sr with incomplete preference lists.

In Section 2.5, we review the literature around social/local stability and give some mo-

tivation for adopting this relaxed stability criterion. In Section 2.6 we discuss the The

Student/Project Allocation problem (spa). We review the literature on two-sided pref-

erences in the spa context and we also discuss alternative optimality criteria in the case

of one-sided preferences. Finally we briefly discuss integer programming approaches to

matching problems involving preferences in Section 2.7.

2.2 The Stable Marriage problem (sm)

2.2.1 Introduction

The Stable Marriage problem (sm) [29] is a bipartite matching problem involving a

set of n men and a set of n women. Each person has a strictly-ordered preference list

of all n partners of the opposite sex, thus the preference lists are said to be complete

and the sm instance is said to be of size n. A matching in this context contains a

set of n man-woman pairs where each man and woman appear exactly once. A man

mi prefers woman wj to wk if wj appears before wk on his preference list. The same

definition holds for a woman’s preferences over men on her list. We denote the woman

assigned to a man mi in a matching M as M(mi) and the man assigned to a woman

wj in M as M(wj). A pair (mi, wj) is said to block M , or form a blocking pair with

respect to M , if mi prefers wj to M(mi) and wj prefers mi to M(wj). A matching

is stable if it admits no blocking pair. In a stable matching no two agents have any

2.2. The Stable Marriage problem (sm) 8

incentive to break up their assignments and become assigned to each other. A pair

(mi, wj) is said to be a stable pair if it exists in some stable matching. Figure 2.1

shows an example of an sm instance I involving 4 men and 4 women. The matching

M = {(m1, w4), (m2, w3), (m3, w2), (m4, w1)} is a stable matching in I.

men’s preferences women’s preferences

m1 : w2 w4 w1 w3 w1 : m2 m1 m4 m3

m2 : w3 w1 w4 w2 w2 : m4 m3 m1 m2

m3 : w2 w3 w1 w4 w3 : m1 m4 m3 m2

m4 : w4 w1 w3 w2 w4 : m2 m1 m4 m3

Figure 2.1: An instance of the Stable Marriage problem

The Stable Marriage problem was first introduced by Gale and Shapley in their seminal

paper ‘College admissions and the stability of marriage’ [29]. They showed that, given

an sm instance of size n, a stable matching can always be found in polynomial-time,

and moreover they also provided an O(n2) algorithm to find such a matching. The

algorithm involves a sequence of marriage proposals made by the members of one sex

to the members of the other. Each proposal is followed by either an acceptance or a

rejection. Proposals are accepted if the person being proposed to is either unmatched

or prefers the proposer to his/her current partner, in which case his/her current partner

is rejected in favour of the new proposal. Proposals are rejected if the person being

proposed to already has a partner he/she prefers to the proposer. The algorithm can be

executed with the men doing the proposing (man-oriented) or with the women doing

the proposing (woman-oriented). Agents of the proposing set start with the most

preferred agents on their preference lists and make proposals until they are accepted.

If they ever get rejected due to their partner getting a better proposal from someone

else, they continue by making a proposal to the next agent on their preference list.

The algorithm terminates when all parties involved are matched. Algorithm 2.1 shows

the basic man-oriented Gale-Shapley algorithm (Alg-GS). Since the total input size of

the problem including the preference lists is Θ(n2), the algorithm runs in linear time

with respect to the input size.

Depending on the way the Gale-Shapley algorithm is executed (i.e., whether the man-

oriented or woman-oriented version is run), the stable matching generated is either

man-optimal or woman-optimal. We refer to a man-optimal matching as one in which

no man can have a better partner in any other stable matching. A man-optimal

stable matching is also a woman-pessimal one, meaning that no woman can get a

worse partner in any other stable matching. Analogous definitions exists for a woman-

optimal and a man-pessimal stable matching. The sm instance I shown in Figure 2.1

2.2. The Stable Marriage problem (sm) 9

Algorithm 2.1 Alg-GS

1: set each person to be free;
2: while some man m is free do
3: w = most preferred woman on m’s list to which he has not yet proposed;
4: if w is free then
5: assign m to w;
6: else
7: if w prefers m to her current partner m′ then
8: assign m to w to be engaged and set m′ to be free;
9: else

10: w rejects m’s proposal and remains with m′; {m remains free}
11: the stable matching consists of all n engagements;

Algorithm 2.2 Alg-EGS

1: set each person to be free;
2: while some man m is free do
3: w = first woman on m’s list;
4: if w is engaged to m′ then
5: set m′ to be free;
6: assign m and w to be engaged;
7: for each successor m′′ of m on w’s list do
8: delete m′′ from w’s preference list and w from m′′’s preference list;
9: the stable matching consists of all n engagements;

admits the man-optimal stable matching M0 = {(m1, w4), (m2, w3), (m3, w2), (m4, w1)}
and the woman-optimal stable matching Mz = {(m1, w4), (m2, w1), (m3, w2), (m4, w3)}.
In some cases, the man-oriented and woman-oriented versions of the algorithm can

produce the same stable matching, i.e., M0 = Mz. In this case the problem instance

admits a unique stable matching.

A simple modification to the basic Gale-Shapley algorithm aims to cut down the num-

ber of proposals that need to be made by identifying, at each stage in the proposal

sequence, certain pairs that cannot be involved in any stable matching. Algorithm 2.2

shows the so-called Extended Gale-Shapley algorithm [38] (Alg-EGS). This reduction

in the number of proposals is possible because at each proposal stage of, say, the man-

oriented version of the algorithm, a woman will automatically accept any proposal that

she receives and will remove all men less desirable than her partner from her preference

list (and her from theirs). This means that any future proposals from men poorer than

her current partner will no longer be possible as she is also removed from their list.

2.2.2 Structure of stable matchings in sm

As stated above, every instance of sm admits a stable matching. Depending on the

orientation of the Gale-Shapley algorithm used, the stable matching obtained may be

2.2. The Stable Marriage problem (sm) 10

man-optimal or woman-optimal. In many cases an sm instance will admit more than

one stable matching. Although all the stable matchings generated are of the same

size and are complete (a complete matching is one in which all men and women are

matched), they vary with respect to other important properties. For example, stable

matchings differ according to the relative satisfaction of the men and women involved.

The algorithms described so far only generate the man-optimal or woman-optimal

stable matching but none of the other stable matchings the instance may admit. Thus

algorithms that generate the set of all stable matchings given an instance of sm have

been developed. As we shall state later, these algorithms have exponential running

time in the worst case.

For an instance of sm, the elements in the set of all stable matchings form a lattice

structure under a dominance relation, with the matching at the top of the lattice being

man-optimal and the one at the bottom woman-optimal. We note that an agent a

prefers a matching M to another matching M ′ if he/she prefers M(a) to M ′(a). If

M(a) = M ′(a), we say a is indifferent between both matchings. The aforementioned

dominance relation can be defined in terms of man-oriented or woman-oriented dom-

inance. Considering man-oriented dominance, for a given instance of sm, a matching

M is said to dominate another matching M ′ (we denote this as M �M ′) if each man

either prefers M to M ′ or is indifferent between them. The set of all stable matchings

forms a distributive lattice under this dominance relation (Knuth in [76] attributes this

result to John Conway). This is a partially ordered set in which every pair of matchings

has a unique meet and a unique join and these meet and join operations distribute over

each other. This distributive lattice can be represented as a Hasse diagram which is

a directed graph with the stable matchings as nodes and directed edges running from

a node M to another node M ′ if M � M ′ and there is no other matching M ′′ such

that M �M ′′ and M ′′ �M ′. The man-optimal and woman-optimal stable matchings

appearing at the top and bottom of the Hasse diagram respectively.

The number of stable matchings that an sm instance admits can be exponentially

large with respect to the size of the instance [56]. This implies that any algorithm

that is designed to produce this set may need an exponentially large number of steps

to complete. Thus enumerating the entire set of stable matchings has a worst case

exponential complexity. However the average number of stable matchings grows at

a much slower rate. Lennon and Pittel showed in [81] that the expected number of

stable matchings in a random sm instance of size n taken uniformly out of the (n!)2n

possibilities is of the order n lnn.

Central to the construction of the set of all stable matchings, is the concept of rotations.

A sequence of man-woman pairs in stable matching M can form a rotation ρ if, for the

man in each pair in ρ, the woman in the next pair is the next woman on his list to

2.2. The Stable Marriage problem (sm) 11

prefer him to her partner in M . In this arrangement, we consider the rotation as a cycle

with the last pair being connected to the first. Intuitively this means that each man

in the rotation can be unassigned to his partner in M and assigned to the woman in

the next pair. Mathematically, a rotation ρ = (mi0 , wi0), (mi1 , wi1), ..., (mir−1, wir−1),

exposed in a stable matching M , is an ordered list of pairs in M such that for each

j (0 ≤ j ≤ r − 1), mij+1
= next(mij) where j + 1 is taken modulo r. We define

next(mij) as the man currently matched to the woman smij
(= wij+1

) who is the next

woman on mij ’s list that prefers mij to her partner in M . A rotation can be exposed

in more than one stable matching. Considering an sm instance I, a rotation ρ =

(mi0 , wi0), (mi1 , wi1), ..., (mir−1, wir−1) is said to be eliminated from a stable matching

M when all men mij who are in ρ are unassigned from their partners in M and matched

with wij+1
in ρ (again j+1 taken modulo r) with all other men retaining their partners

in M . The new matching obtained, denoted by M/ρ, is also a stable matching in I.

The set of rotations that can be exposed in all stable matchings present in an sm

instance forms a partial order based on a precedence relation. A rotation ρ precedes

another ρ′ (denoted by ρ / ρ′) if ρ′ cannot be exposed in a stable matching until ρ has

been exposed and eliminated. Starting from the man-optimal matching M0, rotations

can be successively exposed and eliminated, yielding new stable matchings at each

stage, until the woman-optimal matching Mz is reached. This gives all the rotations

in the problem instance. Obviously an sm instance with a unique stable matching

(M0 = Mz) will contain no rotations. It is also shown in [38] that if a rotation ρ is

exposed in some stable matching M , then M � M/ρ. This shows the relationship

between the precedence relation between rotations and the dominance relationship

between stable matchings [38]. Moreover, there is a one-one relationship between the

subsets of the rotation poset that are closed under this precedence relation and the set

of all stable matchings [56, 38]. Thus algorithms can be developed that exploit this

correspondence (and structures related to the rotation poset) to construct the set of

all stable matchings [36, 38].

The rotation poset is a pair (R, /) where R is the set of all rotations and / is the

precedence relation on rotations. It can be constructed in O(n2) time using only the

preference lists of the men and women [36]. The rotation digraph, a directed, acyclic

graph whose edges correspond to a subset of the pairs of the rotation poset, can be

used to design a range of efficient algorithms to find the set of all stable matchings and

other useful structures. This idea that structures inherent to the matching problems

can be constructed in polynomial time and used by efficient algorithms to produce

various types of optimal matchings is very important. It motivates a considerable part

of the development work into visualisation of these structures to be presented later in

Chapter 8.

2.2. The Stable Marriage problem (sm) 12

2.2.3 Stable Marriage problem with Incomplete lists

Another variant of sm that is of practical significance occurs when each agent is allowed

to rank only a subset of the members of the opposite sex in his/her preference list. This

typically happens in matching schemes where it is impractical or expensive to require

agents to have complete preference lists. This problem is called the Stable Marriage

problem with Incomplete lists (smi) [38, Section 1.4.2]. Here an acceptable pair (mi, wj)

is one in which wj appears in mi’s preference list and mi appears in wj’s preference list

also. For smi instances, the number of men and women in the instance need not be

the same. A matching M is a set of acceptable pairs such that each agent appears in

at most one pair. A matching does not necessarily contain all agents. A pair (mi, wj)

forms a blocking pair with respect to M if (i) (mi, wj) is an acceptable pair, (ii) mi is

unmatched in M or prefers wj to M(mi) and (iii) wj is unmatched in M or prefers mi

to M(wj). A stable matching in this context is one that admits no blocking pair. The

same set of agents are assigned in all stable matchings in a given instance of smi [30].

This means that, although they need not be complete, all stable matchings given an

instance of smi have the same size. Moreover, every instance of smi admits a stable

matching and Alg-EGS can be easily extended to solve smi instances in polynomial

time [38, Section 1.4.2].

2.2.4 Stable Marriage problem with Ties

Another variant of sm that has significance in practical applications occurs when the

agents’ preference lists are allowed to contain ties. This variant of sm can arise in

scenarios where the preferences are derived from, for example, performance scores

where ties are a possibility. An example of this was the matching of medical students

to hospital posts in England in 2005-2006 where applicants were ranked partly based

on their academic results. On an agent’s preference list, if two or more entries belong

to a tie, the agent is indifferent between them. Each preference list can be regarded

as a set of tied batches of agents such that (i) the agent is indifferent between all

members of a tie and (ii) the agent prefers each member of a given tie to each member

of any successor tie. We denote this problem as the Stable Marriage problem with Ties

(smt) [51]. In this context, the notion of stability needs to be redefined. Given an

smt instance I, a matching M in I can be evaluated in terms of weak stability, strong

stability and super stability [51]. These three forms of stability are distinguished by the

definitions of the blocking pairs they aim to prevent. Considering weak stability, a pair

(mi, wj) blocks M if both mi and wj strictly prefer each other to their partners in M .

Considering strong stability (mi, wj) blocks M if either (i) mi strictly prefers wj to his

partner in M while wj either strictly prefers mi to her partner in M or is indifferent

2.2. The Stable Marriage problem (sm) 13

between the two, or (ii) wj strictly prefers mi to her partner in M while mi either

strictly prefers wj to his partner in M or is indifferent between the two. Considering

super-stability, (mi, wj) blocks M if each of mi and wj either prefers the other to their

partner in M or is indifferent between them. Figure 2.2 shows a sample smt instance

I (where brackets indicate ties).

men’s preferences women’s preferences

m1 : (w2 w4 w1 w3) w1 : m2 m1 m4 m3

m2 : w3 w1 w4 w2 w2 : (m4 m3) m1 m2

m3 : w2 (w3 w1) w4 w3 : m1 m4 m3 m2

m4 : (w4 w1 w3) w2 w4 : m2 (m1 m4 m3)

Figure 2.2: An instance of the Stable Marriage problem with Ties

Every instance of smt admits a weakly stable matching which can be found by arbitrar-

ily breaking the ties, thus reducing the problem to an sm instance which can then be

solved using the Gale-Shapley algorithm [38]. The constructed stable matching is then

weakly stable in the original smt instance. However, smt instances need not admit

strongly stable or super-stable matchings. In the case of complete indifference where

there are no strict preferences, a super-stable matching cannot exist. Figure 2.3 also

shows an smt instance that admits no strongly stable matching as pair (m2, w1) would

block the matching {(m1, w1), (m2, w2)} and pair (m2, w2) would block the matching

{(mi, w2), (m2, w1)}. Algorithms for finding a strongly and super stable matching or

reporting that none exists are described in [51]. These algorithms run in O(n4) and

O(n2) respectively where n is the number of men or women in the instance.

men’s preferences women’s preferences

m1 : w1 w2 w1 : m2 m1

m2 : (w1 w2) w2 : m2 m1

Figure 2.3: An instance of the Stable Marriage problem with Ties

2.2.5 Stable Marriage problem with Ties and Incomplete lists

A generalisation of each of smt and smi arises when preference lists can simultaneously

include ties and be incomplete, giving rise to the Stable Marriage problem with Ties

and Incomplete lists (smti). The notions of weak, strong and super stability defined

for smt instances need to be refined slightly when applied to smti. Let (mi, wj) be an

acceptable pair in an instance I of smti and let M be a matching in I.

2.2. The Stable Marriage problem (sm) 14

1. In the case of weak stability, the pair (mi, wj) blocks M if

(a) mi is unmatched in M or prefers wj to his partner in M , and

(b) wj is unmatched in M or prefers mi to her partner in M .

2. In the case of strong stability, the pair (mi, wj) blocks M if either (i)

(a) mi is unmatched in M or prefers wj to his partner in M , and

(b) wj is unmatched in M or prefers mi to her partner in M or is indifferent

between them.

or (ii)

(a) mi is unmatched in M or prefers wj to his partner in M or is indifferent

between them, and

(b) wj is unmatched in M or prefers mi to her partner in M .

3. In the case of super stability, the pair (mi, wj) blocks M if

(a) mi is unmatched in M or prefers wj to his partner in M or is indifferent

between them, and

(b) wj is unmatched in M or prefers mi to her partner in M or is indifferent

between them.

As in the case of smt, smti instances need not admit strongly and super-stable match-

ings but every smti instance does admit a weakly stable matching which can again be

found by breaking all ties arbitrarily and solving the resulting smi instance. The sizes

of weakly stable matchings in smti can vary depending on the manner in which the

ties are broken [86]. This motivates the problems of finding a maximum and minimum

weakly stable matching given an instance of smti (namely max smti and min smti

respectively). Each problem is shown to be NP-hard by Manlove et al. [86] even in

restrictive cases where ties appear on one set of preference lists only, the ties are at

the tails of lists, there is at most one tie per list, and each tie is of length 2. Over the

years research in smti and its many-to-one generalisation hrt has been very active.

We describe these results in the context of hrt in Section 2.3.2.

2.2.6 Other optimality criteria

It is sometimes useful in applications to specify additional optimality criteria relative

to stable matchings. These include:

2.3. The Hospitals/Residents problem (hr) 15

1. Egalitarian stable matchings seek to optimise the satisfaction of both men and

women simultaneously. If pair (mi, wj) is in a stable matching M , we define the

rank of mi in M to be the position of wj on mi’s list and the rank of wj in M as

the position of mi on wj’s list. The weight of M is the sum of the ranks of all the

men and women in M . An egalitarian stable matching has minimum weight over

all the possible stable matchings. An efficient algorithm to find an egalitarian

stable matching given an sm instance, which relies heavily on the distributive

lattice structure of the set of all stable matchings, is described in [57].

2. Minimum regret stable matchings are the stable matchings in which the rank of

the worst off person is minimised. An efficient algorithm for finding a minimum

regret stable matching, given an instance of sm, is described in [36]

3. Sex equal stable matchings are stable matchings in which the absolute value of

the difference between the sum of the ranks of all the men and the sum of the

ranks of all the women is minimised. The problem of finding a sex-equal stable

matching given an sm instance is NP-hard [71]. This was shown to be true even

if the preference lists are of length at most 3 [91].

As stated earlier, although these optimality criteria can be obtained by enumerating

the set of all stable matchings, more efficient algorithms to find these optimal stable

matchings have been developed where possible [57, 36].

2.3 The Hospitals/Residents problem (hr)

2.3.1 Introduction

The Hospital/Residents problem (hr) [29] is a generalisation of smi in which agents of

one set (the hospitals) may be involved in one or more assignments in a given matching.

A common application is the matching of residents (i.e., graduating medical students)

to hospitals where each resident ranks a set of hospitals and each hospital ranks a set

of residents in order of preference.

An instance I of hr involves a set R = {r1, r2, ..., rn1} of residents and H = {h1, h2, ...,
hn2} of hospitals. Each resident ri ∈ R ranks a subset of H in strict order of preference

with each hospital hj ∈ H ranking a subset of R, consisting of those residents who

ranked hj, in strict order of preference. Each hospital hj also has a capacity cj ∈ Z+

indicating the maximum number of residents that can be assigned to it. As in the

case of smi, a pair (ri, hj) is called an acceptable pair if hj appears in ri’s preference

list and vice versa. A matching M is a set of assignments, which are acceptable pairs,

2.3. The Hospitals/Residents problem (hr) 16

such that each resident is assigned to at most one hospital and the number of residents

assigned to each hospital does not exceed its capacity. We denote the hospital assigned

to resident ri in M as M(ri) (if ri is matched in M) and the set of residents assigned

to hospital hj in M as M(hj). A resident ri is unmatched in M if no acceptable pair

in M contains ri. A hospital hj is undersubscribed in M if |M(hj)|< cj. Otherwise hj

is said to be full in M . An acceptable pair (ri, hj) blocks a matching M , or forms a

blocking pair with respect to M , if ri is either unmatched or prefers hj to M(ri) and

hj is either undersubscribed or prefers ri to at least one member of the set M(hj). A

matching M is said to be stable if there is no blocking pair with respect to M .

This problem was also introduced by Gale and Shapley in [29] although in the context

of college admissions. Every instance of hr admits at least one stable matching which

can be found in linear time [29]. As described in the context of sm, matchings in the

hr context can be hospital-optimal or resident-optimal depending on the orientation

of the algorithm used. Given an instance I of hr, a stable matching M is said to be

resident-optimal if every resident has their best possible partner in M taken over the

set of all stable matchings in I. An analogous definition for hospital-optimal stable

matchings exists. An hr instance may admit more than one stable matching, however,

all stable matchings in a given hr instance have the same cardinality and contain the

same set of residents [30, 101]. Figure 2.4 shows a sample HR instance I consisting

of 6 residents and 3 hospitals with each hospital having a capacity of 2. The instance

admits a stable matching M = {(r1, h2), (r2, h1), (r3, h1), (r4, h3), (r6, h2)}.

residents’ preferences hospitals’ preferences

r1 : h2 h1 h1 : (2) : r1 r3 r2 r5 r6

r2 : h1 h2 h2 : (2) : r2 r6 r1 r4 r5

r3 : h1 h3 h3 : (2) : r4 r3

r4 : h2 h3

r5 : h2 h1

r6 : h1 h2

Figure 2.4: An instance of the Hospitals/Residents problem

2.3.2 Hospital/Residents with Ties

A generalisation of hr occurs when the preference lists of the residents and hospitals

are allowed to contain ties, thus forming the Hospital/Residents Problem with Ties

(hrt). A tie in a resident’s or hospital’s preference list is defined analogously to the

definition given for ties in the smt context. A blocking pair can be defined with respect

2.3. The Hospitals/Residents problem (hr) 17

to the different stability criteria outlined for smt and smti above and matchings can

again be considered in terms of weak stability, strong stability and super stability. In

the case of weak stability both the resident and hospital involved in a blocking pair

must be better-off before a matching can be undermined. In the case of strong stability

either the resident or hospital must be better off with none of them being worse-off.

In the case of super stability, a resident-hospital pair can block a matching as long as

both are not worse-off. Formal definitions of these stability criteria in the hrt context

are as follows. Let (ri, hj) be an acceptable pair in an instance I of hrt and let M be

a matching in I.

1. In the case of weak stability, the pair (ri, hj) blocks M if

(a) ri is unmatched in M or prefers hj to her assigned hospital in M , and

(b) hj is undersubscribed in M or prefers ri to its worst assigned resident in M .

2. In the case of strong stability, the pair (ri, hj) blocks M if either (i)

(a) ri is unmatched in M or prefers hj to her assigned hospital in M , and

(b) hj is undersubscribed in M or prefers ri to its worst assigned resident in M

or is indifferent between them.

or (ii)

(a) ri is unmatched in M or prefers hj to her assigned hospital in M or is

indifferent between them, and

(b) hj is undersubscribed in M or prefers ri to its worst assigned resident in M

3. In the case of super stability, the pair (ri, hj) blocks M if

(a) ri is unmatched in M or prefers hj to her assigned hospital in M or is

indifferent between them, and

(b) hj is undersubscribed in M or prefers ri to its worst assigned resident in M

or is indifferent between them.

Every instance of the hrt problem admits at least one weakly stable matching. This

can be obtained by breaking the ties in both sets of preference lists in an arbitrary

manner, thus giving rise to a hr instance which can then be solved using variants of

the Gale-Shapley algorithm for hr [38]. However, in general, the way in which the ties

are broken yields stable matchings of varying sizes [86] and the problem of finding a

maximum weakly stable matching given an hrt instance (max hrt) is known to be

NP-hard [86] as hrt is a many-to-one generalisation of smti.

2.3. The Hospitals/Residents problem (hr) 18

Research in hrt and smti and their variants has been very active since the initial results

were published in [84, 64]. In particular, weak stability has attracted considerable

attention perhaps due to the fact that under weak stability, hrt and smti instances

are guaranteed to admit a stable matching though this need not be the case for strong

stability and super stability [51]. Various approximation algorithms for max hrt can

be found in the literature [66, 67, 74, 86, 59] with the best having a bound of 3/2

[90, 75, 97]. The parameterized complexity of max hrt has also been studied in the

literature. In [88] max hrt was shown to be in FPT with the parameter being the

sum of the lengths of the ties in the preference lists.

Concerning inapproximability results, Halldorsson et al. showed that it is NP-hard to

approximate max smti to within δ for some δ > 1 [39] (where δ is very close to 1) even

if each man’s preference list is of length at most 7 and each woman’s preference list is

of length at most 4 and each preference list is derived from two master lists of men and

women. Irving et al. presented the same inapproximability result for the restriction

where men’s and women’s preference lists are of length at most 3 and 4 respectively

[61]. In the case of unbounded length preference lists where each man’s preference list

is strictly ordered and each woman’s preference list is either strictly ordered or is a tie

of length 2, max smti was shown to be inapproximable to within 21/19− ε for some

ε > 0 unless P=NP [40]. Finally Yanagisawa improved this lower bound to 33/29 for

the case where ties are on both sides and each tie is of length 2 [115]. Various heuristics

for solving max hrt have also been developed [60, 34, 35].

2.3.3 Cloning hr instances

A technique known as cloning can be used to convert an hr instance I into an instance

an smi I ′ in polynomial time, such that there is a bijective function between the sets

of stable matchings in I and I ′ [38, 106]. Let I be an instance of hr where R =

{r1, r2, ..., rn1} is the set of residents and H = {h1, h2, ..., hn2} is the set of hospitals.

Let cj be the capacity of hospital hj ∈ H. We can construct an instance I ′ of smi as

follows. Each resident in I corresponds to a man in I ′. Each hospital hj ∈ H gives rise

to cj women in I ′, denoted by hj,1, hj,2, ..., hj,cj , each of whom has the same preference

list as hj in I ′ but with a capacity of 1. Each man ri ∈ R starts off with the same

preference list in I ′ as he has in I. We then replace each hospital hj on his list by the

cj women hj,1, hj,2, ..., hj,cj listed in strict order (increasing on second subscript). There

is a bijective function between the sets of stable matchings in I and I ′. This relation

between hr and smi was shown to hold (but not necessarily with a bijective function)

when cloning max hrt to max smti instances in [85] thus some of the positive results

for max smti can carry over to max hrt. The same technique will be used in Section

2.4. The Stable Roommates problem (sr) 19

4.5.1 for cloning another variant of hr to its one-to-one special case.

2.4 The Stable Roommates problem (sr)

The Stable Roommates problem (sr) [29] involves an even-sized set R = {a1, a1, ..., an}
of agents with each agent ai ∈ R ranking the other agents R\{ai} in strict order of

preference. An agent ai prefers some aj to another ak if aj appears before ak in ai’s

preference list. While sm and hr instances can be modelled as bipartite graphs involv-

ing two disjoint sets of agents, sr instances the corresponding graph is not bipartite. A

matching M in this context is a set of n/2 unordered pairs of agents where each agent

appears in at most one pair. We denote the agent paired with ai in M as M(ai). A pair

of agents {ai, aj} blocks M , or forms a blocking pair with respect to M , if ai prefers

aj to M(ai) and aj prefers ai to M(aj). A matching is stable is it admits no blocking

pair. Figure 2.5 shows a sample sr instance I. It has been shown that an instance of

sr need not admit a stable matching [29]. Indeed this is true of the instance in Figure

2.5. An O(n2) algorithm also exists in the literature to find a stable matching given

an instance of sr if one exists [50].

a1 : a3 a2 a4

a2 : a1 a3 a4

a3 : a2 a1 a4

a4 : a3 a2 a1

Figure 2.5: An instance of the Stable Roommates problem

The general idea behind the algorithm presented in [50] is to successively remove entries

from the preference lists until either some agent’s preference list is empty, in which case

no stable matching exists (i.e., the instance is unsolvable), or all the preference lists are

left with a single entry, in which case the resulting assignment will be a stable matching.

The algorithm runs in two phases. The first phase removes entries from the preference

list that cannot be involved in any stable matching according to a proposal sequence

that is similar to the Gale-Shapley algorithm. If after this phase, some agent is left

with an empty preference list then the instance is unsolvable. If all the preference lists

after the first phase contain only a single entry, then the resulting matching, obtained

by simply assigning every agent to the single entry on their preference list, is the

unique stable matching. If however some preference lists contain more than one entry

further work needs to be done in order to obtain a stable matching. The second phase

continues to trim the preference lists until either all preference lists contain only one

2.4. The Stable Roommates problem (sr) 20

entry or some agent’s list becomes empty in which case the instance in unsolvable. This

algorithm relies on the exposure and elimination of rotations as they are discovered.

Rotations in the sr context are discussed in the next subsection.

2.4.1 Rotations in the Stable Roommates problem

The concept of a rotation in sr is similar to that described in the sm context. A notable

difference between rotations in both cases is that for sm, a rotation is defined relative to

a stable matching in which it is exposed while for sr, a rotation is defined relative to the

preference table in which it is exposed. A preference table in an sr instance is a set of

preference lists from which zero or more pairs have been deleted. These deletions take

place during the first or second phases of the algorithm described in [50]. In the result-

ing preference table, if ai is the first agent on aj’s preference list, then aj is the last on

ai’s. If for some preference table T , fT (ai) and sT (ai) are the first and second entries of

agent ai in T , then a rotation ρ, which is a set of pairs (ai0 , aj0), (ai1 , aj1), ..., (air−1 , ajr−1)

such that ajk = fT (aik) and ajk+1
= sT (aik) for all k, 0 ≤ k ≤ r − 1, where k + 1 is

taken modulo r, is exposed in T . A rotation ρ = (ai0 , aj0), (ai1 , aj1), ..., (air−1 , ajr−1) is

said to be non-singular if ρ̄ = (aj1 , ai0), (aj2 , ai1), ..., (ajr−1 , air−2), (aj0 , air−1) is also a

rotation. Rotation ρ is called the dual of ρ̄ and vice versa. If ρ̄ is not a rotation then

ρ is said to be singular. Singular rotations need to be exposed and eliminated before

any stable matching is found while non-singular rotations form a partial order which

can be expoloted to find the set of all stable matchings.

2.4.2 Structure of stable matchings in sr

In sm, there is a clear structure contained within any instance: the set of all stable

matchings in an sm instance forms a distributive lattice under a dominance relation

[76]. In the sr context, the stable matchings form a semi-lattice (a weaker structure

than the lattice structure) under a dominance relation [37]. The semi-lattice has just

a single operation, meet or join, and is closed under this operation. It generalises the

lattice structure in the sm case.

2.4.3 Stable Roommates with Incomplete lists

A more general version of sr allows for the preference lists to be incomplete, i.e., each

agent ranks a subset of R\{ai} in order of preference. We refer to this problem as the

Stable Roommates problem with Incomplete lists (sri). In this form, the number of

agents need not be even. A pair of agents {ai, aj} is an acceptable pair if ai appears

2.5. Locally Stable Matchings 21

in aj’s preference list and vice versa. A matching M is a set of acceptable pairs where

each agent appears in at most one pair. The definition of a blocking pair also changes

slightly. An acceptable pair {ai, aj} forms a blocking pair with respect to M if ai is

unmatched or prefers aj to M(ai), and aj is unmatched or prefers ai to M(aj). The

algorithm for finding a stable matching given an sr instance (should one exist) can be

extended to the sri case [38, Section 4.5.2]. Figure 2.6 shows a sample sri instance I

with stable matching M = {{a1, a2}, {a3, a4}}.

a1 : a2 a4 a3

a2 : a1 a3

a3 : a2 a1 a4

a4 : a3 a1

Figure 2.6: An instance of the Stable Roommates problem with Incomplete Lists

2.5 Locally Stable Matchings

2.5.1 Introduction

Although the concept of stability is important in many applications of matching prob-

lems, there are classes of matching problems (such as the Stable Roommates problem)

for which an instance is not guaranteed to admit a stable matching [29]. Moreover,

enforcing the stability requirement tends to reduce the size of the matchings discovered

[15]. This is an issue particularly in the case of applications where it is desired to find

a largest possible matching. It may be argued that in some applications where the

size of the matching produced is just as important (if not more important) than the

stability of the matching, relaxing the stability definition to allow for larger matchings

is justified.

One approach taken was to weaken the stability criterion by tolerating a number of

blocking pairs. The smaller the number of blocking pairs, the more stable a matching

is said to be. The problem then becomes to find a maximum size matching with as few

blocking pairs as possible. Such a model of “almost” stable matchings was considered

in [15]. The authors identified a number of practical applications in which such an

approach would be feasible. They defined the problem of finding a maximum matching

with the minimum number of blocking pairs given an smi instance as max size min

bp smi. They showed that the problem is NP-hard to approximate to within n1−ε for

any ε > 0 where n is the number of men in a given instance. They also showed the

2.5. Locally Stable Matchings 22

problem to be NP-hard to approximate to within δ for some δ > 1 even if all preference

lists are of length at most 3. They then provideed a polynomial-time algorithm for the

special case in which the preference lists of one sex are of length at most 2. Hamada

et al. strengthened this inapproximability bound to within n1−ε even if all preference

lists are of length at most 3 [42].

Another approach is to leverage any information about the social relationship between

agents in the matching market. Instead of trying to minimise the number of blocking

pairs, we may redefine the stability criterion to allow for certain blocking pairs that

are unlikely to lead to a matching being undermined. It is generally assumed that,

in the hr context, a resident-hospital pair that blocks a matching in theory will also

block the matching in practice. However this assumption is not always true in some

real-world applications, as resident-hospital pairs are more likely to form blocking pairs

in practice if social ties exist between them. This observation, coupled with the need

to find the largest possible matchings, have motivated studies into alternative, weaker

stability definitions that still aim to prevent a given matching from being subverted

while increasing the number of agents involved in the matchings. If social ties do

not exist between a pair of agents, it is assumed that they are unlikely to subvert a

matching in practice as they may not become aware that they could form a blocking

pair with one another in reality. They are therefore not considered as blocking pairs.

Redefining stability on the bases of agents who are most likely to form blocking pairs in

practice can yield larger matchings whilst still providing a degree of robustness against

a matching being undermined. This section discusses this concept, which we call social

stability (also referred to as local stability in the literature), in the context of sm and

hr as well as similar ideas described in the literature.

2.5.2 Locally Stable Matchings in the Job Market Context

Arcaute and Vassilvitskii [11] studied the Hospitals/Residents problem in the context

of assigning job applicants to company positions. They observed that applicants are

more likely to be employed by a company if they are recommended by their friends who

are already employees of that company. Given the large amount of applications that

may be submitted for vacancies, companies are increasingly reliant on personal in-house

recommendations for making employment decisions. In their model applicants have a

limited knowledge of the matching market and can only form blocking pairs with com-

panies in which their friends are employees. In the context of stable matching theory,

an applicant-company pair (a, c) blocks a matching M if (a, c) blocks it in the tradi-

tional sense (as described in the analogous hr context) and a is friends with another

applicant a′ assigned to c in M . Thus their problem (which was later called hr+sn

2.5. Locally Stable Matchings 23

by Cheng and McDermid [22]) incorporates both the traditional hr problem and ad-

ditionally an underlying social network, represented as an undirected graph consisting

of applicants as nodes and edges between nodes where the corresponding applicants

have some social ties (e.g., are friends). They call matchings that admit no blocking

pair in this context locally stable due to the addition of the informational constraint on

blocking pairs. Concerning the static properties of locally stable matchings, Arcaute

and Vassilvitskii [11] showed that the set of locally stable matchings does not form a

distributive lattice. They also considered a dynamic version of their model (where ap-

plicants and/or companies arrive and are matched over time), providing a decentralised

version of the Gale-Shapley algorithm for finding a locally stable matching.

Cheng and McDermid [22] investigated the problem further and presented some algo-

rithmic results. They showed that locally stable matchings can be of different sizes and

max hr+sn the problem of finding a maximum locally stable matching is NP-hard.

They identified special cases where the problem is polynomially solvable and gave upper

and lower bounds on the approximability of the problem. They showed that when the

social network is a complete graph, local stability and classic stability become the same

thus finding a maximum locally stable matching is polynomially solvable. If the social

network is an empty graph, then every maximum cardinality matching is a locally sta-

ble matching thus finding a maximum locally stable matching is also computationally

easy. Concerning the approximability of max hr+sn, they observed that every stable

matching in the classical sense is also a locally stable matching and is at least 1/2 the

size of a maximum locally stable matching. They also proved that it is NP-hard to

approximate max hr+sn to within 21/19− δ for any δ > 0.

The problem of finding an approximation algorithm for max hr+sn with a perfor-

mance guarantee better than 2 still remains open. Given the close relationship between

max hr+sn and max hrt and the fact that max hrt can be approximated to within

3/2, Cheng and McDermid conjectured that a 3/2 approximation algorithm for max

hr+sn also exists. They proposed a strategy similar to those used for max hrt in

[75, 90]. They concluded the paper by describing a special case where social ties exist

only between applicants who are matched in every stable matching and applicants who

are not. In this case every stable matching is a 3/2 approximation of a maximum

locally stable matching. Askalidis et al. [13] suggested that the elusiveness of a 3/2

approximation algorithm for max hr+sn is due to the fact that the model is dynamic

in nature – blocking pairs are not determined from the problem instance alone but

change depending on the matching being considered.

2.6. The Student/Project Allocation problem 24

2.5.3 Other results relating to Locally Stable Matchings

Hoefer and Wagner [44, 45] studied a more general version of local stability. In their

model, the social network graph involves all agents and need not be bipartite. A pair

locally blocks a given matching M if (i) it blocks in the classical sense, and (ii) the

agents involved are at most l edges apart in the social network graph augmented by

M . This scenario can be viewed as a generalisation of hr+sn (l = 2) where blocking

pairs can only be formed through a third party and other models where blocking pairs

can be formed through direct communication between the agents involved (i.e. l = 1).

They also established a lower bound for the approximabiliy of the problem of finding

a maximum locally stable matching (for the case that l ≤ 2).

This idea of local stability has been investigated in the context of the Stable Roommates

problem (a non-bipartite generalisation of the Stable Marriage problem) in [19]. Here,

the Stable Roommates problem with Free edges (srf) as introduced was motivated by

the observation that, in kidney exchange matching schemes, donors and recipients do

not always have full information about others and are more likely to have information

only on others in the same transplant centre as them. The problem is defined by the

traditional Stable Roommates problem together with a set of free pairs (or edges in the

underlying graph). These correspond to pairs of agents in different transplant centres

that do not share preference information who may be involved in stable matchings,

but cannot block any matching. It is shown in [19] that the problem of determining

whether a locally stable matching exists, given an srf instance, is NP-complete.

2.6 The Student/Project Allocation problem

2.6.1 Introduction

In most academic programmes students are usually required to take up individual or

group projects offered by lecturers. Students may be required to rank a subset of the

projects they find acceptable in order of preference. Each project is offered by a unique

lecturer who may also be allowed to rank the projects she offers or the students who are

interested in taking her projects in order of preference. Each student can be assigned

to at most one project and there are usually constraints on the maximum number of

students that can be assigned to each project and lecturer. The problem then is to

assign students to projects in a manner that satisfies these capacity constraints while

taking into account the preferences of the students and lecturers involved. This problem

has been described in the literature as the Student-Project Allocation problem (spa)

[8, 87, 9, 68]. Variants of spa also exist in which lower quotas are assigned to projects

2.6. The Student/Project Allocation problem 25

and/or lecturers. These lower quotas indicate the minimum number of students to be

assigned to each project and lecturer.

Although described in an academic context, applications of spa need not be limited

to assigning students to projects but may extend to other scenarios, such as the as-

signment of employees to posts in a company where available posts are offered by

various departments. Applications of spa in an academic context can be found at

the University of Glasgow [116], the University of York [25, 72, 112], the University

of Southampton [10, 43] and the Geneva School of Business Administration [113]. As

previously stated, it is widely accepted that matching problems (like spa) are best

solved by centralised matching schemes where agents submit their preferences and a

central authority computes an optimal matching that satisfies all the specified crite-

ria [38]. Moreover the potentially large number of students and projects involved in

these schemes motivates the need to discover efficient algorithms for finding optimal

matchings.

In spa, students are always required to provide preference lists containing projects.

However, variants of the problem may be defined depending on the presence and nature

of lecturer preference lists. Some variants of spa, as discussed in Section 2.6.2, require

both students and lecturers to provide strictly ordered preference lists. In these cases,

the well-known stability criterion is applied on the matchings produced. In other

variants of spa, which we introduce in Section 2.6.3, only students are required to

produce preference lists in which case other feasibility and optimality criteria need to

be considered. In general, spa models may vary from one application of the problem to

another. In Section 2.6.4 we discuss some of these variants that appear in the literature.

2.6.2 Two-sided preferences and stability

In one variant of spa, each lecturer is required to rank the students who find at least

one of her offered projects acceptable, in strict order of preference, thus forming the

Student/Project Allocation problem with lecturer preferences over Students (spa-s) [8].

A lecturer’s preference list will typically reflect her assessment of the ability of these

students. Another variant of spa involves lecturers ranking the projects they offer in

strict order of preference thus leading to the Student/Project Allocation problem with

lecturer preferences over Projects (spa-p) [87, 68]. It may be expected that lecturers

will typically give higher priority to projects that are closely related to their research

interests. Another variant that has been of interest in the literature is a generalisation

of each of the spa-s and spa-p problems. In this problem lecturers rank student-

project pairs in strict order of preference, thus leading to the Student/Project Allocation

problem with lecturer preferences over Student-Project pairs (spa-(s,p)) [8, 9]. Each

2.6. The Student/Project Allocation problem 26

student-project pair on a lecturer’s preference list involves a project offered by the

lecturer and a student who finds that project acceptable. This allows lecturers to

not only estimate the suitability of students to all her offered projects but to specific

projects as well. A formal definition of spa-(s,p) as well as the conditions necessary

for a student-project pair to block a matching were presented in [9].

These variants of spa involving lecturer preference lists have been studied relative to

several definitions of stability. In the spa context, the stability objective is to produce

a matching M in which no student-project pair (si, pj) exists such that (si, pj) are not

matched in M , and si and the lecturer offering pj can simultaneously improve by being

paired together (i.e., by adding (si, pj) to M). This process could potentially cause

them to abandon their previous partners in M . As is the case with other matching

problems involving preferences, such student-project pairs are called blocking pairs. The

formal definition of stability may vary depending on the spa variant being considered.

Abraham et al. [8] gave an O(m) algorithm for finding a stable matching given an spa-s

instance where m is the number of student-project pairs in the instance. They observed

that, given a spa-s instance, such a matching is bound to exist. Their algorithm

produces the student-optimal stable matching which is the stable matching in which

each student obtains their best possible project over all stable matchings. They also

presented an algorithm for finding the lecturer-optimal stable matching in which each

lecturer obtains the best set of students she can obtain in any stable matching given a

spa-s instance.

In the spa-p context a matching may be undermined not only by student-project

blocking pairs but also groups of students who choose to cooperate for their collective

benefit (called blocking coalitions). Given a matching M , a coalition is a set of students

{si0 , ..., sir−1}, for some r ≥ 2, each of whom is assigned in M , such that sij prefers

M(sij+1
) to M(sij) (0 ≤ j ≤ r − 1, where addition is taken modulo r). That is, the

students in the coalition could permute the projects that they have been assigned to in

M so as to be better off. Thus a matching is stable if it avoids both blocking pairs and

blocking coalitions. Given a spa-p instance, a stable matching is guaranteed to exist

and can be found in O(m) time [87] where m is the total length of the preference lists

in the instance. However, given a spa-p instance, stable matchings may be of varying

sizes and the problem of finding a maximum stable matching was shown to be NP-hard

[87] although approximable to within 3/2 but not to within 21/19 − ε unless P=NP

[68].

Abu El-Atta and Moussa showed that an instance of spa-(s,p) is guaranteed to admit

a stable matching and that such a matching can be found in O(m) time where m is the

total length of the students’ preference lists. A full description of the results relating

2.6. The Student/Project Allocation problem 27

to these spa variants with lecturer preferences can be found in [85].

2.6.3 One-sided preferences and profile-based optimality

In many practical spa applications it is considered appropriate to allow only students

to submit preferences over projects. When preferences are specified by only one set of

agents in a two-sided matching problem, the notion of stability becomes irrelevant. This

motivates the need to adopt alternative solution criteria when lecturer preferences are

not allowed. In this subsection we describe some of these solution criteria and briefly

present results relating to them. These criteria consider the size of the matchings

produced as well as the satisfaction of the students involved.

When preference lists of lecturers are absent, the spa problem becomes a two-sided

matching problem with one-sided preferences. We assume students’ preference lists

can contain ties in these spa variants. Various optimality criteria for such problems

have been studied in the literature [85]. Some of these criteria depend on the profile or

the cost of a matching. In the spa context, the profile of a matching is a vector whose

rth component indicates the number of students obtaining their rth-choice project in

the matching. The cost of a matching (w.r.t. the students) is the sum of the ranks

of the assigned projects in the students’ preference lists (that is, the sum of rxr taken

over all components r of the profile, where xr is the rth component value).

