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Abstract

Music collections available to listeners have grown at a dramatic pace, now spanning tens of

millions of tracks. Interacting with a music retrieval system can thus be overwhelming, with

users offered ‘too-much-choice’. The level of engagement required for such retrieval interac-

tions can be inappropriate, such as in mobile or multitasking contexts. Music recommender

systems are widely employed to address this issue, however tend toward the opposite ex-

treme of disempowering users and suffer from issues of subjectivity and confounds, such as

the equalisation of tracks. This challenge and the styles of retrieval interaction involved are

characterised in terms of user engagement in music retrieval, and the relationships between

existing conceptualisations of user engagement is explored. Using listening histories and

work from music psychology, a set of engagement-stratified profiles of listening behaviour

are developed. A dataset comprising the playlists of thousands of users is used to contribute

a user-centric approach to feature selection. The challenge of designing music retrieval for

different levels of user engagement is first explored with a proof of concept, low engagement

music retrieval system enabling users to casually retrieve music by tapping its rhythm as a

query. The design methodology is then generalised with an engagement-dependent system,

allowing users to denote their level of engagement and thus the specificity of their music

queries. The engagement-dependent retrieval interaction is then explored as a component

in a commercial music system. This thesis contributes the engagement-stratified profiles

and metrics of listening behaviour, a corresponding design methodology for interaction, and

presents a set of research and commercial applications for music retrieval.
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1. INTRODUCTION

RETRIEVING music from a music collection is no longer as simple as picking a CD

from a shelf. With music collections now mostly digital, they have grown to fill the

increasing capacities of hard drives and music players. Where collections were once hand-

curated by their owners, now control over the organisation of music is increasingly delegated

to automatic systems. It would be impractical for listeners to manually scan a modern digital

music collection for each retrieval, and so library management interfaces such as iTunes are

used. This trend has continued with the launch of music streaming services such as Spotify

offering access to millions of tracks, most of which the user is unfamiliar with and has little

ability to organize. Users have limited means of exploring unknown content, with some 20%

of tracks (4 million) on Spotify never having been listened to by anyone even once.1 The

shift from small user-managed collections to large digital libraries has introduced a need

for novel music retrieval techniques and approaches to designing interactions with music.

At present users are often faced with two extremes: the onerous task of manually selecting

content (playlisting etc.) or yielding control to shuffle or radio playback.

1http://news.spotify.com/us/2013/10/07/the-spotify-story-so-far/

(16/12/14)

1

http://news.spotify.com/us/2013/10/07/the-spotify-story-so-far/


2 RECOMMENDER SYSTEMS

1.1 RECOMMENDER SYSTEMS

The issue of overwhelming choice in music was addressed by Celma (2010), his book on

the Long Tail recommends eliminating some of the choices facing users through the use

of personalised filters and recommender systems. Music recommendation enables users to

easily access relevant content from a large music collection. Given that these collections

often scale into the millions of songs, approaches to music recommendation typically rely

on machine listening and collaborative filtering approaches rather than manual annotation.

The performance of approaches taken in music recommendation and the challenges faced are

explored in chapter 2, in particular the subjective nature of musical concepts such as genre,

mood and similarity. There are a range of specificities at which music recommendations can

be made, for example mood and genre recommendation allows users to retrieve music of a

broad style, whereas similarity based recommendation aims to offer users music related to

a seed track or artist, according to some distance function. Commercial music streaming

services make extensive use of recommender systems to make their collections available

to users, often presented using the metaphor of radio, automatically curated. Many music

services make use of the music-listening technology built into the Echonest,2 acquired by

Spotify. Pandora is noted for its use of manual annotation (their ‘Music Genome Project’),3

collaborative filtering using data acquired from their relatively long time in the market, and

giving users the option to provide relevance feedback in the form of ‘thumbs up’ and ‘thumbs

down’.

MORAL HAZARD

The issues of subjectivity and bias in music recommendation, detailed later in chapter 2,

take on a significant prominence given the commercial and cultural importance of music

consumption. Recommender systems are largely trained on music produced by major music

labels, and may be confounded with the specific characteristics or production processes of

this music. Music that deviates from the norms of a genre, or that is produced outwith a

commercial music studio, may be incorrectly classified and thus unavailable to users via

recommender systems. With users’ retrieval of music increasingly reliant upon retrieval

systems, there is the risk of niche or independent music being excluded from the market. It is

all the more important then, to consider the implications of these recommender and retrieval

systems becoming the gateway by which most listeners access music. Recommender systems

allow users to delegate control to minimise the burden of choice. However, there is a need

for this control to be negotiable, with users retaining the ability to determine how they access

their music.
2http://the.echonest.com/company/ (16/12/14)
3http://www.pandora.com/about/mgp (16/12/14)

http://the.echonest.com/company/
http://www.pandora.com/about/mgp


INTRODUCTION 3

1.2 ENGAGEMENT

Music retrieval varies from casual browsing and exploring to specific known-item retrieval.

The user’s engagement and investment in the retrieval process varies accordingly. The casual

user does not need to dedicate as much attention to the interaction, and does not need to

provide much input to satisfice. More engaged users are willing to invest time and effort into

the retrieval, and being likely to have a more specific information need, they will provide the

required amount of input. A review of existing work on user engagement and information

need is given in chapter 3, developing the definition of engagement used in this work. The

music retrieval behaviours described are linked to user engagement in chapter 4.

MOBILE USAGE

The amount of attention that users can invest in their music retrieval is dependent upon their

context. Oulasvirta et al. (2005) showed that the cognitive resources available for interacting

with a device are limited in mobile settings, with some reserved for attending to the user’s

environment. A user listening to music on a car radio, or on an iPod while jogging, will

likely be less willing to carefully navigate a hierarchy of menus or type in a textual query.

Mobile music retrieval interfaces thus often allow for casual input, e.g. shuffle-based play-

back offering users a random and serendipitous style of music retrieval (Leong et al., 2005).

These limited, casual forms of music retrieval are often paired with more demanding, high

engagement options, e.g. the menu hierarchy and textual retrieval seen in the Apple iPod4

and Spotify.1 Users are then forced to choose between these extremes of engagement. The

mobile user, often unable to dedicate the attentional resources required to fully engage in

their music retrieval, is then left disempowered in their music listening, with only the choice

of random shuffle or yielding control to broad recommendation.

CASUAL SEARCH

When users interact with a music retrieval system, they may not be performing the type of

well-defined retrieval task that Information Retrieval (IR) generally considers. The field has

been able to rigorously characterise the performance of retrieval methods by defining tasks

for evaluation tracks at the Textual Retrieval Conference (TREC). Music retrieval is instead

often what Wilson and Elsweiler (2010) describe as casual-leisure searching – where a user’s

goal is not to satisfy an information need, but instead to fulfil a hedonic goal, such as when

browsing or using serendipitous retrieval such as shuffle. Without a defined information

need, concepts such as relevance become nebulous, complicating the task of evaluation.

4http://www.apple.com/uk/ipodclassic/ (11/08/14)

http://www.apple.com/uk/ipodclassic/


4 DESIGN PHILOSOPHY

1.3 DESIGN PHILOSOPHY

The latter chapters of this thesis involve the development of prototype systems to explore

the design of music retrieval interaction in the context of user engagement. Building such

systems implicitly involves making design choices as part of the interaction design, with the

resulting systems and interactions conditioned upon these choices. It is therefore worthwhile

to be explicit about the design philosophy applied. In his chapter on user-centred design

(Norman, 1988, p. 187) emphasises the importance of the user’s conceptual model and that

interactive devices behave in a manner consistent with this model. He explains that designers

must craft a system to inspire an appropriate conceptual model in the user, consistent with

the system. This thesis ‘closes the loop’ in this communication of a model image, in that

the systems developed are based on generative models of user behaviour. As users begin to

use the systems, which are based on a priori assumptions of the user, the user will form their

own conceptual model, which the system can then adapt its internal user model to.

SIMPLICITY & CONTROL IN INTERACTION DESIGN

It is desirable for interactions to be simple – operable by users without their needing to

apply complicated conceptual models. Norman (1988) motivates this need for simplicity by

pointing to the constraints on users’ attention and memory. He argues that new technology

should make tasks simpler, and that conceptual models for operating it should be learnable

by users. While automation (such as music recommendation) is desirable for the resulting

simplicity of the interaction, Norman warns of the danger of taking control away from users –

users want to take varying levels of control at different times, and he even uses the example of

music, contrasting the ease of radio listening against the control of playing the piano. Music

is a compelling case for considering simplicity and control, with the iPod shuffle being the

first example used by Obendorf (2009) in their book on minimalism in interaction design.

MANAGING MULTIPLE MODES OF ENGAGEMENT

This thesis considers the different levels of engagement a user may have when retrieving

their music, and music retrieval systems have been designed to cater to specific levels in this

range of engagement. It could be argued that a user’s music retrieval needs are met by a com-

bination of systems such as mobile shuffle on an iPod, browsing music websites online, and

highly engaged textual retrieval in Spotify. The design philosophy outlined here motivates

having a simple, consistent mental model that affords the range of interactions required by

the user. This motivation is reflected in the design choices made in the development work

in parts III and IV – the interactions are designed to employ as simple a mental model as

possible, while still affording a range of music retrieval behaviours.



INTRODUCTION 5

1.4 AIMS & OUTLINE

This thesis aims to address the issue of too–much–choice in music retrieval. A key theme in

this work is considering the appropriate balance between recommendation and user control,

with a user’s engagement in the retrieval process as the determining contextual variable.

Part I - Background A broad outline of the field of Music Information Retrieval is given

in chapter 2, highlighting how previous efforts have been limited by the subjectivity of

music and the need for adaptive approaches. Given the broad usage and interpretation

of the term engagement, chapter 3 provides a thorough review, identifies common

themes and elucidates a robust definition applicable to Music Information Retrieval.

Part II - Understanding Music Listening Chapter 4 develops measures of music listening

behaviour and engagement in music retrieval. The relationship between these mea-

sures and those from the music engagement questionnaires is then explored. Building

upon the information-theoretic approach to defining engagement, chapter 5 applies

entropy over music features to provide timelines of music listening style. Information-

theoretic feature selection is used to identify music features that are relevant in captur-

ing the organisation of playlists created by users.

Part III - Designing for Engagement in Music Retrieval Two systems are developed to

explore how to design for user engagement in music retrieval. A low engagement

music retrieval style is explored, influenced by the musical universals identified in

chapter 2. In chapter 6, the example music retrieval system allows users to query mu-

sic by tapping a song’s rhythm. The issue of subjectivity remains, however, and the

work shows how retrieval performance improves by adapting to users. In chapter 7, an

engagement-dependent approach to music retrieval is introduced, adapting a recom-

mender system’s autonomy to the user’s level of engagement. A generative model of

user queries conditioned on engagement enables the inference of relevant music.

Part IV - Outlook & Beyond Music The concept of engagement-dependent music retrieval

is adopted in the development of a commercial music retrieval system, which is de-

scribed in chapter 8. The measures of music listening behaviour detailed in this thesis

are then used in an exploratory evaluation of a prototype of the product. Finally, a con-

sideration is made of how to generalise the approaches developed in this thesis. User

interactions with music and other media using Virtual Reality Head Mounted Displays

(VR-HMDs) share the issue of how to support users in attending to a retrieval inter-

action only insofar as desired. The engagement-dependent approach is applied to VR

interaction in chapter 9 and evaluated in a typing study, showing how users can issue

textual queries while remaining engaged with a virtual media experience.



6 REPRODUCIBLE THESIS

1.5 REPRODUCIBLE THESIS

This thesis is written as an example of reproducible research, including literate programming

– a single set of source files contains the code for generating all of the analyses, figures and

text of this document. These source files are made available to allow others to reproduce the

results of this work and to conduct further work. These files contain a mix of primarily LATEX

and R, with some occasional Python snippets. The code can be ‘woven’ into this thesis using

the KnitR package. Information on the schema for the dataset as well as instructions for

building this thesis and code from source are given in Appendix C.

DATASET

The analyses in this thesis make use of data collected in studies from participants as well as

music metadata crawled from online services, which are made available in an SQLite dataset.

The code used to scrape this dataset is available under the MIT open source license, and can

be accessed at:

http://www.github.com/dcboland/

A large proportion of the data in this dataset has already been made available as the Stream-

able Playlists with User Data (SPUD) dataset, which includes playlists created by users,

song metadata and some user listening histories. An interactive figure along with corre-

sponding R code for importing data from SPUD and producing the analyses and plots is

available at:

http://www.dannyboland.com/spud/

The information-theoretic feature selection in chapter 5 and the example system in chapter 7

make use of proprietary music feature data, and as such this data is not made available. The

MoodAgent features are commercially sensitive, and thus not included in the SPUD dataset.

Even with user data and the required computational power, large-scale music analyses re-

quire licensing arrangements with content providers, which often vary from country to coun-

try, presenting a serious challenge to academic MIR research. The adoption of commercially

provided features has allowed the demonstration of the information-theoretic approach, and

while the audio stream links are distributed, it is unlikely that many MIR researchers will

have the resources to replicate all of these large scale analyses. The CoSound5 project is an

example of industry collaborating with academic research and state bodies to navigate the

complex issues of music licensing and large-scale analysis.

5http://www.cosound.dk/ Last accessed: 30/04/14

http://www.github.com/dcboland/
http://www.dannyboland.com/spud/
http://www.cosound.dk/
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1.6 TECHNOLOGICAL CONTEXT

The work in this thesis took place in the context of the technologies, devices and services

available. As with any work related to HCI, an effort must be made to adapt to the changing

consumer reality. The timeline in Figure 1.1 outlines the technological changes that occurred

around this work, which are reflected in the devices used for prototyping and evaluation.

Apr, 2010 Apple iPad - a milestone in the development of tablet devices, leading
to their widespread adoption.

Sep, 2011 Nokia N9 - mobile phone used for development and evaluation of the
Query by Tapping approaches discussed in chapter 6.

Nov, 2011 iCloud & Music Lockers - Apple, Google and others launch cloud
music services, allowing users to store and listen to large volumes of
music online.

Feb, 2012 Kinect for Windows - motion sensing device, capable of skeletal
tracking, capturing 3D scene geometry and recognising user gestures,
used for the augmented virtual reality work in chapter 9.

Feb, 2013 Microsoft Surface - tablet device functionality matches laptops, used
for development of the engagement-dependent system in chapter 7.

Mar, 2013 Oculus Rift DK1 - developer kit of a virtual-reality headset, used for
engagement-dependent interactions with virtual media in chapter 9.

Mar, 2014 Android Wear - wearable devices, such as smartwatches and Google
Glass, become widely supported, offering compelling use cases for
Query by Tapping.

Jan, 2015 BeoSound Moment - Bang & Olufsen device launched, building on
the engagement-dependent approach and concept. The product and an
exploratory evaluation is described in chapter 8.

Apr, 2015 Thesis Completion

Figure 1.1: Timeline of technological developments that occurred around this work.





Part I

Background
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2. MUSIC INFORMATION RETRIEVAL

THE retrieval of music from large media collections is a well-studied area. The earliest

reference to Music Information Retrieval (MIR) was Kassler’s (1966) paper ‘Toward

Musical Information Retrieval’, presenting a system to assist musicological analyses. Until

the 1990s, the field was largely concerned with the retrieval of detailed representations of

music from small collections by musicologists. Downie (2003) terms this early branch of

research as ‘Analytic/Production MIR’ in contrast to ‘Locating MIR’, the latter concerning

the use of incomplete musical representations to locate a piece of music.

The recent focus in the field has been on producing such representations directly from au-

dio sources, allowing large media collections to be indexed. Locating MIR systems have

now become desirable for non-expert music listeners with access to large media collections.

The field of MIR has grown to span many disciplines, from sociological studies of music

use through to machine learning approaches to classifying, transcribing and even generating

music. Genre classification became a large focus for many years, with advances in classifier

performance approaching an apparent upper limit (Aucouturier and Pachet, 2004). This limit

is posited to be due to the noisy ground truth of genre labels, and the subjective nature of

genre (Sturm, 2014a). In response to this subjectivity, this chapter identifies those aspects of

music which can be said to be universal. Recent developments in MIR have turned to focus

on user-centred approaches to designing, adapting and evaluating music retrieval systems.

11
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2.1 CHALLENGES

In his early overview of Music Information Retrieval, Downie (2003) identifies a range of

challenges faced in the development of music retrieval systems. The first of these is the

multifaceted challenge - the need to consider the many facets of music information, of which

seven are listed. The facets given describe not only the acoustic properties of music, but

also the metadata of music, such as performing artist or year of release. This difficulty in

dealing with the range of music information is compounded by the multirepresentational

challenge – that music information can be expressed textually, symbolically as a score or

MIDI file, or as an audio representation, which may be recorded live or in a studio and in

a variety of formats (WAV, MP3 etc.). Users’ queries for music can thus be expressed in

a range of representations, such as examples of music (recorded, sung or hummed), genre

and mood categories, textual descriptions, or other metadata. Considering all this variety has

led to the multidisciplinarity challenge, with researchers involved in the MIR community

spanning from musicologists considering musical scores to engineers employing techniques

from audio signal processing and machine learning. The challenges listed thus far only relate

to the complexity involved in considering representations of music. The variability in users’

interpretations of music introduces the multicultural and multiexperiential challenges. These

challenges are dealt with next in this chapter, going some way towards dispelling the notion

that the issue of too-much-choice can be solved simply by users handing control over to

music classification and recommender systems.

MULTICULTURAL CHALLENGE

The way in which music is defined, produced and retrieved is culturally dependent. Efforts

to define music have identified few properties which are universal across cultures (Higgins,

2012) (these properties are explored in section 2.6). It is unsurprising then that the musical

features used by users to express music queries also vary with culture (Lee et al., 2005).

Serra (2011) launched the European research project ‘CompMusic’, seeking to develop MIR

technologies for musical cultures outwith the western-centric focus of MIR to date. This

project led to a great deal of work addressing a variety of musical cultures, from analysing

Turkish Makam music (Bozkurt et al., 2014) to Jingju (Beijing opera) (Repetto and Serra,

2014). While these efforts go some way towards addressing the multicultural challenge, that

this research work has had to occur in parallel for each culture only serves to emphasise the

scale of the challenge. The need to consider individual cultures emphasises the moral hazard

discussed in the introduction to this thesis – with the promotion of a single set of ‘objective’

music classifiers bordering on being an act of cultural vandalism.
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MULTIEXPERIENTIAL CHALLENGE

The interpretation and appreciation of music is highly subjective, varying not only with each

individual but also across that individual’s listening contexts. Downie (2003) terms this the

multiexperiential challenge, i.e. that ‘Music ultimately exists in the mind of its perceiver.’

Downie argues that ‘to ignore the experiential aspect of the music retrieval process is to

diminish the very core of the MIR endeavor,’ concluding that the experiential nature of sim-

ilarity and relevance is the most important challenge facing Music Information Retrieval.

Wiggins (2009) criticises the prevailing approach in MIR of audio-only approaches with

assumed ground truth. He makes a detailed argument for the study of music only in the

context of models of subjective human perception, and in doing so notes that ‘in MIR there

is no ground.’ This realisation in MIR reflects earlier developments in musicology, Leman

et al. (2008) describe the trend towards a ‘new musicology’ which ‘like postmodern thinking,

assumes that there is no absolute truth to be known.’

It is uncontroversial to suggest that music recommendation should account for subjectivity,

however even seemingly objective systems-centric work, such as the development of music

classifiers, must consider the user-specific nature of MIR. Work continued for many years

treating aspects of music such as genre and similarity as objective, at least for the purposes

of this early academic investigation. The results of this work have already run up against

the upper bound imposed by limited human consensus (Flexer, 2014; Sturm, 2014a). This

point is explored in the following sections, as it is important to emphasise the inherently

user-centric nature of music retrieval and the limitations of approaches ignoring this. The

use of labels, taxonomies, rankings or distance metrics with an assumed objective ground

truth is fundamentally flawed and suffers the limitations of an ill-posed learning problem.

User-adaptive approaches to classification or recommendation would still struggle to over-

come the challenges of subjectivity, as this subjectivity itself is inconsistent. Born and Hes-

mondhalgh (2000) (p.33) explore the music identities that characterise the music listener,

explaining that ‘Rather than musical subjectivity being fixed and unitary, several musical

‘identities’ may inhabit the same individual. These are expressed in different musical tastes

and practices, some of them in tension with each other or in contradiction with other parts of

the self.’ Given that music listeners have (perhaps multiple) subjective tastes and interpreta-

tions of music, which are coupled with cultural context, no recommender system could hope

to always serve the correct choice without first modeling the entire user. Recommendation is

still useful however, and the issues of individuality and subjectivity only serve to emphasise

the need to offer users the choice to influence and control their music retrieval. The rest

of this chapter explores the limitations that subjectivity imposes upon attempts at objective

classification, and considers calls for user-centred MIR, showing that simply building better

recommender systems is not the solution to the challenges addressed in this thesis.
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2.2 GENRE

When discussing or searching for music, it is common to refer to its genre – a categorisation

of the music (Lee and Downie, 2004). Rather than being part of a well-defined taxonomy,

Fabbri (1982) describes musical genre as being a dynamic ‘set of socially accepted rules’,

conditioned upon time and cultural context. Many music retrieval systems employ genre as

a means for filtering or recommending music, and the automatic classification of musical

genre has been a significant focus of MIR research. The motivation for such work is clear;

by classifying music into genres and sub-genres, music retrieval systems can support users

in accessing the volumes of music available in digital collections.

Musical works may relate to a number of genres and deviate from their norms, and Fabbri

seeks to ‘criticise the widespread influence of Aristotelian and positivist traditions.’ It is

notable then, that the majority of work in music classification assumes absolute ground-

truth labels of musical genre. Given the prevalence of music classification as an approach

to addressing the issue of too-much-choice, it is worthwhile to consider the performance of

such classifiers and their limitations.

CLASSIFICATION

One of the key early results in music classification, by Tzanetakis and Cook (2002), achieved

61% agreement with ten genre categories using timbral, rhythmic and pitch features. They

acknowledge the ‘fuzzy nature of genre boundaries’ however argue that there is still utility

in genre classification for MIR, pointing to better than chance performance. The GTZAN

dataset made available by Tzanetakis and Cook became a benchmark for the field, with

performance increasing over the years to 93.7% reported by Panagakis and Kotropoulos

(2010). In realistic usage scenarios, classifiers must support more than the 10 broad genres

often considered in the literature. In a classification task involving 19 industry genre labels,

Seyerlehner et al. (2010) tested a range of classifiers, with the best achieving only 45%

accuracy.

The impressive performance figures reported in some of the work on music classification

suggest that the problem may be all but solved. Bergstra et al. (2006) go so far as to question

if ‘automatic methods are not already more efficient at learning genres than some people.’

Such a suggestion is not misplaced, human performance in classifying music into ten genre

labels has been found to be around 70% (Gjerdingen and Perrott, 2008), even with a relatively

homogeneous sample of participants (undergraduate students, mean age of 19.5). A direct

comparison between classifiers and human performance by Seyerlehner et al. (2010) used

a broader demographic and 19 genre labels, showing participant labelling accuracy ranging

from 26%-71% agreement with genre labels.
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LIMITATIONS & CRITICISMS

If ground-truth genre labels are not reliably reproducible by listeners, there is some question

as to their validity – to what extent are these labels ‘a set of socially accepted rules’ rather

than a taxonomy specific to a particular dataset. Sturm (2014a) further questions the validity

of progress in genre classification, demonstrating that at least some state of the art classifiers

are actually discriminating based on confounding factors and not genre. An example of

such a confound would be the equalisation of a track. Given the use of spectral features in

classification, it is plausible that tracks are effectively labeled by the production processes

and equalisation curves specific to each genre. This raises issues of generalisability and the

moral hazard regarding independently produced tracks, which may be incorrectly classified.

An analysis of the GTZAN dataset revealed that tracks in the dataset are almost all distorted,

5% are duplicated and 10% are mislabeled, leading Sturm (2012) to question ‘the extent to

which we should believe any conclusions drawn from the results.’ Craft et al. (2007) note that

where subjectivity is apparent, users tend to form self-similar groupings and so clustering

users may address some issues with genre classification. While machine listening approaches

play a crucial role in music retrieval, it is important to acknowledge the subjectivity and

uncertainty involved when incorporating them into music retrieval systems.

2.3 USER-CENTRIC APPROACHES

With a large volume of user listening histories, collaborative filtering (CF) offers a way to

recommend related music without having to define arbitrary genres or moods. While the

approach is inherently user-centred, it has been shown to be highly biased towards popular

music. Celma and Cano (2008) compare the ability of CF to retrieve music from the long

tail against machine listening and human expert approaches, showing that CF, and to a lesser

extent humans, are biased towards popularity.

