
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Yu, Jinhui (1999) Stylised procedural animation. PhD thesis

http://theses.gla.ac.uk/6737/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/6737/

UNIVERSITY
of

GLASGOW

Computing Science

Stylised Procedural Animation

Jinhui Yu

A thesis submitted for the degree of Doctor of Philosophy

© Copyright by Jinhui Yu 1999

,

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl,uk

BEST COpy AVAILABLE.

VARIABLE PRINT QUALITY

Stylised Procedural Animation

Jinhui Yu
Department of Computing Science

University of Glasgow

Abstract
This thesis develops a stylised procedural paradigm for computer graphics

animation. Cartoon effects animations stylised representations of natural
phenomena - have presented a long-standing, difficult challenge to computer
animators. We propose a framework for achieving the intricacy of effects
motion with minimal animator intervention.

. Our approach is to construct cartoon effects by simulating the hand­
drawing process through synthetic, computational means. We create a sys­
tem which emulates the stylish appearance, movements of cartoon effects in
both 2D and 3D environments. Our computational models achieve this by
capturing the essential characteristics common to all cartoon effects: struc­
ture modelling, dynamic controlling and stylised rendering.

To validate our framework, we have implemented a cartoon effects system
for a range of effects including water effects, fire, smoke, rain and snow.
Each effect model has its own static structure such as how the different parts
are related spatially, and dynamic structure such as how the different parts
are related temporally. The flexibility of our approach is suggested most
evidently by the high-level controls on shape, colour, timing and rendering
on the effects. Like their hand-drawn counterparts, they move consistently
while retaining the hand-crafted look.

Since the movements of cartoon effects are animated procedurally, their
detailed motions need not be keyframed. This thesis therefore demonstrates
a powerful approach to computer animation in which the animator plays
the role of a high level controller, rather than the more conventional hand­
drawing slave. Our work not only achie~es cartoon effects animation of un­
precedented complexity, but it also proVides an interesting experimental do-

-i-

main for related research disciplines toward more creative and expressive
image synthesis in animation.

-ii-

Acknowledgements

I would like to thank my supervisors Dr. John W. Patterson and Mr. Bill
W.Findlay. This thesis would not have been possible without their encour­
agement and support.

My special thanks go to Professor Frank Van Reeth from the Exper­
tisecentrum Digitale Media (EDM), Limburgs Universitair Centrum (LUC),
Belgium, for generously agreeing to serve as external examiner of my thesis.
Special thanks also go to Dr. Ron Poet for serving as internal examiner and
Professor Chris Johnson for serving as the chairman on my thesis committee.

I thank the wonderful people of the GIST. My years at University of
Glasgow would have been dull without them. I would like to express my
sincere gratitude to Fionnuala Johnson, Neble Jean Christophe.

I would especially like to thank Stephane Etienne and Intaek Kim for
their generous help and interesting talks on a variety of topics during my
PhD program.

I particularly want to thank my friend Vivien Samuels for English check­
ing.

- iii -

Contents

I Introd uction
1 Traditional Animation
2 Computer Animation .

2.1 Inbetweening Systems.
2.2 Procedural Approaches

3 Stylised Effects Animation: Motivation and Challenges
4 Methodology: Stylised Procedural Animation .

4.1 Criteria and goals
4.2 Cartoon Effects
4.3 From Internal Models to Stylised Drawings
4.4 From Stylised Drawings to Computer Models .
4.5 Dynamic Control .
4.6 Stylised Rendering
4.7 From 2D to 3D ..
4.8 Fidelity

5 Contributions and Results
6 Thesis Overview

II Backgrounds of CAA and Procedural Animation
1 Shape Transformation and Motion Control
2 Shape Approaches

2.1 Cartesian Coordinate Linear Interpolation
2.2 Moving Point Constraints
2.3 Polar Coordinate Linear Interpolation.
2.4 A Variant of PCLI
2.5 A Physically Based Approach
2.6 Multi-resolution
2.7 Circle Union

3 Skeleton Approaches
3.1 Burtnyk and Wein's Skeleton Approach
3.2 Star-skeleton Approach
3.3 Localised Rotation and Scaling using Quaternions

- IV-

1
1
2
3
4
5
7
7
7
8
8
9
9
9

10
10
11

13
13
15
15
15
17
19
20
21
22
23
24
26
29

Contents

4 Procedural Approaches in CAA
4.1 A Walk Model

4.1.1 Angle Constraints .
4.1.2 The Speed of Walks.
4.1.3 The Types of Walks

4.2 A Head Turning Model
4.3 Specification of the rotation axis
4.4 Edge detection.
4.5 Hidden line removal

5 Assessment Criteria for 20 Shape Deformation
5.1 Area Preservation . . .

5.1.1 Local Validity
5.2 Dynamics
5.3 Timing
5.4 Conclusion .. .

6 Procedural Animation.
7 Particle Set Animation
8 Animating Water Effects
9 Animating Gaseous Effects
10 Summary

III Cartoon Effects System
1 Modelling......
2 Control

2.1 Shape Control .
2.2 Skeleton Control.
2.3 Distribution Control

3 Rendering

IV Water Effects
1 Flowing Water

1.1 Boundary Curves
1.2 Horizontal Waves
1.3 Vertical Waves .
1.4 Caps
1.5 Foams
1.6 Structure of the Model
1.7 Colouring...
1.8 Working in 3D .
1.9 Strobing.
1.10 Summary.

2 Water Jet

-v-

32
32
33
34
34
35
37
37
37
38
39
41
42
44
45
46
47
49
50
50

52
53
54
54
54
55
55

56
56
59
60
60
61
62
62
63
63
64
65
65

v

3

4

5

6

Contents

2.1 Skeleton.....
2.2 Boundary Curves
2.3 Waves
2.4 Drops
2.5 Structure of the model
2.6 Working in 3D .
2.7 Summary....
Water Ripples
3.1 Ripple Skeleton
3.2 Ripple Shape Rendering
3.3 Splitting Up
3.4 Structure of the Model
3.5 Result ..
3.6 Summary..
Shimmering
4.1 Basic Waves

4.1.1 Stylish Wave.
4.1.2 Realistic Wave

4.2 Distribution ..
4.3 Model Control .
4.4 Results
Reflections
5.1 Base Skeleton
5.2 Dynamic Skeleton
5.3 Shaping
5.4 Colouring....
5.5 Structure of the Model
5.6 Result
Summary ..

Fire and Smoke
1 Fire

1.1 Fire flame model
1.2 Flame Position Skeleton
1.3 Flame Skeleton

1.3.1 Skeleton Types
1.3.2 Skeleton Symmetry

1.4 Flame Shape
1.5 Connection of Flames . . .
1.6 Construction of the Matrix
1. 7 Top Flames
1.8 Structure of the Model

- vi-

66
67
67
68
69
70
71
71
72
73
74
75
76
76
77
78
78
79
79
79
80
80
81
82
83
84
84
85
86

87
87
89
90
91
92
92
93
94
95
96
96

Contents

1.9 Analysis of Parameters .
1.10 Colouring
1.11 Simulation of Wind Effect
1.12 Summary.

2 Smoke
2.1 Skeleton
2.2 Shape Rendering

2.2.1 Smoke Skein.
2.2.2 Smoke Puffs

2.3 Model Structure
3 Conclusion .

VI Rain and Snow
1 Rain
2 Light Rain .
3 Heavy Rain

4

3.1 Drops Moving in the Air
3.2 Drops Hitting the Ground

3.3
3.4
Snow
4.1
4.2
4.3
4.4

3.2.1 Modelling of Individual Drops
3.2.2 Distribution of Hitting Drops
3.2.3 Life Controller
3.2.4
Result

Structure of the Model

Summary

Snow Track Skeleton
Snow Flakes
Structure of the Snow Model .
Summary

VII Conclusion and Future Work
1 Additional Impact in Animation
2 1m pact on Com pu ter Art
3 Potential Applications in Art Education .
4 Other Stylised Animations .

4.1 Animation of Plants.
4.2 Character Animation

5 Future Research Directions.
5.1 A Variety of Cartoon Effects
5.2 Interaction between Objects and Effects.
5.3 Hyperprocedure.......
5.4 From Realism to Stylisation

- Vll-

97
99
99

· 101
· 101
· 102
· 103
· 104
· 105
· 106
· 107

109
· 109
· 111
· 112
· 112
· 114
· 114
· 115
· 115
· 115
· 116
· 117
· 117
· 118
· 119
· 119
· 120

122
123
125
125
126
126
127
128
128
128
129

· 129

Contents

5.5 Stylised Animation .. · 130

A Brush and Painterly Rendering 132
1 Survey of the Existing Brush Models 133
2 A Skeletal Spray Brush Model · 134

2.1 Skeleton · 134
2.2 Footprint · 135
2.3 Skeleton Attributes .. · 136
2.4 Structure of the Model · 137
2.5 Applications of the Brush . · 137

2.5.1 Computer Art .. 137
2.5.2 Computer Chinese Calligraphy. · 138

3 Rendering for Animation Using Brushes . · 139
4 Rendering Using Particles · 141
5 Painterly Line and Surface Rendering · 142

5.1 Line Rendering .. · 143
5.2 Surface Rendering . 144

6 Summary · 147

- viii -

List of Figures

11.1 Distortion of CCLI due to rotation.

11.2 Completed patch net work

11.3 Illustration of PCLI

11.4 Hand moving about elbow

11.5 Definition of the variables.

11.6 Distortion of the polar technique

II. 7 Dancer

11.8 Geometric evolution of a closed simple curve

15

16

17

18

19

19

20

21

11.9 Union of circles representation and segementation 22

11.10 The mesh . 24

11.11 The overall distortion exibited by the coordinate space. 25

11.12 The "bones" and the surrounding image distribution . 26

11.13 Star skeleton representation. 27

11.14 Compatible star skeleton 28

11.15 Star-skeleton blend 29

11.16 Orientation control 30

11.17 Non-linear rotation and scaling. 30

11.18 Spring skeleton controlled by non-linear rotation and scaling 31

11.19 Handrawn walk 32

- IX-

List of Figures

II.20 Angle variations of upper and lower legs . 33

II.21 A walk using angle constraints 35

II.22 Hand drawn head turn 35

II.23 Construct head skeleton . 36

II.24 A monkey head turn ... 38

1I.25 Area preservation criterion 40

II.26 Comparative results of morphing alogrithms applied to a run
cycle 41

II.27 A practical cartoon character . 42

II.28 A correct run cycle in hand drawn animation 42

II.29 Angle variation of two legs for a run 43

II.30 A cannonball and a balloon 44

II.31 Comparative results of morphing techniques applied to a
fancy shape. 46

III.1 System overview of the cartoon effects 53

IV.I Hand drawn water wave 57

IV.2 Flowing water drawing process 58

IV.3 Boundary curves and horizontal waves . 59

IV.4 Sample 1 of 3D flowing water model . . 63

IV.5 Sample 1 of the 3D flwoing water model . 64

IV.6 Water jet 66

IV.7 Water jet skeleton 67

IV.8 Water jet wave . 68

IV.9 Water jet drop . 68

IV.I0 \Vater jet generated by the model 70

-x-

List of Figures

IV.ll Ripple from a partially submerged object

IV.12 Ripple skeleton

IV.13 Ripple width function

IV.14 Switch and shape weight function

IV.15 Ripples generated by the model

IV.16 Shimering of sunlight

IV.17 Moving surface ...

IV.18 Stylish basic waves.

IV.19 Realistic moving surface generated by the model

IV.20 Reflection of a walking character

IV.21 The reflection of a rougher water surface

IV.22 A cycle of a bright light

IV.23 Base skeleton and dynamic skeleton

IV.24 Reflections generated by the model.

V.1 Candle flame

V.2 Dynamic candle flame .

V.3 A hand drawn fire cycle

VA Flame skeleton

V.5 Skeleton types

V.6 Flame shape

V.7 Connection types

V.8 Parameters associated with the model

V.9 A fire series generated ny the model

V.IO A coloured fire frame

- xi -

71

72

74

75

76

77

77

78

80

81

82

83

84

86

88

89

90

91

92

93

94

97

99

. 100

List of Figures

V.l1 Effect of wind on fire · 101

V.12 Hand-drawn smoke · 102

V.13 Smoke skeleton. . . · 103

V.14 Smoke shape rendering functions . · 104

V.15 Smoke puff skeleton · 106

V.16 Smoke skein · 107

V.17 Smoke puffs · 108

V.18 Billowing smoke · 108

VI. 1 Rain ... · 110

VI.2 Light Rain · 111

VI.3 Light rain generated by the model · 113

VIA Skeleton and shape of the drop hitting the ground . 114

VI. 5 Heavy rain generated by the model . 117

VI.6 Snow 118

VI. 7 Snow track skeleton . 119

VI.8 A snow frame generated by the model . 120

A.1 Footprint, skeleton and shape of the brush . 135

A.2 Brush width attributes 136

A.3 An image generated by skeletal spary brush . . 138

AA Different styles of Chinese calligraphy 138

A.5 A Chinese character generated by skeletal spary brush . 139

A.6 A stylised keyframe drawing . . 140

A.7 A frame rendered by particles . 142

A.8 A pavement with a water color look . 146

- xii-

Chapter I

Introd uction

1 Traditional Animation

Literally to "animate" is "to give life to" , so, animating is moving something
which cannot move itself. Traditional animation is oriented mainly towards
the production of 2D cartoons. Every frame is a flat picture and is purely
hand-drawn. This makes traditional animation a costly industry, in both
time and money. To make· an animation, the overall work can be thought of
as falling into two phases, that of design which might be 15% of the total
effort and implementation which might be about 85%.

Animation is not just a series of funny drawings strung together in move­
ments. At its most creative, it is a truly beautiful art form. The tradition of
drawn animation is a relatively short one compared with other visual arts.
It has only been in this century that the technology to produce any film -
let alone an animated film - has been available. Animated film-making, in
its widest expression, is not, however, traditionally an art form of individ­
uals genius. A large team of dedicated, talented and cooperative artists is
required to complete a high quality animation film. On a large-scale pro­
duction, it is important that the team functions efficiently. A typical team
for the production of a large-scale animated film includes a lot of people: a
director; a producer; a number of animators and assistant animators; possi­
bly a team of in-betweeners; a whole assortment of cleanup artists, tracers
and painters, and special-effects artists; plus checkers, editors, and the ros­
trum cameraman. In addition, there are the production and administrative
staff. Whether the film being produced is a 3D-second television commer­
cial or a full-length animated feature, the process of animation should follow

- 1 -

Chapter l. Introduction

certain structured procedures. First, a preliminary story is decided on and
a story board is developed which lays out the action scenes by sketching
representative frames and writing down an explanation of what is taking
place. This is used to review and critique the action. The detailed story is
worked out which identifies the actions involved in more detail. Key frames
are then identified and produced by master animators to aid in confirmation
of character development and image quality. A test shot is a short sequence
rendered in full colour to further test the rendering and motion techniques.
To completely check the motion, a pencil test may be shot which is a shot of
full-motion but low quality images such as pencil sketches. Associate and as­
sistant animators are responsible for producing the frames between the keys;
this is called in-betweening. Inking refers to the process of transferring the
pencilled frames to eels, and then colouring is finally applied to these cels.

These days, the main market for animation is television and the budgets
are usually small, therefore the cost-effectiveness dominates the thinking of
the purchaser. Hand drawn animation relies on a large number of people
thus the high-wages result in the high cost of the production. If something
like making and painting the in-between drawings and even the background
can be done by computer, then, hopefully, the cost of the production can be
reduced. Furthermore, computer also enables things that can not otherwise
be done by hand in making animation.

2 Computer Animation

The term "computer animation" today has come to mean almost anything
involving a computer and a moving picture [TT85a] [TT85b] [PT88]. Com­
puter animation, CA, is thus the core technology for such areas as multime­
dia, scientific visualisation and virtual reality.

There are two main categories of computer animation: computer-assisted
animation (CAA) and computer generated animation. CAA usually refers
to 2D and 2.5D systems that computerise the traditional animation process.
Interpolation between key shapes is typically the algorithmic use of the com­
puter in the production of this type of animation, in addition to the more
"non-animation" uses of the computer such as inking, implementing a virtual
camera stand, shuffling paper, and managing data. Computer generated an­
imation usually refers to 3D computer animation which involves three main
activities: object modelling, motion specification and image rendering. An
advantage of computer generated animation is that the camera is virtual,

-2-

Chapter I. Introduction

which means that there is absolutely no restriction on its movement.

2.1 Inbetweening Systems

Since drawing is a main element in producing animation, it attracts many
researchers to work on automatic in-betweening which replicates the in­
betweening process of the hand drawn animation, i.e. when given two key
shapes, they transform the shape continuously from one to the other (the
process is also called morphing, shape blending and shape deformation in lit­
erature). The main difficulty in automating CAA is that the 2D picture
does not have the 3D information which the animator holds mentally. Draw­
ings are just stylised 2D representations of 3D images and we expect them
to behave the way our 3D mental models do. The key problem for auto­
matic in-betweening is how to generate successive drawings of a figure which
changes consistently with our 3D intuition of how the drawing should change.
Essentially this breaks down into two sub-problems: how silhouettes change
(for example a character runs into a wall and is flattened by the impact),
and how the various parts of the figure occlude themselves (for example by
head, body, or view point rotations).

The changing silhouette problem is one addressed directly by so called
in-betweening systems, in which the problem can be thought of in two parts:
the spatial correspondence problem and interpolation problem. The spatial
correspondence problem is concerned with matching features on one object
with those on another. Corresponding elements may include edges, local
convexity, or vertices. Generally speaking this is a hard problem when dealing
with two independently constructed objects, even if both objects are intended
to be different poses of the same character. So the two poses provided for
most in-betweening techniques are usually derived from the same model thus
the correspondence problem is avoided rather than solved [PW94].

There are essentially two types of systems, shape-based [BW71] [Ree81]
[Yu90a] [GG95] [SGWM93] [SG92b] [RF96] or skeleton-based [BW76]
[SR95]. A shape approach manipulates shape directly, but does not take
structure of the objects into account, therefore structural information should
be provided by key-frames. In a skeleton approach shape is separated from
interpolation. The idea is to have a skeleton of lines which, in a human
figure, would be like bones (which can bend and stretch) and are normally
jointed at the places one would expect. Interpolation is performed on the
skeleton, from which intermediate polygons (shapes) are reconstructed by
some models.

-3-

Chapter I. Introduction

Existing in-betweening techniques pay much attention to shape informa­
tion, interactive control and mathematical simplicity. Of these only a few
take structural information (skeleton) into account. Since traditional anima­
tion does not pay a lot attention to realistic dynamics and timing but tends
to exaggerate the reality both in features and timing, our research [YP97]
showed that, to assess in-betweening techniques for the purpose of anima­
tion, it is not enough to consider shape information only, we need take into
account other factors like structure, dynamics, timing etc as well. A fully
objective assessment of the quality of an in-betweening algorithm is quite im­
possible, because it depends on multiple factors like the way timing is related
to subjective judgement, but some objective assessments are locally possible
such as the "area" preservation criterion proposed in [YP97].

2.2 Procedural Approaches

In-betweening systems aim at replicating the in-betweening process of hand
drawn animation, the dynamics of the in-betweens is constrained by the
two key-frames. To some common actions like walking, the assistant ani­
mator has the knowledge of how the two legs move and draws the correct
in-betweens which are put into a walk cycle. If we take two extremes, which
look the same in a walk cycle, as key frames, then we cannot control the
correct dynamics of the movements of the two legs at all accurately with the
existing in-betweening methods. It is possible to employ the moving point
constraints technique [Ree81] to control the dynamics of the interpolating
sequences, but a large number of moving reference curves are needed for ef­
fective control. This means a lot of manual work is involved so it is hard to
apply the method in this case. The dynamics of the two legs, however, is
more or less fixed for the walk, which we can employ to generate the walk
process procedurally [Yu90b].

The self-occluding problem is the most serious obstacle to any purely
2D, or hand drawn based, automatic in-betweening strategy. To provide a
completely general in-betweening capability it relies on a hierarchy of drawing
elements, or a Hierarchical Display Model, HDM [PG92]. In many cases it can
be dealt with simply by overlaying elements of the drawings and progressively
covering or uncovering the elements as part of the in-betweening process.
These elements form the leaves of an HDM and the order of placement of the
elements (or cutting operations involving them) in effect re-introducing 3D
information which is not readily apparent in the composite drawing. Here the
HDM is acting as a model for the figure although it is only valid for a limited
range of angles through which the figure might be perceived to be turning.

-4-

Chapter I. Introduction

A collection of HD Ms for the same character forms the main entries for an
electronic model sheet for that character and, in effect, substitutes for a true
3D model for which HDMs could otherwise be deduced. Using the model like
this is usually referred to as 2.5D modelling although all an animator needs
to do is to select an HDM from a well-enough populated model sheet to start
building a sequence.

An alternative approach to deal with this problem such as head turning
was proposed in [Yu94a]. Provided with two extreme key frames, one front
head image, the other profile head image, the model uses cut planes to cut
these two key drawings to get control points, then interpolate those points
to get cross sections of the head which are then piled up to construct a 3D
head model. By specifying the rotation axis, edge detection and hidden line
removal, the model can generate a correct head turning process in a wide
range of angles.

Automatic Lipsynch is another paradigm of procedural approaches for
CAA [Hun94]. Lipsynch is the synchronisation of the sound-track and the
timing of the character. In hand drawn animation, the dialogue is invariably
recorded before production and the timing of it is passed to the animator as
a phonetic breakdown. The first step is to make the character's actions fit his
words. The second step consists of moving the character's lips and perhaps
the lower part of the face, to fit the frame by frame phonetic breakdown of the
speech on an exposure sheet. In automatic Lipsynch the sound is processed
to get the phonemes which are then used to select from a set of mouth keys.

3 Stylised Effects Animation: Motivation and
Challenges

Characters are only parts of cartoon animation. They must be animated in
an environment. Animated effects like water, fire, rain etc simulate our envi­
ronment in a stylised manner to add realism, drama and atmosphere to the
animation, and thus are important elements for an animator to master. For
a large-scale and high quality production, it requires highly skilled profes­
sional effects animators to accomplish the task, which means a high cost in a
high-wage economy. With the usual studio limitations on time and budget,
effects drawings are often made as cycles and this means repeated cycles are
required for the required length of time. Because of this, the effects usually
look mechanical.

-5-

Chapter I. Introduction

In recent years there have been some models for animating water sur­
faces, ocean waves and waterfalls [Whi80] [Per85] [Max81] [FR86] [Pea86]
[GMM87] [Sim90], fire and smoke [Per85] [TT87] [0188] [Ina90] [AKN91]
[Gar92] [Gar92] [Sak93] [CMTM94] [SF95], as well as a particle sys­
tem [Ree83] for generating fuzzy objects such as fire and clouds. However,
all of them aimed at realistic representations of the process and there is no ev­
idence in the literature that models had been devised for cartoon effects until
a procedural approach dealing with cartoon fire, in terms of a hierarchical
model, has been proposed by us [YP96a].

In this dissertation, we will investigate the problems of producing an­
imation which captures the intricacy of motion evident in certain cartoon
effects. These animations are intrinsically complex presenting a challenge to
the computer graphics practitioner:

1. The actions of the effects involve random components thus causing
discontinuity of features across more than a few frames, while automatic
methods for in-betweening rely on some degree of continuity in both
geometry and time, therefore, these automatic methods will fail utterly
in such cases.

2. Cartoon effects are 2D stylised drawings by the animator, therefore
they are difficult to be presented by particles and there is no physical
knowledge available to help us to build the model.

Our goal will be to create stylised effects animation through procedural
modelling of hand drawings and their movements. To this end, we expand
our prior work [Yu93b] on Hand-drawing Synthesis (HdS) in hand-drawing
sequences. In HdS we analyse how a painter draws an object and then
simulate the hand-drawing process through synthetic, computational means.
Therefore HdS is a procedural modelling paradigm.

Procedural texturing, modelling, and animation is an exciting, active,
rapid growing area of research in computer graphics. One of the most pop­
ular early uses of procedural techniques was creating textures in the 1970's.
The use of procedural techniques has increased since the mid 1980's to now
include modelling techniques (fractals, hyper-textures, iterated function sys­
tems, L-systems, implicit surfaces, etc.) and even animation techniques.
Since we will view the animation of cartoon effects as the process of visu­
alising computer simulations of stylised drawings in movements, our work
straddles the boundary between the fields of CAA and computer modelled
(procedural) animation.

-6-

Chapter I. Introduction

4 Methodology: Stylised Procedural Anima­
tion

4.1 Criteria and goals

In light of the preceding discussion, we seek an approach to animating cartoon
effects that is capable of achieving stylised visual effects through a procedural
process. The desired properties of such an approach are as follows:

1. The appearance and movement of the animated effects should be con­
sistent with the style of cartoon.

2. The effects should permit and support the necessary degree of high­
level animator control. For example, the animator should be able to
alter initial conditions of the animation, such as position, timing of
effects, etc.

3. The effects should be recreated in 2D and, where possible, in 3D as
well.

The research reported in this thesis develops a procedural scheme to cre­
ating cartoon-like animations and validates it through a number of effects
models. Stylised appearance is achieved through painterly rendering of the
effects and background.

4.2 Cartoon Effects

There are several properties common to all cartoon effects. The most salient
one is that all cartoon effects are stylised representations of natural phenom­
ena, thus their movements are consistent and predictable. It is possible for us
therefore to find out the underlying model to create the effects procedurally.
However, cartoon representation of the effects, as some sort of abstraction of
the reality, is diverse even in the same effect. For example, flowing water in
a cartoon can be created by animating a series of shapes across a plain back­
ground colour for water and the shape can be abstract, stylised, or realistic 1.

1 In contrast with photo-realistic representation, all cartoon representations can be re­
garded as the stylised which, however, can be divided further into the abstract, stylised,
or realistic by thl' animator.

-7-

Chapter l. Introduction

Whatever shapes used, they must move consistently along the path chosen.
Thus movement of different shapes falls into a dynamic control problem and
diversity of representation falls into a rendering problem.

In the following sections, we will identify the essential properties and
mechanisms that allow cartoon effects to move effectively. From this we
derive design methodologies for achieving stylised movements procedurally.

4.3 From Internal Models to Stylised Drawings

The animator, before aiming to represent effects, has some internal model
about object actions and then transforms them into 2D drawings. The inter­
nal model is the 3D information about structure and dynamics of the object
which the animator holds mentally. The transformation is the process of
drawing successive frames of the effect on 2D which change consistently with
our 3D intuition of how the drawings should change. The drawing process
is sequential and so can be divided into what we call drawing steps and the
animator usually tends to draw the parts of the same characteristics of the
effect in each step, as a result the model structures are reflected in the final
drawings: the static structure (the spatial relationship of different parts of
the object) is in the drawing of one frame and the dynamic structure (the
temporal relationship of different parts of the object) is in the drawings of
multiple frames.

4.4 From Stylised Drawings to Computer Models

Our modelling approach consists of two phases: the first is an inverse process
to the animator's drawing. We decompose hand drawings into different parts
according to our knowledge about the drawing process (the author happens to
be a researcher with a painting background) to extract the model structure
(both static and dynamic) of the effect. The second is to implement the
model through HdS method.

HdS not only ensures the stylised appearance of cartoon effects, it also
allows the effects to be animated procedurally. Each effect has its particular
dynamic structure which in turn dictates its particular movement. For exam­
ple, the flowing water model is expressed in a hierarchical structure while the
shimmering is expressed with a distributive model. As a result, the flowing
water shows a running stream and the shimmering exhibits a random effect.