A minimum cost maximum matching is a maximum cardinality matching with mini-

mum cost. A rank-maximal matching is a matching that has lexicographically maxi-

mum profile [55, 53]. That is the maximum number of students are assigned to their

first-choice project and subject to this, the maximum number of students are assigned

to their second choice project and so on. However a rank maximal matching need not

be a maximum matching in the given instance (see, e.g., [85, p.43]). Since it is usually

important to match as many students as possible, we may first optimise the size of the

matching before considering student satisfaction. Thus we define a greedy maximum

matching [54, 93, 48] to be a maximum matching that has lexicographically maximum

profile. The intuition behind both rank-maximal and greedy maximum matchings is to

maximize the number of students matched with higher ranked projects. This may lead

to some students being matched to projects that are relatively low on their preference

lists. An alternative approach is to find a generous maximum matching which is a

maximum matching in which the minimum number of students are matched to their

Rth-choice project (where R is the maximum length of any students’ preference list)

and subject to this, the minimum number of students are matched to their (R− 1)th-

choice project and so on. Greedy and generous maximum matchings have been used to

assign students to projects in the School of Computing Science, and students to elective

2.6. The Student/Project Allocation problem 28

students’ preferences: lecturers’ offerings:

s1 : p1 p2 p3 l1 : {p1, p2}
s2 : p1 l2 : {p3}
s3 : p2 p3 project capacities: c1 = 1, c2 = 1, c3 = 1

lecturer capacities: d1 = 2, d2 = 1

Figure 2.7: A spa instance I

courses in the School of Medicine, both at the University of Glasgow, since 2007. Fig-

ure 6.1 shows a sample spa instance with greedy and generous maximum matchings,

namely M1 = {(s1, p3), (s2, p1), (s3, p2)} and M2 = {(s1, p2), (s2, p1), (s3, p3)} respec-

tively.

A special case of spa, where each project is offered by a unique lecturer with an infinite

upper quota and zero lower quota, can be modelled as the Capacitated House Allocation

problem with Ties (chat). This is a variant of the well-studied House Allocation

problem (ha) [49, 117] which involves the allocation of a set of indivisible goods (which

we call houses) to a set of applicants. In chat, each applicant is required to rank

a subset of the houses in order of preference with the houses having no preference

over applicants. The applicants play the role of students and the houses play the

role of projects and lecturers. As in the case of spa, we seek to find a many-to-one

matching comprising applicant-house pairs. Efficient algorithms for finding profile-

based optimal matchings in chat have been studied in the literature [48, 54, 110, 93].

The most efficient of these is the O(R∗m
√
n) algorithm for finding rank-maximal,

greedy maximum and generous maximum matchings in chat problems due to Huang

et al. [48] where R∗ is the maximum rank of any applicant in the matching, m is the sum

of all the preference list lengths and n is the total number of applicants and houses.

These models however fail to address the issue of load balancing among lecturers.

In order to keep the assignment of students fair each lecturer will typically have a

minimum (lower quota) and maximum (capacity/upper quota) number of students they

are expected to supervise. These numbers may vary for different lecturers according

to other administrative and academic commitments.

The chat algorithms mentioned above are based on modelling the problem in terms

of a bipartite graph with the aim of finding a matching in the graph which satisfies the

stated criteria. However a more flexible approach would be to model the problem as

a network with the aim of finding a flow that can be converted to a matching which

satisfies the stated criteria. spa has also been investigated in the network flow context

[5, 116] where a minimum cost maximum flow algorithm is used to find a minimum cost

2.6. The Student/Project Allocation problem 29

maximum matching and other profile-based optimal matchings. The model presented

in [116] allows for lower quotas on lecturers and projects as well as alternative lecturers

to supervise each project. By an appropriate assignment of edge weights in the network

it is shown that a minimum cost maximum flow algorithm (due to Orlin [96]) can find

rank maximal, generous maximum and greedy maximum matchings in a spa instance.

This takes O(m log n(m + n log n)) time in the worst case, where m and n are the

number of vertices and edges in the network respectively. In the spa context this takes

O(m2
2 log n1+m2n1 log2 n1) time where n1 is the numbers of students and m2 is the sum

of all the students’ preference list lengths. However this approach involves assigning

exponentially large edge weights (see, e.g., [85, p.405]), which may be computationally

infeasible for larger problem instances due to floating point inaccuracies in dealing with

such high numbers. For example given a large spa instance involving say, n1 = 100

students each ranking R = 10 projects in order of preference, edge weights could

potentially be of the order nR1 = 10010 = 1020 (and arithmetic involving such weights

could easily require more than the 15-17 significant figures available in a 64-bit double-

precision floating representation). Since the flow algorithms involve comparing these

edge weights, floating point precision errors could easily cause them to fail in practice.

Moreover using the standard assumption that arithmetic on numbers of magnitude

O(n1) takes constant time, arithmetic on edge weights of magnitude O(nR1) would add

an additional factor of O(R) onto the running time of Orlin’s algorithm (as R memory

locations will be needed to store each of these exponential edge weights in practice).

In Chapter 6 we present efficient algorithms for finding optimal matchings to spa prob-

lems based on the profile-based greedy maximum and generous maximum optimality

criteria. Our model allows for lecturer upper and lower quotas and finds these profile-

based optimal matchings without the need for exponentially-large edge weights. Our

algorithms run in O(n2
1Rm2) time. Formal definitions of spa and its variants are also

presented in Chapters 6 and 7.

2.6.4 Other spa models and approaches

The variants of spa already discussed above have been motivated by both practical

and theoretical interests. These variants are usually distinguished by the (i) feasibility

and (ii) optimality criteria specific to them. In this section, we discuss some more

spa models found in the literature as well as other approaches that have been used

to solve these problems. The techniques employed include Integer Programming (IP)1

[10, 113, 109, 70, 109, 70], Constraint Programming (CP) [25, 112], and others including

goal programming and genetic algorithms [111, 43, 80].

1which we will discuss in Section 2.7.

2.7. Integer Programming approaches to matching problems 30

In [109], an IP model for spa was presented with the aim of optimising the overall

satisfaction of the students and the lecturers offering the projects (i.e., minimising the

overall cost on both sides). In [10] an IP model was presented for spa problems in-

volving individual and group projects. Various objective functions were also employed

(often in a hierarchical manner). These include minimising the cost, balancing the

work-load among lecturers, maximising the number of students assigned and maximis-

ing the number of first-choice assignments (w.r.t. student preferences). In [113] a more

general IP model for spa which allows project lower quotas was also presented. How-

ever none of these models simultaneously considers profile-based optimality as well as

upper and lower quota constraints.

In all the variants of spa discussed above, very little work has been done in imple-

menting and evaluating their performance empirically. In cases where multiple algo-

rithms/approaches exist to solve the same problem, there does not seem to have been

a previous systematic empirical evaluation comparing the performance of these ap-

proaches. To answer these questions, multiple random instances of the problems need

to be generated and solved and the results analysed. We present results from empirical

evaluations of some of these algorithms in Chapters 6 and 7.

2.7 Integer Programming approaches to matching

problems

Linear Programming (LP) formulations for sm and its variants have been widely studied

in the literature [114, 38, 108, 102]. These approaches usually involve constructing a set

of linear inequalities J from an instance I of the matching problem such that there is

a 1–1 correspondence between the set of stable matchings in I and the extreme points

of the polytope specified by J . Vande Vate’s approach involved constructing these

linear inequalities (which describe the stable matchings) using the preference lists of

the agents in I [114]. He also showed that, for sm, the extreme points of the solution

polytopes of his LP are all integer-valued. This has also been shown to be true in the

smi and hr cases [108, 102] as well as in the sri case [4]. However this result does not

extend naturally to other stable matching problems, thus the need to impose further

restrictions on the domains of the variables involved in J . In particular we may require

that all variables have integer domains thus forming Integer Programming (IP) models.

Although finding an integer solution to a set of linear inequalities is known to be NP-

hard [69, 31], current commercial and open-source IP solvers allow for reasonably-sized

IP instances to be solved quickly. This has led to the development of various IP mod-

els for matching problems [109, 10, 105, 6, 113, 70, 20, 89, 17]. The problems studied

2.7. Integer Programming approaches to matching problems 31

in these context have typically been shown to be NP-hard thus further justifying the

use of IP techniques. An IP formulation for max smti was presented by Podhradskỳ

[100] where he compared the sizes of weakly stable matchings obtained by running var-

ious approximation algorithms on smti instances against the maximum weakly stable

matchings obtained from his IP formulation. Since his model had no proofs or detailed

explanations, it is difficult to comment on its correctness. In Chapter 3 we present a

compact IP model for the more general max hrt problem and prove its correctness.

We also use IP as a way of verifying the correctness of implementations of various

efficient algorithms throughout this thesis.

32

Chapter 3

An Integer Programming Approach

to the Hospitals/Residents Problem

with Ties

3.1 Introduction

In Chapter 2 we discussed smti and hrt, which are two-sided matching problems

where each agent’s preference list may contain ties. We gave a review of various stability

criteria that can be applied to these problems: namely weak, strong and super-stability.

In practice weak stability is the most commonly-studied stability concept due to the

guaranteed existence of weakly stable matchings; by contrast strongly stable and super-

stable matchings need not exist in a given problem instance. For a given instance of

smti, weakly stable matchings may be of different sizes and furthermore, max smti,

the problem of finding a maximum weakly stable matching given an smti instance has

been shown to be NP-hard [86]. A variety of techniques ranging from approximation

algorithms and heuristics, to constraint programming and integer programming [99]

have been developed to cope with this hardness in practice. In this chapter we present

a new integer programming formulation for max hrt and discuss various techniques

that can be used to improve the performance of the model in practice.

This chapter is structured as follows. Section 3.2 presents our IP model for max

hrt along with a proof of its correctness. In Section 3.3 we provide some details on

the implementation of the model. Here we give algorithms that can help reduce the

size of the IP model without affecting its accuracy. We also discuss other performance-

improving techniques that can be applied to the model. Section 3.4 summarises some of

the results obtained by evaluating the model against real-world and randomly generated

3.2. An IP model for max hrt 33

problem instances. Finally in Section 3.5 we conclude by highlighting some interesting

open problems.

3.2 An IP model for max hrt

In this section we describe an IP model for max hrt. Let I be an instance of hrt

consisting of a set R = {r1, r2, ..., rn1} of residents and H = {h1, h2, ..., hn2} of hospitals

with each hospital hj having capacity of cj. We use the binary variable xi,j (1 ≤ i ≤
n1, 1 ≤ j ≤ n2) to represent an acceptable pair in I formed by resident ri and hospital

hj. Variable xi,j will indicate whether ri is matched to hj in a solution or not: if

xi,j = 1 in a given solution x then ri is matched to hj, otherwise ri is not matched to

hj. We define rank(ri, hj), the rank of hj on ri’s preference list to be k + 1 where k

is the number of hospitals that ri strictly prefers to hj. An analogous definition for

rank(hj, ri) holds. Obviously for hrt instances, agents in the same tie have the same

rank. We define rank(ri, hj) = rank(hj, ri) = ∞ for an unacceptable pair (ri, hj).

With respect to a pair (ri, hj), we define the sets:

Ti,j = {rp ∈ R : rank(hj, rp) ≤ rank(hj, ri)}.

Si,j = {hq ∈ H : rank(ri, hq) ≤ rank(ri, hj)}.

Intuitively Ti,j is the set of residents that hj either prefers to or is indifferent with ri.

If hj is matched to cj residents in Ti,j in a matching M then (ri, hj) cannot block M .

Also Si,j is the set of hospitals that ri either prefers to or is indifferent with hj. If ri is

matched to any hospital in Si,j in M then (ri, hj) cannot block M . We also define the

set P (ri) to be the set of hospitals that ri finds acceptable and P (hj) to be the set of

residents that hj finds acceptable.

Figure 3.1 shows the resulting model. Constraint 1 ensures that each resident is

matched to at most one hospital and Constraint 2 ensures that each hospital does

not exceed its capacity. Finally Constraint 3 ensures that the matching is stable by

ruling out the existence of any blocking pair. In order to ensure that an acceptable

pair (ri, hj) does not form a blocking pair, Constraint 3 enforces the following rules:

1. if hj is not matched to cj residents in Ti,j then ri must be matched to a hospital

in Si,j.

2. if ri is not matched to some hospital in Si,j then hj must be matched to cj

residents in Ti,j.

3.2. An IP model for max hrt 34

The objective function, which is a summation of all the binary variables, seeks to

maximize the size of the matching.

max

n1∑
i=1

∑
hj∈P (ri)

xi,j

subject to

1.
∑

hj∈P (ri)

xi,j ≤ 1 (1 ≤ i ≤ n1)

2.
∑

ri∈P (hj)

xi,j ≤ cj (1 ≤ j ≤ n2)

3. cj

1−
∑

hq∈Si,j

xi,q

− ∑
rp∈Ti,j

xp,j ≤ 0 (1 ≤ i ≤ n1, hj ∈ P (ri))

xi,j ∈ {0, 1}

Figure 3.1: Model1: A hrt IP model

Theorem 3.2.1. Given an hrt instance I modelled as an IP using Model1, a feasible

solution to Model1 produces a weakly stable matching in I. Conversely a weakly stable

matching in I corresponds to a feasible solution to Model1.

Proof. Assume that the IP model has a feasible solution x. Let

M = {(ri, hj) ∈ R×H : ri ∈ R ∧ hj ∈ P (ri) ∧ xi,j = 1}.

be the matching in I generated from x. By Constraints 1 and 2, M is a matching:

each resident is matched to at most one hospital, residents are only ever assigned to

acceptable hospitals, and hospitals do not exceed their capacities. Constraint 3 ensures

that the matching is weakly stable: if M was not a weakly stable matching then some

pair (ri, hj) would block M . Thus ri prefers hj to M(ri) or ri is unmatched. In both

cases,
∑

hq∈Si,j
xi,q = 0, meaning the first term in constraint 3 would yield a value of

cj. Also hj is either under-subscribed or hj strictly prefers ri to one of the residents in

M(hj). In both cases, the second term of Constraint 3 would be less than cj thus the

IP solution would be infeasible, a contradiction.

Conversely, assume that M is a weakly stable matching in I. We can show that M

corresponds to a feasible solution to Model1. Initially for all i (1 ≤ i ≤ n1), j (1 ≤ j ≤
n2), let xi,j = 0. If (ri, hj) ∈M then set xi,j = 1. Constraints 1 and 2 are satisfied as M

is a matching. For Constraint 3 not to be satisfied the first term of the left-hand-side

3.3. Implementing the model 35

must be greater than the second. Thus for some i (1 ≤ i ≤ n1) and j (hj ∈ P (ri)), ri

is either unmatched or strictly prefers hj to M(ri), thus making the first term result

in a value of cj, as the first term can only have a value of 0 or cj. The second term of

the left-hand-side must then be less than cj. This means that the number of residents

rp assigned to hj, such that hj either prefers rp to ri or is indifferent between them, is

less than cj. Thus (ri, hj) would block M in I, a contradiction.

3.3 Implementing the model

In this section we describe some techniques used to reduce the size of the hrt IP

model generated and improve the performance of the IP solver. We also specify how

the implementation was tested for correctness.

3.3.1 Reducing the model size

Techniques were described in [60] for removing acceptable pairs that cannot be part

of any stable matching from hrt instances with ties on one side of the preference

lists only. The Hospitals-offer and Residents-apply algorithms described therein

identify pairs that cannot be involved in any stable matching, nor form a blocking

pair with respect to any stable matching, and remove them from the instance. This

produces a reduced hrt instance that would yield fewer variables and constraints when

modelled as an IP, thus speeding up the optimisation process. The original instance

and the reduced instance have the same set of stable matchings. These techniques as

described in [60] are only applicable to instances where ties exists on one side only.

This is a natural restriction that can be found in practice where hospitals usually

rank residents based on performance grades (which can easily be tied) with residents

being required to provide a strict preference of a bounded length (say 5 hospitals). We

extend the Hospitals-offer algorithm slightly to allow for ties on both sides of an hrt

instance. However, as we shall see later in this section, extending the Residents-apply

algorithm to allow for ties on both sides will significantly reduce its ability to cut down

the size of the hrt instance.

To help explain the Hospitals-offer and Residents-apply procedures, we first define

some useful terms. We begin with the Hospitals-offer procedure shown in Algorithm

3.1. The process involves hospitals offering positions to residents, who form provisional

arrangements with the hospitals. We define an active tie Tj on a hospital hj’s preference

list as a tie containing one or more residents that immediately follows the least preferred

resident currently assigned to hj. Quantity tj = |Tj| may be 0 if such a tie does not

3.3. Implementing the model 36

Algorithm 3.1 Hospitals-offer

1: while (there is a hospital hj such that vj ≥ tj > 0) do
2: for each resident ri ∈ Tj do
3: if ri is already assigned, say to hk then
4: unassign ri;
5: increment vk;
6: assign ri to hj ;
7: decrement vj ;
8: for each each hospital hl that is a strict successor of hj on ri’s list do
9: delete the pair (ri, hl) from the preference lists;

Algorithm 3.2 Residents-apply

1: while (some resident ri is free and has a nonempty list) do
2: hj = first hospital on ri’s list;
3: assign ri to hj ;
4: increment aj ;
5: if aj ≥ cj then
6: let rk be one of hj ’s c

th
j -choice assignees;

7: for each each strict successor rl of rk in hj ’s list do
8: if rl is assigned to hj then
9: break the assignment;

10: decrement aj ;
11: delete the pair (rl, hj) from the preference lists;

exist. Also the value of tj may change during the execution of the Hospitals-offer

algorithm due to potential deletions of pairs from the problem instance. We denote

by vj the number of vacancies in hj; this is the difference between the capacity cj and

the number of residents currently assigned to it. Hospital hj is full when vj = 0 and

undersubscribed when vj > 0. For each hospital that has a number of vacancies greater

than or equal to the size of the current active tie, the residents in the active tie are

assigned to that hospital. If these residents were previously assigned to other hospitals,

those assignments are broken. For each of these residents ri ∈ Tj, this is followed by

the removal, from ri’s preference list, of all the hospitals that are strict successors to

hj. The process terminates when each hospital has an active tie of length 0, or its

number of vacancies is less than the size of its active tie.

The Residents-apply procedure shown in Algorithm 3.2, involves residents success-

fully applying to hospitals on their preference list in preference order, again forming

provisional assignments with the hospitals. We define aj to be the the number of

assignees of a hospital hj. Each unassigned resident (say ri) applies to the first hospi-

tal on his/her preference list (say hj). Resident ri is then temporarily assigned to hj

and aj is incremented. This assignment may make hj full (aj = cj) or oversubscribed

(aj > cj). In both cases, each strict successor rl of hj’s c
th
j assignee is then removed

from hj’s preference list and hj is removed from rl’s preference list. This deletion may

3.3. Implementing the model 37

cause some resident rk previously assigned to hj to be free again (if this happens aj is

decremented). That resident can then apply to the next hospital on his/her preference

list. The process will continue while some resident is free and has a hospital on his/her

preference list. If ties were allowed to exist on the residents’ preference list then other

hospitals may be tied with hj and so the deletions described cannot be carried out until

all such hospitals are either full or oversubscribed. This extra condition will reduce the

amount of deletions and so limit the effect of the algorithm.

3.3.2 Improving optimisation performance

A number of steps can be taken to improve the optimisation performance of the models.

These generally involve heuristics and techniques that limit the number of nodes of the

branch-and-cut tree that need to be evaluated in order to arrive at an optimal solution.

Some of the steps relevant to our model are described below.

Placing a lower bound on the objective function can speed up the optimisation process

of the IP solver. This can be added as an extra constraint to the model. This extra

constraint will not affect the structure of the hrt model or nullify the proofs already

provided. It simply allows the IP solver to ignore solutions that have sizes less than the

bound provided. This lower bound can be calculated by firstly solving the hrt instance

using any of the approximation algorithms described in [60] (for example Király’s O(n2)

approximation algorithm for max smti [75]) and obtaining the size of the maximum

stable matching found. The objective function is then used as the linear expression

of the new constraint added. An upper bound for the problem, which corresponds to

the size of a maximum matching in the underlying bipartite graph instance can also

be set. This leads to the introduction of the following two constraints:

n1∑
i=1

∑
hj∈P (ri)

≥ lower bound

n1∑
i=1

∑
hj∈P (ri)

≤ upper bound

Another technique that can help to speed up the optimisation process is to provide the

solver with an initial solution. This cuts down on the time needed for the solver to

initially solve the LP and start finding an IP solution. This initial solution to the hrt

model can once again be obtained by solving the instance using any of the algorithms

described in [60] and obtaining the maximum stable matching.

3.3. Implementing the model 38

3.3.3 Testing the implementation

Although the theoretical model has been proven to be correct in Theorem 3.2.1, it is

still important to verify the correctness of the implementation. The system was tested

to ensure a high degree of confidence in the results of the experimental evaluation,

presented later in this chapter. The correctness of the pre-processing steps and the

IP solution were evaluated by generating multiple instances (100,000) of various sizes

(with up to 400 residents) and testing the stability and size of the resulting matching

against both the original and the trimmed problem instances. The matchings generated

can also be tested to ensure that the hospitals do not exceed their capacities, residents

are assigned to at most one hospital, and assignments are consistent (meaning that if

ri is assigned to hj then hj is also assigned to ri). For all the instances tested, the

solver produced stable matchings.

Stability is just one property of the resulting matching that needs to be tested. Another

important property is optimality. One method of testing the optimality of the stable

matchings produced would be to compare the sizes of optimal solutions generated by

various models on the same problem instance. Although we have presented only one

IP model, hrt can be modelled as an integer programmming problem in various ways.

Implementing these different models and comparing their outputs gives some indication

of the correctness of the implementation. This test is not fool-proof as errors in the

implementations may be duplicated across the models. An alternative is to test for

optimality using a more exhaustive approach.

Another method to verify that the stable matchings generated by the IP model are

optimal, is to generate all stable matchings in the hrt instance. The largest stable

matching found would then be compared to the optimal solution obtained by the solver.

If the sizes of both matchings are the same, we confirm that the IP solver produced an

optimal solution to that instance. A difference would indicate a fault in one or both

of the methods. The larger the number of instances tested and the bigger the size of

instances, the more confident we will be of the IP implementation. The generation

of all stable matchings was done by finding all matchings in the underlying bipartite

graph, testing for the stability of each matching and keeping a record of the largest

stable matching found.

The Generate-max-hrt algorithm (shown in Algorithm 3.3) is a brute force technique

used to find a maximum weakly stable matching given a hrt instance I. We define a

global variable Mopt to represent the largest weakly stable matching in I discovered.

Next we make an initial call to the recursive Choose algorithm. The Choose algorithm

requires an integer i (1 ≤ i ≤ n1) and a matching M . In each call to the Choose

algorithm, we try to add a pair involving resident ri and one of the hospitals hj on her

3.4. Empirical evaluation 39

Algorithm 3.3 Generate-max-hrt

Require: a hrt instance I;
1: largest stable matching Mopt = ∅;
2: choose(1, ∅);
3: return Mopt;

Algorithm 3.4 Choose

Require: an integer i and a matching M ;
1: if i > n1 then
2: if |M |> |Mopt| and M is weakly stable then
3: Mopt = M ;
4: else
5: for each hj ∈ P (ri) do
6: if ri is unmatched in M and hj is undersubscribed in M then
7: M = M ∪ {(ri, hj)};
8: choose(i+ 1,M);
9: M = M\{(ri, hj)};

10: choose(i+ 1,M);

preference list if both are available (i.e. ri is unmatched and hj is undersubscribed).

For the initial call to Choose the values of i and M provided are 1 and ∅ respectively.

In the Choose algorithm we consider each hospital hj ∈ P (ri). If ri is unmatched in M

and hj is undersubscribed in M we add (ri, hj) to M and call Choose with values i+ 1

and M passed in. After the recursive call we remove (ri, hj) from M . Finally after

considering all the hospitals in P (ri) we then consider the case where ri is unmatched

by calling Choose with values i + 1 and M passed in. The Choose algorithm exits

when all residents have been considered. Before exiting, if M is larger than Mopt and is

weakly stable in I, we replace Mopt with M . The main Generate-max-hrt algorithm

terminates when the initial call to Choose returns and Mopt is returned.

Due to the brute-force nature of this technique we could only generate and test to

optimality 100 instances each with number of residents n1 ∈ {8, 9, 10, 11, 12}. For all

the instances tested, the solver produced optimal stable matchings.

3.4 Empirical evaluation

An empirical evaluation of the IP model was carried out. Large numbers of random

instances of hrt were generated by varying certain parameters relating to the con-

struction of an instance and passed on to the CPLEX 12.5.1 IP solver. Data from

past SFAS matching runs were also modelled and solved. This section discusses the

methodology used and some of the results obtained. Experiments were carried out on

a Linux machine with 8 Intel(R) Xeon(R) CPUs at 2.5GHz and 32GB RAM.

3.4. Empirical evaluation 40

td n1 = 200 n1 = 250 n1 = 300

75% 100.00% 100.00% 99.85%
80% 99.98% 99.88% 99.39%
85% 99.90% 99.29% 97.76%
90% 99.70% 99.28% 98.60%
95% 99.99% 100.00% 100.00%

Table 3.1: Percentage solvable instances (100% for omitted td values)

3.4.1 Using random instances

Random hrt problem instances were generated using Java’s random number generator.

The instances consist of n1 residents, n2 hospitals and C posts where n1, n2 and C can

be varied. The hospital posts were randomly distributed amongst the hospitals. Other

properties of the generated instance that can be varied include the lengths of residents’

preference lists as well as a measure of the density td of ties present in the preference

lists. The tie density td (0 ≤ td ≤ 1) of the preference lists is the probability that some

agent is tied to its successor agent in a given preference list. At td = 1 each preference

list would comprise a single tie while at td = 0 no tie would exist in the preference lists

of the agents thus yielding an hr instance.

3.4.1.1 Varying tie density

Since ties cause the sizes of stable matchings to vary, an obvious question to investigate

is how the variation in tie density affects the runtime of the IP model and the size

of the maximum stable matchings found. These values were measured for multiple

instances of max hrt while varying the tie density td of hospitals’ preference lists.

There were no ties in the residents’ preference lists. This was done for increasing sizes

(n1 = 200, 250, 300) of the problem instance with each resident’s preference list being

strictly ordered and of length 5. A total of 10, 000 instances were randomly generated

for each tie density value (starting at td = 0% to td = 100% with an interval of 5%)

and instance size. For each instance C = n1 and n2 = b0.07× n1c.

To avoid extreme outliers skewing the mean time measures, we define what we regard

as a reasonable solution time (namely 300 seconds) and abandon search if the solver

exceeds this cut-off time. For most tie densities this cut-off was not exceeded for the

values of n1 and td considered. Table 3.1 shows the percentage of instances that were

solved before the cut-off was exceeded (omitted td values were 100% solvable).

From Figures 3.2 and 3.3 we see that the mean and median runtime (taken over the

instances that did not timeout) remain significantly low for instances with td < 60%

but then gradually increase until they reach their peaks (in the region of 80%− 90%)

3.4. Empirical evaluation 41

before falling as the tie density approaches 100%. From a theoretical perspective, it is

known that the problem is polynomially solvable when the tie density is at both 0%

and 100% and it is easy to see how the IP solver will find these cases trivial. As the tie

density increases the number of stable matchings that the instance is likely to admit

also increases, explaining the observed increase in the runtime. The Hospitals-offer

and Residents-apply algorithms used to trim the instance also play their part in this

trend with limited trimming done for higher tie densities.

Figure 3.4 shows the variation in optimal values with tie density for n1 = 300 (again

taken over the instances that did not timeout). We observe an increase in the average

size of maximum stable matchings as the tie density increases. This is in line with the

idea that the stability requirement restricts the size of stable matchings and increasing

tie density can be viewed as relaxing stability requirements.

Figure 3.2: Mean runtime vs td Figure 3.3: Median runtime vs td

Figure 3.4: |M | vs td for n1 = 300 Figure 3.5: Range vs td

3.4. Empirical evaluation 42

3.4.1.2 Comparing max hrt and min hrt

We have established that the presence of ties in the preference lists makes max hrt NP-

hard. In Section 3.4.1.1 we observed that our IP model only begins to experience this

computational difficulty in practice when tie densities exceed the 60% region. Given

this observation, a natural trend to investigate is how the range in the size of the

stable matchings will vary with tie density. We define the range in this context as the

difference between the sizes of a minimum and a maximum stable matching. It is fair

to assume that as the range gets wider there will be an increase in the number of stable

matchings thus making the solver do more work in order to find an optimal solution. As

in the case of the experiment in Section 3.4.1.1 we generated multiple (100) instances

of hrt for each tie density value (in the range 0%, 5%, 10%, ..., 95%) and solved both

max hrt and min hrt IP models. Once again, residents’ preference lists were kept

strict and at a length of 5. Also for each instance C = n1 and n2 = b0.07 × n1c. All

instances were solved to optimality in this experiment.

Figure 3.5 shows the results obtained from running the experiment on instances of

size 100. We observe that the average range begins to increase significantly as the tie

density increases beyond 60%. This is in line with the results presented in Figures 3.2

and 3.3.

3.4.1.3 Increasing instance size

The execution time for solving multiple max hrt instances of increasing sizes via IP

models was evaluated. The tie density td and preference list lengths were kept constant.

This provided an estimate of problem sizes for which the IP model can be of practical

value. The tie densities of the hospitals’ preference lists were set to 0.85 on all instances.

On the bases of the results from Figures 3.2 and 3.3, we estimate that instances with

tie density in the region 0.7–0.95 will take longer to be solved than for other density

values. There were no ties in the residents’ preference lists. The instance size n1 was

increased by 100 starting at n1 = 100. A total of 100 instances for each value of n1

was generated. The number of hospitals n2 in each instance was set to b0.07 × n1c.
Each resident has a preference list of 5 hospitals with each hospitals’ preference list

length being determined by the frequency of its occurrence within the residents’ lists.

A cut-off value of 300 seconds was also set with the percentage of solvable instances

for 400, 500 and 600 instances being 95%, 93% and 92% respectively.

Figure 3.6 shows how the mean and median runtimes rise as n1 increases. Although

the trend for the mean runtime seems to suggest that it grows exponentially with time,

we observe that the IP is still scalable for considerably large datasets. We also observe

3.4. Empirical evaluation 43

Figure 3.6: Mean and median runtime vs
instance size

Figure 3.7: Optimal solution size vs
instance size

the considerable difference between the mean and median runtime as the instance

size grows. This suggests that the existence of challenging instances becomes more

probable, leading to a more rapid increase in the mean runtime compared to the median

runtime. Figure 3.7 shows the difference between the mean and min optimal solutions

found. It is interesting to observe that optimal solutions tend to match almost every

resident given the instance generation parameters used.

3.4.2 Using real instances

Another question worth asking is whether the IP model can handle instance sizes found

in real-world applications. In [60], various approximation algorithms and heuristics

were implemented and tested on real datasets from the SFAS matching scheme for 2006,

2007 and 2008, where the residents’ preferences are strictly ordered and of length 6 with

ties existing in the hospitals’ preference lists. With the IP model, it is now possible to

trim the instances using the techniques mentioned in Section 3.3.2, generate an optimal

solution and compare the results obtained with those reported in [60]. Results from

these tests showed that, while some algorithms did marginally better than others, all

the algorithms developed generated relatively large stable matchings with respect to

the optimal values.

year n1 n2 td time (sec) for IP model |M | |M ′| from [60]

2006 759 53 92% 92.96 758 754
2007 781 53 76% 21.78 746 744
2008 748 52 81% 75.50 709 705

Table 3.2: SFAS IP Results

3.5. Open problems 44

Table 3.2 shows this comparison. Let M ′ denote the largest stable matching found

over all the algorithms tested in [60]. We measured the tie density by dividing the sum

of the lengths of all ties by the sum of the lengths of all the hospitals’ preference lists.

We observe that the tie densities lie within the range 0.75 − 0.95 meaning that these

instances are likely to be harder to solve. The measured runtimes confirm this.

3.5 Open problems

We identify below some important open problem relating to IP models for max hrt.

1. Although the performance of the IP model presented in this chapter was very

good for instance sizes that can be expected in many practical applications, the

scalability of the approach still needs to be improved. This requirement leads

to the possibility of adopting the technique called column generation [18]. A

column generation approach was described for the kidney exchange problem with

a bounded cycle length [6] and results indicated considerable improvements in

performance. It is expected that adopting this technique would improve the

performance of our hrt IP model.

2. Given a sub-problem with a number of variables with non-integer values, the

choice of which variable is selected to decompose the problem into two sub-

problems can have an effect on the performance of the branch-and-cut algorithm.

Perhaps special knowledge of matching problems can help with this decision.

Maybe variables that represent entries on shorter preference lists should be given

higher priorities or variables that represent entries that are involved in ties. Em-

pirical results may shed more light on which variable-ordering heuristics are ben-

eficial in practice.

3. With a number of nodes in the search tree being eligible for consideration at any

time during the execution of the branch-and-cut algorithm, the choice of how to

prioritise the selection of these nodes might lead to changes in the performance

of the algorithm. We may choose to let the nodes be selected randomly or we

may deliberately specify a depth-first or best-node-first approach.

In a depth-first approach, priority is given to newly-discovered nodes, thus de-

scending further down the search tree, from a node to its immediate descendant,

would quickly yield the first feasible solution which can then serve as a good

lower bound. This would be a good approach for problems where finding a fea-

sible solution is generally hard in practice and the model is not seeded with an

3.5. Open problems 45

initial solution. In our models however, we already have reasonably good lower

bounds provided by the initial solutions used to seed the model. In such a case,

it might be advantageous to branch using the best-node-first approach. Priority

is given to the node with the largest upper bound as this will ensure that nodes

with upper bounds less than the optimal value will never be considered.

46

Chapter 4

Socially Stable Matchings in the

Hospitals/Residents Problem

4.1 Introduction

As discussed in Chapter 1, a number of scenarios exist where the adoption of weaker

notions of stability may be appropriate. The typical motivation for relaxing the sta-

bility requirement is the potential to discover larger matchings while still reducing the

likelihood that the matchings would unravel due to the presence of blocking pairs. In

Chapter 3 we investigated one of such cases where the preference lists of the agents

involved contain ties. In this chapter we consider another scenario where the (social)

relationship between agents may have an impact on their ability (or inability) to form

blocking pairs with respect to a matching. In Section 2.5 we introduced this idea

(which is called local stability in the literature) and presented a review of the current

literature in the area. In this chapter we extend this notion of local stability (which

we call social stability) and the problem of finding a socially stable matching in the

Hospitals/Residents problem. We formally define the problem (which we call the Hos-

pitals/Residents problem under Social Stability (hrss)) and present algorithmic results

for hrss and its variants.

In Section 4.2, we present some preliminary definitions and observations. In Section

4.3 we give a reduction from hrss to the hr+sn problem (defined in Section 2.5). In

Section 4.4 we show that max hrss, the problem of finding a maximum socially stable

matching given an hrss instance I, is NP-hard even under certain restrictions on the

lengths of the preference lists. This result holds even if I is an instance of smiss (the

1-1 special case of hrss). In Section 4.5, we provide approximability results for max

hrss including a 3/2-approximation algorithm for the problem. Then in Section 4.6

we present polynomial-time algorithms for three special cases of max hrss where the

4.2. Preliminary definitions and results 47

lengths of the preference lists or the numbers of acquainted or unacquainted pairs may

be bounded. Section 4.7 gives results obtained from an empirical evaluation of the

3/2-approximation algorithm for max hrss, applied to randomly-generated instances

of hrss, where the objective is to measure how the mean execution times and matching

sizes change as we vary the instance size and the social network density. The chapter

ends with a brief conclusion in Section 4.8.

4.2 Preliminary definitions and results

Given its importance to hrss, we begin by reminding the reader of the definition of

hr (as presented in Section 2.3). An instance I of the Hospitals/Residents problem

(hr), as defined in [29], contains a set R = {r1, r2, ..., rn1} of residents and a set

H = {h1, h2, ..., hn2} of hospitals. Each resident ri ∈ R ranks a subset of H in strict

order of preference; whilst each hospital hj ∈ H ranks a subset of R, consisting of

those residents who ranked hj, in strict order of preference. Each hospital hj also has

a capacity cj ∈ Z+ indicating the maximum number of residents that can be assigned

to it. A pair (ri, hj) is called an acceptable pair if hj appears in ri’s preference list.

We denote by A the set of all acceptable pairs. A matching M is a set of acceptable

pairs such that each resident is assigned to at most one hospital and the number of

residents assigned to each hospital does not exceed its capacity. If ri is matched in M ,

we denote the hospital assigned to resident ri in M by M(ri). We denote the set of

residents assigned to hospital hj in M as M(hj). A resident ri is unmatched in M if

no pair in M contains ri. A hospital hj is undersubscribed in M if |M(hj)|< cj. A

pair (ri, hj) is said to block a matching M , or form a blocking pair with respect to M ,

in the classical sense, if (i) ri is unmatched in M or prefers hj to M(ri) and (ii) hj is

undersubscribed in M or prefers ri to some resident in M(hj). A matching that admits

no blocking pair is said to be stable.

We define an instance (I,G) of the Hospitals/Residents Problem under Social Stability

(hrss) as consisting of an hr instance I (as defined above) and a bipartite graph

G = (R ∪H,A), where A ⊆ A. A pair (ri, hj) belongs to A if and only if ri has social

ties with hj (i.e., ri is acquainted with hj in some way). We call (ri, hj) an acquainted

pair. We also define the set of unacquainted pairs (which cannot block any matching)

to be U = A\A. A pair (ri, hj) socially blocks a matching M , or forms a social blocking

pair with respect to M , if (ri, hj) blocks M in the classical sense in the underlying hr

instance I and (ri, hj) ∈ A. A matching M is said to be socially stable if there exists no

social blocking pair with respect to M . If we restrict the hospitals’ capacities to 1, we

obtain the Stable Marriage problem with Incomplete lists under Social Stability (smiss),

4.3. Reduction from hrss to hr+sn 48

men’s preferences women’s preferences

m1 : w1 w1 : m2 m1

m2 : w1 w2 w2 : m2

social network graph G

m2 w2

m1 w1

Figure 4.1: An smiss instance (I,G) consisting of a hr instance I and a social network G

and refer to the agents as men U = {m1, . . . ,mn1} and women W = {w1, . . . , wn2}.

Clearly every instance of hrss admits a socially stable matching. This is because

the underlying hr instance is bound to admit a stable matching [29] which is also

socially stable. However socially stable matchings could be larger than stable match-

ings. Consider the smiss instance (I,G) shown in Figure 4.1. Matchings M1 =

{(m1, w1), (m2, w2)} and M2 = {(m2, w1)} are both socially stable in (I,G) and M2 is

the unique stable matching. Thus an instance of smiss (and hence hrss) can admit a

socially stable matching that is twice the size of a stable matching. Clearly the instance

shown in Figure 4.1 can be replicated to give an arbitrarily large smiss instance with a

socially stable matching that is twice the size of a stable matching. This observation,

together with the fact that in many applications we seek to match as many agents as

possible, motivates max hrss.

4.3 Reduction from hrss to hr+sn

As defined in [11, 22], an instance (I,G′) of the hr+sn problem involves a Hospitals /

Residents instance I, defined in [29], containing a set R = {r1, r2, ..., rn1} of residents,

a set H = {h1, h2, ..., hn2} of hospitals, and a graph G describing the social network

(sn) of the residents. In the graph G = (V,E), V = R and an edge {ri, rk} belongs to

E if and only if ri and rk have social ties. A pair (ri, hj) is a local blocking pair with

respect to a matching M , or locally blocks M , if (ri, hj) blocks M in the classical sense

and there is some resident rk such that {ri, rk} ∈ E and rk ∈M(hj). A matching M is

said to be locally stable if there exists no local blocking pair with respect to M . In the

hr+sn (respectively hrss) context we refer to a resident-complete locally (respectively

socially) stable matching as one in which all the residents are matched.

In this section we show the close relationship between the hrss and hr+sn prob-

lems. Consider an instance (I,G) of hrss where I is the underlying hr instance

4.3. Reduction from hrss to hr+sn 49

and G is the social network graph. I involves a set of residents R0 = {r1, r2, ..., rn1}
and a set of hospitals H0 = {h1, h2, ..., hn2}. We construct an instance (I ′, G′) of

hr+sn from (I,G) as follows: let I ′ consist of a set of residents R = R0 ∪ R1 where

R1 = {rn1+1, rn1+2, ..., rn1+n2}. Every resident rn1+j ∈ R1 has a single entry hj in his

preference list. Every resident ri ∈ R0 has the same preference list in I ′ as he has in

I. Let I ′ also involve a set of hospitals H, where H = H0 and every hospital hj ∈ H
has resident rn1+j as the first entry in its preference list and has capacity c′j = cj + 1.

Hospital hj’s preference list in I is then appended to rni+j to yield hj’s preference list

in I ′. To construct G′, let the vertices in G′ correspond to the residents in R and

add edge {ri, rn1+j} to G′ if and only if (ri, hj) ∈ A, where A = E(G) is the set of

acquainted pairs in (I,G).

Theorem 4.3.1. If M is a socially stable matching in (I,G), then M ′ = M∪{(rn1+j, hj) :

rn1+j ∈ R1} is a locally stable matching in (I ′, G′). Conversely if M ′ is a resident-

complete locally stable matching in (I ′, G′) then M = M ′\{(rn1+j, hj) : rn1+j ∈ R1} is

a resident-complete socially stable matching in (I,G).

Proof. Suppose M is socially stable in (I,G). Then no (classical) blocking pair with

respect to M in I is contained in G. Let M ′ = M ∪ {(rn1+j, hj) : rn1+j ∈ R1}. If

some pair (ri, hk) locally blocks M ′ in (I ′, G′) then (i) (ri, hk) must be a blocking pair

with respect to M ′ in I ′, and (ii) {ri, r′i} ∈ E for some r′i ∈ M ′(hk). By construction,

for every edge in E, one resident is in R0 and the other in R1. If ri ∈ R1 then ri

cannot form any blocking pair with respect to M ′ as he is matched to his only choice.

If ri ∈ R0 then r′i = rn1+j ∈ R1 for some j (1 ≤ j ≤ n2), and hk = M ′(rn1+j) = hj.

Thus (ri, hk) ∈ A. By the construction of the preference lists in (I ′, G′), as (ri, hk) is a

(classical) blocking pair of M ′ in I ′, (ri, hk) is also a (classical) blocking pair of M in

I. Hence (ri, hk) socially blocks M in (I,G), a contradiction.

Conversely suppose M ′ is a resident-complete locally stable matching in (I ′, G′). Then

there is no blocking pair (ri, hk) of M ′ in I ′ such that {ri, r′i} ∈ E for some r′i ∈ R where

r′i ∈M ′(hk). Let M = M ′\{(rn1+j, hj) : rn1+j ∈ R1}. Clearly M is a resident-complete

matching in I. If some pair (ri, hk) socially blocks M in (I,G), (i) (ri, hk) must block

M in I (and thus M ′ in I ′) and (ii) (ri, hk) ∈ A. By construction, if (ri, hk) ∈ A, then

{ri, r′i} ∈ E where ri ∈ R0, r
′
i = rn1+j ∈ R1 and h = hj. But as M ′ is resident-complete,

(rn1+j, hj) ∈M ′ for each j (1 ≤ j ≤ n2). Thus r′i = rn1+j ∈M ′(hk), a contradiction to

the initial assumption that M ′ is locally stable in (I ′, G′).

Although the converse statement in Theorem 4.3.1 places a severe restriction on M ′ (it

must be a resident-complete locally stable matching in the hr+sn instance (I ′, G′)), it

can be relaxed slightly to the case that M ′ is any locally stable matching in which all

4.4. Hardness of max smiss 50

the residents rn1+j ∈ R1 are matched. It remains to be shown that a reduction exists

from hrss to hr+sn that does not place such a restriction on M ′.

4.4 Hardness of max smiss

We now show that max smiss, the problem of finding a maximum socially stable

matching given an smiss instance is NP-hard. Indeed we prove NP-completeness for

com smiss, the problem of deciding whether there exists a complete socially stable

matching (i.e., a socially stable matching in which all men and women are matched)

in an instance of smiss. It was shown in [86] that com smti, the problem of deciding

whether a complete stable matching exists in an instance of smti, is NP-complete even

if the ties occur in the men’s lists only and each tie occurs at the tail of some list.

An smti instance I satisfying these restrictions can be reduced to an smiss instance

(I ′, G) in polynomial time such that a matching M is a complete stable matching in I

if and only if M is a complete socially stable matching in (I ′, G). These observations

form the basis of the proof of the following result.

Theorem 4.4.1. com smiss is NP-complete.

Proof. It is obvious that com smiss is in NP. Consider an instance I of smti where

the ties occur only on the men’s preference lists and each man has one tie which occurs

at the end of the list (a tie may be of length 1 for this purpose). We define t(mi) as

the set of women contained in the tie in man mi’s preference list. We can construct an

instance (I ′, G) of smiss such that I ′ is the smi instance formed by breaking the ties in

I in an arbitrary manner. Let G = (U ∪W , A), where U andW are the sets of all men

and women in I respectively, U =
⋃
mi∈U

⋃
wj∈t(mi)

(mi, wj) and A = A\U . We claim

that a matching M is a complete stable matching in I if and only if M is a complete

socially stable matching in (I ′, G).

Suppose M is a complete stable matching in I. Suppose also that M is not socially

stable in (I ′, G). Then there exists some pair (mi, wj) ∈ A that socially blocks M in

(I ′, G). Since (mi, wj) ∈ A, wj /∈ t(mi). Thus mi prefers wj to M(mi) in I. Also wj

prefers mi to M(wj) since there are no ties in wj’s preference list. Thus (mi, wj) blocks

M in I, a contradiction to our initial assumption.

Conversely, suppose M is a complete socially stable matching in (I ′, G). Suppose also

that M is not stable in I. Then there exists some pair (mi, wj) that blocks M in I. If

M(mi) ∈ t(mi) then wj /∈ t(mi) so mi prefers wj to M(mi) in (I ′, G) and (mi, wj) ∈ A.