The inherent subjectivity and user-centred nature of music has often been acknowledged

within the field of music information retrieval however only recently have researchers begun

to address it. Hu and Liu (2010) set out the case for a shift to user-centred evaluation in

the field of MIR, pointing to similar arguments being made in textual IR for tasks outside of

the information-seeking ‘Cranfield paradigm’ (Robertson, 2008). They propose evaluative

measures such as usefulness, learnability, task accomplishment and task duration. In their

chapter on User-Aware Music Retrieval, Schedl et al. (2012) review this new direction in

MIR and set out some of the factors they believe will be key to future work, such as similarity,

serendipity and transparency. They also highlight the need for linking music features to user

perception. Section 5.2 thus takes a user centered approach to music feature selection, and

some of the universal aspects of perception are discussed in section 2.6.
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ADAPTATION

Schedl and Flexer (2012) argue for taking an adaptive approach to genre - ‘the coarse and

ambiguous concept of genre should either be treated in a personalized way or replaced by

the concept of similarity.’ Subsequent work by Flexer shows how even similarity would

fall foul of the multiexperiential challenge. Flexer (2014) investigated inter-rater agreement

on music similarity, finding that a lack of human agreement on whether musical works are

similar places an upper bound on similarity-based approaches. Wolff and Weyde (2014)

explore the benefit of adapting music similarity measures to ratings elicited from users, they

also note the multiexperiential issue and propose to model cultural factors in future work.

Stober (2011) presented interactive approaches to user-adaptive genre classification, music

similarity and visualisation through re-weighting classification features. The need for user-

adaptive MIR was also identified by Shao (2011) in his thesis, which aspires to the type of

system developed by Stober. The need for user-centric, adaptive approaches to MIR is now

well-established, though the practice itself has yet to be widely adopted. Further progress in

this area will require a greater understanding of music listeners.

MUSIC RETRIEVAL BEHAVIOURS

User studies have provided insights about user behaviour in retrieving and listening to music

and highlighted the lack of consideration in MIR about actual user needs. In 2003, Cunning-

ham et al. (2003) bemoaned that development of music retrieval systems relied on ‘anecdotal

evidence of user needs, intuitive feelings for user information seeking behavior, and a priori

assumptions of typical usage scenarios.’ While there have been many user studies conducted

since, the situation has been slow to improve. A review conducted a decade later by Lee and

Cunningham (2012) noted that approaches to music retrieval system design and evaluation

still largely ignore the findings of these user studies. Such a state of affairs is unfortunate,

as the findings of these studies raise important questions and illuminate interesting areas for

future MIR research.

In a survey comparing music retrieval requests on Korean and Western websites, Lee et al.

(2005) identified a sizeable disparity in the features of music used to express a query. Where

musical genre is used in half of all western queries, it was used in only 16% of Korean

queries. The intended use of music was a much more significant feature in the Korean music

queries. While examining how users organise their music collections, Cunningham et al.

(2004) also identified the use of ‘idiosyncratic genres’, i.e. that music was characterised by

intended use. Their use of the term genre here is striking, as it does not refer to the style

of music as often assumed in MIR, or capture a ‘set of socially accepted rules’ as stated in

musicology, however it does reflect the way music is queried across cultures.
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2.4 EVALUATION

The lack of robust evaluations in the field of MIR was identified by Futrelle and Downie as

early as 2003. They noted the lack of any standardised evaluations and in particular that MIR

research commonly had an ‘emphasis on basic research over application to, and involvement

with, users.’ In an effort to address these failings, the TREC-inspired Music Information

Retrieval Evaluation Exchange (MIREX) was established (Downie, 2006). MIREX provides

a standardised framework of evaluation for a range of MIR problems using common metrics

and datasets, and acts as the benchmark for the field. While the focus on this benchmark has

done a great deal towards the standardisation of evaluations, it has distracted research from

evaluations of complete music retrieval systems with real users in realistic contexts.

LIMITATIONS OF EXISTING APPROACHES

A large amount of evaluative work in MIR focuses on the performance of classifiers, typi-

cally of mood or genre classes. A thorough treatment of the typical approaches to evaluation

and their shortcomings is given by Sturm (2014a,b). Virtually all such evaluations seek to

circumvent involving users, instead relying on an assumed ground truth, e.g. the widely used

ground truth dataset GTZAN, a small collection of music with the author’s genre annota-

tions. Even were the objectivity of such annotations to be assumed, such datasets can be

subject to confounding factors such as equalisation, and mislabellings as shown by Sturm

(2012). Schedl et al. (2013) observe that MIREX evaluations similarly involve assessors’

own subjective annotations as ground truth. They criticise the systems-centric evaluations

that ‘completely ignore user context and user properties, even though they clearly influence

the result.’ In his work on inter-rater agreement in music similarity, Flexer (2014) concludes

that ‘any evaluation of MIR systems that is based on ground truth annotated by humans has

the same fundamental problem.’ The implications of this issue are far-reaching, the assump-

tion of an objective ground truth for music genre, mood etc. is common (Craft et al., 2007),

with evaluations focusing on these rather than considering users.

USER-CENTRED EVALUATION

There remains a need for robust, standardised evaluations featuring actual users of MIR

systems, with growing calls for a more user-centric approach. Schedl and Flexer (2012) made

the broad case for ‘putting the user in the center of music information retrieval’, concerning

not only user-centred development but also the need for evaluative experiments which control

independent variables that may affect dependent variables. There is, in particular, a need for

quantitative dependent variables for user-centred evaluations.
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For well defined tasks such as audio similarity or genre classification, existing dependent

variables may be sufficient, though Sturm (2014a) criticises typical genre classification eval-

uations. If, however, the field of MIR is to concern itself with the development of complete

music retrieval systems, their interfaces, interaction techniques, and the needs of a variety of

users, then new evaluative approaches and additional metrics are required. The need for user

centered evaluations in MIR has been acknowledged within MIREX, with the introduction of

the ‘Grand Challenge on User Experience’ (GCUX), involving ratings of complete systems

by users. Given that the purpose of a Music Retrieval system is to support the user’s retrieval

of music, a dependent variable to measure this behaviour is desirable. Such a measure cannot

be acquired independently of users – the definition of musical relevance is itself subjective.

The measures of music listening and organisation introduced in part II of this thesis aim to

quantify the exploration, diversity and underlying mental models of users’ music retrieval.

2.5 QUERYING METHODS

A wide range of querying techniques have been explored for music, generally falling into

two categories: content-based and those based upon more abstract representations such as

keywords. Content based techniques involve the use of acoustic data such as a recording or

melody to find matching music and are thus more ‘low-level’ approaches. Other techniques

such as keyword search or the navigation of a hierarchy of categories are ‘high-level’ in

approach, requiring the use of machine learning, expert labels or collaborative filtering.

In their overview of content-based MIR, Casey et al. (2008) illustrate a general model for

a ‘canonical content-based query system’ in which queries of content are matched to audio

tracks. Examples of such a system are Shazam1 and Soundhound,2 where music can be

queried by a recording or user rendition respectively. Shazam employs audio ‘fingerprinting’

or spectogram hashing (Wang et al., 2003), and can robustly match recorded audio to the

exact same recording in a database. SoundHound instead supports users reproducing music

in order to query for it, building upon a body of work in MIR on Query by Humming (Ghias

et al., 1995). Both systems achieve high levels of performance, and have thus become very

popular with users. Content-based methods are relatively free from issues of subjectivity,

with the content itself providing the objective ground truth, however a similarity function

must still be defined. The recording of audio, and especially the performance of a musical

piece, is however a querying style not available in many contexts, requiring a high degree of

user engagement (and lack of a bashful nature).

1http://thenextweb.com/insider/2014/08/20/shazam-now-100-million-

monthly-active-users-mobile/
2http://www1.soundhound.com/index.php?action=s.press_release&pr=67

(06/12/14)

http://thenextweb.com/insider/2014/08/20/shazam-now-100-million-monthly-active-users-mobile/
http://thenextweb.com/insider/2014/08/20/shazam-now-100-million-monthly-active-users-mobile/
http://www1.soundhound.com/index.php?action=s.press_release&pr=67
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2.6 MUSICAL UNIVERSALS

Unsurprisingly, there are a great many differences in music throughout the world – to the

extent that a complete definition of what music is remains elusive. Higgins (2012) explores

to what degree music can be defined and what aspects of music are universal across cultures.

Remarkably little can be taken for granted, with even the emotional valence response to

music being culturally dependent (Egermann et al., 2015). Some aspects of music that can

be considered as being universal are discussed below, with a view to their use in developing

music information retrieval systems that are robust against the multicultural challenge.

MELODIC CONTOURS

It was pointed out by Helmholtz (1895) that melodies are made up of discrete steps in pitch,

purported by him to be due to the need for greater cultivation of ear to distinguish finer

details. Dowling (1978) identifies melody as comprising two components, musical scale

and melodic contour as a ‘pattern of ups and downs’ in pitch. It was shown that melodic

contours are cognised independently of musical scale and are overlaid upon the scale with

which a listener is familiar. Indeed, Perlman and Krumhansl (1996) showed that pitches are

heard within the categories of the tuning system(s) the listener is familiar with and that this

effect exists across cultures. This categorisation of pitch enables the encoding of melodic

contours and is an assumption made in MIR systems such as Query by Humming. This

categorical perception of music is not limited to pitch, with rhythm being another notable

example.

RHYTHM

Rhythmic patterns are fundamental to music, with work by Trehub (2000) showing that

rhythmic patterns are more important for cognising musical sequences than absolute position

of events in the time domain. Surprisingly, Monahan and Carterette (1985) showed that

rhythm is a greater factor for people when they assess the similarity of musical patterns than

pitch. The use of rhythm then is perhaps the foremost musical universal. Crucially, the

way in which people process rhythm has been proposed by Drake and Bertrand (2001) to

be universal across cultures. They propose as a universal musical principle that ‘We tend

to hear a time interval as twice as long or short as previous intervals.’ Complex rhythms

are thus distorted into categories of intervals between note onsets (inter-onset intervals); this

principle is exploited in chapter 6 where rhythm is encoded in terms of these categories.





3. ENGAGEMENT & CHOICE

ADDRESSING the issue of too-much-choice in music retrieval requires the consideration

of a number of intersecting fields. First and foremost are recent developments in

music psychology, which have begun to elucidate the differing relationships listeners have

with music in terms of their music engagement. The extent to which listeners wish to control

and take ownership of their music selection is captured in this conception of engagement,

and early work has produced some questionnaires to measure it. Similar efforts in the field

of Interactive Information Retrieval have considered retrieval scenarios where users are not

seeking to complete a defined task, but often to casually browse with a reduced level of effort.

A further perspective considered is that of the user’s interaction engagement – how much the

user provides input and attention to the retrieval process, and the extent to which they seek

to control it. These lines of inquiry are thematically linked in discussing the amount of effort

and information that a user is willing to provide to make a satisfactory music selection. This

chapter explores this theme, with further empirical illumination given in chapter 4.
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3.1 TOO MUCH CHOICE

The growth in the size of music collections and the availability of music online has dramat-

ically increased the choice facing users when selecting music. While increased choice has

been empirically shown to improve motivation and satisfaction, a growing body of literature

claims that too much choice can overload users, in what is termed the ‘too–much–choice’ ef-

fect (Iyengar and Lepper, 2000; Schwartz, 2005; Scheibehenne et al., 2009). Requiring users

to make an explicit selection from many choices incurs greater cognitive load and selection

time (Hick, 1952; Hyman, 1953).

The problem of too much choice applies when the range of options becomes unmanageable,

leaving the user paralysed and indecisive. Faced with the burden of making a selection from

many options, users may become demotivated, opting instead to shuffle music, listen to the

same few artists, or even turn on the TV for sound instead. Scheibehenne et al. point out

that users may be unhappy with making a choice when there is a subsequent requirement to

justify these choices. Given that music selection is often part of a social interaction, and that

a user is judged by their selections (Cunningham et al., 2004), this effect will likely apply.

Music listening also often occurs in mobile contexts, such as when walking or driving, where

users are limited in the attention they can dedicate to making choices.

SATISFICING & SELECTION

In a study of the music-seeking behaviour of young adults, Laplante (2008) observed that

music listeners often have no particular song in mind when engaging with a music system,

and instead browse for a suitable piece of music. This activity of finding the first ‘good

enough’ item is termed satisficing whereas trying to optimise to find the best option is termed

maximising. Schwartz et al. (2002) explored maximising versus satisficing as a personality

construct, claiming that individuals vary with respect to how much they optimise selections.

The range from satisficing to maximising can be considered in terms of information need –

the more users maximise, the more well-defined their information need and the smaller the

set of relevant documents (or tracks of music).

The satisficing-maximising construct captures the range of music retrieval behaviours –

where users do not wish to expend any effort, they satisfice by using random shuffling or

recommendation, seeking a serendipitous music selection (Leong et al., 2005). Whether a

user wishes to satisfice or make more exact selections also depends upon their present con-

text and how much they wish to engage in their music retrieval. The extent to which the

too-much-choice effect applies is thus user and context-dependent, and the appropriate level

of filtering and recommendation versus user control will change accordingly.
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3.2 MUSIC ENGAGEMENT

The field of Music Psychology has explored the concept of music engagement, given by

Greasley (2008) as:

The extent to which music plays an integral role in a person’s everyday life,

including the importance of music; the amount of music owned; uses of music;

involvement in music-related activities; and various other factors ... people’s

levels of engagement with music represents a spectrum, with clearly identifiable

extremes (e.g. those who are either very highly engaged or who rarely engage

with music in daily life), and overlaps in the middle (e.g. those showing charac-

teristics of both high and low engagement.

It is clear that this concept of engagement is of importance to music retrieval, however this

definition refers to the relationship between listener and music, rather than the user’s en-

gagement in a specific interaction or act of retrieval as considered in this thesis. Greasley

goes on to link music engagement to a user’s desire to control the music they listen to, with

lower levels of engagement linked to radio usage rather than controlled song selection. Work

within the field of Music Information Retrieval has also touched on the idea of users hav-

ing differing degrees of involvement with music, Celma (2010) illustrates the range from

musical indifferents to musical savants as captured in the Phoenix 2 project.

MEASUREMENT

As a relatively new area of research, there has been little work exploring how to measure a

user’s music engagement. Greasley (2008) used 5 point Likert scales for a series of largely

qualitative questions, aimed at different factors of music engagement elicited in user inter-

views. These factors were:

Control The user’s preferred level of control over the selection of music that they listen to.

Collection The size of a user’s music collection.

Organisation The extent to which the user organises their music collection.

Motivation A measure of how motivated the user is in acquiring music for their collection.

Memory The detail of a user’s memory of their first music purchase.

Lyrics How important the user considers lyrics to be when listening to music.
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The use of experience sampling with wider Likert scales for measuring music engagement

was introduced by Greasley and Lamont (2011), demonstrating that more engaged music

listeners tended to have greater control over the music they heard, often selecting it to evoke

specific moods. Related work by Krause et al. (2014) further explored how users control

their music selection, also using experience sampling methodology (ESM) to show that mu-

sic selection behaviour changes with music engagement as well as age. The use of ESM

allows for an in-depth analysis of a user’s music-listening behaviour, however it is time-

consuming to run and difficult to scale to many participants. Notably, ESM illuminates the

variance in behaviour between sessions of music-listening within one participant – music

engagement varies with listening context, including situational, social and multi-tasking fac-

tors as well being an individual characteristic (Greasley and Lamont, 2011). The use of these

questionnaires and their relationship to other measures of engagement is explored in section

4.3.

3.3 INTERACTIVE INFORMATION RETRIEVAL

The process of a user making a choice from a collection of objects is considered in Interactive

Information Retrieval (IIR), with efforts to model users’ engagement in the retrieval process.

Of particular relevance to this thesis is what Wilson and Elsweiler (2010) describe as casual-

leisure searching, where users do not have a focused goal of satisfying an information need

but are instead interacting for hedonic purposes. They point out that these casual search

scenarios are ones that ‘break our current models’, and identify behaviours such as ‘need-

less’ browsing of TV channels. This area of research is highly related to the concept of

engagement discussed in this thesis, reflecting the specificity of user queries and the amount

of effort and attention that users wish to invest in their retrieval.

There is often an assumption in IR that users are focused on satisfying some information

need, applying as much effort and concentration as required to maximise the gain of the

retrieval. Robertson (2008) describes the standard ‘Cranfield’ approach, which ‘is to reduce

the user variables to requests and relevance judgements.’ He notes how useful this abstraction

has been but underlines that ‘it does not allow us to answer all the research questions we

might reasonably ask.’ Such an approach allows for users to be modelled in systems-centric

evaluations however the effort required of a user (and that a user is willing to invest) is a

key aspect of designing interactive retrieval systems. In discussing evaluation in IR research,

Sakai and Dou (2013) state the need to balance systems-centric evaluations with user-centric

evaluations, noting that ‘most metrics do not consider the user’s actual effort for finding

information.’ They voice a question on behalf of user-oriented researchers in the field –

‘Where’s the user?’



ENGAGEMENT & CHOICE 25

THE COST OF CHOICE

Azzopardi (2011, 2014) introduced an economic model of search behaviour, showing how

the cost of interacting with a retrieval system changes a user’s search behaviour. While this

model was developed with textual retrieval in mind, it is of value to consider music retrieval

in terms of interaction costs – in particular, how the costs of interacting with a retrieval

system vary according to user engagement and context (e.g. querying textually on a mobile

device requires more effort). In later work, Jiang et al. (2015) used Azzopardi’s model to

establish a link between the user’s effort in a search and their search satisfaction. The results

showed that user satisfaction can be considered as ‘search outcome compared with search

effort’ – users adjust their expectations according to their level of effort, and are satisfied if

the system meets these expectations. It is worth noting that the search satisfaction ratings

used by Jiang et al. were provided by ‘third-party judges’ rather than the original users

issuing queries. While this is a significant limitation, it would be difficult to motivate users

to rate their searches. They go on to observe that a user’s level of effort varies between search

sessions, even though the search interface (Bing)1 remained the same.

The cost of too-much-choice has been considered in many fields, beyond IR or the work of

Schwartz (2005). Modelling how humans make choices with limited cognitive and temporal

resources is very much an ongoing effort. Simon (1990) terms this behavioural modelling

of choice bounded rationality and contrasts this with models that consider people’s choices

as the maximisation of a utility function and that do not account for the limited reasoning

power and knowledge available.

3.4 INTERACTION ENGAGEMENT

Consideration of user engagement has covered not only the user’s involvement in an inter-

action, but also a number of affective aspects, such as the user’s motivation and emotional

investment in the outcome of the interaction. A single definition of user engagement would

thus be over-broad and Lalmas et al. (2014) describe their effort at a comprehensive defi-

nition as ‘clunky’. In earlier work, O’Brien and Toms (2008) listed attributes of user en-

gagement: ‘challenge, affect, endurability, aesthetic and sensory appeal, attention, feedback,

variety/novelty, perceived control, and interactivity.’ While it is difficult to quantify attributes

such as affect and aesthetic appeal, some of the attributes can be grouped into a more tractable

concept. The feedback and interactivity of a system are easily quantifiable, and will directly

relate to the user’s perceived control and attention. This control element of engagement is of

interest, as it can be related to user control as discussed in music engagement, and later in

this section in discussing control-theoretic views of interaction.

1http://www.bing.com (16/12/14)

http://www.bing.com
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MODELS OF ENGAGEMENT

Lehmann et al. (2012) argue that, given the complexity of the concept of user engagement,

evaluators should adopt models, not metrics, of engagement. While time on task, dwell time,

user clicks and other simple measures may seem attractive dependent variables for evaluation

and experimentation, the effects seen require a great deal of interpretation. For example,

increased time on task could indicate an inefficient retrieval interface, or alternately it could

be the result of a user engaging with a compelling interface that afforded exploration. Dupret

and Lalmas (2013) proposed absence time as a measure of engagement, hypothesising that

engaged users will be more likely to regularly return to a service. They adopted Survival

Analysis techniques to model this behaviour, treating users’ return visits to a service as

comparable to patient deaths as typically modelled with survival and hazard functions. This

approach is similar to the work in chapter 4, which considers how far a user ‘survives’ into a

track before deciding to skip. The use of survival analysis has also recently been introduced

to the music retrieval field, in work by Kapoor et al. (2014) funded by Pandora. They use

Last.fm and proprietary datasets of user listening history to classify users by their predicted

return time, identifying users with low engagement that a business should re-engage with.

FOCUS & CONTROL

O’Brien and Toms (2010) developed a survey to capture and explore attributes of user en-

gagement, and evaluated them in two large studies. While their findings relate to online

shopping, they give an illustration of the relationships between the many attributes associ-

ated with engagement. A principal components analysis of their survey identified six factors

of engagement, which they labelled as: Focused attention, Perceived usability, Aesthetics,

Endurability, Novelty, and Involvement. Of these, focused attention and perceived usability

were the most significant, accounting for 29.73% and 15.63% of the variance respectively.

Focused attention included questions regarding absorption and awareness of time passing,

concepts related to Flow theory (Csikszentmihalyi et al., 2014). Perceived usability included

questions regarding control, effort, users’ ability to accomplish their tasks and the emotions

evoked. The focus factor captures the user’s attention and perception of the interaction and

the perceived usability factor captures the user’s ability to control the interaction.

In their work on user engagement in interaction, Pohl and Murray-Smith (2013) use control-

theory to describe users’ control over an interaction. Their work goes some way towards

a robust characterisation of engagement, identifying similar concepts to O’Brien and Toms

(2010). It is notable that amongst the various considerations of engagement, the user’s level

of control is a consistent factor. While each definition of engagement encompasses its own

mixture of factors, a common factor is the user’s control over the interaction. This control

factor is also more readily quantifiable than the affective aspects of engagement.
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In Pohl and Murray-Smith’s control-theoretic viewpoint, user engagement is the degree to

which the user is in a control loop with the system, directing it towards some goal. This

thesis considers the retrieval of music specifically, and the goal-directed retrieval behaviour

(and the extent to which the user is controlling a system to satisfy an information need) is

referred to as the retrieval control. This retrieval control is a generalisation of the control

factor of music engagement. In Pohl and Murray-Smith’s description, user engagement is

the user investing more attention and effort into an increasingly precise and tightly-coupled

interaction loop with the system. Wilson and Elsweiler (2010) noted that casual scenarios

break current models in IR, and by considering the user’s desired retrieval control in a casual

scenario, some progress can be made to remedy this issue. These casual interaction scenarios

can be modelled by linking casual retrieval tasks to the uncertainty about the user’s goal and

reduced control from the user. Challenges remain in exactly how to model the uncertainty

of the user’s goal (e.g. the objective function in a satisficing task) and developing a more

detailed model of how the user’s focus in a retrieval interaction relates to their retrieval

control.

RETRIEVAL CONTROL

The theme of user control and in particular retrieval control is of greatest interest in consid-

ering Information Retrieval scenarios, as the user’s efforts in reaching a goal can be related

to the specificity of their Information Need, and how much effort they will invest to satisfy

that need. In their description of how an interactive system could support a range of user

engagement (control) levels, Pohl and Murray-Smith (2013) invoke the ‘H-metaphor’ from

Flemisch et al. (2003), where a horse responds to the rider’s control via the reins, however

acts more autonomously where the rider does not assert control. A retrieval system could

similarly allow users to vary their degree of control, increasingly relying on autonomous

recommendation as the user provides less authoritative input.

Pohl and Murray-Smith’s view of user engagement as being an increasingly tight coupling

between user and system thus provides an insight into how music retrieval systems can act

autonomously, only insofar as the user desires. Crucial to this approach is the ability to

correctly determine the user’s desired engagement. Despite limited apparent engagement,

power users may provide the occasional precise, controlling input, such as the album-based

listening identified in chapter 4. Similarly, users who satisfice and have a minimal retrieval

control may nonetheless have a high degree of engagement in the played music. This media

engagement – the user’s attention and focus to the retrieved media – may even at times com-

pete for the same cognitive resources as the user’s interaction engagement with the retrieval

system. This scenario is explored in the extreme case of immersive media, such as Virtual

Reality, in chapter 9 and highlights the importance of Lehmann et al.’s call for models of

engagement to capture the complex dynamics of user behaviour.
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3.5 INFORMATION-THEORETIC VIEW OF ENGAGEMENT

Information theory provides a framework for discussing the uncertainty of the user’s goals.

In particular, it provides a means of quantifying how much the user’s desired retrieval con-

trol reduces the uncertainty about their intended music selection. Interaction is defined in

ISO 9421 as the exchange of information between a user and their computer. The infor-

mation communicated in an interaction can be measured in bits. In an interaction, there is

an uncertainty about the user’s intent and by providing bits of information the user reduces

this uncertainty, bringing the interaction towards their intended state. Empowerment is the

upper limit to an agent’s (or user’s) communication and influence, or more formally, ‘the

channel capacity of the agent’s actuation channel’ and perception channel (Klyubin et al.,

2005). This rate of influence and information exchange can be measured in bits per second

and is the maximum bandwidth for an interaction. Engagement could then be considered

as an agent’s degree of participation in an interaction, i.e. to what extent the user wishes to

communicate information with their computer (so as to bring it towards a desired state).

It follows from the above definitions that engagement determines the desired channel ca-

pacity through which a user communicates and consumes information. More informally, it

is the amount of cognitive and physical bandwidth the user is willing to utilise to achieve

their goal. This is analogous to but distinct from the channel capacity of the interactive

devices used, which may act as a bottleneck for the interaction or be under-utilised. This

information-theoretic view of engagement is somewhat reductive compared to the various

definitions reviewed in this chapter, which extend to affective involvement. It does, however,

reflect the use of information theory in early Human Computer Interaction (HCI) work such

as Fitts’ law (1954) and provides a theoretical framework in which user engagement can be

linked to other fields such as information retrieval, control theory, and empowerment.