-8-

Chapter I. Introduction

4.5 Dynamic Control

Upon the static and dynamic structures, dynamic control is achieved through
deterministic and stochastic procedure. Deterministic controls such as math­
ematical models or in-betweening techniques are often used at the high-level
to control the main motion of the effects. While stochastic controls are often
used at the low-level to control local movements or variations in shape. More
details about in-betweening and motion control can be found in Chapter II.
Corresponding stochastic controls are described in the relevant individual
effects models in Chapter IV, V and VI.

4.6 Stylised Rendering

The appearance of the effects depends not only on the model, but also heavily
on rendering. The focus of most rendering research in the last two decades has
been on the creation of photo-realism imagery. Recently a painterly rendering
for animation was proposed in [Mei96], but it tended to create painterly
images with the characteristics of an oil painting. Since our concern is cartoon
animation, we need to develop the painterly line and surface rendering to
keep the cartoon look in generating the background. More detail about our
rendering technique will be found in Appendix. As for individual effects, we
render them individually according to how the animator draws and paints to
achieve the desired effects.

4.7 From 2D to 3D

Since our models are derived from 2D drawings, they are naturally able to
recreate 2D cartoon effects. Considering the animator's 2D drawings are
stylised transformations of 3D images, if we employ the 3D information that
the animator holds mentally, it is possible for us to create cartoon effects in
3D as well. Since the static and dynamic structures are invariant in both
2D and 3D, therefore, we can use the structural information revealed in 2D
drawings to reconstruct those structures in 3D, and then apply our cartoon
rendering to generate 3D cartoon effects.

-9-

Chapter I. Introduction

4.8 Fidelity

Our methodology aims at producing cartoon effects that not only look like,
but also move like, their hand-drawn counterparts. An important question
is: How closely should our models attempt to emulate hand-drawn effects?
Clearly, a certain level of modelling fidelity is required in order to generate
convincing results. For the purpose of animation, we can use some criteria
such as structure, dynamics, timing etc, as proposed in [YP97], to achieve the
intended purpose - in our case, cartoon appearance, timing and movements.
As timing is sometimes related to a subjective judgement, in that case we
need to play the animation back to see if everything goes right. If some
part goes wrong, we modify the model by leveraging the synergy between
parameters at the different levels of the model to ensure the correctness of
the animation.

5 Contributions and Results

We have successfully applied the basic methodology outlined in the previous
section to develop an animation framework of creating cartoon effects pro­
cedurally. When the animation program is initiated, the user specifies only
initial conditions for the effects to be generated. Initial conditions include
position, size, timing, colour, specification of control points etc which may
vary from effect to effect and from application to application.

The visual results of this work are illustrated by a video "Stylised Effects
Animation" [YP98] containing animations of twelve sessions. Effects are
animated in the 2D or 3D painterly rendered scene. Colour plates of each
animation session will be shown in the corresponding chapters of this thesis.

This thesis contributes to computer graphics, in particular to the fields of
CAA, procedural animation as well as stylised rendering. Our contributions
have been published in the computer graphics literature [YP97] [YP96a]
[YP96b] [Yu94a] [Yu94b] [Yu93c] [Yu90b] [JJY96].

Our work is the first to combine within a unified framework extensive
hierarchical models, procedural control and stylised rendering. The main
contributions of this thesis in more detail are as follows:

1. \Ve propose an approach to model objects based on a hand-drawing
process. Our work shows that this approach is a powerful paradigm for

-10-

Chapter 1. Introduction

hand-painted image synthesis, because we capture the essential quali­
ties of the object or motion constrained by hand-drawings along, say,
how different parts of the drawing are distributed in time and space.

2. We use procedural models in dealing with cartoon animation which
allow parametric controls at high-level over colour, timing etc in a
sequence. We can also include as much artistic expression into the
procedure as we choose.

3. We extend 2D cartoon effects to 3D. This novel result enables us to
animate cartoon effects with the arbitrary specification on the virtual
camera movement, the situation being hard to image in the traditional
hand-drawn animation.

4. We propose assessment criteria of shape deformations in animation.

5. \Ve develop painterly line and surface rendering for our stylised anima­
tion.

In addition, this thesis irons out the difference between CAA and com­
puter modelled animation.

6 Thesis Overview

The thesis is organised as follows:

In Chapter II we review pr~vious work upon which our research draws. At
its lowest level of abstraction, our work is an instance of CAA. Therefore, we
first survey shape and skeleton deformation techniques used in CAA as well as
assessment criteria of shape transformations in animation. At a higher level
of abstraction, our research is an instance of advanced procedural animation.
We survey prior procedural animation work in CAA such as walk, head
turning and realistic effects animations.

In subsequent chapters, we describe in detail the stylised procedural ani­
mation system that we have developed. In Chapter III we begin by presenting
an overview of the cartoon effects system.

Chapter IV proceeds to describe models of water effects including flowing
water, water jet, water ripples, shimmering and water reflections.

-11-

Chapter 1. Introduction

In Chapter V we present models depicting gaseous effects like fire, smoke
skein and smoke puffs.

Chapter VI describes models of rain and snow. We first present the light
rain model, then proceed to the heavy rain model composed of two sub­
models of rain drops moving in the air and rain drops hitting the ground,
and finally to the snow model.

In Chapter VII we review the contributions of the thesis, and list possible
directions of future work.

- 12-

Chapter II

Backgrounds of CAA and
Procedural Animation

In this chapter, we review prior work in the fields of CAA and procedural
animation upon which our research draws. Firstly, we progressively survey
related research on shape transformation and motion control techniques such
as shape-based and skeleton-based computerised inbetweening systems. In
the shape-based approaches we start from the direct category such as simple
linear intcrpolation, inbetwecning using moving points constraints, polar co­
ordinates based linear interpolation techniques, a physical based approach to
20 shape blending, to the indirect category such as polygon morphing using
a multiresolution representation, match and interpolation of shapes using
unions of circles. In the skeleton-based approaches we proceed to review
the interactive skeleton techniques, star-skeleton representation, as well as
localised rotation and scaling using Quaternions. Secondly, we survey some
of our early procedural approaches in CAA such as human walk and head
turning. Thirdly, we present assessment criteria for 2D shape transforma­
tions. Finally we review briefly prior research on procedural realistic effects
animation such as particle system, water and gaseous effects animations.

1 Shape Transformation and Motion Control

In order to animate something the animator has to be able to specify, either
directly or indirectly, how the "thing" is to move through time and space.
In a computerised approach for computer animation, the basic problem is to
select or design animation tools which are expressive enough for the animator

- 13-

Chapter II. Backgrounds of CAA and Procedural Animation

to specify what he wants to specify while at the same time are powerful or
automatic enough that the animator doesn't have to specify the details that
he is not interested in. Obviously, there is no one tool that is going to
be right for every animator, for every animation, or even for every scene
in a single animation. The appropriateness of a particular animation tool
depends on the effect desired by the animator. An artistic piece of animation
will probably require different tools that an animation intended to simulate
reality.

Many shape transformation techniques for computer animation have been
proposed in the past two decades [BW71] [Ree81] [Yu90a] [GG95] [SGWM93]
[SG92b] [RF96] [BW76] [SR95], which tend to replicate the in-betweening
process of hand drawn animation and work in the following way: when given
two key shapes, they transform the shape continuously from one to the other.
Those techniques also form so called key-frame systems which take their name
from traditional animation.

There are essentially two types of in-betweening systems: shape-based
and skeleton-based. With the shape-based approach there are two categories:
direct and indirect. In the first category (direct) the shape is transformed
directly, while in the second category (indirect) the shape is transformed
into some representation first, then interpolation is performed on certain
parameters in the representation and finally the shape is reconstructed.

Shape-based techniques associated with their types and categories are
listed in the following table and their more detailed description will be given
in the subsequent sections.

Technique Type Category
Simple linear interpolation shape-based direct
Moving points constraints shape-based direct
Polar coordinates linear interpolation shape-based direct
Physical based approach shape-based direct
Multiresolution representation shape-based indirect
Unions of circles shape-based indirect

- 14 -

Chapter II. Backgrounds of CAA and Procedural Animation

Figure 11.1: Distortion of CCLI due to rotation

2 Shape Approaches

2.1 Cartesian Coordinate Linear Interpolation

The simplest shape interpolation is linear interpolation proposed by Burtnyk
and Wein [BW71], which is carried out on vertices in Cartesian coordinates
and place all the intermediate positions of the reference points at equal inter­
vals along a straight line joining the initial and final positions of the point.
We refer to this as Cartesian Coordinate Linear Interpolation, or CCLL This
method executes quickly but can produce unpleasant results when dealing
with rotations, see Figure ILL Another drawback of CCLI is that it can
sometimes generate motion discontinuities which we call clicks. Clicks often
appear as the motion passes through intermediate keyframes because the eye
receives a change in trajectory and dynamics.

2.2 Moving Point Constraints

Reeves presented a method of in-betweening using moving point constraints
[Ree8l]. In keyframing, to animate an object the animator specifies an or­
dered set of keyframes K Fl , K F2 , •.• , K FK which define the form of the object
at the animator specified times t I , t2, ... , tK. Keyframes are usually sketched
by the animator on a digitising tablet. Each keyframe can be thought of as a
static shape positioned at a fixed point in time which acts as a constraint on
the motion sequence. It is possible for the animator to specify an additional
set of constraints to control the in-betweening process. These constraints,
[M PI, AI P2 , ... , At Pq], are called moving points. A moving point is a curve in
space and time which constrains both the trajectory and dynamics (Le. path
and speed) of a point on the animated object. Moving points are normally

- 15-

Chapter II. Backgrounds of CAA and Procedural Animation

sketched by the animator and can have any shape and dynamics desired. At
any time in the motion sequence, a moving point is located at a particular
X - Y position. Points on the keyframes not directly constrained by a mov­
ing point are constrained by a smooth blending of their neighbouring moving
points (Reeves gave two algorithms to perform this blending in [Ree81]). The
animator can specify as many moving points as necessary to control the dy­
namics. The set of keyframes and the set of moving points specify a patch
network of the motion sequence.

In-betweening algorithms are designed to operate on complete patch net­
works a'i shown in Figure 11.2.

A

Figure 11.2: Completed patch net work

A completed patch network is subdivided into patches. Each patch is
defined by four boundary curves - two are static boundaries derived from the
two bounding keyframes, and two are dynamic boundaries derived from the
two bounding moving points. Then the inbetweening problem on a patch
network can thus be reduced to many inbetweening problems on its patches.

There are different methods for implementing the idea represented here.
Reeves introduced two algorithms:Miura in-betweening [MIT67] and Coons'
Patch in-betweening. Details about them can be found in [Ree81].

The disadvantages of a computer implementation of Reeves' method are
that a large number of curves are needed to control a complex image effec-

- 16 -

Chapter II. Backgrounds of CAA and Procedural Animation

tively, because this is the only way in which 3D information can be encoded
into the problem specification.

2.3 Polar Coordinate Linear Interpolation

First frame Interpolated frame Last Frame

Figure 11.3: Illustration of PCLI

In 1990 we suggested the linear interpolation of local polar coordinates
[Yu90a] [Yu93c], or the Polar Coordinate Linear Interpolation, PCLI. Here we
model a free-form curve as a polyline, that is a series of straight-line segments
between points chosen to approximate the original curve. Each segment of
the polyline is used to define a sliding vector which we model by treating
one end of the segment as being at the origin and give the coordinates of
the other end only as specifying the vector. Here we use polar coordinates
r for the length of the segment and (} for the angle between the segment
and a fixed ("horizontal") line, as the coordinate specifying the vector in 2D
space. \Ve use the polar coordinates r, (} in a linear interpolation to get the
corresponding vector in an intermediate curve. The technique falls into four
steps:

1. Break down a curve into N-l vectors (N is the number of the points
contained in a curve).

2. Calculate the polar coordinates rand (} for each sliding vector.

- 17-

Chapter II. Backgrounds of CAA and Procedural Animation

Figure II.4: Hand moving about elbow

3. Interpolate rand 0 linearly, which can be expressed as:

rt· = t.rl . - (t - l).ro . ,z ,1 ,1

8t · = t.8l . - (t - 1).80 . ,1 ,t ,1 (i=I, ... N-1) (11.1)

where rO,i, 80,i and rl,i, OI,i are the polar coordinates of the ith vector in
the first and last frame respectively, t E [0, 1] is a time in between the
times [0,1] for the two extreme vectors, and rt,i and 8t ,i are the polar
coordinates of the resultant vector.

4. Connect these interpolated vectors one after another to form the inter­
polated curve. Figure II.3 shows this technique.

The second formula in step 3 can be rewritten as

8 = t.8 l ,i - (t - I).8o,i = 80 ,i + t.(8l,i - 80,i) = 80,i + t.6i (i = 1, ... N - 1)

where 6i = 8l ,i - 8o,; is the angle between their corresponding ith vectors in
the first and last frame. In those cases where the value of 6i is greater than
1f, in which case it becomes an exterior angle, experience shows we usually
get correct results by taking the interior angle 21f - 6; to be interpolated.
Accordingly, we confine 6i to be less than 1f in the algorithm as this can meet
the requirements of interpolation in most cases. With this restriction if the
case of 6i > 1f arises, an extra keyframe is needed. It should be pointed out
that in our experience this case arises rarely in practice.

- 18-

Chapter II. Backgrounds of CAA and Procedural Animation

Compared with CCLI, PCLI is a more suitable shape transformation
technique because it naturally tends to respect shapes and produce circular
motions, as does the hand in Figure 1I.4.

2.4 A Variant of peLI

.,,9\

PI'

p :·1fS2
L\

Figure 1I.5: Definition of the variables

Pn-2

Figure 11.6: Distortion of the polar techniques

In 1993 Sederberg et al proposed a technique similar to PCLI using angle
and length interpolations [SGWM93]. The difference between PCLI and
Sederberg's polar technique lies in the definition of angular parameter. They
chose the respective vertices angle shown as Figure 11.5 to interpolate, i.e.

00 = (1 - t)OAo + toBo '
OJ = (1 - t)OAi + tOBi ,

- 19-

(i = 0)
(i = 1,2, ... , n) (11.2)

Chapter /I. Backgrounds of CAA and Procedural Animation

An optimisation algorithm is performed, for the purpose of ensuring that
the intermediate polygons define closed shapes. Both peLI and Sederberg's
technique handed many cases successfully, including cases where shapes are
affine transformations of each other or where parts of the shapes are trans­
formed affinely. However, in some cases they produce self-intersections of
the boundary and tend to distort the polygon area in intermediate shapes.
Figure 11.6 gives an example.

2.5 A Physically Based Approach

Sederberg and Greenwood proposed an algorithm for smoothly blending be­
tween two 20 polygonal shapes [SG92bj. Given two polygons pO and pI
with the same number of vertices, i.e.

pO = lPg, pp, ... , P~j
pI = [PJ, Pl, ... , P~j {1I.3}

To model polygon po as a piece of wire made of some idealised metal and
the shape blend is the one which requires the least work to deform pO into
pI through bending and stretching. Stretching work is computed for each
line segment {i.e. each adjacent pair of vertices} whereas bending work is
computed for each adjacent pair of line segments {i.e. for each set of three
adjacent vertices}. Detailed formulation to calculate the stretching work and
bending work can be found in [SG92bj.

Figure 11.7: Dancer

- 20-

Chapter II. Backgrounds of CAA and Procedural Animation

The algorithm can avoid self-intersecting which may arise from CCLI,
but it sometimes may also produce local self intersect and distortion when
dealing with rotation movements, as shown in Figure 11.7.

2.6 Multi-resolution

(J
(JOG

Figure 11.8: Geometric evolution of a closed simple curve

Eli Goldstein and Craig Gostman presented a polygon morphing ap­
proach using a multi-resolution representation [GG95]. The multi-resolution
they used is based on polygon evolution schemes. This representation con­
tains information on the polygon at many levels of detail. Morphing is
then performed in the more natural space of the representation, from which
the intermediate polygons are reconstructed. A curve evolution method
that takes into account directly the intrinsic curve geometry was given in
[EG94] [KTZ94]. The evolution is described by the motion of the points on
the curve in time. Loosely speaking, during evolution, a point on the curve
advances in the direction of the vector normal at that point, by a distance
proportional to a function of curvature at that point (see Figure 11.8).

An example of multi-resolution method is given in section 5.1.1 of this
chapter from which we can see the distortion caused on the leg shape of a
running figure.

- 21 -

Chapter II. Backgrounds of CAA and Procedural Animation

2.7 Circle Union

Recently, Ranjan and Fournier presented their work which uses a representa­
tion of objects as a union of circles, or UoC, to base a method to interpolate
between the two [RF96]. This method can be used in a totally automatic fash­
ion (i.e. without any user intervention), or users can guide a pre-registration
phase as well as a segmentation phase, after which the matched segments
are interpolated pair-wise. The UoC representation of the two objects is
obtained from the Delaunay triangulation of their boundary points. The
circles can be simplified to obtain smaller data sets. The circles are then
optimally matched according to a distance metric between circles which is
a function of their position, size, and feature, i.e. a local configuration of
circles. The interpolation between the two objects is then obtained by inter­
polating between the matched pairs of circles (the interpolation can be affine
or non-affine).

Figure 11.9: Union of circles representation and segementation

The approach can be summarised by the following steps:

1. Compute the union of circles representation of the two objects.

2. Simplify the representation to stabilise it and remove redundancies.

3. Align the objects globally if needed (optional).

4. Decompose the objects into parts, if necessary (i.e. segment objects)
(optional).

5. Match parts between objects if they have been segmented (optional).

6. Match circles in matched parts.

- 22-

Chapter II. Backgrounds of CAA and Procedural Animation

7. Use the matches to compute transformations between parts or to in­
terpolate between them.

8. Finally, integrate the information about matches from all the parts.

Figure 11.9 shows UoC representation and segmentation of a 2D fish
shape.

For interpolation, the goal is to determine a path between the matched
circles. Again in general the match implies a translation, a scaling and a
rotation. The easiest solution is to interpolate all these linearly, i.e. the
centres of the circles move in a straight line, the size varies linearly as a
function of time, and so do the angles of rotation. However many cases have
been observed where such a linear interpolation is not appropriate. Two
other possible strategies can be used and detailed description of them can be
found in [RF96].

3 Skeleton Approaches

The greatest shortcomings in shape approaches result from incomplete con­
trol of motion dynamics, both in complexity associated with the structure of
the object like human body and in smoothness or continuity.

There is a dilemma in that smoothness is achieved by having as few
key images as possible (and therefore widely spaced in time), while close
control requires many closely spaced keys. In addition, a large number of
closely spaced drawings negates much of the economic advantage of using
computers.

An examination of the methods used in conventional animation has led
to a solution to this problem. To visualise a complex movement, the anima­
tor often sketches stick figure representations at equal-time intervals between
key positions. He may use smooth curves through related skeletal points as a
further guide. This set of stick figures achieves both objectives: the frame to
frame spacing conveys the rate of movement and the shape of each skeleton
represents the shape of the object at that instant. Thus the problem reduces
to animating a stick figure representation of the image which will in turn
impart the movement to the actual images sequence. For the computer im­
plemented skeleton approaches, the appearance of the object is determined
not only by the skeleton but also by a "flesh" or "skin" made up of segments

- 23-

Chapter II. Backgrounds of CAA and Procedural Animation

whose geometric handles are geometrically related to the skeleton. The ex­
isting skeleton techniques usually consist of three parts:

1. Compose the skeleton.

2. Interpolate the skeleton.

3. Skinning (how to put "flesh" or "skin" to the skeleton).

A significant aspect of the skeleton technique is that the skeletons are
simple images composed of only a few points, so that it is possible to provide
a high level of interaction.

In the 20 case only a few skeleton techniques have been proposed which
are listed in the following table and we will give their more detailed descrip­
tion in the following sections.

Technique Type Dimension
Interactive skeleton skeleton-based 2D
Star-skeleton skeleton-based 2D
Using Quaternions skeleton-based 2D/30

3.1 Burtnyk and Wein's Skeleton Approach

i
2.0 --------:-------T-------l

, , , , , ,
Y '" , , ,

1 0 --------~---------~--------l--------I
• I I I I

I I t I
I I I I
I I t I
I I I I
I I I I
I I I ,
I I I I

-li·O OliO 2
1
0 3~0 ~

t.. _______________ J _________ L ________ : x

Figure 11.10: The mesh

Burtnyk and \Vein described a system that incorporates the use of skele­
tons into CCLI [BW76]. In their skeleton representation of an image, they

- 24-

Chapter II. Backgrounds of CAA and Procedural Animation

o ~ 1.0 2.0 x
o

Figure 11.11: The overall distortion exibited by the coordinate space

define some coordinate space within which the image, described in relative
coordinates, is distributed. The nature of the coordinate space that is used
to define relative skeleton coordinates may be thought of as a network of
polygons that form a mesh as shown in Figure II.10.

Each polygon has a relative coordinate range of 0 to 1.0 along each axis.
Now the nodes in this mesh may be displayed relative to one another to
change its geometry. However, because the relative coordinates system within
each polygon is based on its geometry, coordinate values remain continuous
across common edges between adjacent polygons. Thus any image whose
coordinates are defined within this system will take on the overall distortion
exhibited by the coordinate space. (Figure II.ll).

The notion of skeleton control implies a central core of connected "bones"
with a surrounding image distribution. In order to restrict the transverse
distance away from the core over which skeleton control will be active, de­
limiting boundaries must be specified. Consequently, the practical form of
skeleton coordinate space spans two units in width, but may extend in length
as desired, see Figure II.12.

For convenience, the central core always represents the L axis, which
is also the lV = 0 coordinate reference; the delimiting boundary which is
specified first is the positive or W = 1.0 boundary, the other is the W = -1.0
boundary. The L coordinate range starts at L = 0 and is incremented by
one for each node on the central core. If desired, the L coordinate space may
be separated at any coordinate boundary by providing a redefinition of that
coordinate boundary before continuing the coordinate space.

- 25-

Chapter II. Backgrounds of CAA and Procedural Animation

+ 1.0,\, .:'
w O! 1'0 ,. i L i 2\0
• -1.0 L 1 ~-L\ -------.;;".,

Figure II,12: The "bones" and the surrounding image distribution

The effect of skeleton control is to take any specified area of the display
plane and distort it into another area of the display plane as if it were made
up of rubber sheet patches. The simple linear interpolation is still used to the
skeletons. A problem associated with this model is that it cannot simulate
the wrinkling of skin or clothes, caused, for example, when an arm is bent at
the elbow.

3.2 Star-skeleton Approach

In 1995, Shapira and Rappoport proposed a star-skeleton approach for the
purpose of polygon shape blending [SR95]. A star polygon is a polygon for
which there exists a point - the star point -~ from which all other points are
visible. The star skeleton consists of two parts:

1. A decomposition of the polygon into star-shaped pieces, each repre­
sented by its vertices and a special star point called the star origin
shown as in Figure II.13{a).

2. A planar graph, the skeleton, that joins the star origins shown as in
Figure II.13{b).

In Burtnyk and \\'ein's skeleton approach the skeleton is defined first,
while the star-skeleton is calculated from the given polygon automatically,
and for this purpose some notations and basic definitions are introduced. A
polygon is defined by a sequence of points (vertices) such that the first vertex
is identical to the last one. A polygon edge is the line segment connecting
two consecutive vertices. A simple polygon is a polygon whose edges do not

- 26-

Chapter II. Backgrounds of CAA and Procedural Animation

Figure II.13: Star skeleton representation

intersect each other except when they topologically share a vertex. Let P
denotes a polygon, including its interior and boundary.

A simple polygon is convex if every pair of points in it sees the others.
For every simple polygon a graph called the visibility graph is defined. Its
nodes are the polygon vertices, and an arc exists between two nodes if and
only if the corresponding vertices see each other. A complete correspondence
between two polygons is a one-to-one mapping between their vertices that
preserves vertex adjacencies and orientation.

The star skeleton of a simple polygon P comprises two components: the
star set and the skeleton. The star set is a set of star-shaped polygons called
star pieces. Each star piece possesses a special star point called the star
origin and a direction called the reference direction. If there is more than
one star piece in the star set, each star piece possesses at least one star piece
neighbour, in the sense that they share an edge. Such an edge is called shared
edge, and its vertices are called shared vertices.

The vertices of each star piece are represented in polar coordinates with
respect to the star origin of the piece and its reference direction. That is,
each vertex is defined by the distance from the star origin and by the angle
formed between the vector from the star origin in the reference direction and
the vector from the star origin to the vertex.

The skeleton is a planar tree composed of two alternating kinds of points:
the star origins and the midpoints of shared edges, referred to as midpoints.
Each skeleton vertex has an associated direction called the reference direc­
tion. The root's reference direction is the x axis. The reference direction of

- 27-

Chapter II. Backgrounds of CAA and Procedural Animation

any other vertex is the vector from the vertex to its parent. The reference
direction of a star piece is the reference direction of its star origin.

The root is represented in Cartesian coordinates. Every other vertex is
represented in polar coordinates with respect to the parent and its reference
direction. That is, a vertex stores the distance to the parent and the angle
between the reference directions of the parent and itself. Figure II.14 shows
two star skeletons. For the polygon on the left, the star set consists of three
star pieces. For example, the vertices 2 through 7 define the bottom star
piece. The three star origins are shown as black squares. The star origin of
the middle star piece coincides with vertex 8, which is also the root of the
skeleton. There are two shared edges, [0, 11 J and [2, 7], and two midpoints,
drawn as white squares.

14 9

8
6

Figure 11.14: Compatible star skeleton

The star skeleton is defined by a collection of different point types: poly­
gon vertices, star origins, and midpoints. An intermediate star skeleton is
generated by interpolating the coordinates of these points at the desired time
instance. Each point, except the skeleton root, is represented in polar coordi­
nates. Polar coordinates interpolation address both distances and angles, and
the simple linear interpolation is performed. The root vertex is interpolated
in Cartesian coordinates.

Skinning is the process of computing the Cartesian coordinates of each
vertex on the boundary of the polygon so that it can be displayed directly. It
composes two stages: computing the Cartesian coordinates of each skeleton
vertex and computing the Cartesian coordinates of each vertex of the result­
ing polygon. The skeleton vertices adjacent to the root are computed first,

- 28-

Chapter II. Backgrounds of CAA and Procedural Animation

then their neighbours, in a recursive manner. Once all star origins on the
skeleton have been computed, the vertices of star piece can be computed.

The star-skeleton method yields good results because it explicitly consid­
ers the polygon interiors and explicitly models an interdependence between
the polygon vertices. To produce the simplest star skeleton possible, a min­
imal star decomposition is chosen. However, the decomposition algorithms
[SR94] are computationally expensive, taking a few seconds for the simple
example in Figure 11.15, and it might still create local self intersections.

Figure 11.15: Star-skeleton blend

3.3 Localised Rotation and Scaling using Quaternions

In 1996, we proposed a technique for object deformation using Quater­
nions [YP96b]. The technique may be regarded as a 3D extension of peLI,
but scaling and rotation operations are implemented using Quaternions. The
enhanced control introduced over the scaling and rotation applied to the
skeleton is a significant improvement of the technique over peLI. This is
based on the fact that two formulae in equation II.l are independent of each
other, which leaves room for introducing non-linear control over the rotation
and scaling. Together with former linear control, they are listed as follows:

1. Linear rotation and linear scaling. These operations are used in the
polar techniques such as peLI and Sederberg's one, as well as star­
skeleton technique.