Likewise if M(mi) ∈ t(mi) then mi prefers wj to M(mi) in (I ′, G) and (mi, wj) ∈ A.

4.5. Approximating max hrss 51

Woman wj has the same preference list in I and (I ′, G). Thus (mi, wj) socially blocks

M in (I ′, G), a contradiction to our initial assumption.

As discussed in [61], some centralised matching schemes usually require the agents in

one or more sets to have preference lists bounded in length by some small integer. For

example, until recently, in the Scottish Foundation Allocation Scheme (the centralised

clearinghouse for matching medical residents in Scotland) [52], medical graduates were

required to rank only 6 hospitals in their preference lists. We denote by (p, q)-max

hrss the problem of finding a maximum socially stable matching in an hrss instance

where each resident is allowed to rank at most p hospitals and each hospital at most q

residents. We set p =∞ and q =∞ to represent instances where the residents and hos-

pitals respectively are allowed to have unbounded-length preference lists. Analogously

we may obtain the definition of (p, q)-max smiss and (p, q)-com smiss from max smiss

and com smiss respectively. It turns out that (p, q)-com smiss is NP-complete even

for small values of p and q.

Theorem 4.4.2. (3, 3)-com smiss is NP-complete.

Proof. We prove this by inspecting the proof of the NP-completeness result described

for the (3, 3)-com smti problem by Irving et al. [61]. They showed that (3, 3)-com

smti, the problem of deciding whether a complete stable matching exists in an instance

of smti where each preference list is of length at most 3, is NP-complete using a

reduction from a variant of the SAT problem.

By inspecting the instance I of smti, constructed in the proof, we observe that all the

ties appear on one side of the instance and occur at the ends of the preference lists. We

have shown in Theorem 4.4.1 that an instance I of smti in this form can be reduced in

polynomial time to an instance (I ′, G) of smiss such that a matching M is a complete

stable matching in I if and only if M is a complete socially stable matching in (I ′, G).

We conclude that (3, 3)-com smiss is also NP-complete.

4.5 Approximating max hrss

As shown in Section 4.4, max hrss is NP-hard. In order to deal with this hardness,

polynomial-time approximation algorithms can be developed for max hrss. In this

section we present a 3/2-approximation algorithm for max hrss. We also show a

21/19−ε lower bound for the approximability of this problem, for any ε > 0, assuming

P 6=NP. The lower bounds hold even for max smiss.

4.5. Approximating max hrss 52

4.5.1 Approximation results

For the upper bound for max hrss, we observe that a technique known as cloning has

been described in the literature [38, 106], which may be used to convert an hr instance

I into an instance I ′ of smi in polynomial time, such that there is a bijective function

between the sets of stable matchings in I and I ′. A similar technique can be used to

convert an hrss instance to an smiss instance in polynomial time.

Let (I,G) be an instance of hrss where R = {r1, r2, ..., rn1} is the set of residents

and H = {h1, h2, ..., hn2} is the set of hospitals. Let cj be the capacity of hospital

hj ∈ H. We can construct an instance (I ′, G′) of smiss as follows. Each resident in

(I,G) corresponds to a man in (I ′, G′). Each hospital hj ∈ H gives rise to cj women

in (I ′, G′), denoted by hj,1, hj,2, ..., hj,cj , each of whom has the same preference list as

hj in (I ′, G′) but with a capacity of 1. Each man ri ∈ R starts off with the same

preference list in (I ′, G′) as he has in (I,G). We then replace each entry on his list by

the cj women hj,1, hj,2, ..., hj,cj listed in strict order (increasing on second subscript).

G′ has vertex set R ∪ H ′, where H ′ = {hj,k : hj ∈ H ∧ 1 ≤ k ≤ cj}, and edge set

A′ = {(ri, hj,k) : (ri, hj) ∈ A ∧ 1 ≤ k ≤ cj}, with A = E(G) denoting the set of

acquainted pairs in (I,G).

Theorem 4.5.1. Given an instance (I,G) of hrss, we may construct in O(n1+cmaxm)

time an instance (I ′, G′) of smiss such that a socially stable matching M in (I,G) can

be transformed in O(cmaxm) time to a socially stable matching M ′ in (I ′, G′) with

|M ′|= |M | and conversely, where n1 is the number of residents, cmax is the maximum

hospital capacity and m is the number of acceptable resident-hospital pairs in I.

Proof. Let (I,G) be an instance of hrss and (I ′, G′) be an instance of smiss cloned

from (I,G). Let M be a socially stable matching in (I,G). We form a matching M ′ in

(I ′, G′) as follows. For each hj ∈ H, let rj,1, rj,2, ...rj,xj be the set of residents assigned

to hj in M where xj ≤ cj, and k < l implies that hj prefers rj,k to rj,l. Add (rj,k, hj,k)

to M ′ (1 ≤ k ≤ xj). Clearly M ′ is a matching in (I ′, G′) such that |M ′|= |M |, and it

is straightforward to verify that M ′ is socially stable in (I ′, G′).

Conversely let M ′ be a socially stable matching in (I ′, G′). We form a matching M in

(I,G) as follows. For each (ri, hj,k) ∈ M ′, add (ri, hj) to M . Clearly M is a socially

stable matching in (I,G) such that |M |= |M ′|.

The complexities stated arise from the fact that I ′ has O(n1+C) agents and O(cmaxm)

acceptable man-woman pairs, where C is the total capacity of the hospitals in I.

Due to Theorem 4.5.1, an approximation algorithm α for max smiss with performance

guarantee c (for some constant c > 0) can be used to obtain an approximation for max

4.5. Approximating max hrss 53

hrss with the same performance guarantee. This can be done by cloning the hrss

instance (I,G) to form an smiss instance (I ′, G′) using the technique outlined above,

applying α to (I ′, G′) to obtain a matching M ′. This matching can then be transformed

to a matching M in (I,G) such that |M |= |M ′| (again as in the proof of Theorem 4.5.1).

Our first upper bound for max hrss is an immediate consequence of the fact that in

an smiss instance, any stable matching is at least half the size of a maximum socially

stable matching, as we now demonstrate.

Proposition 4.5.2. max hrss is approximable within a factor of 2.

Proof. Let M be a maximum socially stable matching given an instance (I,G) of smiss

and let M ′ be a stable matching in I. Thus M ′ is a maximal matching in the underlying

bipartite graph G′ in I. Hence |M ′|≥ β+(G′)/2 where β+(G′) is the size of a maximum

matching in G′ [77]. Also β+(G′) ≥ |M | and so |M ′|≥ |M |/2.

We now present a 3/2-approximation algorithm for max smiss. The algorithm relies on

the principles outlined in the 3/2-approximation algorithms for the general case of max

hrt, the problem of finding a maximum cardinality stable matching given an instance

of the hrt, as presented by Király [75] and McDermid [90]. Given an instance (I,G)

of smiss, the algorithm works by running a modified version of the extended Gale-

Shapley algorithm [29] where unmatched men are given a chance to propose again by

promoting them on all the preference lists on which they appear. Let A and U denote

the sets of acquainted and unacquainted pairs in (I,G) respectively.

Consider a woman wj in (I,G). We denote an unacquainted man mi on wj’s preference

list as one where (mi, wj) ∈ U . Similarly we denote an acquainted man mi on wj’s

preference list as one where (mi, wj) ∈ A. During the execution of the algorithm if a

man runs out of women to propose to on his list for the first time, he is promoted, thus

allowing him to propose to the remaining women on his list beginning from the first. A

man can only be promoted once during the execution of the algorithm. If a promoted

man still remains unmatched after proposing to all the women on his preference list,

he is removed from the instance and will not be part of the final matching. For a man

mi, we denote next(mi) as the next woman on mi’s list succeeding the last woman to

whom he proposed to or the first woman on mi’s list if he has been newly promoted or

is proposing for the first time.

In the classical Gale-Shapley algorithm [29] a woman wj prefers a man mi to another

mk if rank(wj,mi) < rank(wj,mk). We define a modified version of the extended Gale-

Shapley algorithm [38], Mod-exgs, where a woman does not accept or reject proposals

from men solely on the basis of their positions on her preference list, but also on the

basis of their status as to whether they are acquainted or unacquainted men on her list

4.5. Approximating max hrss 54

and whether they have been promoted. Given two men mi and mk on a woman wj’s

preference list, we define the relations /wj
, /′wj

and ≺wj
as follows.

Definition 4.5.3. Let mi and mk be any two men on a woman wj’s list. Then

1. mi /wj
mk if either

(i) (mi, wj) ∈ U , (mk, wj) ∈ U , mi is promoted and mk is unpromoted or

(ii) (mi, wj) ∈ A, (mk, wj) ∈ U and mk is unpromoted.

2. mi /
′
wj
mk if mi //wj

mk , mk //wj
mi and wj prefers mi to mk in the classical sense.

We define ≺wj
= /wj

∪ /′wj
.

The relation ≺wj
will be used to determine whether a proposal from a man is accepted

or rejected by wj.

The main algorithm Approx-smiss (as shown in Algorithm 4.1) starts by calling

Mod-exgs (as shown in Algorithm 4.2) where a proposal sequence is started by allowing

each man to propose to women beginning from the first woman on his preference list.

If a man mi proposes to a woman wj on his list and wj is matched and mi ≺wj
M(wj),

then wj is unmatched from her partner mk and mk will be allowed to continue propos-

ing to other women on his list. wj is then assigned to mi. On the other hand, if

M(wj) ≺wj
mi then wj rejects mi’s proposal. Also if wj is unmatched when mi pro-

poses, she is assigned to mi. Irrespective of whether the proposal from mi is accepted or

rejected, if (mi, wj) ∈ A then all pairs (mk, wj) such that rank(wj,mk) > rank(wj,mi)

are deleted from the instance. However if (mi, wj) ∈ U no such deletions take place.

This proposal sequence continues until every man is either matched or has exhausted

his preference list.

After each proposal sequence (where control is returned to the Approx-smiss algo-

rithm), if a promoted man still remains unmatched after proposing to all the women

on his preference list, he is removed from the instance. Also if a previously unpromoted

man exhausts his preference lists and is still unmatched, he is promoted and a new

proposal sequence is initiated (by calling Mod-exgs). The algorithm terminates when

each man either (i) is assigned a partner, (ii) has no woman on his preference list or

(iii) has been promoted and has proposed to all the women on his preference list for a

second time.

Lemma 4.5.4. If Algorithm Approx-smiss is executed on an smiss instance (I,G),

it terminates with a socially stable matching M in (I,G).

4.5. Approximating max hrss 55

Algorithm 4.1 Approx-smiss

1: initial matching M = ∅;
2: while some unmatched man with a non-empty preference list exists do
3: call Mod-exgs;
4: for all mi such that mi is unmatched and promoted do
5: remove mi from instance;
6: for all mi such that mi is unmatched, unpromoted and has a non-empty preference

list do
7: promote mi;
8: return the resulting matching M ;

Algorithm 4.2 Mod-exgs

1: while some man mi is unmatched and still has a woman left on his list do
2: wj = next(mi);
3: if wj is matched in M and mi ≺wj M(wj) then
4: M = M \ {(M(wj), wj)};
5: if wj is unmatched in M then
6: M = M ∪ {(mi, wj)};
7: if (mi, wj) ∈ A then
8: for each mk such that (mk, wj) ∈ A and rank(wj ,mk) > rank(wj ,mi) do
9: delete (mk, wj) from instance;

Proof. Suppose M is not a socially stable matching and some pair (mi, wj) socially

blocks M in (I,G). Hence (mi, wj) ∈ A. If wj is unmatched in M then she never

received a proposal frommi (as if she did, she will never become unmatched afterwards).

This implies that mi must prefer his partner in M to wj as he never proposed to wj.

Thus (mi, wj) cannot socially block M in this case.

On the other hand, suppose wj is matched in M but prefers mi to M(wj) = mk. Also

suppose mi is either unmatched in M or prefers wj to M(mi). Then mi proposed to wj

during the algorithm’s execution or (mi, wj) was deleted. In either case, all successors

of mi on wj’s list will be deleted, so (mk, wj) /∈M , a contradiction.

Lemma 4.5.5. During any execution of the algorithm Mod-exgs, if mi proposes to wj,

rank(wj,mi) < rank(wj,M(wj)) and (mi, wj) ∈ A then wj will never reject mi.

Proof. This follows from our definition of the ≺wj
relation. Suppose that wj rejects mi

for a some man mk and rank(wj,mi) < rank(wj,mk). Thus mk ≺wj
mi. This implies

that mk /w mi or mk /
′
w mi. Since (mi, wj) ∈ A then mk //w mi so mk /

′
w mi which in

turn implies that rank(wj,mk) < rank(wj,mi), a contradiction to our assumption.

The execution of the Mod-exgs algorithm takes O(m) time where m = |A| is the

number of acceptable pairs. These executions can be performed at most 2n1 times,

where n1 is the number of men, as a man is given at most two chances to propose to

4.5. Approximating max hrss 56

the women on his list. Thus the overall time complexity of the algorithm is O(n1m).

The above results, together with Theorem 4.5.1, lead us to state the following theorem

concerning the performance guarantee of Approx-smiss.

Theorem 4.5.6. max hrss is approximable within a factor of 3/2.

Proof. We prove this result by adopting techniques similar to those used by Iwama et

al. [67] and subsequently by Király [75]. Let M be the matching obtained from running

Approx-smiss on an smiss instance (I,G). From 4.5.4 we know that M is socially

stable. We consider alternating paths of odd-length in connected components of the

union M ∪Mopt. An alternating path is one in which the edges belong alternatively to

M and Mopt. An odd-length alternating path P with more edges in Mopt than edges

in M can be used to increase the size of M by removing P ∩M from M and adding

P ∩Mopt to M . It is easy to see that, for alternating paths of length greater than 3,

the number of edges in Mopt is at most 3/2 times the number of edges in M . We now

show that alternating paths of length 3 cannot exist in M ∪Mopt.

Consider an alternating path of length 3 〈(m,w′), (m,w), (m′, w)〉 such that (m,w′) ∈
Mopt, (m,w) ∈ M and (m′, w) ∈ Mopt. We will show that (m,w) socially blocks Mopt

thus forming a contradiction. Since w′ is unmatched in M , she was never proposed to

during the entire execution of Approx-smiss. So w′ did not delete any men from her

preference list and m is unpromoted (in order to be promoted, he would first have had

to proposed to w′). Thus m prefers w to w′. Also since m′ is unmatched in M , either

(i) the pair (m′, w) was deleted from the instance at some point during the execution

of Approx-smiss or (ii) w rejected m′ twice during the execution of Approx-smiss.

Consider case (i): if (m′, w) was deleted during the execution of the algorithm then w

received a proposal from some man m′′ such that (m′′, w) ∈ A and w prefers m′′ to m′.

Thus all successors of m′′ on w’s list would also have been deleted and so w prefers

m to m′′ and hence to m′. Although w would have accepted the proposal from m′′

temporarily (see Lemma 4.5.5), she ended up with an unpromoted man m. It might be

that m = m′′. On the other hand, suppose she accepted a series of proposals from men

after m′′ proposed to w 〈m′′0,m′′1, ...,m′′k〉 for some k ≥ 0 before finally being assigned to

m. Thus m′′0 ≺w m′′, which implies that m′′0 /w m′′ or m′′0 /′w m′′. Since (m′′, w) ∈ A,

m′′0 //w m′′ which means m′′0 /
′
w m

′′. But for that to be true, m′′ //w m′′0 as well. For

that to happen, m′′0 must not be an unacquainted unpromoted man on w’s list. This

means m′′0 can be an acquainted man or an unacquainted promoted man on w’s list. If

m = m′′0 (i.e. k = 0) then we know that m is unpromoted and so (m,w) ∈ A. On the

other hand if another man m′′1 exists in the sequence, then the same argument follows

that m′′1 ≺w m′′0 means that m′′1 /w m
′′
0 or m′′1 /

′
w m

′′
0. As already observed, m′′0 is either

an acquainted man or an unacquainted, promoted man on w’s list. In both cases,

4.5. Approximating max hrss 57

m′′1 //w m′′0 meaning m′′1 /
′
w m

′′
0. This implies that m′′0 //w m′′1. But for that condition

to be satisfied, m′′1 must not be an unacquainted unpromoted man on w’s list. Once

again this means m′′1 can be an acquainted man or an unacquainted promoted man on

w’s list. The same sequence can continue for all men in the sequence until m proposes.

Since we already established that m is unpromoted, it follows that (m,w) ∈ A.

Now consider case (ii): w rejected m′ even when he was promoted because of a proposal

from some man m′′. Thus m′′ ≺w m′ means m′′ /w m′ or m′′ /′w m′. Since we know

that m′ was promoted, then m′′ //w m
′ thus m′′ /′w m′. This means that m′ //w m

′′ and

w prefers m′′ to m′. Since m′ //w m′′ , m′′ must not be an unacquainted unpromoted

man on w’s list as m′ is promoted. Thus m′′ must be promoted or an acquainted man

on w’s list. If m′′ were an acquainted man on w’s list, the pair (m′, w) would be deleted

and the logic presented in case (i) above would follow through. Now suppose m′′ is

promoted and unacquainted on w’s list. We know that m 6= m′′ as m was unpromoted

in M . Then w may have accepted a series of proposals from men 〈m′′0,m′′1, ...,m′′k〉 for

some k ≥ 0 before finally being assigned to m. Thus m′′0 ≺w m′′ means m′′0 /w m′′ or

m′′0 /′w m′′. Since m′′ is promoted and unacquainted on w’s list m′′0 //w m′′ meaning

m′′0 /
′
wm

′′. This implies that m′′ //w m
′′
0. But for that condition to be satisfied, m′′0 must

not be an unacquainted unpromoted man on w’s list. A similar argument to the one

presented for case (i) above results in the conclusion that (m,w) ∈ A.

The following conditions (i) m prefers w to w′ (ii) w prefers m to m′ and (iii) (m,w) ∈ A
imply that (m,w) will socially block Mopt, a contradiction.

The smiss instance shown in Figure 4.2 shows that the 3/2 bound for the algorithm

is tight. Here Mopt = {(m1, w3), (m2, w1), (m3, w2)} is the unique maximum socially

stable matching. Also the approximation algorithm outputs M = {(m1, w1), (m2, w2)}
irrespective of the order in which proposals are made. Clearly this instance can be

replicated to obtain an arbitrarily large smiss instance for which the performance

guarantee is tight.

We remark that a similar 3/2-approximation algorithm for max hrss was presented

independently by Askalidis et al. in [13].

4.5.2 Inapproximability result

We now show lower bounds on the approximability of our problem. We start by giving

the inapproximability result assuming P6=NP.

Theorem 4.5.7. max smiss is not approximable within 21/19 − ε for any ε > 0,

unless P=NP.

4.6. Some special cases of hrss 58

men’s preferences women’s preferences

m1 : w1 w3 w1 : m2 m1

m2 : w1 w2 w2 : m2 m3

m3 : w2 w3 : m1

social network graph G

m3 w3

m2 w2

m1 w1

Figure 4.2: |Mopt|= (3/2).|M |

Proof. We rely on a proof of the NP-hardness of approximating max smti given in

[40]. It is shown, by a reduction from Vertex Cover, that there is no approximation

algorithm for max smti with performance guarantee of 21/19 − ε for any ε > 0,

unless P=NP. This is shown to be true even for instances where ties appear on one

side only, each preference list is either strictly ordered or has a single tie of length 2

and ties appear at the end of the preference lists. Thus the same reduction shown

in the proof of Theorem 4.4.1 can be used to construct an smiss instance (I,G) such

that a polynomial-time algorithm that approximates max smiss to within a factor of

21/19− ε would do the same for max smti.

A better lower bound on the approximability of max smiss of 3/2− ε for any constant

ε > 0 assuming the Unique Games Conjecture, was presented by [12].

4.6 Some special cases of hrss

Given the hardness results obtained for the problem of finding a maximum socially

stable matching in a general hrss instance, the need arises to investigate special cases

of the problem that are tractable. This section describes some polynomial-time solv-

ability results for three special cases of hrss. Subsection 4.6.1 gives a polynomial-time

algorithm for finding a maximum socially stable matching given an instance of (2,∞)-

max smiss. In Subsection 4.6.2 we provide a polynomial-time algorithm for max hrss

in the case where there is a constant number of unacquainted pairs and in Subsection

4.6.3 we consider the case where the number of acquainted pairs is constant, again

providing a polynomial time-algorithm for max hrss in that context.

4.6. Some special cases of hrss 59

4.6.1 (2,∞)-max smiss

Given an smiss instance (I,G), where each man is allowed to have at most two women

in his preference list and each woman is allowed to have an unbounded-length preference

list, we show that a maximum socially stable matching can be found in polynomial time.

We make slight modifications to the algorithm used to find a maximum stable matching

in an instance of (2,∞)-max smti (the problem of finding a maximum stable matching

given an smti instance where each man has at most two women on his preference list)

described in [61]. The resulting algorithm, which we call (2,∞)-Max-smiss-alg, is

broken down into three phases.

In Phase 1, some pairs that cannot be involved in any socially stable matching in

(I,G) are deleted from the instance. A pair (mi, wj) is deleted by removing mi from

wj’s preference list and vice versa. We call the resulting preference lists the reduced

preference lists. For each man mi, if the first woman wj on mi’s preference list satisfies

(mi, wj) ∈ A, where A = E(G) is the set of acquainted pairs in (I,G), we delete all

pairs (mk, wj) for all successors mk of mi on wj’s preference list. Pair (mk, wj) cannot

be involved in any socially stable matching as (mi, wj) will socially block any matching

they were involved in.

In Phase 2, we construct a weighted bipartite graph G′ from the resulting instance with

a reduced preference list. This is done by representing the men and women as nodes

on the two sides of the graph and adding an edge between a man mi on one side and

a woman wj on the other if wj appears on mi’s preference list. The weight placed on

the edge will be the position of mi on wj’s preference list (denoted by rank(wj,mi)).

Algorithm 4.4 describes the process. A minimum cost maximum cardinality matching

MG′ in the the resulting bipartite graph is then generated using the algorithm described

in [28].

At this stage it is not guaranteed that the resulting maximum matching MG′ is socially

stable. MG′ may admit a social blocking pair (mi, wj), where (mi, wj) ∈ A, wj is the

first-choice partner of mi, mi is assigned to his second-choice partner wk in MG′ and wj

is unassigned in MG′ (as we will show later, this the only form of social blocking pair

that MG′ can admit). To remove such blocking pairs, during Phase 3, we assign mi to

wj thus making wk unmatched. At this stage wk may herself be the first-choice partner

of some man ml where (ml, wk) ∈ A, so a similar operation is performed involving ml

and wk. The process continues until there is no man who is matched to his second-

choice woman while forming an edge in G with his unmatched first-choice woman.

Algorithm 5.1 shows the entire (2,∞)-Max-smiss-alg algorithm.

We now show that at the end of this phase, for (2,∞)-max smiss instances, the

matching produced is both socially stable and of maximum size.

4.6. Some special cases of hrss 60

Algorithm 4.3 (2,∞)-Max-smiss-alg

1: /* Phase 1 */
2: while some man mi has a first-choice woman wj such that (mi, wj) ∈ A do
3: for each successor mk of mi on wj ’s list do
4: delete the pair (mk, wj);
5: /* Phase 2 */
6: G′ := BuildGraph();
7: MG′ := minimum weight maximum matching in G′;
8: /* Phase 3 */
9: M := MG′ ;

10: while there exists a man mi who is matched to his second-choice woman wk
and his first-choice wj is an unmatched woman such that (mi, wj) ∈ A do

11: M := M\{(mi, wk)};
12: M := M ∪ {(mi, wj)};
13: return M ;

Algorithm 4.4 BuildGraph

1: V := U ∪W; /* U and W are sets of men and women in I */
2: E′ := ∅;
3: for each man mi ∈ U do
4: for each woman wj on mi’s reduced list do
5: E′ := E′ ∪ {(mi, wj)};
6: weight(mi, wj) := rank(wj ,mi);
7: G′ := (V,E′);
8: return G′;

Lemma 4.6.1. (2,∞)-Max-smiss-alg terminates.

Proof. It is easy to see that Phases 1 and 2 terminate. For every iteration of Phase 3,

one man always improves from his second to his first choice while no man obtains a

worst partner or becomes unmatched. Since the total number of possible improvements

is finite, it is clear the phase is bound to terminate.

Lemma 4.6.2. Phase 1 of (2,∞)-Max-smiss-alg never deletes a socially stable pair,

which is a man-woman pair that belongs to some socially stable matching in (I,G).

Proof. Suppose pair (mi, wj) is deleted during some execution of (2,∞)-Max-smiss-alg

and (mi, wj) ∈ M where M is some socially stable matching in (I,G). Then mi was

deleted from wj’s preference list because wj was the first-choice woman of some man

mk such that (mk, wj) ∈ A and wj prefers mk to mi. Therefore (mk, wj) will socially

block M , a contradiction.

Lemma 4.6.3. The matching returned by (2,∞)-Max-smiss-alg is socially stable in

(I,G).

4.6. Some special cases of hrss 61

Proof. Suppose the matching M produced by (2,∞)-Max-smiss-alg is not socially

stable in (I,G). Then some pair (mi, wj) ∈ A socially blocks M in I. For this to

occur, one of the following cases must arise.

Case (i): mi and wj are unmatched in M . Then mi is unmatched in MG′ and either wj

was initially unmatched in MG′ or became unmatched due to some operation in Phase

3 of (2,∞)-Max-smiss-alg. If wj was initially unmatched in MG′ then MG′ could have

been increased in size by adding (mi, wj) thus contradicting the fact that MG′ is of

maximum cardinality. Suppose wj became unmatched due to Phase 3. Let mp1 denote

wj’s partner in MG′ . During Phase 3, mp1 must have become assigned to his first-choice

woman wq1 . Suppose wq1 was unmatched in MG′ . Then a larger matching can be ob-

tained by augmenting MG′ along the path (mi, wj), (wj,mp1), (mp1 , wq1) contradicting

to the fact that MG is of maximum cardinality. Thus wq1 must have been assigned in

MG′ and became unmatched during Phase 3 as well. If wq1 was assigned to mp2 in MG′ ,

mp2 must have become assigned to his first-choice woman wq2 during Phase 3. Using a

similar argument to that used for wq1 , we can argue that wq2 must have been assigned

in MG′ as well. Thus some man moved from wq2 to his first-choice woman. This process

may be continued and at each iteration of Phase 3, some man must strictly improve and

no man becomes worse off. Since the possible number of such improvements is finite,

there are a finite number of women that can be unmatched in this way in Phase 3.

Hence at some point, there exists a man mps , who switches to his first-choice woman wqs

and wqs was already unmatched in MG′ . We can then construct an augmenting path in

G′ of the form (mi, wj), (wj,mp1), (mp1 , wq1), (wq1 ,mp2), (mp2 , wq2), ..., (mps , wqs) which

contradicts the fact that MG′ is of maximum cardinality.

Case (ii): mi is unmatched in M and wj prefers mi to ml = M(wj). Then mi is

unmatched in MG′ as well. Suppose that wj was assigned to ml in MG′ . Since wj prefers

mi to ml, a matching of equal size to MG′ but with a lower weight can be obtained

by pairing mi with wj, leaving ml unmatched, thus contradicting the fact that MG′ is

a minimum weight maximum cardinality matching. Thus wj is not assigned to ml in

MG′ . Then wj is either unmatched in MG′ or is assigned in MG′ to some man mp, where

mp 6= ml and mp 6= mi. If wj is unmatched in MG′ , the fact that MG′ is a maximum

cardinality matching is contradicted. If wj is assigned to mp in MG′ then since wj is

no longer assigned to mp in M , mp must have switched to his first-choice woman wq

during Phase 3. Hence either wq was unmatched in MG′ or wq became unmatched due

to some man being switched to his first-choice woman. Using a similar argument as in

case (i), we can construct an augmenting path that contradicts the fact that MG′ is of

maximum cardinality.

Case (iii): mi is assigned to wk in M and mi prefers wj to wk and wj is unmatched

in M . Since mi’s preference list is of length 2, wj is mi’s first-choice and (mi, wj) ∈ A

4.6. Some special cases of hrss 62

and so this case satisfies the loop condition in Phase 3 and thus should never arise once

Phase 3 has terminated (as it must, by Lemma 4.6.1).

Case (iv): mi is assigned to wk in M and mi prefers wj to wk and wj is assigned to ml

in M and wj prefers mi to ml. Once again, since mi’s list is of length 2, then wj must

be mi’s first-choice and (mi, wj) ∈ A. Therefore the loop condition of Phase 1 would

have ensured that man ml was deleted from wj’s preference list.

Since, by Lemma 4.6.2, Phase 1 never deletes a socially stable pair, a maximum socially

stable matching must consist of pairs that belong to the reduced lists. Since MG′ is a

maximum matching and Phase 3 never reduces the size of the matching, it follows that

the matching produced by the algorithm is of maximum cardinality. Finally since by

Lemma 4.6.3, the matching produced is a socially stable matching, it follows that the

algorithm produces a maximum socially stable matching in (I,G).

The complexity of the algorithm is dominated by Phase 2. A minimum cost maximum

matching in G′ = (V,E ′) can be found in O(
√
|V ||E ′|log |V |) [28]. Let n = |V |= n1+n2

be the total number of men and women. Since the set A of acceptable pairs satisfies

|A|≤ 2n1 = O(n), it follows that (2,∞)-Max-smiss-alg has a time complexity of

O(n3/2 log n). We have thus proved the following theorem.

Theorem 4.6.4. Given an instance (I,G) of (2,∞)-max smiss, Algorithm (2,∞)-

Max-smiss-alg generates a maximum socially stable matching in O(n3/2 log n) time,

where n is the total number of residents and hospitals in (I,G).

4.6.2 hrss with a constant number of unacquainted pairs

It is easy to see that in the special case where the set U of unacquainted pairs is exactly

the setA of acceptable pairs in the underlying HR instance, then the setA of acquainted

pairs satisfies A = ∅ and every matching found is a socially stable matching. Also if

the instance contains no unacquainted pairs (i.e., A = A and U = ∅), then only stable

matchings in the classical sense are socially stable. In both these cases, a maximum

socially stable matching can be generated in polynomial time. The case may however

arise where the number of unacquainted pairs is constant. In this case, we show that

it is also possible to generate a maximum socially stable matching in polynomial time.

Let (I,G) be an instance of hrss and let S ⊆ A be a subset of the acceptable pairs

in I. We denote I\S as the instance of HR obtained from I by deleting the pairs in S

from the preference lists in I. The following proposition plays a key role in establishing

the correctness of the algorithm.

4.6. Some special cases of hrss 63

Lemma 4.6.5. Let (I,G) be an instance of hrss. Let M be a socially stable matching

in (I,G). Then there exists a set of unacquainted pairs U ′ ⊆ U such that M is stable

in I ′ = I\U ′. Conversely suppose that M is a stable matching in I ′ = I\U ′ for some

U ′ ⊆ U . Then M is socially stable in (I,G).

Proof. Suppose M is socially stable in (I,G). Let U ′ = U\(M ∩U) = U\M . We claim

that M is stable in I ′ = I\U ′. Suppose (ri, hj) blocks M in I ′. Then (ri, hj) /∈M and

edges in I ′ are those in A∪M ∩ U and (ri, hj) /∈M ∩ U . Thus (ri, hj) ∈ A making M

socially unstable in (I,G), a contradiction.

Conversely, suppose that M is stable in I ′ = I\U ′ for some U ′ ⊆ U . We claim that

M is socially stable in (I,G). Suppose that (ri, hj) socially blocks M in (I,G), then

(ri, hj) ∈ A so (ri, hj) /∈ U . Thus (ri, hj) is a pair in I ′ and so (ri, hj) blocks M in I ′,

a contradiction.

By considering all subsets U ′ ⊆ U , forming I ′, finding a stable matching in each such

I ′ and keeping a record of the maximum stable matching found, we obtain a maximum

socially stable matching in (I,G). This discussion leads to the following theorem.

Theorem 4.6.6. Given an instance (I,G) of hrss, a maximum socially stable match-

ing can be generated in O(2k|A|) time, where |A| is the number of acceptable pairs and

k = |U | is the number of unacquainted pairs.

Proof. By considering all subsets U ′ ⊆ U , forming I ′, finding stable a matching in

each such I ′ and keeping a record of the maximum stable matching found, we obtain

a maximum socially stable matching in (I,G). Let M be the largest stable matching

found over all I ′ = I\U ′ where U ′ ⊆ U . Then by Lemma 4.6.5, M is socially stable in

(I,G). Suppose for a contradiction that M ′ is a socially stable matching in I where

|M ′|> |M |. Then by Lemma 4.6.5 there exists some U ′′ ⊆ U such that M ′ is stable

in I ′′. But that contradicts M as the largest stable matching in I\U ′ taken over all

U ′ ⊆ U .

Finding all subsets of U can be done in O(2k) time where k = |U |. Forming I ′ and

finding a stable matching in I ′ can be done in O(|A|) time where A is the set of

acceptable pairs in I. Hence the overall time complexity of the algorithm is O(2k|A|).

4.6.3 hrss with a constant number of acquainted pairs

We now consider the restriction of hrss in which the set A of acquainted pairs is small.

In this section we present an algorithm for finding a maximum socially stable matching

4.6. Some special cases of hrss 64

given an instance (I,G) of hrss with this restriction. Let A = {e1, e2, ..., ek} where

k = |A| and ei represents an acquainted pair (rsi , hti) (1 ≤ i ≤ k). A tree T of depth k

is constructed with all nodes at depth i labelled ei+1 (i ≥ 0). There are left and right

branches below ei. Each branch corresponds to a condition placed on rsi or hti with

respect to a matching M . The left branch below ei (i.e., a resident condition branch)

corresponds to the condition that rsi is matched inM and prefers his partner to hti . The

right branch below ei (i.e., a hospital condition branch) corresponds to the condition

that hti is fully subscribed in M and has no partner worse than rsi . Satisfying at least

one of these conditions ensures that M admits no blocking pair involving (rsi , hti). The

tree is constructed in this manner with the nodes at depth k−1, labelled ek, branching

in the same way to dummy leaf nodes ek+1 (not representing acquainted pairs).

A path P from the root node e1 to a leaf node ek+1 will visit all pairs in A exactly

once. Every left branch in P gives a resident condition and every right branch gives

a hospital condition. Let R′ and H ′ be the set of residents and hospitals involved in

resident and hospital conditions in P respectively. Given a matching M , enforcing all

the conditions along P can be achieved by first deleting all pairs from the instance I

that could potentially violate these conditions. So if some resident condition along P

states that a resident rsi must be matched in M to a hospital he prefers to hti then rsi ’s

preference list is truncated starting with hti . If some hospital condition states that a

hospital hti must be fully subscribed in M and must not be matched to a resident worse

than rsi then hti ’s preference list is truncated starting from the resident immediately

following rsi . After performing these truncations based on the conditions along P , a

new HR instance I ′ is obtained.

Lemma 4.6.7. If M is a matching in I ′ that is computed at the leaf node of a path P

and all residents in R′ are matched in M and all hospitals in H ′ are fully subscribed

in M then M is a socially stable matching in (I,G).

Proof. Suppose some resident-hospital pair socially blocks M in (I,G). Then this pair

belongs to A so it corresponds to a node ei = (rsi , hti) in T for some i (1 ≤ i ≤ k).

So in M , either (i) rsi is unmatched or prefers hti to M(rsi) and (ii) either hti is

undersubscribed or prefers rsi to M(hti). Suppose in T , the left hand branch from

ei was chosen when following a path P from the root to a leaf node. Then rsi ∈ R′,
rsi is matched and by the truncations carried out, rsi has a better partner than hti , a

contradiction. Thus the right hand branch from ei was chosen when following P . Then

hti ∈ H ′, hti is fully subscribed and by the truncations hti has no partner worse than

rsi . But (rsi , hti) /∈M , so hti has a partner better than rsi , a contradiction.

With I ′ obtained due the truncations carried out by satisfying conditions along a path

P from the root node to a leaf node, we then seek to obtain a matching in which all the

4.6. Some special cases of hrss 65

residents in R′ are matched and hospitals in H ′ are fully subscribed. For each hospital

hj in I ′, we define a set of clones of hj, {hj,1, hj,2, ..., hj,cj}, corresponding to the number

of posts cj available in hj. Let H ′′ = {hj,k : hj ∈ H ′ ∧ 1 ≤ k ≤ cj} denote the set

of all clones obtained from hospitals in H ′. We define a bipartite graph G′ where one

set of nodes is represented by the set of residents in I ′ and the other set of nodes is

represented by the hospital clones in I ′. If ri finds hj acceptable in I, we add an edge

from ri to hj,q in G′ for all q (1 ≤ q ≤ cj). We define a new graph G′′ containing the

same nodes and edges in G′ with weights placed on the edges. We mark all the nodes

representing the residents in R′ and the hospital clones in H ′′ as red nodes with the

remaining nodes uncoloured. We place weights on the edges as follows: (i) an edge

between a red node and an uncoloured node is given a weight of 1; (ii) an edge between

two red nodes is given weight of 2; (iii) an edge between two uncoloured nodes is given

a weight of 0. We then find a maximum weight matching M ′ in the resulting weighted

bipartite graph G′′. Let wt(M ′) denote the weight of a matching M ′ in G′′. Then

wt(M ′) = |{(ri, hj,q) ∈M ′ : ri ∈ R′}|+|{(ri, hj,q) ∈M ′ : hj,q ∈ H ′′}|≤ |R′|+|H ′′|.

Moreover wt(M ′) = |R′|+|H ′′| if and only if every agent in R′ ∪H ′′ is matched in M ′.

For such a matching M ′ in G′′, by construction, M ′ is also a matching in G′ and a

maximum cardinality matching M ′′ can be obtained in G′ by continuously augmenting

M ′ until no augmenting path can be found. Since any node already matched in M ′ will

remain matched in M ′′ it follows that all the residents and hospital clones in R′ ∪H ′′

will be matched in M ′′ and such a matching, by Lemma 4.6.7, will be socially stable in

(I,G). If however, wt(M ′) < |R′|+|H ′′| then some resident or hospital clone in R′∪H ′′

remains unmatched in any maximum matching in G′ introducing the possibility of a

social blocking pair of M ′ in (I,G). In this case, P is ruled as infeasible and another

path is considered, otherwise P is called feasible.

There are 2k paths from the root node to leaf nodes in the tree T . The following

proposition is important to our result.

Lemma 4.6.8. There must exist at least one feasible path in T .

Proof. Let M be a stable matching in I. Then M is socially stable in (I,G). Consider

each node ei = (rsi , hti) in T . If (rsi , hti) ∈M , we branch right at ei. If (rsi , hti) /∈M ,

and rsi is matched and has a partner better than hti , we branch left at ei. If (rsi , hti) /∈
M , and hti is fully subscribed and has no partner worse than rsi , we branch right at ei.

Any other condition would mean that (rsi , hti) would block M in I, a contradiction.

This process, starting from the root node e1, gives a feasible path P through T to

some leaf node v where, for the set of residents R′ and hospitals H ′ involved in P ,

wt(M) = |R′|+|H ′|.

4.6. Some special cases of hrss 66

To generate a maximum socially stable matching M in an instance (I,G) of hrss, we

first compute the matchings at the leaf nodes of each of the 2k paths through T from

the root node to leaf nodes. Next, of all the matchings obtained from feasible paths,

we find the maximum matching M ′′. A maximum socially stable matching M can then

be constructed by letting

M = {(ri, hj) : (ri, hj,k) ∈M ′′ for some k (1 ≤ k ≤ cj)}.

Lemma 4.6.9. If M is a matching obtained from the process described above, M is a

maximum socially stable matching in (I, G).

Proof. Lemma 4.6.7 shows that M is socially stable in (I,G). Suppose M ′ is a socially

stable matching in (I,G) such that |M ′|> |M |. Construct a feasible path P through T

from the root node to a leaf node v, branching left or right at each node ei = (rsi , hti) as

follows. If rsi is matched in M ′ to some hospital better than hti , branch left. Otherwise

as (rsi , hti) is not a social blocking pair of M ′, hti is fully subscribed in M ′ with no

assignee worse than rsi , in which case branch right. As before, construct sets R′ and

H ′ as follows. For every left branch in P involving a resident rsi , add rsi to R′ and

for every right branch in P involving a hospital hti , add hti to H ′. Matching M ′ then

satisfies the property that every resident rsi ∈ R′ is matched in M ′ to a hospital better

than hti and every hospital hti ∈ H ′ is fully subscribed with residents no worse than rsi .

At the leaf node v of P , the algorithm constructs a matching M ′′ which is of maximum

cardinality with respect to the restrictions that every resident rsi ∈ R′ is matched to a

hospital better than hti and every hospital hti ∈ H ′ is fully subscribed with residents no

worse than rsi . Hence |M ′′|≥ |M ′| and since |M ′|> |M |, it follows that M ′′ contradicts

the choice of M as the largest matching taken over all leaf nodes.

The above proposition leads to the following main result of this subsection.

Theorem 4.6.10. Given an instance (I,G) of hrss where the set A of acquainted pairs

satisfies |A|= k, a maximum socially stable matching can be generated in O(2kcmaxm√
n1 + C) time where n1 is the number of residents, m is the number of acceptable

pairs, cmax is the largest capacity of any hospital and C is the total capacity of all the

hospitals in the problem instance.

Proof. The number of paths from the root node to a leaf node is 2k. Performing the

truncations imposed by the conditions along a path can be done in O(m) time where

m is the number of acceptable pairs in I. The number of nodes n′ and the number of

4.7. Empirical evaluation 67

edges m′ in G′ are given by:

m′ =
n2∑
j=1

|pref(hj)|cj ≤ cmax
n2∑
j=1

|pref(hj)|≤ cmaxm

n′ = n1 +
n2∑
j=1

cj = n1 + C

where n1 is the number of residents, n2 is the number of hospitals, pref(hj) is the

set of residents in hj’s preference list, cmax is the largest capacity of any hospital

and C is the total number of posts in the problem instance. Finding a maximum

weight matching in G′′ can be done in O(m′
√
n′) time [24] (since the edge weights

have O(1) size). Augmenting such a matching to a maximum cardinality matching in

G′ can be done in O(m′
√
n′) time [46]. Thus the time complexity of the algorithm is

O(2kcmaxm
√
n1 + C).

We conclude this section with the following results, which are an immediate conse-

quence of Theorems 4.6.6 and 4.6.10.

Corollary 4.6.11. max hrss is in FPT with parameter k where k is the number of

unacquainted pairs.

Corollary 4.6.12. max hrss is in FPT with parameter k where k is the number of

acquainted pairs.

4.7 Empirical evaluation

4.7.1 Introduction

The Approx-smiss algorithm was implemented and evaluated in Java. The objective

was to measure how the mean execution times and matching sizes change as we vary

the size and the social network density of randomly generated smiss instances. An IP

model for max smiss was also encoded and solved using the CPLEX 12.5.1 IP solver.

The social stability of the matchings produced by both implementations was separately

verified by a subroutine specifically implemented to check for this property.

The IP model for max hrss presented in Figure 4.3, is a slight modification to the one

presented for max hrt in Chapter 3. The only change/alteration to the model is that,

in the smiss context we ensure that the stability-enforcing constraints are applied only

to acquainted pairs (see Constraint 3 of Figure 4.3). We present the entire IP model

below for completeness. The proof of correctness presented in [79] carries over to the

hrss case.

4.7. Empirical evaluation 68

max

n1∑
i=1

∑
hj∈P (ri)

xi,j

subject to

1.
∑

hj∈P (ri)

xi,j ≤ 1 ∀ (1 ≤ i ≤ n1)

2.
∑

ri∈P (hj)

xi,j ≤ cj ∀ (1 ≤ j ≤ n2)

3. cj

1−
∑

hq∈Si,j

xi,q

− ∑
rp∈Ti,j

xp,j ≤ 0 ∀ (ri, hj) ∈ G

xi,j ∈ {0, 1}

Figure 4.3: A max hrss IP model

Random smiss instances were generated using an instance generator and solved using

both the Approx-smiss algorithm and the IP solver. Results from the implemented

algorithm were compared with those produced by the IP solver. This improved our

confidence in the correctness of both implementations. The instance generator can be

configured to vary certain properties of the instances produced. The results presented

in this section involve varying:

1. The number of men n1 and women n2 in the underlying smi instance (always

keeping n1 = n2) and

2. The density dG of the social network, which is the probability that a randomly

selected acceptable pair is acquainted (i.e. belongs to G).

Other parameters that can be varied (but were kept fixed) include:

1. The minimum and maximum lengths of men and women’s preference lists (both

fixed at 10) and

2. The popularity of the residents and hospitals.

We also ran the extended version of the Gale-Shapley algorithm (Alg-gs) on the gener-

ated instances. We measured the runtime taken by the algorithms and IP encoding as

well as the size of the matchings obtained. Experiments were carried out on a Windows

machine with 4 Intel(R) Core(R) i5-2400 CPUs at 3.1GHz and 8GB RAM.

4.7. Empirical evaluation 69

4.7.2 Varying instance size

When the preference list lengths are kept constant, the number of men and women in

the underlying smi instance is an accurate indication of the size of the smiss instance

generated. We investigated the effect of varying smiss instances sizes on the runtime

and sizes of the matchings obtained. This was achieved by generating 10, 000 random

hrss instances for each value of n1 for the range 100, 200, ..., 1000 with each instance

having n1 = n2 and dG = 0.5.