As music selections are made by either the user, or a recommender system, or both in part, the

control over the interaction can be considered in terms of either of these agents. The more an

agent provides information to reduce the uncertainty about the music to be played, the more

control that agent has exerted. Retrieval control can thus be measured quantitatively, as the

difference between the entropy over a music collection and the entropy over the selection

made. A shuffle-based music retrieval system would not reduce this uncertainty, providing 0

bits of influence. A recommender system would likely reduce the uncertainty significantly,

and the user making a specific album selection would reduce nearly all uncertainty over the

music collection. Much of the information communicated in an interaction may not directly

reduce the uncertainty of the selection, as the user may attend for affective or exploratory

reasons.
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3.6 SYNTHESIS

The various conceptualisations of engagement are used throughout this thesis. For the sake

of clarity, they are differentiated explicitly as:

Music engagement is a measure adopted from music psychology, capturing the importance

of music and control over music selection to a listener.

Interaction engagement relates to how much of the user’s focus and perceptual attention is

invested in an interaction, though may also span to affective aspects such as emotional

involvement in the interaction.

Media engagement relates to how much of the user’s focus and perceptual attention is in-

vested in the consumption of media. This can, at times, be in competition with their

interaction engagement, e.g. when immersed in a VR environment (chapter 9), or when

producing a rhythmic query (as detailed in chapter 6) while listening to music.

Retrieval control is introduced as a robust definition of the control factor of music engage-

ment, being how much the user reduces the uncertainty of playback intent over a music

collection.

It is noteworthy that research efforts considering engagement in music psychology, Inter-

active Information Retrieval and Human Computer Interaction all touch upon the common

theme of control. Considering the user’s retrieval control, and their provision of information

to reduce the entropy of music playback, is useful in addressing the problem of ‘too-much-

choice’. Interactions often offer a fixed degree of retrieval control, with a large amount of

information required to reduce the uncertainty about what music to play, e.g. a textual search

box or a hierarchical artist-album-track menu. Where the expected input of information (the

specificity of the query) is inappropriate for the user’s context, the user suffers from the bur-

den of control and too-much-choice. This thesis thus deals mainly with how a user’s desired

retrieval control shapes their music listening behaviour (part II) and how music retrieval

interfaces can be designed to support these behaviours (part III).

While the attention a user invests in an interaction is likely to relate to their desired control,

this may not always be the case. The example of immersive media is considered in part

IV, where the user’s media engagement and attention to their media experience precludes

their interaction engagement and ability to control the interaction. Virtual Reality is con-

sidered as a topical, extreme case of this issue, where a balance must be struck between the

user’s immersion in their VR experience, and their interaction with modalities to control the

experience.
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4. MEASURES OF MUSIC LISTENING

BEHAVIOUR

UNDERSTANDING how listeners interact with music retrieval systems is of fundamental

importance to the field of Music Information Retrieval. The design and evaluation of

such systems is conditioned upon assumptions about users, their listening behaviours, and

their interpretation of music. While user studies have offered guidance to the field thus far,

they are mostly exploratory and qualitative (Weigl and Guastavino, 2011). The availability of

quantitative metrics would support the rapid evaluation and optimisation of music retrieval.

This chapter develops an information-theoretic approach to measuring users’ music listening

behaviour, with a view to informing the development and evaluation of music retrieval sys-

tems. To demonstrate the use of these measures, a dataset ‘Streamable Playlists with User

Data’ (SPUD) was compiled, comprising 19,225 playlists from Last.fm1 produced by 7,666

users, with track metadata including audio streams from Spotify.2 This dataset was com-

bined with the mood and genre classification of Syntonetic’s Moodagent,3 yielding a range

of intuitive music features to serve as examples.

1http://www.last.fm
2http://www.spotify.com
3http://www.moodagent.com Last accessed: 30/04/14
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4.1 THE SPUD DATASET

The SPUD dataset consists of 19,225 playlists scraped4 from the profiles of Last.fm users

who were active throughout March and April, 2014. The tracks for each playlist were linked

to a Spotify stream, which was used to scrape metadata such as artist, popularity, duration etc.

The number of unique tracks in the dataset is 737,362 from 7,666 users. The distribution of

playlist lengths is shown in Figure 4.1. The dataset is augmented with proprietary mood and

genre features produced by Syntonetic’s Moodagent. This is done to provide high-level and

intuitive features which can be used as examples to illustrate the techniques being discussed.

It is clear that many issues remain with genre and mood classification (Sturm, 2014a) and

the results in this work should be interpreted with this in mind. The aim in this work is

not to identify which features are best for music classification but to contribute a general

approach for gaining an additional perspective on proposed music features. Another dataset

of playlists AOTM-2011 is published (McFee and Lanckriet, 2012), however the authors only

give fragments of playlists where songs are also present in the Million Song Dataset (MSD)

(Bertin-Mahieux et al., 2011). The MSD provides music features for a million songs but only

a small fraction of songs in AOTM-2011 were matched in MSD. The SPUD dataset is distinct

in maintaining complete playlists and having time-series data of listening behaviour.

Figure 4.1: Distribution of playlist lengths in acquired dataset

4The playlist scraping code is available at http://github.com/DCBoland/playlistCrawler.

http://github.com/DCBoland/playlistCrawler
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4.2 MEASURING USER INTERACTION

Listening histories were acquired from Last.fm,5 along with the unique Spotify track IDs

which were used to retrieve Spotify metadata. From these histories, it is possible to derive a

number of measures about the user’s interaction with their music retrieval system. Adding a

song’s duration to the time its playback started gives an indication of when the song would

end without further intervention. Where a new song begins immediately after the expected

end of a previous song, this is indicative of automatic playback such as playlists or albums

Songs which are interrupted early by a subsequent song, or which are followed by another

song after a brief pause, are evidence of the user intervening to find new music to listen to.

The SPUD dataset includes both listening histories and song durations for Last.fm users,

which are used here to illustrate a number of measures and their relationships. This sec-

tion explores how much of the user’s music listening behaviour can be characterised in a

generalised fashion, using only these interaction timestamps as opposed to the use of au-

dio features explored later in chapter 5. These measures are defined using Iverson brackets,

which map Boolean values to the integers 0 and 1 (Graham et al., 1994, p24).

ALBUM-BASED PLAYBACK

Despite the shift to digital music consumption, listening to music in the form of albums re-

mains a common music-listening behaviour. It is useful to identify where users are listening

to an album, as this provides a clear signal that the user is not selecting each individual track,

or using a radio-like music retrieval. Detecting album-based selection behaviour from music

listening logs is trivial, as consecutive tracks will have the same album metadata As. It is

assumed in this work that where consecutive tracks are played from the same album, this

was due to their being from the same album. The ordering of tracks on the album is not

considered, as this would introduce a confound with shuffle versus sequential playback. The

detection of a selection of n tracks being an Album-based behaviour is thus:

Album =
1

(n− 1)

n
∑

s=2

[As = As−1].

As this value is the average of a set of Boolean values, its results are in the range [0, 1]. It

indicates the proportion of tracks listened to that were played due to being from the same

album as the preceding track. The first track is not included as it could not be based on a

preceding album. Even in entirely album-based listening, subsequent albums are likely to be

selected, representing some interaction by the user. As such, it is unlikely for Album = 1.

5The Last.fm scraping code is available at http://github.com/DCBoland/listenScraper.

http://github.com/DCBoland/listenScraper
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INTERVENTIONS

The intervention made by a user where the song is changed before it completes playback

is termed Skipping. Where a user hesitates after the completion of a song, in the act of

manually choosing the next song, this is indicative of Selecting behaviour. These behaviours

can be captured by comparing the timestamps logged when a track begins playing against

the expected durations for those tracks. For a song s with start time ts, song duration ds and

subsequent song start time ts+1, the deviation ∆ds from the expected song playback duration

is given as:

∆ds = ts+1 − (ts + ds).

Considering the sign and magnitude of this deviation gives an insight into whether there were

human delays or interventions, as opposed to immediate automatic playback of the next track

at the end of the current one:

Skipping =
1

n− 1

n−1
∑

s=1

[∆ds < 0] .

It is assumed that automatic song playback would occur within a threshold of cauto = 100ms

of the previous song ending. It is also assumed that a user would intervene to switch or select

a new song within a threshold of cmanual = 30s, yielding:

Switching =
1

n− 1

n−1
∑

s=1

[∆ds > cauto ∧∆ds < cmanual] .

The assumed value for cmanual is conservative to ensure that the measured pauses are part of

a continuous music retrieval interaction. The aim is to detect whether a song was selected

automatically or by manual intervention; delays greater than 30s become increasingly likely

to be due to external events, for example the user pausing music playback or the end of a

music listening session.

User intervention in music listening can be considered as a Bernoulli process, i.e. a binary

choice between whether a user selected each song or the selection was part of automatic

playback. The examples in this work consider users across all their listening sessions, with

the assumption that interventions are part of a homogeneous process (with fixed probability).

In practice, user behaviour will inevitably change with their listening context, however these

assumptions still allow for a user’s overall behaviour to be modelled. Users can thus be

characterised in terms of their Intervention Rate – the rate at which they intervene with a

Skipping or Switching event.
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SPEED

While the occurrence of an intervention may provide some information about music-listening

behaviour, it was hypothesised that the speed at which users intervene may add further detail.

To explore this, two measures were proposed: Switching speed – how quickly a user switches

to a new track after a previous track ends, and Skip speed – how far, proportionally, into a

song does a user decide to skip track. The decision to normalise against the duration of the

song is based on the assumption that a longer song will have a longer introductory segment,

with the user needing to listen longer before deciding to skip. Considering only the j songs

where a Skipping event has been detected:

Skip speed =
1

j − 1

j−1
∑

s=1

ds

∆ds
.

Switch speed can be calculated in a similar manner. Considering only the k songs where a

Switching event has been detected:

Switch speed =
1

k − 1

k−1
∑

s=1

1

∆ds
.

ON THE USE OF THE HARMONIC MEAN

Sometimes listeners skip near the end of a song’s playback, especially where a song is fading

out. The time taken to skip would be large in these instances and would bias the arithmetic

mean of time taken. For this reason, the harmonic mean of skip time taken is calculated

instead, mitigating the effect of large outliers:

Skip time =
j − 1

j−1
∑

s=1

ds
∆ds

.

It is simpler to consider this in terms of speed by taking the reciprocal of the above. The

equation then simplifies to being the arithmetic mean of speed:

Skip speed =
1

j − 1

j−1
∑

s=1

ds

∆ds
.

Note that when considering a rate, such as speed, one would typically use the harmonic of

speed rather than arithmetic mean. The measure of interest, however, is not the average speed

across all of the interaction time but is the expectation of the speed of a given selection.
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Unlike the arithmetic mean of time, the harmonic mean of ∆ds is robust against slow outliers

where a large time was taken (e.g. skipping as a song is nearly complete).

4.3 MEASURING MUSIC ENGAGEMENT

This section explores the utility of the music engagement questionnaires discussed earlier in

section 3.2, as well as their relationship to the measures introduced in this chapter. The music

engagement and music selection questionnaires from music psychology were combined and

updated for digital collections (see Appendix B), and posted along with a request for Last.fm

usernames to an online message board for Last.fm users. Users of Last.fm and in particular,

those accessing related message boards, will be a biased sample of more musically engaged

individuals. This issue is inherent in an open survey inviting participation and any interpreta-

tion of the results in this section should bear in mind that they may not generalise beyond this

demographic. 95 responses were received, shown in Figure 4.2, of which 91 usable listening

histories were mined. 88% reported use of mobile music selection, 93% use of a computer,

60% use of streamed music and only 18% use of radio.

The questionnaire responses were mostly skewed toward high engagement with music. The

importance of Lyrics has a distinctly different distribution. Cronbach’s α for all factors was

0.43, indicating that the questionnaire is covering a number of distinct facets of users’ music

engagement. How much Control a user likes to have over music selection is the most relevant

of the factors to the measures of intervention, with the others addressing more qualitative

aspects. This Control factor is notable for being similar to the concept of retrieval control

as discussed in chapter 3. The measures of Album based listening, Intervention Rate, Skip

speed, and Select speed were calculated from the listening histories of the respondents. Their

correlations with Control are given in table 4.3.

LIMITATIONS & BIAS

The recruitment for this questionnaire and analysis of user listening histories was specifi-

cally targeted at Last.fm users. In order to measure a user’s music listening behaviour, the

user must first have logged their music listens across their devices. Performing this level of

logging, and being a Last.fm user, could itself be considered a mark of music engagement. It

is unlikely then that this method of recruitment will have captured the most casual of music

listeners. This would explain why most of the participants who completed the questionnaire

reported a high level of engagement with music in the questionnaire responses. The results

explore the correlations between engagement and listening behaviour and are not intended

to reflect the distribution of engagement levels amongst general music listeners.
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Figure 4.2: Likert-scaled music engagement questionnaire responses. Full wordings of questionnaire and available responses are included in
Appendix B. Percentages are shown for aggregated low, neutral and high responses.
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RESULTS

As the questionnaire responses are ordinal and the other measures are interval, polyserial

correlation (Fox, 2010) was used to estimate the relationship between underlying continuous

distributions from which the results were sampled. The number of tracks selected due to user

Intervention (skipping or pausing) in music selection was significantly inversely correlated

with their self-reported Control (ρ = −0.29, p = 0.01). Users’ use of Album based music-

listening was also significantly correlated with self-reported Control (ρ = 0.26, p = 0.01).

The album-listening detection metric was confirmed using the questionnaire responses, with

an independent-samples t-test between users who had or had not listed album-based selec-

tion, with significant differences in Album, Skip speed (p < .01), and Interventions (p < .05).

The internal reliability of the measures in table 4.3 was high, with Cronbach’s α = 0.81.

The results in table 4.3 paint a somewhat surprising picture of how music engagement influ-

ences user interaction. While it might appear counter-intuitive that desire for Control leads

to fewer interventions, engaged listeners are more likely to invest in selecting a specific al-

bum. This Album based listening was seen to have a significant moderate correlation with

users’ self-reported preferred level of Control. Naturally, album based listening also meant a

significant inverse correlation with user intervention in music playback, thus the controlled

selection of an album often results in less measured interaction. Casual music listening, by

shuffle or recommendation, requires less initial investment, but then more corrective actions

are required when songs are deemed unsuitable by the user. This reflects the nuanced view

of engagement discussed in section 3.2, with Control proving a useful factor however not

explaining the entire story of user engagement.

Control also had significant correlations with Skip speed and Select speed. More musically

engaged listeners made quicker interventions in their music listening. The speeds were also

negatively correlated with the number of Interventions i.e., the more quickly that the users

intervened, the fewer interventions they made overall. These results build a profile of musi-

cally engaged listeners who know what they want. After making a selection, they make few

further interventions, which are decisive and quick.

Control Album Interventions Skip Speed

Album 0.26*
Interventions -0.29* -0.51***

Skip Speed 0.48*** 0.29*** -0.74***
Selection Speed 0.25* 0.51*** -0.84*** 0.47***

Table 4.3: Polyserial correlations of users’ self-reported Control over music selection and
the measures of music-listening behaviour derived from their listening histories. * p < 0.05,
** p < 0.01, *** p < 0.001.
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4.4 LISTENER PROFILES

These profiles characterise music listening behaviour in terms of the user’s engagement in the

music retrieval. While music engagement is considered a general property of the listener, it

does vary with context, and so these profiles characterise a given instance of music-listening,

with a given user’s engagement level perhaps varying within or between sessions.

Engaged These users have a high initial interaction engagement and are likely to make a

selection with a high degree of retrieval control, with more specific retrieval queries,

e.g. the selection of a particular album (Greasley, 2008). The results in this section

show they then make very few further interventions, which are quick and decisive. This

subsequent lack of intervention may be the result of the user having invested sufficient

effort in the original retrieval, though may also be from a desire to not interfere with

the album’s playback, treating it as an entire work of art.

Casual These users wish to satisfice, investing little effort in the retrieval at any given point.

The lack of initial retrieval control means that these users need to be able to easily

make corrective interventions. Notably, the results in this section show that these users

may ultimately make more interventions, and may actually expend more effort and

have more interaction engagement in the retrieval over the course of an entire listen-

ing session, if measured in terms of interventions. The number of these subsequent

corrective interventions could be used as relevance feedback for the recommender sys-

tem, though care must be taken when interpreting behaviours in hedonic retrieval. In

particular, adding such feedback loops may then influence the user’s behaviour, for ex-

ample the user may be concerned about how the relevance feedback will incorporate

their choices and avoid the playback of embarrassing music.

Mixed Most users vary between levels of Casual to Engaged music listening. In the en-

gagement literature in section 3.2, there are descriptions of users occupying a range

of points on the continuum, and varying between these points depending upon their

listening context.





5. INFORMATION-THEORETIC

MEASURES

ENTROPY over music features is considered here as a metric for characterising users’

music listening behaviour. This measure can be used to produce time-series analyses

of user behaviour, allowing for the identification of events where this behaviour changed.

In a case study, the date when a user adopted a different music retrieval system is detected.

These detailed analyses of listening behaviour can support user studies or provide implicit

relevance feedback to music retrieval. More broad analyses are performed across the 19,225

playlists. A Mutual Information based feature selection algorithm is employed to identify

music features relevant to how users create playlists. This user-centred feature selection can

sanity-check the choice of features in MIR. The information-theoretic approach introduced

here is applicable to any discretisable feature set and distinct in being based solely upon

actual user behaviour rather than assumed ground-truth. The techniques described here are

developed to support MIR researchers in performing quantitative yet user-centred evaluations

of their music features and retrieval systems.
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5.1 ENTROPY OF LISTENING HISTORY

For each song being played by a user, the value of a given music feature can be taken as a

random variable X . The entropy H(X) of this variable indicates the uncertainty about the

value of that feature over multiple songs in a listening session. This entropy measure gives

a scale from a feature’s value being the same for every song in the session, through to every

level of the feature being equally likely across the songs. The more a user constrains their

music selection by a particular feature, e.g. mood or album, then the lower the entropy is

over those features. The entropy for a feature is defined as:

H(X) = −
∑

x∈X

p (x) log2(p (x)) , (5.1)

where x is every possible level of the feature X and the distribution p (x) is estimated from

the songs in the listening session. The resulting entropy value is measured in bits, though can

be normalised by dividing by the maximum entropy. This feature scaling achieves a variable

H ′(X) in the range [0, 1]:

H ′(X) =
H(X)

log2(|X|)
, (5.2)

with the prime notation denoting the scaled function and the bar notation denoting cardinality

not absolute value. The maximum entropy will in fact be determined by the minimum of

either the number of possible feature levels or the cardinality of the set of songs. Estimating

entropy in this way offers a generalised approach as it can be done for any set of features,

though the calculation of entropy first requires that features are discretised.

Taking tempo as an example, if a user’s music listening session is dominated by songs of

a particular tempo, the distribution over values of a TEMPO feature would be very biased.

The entropy H(TEMPO) would thus be very low relative to what would be expected for the

overall music collection. Conversely, if users used shuffle or listened to music irrespective

of tempo, then the entropy H(TEMPO) would tend towards the average entropy of the whole

collection. It is important to consider that the music collection from which music is randomly

shuffled acts as a prior distribution over the features such as TEMPO. As users control their

music retrieval, the feature entropies of the retrieved music may be lower than for the overall

collection, indicating the bits of information provided by the user. It is possible for the user

to uniformly sample across the possible feature values (e.g. songs of a variety of TEMPO)

irrespective of the collection prior, yielding a higher feature entropy than for the overall

collection. The absolute value of the difference between the entropy over the collection and

the entropy over the retrieved music is a measure of the information provided by the user.



INFORMATION-THEORETIC MEASURES 45

APPLYING A WINDOW FUNCTION

Many research questions regarding a user’s music listening behaviour concern the change in

that behaviour over time. An evaluation of a music retrieval interface might hypothesise that

users will be empowered to explore a more diverse range of music. Musicologists may be

interested to study how listening behaviour has changed over time and which events precede

such changes. It is thus of interest to extend eqn. 5.1 to define a measure of entropy which is

also a function of time:

H(X, t) = H(w(X, t)) , (5.3)

where w(X, t) is a window function taking W samples of X around time t. In this thesis, a

rectangular window function with W = 20 is used, making the assumption that most albums

will have fewer tracks than this. The entropy at any given point is limited to the maximum

possible H(X, t) = log2[n] i.e. where each of the W tracks has a unique value. Where W ,

the window size, is of fewer track plays than there are levels of the feature, the maximum

possible entropy H(X, t) is instead constrained by the feature levels.

An example of the change in entropy for a music feature over time is shown in Figure 5.1. In

this case H(ARTIST) is shown as this will be 0 for album-based listening and at maximum

for exploratory or radio-like listening. It is important to note that while trends in mean

entropy can be identified, the entropy of music listening is itself quite a noisy signal – it is

unlikely that a user will maintain a single music-listening behaviour over a large period of

time. Periods of album listening (low or zero entropy) can be seen through the time-series,

even after the user’s adoption of radio-listening. Despite an overall trend towards shuffle or

radio-like music listening, this user’s history provides an example of how music listening

behaviour can involve a mixture of listening styles.

CHANGE-POINTS IN MUSIC RETRIEVAL

Having produced a time-series analysis of music-listening behaviour, it is now possible to

identify events which caused changes in this behaviour. In order to identify change-points

in the listening history, the ‘Pruned Exact Linear Time’ (PELT) algorithm from Killick et al.

(2012) is applied. The time-series is partitioned in a way that reduces a cost function of

changes in the mean and variance of the entropy. Change-points can be of use in user studies,

for example in Figure 5.1, the user explained in an interview that the detected change-point

occurred when they switched to using online radio. There is a brief return to album-based

listening after the change-point – users’ music retrieval behaviour can be a mixture of differ-

ent retrieval models. Change-point detection can also be a user-centred dependent variable

in evaluating music retrieval interfaces, e.g. does the user’s music listening behaviour change

when they adopt a new retrieval interface?
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Figure 5.1: Windowed entropy view of a user’s listening history. Curve fitted using locally
weighted regression, shaded area represents standard confidence interval of estimated mean.

IDENTIFYING LISTENING STYLE

The style of music retrieval that the user is engaging in can be inferred using the entropy

measures. Where the entropy for a given music feature is low, the user’s listening behaviour

can be characterised by that feature, i.e. there is a high degree of certainty about that feature’s

value. Alternately, where a feature has high entropy, then the user is not ‘using’ that feature

in their retrieval. When a user opts to use shuffle-based playback, i.e. the random selection of

tracks, there is the unique case that entropy across all features will tend towards the overall

entropy of the music collection. In many cases, feature entropies have high covariance, e.g.

songs on an album will have the same artist and similar features. Other features were not

included in Figure 5.1 as the same pattern was apparent. A low entropy does not necessarily

indicate that a feature is useful – after Ricky Martin’s1 fall in popularity, most music listening

sessions probably have a low entropy for the LATIN music feature of genre classifiers.

1A singer popular in the 1990s who gave exposure to the Latin music genre.
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5.2 USER-CENTRED FEATURE SELECTION

Identifying which music features best describe a range of playlists is not only useful for

playlist recommendation, but also provides an insight into how users organise and think

about music. This section develops an approach to ranking music features according to

the information they share with playlist organisation. Commercial features are used as an

example, including high level features such as genre, mood and popularity. As the existing

music retrieval systems used by listeners are based upon these features, it is likely that a

‘chicken-and-egg’ effect will apply, where the features which best describe user playlists

are those which users are currently exposed to in their existing retrieval interfaces. This

approach requires discretised features, and is sensitive to the choice of discretisation strategy.

The examples shown use features that were already discretised by the commercial provider.

MUTUAL INFORMATION

Information-theoretic measures can be used to identify to what degree a given feature shares

information with class labels. For a feature X and a class label Y , the mutual information

I(X;Y ) between these two can be given as:

I(X;Y ) = H(X)−H(X |Y ) , (5.4)

that is, the entropy of the feature H(X) minus the entropy of that feature if the class is

known H(X |Y ). Taking membership of playlists as a class label, it is then possible to

determine how much can be known about a song’s features if one knows what playlist the

song is in. When using mutual information to consider class labels in this way, care must be

taken to account for random chance mutual information (Vinh et al., 2010). This approach is

adapted to focus on how much the feature entropy is reduced, and is normalised against the

expectation of this feature’s entropy accordingly:

AMI(X;Y ) =
I(X;Y )− E[I(X;Y )]

H(X)− E[I(X;Y )]
, (5.5)

where AMI(X;Y ) is the adjusted mutual information and E[I(X;Y )] is the expectation of

the mutual information, i.e. due to random chance. The AMI gives a normalised measure of

how much of the feature’s entropy is explained by the playlist. When AMI = 1, the value of

the given feature for each track is known exactly if the playlist is known. When AMI = 0,

nothing about the feature is known if the playlist is known. Those features that have a high

AMI with playlist membership are related to the way in which user’s organise their music,

and are thus of greater interest when designing and evaluating music retrieval systems.
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LINKING FEATURES TO PLAYLISTS

The 19,225 playlists in the SPUD dataset were used to calculate their AMI with a variety of

high level music features from Syntonetic and Spotify. The ranking of some of these features

is given in Figure 5.2. The aim here is merely to illustrate this approach, as any results are

only as reliable as the underlying features. With this in mind, the features ROCK and ANGRY

had the most uncertainty explained by playlist membership. While the values may seem

small, they are calculated over many playlists, which may combine moods, genres and other

criteria. As the features with a high AMI change most between playlists (rather than within

them), they are the most useful for characterising the differences between the playlists. The

DURATION feature ranked higher than expected, further investigation revealed playlists that

combined lengthy DJ mixes. It is perhaps unsurprising that playlists were not well charac-

terised by whether they included features such as WORLD music, which is a ‘miscellaneous’

category. It is of interest that TEMPO was not one of the highest ranked features, illustrating

the style of insights available when using this approach. Further investigation is required to

determine whether playlists are not based on tempo as much as is often assumed or if this

result is due to the peculiarities of the proprietary perceptual tempo detection.