2. Non-linear rotation and linear scaling. Such cases often arise in the
movements of an articulated structure, such as arms and legs on the
human body, where a series of rigid links connected at joints. The
length of each link does not stretch or shorten during the movements,
but their orientation may vary in a flexible manner.

- 29-

Chapter II. Backgrounds of CAA and Procedural Animation

3. Linear rotation and non-linear scaling. This case may happen when
some objects are acted by multiple forces. For instance, a weight sus­
pended from a fixed position by means of a spring when it is pulled
aside and set in a circular motion. The tension in the spring will cause
the weight to bounce up and down as it follows the circular path. As
the energy becomes exhausted the weight's path spirally reduced in
diameter until eventually to rest in the centre.

4. Non-linear rotation and non-linear scaling. An example that is similar
to the previous one in which the weight does not move along a circular
path but a plane, again with bouncing movement added.

(a) (b)

Figure 11.16: (a) Orientation controlled by a circular function (b) by a spline

l(t)

o t

(a) (b)

Figure 11.17: (a) Spiral curve (b) Non-linear scaling function

Figure 11.16 shows examples of enhanced control over the rotation with
functions and splines. Suppose the segment represents the arm skeleton of an

- 30-

Chapter II. Backgrounds of CAA and Procedural Animation

articulated character moving in front of the body, which corresponds to case
2 - non-linear rotation and linear scaling. In Figure II.16(a) the orientation
is controlled by a circular function and in Figure II.16(b) it is controlled by
a spline which can handle free rotation movements.

Figure II.18: Spring skeleton controlled by non-linear rotation and scaling

Figure II.17 shows case 3 - non-linear control over the rotation and scal­
ing. Here the skeleton of the spring is just a line running down the centre
of the spring's local symmetry, the "flesh" of the skeleton is the spring it­
self which is related to the skeleton by a simple rule (points on the spring
are a fixed distance from the skeleton). We use a spiral curve shown in
Figure II.17(a) to control the orientation of the skeleton, and a non-linear
function I(t) = 10[1 +a(t)lsin(t.n·1T}ll shown in Figure II.17(b) to control scal­
ing, where 10 is the length of the skeleton corresponding to the rest shape of
the spring, a(t) controls the magnitude of the weight bouncing up and down
which decreases exponentially as the weight goes toward its rest position,
and n controls how fast the bouncing is. Figure II.18 shows the deformed
skeletons of the spring during the movement and we draw a spring related
to one skeleton in the figure. We should point out that our control over the
rotation and scaling here is only an approximation of the movement for the
purpose of animation rather than accurate physical simulation, the path of
the weight traced out is determined by the combined effect of rotation and
scaling which is difficult to specify directly by other means.

- 31 -

Chapter II. Backgrounds of CAA and Procedural Animation

Enhanced control can be straightforwardly applied in the 2D case and
a walk mode described in the following section can be regarded as a 2D
implementation of case 2 - non-linear rotation and linear scaling applied to
two legs.

4 Procedural Approaches in CAA

4.1 A Walk Model

Character animation is about the promotion of the illusion of movement for
human-like figures. In animation one of the commonest things a human figure
will do is to walk about and this movement is often seen from the side. In the
studio, the animator breaks down the action into sections. The action is in
fact a walk cycle which is repeated more or less exactly to give the appearance
of continuous walking. Usually the drawings which make up the cycle are
drawn separately and used repeatedly in the same walking sequence. The
end positions of the cycle, that is the first and last drawings, consist of the
leg positions around the point at which one foot (the "free" foot) is about to
be put on the ground at the end of a stride. The first drawing in the cycle
consists of this drawing while the last drawing may most easily be described
as the drawing for the frame immediately before the figure's position in the
first drawing.

Figure 11.19: Hand drawn walk

The in-bctweening problem is tacked in hand animation by first drawing
the mid way position, called the passing position, which here is drawing
5 in Figure 11.19 [Whi86]. Once the passing position has been drawn the

- 32-

Chapter II. Backgrounds of CAA and Procedural Animation

remaining in-betweens are added, starting with the drawings which halve
the remaining time interval. In this case this means drawing 3 and 7, then
2, 4, 6, 8 in any order. We note that the height of the two in-between body
positions fall natural in-between. In drawing 3, the toe is still in contact
with the ground, otherwise, the body weight would not be in balance with
the legs and the figure would seem to fall backward. In drawing 7 the heel
of the foot is also touching (or in near contact with) the ground - again, to
aid with balance.

In order to cope with leg dynamics during walking, we devised a walk
model [Yu90bj [Yu92j to generate correct in-betweens procedurally for this
case. The model is based on angle constraints and uses two parameters to
control the speed and type of the walk.

4.1.1 Angle Constraints

e Upper leg

o n

e Lower leg

o n

Figure 11.20: Angle variations of upper and lower legs

The method used for reverse-engineering hand-drawn walks is as follows.
We put the hand-drawn in-betweens of the walk into computer, and model
the leg silhouette a.'l a skeleton, working away from the joint in assigning key
points or knots. Typically the upper and lower parts of the leg silhouette can
be described along straight lines, with a concentration of short line-segments
about the joint. The length and the angle of the upper and lower leg are
calculated for each frame respectively. Since each section of the leg does not

- 33-

Chapter II. Backgrounds of CAA and Procedural Animation

stretch or shorten during the walk, their length remain the same in every
in-between as in Figure 11.19. We identify an angle () between the upper
and lower parts of the front leg silhouette skeleton and determine how this
angle varied with the frame number n. The graph of the () - n relationship is
shown for successive frames in Figure 11.20. We see that each angle changes
significantly from one frame to the next in a non-linear way. By working with
several examples of hand-drawn walks we get similar results. This means that
this () - n relation could be used as the angle constraints for walks.

4.1.2 The Speed of Walks

Above mentioned angle constraints are discrete ones of 9 frames and are
only valid for a normal walking speed. In order to control walking speed, we
convert the discrete angle constraints into continuous ones by interpolating
them with splines, and then sample it with different intervals to generate
inbetweens with different numbers of frames for each step, thus giving control
over the different walking speeds.

4.1.3 The Types of Walks

There are variations on walks as described in [Har81]. Usually the orientation
of the body, head and arms are established by the two extremes, so the
problem here is reduced to how to present the leg movement data for different
types of walks. In our model, the type of walks is derived by modifying the
amplitude of the angle constraints. Here we give an example to show the
basic idea.

Example: We multiply the angle constraint for the upper leg by a factor
fa = 1 + a.sin(n.7r/N}, where a E [0,0.3] is a parameter derived from the
experiment to control the variety of the walks, n denotes the ith frame and
N is the number of frames contained in one step.

Details about the in-betweeners used in the model for the controls of
other parts of the body are given in [Yu90b]. Figure 11.21 gives a walk cycle
generated by our model.

- 34-

Chapter II. Backgrounds of CAA and Procedural Animation

Figure II.21: A walk using angle constraints

1

. ~ I" (•

--@--- -- ---------~-----------
~-g--@-G]-- C_ C ___ _

, ,

Figure II.22: Hand drawn head turn

4.2 A Head Turning Model

Head turning is another one of the commonest things a human figure will do.
In the studio animating head turning, the animator draws two key frames,
one seen in front, another in profile, see Figure 11.22 [Whi86] 1 and 9, then
a junior animator adds in-between drawings 2 to 8. Since the head moves in
an arc (everything in life does so), so it dips a little down during the turning
process, as 5, then 3 and 7 are added, so 2, 6, 8, to get a series drawing of
the head turning process.

To deal with head turning with a computer in-betweening method, the
computer is given 1 and 9 of Figure 11.22, then it calculates additional draw­
ings 2 to 8 with interpolation algorithm. Unfortunately interpolation al­
gorithms fail to generate correct in-betweens for complex shapes. This is
because, in essence, all drawings in Figure II.22 are 2D representations of
the 3D head, and the information provided with two extreme drawings on

- 35-

Chapter II. Backgrounds of CAA and Procedural Animation

2D is not enough for the task of automatic in-betweening. In the studio,
the junior animator relies on the knowledge of the way in which the head de­
picted by the drawing is supposed to turn to fill in the rest of each in-between
drawings. The computer, however, has no such "knowledge" and thus can­
not specify the head movement in a way which preserves 3D properties of
the head. Another problem is even worse, that is presented here, because
some lines in drawing 1 have no correspondence to lines in drawing 9, which
happened in the right part of 1 and we cannot find out their corresponding
lines in 9, so the computer cannot determine the corresponding lines in some
of the as-yet undrawn in-betweens.

(a) (b) (c) (d)

Figure II.23: Construct head skeleton

In 1994, we proposed a head turning model to solve those problems
[Yu94aj. In the model we put drawing 1 and 9 in the Cartesian coordi­
nate system as shown in Figure II. 23 (a) and (b), then rotate drawing 1
clockwise about Y axis by 90° to construct a basic skeleton of the head as
shown in Figure II.23(c), then cut them with a plane parallel to the X - Z
plane to derive four intersection points, interpolating those points with a
spline we can get a closed curve which approximates the cross section of the
head. Increasing the height of the cut-plane along the Y axis we can get a
series of the head's cross section, then pile them together to construct a 3D
head image, as shown in Figure II.23(d).

We can get the coordinates of eyes, nose, mouth and ears in a similar

manner.

- 36-

Chapter II. Backgrounds of CAA and Procedural Animation

4.3 Specification of the rotation axis

The rotation axis corresponds to the central axis of the neck. Considering
the neck center remains fixed and the top of the head moves along a rose
curve approximately during the head turning process, we specify a rotation
axis passing through the origin and then control a point on its upper part
corresponding to the top of the head using the following equation written in
Polar coordinate:

P = A . sin(t . 7f) (11.4)

where t is time, t = 0 corresponds to the drawing 1 in Figure II.22 and
t = 1 corresponds to 9, parameter A and the height of the eyes He control
the degree of head dipping. Experience shows that we could get a good result
if the ratio AI He is confined in the range between 0.4 '" 0.5 .

4.4 Edge detection

We use a simple method to detect the edge of the 3D head image by first
projecting all level cross sections on the X - Y plane one by one and then
calculating the maximum and minimum values of the corresponding projec­
tions along X axis, those values are finally connected in a certain order to
draw the contour of the head.

4.5 Hidden line removal

The hidden line removal is also carried out in a simple manner. In the
model we use sliding vectors to approximate curves as done in PCLI and
then calculate the angle Bv between X axis and the projection of each sliding
vector on the X - Z plane, if Bv ~ 7f 12, the vector is visible, othewise not.
For some curves of complex form, this method could not remove hidden lines
completely in which case an interactive graphics editor is needed.

Figure 11.24 shows the result of the approach.

- 37-

Chapter II. Backgrounds of CAA and Procedural Animation

Figure II.24: A monkey head turn

5 Assessment Criteria for 2D Shape Defor­
mation

At present judgement of the correctness of an animation sequence generated
by a morphing technique is entirely subjective: play it back and judge it in
our minds. If the result looks wrong, we need to modify the transformation
according to the information revealed in the playback phase, then generate
the sequence and check it again. From this process we see that correct
morphing is a vital step in automatic in-betweening.

Most objects we might meet in animation are living objects, natural ob­
jects, man-made objects, effects etc. Despite their different forms they all
have structures. When they move, their dynamics are constrained by these
structures. In animation, reality is exaggerated, not only in terms of fea­
tures, but also in terms of timing. Thus for the correct morphing of a moving
object, we should pay attention not only to shape, but also to structure, dy­
namics and timing and such other factors as required by the principles used
in traditional animation.

Existing morphing algorithms pay much attention to shape information,
interactive control and mathematical simplicity. Of these only a few take
structure information (the skeleton) into account. Since traditional anima­
tion does not pay a lot of attention to realistic dynamics and timing, correct
results can only be achieved when the key shapes represent the structure,
dynamics and timing of the movement at the same time.

Since morphing is a multi-dimensional problem, the assessment of a mor­
phing technique should be made in multiple dimensions, as pointed out by
us in [VP97j. Here we propose an "area preservation" principle as an ac­
ceptable approximation to "volume preservation" as our shape criterion. A
similar approach offers the possibility of objective assessment of dynamics

- 38-

Chapter I/. Backgrounds of CAA and Procedural Animation

and timing under certain conditions.

In this section, we first describe how to express our shape criterion in
algebraic form, then we discuss other factors such as dynamics, timing.

5.1 Area Preservation

In 2D computer animation, the object is represented by its silhouette and
may be regarded as being approximated by a polyline or a polygon. (If, for
example a B-spline curve is used it is rendered as line segments which approx­
imate the curve to vanishing accuracy, so in the end everything is represented
as polygons or polylines, however small). In traditional animation, usually
the object shape deforms but its features retain their character during the
movement. A typical technique used in traditional animation is squash and
stretch in which the object is stretched out in the air and squashed when
it hits the ground. In squash and stretch animators are taught to think in
terms of preserving the volume of the shape, i.e. no matter how squashed or
stretched out a particular object gets, its volume remains constant. This prin­
ciple is taught to animators in terms of volume and in the 2D case experience
has shown that this can be approximated by area, whence area preservation,
and from this we can form our shape criterion to judge morphing results.

It is well known that, given the vertices of a polygon, the polygon's area
is determined by

(11.5)

YN-I

YN

where 5 refers to the polygon area, Xi, Yi (i = 1, .. . N) are the coordinates
of the ith vertex of the polygon, and N is the number of vertices contained
in the polygon.

If we are given two key polygons PI and P2 , we can calculate their cor­
responding areas 51 and 52. 51 and 52 can either be the same or different,
for example when zooming into an object. In most practical character and
object animation the intermediate area should change progressively accord­
ing to the foregoing principle. Geometrically this can be described in terms

- 39-

Chapter II. Backgrounds of CAA and Procedural Animation

of an intermediate area St (0 < t < 1) varying linearly from SI to S2 as t
goes from 0 to 1. Thus the criterion is that if 5t meets this condition then
the result is correct, otherwise not.

s

o 1 t

Figure 11.25: Area preservation criterion

The foregoing criterion is an ideal one, and can be described using a
straight line drawn from 51 to 52 as shown in Figure 11.25. In practice,
however, we should recall the "area preservation" is only an approximation
we can get away with. We do not require that the area should be strictly
preserved in the object deformed, so it is sensible for us to allow 5t to vary in
a tolerant range along the ideal straight line. If St falls in the range we can
still get an acceptable result. To obtain this tolerant range we first calculate
the error between achieved intermediate areas and the ideal one as expressed
by the following formula:

Error(t) = (5ai - 5t)/ St (11.6)

where Sai refers to the achieved intermediate area and St refers to the
ideal area which is derived by the linear interpolation between 51 and S2.
Next we explore the numerical conditions for the tolerant range. We take
the area of an object in a correct animation sequence as a reference, then
we distort the object thus causing a change in its area, and then play this
back to see if it is acceptable. The test was done with different values of
Error(t) and we found that if IError(t)1 was less than 10% then the result
was acceptable. From this we have a numerical condition to apply.

For an object which is represented by a single curve (polyline) rather than
a polygon, we calculate the length of the curve instead and thus the criterion

- 40-

Chapter II. Backgrounds of CAA and Procedural Animation

turns to be length preservation. Here area parameters in equation 11.6 are
replaced by length parameters, and we use the same acceptance criteria.

Usually area is preserved in skeleton techniques and, as long as the skele­
ton is correctly transformed, we can apply our length preservation criterion
to the skeleton as before.

5.1.1 Local Validity

Figure II.26: Comparative results of morphing alogrithms applied to a run
cycle

When certain interpolation algorithms are applied to a polygon repre­
senting a structural object like a human figure, the outcomes include varying
local distortions in intermediate shapes as shown in Figure II.26. As a result,
only example (c) with the star-skeleton technique looks right throughout the
sequence. In other examples, the lower leg becomes shorter in (a) with CCLI,
thinner in (b) with PCLI, or thicker in (d) with the multiresolution method,
none of which are acceptable in character animation. Those examples actu­
ally pass our numerical condition because the resulting distortions are local
and the error in the entire intermediate area is less than 10%. Therefore our
numeric condition fails in such cases.

In practice, however, this problem is not serious. Figure 11.27 [Har81]
shows a typical human figure used in traditional animation. Here different
(local) parts of the body are drawn with individual free form lines which
in turn are represented by polygons or polylines in computer and it is rare
for an animator to draw the whole body with a single polygon as shown in

- 41 -

Chapter II. Backgrounds of CAA and Procedural Animation

Figure II.27: A practical cartoon character

Figure 11.26. Therefore we can apply our criterion locally to each individual
polygon which tiles the figure and make separate assessments.

The foregoing criterion can be used as a general one to accept or reject
the intermediate shapes generated by different morphing techniques. As a
bonus of applying this criterion to existing morphing techniques, we can
derive applicability conditions for CCLI and PCLI [YP97j.

5.2 Dynamics

Figure 11.28: A correct run cycle in hand drawn animation

- 42-

Chapter II. Backgrounds of CAA and Procedural Animation

Right upper leg

offill ~
0 n n

Left upper leg Left lower leg

o n o n

Figure II.29: Angle variation of two legs for a run

At present our numerical criterion concerns the static shape area of de­
formed object only. It still cannot tell for sure whether these intermediate
shapes are dynamically correct, but dynamic correctness of the movement is
also a key factor to the success of animation.

From the static aspect, many people claim example (c) of star-skeleton
[SR95] in Figure II.26 is correct because it uses a natural representation of
a polygon, accounting 'for its important geometric features. But from the
dynamic aspect, it is unclear whether linear interpolation performed on the
star-skeleton will produce correct results. The human figure in Figure II.26
looks like it is running, and Figure II.28 [Whi86] shows the correct dynamics
for a run used in hand drawn animation. In fact the dynamics of the two legs
cannot be controlled correctly by linear angle interpolation on leg skeletons,
because the angles of two leg skeletons vary non-linearly within one run
step. Figure II.29 shows the graph of angle against frame n which is drawn
by measuring angles in the skeletons of the two legs in Figure II.28. A
possible solution to this problem is controlling them procedurally as proposed
in [Yu90b] and the corresponding angle values of Figure II.29 can serve as
its angle constraints.

Since actions like walking and running for animate objects are represented
in a fixed manner in hand drawn animation, those angle constraints charac­
terise the dynamics of legs in such motions. Therefore they can be used
for an objective assessment of morphing techniques when dealing with these
cases. If we take the running figure (c) in Figure II.26 as an example, where
their angle interpolation is performed on the star-skeleton (especially those
segments corresponding to legs) and is then in accordance with those angle
constraints, then the result is correct, otherwise not. In a similar way that

- 43-

Chapter II. Backgrounds of CAA and Procedural Animation

the area preserving criterion is a guiding principle, so these angle constraints
serve to aid assessment of dynamical behaviour.

5.3 Timing

-----=-------+~ \\~~/
111111.111111111111

~; ~
,.......... , \

~~O~

~
IIIII .i

II I ff
VJ~ -

Figure II.3D: A cannonball and a balloon

Timing is another key factor in animation. Since timing is reflected by
positions of a moving object in space, it is also related to the shape inter­
polation process. Like the dynamic control problem, we cannot guarantee
correct timing even if we get the correct shape. Figure II.3D [Har81] shows
a cannonball and a balloon both represented by circles. In both examples a
circle is being animated, but the timing of the movement can make it look
heavy or light on the screen. The wayan object behaves on the screen, and
the effect of weight that this gives, depends entirely on the spacing of the
animation drawings and not on the drawing itself. It does not matter how
beautifully drawn the cannonball is in the static sense, it does not look like
a cannonball if it does not behave like one. The same applies to the balloon
and indeed to any other object or character.

Timing in animation is an elusive subject. It only exists while the film is
being projected. We need good timing in animation, so that enough time is
spent preparing the audience for something to happen (anticipation), then
on the action itself, and then on the reaction to the action (follow-through).
To judge this correctly depends upon an awareness of how the minds of the
audience work. This requires a good knowledge of how the human mind
reacts when being told a story. In animation, timing becomes a dangerous

- 44-

Chapter II. Backgrounds of CAA and Procedural Animation

factor to try to formulate - something which works in one situation or in
one mood may not work at all in another situation or mood. The only real
criterion for timing is: if it works effectively on the screen it is good, if it
does not, it is not.

Nevertheless, the experience of animators may provide a basic under­
standing of how timing in animation is ultimately based on timing in nature
and how, from this starting point, it is possible to apply such a difficult and
invisible concept to the maximum advantage in film animation. Despite these
warnings we still think it is possible to make objective timing assessments in
certain conditions. If we return to the cannonball and balloon. Suppose their
trajectories are the same, so can be represented by x(t), y(t) in the X - Y
plane (screen). The differential timing for the cannonball and balloon can
be obtained by different sampling on x(t), y(t), i.e. CTx(t i), CTy(t i) for the
cannonball timing and BTx(ti), BTy(ti) for the balloon timing. With such
timing functions the distance between each pair of adjacent timing sampling
points is measurable and this can be used for objective timing assessment.
At least we can use these functions to distinguish them. But it is hard to
make a general timing assessment because timing is object dependent like
the case of the cannonball and balloon, or application dependent like the
different timing of rain can suggest different moods.

5.4 Conclusion

It is not enough to consider shape information only to assess morphing tech­
niques for the purposes of animation. We need to take into account other
factors like structure, dynamics, timing etc. A fully objective assessment of
the quality of a morphing algorithm is quite impossible, because it depends
on multiple factors like the way timing is related to subjective judgement,
but some objective assessments are locally possible such as those we have
presented in this section. We should point out that our criteria are heuristics
rather than formally based rules, yet are the sorts of rules that animators
are taught.

Since our numerical criterion was derived from the principle of traditional
animation, it is naturally applicable to the problems we might encounter in
practical hand drawn animation. Some papers on 2D morphing techniques
show examples of morphing from one abstract object to another. The results
from these examples do not have any correspondence to ideas of what should
happen, so are indistinguishable from magic, where the same phenomenon
applies. In these cases any result could be regarded as correct, or for that

- 45-

Chapter II. Backgrounds of CAA and Procedural Animation

Figure II.31: Comparative results of morphing techniques applied to a fancy
shape

matter incorrect, on arbitrary criteria. For the fancy shape shown in Fig­
ure II.31 given in [SR95] we cannot find its counterpart in our experience
even for its static shape, to say nothing of its dynamic behaviour. Though
the results in the figure are used for comparing different morphing techniques,
we still cannot tell right from wrong so using any, let alone our, criterion to
assess them is meaningless.

6 Procedural Animation

Procedural animation is an area where computer graphics comes into its
own. In an essential sense, anything done with a computer can be thought
of as being "procedural", but we in computer graphics have a somewhat
more specific idea of what constitutes "proceduralism", though the term
denies exact definition. At it most basic level, procedural animation means
building an object and then using a procedure to control or animate some
attribute of the object. Proceduralism is a powerful paradigm for image
synthesis. In a procedural approach, rather then explicitly specifying (and
storing) all the complex details of a scene or sequence, we abstract them
into an algorithm (i.e. a procedure) and evaluate that procedure when and
where needed. \Ve gain a saving in storage, as the details are no longer

- 46-

Chapter II. Backgrounds of CAA and Procedural Animation

explicitly specified but rather implicit in the procedure, and shift the time
requirements for specification of details from the animator to the computer.
We also gain the power of parametric control with its conceptual abstraction
and the serendipity inherent in an at least semi-autonomous process.

Another major benefit of procedural techniques is flexibility. As the de­
signer of the procedure, we can capture the essential qualities of the object or
motion being modelled without being constrained by physical laws. We can
include any amount of physical accuracy we desire into the procedure. We
can also include as much artistic expression into the procedure as we choose.
The effects achievable are constrained by our procedural design abilities.

The process of developing a procedural model embodied the basic scien­
tific discovery: a formal model is posited, observation and comparisons of
the model and nature are made, the model is refined accordingly, and more
observations are made. The process of observation and refinement proceeds
in a iterative loop.

Procedural techniques have been used in computer graphics since the
1970's. One of the most popular early uses of procedural techniques was cre­
ating textures. Procedural techniques have been used for many years to cre­
ate texture for objects. The use of procedural techniques was explored with
the introduction of 3D texturing (solid texturing) by Gardner, Peachey and
Perlin in 1985. Realistic wood, stone, marble, water, and clouds could now
be included in computer generated images. This inspired many researchers
to develop their own solid texture procedures for simulating natural materi­
als. The use of procedural techniques has increased since the mid 1980's to
now include modelling techniques (fractals, hypertextures, iterated function
systems, L-systems, implicit surfaces, etc) and even animation techniques.

In the following sections, we will review briefly procedural approaches
dealing with natural effects phenomena.

7 Particle Set Animation

Reeves [Ree83] is the pioneer in the field of particle systems. This technique
uses particle sets to model fuzzy objects such as fire and clouds. In this
work an object is represented by a set of particles, each of which are born,
evolve in space and die or extinguish, all at different times depending on their
individual animation. In this method scripts can be written that control not
only the position and velocity of the particles, but also their final appearance

- 47-

Chapter II. Backgrounds of CAA and Procedural Animation

parameters - attributes such as colour, transparency and size. Thus the
dynamic behaviour of the particles and their appearance, as a function of
time, can be used to control both these aspects of particle behaviour.

Reeves describes the generation of a frame in an animation sequence as
a process of five steps:

1. New particles are generated and injected into the current system.

2. Each new particle is assigned its individual attributes.

3. Any particle that has exceeded its lifetime is extinguished.

4. The current particles are moved according to their scripts.

5. The current particles are rendered.

From this it can be seen that the overall shape of the particle cloud, as a
function of time, is controlled by any or all of the first four processes.

The instantaneous population of a particle cloud is controlled or scripted
by an application-dependent stochastic process. For example, the number of
particles generated at a particular time t can be derived from:

N(t) = M(t) + rnd(r)V(t)

where M (t) is the mean number of particles, rnd(r) a procedure returning
a uniformly distributed random number between -1.0 and +1.0, V(t) its
variance. The time dependency of this equation can be used to control the
overall growth (or contraction) in fire size.

The number of particles can also be related to the screen size of the object
- thereby allowing the amount of computation undertaken to be controlled
efficiently.

Although this mechanism will clearly contribute something to the shape
evolution of the cloud, this is also determined by individual particle scripts.
The combination of these two scripting mechanisms was used to animate
phenomena such as an expanding wall of fire and multicoloured fireworks.
Individual particle scripting is based on the following attributes:

- 48-

Chapter II. Backgrounds of CAA and Procedural Animation

1. initial position,

2. initial velocity and direction,

3. initial size,

4. initial transparency,

5. shape,

6. lifetime.

Velocity and lifetime scripts can be used on dynamic constraints. An
explosion, for example, may cause a particle to be ejected upwards and then
pulled down under the influence of gravity.