Figure 4.4: Mean matching size vs n1 Figure 4.5: Mean runtime vs n1

Figures 4.5 and 4.4 and Tables 4.1 and 4.2 summarise the results obtained. Figure

4.4 shows how the mean size of the matchings produced varies with n1. As would be

expected, Alg-gs produces the smallest matchings (which are stable in the classical

sense) with Approx-smiss producing bigger (socially) stable matchings which are con-

siderably larger than two-thirds of optimal as guaranteed by Theorem 4.5.6. Figure

4.5 shows the mean time it takes to solve an smiss instance as we vary n1. As shown

in Table 4.1, both algorithms do considerably better than cplex with the Alg-gs per-

forming the best. This is likely to be due to the exponential nature of the underlying

branch-and-bound search algorithm employed by cplex in solving IP encodings and

the fact that cplex is solving these problems to optimality.

4.7.3 Varying the density of the social network

In this subsection we investigate the effect of varying the density of the social network

on the runtime and sizes of the matchings obtained. We varied dG from 0 to 1 by steps

of size 0.1. As mentioned earlier, max hrss (and max smiss) becomes polynomially

solvable when dG = 0 (this reduces to finding a maximum matching in a bipartite

graph) or when dG = 1 (this reduces to finding a stable matching in the underlying

4.7. Empirical evaluation 70

n1 Alg-gs Approx-smiss cplex

100 0.54 0.49 24.37
200 1.23 1.82 50.46
300 1.83 4.35 77.79
400 2.63 7.70 103.46
500 3.54 12.01 129.07
600 4.57 17.25 156.27
700 5.71 23.48 184.29
800 6.96 30.92 213.81
900 8.30 39.33 244.43
1000 9.91 49.91 281.88

Table 4.1: Mean runtime (ms) produced by both algorithms and cplex

n1 Alg-gs Approx-smiss cplex

100 91.21 (93.35%) 95.05 (97.28%) 97.71 (100%)
200 182.06 (93.22%) 189.76 (97.17%) 195.29 (100%)
300 272.89 (93.17%) 284.54 (97.15%) 292.90 (100%)
400 363.76 (93.16%) 379.28 (97.13%) 390.48 (100%)
500 454.54 (93.15%) 473.97 (97.13%) 487.98 (100%)
600 545.38 (93.12%) 568.79 (97.12%) 585.65 (100%)
700 636.25 (93.14%) 663.43 (97.12%) 683.11 (100%)
800 727.04 (93.13%) 758.16 (97.11%) 780.71 (100%)
900 808.06 (92.00%) 853.00 (97.11%) 878.36 (100%)
1000 908.83 (93.13%) 947.68 (96.81%) 975.85 (100%)

Table 4.2: Mean matching sizes produced by both algorithms and cplex

hr/smiss instance). We tested the effect of varying dG by generating 10, 000 random

smi instances for each value of dG with each instance having n1 = n2 = 500.

Figure 4.6: Mean matching size vs dG Figure 4.7: Mean runtime vs dG

4.8. Conclusion 71

Figures 4.6 and 4.7 show the results obtained. As expected Alg-gs is constant in

both figures as it does not depend on G. In terms of the runtime shown in Figure

4.7, Approx-smiss performs well with the runtime rising only slightly across the entire

range. The cplex solver however takes a considerably longer time to find an optimal

solution. The runtime curve is somewhat bell-shaped with its highest region between

dG = 0.2 and dG = 0.5 for the instances tested. It is at this range the solver encounters

the most challenging instances. For values of dG > 0.5 the increasing density ofGmeans

an increase in the number of stability-enforcing constraints thus making it easier for

the solver to rule out potential solutions. This trend continues until every acceptable

pair is an acquainted one. At this point (dG = 1) results show that cplex finds it

easier to reach an optimal solution (a stable matching) than when dG = 0 (a maximum

matching). For values of dG < 0.2 the relatively small amount of potential socially

blocking pairs would mean optimal solutions are likely to be very close to complete

matchings (as observed in Figure 4.7). This makes it a lot easier for the cplex solver

to terminate the search process once it obtains a feasible solution that has all n1 men

matched.

Figure 4.7 shows how the sizes of the matchings obtained varies as we increase dG.

Once again Alg-gs produces matchings whose sizes are independent of dG. The mean

size of the matchings obtained by both the Approx-smiss algorithm and cplex falls

gradually as we increase dG, with both curves converging to meet the the Alg-gs

curve at dG = 1. We observe that the Approx-smiss algorithm performs best at the

extremes of the range with the widest gap between the mean sizes of its matchings

and the optimal solutions occurring at the middle point (dG = 0.4 − 0.6). The large

area between the Alg-gs curve and the other two is an indication of the benefit that

stands to be gained by adopting this relaxed notion of stability thus justifying our

investigation of social stability.

4.8 Conclusion

In this chapter we presented a formal definition of hrss as well as algorithmic results

relating to max hrss. An obvious open problem in this area involves extending the

algorithm for (2,∞)-max smiss to the hrss case. Further, In Theorem 4.3.1 we showed

a reduction from hrss to hr+sn. However the converse statement of the theorem

places a severe restriction on the hr+sn instances (they must admit resident-complete

locally stable matchings). It remains to be shown that a reduction exists from hrss to

hr+sn that does not require such a restriction.

Although this chapter focused on optimising the size of socially stable matchings, other

4.8. Conclusion 72

optimality criteria may also be considered (subject to the size criteria). We can also

extend the notion of social stability to other matching problems and their variants.

Some of these directions are considered next in Chapter 5.

73

Chapter 5

Further Algorithmic Results on

Socially Stable Matchings

5.1 Introduction

The notion of social stability in matching problems was discussed in Section 2.5. In

Chapter 4 we presented the first set of algorithmic results relating to optimising the

size of socially stable matchings in hrss instances (max hrss). In this chapter we

extend our investigation of social stability to other matching problems and considering

other optimality criteria.

We begin by considering some fundamental structural properties of stable matchings

in smi that do not carry over to the case of socially stable matchings. An instance

of smiss does not in general admit a lattice structure for the set of socially stable

matchings. Indeed, there can be no guarantee of the existence of a man-optimal (or

woman-optimal) socially stable matching. Figure 5.1 shows an smiss instance where

there is no analogue of the man-oriented dominance relation between stable match-

ings in sm [38] for the two socially stable matchings M1 = {(m1, w1), (m2, w2)} and

M2 = {(m1, w2), (m2, w1)}. Also Figure 5.2 shows an smiss instance, with socially

stable matchings M1 = {(m1, w1)} and M2 = {(m1, w2), (m2, w1)}, in which the Rural

Hospital’s Theorem fails on two counts: (i) m2 is unmatched in M1 but is matched in

M2, and (ii) w2 is undersubscribed in M1 but is full in M2.

The rest of the chapter is structured as follows. In Section 5.2, we present hardness

and approximability results for the problems of finding “fair” socially stable matchings.

The optimality problems considered include finding egalitarian, minimum regret and

sex-equal socially stable matchings. In Section 5.3 we consider other variants of com

smiss that are of practical relevance or theoretical significance. We consider cases

5.2. Fair socially stable matchings 74

men’s preferences women’s preferences

m1 : w1 w2 w1 : m1 m2

m2 : w1 w2 w2 : m1 m2

empty social network graph (i.e. G = ∅)
Figure 5.1: No man-optimal socially stable matching in smiss instance (I,G)

men’s preferences women’s preferences

m1 : w1 w2 w1 : m1 m2

m2 : w1 w2 : m1

empty social network graph (i.e. G = ∅)
Figure 5.2: Rural Hospitals Theorem fails in smiss instance (I,G)

where the degree and structure of the social network is restricted. We also consider

cases where the there are restrictions on the ordering of the agents’ preference lists.

We show NP-completeness for com smiss in most of the cases considered. In Section

5.4 we show that min smiss-d, the problem of deciding whether an smiss instance

admits a socially stable matching of size ≤ k where k is some integer, is NP-complete.

Although we do not identify potential practical applications for this problem, it is still

of considerable theoretical interest. Section 5.5 presents further hardness results related

to determining whether a given agent, or a given pair is matched in a socially stable

matching in the sm or hr domains. We move from two-sided to one-sided matching

problems in Section 5.6 and consider social stability in the roommates context. We

present hardness and inapproximability results that are analogous to those presented

for the sm and hr cases. The chapter ends with a brief conclusion in Section 5.7.

5.2 Fair socially stable matchings

5.2.1 Introduction

It is natural in some real-world applications to seek socially stable matchings that

are fair to both sets of agents. Various criteria for measuring this fairness of stable

matchings have been investigated in the case of stable marriage problems involving ties

[39]. In this section we extend these ideas to the hrss context.

We define the cost of a matching M for an agent ai as the position of M(ai) on ai’s list,

assuming ai is matched in M . The cost c(M) of a matching M , in the smss context,

is derived below:

5.2. Fair socially stable matchings 75

cai(M) = rank(ai,M(ai)) where ai is matched in M .

cU(M) =
∑
m∈U

cm(M) where U is the set men in the instance.

cW(M) =
∑
w∈W

cw(M) where W is the set women in the instance.

c(M) = cU(M) + cW(M)

We define the regret of a matching M as the highest cost of M for an agent taken over

all agents matched in M . Thus

r(M) = max{cai(M), where ai is matched in M}

We define the Stable Marriage problem under Social Stability (smss) as a special case

of smiss in which n1 = n2 and all preference lists are complete. An instance of smss

can admit socially stable matchings of different sizes but a maximum socially stable

matching (of size n1) can be found in polynomial time by simply finding a stable

matching in the underlying sm instance using the Gale-Shapley algorithm. This is

because all preference lists are complete in an smss instance and stable matchings in

this context are complete. The objective is to find a complete socially stable matching

satisfying some additional optimality criteria relating to the cost to the agents involved.

In this section we consider three such criteria, egalitarian, minimum regret and sex

equal socially stable matchings. We restrict our investigation to the smss case where

matchings are required to be complete.

5.2.2 Egalitarian socially stable matchings

Given an instance (I,G) of smss, an egalitarian socially stable matching is a match-

ing M whose cost c(M) is minimum over all socially stable matchings in (I,G). We

define egalitarian smss to be the problem of finding an egalitarian socially stable

matching given an smss instance. In this section, we show that it is NP-hard to ap-

proximate egalitarian smss, to within a factor of N1−ε where N is the number of

men and ε > 1. Let I be an smti instance where ties occur only in the men’s preference

lists and where each tie appears only at the end of a preference list. Then I can be re-

duced to an smss instance (I ′, G) in polynomial time such that an N1−ε-approximation

algorithm for egalitarian smss on (I ′, G) decides com smti on I.

Theorem 5.2.1. It is NP-hard to approximate egalitarian smss to within a factor

of N1−ε where N is the number of men involved and ε > 0.

Proof. Let ε > 0 be given. We employ a reduction similar to the one used in the proof

of Theorem 2 in [64] where it is shown that approximating min smti to within N1−ε

5.2. Fair socially stable matchings 76

is NP hard for any ε > 0. Here we reduce an instance I of (3, 3)-com smti (where the

ties occur in the men’s lists only, each tie occurs at the tail of some list and preference

lists lengths are at most 3) to an instance (I ′, G) of egalitarian smss.

Let U = {m1,m2, ...,mn} andW = {w1, w2, ..., wn} be the sets of men and women in I

respectively. We construct (I ′, G) as follows: let U ′ = {m′1,m′2, ...,m′nc} ∪
⋃

1≤j≤nc−1 Uj
be the set of men where Uj = {mj,1,mj,2, ...,mj,n} is a copy of U and c = d2/εe.
Similarly let W ′ = {w′1, w′2, ..., w′nc} ∪

⋃
1≤j≤nc−1Wj be the set of women where Wj =

{wj,1, wj,2, ..., wj,n} is a copy of W . There are 2nc men and 2nc women in I ′. The

preference lists of the men and women in (I ′, G) are constructed as follows.

m′i : w′i ... (1 ≤ i ≤ nc)

mj,i : Pj,i 〈all w′i in any order〉 ... (1 ≤ i ≤ n, 1 ≤ j ≤ nc−1)

w′i : m′i ... (1 ≤ i ≤ nc)

wj,i : Qj,i 〈all m′i in any order〉 ... (1 ≤ i ≤ n, 1 ≤ j ≤ nc−1)

We use the symbol “...” at the end of each preference list to denote a list of the remain-

ing people of opposite sex in arbitrary order. We denote Pj,i and Qj,i as preference lists

consisting of women and men in the j’th clone of U andW respectively. The preference

ordering is derived from the preference lists of mi and wi in I respectively. For each

j (1 ≤ j ≤ nc−1) we add the pair (mj,p, wj,q) to A if wq does not appear in a tie on

mp’s preference list in I. This completes the construction of (I ′, G). It is easy to see

that for each i (1 ≤ i ≤ nc), (m′i, w
′
i) will be matched in any socially stable matching

in (I ′, G).

If I admits a complete stable matching M then construct a socially stable matching

M ′ in (I ′, G) as follows:

M ′ = {(m′i, w′i) : 1 ≤ i ≤ nc} ∪ {(mj,p, wj,q) : (mp, wq) ∈M ∧ 1 ≤ j ≤ nc−1}

It is easy to see that M ′ is socially stable in (I ′, G) and since every man and woman in

M is matched to their third choice partner or better, we can estimate an upper bound

for c(M ′) as follows:

c(M ′) ≤ 2(nc + nc−1 × n× 3)

≤ 2(nc + 3nc)

≤ nc+1

if we assume without loss of generality that n ≥ 8.

On the other hand, if I does not admit a complete stable matching then for any

5.2. Fair socially stable matchings 77

complete socially stable matching M ′ in (I ′, G) at least one man and one woman in M ′

is matched to their (1 + nc + 1)th partner or worse. We can estimate a lower bound

for c(M ′) as follows:

c(M ′) ≥ 2× (nc + nc−1 × (n− 1) + nc−1 × (1 + nc + 1))

≥ 4nc + 2n2c−1 + 2nc−1

> 2n2c−1

Let N(= 2nc) denote the number of men in (I ′, G). Now assume that egalitarian

smss has an N1−ε-approximation algorithm A. If I admits a complete stable matching,

A returns a socially stable matching M ′ such that c(M ′) ≤ nc+1N1−ε where nc+1N1−ε ≤
nc+1(2nc)1−2/c = 21−c/2n2c−1. Thus c(M ′) ≤ 2n2c−1.

Also if I admits no complete stable matching then J returns a socially stable matching

M ′ such that c(M ′) > 2n2c−1. Hence the existence of J would allow (3, 3)-com smti

to be solved in polynomial time, a contradiction unless P=NP.

5.2.3 Minimum regret socially stable matchings

Given an instance (I,G) of smss, a minimum regret socially stable matching is a match-

ing with the lowest regret taken over all complete socially stable matchings in (I,G).

We define min regret smss to be the problem of finding a minimum regret socially

stable matching given an smss instance. In this subsection, we show that this problem

is NP-hard to approximate to within a factor of δN where N is the number of men

and δ < 1/3.

It is trivial to observe that, given an smss instance, for any complete socially stable

matching M , 1 ≤ r(M) ≤ n. Thus an n-approximation for min regret smss can be

found in polynomial time. We now show the inapproximability result by reducing from

an instance of (3, 3)-com smti.

Theorem 5.2.2. It is NP-hard to approximate min regret smss to within a factor

of 1
3
N where N is the number of men involved.

Proof. We consider an instance I of the NP-complete problem (3, 3)-com smti [61]

where the ties occur in the men’s lists only, each tie occurs at the tail of some list

and preference lists are of length at most 3. Let U = {m1,m2, ...,mn} and W =

{w1, w2, ..., wn} be the sets of men and women in I respectively. We construct an

smss instance (I ′, G) as follows: let the men and women in I ′ be U ∪ U ′ and W ∪W ′

respectively, where U ′ = {m′1,m′2, ...,m′R},W ′ = {w′1, w′2, ..., w′R} and R = 3δn/(1−3δ)

for some constant 0 < δ < 1/3. The preference lists of the men and women in I ′ are

constructed below.

5.2. Fair socially stable matchings 78

mi : 〈preference list of mi in I〉 〈all w′j in any order〉 ... (1 ≤ i ≤ n)

m′i : w′i ... (1 ≤ i ≤ R)

wj : 〈preference list of wj in I〉 〈all m′i in any order〉 ... (1 ≤ j ≤ n)

w′j : m′j ... (1 ≤ j ≤ R)

We use the symbol “...” at the end of each preference list to denote a list of the

remaining people of opposite sex in arbitrary order. We add the pair (mi, wj) to A if

wj does not appear in a tie on mi’s preference list in I.

Suppose that M is a complete stable matching in I. Then a socially stable matching M ′

in (I ′, G) can be constructed as follows: M ′ = M ∪ {(m′i, w′i) : 1 ≤ i ≤ R}. Thus

r(M ′) ≤ 3. Conversely suppose I does not admit a complete stable matching in I.

Then for any complete socially stable matching M ′ in (I ′, G), r(M ′) ≥ 1 +R+ 1 > R.

Let N(= R + n) denote the number of men in (I ′, G). Then N = n/(1 − 3δ) so

N − n = 3δN , i.e. R = 3δN . Now assume that min regret smss has a δN -

approximation algorithm J . If I admits a complete stable matching, A returns a socially

stable matching M ′ such that r(M ′) ≤ 3δN . Also if I admits no complete stable

matching then J returns a socially stable matching M ′ such that, given our choice of

R, r(M ′) > R = 3δN . Hence the existence of J would allow (3, 3)-com smti to be

solved in polynomial time, a contradiction unless P=NP.

5.2.4 Sex-equal socially stable matchings

Given an instance (I,G) of smss, a sex-equal socially stable matching is a socially

stable matching M in which the difference d(M) = |cU(M) − cW(M)| is a minimum.

We define sex equal smss to be the problem of finding a sex-equal socially stable

matching given an smss instance. Once again we establish an inapproximability result

for the problem by reducing from an instance of (3, 3)-com smti.

Theorem 5.2.3. It is NP-hard to approximate sex equal smss to within a constant

factor c.

Proof. We consider an instance I of the NP-complete problem (3, 3)-com smti [61]

where the ties occur in the men’s lists only, each tie occurs at the tail of some list

and preference lists are of length at most 3. Let U = {m1,m2, ...,mn} and W =

{w1, w2, ..., wn} be the sets of men and women in I respectively. We construct an

smss instance (I ′, G) as follows: let the men and women in I ′ be U ∪ U ′ ∪ U ′′ and

W∪W ′∪W ′′ respectively, where U ′ = {m′1,m′2, ...,m′R′}, U ′′ = {m′′1,m′′2, ...,m′′R′′},W ′ =

5.2. Fair socially stable matchings 79

{w′1, w′2, ..., w′R′}, W ′′ = {w′′1 , w′′2 , ..., w′′R′′}, R′ = n and R′′ = dcen2. The preference lists

of the men and women in I ′ are constructed below.

mi : Pi W\Pi W ′ W ′′ (1 ≤ i ≤ n)

m′i : w′i ... (1 ≤ i ≤ R′)

m′′i : w′′i ... (1 ≤ i ≤ R′′)

wj : U ′ Qj U ′′ U\Qj (1 ≤ j ≤ n)

w′j : m′j ... (1 ≤ j ≤ R′)

w′′j : m′′j ... (1 ≤ j ≤ R′′)

We use the symbol “...” to denote a list of the remaining people of opposite sex in

arbitrary order. We denote Pi and Qj to be the preference lists of mi and wj in I

respectively. Also where the symbols W ′,W ′′,U ′ and U ′′ appear, the elements of these

sets are listed in arbitrary order in the preference lists. We add the pair (mi, wj) to A

where A = E(G) if wj does not appear in a tie on mi’s preference list in I.

Suppose that M is a complete stable matching in I. Then a socially stable matching

M ′ in (I ′, G) can be constructed as follows:

M ′ = M ∪ {(m′i, w′i) : 1 ≤ i ≤ R′} ∪ {(m′′i , w′′i) : 1 ≤ i ≤ R′′}

Since every man and woman in M is matched to their third choice partner or better,

we can estimate an upper bound for d(M ′) as follows:

cU(M ′) ≤ 3n+R′ +R′′

cW(M ′) ≤ n(R′ + 3) +R′ +R′′

d(M ′) = |cW(M)− cU(M)|
≤ n1R

′

= n2

Conversely suppose I does not admit a complete stable matching in I. Then for any

complete socially stable matching M ′ in (I ′, G) at least one woman in M ′ is matched

to her (R′ + 3 +R′′ + 1)th partner or worse. Thus:

cU(M ′) ≤ n2 +R′ +R′′

cW(M ′) ≥ (R′ + 3 +R′′ + 1) + (n− 1)(R′ + 1) +R′ +R′′

d(M ′) = |cW(M)− cU(M)|
≥ (R′ +R′′ + 4) + (n− 1)(R′ + 1)− n2

≥ 3 +R′′ + nR′ + n− n2

> cn2

5.3. Further restrictions of com smiss 80

Now assume that sex equal smss has a c-approximation algorithm A. If I admits a

complete stable matching, A returns a socially stable matching M ′ such that d(M ′) ≤
cn2. Also if I admits no complete stable matching then A returns a socially stable

matching M ′ such that d(M ′) > cn2. Hence the existence of A would allow (3, 3)-com

smti to be solved in polynomial time, a contradiction unless P=NP.

5.3 Further restrictions of com smiss

In this section we investigate other variants of com smiss that are of practical relevance

or theoretical interest. We present results relating to the complexity of these problems.

In Chapter 4 we investigated two restrictions of the problem based on the number of

acquainted and unacquainted pairs and provided FPT algorithms for both cases. We

consider variants with other restrictions on the social network graph as well as the

underlying SM instance. In Section 5.3.1 we show com smiss to be NP-complete even

under severe restrictions on the degree of the social network graph and the lengths of

the preference lists. In Section 5.3.2 we consider restrictions to the structure of the

social network graph. We define the notions of fully acquainted and fully unacquainted

agents and we show com smiss to be NP-complete under these restrictions. Finally

in Section 5.3.3 we consider the cases where preference lists are derived from so-called

master lists. We we show com smiss to be NP-complete even when one or both sets

of preference lists are derived from master lists.

5.3.1 Restrictions on the degree of the social network graph

We start by showing that com smiss is NP-complete even if each preference list is of

length at most 3 and the social network graph has maximum degree 1. The reduction

and subsequent arguments presented here will serve as a basis of other NP-hardness

proofs in the following subsections. Our proof of this result uses a reduction from a

restricted version of sat. More specifically, let (2,2)-e3-sat denote the problem of

deciding, given a Boolean formula B in CNF in which each clause contains exactly

3 literals and, for each vi ∈ V , each of literals vi and v̄i appears exactly twice in B,

whether B is satisfiable. Berman et al. [14] showed that (2,2)-e3-sat is NP-complete.

Theorem 5.3.1. com smiss is NP-complete, even if each preference list is of length

at most 3 and the social network graph has maximum degree 1.

Proof. Let B be an instance of (2,2)-e3-sat. Let V = {v0, v1, . . . , vn−1} and C =

{c1, c2, . . . , cm} be the sets of variables and clauses respectively in B. Then for each

5.3. Further restrictions of com smiss 81

x4i : y4i c(x4i) y4i+1 (0 ≤ i ≤ n− 1)
x4i+1 : y4i+1 c(x4i+1) y4i+2 (0 ≤ i ≤ n− 1)
x4i+2 : y4i+3 c(x4i+2) y4i+2 (0 ≤ i ≤ n− 1)
x4i+3 : y4i c(x4i+3) y4i+3 (0 ≤ i ≤ n− 1)
psj : zj csj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

qj : c1j c2j c3j (1 ≤ j ≤ m)

y4i : x4i x4i+3 (0 ≤ i ≤ n− 1)
y4i+1 : x4i x4i+1 (0 ≤ i ≤ n− 1)
y4i+2 : x4i+1 x4i+2 (0 ≤ i ≤ n− 1)
y4i+3 : x4i+2 x4i+3 (0 ≤ i ≤ n− 1)
csj : psj x(csj) qj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

zj : p1j p2j p3j (1 ≤ j ≤ m)

Figure 5.3: Preference lists in the constructed instance of com smiss.

x4i+0 y4i+0

x4i+1 y4i+1

x4i+2 y4i+2

x4i+3 y4i+3

c(x4i+0)

c(x4i+1)

c(x4i+2)

c(x4i+3)

qj

c1j c2j c3j

p1j p2j p3j

zj

x(c1j)

x(c2j)

x(c3j)

Figure 5.4: Pictorial representation of the preference lists.

vi ∈ V , each of literals vi and v̄i appears exactly twice in B. (Hence m = 4n
3

.) Also

|cj|= 3 for each cj ∈ C. The idea is to construct an instance (I,G) of com smiss from

B such that each literal in B, each position in B and each cluster in C corresponds to

a man and a woman in I. The preference lists and social network are constructed to

enable us show that B admits a satisfying truth assignment if and only if a complete

socially stable matching in (I,G) can be formed. We generate (I,G) as follows. The set

of men in I is X∪P ∪Q, where X = ∪n−1i=0Xi, Xi = {x4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n−1),

P = ∪mj=1Pj, Pj = {p1j , p2j , p3j} (1 ≤ j ≤ m) and Q = {qj : cj ∈ C}. The set of women

in I is Y ∪ C ′ ∪ Z, where Y = ∪n−1i=0 Yi, Yi = {y4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n − 1),

C ′ = {csj : cj ∈ C ∧ 1 ≤ s ≤ 3} and Z = {zj : cj ∈ C}.

The preference lists of the men and women in I are shown in Figures 5.3 and 5.4. In the

preference list of an agent x4i+r ∈ X (0 ≤ i ≤ n−1 and r ∈ {0, 1}), the symbol c(x4i+r)

5.3. Further restrictions of com smiss 82

denotes the woman csj ∈ C ′ such that the (r + 1)th occurrence of literal vi appears at

position s of cj. Similarly if r ∈ {2, 3} then the symbol c(x4i+r) denotes the woman

csj ∈ C ′ such that the (r− 1)th occurrence of literal v̄i appears at position s of cj. Also

in the preference list of an agent csj ∈ C ′, if literal vi appears at position s of clause

cj ∈ C, the symbol x(csj) denotes the man x4i+r−1 where r = 1, 2 according as this is the

first or second occurrence of literal vi in B. Otherwise if literal v̄i appears at position

s of clause cj ∈ C, the symbol x(csj) denotes the man x4i+r+1 where r = 1, 2 according

as this is the first or second occurrence of literal v̄i in B. Clearly each preference list

is of length at most 3.

The social network graph G is constructed as follows: the vertices are X ∪C ′, and the

edges are {xk, c(xk)} (0 ≤ k ≤ 4n − 1). Clearly no two edges in G are adjacent, and

thus G has maximum degree 1. For each i (0 ≤ i ≤ n − 1), let Ti = {(x4i+r, y4i+r) :

0 ≤ r ≤ 3} and Fi = {(x4i+r, y4i+r+1)} : 0 ≤ r ≤ 3}, where addition is taken modulo 4.

A maximum socially stable matching M in I would contain either Ti (0 ≤ i ≤ n − 1)

or Fi (0 ≤ i ≤ n− 1). Our strategy is to show that, in both cases, the existence of M

would mean that B is satisfiable and vice versa.

We claim thatB is satisfiable if and only if I admits a complete socially stable matching.

For, let f be a satisfying truth assignment of B. Define a complete matching M in I

as follows. For each variable vi ∈ V , if vi is true under f , add the pairs in Ti to M ,

otherwise add the pairs in Fi to M . Now let cj ∈ C. As cj contains a literal that is

true under f , let s ∈ {1, 2, 3} denote the position of cj in which this literal occurs. Add

the pairs (ptj, c
t
j) (1 ≤ t 6= s ≤ 3), (psj , zj) and (qj, c

s
j) to M .

Now suppose that (x4i+r, c(x4i+r)) socially blocksM , where 0 ≤ i ≤ n−1 and 0 ≤ r ≤ 3.

Let csj = c(x4i+r), where 1 ≤ j ≤ m and 1 ≤ s ≤ 3. Then (qj, c
s
j) ∈ M . If r ∈ {0, 1}

then (x4i+r, y4i+r+1) ∈ M , so that vi is false under f . But literal vi occurs in cj, a

contradiction, since literal vi was supposed to be true under f by construction of M .

Hence r ∈ {2, 3} and (x4i+r, y4i+r) ∈M , so that vi is true under f . But literal v̄i occurs

in cj, a contradiction, since literal v̄i was supposed to be true under f by construction

of M . Hence M is socially stable in I.

Conversely suppose that M is a complete socially stable matching in I. We form a

truth assignment f in B as follows. For each i (0 ≤ i ≤ n − 1), M ∩ (Xi × Yi) is a

perfect matching of Xi∪Yi. If M ∩ (Xi×Yi) = Ti, set vi to be true under f . Otherwise

M ∩ (Xi × Yi) = Fi, in which case we set vi to be false under f .

Now let cj be a clause in C (1 ≤ j ≤ m). There exists some s (1 ≤ s ≤ 3) such that

(qj, c
s
j) ∈ M . Let x4i+r = x(csj) for some i (0 ≤ i ≤ n − 1) and r (0 ≤ r ≤ 3). If

r ∈ {0, 1} then (x4i+r, y4i+r) ∈M by the social stability of M . Thus variable vi is true

under f , and hence clause cj is true under f , since literal vi occurs in cj. If r ∈ {2, 3}

5.3. Further restrictions of com smiss 83

then (x4i+r, y4i+r+1) ∈M (where addition is taken modulo 4) by the social stability of

M . Thus variable vi is false under f , and hence clause cj is true under f , since literal

v̄i occurs in cj. Hence f is a satisfying truth assignment of B.

5.3.2 Restrictions on the structure of the social network graph

Another interesting restriction on the social network graph is the case where an agent

is either acquainted with all the agents on his/her preference list or with none of them.

Such a scenario can arise in the context of assigning children to school places. Some

schools involved in the matching schemes may be less concerned about stability and

accept their assigned students while others may be more likely to abandon the matching

for preferred students if offered. In the context of social stability, we can consider all

the schools in the former case as fully unacquainted with the students on their list and

the schools in the latter case as fully acquainted with the students on their list. We

investigate two variants of this model in the sm context.

Define an agent a to be fully acquainted (respectively fully unacquainted) if a forms

an acquainted (respectively unacquainted) pair with every agent on his/her/its list. In

our first variant, each agent is fully acquainted or fully unacquainted. We remark that

if an agent a is fully acquainted (respectively unacquainted) then so is every agent on

a’s preference list. Considering an smiss instance (I,G) with a such restriction, the

underlying smi instance can then be partitioned into two sub-instances I ′ and I ′′ of smi

with A and U corresponding to the set of acceptable pairs in I ′ and I ′′ respectively.

In this variant, socially stable matchings can be of different sizes, as any stable matching

in I ′ can be added to any element of the set of all matchings in I ′′ (including the empty

set) to yield a socially stable matching in I. However finding a maximum socially

stable matching can be done efficiently. Simply find a stable matching in I ′ and union

that with a maximum matching in I ′′. It is straightforward to verify that the resulting

matching will be a maximum socially stable matching in I.

In the second variant (a more general case), we assume that only the members of one

set of agents (say the women) are required to be fully acquainted or fully unacquainted.

In this case we are unable to partition the underlying smi instance into two disjoint sets

because if a woman is fully acquainted, a man mi on her list still could be unacquainted

with a woman on his list. Socially stable matchings can also be of varying sizes in this

context. This can be demonstrated using a similar method to the one outlined in the

first variant. We now show that com smiss is NP-complete in this case.

Theorem 5.3.2. com smiss is NP-complete, even if preference lists are at most 3 and

every woman is either fully acquainted or fully unacquainted.

5.3. Further restrictions of com smiss 84

Proof. We start by considering the reduction shown in Subsection 5.3.1 from (2,2)-

e3-sat to com smiss. We describe a reduction from any instance B of (2,2)-e3-

sat to an instance (I,G) of com smiss with the same set of men and women

and the same preference lists as those of the instance shown in Figure 5.3. We

define the social network graph G by making all women csj (for all 1 ≤ j ≤ m

and 1 ≤ s ≤ 3) fully acquainted with all other women fully unacquainted. Thus

A = {(psj , csj), (qj, csj), (x(csj), c
s
j) : 1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3}.

We claim thatB is satisfiable if and only if I admits a complete socially stable matching.

Considering the first direction, let f be a satisfying truth assignment of B. We define

a complete matching in M in the same way it is defined in the proof of Theorem

5.3.1. Although all csj are fully acquainted in G for 1 ≤ j ≤ m and 1 ≤ s ≤ 3, only

(x4i+r, c(x4i+r)) can socially block M where 0 ≤ i ≤ n − 1 and 0 ≤ r ≤ 3. The pairs

(qsj , c
s
j) cannot block M in the classical sense because qsj appears at the tail of csj ’s

preference list for all 1 ≤ j ≤ m and 1 ≤ s ≤ 3. Also (psj , c
s
j) cannot block M in the

classical sense because csj appears at the tail of psj ’s preference list for all 1 ≤ j ≤ m

and 1 ≤ s ≤ 3. The rest of the arguments presented in Theorem 5.3.1 follow naturally.

Considering the converse case, the same argument presented in the converse direc-

tion of Theorem 5.3.1 holds. The set of potential socially blocking pairs remains

{(x4i+r, c(x4i+r)) : 0 ≤ i ≤ n− 1 ∧ 0 ≤ r ≤ 3} and the converse argument presented in

Theorem 5.3.1 follows naturally.

5.3.3 Restrictions on the ordering of preference lists

Restrictions of com smiss based on the lengths of the preference lists have been con-

sidered in Section 4.6.1. In this section we consider the likely scenario where one or

both sets of preference lists are derived from a global ranking of the concerned agents.

For example, hospitals may derive their preference lists from the academic performance

(expressed as a numerical score) of the residents it finds acceptable. Thus the total

set of residents can be ordered via a master list from which hospitals derive the order

of their preferences over their acceptable residents. We adopt this notion in the social

stability context and define two variants of the problem.

In the first variant we enforce the existence of a master list on one set of preference

lists only (i.e., either men or women) and let the agents of the other set specify their

preference lists arbitrarily. We denote the problem as com smiss-1ml. We present

the following theorem concerning the computational complexity of this problem.

Theorem 5.3.3. com smiss-1ml is NP-complete.

5.3. Further restrictions of com smiss 85

x4i : y4i c(x4i) y4i+1 (0 ≤ i ≤ n− 1)
x4i+1 : y4i+1 c(x4i+1) y4i+2 (0 ≤ i ≤ n− 1)
x4i+2 : y4i+3 c(x4i+2) y4i+2 (0 ≤ i ≤ n− 1)
x4i+3 : y4i c(x4i+3) y4i+3 (0 ≤ i ≤ n− 1)

psj : zj csj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

qsj : csj t1j t2j (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

y4i : x4i x4i+3 (0 ≤ i ≤ n− 1)
y4i+1 : x4i x4i+1 (0 ≤ i ≤ n− 1)
y4i+2 : x4i+1 x4i+2 (0 ≤ i ≤ n− 1)
y4i+3 : x4i+2 x4i+3 (0 ≤ i ≤ n− 1)

csj : psj x(csj) qsj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

zj : p1j p2j p3j (1 ≤ j ≤ m)

tsj : q1j q2j q3j (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 2)

Figure 5.5: Preference lists in the constructed instance of com smiss-2ml.

Proof. Once again we adopt the reduction used in the proof of Theorem 5.3.1 by

modifying the generated com smiss instance I. We construct a master list consisting

of all the men in I and can thus consider I as a com smiss-1ml instance. We define

the master list P = 〈p11 p21 p31 p12 p22 p32 ... p1m p2m p3m x0 x1 ... xn−1 q1 q2 ... qm〉.
The rest of the proof for Theorem 5.3.1 will then follow naturally.

In the second variant master lists are used to derive both sets of preference lists thus

forming com smiss-2ml. It is again unlikely that this variant can be solved in poly-

nomial time, as we now demonstrate.

Theorem 5.3.4. com smiss-2ml is NP-complete.

Proof. Similar arguments to those used in the proof of Theorem 5.3.1 hold for this

proof. Firstly we modify the reduction from an instance B of (2,2)-e3-sat used in

the proof of Theorem 5.3.1. Let V = {v0, v1, . . . , vn−1} and C = {c1, c2, . . . , cm} be

the sets of variables and clauses respectively in B. Then for each vi ∈ V , each of the

literals vi and v̄i appears exactly twice in B. (Hence m = 4n
3

.) Also |cj|= 3 for each

cj ∈ C. Next we form an instance I of com smiss-2ml as follows. The set of men in I is

X∪P ∪Q, where X = ∪n−1i=0Xi, Xi = {x4i+r : 0 ≤ r ≤ 3}, P = ∪mj=1Pj, Pj = {p1j , p2j , p3j}
and Q = {q1j , q2j , q3j : 1 ≤ j ≤ m}. The set of women in I is Y ∪ C ′ ∪ Z ∪ T , where

Y = ∪n−1i=0 Yi, Yi = {y4i+r : 0 ≤ r ≤ 3}, C ′ = {csj : cj ∈ C∧1 ≤ s ≤ 3}, Z = {zj : cj ∈ C}
and T = {t1j , t2j : 1 ≤ j ≤ m}.

The preference lists of the men and women in I are shown in Figure 5.5. We carry

over the same definitions for c(x4i+r) and x(csj) from the proof of Theorem 5.3.1. Both

sets of preference lists can be seen to be derived from master lists. We construct the

5.4. Minimum socially stable matchings 86

master lists of women and men denoted PW and PM as follows. Let

PW = 〈z1 z2 ... zm P0 P1 ... Pn−1 t11 t21 t12 t22 ... t1m t2m〉
where Pi = 〈y4i c(x4i) y4i+1 c(x4i+1) c(x4i+3) y4i+3 c(x4i+2) y4i+2〉

It is easy to see how all the men’s preference lists from Figure 5.5 can be derived from

PW .

PM = 〈p11 p21 p31 p12 p22 p32 ... p1m p2m p3m x0 x1 ... xn−1

q11 q21 q31 q12 q22 q32 ..., q1m q2m q3m〉

It is easy to see how all the women’s preference lists from Figure 5.5 can be derived

from PM. The social network graph G is constructed as follows: the vertices are X∪C ′,
and the edges are {xk, c(xk)} (0 ≤ k ≤ 4n− 1).

We claim thatB is satisfiable if and only if I admits a complete socially stable matching.

Similar arguments to those used in the proof of Theorem 5.3.1 hold for the proof of this

claim. The only difference is the construction of the complete socially stable matching

from a satisfying truth assignment. In the proof of Theorem 5.3.3, we had (qj, c
s
j) ∈M

for each cj ∈ C where cj contained a literal at position s ∈ {1, 2, 3} that is true. Here

we add (qsj , c
s
j) to M . For the other two men qs

′
j and qs

′′
j (where {s, s′, s′′} = {1, 2, 3}),

we assume without loss of generality that s′ < s′′. We add (qs
′
j , t

1
j) and (qs

′′
j , t

2
j) to M ,

thus ensuring that M is a complete socially stable matching. The rest of the arguments

presented in Theorem 5.3.1 follow naturally.

5.4 Minimum socially stable matchings

In this section we investigate the problem min smiss-d which is defined as follows.

Given an smiss instance (I,G) and an integer k, decide whether I admits a socially

stable matching of size at most k. We reduce from the minimum maximal matching

problem which is defined as follows. Given a graph G and a positive integer k, decide

whether G admits a maximal matching M such that |M |≤ k. minimum maximal

matching is known to be NP-complete even for bipartite graphs where every left

hand vertex has degree 2 and every right hand vertex has degree of exactly 3 [41].

Theorem 5.4.1. min smiss-d is NP-complete.

Proof. Let (G, k) be an instance of minimum maximal matching where every left

hand vertex has degree 2 and every right hand vertex has degree at most 3. We define

the sets of left hand and right hand side vertices in G as U = {u1, u2, ..., un1} and

W = {w1, w2, ..., wn2} respectively. For each vertex ui ∈ U , let wi,1 and wi,2 be the

5.4. Minimum socially stable matchings 87

two neighbours of ui in W . Without loss of generality if wi,1 = wr and wi,2 = ws,

suppose r < s. For each vertex wj ∈ W , let uj,1, uj,2 and uj,3 be the three neighbours

of wj in W . Without loss of generality if uj,1 = ur, uj,2 = us and uj,3 = ut, suppose

r < s < t. The idea is to construct an instance (I,G′) of min smiss from G such that

the preference lists in I would be determined (in part) by the edges in G. We can then

show that, for a specific value k′, G has a maximal matching of size ≤ k if and only if

(I,G′) has a socially stable matching of size ≤ k′.

We construct (I,G′) from G as follows. The set of men in I is U ′ ∪ Z where U ′ =

{u1i , u2i : 1 ≤ i ≤ n1} and Z = {z1j , z2j , z3j : 1 ≤ j ≤ n2}. The set of women in I

is W ′ ∪ X ∪ Y where W ′ = {w1
j , w

2
j , w

3
j : 1 ≤ j ≤ n2}, X = {x1, x2, ..., xn2} and

Y = {y1, y2, ..., yn1}. We define relationships between men in U ′ and women in W ′

based on the corresponding vertices in G as follows. Given r ∈ {1, 2} and p ∈ {1, 2, 3},
we denote by w(uri) the woman wpj where wj = wi,r and ui = uj,p. Also given q ∈ {1, 2}
and s ∈ {1, 2, 3}, we denote by u(wsj) the man uqi where ui = uj,s and wj = wi,q. The

preference lists of the men and women are shown below.

uri : yi w(uri) ... (1 ≤ i ≤ n1 ∧ 1 ≤ r ≤ 2)

zsj : xj wsj (1 ≤ j ≤ n2 ∧ 1 ≤ s ≤ 3)

wsj : zsj u(wsj) ... (1 ≤ j ≤ n2 ∧ 1 ≤ s ≤ 3)

xj : z1j z2j z3j (1 ≤ j ≤ n2)

yi : u1i u2i (1 ≤ i ≤ n1)

In the preference list of uri , the symbol ... means everyone in the set {w1
a, w

2
a, w

3
a, w

1
b ,

w2
b , w

3
b}\{w(uri)}, where wa = wi,1 and wb = wi,2, listed in arbitrary strict order. Also in

the preference list of wsj , the symbol ... means everyone in the set {u1a, u2a, u1b , u2b , u1c , u2c}
\{u(wsj)}, where ua = uj,1, ub = uj,2 and uc = uj,3, listed in arbitrary strict order. We

define the set of unacquainted pairs to be

U = {(u1i , yi) : 1 ≤ i ≤ n1} ∪ {(z1j , xj), (z2j , xj) : 1 ≤ j ≤ n2}

All other acceptable pairs are acquainted. Let k′ = k+n1 + 3n2. We claim that G has

a maximal matching of size ≤ k if and only if I has a socially stable matching of size

≤ k′.

Suppose G has a maximal matching M such that |M |≤ k. We construct a matching M ′

in (I,G′) as follows. Let i (1 ≤ i ≤ n1) be given. Suppose ui is matched and (ui, wj) ∈
M . Suppose wj = wi,1. Add (u1i , w(u1i)) and (u2i , yi) to M ′. Similarly if wj = wi,2 add

(u2i , w(u2i)) and (u1i , yi) to M ′. Now suppose ui is unmatched in M . Add (u1i , yi) to

5.4. Minimum socially stable matchings 88

M ′ (leaving u2i unmatched in M ′). Now let j (1 ≤ j ≤ n2) be given. Suppose wsj is

matched in M ′ for some s (1 ≤ s ≤ 3). Then wpj and wqj are unmatched in M ′ where

{1, 2, 3} = {p, q, s}. Add (zpj , w
p
j) to M ′ and (zqj , w

q
j) to M ′. Also add (zsj , xj) to M ′.

Now suppose wsj is unmatched in M ′ for some s (1 ≤ s ≤ 3). Add (z1j , xj), (z2j , w
2
j) and

(z3j , w
3
j) to M ′ (leaving w1

j unmatched in M ′). Then |M ′|≤ |M |+n1+3n2 ≤ k+n1+3n2.

Thus |M ′|≤ k′.

We claim that M ′ is socially stable in I. Suppose not. The pair (u2i , yi) cannot socially

block M ′ as yi is matched in M ′ for all i (1 ≤ i ≤ n1). The pair (z3j , xj) cannot socially

block M ′ as xj is matched in M ′ for all j (1 ≤ j ≤ n2). So no zsj can be part of

any socially blocking pair as every zsj is matched in M ′ for all j (1 ≤ j ≤ n2) and

s (1 ≤ s ≤ 3). Also xj cannot be part of a socially blocking pair as xj is matched in

M ′ for all j (1 ≤ j ≤ n2). Similarly yi cannot be part of a socially blocking pair as

yi is matched in M ′ for all i (1 ≤ i ≤ n1). Now suppose (uri , w
s
j) socially blocks M ′.

Then uri is unmatched in M ′ since uri , if matched in M ′, never has worse than his 2nd

choice. Also wsj is unmatched in M ′ for a similar reason. Thus ui is unmatched in M

and wj is unmatched in M and {ui, wj} ∈ E(G), a contradiction to the maximality of

M in G.

Conversely suppose M ′ is a socially stable matching such that |M ′|≤ k′. The following

facts are easy to establish.

Fact 1. yi is matched in M ′ for all i (1 ≤ i ≤ n1) for otherwise (u2i , yi) socially blocks

M ′ in I.

Fact 2. xj is matched in M ′ for all j (1 ≤ j ≤ n2) for otherwise (z3j , xj) socially blocks

M ′ in I.

Fact 3. zsj is matched in M ′ for all j (1 ≤ j ≤ n2) and s (1 ≤ s ≤ 3) for otherwise

(zsj , w
s
j) socially blocks M ′ in I.