Figure 5.2: Features are ranked by their Adjusted Mutual Information with playlist member-
ship. Playlists are distinguished more by whether they contain ROCK or ANGRY music.
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FEATURE SELECTION

Features can be selected using information-theoretic measures, with a thorough treatment of

this field given by Brown et al. (2012). They introduce a unifying framework within which

to discuss methods for selecting a subset of features, using their J criterion for a feature fn

and (playlist) class C given the previously selected feature subset S:

J (fn) = I(fn;C | S) . (5.6)

This gives a measure of how much information the feature shares with playlists given some

previously selected features, and can be used as a greedy feature selection algorithm. In-

tuitively, features should be selected that are relevant to the classes but that are also not

redundant with regard to previously selected features. A range of estimators for I(fn;C | S)

are discussed in Brown et al. (2012).

As a demonstration of the feature selection approach described, it is applied to the features

depicted in Figure 5.2, selecting features to minimise redundancy. The selected subset of

features in rank order is: ROCK, DURATION, POPULARITY, TENDER and JOY. It is notable

that ANGRY had an AMI that was almost the same as ROCK, but it is redundant if ROCK is

included. Unsurprisingly, the second feature selected is from a different source from the first

– the duration information from Spotify adds to that used to produce the Syntonetic mood

and genre features. Reducing redundancy in the selected features in this way yields a very

different ordering, though one that may give a clearer insight into the factors behind users’

construction of playlists.

5.3 DISCUSSION

The feature selection shown in this chapter is done directly from the user data. In contrast,

feature selection is usually performed using classifier wrappers with ground truth class labels

such as genre. The use of genre is based on the assumption that it would support the way

users currently organise music and features are selected based on these labels. This has led

to issues including classifiers being trained on factors that are confounded with these labels

and that are not of relevance to genre or users (Sturm, 2014a). The user-centred approach

introduced here selects features independently of the choice of classifier, in what is termed

a ‘filter’ approach. The benefit of doing this is that a wide range of features can be quickly

filtered at relatively little computational expense. While the classifier ‘wrapper’ approach

may achieve greater classifier performance, it is more computationally expensive and more

likely to suffer from overfitting (as common in genre classification for example).
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The key benefit of filtering features based on user behaviour is that it provides a perspective

on music features that is free from assumptions about users and music ground truth. This

user-centred perspective provides a sanity-check for music features and classification – if a

feature does not reflect the ways in which users organise their music, then how useful is it

for music retrieval?

WHEN TO LEARN

The information-theoretic measures presented offer an implicit relevance feedback for users’

music retrieval. While this chapter has considered the entropy of features as reflecting user

behaviour, this behaviour is conditioned upon the existing music retrieval interfaces being

used. For example, after issuing a query and receiving results, the user selects relevant songs

from those results. If the entropy of a feature for the songs selected by the user is small

relative to the full result set, then this feature is implicitly relevant to the retrieval.

The identification of shuffle and explorative behaviour provides some additional context for

this implicit relevance feedback. Music which is listened to in a seemingly random fashion

may represent an absent or disengaged user, adding noise to attempts to weight recommender

systems or build a user profile. At the very least, where entropy is high across all features,

then those features do not reflect the mental model currently being employed by the user for

their music retrieval. The detection of shuffle or high-entropy listening states thus provides

a useful data hygiene measure when interpreting listening data.

ENGAGEMENT

The entropy measures capture how much each feature is being ‘controlled’ by the user when

selecting their music. It has been shown that it spans a scale from a user choosing to listen to

something specific to the user yielding control to radio or shuffle. Considering entropy over

many features in this way gives a high-dimensional vector representing the user’s engage-

ment with music. Different styles of music retrieval occupy different points in this space,

commonly the two extremes of listening to a specific album or just shuffling. There is an

opportunity for music retrieval that has the flexibility to support users engaging and applying

control over music features only insofar as they desire to. An example of this would be a

shuffle mode that allowed users to bias it to varying degrees, or to some extent, the feedback

mechanism in recommender systems. This information-theoretic characterisation of listen-

ing behaviour and user control provides further quantitative grounding to the discussion of

engagement and control in section 3.2.
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5.4 CONCLUSIONS

This chapter has proposed the use of information-theoretic measures to capture users’ music-

listening behaviour and relate it to an arbitrary feature set. Some example applications were

presented, including an analysis of a user’s listening history in terms of changes in the music

features, and identifying the degree to which music features shared information with the way

users organised playlists. These approaches are highly generalisable, any clustering could be

investigated instead of playlist membership, for example the time of day or location of track

plays. An interactive example of Figure 5.1, where parameters such as window size can be

changed, is available along with the corresponding code.2

The measures proposed in this chapter must still be interpreted in the context of a user-

centred evaluation. Change-points in the entropy of a user’s music listening can identify

important events to lead discussions with users, however would be difficult to interpret by

themselves. Using relative entropy can go some way towards accounting for the differing

nature of users’ music collections. In the playlist example, there is a question as to what the

Adjusted Mutual Information should be calculated in relation to. Showing AMI relative to

to the feature entropy is an intuitive way to present the amount of shared information. It is

usual and typically more appropriate, however, to calculate AMI relative to the maximum of

either the class or feature entropy. The distinction is whether a feature capturing relatively

few bits of information should be ranked highly if all of that information is explained by

playlist membership.

While the features are described as being from Syntonetic and Spotify, further information

regarding the features is limited due to commercial sensitivity. The choice of features is

such that they are high-level and intuitive, serving as placeholder examples which can be

substituted with other music features. The use of commercially-derived features is because

of licensing issues with large music collections.

Measuring the information content of a retrieval interaction provides a quantitative ground-

ing to the idea of retrieval control. As discussed in chapter 3, the reduction of entropy from

an overall music collection in making a selection gives a measure of how controlled the se-

lection was. Making the distinction about whether the bits of information were provided

by the user or an autonomous recommender system can represent the handover of control.

These ideas are applied in the evaluation of the commercial BeoSound Moment product in

chapter 8, capturing the entropy of recommendations designed to match user engagement.

2http://www.dannyboland.com/spud/
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6. QUERY BY TAPPING

RHYTHM is a musical universal. This chapter explores the use of rhythmic queries, with

a view towards creating a low–engagement music retrieval interaction. As aspects

of rhythmic perception are universal across listeners (as noted in section 2.6), this chapter

explores the hypothesis that it should be possible to create a Query by Tapping (QbT) music

retrieval system with a high degree of correspondence with users’ mental models of query

production. A study of rhythmic querying is conducted, finding a surprisingly high degree

of subjectivity in how users reproduce musical rhythm, with subsequent development of a

generative model of rhythmic queries. This model is then incorporated into a demo music

retrieval system, along with novel methods for interpreting rhythmic queries and inferring

relevant musical works. The system is implemented on a mobile device, to allow users to

search for a specific song by tapping its rhythm or general tempo onto the device, detected

by capacitive touchscreen or accelerometer. The generative query model can be trained to

an individual user, capturing their style of rhythmic query, and underpins a user-centered

approach to QbT systems. An experiment is conducted, to demonstrate the benefit of the use

of a trained generative model over existing approaches. Feedback from participants is then

acquired, being generally positive and including a suggested use case for in-pocket mobile

interaction.
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The way listeners comprehend and reproduce rhythm is fundamental to music and universal

across cultures, as discussed in section 2.6. Tapping along to the rhythm of a song is a

common sign of listener engagement with music. Exploiting this predisposition to tapping

rhythm as a form of music retrieval would allow for music selection on a device with very

limited sensing ability – a microphone, button or single capacitive sensor would suffice. As

a large proportion of music listening occurs in mobile contexts, and mobile devices are now

instrumented with a variety of sensing capabilities, mobile listening is a compelling use case

for QbT. In particular, mobile QbT would free users from having to remove their mobile

music player from their pocket when influencing their music playback.

In Saponas et al. (2011), capacitive sensors were able to detect touch input through fabric,

supporting gestural input including drawn letters. While this input modality could support

explicitly ‘typing’ a music query, this would require a high degree of interaction engagement

from users. Users would have to engage in a more tightly-coupled interaction loop to type

a query than would be needed with rhythmic querying, i.e. having to think of an exact track

and spelling it rather than casually tapping a beat. Manabe and Fukumoto (2012) showed that

tapping input can now also be detected via headphones, making it an ideal input modality for

mobile music-listening contexts. Minimising the technological footprint of an interaction in

this way not only lowers cost but also frees designers from the encumberance of integrating

displays, keyboards etc. into a music retrieval system.

EXISTING EFFORTS

The retrieval of a musical work by tapping its rhythm is a problem that has received some

consideration in the Music Information Retrieval community. The term was introduced in

Jang et al. (2001), which demonstrated that rhythm alone can be used to retrieve musical

works, with their system yielding a top 10 ranking for the desired result 51% of the time.

Their music corpus consisted of MIDI representations of tunes such as You are my sunshine,

which is unlikely to represent the type of popular music a user would wish to retrieve. The

work was also limited in considering only monophonic rhythms, i.e. the rhythm from only

one instrument, as opposed to being polyphonic and comprising of multiple instruments. The

failure to consider polyphonic rhythm (comprising of multiple voices/instruments) is a major

limitation of prior QbT systems. Such systems use one rhythmic sequence as being the de

facto rhythm for a musical work, requiring that all users tap a musical rhythm in the same

way. This issue extends even to evaluation, with queries used for QbT evaluations in MIREX

generated by people trained to produce rhythm a particular way. After the publication of the

work in this chapter (Boland and Murray-Smith, 2013), Kaneshiro et al. (2013) built a QbT

dataset from trained participants that is now used in MIREX, and noted that participants

“wanted to tap their instrument’s part instead.”
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The potential of rhythmic interaction has been recognised in Human Computer Interaction

(Lantz and Murray-Smith, 2004; Wobbrock, 2009), for example with Ghomi et al. (2012)

introducing rhythmic queries as a replacement for hot-keys. In Crossan and Murray-Smith

(2006), tempo is used as a rhythmic input for exploring a music collection – indicating that

users enjoyed such a method of interaction. The consideration of human factors is also an

emerging trend in Music Information Retrieval, as discussed in chapter 2. This work draws

upon both these themes, being the first QbT system to adapt to users.

A number of key techniques for QbT are introduced in Hanna and Robine (2009), which

describes rhythm as a sequence of time intervals between notes – termed inter-onset intervals

(IOIs). They identify the need for such intervals to be defined relative to each other to

avoid the user having to exactly recreate the music’s tempo. In previous implementations

of QbT, each IOI is defined relative to the preceding one (Hanna and Robine, 2009). This

sequential dependency compounds user errors in reproducing a rhythm, as an erroneous IOI

value will also distort the subsequent one. The approach to rhythmic interaction in Ghomi

et al. (2012) however used k-means clustering to classify taps and IOIs into three classes

based on duration. Their clustering based approach avoids the sequential error however

loses a great deal of detail in the rhythmic query. Applying a clustering approach to musical

queries would need a greater number of clusters to be identified.

ONSET DETECTION

In order to compare user queries against a music library, one must compute the intervals

(IOIs) between the rhythmic events within the music. Onset detection is the task of finding

such events and has been studied at length within the field of Music Information Retrieval.

An evaluation of onset detection algorithms in Böck et al. (2012) showed the most precise

onset detection method reviewed was their variant of the ‘spectral flux’ technique introduced

by Masri (1996), which measures how quickly the power spectrum of a signal is changing.

They also discuss the benefits of adaptive whitening introduced in Stowell and Plumbley

(2007) which adaptively normalises frequency bands’ magnitudes to improve onset detection

in music with highly varying dynamics, such as the rock music used in this work.

These off-the-shelf onset detection techniques are applied to the audio of the tracks users

could query, and update the existing work on QbT to a state-of-the-art implementation. The

onsets acquired from audio are used as a baseline, along with professionally annoted music

onsets. The QbT techniques developed in this chapter are applied to both the audio-derived

and annotated onsets, and the evaluations are conducted using both. Though the comparison

with the audio-derived onsets provides a context within which to view the potential results

shown using annotated onsets, it is the comparison between the results using the annotated

onsets that provide an insight into the developments in this chapter.
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Figure 6.1: Participants entered rhythmic queries by tapping the capacitive touchscreen of a
Nokia N9 mobile phone. The timing of these taps was logged, to enable comparison between
users’ queries for a given song, as well as against annotated musical scores.

6.1 INITIAL STUDY

An exploratory study was conducted, eliciting rhythmic queries from participants to explore

the feasibility of music filtering using rhythmic queries. 10 European students were recruited

as participants to produce rhythmic queries of songs, which they selected from a corpus of

1000 songs. The corpus was collected from participants’ own MP3 music collections and

combined, with the same corpus then presented to all participants. These music files were

also used to obtain the IOIs from audio, using the state-of-the-art onset detection techniques

discussed previously. The rhythmic queries were entered by the participant tapping on the

touchscreen of a Nokia N9 (as in Figure 6.1), which had been configured to record the

time intervals between taps. The queries provided by the users were compared using the

techniques described later in section 6.2. For this initial study, the phone screen remained

blank. Users were instructed to select a song from a printout of the files in the corpus and

then to “tap the rhythm of the song on the touchscreen, in order to select that piece of music.”

One aim of this initial data collection was to investigate the way in which the participants

produced their rhythmic queries, without guidance from the experimenter. This is in contrast

to previous approaches, where rhythmic query onsets were acquired after instructing users

to only reproduce the vocal lead track. Though informal, this query collection study enabled

a discussion with users about how they were producing their queries, as well as follow-up

questions post-hoc.
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Figure 6.2: An illustration of how users construct queries by sampling from preferred instru-
ments. User 1 prefers Vocals and Guitar whereas User 2 prefers Drums and Vocals.

INTER-PARTICIPANT VARIABILITY

As an initial sanity check, the queries produced by multiple participants for the same song

were compared against each other. Surprisingly, little similarity was identified for a large

number of the songs. In discussions with the participants, it became apparent that a variety

of strategies were employed when annotating the rhythm of a piece of music. In particular,

participants identified particular instruments which they would entrain with – annotating

those instruments’ onset events when available. Participants were also not equally detailed

when producing the queries, with some using fewer taps than others to represent the same

rhythm in a piece of music. A depiction of how participants might sample from the available

instrument onsets is given in figure 6.2. A well known but nonetheless significant further

complication is that users often query from different parts of a song, and this behaviour was

also apparent amongst the participants.

The observations made in this initial study indicate that music retrieval using rhythmic

queries is much more complex than was originally expected. In particular, there is a need for

learning the user-specific habits in producing rhythmic queries. The conversations with par-

ticipants provided some insight into how their tapping strategy may be modelled, with their

affinities for the various instruments and their verbosity identified as important features. In-

strument affinity can be captured as a list of the available instruments, ordered in terms of

priority. Participants stated that they switched instruments when their preferred instrument

became available. Query verbosity is more difficult to model, the next section turns again

to the music psychology literature to identify ‘referent period’ as a means of capturing the

user’s degree of verbosity.

The work in this chapter explores the use of these features to construct a model of how users

generate queries. Such a generative model can address the variance in user query production

and allow input queries to be predicted and thus matched. An alternative approach however

would be to provide instruction or feedback to the user about how to tap rhythmic queries in

a way that the system understands.
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6.2 EXEMPLAR SYSTEM

It is common when interacting with music systems to be presented with a list of retrieved

music, perhaps as a playlist, which is then played sequentially. Rhythmic queries can be

used to infer a belief over a music collection about which songs the user wishes to listen to.

This section documents the development of a mobile interaction that allows a user to ‘shake

up’ a list of music by tapping the desired rhythm onto their device, with the music then being

sorted by rhythmic similarity. The user can then play through the resulting playlist arranged

by these features or proceed to select their intended song. One example use case is shown

in Figure 6.3, where a user enters a rhythmic query without removing the mobile device

from their pocket. This interaction highlights the flexibility of rhythmic queries, allowing

users to find songs of a given tempo or with certain rhythmic properties or to simply select

a specific song. A mobile demonstrator system is implemented and evaluated quantitatively

as well as qualitatively with Singaporean users, demonstrating its viability and cross-cultural

application.

Figure 6.3: Music can be shuffled by tapping a rhythm on the mobile device, allowing for
casual music interaction.
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EXPOSING SYSTEM BELIEF & UNCERTAINTY

Displaying a ranked list of songs would lose some of the information about the user’s songs

of interest, which the system has inferred from matching the user’s query to the music col-

lection. For example several songs may have a very similar level of belief held about them

and this would not be communicated by simply displaying a sorted list. By exposing the

uncertainty in the interaction to the user through some visual feedback, they will be better

able to understand the behaviour of the system and and develop an appropriate mental model

for producing the most discriminative queries.

To better expose the beliefs held by the system, the size of each list entry is scaled by this

belief. If one song alone is a particularly strong candidate then its font size will be much

larger than the other entries. Similarly, where there is uncertainty across a number of songs,

these will be a similar size – making the user aware of the uncertainty within the interaction.

This scaling of the tracks of interest not only reflects the retrieval result but allows for the

easier selection of the intended track. This feedback also reflects the uncertainty in the

retrieval, from both the user’s query as well as similarity in the music collection. Such

feedback of uncertainty can be applied generally, for example distorting a music map based

on a belief over the music space or scaling the words in an word cloud of musical artists or

genres.

Figure 6.4: Music playlist initially sorted alphabetically (left) and after a query for an upbeat
rock song “Any Way You Want it” (right). The font size of the intended track is scaled larger
as a belief of the user’s interest in it is inferred, and unlikely songs are scaled smaller. The
order of the tracks is also changed according to the inferred belief, allowing the retrieval to
act as a constrained shuffle.
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Figure 6.5: Kernel density plot of IOIs in a rhythmic query, showing the clustering around
categories of IOI values. Note that the mean of each category is a multiple of the smallest,
e.g. 110, 220, 330mS giving a tatum of 110mS.

INTERPRETING RHYTHMIC QUERIES

As discussed in section 2.6, listeners perceive and reproduce rhythm in relative categories of

intervals between notes (IOIs). These intervals are constructed as multiples of some refer-

ence, greatest common divisor beat termed the tatum (Seppänen, 2001). Complex rhythms

are thus distorted into distinct categories of IOIs, each defined relative to each other. The

tatum for the query must be established in order to then interpret the rhythmic pattern (as

distinct from the absolute position of taps in the time domain). The tatum is estimated in this

work by taking the autocorrelation of the histogram of IOI categories, giving the reference

unit in which they can be defined. One must take this approach of defining rhythmic events

relative to each other as users cannot accurately reproduce the absolute timing of music. Tak-

ing only the relative timings would discard some information however, such as the tempo the

query was produced at. To avoid this, the tatum itself can be used as an additional feature for

weighting the retrieval.

For controlled non-musical rhythms, Ghomi et al. (2012) used k-means clustering to identify

long and short interval clusters. As it is expected that users will generate IOIs by sampling

from distributions around an unknown number of IOI categories, an alternative approach

of modelling the categories is to fit a Gaussian Mixture Model selected using the Bayes

Information Criterion. An example of the clustering is described in figure 6.5.
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Figure 6.6: A rhythmic query depicted with alternately coloured intervals. The mapping
between interval duration and string characters is shown.

RHYTHMIC STRING MATCHING

The IOI categories are assigned labels ‘A’, ‘B’ etc. for convenience. This allows the rhythmic

queries to be easily encoded as a string of IOI category labels. For example, an interval

double the length of the tatum would be classified as ‘B’. An example query is depicted in

figure 6.6, showing the mapping from interval to string character.

The problem of matching rhythm can now be generalised to string matching, for which many

efficient algorithms exist. As in Hanna and Robine (2009), the Smith-Waterman local align-

ment algorithm is used, as this is able to match a query against any part of a song. Similarly,

the algorithm was adapted to scale the penalty with the mismatch error. An advantage of this

approach over that in Hanna and Robine (2009) is that no thresholds are required, with the

mismatch error being proportional to the difference between normalised IOIs:

EIOI ∝ (IOIquery − IOIsong) .

A further feature of the Smith and Waterman (1981) algorithm is that it was developed to

allow for gaps in sequences, in order to match spliced DNA sequences. This feature is

also useful in QbT, as sections of a song in which the generative model fails to correspond

to the user’s query will simply be considered as a gap and given a limited penalty. The cost

function of the string matching algorithm can assign a different score S for matched, missing

or incorrect IOIs. A parameter G weights the penalty for a gap, such that a gap is equivalent

to G IOI mismatches. In this work G = 2, assuming that if a query has two consecutive

mismatched IOIs then the query is no longer conforming to the model at that point. The

penalty scores are calculated as follows:

Smatch = 10,

Smismatch = −abs(IOIA − IOIB),

Sgap = −G× Smatch.
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Figure 6.7: The Smith-Waterman algorithm compares a query against a target sequence,
matching ‘CCBD-CBC’.

The algorithm constructs an nquery × msong matrix H (as in figure 6.7) where n is query

length and m is the target sequence length. If the strings were identical then the diagonal of

the matrix would identify each matching character pair, thus diagonal movements incur no

penalty. In the example shown, one sequence has an ‘A’ removed (the downward step) to give

a better match and thus a penalty is deducted from the score. Penalties are assigned when

the other movements are required in order to create a match, with a back-tracking process

used at the end to find the (sub)path with the least penalty. This process allows for the best

matching subsequences to be identified – in this work, a query matched against a larger song.

TATUM AS A FEATURE

Previous work on QbT defines the rhythm irrespective of tempo (or tatum), as is done here.

It has been shown however that tempo can be a useful feature in browsing a music collection

(Crossan and Murray-Smith, 2006). Tatum (being related to tempo) should be used as an

additional feature to weight the ranking of rhythmic queries. The weighting given to this

feature could additionally be adapted to each user, though that is not explored in this work.

The tatum t error function is defined logarithmically, so that halving a duration is equivalent

to doubling it:

Et =

(

log2

(

tquery

tsong

))2

.

The tatum error is used as a prior over the music space when performing the rhythmic

string comparison, biasing the results to those with similar tatum values. This helps dis-

cern amongst songs which are temporally very different but which share a similar rhythmic

pattern. Where users only wish to listen to a particular style of music or cannot recall the

rhythm of a song, they can simply tap a query at a desired tempo. If the rhythmic events are

equally spaced (as in a metronome) then only the tatum is used to discriminate amongst the

songs.
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It is worthwhile to note that the tatum is not necessarily the inverse of tempo. Tempo is often

calculated as ‘beats per minute’, with an average value acquired across all the rhythmic

events. It follows from this that the measured tempo would be highly dependent upon the

section of song used to produce a query. The tatum however is the base unit that all the

rhythmic events are multiples of and should be more stable throughout a piece of music.

This distinction is largely only of interest from a technical perspective and generally, the

tatum is inversely proportional to tempo.

6.3 GENERATIVE MODEL

Rhythmic queries for a given song can vary greatly between subjects though are typically

consistent within subjects. In order to build a database against which rhythmic queries can

be matched, a generative model is required that can account for this variability. The use of

the generative model encodes the knowledge about user behaviour obtained from the initial

study. In essence, the model is designed to answer the question “What would the user do?”

to achieve an outcome (selecting a target song). Training the model to users can be done by

setting a fixed outcome and asking users to provide the input they would provide to achieve

that outcome. The inference of the user’s intended music is conditioned entirely upon the

model and so should inherently improve as the generative model is improved or trained.

Figure 6.8: The generative model samples onset events from multiple instrument streams,
producing a single output sequence.



66 GENERATIVE MODEL

INSTRUMENT AFFINITY

Polyphonic music will have a sequence of notes for each instrument and thus a sequence of

IOIs for each instrument. As observed in the initial study, users typically switch between

instruments as they feature in the music. This switching behaviour follows the user’s pref-

erence of instruments to tap to. This set of preferences for instruments is termed here as the

affinity vector Aff , which ranks the available instruments in terms of the user’s affinity. The

generative model uses Aff to switch to a preferred instrument’s IOI sequence as those in-

struments feature. The behaviour of this model can be considered as a finite state transducer

with a state for each instrument, sampling from the instrument sequence corresponding to

the current state, as in figure 6.8.