8 Animating Water Effects

Many methods for representing water surfaces, ocean waves, waterfalls have
been proposed in the past two decades. However, most of them focused
on realistic representation of the phenomena and relatively little time has
been spent in modelling the appearance of cartoon water effects. Whitted
animated realistic reflections from ripples in a small pool by using ray trac­
ing [Whi80]. The ripples were created by bump mapping the flat pool surface,
perturbing the surface normal according to a single sinusoidal function. Per­
lin has used bump mapping with a richer texture map to convincingly simu­
late the appearance of the ocean surface as one might see it from an aircraft
well out to sea [Per85]. Max used a "height field" algorithm to render explic­
itly modelled wave surfaces for his film "Carla's Island" [Max81]. His wave
model consisted of several superimposed linear sinusoidal waves simulating
ocean waves of low amplitude. Peachey presented a model of ocean waves
which is capable of simulating the appearance and behaviour of waves as
they approach a sloping beach, steepening, breaking, and producing a spray
of water droplets from the crests of the waves [Pea86], based on the Gerst­
ner [Ger09], or Rankine, model where particles of water describe circular or
elliptical stationary orbits. Fournier used a parametric surface to model the
ocean surface [FR86] including the effects of depth such as refraction and
surf, and some of the effects of wind. In a paper entitled "Fourier Synthesis
of Ocean Scenes" [GMM87] Mastin et al used a model based on the work
of Pierson and Moskowitz who used wind-driven sea spectra, derived from
observed data, to describe the motion of deep ocean waves in fully developed

- 49-

Chapter II. Backgrounds of CAA and Procedural Animation

windy seas. Wave animation is invoked by manipulating the phase of the
Fourier transforms. Sims developed some general tools for animating and
rendering particle systems that permit both kinematic and dynamic control
of particles. They are used to create effects such as wind, snow, waterfall
and fire [Sim90]. Mallinder presented a method of implicitly storing particles,
and illustrates its use with the modelling of larger waterfalls [Mal95].

9 Animating Gaseous Effects

In recent years methods of depicting gaseous phenomena, such as haze, fog,
clouds, dust, smoke and flames, have been studied by many researchers.
Again, most of them have aimed at realistic representation of the phenomena,
and there are have been few results relevant to the line drawing representa­
tion of fire and smoke in the conventional styles of 2D animation. Reeves
and Sims simulated firework effects by using particle systems [Ree83]. Per­
lin generated a solar corona using a turbulence function [Per85]. MIRALab
implemented more general fire functions using the same approach [TT87].
Inakage presented a technique based on a physical model of combustion,
and succeeded in the photo-realistic representation of the flames of a can­
dle and a Bunsen burner [Ina90]. Ohshima and Itahashi [0188] presented a
simulation method employing 2D fractal texture and other processing tech­
niques for generating animations of flames such as in a bonfire and in candle
flames. Augui, Kohno and Nakajima [AKN91] proposed cellular automata
with simple state transition rules for simulating flames like those of an alcohol
lamp. Gardner [Gar92] modelled fire with fractal ellipsoids. Sakas [SG92a]
[Sak93] proposed simulation methods based on the spectral theory of turbu­
lence. Nishita et al presented a display method for producing a still image
of smoke [NN87] [NMN87]. Chiba et al simulated 2D flames and smoke by
visualising turbulence [CMTM94]. Starn and Fiume used diffusion processes
to animate fire and other gas phenomena [SF95]. In 1996, we proposed a
method for dealing with a cartoon fire [YP96a] which will be described in
more detail in Chapter V.

10 Summary

Most of the traditional computer animation techniques, such as keyframing,
have been used to create many great animations. However, they have several
limitations as listed below.

- 50-

Chapter II. Backgrounds of CAA and Procedural Animation

1. Significant animator intervention

2. Low degree of automation

3. Low-level motion specification

Our approach to developing a cartoon effects system creates a new cate­
gory in procedural animation - stylised effects animation. Their functional
design, including modelling, control and rendering, presents challenge to
those traditional techniques in CAA. Our work tackles effects movements
much more complex than those modelled in existing CAA work as the above.
To deal with the broad appearance and movements of effects, we exploit ideas
from HdS modelling, from brush models, from painterly rendering, from CAA
and from procedural animation.

- 51 -

Chapter III

Cartoon Effects System

In cartoon animation, there are usually two reasons for the use of animated
effects. First, we need effects for visual realism. Effects such as water, fire,
smoke, rain and snow are a part of our every day environment. In order to
create cartoon images of our environment, these effects must be included.
Both indoor and outdoor scenes benefit from the addition of effects. The
realism and mood of outdoor scenes, such as a dark, dreary forest can be
increased greatly by the addition of elements such as fog. Realism of indoor
scenes can also be enhanced by the inclusion of steam rising from a cup of
coffee or smoke from a fireplace. Second, effects can be used for artistic
purpose. For example, rain with different timing can be used to suggest
different moods for dramatic effects: a miserable mood can be expressed by
rain falling vertically at perhaps half of its normal speed (6 frames crossing
the screen for foreground rain), while the speed can increase with a greater
tilt from the horizontal for more violent moods.

Automatic methods for in-betweening rely on some degree of continuity
in both geometry and time. However, many cartoon effects are implemented
either by blending between discontinuous frames or by putting up successive
frames where there is no planned continuity between elements, and corre­
spondences are difficult to establish or are even non-existent. In such cases
these automatic methods will fail utterly. As for previous procedural meth­
ods for dealing with effects, unfortunately, too much effort has been focused
on realistic representation of the process, and very few researchers have ad­
dressed the issue of modelling stylised effects.

In some cases the effects defeat conventional in-betweening because of lack
of continuity of features across more than a few frames, there is nevertheless
an underlying structure model which may be amenable to the in-betweening

- 52-

Chapter III. Cartoon Effects System

processes aforementioned in the previous chapter.

There are diverse aspects to the stylistic modelling of cartoon effects, from
superficial appearance to procedural dynamic control. Figure IlL 1 presents
an overview of the cartoon effects system. As the figure illustrates, the system
consists of three subsystems: Water effects, Fire and Smoke and Rain and
Snow. Computer implementation of each effect in the system comprises three
parts: modelling, control and rendering.

Water Effects

Fire and Smoke

Rain and Snow

Cartoon
Effects
System

Modelling

Control

Rendering

Figure 111.1: System overview of the cartoon effects

1 Modelling

Static Structure

Dynamic Structure

Distribution

Modelling is about establishing the structure of the effects on the static and
dynamic bases. The static structure captures the spatial relationship of the
different parts of the effect. The dynamic structure captures the temporal
relationship of the different parts of the effect, i.e. which parts remain sta­
tionary, which parts are movable and how they move. Since we use HdS
modelling approach in the system, model structure of each effect is hierar-

- 53-

Chapter III. Cartoon Effects System

chic (of course detail of hierarchy is effect dependent) which allows us to
control different aspects at different levels.

2 Control

Control deals with dynamics both at high level, such as main movements,
and at low level, such as local movements or deformations, to ensure the
movement consistency. To date, we use three kinds of methods - shape,
skeleton and distribution - individually or combined together according to
different situations, to achieve the desired controlling goals.

2.1 Shape Control

Shape control aims at direct manipulating on object shape, which can be
further divided into two categories: the time-invariant and time-variant.
Simple translation and rotation on the object fall into the first category and
most shape blending techniques fall into the second category. Since it is
unable to deal with dynamic movement, shape control is usually limited to
some local movements at low level in our system.

2.2 Skeleton Control

The skeleton control works indirectly to control the object shape. Technically
it comprises skeletonising and skinning.

Skeletonising, in our approach, relies on the drawing of the object, which
can be worked out by our knowledge about the object or just by intuition.
Skeletonising involves a static designing and dynamic control, i.e. the skele­
ton's shape and how the skeleton moves in space. The skeleton is virtual and
can represent the underlying model of the object, or a path of the motion.

Skinning or shape rendering is a process of adding shape to the skeleton
which also can be divided into time-invariant and time-variant approaches.
The first means the model used to add shape to the skeleton is independent
of time, and the second means the model is dependent on time. In the
time-variant approach we use deterministic and stochastic models.

- 54-

Chapter III. Cartoon Effects System

2.3 Distribution Control

The distribution approach aims at dealing with some objects which move in
masses like shimmering, rain, snow etc. Here each individual element moves
randomly but in masses they follow a distributive function. The distribution
can be applied to different aspects like position distribution for shimmering
and trajectory distribution for rain drops and snow flakes.

3 Rendering

Rendering of shape and colour ensures the appearance of computer generated
effects in consistency with that of hand drawn cartoon effects. We use our
skeletal spray brush model as well as painterly line and surface rendering
models described in Appendix to fulfil the task to render both effects and
background.

In the subsequent chapters, we detail the modelling of the aforementioned
subsystems of the cartoon effects system. We begin first by presenting water
effects.

- 55-

Chapter IV

Water Effects

In this and the following two chapters we proceed to describe our approach
to model stylised (cartoon) effects ranging over water effects, fire and smoke,
rain and snow. The hierarchic models we develop are simple, but are nonethe­
less effective for faithfully animating cartoon effects. We will begin in this
chapter by presenting a number of water effects models including flowing
water, water jet, water ripples, shimmering, and reflections. In each model,
we first describe how an individual effect is created in hand drawn anima­
tion and how to extract the structure of the object from hand drawings to
construct the model. Subsequently we describe a procedural control scheme
based on the static and dynamic structural information abstracted above.
Simultaneously examples are given for the relevant models.

1 Flowing Water

In the studio, on a simple level, the effect of flowing water can be created by
first establishing a plain background colour for the water and then animating
a series of shapes across it to simulate the feeling of movement we get when
we watch a running stream. The shape can be abstract, stylised, or realistic.
Whatever shapes are selected, they should flow in a consistent way, following
the chosen path of action. Because water action is never mechanical, the an­
imator has to draw many random frames which is quite time consuming and
expensive. If restricted in time and budget, the animator usually produces a
number of cycles and repeat them at random so that there is no observable
repetition. If the water action is more violent than a simple flowing move­
ment, the animator can add another level of animation, depicting white caps

- 56-

Chapter IV. Water Effects

i&t _~

~.. -­---_. -J _.

Figure IV.1: Hand drawn water wave

at the top of the waves. Figure IV.1 [Whi86] shows two frames of different
flowing water shapes drawn by the animator, the first can be regarded as
realistic one (note it is not photo-realistic) and the second stylised one.

In this section we would like to describe the flowing water model synthe­
sising the second drawing in Figure IV.1 based on our early work [Yu94b].
A critical step towards higher level, procedural modelling is to abstract the
structure and the dynamic behaviour of cartoon flowing water. To this end,
we begin with tracing the animator's drawing process and build our flowing
water model using the information abstracted from the decomposition of the
hand drawing process.

An animator, in drawing a frame of flowing water representing a river, say
W F1, is liable to start with two boundary curves, then proceeds to a series of
curves spanning the boundary curves (which we refer to as horizontal waves),
and then to short curves attached to each horizontal wave (which we refer
to as vertical waves) as shown in Figure IV.2. Finally, he adds white caps at
the top of the horizontal waves and foams surrounding the caps.

In the succeeding frame, say W F2 , he follows the same procedure by first
drawing identical boundary curves with those in FW1, then by drawing hor­
izontal waves in different positions with respect to where their counterparts
are in W Fl (to show the movement of waves along the river) as depicted in
dash lines in Figure IV.2(b), and finally by adding vertical waves, caps and
foams in corresponding new positions.

- 57-

Chapter IV. Water Effects

(a) (b) (c)

Figure IV.2: Flowing water drawing process

(a) Drawing two boundary curves (b) Adding horizonyal waves (c)
Adding vertical waves

In a similar fashion, the animator completes the animation series of re­
quired length by drawing W F3 , tV F4, ... W FWN , where W N is the number of
frames contained in the animation.

It is important to note that animator's drawing procedure is sequential
hence we are able to decompose the procedure along the time axis in terms
of drawing-frame and drawing-step. A drawing-frame corresponds explicitly
to drawing a frame and a drawing-step is concerned with drawing some parts
of similar characteristics within one drawing-frame such as boundary curves,
horizontal waves, vertical waves, caps and foams. Different drawing-steps
involved in one drawing-frame reveal the spatial relationship of different parts
of the water drawing from which we can extract the static structure for
our model. Any variation in position, shape etc involved in those drawing­
steps between different drawing-frames reveals the temporal relationship of
different parts of the water drawing from which we can extract the dynamic
structure for our model.

It should be pointed out that decomposing a drawing-frame into drawing­
steps may be person dependent and our decomposition is adequate for the
modelling task at hand.

The static structure of the flowing water model may be thought of as a
ladder with two supports representing two boundary curves and rungs repre­
senting horizontal waves which can be expressed by the following hierarchic
model:

- 58-

Chapter IV. Water Effects

Boundary curves Horizontal waves
I Vertical waves I

To obtain the dynamic structure of the flowing water our first task is
to analyse which parts remain stationary, which parts move and how they
move depicted in the water drawing series. Clearly, the stationary parts are
two boundary curves and moving parts are horizontal waves, vertical waves,
caps and foams which flow consistently with variations in shape along the
boundary curves.

We construct our flowing water model using the spatial information pro­
vided by the static structure and gain a procedural control over the moving
parts using the dynamic information provided by the dynamic structure.
Implementation details will be given in the remainder of this section.

1.1 Boundary Curves

LeftBDj

Figure IV.3: Boundary curves and horizontal waves

Boundary curves are drawn to confine the river path according to the
scene, thus in our model we require the user to specify some control points
defining the main shape of the path which are then interpolated by splines

- 59-

Chapter IV. Water Effects

to get LeftBDi and RightBDi (i = 1, ... BdN) to draw the curves as shown
in Figure IV.3, where BdN is the number of points contained in two curves.
With the index assigned in the two arrays we can define the reference direc­
tion of the flowing water. The number of interpolated points between the
two successive control points should be sufficient to ensure the motion conti­
nuity of horizontal waves, because the movements of the horizontal waves are
represented by the displacement between two successive interpolated points
on the boundary curves.

1.2 Horizontal Waves

Horizontal waves span in series the river path. The distance between two
successive horizontal waves corresponds to the wave length, namely W LG,
which is a number to count certain points contained, say, between LeftBDj
and LeftBDi+WLG. Provided with BdN and W LG, the number of hori­
zontal waves contained along the river can be simply obtained by HrzN =
BdN/WLG.

In designing individual horizontal waves, we first take LeftBDj and
RightBDj {i = 1, ... HrzN} as extremes, then introduce two intermediate
points I nPl and I nP2 as shown in Figure IV.3 by the following formulae:

InP1,i = LeftBDi + udRightBDj - LeftBDj) + rnd(r}V{lnP}
InP2 ,i = LeftBDi + u2{RightBDi - LeftBDi) + rnd(r}V{lnP}

(IV.l)

where Ul and U2 are positional parameters which, together with random
variables of variance V{InP} would make a wary line. Finally, we interpolate
those four points, LeftBDj, InPl , InP2 and RightBDj with splines to get
HrzWl;i,j, {i = 1, ... HrzN,j = 1, ... HrzM} that draws horizontal wave
curves, where HrzM is the number of points contained in the interpolated
curve.

1.3 Vertical Waves

Given HrzWl;i,j' (i = 1, ... HrzN,j = 1, ... HrzM), vertical waves attached
to the horizontal waves can be generated through the following steps:

- 60-

Chapter IV. Water Effects

For each horizontal wave i

1. Set j=1.

2. Calculate the length LGHWj between two points HrzWVi,j and
HrzlV~~+l,j.

3. Interpolate HrzWVi,j and HrzWVi+l,j linearly with p varying
randomly between [0.75, 0.9] to get terminal control points GtrlP2

where the magnitude of p controls the length of the vertical wave
which is determined through experiment.

4. Calculate the middle point between HrzWVi,j and HrzWVi+l,j,
then add f3LGHWj to the Y coordinate of this point to get a
control point GtrlPl . Where an additional component is added
to the Y coordinate for generating an arc vertical wave , we have
found through experiment that f3 E [0.1,0.13] would make a good
looking curve.

5. Interpolate HrzWVi,j, GtrlPl and GtrlP2 with a spline to get a
vertical wave curve.

6. Increase index j and repeat the above steps to generate the suc­
cessive vertical waves until j reaches NrzM.

End (of each each horizontal wave).

1.4 Caps

The modelling of each white cap at the top of waves involves two parts. One
part is concerned with the front shape of the cap correlated with vertical
waves which can be generated as follows:

1. Set j=i.

2. Generate a positional parameter p varying randomly between [0.25,
0.55] (The magnitude of p is determined through experiment to avoid
possible strobing which will be described shortly).

3. Interpolate HrzWVi,j and HrzlVVi+l,j linearly with above p to get a
control point GapG Pj.

4. Increase index j and repeat above two steps to generate the successive
control point FGapGPj+l until j reaches HrzM.

- 61 -

Chapter IV. Water Effects

5. Interpolate FCapC~,j(j = 1, ... HrzM) with a spline to get FCapi,k (k =
1, ... FCapN) (where FCapN is the number of interpolated points) that
draws the final front boundary line of the cap.

The other part is concerned with the back shape of the cap which is
depicted readily by the horizontal wave HrzWl/i,j, (j = 1, ... HrzM). The
complete contour of the ith cap Capi,j (j = 1, ... CapN) can be derived by
appending FCapi,dk = 1, ... FCapN) to HrzWl/i,j (j = 1, ... HrzM) where
CapN = FCapN + HrzM and all caps can be generated by varying index i
from 1 to NrzN.

1.5 Foams

Foams are represented by small circles with variations in size and distributed
surrounding the contour of the white caps with a simple model.

1.6 Structure of the Model

The structure of the model can be expressed as follows:

Initialise the model by specifying the following parameters:

a. BdN, number of points contained in two boundary curves;

b. H r zM, number of points contained in horizontal waves;

c. W LG, wave length;

d. Spd, moving speed of horizontal waves;

e. HrzN = BdN/WLG, number of horizontal waves.

Specify two sets of control points.

Interpolate control points to generate two boundary curves
LeftBDi, RightBDi' (i = 1, ... BdN);

For each frame t:

1. Generate horizontal waves HrzWVi,j(t) = HrzWVi+hSpd,j.

2. Generate vertical waves.

3. Generate caps Capi,j(t).

4. Distribute foams.

End (of each frame).

- 62-

Chapter IV. Water Effects

1.7 Colouring

In comparison with shape, colour is less important for the water movement.
This is true when we see early black and white animation. Even line drawn
sequences by themselves can produce the illusion of movements. But colour­
ing doc improve the visual quality of the animation. A straightforward way
to colour water is u ing a plain colour such as light blue to fill water area,
dark blue to draw horizontal and vertical waves, white colour to draw capes
and foams and the result seems satisfactory. An alternative way to colour
water is using gradient colour varying from light to dark blue to fill the area
surrounded by two adjacent horizontal and boundary curves in which case
we discard drawing vertical waves and get a variant of flowing water derived
from the same model. Furthermore, effects such as sun rise and sun set can
be simulated by imply changing the colours of flowing water over time t.

1.8 Working in 3D

Figure IV.4: Sample 1 of 3D flowing water model

A w have mentioned in Chapter I that static and dynamic structures are
invariant in both 2D and 3D, which allow us to add the third dimension to
parameter involved in above model. The left boundary curve, for instance,
can b expre d by L ftBDi = LeftBD(xi, Yi) in 2D and LeftBDi =

- 63 -

Chapter IV. Water Effects

Figure IV.5: Sample 1 of the 3D flowing water model

LeftBD(Xi, Yi, Zi) in 3D respectively. As a result we achieve 3D stylised water
animation and Figure IV.4 as well as Figure IV.5 show two frames of our 3D
cartoon flowing water animation (To keep a stylised look in this example we
use our painterly rendering model for other objects in the background, see
Appendix).

1.9 Strobing

Strobing, originally, is an effect which is an integral part of the mechanism
of the cinema and is liable to occur in the movement of an object which
has a number of equally spaced similar elements. A well known example is
the illu ion of stage-coach wheels appearing to turn backwards in films. At
the early tage in developing our model , we experienced a different strobing
problem occurring on caps.

In animation, any variation in position or shape in one object between
two succe sive frames would be perceived as a movement. Among the mov­
ing parts involv d in the flowing water model, white caps are big in size and
liable to attract our attention more than vertical waves and foams do. In the
model the caps move ISpdl in every frame (where ISpdl is the distance covered
by Spd point on the boundary curve) with their front shapes FCapi,k(k =

- 64 -

Chapter IV. Water Effects

1, ... FCapN) varying stochastically. Let D.FCAPi,k(t) = IFCapi+(t+l)*Spd,k­
FCapHhspd,kl denote the distance of front shapes of the ith cap between
frame t+1 and t, if situations such as D.FCAPi,k(t) > ISpdl and D.FCAPi,k(t+
1) < ISpdl arise, then the local front shape of the ith cap would appear mov­
ing backwards in frame t + 1 with respect to frame t thus causing a strobing
effect.

The cure for this strobing effect is to avoid situations where it may occur.
In the model we restrict the positional parameter p within the range [0.25,
0.55] in controlling the front shape of the caps to ensure D.FC APi,k (t) < I Spdl
in every frame.

1.10 Summary

In this section we described a cartoon flowing water model which offers sev­
eral advantages over the hand-drawn water effects. First, the model is flexible
for representing water effects such as rivers, waterfalls, taps, sea surface, etc
provided with relevant initial control points for the effect of interest. If, fur­
thermore, the control points are specified on a pole surface, it is possible to
animate the flowing water around the pole-a fancy scene we may use in a fic­
tion cartoon. Second, the model is flexible for controlling water actions. One
example would be representing how violent the flowing water is by changing
the sizes of the caps. Another example would be simulating the process of
water flowing into some dry area or disappearing, which we might see when
a sluice gate is opened or shut on a sluice-way.

As for synthesising the first drawing in Figure IV.I, we need to design
different wave shapes visualising the moving parts in the model and this is a
topic for a future work. We would like to point out that although wave shape
visualisation may be user and application dependent, our dynamic control
scheme remains appropriate.

2 Water Jet

Water under pressure can exert a considerable force. If a jet is directed
upward at an angle it describes a parabola as each individual drop behaves,
as shown in Figure IV.6 [Har8I]' partial gaps in the jet help to avoid strobing
in animation.

- 65-

Chapter IV. Water Effects

Figure IV.6: Water jet

As far as water jet drawing is concerned, it resembles very much the
flowing water in structure composed of boundary curves, waves and drops.
However, in addition to water moving along the parabola, the water jet may
animate itself, such as the jet coming from a nozzle held by a fireman (In the
remainder of this section, we will use the nozzle for describing our model).
In order to gain an effective control over the dynamics of the parabola, we
introduce a skeleton to govern the parabola in the model which, together
with other parts of the jet, can be expressed by the following structure:

I Model HSkeleton 1--1 Boundary curves
Klwavesl

I Drops I

The following subsections will give a detailed description of the model.

2.1 Skeleton

The skeleton approximating the parabola or the trajectory of the water jet
can be constructed by interpolating a few control points, either specified
manually or computed from a simple model, as depicted in a dash line in

- 66-

Chapter IV. Water Effects

Figure IV.7: Water jet skeleton

Figure IV.7. Those control points determine the position and the main shape
of the skeleton that, if given two sets of control points representing the initial
and end positions of the skeleton respectively, we are able to interpolate
the skeleton positions to animate the skeleton moving from its initial to
end positions. An alternative way of animating the skeleton is by means of
'varying the parameters attributed to a parabolic model.

2.2 Boundary Curves

Boundary curves represent the jet outline in the air. The jet may be thought
of as a cylinder with its diameter increasing as water moves outward from the
nozzle. In the 20 case, we define two parameters, JW1 corresponding to the
diameter of the nozzle and JW2 corresponding to the width of the other end
of the jet determined according to the scene (see Figure IV.7), from which
two boundary curves can be derived by a simple rule, as shown in solid line
in Figure IV.7.

2.3 Waves

Waves feature in the water texture caused in the jet moving along the
parabola and the illusion of the movement is created by drawing them in
different positions in different frames. In the model we control the jet wave
moves in a similar manner to controlling the horizontal waves in the flowing
water model. However, the wave shape differs dramatically between the two
and we model jet waves using a number of drop shape curves put on a skeletal
curve on the jet as shown in Figure IV.S.

- 67-

Chapter IV. Water Effects

Figure IV.8: Water jet wave

The skeletal curve of the jet wave can be approximated by a sinusoid wave
spanning the two boundary curves at a corresponding pair with its amplitude
varying stochastically. Implementation details of modelling drop shapes put
on the skeleton will be described shortly.

Short lines showing the speedy effect of the jet just coming out of the
nozzle can be modelled simply by putting a few lines near the nozzle with
variations in length and orientation.

2.4 Drops

Figure IV.9: Water jet drop

As the jet moves outward from the nozzle, it gradually splits into drops.
The farther the jet moves from the nozzle, the more the drops are split. To
model an individual drop we define three parameters, a position Pdp, drop
length Ldp and drop angle ()dp. The drop width J DpW corresponding to

- 68-

Chapter IV. Water Effects

the widest part of the drop is drop length dependent and, our experience
shows that, if J DpW is set to be about O.lLdp then we could get a good
looking drop. Above parameters are sufficient to define a few control points
as shown by crosses in Figure IV.9 and the final drop shape is derived by
interpolating those points with a spline. All parameters attributed to the
drop are controlled by stochastic models to avoid the mechanical look of
drops resulted from using uniform parameters.

The foregoing drop model, together with an additional flag open associ­
ated with a simple mechanism to keep the drop open, can be used to generate
drop shapes shown in Figure IV.8.

2.5 Structure of the model

The structure of the model can be expressed as:

Initialise the model by specifying the following parameters:

a. Specify a few control points for the skeleton according to the
scene;

b. J N, number of points contained in the skeleton;

c. JW LG, jet wave length;

d. J Spd, speed of jet waves moving;

e. JHrzN = JBdN/JSpd, number of jet waves.

Generate a skeleton JSklt~, (i = 1, ... J N) by interpolating the
control points with a spline.

Calculate two boundary curves JLejtBDi, JRightBDi , (i = 1, ... IN).

For each frame t:

1. Draw a few short lines near the nozzle.

2. Generate wave skeletons at corresponding pair J LejtBDi+hJspd,
J RightBDi+t*Jspd.

3. Put a few drop shapes to the wave skeletons.

4. Generate individual drops inside and outside the jet with
number increasing from the nozzle to the far end of the jet.

End (of each frame).

- 69-

Chapter IV. Water Effects

Figure IV.10: Water jet generated by the model

2.6 Working in 3D

The hierarchical structure used in the model offers a higher controllability
which in turn allows us to construct the jet in 3D with relative ease. We
begin with the driving element - parabola skeleton - at the top level of the
model and build a 3D jet using a hybrid approach. Detailed implementations
are as follows:

1. Generate a 3D keleton by specifying control points and interpolating
them in 3D.

2. Project the 3D skeleton onto 2D plane.

3. Based upon the 2D skeleton projected, generate the other parts of the
jet according to the 2D water jet model.

The obviou advantage of this hybrid approach is that it is fast because it
avoid operation uch as hidden line/surface removal and projections from
3D onto 2D in the rendering phase. The limitation of this hybrid model is
the lack of volum information that the 3D jet is supposed to have hence
fail to produce the water jet at certain angles. For instance, the jet skeleton
is perp ndicular to the screen. Nevertheless, this is not a serious problem

- 70 -

Chapter IV. Water Effects

because in animation the jet is often seen from the side or some point above
the jet and our hybrid model is adequate for the task at hand. Figure IV.lO
shows an example of the 3D jet animation.

2.7 Summary

This section described a skeleton-driven water jet model which can be used
directly for representing water coming from a nozzle, jet for irrigating etc.
In comparison with the flowing water model, the introduction of the skeleton
offers a high level control over the dynamics related to the position of the
water jet.