Suppose (uri , w
s
j) ∈ M ′. Add (ui, wj) to M . For each i (1 ≤ i ≤ n1) there exists at

most one r (1 ≤ r ≤ 2) such that uri is matched to a wsj for some j (1 ≤ j ≤ n2)

and s (1 ≤ s ≤ 3). by Fact 1. Also for each j (1 ≤ j ≤ n2), there exists at most

one s (1 ≤ s ≤ 3) such that wsj is matched to a uri for some i (1 ≤ i ≤ n1) and

r (1 ≤ r ≤ 2) by Facts 2 and 3. Thus M is a matching in G. Also Facts 1, 2 and

3 imply that |M |= |M ′|−n1 − 3n2 ≤ k′ − n1 − 3n2. Thus |M |≤ k. Finally suppose

M is not maximal. Then there exists some (ui, wj) ∈ G such that ui and wj are both

unmatched in M . Thus there exists some uri that is unmatched in M ′ (by Fact 1) and

there exists some wsj that is unmatched in M ′ (by Facts 2 and 3). Since uri finds wsj

acceptable (uri , w
s
j) socially blocks M ′ in I, a contradiction to the social stability of M ′

in I.

5.5. Further hardness results for smiss 89

5.5 Further hardness results for smiss

In this section we present further hardness results relating to smiss. Once again we

consider problems that have previously been investigated in other variants of matching

problems involving preferences. Given an instance I of smiss, we define a man-woman

pair mi, wj to be a socially stable pair if (mi, wj) ∈M for some socially stable matching

M in I. Firstly we investigate the problem ss pair-smss which is defined as follows.

Given an smss instance (I,G) and a pair (m,w) in I, determine whether (mi, wj) is a

socially stable pair in (I,G).

Theorem 5.5.1. ss pair-smss is NP-complete.

Proof. We reduce from com smiss, the problem of deciding whether a complete socially

stable matching exists in an smiss instance. Let (I,G) be an smiss instance with the

sets of men and women denoted by U = {m1,m2, ...,mn} and W = {w1, w2, ..., wn}
respectively. We construct an ss pair-smss instance (I ′, G′) from (I,G) with the set

of men and women being U ′ = U ∪ {m0} and W ′ = W ∪ {w0} respectively.

We denote by Pi and Qj as the preference lists of mi and wj in I respectively. In the

preference list of mi, we use the symbol ... to denote the set of women in W not in Pi.

Similarly in the preference list of wj, we use the symbol ... to denote the set of men

in U not in Qj. The preference lists of the men and women in I ′ are shown below.

mi :Pi w0 ... (0 ≤ i ≤ n1)

m0 :w1 w2 ... wn w0

wj :Qj m0 ... (0 ≤ j ≤ n2)

w0 :m1 m2 ... mn m0

We construct the social network graph G′ with edge-set E(G′) = E(G) ∪ {(m0, wj) :

0 ≤ j ≤ n}. We claim that I admits a complete socially stable matching if and only if

(m0, w0) is a socially stable pair in I ′. Let M be a complete socially stable matching

in (I,G). We construct a matching M ′ = M ∪ {(m0, w0)} in (I ′, G′). It is easy to see

that M ′ is socially stable in (I ′, G′) as all the men (respectively women) in M have

better partners than w0 (respectively m0).

Conversely, consider a socially stable matching M ′ in (I ′, G′) such that (m0, w0) ∈M ′.

Let M = M ′\{(m0, w0)}. We claim that M is a complete socially stable matching in

I. If M were not complete and some woman wj was unmatched in M , then (m0, wj)

would socially block M ′, a contradiction to our assumption. Similarly if some pair

(mi, wj) socially blocks M in I, then (mi, wj) would also socially block M ′ in I ′ as G

is a subgraph of G′ , a contradiction to our initial assumption.

5.6. The roommates problem under social stability 90

We also consider the problem of determining whether a given man (or woman) is part

of at least one socially stable matching. We define the problem member smiss as

follows: given an smiss instance (I ′, G′), determine whether a man mi belongs to some

socially stable matching in (I ′, G′).

Theorem 5.5.2. member smiss is NP-complete.

Proof. We again reduce from com smiss, the problem of deciding whether a com-

plete socially stable matching exists in an smiss instance. Let (I,G) be an smiss

instance with the sets of men and women denoted by U = {m1,m2, ...,mn1} and

W = {w1, w2, ..., wn2} respectively. We construct an instance of member smiss (I ′, G′)

from (I,G) with the sets of men and women being U ′ = U ∪{m0} and W ′ = W ∪{w0}
respectively.

The same meaning for Pi, Qj and the symbol ... are carried over from the proof

of Theorem 5.5.1. We construct the social network graph G′ with edge-set E(G′) =

E(G) ∪ {(mi, w0) : 0 ≤ i ≤ n1}. The preference lists of the men and women in I ′ are

shown below.

mi :Pi w0 ... (0 ≤ i ≤ n1)

m0 :w0

wj :Qj ... (0 ≤ j ≤ n2)

w0 :m1 m2 ... mn m0

We claim that (I,G) admits a complete socially stable matching if and only if m0

belongs to some socially stable matching in (I ′, G′). Let M be a complete socially

stable matching in (I,G). We construct a matching M ′ = M ∪ {(m0, w0)} in (I ′, G′).

Again it is easy to see that M ′ is socially stable in (I ′, G′).

Conversely, consider a socially stable matching M ′ in (I ′, G′) such that m0 is matched

in M . Then (m0, w0) ∈ M ′, let M = M ′\{(m0, w0)}. We claim that M is a complete

socially stable matching in (I,G). The arguments for the proof are similar to the

corresponding argument presented in the proof of Theorem 5.5.1.

5.6 The roommates problem under social stability

5.6.1 Introduction

So far we have considered social stability in matching problems involving two sets of

agents (smi and hr). In this section we consider social stability in the Stable Room-

mates (sr) context. As defined in Chapter 2, an instance I of sr consists of a set of

5.6. The roommates problem under social stability 91

agents R = {a1, a2, ..., an}. Each agent lists all the other agents in R in strict order

of preference. When agents’ preference lists are allowed to be incomplete, the problem

becomes the Stable Roomates problem with Incomplete lists (sri). A matching is a

set of agent pairs such that each agent appears exactly once. A pair {ai, aj} blocks a

matching M or forms a blocking pair with respect to M if ai and aj prefer each other

to their partners in M . A matching is stable if it admits no blocking pair. A solution

to an instance of sr is a stable matching.

In this section, we consider social stability in the sri context. We investigate the

problem of finding a socially stable matching of maximum size and we describe efficient

algorithms for some special cases of the problem. We retain the notion of acquainted

and unacquainted pairs defined for smiss in the sri case. We define an sriss instance

(I,G) as one consisting of an sri instance I and a social network graph G. The graph G

consists of nodes representing the agents in I and edges representing pairs of agents

that are acquainted. We denote by U and A the sets of unacquainted and acquainted

pairs respectively. A socially blocking pair of a matching M in this context is one that

blocks M in the classical sense and is acquainted (i.e., is contained in A). Thus, as is

the case with smiss, only acquainted pairs can socially block a matching. It has already

been shown that the problem of finding a socially stable matching or reporting that

none exists given an sri instance is NP-complete [19] 1. We observe that an instance of

sriss can admit socially stable matchings of various sizes. This can be inferred from an

identical observation made for the smiss case (see Chapter 4) which can be considered

as a special case of sriss. We define max sriss as the problem of finding a maximum

socially stable matching or reporting that no socially stable matching exists given an

sriss instance. Given that finding a socially stable matching or reporting that none

exists given an sri instance is NP-complete [19], it follow that max sriss is NP-hard.

Although the general max sriss problem is NP-hard, we can consider special cases

that are of practical interest (just as we did in the hrss and smiss cases). We observe

that for special cases where the sizes of U or A have particular values, the problem of

finding a maximum socially stable matching becomes polynomially solvable. If |U |= 0

(i.e., A = A) then the problem becomes one of finding a maximum stable matching

in the classical sri problem, which can be solved in polynomial time [50] as all stable

matchings are of the same size [38, Theorem 4.5.2]. If |A|= 0 (i.e., U = A) then

every matching is socially stable and the problem becomes one of finding a maximum

matching in a non-bipartite graph (which also can be solved in polynomial time [94]).

In the following sections, we consider the cases where U and A are of constant size. We

show that under each of these restrictions, max sriss can again be solved in polynomial

time.

1The authors referred to unacquainted pairs as free edges.

5.6. The roommates problem under social stability 92

5.6.2 max sriss with a constant number of unacquainted pairs

We consider the problem of finding a maximum socially stable matching or reporting

that none exists given an sriss instance when |U |= k for some constant k. Given

S ⊆ U we define I\S as an sriss instance obtained by deleting all the pairs in S from

I. We begin by proving an analogue of Lemma 4.6.5 in the smiss case.

Lemma 5.6.1. Let (I,G) be an instance of sriss. Let M be a socially stable matching

in (I,G). Then there exists a set of unacquainted pairs U ′ ⊆ U such that M is stable

in I ′ = I\U ′. Conversely suppose that M is a stable matching in I ′ = I\U ′ for some

U ′ ⊆ U . Then M is socially stable in (I,G).

Proof. Suppose M is socially stable in (I,G). Let U ′ = U\M . We claim that M is

stable in I ′ = I\U ′. Suppose {ai, aj} blocks M in I ′. Then {ai, aj} /∈ M . The edges

in I ′ are those in A∪ (M ∩U) but {ai, aj} /∈M ∩U , thus {ai, aj} ∈ A. Hence {ai, aj}
socially blocks M in (I,G), a contradiction.

Conversely, suppose that M is stable in I ′ = I\U ′ for some U ′ ⊆ U . We claim that

M is socially stable in (I,G). Suppose that {ai, aj} socially blocks M in (I,G). Then

{ai, aj} ∈ A so {ai, aj} /∈ U . Thus {ai, aj} is a pair in I ′ and so {ai, aj} blocks M in

I ′, a contradiction.

By using the technique outlined in Chapter 4 for the hrss case - considering all subsets

U ′ ⊆ U , forming I ′, finding a stable matching in each such I ′ (if one exists) and keeping

a record of the maximum stable matching found, we obtain a maximum socially stable

matching in (I,G). If no stable matching exists in all the instances I ′ created, then no

socially stable matching exists in the instance I. This discussion leads to the following

theorem.

Theorem 5.6.2. Given an instance (I,G) of sriss, we can in O(2km) time find a

maximum socially stable matching or report that none exists, where m is the number

of acceptable pairs and k is the number of unacquainted pairs.

Proof. The proof is analogous to the one used in Theorem 4.6.6 of Chapter 4.

5.6.3 max sriss with a constant number of acquainted pairs

We now consider the problem of finding a maximum socially stable matching or re-

porting that none exists given an sriss instance when |A|= k for some small integer

k. Once again, the approach is an adaption of the one described for this problem in

the hrss case (see Chapter 4). Given the set of acquainted pairs A = {e1, e2, ..., ek}

5.6. The roommates problem under social stability 93

we construct a tree T with each node representing pairs ei = {asi , ati} in A for all

i (1 ≤ i ≤ k) where without loss of generality si < ti. The tree T of depth k is

constructed with all nodes at depth i labelled ei+1 (i ≥ 0). There are left and right

branches below ei. Each branch corresponds to a condition placed on asi or ati with

respect to a matching M . The left branch below ei corresponds to the condition that

asi is matched in M and prefers his partner to ati while the right branch below ei

corresponds to the condition that ati is matched in M and is either matched to asi
or prefers his partner to asi . Satisfying at least one of these conditions ensures that

{asi , ati} does not socially block M . The tree is constructed in this manner with the

nodes at depth k−1, labelled ek, branching in the same way to dummy leaf nodes ek+1

(not representing acquainted pairs).

A path P from the root node e1 to a leaf node ek+1 will visit all pairs in A exactly

once. Every left branch in P gives a left condition and every right branch gives a right

condition. Let R′ be the set of agents involved in left and right conditions in P . It

is possible that an agent could be involved in more than one condition, and indeed in

both left and right conditions. Given a matching M , enforcing all the conditions along

P can be achieved by first deleting all pairs from the instance I that could potentially

violate these conditions. So if some left condition along P states that agent asi must

be matched in M to an agent he prefers to ati then asi ’s preference list is truncated

starting with ati . If some right condition states that an agent ati must be matched in

M to an agent no worse than asi then ati ’s preference list is truncated starting from

the agent immediately following asi . After performing these truncations based on the

conditions along P , a new sriss instance I ′ is obtained.

Lemma 5.6.3. If M is a matching in I ′ that is computed at the leaf node of a path P

and all agents in R′ are matched in M then M is a socially stable matching in (I,G).

Proof. The proof is analogous to the one used in Lemma 4.6.7 of Chapter 4.

With I ′ obtained due the truncations carried out by satisfying conditions along a path

P from the root node to a leaf node, we then seek to obtain a matching in which all the

agents in R′ are matched. We construct a graph G′ consisting of nodes representing

the agents in I ′ and weighted edges representing the acceptable pairs in I ′. We mark

all the nodes representing the agents in R′ as red nodes with the remaining nodes

uncoloured. We place weights on the edges as follows: (i) an edge between a red node

and an uncoloured node is given a weight of 1; (ii) an edge between two red nodes is

given weight of 2; (iii) an edge between two uncoloured nodes is given a weight of 0.

We then find a maximum weight matching M ′ in the resulting weighted graph G′. Let

wt(M ′) denote the weight of a matching M ′ in G′. Then

5.6. The roommates problem under social stability 94

wt(M ′) = |{ai ∈ R′ : ai is matched in M ′}|≤ |R′|

Moreover wt(M ′) = |R′| if and only if every agent in R′ is matched in M ′. For such

a matching M ′ in G′, a maximum cardinality matching M ′′ can be obtained in G′ by

continuously augmenting M ′ until no augmenting path can be found. Since any node

already matched in M ′ will remain matched in M ′′ it follows that all the agents in R′

will be matched in M ′′ and such a matching, by Lemma 5.6.3, will be socially stable

in (I,G). If however, wt(M ′) < |R′| then some agent in R′ remains unmatched in any

maximum matching in G′ thus introducing the possibility of a socially blocking pair

of M ′ in (I,G). In this case, P is ruled as infeasible and another path is considered,

otherwise P is called feasible.

There are 2k paths from the root node to leaf nodes in the tree T . The following

proposition is important to our result.

Lemma 5.6.4. If (I,G) admits a socially stable matching, there must exist at least

one feasible path in T .

Proof. The proof is analogous to the one used in Lemma 4.6.8 of Chapter 4.

To generate a maximum socially stable matching M if one exists in an instance (I,G)

of sriss, all 2k paths through T from the root node to leaf nodes are considered with a

record kept of the largest matching M (satisfying the constraints of Proposition 5.6.3)

computed at the leaf node of each feasible path. M is then the desired matching as

the following proposition shows

Proposition 5.6.5. If M is a matching obtained from the process described above, M

is a maximum socially stable matching in (I, G).

Proof. The proof is analogous to the one used in Proposition 6.9 of Chapter 4.

The above proposition leads to the following main result of this subsection.

Theorem 5.6.6. Given an instance (I,G) of sriss where the set A of acquainted pairs

satisfies |A|= k, a maximum socially stable matching can be generated in O(2k
√
nm

logn n
2/m) time where n is the number of agents and m is the number of acceptable

pairs.

Proof. The time complexity is dominated by the problem of finding a maximum weight

matching in a general graph. This can be solved in O(
√
nm logn n

2/m) time [47]. This

needs to be done 2k times.

5.6. The roommates problem under social stability 95

Following the results in Theorems 5.6.2 and 5.6.6, we conclude this section with the

theorem below showing the existence of FPT algorithms for max sriss under two

different parameterisations.

Corollary 5.6.7. max sriss is in FPT with parameter k where k is the number of

unacquainted pairs.

Corollary 5.6.8. max sriss is in FPT with parameter k where k is the number of

acquainted pairs.

5.6.4 2-max sriss

In the max smiss problem, we have shown that when the lengths of the residents’

preference lists are at most 2, the problem can be solved in polynomial time. The

case of short preference list is significant as some applications of matching problems

tend to limit the lengths of the preference lists for one or both sets of agents. Another

motivation for considering matching problems with bounded-length preference lists is

the observation that the problems tend to switch from polynomial solvability to NP-

hardness at some preference list length. For example we know that (2, ∞)-max smiss

in solvable in polynomial time but (3, ∞)-max smiss is NP-hard (see Theorem 4.4.2).

In this subsection we consider similar restrictions in the roommates case. We denote by

k-max sriss the problem of finding a maximum socially stable matching or reporting

that no socially stable matching exists in an sriss instance in which the preference

lists are of length at most k. We present a polynomial-time algorithm for 2-max sriss

in the knowledge that 3-max sriss is NP-hard (a consequence of Theorem 4.4.2).

Before exploring the algorithm we identify three types of socially blocking pairs that

may exist in the 2-max sriss context. Consider two agents ai and aj in a 2-max

sriss instance (I,G) such that {ai, aj} ∈ A. For a given matching M in (I,G), if

{ai, aj} /∈M , then {ai, aj} can form a socially blocking pair of one of three types with

respect to M in I. (i) In a type-1 socially blocking pair, aj is first on ai’s list and

ai is first on aj’s list. (ii) In a type-2 socially blocking pair ai is unmatched in M

and aj prefers ai to M(aj). (iii) In a type-3 socially blocking pair both ai and aj are

unmatched in M .

The first phase of the algorithm involves identifying agent pairs that must be matched

in any socially stable matching. Specifically if two agents ai and aj appear first on

each others’ preference lists and form an acquainted pair then they must be matched

to each other in any socially stable matching. We simply add them to the final matching

produced and remove them from the instance. This process continues until no such

pair exists.

5.6. The roommates problem under social stability 96

In the second phase of the algorithm we generate a graph G′ from the resulting in-

stance I ′ (where the vertices and edges represent agents and acceptable pairs respec-

tively) and find a maximum matching M ′ in G′. Connected components of G′ are paths

and cycles.

Finally in the third phase, we remove certain socially blocking pairs which may still

exist in M ′. At this stage only type-2 blocking pairs can potentially be present in

M ′. We attempt to satisfy such blocking pairs by assigning the agents involved to each

other. For example if {ai, aj} forms a type-2 blocking pair with respect to M ′ such that

ai is unmatched in M ′, if ak = M ′(aj) we remove {aj, ak} from M ′ and add {ai, ak} to

M ′. We then mark ak as visited. We continue to satisfy these blocking pairs in a similar

way by assigning the agents involved to each other. If an agent previously marked as

visited is involved in a type-2 blocking pair again, we call the sequence of blocking

pairs that were satisfied between the previous and current occurrence of such an agent

an odd-length cycle of blocking pairs. In such a cycle a type-2 blocking pair will always

exist with respect to any maximal matching in the cycle. An example of such a cycle

is shown in Figure 5.6 in which all pairs are acquainted. If any two of the three agents

are matched to each other, the resulting matching would admit a type-2 blocking pair.

If such a cycle is found, the instance is reported as unsolvable. Otherwise all type-2

blocking pairs with respect to M ′ will be satisfied. The algorithm finally reports the

union of M ′ and the set of pairs removed in Phase 1 of the algorithm. Algorithm 5.1

describes the full 2-max sriss-alg algorithm.

a1 : a2 a3

a2 : a3 a1

a3 : a1 a2
Figure 5.6: A cycle of type-2 blocking pairs

We now show that the algorithm produces a maximum socially stable matching should

one exist. Firstly, it is easy to see that phases 1 and 2 terminate. As for phase 3,

every time a blocking pair is satisfied both agents involved become better off with

one previously matched agent becoming unmatched. This overall improvement can

only occur a finite number of times before no such blocking pair can be found or an

odd-length cycle of type-2 blocking pairs is found.

Lemma 5.6.9. If a matching is returned by 2-max sriss-alg it is socially stable in

(I,G).

Proof. Suppose the matching M produced by 2-max sriss-alg is not socially stable

in (I,G). Then some pair {ai, aj} ∈ A must form a type-1, 2 or 3 socially blocking

pair with respect to M in (I,G).

5.6. The roommates problem under social stability 97

Algorithm 5.1 2-max sriss-alg

1: /* Phase 1 */
2: M := {};
3: while some pair {ai, aj} ∈ A exists where both appear first on each other’s list do
4: M = M ∪ {{ai, aj}};
5: remove the pair {ai, aj} from the instance;
6: /* Phase 2 */
7: construct G′;
8: M ′ := maximum matching in G′;
9: /* Phase 3 */

10: while some type-2 blocking pair {ai, aj} ∈ A exists such that ai is matched in M ′ do
11: if aj is marked as visited then
12: return with status: unsolvable;
13: mark M ′(ai) as visited ;
14: M ′ := M ′\{{ai,M(ai)}};
15: M ′ := M ′ ∪ {{ai, aj}};
16: return M ∪M ′;

Case (i): {ai, aj} is a type-1 blocking pair. This case satisfies the loop condition in

Phase 1 and thus should never arise once Phase 1 has terminated.

Case (ii): {ai, aj} is a type-2 blocking pair where ai is unmatched in M and aj prefers

ai to M(aj). This case satisfies the loop condition in Phase 3 and thus should never

arise once Phase 3 has terminated.

Case (iii): {ai, aj} is a type-3 blocking pair where ai and aj are unmatched in M . Such

a blocking pair could not exist after phase 2 of the algorithm. Thus it must have been

created due to some step in phase 3. Phase 3 iterates when an even-length path or an

odd-length cycle exists. In each of these components only one vertex is unmatched in

M ′. Furthermore any switch caused by Phase 3 still leaves only one vertex unmatched,

thus a contradiction.

Since (i) by Lemma 5.6.9, the matching produced is a socially stable matching, (ii)

the pairs removed in Phase 1 will belong to all socially stable matchings, (iii) M ′ is

a maximum matching in G′ and (iv) Phase 3 never reduces the size of the matching,

it follows that the matching produced by the algorithm is a maximum socially stable

matching in (I,G).

The complexity of the algorithm is dominated by Phase 2. The complexity of the

algorithm for finding a maximum matching in G′ is O(m) where m is the number of

acceptable pairs. This is possible as G′ consists of only cycles and paths which can be

iterated over in linear time. We have thus proved the following theorem.

Theorem 5.6.10. Given an instance (I,G) of 2-max sriss, Algorithm 2-max sriss-alg

5.7. Conclusion 98

generates a maximum socially stable matching or reports that no socially stable match-

ing exists in O(m) time, where m is the number of acceptable pairs.

5.7 Conclusion

We have presented a wide range of algorithmic results relating to finding various types

of socially stable matchings in both two-sided and one-sided matching problems. Al-

though a majority of the results indicate NP-hardness, we still consider it worthwhile

adopting social stability as a solution criterion in practice. Efficient algorithms for

various special cases have been shown. Moreover the empirical evaluations presented

in Chapter 4 demonstrate the practicality of the approximation algorithms presented.

99

Chapter 6

Profile-based optimal matchings in

the Student/Project Allocation

problem

6.1 Introduction

In Section 2.6 we introduced the Student/Project Allocation problem (spa) and gave

some motivation for studying spa and its variants. Although the spa problem finds its

main application in the academic context where we seek to match students to individual

or group projects, it can also be used to solve other allocation problems having the same

structure or characteristics such as the assignment of employees to posts in a company

where available posts are offered by various departments. We also presented a review

of the current literature with respect to spa in Section 2.6. A considerable amount

of the prior work in this area is based on either efficient algorithms for finding stable

matchings in spa problems involving two-sided preferences, or integer programming

techniques for spa variants involving other optimality criteria. In the case of one-

sided preference lists (which we have shown to be of practical relevance), the notion

of stability becomes irrelevant. Other optimality criteria based on the profile of a

matching, can be considered

We highlight some major approaches for solving these profile-based optimal spa prob-

lems and highlight their drawbacks, as follows:

1. Using algorithms for the well-known Capacitated House Allocation problem with

Ties (chat) [54, 93, 110, 48]. While efficient algorithms for this problem exist,

such algorithms require restricting spa to cases where lecturer upper or lower

6.2. Preliminary definitions 100

quotas are not considered. In scenarios where load balancing and load capping

are important, this approach becomes infeasible.

2. Using algorithms for the Minimum Cost Maximum Flow problem (mcmf) [5, 82,

116]. While these approaches find profile-based optimal matchings, they suffer

from scalability issues due to exponentially-large edge weights that arise due to

their cost functions.

3. Using integer programming [10, 113, 109, 70] and constraint programming [25,

112] models to solve spa problems. While these techniques are very flexible and

may cater for a wide variety of applications, they have theoretically exponential

time complexities. This, as we demonstrate later, may translate to unscalable

solutions in practice.

In this chapter, we begin to address some of these drawbacks. We model spa as a

network flow problem and describe a modified augmenting path algorithm for finding a

maximum flow which can then be transformed to a profile-based optimal spa matching.

This approach avoids the use of large edge weights and introduces greater flexibility

by allowing side constraints such as lecturer lower quotas to be added to the model.

In Section 6.2 we formally define the spa model. In Section 6.3 we present an efficient

algorithm for finding a greedy maximum matching given a spa instance and prove its

correctness. The algorithm takes lecturer upper quotas into consideration and can be

slightly modified to consider lecturer lower quotas. In Section 6.4 we show how this

algorithm can be modified in order to find a generous maximum matching. Section

6.5 describes two IP models for spa which we use for the correctness testing of our

implemented algorithms. In Section 6.6 we present results from an empirical evaluation

of the algorithms and IP models presented. We conclude the chapter in Section 6.7 by

presenting some relevant open problems.

6.2 Preliminary definitions

An instance I of the spa problem consists of a set S of students, a set P of projects and

a set L of lecturers. Each student si ranks a set Ai ⊆ P of projects that she considers

acceptable in order of preference. This preference list of projects may contain ties. Each

project pj ∈ P has an upper quota cj indicating the maximum number of students that

can be assigned to it. Each lecturer lk ∈ L offers a set of projects Pk ⊆ P and has an

upper quota d+k indicating the maximum number of students that can be assigned to

lk. Unless explicitly mentioned, we assume that all lecturer lower quotas are equal to

6.2. Preliminary definitions 101

0. The sets {P1, . . . , Pk} partition P . If project pj ∈ Pk, then we denote the lecturer

assigned to pj as lk = l(pj).

An assignment M in I is a subset of S × P such that:

1. Student-project pair (si, pj) ∈M implies pj ∈ Ai.

2. For each student si ∈ S, |{(si, pj) ∈M : pj ∈ Ai}|≤ 1.

If (si, pj) ∈ M we denote M(si) = pj. For a project pj, M(pj) is the set of students

assigned to pj in M . Also if (si, pj) ∈ M and pj ∈ Pk we say student si is assigned to

project pj and to lecturer lk in M . We denote the set of students assigned to a lecturer

lk as M(lk). A matching in this problem is an assignment M that satisfies the capacity

constraints of the projects and lecturers. That is, |M(pj)|≤ cj for all projects pj ∈ P
and |M(lk)|≤ d+k for all lecturers lk ∈ L.

Given a student si and a project pj ∈ Ai, we define rank(si, pj) as 1 + the number

of projects that si prefers to pj. Let R be the maximum rank of a project in any

student’s preference list. We define the profile ρ(M) of a matching M in I as an R-

tuple (x1, x2, ..., xR) where for each r (1 ≤ r ≤ R), xr is the number of students si

assigned in M to a project pj such that rank(si, pj) = r. Let α = (x1, x2, ..., xR) and

σ = (y1, y2, ..., yR) be any two profiles. We define the empty profile OR = (o1, o2, ..., oR)

where or = 0 for all r (1 ≤ r ≤ R). We also define the negative infinity profile

B−R = (b1, b2, ..., bR) where br = −∞ (1 ≤ r ≤ R) and the positive infinity profile

B+
R = (b1, b2, ..., bR) where br = ∞ (1 ≤ r ≤ R). We define the sum of two profiles α

and σ as α + σ = (x1 + y1, x2 + y2, ..., xR + yR). Given any q (1 ≤ q ≤ R), we define

α + q = (x1, ..., xq−1, xq + 1, xq+1, ..., xR). We define α− q in a similar way.

We define the total order �L on profiles as follows. We say α left dominates σ, denoted

by α �L σ if there exists some r (1 ≤ r ≤ R) such that xr′ = yr′ for 1 ≤ r′ < r

and xr > yr. We define weak left domination as follows. We say α �L σ if α = σ or

α �L σ. We may also define an alternative total order ≺R on profiles as follows. We

say α right dominates σ (α ≺R σ) if there exists some r (1 ≤ r ≤ R) such that xr′ = yr′

for r < r′ ≤ R and xr < yr. We also define weak right domination as follows. We say

α �R σ if α = σ or α ≺R σ. Intuitively α left dominates σ if α is lexicographically

greater than σ. Also α right dominates σ if σ is lexicographically less than α when

considered in the reverse order.

The spa problem can be modelled as a network flow problem. Given a spa instance

I, we construct a flow network N(I) = 〈G, c〉 where G = (V,E) is a directed graph

and c is a non-negative capacity function c : E → R+ defining the maximum flow

allowed through each edge in E. The vertices in G correspond to the agents (students,

6.2. Preliminary definitions 102

projects and lecturers) in the instance. A source vertex vs and a sink vertex vt are

also included. The edges in G correspond to potential assignments between the agents

involved. The capacities of these edges are set in order to reflect the upper bounds

placed on these assignments. For example edges that represent potential assignments

between a student si and a project pj will have a capacity of 1 as si can only be assigned

to a pj once. The construction of N(I) is such that there is a one-to-one correspondence

between the set of feasible flows in N(I) and feasible matchings in I. The network is

constructed as follows. Let V = {vs, vt} ∪S ∪P ∪L and E = E1 ∪E2 ∪E3 ∪E4 where

E1 = {(vs, si) : si ∈ S}, E2 = {(si, pj) : si ∈ S, pj ∈ Ai}, E3 = {(pj, lk) : pj ∈ P , lk =

l(pj)} and E4 = {(lk, vt) : lk ∈ L}. We set the capacities as follows: c(vs, si) = 1 for

all (vs, si) ∈ E1, c(si, pj) = 1 for all (si, pj) ∈ E2, c(pj, lk) = cj for all (pj, lk) ∈ E3 and

c(lk, vt) = d+k for all (lk, vt) ∈ E4.

We call a path P ′ from vs to some project pj a partial augmenting path if P ′ can be

extended adding the edges (pj, l(pj)) and (l(pj), vt) to form an augmenting path with

respect to flow f . Given a partial augmenting path P ′ from vs to pj the profile of

P ′, denoted ρ(P ′), shows the effect P ′ would have on the profile of a matching M(f)

obtained from f if P ′ were augmented along f .

ρ(P ′) = OR +
∑
{rank(si, pj) : (si, pj) ∈ P ′∧ f(si, pj) = 0}−

∑
{rank(si, pj) :

(pj, si) ∈ P ′ ∧ f(si, pj) = 1}

where additions are done with respect to the + and − operations on profiles. Unlike

the profile of a matching, the profile of an augmenting path may contain negative

values. Also if P ′ can be extended to a full augmenting path P with respect to flow f

by adding the edges (pj, l(pj)) and (l(pj), vt) where vs and pj are the endpoints of P ′,

then we define the profile of P , denoted by ρ(P), to be ρ(P) = ρ(P ′). Multiple partial

augmenting paths may exist from vs to pj, thus we define the maximum profile of a

partial augmenting path from vs to pj with respect to �L, denoted Φ(pj), as follows:

Φ(pj) = max�L
{ρ(P ′) : P ′ is a partial augmenting path from vs to pj}.

An augmenting path P is called a maximum profile augmenting path if

ρ(P) = max�L
{Φ(pj) : pj ∈ P}.

Let f be an integral flow in N . We define the matching M(f) in I induced by f as

follows: M(f) = {(si, pj) : f(si, pj) = 1}. Clearly by construction of N , M(f) is a

matching in I, such that |M(f)|= |f |. If P is an augmenting path with respect to f

then ρ(M ′) = ρ(M) + ρ(P) where M = M(f),M ′ = M(f ′) and f ′ is the flow obtained

6.3. Greedy maximum matchings in spa 103

students’ preferences: lecturers’ offerings:

s1 : p1 p2 p3 l1 : {p1, p2}
s2 : p1 l2 : {p3}
s3 : p2 p3 project capacities: c1 = 1, c2 = 1, c3 = 1

lecturer capacities: d1 = 2, d2 = 1
Figure 6.1: A spa instance I

by augmenting f along P . Also given a matching M in I, we define a flow f(M) in N

corresponding to M as follows:

∀ (vs, si) ∈ E1, f(vs, si) = 1 if si is matched in M and f(vs, si) = 0 otherwise.

∀ (si, pj) ∈ E2, f(si, pj) = 1 if (si, pj) ∈M and f(si, pj) = 0 otherwise.

∀ (pj, lk) ∈ E3, f(pj, lk) = c′j where c′j = |M(pj)|
∀ (lk, vt) ∈ E4, f(lk, vt) = d′k where d′k = |M(lk)|

We define a student si to be exposed if f(vs, si) = 0 meaning that there is no flow

through si. Similarly we define a project pj to be exposed if f(pj, lk) < cj and f(lk, vt) <

d+k where lk = l(pj).

Let M be a matching of size k in I. We say that M is a greedy k-matching if there

is no other matching M ′ such that |M ′|= k and ρ(M ′) �L ρ(M). If k is the size of

a maximum cardinality matching in I, we call M a greedy maximum matching in I.

Also we say that M is a generous k-matching if there is no other matching M ′ such

that |M ′|= k and ρ(M ′) ≺R ρ(M). If k is the size of a maximum cardinality matching

in I, we call M a generous maximum matching in I.

Figure 6.1 shows a sample spa instance with greedy and generous maximum matchings

M1 = {(s1, p3), (s2, p1), (s3, p2)} and M2 = {(s1, p2), (s2, p1), (s3, p3)} respectively.

6.3 Greedy maximum matchings in spa

In this section we present the algorithm Greedy-max-spa for finding a greedy maximum

matching given a spa instance. The algorithm is based on the general Ford-Fulkerson

algorithm for finding a maximum flow in a network [27]. We obtain maximum profile

augmenting paths by adopting techniques used in the bipartite matching approach for

finding a greedy maximum matching in ha [54] and cha [110].

The Greedy-max-spa algorithm shown in Algorithm 6.1 takes in a spa instance I as

input and returns a greedy maximum matching M in I. A flow network N(I) = 〈G, c〉
is constructed as described in Section 6.2. Given a flow f in N(I) that yields a greedy

k-matching M(f) in I, if k is not the size of a maximum flow in N(I), we seek to find

6.3. Greedy maximum matchings in spa 104

a maximum profile augmenting path P with respect to f in N(I) such that the new

flow f ′ obtained by augmenting f along P yields a greedy (k + 1)-matching M(f ′) in

I. Lemmas 6.3.1 and 6.3.2 show the correctness of this approach. In Lemma 6.3.1 we

show that if k is smaller than the size of a maximum flow in N(I) then such a path P

is bound to exist. In Lemma 6.3.2 we show that P is a maximum profile augmenting

path with respect to f . Next we give an overview of the Greedy-max-spa algorithm

and proove in Lemma 6.3.3 that Greedy-max-spa produces P . We conclude the section

with Theorem 6.3.4 stating the main result that finding a greedy maximum matching

given a spa instance can be done in polynomial time.

Lemma 6.3.1. Let I be an instance of spa and let η denote the size of a maximum

matching in I. Let k (1 ≤ k < η) be given and suppose that Mk is a greedy k-

matching in I. Let N = N(I) and f = f(Mk). Then there exists an augmenting path

P with respect to f in N such that if f ′ is the result of augmenting f along P then

Mk+1 = M(f ′) is a greedy (k + 1)-matching in I.

Proof. In the proof we examine the symmetric difference between Mk and Mk+1. We

hope to show that P = Mk⊕Mk+1 is an augmenting path. To achieve this we consider

the any greedy (k+ 1)-matching M ′
k+1 and analyse the connected components in Mk⊕

M ′
k+1. We show that symmetric difference between certain groups of these connected

components andM ′
k+1 will yield other greedy (k+1)-matchings. By sucessfully applying

this strategy we eventually discover a greedy (k+1)-matching such that P = Mk⊕Mk+1

is an augmenting path.

Let I ′ = C(I) be a new instance of spa obtained from I as follows. Firstly we add all

students in I to I ′. Next, for every project pj ∈ P , we add cj clones p1j , p
2
j , ..., p

cj
j to I ′

each of capacity 1. We then add all lecturers in I to I ′. If pj ∈ Ai in I, we add (si, p
r
j)

to I ′ for all r (1 ≤ r ≤ cj). If pj ∈ Pk is in I, we add (prj , lk) to I ′ for all r (1 ≤ r ≤ cj).

Also if rank(si, pj) = t, we set rank(si, p
r
j) = t for all r (1 ≤ r ≤ cj). Let G′ be the

underlying graph in I ′ involving only the student and project clones. With respect to

the matching Mk = M(f), we construct a cloned matching C(Mk) in I ′ as follows. If

project pj is assigned xj students sq,1, sq,2, ..., sq,xj in Mk we add (sq,r, p
r
j) to C(Mk) for

all 1 ≤ r ≤ xj. Hence C(Mk) is a greedy k-matching in I ′.

Let M ′
k+1 be a greedy (k+1)-matching in I (this exists because k < η). Then C(M ′

k+1)

is a greedy (k + 1)-matching in I ′. Let X = C(Mk)⊕ C(M ′
k+1) be the symmetric dif-

ference between C(Mk) and C(M ′
k+1). Then each connected component of X is either

(i) an alternating cycle, (ii) an even-length alternating path or (iii) an odd-length al-

ternating path in G′ (with no restrictions on which matching the end edges belong

to). The aim is to show that, by eliminating a subset of X, we are left with a set of

connected components which can be transformed into a single augmenting path with

6.3. Greedy maximum matchings in spa 105

respect to f(C(Mk)) in N(I ′) and subsequently a single augmenting path with respect

to f(Mk) in N(I).

Eliminating connected components of X: Suppose D ⊆ X is a type (i) con-

nected component of X or a type (ii) connected component of X whose end ver-

tices are students (we may call this a type (ii)(a) component). Suppose also that

ρ(D ∩C(M ′
k+1)) �L ρ(D ∩C(Mk)). A new matching C(M ′

k) in G′ of cardinality k can

be created from C(Mk) by replacing all the C(Mk)-edges in D with the C(M ′
k+1)-edges

in D (i.e. by augmenting C(Mk) along D). Since the upper quota constraints of the

lecturers involved are not violated after creating C(M ′
k) from C(Mk), it follows that

C(M ′
k) is also a valid spa matching in I ′. Moreover ρ(C(M ′

k)) �L ρ(C(Mk)) which is

a contradiction to the fact that C(Mk) is a greedy k-matching in I ′. A similar con-

tradiction (to the fact that C(M ′
k+1) is a greedy (k + 1)- matching in I ′) exists if we

assume ρ(D ∩ C(Mk)) �L ρ(D ∩ C(M ′
k+1)). Thus ρ(D ∩ C(M ′

k+1)) = ρ(D ∩ C(Mk)).

Form the argument above, no type (i) or type (ii)(a) connected component of X con-

tributes to a change in the size or profile as we augment from C(Mk) to C(M ′
k+1) or vice

versa. In fact, this is true for any even-length connected component of X which does

not cause lecturer upper quota constraints to be violated as we augment from C(Mk)

to C(M ′
k+1) or vice versa. The claim can be extended to certain groups of connected

components which, when considered together, (i) have equal numbers of C(Mk) and

C(M ′
k+1) edges and (ii) do not cause lecturer upper quota constraints to be violated

as we augment from C(Mk) to C(M ′
k+1) or vice versa. In all these cases, it is possible

to eliminate such components (or groups of components) from consideration. Using

the above reasoning, we begin by eliminating all type (i) and type (ii)(a) connected

components of X.

Let D be the union of all the edges in type (i) and type (ii)(a) connected compo-

nents of X. Let X ′ = X\D and let C(M ′′
k+1) be some greedy (k + 1)-matching in

I ′ which can be constructed by augmenting C(M ′
k+1) along D. Then it follows that

X ′ = C(Mk) ⊕ C(M ′′
k+1). Thus X ′ contains (1) even-length alternating paths whose

end vertices are project clones (we call these type (ii)(b) paths), (2) odd-length al-

ternating paths whose end edges are in C(Mk) (we call these type (iii)(a) paths) and

(3) odd-length alternating paths whose end edges are in C(M ′′
k+1) (we call these type

(iii)(b) paths). Although these alternating paths are vertex disjoint, there are special

cases where two alternating paths in X ′ may be joined together by pairing their end

project clone vertices.

Joining alternating paths: Consider some lecturer lq and project pj ∈ Pq. We

6.3. Greedy maximum matchings in spa 106

extend the notation l(pj) to include all clones of pj (i.e. l(prj) = lq for all r (1 ≤ r ≤ cj)).

Let

Xq = {(si, prj) ∈ C(Mk) : lq = l(prj) ∧ prj is unmatched in C(M ′′
k+1)}

and let xq = |Xq|. Thus Xq is the set of end edges incident to project clones belonging

to a subset of the type (ii)(b) and type (iii)(a) paths in X ′. Let

Yq = {(si, prj) ∈ C(M ′′
k+1) : lq = l(prj) ∧ prj is unmatched in C(Mk)}

and let yq = |Yq|. Thus Yq is the set of end edges incident to project clones belonging

to a subset of the type (ii)(b) and type (iii)(b) paths in X ′. Also let

Zq = {prj : lq = l(prj) ∧ prj is matched in C(M ′′
k+1) ∧ prj is matched in C(Mk)}

and let zq = |Zq|. Thus dq = vq + xq + zq and dq = v′q + yq + zq where vq and v′q are the

number of unassigned positions that lq has in C(Mk) and C(M ′′
k+1) respectively.

Note that vq ≥ yq if and only if v′q ≥ xq. Since vq ≥ yq, all the paths with end edges

in Yq can be considered as valid alternating paths in C(Mk) (i.e. if they are used to

augment C(Mk), lq’s upper quota will not be violated in the resulting matching). Since

v′q ≥ xq, all the paths with end edges in Xq can be considered as valid alternating paths

in C(M ′′
k+1) (i.e. if they are used to augment C(M ′′

k+1), lq’s upper quota will not be

violated in the resulting matching).

On the other hand, assume yq > vq. Then xq > v′q. Let Y ′q ⊆ Yq be an arbitrary subset

of Yq of size vq and let X ′q ⊆ Xq be an arbitrary subset of Xq of size v′q. Thus all paths

with end edges in X ′q and Y ′q can be considered as valid alternating paths in C(M ′′
k+1)

and C(Mk) respectively. Also |Yq\Y ′q | = yq − vq = |Xq\X ′q| = xq − v′q. We can

thus form a 1− 1 correspondence between the edges in |Yq\Y ′q | and those in |Xq\X ′q|.
Let (si, p

r
j) ∈ Yq\Y ′q and (si′ , p

r′

j′) ∈ Xq\X ′q be the end edges of two alternating paths in

X ′. The paths can be joined together by pairing the clones of both end projects thus

forming a project pair (prj , p
r′

j′) at lq. These project pairs can be formed from all edges

in Yq\Y ′q and Xq\X ′q.

In the cases where project pairs are formed, the resulting path (which we call a com-

pound path) may be regarded as a single path along which C(Mk) or C(M ′′
k+1) may

be augmented. In some cases, the two projects being paired may be end vertices of a

single (or compound) alternating path. Thus pairing them together will form a cycle.

Since the cycle is of even length and the lecturer’s upper quota will not be violated if

it is used to augment C(Mk) or C(M ′′
k+1) it can be eliminated right away. For each

lecturer lq ∈ L, once the pairings between alternating paths in Yq\Y ′q and Xq\X ′q have

been carried out (where applicable) and any formed cycles have been eliminated, we

6.3. Greedy maximum matchings in spa 107

compound type (ii)(a) path

s1 p1

s2 p2

p3
s3

p4

s5 p5

s6 p6

(a)

compound type (iii)(a) path

s1 p1

s2 p2

p3
s3

p4

(b)

compound type (iii)(b) path

s1 p1

s2 p2

p3
s3

p4

(c)

∈ C(M ′′
k+1)∈ C(Mk)

Figure 6.2: Some types of compound path in X ′

are left with a set of single or compound alternating paths of the following types (for

simplicity we call all remaining alternating paths compound paths even though they

may consist of only one path).

1. A compound type (ii)(a) path - a compound path with an even number of edges

with both end vertices being students. This path will contain a type (iii)(a) path

at one end, and a type (iii)(b) path at the other end with zero or more type

(ii)(b) paths in between (See Figure 6.2(a)). Such a path can be eliminated from

consideration.

2. A compound type (ii)(b) path - a compound path with an even number of edges

with both end vertices being project clones. This path will contain one or more

type (ii)(b) paths joined together. Such a path can also be eliminated from

consideration as its end edges are incident to exposed project clones.

3. A compound type (iii)(a) path - a compound path with an odd number of edges

with both end edges being matched in C(Mk). This path will contain a type

(iii)(a) path at one end with zero or more type (ii)(b) paths joined to it (See

Figure 6.2(b)). We will consider these paths for elimination later in this proof.

4. A compound type (iii)(b) path - a compound path with an odd number of edges

with both end edges being matched in C(M ′′
k+1). This path will contain a type

(iii)(b) path at one end with zero or more type (ii)(b) paths joined to it (See

Figure 6.2(c)). We will consider these paths for elimination later in this proof.