Users are able to anticipate upcoming musical notes and will not perform the switch to

another instrument state if their preferred instrument sequence will shortly resume. This

look-ahead behaviour is also implemented in the generative model. The model samples

notes up to 500mS in advance and stores them in a look-ahead buffer; only when the buffer

is empty does the state change to the next available in the affinity vector. Whenever a note

event occurs for an instrument with a greater affinity, the model immediately changes state.

For ease of calculation, the model is treated deterministically and a database of reference

rhythmic sequences is produced across the music collection. A probabilistic approach to

switching may better model user behaviour but would add a great deal of complexity.

REFERENT PERIOD

As music is highly structured, rhythm can be thought of as a hierarchy, where a note on

one level could be split into multiple notes on a lower level. Individuals have a ‘referent

period’, i.e. a rate at which information processing is natural to them and they are likely

to synchronize at a level in the hierarchy of musical rhythm that is closest to their referent

period. It has been shown that musical training and acculturation result in higher referent

levels (Drake and El Heni, 2003), and so it is likely that rhythmic queries will be produced

from a variety of levels in the rhythmic hierarchy, depending on the issuing user. This adds

an extra degree of complexity to the generative model, in that the generated queries must

match the referent period with which the user produces queries.

In order to model the differing referent periods of users, a music corpus must contain onset

data for several levels of rhythmic complexity. The appropriate level can then be selected as

part of training the generative model. Such training enables the acquisition of a prior over

possible referent periods for the user – it may be the case that the user’s referent period varies

between songs.
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MODEL IMPLEMENTATION

A model was implemented to recreate users’ onsets sampling strategy, as discovered in the

initial study and depicted in Figure 6.2. The implementation of this sampling strategy is

detailed as pseudocode in algorithm 6.1 and also shown graphically in Figure 6.8. While this

model is able to generate canonical query sequences for a given instrument affinity Aff , the

queries produced by users will likely be much more varied. The string matching described

in subsection 6.2 is used to calculate the distance of a query from the canonical queries pro-

duced by this model. These distance values are then used to approximate the probability of

a given query being produced for a set of model parameters (forming the likelihood function

in section 6.3). The user model parameters are also estimated using the string matching dis-

tances, section 6.3 describes the use of of training queries matched to the canonical queries

to infer a distribution over the possible parameters.

Data: Voices - An array containing streams of note onset times for each voice in a piece of

polyphonic music. Aff - A sorted array of voice indices, indicating the user’s ranked

affinity for entraining with each voice.

Result: A stream of note onsets for this song, as would be tapped by a user.

t=0;

state=None;

Order Voices by Aff indices;

while more note onsets to sample in Voices do

for v ∈ Voices do

if note available in v within 200ms of t then

sample next note;

set state to v;

break;

else if state = v and note available in v within 500ms of t then

/* Note soon, so don’t check other voices */

break;

end

if note sampled then

output note;

increment t;

end

Algorithm 6.1: Sampling from multiple polyphonic voices according to Affinity vector

(user’s preference for entraining with different instruments).
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INFERRING USER INTENT

The task of ranking songs based on some rhythmic evidence can be seen as an inference

task and not only as a traditional retrieval task. Previous work in information retrieval has

introduced the use of query models to encode knowledge about how a user produces a query

(Lafferty and Zhai, 2001). The approach here is similar in the use of a query likelihood

model. When producing a rhythmic query, the user uses their internal query model ~Mu.

They then produce a query using this model, which is matched against the music corpus.

The problem can thus be expressed using Bayes’ theorem:

p
(

dj |q, ~Mu

)

=
p
(

q |dj, ~Mu

)

p
(

dj | ~Mu

)

p
(

q | ~Mu

) .

That is, one can infer a belief about the intended song conditioned upon the query q by

computing the likelihood of the query being produced for each song dj in the music space.

The prior p
(

dj | ~Mu

)

should be non-informative, currently there is no evidence that music

listening intent is directly conditioned upon the user’s query model for tapping to music.

In order to perform the above inference, the generative model of user queries ~Mu must be

trained to the user. This is done by taking a fixed outcome (i.e. selecting a target song dt)

and asking users to provide a suitable query q so as to achieve that outcome. The parameters

of the generative model are then inferred from the query:

p
(

~Mu |q, dt

)

=
p
(

q |dt, ~Mu

)

p
(

~Mu |dt

)

p (q |dt)
.

In this work the prior p
(

~Mu |dt

)

is non-informative however it is probable that the user’s

approach to tapping music is conditioned upon the particular song to some extent. In wider

use where a large corpus of queries has been collected, it would be possible to compute a

prior belief about the tapping model used for each song. This should improve the inference

of the user’s general tapping model. For the work here the model is trained for a given song

and a given participant to account for this, as well as looking at training across songs for a

subset of participants.

In order to infer a belief about whether a user is interested in a given song, one must compute

the likelihood p
(

q |dj, ~Mu

)

of their query conditioned upon that song being of interest and

that user’s query model. The string matching function is used to compare user queries with

those in the database and to assign beliefs to songs accordingly. The more edits that are

required to match the query to the stored song sequence, the lower the estimated likelihood

of that query for that song.
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6.4 EVALUATION

A within-subjects experiment was conducted to compare the performance of the query like-

lihood model described before and after training, as well as against a baseline approach

using the onset detection techniques. The baseline approach used the onset detection tech-

niques described in section 6 and reviewed by Böck et al. (2012). These conditions are

termed: Baseline (onset detection), Untrained GM (polyphonic data with generative model)

and Trained GM (polyphonic data with trained generative model).

Given the parameters of the generative model, the target space against which queries are

matched is greater than in the baseline case. For the baseline, there is one possible sequence

for each of the 300 songs. The model has four instrument sequences for each song, sampled

using the generative model with 96 possible parameter permutations, yielding a target song

space of 28, 800 sequences.

EXPERIMENTAL SETUP

A corpus of MIDI and MP3 music data was acquired from popular rhythm games, featuring

professionally annotated note onset times (from which IOIs are computed) for each instru-

ment in 300 rock and pop songs. While the size of this corpus was limited by the source of

the data, it reflected real-world usage at the time – Karaganis and Renkema (2013) gives it

as the median music file collection size in Germany. Participants selected at least two songs

from the corpus and listened to them to ensure familiarity. They were then asked to produce

at least three rhythmic queries for each song by tapping a section of the song’s rhythm on

the touchscreen of a Nokia N9 mobile phone. No feedback was provided to the participant

after each query. The queries were used to train the generative model using leave-one-out

cross-validation. Participants were provided with headphones to control background noise.

Quantitative data was captured in the form of rank results, with songs ranked according to

the inferred belief. Qualitative data was captured during a discussion with participants where

they were asked to comment on the style of interaction presented and whether they found it

enjoyable and/or useful. Eight unpaid British participants volunteered, four female, four

male, ages 18 – 72 (mean: 30). Half of the participants were university students and one a

retiree. Participants were instructed to “tap the rhythm of the song on the touchscreen, in

order to select that piece of music.” No limit was made on the length of the queries. The

participants were not musicians, otherwise musical background was not controlled. Rhyth-

mic queries were captured using a Nokia N9, running the logging software and variant of the

Smith-Waterman algorithm, both developed in C++ using the Qt framework.
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Maximum a posteriori (MAP) parameter estimation with a non-informative prior was used in

the training, rather than selecting the parameters using the Maximum Likelihood Estimate,

retaining some uncertainty so as to mitigate overfitting. The goal was for the target song to

always be in the on-screen (top 20) rankings, rather than optimising for the highest rankings.

RESULTS

One measure of interest is how rapidly a user can filter their music collection to recall the

desired result on screen (i.e. into the top 20 ranked songs or 6.7% of the collection). Figure

6.9 shows the percentage of queries which resulted in such a ranking, with query performance

improving with query duration in seconds. Higher rankings are achieved for all query lengths

when using the trained generative model. Queries with lengths of approaching 10 seconds

always yielded an on-screen result (in the top 6.7% of the corpus). Up to this point the

recognition rate improves with query length, as the additional information is incorporated. It

is noteworthy that queries over 10 seconds lead to a rapid fall-off in performance.

Figure 6.9: Recall rate i.e. percentage of queries yielding a highly ranked result (in the top
20) plotted against query length in seconds. Retrieval performance is shown with the genera-
tive model using annotated polyphonic onsets, with monophonic onset detection baseline for
context. Performance improves with query duration however falls off rapidly with length.
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MEAN RECIPROCAL RANK

Another useful measure is Mean Reciprocal Rank, shown in figure 6.10, reflecting more di-

rectly the position of the song within the ranking. The distinction is useful in that, for the

purposes of the interaction it is important to get an on-screen result, however a comparison

of rank positions gives a more direct indication of the performance of the retrieval.Voorhees

(1999) introduced this measure for the evaluation of retrieval systems and discusses its ad-

vantages, such as being bounded between 0 and 1. For a set of retrieval results X , with

cardinality |X|, Mean Reciprocal Rank can be calculated as follows:

MRR =
1

|X|

∑

x∈X

1

rank(x)
.

The much larger gap between the systems in Figure 6.10 than in Figure 6.9 reflects the

improvement across the entire distribution of retrieval results. Not only do more retrieval

queries return a highly ranked result but the long tail of poor results is also improved.

Figure 6.10: Mean Reciprocal Rank (MRR) of rhythmic queries, higher values indicate a bet-
ter ranking for relevant results. The dramatic gap in performances reflects the improvement
across the entire distribution of retrieval ranks, as well as the proportion of highly ranked
results.
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Figure 6.11: Query by Tapping results using the polyphonic generative model, trained and
untrained, as well as a baseline using monophonic onset detection

The distributions of retrieval result rankings for each condition are shown in figure 6.11. A

paired t-test comparison was performed between the conditions, with Bonferroni corection,

showing a statistically significant mean improvement of the trained generative model over

the untrained and baseline query likelihood models (P < .001). The improvement of the

untrained generative model over the baseline was not statistically significant (P = .279).

Participants said they enjoyed using QbT as an interaction style, often choosing to continue

the interaction beyond the requirements of the experiment. The experiment was viewed as

a game, with half of the participants requesting further attempts to improve their results.

One participant identified in-pocket music selection as an interesting use case, as depicted

in figure 6.3. Another expressed concern about the scalability of using rhythmic queries

for especially large music libraries. All the participants immediately grasped the concept of

Query by Tapping and were able to readily produce rhythmic queries.

SINGAPORE FOCUS GROUP

An exploration of the application concept was conducted using a prototype demonstrator

with a small focus group of five Singaporean participants – four female, one male. The

particpants all used mobile media players and were aged 26 – 59 (mean: 40). They also spoke

and listened to music in Chinese and English, giving a view of how the system performs

cross-culturally. The demonstrator was presented to them and they were able to interact

freely with it, an informal conversation followed to capture their impressions.
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Participants were asked to compare the interaction with their usual way of listening to music

in a mobile context, to consider the ‘in-pocket’ use case, whether they would feel comfortable

using the interaction style in public and whether the interaction style was suitable for their

music. The discussions with participants identified that they all often listened to music using

the ‘shuffle’ feature of their phones or music players, occasionally using the menu interface

to select particular music. The use of rhythm to shuffle music was well received as a superior

option to random shuffle, with P3 noting that random shuffle can lead to inappropriate music

selections at night and that shuffling by tempo could avoid this. Participants were very

positive about the in-pocket use case, with P1 saying that it “means I can select music when

it’s raining” and P2 saying that “it can be hard to take my phone out to change song because

I have small pockets.” P3 and P4 noted that fear of theft sometimes prevented them from

removing their phone to select music. Social acceptability of the interaction is important as

the use-case for in-pocket music selection includes being in mobile, public contexts. None

of the users had an issue with tapping in public (P5 likened it to drumming on their lap).

Participants also offered up some concerns about the interaction technique. P2 doubted their

ability to produce suitable rhythmic queries for all of their music despite achieving good

performance with the demo, citing their lack of musical knowledge. They did however

appreciate the inclusion of the tempo-only sorting ability to mitigate the need for accurate

rhythmic querying. P5 pointed out that the ‘intensity’ of their taps is an overlooked feature

of rhythm and expected it would be interpreted.

6.5 DISCUSSION

The results show that accounting for subjectivity in users’ rhythmic queries greatly improves

retrieval performance despite increasing the target space. While validity was shown for aver-

age music collections, scalability is a concern, with larger music libraries requiring additional

sources of evidence for effective retrieval. A further concern is the drop-off in performance

for large rhythmic queries, possibly due to the user having a limited section of music in mind

when they begin producing a rhythmic query. The results suggest that performance for this

and existing techniques may be greater if query length is limited. Further improvements for

the generative model should also allow for participants who tap one instrument exclusively.

As expected, participants stated they used shuffle frequently – the ubiquity of shuffle is noted

in Quiñones (2007) and attributed to the popularity of the iPod shuffle MP3 player. Similarly,

users felt comfortable with the interaction technique – work by Rico and Brewster (2010) has

shown that users feel comfortable producing rhythmic and tapping gestures in public. It is of

interest that all of the participants felt the interaction suited both their English and Chinese

music, existing techniques such as browsing by genre are culturally specific and so this is

potentially an advantage of this interaction style.



74 DISCUSSION

INCORPORATING SUBJECTIVITY

It could be argued that one would of course expect better results from the use of ground-truth

polyphonic music data than from the use of detected onset events. The untrained generative

model provides an example of this, showing an apparent though non-significant improvement

over the baseline (onset detection). After training the generative model, the improvement in

retrieval performance is dramatic. It is not surprising that incorporating knowledge about

the user improves the performance of the system. The use of a generative model does not

in itself yield much of an improvement however it provides a mechanism by which one can

incorporate the prior knowledge about the user. It is only when the issue of subjectivity in

how users produce their queries is addressed that significant performance increases are seen.

The subjectivity was addressed through the use of a simple model based on initial discussions

with users, it is likely that far more powerful models could be constructed.

SCALABILITY

The techniques employed aimed to ensure a top 20 (on-screen) result rather than optimise

rank at the risk of failed queries. That users were unsure of their ability to achieve this level of

performance indicates that further work could be done to improve users’ confidence during

the interaction, for example with real-time feedback. It is to be expected that as the size of

the music collection is increased, retrieval performance using rhythmic queries will fall. The

results show this style of interaction to be valid for an average music collection of 300 songs.

Performance is far greater as collection size is reduced, with queries yielding first ranked

results 65% of the time when the collection is halved to 150 songs. The Bayesian approach

allows for this issue of scalability to be addressed through the introduction of additional

sources of evidence. For example a different interaction style could use sung queries –

providing pitch, rhythm and tatum as evidence. Such an interaction would also benefit from

the user query modelling approach introduced here. Other evidence sources could include

the dynamics of the tap events, for example a ‘strumming’ action could denote guitar events.

Rather than implement a simple retrieval of a musical work by tapping its rhythm, the user’s

entire collection of music is re-ordered according to the rhythm and tempo evidence. This

means that for this collection or larger ones, the drop-off in retrieval performance is more

acceptable as the user is still able to assert control over their music collection, ordering it

according to the evidence they provide. The queried music could even just be a subset of

the music – landmark tracks, which the user selects to indicate the type of music they want.

At the very least, the user can shuffle their music by tempo and rhythmic similarity. The

intended song need only be ranked in the top 20 results displayed on-screen, with the user

then able to select the song easily.
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LIMITATIONS

While the benefits of the techniques presented have been demonstrated, much work remains

in studying rhythmic querying as an interaction technique. The evaluations here aimed to

validate the use of the generative model. A wider study could provide further insight into

rhythmic querying behaviour – for example, exploring the suggested additional features

to incorporate tap intensity, single-instrument annotation and song-specific tapping strate-

gies. A key limitation of this work is that the training and validation queries are acquired in

the same session - a longitudinal study may show that users’ rhythmic querying behaviour

changes over time. Another potential limitation is that, prior to the evaluations, participants

were briefed as to the nature of the experiment. It is possible that participants then selected

songs to query which they felt confident of being able to tap to – introducing a potential

source of bias. During the experiment, participants generally focused on simply finding a

familiar song to query and enjoyed the ‘challenge’ of the task, so it is unlikely that this ‘tap-

ability’ bias had much effect. Overall, it has been shown that QbT can be greatly improved

with the use of a trained generative model and is an interaction technique worthy of much

further exploration.

QUERY LENGTH

A surprising result is the sharp drop-off in retrieval performance with query length. One

might expect that as more evidence is introduced, retrieval performance would increase,

indeed such a relationship is seen in queries up to 10s in length. It is unlikely that users

recall the entirety of a song in advance of producing a rhythmic query – instead they would

select a memorable or distinctive passage of the music. The drop-off in performance could

reflect that users have continued beyond the salient part of the music they had in mind.

This issue could be addressed by limiting the length of rhythmic queries or by providing

real-time visual or haptic feedback to the user so that they entrain with the song as it begins

playing. This result has wider implications for rhythmic interaction (for example in the use of

rhythmic ‘hot-keys’ in Ghomi et al. (2012)) in that it indicates an upper length for rhythmic

patterns. More generally, this result could suggest that any music content based querying

technique such as humming or singing may also suffer from falling performance for queries

over ten seconds. It is worth noting that while mean rank result improves with the use of the

generative model and with training, the most significant change is in the ‘long tail’ of poor

results. This work not only improves mean query performance but also makes for a more

consistent user experience, cutting off the long tail of poor results caused by subjectivity in

query production.
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FURTHER CHALLENGES

Having identified the benefits of improving consensus with the user with a trained model,

there is an opportunity for further study in using feedback as part of a consensus-building in-

teraction with the user. The rhythmic matching algorithm could be improved further through

the use of music theory, for example where a whole note is replaced by four quarter notes,

the penalty should be very little. Such techniques have been applied in similar efforts in

matching pitch in melodies, leading to the Mongeau and Sankoff (1990) algorithm and even-

tually to services such as SoundHound. Such work, combined with improvements in onset

detection, could allow robust commercial applications of rhythmic music retrieval. Given

that users can recall a great number of musical works and the results shown here, future re-

search could build upon this work to use musical rhythm for interaction tasks other than just

the retrieval of music, e.g. tapping a rhythm on a phone in-pocket to dial a corresponding

contact when using a bluetooth headset.

This work has implications for future research in interaction with music, demonstrating a

need for considering user variance. In the following chapter, generative models of user

queries are again used for inferring user intent, coupled with prior knowledge of their interest

in a music space.

THESIS DEVELOPMENT

The layout of this thesis, from defining and measuring engagement through to designing for

and adapting to it, is structured to provide a coherent research narrative. It is not entirely re-

flective of the order in which the research was conducted. The investigations in this chapter

were performed early on in the work of this thesis, providing a platform for the development

of many of the ideas presented. In particular, the use of the mobile, casual QbT interaction

to retrieve specific songs is incongruous with the concept of a casual listener having less

control as discussed in section 3.6. The limited attention and engagement available for mo-

bile interaction helped to motivate the consideration of music engagement. This chapter also

explored the use of queries based on tempo, as a more casual retrieval technique. The use

of a single interface that spans multiple styles of retrieval engagement is further explored in

chapter 7.
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6.6 CONCLUSIONS

Previous efforts at QbT were improved upon by using trained user query models to sample

from polyphonic music data. Using a generative model of subjective queries has taken rhyth-

mic music retrieval from a concept with potential to a usable interaction style. These user

models allowed for a dramatic improvement in retrieval performance, with the intended song

always appearing in the top ranked results. This work highlighted the issues caused by sub-

jective music queries and developed a personalisable music retrieval system. Users enjoyed

using the system in trials, often asking to continue use beyond the experimental requirements

in order to attempt to improve their ranking. Users were able to generate rhythmic queries

from their subjective interpretation and memory of music rather than using a memorised

rhythmic pattern. Removing the need for memorisation in this way has applications beyond

music retrieval, for example the work on rhythmic hot-keys could benefit from the presented

approach.

The interaction technique presented in this work enables users to enjoy a casual style of

music retrieval – empowering them to interact with their music in new contexts such as in-

pocket music selection. By shuffling the music playlist by the rhythmic query, users can

provide uncertain queries about a type of song or query for a particular song without having

to recall its title etc. The techniques developed here achieve the goal of casual in-pocket

music control with users able to see the benefit of the interaction style and identify use cases

relevant to them. The personalised rhythmic filtering presented offers a music retrieval style

designed to support both low interaction engagement and low retrieval control re-ordering

by tempo, or for users to engage more and query for a specific song’s rhythm.





7. ADAPTING MUSIC RETRIEVAL TO

USER ENGAGEMENT

ADAPTING a music retrieval interaction to the user’s desired level of effort and control

would enable a single interface to span the range of user engagement. The hypothesis

explored in this chapter is that a recommender system could relieve users of the burden of

control according to the level of cognitive effort they are willing to invest. Users would be

able to seamlessly transition from a casual style of interaction akin to using a radio to more

controlling styles such as specifying a particular sub-area of interest in a music space, or

even selecting individual songs. An example of such adaptation can be seen in Pandora’s

recommender system,1 though this interaction is again at a single level of engagement (a

simple like or dislike rating of tracks). A demonstrator system is developed, with a mood-

based music retrieval that allows users to select a level of control over a recommender system.

An agent-based evaluation characterises this interface, and how it can span levels of user

engagement, with additional comments elicited from participants in a design session.

1http://www.pandora.com (11/08/14)
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The tablet-based demonstrator system shows how users can seamlessly take control over

recommendation, from hearing any popular music, through to more specific sub-regions of

music, all the way to the user explicitly selecting individual items. Users are able to explicitly

denote their engagement with a pressure sensor mounted on the tablet’s bezel – employing

a metaphor of physically engaging. A large music collection is arranged into a coherent

one-dimensional space (ordered by mood), such that broad selections of a mood of music

can be made. The system employs a generative model to predict the user’s input for each

available song. When no control is exerted the expected input is broad and uncertain, with

the system using prior evidence (such as song popularity) to make an intelligent inference

of which music to recommend. As the user exerts control, the expected inputs become more

specific, allowing the system to infer the user’s intended song.

There are many sources of evidence of users’ engagement context that could be considered

for adapting music retrieval. Music engagement is explored in chapter 3, with measures of

user engagement and listening behaviour developed in chapter 4. While these give some

evidence for adapting to the user, there has also been work on measuring engagement in the

current listening context, for example by detecting rhythmic movements (Kuhn et al., 2011).

As a proxy for such methods, in order to explore this design space, the system developed in

this chapter allows users to denote their engagement explicitly by pressing a pressure sensor

– employing a design metaphor of physical exertion as engagement. The development and

evaluation of this sensor is detailed in Appendix A.

ENGAGEMENT & CONTROL

Chapter 3 has explored user engagement and interactions that bridge from casual to engaged

styles of use. If a music retrieval system enabled users to set their level of engagement, it

could cover the maximising-satisficing scale – catering to individual users and their music-

listening contexts. This dynamic has important implications for the user’s sense of ownership

of the music interaction. It is likely that users would no longer feel the sense of pride or

embarrassment related to a track selection (as described in Cunningham et al. (2004)) if

control was shared with an intelligent music system.

In casual interactions, where the user exerts less control, a system can act more autonomously

– making inferences from prior evidence about what the user intended. This way of handing

over control was termed the ‘H-metaphor’ by Flemisch et al. (2003), where it was likened to

riding a horse – as the rider loosens the reins, and exerts less control, the horse behaves more

autonomously. Music retrieval would benefit from spanning the range of retrieval control

in this fashion, allowing users to set a level of engagement appropriate to their context.

Users would have a corresponding degree of control over the recommendations, ranging

from biasing them to a style of music, through to the explicit selection of a particular track.
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INFERRING LISTENING INTENT

A music retrieval system could adapt to the user’s engagement by acting more autonomously

when the user wishes to have less retrieval control, i.e. when they do not have a specific goal

in mind. This can be described in terms of the information-theoretic viewpoint discussed in

chapter 3 – as the user provides fewer bits of information to reduce the uncertainty about

which song to play, the system must increasingly provide the necessary information. The

input from the user can thus be considered coarser as they become less engaged, having less

information content and thus less weight on the behaviour of the system, instead indicating

the ‘broad strokes’ of the user’s intent. Their intended selection can then be inferred using

prior evidence of music-listening intent, for example the user’s previous listening history,

social recommendations or the overall popularity levels of each song.

While the input from the user may be coarser and less precise when the user is less engaged,2

in other cases similar input must be evaluated in the context of different engagement levels.

For example, a touchscreen event when a user is casually browsing through an overview of

a music library should be interpreted more coarsely than an explicit selection of a piece of

music. In order to correctly interpret this input, the system must be aware of the engagement

context – either by sensing it (e.g. with accelerometers (Kuhn et al., 2011)) or by it being

made explicit by the user. The handover of control may be continuous or occur on a number

of discrete levels, for example moving from proxemic to touch interaction. This discreti-

sation allows distinct operating modes which are clearly delineated however burdens users

with managing these multiple modes. As an alternative, the exploration of engagement in

this chapter treats it as a continuous variable, acting as a parameter in the inferential system.

This continuity allows for a seamless, consistent and natural interaction.

2e.g. Pohl and Murray-Smith’s 2013 work on casual interaction
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Figure 7.1: The exemplar system (above) adapts to the user’s engagement (their desired level
of retrieval control), allowing users to explore music at a high-level (e.g. selecting a broad
mood such as angry music) or seamlessly engage, zooming in to make specific selections
(e.g. albums in a more specific area). Users retain the ability to fully engage and control the
system into an exact album selection.