3 Water Ripples

Effects around objects partially immersed in water are usually shown as
ri pples (Figure IV.11 [Har81]), which radiate from around the object and
gradually split up and disappear. If the object is not moving or if it is
moving in a cyclical way, then the effects can be made into a cycle. But
if the object itself is animating, the effect must be animated continuously,
which can mean a great deal of work in hand drawn animation.

" ~,=---.~-=:",-
~

Figure IV.11: Ripple from a partially submerged object

In regard to Figure IV.11, a straightforward way to decompose the ripples
drawing process is as follows:

-71-

Chapter IV. Water Effects

1. Draw a partially submerged object.

2. Draw some concentric ellipse skeletons.

3. Draw ripple's shapes along the skeletons.

Apparently, the static structure of the ripple's model is composed of a
number of concentric ellipses and the dynamic structure of the model is fea­
tured by the centre of the ellipses (the stationary part) and ellipses radiating
at a constant speed (the moving parts). In conjunction with the shape render­
ing of the ripples which varies over time, our ripples model can be expressed
with the following structure:

I Skeleton I
Static design

In the following sub-sections we proceed to describe how we implement
the skeleton control and shape rendering in the model.

3.1 Ripple Skeleton

Figure IV.12: Ripple skeleton

At the skeleton level the model involves two parts: static shape design
and dynamic control.

- 72-

Chapter IV. Water Effects

The shape of the ripple skeleton is determined by the boundary curve
formed between the object and the water. Take Figure IV.11 for example:
the object is a cylinder, so the radiating ripples display a round shape and
Figure IV.12 shows their corresponding static skeletons viewed from the top.
The parameter RplRmax confining the dynamic range of skeletons and the
number of skeletons falling into the range RplN are specified by the user
according to the scene.

To give a perspective view of the round ripples we choose to use ellipses
as skeletons instead. The major and minor axes of the ellipses are defined
by RplRmax and j3RplRmax respectively, where j3 E [0,1] is a factor rep­
resenting the degree of the perspective. For some objects of interest with
different shapes, a ship, for instance, we can specify some control points and
then interpolate them with a spline to draw the skeleton shape desired.

Dynamic control of the skeletons is achieved by simply scaling the major
and minor axes of the ellipses with time. In order to avoid strobing effect,
we design five intermediate positions between two successive skeletons that,
for a given frame t, the major axes of radiating ellipses are determined by
RplRi,t = i . DR + t . 0.2RD, (i = 1, ... RpIN) , where RD = RplRrnax/ RplN
is the distance between two adjacent ripple skeletons.

3.2 Ripple Shape Rendering

The ripple shapes shown in Figure IV.11 suggest that each boundary curve
can be approximated by a serial of sinusoidal curves drawn along two sides
of the skeleton. If provided with relevant attributes, we can accomplish the
task of ripple shape rendering using our brush model described in Appendix
with relative ease.

In the model, we define the inner and outer width attributes InW and
OutW associated with each skeleton, as shown in Figure IV.13 where the hor­
izontal axis corresponds to the skeleton. Those attributes are characterised
by connecting a series of sinusoidal units with variations in amplitude RplAm
and radian frequency w. The ripples moving outward shown in Figure IV. 11
appear progressively thiner and this is controlled by a parameter RplWi which
value decreases with index i(i = 1, ... RplN) assigned from inner-to-outer in
the ripples.

- 73-

Chapter IV. Water Effects

OutW

Figure IV.13: Ripple width function

3.3 Splitting Up

In Figure IV.ll splitting up may appear in the outer ripples. The farther the
ripple is from the object, the smaller the ripple becomes and, correspondingly,
the distance between broken ripples becomes longer. We model splitting up
at two levels: skeleton controlling and shape rendering. At the skeleton level
splitting up is controlled in two phases: in the first phase we are concerned
with the over all skeletons and set a threshold RplT = O.5RpIRmax, if the
major axis of the skeleton is less than the threshold, the ripple is closed,
otherwise it splits up. In the second phase we determine the positions of
splitting up in the individual split up ripples by setting a boolean function
shown in the upper part of Figure IV.14 where the horizontal axis corresponds
again to the ripple skeleton: the ripple appears where the function is 1 and
disappears where the function is O. The duration of positive value in the
boolean function varies stochastically with its mean value decreasing as the
ripple moves outward and, inversely at the same time, the duration of 0 in
the boolean function varies stochastically with its mean value increasing. At
the shape level, the appearing ripple pieces are rendered further by the shape
weight of a sinusoidal form shown in the lower part of Figure IV.14 to get a
more natural look of the broken pieces.

- 74-

Chapter IV. Water Effects

1
Boolean function

D I I [

J

Shape weight

C\ ~ C.

Figure IV.14: Switch and shape weight function

3.4 Structure of the Model

The structure of the ripple model can be expressed as:

For each frame t:

For each skeleton i, (i = 1, ... RplN).

1. Generate inner width attribute InW(t).

2. Generate outer width attribute OutvV(t).

3. Generate boolean function Bl(t).
4. Generate shape weight W(t).

5. Calculate the final width attributes: RplInWi{t) = RplH'i .
InW(t) . Bl(t) . W(t) and RpIOutWi(t) = RplWi . OutW(t) .
BI(t) . W(t).

6. Calculate the radius of the skeleton. Take a round skeleton for
example: Rpl~(t) = RplRo + t· RplD + i· RplRmax/ RpIN,
where RplRo is the radius of the object.

7. Call brush model to draw the final shape of the ith ripple.

End (for each skeleton).

End (for each frame).

- 75-

Chapter IV. Water Effects

Figure IV.15: Ripples generated by the model

3.5 Result

Figure IV.15 shows a frame of ripples animation generated by the model
described above. In this example the ripples skeleton are specified on X - Z
plane in 3D: circle for ripples surrounding the submerged poles and parallel
lines for ripple near the embankment. The final ripples are generated by
introducing the 2D counterparts of projected 3D skeletons into the model
described above.

3.6 Summary

We pre ent d a omputer model currently capable of dealing with ripples
near or around till object . The model can further cope with ripples effects
as ociat d with a moving object. Consider a moving ship, for instance, as
long as rippl kcl ton are defined in front of the ship, we can animate them
radiating whil moving along with the ship with relative ease in comparison
with hand-drawn animation achieving the same gaol.

76 -

Chapter IV. Water Effects

4 Shimmering

In hand drawn animation, a different technique is used to show shimmering
sunlight or moonlight on the surface of a lake, river, or sea. Basically, this is
a series of cels with varied interpretations in white of the reflected light, see
Figure IV.16 [Whi86].

--=--=---. ::- - .--:-
-:::-:-=-­:---=:: ~ --............ . .c=r - --.... --..:........--_.

....--::----~-:.:::
......-...~,,­
-~....--... -..... ...-..-... -

-.:.. -:-:=-~ -- --. - -...... -- --
.- -'-----_ _--

Figure IV.16: Shimering of sunlight

.::.~ -:::-::.-::-....::::::~ :.-.:?-::::""? ----: --.:.::-~ .. ~--..:: -- - .. ---... ---"--- ...-.- - _._--- .- ..,-. --

.-- ---:::::::.,.~ .-
.-::::::::- ~-:,--,~----

- - --------------:---
- -- -- - -"----

F-_._~: ::-:-~~~ <~~.
-- -::::::

Figure I .17: Moving surface

After the cel are completed, the animator dissolves from one to the
other at random, on simple mixes from two frames per mix to ten frames ,
depending on th speed of the effect required. This produces a beautiful
changing patt rn of reflected light on the surface of the water. The same
techniqu an be used to indicate the moving surface of lake and sea, when
a random ffe t of small waves shown in Figure IV.17 [Whi86] is desired.
Sev ral c I - the mor , the better - are drawn in black or coloured line in

- 77 -

Chapter IV. Water Effects

the required style, then they are mixed one to another, at random, at the
required speed.

Shimmering differs dramatically from other water actions we have de­
scribed in previous sections in that it has no deterministic structure asso­
ciated with the movement but displays a random effect on the whole. The
varied interpretations of the reflected light, realistic or stylish, are completely
independent from one frame to the next that the frame coherence is main­
tained in the distribution of the massive interpretations rather than their
individual shapes and dynamic movements. The modelling of shimmering,
therefore, involves two parts: basic wave interpretation design and distribu­
tion, which we will describe in more detail in the remainder of this section.

4.1 Basic Waves

4.1.1 Stylish Wave

Figure IV.18: Stylish basic waves

The most commonly used stylish waves for the interpretation of reflected
light are shown in Figure IV.18. The first is just a sinusoidal wave charac­
terised by the wave cycle, wave phase and the number of cycles. The second
is the same function as the inner brush width attribute used for ripples' shape
rendering in section 3.2 of this chapter.

- 78-

Chapter IV. Water Effects

4.1.2 Realistic Wave

In cartoon animation, waves drawn in Figure IV.16 may be regarded as
realistic ones. The method for generating ripple's shape can be used directly
to generate realistic waves for shimmering hence the former inner and outer
width attributes turn into up and down width attributes which are then
assigned to the level skeletons with variations in length.

4.2 Distribution

Figure IV.17 suggests that it is reasonable to use two rules governing the
horizontal and vertical distribution of individual waves. The first is uniform
distribution and the second is a linear slop distribution with which waves are
distributed progressively sparsely (i.e. the bottom part of the frame appears
near to our eyes) in order to show the perspective effect.

4.3 Model Control

The procedure of generating a frame of shimmering can be outlined as follows:

1. Choose wave type: stylistic or realistic.

2. Specify the mean value and variance for the length of skeletons.

3. Specify the density of the waves.

4. Specify horizontal distribution.

5. Specify vertical distribution.

6. Generate a position ShimP according to the above two distribution
functions.

7. Generate a skeleton at ShimP.

8. Generate a wave at ShimP with a method similar to that described in
Section 3.4 according to the wave type chosen.

9. Repeat step 6, 7, 8 until the density of the wave distribution is met.

- 79-

Chapter IV. Water Effects

Figure IV.19: Realistic moving surface generated by the model

4.4 Results

Figure IV.19 shows a frame of shimmering animation generated by our com­
puter model. Her the individual waves are animated in 3D by first distribut­
ing skeleton uniformly along both X and Z axis on the X - Z plane and
then equipping the model described above with the 2D skeletons projected.

5 Reflections

Reflection i achieved in hand drawn animation by reversing the animation
to be reft cted 0 it is upside down and shooting it at a percentage exposure
in th required po ition. A character might, for example, be walking along a
river bank on top peg, then the animator traces, upside down, the identical
action on a eparate cel and then shoots them at less 100 percent exposure.
See Figur IV.20 [Whi 6].

nfortunat ly, thi method can be used only when the surface on the
reft tion i to appear perfectly smooth. If the water is moving or rippling,
the r fl ct d image hould become distorted in proportion to the amount of
di turban e pI' cnt. The rougher the water, the greater the breakup of the
imag ,as hown in Figur IV.21 [Whi86].

- 80 -

Chapter IV. Water Effects

Figure IV.20: Reflection of a walking character

For th almost still water, the reflection is a distorted image and Fig­
ur IV.22 [Har81] shows part of a cycle of a bright light.

In this ection we pre ent a skeleton-driven model capable of reproducing
reflections hown in Figure IV.22. In order to deal with the dynamics of the
reflected light , we model its skeleton at two levels: a base skeleton framing
the tructure of the refl ction and upon which the dynamic skeleton controls
local movement of the reflection. The base skeleton may be either stationary
or mobile: an xample of the latter case is the skeleton used for representing
the light of a car moving along the beach. Implementation details of the two
skeleton as well as shaping of the reflected light associated with the skeleton
will b descri bed as follows.

5.1 Base Skeleton

The irregular appearan of th reflected light makes the structural extraction
a difficult task. Dynamically the distorted image of every frame is propor­
tional to the amount f disturbance in a random manner, while the "mean"
refl ction should remain an un-distorted image which we might get from a
perfe tl mooth surface. Clearly, a reflected light without distortion on th
till water surfac is traight so that we could draw a straight line in the

hand-drawn refle t d light as the base skeleton shown in the vertical dash
line in Figure IV.23. Math matically, the base skeleton can be defined by
two point a tart point Rf StartP and an end point Rf EndP, specified by

- 81 -

Chapter IV. Water Effects

ft: = ..,.,...~- ---:r: ~ ... ~ , =",,[-'~::;:

-..::. .. .~ . -.-,. . .
... -- ...,;;:::-

Figure IV.21: The reflection of a rougher water surface

th user according to the scene. In the case of a mobile base skeleton being
required, the two points can be expressed as Rf StartP(t) and Rf EndP(t)
where t is time.

5.2 Dynamic Skeleton

Taking the base skeleton as a reference, we mark the middle point between the
peak of one side curve and the trough of the other side curve and draw hort
lines between tho e marks and the base skeleton to form the dynamic skeleton
as shown in horizontal lines in Figure IV.23. Modelling of the dynamic
skeleton i then concerned with positions and lengths of those horizontal
lines.

Positions of these short lines are determined by the following formula:

StLin Pi(t) = Rf StartP(t) + u(RJ EndP(t) - RJ StartP(t))
+ rnd(r)V(StLineP), (i = 0, L.StN)

(IV.2)

wher StN i the number of short lines attached to the base skeleton.
For a given length of the ba e skeleton, a bigger StN would simulate a more
viol nt water urfac and a smaller StN would emulate a more still water
urfac . u E [0 , 1] is a lin ar interpolation parameter defined along the base

skel ton wh n u = ° corresponds to RJ StartP(t) and u = 1 corresponds
to RfEndP(t). rnd{r) is a random variable with variance V(StLineP) for
po itional p rturbation.

82 -

Chapter IV. Water Effects

Figure IV.22: A cycle of a bright light

The lengths of short lines are determined by

StLGi(t) = StLGM + u . rnd(r)V(StLG), (i = 0,1, ... StN). (IV.3)

where u E [1,0] is the same interpolation parameter as used in IV.2,
StLG Af is the minimum length of the short lines specified in advance, rnd(r)
is a random component with variance V(StLG) added to make irregular
variance in lengths of the horizontal skeletons. Both StLGM and V(StLG)
are specified by the user according to the scene.

Figure IV.23 shows that the short lines are usually positioned on each
side alternatively of the base skeleton but occasionally positioned on the
same side. In the model we set a flag of orientation StOrt using a stochastic
model when a positive flag orients the short line to the left side while a
negative flag orients the short line to the right side of the base skeleton.

5.3 Shaping

Figure IV.23 shows that the shape of a reflected light drawn by two side
curves displays a reflected band with its width increasing from RJ Star P to
RJ EndP. Provided with StLinePi(t) , StLGi(t) and the orientation infor­
mation associated with short lines, we first calculate the coordinates corre­
sponding to the terminal points of two side horizontal skeletons which are

- 83-

Chapter IV. Water Effects

RfStartP

Figure IV.23: Base skeleton and dynamic skeleton

then interpolated by a spline to get a central skeleton. Next we calculate the
two side curves Rf LEftBD(t) and Rf RightBD(t) according to a simple
rule (the distance between the central skeleton and two side curves increases
from Rf Start to Rf EndP that draw the reflection shape).

5.4 Colouring

Colour of the reflection is defined according to the colour of the reflected light
LtColor. In order to achieve more realistic effects, we blend LtColor with
the colour of the water surface WtColor along the skeleton by the following
interpolation:

RfColor(u) = LitColor + cos(U7r/2)(WtColor - LtColor)

where u E [0, 1] is the same interpolation parameter as used in IV.2 and
IV.3.

5.5 Structure of the Model

The structure of the model can be expressed by the following:

- 84-

Chapter IV. Water Effects

Specify initial parameters:

1. Rf StartP(t).

2. Rf EndP(t).

3. StLGM.

4. StN.

For each frame t:

1. Use RfStarP(t) and RfEndP(t) to generate a base skeleton.

2. Set initial flag StOrt randomly to be positive or negative.

3. Set i=O:

4. Calculate the interpolation parameter u = i/ StN.

5. Calculate positions of short lines StLinePi(t).

6. Calculate lengths of short lines StLGi(t).

7. Position a short line according to the flag value.

8. Vary the flag StOrt value stochastically.

9. Repeat steps 4, 5, 6, 7, 8 until i reaches StN.

10. Interpolate coordinates of terminal points of short lines to get a
central skeleton.

11. Calculate two side curves Rf LeftBD(t) and Rf RightBD(t) us­
ing a simple rule.

12. Calculate rendering colour Rf Color (u) to colour the reflection
surrounded by Rf LeftBD(t) and Rf RightBD(t).

End (of each frame)

5.6 Result

Figure IV.24 shows a frame of reflections animated in 3D. In this example,
the base skeleton is specified in 3D by reversing the lights to be reflected
with respect to the water surface while the dynamic skeletons associated
with the 3D base skeleton are modelled parallel to both the vertical face of
the embankment and water surface. They are then projected onto 2D and
fed into the model described above to generate the reflections of the lights.

- 85-

Chapter IV. Water Effects

Figure IV.24: Reflections generated by the model

6 Summary

In thi tion we drib d a computer model of reflections on a relative still
wat r urfac . In regard to modelling reflections on a rippling water surface
as hown in Figur IV.2i, a possible approach would be distributing waves

u ed in th himmering model or some other stylised patterns around
k 1 ton framing the structure of the objects to be reflected.

86 -

Chapter V

Fire and Smoke

This chapter presents models of fire and smoke. In the fire model we show
how to devise a skeleton framework for generating animation sequences which
match the hand-drawn series, and in particular how to match the flame ori­
entations, shapes, and the connections curves, as required by the simulated
style, between them. The parameters associated with these skeletons, flame
types and connection curves are brought together into a matrix tableau for
the particular representation of the fire base in the model. The model for
the flames at the top of the fire are made up from three simple sub-models.
By stochastically varying the parameters the model can generate plausible
looking sequences of animated fire and include the effects of wind straight­
forwardly. In the smoke model, we show how to abstract a skeleton for gen­
erating smoke animation into a mathematical expression. Based upon the
skeleton two sub-rendering models are used to produce smoke with looks of
a smoke skein and smoke puffs. Relevant examples are given simultaneously
in the models of both fire and smoke.

1 Fire

In cartoon animation, the simplest fire effect is that of a candle flame. A
candle flame moves very little, unless it is fanned by a draft from an open
door or window, so it can be quickly produced. Basically, there need only be
three key positions of the flame, each moving only a little from the other, as
shown in Figure V.1 [Whi86].

There are then be several in-betweens to produce a slow, almost imper-

- 87-

Chapter V. Fire and Smoke

Figure V.I: Candle flame

ceptible, movement. In cartoon animation, it is usually necessary to add a
bright glow that back-lighting produces to make luminous fire, rather than
the dead look of painted flames. The animation for a raging fire must be
more dynamic, as shown in Figure V.2 [Whi86]: a fire flicks erratically, and
the animation should reflect this.

For a large body of fire, the movements of flames are governed by the
movements of air current above the fire. The hottest part of a fire is in the
centre and above this the hot air rises. As it rises it is replaced by colder air
rushing inward from the sides. This air in its turn is heated and rises and
so the process is continuous. This flow of air usually gives a roughly conical
shape to the flames, with a succession of indentations representing eddies of
cold air, starting at the base of the fire and moving inwards and upwards.
See Figure V.3 [Har81].

In this section we describe a fire model [YP96a] which aims at achieving
a cartoon fire shown in Figure V.3. At present, the way of dealing with this
problem in a computer-aided animation system like ANIMO is to scan the
hand drawn fire cycles into the system, which at best only preserves the level
of quality of hand drawn animation. With the computer model, however,
we can introduce stochastic controls with which the model can be made to
generate different frames all the time. Thus we can avoid using repeated
cycles and as a result improve the quality of the effect over hand drawn
animation. Additionally we can simulate the effects of wind on the model.

- 88-

Chapter V. Fire and Smoke

Figure V.2: Dynamic candle flame

Our model can be expressed as a hierarchical structure:

k2 Flame-i, (i=l, ... FN) I K I Base fire body
I Model IConnection curve-i, (i=l, ... FN-1)1

I Top flames I

where F N is the number of flames arising out of the body of the fire.
The flames from the fire body are controlled by position skeletons and shape
skeletons. Indices here have been assigned from left-to-right in the fire body.
We construct a matrix out of all the parameters we have associated with the
skeletons to represent the model of the base fire body. Top flames are con­
trolled by another model which is related to the base fire model by additional
parameters.

In this section, we first describe how to construct the fire body model
and the model for flames coming out of the top of the fire. Next, we analyse
the parameters of the matrix in which we can control stochastically. Finally,
we describe how to generate wind effect based on the foregoing model, and
show examples of the relevant cases.

1.1 Fire flame model

In Figure V.3 we see that the fire body is composed out of several flames of
different shapes which form a fan connected by curves of a specific nature.

- 89-

Chapter V. Fire and Smoke

Figure V.3: A hand drawn fire cycle

From this we can separate out the fire body into the following parts:

1. Flames positions,

2. Flame shapes,

3. Connection curves.

For each part we define matching parameters which are used to build the
fire body.

1.2 Flame Position Skeleton

The flame position skeleton is used to control flame positions, and is com­
posed of a number of vectors, originating from the centre of the fire base
and pointing to the positions of the flames. The end-points are derived from
guide lines drawn in Figure V.3(a) which govern the flame movements. Since

- 90-

Chapter V. Fire and Smoke

the movements of air currents play an important role in the movements of
the flames, especially those at the sides, it is important to ensure these flames
are positioned as indicated by the crosses in Figure V.3 (b).

1.3 Flame Skeleton

FX1,Fyl _----+---'--_~ FXr,Fyr

FXf,Fyf

Figure V.4: Flame skeleton

The flame shapes shown in Figure V.3, suggest that it is natural to use
a triangle as the skeleton of the flame, as shown in Figure V.4. For each
triangle we first define the coordinates Fx I, Fy f which serve as the reference
point of the skeleton and determine the position of the flame. Then we define
the parameters of length l, width wand the angle () which are sufficient to
define a triangle, see Figure VA. It is easy from the figure to calculate the
coordinates of the triangle vertices, i.e.

FXt = FXI + l· cos(()),
FYt = FYI + l . sin(()),
FXt=Fxl-w,
FYI = FYI,
Fxr=FxI+w,
FYr = FYI·

(V.l)

where Fxt. FYt refer to the coordinates of the top vertex, FXI, FYI and
Fxr , FYr refer to that of the left and right vertices respectively.

- 91 -

Chapter V. Fire and Smoke

1.3.1 Skeleton Types

I
2 3 4 5

Figure V.5: Skeleton types

Analysis of Figure V.3 shows that flames have varying shapes, so it is nec­
essary to define different types of skeletons to match different flame shapes.
In our model we use FlameTP = i, (i = 1, ... 5) to define five types of skele­
tons which are shown in Figure V.5. The first three are used for the fire
body and the last two are used for individual flames at the top of the fire. In
Figure V.5 there are two skeletons associated with FlameT P 2. This is be­
cause the two are similar and we use one parameter to define their types and
an additional flag open to indicate whether the skeleton keeps open or not.
From the figure we can see that FlameT P 2 and 3, 1 and 4 are also similar,
but we define them differently because they represent different shapes and
their shapes are determined according to their FlameT P values. From the
figure it is not difficult to calculate the coordinates of the skeleton.

1.3.2 Skeleton Symmetry

Flames on the left and right side can be derived from the same skeleton if
symmetry to the central vertical line on the fire body is taken into account.
Here we define FlameT P as positive when it corresponds to the left side and
negative when for the right side, to carry the symmetry information.

- 92-

Chapter V. Fire and Smoke

1.4 Flame Shape

Figure V.6: Flame shape

/
I

I
I
I

FX3,FY3 X
1
\
\

/
/

FXl,FYI

From the skeleton it is quite easy to generate flame shapes. We take
FlameT P 1 as an example, as in Figure V.6. Using the coordinates of
the two extreme points FXl, FYb FX4, FY4 which coincide with Fxt, Fyt
and Fxl, Fyi in Figure V.4 respectively, we can calculate the other two
intermediate points FX2, FY2, FX3, FY3:

japl = 0.2,
FX2 = FXl + jal(Fx4 - Fxd +~,
FY2 = FYl + j al(FY4 - FYI),
jap2 = 0.45,
FX3 = FXI + ja2(Fx4 - Fxd + ~,
FY3 = FYl + j a2(FY4 - Fyd·

(V.2)

where jap2 and jap3 are position parameters which control the positions
of the intermediate points, ~ and ~ are parameters related to the width of
the skeleton and determine the shape of the flame. We take these points as
control points and then interpolate them by a spline to get the final curve that
draws flame shape. Similarly we can generate flame shapes corresponding to
the right side of the skeleton.

From the foregoing process we can see the shape information is determined
by control points which are related to skeletons derived from simple models.
These models are accessed through parameter FlameTP, and because this

- 93-

Chapter V. Fire and Smoke

parameter is closely related to the flame shape we use FlameT P rather than
S keletonT P in section 1.3.1.

The foregoing method can generate a perfect, symmetric flame shape, but
in Figure V.3 we see that flames are not strictly symmetric, for example the
first flame in frame 1, where the left side curve is longer and the right side
curve is shorter. To deal with this problem we encode another parameter
with the FlameT P, in the form, for example FlameT P = 15, where the
first number 1 indicates the flame type as previously defined, and the second
serves as a control parameter which becomes 0.5 after decoding and controls
the length of the flame side curve.

1.5 Connection of Flames

2 3 4 5

Figure V.7: Connection types

Once flames are generated, we need to connect them in series to complete
the drawing of the fire body. After the flame skeletons are placed in their
proper positions, we note the coordinates of two terminal points of the flame
skeleton FXI, FYI, Fxr, FYr, which are now used for connection. From
Figure V.3 we can see that connection curves also have different shapes.
Similar to flame types, we also define connection curve types by C onnectT P.
In our model we define five connection types and their corresponding shapes
are shown in Figure V. 7.

Here we describe only how to generate connection curves of type 1. Simi­
larly to generating the flame shape, we introduce four points between the two
extreme points to control the shape of the connection curve, as indicated by
the cross in Figure V.7. From the figure we can calculate their coordinates
as follows:

- 94-

Chapter V. Fire and Smoke

FX3 = FXI + lft . wd,
FY3 = FYI,
FX2 = FXI + 0.5(Fx3 - Fxd,
FY2 = FYI + 0.5wd,
FX4 = FX3 + jap1(Fx6 - FX3) + lft . 0.2 . wd,
FY4 = FY3 + japl(FY6 - FY3),
Fxs = FX3 + jap2(Fx6 - FX3) - lft· 0.3· wd,
Fys = FY3 + jap2(FY6 - FY3),

(V.3)

where FXI, FYI and FX6, FY6 coincide with the right and left terminal
points of the two successive flames respectively, jap1 = 0.2 and jap2 = 0.5
are positional parameters which control positions of the relevant points, wd
is a parameter related to the width of the skeleton, ljt is a parameter related
to the orientation of the skeleton with a value of 1 or -1 corresponding to the
sign of the parameter FlameT P. We take these points as control points and
then interpolate them with a spline to get a connection curve of type 1.

Like flame symmetry, the connection curves can also be used symmetri­
cally, and we use the same method to indicate the direction of the connection
curve, i.e. define ConnectT P as positive on the left and negative on the right.