6.3. Greedy maximum matchings in spa 108

Eliminating compound paths: At this stage we are left with only compound type

(iii)(a) and compound type (iii)(b) paths in X ′. These paths, if considered indepen-

dently decrease and increase the size of C(Mk) by 1 respectively. Since |C(M ′′
k+1)|=

|C(Mk)|+1 then there are q type (iii)(a) paths and (q + 1) type (iii)(b) paths. Con-

sider some compound type (iii)(b) path D′ and some compound type (iii)(a) path D′′.

Then we can consider the combined effect of augmenting C(Mk) or C(M ′′
k+1) along

D′ ∪ D′′. Suppose that ρ((D′ ∪ D′′) ∩ C(M ′′
k+1)) �L ρ((D′ ∪ D′′) ∩ C(Mk)). A new

matching C(M ′′
k) in G′ of cardinality k can be created by augmenting C(Mk) along

D′ ∪D′′. Since the upper quota constraints on the lecturers involved are not violated

after creating C(M ′′
k) from C(Mk), then C(M ′′

k) is also a valid spa matching in I ′. Thus

ρ(C(M ′′
k)) �L ρ(C(Mk)) which is a contradiction to the fact that C(Mk) is a greedy

k-matching in I ′. A similar contradiction (to the fact that C(M ′′
k+1) is a greedy (k+1)-

matching in I ′) exists if we assume ρ((D′ ∪D′′)∩C(Mk)) �L ρ((D′ ∪D′′)∩C(M ′′
k+1)).

Thus ρ((D′ ∪ D′′) ∩ C(M ′′
k+1)) = ρ((D′ ∪ D′′) ∩ C(Mk)). It follows that, considering

D′ and D′′ together, the size and profile of the matching is unaffected as augment

from C(Mk) to C(M ′′
k+1) or vice versa and so both D′ and D′′ can be eliminated from

consideration.

Generating an augmenting path in N(I): Once all these eliminations have been

done, since |C(M ′′
k+1)|= |C(Mk)|+1 it is easy to see that there remains only one path P ′

left in X ′ which is a compound type (iii)(b) path. The path P ′ can then be transformed

to a component D in G(I) (where G(I) is basically the undirected counterpart of N(I)

without capacities) by replacing all the project clones prj (1 ≤ r ≤ cj) in P ′ with

the original project pj and, for every joined pair of project clones (prj , p
r′

j′), adding the

lecturer l(prj) = l(pr
′

j′) in between them. Thus a project may now appear more than

once in D. A lecturer may also appear more than once in D.

Consider some project pj ∈ D that appears more than once. Then let P ′′ ⊂ P ′ be

the path consisting of edges between the first and last occurrence of the pj clones in

P ′ (P ′′ corresponds to a collection of cycles belonging to D in G(I) involving pj).

Thus P ′′ is of even length and both end projects of P ′′ are clones of the same project.

Augmenting C(Mk) or C(M ′′
k+1) along P ′′ will not violate the lecturer upper quota

constraints or affect the size or profile of the matching obtained (again using the same

arguments presented above). Thus P ′′ can be eliminated from consideration. Although

this potentially breaks P ′ into two separate paths in G(I ′) it still remains connected in

G(I). Similarly consider some lecturer lk ∈ D that appears more than once. Then let

P ′′′ ⊂ P ′ be the path consisting of edges between the first and last occurrence of the lk

clones in P ′ (P ′′′ corresponds to a collection of type (ii)(b) paths with project clones

offered by lk). Thus augmenting C(Mk) or C(M ′′
k+1) along P ′′′ will not violate the

6.3. Greedy maximum matchings in spa 109

Algorithm 6.1 Greedy-max-spa

Require: spa instance I;
Ensure: return matching M ;
1: define flow network N(I) = 〈G, c〉;
2: define empty flow f ;
3: loop
4: P = Get-max-aug(N(I), f);
5: if P 6= null then
6: augment f along P ;
7: else
8: return M(f);

lecturer upper quota constraints or affect the size or profile of the matching obtained

(again using the same arguments presented above). Thus P ′′′ can be eliminated from

consideration. Doing the above steps continually for all projects and lecturers that

occur more than once in D eventually yields a valid path in G(I) in which all nodes

are visited only once.

Finally we describe how the path D in G(I), obtained after removing duplicate projects

and lecturers, can be transformed to an augmenting path P in N(I) (i.e. we establish

the direction of flow from vs to vt through P in N(I)). Firstly we add the edge (vs, si)

to P where si is the exposed student in D. Next for every edge (si′ , pj′) ∈ M ′′
k+1 ∩D

we add a forward edge (si′ , pj′) to P . Also for every edge (si′′ , pj′′) ∈Mk ∩D we add a

backward edge (pj′′ , si′′) to P . Finally we add the edges (pj, l(pj)) and (l(pj), vt) to P

where prj is the end project vertex in D. Thus P is an augmenting path with respect

to f = f(Mk) in N(I) such that if f ′ is the flow obtained when f is augmented along

P then M(f ′) is a greedy (k + 1)-matching in N(I).

Lemma 6.3.2. Let f be a flow in N and let Mk = M(f). Suppose that Mk is a greedy

k-matching. Let P be a maximum profile augmenting path with respect to f . Let f ′ be

the flow obtained by augmenting f along P . Now let Mk+1 = M(f ′). Then Mk+1 is a

greedy (k + 1)-matching.

Proof. Suppose for a contradiction that Mk+1 is not a greedy (k + 1)-matching. By

Lemma 6.3.1, there exists an augmenting path P ′ with respect to f such that if f ′ is the

result of augmenting f along P ′ then M ′
k+1 = M(f ′) is a greedy (k+1)-matching. Hence

ρ(M ′
k+1) �L ρ(Mk+1). Since ρ(M ′

k+1) = ρ(M) + ρ(P ′) and ρ(Mk+1) = ρ(M) + ρ(P), it

follows that ρ(P ′) �L ρ(P), a contradiction to the assumption that P is a maximum

profile augmenting path.

The Get-max-aug algorithm shown in Algorithm 6.2 accepts a flow network N(I)

and flow f as input and finds an augmenting path of maximum profile relative to

6.3. Greedy maximum matchings in spa 110

f or reports that none exists. The latter case implies that M(f) is already a greedy

maximum matching. The method consists of three phases: an initialisation phase (lines

1 -11), the main phase which is a loop containing two other loops (lines 12 - 31) and a

final phase (lines 32 - 39) where the augmenting path is generated and returned.

For each project pj the Get-max-aug method maintains a variable ρ(pj) describing

the profile of a partial augmenting path P ′ from some exposed student to pj. It also

maintains, for every project pj ∈ P , a pointer pred(pj) to the student or lecturer

preceding pj in P ′. For every lecturer lk ∈ L a pointer pred(lk) is also used to refer

to any project preceding lk in P ′. Thus the final augmenting path produced will pass

through each lecturer or project at most once. The initialisation phase of the method

involves setting all pred pointers to null and ρ profiles to B−R . Next, the method

seeks to find, for each project pj, a partial augmenting path ((vs, si), (si, pj)) from

the source, through an exposed student si to pj should one exist. In the presence of

multiple paths satisfying this criterion, the path with the best profile (w.r.t. �L) is

selected. The variables pred(pj) and ρ(pj) are updated accordingly. Thus at the end

of this phase ρ(pj) indicates the maximum profile of an augmenting path of length 2

via some exposed student to pj should one exist. If such a path does not exist then

ρ(pj) and pred(pj) remain B−R and null respectively.

In the main phase, the algorithm then runs |f | iterations, at each stage attempting to

increase the quality (w.r.t. �L) of the augmenting paths described by the ρ profiles.

Each iteration runs two loops. Each loop identifies cases where the flow through one

edge in the network can be reduced in order to allow the flow through another to

be increased while improving the profile of the projects involved. In both loops, the

decision on whether to switch the flow between candidate edges is made based on

an edge relaxation operation similar to that used in the Bellman-Ford algorithm for

solving the single source shortest path problem in which edge weights may be negative.

In the first loop, we seek to evaluate the gain that may be derived from switching the

flow through a student from one project to another. Given an edge (si, pk) with a flow

of 1 in f and edge (si, pj) with no flow in f , we define σ to be the resulting profile of

pj if the partial augmenting path ending at pk is to be extended (via si) to pj. Thus σ

will become the new value of ρ(pj) should this extension take place. If σ �L ρ(pj) (i.e.

if the proposed profile is better than the current one), we extend the augmenting path

to pj and update ρ(pj) = σ and pred(pj) = si.

In the second loop, we seek to evaluate the gain that may be derived from switching

flow to some lecturer from one project to another. Given a lecturer lk, let P ′k ⊆ Pk be

the set of projects offered by lk with positive outgoing flow and P ′′k ⊆ Pk be the set of

projects offered by lk that are undersubscribed in M(f). Then we seek to determine if

an improvement can be obtained by switching a unit of flow from some project pj ∈ P ′k

6.3. Greedy maximum matchings in spa 111

to some other project pm ∈ P ′′k . This is achieved by comparing the ρ(pj) and ρ(pm)

profiles and updating ρ(pj) = ρ(pm), pred(pj) = lk and pred(lk) = pm if ρ(pm) �L ρ(pj)

where ρ(pm) represents the profile of a partial augmenting path that does not already

pass through lk (i.e., pred(pm) 6= lk). This means that the partial augmenting path

ending at pm can be extended further (via lk) to pj while improving its profile. The

intuition is that, after augmenting along such a path, pm gains an extra student while

pj loses one.

During the final phase, we iterate through all exposed projects and find the one with

the largest profile with respect to �L (say pq). An augmenting path is then constructed

through the network using the pred values of the projects and lecturers and the matched

edges inM(f) starting from pq. The generated path is returned to the calling algorithm.

If no exposed project exists, the method returns null. We next show that Get-max-aug

method produces such a maximum profile augmenting path in N with respect to f

should one exist.

Lemma 6.3.3. Given a spa instance I, let f be a flow in N = N(I) where k = |f |
is not the size of a maximum matching in I and M(f) is a greedy k-matching in I.

Algorithm Get-max-aug finds a maximum profile augmenting path in N with respect to

f .

Proof. Consider some project pj in P . For any q (0 ≤ q ≤ k) and for any r (0 ≤ r ≤ k),

we define Φ2q+1,2r(pj) to be the maximum profile of any partial augmenting path with

respect to f in N that starts at an exposed student, ends at pj, and involves at most

2q + 1 student-project edges and at most 2r project-lecturer edges. We represent the

length of such a path using the pair (2q+ 1, 2r). Thus Φ2k+1,2k(pj) gives the maximum

profile of any partial augmenting path starting at an exposed student and ending at pj.

If such a path does not exist then Φ2k+1,2k(pj) = B−R . Firstly we seek to show that after

q iterations of the main loop of Get-max-aug where 0 ≤ q ≤ k, ρq(pj) �L Φ2q+1,2q(pj)

for every project pj ∈ P where ρq(pj) is the profile computed at pj after q iterations of

the main loop.

We prove this inductively. For the base case, let q = 0. Then Φ1,0(pm) is the maximum

profile of any partial augmenting path of length (1, 0) from an exposed student to

project pm. Hence, from the initialisation phase of Get-max-aug, ρ0(pm) = Φ1,0(pm)

and thus ρ0(pm) �L Φ1,0(pm). For the inductive step, assume 1 ≤ q ≤ k and that

the claim is true after the (q − 1)th iteration (i.e. ρq−1(pm) �L Φ2q−1,2q−2(pm) for any

pm ∈ P). We will show that the claim is true for the qth iteration (i.e. ρq(pm) �L
Φ2q+1,2q(pm)).

For each project pm ∈ P let S ′m = {si ∈ S : (si, pm) ∈ E ∧ f(si, pm) = 0} and for each

lecturer lk ∈ L let P ′k = {pm ∈ P : lk = l(pm) ∧ f(pm, lk) < cm}. For each iteration

6.3. Greedy maximum matchings in spa 112

Algorithm 6.2 Get-max-aug (method for Greedy-max-spa)

Require: flow network N(I) = 〈G, c〉 where G = (V,E), flow f where M(f) is a greedy
|f |-matching;

1: /* initialisation */
2: for project pj ∈ P do
3: ρ(pj) = B−R ;
4: pred(pj) = null;
5: for each exposed student si ∈ S such that pj ∈ Ai do
6: σ = OR + rank(si, pj);
7: if σ �L ρ(pj) then
8: ρ(pj) = σ;
9: pred(pj) = si;

10: for lecturer lk ∈ L do
11: pred(lk) = null;
12: /* main phase */
13: for 1...|f | do
14: /* first loop */
15: for each (si, pj) ∈ E where f(si, pj) = 0 and f(si, pk) = 1 for some pk ∈ Ai do
16: σ = ρ(pk)− rank(si, pk) + rank(si, pj);
17: if σ �L ρ(pj) then
18: ρ(pj) = σ; pred(pj) = si;
19: /* second loop */
20: for each lecturer lk ∈ L do
21: σ = B−R ;
22: pz = null;
23: for each project pm ∈ Pk such that l(pm) = lk ∧ f(pm, lk) < cm do
24: if ρ(pm) �L σ then
25: σ = ρ(pm);
26: pz = pm;
27: if pz 6= null then
28: for each project pj ∈ Pk such that l(pj) = lk ∧ f(pj , lk) > 0 ∧ pj 6= pz do
29: ρ(pj) = σ;
30: pred(pj) = lk;
31: pred(lk) = pz;
32: /* final phase */
33: ρ = max�L({B−R} ∪ {ρ(pj) : pj ∈ P is exposed});
34: if ρ �L B−R then
35: pq = arg max�L({B−R} ∪ {ρ(pj) : pj ∈ P is exposed});
36: Q = path obtained by following pred values and matched edges in M(f) from pq to an

exposed student;
37: return 〈vs〉 ++ reverse(Q) ++ 〈l(pq), vt〉; /*++ denotes concatenation*/
38: else
39: return null;

of the main loop, we perform a relaxation step involving some student-project pair

(si, pm) where si ∈ S ′m and/or a relaxation step involving some project-lecturer pair

(pm, lk) where pm ∈ P ′k. Consider some project pm. If there does not exist a partial

augmenting path from an exposed student to pm, of length ≤ (2q+ 1, 2q− 2) and with

6.3. Greedy maximum matchings in spa 113

a better profile than Φ2q−1,2q−2(pm), then Φ2q+1,2q−2(pm) = Φ2q−1,2q−2(pm). Otherwise

there exists a partial augmenting path from an exposed student to pm of length at least

(2q + 1, 2q − 2) with a better profile than Φ2q−1,2q−2(pm). Such a path must contain a

partial augmenting path from an exposed student to some project pm′ such that:

Φ2q+1,2q−2(pm) = Φ2q−1,2q−2(pm′) + rank(si, pm)− rank(si, pm′).

where si ∈ S ′m and f(si, pm′) = 1. Thus we note the following identity involving

Φ2q+1,2q−2(pm):

Φ2q+1,2q−2(pm) = max�L
{{Φ2q−1,2q−2(pm)} ∪

{Φ2q−1,2q−2(pm′) + rank(si, pm)− rank(si, pm′) : si ∈ S ′m∧ f(si, pm′) = 1}}.
(6.1)

Let ρ′q(pm) be the profile computed at pm after the first sub-loop during the qth iteration

of the main loop of the Get-max-aug algorithm (i.e. at Line 19 during the qth iteration).

Then

ρ′q(pm) = max�L
{{ρq−1(pm)} ∪

{ρq−1(pm′) + rank(si, pm)− rank(si, pm′) : si ∈ S ′m ∧ f(si, pm′) = 1}}.
(6.2)

By the induction hypothesis, ρq−1(pm) �L Φ2q−1,2q−2(pm). Thus:

ρ′q(pm) = max�L
{{ρq−1(pm)} ∪ {ρq−1(pm′) + rank(si, pm)− rank(si, pm′) :

si ∈ S ′m ∧ f(si, pm′) = 1}} (by equation 6.2).

�L max�L
{{Φ2q−1,2q−2(pm)}∪{Φ2q−1,2q−2(pm′)+rank(si, pm)−rank(si, pm′) :

si ∈ S ′m ∧ f(si, pm′) = 1}} (by the inductive hypothesis)

= Φ2q+1,2q−2(pm). (by equation 6.1)

Therefore:

ρ′q(pm) �L Φ2q+1,2q−2(pm). (6.3)

Again, if there does not exist a partial augmenting path from an exposed student

to pm, of length ≤ (2q + 1, 2q) and with a better profile than Φ2q+1,2q−2(pm), then

Φ2q+1,2q(pm) = Φ2q+1,2q−2(pm). Otherwise there exists a partial augmenting path from

an exposed student to pm of length (2q+1, 2q) with a better profile than Φ2q+1,2q−2(pm).

We can therefore note the following identity involving Φ2q+1,2q(pm):

Φ2q+1,2q(pm) = max�L
{{Φ2q+1,2q−2(pm)} ∪

{Φ2q+1,2q−2(pm′) : lk = l(pm) ∧ pm′ ∈ P ′k ∧ f(pm, lk) > 0 ∧ f(lk, vt) = d+k }}.
(6.4)

6.3. Greedy maximum matchings in spa 114

After the qth iteration of the main loop has completed, we have:

ρq(pm) = max�L
{{ρ′q(pm)} ∪

{ρ′q(pm′) : lk = l(pm) ∧ pm′ ∈ P ′k ∧ f(pm, lk) > 0 ∧ f(lk, vt) = d+k }}.
(6.5)

We observe that the extra condition (pred(pm) 6= lk) in Line 23 of the second loop, does

not affect the correctness of equation 6.5. Suppose pred(pm) = lk, then ρ(pm) must

have been updated during the qth iteration of the second loop (or during a previous

iteration and has remained unchanged) by some project profile ρ(p′j). Thus setting

ρ(pj) = ρ(pm) and pred(lk) = pm would be incorrect as p′j is now the source of ρ(pm)

and not pm. Moreover if indeed ρ(pm) = ρ(p′j) �L ρ(pj) then p′j would be encountered

later on during the iteration of the second loop.

ρq(pm) = max�L
{{ρ′q(pm)} ∪

{ρ′q(pm′) : lk = l(pm) ∧ pm′ ∈ P ′k ∧ f(pm, lk) > 0 ∧ f(lk, vt) = d+k }}.
�L max�L

{{Φ2q+1,2q−2(pm)} ∪ {Φ2q+1,2q−2(pm′) : lk = l(pm) ∧
pm′ ∈ P ′k ∧ f(pm, lk) > 0 ∧ f(lk, vt) = d+k }} (from equation 6.3)

= Φ2q+1,2q(pm) (by equation 6.4).

Therefore:

ρq(pm) �L Φ2q+1,2q(pm).

But any partial augmenting path from an exposed student to pj with respect to flow

f can have length at most (2k + 1, 2k). Thus ρ(pj) = Φ2k+1,2k(pj) after k iterations of

the main loop.

Finally we show that a partial augmenting path P ′ (and subsequently a full augmenting

path) can be constructed by following the pred values of projects and lecturers and

the matched edges in M(f) starting from some exposed project pj with the maximum

ρ(pj) profile, and ending at some exposed student (i.e. we show that such a path is

continuous and contains no cycle).

Suppose for a contradiction that such a path P ′ contained a cycle C. Then at some

step X during the execution of the algorithm, C would have been formed when, for

some project pj, either (i) pred(pj) was set to some student si or (ii) pred(pj) was set

to some lecturer lk. Let P ′′ be any path in N(I). We may extend our definitions for

the profile of a matching and a partial augmenting path to cover the profile of any path

in N(I) as follows:

ρ(P ′′) = OR +
∑
{rank(si, pj) : (si, pj) ∈ P ′′ ∩ E2 ∧ f(si, pj) = 0} −∑

{rank(si, pj) : (pj, si) ∈ P ′′ ∩ E2 ∧ f(si, pj) = 1}.

6.3. Greedy maximum matchings in spa 115

Considering case (i) let pm = M(si). Also let ρ′(pj) and ρ(pj) be the profiles of

partial augmenting paths from some exposed student to pj before and after step X

respectively. Then ρ(pj) �L ρ′(pj). Also ρ(pj) = ρ(pm) + rank(si, pj) − rank(si, pm),

i.e., ρ(pj) = ρ(pm)+ρ(P ′′) where P ′′ = {(si, pj), (si, pm)}. Since we can also trace a path

through all the other projects in C (using pred values and matched edges) from pm to

pj, it follows that ρ(pm) = ρ′(pj)+ρ(C\{(si, pj), (si, pm)}). Thus ρ(pj) = ρ′(pj)+ρ(C).

Note that ρ(C) = ρ(C ′\M)−ρ(C ′∩M) and C ′ = C∩E2 is the set of edges in C involving

only students and projects. As ρ(pj) �L ρ′(pj), it follows that ρ(C ′\M) �L ρ(C ′∩M).

But since |C ′\M |= |C ′ ∩M |, and lecturer capacities are clearly not violated by the

algorithm, a new matching M ′ = M ⊕ C ′ can be generated such that ρ(M ′) �L ρ(M)

and |M ′|= |M |= |f |, a contradiction to the fact that M is a greedy |f |-matching in I.

Considering case (ii) let pm = pred(lk). As before let ρ′(pj) and ρ(pj) be the profiles

of partial augmenting paths from some exposed student to pj before and after step X

respectively. Then ρ(pj) �L ρ′(pj). Also ρ(pj) = ρ(pm). Since we can also trace a path

through all the other projects in C (using pred values and matched edges) from pm

to pj, it follows that ρ(pm) = ρ′(pj) + ρ(C\{(pj, lk), (pm, lk)}) = ρ′(pj) + ρ(C). Thus

ρ(pj) = ρ′(pj) + ρ(C). Note that ρ(C) = ρ(C ′\M)− ρ(C ′ ∩M) and C ′ = C ∩E2 is the

set of edges in C involving only students and projects. As ρ(pj) �L ρ′(pj), it follows

that ρ(C ′\M) �L ρ(C ′ ∩M). A similar argument to the one presented above shows a

contradiction to the fact that M is a greedy |f |-matching in I.

From Lemmas 6.3.1, 6.3.2 and 6.3.3, we can conclude that the algorithm Greedy-max-

spa finds a greedy maximum matching given a spa instance. Concerning the complexity

of the algorithm, the main loop calls Get-max-aug η times where η is the size of a

maximum cardinality matching in I. The first phase of Get-max-aug performs O(m2)

profile comparison operations and O(n3) initialisation steps for the lecturer pred values

where m2 = |E2|, n3 = |L|, and each profile comparison step requires O(R) time. The

loop in the main phase of Get-max-aug runs k times where k is the value of the flow

obtained at that time. The first and second loops perform O(m2) and O(n2) relaxation

steps respectively where n2 = |P| and each relaxation step requires O(R) time to

compare profiles. The final phase of the algorithm performs O(n2) profile comparisons,

each also taking O(R) time. Thus the overall time complexity of the Get-max-aug

method is O(m2R + n3 + kR(m2 + n2) + n2R) = O(kR(m2)). Thus the overall time

complexity of the Greedy-max-spa algorithm is O(n2
1Rm2).

When considering the additional factor of O(R) due to arithmetic on edge weights of

O(nR1) size, Orlin’s algorithm for finding a minimum cost maximum flow in N(I) runs

in O(Rm2
2 log(n1 + n2) + Rm2(n1 + n2) log2(n1 + n2)) time [96]. Suppose n1 ≥ n2.

Then Orlin’s algorithm runs in O(Rm2
2 log n1 + n1Rm2 log2 n1) time. If the first term

6.4. Generous maximum matchings in spa 116

of Orlin’s runtime is larger than the second then our algorithm is slower by a factor of
n2
1

m2 logn1
≤ n1

logn1
as m2 ≥ n1. If the second term of Orlin’s runtime is larger than the

first then our algorithm is slower by a factor of n1

log2 n1
≤ n1

logn1
.

Now suppose n2 > n1. Then Orlin’s algorithm runs in O(Rm2
2 log n2 + n2Rm2 log2 n2)

time. If the first term of Orlin’s runtime is larger than the second then our algorithm

is slower by a factor of
n2
1

m2 logn2
≤ n1

logn2
≤ n1

logn1
as m2 ≥ n1 and n2 > n1. If the second

term of Orlin’s runtime is larger than the first then our algorithm is slower by a factor

of
n2
1

n2 log
2 n2
≤ n1

log2 n2
≤ n1

logn1
as n2 > n1.

So our algorithm is slower than Orlin’s by a factor of n1

logn1
in all cases. A straightforward

refinement of our algorithm can be made by observing that if no profile is updated

during an iteration of the main loop, then no further profile improvements can be

made and we can terminate the main loop at this point. We conclude with the following

theorem.

Theorem 6.3.4. Given a spa instance I, a greedy maximum matching in I can be

obtained in O(n2
1Rm2) time.

6.4 Generous maximum matchings in spa

Analogous to the case for greedy maximum matchings, generous maximum matchings

can also be found by modelling spa as a network flow problem. Given a spa instance

I we define the following terms relating to partial augmenting paths in N(I). For each

project pj ∈ P , we define the minimum profile of a partial augmenting path from vs

through an exposed student to pj with respect to ≺R, denoted Φ′(pj), as follows:

Φ′(pj) = min≺R
{ρ(P ′) : P ′ is a partial augmenting path from vs to pj}.

If a partial augmenting path P ′ ending at project pj can be extended to an augmenting

path P by adding edges (pj, l(pj)) and (l(pj), vt) then such an augmenting path is called

a minimum profile augmenting path if ρ(P) = min≺R
{Φ′(pj) : pj ∈ P}. A similar

approach to that used to find a greedy maximum matching can be adopted in order

to find a generous maximum matching. The main Greedy-max-spa algorithm will

remain unchanged (we will call it Generous-max-spa for convenience) as the intuition

remains to successively find larger generous k-matchings until a generous maximum

matching is obtained. We however make slight changes to the Get-max-aug algorithm

in order to find a minimum profile augmenting path in the network should one exist

(the resulting algorithm is then known as Get-min-aug). The changes are as follows.

(i) We replace all occurrences of left domination �L with right domination ≺R. (ii)

6.5. Integer Programming models for spa 117

We also replace all occurrences of negative infinity profile B−R with a positive infinity

profile B+
R . (iii) Finally we replace both max functions (in lines 33 and 35) with the

min function. Analogous statements and proofs of Lemmas 6.3.1, 6.3.2 and 6.3.3 exist

in this context. Thus we may conclude with the following theorem concerning the

Generous-max-spa algorithm.

Theorem 6.4.1. Given a spa instance I, a generous maximum matching in I can be

obtained in O(n2
1Rm2) time.

6.5 Integer Programming models for spa

6.5.1 Introduction

As mentioned earlier, IP is a common technique for solving matching problems like spa.

In this section we construct IP models for spa. We denote Sj as the set of students

who applied for project pj. We partition the projects on each student’s preference list

into sets based on their rank. For student si, we define Ari = {pj : rank(si, pj) = r}.
In the following subsections we present two IP models for max spa which vary from

each other depending on the structure of their objective functions. For both models

we define the variable xi,j ∈ {0, 1} which corresponds to project pj on student si’s

preference list. Given a solution to any of these IP models, we construct a matching

M as follows. If xi,j = 1 we make (si, pj) ∈M otherwise we make (si, pj) /∈M . %%

6.5.2 Model with exponential coefficients (Model1)

Figure 6.3 shows our first model (Model1) for finding a greedy maximum matching

given a spa instance. Constraint 1 ensures that each student is matched to at most

one project while Constraint 2 ensures that no project exceeds its upper quota. Con-

straint 3 ensures that no lecturer exceeds her upper quota. The objective function is

taken from the transformation of the House Allocation problem with Ties (hat) to the

Assignment Problem (ap) presented in [85] for finding a greedy maximum matching

given a hat instance. It employs a set of steeply decreasing variable coefficients which

are exponentially large in the number of students. The first term in each coefficient

ensures that a maximum matching is always obtained. The second term ensures that

it is always beneficial to have a single student matched to their kth choice project than

have n1 students matched to their (k + 1)th choice project. A similar objective func-

tion can be constructed for finding a generous maximum matching by having coefficient

(nR1 − nr−11) for each variable xi,j where pj ∈ Ari .

6.5. Integer Programming models for spa 118

max
∑
si∈S

R∑
r=1

∑
pj∈Ar

i

(nR1 + nR−r1) xi,j

subject to:

1.
∑
pj∈Ai

xi,j ≤ 1 ∀ si ∈ S

2.
∑
si∈Sj

xi,j ≤ c+j ∀ pj ∈ P

3.
∑
pj∈Pk

∑
si∈Sj

xi,j ≤ d+k ∀ lk ∈ L

xi,j ∈ {0, 1}

Figure 6.3: Model1: IP model for finding a greedy maximum matching given a spa instance

max
∑
si∈S

∑
pj∈Ai

xi,j

subject to:

1.
∑
pj∈Ai

xi,j ≤ 1 ∀ si ∈ S

2.
∑
si∈Sj

xi,j ≤ c+j ∀ pj ∈ P

3.
∑
pj∈Pk

∑
si∈Sj

xi,j ≤ d+k ∀ lk ∈ L

xi,j ∈ {0, 1}

Figure 6.4: Model2: IP model for finding a maximum matching given a spa instance

6.5.3 Model with hierarchical objectives (Model2)

An alternative IP model can be constructed by considering a set of hierarchical objec-

tive functions. As shown in Figure 6.4, we start with an initial IP model (Model2) with

the same constraints as those presented in Figure 6.3. The initial objective function

would seek to maximise the number of students who are assigned a project. Once

Model2 is solved, the optimal value (which we call η) can then be used as a bound

on the size of matchings found in subsequent models. This is achieved by adding the

following constraint to all subsequent models (we call this a size constraint).

4.
∑
si∈S

∑
pj∈Ai

xi,j ≥ η

6.5. Integer Programming models for spa 119

Algorithm 6.3 Hierarchy-spa-ip

Require: spa instance I;
Ensure: return matching M ;
1: construct Model2 instance J from I;
2: solve J ;
3: for 1 ≤ r ≤ R do
4: set rank-r objective function;
5: add rank-(r − 1) constraint to J ;
6: solve J ;
7: return matching M derived from optimal solution to J ;

This ensures that subsequent matchings found would always be maximum. In order

to achieve the greedy optimisation criteria, a series of R IP models are then created

(and solved) by adding extra constraints and updating the objective function, where

R is the maximum length of any student’s preference list. The aim is to optimise

the number of students matched to their first-choice projects, and subject to that,

the number of students matched to their second-choice projects, etc., in accordance

with the greedy optimisation criterion. The first model is created by adding the size

constraint and changing the objective function to maximise the number of students

assigned to their first-choice project. For subsequent models, the objective function

is changed in order to maximise the number of students matched to their rth choice

project where 1 < r ≤ R. At stage r of the loop, the objective function would be as

follows (we call this a rank-r objective function)

max
∑
si∈S

∑
pj∈Ar

i

xi,j

In addition to the size constraint, we also add constraints to ensure that the results

obtained by previous iterations are preserved. Thus at stage r of the loop, in addition

to the basic constraints defined in Figure 6.4, the following constraints would also

be enforced. Where Constraint 5.r′ enforces a bound λr
′

on the number of students

assigned to their r′th choice project. We call this a rank-r′ constraint.

4.
∑
si∈S

∑
pj∈Ai

xi,j ≥ η

5.r′.
∑
si∈S

∑
pj∈Ar′

i

xi,j ≥ λr
′ ∀ 1 ≤ r′ ≤ r − 1

Algorithm 6.3 describes the process. For simplicity of presentation we define the size

constraint as a rank-0 constraint. Although this approach would mean multiple calls to

6.6. Empirical evaluation 120

the IP solver and may suffer from scalability issues, it does not employ the exponentially

large variable coefficients seen in Model1.

6.6 Empirical evaluation

6.6.1 Introduction

The Greedy-Max-Spa and Generous-Max-Spa algorithms were implemented in Java

and evaluated empirically. The spa IP models were encoded and solved using the IBM

CPLEX 12.5.1 IP solver. In this section, we present results from empirical evaluations

carried out on the IP encodings and algorithm implementations using both real-world

and randomly-generated data. Results from the implemented algorithms were com-

pared with those produced by an IP model of spa in order to improve our confidence

in the correctness of both implementations. We also investigate the feasibility issues

that will be faced if a Min-Cost-Max-Flow (mcmf) approach (as suggested in [116])

is to be used when solving instances of spa involving large numbers of students and

projects, or where students have long preference lists. Other experiments carried out

involve varying certain properties of the randomly-generated spa instances while mea-

suring the runtime of the algorithms and the size, degree and cost of the matchings

produced.

An instance generator was used to construct random spa instances which served as

input for both the algorithm implementations and the IP encoding. This generator

can be configured to vary certain properties of the spa instances produced as follows:

1. The number of students n1 (with a default value of n1 = 100). The number of

projects and lecturers are set to n2 = 0.3n1 and n3 = 0.2n1 respectively.

2. The minimum Rmin and maximum Rmax length of any student’s preference list

(with default values Rmin = Rmax = 10).

3. The popularity λ of the projects, as measured by the ratio between the number

of students applying for one of the most popular projects and the number of

students applying for one of the least popular projects (default value of 10 which

is in line with the popularity ratios observed in real-world spa datasets).

4. The total capacity of the projects CP and lecturers CL. These capacities were

not divided evenly amongst the projects and lecturers involved (default values

are CP = 1.2n1 and CL = 1.2n1).

6.6. Empirical evaluation 121

5. The tie density td (0 ≤ td ≤ 1) of the students’ preference list. This is the

probability that some project is tied with the one preceding it on some student’s

preference list (default value is td = 0).

6. The total project and lecturer lower quotas LP and LL respectively. These lower

quotas were divided evenly amongst the projects and lecturers involved (default

values are LP = LL = 0).

We also created spa instances from anonymised data obtained from previous runs of

the student-project allocation scheme at the School of Computing Science, University

of Glasgow and solved them using the implemented algorithm and IP encoding. The

default values for the randomly generated spa instances somewhat vary from the real

world datasets. This is because our experiments aim to investigate certain properties

of the problems and algorithms which may not be highly visible in the real-world

datasets. We measured the runtime taken by the algorithms and IP encodings as well

as the size, cost and degree of the matchings obtained. Experiments were carried out

on a Windows machine with 4 Intel(R) Core(R) i5-2400 CPUs at 3.1GHz and 8GB

RAM.

In the following subsections we present results obtained from the empirical evaluations

carried out. In Section 6.6.2 we present the results of correctness tests carried out

by comparing results obtained from the IP models of spa and from the implemented

algorithms. In Section 6.6.3 we demonstrate when the mcmf approach becomes in-

feasible in practice. In Section 6.6.4 we present results from running the algorithms

against real-world spa instances. In Section 6.6.5 we vary certain properties of ran-

domly generated spa instances while measuring the runtime of the algorithms and the

size, degree and cost of the matchings produced. We make some concluding remarks

in Section 6.6.6

6.6.2 Testing for correctness

Although the Greedy-Max-Spa and Generous-Max-Spa algorithms have been proven to

be correct (See Theorems 6.3.4 and 6.4.1), bugs may still exist in the implementations.

In order to improve our confidence in any empirical results obtained as part of an

experimental evaluation of the algorithms’ performance, we compared results from the

implemented algorithms with those obtained from IP models of spa described in Section

6.5. For each value of n1 in the range n1 ∈ {20, 40, 60, ..., 200, 300, 400, ..., 1000}, 10, 000

random spa instances were generated and solved using both methods. For each spa

instance generated, Rmin = Rmax = 10 (henceforth we refer to Rmin = Rmax as R). The

profiles of the resulting matchings were then compared and observed to be identical for

6.6. Empirical evaluation 122

all the instances generated. The resulting matchings were also tested to ensure they

obeyed all the upper quota constraints for lecturers and projects. For Model1, due to

the exponentially large variable coefficients, instance sizes were limited to n1 < 60 due

to floating-point precision errors when comparing values larger than 6010. Thus, for

the correctness tests, the second IP model described in Algorithm 6.3 was employed.

This allowed for reasonably larger spa instances to be solved.

Figure 6.5: Mean runtime vs n1 Figure 6.6: Mean runtime vs n1

Figure 6.7: Mean runtime vs R

The mean runtimes (taken over 10, 000 randomly generated instances) for finding

greedy maximum matchings using both the IP model (Model2) and the Greedy-max-spa

implementation were also measured. The results are shown in Figures 6.5, 6.6 and 6.7.

Figure 6.5 shows the mean time taken to find an optimal solution as we increase the

number of students from n1 = 20 to n1 = 200 in steps of 20. For the range of n1

20 ≤ n1 ≤ 130 the results show that the Java implementation of the Greedy-max-spa

algorithm performs better than the IP encoding when solved using CPLEX. However

for n1 in the range n1 ≥ 140 we observe that the CPLEX runtime is smaller than

the Greedy-max-spa algorithm. The results show that the CPLEX curve rises a lot

6.6. Empirical evaluation 123

less steeply than that of the Java implementation. This trend is further highlighted

in Figure 6.6 when even larger instance sizes are solved using both methods (instance

sizes increasing from n1 = 100 to n1 = 1000 in steps of 100).

These results show how well the IP encodings for spa problems (and perhaps the

CPLEX solver in particular) can perform in practice for spa instances with relatively

short preference lists (R = 10) (despite the theoretically exponential time complexity of

the IP branch and cut algorithms). As for the implementation of the Greedy-max-spa

algorithm, the results are in line with our expectations considering the complexity of

the algorithm and the technologies used in the implementation. Figure 6.7 shows what

happens if we consider problem instances with longer preference lists. For each value

of R in the range R ∈ {10, 20, 30, 40, 50}, we solve 1, 000 randomly generated spa

instances where n1 = 200. We observe the runtime of the IP model rises more steeply

than the runtime for Greedy-max-spa. For spa instances with preference list lengths

R > 24, Greedy-max-spa runs faster than the IP implementation and the slopes of

both curves suggests the difference will increase as R increases. This is one scenario

that highlights a shortcoming of the IP approach thus justifying the development of

the efficient algorithms for these problems.

These correctness tests show that our implementations are likely to be correct and that

large instances of the profile-based spa problems can solved efficiently in practice.

6.6.3 Feasibility analysis of the mcmf approach

We implemented an algorithm for finding a minimum cost maximum flow in a given

network. As stated in Section 2.6, by the appropriate assignment of edge costs/weights

in the underlying network N(I) of a spa instance I, a minimum cost maximum flow

algorithm can be used to find greedy and generous maximum matchings in I. We argued

that this approach (as described in [5, 116]) would be infeasible due to the floating-point

inaccuracies caused by the assignment of exponentially large edge costs/weights in the

network. In this section we investigate this claim experimentally and demonstrate the

feasibility issues that arise when using various Java data types to represent these edge

weights.

The cost functions presented in [5, 116] and in the first IP model (Model1) presented

in Figure 6.3 require a maximum cost maximum cardinality matching to be found. We

therefore derive modified cost functions that require a minimum cost maximum flow

algorithm to be used in order to find greedy and generous maximum matchings. For

finding greedy maximum matchings we set the cost of an edge between a student si and

a project pj as nR−11 − nR−k1 where k = rank(si, pj). For finding generous maximum

6.6. Empirical evaluation 124

matchings we set the cost of an edge between a student si and a project pj as nk−11

where k = rank(si, pj). The cost for all other edges in the network are set to 0.

For the mcmf approach, we define an instance as infeasible if the matching produced

is not optimal with respect to the greedy or generous criteria (when compared with

optimal results produced by the Greedy-Max-Spa and Generous-Max-Spa algorithms

and CPLEX).

Figure 6.8: mcmf feasibility results

Figure 6.8 shows the feasibility results using three Java data types. For each value of

n1 (number of students) in the range n1 ∈ {10, 20, 30, ..., 100} and for each value of R

(length of each student’s preference list) in the range R ∈ {5, 6, ...,min{20, 1.2n1}}, we

generated 1000 random spa instances and solved them using the mcmf approach and

the Greedy-Max-Spa algorithm. The graph shows the value of R at which infeasible

solutions were first encountered. As expected, this number drops as we increase the

instance size. Due to their greater precision that the long and double data types

(when compared with int), we see that they handle much larger instances before

encountering infeasibility issues. All instances tested for n1 = 10 when using long and

n1 ∈ {10, 20, 30, 40} when using double produced optimal matchings. This is probably

because we do not yet encounter range errors (in the case of long) and precision errors

(in the case of double) when solving these instances. The relatively low values of R and

n1 observed where infeasibility prevails (e.g., n1 = 60, R = 6 for the int type) reinforces

our argument that approaches based on mcmf which employ these exponentially large

edge weights are not scalable.

6.6.4 Real-world data

spa instances derived from anonymised data obtained from previous runs of the student-

project allocation scheme at the School of Computing Science, University of Glasgow

were created and solved using the Greedy-Max-Spa and Generous-Max-Spa implemen-

6.6. Empirical evaluation 125

tations as well as the IP encodings. This section discusses some of the results obtained.

Table 6.1 shows the properties of the generated spa instances (with lecturer capacities

not being considered in the 07/08 and 08/09 sessions) and Table 6.2 shows details of

various profile-based optimal matchings found.

Session n1 n2 n3 R CP CL

14/15 51 147 37 6 147 80
13/14 51 155 40 5 155 77
12/13 38 133 34 5 133 63
11/12 31 103 26 5 103 62
10/11 34 63 29 5 63 66
09/10 32 102 28 5 102 72
08/09∗ 37 56 - 5 56 56
07/08∗ 35 61 - 5 61 61

Table 6.1: Real-world spa instances

Session |M | Greedy Generous Min-Cost
Profile Cost Profile Cost Profile Cost

14/15 51 (30, 7, 1, 5, 5, 3) 110 (16, 16, 9, 6, 4) 119 (28, 11, 3, 5, 2, 2) 101
13/14 51 (26, 7, 4, 6, 8) 116 (15, 18, 9, 6, 3) 117 (23, 12, 5, 6, 5) 111
12/13 38 (26, 6, 3, 2, 1) 60 (21, 13, 4) 59 (23, 11, 3, 1) 58
11/12 31 (22, 6, 2, 1) 44 (20, 9, 2) 44 (20, 9, 2) 44
10/11 34 (25, 4, 3, 1, 1) 51 (21, 9, 4) 51 (24, 5, 4, 1) 50
09/10 32 (23, 4, 2, 2, 1) 50 (19, 10, 3) 48 (20, 9, 2, 1) 48
08/09∗ 37 (26, 6, 2, 1, 2) 58 (23, 11, 3) 54 (23, 11, 3) 54
07/08∗ 35 (20, 9, 5, 0, 1) 58 (17, 14, 4) 57 (17, 14, 4) 57

Table 6.2: Real-world spa results

The results demonstrate a drawback in adopting the greedy optimisation criterion,

namely that some students may have projects that are far down their preference lists.

In all but the 2011/2012 session, at least one student had her worst choice project in

a greedy maximum matching. In the 2013/2014 session the number of students with

their worst choice project is reasonably high and so the greedy maximum matching

would probably not be selected for that year.

The degree of generous maximum matchings are usually less than the others (obvi-

ously they are never greater). This is usually an attractive property in such matching

schemes. In all the years considered apart from the 2013/2014 session all students

got their third choice project or better in the generous maximum matchings produced.

However in the 2013/2014 session applying the generous optimality criteria did not

improve on the degree of the matchings produced.

6.6. Empirical evaluation 126

One of the major advantages of the minimum cost maximum matching optimality

criteria is that in a certain sense it is more “egalitarian”. Minimising the overall cost

of the matchings produced is also a very natural objective. It may be considered a

disadvantage if matchings obtained by adopting the profile-based optimality criteria

have significantly larger costs than the minimum obtainable cost. However, from the

results obtained on these real-world datasets, there is very little difference between the

costs of the greedy and generous maximum matchings and the minimum obtainable

costs (except, once again, for the 2013/2014 session). Thus we can choose one of the

profile-based optimal matchings with some confidence that it is “almost” of minimum

cost. In Section 6.6.5 we consider these differences on multiple randomly generated

spa instances.

6.6.5 Random data

6.6.5.1 Introduction

This section discusses some of the results obtained by varying certain properties of

the randomly generated spa instances and measuring the cost, size and degree of

the matchings produced. For each instance generated we found a greedy maximum

matching, a generous maximum matching and a minimum cost maximum matching.

6.6.5.2 Varying the number of students

Keeping R constant, we investigated the effects of increasing the number of students n1

(and by implication n2, n3, CP and CL using the default dependencies listed in Section

6.6.1) on the degree, cost and size of the matchings produced as well as the time taken

to find these matchings. For each value of n1 in the range n1 ∈ {100, 200, 300, ..., 700}
we generated and solved 100 random spa instances.

Figure 6.9 shows the way the mean degree varies as we increase the number of students.

The mean degrees of the greedy maximum matchings are the highest of the three

with mean values ≥ 8 for n1 ≥ 200. As expected generous maximum matchings

have the smallest degree, which rises slowly from about 4.8 to 6.5. An interesting

observation is that the mean degree does not steeply rise as we increase the number of

students. Also the mean degree for the minimum cost maximum matching is closer to

the generous maximum matching degree than that of the greedy maximum matching.

This is probably due to the fact that the cost function (rank in this case) is greater for

higher degrees than lower ones, so, in some way, by minimising the cost, we are also

seeking matchings with fewer students matched to projects that are father down their

preference lists (i.e. have higher ranks).

6.6. Empirical evaluation 127

Figure 6.9: Mean matching degree vs n1 Figure 6.10: Mean runtime vs n1

Figure 6.10 shows how long it takes to find both profile-based optimal matchings. The

main observation is that both Greedy-max-spa and Generous-max-spa algorithms are

scalable and can handle decent-sized instances in reasonable times.