7.1 EXEMPLAR SYSTEM

This chapter sees the augmentation of a popular music retrieval interface (Spotify3) to ex-

plore and demonstrate how music retrieval can be adapted to user engagement. This was

developed as a tablet-based prototype, with a pressure sensor attached to the bezel, as in Fig-

ure 7.1. Also, a semantic zooming view of a simple linear music space was added, enabling

both casual and engaged forms of interaction – giving users varying degrees of control over

the selection of music. As users engage, applying pressure, their input increasingly influ-

ences the music recommendation, up to taking complete control. The music was arranged

on one axis as this is the simplest – offering a mode with the least possible engagement

(Figure 7.2). By allowing users to make selections from the general to the specific, the new

interface supports both maximising and satisficing and spans levels of engagement, or more

specifically, the possible levels of retrieval control. Users can make broad and uncertain

general selections to casually describe what they want to listen to. However, they can also

exert more control over the system and force it to play a specific album (Figure 7.3). An

online overview video of the system and the interaction technique is available.4

3http://www.spotify.com
4http://www.dannyboland.com/mobileHCI15/ (20/02/15)

http://www.spotify.com
http://www.dannyboland.com/mobileHCI15/


ADAPTING MUSIC RETRIEVAL TO USER ENGAGEMENT 83

Figure 7.2: The zoomed out (low engagement) state allows users to casually make a selection
at any point in the mood space. Such a selection has a high uncertainty with regard to
individual albums and so the recommender agent uses popularity as prior belief of listening
intent.

Figure 7.3: The zoomed in (high engagement) state allows users to make a specific selec-
tion of an album, having zoomed in to a specific area of the mood space. Such a selection
has a low uncertainty with regard to individual albums and so the recommender agent has
negligible influence.
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INFERENCE

The handover from casual to engaged interaction relies upon an inferential model of user

listening intent. It is assumed that when making casual selections, users will navigate to a

broad area of musical interest, e.g. happy music. It is also assumed that as users engage

and wish to make more specific selections, they will use the richer album art and metadata

feedback to navigate to a few (or one) albums of interest. These assumptions about the user’s

behaviour are encoded as a generative model, i.e. one which predicts the user’s inputs for a

given level of engagement, as in Figure 7.4. Put simply, it predicts casual users will point

roughly near the type of music they want and engaged users will navigate to exactly what

they wish to hear. This generative model predicts user input ix along the x axis conditioned

upon a target song and level of engagement. The input is modelled using a Gaussian Mixture

Model, with a component corresponding to each song si in the music collection (omitting

distant songs for scalability). Each component is a Gaussian distribution, with the centroid

positioned according to the song’s position xs in the one-dimensional music projection, with

distribution width set by the precision τ parameter:

p (ix |si) =

√

τ

2π
e

−τ(ix − xs)
2

2 .

The precision τ parameter is inversely proportional to the unit variance σ2 of the distribution.

As users apply pressure, the precision is scaled by the denoted engagement E ∈ (0, 1]:

τ =
E

σ2
.

This generative model can be used to infer a belief that a given song si is of interest to the

user, conditioned upon an input position ix and the level of user engagement E:

p (si | ix, E) =
p (ix |si, E) p (si |E)

p (ix |E)
.

The prior belief p (si |E) over the music space allows existing evidence of listening intent to

be incorporated, conditioned on the current level of engagement. This work uses the music’s

current popularity on Spotify so that the system can recommend popular music to the user.

A simplifying assumption is made that only expected input varies with engagement and not

music preference, though a more informative prior may be possible. The system’s behaviour

is characterised using an agent-based approach, enumerating the possible inputs. As shown

in Figure 7.6, the less engaged the user is, the more the system relies upon its prior evidence

– selecting popular music in the broad area navigated to. At higher levels of engagement, the

system defers to the user’s input, selecting nearby songs except those it considers unlikely.
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Figure 7.4: As the user exerts control, the distribution of predicted input for a given song becomes narrower. This means the system can give
more weight to the user’s input and infer a belief about their listening intent over fewer songs. (a) shows a casual music selection, with no
pressure applied, the user sees the entire axis with mood labels to give a sense of the layout. (b) shows a more engaged music selection, with the
user now applying pressure, the view zooms semantically to show album artwork for a range of music of a particular mood, allowing users to get
more specific recommendations of popular music. (c) shows a fully engaged music selection, when maximum pressure is applied, users are able
to zoom in to view a specific album artwork and make an exact selection, with the system deferring entirely to their input.
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EMERGENT BEHAVIOUR

When the user has not applied pressure, they have a low level of engagement in the retrieval.

The view of the music space is thus zoomed out, with mood labels describing its layout

(Figure 7.4a). The inferred music selections are broad, covering an entire region of their

collection and are biased by prior evidence (popular tracks). At low levels of engagement it

is likely that most tracks played would be highly popular tracks. This behaviour is a design

assumption. Users may want the system to use other prior evidence, such as recency of

album release, as popularity may limit access to the long tail of music (see section 2.3).

When the user applies pressure, the system interprets this as the user taking control to make

a more exact selection. The inferred selection is more specific, and the view zooms semanti-

cally to show the album art of the selection (Figure 7.4b). This selection is a combination of

evidence from the user’s navigated position with prior evidence, i.e. song popularity. Users

retain the ability to make explicit selections by fully applying pressure (Figure 7.4c). By

varying the pressure, users seamlessly set their level of engagement and control over music

recommendation and selection.

CONDITIONAL DYNAMICS & SEMANTIC ZOOMING

The level of detail presented to the user should be appropriate for their level of engagement.

This is a natural application for semantic zooming – users making broad selections would

not benefit from seeing the artwork of each album and so the view zooms out, showing only

general labels such as a mood. This approach can be generalised, to condition other aspects

of the interaction upon the engagement and inference of user listening intent. Not only can

songs be played that are considered of interest to the user but the mappings of the input

and output modalities could vary according to the engagement and inferred selection. An

example would be adjusting the semantic zooming to fit the posterior (inferred) distribu-

tion, ensuring all songs of interest are displayed. An appealing benefit of such conditional

mapping functions is that the nature of the inference is exposed to the user. When swiping

through the music space, users could find the navigation attracted to or repelled by songs

according to popularity. This stickiness could also occur in zooming, with extra pressure

required to zoom into unpopular tracks. Such sticky interface elements echo past work in

HCI such as Cockburn and Firth (2004), where they were shown to be beneficial to target

acquisition and popular with users. The greatest disadvantage to generative modelling is that

where the model does not conform well to the user, the user will be unable to predict the

behaviour of the system. As the interaction is increasingly conditioned upon the inference,

the exposure to this problem is greater.
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Shneiderman and Plaisant (2004) recommend adhering to the principle of ‘direct manipu-

lation’ such that the mapping between input and output is clear to the user. In this work,

a conservative approach is taken, engagement is mapped linearly with applied pressure and

the semantic zooming is done linearly with engagement. Only the graphical feedback is

manipulated to display the posterior distribution. Tracks are sampled from the posterior in

real-time and their album artwork is highlighted with a faint glow. Tracks are also shown in

the playlist frame of the Spotify UI in order of inferred listening intent.

A SCALABLE MUSIC SPACE

The simplest possible representation of a music space is a one dimensional projection. An

assumption of the system is that similar songs are placed near to each other, such that when

users are disengaged, they can select a whole coherent region of the music space. Information

about the mood of the music is used to arrange the collection however genre or other features

and metadata could be used. A high dimensional music feature space was produced using

MoodAgent,5 a commercial music signal processing system focused on mood-related music

features. While a single one of these features (e.g. tempo) could be used to arrange the music

collection along one dimension, this work attempts to maintain more of the information by

using non-linear dimensionality reduction.

Venna et al. (2010) introduce an information retrieval perspective on such projection tech-

niques, presenting their state-of-the-art NeRV algorithm for balancing recall and precision

in the projection. This trade-off between keeping similar items together and dissimilar items

apart can be modified using a λ parameter. NeRV is used here to project the high dimensional

music feature space into a one dimensional space – Figure 7.5 shows how the original fea-

tures influence this projection. In this example, anger is inversely correlated with tenderness,

with joyful music peaking in the centre of the projection.

The resulting one dimensional projection broadly reflects the culturally universal arousal as-

pect of mood (Egermann et al., 2015), spanning from quiet, calm music to faster, aggressive

music. The use of a single dimension is justified by the observation by Egermann et al.

that the valence dimension of mood is subjective. The relatively denotative arousal aspect

of mood is more readily captured by machine listening methods. The use of mood itself

for music retrieval is supported by evidence that mood features describe music as well as

genre (Boland and Murray-Smith, 2014) and that users frequently listen to music according

to mood (Lonsdale and North, 2011).

5http://www.moodagent.com/ (11/08/14)

http://www.moodagent.com/
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Figure 7.5: The music is arranged by taking the mood features such as Anger, Joy and Tender
and creating a one-dimensional projection. Users are then able to make broad selections from
a mood region, as well as pick individual albums.

Figure 7.6: Agent-based characterisation of the required accuracy for song selection against
user engagement. Popular songs can be selected by casually navigating near them. Unpopu-
lar songs are only selected when the user is highly engaged and navigates exactly to them. As
the user applies pressure, denoting increased engagement and their wanting greater retrieval

control, they take control from the recommender system. As the user takes control, the songs
become equally targetable, with the popularity-based prior having diminished influence.
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7.2 EVALUATION & DISCUSSION

It is inherently difficult to find an objective means of evaluating such a personalised music

system. Schedl and Flexer (2012) identify this challenge as a key reason that little research

work has been done in personalised music systems. They note the need to consider the

user from an early point in the development process. The use of generative modelling is an

example of such a user-centred development approach. It allows the simulation of user input

to characterise the behaviour of the system across the space of possible input, as in Figure 7.6.

A series of exploratory design sessions were also conducted, to obtain qualitative feedback

about the system. The music space used was taken from the UK Top 40 singles charts

over the past 50 years. Audio was streamed from Spotify, with the engagement-dependent

interface integrated within the Spotify web player UI.

ENGAGEMENT-DEPENDENT RETRIEVAL

As the system is based upon a generative model of user input, it can be used to characterise

the input required from users in various scenarios. Using the design assumption of users

casually choosing popular music, it can be shown how input required from users varies with

the popularity of the retrieved track. Figure 7.6 shows how accurately the user must navigate

to a song for it to be played, at different levels of engagement and for songs of different

popularity. The behaviour of the system can thus be linked to the music listening profiles

identified as targets in section 4.4.

Casual This profile called for allowing users to satisfice and make corrective actions with

little effort. The example system supports this with recommendations of popular mu-

sic from the broad area navigated to, requiring only swipe gestures to select or change

music. The recommender system largely controls the music selection, with coarse

high-level influence from user input. Notably, it is impossible to select the least popu-

lar songs at low engagement.

Engaged This profile called for allowing users to invest effort in making an exact selection

of an album. The system supports this by letting users apply pressure to zoom into a

specific mood region, or even an album of interest. At high levels of engagement, the

user input dwarfs the recommender’s influence, with popularity having little effect.

Mixed The intermediate levels of engagement are supported by letting users quickly set

their engagement, with the continuous handover of control using the pressure sensor.

As users engage, their input has increasing influence. Semantic zooming gives users

feedback about how specific a query at a given level of engagement would be.
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DESIGN SESSIONS

Six participants, in groups of 2, took part in informal design sessions which focused on

discussing the music interaction described in this work, and in particular the benefits of

being able to engage with a mood-based, semantically zooming view. Each was given time

to freely explore the collection and to experiment with making a variety of music selections

at different levels of engagement. This experience was used to generate discussion with each

of them about how they currently find and listen to music and how the system might support

or enhance those habits. As mentioned in the Collaborations statement, the experimental

system was given to Ross McLachlan who then conducted and annotated the discussions

with users, which are explored here.

SHUFFLE AND CASUAL MUSIC SELECTION

Five of the participants reported using both shuffle and explicit selection to play music in

their regular listening, while only one exclusively used explicit selection. Participants stated

that they typically use shuffle for background music or alleviating the social pressures of

selecting music, as discussed in section 3.1. This supports the prediction that the ability to

vary the degree of engagement is desirable, with four participants often creating playlists

of songs specifically to shuffle over. These playlists were based on personal heuristics or

‘idiosyncratic genres’ as described by Cunningham et al. (2004). They were often kept to a

small number of songs to guarantee similarity between items. It is worth highlighting that

users are seeking to engage with their music system at a level between shuffle and explicit

selection, which is largely unsupported in existing retrieval interfaces.

CURATION AND TAKING CONTROL

Participants all expressed a desire to curate the collection. One suggested that there could be

more room for subtle differences between tracks in a personal collection, which would allow

finer grained control over even uncertain selections. One pair perceived the underlying struc-

ture of the music space to be close to random and felt that having more control over the music

in the collection would lead to a greater understanding of the organisation, commenting that

“I’d like to be able to apply more of my own decision making.” This sentiment was echoed

in comments about the labels. One participant commented that self-defined labels would be

better, even if not fully representative of the underlying mood – “people might be annoyed

if all their favourite albums are classed as ‘sad’... I would prefer ‘melancholic’, it has nicer

connotations.” Clearly, a desire for customisation is present that could be accommodated for

by allowing users to define the underlying collections, as opposed to generating it from the

Top 40 charts.
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SELECTION FEEDBACK

The visual feedback used for low engagement (mood labels on the axis) misled users into

assuming that the music was classified into distinct mood categories. Users did not perceive

the probabilistic nature of the mood space. For example, the point where ‘Joy’ ended and

‘Anger’ began was a constant topic of discussion. There is an inherent uncertainty to the

music layout and selection that was not conveyed. More abstract feedback would have better

communicated the nature of the selection, and that each song is a mixture of moods. For

example colouring the music space according to mood, with a blending of colours as mood

overlaps, however any extra complexity would have required more user training and reduced

the system’s ability to support the most casual retrieval scenarios.

Participants found the semantic zooming to be useful, but felt that the granularity should

increase more evenly. Making very broad or very precise selections was easier than making

intermediate selections. The visual feedback presented in intermediate positions, the line of

very small album artworks, “invites you to zoom in” rather than providing feedback about

what selection will happen at that zoom level. Participants wanted even finer control over

their level of engagement in their music retrieval, which lends support to the argument for

engagement-dependent music retrieval.

SOURCES OF EVIDENCE

The present implementation of the system uses music popularity as a source of evidence for

weighting songs as being more likely to be played. This comes from a design assumption that

satisficing is supported by recommendations based on a prior such as popularity. The design

session revealed that users felt that in doing this, recent additions to their music collection

would be underplayed. By including when the album was added to the collection as prior

evidence, the selection can be biased towards recent additions as well and this use case can be

supported. A wide range of other sources of evidence could be used in place of popularity,

such as the user’s music listening history or, from the commercial perspective, the artists

currently being promoted by music labels.

MUSIC SPACES

The behaviour of this system is closely linked to the music space used. In this work the

music space used is likely to be familiar to all participants, however this does introduce

some issues. In early testing the music space comprised the most popular 5000 tracks from

the UK charts over the last five decades, it was found that the resulting music space was too

homogeneous to navigate meaningfully. In an effort to increase the diversity of the music

space, tracks were randomly sampled from the music collection instead, yielding the distinct

mood regions seen.
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Users disliked when dissimilar songs were together. A benefit of using the NeRV algorithm

to project the music arrangement is being able to adjust the λ parameter to favour precision

(keeping dissimilar items apart) over recall (keeping similar items together). Using feedback

from users while iterating the design of the system, λ was biased strongly toward precision

to keep dissimilar items apart and improve perceived system quality. The need to avoid stark

outliers has been noted within MIR; Paul Lamere of Echonest introduced the ‘WTF test’ for

automatic playlists, with systems scored negatively for each outlier.6

7.3 CONCLUSIONS

Having motivated the need for music retrieval that adapts to user engagement throughout

this thesis, this chapter shows one way in which this may be achieved. The exemplar system

serves to illustrate not only the benefits of this adaptation, but also some of the inherent

limitations. Allowing users to seamlessly change their engagement, from scanning broad

labels to specific artwork, supports distinct use cases. It is less clear, however, how to support

intermediate states of engagement. Additional levels of feedback can be added, such as

labelling landmark tracks or artists, or displaying other metadata. There is an opportunity

for further work on providing overviews of music collections, in particular with semantic

zooming. The use of audio feedback, for example by mixing samples from the inferred track

selections, is one such approach.

MOOD

Information about the mood of the music is used to arrange the collection, however, genre or

other features and metadata could be used instead. The choice of mood for use in this work

is supported by studies of why users listen to music, such as Lonsdale and North (2011). The

music features adopted are widely used, having been acquired from a popular commercial

service. They provide a coherent music space however this is only to serve as an illustration.

Reliably detecting mood and genre from audio samples is an ongoing area of research, with

a number of challenges remaining (see chapter 2 and Sturm (2014a)).

Reducing the music features to one dimension provided the simplest music space for users to

navigate, at the lowest levels of engagement. The more complex the music space presented

to the user, the more time would be required for familiarisation with the space. Future work

would benefit, however, from considering a music space with higher dimensionality, as this

would support an investigation into more highly engaged exploration.

6http://musicmachinery.com/2011/05/14/how-good-is-googles-instant-mix/

(11/04/14)

http://musicmachinery.com/2011/05/14/how-good-is-googles-instant-mix/


ADAPTING MUSIC RETRIEVAL TO USER ENGAGEMENT 93

MARKET-BASED EVALUATION

While the behaviour of the system has been demonstrated using technical measures and

qualitative feedback, it would be desirable to study the longitudinal impact that using such

a system would have on listening behaviour. At this point, rather than conducting further

small-scale studies, it is preferable to widely deploy a full music system, which users can

adopt for their day to day listening. The concepts presented in this work have been applied in

a commercial, tablet format, engagement-dependent music retrieval system – the BeoSound

Moment, announced at CES 2015. This product is part of an ongoing commercial evaluation,

with some initial evaluation efforts described in chapter 8.
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8. INDUSTRIAL APPLICATION

INDUSTRY adoption of concepts and methodologies developed in academia can provide

a platform for evaluating work ‘in the wild’, implemented to a standard comparable to

users’ existing products. The development of Bang & Olufsen’s BeoSound Moment was

informed by the engagement-dependent, mood-based music retrieval interactions discussed

in this thesis. It incorporates an interface that allows users to determine their engagement

with a music retrieval interaction, and to choose how much control to have over their music

recommendation. It also presents the music retrieval using a low-dimensional projection of

a music space, based on the mood features. As part of the product development process, the

metrics developed in chapters 4 and 5 were used to capture changes in users’ music listening

behaviour once they adopted the BeoSound Moment as their retrieval device. This chapter

documents the exploratory evaluation of this product, and the impact of the ideas discussed

in this thesis.
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Figure 8.1: The development of the BeoSound Moment was informed by the engagement-
dependent, mood-based music retrieval interactions discussed in chapter 7. Press materials,
©Bang & Olufsen.

8.1 BEOSOUND MOMENT

The BeoSound Moment is a commercial implementation of an engagement-dependent music

retrieval system, depicted in figure 8.1. A mood-based presentation of the available music

space is used, similar to that in chapter 7. As well as having alternative music selection

options (genre, radio, album, etc.), the Moment differs from the work in this thesis in that

engagement is separated into three distinct modes: core, familiar and discovery. These

modes control the balance between the music selection being based on the user’s music

library and recommendations from a cloud music service. Users are able to listen to their

own music by making a mood selection at the core level of engagement. Strongly seeded

recommendations are made for mood selections at the familiar level. Users can hand over

control, receiving broad recommendations by making mood selections at the discovery level.

While some of the results of testing during development are discussed here, the product

has been publicly announced at the Consumer Electronics Show 20151 and will soon be

evaluated ‘in the wild’ by customers.

1http://bogone.blob.core.windows.net/static/files/press/BeoSound_

Moment_Press_release.pdf (06/01/15)

http://bogone.blob.core.windows.net/static/files/press/BeoSound_Moment_Press_release.pdf
http://bogone.blob.core.windows.net/static/files/press/BeoSound_Moment_Press_release.pdf
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Figure 8.2: Music is arranged around a ‘MoodWheel’ that is coloured according to the mood
of the represented music. Users can select moods from the wheel, with the radius of their
selection indicating their chosen level of engagement. Press materials, ©Bang & Olufsen.

MOODWHEEL

The engagement-dependent selection mechanic is presented to the user as a ‘MoodWheel’

(figure 8.2) - the available music is arranged around a wheel, which is coloured according to

the mood of the represented music. The wheel comprises three distinct layers that correspond

to the core, familiar and discovery styles of selection or recommendation. Users can touch

a position on the ring to hear music of the selected mood from their own collection, or

recommendation, according to the selected engagement level.

In contrast to the similar interface in chapter 7, the range of engagement levels is discrete

rather than continuous. While this allows users to more easily select and return to stable

states in their interaction, it does require users to maintain and switch between parallel mental

models of retrieval behaviour. By limiting the number of engagement levels to three, the risk

of users being confused is mitigated, though at the cost of users being able to finely control

the handover between their music and recommendation.

8.2 EVALUATING USERS’ CHOICE OF ENGAGEMENT

The engagement-dependent approach developed in this thesis is based upon the motivation

that users would like to perform their music retrieval at a range of engagement levels. Being

designed to afford such an interaction, the BeoSound Moment provides a further opportunity

to test this thesis’ design guidelines. Logs of users’ music listening during product testing

were made available for analysis, though were limited to weekly snapshots due to the ongo-

ing development of the product. The music selections made in these logs were aggregated

by selection style (engagement level on MoodWheel or other, such as album lookup).
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RESULTS

The selection behaviours of four users participating in the testing campaign are depicted in

figure 8.3. The three levels of the MoodWheel (core, familiar and discovery) are coloured

blue and reflect mood-based selections at differing levels of engagement. Other methods

of music selection are represented in the black column, covering the various features of

the Moment, typically being album based music selection. Even with this snapshot of a

few users, differences in interaction styles are clear. User 2 primarily used the MoodWheel

to make core selections from their collection, and often made familiar selections to hear

recommendations seeded by their collection. User 4’s selections were markedly different,

they used the MoodWheel at the discovery level for broad mood-based recommendations,

and used other selection methods otherwise. Users 1 and 3 made less use of the system, with

user 3 opting not to use the mood-based selection method to any significant extent.

Figure 8.3: Users’ choice of engagement level when using the BeoSound Moment Mood-
Wheel over a snapshot period of several days during product development. A range of be-
haviours (and listening styles) are shown, from user 2’s mood-based selections of mostly
their own music, user 4’s exploratory listening, and 3 and 4’s use of other browsing methods.
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8.3 EVALUATING RECOMMENDATION DIVERSITY

The information-theoretic measures developed in chapter 5 are applied here to compare the

diversity of the music recommendations across the different engagement levels. The entropy

over moods, tracks, albums and artists was calculated across the music selections made in

each of the engagement levels. Users were able to choose the mood of music they received

recommendations of, thus the diversity of mood is a reflection of the users’ choices.

As this evaluation is focused on the mood-based recommendation, any track selections not

made using the MoodWheel were discarded. This left 256 play events for the snapshot period

available for analysis. In order to normalise the entropy (which may otherwise increase with

number of track plays), relative entropy is calculated by dividing by the maximum theoretical

entropy for the number of track plays for each condition. Further details on this approach

are given in chapter 5. 10-fold stratified resampling was used when calculating the relative

entropy, to indicate the robustness of the results despite the small sample size. The variance

indicates the sensitivity of the measures to outliers and should not be interpreted as a standard

confidence interval, as the resampling results can not be assumed to be normal or i.i.d.

RESULTS

The entropies for track, album and artist show the diversity of recommendations made to

users. The mean relative entropies across the folds, and the standard deviations in percent-

age points, are given in table 8.4. These results are also depicted graphically in figure 8.5.

As might be expected, the diversity of tracks from the core level (i.e. from the user’s own

music collection) was lower than the diversity of tracks from the recommendation levels.

It is notable however that a more diverse range of artists was recommended at the familiar

level than for the discovery level. These selection levels involve two distinct recommender

strategies and so differences are to be expected, however users would likely expect to receive

recommendations of a wider range of artists at the discovery level. This analysis is part

of an ongoing development process, but illustrates how this approach can identify areas for

investigation.

Feature Core µ % ( σ p.p.) Familiar µ % ( σ p.p.) Discovery µ % ( σ p.p.)
mood 59.3 (0.52) 53.4 (0.93) 60.94 (1.14)
track 75.47 (0.39) 94.69 (0.77) 91.69 (0.58)
album 73.75 (0.65) 93.54 (0.88) 82.06 (0.62)
artist 72.47 (0.57) 93.54 (0.88) 74.18 (0.93)

Table 8.4: Mean relative entropy (%) for each feature across the different engagement levels
(Core, Familiar and Discovery) of the BeoSound Moment’s MoodWheel. Standard deviation
(in p.p.) is also given. These values reflect the diversity of music recommendations given for
each of the recommendation strategies.
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Figure 8.5: Relative feature entropy was calculated across the music selections and recom-
mendations made in each of the engagement levels of the BeoSound Moment’s MoodWheel.
The bars are not standard confidence intervals but the 95% values obtained from a 10-fold
stratified resampling, to indicate statistic robustness.
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8.4 SURVIVAL ANALYSIS OF A MUSIC STARTUP

User engagement with a service can be measured in terms of their continued usage. One

proposed approach to measuring this is through the use of Survival Analysis, as discussed

in section 3.4. The work by Dupret and Lalmas (2013) and Kapoor et al. (2014) sought to

capture the return time of users, linking frequent returns to high engagement. This section

explores the use of Survival Analysis to indicate the ‘health’ of a service over time.