With the foregoing method we can generate all types of connection curves
but one, which needs to be dealt with differently. Looking at connection
curves between the third and fourth flame (the second and third flame overlap
each other partially) in frame 1, this in fact is composed of two connection
curves of types defined previously. To generate this connection curve we set
ConnectT P to 9. When the model interprets this it generates another point
FXd, FYd between the right extreme point of the third flame and the left
extreme point of the fourth flame and below both of them, and we then take
this point and the right extreme point of the third flame as a pair to generate
the first connection curve (of type 1 in the case of frame 1), finally we take
this point and the left extreme point of the fourth flame as a pair to generate
the second connection curve (of type 5 in the case of frame 1).

1.6 Construction of the Matrix

The foregoing described how to generate flame and connection curve shapes.
We can assign parameters to each step which can be expressed as a matrix
with elements Pi,j = Pi,j(FlameTP,x,y,l,w,(),ConnectTP) which repre­
sents the base fire model, where i represents ith frame which is related to

- 95-

Chapter V. Fire and Smoke

time t, and j represents the jth frame in the fire body when indexed from
the left side in one frame.

1.7 Top Flames

Modelling top flames is more difficult than it looks. Flames at the top of
the fire body consist mainly of flames of type 4 and 5, and occasionally of
type 2 where some flames in the middle of the fire body are small. The
movements of those flames are also governed by the guide-lines shown in
Figure V.3(a). Here we divide top flames into three parts: left, middle and
right, then we detect the lowest flames on the base fire body (they are in
the different frames for the left, middle and right parts), take them as the
reference positions, and then generate corresponding vertical positions of the
flames which are proportional to time t. Sizes and widths of the flames are
controlled with a stochastic function, i.e. they decrease with time t and small
random components are added to them.

1.8 Structure of the Model

The structure of the model can be expressed by the following:

Step 1: Base fire body

1. Specify the matrix MP(i,j) = Pi,j'

2. Read parameters FXi,j, FYi,j, li,j' Wi,j, Oi,j, llti,;, FlameTPi,j from
the matrix.

3. Decode FlameT Pi,j to get direction flag and original FlameT Pi,j
value.

4. Generate flame shape according to corresponding FlameT Pi,j value.

5. Save coordinates of two extreme points of the flame skeleton Fxlj, Fylj
and Fxrj, FYTj.

6. Read FXTj-l, Fyrj_l and Fxlj, Fylj.

7. Read C onnectT ~,j from the matrix.

8. Decode ConectT Pi,j to get direction flag and original ConnectT Pi,j
value.

9. If ConnectT Pi,) does not equal to 9 then generate connection curve
according to corresponding ConnectT Pi,) value.

- 96-

Chapter V. Fire and Smoke

10. If ConnectT Pi,j equals to 9, then generate another point Fxd, Fyd,
and then generate connection curves between FXrj_l, Fylj-l and
Fxd, Fyd, Fxd, Fyd and Fxlj, Fylj respectively.

Step 2: Top flames

1. Detect the lowest positions of the flames on the base fire body
for the left, middle and right top flames, take down their coordi­
nates xlmin, yimin, xmmin, ymmin, xrmin, yrmin as reference
positions.

2. Generate vertical positions of top flames by linear interpolation
between their corresponding reference positions and the highest
position ymax which is specified in advance (ymax is the maxi­
mum value for the fire amplitude from the base to the top flames).

3. Repeat 1 and 2 in this step to generate second layer of top flames.

1.9 Analysis of Parameters

We are able to adjust the parameters defined above to change the flame
shapes until the they are comparable to hand-drawn shapes. This means
that the parameters we defined for the model are sufficient to control the
flame shapes.

f\ ~ -=-
~ ..•. -".....-----=-

=--;;::::?""

'" ~ ~6. . - \;j'C • ~ ~
.1: -...../'v

:...;;;or ,--
'"" ry--... V .. ~.
~ ~ I\. .

~ 7~ ..
~

I. '- . /
\1\ (

--ryv-
,~ <'

V
-.I"Y::

FJameType PoaitiOlll x.y w Tbeca CoDDeCtType

Figure V.8: Parameters associated with the model

--- 97-

Chapter V. Fire and Smoke

Figure V.8 shows parameters associated with the model. The horizontal
axis corresponds to time t and the vertical axis corresponds to amplitudes
of the parameters for flames counted form the left to the right side in the
base fire body. Horizontal lines represent zero value of amplitude for most of
parameters of each flame with an exception for the parameter 0 where they
represent O.57r radians. It is clear from the figure that these parameters vary
irregularly with time t but their values are limited to certain ranges, only in
the first, sixth and seventh flames the corresponding FlameT P always stays
as 1 or -1. This means that flames situated at the two bottom sides of the
base fire body always consist of the same type. Also the Y coordinate for the
first and seventh flame stays as zero, and the x coordinate plus the value of w
are constant thus ensuring the two extreme points at the base of the fire body
stick to the predefined points (in other word, these two points should always
be the same regardless of the variation in width of the flames). Since fire
involves random movements it is natural for us to add some random control
into the model. With the exception of the first and seventh flames, almost
all parameters for other flames could be controlled stochastically. Also it is
possible to control some parameters stochastically in the previous formulae,
for example, to calculate the coordinates of the skeleton (see Figure V.4), we
can usc the following formulae:

FXt = FXf + (l + rnd(l))cos(O),
FYt = FYf + (l + rnd(l))sin(O), .
FXI = FXf - (w + rnd{w)),
FYI = FYI + rnd(y),
FXr = FXf + (w + rnd(w)),
FYr = FYI + rnd(y).

(V.4)

where rnd is random function which controls corresponding parameters
varying within a certain range. We should point out that not all parameters
allow random control, particularly for those of the first, second, sixth and
seventh flames. Because those flames play important role for animating fire
effect, some parameters associated with those flames such as FlameT P and
ConnectT P should stay the same. However, we still can vary their l, wand
o to some degree. With stochastic control of the relevant parameters the
model can generate flames which change in shape all the time, we can thus
avoid using repeated cycles and animate fire for as long as we wish.

- 98-

Chapter V. Fire and Smoke

Figure V.9: A fire series generated by the model

1.10 Colouring

Since the hottest part of the fire is in the centre and the fire is surrounded
by cold air at the sides, we use a colour gradient which varies from yellow
in the hottest part to red representing the coolest part in the flame colours,
and the visual effect seems satisfactory.

Figure V.9 shows a computer generated fire series and Figure V.lO shows
a coloured frame of fire.

1.11 Simulation of Wind Effect

Simulation of the effects of wind on flames can make animation vivid and
this can be achieved just by adding one parameter to our model. When a fire
body is blown by wind from the side, flames are moved toward the other side
but the bottom of the fire remains fixed, in effect flames look "bent". If we
can generate a "bent" fire body then we can simulate the effect of wind. This
is done by introducing an angle parameter b..O which represents the angular
amount changed compared with original "still" (i.e. no side wind) flames.
The "bent" flames are derived in the following two steps:

- 99-

Chapter V. Fire and Smoke

Figure V.10: A coloured fire frame

1. Calculate the displacements for the reference points of the skeletons by
the following formula,

Fxt = Fx + ymax· tang(.t:.B) . (1 - cos(Ja· 0.5· 7r)) (V.5)

wher x, y ar original position parameters specified in the matrix, and
Fx'i the n w parameter for Fx, .t:.B is an angular value which controls
the b nding degree of the fire, the nonlinear coefficient (1 - cos(Ja *
0.5 * 7f)) make flame bends look more natural and fa = y/ymax,

2. Cal ulat th di pIa ements of control points in a flame with the same
formula a b for , but with Fx and Fy replaced by the coordinates of
th r p tiv ontrol points.

Figur .11 how th r sult of computer generated fire frames for wind
eft ct. in th d gr of fire bending is controlled by .t:.B, this parameter
can al bud a a int rpolation variable to animate the process of fire
moving from being in till air to being blown about by the wind. If, further,
we m dula thi param t r with a sinusoidal function in time t, then the
modi an g n rat thft t of a swaying fire. It should be pointed out that

d 1 i ' d vi d fr III lin drawing pictures rather than being physically
b th simu lati n f wind it ct is limited to small values of .t:.B. A

- 100 -

Chapter V. Fire and Smoke

Figure V .11: Effect of wind on fire

serious distortion will arise if we allow ~e to become too big. With this
limitation our model can only simulate light winds but, even so, this is a
significant improvement because it is so difficult for traditional animators to
create this effect.

1.12 Summary

In this section we presented a cartoon fire model for 2D computer animation.
The present model can be used directly for representing bonfires, torches etc,
and the animated effect looks correct when we play back fire series generated
by our model. We hope the model could be extended to some other situations
such as objects burning, fire spreading et al and this is a topic for a future
work.

2 Smoke

In traditional animation, smoke can be treated in many ways but the main
timing problem is how to plan a repeat which does not appear too mechanical.
One way of doing this is illustrated in Figure V.12(c) [Har81} (which we refer

-- 101 -

Chapter V. Fire and Smoke

Figure V.12: Hand-drawn smoke

to as smoke skein}. A variation on this basic idea is to animate puffs arranged
on a wave pattern as shown in Figure V.12(D} (which we refer to as smoke
puffs). These may remain as individual puffs or merge into one another to
form an irregular column.

In this section we would like to develop the smoke model synthesising
the cartoon smoke skein and smoke puffs as shown in Figure V.12 with the
following structure :

Smoke puffs
I Modell--fSkeleton I Shape rendering

Smoke skein

We begin with abstracting the smoke skeleton into a mathematical ex­
pression and render the smoke in two fashions to get smoke skein and smoke
puffs.

2.1 Skeleton

Figure V.12 suggests that the wave pattern of the smoke displays a sinusoidal
shape with its amplitude and frequency increasing as smoke moves upward

- 102-

Chapter V. Fire and Smoke

LeftBkPi1:.2 __ -- --- GapS i+ 1

(a) (b)

Figure V.13: Smoke skeleton

therefore we could use the following formula to model the skeleton emulating
the wave pattern:

SrnkSK LTu,t = SmkAM{u)sin{a{t) + w{u))

where SmkSK LTu,t is a point on the skeleton, u is a spatial variable and
t is time. SmkAA1(u) is the amplitude and w{u) is the radian frequency,
both of them are linear functions of u and determine the static shape of the
skeleton. a(t) is the phase, a linear function of t controls the dynamics of the
skeleton that, as t increases, the skeleton moves upward as Figure V.13(a)

indicated.

2.2 Shape Rendering

In Figure V.12, the feature of smoke (c) is well reflected by its skien shape
while smoke (d) is characterised by a number of puffs. As the smoke moves
upward, in smoke (c), the smoke skein becomes progressively thinner and
breaks up into small pieces and then disappears as the result of dispersing. In
smoke (d) puffs are drawn dense near the bottom and thin near the top of the
smoke. Th(l size of each puff increases and then decreases along the skeleton

- 103-

Chapter V. Fire and Smoke

with variations within certain a degree, again, as the result of dispersing.

2.2.1 Smoke Skein

SmkW Piece Weight

o u o u

(a) (b)

Figure V.14: Smoke shape rendering functions

The rendering of smoke skein involves following parts:

1. Detection of breaking points.

2. Determination of the gap size corresponding to those points.

3. Determination of two terminal points of gaps.

4. Shape rendering of broken skein pieces.

5. Colouring.

We proceed to describe them in more detail beginning with detecting
points where the skeleton breaks up. Figure V.12 (c) suggests that breaking
up happens at those points on the skeleton where the following conditions
apply (see also Figure V.13(a)):

1. They arc above a height SmkRH (drawn according to the scene).

2. They intersect with the vertical axis.

- 104-

Chapter V. Fire and Smoke

Once the breaking points are detected with above conditions, they are put
into BreakPi, (i = 1, .. BrkN) where BrkN is the number of breaking points
detected. Figure V.I2(c) also shows that the gap corresponding to each
breaking point becomes wider and wider as the smoke skein goes upward. In
the model we define the gap size GapSj, (i = 1, .. BrkN) as the function of
the amplitude of the skeleton as well as the difference between the height of
the current breaking point of interest and the height SmkH, i.e.

GapSi = Cw . SmkAM(u)(BreakPi - SmkH) , (i = 1, .. BrkN)

where Cw is a factor derived through experiment to tune GapSi.

With GapSj we are able to determine the two terminal points of the gap
LejtBk~ and RightBkPj with great ease. Those points between LejtBkPi+l
and LejtBkPj+2 or RightBk~ and RightBk~+l form the skeleton of the
corresponding piece of smoke skein (see Figure V.I3(b)).

The shape of the smoke skein is rendered in two phases. In the first phase
we choose to use a linear function Smk W (u) defining the skeleton overall as
shown in Figure V.I4(a) to synthesis monotonous decrease in the width of
the smoke skein. In the second phase, in order to characterise dispersing, we
employ a shape weight of a sinusoidal form as shown in Figure V.I4(b) to
render the shape of each broken skein piece.

Since the hottest part of the smoke is at the bottom, we use a colour
gradient which varies from background colour in the hottest part simulating
the transparent effect and light gray representing the cool part in the smoke
skein colours, and the visual result looks satisfactory.

2.2.2 Smoke Puffs

In smoke (d) each puff exhibits a form of a plum blossom, which can be
modelled by a number of arcs with variations in position and size drawn
along a base circle as shown in Figure V.I5. The base circle may be thought
as the skeleton of the puff which in turn controls the size of the puff.

Since smoke puffs are liable to be used for representing a billowing smoke
effect, w(' choose to use colours of a certain range such as a gray scale or
a brown scalp to colour the area covered by each arc randomly in order to
enhance the visual effect.

- 105-

Chapter V. Fire and Smoke

Figure V.I5: Smoke puff skeleton

The number and sizes of puffs distributed along the skeleton are controlled
by a simple stochastic model with the deterministic component defined by a
sinusoidal function as shown in Figure V.I4(b).

2.3 Model Structure

The structure of the model can be expressed by the following:

Step 1: Generate skeleton SmkSK LT(u, t).

Step 2: Shape rendering:

(a) Smoke skein:

1. Detect breaking up points Break?;.

2. Calculate the gap size GapSi corresponding to BreakPi.

3. Determine the two terminal points LeftBk?;, RightBkPi of GapSi.

4. Use the linear function SmkW(u) to render the width of the smoke
skein along the skeleton.

5. Use the weight to render each of smoke piece respectively.

(b) Smoke puffs:

1. Assign the spatial distribution of the puffs over the skeleton.

2. Determine the number and sizes of the base circles stochastically.

3. For each hase circle, determine the number and sizes of arcs stochas­
tically.

4. Generate smoke puffs.

- 106-

Chapter V. Fire and Smoke

5. D termin position of smoke puffs stochastically.

6. Plac moke puffs accordingly.

Figure V.16: Smoke skein

Figure V.16 and Figure V.17 show the examples of OUf model for smoke
skein and moke puffs respectively in which the skeleton of the smoke skein
is pecified in 2D and that of the smoke puffs is in 3D.

3 Conclusion

In thi ction we de cribed models of smoke skein and smoke puffs. Smoke
skein can be directly used to represent cigarette smoke or steam coming from
a coffee cup in a room, while smoke puffs are more suitable for representing
smoke coming from the chimney of a house or steam boat, etc. In some cases,
the animator draws a really big column of smoke rising from a fire forming a
mu hroom or smoke ring, a doughnut-shaped eddy with a hole in the middle
as shown in Figure V.18 [Har81] and this is a topic for a future work.

- 107 -

Chapter V. Fire and Smoke

Figure V.17: Smoke puffs

Figure V.1B: Billowing smoke

- 10B -

Chapter VI

Rain and Snow

Rain and snow in animation not only simulate the natural phenomena but
also express the mood. For instance, a miserable mood can be achieved
by slow vertically moving rain, and a more violent mood is expressed by a
fast rain with great tilt from the horizontal. This chapter presents models
of rain and snow. In the rain model we begin with the light rain model
by showing how to use our brush model described in Appendix to simulate
the appearance of hand-drawn light rain effect, in particular how to devise
and distribute individual skeletons with associated brushes corresponding to
their hand-drawn counterparts. Next, we proceed to describe the heavy rain
model by showing how to construct multiple levels of rain drops moving in
the air and drops hitting the ground, in particular how to design drop shapes
and assign dynamic constraints to them respectively. Finally, we describe a
snow model with a similar multiple level structure but different dynamic
attributes assigned to snow flakes. Examples of the relevant cases are given
simultaneously.

1 Rain

In hand drawn animation one problem with animating rain is that it can
appear very mechanical. Although rain actually falls in more or less parallel
lines, it must be animated with a more random slope if a realistic effect is
to be achieved. It is best to time it moving quickly down. If it is drawn
on more than one level, the distant rain should move more slowly, to give
depth. Foreground rain should cross the screen in about six frames while
more distant rain should move progressively slower.

- 109-

Chapter VI. Rain and Snow

Figure VI. 1 : Rain

(a) Tracks for foreground rain cycle, (b) Tracks for more distant rain
(c) Cycle of raindrops hitting the ground

Individual drops are drawn as straight lines with consecutive drawings
overlapping each other slightly. Rain almost certainly needs single frame
animation for a realistic effect. It also needs a fairly long repeat if it is not
to appear too mechanical- 24 frames at least.

For really heavy rain, the effect is enhanced by animating a cycl of
drops hitting the ground. These can be quite random and unrelated to
the falling rain. Each drop should animate out in about six frames. See
Figure VI.1 [Har81].

Another effect to animate light rain is to draw a number of diagonal lines
across the screen, each set on a separate cel, these can then be doped at
random, so there is no repetitive pattern, as shown in Figure VI.2 [Whi86].

Obviously, the rain effect drawing involves both deterministic compo­
nents such as drops moving down and random components evident in drop
positions and tracks. In this section we proceed to describe the light rain

- 110 -

Chapter VI. Rain and Snow

! I . '
"j //1 /1 . ; , /7 f i

l
l

h
' .~ .. ;,

)/./ .~(i:':' . ~!/ ~i:
. / rJ ' I ' J I Ii

'Jr .! :/ '" (' "

j '/. . f I ; r' /
" (I")" . II I .

.. I ',f ~ .'

Figure VI.2: Light rain

and heavy rain models capable of generating rain sequences which match the
hand-drawn series. Two models together can be expressed by the following
hierarchical structure:

Light rain

Heavy rain

I Skeleton design I

I Skeleton distribution I

Drops moving in the air

Drops hitting the ground

The light rain model consists simply of one level in which we simulate
random doping of separate eels in hand drawn animation by using a simple
model. The heavy rain model comprises two sub-models, rain drops moving
in the the air consisting of three levels (front, middle and back levels , aiming
at showing the the depth as doing in hand-drawn series) and drops hitting
the ground.

2 Light Rain

Modelling of light rain shown in Figure VI.2 is concerned with the design
and distribution of individual lines. Each line drawn in Figure VL2 is char­
acterised by its length, orientation and width which, from the point of view

- 111 -

Chapter VI. Rain and Snow

of our brush model described in Appendix, can be readily taken as brush
skeleton attributes. Hence we employ our brush model to synthesise these
lines depicting the light rain and implementation details are as follows:

For each frame:

1. Generate skeleton number stochastically.

2. Generate skeleton attributes stochastically:

a. Angle LtAng.

b. Length LtLG.

c. Position LtPOS.

3. Generate one skeleton which is slightly bent.

4. Choose curve (b) in Figure A.2 (see page 136) as BW Left(t) and
BW Right(t).

5. Define BDensity(t) proportional to the brush width attribute.

6. Define BColor(t) with a simple stochastic model.

7. Call brush model to generate a stroke.

8. Repeat steps 2, 3, 4, 5, 6, 7 until the number of skeletons is met.

End (of each frame).

Figure VI.3 shows a frame of the light rain animation and the result
seems satisfactory.

3 Heavy Rain

3.1 Drops Moving in the Air

Tracks of drops moving in the air resemble lines of the light rain in skeleton
attributes and distribution hence we take advantage of a partial modelling
procedure of the light rain model to determine them.

Individual moving drops, however, differ dramatically from the light rain
in shape in that they are modelled as straight lines rather than brush strokes.
Take into account that foreground moving drops cross the screen in six frames
and each drop in connective drawings overlaps slightly to avoid possible

- 112-

Chapter VI. Rain and Snow

,/ ;/ I) / "/~">I:: i, ii, ' J.'" 1.:'.'///'1',/ I
' '.. ,I .' f I I ll' ' " t. '

l }' .. /;;: l .. / ,./ if / // /.,' //i~/'
i 1 ! j : ;' l ,(7'" jl h ./.j !;' ,

I '/ ' i/ I / '.' :, ;'I.';! P; I', : : { I , I :" ,I I r'1'}' {fl/' ' ... i)f y" .. ,.-/ , ,i,.:: I J! I':,! I" J ;" .1.' " . ;~,'
• "l .,"/ " .: ,... .. /: ,: I ,: ./ / .,'//,/," .' .. I.~ ..

,",' ,I PI ,. :,' I iI.' .I 1/ ',.'." :;" r .. .-

0::
1
, l li,/ .i/ i "f 1/' /' / if/I' ,/{.;

" ; ,j ~/ I ~" ; Ii l 'I Ii.. ,'If; /
,! l" " I -II 1" .. , I/i 1,/ ~'(.I /,' j.' I I '~ :':; / /:''j'''~: i i J
f, :;' /' ~ .' J ;,;.' I ' I. , • //'1, ,'! i

: " / " 7 I '. ! I : ',' t/ / I, :

/" /' I ! / / ;' . ~'," II.'; J' 'I J /' ..
! I ./ ji I I I ' !! ,/ ',>l:

Figure VI.3: Light rain generated by the model

strobing, we model the length of the rain drop in the front level FrtLG =
{JScrH/6, where SerH is screen height (which is actually the frame height)
and the fa tor {J = 1.1 ensures overlapping of each drop in connective draw­
ings by 10%, While drop of medium and back levels represent more distant
rain, their drop lengths MidLG and BekLG are defined progressively shorter
that FrtLG > A1idLG > BekLG and through our experience we have found
that A1idLG = O,55FrtLG and BekLG = O,35FrtLG could achieve a satis­
factory result,

Relevant p d of moving drops, namely FrtSPD, MidSPD and BekSPD,
areas igned to three levels respectively: FrtSPD = 2MidSPD = 4BckSPD,
and as a result, the timing of moving drops becomes slower and slower from
front to back levels through which we enhance the more distant rain effect,
Appearance or disappearance of a signal moving drop is controlled by a po­
sitional controller u ing a boolean function defined on a time axis which is
slid downward along the moving drop tracks, if the value of the controller is
1 and the current position of interest falls into the display window, then a
rain drop i drawn, otherwise not.

- 113 -

Chapter VI. Rain and Snow

3.2 Drops Hitting the Ground

3.2.1 Modelling of Individual Drops

Figure VI.4: Skeleton and shape of the drop hitting the ground

We have mentioned in section 1 of this chapter that animating out each
drop hitting the ground takes about six frames (see Figure V1.1). In more
detail, the first frame corresponds to the moment that the drop is just hitting
the ground and going to split while having a "tail" in the centre. In the
consequent frames, the drop splits into six surrounding drops which then
become longer, then shorter and thinner, and finally disappear.

In the model we employ a time varying ellipse (which becomes bigger
with time) to control positions of the splitting drops, as shown in Figure
VI.4. The ratio of the major and minor axes of the ellipse controls the
perspective of the drops. Upon the ellipse we choose six points nearly equally
spaced and calculate their angles with respect to the centre of the ellipse
from which we define six vectors with their lengths varying over time as
the skeletons of splitting drops, the length of each vector is modelled by
H DropLG(t) = Lo . sin(irr /6), (i = 1,2, ... 6), where Lo is the longest length
specified by the user that H DropLG(t) can reach, i is a relative temporal
index associated with time t in the life controller which will be described
shortly. The "skin" of the splitting drop is put onto the vector skeleton in a
similar fashion to generating a drop shape described in section 2.4 of Chapter
IV.

-114 -

Chapter VI. Rain and Snow

3.2.2 Distribution of Hitting Drops

Since the rain drops hitting the ground are quite random and unrelated to the
falling rain drops, they are distributed independently in the area of interest.

3.2.3 Life Controller

Each hitting drop exists in six frames, i.e. it has a "life" of six frames.
In the model we define a life controller to control whether a drop becomes
"alive" or "dead", which is implemented as a function of a sawtooth form
with the number 1, 2, 3, 4, 5, 6 corresponding to the "alive" period and 0
corresponding to the "dead" period. The duration of the "dead" period is
controlled stochastically.

Actually this life controller functions in a similar manner to a "particle"
attribute described in [Ree83] for it follows the procedure of being born,
changing and death. Our hitting drop model defers from the particle in that
it has a structure hence we may refer to it as a structural particle.

3.2.4 Structure of the Model

The structure of the 2D heavy rain model can be expressed by the following:

Initialise the model:

1. Generate three levels of moving drop track skeleton attributes
stochastically:

a. Number: FrtN, MidN, BckN.

b. Angle: FrtAng, MidAng, BckAng.

c. Position: FrtPOS, MidPOS, BckPOS.

d. Length: LG.

2. Generate three levels of track skeletons.

3. Specify moving drop lengths FrtLG, MidLG, BckLG.

4. Specify moving drop speeds FrtSPD, MidSPD, BckSPD.

5. Initialise randomly positional controller for individual moving drops
of three levels.

6. Determine distribution of drops hitting the ground.

- 115-

Chapter VI. Rain and Snow

7. Generate life controller of drops hitting the ground.

For each frame t:

For each level:

For each skeleton:

1. Read a value from the positional controller.

2. If the value is 1 then generate a moving drop with corre­
sponding length and position (speed).

End (of each skeleton).

End (of each level).

For each drop hitting the ground (constrained by distribution):

1. Read a value from the life controller.

2. If the value is great than 0 then generate corresponding split­
ting drops.

End (of each drop).

End (of each frame).

Implementation of a 3D rain model is relatively simple in comparison with
the implementation of its 2D counterpart because we need to define only one
set of parameters such as moving drop length and speed thus avoiding using
parameters associated with three levels. In the 3D model we distribute mov­
ing drop positions on a plane which is above and parallel to the X - Z plane,
the height and size of the plane are specified according to the scene. Moving
drop skeletons are positioned vertically with perturbation in orientations in
the 3D space of interest. Positions of drop hitting the ground are distributed
on the X - Z plane where we define the scene ground. With the positional
controller of moving drops and the life controller of hitting drops, we can
achieve heavy cartoon rain effects in 3D using a similar procedure.

3.3 Result

We have implemented both 2D and 3D heavy rain models and there is no
obvious difference in the visual effect between them if we keep the virtual
camera still to view the rain fall from the side in the 3D model. Figure
VI.5 shows an example of a series of 3D rain. In the animation, the camera
movement is designed standing still first, followed by a rotating and then
zooming closer.

- 116-

Chapter VI. Rain and Snow

Figure VI.5: Heavy rain generated by the model

3.4 Summary

In this section we presented a rain model for computer animation which is
able to generate th cartoon light and heavy rain effects. Although we built
an individual light rain model, the light rain effect is also achievable through
the h avy rain model, if we remove moving drops at the front level and drops
hitting th ground, with a different visual appearance compared with that
di pIa ed in the former light rain model. As for timing control of moving
drop , in contrast with hand drawn animation in which changing timing
may require the entire rain eries be re-drawn, we can simply deal with it
by performing modifications on speed parameters FrtS P D, M idS P D and
BckSPD in the 2D rain model and one speed parameter in the 3D rain
model. Furthermore, with skeleton angular attribute modification, we are
able to imulate the greater tilG from the horizontal for a more violent mood.