Figure 6.11: Mean matching cost vs n1

Figure 6.11 shows how the cost of the matchings generated vary with the number

of students. The cost seems to grow proportionally with the number of students.

We observe that greedy maximum matchings have larger costs than generous and

minimum cost maximum matchings. This corresponds to the mean degree curves

shown in Figures 6.9 where greedy maximum matchings tend to match some students

to projects further down their preference list thus adding to the cost of the matching.

The average size of the matchings produced was very close to n1 for all values of n1

tested.

6.6. Empirical evaluation 128

6.6.5.3 Varying preference list length

The length of students’ preference list is one property that can be varied easily in

practice (in the spa context, it is often feasible to ask students to rank more projects

if required). So, will increasing the length of the preference lists affect the quality of

the matchings produced or the time taken to find them? For each value of R in the

range R ∈ {1, 2, 3, ..., 10} we tested this by varying the preference list lengths of 10, 000

randomly generated spa instances. Each instance had n1 = 100 students (with n2, n3,

CP and CL all assigned their default values).

Figure 6.12: Mean matching cost vs R Figure 6.13: Mean matching size vs R

Figure 6.12 shows how the mean cost of the matchings obtained varied as we increased

the preference list lengths. For the profile-based optimal matchings, the mean cost rises

steeply from R = 1 to R = 4 but seems to level off beyond that. We observe that the

overall cost of the matchings produced does not significantly change for R > 5. Thus

asking students to submit preference lists greater than 5 will not significantly affect

the overall quality of the generous and minimum cost maximum matchings obtained.

Once again we observe a difference between the cost of the greedy maximum matchings

and the other two.

Figure 6.13 also shows an important trend as it highlights the value of R beyond which

there is little increase in the mean matching size of profile-based optimal matchings.

For the instances generated in this experiment, that value is R = 5. Thus asking

students to submit preference lists of length greater than 5 will not significantly affect

the overall size of maximum matchings obtained. Figure 6.14 shows how the mean

degree of the matchings varied as we increased preference list length. For values of

R ≤ 3 all matchings have the same mean degree as it is likely that some student gets

her 3rd choice in each of these matchings. The curve for minimum cost maximum

matchings is closer (with respect to degree) to that of generous maximum matchings

6.6. Empirical evaluation 129

(obviously generous maximum matchings have lower degrees in general). They both

seem to rise steeply for R ≤ 5 and then level off at R = 7 and beyond. Thus asking

students to submit preference lists greater than 7 will not significantly affect the overall

degree of generous and minimum cost maximum matchings obtained. As expected,

greedy maximum matchings had the highest degrees. For R > 5, the mean degree for

greedy maximum matchings does not level off but continues to grow fairly steeply.

Figure 6.14: Mean matching degree vs R

Finally we consider how long it takes for the implemented algorithms to find their

solutions. In general, the algorithms all seem to handle spa instances with relatively

long preference lists (R = 10) in reasonable time (< 1.5s).

6.6.5.4 Varying project popularity

Not all projects will be equally popular and so it is worth investigating the effects the

relative popularity λ of the projects may have on the size and quality of the matchings

produced. For these experiments, we set n1 = 100 (with all the other default values)

and varied the popularity of the projects involved from 0 to 9 in steps of 1, generating

1, 000 random instances for each popularity value. From Figure 6.15 we see that the

cost of the matchings produced gradually increases as we increase the popularity ratio

with the cost of the greedy maximum matching being slightly higher than the others

(in line with other observations). From Figure 6.16 we observe no clear trend in the

size of the matchings produced as we vary the popularity ratio.

Figure 6.17 shows the gaps between the mean degree of matchings produced using the

various algorithms. Once again we see the mean degrees for the minimum cost and

generous maximum matchings being considerably lower than that of the generous max-

imum matchings as the popularity ratio increases. Runtimes for the Greedy-max-spa

and Generous-max-spa algorithms were less than 0.25s.

6.6. Empirical evaluation 130

Figure 6.15: Mean matching cost vs
popularity

Figure 6.16: Mean matching size vs
popularity

Figure 6.17: Mean matching degree vs
popularity

6.6.6 Concluding remarks

Table 6.3 gives a breakdown of the profiles of the matchings obtained from 10, 000

randomly generated spa instances of size n1 = 100 with preference list length R = 10.

The mean size of the matchings found was 88.44 and therefore the percentages of

students obtaining their ith choice (1 ≤ i ≤ R) sum up to 88.44 for each type of

matching. The table shows the percentage of students with their first choice projects,

second choice projects, and so on. Although the choice of which profile-based optimal

matching is best will, in practice, be problem-specific, the results (as presented in

Sections 6.6.4 and 6.6.5) give us a general idea of the strengths and weaknesses of the

various optimality criteria. We summarise these points below.

With greedy maximum matchings we increase the percentage of students that are happy

with their assigned projects (i.e., obtain their first choice). A rough estimate of how

much better a greedy maximum matching is compared with other profile-based optimal

matchings is the difference in the number of first-choice projects. Table 6.3 shows that

6.7. Conclusion 131

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Cost

Greedy: 64.59 13.29 4.86 2.23 1.28 0.81 0.54 0.37 0.26 0.20 137.06
Generous: 58.62 20.84 6.04 1.84 0.69 0.25 0.10 0.03 0.01 0.00 131.86

Minimum Cost: 61.19 17.72 6.08 2.09 0.83 0.33 0.13 0.05 0.02 0.01 130.86

Table 6.3: Mean matching profile and cost

the percentage of students with their first-choice project is higher when compared with

minimum cost maximum matchings (by 3.40%) and even higher when compared with

generous maximum matchings (by 5.97%). However this is achieved at the risk of

also increasing the percentage of students who are disappointed with their assigned

projects (we say a student si is disappointed with pj = M(si) if si is unmatched in M

or rank(si, pj) > dR/3e).

With generous maximum matchings we reduce the percentage of disappointed students.

Table 6.3 shows a significant improvement in the disappointment as we move from

greedy maximum matchings (with 3.46% of matched students having their 5th choice

or worse) to generous maximum matchings (with 1.08% of matched students having

their 5th choice or worse). Although minimising disappointment among students is

usually a very attractive property, this is achieved without considering the percentage

of students who are happy with their assignments. Interestingly the generous criteria

will continue to attempt to minimise the number of students matched to their nth

choice project even as n tends to 1. This motivates a slightly more intuitive criteria

where we initially adopt the generous criteria and, at some point (say at n = 3), switch

to the greedy criteria.

Often the profile of a minimum cost maximum matching lies “in between” the two

extremes given by a greedy maximum and generous maximum matching. This can be

seen in terms of both the percentage of students with first-choice projects and those

with fifth-choice projects or worse. In terms of the percentage of students with first-

choice projects, the results show that minimum cost maximum matchings lie almost in

the middle of the greedy and generous maximum matching percentages. In terms of

those with fifth-choice projects or worse, it seems minimum cost maximum matchings

are a lot closer to generous than greedy maximum matchings. This is usually seen as

a desirable property.

6.7 Conclusion

In this chapter we defined what we consider to be the basic spa model in which we

impose only upper quotas on all three sets of agents (students, projects and lecturers).

6.7. Conclusion 132

We showed how greedy and generous maximum matchings can be found efficiently

using network flow techniques. We also presented IP formulations for this basic spa

model and presented a range of empirical results obtained from evaluating them and

the efficient algorithms. An obvious question to ask at this stage relates to which other

extensions of spa of practical relevance or theoretical significance can be investigated.

We go some way in answering this question in Chapter 7. These include:

1. Can we improve on the O(n2
1Rm2) algorithm for finding greedy and generous

maximum matchings in spa? One approach would be to determine whether there

are faster ways of finding maximum profile augmenting paths in the underlying

network than that presented in Algorithm 6.2. Another approach may be perhaps

to abandon the network flow method and consider adopting other techniques used

for solving similar problems in the chat (Capacitated House Allocation problem

with Ties) context [54, 93, 48].

2. The notion of Pareto optimality has been well studied in the ha context [3, 7]. It

is easy to see that the profile-based optimality criteria defined here imply Pareto

optimality. However studying Pareto optimality in its own right is of theoretical

interest. Since Pareto optimal matchings in chat can be of varying sizes, this

extends to spa. Given a spa instance we may seek to find a maximum Pareto

optimal matching in time faster than O(n2
1Rm2).

133

Chapter 7

Further Algorithmic Results for spa

and its Variants

7.1 Introduction

Certain applications may require more constraints to be added to the basic spa model

defined in Chapter 6. An obvious example is the requirement that matchings should

meet specified lower quotas of the agents involved. One of the main advantages of

adopting the network flow approach is the flexibility it provides when considering these

extra constraints. The idea remains the same - we model the spa problems (including

any extra constraints) as a network flow problems and use network flow algorithms

(including the ones presented in Chapter 6) to solve them. In this chapter we investigate

some extensions to spa that we consider to be natural and show how our network flow

models can be used to solve them.

In Section 7.2 we consider the problem of balancing the project supervision workload

among the lecturing staff. This typically means that the task of supervising projects

are evenly distributed among lecturers. We identify the addition of lower quotas as

one possible means of achieving this and we present a network flow approach (using

techniques presented in Chapter 6) to solve the problem. Due to potential infeasibility

issues caused by the addition of lower quotas, we identify another means of balancing

lecturer workload which involves defining a new optimality criterion. This involves

minimising the difference between a lecturer with the most work and one with the

least work. We present efficient algorithms for solving this problem. In Section 7.3

we consider the case where projects can only be feasible if a minimum number of

students are assigned to them. We argue that simply assigning lower quotas (and so

introducing infeasibility) is not ideal in this case. Thus we allow projects that do not

meet their lower quotas to be abandoned (or closed). We show that finding a maximum

7.2. Lecturer lower quotas and load balancing 134

matching in this case is NP-hard. In view of this, we present two heuristics for finding

large matchings which contain good profiles with respect to the profile-based optimality

criteria. In Section 7.4 we extend the IP model presented earlier in Chapter 6 to handle

spa with project lower quotas where projects can be closed. The matchings produced

are optimal with respect to size and profile. In Section 7.5 we present more empirical

results relating to all the algorithms and techniques discussed in this chapter. We

conclude the chapter in Section 7.6 with a list of interesting open problems.

7.2 Lecturer lower quotas and load balancing

7.2.1 Introduction

In spa problems it is often required that the workload of supervising student projects is

evenly spread across the lecturing staff (i.e., that project allocations are load-balanced

with respect to lecturers). This is important because any project allocation should

be seen by lecturers to be fair. Moreover a lecturer’s workload may have an effect

on her performance in other academic and administrative duties. In this section we

identify various ways of measuring and achieving a load-balanced matching. This can

be achieved by modifying the feasibility requirements or optimisation objectives (or

both) of spa. In Chapter 6 we identified the size and profile of a matching as the first

and second optimisation objectives respectively. Typically the load-balancing objective

would come in third position in this objective hierarchy.

7.2.2 Lecturer lower quotas

One way of achieving some notion of load-balancing with respect to lecturers is to in-

troduce lower quotas. A lower quota on lecturer lk is the minimum number of students

that must be assigned to lk in any feasible solution. We call this extension the Stu-

dent/Project Allocation problem with Lecturer lower quotas (spa-l). In an instance I of

spa-l, each lecturer lk has an upper quota dk(I)+ = d+k and now additionally has a lower

quota d−k (I) (it will be helpful to indicate specific instances to which these lower quotas

refer within the notation). We assume that d−k (I) ≥ 0 and d+k (I) ≥ max{d−k (I), 1}. In

the spa-l context, our definition of a matching as presented in Section 6.2 needs to be

tightened slightly. A constrained matching is a matching M in the spa context with

the additional property that, for each lecturer lk, |M(lk)|≥ d−k (I). A constrained maxi-

mum matching is a maximum matching taken over the set of constrained matchings in

I. Suppose that L is the sum of the lecturer lower quotas in I (i.e. L =
∑

lk∈L d
−
k (I))

7.2. Lecturer lower quotas and load balancing 135

students’ preferences: lecturers’ offerings:

s1 : p1 p2 l1 : {p1}
s2 : p3 p2 l2 : {p2}
s3 : p3 l3 : {p3}

c1 = c3 = 1, d+1 = d+3 = 1 and c2 = d+2 = 2
d−1 = d−3 = 0 and d−2 = 2

Figure 7.1: A spa-l instance I

and η is the size of a maximum matching in I1. For some k in (L ≤ k ≤ η), let M′
k

denote the set of constrained matchings of size k in I. A matching M ∈ M′
k is a

constrained greedy k-matching if M has lexicographically maximum profile, taken over

all matchings in M′
k. An analogous definition for a constrained generous k-matching

can be made.

Due to the introduction of these lecturer lower quotas, instances of spa-l are not

guaranteed to admit a feasible solution. Thus given an instance I of spa-l, we seek

to find a constrained greedy or a constrained generous maximum matching should one

exist. We therefore present results analogous to Lemmas 6.3.1, 6.3.2 and 6.3.3. Firstly

however, we make the following observations.

Proposition 7.2.1. Given an spa-l instance I, the size of a constrained maximum

matching (should one exist) in I is equal to the size of a maximum matching in the

underlying spa instance in I.

Proof. Assume I admits a constrained matching. Then, by dropping the upper quota of

each lecturer lq ∈ L from d+q (I) to d−q (I), and finding a saturating flow in the network

obtained from the resulting instance, we can obtain a matching Mk of size k where

k =
∑

lq∈L d
−
q . By returning the lecturer upper quotas to their original values and then

successively finding and satisfying standard augmenting paths (starting from f(Mk))

we are bound to obtain a constrained maximum matching as lecturers do not lose any

assigned students in the process. The absence of an augmenting path relative to the

final flow is proof that the flow (and resulting constrained matching) is maximum.

We also observe that a constrained greedy k-matching Mk in I need not be a greedy

k-matching in I. That is, there may exist a matching M ′
k of size k in I such that M ′

k

violates some of its lecturer lower quotas (i.e. M ′
k is not a constrained matching) and

ρ(M ′
k) �L ρ(Mk). Figure 7.1 shows a spa-l instance whose unique constrained greedy

maximum matching isM = {(s1, p2), (s2, p2), (s3, p3)} and a greedy maximum matching

M ′ = {(s1, p1), (s2, p2), (s3, p3)} such that ρ(M ′) �L ρ(M). However it is sufficient

1We will prove that η is equal to the size of a maximum constrained matching in Proposition 7.2.1.

7.2. Lecturer lower quotas and load balancing 136

to show that, starting from Mk, we can successively identify and augment (w.r.t. the

incumbent flow) maximum profile augmenting paths in N(I) until a constrained greedy

maximum matching is found. Next we show that such augmenting paths exist.

Lemma 7.2.2. Let I be an instance of spa-l and let η denote the size of a constrained

maximum matching in I. Let k (1 ≤ k < η) be given and suppose that Mk is a

constrained greedy k-matching in I. Let N = N(I) and f = f(Mk). Then there exists

an augmenting path P with respect to f in N such that if f ′ is the result of augmenting

f along P then Mk+1 = M(f ′) is a constrained greedy (k + 1)-matching in I.

Proof. The proof is analogous to that presented for Lemma 6.3.1. We show that con-

sidering constrained matchings does not affect most of the arguments presented in

the proof of Lemma 6.3.1. We will deal with the cases where considering constrained

matchings may affect the arguments presented in the proof of Lemma 6.3.1. Firstly

we observe that after cloning the projects in I to form a spa-l instance I ′ = C(I), the

process of converting matchings in I to I ′ and vice versa is unaffected when the match-

ings considered are constrained. Thus since Mk is a constrained greedy k-matching in

I, C(Mk) is a constrained greedy k-matching in I ′.

Let M ′
k+1 be a constrained greedy (k + 1)-matching in I (this exists because k < η).

Then C(M ′
k+1) is a constrained greedy (k + 1)-matching in I ′. Let X = C(Mk) ⊕

C(M ′
k+1). Then each connected component of X is either (i) an alternating cycle, (ii)(a)

an even-length alternating path whose end vertices are students, (ii)(b) an even-length

alternating path whose end vertices are projects, (iii)(a) an odd-length alternating

path whose end edges are in C(Mk) or (iii)(b) an odd-length alternating path whose

end edges are in C(M ′
k+1). We firstly show that the procedures used to “join” and

“eliminate” these connected components in Lemma 6.3.1 are unaffected when C(Mk)

and C(M ′
k+1) are constrained matchings. The even-length components that we firstly

consider are:

1. type (i) and type (ii)(a) alternating paths.

2. compound type (ii)(a) paths.

When considering the elimination of these even-length components (or compound

paths), the requirement that the upper quotas of the lecturers involved must not be vio-

lated still holds even if the matchings considered are constrained. Moreover the number

of students assigned to each lecturer never drops when considering the elimination of

these even-length components (or compound paths).

Let C(M ′′
k+1) be the constrained greedy (k + 1)-matching obtained from augmenting

C(M ′
k+1) along all these even-length paths. Then X ′ = C(Mk) ⊕ C(M ′′

k+1) consists

7.2. Lecturer lower quotas and load balancing 137

of a set of compound type(ii)(b) paths, compound type (iii)(a) and compound type

(iii)(b) paths. These paths, if considered independently, may lead to some lecturer

losing an assigned student when they are used to augment C(Mk) or C(M ′′
k+1). Thus

the elimination argument, as presented in the proof of Lemma 6.3.1, does not hold.

We modify this argument slightly as follows in the case of constrained matchings.

We firstly observe that C(Mk) and C(M ′′
k+1) are constrained matchings. Thus aug-

menting C(Mk) or C(M ′′
k+1) along X ′ leads to a constrained matching. When all

the elements in X ′ are considered together, no lecturer violates her lower quota. If

some lecturer loses a student due to some component of X ′ and drops below her lower

quota, the she must gain an extra student due to another component in X ′. But since

|C(M ′′
k+1)|= |C(Mk)|+1 there are q compound type (iii)(a) paths and (q+1) compound

type (iii)(b) paths in X ′ for some integer q. Compound type (ii)(b) components do not

affect the size of the matchings.

We claim that there exists some compound type (iii)(b) path P ′ in X ′ such that

when considering all the other components in X ′ (i.e. X ′\P ′), lecturer upper and

lower quotas are not violated and the size of the matchings are unchanged. Thus the

elimination arguments presented in the proof of Lemma 6.3.1 can be applied to X ′\P ′.
P ′ can be extended to end with edge (lp, vt) such that |M ′′

k+1(lp)|> |Mk(lp)|≥ d−p .

If C(M ′′′
k+1) is the constrained greedy (k + 1)-matching obtained from augmenting

C(M ′′
k+1) along X ′\P ′, then C(M ′′′

k+1) ⊕ C(Mk) = P ′. If such a path P ′ does not

exist then |M ′′
k+1(lp)|≤ |Mk(lp)| for all lp ∈ L, a contradiction.

The rest of the proof for Lemma 6.3.1, involving the generation of an augmenting path,

follows through.

Lemma 7.2.3. Let f be a flow in N and let Mk = M(f). Suppose that Mk is a

constrained greedy k-matching. Let P be a maximum profile augmenting path with

respect to f . Let f ′ be the flow obtained by augmenting f along P . Now let Mk+1 =

M(f ′). Then Mk+1 is a constrained greedy (k + 1)-matching.

Proof. The proof for Lemma 6.3.2 holds even ifM(f) andM(f ′) are constrained match-

ings as the number of students assigned to a lecturer never reduces as we augment f

along P .

Lemma 7.2.4. Given an spa-l instance I, let f be a flow in N(I) where k = |f | is

not the size of a constrained maximum matching in I and M(f) is a constrained greedy

k-matching in I. Algorithm Get-max-aug finds a maximum profile augmenting path in

N(I) with respect to f .

Proof. We observe that the proof presented for Lemma 6.3.3 also holds in this case

even if M(f) is a constrained greedy k-matching.

7.2. Lecturer lower quotas and load balancing 138

Algorithm 7.1 Greedy-max-spa-l

Require: spa-l instance I;
Ensure: return a matching M if one exists or null otherwise;
1: copy I to from new instance I ′;
2: for each lecturer lk ∈ I ′ do
3: set d+k (I ′) = d−k (I);
4: set d−k (I ′) = 0;
5: {I ′ becomes a spa instance}
6: M ′ = Greedy-max-spa(I ′);
7: if |M ′| =

∑
lk∈L d

−
k (I) then

8: copy f(M ′) in N(I ′) into f in N(I);
9: loop

10: P = Get-max-aug(N(I), f);
11: if P 6= null then
12: augment f along P ;
13: else
14: return M(f);
15: else
16: return null;

The first part of the proof shows that after q iterations of the main loop of Get-max-aug

where 0 ≤ q ≤ k the following is true: For every project pj ∈ P , ρ(pj) �L Φ2q+1,2q(pj)

where Φ2q+1,2q(pj) is the maximum profile of any partial augmenting path of length

≤ (2q + 1, 2q) from an exposed student to pj. By inspection, we observe that this

argument remains unchanged even if M(f) is a constrained matching in I.

The second part of the proof shows that a partial augmenting path P ′ (and subsequently

a full augmenting path) can be constructed by following the pred values of projects

and lecturers and the matched edges in M(f) starting from some exposed project pj

with the maximum ρ(pj) profile going through some exposed student and ending at the

source vs. That is, we show that such a path is continuous and contains no cycle. We

prove this by demonstrating that, should a cycle C exist, then augmenting f along C

would yield a flow of the same size f ′ such that M(f ′) �L M(f) which is a contradiction

to the fact that M(f) is a greedy k−matching. This result also holds in the case where

M(f) is a constrained matching as any cycle found will not cause a lecturer to lose any

assigned students and so the above arguments can still be made.

Given Lemmas 7.2.2, 7.2.3 and 7.2.4, the Greedy-max-spa algorithm can be employed

as part of an algorithm to find a constrained greedy maximum matching in a spa-

l instance should one exist. This new algorithm (which we call Greedy-max-spa-l)

is presented in Algorithm 7.1. The algorithm takes an spa-l instance I as input

and returns a constrained greedy maximum matching M , should one exist, or null

otherwise. A spa instance I ′ is constructed from I by setting d−k (I ′) = 0 and d+k (I ′) =

d−k (I) for each lecturer lk. Next we find a greedy maximum matching M ′ in I ′ using the

7.2. Lecturer lower quotas and load balancing 139

Greedy-max-spa algorithm. If f ′ = f(M ′) is not a saturating flow (i.e., one in which all

edges (lk, vt) ∈ E4 are saturated), then I admits no constrained matching and we return

null. Otherwise we augment flow f in N(I) by calling the Get-max-aug algorithm,

where f is the flow in N(I) obtained from cloning f ′ in N(I ′). We continuously

augment the flow until no augmenting path exists. The matching M = M(f) obtained

from the resulting flow f is a greedy maximum constrained matching in I. Constrained

generous maximum matchings can also be found in a similar way. We conclude with

the following theorem.

Theorem 7.2.5. Given a spa-l instance I, a constrained greedy maximum matching

and a constrained generous maximum matching in I can be obtained, should one exist,

in O(n2
1Rm2) time.

Proof. Firstly we show that the matchingM ′ obtained in Line 6 of the Greedy-max-spa-l

algorithm is a constrained greedy |f |-matching in I. For contradiction, suppose that

some other constrained matching M ′′ of the same size exists in I such that ρ(M ′′) �L
ρ(M ′). Then since |f |=

∑
lk∈L d

−
k (I), every lecturer has exactly the same number of

assigned students in M ′ and M ′′, so M ′′ is a valid matching in I ′. This contradicts the

fact that M ′ is a greedy maximum matching in I ′.

Lemmas 7.2.2, 7.2.3 and 7.2.4 prove that once we obtain a constrained greedy |f |-
matching in I (should one exist), the rest of the algorithm finds a maximum constrained

greedy maximum matching in I.

For finding a constrained generous maximum matching we simply replace the call to

Greedy-max-spa in Line 6 and the call to Get-max-aug in Line 10 of the Greedy-max-spa-l

algorithm with a call to the Generous-max-spa and the Get-min-aug algorithms re-

spectively as described in Section 6.4.

7.2.3 Minimising matching span

As demonstrated above, introducing lecturer lower quotas as part of the feasibility

criteria is one way of achieving some notion of load-balancing. Another way is to define

a load-balancing optimisation objective. Given a matching M in a spa instance I, we

define the span of M (denoted by span(M)) to be the difference between the maximum

and minimum number of students assigned to a lecturer in M . That is, span(M) =

max{|M(lk)|: lk ∈ L} −min{|M(lk)|: lk ∈ L}. The load-balancing objective is then to

minimise span(M) for all M in the set of greedy/generous maximum matchings in I.

One approach to solving the problem is to temporarily introduce upper and lower quo-

tas and determine if a feasible solution to the resulting spa-l instance exists. The

7.2. Lecturer lower quotas and load balancing 140

intuition is to firstly determine the size S+ of a maximum matching and then to con-

strain the instance such that span(M) = 0 for all feasible matchings and attempt to

find one such that |M |= S+. If no such matching is found, we relax the constraints to

allow span(M) = 1 and try again. We continue in this way until we find a maximum

matching with the minimum value for span(M). With the minimum value of span(M)

obtained (say span(M) = x), we apply the appropriate upper and lower quota con-

straints on the instance and then find a greedy maximum matching using the technique

described in Section 7.2.2 above. In the worst case span(M) = max{d+k (I) : lk ∈ L}
with the lecturer with the highest upper quota being full and some other lecturer being

assigned no students.

In order to search for a greedy maximum matching M in I such that span(M) ≤ x for

some x (0 ≤ x ≤ max{d+k (I) : lk ∈ L}), we construct a constrained instance I ′ and set

the upper quotas d+k (I ′) and lower quotas d−k (I ′) for all the lecturers lk in I ′ as follows.

We set d−k (I ′) = min{d+k (I), y} and d+k (I ′) = min{d+k (I), d−k (I ′) + x} for increasing

values of y in the range dS+/n3e−x, dS+/n3e−x+1, dS+/n3e−x+2, ..., dS+/n3e where

n3 is the number of lecturers in the instance. The intuition is to use our knowledge of

the desired size of the matching to impose a restriction on the range of values of y that

need to be considered, as not all values of y will yield a matching of size η. Setting

lower and upper quotas based on this reduced range helps minimise the amount of

unnecessary work. Algorithm 7.2 describes the process. We start with an initial target

span of x = 0 and with d−k (I ′) = min{d+k (I), dS+/n3e − x} and seek to find a feasible

constrained matching in I ′ such that |M |= S+. If no such matching is found, we move

on to the next value of d−k (I ′) (and thus d+k (I ′)). If no feasible constrained matching is

found for all values of d−k (I ′) in the range, we relax our target span by incrementing x

by 1 and starting again. The process continues until a greedy maximum matching is

found.

Lemma 7.2.6. Alg-min-span finds a greedy maximum matching of minimum span in

O(n2
1nm) time.

Proof. Let M be a greedy maximum matching in I and let S+ = |M | and span(M) = x

for some value of x (0 ≤ x ≤ max{d+k (I) : lk ∈ L}). We show that the range of values

considered for d−k (I ′) (and thus d+k (I ′)) is necessary and sufficient for finding M . Firstly

we observe that the values of d+k (I ′) ensures that span(M) ≤ x for all values of x and

d−k (I ′) considered, so we need only focus on the range of values of d−k (I ′).

We claim that min{d+k (I), dS+/n3e−x} ≤ min{|M(lk)|: lk ∈ L} ≤ min{d+k (I), dS+/n3e}.
Suppose not and min{|M(lk)|: lk ∈ L} < dS+/n3e − x. There exists some lecturer lk

such that |M(lk)|= dS+/n3e−(x+1). Thus every lecturer can have at most dS+/n3e−1

assigned students in order to ensure span(M) ≤ x. Thus |M |≤ n3(dS+/n3e−1). Since

7.2. Lecturer lower quotas and load balancing 141

Algorithm 7.2 Alg-min-span

Require: spa instance I;
Ensure: return a greedy maximum matching M of minimum span;
1: x := 0;
2: S+ := size of a maximum matching in I;
3: while x ≤ max{d+k (I) : lk ∈ L} do
4: y := min{0, dS+/n3e − x};
5: while y ≤ dS+/n3e do
6: generate spa-l instance I ′ from I;
7: set d−k (I ′) := min{d+k (I), y} for each lecturer lk ∈ L;
8: set d+k (I ′) := min{d+k (I), d−k (I ′) + x} for each lecturer lk ∈ L;
9: M := maximum constrained matching in I ′;

10: if M 6= null and |M |= S+ then
11: M := greedy maximum constrained matching in I ′;
12: return M ;
13: else
14: y := y + 1;
15: x := x+ 1;

dS+/n3e− 1 < S+/n3, it follows that |M |< S+ for all possible values of x, a contradic-

tion to the fact that M is a maximum matching in I. For the second inequality, suppose

min{|M(lk)|: lk ∈ L} > dS+/n3e. Then every lecturer will have at least dS+/n3e + 1

assigned students. Thus |M |≥ n3(dS+/n3e+ 1). Thus |M |≥ S+ +n3 > S+ for all pos-

sible values of x, a contradiction to the fact that η is the size of a maximum matching

in I.

Since the Alg-min-span algorithm considers x in increasing order from 0 to max{d+k (I) :

lk ∈ L}, it is guaranteed to find a greedy maximum matching of minimum span.

The algorithm calls a maximum flow algorithm O(n2
1) times in the worse case thus

making the overall runtime of the algorithm O(n2
1nm) assuming we use the O(nm)

max flow algorithm by Orlin [95] where n and m are the total number of nodes and

edges in the underlying network.

7.2.4 Minimising span with lower quotas

It is also feasible to model spa problems to adopt both the feasibility criterion (by

enforcing lecturer lower quotas) and the optimisation objective (of minimising lecturer

span) presented in the previous subsection. Given an instance I of spa-l, the span

span(M) of a feasible matching M in I is given by

span(M) = max{|M(lk)|−d−k (I) : lk ∈ L} −min{|M(lk)|−d−k (I) : lk ∈ L}

7.3. Project lower quotas 142

This is a measure of the maximum difference between the excess number of students

assigned to any pair of lecturers in M . The formula reduces to the case presented in

Section 7.2.3 above if the lower quotas are dropped (i.e. d−k (I) := 0 : lk ∈ L}).

This problem can be solved by slightly modifying Algorithm 7.2 to consider lower

quotas. We modify the lower and upper quota assignments (in Lines 7 and 8 re-

spectively) as follows. For the lower quotas of each lecturer lk ∈ L, we set d−k (I ′) :=

min{d+k (I), d−k (I)+y} and for the upper quotas, we set d+k (I ′) := min{d+k (I), d−k (I ′)+x}.
The resulting algorithm will find a constrained greedy maximum matching of minimum

span in an instance I of spa-l should one exist.

7.3 Project lower quotas

7.3.1 Introduction

As in the case with lecturer lower quotas, spa can also be extended to allow for project

lower quotas. This is motivated by the idea that certain projects may require a mini-

mum number of assigned students in order for them to proceed. We call this extension

the Student/Project problem with Project Lower quotas (spa-pl). In an instance I

of spa-pl, each project pj has an upper quota c+j = cj and now additionally has a

lower quota c−j . We assume that c−j ≥ 0 and c+j ≥ max{c−j , 1}. In this context (as in

spa-l), our definition of a matching as presented in Section 6.2 needs to be tightened

slightly. Two variants of the problem, which depend on our definition of a feasible

matching, can be described. These variants are analogous to the two models for the

Hospitals/Residents problem with Lower Quotas (hr-lq) described in [85].

In the first variant of the problem, a matchingM is required to satisfy all the constraints

that M does in the spa context with the additional property that, for each project pj,

either |M(pj)|≥ c−j or |M(pj)|= 0. Thus if a project does not meet its lower quota,

it is simply closed and will not feature at all in the resulting matching. Projects that

do meet their lower quotas in a given matching M are said to be open in M . An

alternative variant of the problem is one in which a matching M is required to satisfy

all the constraints that M does in the spa context with the additional property that,

for each project pj, |M(pj)|≥ c−j . As in the case for lecturer lower quotas, this extra

constraint implies that an instance need not admit a feasible solution.

For the rest of this chapter, we only consider the first variant of the problem. That

is, we seek to find a greedy or generous maximum matching given an spa-pl instance

where projects may be closed.

7.3. Project lower quotas 143

7.3.2 Hardness of max spa-pl

We consider the problem of finding greedy and generous matchings given an spa-pl

instance. Firstly we observe that matchings may be of varying sizes. For example,

given a non-empty matching M , closing any project that is open in M would yield a

feasible matching of a smaller size. We define max spa-pl as the problem of finding

a maximum matching given an instance of spa-pl. In the corresponding decision

problem denoted max spa-pl-d, we ask whether there exists a matching of size at

least K given an instance of spa-pl where 0 < K ≤ n1. We show that max spa-pl-d

is NP-complete. This results holds if, in addition, the matching is required to be a

greedy or generous maximum matching. Special cases of the problem, which restrict

the lengths of students’ preference lists or the maximum value of the projects’ lower

and upper quotas, can also be defined. We denote (x,y)-max spa-pl as the problem

of finding a greedy maximum matching given an instance of spa-pl, in which each

student is allowed to rank at most x projects and y is the maximum upper quota of

any project. We replace x or y with ∞ to indicate that the parameter in question is

unbounded. (x, y)-max spa pl-d is the decision version of (x, y)-max spa pl obtained

in an analogous fashion to max spa pl-d.

Theorem 7.3.1. (2,3)-max spa-pl-d is NP-complete.

Proof. We reduce from Maximum Independent Set (mis) for cubic graphs which is

defined as follows. Given a cubic graph G and an integer K, mis is the problem of

determining whether G contain an independent set of size at least K. mis is NP-

complete even for cubic graphs [83, 32]. Let 〈G,K〉 be an instance of mis, where

G = (V,E), E = {e1, . . . , em} and V = {v1, . . . , vn}. Construct an instance J of spa-

pl as follows. Let S = {s1, . . . , sm}, let P = {p1, . . . , pn} and let L = {l1, . . . , ln}. For

each i (1 ≤ i ≤ m), suppose that ei is incident to vr and vs in G. Student si finds both

pr and ps acceptable and is indifferent between them. For each j (1 ≤ j ≤ m), project

pj satisfies c−j = c+j = 3 and is offered by lecturer lj, who satisfies dj = 3.

We claim that G has an independent set of size at least K if and only if J admits a

greedy/generous k-matching for k ≥ 3K.

For, let S = {vi1 , . . . , vik} be an independent set in G, where k ≥ K. Form a set of

edges M in J as follows. For each r (1 ≤ r ≤ k), let ej1 , ej2 and ej3 be the three edges

incident to vir . Add (sjt , pir) to M (1 ≤ t ≤ 3). Then |M |= 3k, and moreover M is a

matching in J since S is an independent set in 〈G,K〉, and each project has either 0

or 3 assignees in J . Thus J admits a greedy/generous |M |-matching where |M |≥ 3K.

Conversely let M be a matching in J of size k′ ≥ 3K. Form a set of vertices S in

G as follows. For each j (1 ≤ j ≤ m), either project pj has 0 or 3 assignees. In the

7.3. Project lower quotas 144

latter case add vj to S. Then |S|= k′/3 ≥ K, and moreover S is an independent set in

〈G,K〉 since M is a matching in J .

Corollary 7.3.2. The problem of finding a greedy/generous maximum matching, given

an instance of (2, 3)-max spa pl is NP-hard.

When considering (x,y)-max spa-pl, although y refers to the maximum upper quota

of any project, by the reduction in the proof of Theorem 7.3.1 we can also consider y

to mean the maximum lower quota of any project or the maximum number of students

applying to any project and Theorem 7.3.1 will still hold in the case that y = 3. An

obvious way of offsetting this hardness is to consider approximation algorithms for

max spa-pl. However Theorem 7.3.3 shows that the problem is hard to approximate

to within a constant factor (this result is due to [23]).

Theorem 7.3.3 ([23]). Given any k ≥ 3, it is NP-hard to approximate (∞, k)-max

spa-pl to within a factor of k/ln k where k is the maximum number of students applying

for any project.

Proof. We reduce from the Maximum k-Set Packing (k-sp) problem which is de-

fined as follows. Given a set of elements E = {e1, e2, ..., en1} and a set C = {C1, C2, ...,

Cn2} of subsets of E with each subset Ci ∈ C having k elements, k-sp is the problem

of finding the maximum number of pairwise disjoint sets from C. It is NP-hard to

approximate k-sp to within a factor of k/ln k [26].

Let I be an instance of k-sp. Construct an instance I ′ of max spa-pl as follows.

Let the set of students S = {s1, s2, ..., sn1} correspond to E and the set of projects

P = {p1, p2, ..., pn2} correspond to C. Given any j (1 ≤ j ≤ n2), for each element

ei ∈ Cj, we add project pj to Ai (i.e. student si finds pj acceptable). Each project pj

is offered by a single unique lecturer lj and c−j = c+j = dj = k. Students are indifferent

between acceptable projects thus any maximum matching is also a greedy maximum

matching in I ′.

Let s+(I) and m+(I ′) denote the size of a maximum set packing in I and a greedy

maximum matching in I ′ respectively. Let C ′ ⊆ C be a maximum set packing in I (i.e.

|C ′|= s+(I)). We can construct a matching M in I ′ as follows. For each ei ∈ Cj where

Cj ∈ C ′ we add the pair (si, pj) to M . It is easy to see that M is a valid matching in

I ′ and, since |Cj|= k ∀ Cj ∈ C, |M |= ks+(I) and so m+(I ′) ≥ ks+(I ′).

Also let M be a greedy maximum matching in I ′ (i.e. |M |= m+(I ′)). We construct a

solution C ′ ⊆ C in I ′ by adding the set Cj to C ′ for every project pj where |M(pj)|> 0.

Given the values of c−j and c+j in I ′, it is easy to see that C ′ ⊆ C is a valid set packing

in I and |C ′|= m+(I ′)/k and so s+(I ′) ≥ m+(I ′)/k.

7.3. Project lower quotas 145

Thus m+(I ′) = ks+(I ′) and an approximation algorithm for (∞, k)-max spa-pl with

performance guarantee better than k/ln k would approximate k-sp by the same factor,

a contradiction.

7.3.3 Heuristics for max spa-pl

7.3.3.1 Introduction

In this subsection we present heuristics for max spa-pl (given the NP-hardness of the

problem). As stated above, in a given matching, each project must either meet its

lower quota (be open) or have no student matched to it (be closed). We have shown

above that the problem is NP-hard to solve or approximate. To deal with this hardness

we can relax the requirement that the matching must be maximum in order to produce

heuristics that find “good” matchings both in terms of size and profile. Although the

final matchings obtained need not be optimal with respect to size, we seek to find

matchings that are as large as possible and subject to that, we seek to optimise these

matchings with respect to some profile-based optimality criterion.

Let I be a max spa-pl instance. Also let I ′ be the underlying spa instance (i.e.

without considering lower quotas) and let M be a matching in I ′. Since M may not

be a feasible matching in I, we define P ′(M) = {pj : M(pj) < c−j (I)} to be the set of

violating projects that do not meet their lower quotas in M with respect to I. Projects

in P ′(M) can potentially receive more students in order to meet their lower quotas

and become open, or they can give up their assigned students and become closed.

Let N = N(I ′) be the network derived from I ′. Then f = f(M) is a flow in N . A

violating project pj ∈ P ′(M) can be closed by setting f(si, pj) = c(si, pj) = 0 for

all students si such that pj ∈ Ai, setting f(vs, si) = 0 for all students si ∈ M(pj),

setting f(pj, lk) = c(pj, lk) = 0 and setting f(lk, vt) = f(lk, vt)−|M(pj)| where lecturer

lk = l(pj). The resulting flow is thus reduced by |M(pj)|. A previously closed project pj

can be reactivated by setting the capacities of its incident edges to their original values

in N . Thus c(si, pj) = 1 for all students si such that pj ∈ Ai and c(pj, lk) = c+j (I)

where lk = l(pj).

The heuristics presented in Sections 7.3.3.2 and 7.3.3.3 involve steps in which projects

may be closed or reactivated. Both heuristics start by finding a profile-based optimal

matching M in I ′ that admits a set of violating projects P ′(M) in I. Violating projects

are then handled serially by either assigning more students to them or closing them.

Both heuristics handle projects in P ′(M) in different ways in order to arrive at a valid

matching in I (one in which all projects are either open or closed). In the following

7.3. Project lower quotas 146

Algorithm 7.3 Heuristic-cps

Require: spa-pl instance I;
Ensure: return matching M ;
1: Generate I ′ from I by dropping project lower quotas;
2: N := N(I ′);
3: loop
4: M := Greedy-max-spa(I ′);
5: P ′(M) := {pj : |M(pj)|< c−j (I)};
6: if |P ′(M)|> 0 then
7: close some project pj ∈ P ′(M) in N ;
8: else
9: return M ;

sections we present both heuristics and in Section 7.5.4 we show results obtained from

evaluating them empirically.

7.3.3.2 Close projects serially (Heuristic-cps)

In this heuristic, violating projects are handled by closing them one after the other

(in a serial manner). After each project is closed, the augmenting path algorithm (say

Greedy-max-spa) is re-executed on the resulting instance. This process continues until

there are no violating projects remaining.

Given a max spa-pl instance I, we start by forming I ′ (i.e., relaxing the project

lower quotas). We then find a greedy maximum matching M in I ′ by calling the

Greedy-max-spa algorithm. Next we consider all the projects in P ′(M) and begin to

close them one after the other. After each project in P ′(M) is closed, we re-execute

the Greedy-max-spa algorithm on the resulting instance. Although this may cause

other projects that were previously open to violate their lower quotas (thus adding to

P ′(M)), it is expected that a greater number of violating projects will gain enough

students to become open. Once a project is closed it is not reactivated and will remain

closed in the final matching obtained. The process continues until P ′(M) is empty (it

must terminate because every time the main loop iterates, either we return a matching

or we close exactly one project). Algorithm 7.3 describes the entire process.

Although projects are closed randomly in Algorithm 7.3, the order may affect the

size of the final matching obtained. There are various ways of ordering the violating

projects to be closed. One approach is to order violating projects based on the number

of extra students required for them to achieve their lower quotas (i.e., c−j − |M(pj)|)).
The higher the number of extra students required, the earlier the project is closed.

This will allow projects with a greater potential of achieving their lower quotas to have

more opportunities to do so. Another idea is to close projects that are less popular

7.3. Project lower quotas 147

as they are less likely to improve (and become open) during the process. If the most

popular projects are given more opportunities (i.e., are not closed early on) they have

a better chance of achieving their lower quotas. Finally we may order the violating

projects based on the number of students they have assigned to them at that time

(i.e., |M(pj)| for project pj). The idea is that projects with a large number of students

assigned to them will contribute more to the final matching than those with a smaller

number of assigned students and so should not be closed early on. These orderings can

be evaluated empirically in order to determine how well they perform in practice.

Since no previously closed projects are reactivated and the number of projects is finite,

the algorithm is bound to terminate. In the worst case, all of the n2 projects will need

to be closed thus leading to a time complexity of O(n2
1n2Rm2).

7.3.3.3 Open projects serially (Heuristic-ops)

In this heuristic all violating projects are initially closed. They are then reactivated one

after the other (in a serial manner). Given a max spa-pl instance I, as in the case of

Heuristic-cps, we start by finding I ′ (i.e. relaxing the project lower quotas). We then

find a greedy maximum matching M in I ′ by calling the Greedy-max-spa algorithm.

Next, we close all the projects in P ′(M) and begin to reactivate them one after the

other. After each project in P ′(M) is reactivated, we re-execute the Greedy-max-spa

algorithm on the resulting instance. Although this may cause other projects that were

previously open to violate their lower quotas (as P ′(M) can change at each iteration

with some projects leaving and others arriving), once again, it is expected that a

greater number of violating projects will gain enough students to become open (i.e.

leave P ′(M)). Each project can only be reactivated once. If a previously reactivated

project remains or becomes a violating project, it is permanently closed and will remain

closed in the resulting matching. Algorithm 7.4 details the entire process.

Once again the order in which projects are reactivated may affect the size of the

final matching obtained. As suggested in the Heuristic-cps case, we may choose

to reactivate popular projects first or projects needing the fewest number of extra

students to meet their lower quotas. We may also choose to reactivate projects with a

larger number of assigned students first. The algorithm is bound to terminate (as we

reactivate a project at most once) and has a time complexity of O(n2
1n2Rm2).

7.4. Extending the spa IP model 148

Algorithm 7.4 Heuristic-ops

Require: spa-pl instance I;
Ensure: return matching M ;
1: Generate I ′ from I by dropping project lower quotas;
2: N := N(I ′);
3: P ′′(M) := {}; /* store already reactivated projects */
4: loop
5: M := Greedy-max-spa(I ′);
6: P ′(M) := {pj : |M(pj)|< c−j (I)};
7: close all projects pj ∈ P ′(M) in N ;
8: if |P ′(M)\P ′′(M)|> 0 then
9: reactivate some project pj ∈ P ′(M)\P ′′(M) in N ;

10: add pj to P ′′(M);
11: else
12: return M ;

7.4 Extending the spa IP model

The IP models presented in Section 6.5 only enforce upper quota constraints on the

projects and lecturers. Extra constraints can be added to the models in order to enforce

lecturer and project lower quotas. However doing so may result in problem instances

that admit no feasible solutions. The following constraints can be added to enforce

lecturer lower quotas.

1.
∑
pj∈Pk

∑
si∈Sj

xi,j ≥ d−k ∀ lk ∈ L

For project lower quotas, as identified in Section 7.3.1, two feasibility definitions exist.