A dataset of logs for 1.7 million users was made available by a music retrieval startup, cov-

ering a period of 3.5 years. The survival times of each unique user was acquired from these

logs, i.e. the length of time until their final use of the service. The service was discontinued

at the end of the logging period, thus there is no issue of ‘censoring’ where some data is

missing due to some users still being ‘alive’. The rate at which users joined and left the

service can be seen in Figure 8.6, which depicts cumulative joins and ‘deaths’ as well as the

size of the user population over time. A key point of interest is annotated at t = 500 days,

where the rate of users joining and leaving the service increases for a period, with the user

population declining thereafter.

Figure 8.6: Cumulative histograms (top) depict the users joining the service and the ‘deaths’
as users leave the service. The population plot (bottom) shows the changes in the user popu-
lation size over time.
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MODELLING HAZARD AND SURVIVAL

Further detail can be gained by investigating cohorts of users, where users joined the service

around the same time. This approach is inspired by similar analyses of animal populations,

where survivorship curves capture the animals’ survival probabilities over their lifetimes.

Three cohorts were used to investigate the changes in how users engaged with the music

service, with each cohort representing a period of 20 days around a point in the service’s

lifetime (100, 300, 500 days). For each cohort, 30,000 users were sampled from the period

to ensure equivalent comparison.

The initial fall in survival seen in Figure 8.7 represents the adoption rate, with less users

choosing to adopt the service in their day-to-day music listening in the 500 days cohort.

The scale of the change in user engagement for the 500 day cohort is emphasised by those

new users immediately falling below the number of users remaining from the earlier cohorts

having joined some 200 or 400 days prior.

Figure 8.7: The survival function captures the proportion of users still active for each cohort.
The earlier cohorts have an adoption rate >40%, which tails off slowly. The 500 days cohort
has a much lower adoption rate, immediately dropping to less users than remain from the
earliest cohort.
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An alternative view of these cohorts’ engagement is to compute the cumulative hazard func-

tion, as in Figure 8.8. This figure is logarithmically scaled, which gives a clearer view of

the hazards faced by a given user (accounting for the exponential decay in users). The sur-

vival and hazard functions shown in these figures can be acquired using the Kaplan and

Meier (1958) estimator, which in the case of no censoring, is simply derived from the em-

pirical distribution function. Cox (1972) proportional hazards model regression can be used

to identify factors related to the differences in survivorship, though such relationships are

commercially sensitive.

The cumulative hazard of a user leaving the service is immediately higher for the users in

the 500 day cohort than for the users of the previous cohorts, which has been accumulated

over many hundreds of days. Potential causes for this change in new users’ engagement

with the service could relate to the entrance of competitors into the market. The cumulative

hazard rises sharply after the announcement of the service’s discontinuation, until the total

cumulative hazard of every user having left.

Figure 8.8: The cumulative hazard function captures the hazard or risk of leaving that each
user is exposed to over their time with the music service. The 500 days cohort is immediately
exposed to a greater risk of leaving than the accumulated hazards from the previous cohorts,
indicating a change in new users’ relationship with the service.
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COMMERCIAL INSIGHTS

The key insight of the analyses of the start-up’s user behaviour in this section is the point

marked at day 500, where the population size began to decrease. This change is highlighted

in the cohort survivorship analysis, with the striking contrast in adoption rate amongst the

cohort of users joining around the 500 day point. Identifying such events and differences in

user cohorts can provide valuable commercial insight. While the details of the event in this

case are confidential, the effect was due to a disruptive competitor entering the market.

In the example shown, cohorts were defined in terms of the dates that users joined the service.

Further insights could be gained by considering user cohorts in terms of other contextual

variables, e.g., age or location. In addition to looking at how long users continued their

use of the service, these techniques have also been applied to the return time of users to

a service, based on the hypothesis that more engaged users will return to a service more

frequently (Dupret and Lalmas, 2013; Kapoor et al., 2014).

8.5 CONCLUSIONS

This chapter has explored some of the ways in which the work of this thesis can have an im-

pact in industry. This Ph.D. work was funded by Bang & Olufsen and thus was part of an on-

going dialogue with their designers and researchers. The idea of an engagement-dependent

mood wheel interface was presented as an outcome of this thesis work, and subsequently

proved influential in the development of the BeoSound Moment. The evaluative methods

and measures developed in chapter 4 were used to conduct a preliminary evaluation of the

implemented product, yielding initial feedback as well as providing an approach for use in

continuing evaluations.

A further application of engagement-based evaluations was then explored, using a dataset

provided by a music start-up featuring millions of users. In this case, user engagement was

considered in terms of survival, capturing the duration of time that users remained engaged

with a service. Through the use of Survival Analysis techniques, a key event was identified

that had a significant effect on users’ engagement with the service. This approach provides

a large-scale, longitudinal view of user engagement with a music retrieval system.
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9. ENGAGEMENT WITH IMMERSIVE

MEDIA

IMMERSIVE media, where the user’s attention and cognitive resources are focused on their

media experience, present an example of where a more nuanced consideration of user

engagement is required. The user’s interaction engagement with the media system may be

diminished by their engagement with the media itself. When users are immersed in watching

a film, they may be disinclined to use an Electronic Programme Guide. Similarly, a music

listener may want to play an album or playlist so they are then free to immerse themselves

in the music. A rather extreme example of this tension is the case of Virtual Reality (VR)

Head Mounted Displays (HMDs) – while receiving a great deal of industry investment, the

current interaction scenarios greatly impede the user’s ability to interact with the system via

established modalities such as keyboard, mouse, etc. VR provides a context for considering

more generally the competition for the user’s attention, with engagement not simply the level

of effort from the user, but how they apportion that attention and effort.
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9.1 BACKGROUND

When engaging in an interaction with a VR system, the user’s control has predominantly

been through the use of gestural interfaces (such as the Leap Motion) or interfaces that are

suitable for use without sight (tangibles, handheld controllers, or relying on a subset of key-

board/mouse commands) (Billinghurst and Kato, 1999). These solutions, while potentially

adequate for low levels of interaction engagement, are almost certainly inadequate for higher

levels. Tasks such as text entry, drawing on a pen display etc. require a greater bandwidth

of input and a high interaction engagement, making them difficult to perform using a HMD.

In particular, interactions break down where the output feedback is not incorporated into the

VR presentation, e.g. trying to use a phone while wearing a HMD.

Keyboards are a ubiquitous input technique and a key example of the issue of limited inter-

action engagement with real-world peripherals when using VR HMDs. Their use involves

both kinaesthetic feedback from fingers striking keys and visual feedback to observe hand

and key placement. Virtual keyboards offer a replacement input modality in virtuality, but

lack haptic feedback. This can have a dramatic effect on typing performance. In a study

of typing performance on a flat keyboard (lacking the haptic feedback of key travel) versus

a standard keyboard in VR, Barrett and Krueger (1994) demonstrated a significant perfor-

mance drop without haptic feedback. A variety of text entry methods for use when wearing

VR HMD (both mobile and static) have been proposed. Outside of speech, none have been

shown as approaching the performance of the standard PC keyboard (González et al., 2009).

There are many contexts in which speech may not be appropriate, not only for social reasons

but also the twitch responses required in gaming. This chapter thus investigates how the

user’s engagement with their real-world peripherals such as keyboards could be supported

when they are engaged in immersive VR media experiences.

Visual feedback has also been shown to impact typing rate and accuracy. Clawson et al.

(2005) evaluated keyboards for blind-typing, using a small mini-QWERTY keyboard. They

found that when users had no view of their hands typing, their typing rate and accuracy

suffered. They note that when deprived of on-screen visual feedback, users’ typing rate

actually increased. They term this the ‘Skywalker effect’, i.e. on-screen feedback can impair

performance by making users over-conscious of their errors. This result is also interesting

in that the user attending to the feedback, having a high interaction engagement, actually

impeded task performance – again showing the need for models of engagement rather than

simple metrics of performance. In earlier work, Rosinski et al. (1980) showed that typing rate

itself was not much influenced by the on-screen feedback, but the number of corrections was.

These studies confirm the model set out by Long (1976) – haptic and visual feedback support

typing while on-screen feedback is a higher level control loop, only supporting correction.
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For high bandwidth input devices like keyboards, performance suffers without the low-level

feedback present in reality (haptics and visual). The on-screen feedback in the studies did

not support the high-bandwidth, low-level input. When using a virtual keyboard in VR,

users have no ‘real’ feedback, with only ‘on-screen’ feedback available. It is clear that it is

desirable to provide such feedback to the user, however doing so affects the user’s immersion

in VR. This issue is addressed using an engagement dependent approach in section 9.3.

IMMERSION AND PRESENCE

Immersion in VR is typically quantified through the user’s sense of presence. Presence can

be affected by the rendering quality of the scene, the quality of the HMD’s head tracking, and

even how users interact with virtual objects. It can be increased through natural interactions

with objects as they occur in the real world (Kaber and Zhang, 2011). There are a number of

approaches to measuring presence, such as instrumenting the user to monitor brain activity

or more traditional qualitative measures (Van Baren and IJsselsteijn, 2004). The Igroup Pres-

ence Questionnaire (IPQ) (Schubert et al., 2001) is widely used and sufficiently generalised

to be adopted in this chapter. Slater (2009) described presence as place and plausibility illu-

sion – by taking an engagement-dependent approach to incorporating feedback from reality

into VR, the impact of such blending on place illusion can be minimised.

MIXED REALITY

The field of mixed reality considers displays as being on a continuum, spanning from re-

ality to virtual reality – the Virtuality Continuum (Milgram and Kishino, 1994; Milgram

and Colquhoun, 1999). This continuum led to the definition of both Augmented Virtuality

(AV), where a virtual reality or virtuality view is augmented with elements of reality, and

Augmented Reality (AR), where a reality view is augmented with elements of virtuality. A

display’s position on the continuum is determined by the balance of reality or virtuality that

is incorporated into the display feedback. AR has seen increased research focus in recent

years, building upon early work such as Navicam (Rekimoto and Nagao, 1995), with reality

being augmented to allow for novel interactions. AV has also been investigated, through

the use of chroma-keying approaches blending elements of reality into a VR space. Head-

mounted cameras have often been used to capture reality, e.g. Steinicke et al. (2009)’s use of

chroma-key techniques to incorporate the user’s body, presenting a virtual hands and body in

an egocentric view of virtuality. More recently, head-mounted depth cameras have allowed

for incorporating hands or objects into virtuality, such as in Tecchia et al. (2014). The avail-

ability of larger area sensing, such as with Microsoft’s Kinect, allows for multi-user tracking,

as well as gestural interaction, which could be used to more broadly augment the virtuality

environment.
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There remains the question of how best to manage the augmentation of virtuality - managing

traversals or transitions within the virtuality continuum as discussed in Davis et al. (2003).

Mixed reality research such as Benford et al. (1998) has explored boundaries, where physical

boundaries mark the change between mixed and virtual reality. Where an interaction spans

distinct points on the mixed reality continuum, it is termed a transitional interface (Grasset

et al., 2005). The importance of continuity in transitional interfaces has been highlighted, as

well as the lack of a theoretical guideline for when to make these transitions, and how much

to transition by (Carvalho et al., 2012).

9.2 LINKING ENGAGEMENT TO MIXED REALITY

Chapter 3 explored a number of conceptions of user engagement, and this thesis has devel-

oped engagement-dependent approaches to retrieval and interaction, such as in chapter 7.

From the control-theoretic perspective, the more engaged with an interaction users are, the

more frequently and accurately they sample feedback and the more they provide rapid and

accurate high-bandwidth input. While the literature review and findings of chapter 4 high-

light the need for a more nuanced understanding of engagement, extending to affective and

other factors, the control-theoretic model does allow for a coherent interaction to be designed

that can span levels of engagement.

Depending on their current context in VR, users will vary in how much they wish to engage

with interactive objects in reality. Users may wish to engage with and incorporate real per-

sons around them or interactive devices like keyboards or phones into their VR experiences,

e.g. Bruder et al. (2010) used chroma-keying to incorporate real-world tools into VR accord-

ing to architectural context when exploring a VR house. Transitions in mixed reality can be

linked to user engagement with interactive elements in the different environments. A user

exploring a VR environment may have no need for objects in reality. However, if they ex-

tend their hands to engage with their keyboard, there should be a transition to a mixed reality

mode. Allowing users to control their position on the mixed reality continuum combines

transitional interfaces, mixed reality and the engagement-dependent approach.

While this engagement-dependent blending allows users to see and interact with real-world

objects only as they wish to engage with them, there remains the question of identifying

this level of engagement. Engagement was denoted explicitly by users in chapter 7. This

chapter explores implicit measures of engagement such as gaze, as well as more explicit

measures such as the user’s gestures to interact with the device. It is also likely that users

would wish elements of reality to be blended when there is a likelihood of engagement, for

example a user with a VR HMD could be made aware of others entering the room. The

issue of personal space and the social contexts around VR relate to the affective aspects of

engagement not captured in the control-theoretic view.
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This chapter aims to show how an engagement-dependent approach to AV supports richer

interactions with higher bandwidth input. Figure 9.1 shows the control loops involved in

the presented engagement-dependent, mixed reality system (blue for real, red for VR). The

VR control loop involves input from reality and feedback from the virtual environment.

The VR control loop is high-level, comparable with on-screen feedback for typing: users

see the results of their typing but not their hands. The more a user engages with a real

interactive object such as a person or keyboard, the more it can be blended into the augmented

virtuality view. Users can thus perceive the low-level feedback from interacting with the real

object, e.g. hitting keys when typing or social signals from proximate persons. They are

able to choose to engage with reality from a virtuality context, with their control loop with

reality becoming more tightly-coupled so that they can rapidly sample detailed feedback

from reality.

Figure 9.1: Feedback from real objects being engaged with can be used to augment virtuality,
providing a low-level control loop (in blue) that can support high bandwidth interaction, such
as typing. As the user engages with reality, the more real feedback is mixed with virtuality.

9.3 MIXED REALITY TYPING STUDY

To interact with a VR environment, a user requires an appropriate input modality. Input

actions occur in reality and in VR the user loses the inherent visual feedback for these actions.

Many text entry methods for VR have been considered (González et al., 2009), with voice

input offering reasonable performance, however adoption of novel modalities will be slow

and the use of keyboards is likely to continue, even if only transitionally. The keyboard is

a ubiquitous input device and widely used by gamers (currently the key demographic for

consumer VR HMDs); it is familiar, its layout is consistent, it has guidance for blind typing,

and users are proficient in its usage. The use of a keyboard in VR presents the immediate

problem of requiring the user to locate it in reality while immersed in VR. Users must switch

from considering their virtual environment to the spatial layout of their real surroundings.
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Typing offers an interesting case for examining the ability to interact with reality, being

an example of a rich interaction with an object that requires a high-bandwidth feedback

loop. Enabling high performance keyboard use is a quantifiable means of demonstrating

the general opportunity for rich interaction supported by engagement-dependent AV. This

chapter explores bringing the real keyboard into virtuality, hypothesising that this would

demonstrate increased performance when blending feedback from reality with virtuality.

DESIGN

A text entry study was conducted with four conditions. It was designed to assess both the

status quo performance with no view of reality, as well as the potential for improving perfor-

mance through incorporating either a full view of reality, or a selected subset of it.

1 Reality Baseline typing performance on a keyboard with full view of reality (no HMD).

2 Virtuality Status quo with no keyboard view and wearing a HMD (typical of current VR

HMD users’ setups), as in Figure 9.3.

3 Partial Blending A view of the keyboard and user’s hands was blended into virtuality

based on engagement, e.g. reaching out for the keyboard, as in Figure 9.4.

4 Switching The view was switched between reality or virtuality based on engagement, as

in Figure 9.5.

Figure 9.2: Experimental setup for the VR typing study. Users wore a Oculus Rift VR HMD
augmented with a camera for mixed reality blending. Users entered text using a standard
desktop QWERTY keyboard. The desk and area in front of the user was made green to allow
a chroma-keying approach to the mixed reality blending.
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Figure 9.3: Typing Condition 2: No mixed reality blending. Users were unable to see the
keyboard and instead could only see the VR environment, in this case the text entry prompt.

Figure 9.4: Typing Condition 3: Partial mixed reality blending. Users were immersed in the
VR environment however elements of reality were blended in as engaged with, e.g. as the
user reached for the keyboard.
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Figure 9.5: Typing Condition 4: VR/Reality switching. The user’s view switched between
reality and virtuality depending on which they were presently engaging with. Note that
although the camera view doesn’t appear to fill the display, it does fill the field of view.

Sixteen participants were recruited from University mailing lists (Age mean=25.6, SD=4.0,

14 male, 2 female) in a within-subjects design. For the baseline condition, users were seated

at a standard single monitor workspace, while in virtuality users found themselves in a VR

space with the same view as was on the monitor previously. Users were asked to enter 15

phrases, with 1 training phrase at the start of each condition to familiarise them with the

keyboard view presented. Before each phrase, participants were asked to put their hands

by their side, in order to mimic aperiodic interaction with the peripheral from VR. Based

on Kristensson and Vertanen (2012), the MacKenzie 500 phrase set was used, with phrases

chosen at random and presented at the top of the display, with the bottom of the display

used for on-screen feedback of typing. Baseline typing was captured first, the remaining

conditions were counterbalanced. In addition to standard typing metrics (Soukoreff and

MacKenzie, 2003), accuracy and time to first key press were also measured to gauge how

effectively participants could locate the keyboard.

IMPLEMENTATION

Bringing the keyboard into VR was achieved with the use of a modified Logitech C310 HD

webcam, with a 1.8mm M12 wide-angle board lens, mounted on the front of an Oculus Rift

DK1. A single camera setup with only monocular depth cues was used as this approximates

current camera setups in VR headset/phone hybrids (such as the Samsung Gear VR), as well

as minimizing processor load and latency. The scene was rendered at 60FPS.
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For selectively blending reality, a chroma-key approach (Figure 9.2) was utilised whereby

the keyboard was placed within a green screen environment, with multi-threaded image pro-

cessing and HSV thresholding in openCV used to determine the green screen contour and

non-green contours within it, which were then presented in virtuality. This was performed

separate to the rendering of the webcam, to minimise the latency of the user’s view of reality,

through an alpha mask which was generated and applied with ~1 frame of latency. Hand

detection occurred within the same process, with users wearing markers on their hands that

were detected via openCV blob detection. This was implemented in the Unity 4 engine. The

VR scene was rendered on a Intel Core i5 (3.30GHz) with an Nvidia GTX 460 GPU. The

keyboard used was a standard PC size and layout, however it featured larger lettering; this

was to compensate for the low resolution of the Oculus Rift HMD.

RESULTS

The typing statistics can be seen in table 9.6 and include a repeated-measures ANOVA

(GLM) with post hoc pairwise Tukey’s tests (# − # indicates a significant difference be-

tween numbered conditions, p < 0.05). Performance was highest in the ‘1 Reality Baseline’

condition for most metrics, in keeping with previous work in the literature. The status quo

condition of ‘2 VR No Blending’ had significantly higher error rates (corrected and not cor-

rected) and a large drop in typing rate (WPM). The two AV conditions (3 and 4) significantly

reduced the error rate in VR typing, nearing the baseline rate of typing in reality. Typing rate

however, while improved, failed to reach reality baseline performance. There was no signifi-

cant difference between partial and full blending in these measures. Figure 9.7 demonstrates

the behaviour participants employed in order to type as quickly and accurately as possible:

for condition (2) where users had no view, they quickly made inaccurate key-presses for

orientation to the keyboard, whereas the AV conditions (3 and 4) introduced some delay.

DISCUSSION

Using the engagement-dependent approach to selectively augment virtuality with the real

keyboard greatly reduced error rates. Users were able to orient themselves to the keyboard

as if it were in VR, they did not need to attempt to remember where the keyboard was in the

real environment while in VR. Typing rate is a low-level feedback loop and not supported

by the usual feedback in VR. Bringing the visual feedback of the real keyboard into VR

helps, however a lack of stereoscopic depth cues and the latency of the VR HMD likely

contributed to the modest gains in WPM in the AV conditions. These results demonstrate that

incorporating reality into VR is necessary to preserve performance, and that only providing a

view of the keyboard and hands does not negatively impact performance versus a full view of

reality. The engagement-dependent approach of transitioning the control loop between AR

and VR enables this partial blending of reality, supporting rich interactions in mixed reality.
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1 Reality Base-
line

2 VR No Blend-
ing

3 VR Partial
Blending

4 VR Full Blend-
ing

RM ANOVA Tukey post-hoc

WPM 58.93 (17.03) 23.6 (22.34) 38.47 (19.34) 36.63 (19.74) F(3) = 30.55,
p <0.01

2-1, 3-1, 4-1, 3-2, 4-2

Duration to First
Key (sec)

1.92 (0.53) 3.12 (1.89) 3.27 (0.79) 3.42 (0.86) F(3) = 9.07,
p <0.01

2-1, 3-1, 4-1

Total Error Rate 4.64 (3.09) 30.86 (15.17) 9.2 (6.43) 10.41 (7.36) F(3) = 28.45,
p <0.01

2-1, 3-2, 4-2

Not Corrected
Error Rate

0.87 (1.55) 0.61 (1.37) 1.07 (1.41) 1.78 (3.52) F(3) = 1.36,
p = 0.27

Corrected Error
Rate

3.77 (2.51) 30.25 (15.37) 8.13 (6.03) 8.63 (7.37) F(3) = 73.32,
p <0.01

2-1, 3-2, 4-2

First Key Correct 97.77 (4.3) 49.11 (24.45) 89.73 (16.28) 91.96 (14.49) F(3) = 29,
p <0.01

2-1, 3-2, 4-2

Table 9.6: VR typing results. Total Error Rate from Soukoreff and MacKenzie (2003). First Key Accuracy is between 1 (100% accurate) and 0
(0% accurate). Tukey’s tests show statistically significant pairwise differences between conditions, p < 0.05.
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Figure 9.7: VR first keypress accuracy and delay across conditions. Users in the ‘1 Reality Baseline’ condition had no view of the keyboard,
they quickly made inaccurate keypresses to orient themselves. This contrasts with users in the AV (3 and 4) conditions, largely achieving high
accuracy but with some delay introduced.



120 ENGAGEMENT-DEPENDENT MIXED REALITY

9.4 ENGAGEMENT-DEPENDENT MIXED REALITY

The aim of this chapter was to exploit engagement-dependent approaches to enable a broad

range of interactions with both reality and virtuality, as the user engages with elements of

either. The typing study provided a quantitative insight in how these mechanisms impact the

performance of interaction. While typing is useful for media retrieval, in particular when

producing textual queries, it remains somewhat tangential to the larger goal of considering

engagement with VR media. This section briefly discusses the use of engagement-dependent

AV to enable a range of mixed reality interactions as part of a media experience. The impact

of these approaches on the user’s sense of presence and immersion in their VR experience is

explored in further studies by McGill et al. (2015). An online overview video of the work in

this chapter, as well as the additional studies, is available1.

INCORPORATING OBJECTS

The VR desktop setup depicted earlier in Figure 9.2, and used for incorporating a keyboard

into VR, can also be used to incorporate other desktop objects. Figure 9.8 depicts the blend-

ing of a number of desktop items related to media interactions: the keyboard for querying

and control, as well as food and drink. Three engagement-dependent AV strategies were ex-

plored. Minimal blending incorporates elements around the users’ hands as they bring their

hands into view, allowing the user to explore the real space and use objects while minimising

impact on immersion in VR. Partial blending incorporates all interactive objects likely to be

engaged with as the user extends their hands to interact. Full blending reflects the status quo

in industry where gestures are used to switch between a real or a virtual view.

INCORPORATING PEOPLE

In a survey of VR users, McGill et al. (2015) identified that the user’s lack of awareness of

people around them is a pressing issue. An interesting aspect of this issue is that the user’s

engagement with others is a social, affective aspect of engagement and not the easily quan-

tifiable interactions thus far considered in this thesis. Another issue is that a user is unable

to choose to engage with a person if they are not first made aware of their presence. There

is thus an implicit baseline of engagement with others, who are represented in Figure 9.9 as

ghost-like figures. As these figures are engaged with, detected in terms of gaze or conversa-

tion, the alpha value on the blending is changed such that the ghost-like figures become fully

present in the VR environment.