4 Snow

Gently falling now drifts in wavy lines and needs even longer cycles than
rain to avoid the audience noticing the same flake flowing itself down the
am track. Two econds may be too short if the repeat is run more than

- 117 -

Chapter VI. Rain and Snow

Figure V1.6: Snow

a few times. A foreground flake may take about two seconds to cross the
screen, but of course may take less.

To give depth to the snowfall, at least three different sizes of flake are
usually needed, the smaller more distant ones travelling more slowly than
those in the foreground. Distant snow is not generally animated out of the
bottom of the screen but fizzles out in a random way somewhere on the
screen. The exact point where it disappears depends on the background on
which it is used. See Figure VI.6 [Har81].

The snow model we present in this section resembles the heavy rain model
in structure and controlling mechanism therefore we focus on describing the
shape designing of snow track skeletons only.

4.1 Snow Track Skeleton

Figure VI.6 suggests that we may first use a diagonal line to construct a
base skeleton and take 3 to 5 points randomly nearly equally spaced on the
base skeleton from which we draw vectors perpendicular to the base skeleton
pointing alternately to the opposite directions with variations in length as
shown in Figure VI. 7. Next, we take the two end points of the base skeleton
together with those arrowheads of vectors as control points and interpolate
them with a spline to get the final wavy snow track.

- 118-

Chapter VI. Rain and Snow

Figure VI. 7: Snow track skeleton

4.2 Snow Flakes

Snow flakes can be simply approximated by circles with variations in size
and the mean values of the circle sizes corresponding to three levels FriS Z,
.M idS Z, BckS Z are specified according to the scene, where FriS Z > M idS Z >
BckSZ. Similarly, speeds associated with snow flakes at three levels are spec­
ified that FriSPD > MidSPD > BckSPD.

4.3 Structure of the Snow Model

The structure of the 2D snow model can be expressed by the following:

Initialise the model:

1. Generate three levels of snow track skeleton attributes stochasti-
cally:

a. Number: FrtN, MidN, BckN.
b. Angle: FrtAng, MidAng, BckAng.

c. Position: FrtPOS, MidPOS, BckPOS.
d. Length: LG.
e. Vector length: FrtV LG, MidV LG, BckV LG.

2. Generate three levels of snow track skeletons.

3. Specify flake sizes FrtSZ, MidSZ, BckSZ.

4. Specify moving flake speeds FrtSPD, MidSPD, BckSPD.

- 119-

Chapter VI. Rain and Snow

5. Initiali e randomly positional controller for each individual moving
drop of three level .

For ach frame t:

For each lev 1:

For each kclcton:
1. Read a value from positional controller.
2. If the valuc is 1 thcn generate a moving flake according

to corre ponding size and posi tion (speed).
End (of each skeleton).

End (of each level).

end (of each frame)

Figure VI. A now frame generated by the model

Figure VI.8 how a snow frame of an animation series generated by the
mod 1. Snow man and trees in the background are designed in 3D.

4.4 Summary

Analogou to the heavy rain model, timing of snow can be controlled easily in
th model b varying valu of FrtSPD, MidSPD, BckSPD. Furthermore,

- 120 -

Chapter VI. Rain and Snow

storm or snow blizzard effects caused by the random gust of wind can be
achieved by simply changing the orientation of the tracks which, in the studio,
is very difficult and time-consuming to animate with hand drawn ones and
the live action is used instead.

- 121 -

Chapter VII

Conclusion and Future Work

In this dissertation we presented the results of research spanning the fields
of CAA and procedural animation. With regard to CAA, we have proposed,
implemented, and demonstrated an animation framework that enables the
creation of stylised effects with minimal intervention from the animator. In
our approach, the effects are animated procedurally in the style of hand­
drawn effects. Thus, the strength of our approach to animation lies in the
fact that this scheme can be made to give effective results in all the cases we
have considered with commensurate savings in animator effort - it turns the
role of the animator from a hand-drawing slave to the high level model con­
troller. Our procedural approach has advanced the state-of-the-art of com­
puter animation, as evidenced by the stylised animations shown. With regard
to procedural animation, we have successfully modelled hand-drawn effects
of nontrivial complexity. The convincing simulation results validate our com­
putational models, which capture the essential features of hand-drawn effects
- structure, movements and rendering.

In particular, we have developed a hand-drawing-based animation system
that emulates the appearance and motion of cartoon effects. Each effect is an
individual model with a hierarchic or distributional structure (or combination
of the two in the task-specific way) and dynamic control mechanism. Through
initial specification, effects are animated according to its static and dynamic
structures. The static structure captures the important characteristics of
cartoon effects while dynamic structure carries out controlling tasks. The
current implemented system is able to not only reproduce cartoon effects
on 2D, but also improve hand-drawn effects significantly so that we can
animate cartoon effects in 3D because it is almost impossible to achieve this
by hand drawn animations. Furthermore, proceduralism avoids the usage of

- 122-

Chapter VII. Conclusion and Future Work

repetitive cycles. The flexibility of our approach is suggested most evidently
by the high-level controls on shape, colour, timing and rendering over the
effects.

With regard to the implementation, we have pursued a decompositional
and compositional approach in which we started by analysing the animator's
drawing process. Upon the simulated hand-drawing substrate, we effectively
modelled the dynamics of cartoon effects. The compositional nature of our
approach to synthesising cartoon effects was proven crucial to achieving the
hand-crafted look. Partial solutions that do not adequately model structure,
dynamics and rendering, and do not combine these models intimately within
the system will not produce convincing results.

In addition to the hand-crafted look, computational costs are far lower.
In generation of animations of the effects, most time is spent on stylised
rendering on background. Using a PC Contender ATX P5/133, a simulation
of flowing water with the picture size 500 x 400 pixels can run at about 5
frames/60 seconds and a simulation of smoke skein with the same picture
size can run at about 1 frame/sec.

1 Additional Impact in Animation

The work reported in this dissertation has promoted further research on
automatic motion synthesis for computer animation. We have developed a
HdS technique that procedurally synthesises the hand drawing process which
is able to cope with drawing problems such as trees [Yu93b]. Motivated by
this process, we apply this approach to synthesis hand-drawn effects statically
and dynamically.

Procedural animation, as we mentioned in Chapter II, means building an
object and then using a procedure to control or animate some attribute of
the object at it most basic level. In this regard, conventional inbetweening
techniques outlined in Chapter II can also be regarded as procedural ap­
proaches. However, because of lack of the ability to deal with problems such
as leg dynamics in the walk model, 3D information in the head turning model
etc, the degree of proceduralism in the conventional inbetweening methods
is far lower compared with other procedural animations mentioned in this
thesis in terms of abstracting a scene or a sequence into an algorithm (Le.
a procedure), saving in storage as the details are implicit in the procedure
as well as gaining the power of parametric control. What is even worse is
that automatic methods for inbetweening rely on some degree of continuity

- 123-

Chapter VII. Conclusion and Future Work

in both geometry and time therefore they fail to deal with many of the ef­
fects described in this thesis where there is no planned continuity between
elements, and correspondence are difficult to establish or are non-existent.

Most of the models dealing with effects in this thesis have a hierarchical
structure. Here the hierarchy goes from static elements (e.g. extent of fire
base), then low-continuity elements (like flame elements, which change slowly
or not at all in number but may take different orientations), then random
elements (e.g. some parameters and connection curves - effectively "fixing
up" the art work at the end). The random elements predominately determine
the superficial appearance of individual images while the more continuous
elements determine the character of the movement associated with the effect.

Timing problems appear here too. When random or stochastic elements
are used there is a risk of running into moire' effects, or fairly subtle aliasing
effects, where high-frequency elements like rain drop trajectories can lead
to low-frequency effects if the trajectories bunch-up regularly in the cycle
(once is enough). Essentially care has to be taken to detect and avoid these
problems within the stochastic mechanism on a case-to-case basis.

In dealing with effects in a procedural manner questions of shapes (what
do the individual images look like?) predominate over questions of timing
(frames may be ordered in time but there is no obvious correspondence let
alone continuity between elements in successive frames). Continuity con­
siderations are only relevant at low levels of the hierarchy where there is a
relationship with the final image but this is not at all obvious. The point is
that procedural methods look like other inbetweening methods at a sufficient
level of abstraction.

Diversity of model structure and controls in the effects system notwith­
standing, the core idea is to ensure movement consistency of effects which is
achieved through structural coherence of the models in the system.

In animation, however, movement consistency is undesirable in certain
situations such as an explosion. As explosion is intended to shock the audi­
ence, it is advisable to use an unpredictable formula for it. There should be
a quick anticipation of some sort, then a quick burst or series of bursts which
should be kept going for some frames, followed by a slower dispersal. Here
the explosion process has two phases, starting with a very fast movement,
which is against movement consistency, and tapering off to a slow finish,
which retains movement consistency. Therefore it is difficult to deal with ex­
plosions with a single model which tends to preserve movement consistency,
but we can solve this problem with an anticipation frame plus a movement

- 124-

Chapter VII. Conclusion and Future Work

consistent model.

2 Impact on Computer Art

Our work opens up several exciting avenues of research in related fields. For
example, the system we have developed has made possible interesting new
approaches to computer graphics art.

Clearly the stylised animation is a series of pictures rendered artistically
which can therefore be regarded as computer graphics art. Our HdS mod­
elling paradigm together with brush models professes effectively competence
at computer graphics art.

Both HdS methodology and brush model simulate the hand painting pro­
cess in a faithful manner. In comparison with Musgraves' approach for his
computer art (which he claims to be an obscure process that no one else
can hope to use his program!) [Mus95], this approach addresses the needs of
computer graphics artists who are motivated to understand and ultimately
reverse engineer computer graphics with certain aesthetic quality and, more
importantly, could be learned and used by the people having some sort of
art background.

3 Potential Applications in Art Education

Art education has long relied on teachers and books. But both of them
tend to teach the continuous painting process in a discrete manner: showing
a number of pictures that are supposed to be finished at different phases
with regard to the complication of a picture and the intermediate painting
process between those pictures needs to be completed by the imagination of
the students.

It is possible that students will profit to a great extent from the possibil­
ities offered by computer simulation of the painting process. The availability
of simulation model makes it possible to show the painting process with a
real or slow timing (so that students can see it better) in a fairly continuous
manner.

To this end, our currently implemented system can act readily as a pro­
totype model of cartoon effects that provides a novel and potentially useful

- 125-

Chapter VII. Conclusion and Future Work

educational tool of cartoon. With regard to computer simulation of tradi­
tional media, certain innate characteristics, such as visual composition and
colour usage, are medium specific and would require the implementation of
specific painting routines. However, our HdS modelling scheme remains ap­
propriate.

Certainly we can use video or film to achieve the same goal in the context
of art education. However, a significant advantage of computer simulation
over the video and film lies in its flexibility that allows different timing control
and searching for a particular piece of painting process students would be
interested to see.

4 Other Stylised Animations

4.1 Animation of Plants

The title of this dissertation emphasises the generality of our stylised proce­
dural approach to computer animation, rather than its specific application
in this thesis to cartoon effects. The core concepts concerned here are styli­
sation and proceduralism used in animation. The main components of our
approach - HdS modelling, controlling and rendering - carryover to the
stylistic modelling of other objects like plants, although the detail of each of
these components may, to one degree or another, be object specific. Consider,
for example, the design of a hand-drawn tree.

When the animator draws a tree, he usually draws the main stem first,
then adds limbs to the main stem, and then adds thinner branches to the
limbs. He continues drawing in this way until all the branches in a tree image
is completed. Finally he adds leaves (in a stylised fashion) to branches.

To capture the complex structure and appearance of the tree, we de­
veloped a tree model based on HdS to generate decorative (stylised) tree
images [Yu93bj. In the model we use a vector to approximate each branch
of the tree thus getting a vector tree to model the topology tree. The branch
geometrical constraints (BGC) are then introduced to render the vector to
get the geometrical tree. The main idea is to separate branch shape from
nodes, thus the final tree shapes are determined by the branch shapes as well
as the positions of branching nodes. By controlling BGC and the branching
nodes with deterministic and stochastic elements, the model can generate
tree images of certain artistic quality and a large diversity of forms.

- 126-

Chapter VII. Conclusion and Future Work

The model offers a direct and flexible control over tree topology and shape.
Incorporating only one parameter for angular control with the tree model,
we can animate with ease swaying tree images blown by wind [Yu93a].

4.2 Character Animation

In Chapter II we mentioned a few procedural approaches dealing with move­
ments of cartoon characters such as human walk, head turning, lipsynch. The
popular techniques used in CAA currently still remain laborious keyframing,
this is because humans have sophisticated intelligent behaviours and proce­
dural modelling of human actions remains a difficult endeavour.

In principle, at least, we could use our HdS approach for modelling char­
acters because they are drawn by hand as well. But clearly characters, plants
and effects differ dramatically, not only in static structure, but also in dy­
namic structure. With regard to locomotion, there are obvious differences
between inanimate objects and animate objects. The former is predictable
therefore it is relatively easy to abstract their movements in a procedure,
as does our system in this thesis, while the latter is unpredictable because
the mental state of characters may consist of several distinct desires which
is time varying. For example, at a given moment in time, a character stands
in a room, and what the character wants to do next may be sitting down, or
raising hands, or doing both simultaneously, etc. If we call sitting down or
rising hands as an action, the difficulty to deal with character animation in
a procedure is that an action may be followed by many possible actions.

Nevertheless, in the context of procedural animation, it is possible to
incorporate some automatic and semi-automatic techniques, such as physics
based modelling [AG85] [Wil87] [HB095], behavioral animation [ZeI82]'
motion capture scheme [CCP80], and motion texture [Per95]' with stylised
rendering to achieve stylised 2D and 3D character animations.

With regard to 2D character animation, although those aforementioned
locomotion control techniques originally were developed for 3D animations,
there is no reason why they cannot be applied to 2D situations. Consider be­
havioral animation, for example, perception modelling, control of behaviour,
modelling of action selection: all can be implemented on 2D and we could
expect further a quick execution compared with their 3D implementations.

With regard to 3D stylised character animation, we can use all existing
locomotion control techniques in conjunction with stylised rendering.

- 127-

Chapter VII. Conclusion and Future Work

In contrast with realistic animation, stylised animation does not depict
every detail but allows a certain amount abstraction, or economy of descrip­
tion. This in turn offers much freedom in rendering and one may wish to
design ones own desired artistic effects.

5 Future Research Directions

The cartoon effects system that we have proposed and demonstrated can
be improved and further developed in many aspects. We are interested in
exploring future research in a number of directions.

5.1 A Variety of Cartoon Effects

The current implemented system can produce effects of flowing water, wa­
ter jet, water ripples, shimmering, reflections, fire, smoke skein, smoke puffs,
light rain, heavy rain, and snow. To enhance our system, we want to imple­
ment more cartoon effects such as water splash, water absorbed by the earth,
explosions, etc.

Based on the existing implementation, more elaborate effects can be
achieved by animating initial conditions in some effects models. Consider, for
example, how by altering the density of rain drops locally or globally with a
deterministic or stochastic model, we can simulate whether the rain appears
lighter or heavier. Similarly altering angles of rain drops, we can simulate
the effects of wind on rain drops. Another interesting example is animating
two boundary curves used in the following water model - moving them closer
until they meet - to show the drying process of a running stream.

5.2 Interaction between Objects and Effects

In the current implementation of the system, we model only the cartoon ef­
fects in their normal conditions (with an exception that we model the wind
effect of fire). An interesting future research would be to examine the in­
teractions between objects and cartoon effects. One example is a water jet
hitting a wall, followed by water splashing in different directions, then split­
ting into drops and falling down. More examples are that of a ship moving
on the shimmering surface, smoke meeting some obstacles, etc.

- 128-

Chapter VII. Conclusion and Future Work

5.3 Hyperprocedure

The flexibility of the procedural approach would allow us to use one or more
procedures in a main procedure, which we give a name here as hyperprocedure.
In our current fire model, the positional skeletons of flames are specified by
the user and invariant with time. As a result, the fire series repeat at the
positional skeleton level. We can specify different positional skeletons in the
model, which means more manual work involved. Therefore, it would be
ideal if we could specify positional skeleton procedurally.

A promising approach for accomplishing this level control would be use
of Perlin's texture model [Per95] to generate the "texture" of the positional
skeletons of flames, and then transit one texture to the next by a weight,
which is always a scalar value between ° to 1. Actually this approach falls in
the scope of keyframing: texture is the keyframe and weight is the interpola­
tion parameter. In comparison with traditional keyframing, here positional
skeletons of flames are generated in a procedural manner rather than spec­
ified by the user. By using randomness we can easily build keyframes that
are very controllable yet never actually repeat themselves. Therefore, one
of the future research directions could be to develop such a procedure to
the current animation system. We believe hyperprocedure would allow us to
achieve better results in a much more convenient, automatic way.

5.4 From Realism to Stylisation

As we have mentioned in Chapter II, there are diverse procedural approaches
to the realistic modelling of natural effects. An obvious way of stylisation
of realistic effects is to incorporate a stylised rendering model into those
systems. For instance, in those models depicting gaseous phenomena, it may
be possible to detect boundary and texture features of a fire or smoke based
on density calculated in the models, then render those features to get desired
stylised effects.

This hybrid approach has advantages as well as disadvantages when com­
pared with our current implemented system. One advantage is the flexibility
in specifying effects which allows us to make animation like burning let­
ters [Sim90] and fire spreading [CMTM94]. Another is the ability to deal
with the interactions between objects and effects [CMTM94].

A significant disadvantage is that the computational cost is far higher.
For instance, Perlin reported that it took about 8 hours to compute a single

- 129-

Chapter VII. Conclusion and Future Work

frame of a 640 x 480 x 640 volume for smoke tested on the AT&T Pixel
Machine [Per95]. Because of this, many researchers suggested using parallel
computation [Sim90] [Per95].

5.5 Stylised Animation

The long-term goal of our research is the title of this dissertation - stylised
procedural animation. Clearly, computer generated cartoon like animation
is a stylised interpretation of the world. We believe, as the movement toward
more creative and expressive imagery continues in computer graphics, stylised
animation will have a variety of styles as art does today (In a broad sense,
photorealistic animation can be regarded as one style of stylish animations,
as does photorealism in art).

The process of making stylised animations juxtaposes the deterministic
formalism of the scientific method with the subjective aspects of visual aes­
thetics. Musgrave described a model of the creative process where art and
science can be brought together-searching n-space for local maxima of an
aesthetic gradient [Mus95]. Although the model is used for his product of
computer art (which he considers to be fine art), we think it would be heuris­
tic for the stylised procedural animation.

The process can be explained as follows. We have created a procedural,
parametrically-controlled model of a synthetic microcosm, say there are n
independent parameters in that model and the specification of its projection
onto the image plane. As these parameters are independent, we can think
of each as representing a degree of freedom, or an additional dimension or
direction in which we can move. Taken together, the n parameters define an
n-dimensional space or n-space for short. In this space we are free to move
not just up and down, right and left, or forward and back, but in a whole lot
of other abstract directions as well. A local maxima is the location in the
space from which all directions lead "downhill", i.e. it is a kind of hilltop
in n-space. "Downhill" is defined by the "aesthetic gradient function" - the
completely subjective (non-deterministic) assessment on the part of the artist
of what constitutes a "better" image, in terms of the parameter values. As
Musgrave addressed, this so-called "function" is not unambiguous: its value
will depend on the criterion by which the image is being assessed, and even
upon the mode of the artist at the moment of evaluation. The local maximum
is then a point in n-space from which a small move in any direction would
result in a "less good" image.

- 130-

Chapter VII. Conclusion and Future Work

Ambiguity notwithstanding, this n-space gradient-ascent model is more
than just entertaining: it points out that a given image represents a local
maximum of the aesthetic gradient field. Other, more global maxima ("higher
hilltops", corresponding to "better" pictures) undoubtedly exist elsewhere in
the rich abstract n-space of potential images defined by the formal system.

We think that Musgrave's model, together with our assessment criteria
[YP97], would be a good touchstone of stylised procedural animation.

- 131-

Appendix A

Brush and Painterly Rendering

In cartoon animation, characters are contour drawn and simply shaded, while
objects in the background are drawn with the style, realistic (not photo­
realistic) or stylised, designed by the art director. Since the main goal of
drawings here is beauty, the visual artist searches for an equilibrium between
proportions of different shapes and an equilibrium between different colours,
to interpret the world by abstracting a scene, real or imaged, to a 2D paper.
By varying brush texture, size, and direction, the artist can not only define
forms, but also provide rhythm and energy that help direct the viewer's eye.
A painter can even use brush strokes to represent light and atmosphere.

Computer rendering provides an easy, automated way to render every­
thing in a scene with fine detail. This creates static images that do not
invite the viewer into the process. In particular, when creating images for
animation, focus and simplification are essential to showing action in a clear
way since the temporal nature of the image gives the viewer much less time
to let their eyes wander about the scene. Certainly focus and simplicity can
be achieved with computer rendering tools by carefully controlling lighting
and surface attributes and unnecessary detail can be obscured using hier­
archical modelling, but it is still difficult to obtain the level of abstraction
that is evident in a good painting. Hand-drawn and hand-painted anima­
tion have an energetic quality that is lacking in most computer-rendered
animation. Often when computer methods try to mimic the wavering qual­
ity of hand-drawn animation, too much randomness creeps in and makes the
animation noisy. A human artist drawing each frame is better to control
frame-to-frame coherence, while maintaining a hand-crafted look. The focus
of most rendering research in the last two decades has been on the creation
of photo-realistic imagery. These methods are quite sophisticated, but tend

- 132-

Appendix A. Brush and Painterly Rendering

to create imagery that is mechanical-looking because detail is represented
very accurately. Recently there has been a movement toward more creative
and expressive imagery in computer graphics but few techniques that pro­
vide ways to achieve different looks, especially for animation. Some computer
painting tools can mimic successfully the hand-drawn line quality, painterly
looks, and energy of traditional media, but these tools typically work only
for still frames. Recently, a painterly rendering technique using particles for
animation was proposed in [Mei96] which renders the animated frames with
the characteristics of an oil painting.

In this Appendix, we first survey the existing brush models and then
address the issue of rendering for animation using brushes, finally presenting
a different technique of painterly rendering for animation with a style more
adapted to cartoon background.

1 Survey of the Existing Brush Models

The brushes used in early computer painting systems were far simpler than
real paint brushes. Usually no more than automated rubber stamps, they
build up images by placing repeated copies of some static or simply derived
pattern. Some systems offered air-brushes, which simulated a spray of ink
by painting pixels in a circle region around the brush.

Before in literature, many powerful and expressive brush models have
been proposed. Whitted used antialiased Z-buffer images to create strokes
with a 3D appearance [Whi83]. Green described an input device called the
"drawing prism" [Gre85] which digitises the image of a real brush (or other
object) making optical contract with a transparent prism. Although the re­
sulting images are realistic, the system has no representational abstraction
higher than the pixel level. The skeleton based stroke primitives in Berkel's
SIAS system allowed the local width of a stroke along the path to vary ar­
bitrarily [vB89]. They might be suitable for specific applications like digital
typography. These strokes are however too restrictive in form as a gen­
eral brush stroke replacement. Strassmann modelled the ink-laying process
of bristle brush on paper [Str86]. The image left by a sopping wet brush
dragged erratically across a sheet of textured paper can be generated by a
representation which keeps track of the physical properties of the materials.
Guo and Kunii extended them to include ink-diffusion through the paper
fabric mesh [GK91]. Their results are attractive despite the relatively slow
computation speed. To achieve ultimate authenticity, Pang et al even at-

- 133-

Appendix A. Brush and Painterly Rendering

tached real bristle brushes to plotters and defined the strokes by the paths
and pen up/down control parameters [PZ91]. Later on, Wang and Pang
developed a computer Chinese calligraphy system [WP91] in which the con­
tour of the Chinese character is defined first, then the stroke speed and ink
amount are simulated by sampling points interpolated with splines. Hsu and
Lee used the same skeletal idea as in [Str86] and [vB89] to develop a so
called skeletal stroke [HL94]. Based on a 2D deformation model defined
by an arbitrary path, they can realize the brush and stroke metaphor using
arbitrary pictures as "ink".

Combining the skeletal idea with the spray model, we proposed a brush
model which allows us to control stroke shape and colour arbitrarily [JJY96].
The model can easily simulate the dry-brush used to present speed lines in
cartoon animation, and the effect of gouache, furthermore it solves a difficult
problem dealing with the Cao style of Chinese calligraphy. As indicated in
later sections of this Appendix, the model is extended further to painterly
line and surface rendering which are amenable to the traditional parametric
line and surface models. The following section describes our brush model in
more detail.

2 A Skeletal Spray Brush Model

A physical brush is made of a bunch of bristles, such as the brush used for
Chinese traditional painting and Chinese calligraphy, or the painting brush
used for oil painting. They are made into round or flat shapes in different
sizes. The brush leaves a footprint when the artist presses the brush and
draws a stroke when the artist drags the brush along a trajectory on the
paper or canvas. The final appearance of the stroke is determined by the local
width and colour of the stroke. We synthesise a brush stroke by employing
a skeleton to model the trajectory of the brush together with a few skeleton
attributes to control the size and colour of the footprint of the brush, as
shown in Figure A.1.

2.1 Skeleton

The skeleton controls the trajectory of the brush which is a series of nodes
BGuidPi , (i = 1,2, ... GdN), where GdN is the number of nodes of the skele­
ton. We refer them as guiding points because they control the position of
the brush. In most applications, the skeleton can be modelled by a spline

- 134-

Appendix A. Brush and Painterly Rendering

Figure A.I: Footprint, skeleton and shape of the brush

thus requiring only a few control points specified by the user or calculated
by some models.

2.2 Footprint

In the model we choose to use a spray within a circle or rectangle to simulate
the footprint of the brush. The spray well reflects the feature evident in
relative dry colour, as if done with a dry-brush, an effect commonly used
in cartoon to represent speed lines, for example, when a character runs off
screen [Whi86]. In the case when wet colour is required, we render the
footprint with constant shading and particles, which will be described shortly
in our painterly rendering.

The density of the spray, i.e. the number of points BFootN contained in
a footprint, simulates the amount of the colour left on the paper. For a given
size of the footprint, say a radius BFootR of a circle, the bigger BFootN is
the denser (heavier) the footprint looks. Furthermore the points within the
footprint can be distributed by using different functions such as uniform or
gradient distribution to produce a variety of brush looks.

Multiple points used in the footprint allow us to choose from one to a
moderate number of colours for presenting the spray. In the case of multi­
ple colours being used, a colour weight can be set in a task-specific way so
that some colour may appear stronger than others, say, if a gradient weight
function is used.

- 135-

Appendix A. Brush and Painterly Rendering

2.3 Skeleton Attributes

BW(t)

a

o 1 t

Figure A.2: Brush width attributes

In the model we define a driving parameter t E [0, 1], which may be
thought of time, t ;:::: 0 corresponds to the starting point BGuidP1 and t = 1
corresponds to the end point BGuidPGdN respectively on the skeleton. We
take t as a variable to define a skeleton attribute function:

BSkltAttrb(t) = BSA(BW(t), BD(t), BC(t))

where BW(t), BD(t) and BC(t) are skeleton attributes which control the
overall appearance of the brush stroke and defined according to the applica­
tion: BW(t) controls the size of the footprint (thus in effect determining the
width of the stroke) which can be symmetric about the skeleton, or defined
as BleftW(t) and BrightW(t) respectively on the two sides of the skeleton.
Figure A.2 gives a few commonly used BW(t) curves. Curve (a) corresponds
to a stroke of constant thickness, curve (b) may be used to draw shapes like
common tree leaves while curve (c) may be used to draw some shape like
a bamboo leaf. BD(t) = BFootN(t) controls the spray density and BC(t)
controls the colour variance of the footprint along the skeleton.