For the spa-pl variant where all projects must meet their lower quotas, instances need

not admit a feasible solution. An extra constraint (similar to Constraint 1 above) can

be added to the model in order to enforce the project lower quotas.

2.
∑
si∈Sj

xi,j ≥ c−j ∀ pj ∈ P

For the spa-pl variant where a project must either meet its lower quota or have no

students assigned to it (i.e., become closed), the following constraints can be added to

the model.

7.5. Empirical evaluation 149

2a.
∑
si∈Sj

xi,j + c+j yj ≤ c+j ∀ pj ∈ P

2b.
∑
si∈Sj

xi,j + c−j yj ≥ c−j ∀ pj ∈ P

If a project pj has no assignee, Constraint 2b is satisfied if y = 1, in which case

Constraint 2a is satisfied. On the other hand if pj has at least one assignee, Constraint

2a is satisfied if y = 0 and pj meets its upper quota and then Constraint 2b is satisfied

only if pj meets its lower quota.

7.5 Empirical evaluation

7.5.1 Introduction

Some experimental results in the spa context have already been presented in Sec-

tion 6.6. In this section we present more results relating to experiments carried out

on the implemented algorithms and heuristics presented in this Chapter. We imple-

mented and evaluated the Alg-min-span algorithm for finding a maximum matching

of minimum span in spa and spa-l instances. We also implemented the heuristics for

finding large matchings in max spa-pl instances.

Given that, in the case of max spa-pl, the matchings produced are not guaranteed to

be optimal with respect to size or profile, we adopt a measure of accessing the profile

quality of the matching produced when compared with an optimal solution (obtained

from the IP model). Following [21], we can define the rank approximation α of a

matching M in the spa context as follows. Matching M has rank approximation α if,

for all positions r (1 ≤ r ≤ R),

|{(si, pj) ∈M : rank(si, pj) ≤ r}| ≥ 1

α
|{(si, pj) ∈Mopt : rank(si, pj) ≤ r}|

where Mopt is an optimal (i.e., a greedy maximum) matching. We therefore use this

measure to evaluate the quality of a matching produced by the max spa-pl heuristics.

Given a spa instance that admits a non-empty matching M and a greedy maximum

matching Mopt, the profile quality (w.r.t. the greedy criterion) quality(M) is given as

follows.

7.5. Empirical evaluation 150

quality(M) = max

{
|{(si, pj) ∈Mopt : rank(si, pj) ≤ r}| + 1

|{(si, pj) ∈M : rank(si, pj) ≤ r}| + 1
: 1 ≤ r ≤ R)

}

If Mopt is a generous maximum matching in I the profile quality (w.r.t. the generous

criterion) quality(M) is given as follows.

quality(M) =
|Mopt|
|M |

×max

{
|{(si, pj) ∈M : rank(si, pj) ≥ r}| + 1

|{(si, pj) ∈Mopt : rank(si, pj) ≥ r}| + 1
: 1 ≤ r ≤ R)

}

In both cases, the closer the quality is to 1, the better. Thus in the following ex-

periments, we consider quality only in the greedy case. The input parameters used

to generate random instances are the same as those presented in Section 6.6 unless

otherwise stated.

7.5.2 Lecturer lower quotas

Due to the potential feasibility problems that may arise in the case of lecturer lower quo-

tas, we investigated the percentage solvability of randomly generated spa-l instances

while increasing the ratio of the lower to upper quotas assigned to the lecturers. Re-

sults from these experiment would potentially give us an indication of levels of lecturer

lower to upper quota ratios within which feasibility levels are deemed acceptable. The

total number of lecturer lower quotas LL was varied from 0 to CL where CL is the total

number of lecturer upper quotas (i.e. LL was varied from 0%CL to 100%CL by steps

of 10%). The LL and CL values were evenly distributed among the lecturers involved.

Figure 7.2: % solvability vs LL/CL

For each value of LL, 1000 instances of spa pl were generated and solved using the

7.5. Empirical evaluation 151

extended IP model. Figure 7.2 shows the results obtained with the percentage solv-

ability dropping from 0% to 100% as we increase the total lecturer lower quotas from

0%CL to 100%CL.The results suggest that for instances where LL/CL ≤ 0.6, feasibility

percentages are very high. However as the gap between upper and lower quotas is

reduced beyond this point, the feasibility ratio drops steeply.

7.5.3 Minimising matching span

Alg-min-span was implemented and tested on real world datasets and randomly gen-

erated spa instances. Table 7.1 shows the minimum span, the maximum possible span

and the average lecturer allocation for a number of real-world spa instances obtained

from previous runs of the student-project allocation scheme at the School of Com-

puting Science, University of Glasgow. With a maximum possible span of 3 for all

the instances considered, the matchings produced had an average minimum span of 2.

Thus on average, some lecturers get two more students than other lecturers. When

considering the results in conjunction with the average allocations per lecturer, one

may conclude that the minimum span values obtained are “poor”. For example, in the

2013/2014 session we have one lecturer having more than double the average workload.

Also none of the instances produced a matching where all the lecturers had the same

number of students assigned to them. These results may be attributed to the variation

in the popularity of the projects offered by lecturers and variations in the upper quotas

of the lecturers. So a lecturer who offers popular projects may be more likely to end

up with a larger number of assigned students.

Session min{span(M)} max{d+k } avg{|M(lk)|}
2014/2015 2 3 1.38
2013/2014 3 3 1.28
2012/2013 2 3 1.12
2011/2012 2 3 1.19
2010/2011 1 3 1.17
2009/2010 2 3 1.14

Table 7.1: Span of matchings in real-world spa instances

We generated random spa instances and ran the Alg-min-span algorithm on them.

We measured the minimum span produced, the quality of the matchings as well as the

maximum upper quota of any lecturer in each instance. For each instance generated, we

also executed the Greedy-max-spa algorithm and measured the span of the resulting

algorithms. The number of lecturers and the total upper quotas of all lecturers are

given as n3 = 0.2n1 and CL = 1.2n1 respectively.

7.5. Empirical evaluation 152

Figure 7.3: Minimum span vs n1 Figure 7.4: Mean quality vs n1

Figure 7.3 shows the results obtained. We observe a considerable improvement in the

span when compared with the worst-case scenario (i.e., with one lecturer with the

highest upper quota being full and another having no assigned partner). What we do

not see is any measurable change in this gap as we increase the instance size. This

observation is further highlighted by the fact that the overall quality of the minimum

span maximum matchings produced does not vary greatly (between 1.1 and 1.3) for

all the instances measured (as shown in Figure 7.4). One possible explanation for this

is the fact that the sub-routines used in the Alg-min-span algorithm attempt to find

matchings that are as greedy as possible.

7.5.4 Evaluating Heuristics for max spa-pl

So far we have evaluated spa instances where projects and lecturers have no lower quo-

tas. In this section we consider the case where projects have lower quotas. We restrict

our analysis to the spa-pl model and evaluate the performance of both heuristics de-

scribed in Section 7.3.3. Both Heuristic-cps and Heuristic-ops were implemented

in Java as well as extensions to the IP model for spa to spa-pl (Constraints 2a and

2b in Section 7.4) in CPLEX. The objective was to evaluate how well the heuristics

perform (with respect to runtime and the size and degree of the matchings produced)

against optimal solutions obtained from CPLEX.

Random spa-pl instances were generated and solved using both the heuristics and the

CPLEX IP implementation. We also implemented a third näıve heuristic (Heuristic-

naı̈ve). In this algorithm the project lower quotas are dropped, the resulting problem

is solved and any remaining violating projects are closed. The number of students in

the generated instances was varied from n1 = 100 to n1 = 1000 in steps of 100. For

each value of n1 considered, 1000 random instances were generated and solved using

7.5. Empirical evaluation 153

all four techniques. For all the instances generated, R = 5, n2 = 0.3n1, n3 = 0.2n1 and

CP = CL = n1. We set the total project and lecturer lower quotas to LP = 0.9n1 and

LL = 0 respectively. The values of R, n2, n3, CP and CL are considerably different

from the default ones used in the experiments above and have been chosen in order to

amplify the effect of enforcing project lower quotas in the spa-pa-1 context on the size

criterion in particular.

Figure 7.5: Mean matching size vs n1 Figure 7.6: Mean runtime vs n1

Figure 7.7: Mean matching degree vs n1

Figure 7.5 and Table 7.2 show how the mean matching size varied with n1. Both

Heuristic-cps and Heuristic-ops found matchings that are higher than the naive

approach but still noticeably lower than the optimal values. The results also show that

both heuristics seem to perform equally in terms of the size of the matchings produced.

Figure 7.6 shows how long it took to solve the generated instances using all four tech-

niques. As expected the IP method was the fastest given the low value of R. Since the

naive heuristic does not do much more than running the Greedy-max-spa algorithm,

it runs the fastest of the three heuristics. The main result here is the difference in

7.6. Conclusion 154

runtime between Heuristic-cps and Heuristic-ops with Heuristic-cps running

faster. Although the matchings produced by the heuristics need not be optimal with

respect to either profile-based optimality criteria, Figure 7.7 gives us an indication of

how well the heuristics perform with respect to profile. It shows a variation in the

mean matching degree as n1 was increased. We observe that Heuristic-cps typically

produces matchings with same degree typically as CPLEX although CPLEX match-

ings will be larger. On the other hand, even though Heuristic-ops matchings are

typically smaller than CPLEX, their degree is worse. Näıve matchings are typically

much smaller thus explaining their lower degree.

n1 Heuristic-naı̈ve Heuristic-ops Heuristic-cps CPLEX

100 67.02 70.38 70.39 74.23
200 133.33 140.55 140.57 148.32
300 200.14 211.00 211.00 222.52
400 266.37 281.18 281.20 296.58
500 332.47 351.27 351.31 370.60
600 399.63 422.14 422.20 445.07
700 466.45 492.58 492.65 519.31
800 532.49 562.64 562.81 593.24
900 599.42 633.05 633.17 667.47
1000 665.60 703.09 703.23 741.26

Table 7.2: Mean sizes of matchings produced by various heuristics and CPLEX

7.6 Conclusion

The spa variants considered in this chapter have involved the addition of lower quotas

to lecturers and projects. We have shown how these problems can be solved using

our network flow models. Other extensions to spa that may be considered interesting

include:

1. allowing multiple lecturers to offer the same project (although only one of them

will supervise the project in practice);

2. allowing students to be assigned to multiple projects;

3. extending the problem beyond students, lecturers and projects to consider addi-

tional sets of agents.

The following open problems relating to the variants presented in this chapter are also

relevant.

7.6. Conclusion 155

1. Find faster algorithms for the minimum span problems.

2. Find an approximation algorithm for max spa-pl (although we already know it

cannot be approximated to within a constant factor (see Theorem 7.3.3)).

156

Chapter 8

Further Experimental Results for

sm and sr

8.1 Introduction

As stated in Sections 2.2.2 and 2.4.2, the set of stable matchings in a given instance of

sm or sr satisfies an important structural relationship with the rotation poset: that is,

the stable matchings are in 1-1 correspondence with the closed (complete) subsets of

the rotation poset. This structure can be exploited in order to obtain fast algorithms

for a number of problems including producing the set of all stable matchings, as well

as constructing other types of“fair” stable matchings. Detailed descriptions of these

algorithms can be found in [38]. However little work has been done on empirically

evaluating implementations of these algorithms using randomly-generated data.

In this chapter we discuss the implementation and evaluation of some of these algo-

rithms with the aim of measuring the quantity, egalitarian cost and minimum regret

of stable matchings obtained from randomly generated sm and sr instances of varying

sizes. In particular we focus on the algorithms for finding the set of all stable match-

ings given sm and sr instances. These algorithms also enable us generate the set of

stable pairs, the set of egalitarian stable matchings as well as the set of all rotations

these instances admit. In Section 8.2, we describe the algorithms we implemented as

well as a tool for visualising the structures they produce (i.e., rotation posets, rotation

digraphs and Hasse diagrams). Section 8.3 shows results of an empirical evaluation

done on the implemented algorithms and presents some interesting observations from

the results obtained.

8.2. Implementation 157

8.2 Implementation

We implemented two known algorithms (referred to here as AlgBreakmarriage and

GetAll StableMatchingsSM) for finding the set of all stable matchings given an sm in-

stance [92, 36], as well as an algorithm (referred to here as GetAllStableMatchingsSR)

for finding the set of all stable matchings given an sr instance [38]. These implemen-

tations were done in Java using a toolkit that allows us to rapidly build matching

algorithms using pre-build modules. We also extended this matching toolkit to al-

low for the visualisation of the structures discovered during the execution of these

algorithms. These structures included the rotation poset, rotation digraph and Hasse

diagram. Figure 8.1 is a screenshot of this visualisation tool. It shows the rotation

poset for an sm instance displayed as an interactive graph. In this instance there are

10 rotations with ρ � σ being illustrated by the edge (ρ, σ) in the digraph shown.

Figure 8.1: Visualising the rotation poset of an sm instance

In the following subsections we present a high-level description of the three implemented

algorithms.

8.2.1 The AlgBreakmarriage algorithm

Let S be the set of all stable matchings in an sm instance and let M0 be the man-

optimal stable matching in S. If |S| > 1, then in each other matching Mk ∈ S\M0,

there exists at least one woman wj who prefers Mk(wj) to M0(wj) and at least one man

mi who prefers M0(mi) to Mk(mi). The algorithm, developed by McVitie and Wilson

8.2. Implementation 158

to find the set of all stable matchings [92], uses a recursive modification of the Gale-

Shapley algorithm in conjunction with a new operation that they call breakmarriage.

The breakmarriage operation receives a man mi and a stable matching Mk (where

M(mi) = wj) as input. Firstly we remove (mi, wj) from Mk (leaving both mi and wj

unassigned). Then we let mi propose to the next woman after wj on his preference list,

thus restarting the proposal sequence of the Gale-Shapley algorithm. By doing this we

try to ensure that mi gets a worse partner than wj with wj getting a better partner

than mi. The proposal sequence of the Gale-Shapley algorithm continues until either

(i) wj gets a proposal from a man she prefers to mi (with mi matched to a woman

further down his preference list) in which case a new stable matching Mk+1 has been

discovered, or (ii) some man runs out of partners to propose to, in which case the

breakmarriage operation fails on mi.

The AlgBreakmarriage algorithm starts by finding M0 and then calls the break

marriage operation passing M0 and some man m1 as input. If a stable matching

is found we add it to S otherwise nothing is added to S. Next breakmarriage is called

again with M0 and the next man m2 as input. When all the man have passed on with

M0 to the breakmarriage operation, we move on to the next matching in S starting

from the first man m1. The process continues until all men have been passed on to

the breakmarriage operation for each stable matching found. Although the process

is guaranteed to generate all stable matchings, there is a strong possibility that, due

to its recursive nature, some stable matchings will be discovered multiple times. If

this is the case, extra work will have to be done in order to obtain a unique set of

stable matchings. To tackle this problem, two restrictions/rules can be placed on the

algorithm to prevent redundant recursive calls. The rules are as follows:

Rule 1 If the breakmarriage operation discovers a stable matching Mk when using

man mi as input, then subsequent calls to breakmarriage starting from Mk can

only be carried out on men mj where j > i.

Rule 2 After calling the breakmarriage operation with man mi as input, if any man

mj is involved in the proceeding proposal sequence of the Gale-Shapley algorithm,

where j < i the entire breakmarriage operation is stopped and reported as failed.

A man is involved if, during the execution of the Gale-Shapley algorithm, he is

forced to break up with his current partner and propose to another woman further

down his preference list.

These two rules ensure that no redundant recursive calls to the breakmarriage op-

eration are made. The algorithm will take at least Ω(n3|S|/log(|S|2)) and at most

Ω(n3|S|) time where S is the set of all stable matchings [36].

8.2. Implementation 159

8.2.2 The GetAllStableMatchingsSM algorithm

This algorithm works by first constructing the rotation poset and rotation digraph in

a given sm instance and then using the rotation digraph to find the set of all stable

matchings.

The steps required for the the generation of all stable matchings are as follows:

1. Run the man-oriented and woman-oriented versions of Gale-Shapley algorithm.

2. With the man-optimal and woman-optimal stable matchings generated, run the

Algorithm A algorithm [36, Section 3.1] to generate all possible rotations in that

instance.

3. Construct the rotation poset and rotation digraph from the set of rotations gen-

erated above [38, Section 3.2].

4. Use the rotation digraph to generate all stable matchings. At any point dur-

ing the execution of the algorithm the rotation digraph will have one or more

sources. The algorithm starts with the man-optimal stable matching and recur-

sively exposes and eliminates rotations (thus producing new stable matchings) as

they appear as sources in the rotation digraph. These sources will be candidates

for elimination from the current stable matching. After each elimination from a

stable matching Mk (to produce a new stable matching Mk+1), the eliminated

rotation, say ρ, is temporarily removed from the digraph so as to expose the next

set of rotations. Subsequent eliminations are then done by recursively calling

the algorithm. The rotation ρ has to be put back in the digraph so as to try

eliminating other rotations that are co-sources of the digraph with ρ [38, Section

3.3].

The overall time complexity of the algorithm is O(n2 + n|S|) where S is the set of all

stable matchings.

8.2.3 The GetAllStableMatchingsSR algorithm

In the sr context generating the set of all stable matchings (for solvable instances) is

done in the following phases.

1. Phase 1 is similar to the extended Gale-Shapley algorithm but, due to the fact

that only one set of agents exists, each person will both make and receive pro-

posals. Every proposal, and the subsequent symmetric deletions that follow, is

8.3. Empirical Evaluation 160

followed by a one-way engagement between the agent proposing and the recipient

of the proposal (although this one-way engagement is in general not symmetric).

The resulting set of preference lists is called the phase-1 table. If there is any

agent in the phase-1 table with an empty list, then the instance does not admit

a stable matching. If, in the phase-1 table, everyone has a single entry in their

list, then the matching admits a unique stable matching otherwise we proceed to

phase 2 [38, Section 4.2.2].

2. Phase 2 of the algorithm involves the successive exposure and elimination of

rotations until either some person ends up with an empty list (in which case the

instance does not admit a stable matching) or everyone has a single entry in their

preference list which corresponds to a stable matching [38, Section 4.2.3].

3. During the Phase 2 all the rotations discovered are stored. The complete set of

rotations can then be generated from these stored ones [38, Section 4.3].

4. Once all the rotations have been discovered and classified as singular or non-

singular, finding the set of all stable matchings involves firstly eliminating all

the singular rotations to obtain a reduced phase-1 table, then the elimination

the closed complete subsets of the rotation poset, each subset leading to a stable

matching [38, Section 4.4].

The complexity of the algorithm is O(n3 log n + n2|S|) where S represents the set of

all stable matchings.

8.3 Empirical Evaluation

In this section we present results obtained from the evaluation of the AlgBreakmarriage,

GetAllStableMatchingsSM and GetAllStableMatchingsSR algorithms using randomly-

generated data. We tested the correctness of our implementations by comparing the

set of stable matchings they produced with those obtained from brute-force techniques.

In the case of sm we also compared results obtained from both the AlgBreakmarriage

and GetAllStableMatchingsSM algorithms. Our main objective was to investigate

certain properties of the stable matchings produced by these algorithms such as the

number of stable matchings, rotations and stable pairs an sm or sr instance admits.

For some of the algorithms, no empirical results of the nature produced exists in the

literature.

In the two experiments conducted, we generated sm and sr instances (with com-

plete and strictly-ordered preference lists) of increasing size and solved them using the

8.3. Empirical Evaluation 161

GetAllStableMatchingsSM and GetAllStableMatchingsSR algorithms respectively

(the AlgBreakmarriage algorithm was only used for correctness testing). For each

value of n in the range n ∈ {20, 40, 60, ..., 100, 200, 300, ..., 800} we generated and solved

10, 000 random sm instances where n is the size of an sm instance. Also for each value

of n in the range n ∈ {20, 40, 60, ..., 100, 200, 300, ..., 1000} we generated and solved

10, 000 random sr instances where n is the size an sr instance. For both algorithms,

we recorded, for each instance size, the average number of stable matchings, stable

pairs and rotations, as well as the average cost of the egalitarian, minimum regret and

maximum regret stable matchings obtained. Although more efficient algorithms exist

in the literature for finding egalitarian and minimum regret stable matchings, they

were not implemented here because these matchings can be obtained a by-product of

generating all stable matchings. Experiments were carried out on a Windows machine

with 4 Intel(R) Core(R) i5-2400 CPUs at 3.1GHz and 8GB RAM. We now present the

results obtained and discuss some interesting observations made from them.

1. Figure 8.2 shows the average size of the set of stable matchings is proportional to

n lnn. It is known that every instance of sm admits at least one stable matching

[29] and a single sm instance can admit more than one stable matching. It would

thus be logical to investigate the correlation between the size of the problem

instance and the number of stable matchings it is likely to admit. Lennon and

Pittel showed in [81] that the expected number of stable matchings in a random

sm instance of size n taken uniformly out of the (n!)2n possibilities is of the order

n lnn. Results obtained from our experiment confirm this.

In the sr case, solvable instances can also admit multiple stable matchings. Fig-

ure 8.3 shows that the mean number of stable matchings (taken over the solvable

instances) only slightly increases as we increase the instance size. This is in

contrast to the sm case where larger instances tend to admit many more stable

matchings. Also the relatively small numbers of stable matchings (even for in-

stances containing 1000 agents) shed some light on how restrictive the stability

criterion can be in the sr case.

2. It is also interesting to note how the average number of stable pairs varies with

the size of sm and sr instances. A larger number of stable pairs is desirable as

this might imply a larger set of stable matchings to choose from. With n2 possible

sm pairs and n(n − 1)/2 possible sr pairs in an instance of size n, Figures 8.4

and 8.5 show that the average number of stable pairs is quite low. These results

may be considered as further evidence of the strictness of the stability criteria

(and relaxing the stability criterion has motivated results presented in Chapters

8.3. Empirical Evaluation 162

Figure 8.2: Mean |S| vs n lnn (sm) Figure 8.3: Mean |S| vs n (sr)

3 - 5 of this thesis). The lower the number of stable pairs, the fewer the number

of stable matchings that the problem instance is likely to admit.

For sm instances, although the values increasingly deviate from n as n grows, they

are still considerably smaller than the total numbers of pairs in the instances. In

the sr case however, the value, which is almost exactly n/2, seems to agree with

the observation in Figure 8.3 that random sr instances are likely to admit very

few stable matchings even if the instance size is increased.

Figure 8.4: Mean stable pairs vs n (sm) Figure 8.5: Mean stable pairs vs n (sr)

3. The rate at which the average egalitarian cost changes with the instance size is

also an interesting trend to observe. The average egalitarian cost, taken over

multiple sm and sr instances of a given size, gives us an indication of how fair

stable matchings of that size can be. The worst case value of the cost of stable

matchings in sm and sr is Ω(n2). For the sm case, we expect the cost of an

egalitarian stable matching to be better than that of both the man-optimal and

8.3. Empirical Evaluation 163

woman-optimal stable matchings. In Figure 8.6 we observe that the mean cost of

the man-optimal and woman-optimal stable matchings are approximately equal

and rise much more steeply than the mean cost of an egalitarian stable matching.

For the sr case, Figure 8.7 shows that the average egalitarian cost grows much

less steeply than n(n−1) (the worst case cost of any matching) as we increase n.

Both results suggest that employing the egalitarian optimality criterion seems to

grow in importance as we increase the size of the sm and sr instances.

Figure 8.6: Mean cost vs n (sm) Figure 8.7: Mean cost vs n (sr)

4. Figures 8.8 and 8.9 show the mean minimum and maximum regret of the stable

matchings produced as we varied the sm and sr instance sizes. For the sm case,

we see the maximum regret increasing steeply with the instance size. This is

not surprising as it is reasonable to expect, for example, that an sm instance

of size 800 may admit some matching (in particular, the woman-optimal stable

matching) with at least one man who is matched to a woman that is almost at

the end of his preference list. The minimum regret curve increases much less

steeply as we increase the instance size. This means that even large sm instances

with 800 men and 800 women are likely to admit stable matchings that match all

men and women to their top 200th choice partner. This motivates the adoption

of this optimality criterion in practice.

For the sr case we do not see a considerable gap between the mean minimum

and maximum regret taken over all stable matchings. This is probably due to

the fact that sr instances are likely to admit only few stable matchings. This

small gap seems to suggest that, at least in practice, computing minimum regret

stable matchings may be of little value. We also observe that both curves grow

steeply with the instance size (although not as steeply as the mean minimum

regret measure in the sm case).

8.3. Empirical Evaluation 164

Figure 8.8: Mean regret vs n (sm) Figure 8.9: Mean regret vs n (sr)

Figure 8.10: Mean number of rotations
vs n (sm)

Figure 8.11: Mean number of rotations
vs n (sr)

5. Investigating the way the average number of rotations varies with the size of the

instances can also be important. In Figures 8.10 and 8.11, we see the number of

rotations increase with the size of the sm and sr instances respectively. In the

sm case, this is expected as the rise in the number of rotations corresponds to

an increase in the number of stable matchings as n increases. In the sr case we

observe that the steeply rising number of singular rotations has no impact on the

number of stable matchings the instance admits (as singular rotations are only

used to produce the reduced phase 1 table). The number of stable matchings is

affected by the number of non-singular rotations the instance admits and Figure

8.11 shows this to be fairly constant as the instance size increases.

Bibliography 165

Bibliography

[1] A. Abdulkadiroǧlu, P.A. Pathak, and A.E. Roth. The Boston public school

match. American Economic Review, 95(2):368–371, 2005.

[2] A. Abdulkadiroǧlu, P.A. Pathak, and A.E. Roth. The New York City high school

match. American Economic Review, 95(2):364–367, 2005.

[3] A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from

random endowments in house allocation problems. Econometrica, 66(3):689–701,

1998.

[4] H.G. Abeledo and U.G. Rothblum. Stable matchings and linear inequalities.

Discrete Applied Mathematics, 54:1–27, 1994.

[5] D. J. Abraham. Algorithmics of two-sided matching problems. Master’s thesis,

University of Glasgow, Department of Computing Science, 2003.

[6] D. J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter

exchange markets: enabling nationwide kidney exchanges. In Proceedings of EC

’07: the 8th ACM Conference on Electronic Commerce, pages 295–304. ACM,

2007.

[7] D. J. Abraham, K. Cechlárová, D. F. Manlove, and K. Mehlhorn. Pareto opti-

mality in house allocation problems. In Proceedings of ISAAC 2004: the 15th

Annual International Symposium on Algorithms and Computation, volume 3341

of Lecture Notes in Computer Science, pages 3–15. Springer, 2004.

[8] D. J. Abraham, R.W. Irving, and D. F. Manlove. Two algorithms for the Student-

Project allocation problem. Journal of Discrete Algorithms, 5(1):79–91, 2007.

[9] A. H. Abu El-Atta and M. I. Moussa. Student project allocation with preference

lists over (student,project) pairs. In Proceedings of ICCEE 09: the Second In-

ternational Conference on Computer and Electrical Engineering, pages 375–379.

IEEE, 2009.

Bibliography 166

[10] A. A. Anwar and A. S. Bahaj. Student project allocation using integer program-

ming. IEEE Transactions on Education, 46(3):359–367, August 2003.

[11] E. Arcaute and S. Vassilvitskii. Social networks and stable matchings in the

job market. In Proceedings of WINE ’09: the 5th International Workshop on

Internet and Network Economics, volume 5929 of Lecture Notes in Computer

Science, pages 220–231. Springer, 2009.

[12] G. Askalidis, N. Immorlica, A. Kwanashie, D. F. Manlove, and E. Pountourakis.

Socially Stable matchings in the Hospitals/Residents problem. In Proceedings of

WADS ’13: The 13th International Algorithms and Data Structures Symposium,

volume 8037 of Lecture Notes in Computer Science, pages 85–96. Springer, 2013.

[13] G. Askalidis, N. Immorlica, and E. Pountourakis. Socially stable matchings.

Technical Report 1302.3309, Computing Research Repository, Cornell University

Library, 2013. Available from http://arxiv.org/abs/1302.3309.

[14] P. Berman, M. Karpinski, and Alexander D. Scott. Approximation hardness of

short symmetric instances of MAX-3SAT. Electronic Colloquium on Computa-

tional Complexity Report, number 49, 2003.

[15] P. Biró, D. F. Manlove, and S. Mittal. Size versus stability in the marriage

problem. Theoretical Computer Science, 411:1828–1841, 2010.

[16] P. Biró, D. F. Manlove, and R. Rizzi. Maximum weight cycle packing in directed

graphs, with application to kidney exchange. Discrete Mathematics, Algorithms

and Applications, 1(4):499–517, 2009.

[17] P. Biró and I. McBride. Integer programming methods for special college ad-

missions problems. In Proceedings of COCOA ‘14: the 8th Annual Interna-

tional Conference on Combinatorial Optimization and Applications, pages 429–

443. Springer, 2014.

[18] E. L. Johnson C. Barnhart, M. W. P. Savelsbergh Nemhauser, L. George, and

P. H. Vance. Branch-and-price: Column generation for solving huge integer

programs. Operations research, 46(3):316–329, 1998.

[19] K. Cechlárová and T. Fleiner. Stable roommates with free edges. Technical

Report 2009-01, Egerváry Research Group on Combinatorial Optimization, Bu-

dapest, 2009.

[20] K. Cechlárová, T. Fleiner, D. F. Manlove, I. McBride, and E. Potpinková. Mod-

elling practical placement of trainee teachers to schools. Central European Jour-

nal of Operations Research, pages 1–16, 2014.

Bibliography 167

[21] D. Chakrabarty and C. Swamy. Welfare maximization and truthfulness in mech-

anism design with ordinal preferences. In Proceedings of ITCS ‘14: the 5th Con-

ference on Innovations in Theoretical Computer Science, pages 105–120. ACM,

2014.

[22] C.T. Cheng and E. McDermid. Maximum locally stable matchings. In Proceed-

ings of MATCH-UP ’12: the 2nd International Workshop on Matching Under

Preferences, pages 51–62, 2012.

[23] Á. Cseh. Personal communication, 2014.

[24] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in

bipartite graphs. In Proceedings of SODA ’12: the 23rd ACM-SIAM Symposium

on Discrete Algorithms, pages 1413–1424. ACM-SIAM, 2012.

[25] J. Dye. A constraint logic programming approach to the stable marriage problem

and its application to student-project allocation. BSc Honours project disserta-

tion, University of York, Department of Computer Science, 2001.

[26] S. Safra E. Hazan and O. Schwartz. On the complexity of approximating k-set

packing. Computational Complexity, 15(1):20–39, May 2006.

[27] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,

1962.

[28] H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems.

SIAM Journal on Computing, 18:1013–1036, 1989.

[29] D. Gale and L.S. Shapley. College admissions and the stability of marriage.

American Mathematical Monthly, 69:9–15, 1962.

[30] D. Gale and M. Sotomayor. Some remarks on the stable matching problem.

Discrete Applied Mathematics, 11:223–232, 1985.

[31] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San

Francisco, CA., 1979.

[32] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete

graph problems. Theoretical Computer Science, 1:237–267, 1976.

[33] N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and J. Mestre. Assigning papers

to referees. Algorithmica, 58(1):119–136, 2010.

Bibliography 168

[34] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Local search

for stable marriage problems. In V. Conitzer and J. Rothe, editors, Proceedings

of COMSOC 2010: the 3rd International Workshop on Computational Social

Choice, pages 367–378. Düsseldorf University Press, 2010.

[35] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Local search

for stable marriage problems with ties and incomplete lists. In Proceedings of

PRICAI 2010: the 11th Pacific Rim Conference on Artificial Intelligence, volume

6230 of Lecture Notes in Artificial Intelligence, pages 64–75. Springer, 2010.

[36] D. Gusfield. Three fast algorithms for four problems in stable marriage. SIAM

Journal on Computing, 16(1):111–128, 1987.

[37] D. Gusfield. The structure of the stable roommate problem – efficient represen-

tation and enumeration of all stable assignments. SIAM Journal on Computing,

17(4):742–769, 1988.

[38] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Al-

gorithms. MIT Press, 1989.

[39] M. Halldorsson, R.W. Irving, K. Iwama, D. F. Manlove, S. Miyazaki, Y. Morita,

and S. Scott. Approximability results for stable marriage problems with ties.

Theoretical Computer Science, 306(1-3):431–447, September 2003.

[40] M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approxi-

mation of the stable marriage problem. ACM Transactions on Algorithms, 3(3),

2007. Article number 30.

[41] M.M. Halldórsson, R.W. Irving, K. Iwama, D. F. Manlove, S. Miyazaki,

Y. Morita, and S. Scott. Approximability results for stable marriage problems

with ties. Theoretical Computer Science, 306(1-3):431–447, 2003.

[42] K. Hamada, K. Iwama, and S. Miyazaki. An improved approximation lower

bound for finding almost stable stable maximum matchings. Information Pro-

cessing Letters, 109(18):1036–1040, 2009.

[43] P.R. Harper, V. de Senna, I.T. Vieira, and A.K. Shahani. A genetic algorithm for

the project assignment problem. Computers and Operations Research, 32:1255–

1265, 2005.

[44] M. Hoefer. Local matching dynamics in social networks. Information and Com-

putation, 222:20–35, 2013.

Bibliography 169

[45] M. Hoefer and L. Wagner. Locally stable marriage with strict preferences. In

Proceedings of ICALP 2013: the 40th International Colloquium on Automata,

Languages and Programming, Lecture Notes in Computer Science. Springer, 2013.

[46] J.E. Hopcroft and R.M. Karp. A n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2:225–231, 1973.

[47] C.-C. Huang and T. Kavitha. Efficient algorithms for maximum weight matchings

in general graphs with small edge weights. In Proceedings of SODA ’12: the 23rd

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1400–1412. SIAM,

2012.

[48] C.-C. Huang, T. Kavitha, K. Mehlhorn, and D. Michail. Fair matchings and re-

lated problems. In Proceedings of FSTTCS 2013: the 33rd International Confer-

ence on Foundations of Software Technology and Theoretical Computer Science,

volume 24, pages 339–350. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2013.

[49] A. Hylland and R. Zeckhauser. The efficient allocation of individuals to positions.

Journal of Political Economy, 87(2):293–314, 1979.

[50] R.W. Irving. An efficient algorithm for the “stable roommates” problem. Journal

of Algorithms, 6:577–595, 1985.

[51] R.W. Irving. Stable marriage and indifference. Discrete Applied Mathematics,

48:261–272, 1994.

[52] R.W. Irving. Matching medical students to pairs of hospitals: a new variation on

a well-known theme. In Proceedings of ESA ’98: the Sixth European Symposium

on Algorithms, volume 1461 of Lecture Notes in Computer Science, pages 381–

392. Springer, 1998.

[53] R.W. Irving. Greedy matchings. Technical Report TR-2003-136, University of

Glasgow, Department of Computing Science, 2003.

[54] R.W. Irving. Greedy and generous matchings via a variant of the Bellman-Ford

algorithm. Unpublished manuscript, 2006.

[55] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal

matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.

[56] R.W. Irving and P. Leather. The complexity of counting stable marriages. SIAM

Journal on Computing, 15(3):655–667, 1986.

Bibliography 170

[57] R.W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the “optimal”

stable marriage. Journal of the ACM, 34(3):532–543, 1987.

[58] R.W. Irving and D. F. Manlove. The Stable Roommates Problem with Ties.

Journal of Algorithms, 43:85–105, 2002.

[59] R.W. Irving and D. F. Manlove. Approximation algorithms for hard variants of

the stable marriage and hospitals/residents problems. Journal of Combinatorial

Optimization, 16(3):279–292, 2008.

[60] R.W. Irving and D. F. Manlove. Finding large stable matchings. ACM Journal

of Experimental Algorithmics, 14, 2009. Section 1, article 2, 30 pages.

[61] R.W. Irving, D. F. Manlove, and G. O’Malley. Stable marriage with ties and

bounded length preference lists. Journal of Discrete Algorithms, 7(2):213–219,

2009.

[62] R.W. Irving, D. F. Manlove, and S. Scott. The Hospitals/Residents problem

with Ties. In Proceedings of SWAT 2000: the 7th Scandinavian Workshop on

Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pages

259–271. Springer, 2000.

[63] R.W. Irving, D. F. Manlove, and S. Scott. The stable marriage problem with

master preference lists. Discrete Applied Mathematics, 156(15):2959–2977, 2008.

[64] K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with in-

complete lists and ties. In Proceedings of ICALP ’99: the 26th International

Colloquium on Automata, Languages, and Programming, volume 1644 of Lecture

Notes in Computer Science, pages 443–452. Springer, 1999.

[65] K. Iwama, S. Miyazaki, and K. Okamoto. A
(
2− c logn

n

)
-approximation algo-

rithm for the stable marriage problem. In Proceedings of SWAT 2004: the 9th

Scandinavian Workshop on Algorithm Theory, volume 3111 of Lecture Notes in

Computer Science, pages 349–361. Springer, 2004.

[66] K. Iwama, S. Miyazaki, and K. Okamoto. A
(
2− c logn

n

)
-approximation algo-

rithm for the stable marriage problem. IEICE Transactions on Information and

Systems, E89-D(8):2380–2387, 2006. Preliminary version appeared in [65].

[67] K. Iwama, S. Miyazaki, and N. Yamauchi. A 1.875–approximation algorithm

for the stable marriage problem. In Proceedings of SODA ’07: the Eighteenth

ACM/SIAM Symposium on Discrete Algorithms, pages 288–297. ACM-SIAM,

2007.

Bibliography 171

[68] K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for

the student-project allocation problem with preferences over projects. Journal

of Discrete Algorithms, 13:59–66, 2012.

[69] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and

J.W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.

Plenum Press, 1972.

[70] B. A. Kassa. A linear programming approach for placement of applicants to

academic programs. SpringerPlus, 2(1):1–7, 2013.

[71] A. Kato. Complexity of the sex-equal stable marriage problem. Japan Journal

of Industrial and Applied Mathematics, 10:1–19, 1993.

[72] D. Kazakov. Co-ordination of student-project allocation. Manuscript, University

of York, Department of Computer Science, 2002.

[73] Z. Király. Better and simpler approximation algorithms for the stable marriage

problem. In Proceedings of ESA ’08: the 16th Annual European Symposium on

Algorithms, volume 5193 of Lecture Notes in Computer Science, pages 623–634.

Springer, 2008.

[74] Z. Király. Better and simpler approximation algorithms for the stable marriage

problem. Algorithmica, 60:3–20, 2011. Preliminary version appeared in [73].

[75] Z. Király. Linear time local approximation algorithm for maximum stable mar-

riage. In Proceedings of MATCH-UP ’12: the 2nd International Workshop on

Matching Under Preferences, pages 99–110, 2012.

[76] D.E. Knuth. Mariages Stables. Les Presses de L’Université de Montréal, 1976.

English translation in Stable Marriage and its Relation to Other Combinatorial

Problems, volume 10 of CRM Proceedings and Lecture Notes, American Mathe-

matical Society, 1997.

[77] B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence

systems. In Annals of Discrete Mathematics, volume 2, pages 65–74. North-

Holland, 1978.

[78] E. Kujansuu, T. Lindberg, and E. Mäkinen. The stable roommates problem and

chess tournament pairings. Divulgaciones Matemáticas, 7(1):19–28, 1999.

[79] A. Kwanashie and D. F. Manlove. An Integer Programming approach to the

Hospitals/Residents problem with Ties. Technical Report 1308.4064, Computing

Research Repository, Cornell University Library, 2013.

Bibliography 172

[80] G. Han L. Pan, S. C. Chu and J. Z. Huang. Multi-criteria student project alloca-

tion: A case study of goal programming formulation with dss implementation. In

Proceedings of ISORA 2009: The Eighth International Symposium on Operations

Research and Its Applications, Zhangjiajie, China, pages 75–82, 2009.

[81] C. Lennon and B. Pittel. On the likely number of solutions for the stable marriage

problem. Combinatorics Probability and Computing, 18(3):371–421, May 2009.

[82] K. S. M. Sahari M. H. Hasan and A. Anuar. Implementation of a new preference

based final year project title selection system for undergraduate engineering stu-

dents in uniten. In in Proceedings of ICEED 2009: International Conference on

Engineering Education, pages 230–235, Dec 2009.

[83] D. Maier and J.A. Storer. A note on the complexity of the superstring problem.

In 12th Annual Conference on Information Sciences and Systems, pages 52–56,

1978.

[84] D. F. Manlove. Stable marriage with ties and unacceptable partners. Technical

Report TR-1999-29, University of Glasgow, Department of Computing Science,

January 1999.

[85] D. F. Manlove. Algorithmics of Matching Under Preferences. World Scientific,

2013.

[86] D. F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants

of stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.

[87] D. F. Manlove and G. O’Malley. Student project allocation with preferences over

projects. Journal of Discrete Algorithms, 6:553–560, 2008.

[88] D. Marx and I. Schlotter. Parameterized complexity and local search approaches

for the stable marriage problem with ties. Algorithmica, 58(1):170–187, 2010.

[89] I. McBride and D. F. Manlove. An integer programming model for the Hospi-

tals/Residents problem with Couples. In Proceedings of OR 2013: the Interna-

tional Conference on Operations Research, pages 293–299. Springer, 2014.

[90] E. McDermid. A 3/2 approximation algorithm for general stable marriage. In

Proceedings of ICALP ’09: the 36th International Colloquium on Automata, Lan-

guages and Programming, volume 5555 of Lecture Notes in Computer Science,

pages 689–700. Springer, 2009.

[91] E. McDermid and R.W. Irving. Sex equal stable matchings: Complexity and

exact algorithms. Algorithmica, 2013.

Bibliography 173

[92] D.G. McVitie and L.B. Wilson. The stable marriage problem. Communications

of the ACM, 14(7):486–490, 1971.

[93] K. Mehlhorn and D. Michail. Network problems with non-polynomial weights

and applications. Unpublished manuscript, 2006.

[94] S. Micali and V.V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum

matching in general graphs. In Proceedings of FOCS ’80: the 21st Annual IEEE

Symposium on Foundations of Computer Science, pages 17–27. IEEE Computer

Society, 1980.

[95] J. B. Orlin. Max flows in O(nm) time, or better. In Proceedings STOC ‘13:

the 45th Annual ACM Symposium on the Theory of Computing, pages 765–774.

ACM, 2013.

[96] J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations

Research, 41(2):338–350, 1993.

[97] K.E. Paluch. Faster and simpler approximation of stable matchings. In Pro-

ceedings of WAOA ’11: 9th Workshop on Approximation and Online Algorithms,

Lecture Notes in Computer Science. Springer, 2012.

[98] N. Perach, J. Polak, and U.G. Rothblum. A stable matching model with an

entrance criterion applied to the assignment of students to dormitories at the

Technion. International Journal of Game Theory, 36(3-4):519–535, 2008.

[99] A. Podhradský. Stable marriage problem algorithms. Master’s thesis, Master’s

thesis, Masaryk University, Faculty of Informatics, 2010. Available from http:

//is.muni.cz/th/172646/fi_m.

[100] A. Podhradsky. Approximative algorithms for the problem of stable pairing. 2011

[cit. 26/10/2012].

[101] A.E. Roth. The evolution of the labor market for medical interns and residents:

a case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

[102] A.E. Roth, U.G. Rothblum, and J.H. Vande Vate. Stable matchings, optimal

assignments, and linear programming. Mathematics of Operations Research,

18(4):803–828, 1993.

[103] A.E. Roth, T. Sönmez, and M.U. Ünver. Kidney exchange. Quarterly Journal of

Economics, 119(2):457–488, 2004.

Bibliography 174

[104] A.E. Roth, T. Sönmez, and M.U. Ünver. Pairwise kidney exchange. Journal of

Economic Theory, 125(2):151–188, 2005.

[105] A.E. Roth, T. Sönmez, and M.U. Ünver. Efficient kidney exchange: Coincidence

of wants in a market with compatibility-based preferences. American Economic

Review, 2007.

[106] A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-

theoretic modeling and analysis, volume 18 of Econometric Society Monographs.

Cambridge University Press, 1990.

[107] A.E. Roth and X. Xing. Jumping the gun: imperfections and institutions related

to the timing of market transactions. American Economic Review, 84(4):992–

1044, 1994.

[108] U.G. Rothblum. Characterization of stable matchings as extreme points of a

polytope. Mathematical Programming, 54:57–67, 1992.

[109] H. M. Saber and J. B. Ghosh. Assigning students to academic majors. Omega,

29(6):513 – 523, 2001.

[110] C.T.S. Sng. Efficient Algorithms for Bipartite Matching Problems with Prefer-

ences. PhD thesis, University of Glasgow, Department of Computing Science,

2008.

[111] C. Y. Teo and D. J. Ho. A systematic approach to the implementation of final year

project in an electrical engineering undergraduate course. IEEE Transactions on

Education, 41(1):25–30, 1998.

[112] M. Thorn. A constraint programming approach to the student-project allocation

problem. BSc Honours project dissertation, University of York, Department of

Computer Science, 2003.

[113] S. Varone and D. Schindl. Course opening, assignment and timetabling with

student preferences. In Proceedings of ICORES: International Conference on

Operations Research and Enterprise Systems, 2013.

[114] J.H. Vande Vate. Linear programming brings marital bliss. Operations Research

Letters, 8(3):147–153, 1989.

[115] H. Yanagisawa. Approximation Algorithms for Stable Marriage Problems. PhD

thesis, Kyoto University, School of Informatics, 2007.

Bibliography 175

[116] M. Zelvyte. The student-project allocation problem using network flow. BSc

Honours project dissertation, University of Glasgow, School of Mathematics and

Statistics, 2014.

[117] L. Zhou. On a conjecture by Gale about one-sided matching problems. Journal

of Economic Theory, 52(1):123–135, 1990.