1http://www.dannyboland.com/CHI-VR/ (20/02/15)

http://www.dannyboland.com/CHI-VR/
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Figure 9.8: Top: Minimal blending (reality around user’s hands). Middle: Partial blending

(all interactive objects). Bottom Full blending (all of reality).
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Figure 9.9: People in the surrounding real environment are incorporated into VR based on engagement. Given the implicit social engagement of
a person being in the same real environment, ghost-like figures are blended into VR (middle). As the user engages with these figures, either by
gaze or conversation, the alpha value of the blending is adjusted to bring them fully into the VR environment (right).
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9.5 GENERALISABILITY

At the heart of the work in this chapter is an interaction with an autonomous agent, which

utilises inference about user intent, conditioned upon their engagement. While this work

is a departure from information retrieval, it demonstrates the applicability of engagement-

dependent interaction beyond retrieval interfaces. Whether adaptivity is applied in a recom-

mender system or an interaction with conditional dynamics, a key outcome from this thesis is

the proposal of user engagement as a contextual variable for such inferential systems. Inter-

actions will increasingly involve a negotiation with autonomous agents, whether to manage

large libraries of content, a VR experience, or even an autonomous vehicle for example.

There remains a need to explore the mechanisms by which users can engage or disengage in

controlling such interactions, or delegate such control to an agent. This thesis was motivated

by the burden of too much control - too-much-choice, however it will be equally important

to avoid the frustration of users being disempowered by too little control.

Considering the concept of engagement-dependent interaction in the context of VR has fa-

cilitated the solution of usability issues facing VR HMD users. Users were able to interact

with real objects and peripherals from the context of a VR environment, through selective

engagement-dependent Augmented Virtuality. This approach enabled interaction with real-

ity, while preserving presence and immersion in VR, by selectively blending relevant parts of

reality with virtuality. This was done in an engagement-dependent manner, inferring when

and how much to blend reality into virtuality based on the user’s engagement with objects

in reality. This approach is distinct from past work in VR, seeking to preserve presence and

place illusion with a mechanism that minimises the blending of reality.





10. CONCLUSIONS

THIS thesis has motivated the need to adapt music retrieval interfaces to users’ level of

engagement in the retrieval process. It defines a number of quantitative measures of

music-listening behaviour, which were then experimentally linked to user responses in music

engagement questionnaires. Using these measures, and a synthesis of the literature on user

engagement in retrieval, a number of music-listening profiles have been derived as design

guidelines for the development of music retrieval systems. Two examples of such music re-

trieval systems were designed and developed, targeting different levels of user engagement,

and evaluated in terms of how they support the listener profiles. This thesis’ engagement-

dependent approach to music retrieval has influenced a commercial product, which is pre-

sented along with an exploratory evaluation of how this system performs. Finally, with

a view towards generalising the engagement-dependent work, the design methodology of

adapting control to user engagement was applied to a novel media interaction – virtual real-

ity head mounted displays.
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10.1 METRICS OF LISTENER BEHAVIOUR

The first contribution of this thesis, which motivates a large proportion of the subsequent

work, is the proposal of a series of quantitative metrics developed in part II to capture aspects

of users’ music listening behaviour. These metrics were grounded with a questionnaire,

adapted from music psychology, which was posted on an online community for Last.fm users

and completed by 91 music listeners who also provided their Last.fm listening histories.

A larger analysis of how users organise their playlists was also performed, after crawling

19,225 hand-made playlists from 7,666 Last.fm users.

The first set of metrics capture relatively simple music retrieval interaction behaviours, such

as album-based listening and track skipping, and were derived from first principles in section

4.2. A more subtle approach to capturing listener behaviour was then developed, where

the users’ speed in selecting new tracks or skipping tracks is measured, i.e. how far into a

song they wait before skipping. These metrics were then correlated with the users’ level of

control over music selection, as indicated in their questionnaire responses. Linking listener

behaviours to their stated engagement levels in this way provided much of the detail used to

build the engagement-stratified profiles of music listening behaviour.

ENTROPY

Given the many features that can be derived to describe music (such as genre, mood, artist

etc.), it was desirable to develop a general approach to evaluating changes in music-listening

behaviour, in terms of arbitrary features. Mood was chosen as an example case, with mood

features provided by Syntonetic, a commercial partner. By computing the entropy of each of

these music features throughout a user’s listening history, a portrait of their music listening

behaviour can be constructed, as in section 5.1. Given that listening behaviour is likely to

change over time, this entropy calculation was windowed over a number of tracks, allowing

change-point detection to identify changes in listener behaviour.

This approach was scaled up in section 5.2 to consider thousands of users and tens of thou-

sands of hand-made playlists, identifying which music features reflected the way in which

users organise their playlists. By computing the mutual information between playlist mem-

bership and the music features of tracks, the music features that shared the most information

with the playlist organisation could be ranked. While the music features used in this thesis

are proprietary, they allowed an illustrative analysis to be performed at scale, and demon-

strated the value of combining metadata features from a different source (Spotify) with a few

of the audio features, rather than considering the full high-dimensional space of all the audio

features, which demonstrated diminishing returns with each feature.
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10.2 DESIGN GUIDELINES

The review of work on music listening behaviour and user engagement, in particular with

music, motivated the identification of a number of engagement-stratified music listener pro-

files – detailing music listeners’ behaviour as it relates to their engagement. These listener

profiles could then be used as design guidelines in the creation of music retrieval interfaces.

With the survey and quantitative measures in part II, the profiles were elucidated as follows:

Engaged These users have a high initial engagement in the interaction, with more specific

retrieval queries, e.g. selecting a particular album. They then make very few further

interventions, which are quick and decisive.

Casual These users wish to satisfice, investing little effort in the retrieval at any given point.

Their lack of initial control means that these users need to be able to easily make

corrective interventions.

Mixed Most users vary between levels of Casual to Engaged music listening, depending on

their listening context.

Framing music retrieval interactions in terms of engagement provides a spectrum on which to

consider existing interfaces, which typically cater to a specific level of engagement at one of

the extremes. Shuffle-based playback is a common mechanic to cater to Casual listening, and

the use of text retrieval and hierarchical menus is suited to Engaged retrieval. Recommender

systems, and in particular those which adapt to user preference and context, provide a means

to span the gulf between these extremes.

ENGAGEMENT AND CONTROL

The review of literature on user engagement in chapter 3 described distinct factors: retrieval

control as the user’s desire and effort to control the retrieval outcome, media engagement

as the user’s attention and involvement in the media, and interaction engagement as the

user’s attention and involvement with the interface itself. While users were described in the

profiles as casual to engaged in terms of their music engagement, the measures of music

listening behaviour identify the extra nuance of these factors. Engaged users like to have

a high degree of retrieval control over music, as discussed in the profile and the literature,

but this often takes the form of album selection, with the user then having less interaction

engagement over the course of the interaction. Relatedly, Casual satisficing of songs with

little retrieval control, for example in shuffle selection, may still result in listening with a

high degree of media engagement or interaction engagement, with the listener exploring

new music and making decisions whether to skip unsuitable tracks.
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10.3 DESIGNING FOR ENGAGEMENT

With the music listening profiles, as well as the review of music retrieval interaction, it is

clear that user engagement in their music retrieval is a key contextual variable for the design

of music retrieval systems. This thesis set out to illustrate how retrieval can be designed for,

and adapted to, user engagement. A series of demonstrator systems were developed in part

III, to investigate and overcome technical challenges in adapting retrieval to engagement.

One of these systems informed the development of a product produced by Bang & Olufsen,

which provided an opportunity to evaluate a ‘real-world’ implementation in chapter 8.

CASUAL MOBILE RETRIEVAL BY TAPPING

The first demonstrator system (chapter 6) sought to overcome the issues of subjectivity that

complicate music retrieval by allowing users to query using a fundamental aspect of music

– its rhythm. A key challenge was identified in that user querying by rhythm involved the

subjective sampling of instruments in polyphonic music, as well as differences in the tempo

and detail of how users reproduced rhythm. A simple generative model of rhythmic queries

showed how this issue could be addressed, though is dependent on polyphonic onset data.

The resulting interaction afforded casual music retrieval, with users not having to remove

their mobile device from their pocket to shuffle by tempo. It also allowed for retrieval inter-

actions with more interaction engagement and retrieval control, with users more carefully

reproducing the rhythm of a song for specific item retrieval.

SPANNING ENGAGEMENT LEVELS

A tablet-based system (chapter 7) was developed to demonstrate how a retrieval interaction,

with a coherent interaction model, could span the range of listener profiles and engagement

levels discussed. A pressure-based metaphor for allowing users to exert their engagement

with the retrieval was employed; detecting engagement implicitly via sensing remains a

compelling research challenge. This interface presented the user with a simple overview

of their music, organised by mood, which users could swipe to steer music recommenda-

tions. As users applied pressure, engaging with the system, the system’s generative model

of user input assumes more precise input given the engagement context, and infers more

specific recommendations. This mechanic allows the interaction to span from broad mood

recommendations through to specific item retrieval, with just pressure and touch modalities.

This engagement-dependent style of music retrieval was incorporated into the design of the

BeoSound Moment, which is detailed with an exploratory evaluation in chapter 8.
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BEYOND MUSIC

In more exploratory work, adapting a Virtual Reality interaction to user engagement was

considered in chapter 9. Media interactions in VR are an extreme case of immersive media

experiences, where the user’s media engagement interferes with their ability to engage with

and control the interface. The need to balance how much of the burden of control to place

on the user applies here too, in order to preserve immersion in the media. The examples

thus far consider only that users may engage less with a retrieval, perhaps due to distractors

or temporarily limited cognitive resources, however with VR the challenge is to success-

fully balance engagement in the virtual environment with engagement with the modalities

required to control it. The engagement-dependent interaction dynamic was applied here too,

for example selectively blending a keyboard into VR as a user reaches out to interact with

it. A series of studies showed that users could provide controlling input more easily, such as

typing near normal speeds, while remaining immersed in VR.

10.4 APPLICATIONS & FUTURE WORK

Though this thesis has concerned itself with music retrieval and user engagement, many

of the techniques developed are more broadly applicable. The use of generative models to

infer music selections is used in both chapters 6 and 7, and given the simple interaction

models used, result in emergent interaction dynamics that can be tuned to a particular user.

Developing models of user input, conditioned upon user goals, allows for a user-centred

approach to designing interactive systems. A belief about a user’s goal can be inferred from

their input, using a model trained to them. Such systems are well suited to tasks such as

recommendation, which involve beliefs over collections rather than explicit selections. A

key limitation however is that any such system will inherently be highly sensitive to a model

that poorly fits actual user behaviour.

Another theme developed throughout this thesis is the use of information-theoretic measures

to provide meta-analyses of features and services. This was used in section 5.2 to compare

and rank music features from multiple sources. A related approach was applied in the eval-

uation of the BeoSound Moment in section 8.3, where the diversity of results from different

recommender strategies was contrasted. This style of meta-analysis could provide a means

of quantitatively comparing the offerings of recommender services, and how they enrich and

grow a user’s interaction with content. More generally, such measures could also be used

to inform and encourage users to explore and seek out diverse experiences. This could ap-

ply not only in terms of music recommenders and the range of music listened to, but also

for GPS-enabled devices encouraging users to explore new locations, or a calorie tracking

mobile app rewarding a varied diet.
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10.5 CONTROL

While this thesis has done much to motivate and explore designing for music engagement,

the underlying principles being investigated in this work relate to the user’s control. As

the interactive systems available to users become increasingly intelligent and autonomous,

making recommendations and inferring user intent, the issue of diminished control becomes

increasingly pressing. Interfaces that afford various levels of engagement and control go

some way towards addressing this issue, however, there remain further challenges. Where

users do not understand or trust a recommender system, they will not be as empowered

when handing over control to it. For example, a user may avoid listening to embarrassing

tracks to avoid these tracks being recommended later in an inappropriate context. Similarly,

recommenders may be biased, as in the case of tracks played by commercial radio being

heavily influenced by record labels. Much further consideration is needed of the interaction

and balance of control between user and agent. In particular, where users delegate control

to an agent, the agent’s (and its designer’s) control and influence over the user must then be

questioned.

MORAL HAZARD

Music retrieval systems are the gateway by which many users access their music. The issue

of recommendation being biased, whether intentionally for commercial reasons or due to a

biased classifier, raises a significant moral hazard. Users place trust in recommender systems,

often using them to manage and access their music collections. Any bias in these systems

not only has commercial implications, but also shapes the cultural exposure of users. In the

discussion of music classification in chapter 2, it is observed that classifiers are confounded

by equalisation and the process by which music is produced. Such a lack of generalisability

does not only impact performance; where music classifiers are developed and trained on

a corpus of music from large music labels, it is questionable whether their performance

would generalise to independently produced music. As music listening becomes increasingly

conditioned upon classifiers and recommender systems, this bias in music retrieval becomes

an increasing concern. Music Information Retrieval has reached a stage where the work

in field can have significant financial and cultural implications. It is thus important to be

mindful of this moral hazard and to not consider performance measures alone.
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10.6 SUMMARY

Users differ in how much they engage with their music, their retrieval systems and their inter-

actions in general, investing corresponding amounts of effort and attention. This thesis has

measured how users’ behaviour varies with their engagement, and developed engagement–

stratified user profiles. The design of interactive systems can be informed by this range of

user engagement. This thesis has seen examples of retrieval systems affording a range of user

engagement levels, and interactions that can adapt to the user’s engagement context. This

engagement-dependent approach to interaction design not only frees users from the issues of

too-much-choice and disempowerment, but can be generalised, for example solving usability

issues with Virtual Reality Head Mounted Displays. Engagement-dependent retrieval offers

a mechanism for empowering users with both intelligent recommendation and control, with

promising applications in future music retrieval systems.





A. PRESSURE SENSING

PRESSURE input can be used as a way for users to explicitly denote their engagement,

using a metaphor of physical exertion as engagement. This is employed in chapter 7,

where the user can set their level of engagement in a music retrieval interaction, with an

adaptive interface responding accordingly. The addition of a pressure input modality to an

interaction requires the use of a pressure sensor and the details of the implementation used

in this thesis are given in this chapter. Pressure input is noisy and, if mapped directly to

the interaction, will be difficult for users to control. A Fitts’ law (1954) study is performed

in order to characterise pressure input and users’ ability to control it, and in particular to

investigate the utility of low-pass filtering in improving the usability of pressure input.
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Figure A.1: Characteristics of the Interlink Force Sensitive Resistor (FSR) used for pressure-
sensing. At low levels of force (within human ranges) the relationship with conductance is
approximately linear, and thus usable for Human-Computer Interaction. Figure taken from
the Interlink FSR integration guide.1

A.1 HARDWARE

The force applied by the user was measured using an Interlink Electronics Force Sensitive

Resistor (FSR)1. The conductance of this sensor is linearly proportional to force within hu-

man ranges, as shown in Figure A.1. As current flow is linear with conductance (and thus the

applied force), a transimpedance amplifier or ‘current-to-voltage converter’ is used to obtain

a voltage that represents force (depicted in Figure A.2). This approach takes advantage of the

linear force–conductance property of the sensor at human input levels, avoiding the issues of

a non-linear input modality. This setup resulted in a pressure space of 10N, which was used

in developing the prototype system in chapter 7. In this implementation, an mbed2 micro-

controller was used to connect the FSR to a Microsoft Surface Pro tablet running Windows

8, which ran the prototype software. The prototype software made use of a low-pass filter to

make the pressure input more usable, and the selection of the filter properties is explored in

this chapter. This exploration uses the same hardware setup, with an experimental interface

configured for a Fitts (1954) targeting study.

1https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf
2http://www.mbed.org (06/12/14)

https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf
http://www.mbed.org


PRESSURE SENSING 135

Figure A.2: The transimpedance amplifier or ‘current to voltage’ converter produces a volt-
age output that is linear with the current input. The conductance (and thus current) of the
FSR is approximately linear with force across the range of human input, yielding a linear
force–voltage relationship. Figure taken from the Interlink FSR integration guide.1

A.2 LOW PASS FILTER

Initial prototyping with the pressure sensor used the raw measured values. These showed a

high degree of noise, rendering control difficult. While the sensor itself is subject to some

thermal noise and hysteresis, the majority of the noise observed is likely due to muscle

tremor. In order to mitigate this issue, the use of a low-pass filter is explored. A low-pass

filter attenuates the high frequency content of a signal – in this case, the erratic movement due

to muscle tremor. The low frequency content remains, i.e. the user’s controlled movement

through the pressure input space. The selection of appropriate filter parameters is essential,

as filtering too aggressively would make the on-screen feedback of input pressure noticeably

delayed from the user’s input. In extreme cases, rapid changes in input pressure with a slow

on-screen response could make the interaction difficult for the user to control.

The implementation of the low-pass filter uses the simple recurrence relation form, also

known as the exponentially weighted moving average:

yi = yi−1 + α(xi − yi−1),

where α is a smoothing factor within the range: 0 < α < 1. It can be related to an RC low-

pass filter time constant τ , where fs is the sampling frequency. In this work, fs = 325Hz.

α =
1

fs τ + 1
.
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Figure A.3: Results from a Fitts’ law study of pressure interaction across a range of low-pass filter time constant τ values. The reciprocal of the
slope of the line indicates the interaction throughput, thus a less steep line is preferable. Note that for the lowest τ values at the smallest distance,
users struggled to control the pressure and Fitts’ law does not apply.
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A.3 PRESSURE INPUT DYNAMICS STUDY

A Fitts (1954) targeting study was conducted to identify an appropriate filter time constant

τ for Human Computer Interaction. Such a study involves asking participants to repeatedly

select targets at a range of distances, in this case with the use of the pressure input. The

throughput (in bits per second) of an interface can be determined by capturing the movement

time (MT) of the user’s targeting, as well as adjusting for their accuracy (Zhai, 2004). Given

the standard Fitts’ law form:

MT = a+ b ID,

MT is linear with the index of difficulty (ID), which is a function of target distance and width.

Throughput (TP) is given in ISO 9241-9 using the slope-inverse method:

TP =
IDe

MT
,

making the assumption of a zero intercept, i.e. a = 0. IDe reflects the empirical index of

difficulty, with target width having been adjusted to fit the error distribution observed. The

zero intercept assumption is unnecessary however, by applying linear regression with TP = 1

b

(see Zhai (2004) for a discussion on throughput calculation).

SELECTING A FILTER TIME CONSTANT

16 users were recruited to perform the targeting study. The study comprised of 4 target

distances × 15 repetitions × 8 time constant τ values × 16 participants, giving 7680 trials (an

additional 480 were used as training trials). The average movement time per target distance

for each filter is depicted in Figure A.3. For the filters τ ≤ 0.26, the MT at the 2N distance

was higher than would be predicted by the linear Fitts’ law relationship. Users struggled to

control the pressure level at the small distance with these least amounts of filtering.

The results of the Fitts’ law regression are given in table A.4. The r2 values for the first three

filters shows they do not conform to Fitts’ law and thus their TP is invalid. The next filter,

τ = 0.51, thus has the highest usable TP and is adopted for the work in this thesis.

τ 0.00 0.01 0.26 0.51 0.76 1.01 1.26 1.51

a 2.34 2.28 2.18 2.11 2.04 2.10 2.26 2.43
TP 4.70 5.81 4.17 2.65 1.88 1.97 1.44 1.04
r2 0.39 0.36 0.58 0.92 0.84 0.88 0.94 0.92

Table A.4: Pressure input throughput from Fitts’ law regression





B. COMBINED MUSIC ENGAGEMENT

QUESTIONNAIRE

THE following music engagement and use questionnaire is based on similar question-

naires in Greasley and Lamont (2011); Krause et al. (2014). These previous question-

naires were combined, and the wording of some questions updated to reflect digital music

listening. This questionnaire begins with two questions from Krause et al.’s questionnaire,

asking participants to tick any selection methods and devices that they use when listening to

music. The remaining questions are adapted from Greasley and Lamont’s questionnaire and

prompt participants to respond using a five point Likert scale.1

1Original form as given to users: https://goo.gl/TTfXeM
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QUESTIONNAIRE

The aim of this questionnaire is to gather data on people’s music listening behaviour. You

will be asked to provide your Last.fm username so that your publicly shared Scrobbles can

be analysed. Completing this questionnaire is taken as consent for this analysis.

Please enter your Last.fm username:

Username

We will only analyse your public Scrobbles to identify your music-listening behaviour.

Think about the last few times you listened to music and tick the selection methods you used.

� I did not have any control

� It was performed live at the time

� Watched TV

� Personal premade playlist

� Specific artist

� Premade playlist - by someone else

� Specific song

� Listened to the radio

� Specific album

� Someone I was with chose

� Random/Shuffle

� Computer Recommendation

� Website streaming

� Other:

Please state

Please tick the devices you often use to listen to music.

� Mobile MP3

� Mobile Phone

� Mobile CD

� Computer - own music

� Computer - streamed music

� Computer - music store in the cloud

� Stereo - MP3

� Stereo - CD

� Radio

� TV

� In public - live

� In public - recorded
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How much control do you like to have over the music you listen to?

� I generally listen to whatever is played

� I listen to a particular radio channel or recommendations in a style of music I like

� Sometimes I like to choose, sometimes I’ll listen to radio or recommendations

� I generally prefer listening to music I’ve chosen e.g. in a playlist I made

� I like to have full control over which album or song I’m listening to

How much music do you have in your collection (in iTunes, MP3 player, Spotify etc)?

� Up to 5 albums or about 50 MP3s

� Up to 25 albums or about 250 MP3s

� Up to 125 albums or about 1250 MP3s

� Up to 5000 albums or about 50,000 MP3s

� More than 5000 albums or 50,000 MP3s

What best describes your music collection?

� All my collection is organised by hand in a certain way

� My collection is broadly categorised by hand (e.g. genre or mood playlists/folders)

� My music system organises my collection for me

� There is no specific organisation to my music collection

� I can never find anything when I want it!

Can you remember the first album you bought?

� Yes, I can remember what it was and exactly when and where I bought it

� I can remember what it was, but not exactly when I bought it

� Not off hand, I probably could if I thought about it

� I doubt it

� I have no idea

Why did you make your last music purchase?

� I had to have it, I heard it and I just had to go and buy it

� I knew I would like it, because I’ve built up a knowledge of what I like

� I’d heard a couple of the tracks I liked so bought it to see if the whole thing was good

� It was recommended to me, so I thought I’d give it a go

� I can’t remember

Lyrics in music, which best describes you?

� I never really listen to the lyrics in songs

� With some of my favourite music I know the lyrics, but otherwise I don’t really pay

attention to the lyrics in songs

� I like to know the lyrics so I can sing along

� I have to know the lyrics because it’s central to understanding what the artist is trying

to convey

� I have to know the lyrics because I don’t want to be singing along to something that

might be at odds with my beliefs





C. BUILDING THIS THESIS

This thesis is made available as an open source, reproducible document. The data and code

used to generate the analyses and graphs within this document are made available for reuse

and inspection under the MIT open source license. The code is structured as an example

of literate programming, interleaving the LATEX and R code used in making the arguments

of this thesis. Instructions for building this thesis are included in this chapter, as well as a

description of the included data.
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The commands in listing C.1 will download and build this document from source, as well as

performing the analyses and meeting dependencies, such as downloading the SPUD dataset

(chapter 4) and building required R packages. It is assumed that R and LATEX environments

are installed, as well as the make, wget and git utilities.

Listing C.1: Building the thesis

# git clone http://www.github.com/DCBoland/thesis.git

# cd thesis

# make

The resulting document can be relatively large. If ghostscript is installed, the command in

listing C.2 is included as a convenience function to optimise the document size.

Listing C.2: Reducing the document size

# make compress

The information-theoretic feature selection in section 5.2 made use of proprietary music

features. This music feature data is not distributed with the thesis. The corresponding fig-

ure (Figure 5.2) is instead distributed as a static image. The code used for the analysis is

included, however, with a cache file used to prevent its execution during compilation.

C.1 R ENVIRONMENT & PACKAGES

This thesis has made use of R and a number of R packages, which are the result of work by

a great many people. The code and included comments indicate which packages were used

for a given analysis. Many package authors provide details for citations, and their efforts are

acknowledged here:

R (R Core Team, 2014), knitr (Xie, 2014), dplyr (Wickham and Francois, 2015), tidyr (Wick-

ham, 2014), caret (Kuhn, 2015), RSQLite (Wickham et al., 2014), changepoint (Rebecca Kil-

lick and Haynes, 2014), ggplot2 (Wickham, 2009), infotheo (Meyer, 2014), likert (Bryer and

Speerschneider, 2014), mvtnorm (Genz and Bretz, 2009), polycor (Fox, 2010), nlme (Pin-

heiro et al., 2015), multcomp (Hothorn et al., 2008), survival (Therneau and Grambsch,

2000).
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C.2 DATABASE SCHEMA

The SPUD dataset is distributed as a SQLite file. The data is normalised in fifth normal

form, with mutually associated TRACK, ALBUM and ARTIST tables, as well as correspond-

ing Spotify IDs for each record. The TRACK table also contains track metadata acquired

from Spotify, such as popularity and duration. The Last.fm playlist data is included, as the

LASTFMPLAYLISTS and LASTFMUSERS tables. A cross-reference table, LASTFMPLAYLIST-

STRACKS, is used to associate each playlist with the contained tracks. Some users’ listening

histories are also provided, using the cross-reference table LASTFMTRACKLISTENS.

For all of the other studies in this thesis, the required data is included in CSV format in the

data directory.
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