Once the skeleton attributes are defined, let t vary from 0 to 1, t drives
brush model Brush(t) = B(BGuidP(t), BSkltAttrb(t)) move along the skele­
ton to draw a stroke with desired width, density and colour.

- 136-

Appendix A. Brush and Painterly Rendering

2.4 Structure of the Model

The model of one brush stroke can be expressed as follows:

1. Specify control points for skeleton BCtrlPi(i = 1, ... BCtriN).

2. Define shape of the footprint: circle or rectangle.

3. Define spray distribution: uniform or gradient.

4. Define colour distribution: uniform or gradient.

5. Define skeleton attributes BW(t), BD(t), BC(t);

6. Interpolate control points BCtriPi, (i = 1, ... BCtriN) and put inter­
polated points into BGuid~ (i = 1, ... BGdN);

7. Set i = 1;

8. Define driving parameter t = i/ BGdN;

9. Pick up current guiding point BGuidP(t) on the skeleton;

10. Determine the size of a footprint with BW(t);

11. Draw a footprint according to BD(t) and BC(t);

12. Increase index i and repeat step 8, 9, 10, 11 until i reaches BGdN.

2.5 Applications of the Brush

2.5.1 Computer Art

The current brush model is able to produce the dry brush effect easily that is
commonly used in cartoon animation to represent speed lines, light rain (see
Chapter VI) etc. In Figure A.3 we show a picture with the characteristics of
gouache painting generated using our brush model. The skeleton for each
lotus petal is a simple vector and a few vectors constitute the skeleton with
the form like the mount of a Chinese fan, the orientation and length of each
vector randomly perturbed. We use two sets of skeletons to draw the inner
and outer petals. The brush width attribute is curve (b) in Figure A.2. The
brush density attribute is set to a constant and brush colour attribute varying
from pink to white. We use some concentric ellipse as the skeleton of lotus

- 137-

Appendix A. Brush and Painterly Rendering

Figure A.3: An image generated by skeletal spary brush

leaf. Water waves are represented with a rectangle footprint drawn along the
horizontal skeletons. This example demonstrates how such a stylised picture
can be generated with simply designed models.

2.5.2 Computer Chinese Calligraphy

Zhuan Li Kai Xing Cao

Figure A.4: Different styles of Chinese calligraphy

Chinese calligraphy has a long history and there are literally thousands of
styles. Basically, they can be categorised into the following cripts: Jia Gu
Wen (the ancient Chinese words carved on bones, starting time 2000 BC-?),

- 138 -

Appendix A. Brush and Painterly Rendering

Figure A.5: A Chinese character generated by skeletal spary brush

Zhuan Shu (seal script, starting time 770 BC-221 BC), Li Shu (clerical script,
starting time 25-220 AD), Kai Shu (standard script, starting time 173 AD),
Xing Shu (semi-cursive script, starting time 87 AD), and Cao Shu (cursive
script, starting time about 48 BC). Figure AA shows examples of different
styles.

In Cao style a Chinese character is often so joined-up that it looks like
one long, twirling ribbon. Some calligraphists also tend to drag the brush
erratically and quickly, thus causing a Fei-Bai (hollow stroke), as if done
with a half-dry brush, to show the momentum of the brush movement. The
final appearance of a Cao character is characterised by its trajectory, width
variance of the stroke and the ink amount left on the paper (which is both
calligraphist and character dependent). To deal with Cao style with our
brush model, it is essential we design the skeleton, BW(t) and BD(t) to
capture the characteristics of a Chinese character of Cao style and Figure A.5
shows an example simulated by our model.

3 Rendering for Animation Using Brushes

The constant thickness stroke can be regarded as the simplest brush model
and is widely used to draw the contour of characters in cartoon animation.
But it puts up a very poor show in the situation when more expressive strokes
are required, say, to paint the realistic or stylised cartoon background.

To render objects in the background with a painterly style, we would
expect that brushes be applied directly to the traditional parametric line
and surface models. Unfortunately, only a few brush models were designed

- 139-

Appendix A. Brush and Painterly Rendering

in such a scheme for the purpose of animation. In th 81
defined straight lines and arc segments wi thin a 3
system that represented the position of the y s, no
These straight lines and arc segments ar conne t d

[v 9], B rkd
rdinat

t ('.

them to rotate and translate relatively to a h oth r. r a h fram ill t h
animation, the straight lines and arc segm nts ar proje I, d nt t h(' virw
plane, then they are mapp d to the virtual r en and stl' kes a r elre Wll
along the straight lines and arc s gm nts on th virtual T n. Herr ni
feature parts on the head ar drawn with trok and th fa IIrfa ' is 1 ft
transparent for the audience to compl te b imaginati n. IIsu an I L us d
the skeletal stroke's compact abstra tion to ond 11 th mpli 'at d ha l 'h­
ing or stipples into simple units with whi h to [urth r buil I tip 'hamel rs.
Traditional key-fram technique is u d to interp late . kdeloll . I, mak th
stylised animation as shown in Figur A.6 [HL94].

Figure A.6: A styli ed k yfram drawing

In order to take advantag of th b n fit f a paint 1'1 I ok Oil (' mpu\' r­
rendered animating g ometr , M i r propos d a t hniqu whi 11 c mbin d
core ideas from two area of pr viou work: painl rl r nd ring f s ill im" g '8

from reference pictur and particle r nd ring [M i96] . h g al is l PI' i I
a tool that automat the drawing of bru h strokes II I 1 av. I,l1r arLislie
decision about lighting, olour and bru h trok haract ri.ti I, titC' lISt'l'.

The difficulty in using exi ting still fram m th d for ani maLi 11 is g t Lillg
the paint to "sti k" to urfa rath r than randomly hang wi Lh .<1 'h fram
while still retaining a hand- raft d look. M i r solv d th t lUp rall'llll I lll­

ness problem by using parti I rend ring m ('h ds. h f 11 willg Lioll will
describe the technique in more d tail.

1 0 -

Appendix A. Brush and Painterly Rendering

4 Rendering Using Particles

In 1990, Haeberli described a system for creating painterly images from a col­
lection of brush strokes that obtain their attributes, such as position, colour,
size and orientation, from synthetically rendered or photographic reference
pictures [Hae90). In the system brush position are randomly distributed, so
successive frames of an animation would change randomly. Alternatively, the
positions and sizes of brush strokes could remain constant over the anima­
tion, but this creates the "shower door" effect, in which an animation appears
as if it were being viewed through textured glass, because brush strokes are
effectively stuck to the view plane not to the animating surface.

The idea to eliminate both the "shower door" effect and random temporal
noisiness by Meier is to treat strokes as particles that are stuck to surfaces.
She begins by creating a particle set that represents geometry such as a
surface. The particles are transformed to screen space and sorted in ord(~r of
their distance from the viewpoint. A painter's algorithm is used to render
particles as 2D brush strokes starting with particles furthest from the view
point, and continuing until all particles are exhausted. Each brush stroke
renders one particle. The look of the rendered brush strokes, including colour,
shape, size, texture and orientation, is specified by a set of reference pictures
or by data that is stored with the particles. Reference pictures are rendered
pictures of the underlying geometry that use lighting and surfac(~ attributes
to achieve different looks. The attributes for a particle are looked up in the
reference pictures in the same screen space location at which a particle will
be rendered finally. The algorithm can be described as follows:

Create particles to represent geometry.

For each frame of animation.

1. Create reference pictures using geometry, surface attributes,
and lighting.

2. Transform particles based on animation parameters.

3. Sort particles by distance from viewpoint.

4. For each particle, starting with furthest from view point.

5. Transform particle to screen space.

6. Determine brush stroke from reference pictures or particles
and randomly perturb them based on user-selected parame­
ters. Composite brush stroke into paint buffer.

End (for each particle).

- 141 -

Appendix A. Brush and Painterly Rendering

End (for each frame).

Figure A.7: A frame rendered by particles

Figure A.7 shows a frame from a painterly rendered animation using
particles.

5 Painterly Line and Surface Rendering

The technique described in the previous section renders the frames of ani­
mation with the characteristics of an oil painting. To achieve a hand-crafted
look, using randomness is important in painterly rendering. The image ren­
dered without colour, orientation, or scale variation, as shown in [Mei96],
would look mechanical. Similarly a line generated by a simple line drawing
command cannot vividly simulate a painterly line drawn by hand. This is
because a painter does not use a ruler but controls the brush with his bare
hand to accomplish the task, consequently the line drawn has a random ap­
pearance both in shape and colour due to slight shaking of the hand. In the
following sections we present our method for the painterly line and surface
rendering which work straightforwardly with the traditional parametric line
and surface models while still retain the look more like water colour.

- 142 -

Appendix A. Brush and Painterly Rendering

5.1 Line Rendering

In order to render the shape of the hand-drawn line, we employ a simple
random interpolation to model the line shape in our line rendering model.
Mathematically, this can be expressed as:

LineP = LinePl + u{LineP2 - LinePd + rnd(r)V{LineP)

where LinePl and LineP2 are two terminal points of the line, LineP is
interpolated points, u E [0, 1] is the interpolating parameter and rnd{ r) is
a random variable of variance V{LineP). The final line shape is achieved
by joining those interpolated points and the line appearance is determined
by the increment of the interpolating parameter and value of the random
variable. Smaller increment of the interpolating parameter and big value
of the random variable would result a more zigzag line appearance, while a
big increment of the interpolating parameter and small value of the random
variable would result in a more straight line appearance.

Since the line is actually composed of a series of segments along a straight
underline, the use of the random. variable controlling the position of each
segment may result a break-up between two neighbouring segments which,
from the point of view of ordinary graphics application, is undesirable. For
the purpose of our line rendering, however, random break-up best reflects
the feature of the hand-drawn line resulted from light hand shaking.

Another feature associated with hand-drawn line is that the width of the
hand-drawn line varies slightly and randomly, and as a result, some segments
may appear light or dark on the line. In most cases the variance in line width
is smaller than the pixel size so that it defeats the modelling with pixels,
therefore we render each segment with variations in colour instead:

LineC = LineBC + rnd{r)V{LineC)

where LineC is actual rendering colour, LineBC is the basic colour spec­
ified and rnd{r) again is a random variable perturbing LineC with variance
V{LineC).

Our line rendering model works directly on a line between two points
LinePl and LineP2 • As mentioned in Chapter II that everything in computer
animation is in the end represented as polygons or polylines, therefore we can

- 143-

Appendix A. Brush and Painterly Rendering

apply our line rendering model on every segment of a polyline to render a
free form curve.

Depth and lighting information can be incorporated with above colour
rendering model thus we have:

LineC = kCb(NL) + rnd(r)V(LineC) + LineDC

where kcb is a base colour coefficient related to a light source, N is the unit
normal at the point of interest on the line, L is the vector in the direction of
the light source, and LineDC is the colour encoded by the depth information
of the object. We should point out that our central concern is painterly rather
than realistic rendering, so we define base colour coefficient kcb in our model
which actually uses exaggerated hue as well as value variations to distinguish
light and shadow parts on the line.

Due to the randomness involved in our rendering algorithm, we use pre­
defined seeds to ensure that the same perturbations in shape and colour will
be used for a particular segment on the line throughout an animation. As a
result the temporal noisiness is eliminated and the frame-to-frame coherence
is maintained. We will show the example of our line rendering in conjunction
with our surface rendering described in the following section.

Markosian et at [MKT+97] presented a real-time nonphotorealistic ren­
dering which is able to generate artistic strokes such as drawing the polyline
directly with slight variations in line width or colour, high-resolution "ar­
tistically" perturbed strokes defined by adding offsets to the polyline, and
texture-mapped strokes which follow the shape of the polyline. Unfortu­
nately they are generated by modifying the resulting 2D polyline projected
into the film plane thus can not avoid "shower door" effects mentioned in
section 4. In addition, their method does not take lighting conditions into
account.

5.2 Surface Rendering

There are many methods of rendering surfaces, such as those described
in [WW92]. Again, for the purpose of painterly rendering, we employ con­
stant shading and particle rendering to produce a look more like water colour
that is suitable to render the cartoon background.

- 144-

Appendix A. Brush and Painterly Rendering

Constant shading uses a single intensity for each polygon. In our situa­
tion, the intensity can be calculated with the dot product of the unit surface
normal and the vector in the direction of the light source, or specified ac­
cording to the desired effect by the user. Again, a random component can
be added to the intensity to achieve a hand-crafted look.

After a polygon is shaded, say, with colour P BaseC, we randomly dis­
tribute particles within it, the number of particles for the polygon PrtlN is
determined by:

PrtlN = PrtlNo + rnd(r)V(PrtlN)

where PrtlNo is specified by the user and rnd(r) is a random variable of
variance V(PrtlN). A bigger PrtlN would produce drier colour effect and
inversely a smaller PrtlN would produce wetter colour effect.

Colour diffusion is simulated by distributing particles around the bound­
ary lines of each polygon. The wider the particles are distributed, the heavier
the colour diffusion would appear.

Colour for individual particles can be controlled in the same way as de­
scribed in our former brush model. Actually our painterly line and surface
rendering may be regarded as variants of the brush model. In the line render­
ing the footprint becomes a perturbed segment and in the surface rendering
it is represented by blending constant shading and particles with the shape
defined with polygon boundary lines.

Applying our surface rendering model to the polygon of a big area would
produce a mechanical look because of lacking random variation in constant
shading. To solve this problem, motivated by the fact that a painter usually
tends to colour a big area with multiple strokes, we sub-divide the polygon
into small ones and then apply our rendering model to them individually.
Again we distort the polygon shape by locally moving each vertex on the
surface randomly after sub-division to achieve a hand-crafted look.

To maintain coherence, as done in the painterly line rendering, pre-defined
seeds are stored so that the same perturbations will be used for a particular
polygon in every frame of an animation.

In summary, our painterly surface rendering model can be expressed as
follows:

- 145-

Appendix A. Brush and Painterly Rendering

For a polygon surface:

1. Determine the base colour P BaseC for each polygon on the sur­
face.

2. Distort each polygon on the surface.

For each polygon:

1. Fill a polygon with colour P BaseC.

2. Determine the number of particles PrtlN.

3. Determine positions of particles.

4. Determine the colour of particles using P BaseC+rnd(r)V(PrtlC).

5. Draw particles.

6. Determine the width for diffused particles DPrtlW.

7. Determine the number for diffused particles DPrtlN.

8. Determine positions for diffused particles.

9. Determine the colour for diffused particles using P B aseC +rnd(r) V (PrtlC).

10. Draw disused particles.

End (for each polygon).

Figure A.8: A pavement with a water color look

- 146 -

Appendix A. Brush and Painterly Rendering

Figure A.8 shows a pavement rendered with our line and surface rendering
models. The colour specification in this example is made at two phases. The
first phase is concerned with the base colour for each paving block which
is calculated by adding two components encoded by the lighting and depth
information to the colour value specified in advance. The second phase is
concerned with the actual colour rendering the small sub-divided, distorted
polygons and we use the base colour together with the component encoded
by the local spatial information within one paving block and an additional
component to fulfil the task. The boundary lines to draw the paving blocks
are rendered by our line rendering model in which the base colour is darker
in comparison with the base colour used in paving blocks.

In designing the pavement, we specify the colours of paving blocks which
are perturbed randomly around a base colour value and encoded with lighting
information. Then each paving block is sub-divided into small distorted
polygons which are rendered with the above model using the same lighting
information. Finally the boundary lines of paving blocks are rendered by our
line rendering model with a darker base colour compared with that used for
paving blocks.

6 Summary

Both Meier's and our renderers aim at achieving a painterly rather than real­
istic look for animation and overcome the problem of random frame-by-frame
changes in animation involved in the previous painterly rendering techniques.
The distinction between the two is obvious that the former renders the frame
with the characteristics of an oil painting and the latter renders the frame
with a look more close to the water colour. In addition, Meier's render­
ing scheme uses a reference picture to define 2D brush stroke attributes,
while our renderer offers a straightforward rendering which is amenable to
the traditional parametric line and surface models. Although our renderers
are currently used for the cartoon background, we can image the look of an
animation if applying them to both 2D and 3D characters.

-147 -

Bibliography

[AG85] W. Armstrong and M. Green. The dynamics of articulated rigid
bodies for purpose of animation. The Visual Computer, 1:231-
240, 1985.

[AKN91] T. Agui, Y. Kohno, and M. Nakajima. Generating 2-dimensional
flame images in computer graphics. Trans. IECE of Japan,
2:184-189, 1991.

[BW71] N. Burtnyk and M. Wein. Computer generated key-frame an­
imation. Journal of Society for Motion Picture and Television
Engineering, 80:149-153, 1971.

[BW76] N. Burtnyk and M. Wein. Interactive skeleton techniques for
enhancing motion dynamics in key frame animation. CACM,
19:564-569, 1976.

[CCP80] T.W. Calvert, J. Chapma, and A. Patla. The intergration of sub­
jective and objective data in the animation of human movement.
SIGGRAPH'80, pages 198-203, 1980.

[CMTM94] N. Chiba, K. Muraoka, H. Takahashi, and M. Miura. Two­
dimensional visual simulation of flames, smoke and the spread
of fire. Visualisation and Computer Animation, 5:37-53, 1994.

[EG94]

[FR86]

[Gar92]

[Ger09]

G. Elber and D.H. Gotsman. Multiresolution control for non­
uniform b-spline curve editing. Preprint, 1994.

A Fournier and W. T. Reeves. A simple model of ocean waves.
Computer Graphics, 20:75-84, 1986.

G. Gardner. Fractal ellipsoid fire. SIGGRAPH Video Review,
pages 184-189, Issue 81, 14,(1992).

F.J. Gerstner. Theorie der wellen. Ann. der Physik, 32:412-440,
1809.

-148 -

Bibliography

[GG95] E. Goldstein and C. Gotsman. Polygon morphing using a mul­
tiresolution representation. Computer Interface '95, pages 247-
254, 1995.

[GK91] Q. Guo and T.L. Kunii. Modelling the diffuse paintings of
'sumie'. Modelling in Computer Graphics, 1991.

[GMM87] P.A. Watterberg G.A. Mastin and J.F. Mareda. Fourier synthesis
of ocean scenes. lEE Computer Graphics and Applications, 7:16-
23, 1987.

[Gre85] R. Greene. The drawing prism: A versatile graphics input device.
SIGGRAPH'85, 19:103-110, 1985.

[Hae90] P.E. Haeberli. Painting by numbers. SIGGRAPH'90, 24:207-
214, 1990.

[Har81] W. Harold. Timing for Animation. Focal Press Limited, London,
1981.

[HB095] J. Hodgins, D. Brogan, and J. O'Brien. Animating human ath­
letics. SIGGRAPH'95, pages 71-78, 1995.

[HL94] S.C. HSU and I. H. H. LEE. Drawing and animation using
skeletal strokes. SIGGRAPH'94, pages 109-118, 1994.

[Hun94] Jane Hunter. Synchronisation of Sound and Animation. Cam­
bridge University, PhD Thesis, Cambridge, 1994.

[Ina90] M. Inakage. A simple model of flames. CGI'90, pages 71-81,
1990.

pJY96] Yu Jinhui, Zhang Jidong, and Cong Yanqi. A physically-based
brush-pen model. The journal of CAD and Computer Graphics
(in Chinese), 8:241-245, 1996.

[KTZ94] B.B. Kimia, A. Tannenbaum, and S.W. Zucker. Shapes, shocks
and deformations. International Journal of Computer Vision,
1994.

[Mal95] H. Mallinder. The modelling of large waterfalls using string tex­
ture. Visualisation and Computer Animation, 6:3-10, 1995.

[Max81] NL Max. Vectorised procedural models for natural terrain:
Waves and islands in the sunset. Computer Graphics, 15:317-
324, 1981.

-149 -

Bibliography

[Mei96]

[MIT67]

8.J. Meier. Painterly rendering for animation. Computer Graph­
ics (SIGGRAPH'96j, pages 477-484, 1996.

T. Miura, J. Iwata, and J. Tsuda. An application of hybrid curve
generation - cartoon animation by electronic computers. Spring
Joint Computer Conference, 1967.

[MKT+97] L. Markosian, M. A. Kowalski, S. J. Trychin, L. D. Bourdev,
D. Goldstein, and J. F. Hughes. Real-time non photorealistic
rendering. SIGGRAPH'97, 1997.

[Mus95]

[NMN87]

[NN87]

[0188]

[Pea86]

[Per85]

[Per95]

[PG92]

[PT88]

[PW94]

[PZ91]

[Ree81]

Lecturer: F.K. Musgrave, editor. Orgniser: D. Bert, Los Angeles,
1995.

T. Nishita, Y. Miyawaki, and E. Nakamae. A shading model for
atmospheric scattering considering luminous intensity distribu­
tion of light sources. Computer Graphics, 21:303-310, 1987.

T. Nishita and E. Nakamae. A display method of uniform par­
ticles in the atmosphere. Proc. 35th Annual Convention IPS
Japan, pages 2307-2308, 1987.

T. Ohshima and S. Itahashi. Texture animation. Proc. NICO­
GRAPH'88, pages 110-119, 1988.

DR Peachey. Modelling waves and surf. Computer Graphics,
20:65-74, 1986.

K. Perlin. An image synthesiser. Computer Graphics, 19:287-
296, 1985.

Lecturer: K. Perlin, editor. Orgniser: D. Bert, Los Angeles, 1995.

J.W. Patterson and G.Cockton. Composing hierarchically struc­
tured images. Proc. of EUROGRAPHICS'92, 11:829-839, 1992.

X Pueyo and D Tost. Survey of computer animation. Computer
Graphics Forum, 7:281-300, 1988.

J.W. Patterson and P. J. Willis. Computer assisted animation:
2d or not 2d? The Computer Journal, 37:829-839, 1994.

Y.J. Pang and H.X. Zhong. Drawing chinese traditional painting
by computer. Modelling in Computer Graphics, 1991.

W. T. Reeves. Inbetweening for computer animation utilising
moving point constraints. Computer Graphics, 15:263-269, 1981.

- 150-

Bibliography

[Ree83]

[RF96]

[Sak93]

[SF95]

[SG92a]

[SG92b]

W. T. Reeves. Particle system - a technique for modelling a class
of fussy objects. Computer Graphics, 17:359-376, 1983.

V. Ranjian and A. Fournier. Matching and interpolation of
shapes using unions of circles. Computer Graphics Forum, 15:C-
129-C-142, 1996.

G. Sakas. Modelling and animating turbulent gaseous phenom­
ena. The Visual Computer, 9:200-212, 1993.

J. Starn and E. Fiume. Depicting fire and other gaseous phenom­
ena using diffusion. Computer Graphics, pages 129-136, 1995.

G. Sakas and M. Gerth. Sampling and anti-aliasing of discrete
3-d volume density textures. EUROGRAPHICS'92, pages 107-
117, 1992.

T. W. Sederberg and E. Greenwood. A physically based ap­
proach to 2d shape blending. Computer Graphics, 26:25-34,
1992.

[SGWM93] T. W. Sederberg, P. Gao, G. Wang, and H. Mu. 2d shape blend­
ing: An intrinsic solution to the vertex path problem. Computer
Graphics, 27:15-18, 1993.

[Sim90]

[SR94]

[SR95]

[Str86]

[TT85a]

[TT85b]

K. Sims. Particle animation and rendering using data parallel
computation. Computer Graphics, 24:405-413, 1990.

M. Shapira and A. Rappoport. On compatible star decompo­
sitions. Tech. Report TR94-15, Institute of Computer Science,
Hebrew Univ. of Jerusalem, 1994.

M. Shapira and A. Rappoport. Shape blending using the star­
skeleton representations. IEEE Computer Graphics and Appli­
cations, 19:44-50, 1995.

S. Strassmann. Hairy brushes. SIGGRAPH'86, 20:225-232,
1986.

N. M. Thalmann and D. Thalmann. Computer Animation: The­
ory and Practice. Springer-Verlag, Berlin, 1985.

N. M. Thalmann and D. Thalmann. An Indexed Bibliography on
Computer Animation. IEEE CG&A, 1985.

- 151 -

Bibliography

[TT87]

[vB89]

[Whi80]

[Whi83]

[Whi86]

[Wil87]

[WP91]

[WW92]

[YP96a]

[YP96b]

[YP97]

[Yu90a]

[Yu90b]

N. M. Thalmann and D. Thalmann. Image Synthesis. Springer­
Verlag, 1987.

P. van Berkel. Sias, strokes interpreted animated sequences.
Computer Graphics Forum, 8:35-45, 1989.

T. Whitted. An improved illumination model for shaded display.
Commun. ACM, 23:343-349, 1980.

T. Whitted. Anti-aliased line drawing using brush extrusion.
SIGGRAPH'83, 17:151-156, 1983.

T White. The animator's book. Watson-Guptill, New York, 1986.

J. Wilhems. Using dynamic analysis for realistic animaiton of
articulated bodies. IEEE Computer Graphics and Applications,
7:12-27, 1987.

X.Z. Wang and Y.J. Pang. A computer chinese calligraphy sys­
tem. Journal of Computer-aided Design fj Computer Graphics,
3:35-40, 1991.

A. Watt and M. Watt. Advanced Animation and Rendering Tech­
niques. ACM Press, New York, 1992.

Jinhui Yu and John W. Patterson. A fire model for 2d computer
animation. Computer Animation and Simulation'96, Springer­
ComputerScience EG, pages 49-60, 1996.

Jinhui Yu and John W. Patterson. Object deformation using
quaternions. Proc. of Eurographics UK Chapter 14th Annual
Conference" pages 75-88, 1996.

Jinhui Yu and John W. Patterson. Assessment criteria for 2d
shape transformations in animation. Computer Animation'97,
pages 103-112, 1997.

Jinhui Yu. Inbetweening for computer animation using polar
coordinate linear interpolation. CS Report Series, CSC 90/R23,
University of Glasgow, UK, 1990.

Jinhui Yu. A walk model for computer-aided character anima­
tion. CS Report Series, CSC 90/R30, University of Glasgow,
UK, 1990.

- 152-

Bibliography

[Yu92]

[Yu93a]

[Yu93b]

[Yu93c]

[Yu94a]

[Yu94b]

[Ze182]

Jinhui Yu. A walk model for computer-aided character anima­
tion. Proc. of The 6th National Conference on Imagery and
Graphics,Zhengzhou, China (in Chinese), 1992.

Jinhui Yu. Animating sway trees using a model-aided inbetween­
ing methods. Proc. of The Third International Conference for
Yong Computer Scientists, 1993.

Jinhui Yu. Computer generation of decorative tree images. Proc.
of The Third International Conference on CAD f.1 Computer
Graphics, 1993.

Jinhui Yu. A new interpolation algorithm for computer anima­
tion. Applied Science and Technology, 2, 1993.

Jinhui Yu. A head turning model for computer-aided charac­
ter animation. The Journal of CAD f.1 Computer Graphics (in
Chinese), 6, 1994.

Jinhui Yu. A hierarchical flowing water model. Proc. of The
7th National Conference on Imagery and Graphics, April, 1994,
Chengdu, China (in Chinese), 1994.

D. Zeltzer. Motor control techniques for figure animation. IEEE
Computer Graphics and Application, 2:53-59, 1982.

-153 -

