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ABSTRACT 

The apparently different physical problems of forced 

vibrations and elastic stability are both cases of a single 

phenomenon, the more general expression being the mode of 

vibration ~elation with the axial applied load. 

This thesis studies the relationship between the frequency of 

vibration of a loaded structure and the magnitude of the applied 

loads and its application to the analysis of elastic stability. 

In the case of a flat plate, it will be shown that the square 

of the frequency ratio is very close to being linearly related to 

the applied inplane loads, and this relation can be extended to 

include two dimensional and three dimensional frameworks having 

axial symmetry and subjected to purely axial loads. Experimental 

and analytical results have been obtained which agree closely with 

the theoretical predictions (exact or approximate). 

A literature review on this subject has disclosed that 

earlier experimental work appears to contradict the expected 

results obtained from the theory, especially when three 

dimensional structures were analysed and tested. A few experiments 

done in the past years studied only the two dimensional cases with 

relative success but those dealing with space frames and plate 

structures led to different conclusions being drawn. 
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The accuracy of these earlier experiments is questionable and 80 

the results obtained have to be considered critically. 

Many components forming the flight vehicle structure are 

susceptible to various types of aeroelastic instability of which 

the most noticeable is flutter. However. flutter analyses are. to 

a large extent. dependent on predictions of vibration frequencies. 

Characterist ics of di ff erent struct'ural elements. in part icular. 

three dimensional frames. and plates subjected to inplane loadings 

and having various constraint situations. could be obtained 

experimentally as well as theoretically in order to solve for the 

dynamic problem. 

The problem of determining the natural vibration 

characteristics of isotropic and. more generally. orthotropic 

rectangular plates in the absence of inplane loads, for various 

boundary conditions. has been the subject of numerous theoretical 

and experimental investigations during the past years, but the 

effect of inplane loads on the natural frequency of simply 

supported and fully or partially clamped plates has been studied 

almost entirely analytically. due to difficulties which arose when 

attempting experimental investigations. 

This research will deal with the direct effect of the stress 

level due to axial loads applied on the axially symmetrical and 

rigidly jointed space frame structure as well as the isotropic 

rectangular flat plate (details of the plate analysis are shown in 

part II of this manuscript) while under forced vibration. and 

subjected to different boundary conditions. 
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Experimental results obtained in this investigation are 

compared firstly with closed-form theoretical results, and then 

checked against analytical results obtained via computer analysis 

using the Finite Element Method. Finally, the results are checked 

against any available results, exact or approximate obtained by 

other investigators. 

An application of the Finite Element Method constitutes an 

important part of this work by providing the analytical solution 

to the problem. This method is made as simple and economic as 

possible by improving on the assembly routines making them easy to 

check, analyse, and assemble. 

The elements chosen for this method of computer analysis are 

two node bars for the space frame structure, and rectangular ' 

elements with four nodes located at the corners for the isotropic 

plate structure. The node numbering is made in such a way to save 

space in memory and time of assembly, execution, and space 

allocation. 

This research work leads to a different interpretation of 

other researchers's experimental and analytical results on both 

physical and mathematical grounds. 

Analytical graphs for each case are suggested to be used in 

the analytical solution of similar problems if subjected to 

similar conditions. 
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Finally. the present experimental method is applied to a 

cantilevered monocoque beam structure. and a theoretical analyses 

is done based on the Finite Element Method. Both methods 

(experimental and analytical) gave a further confirmation of 

results obtained previously both analytically and experimen~ally. 
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PART I 

STABILITY AND VIBRATION OF THREE 

DIMENSIONAL FRAME STRUCTURE 

SUBJECTED TO AXIAL LOADS 
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CHAPTER 1 

BACKGROUND ON FRAME ANALYSIS 

1.1 Introduction 

Knowledge of structural stability is of paramount importance 

to practising structural engineers. In many instances. see 

references (19) and (21). buckling is the primary consideration in 

the design of various structural configurations. 

Structural engineers often have to study and investigate the 

dynamical behavior of structures with many degrees of freedom. For 

example. in the design of frame structures. plates. or shells. the 

engineer would wish to know the natural frequency of vibration of 

the system in hand in order to estimate the likelihood of 

resonance due to external loads. 

It is therefore imperative to study both the analytical and 

the experimental aspects of the problem. 

The emphasis in presenting the Finite Element Method of 

analysis is to determine that it facilitates computational work 

and is capable of producing results with reasonable accuracy when 

compared with the exact solutions. 

The elastic theory of small deflection assumptions (23) as 

well as the theories of undamped vibrations (17) and (22) were 
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used for these analyses. The basic equation of motion to be solved 

are simplified to have the following mathematical form: 

eq. 1.1 

Where [A) represents the global stiffness matrix of the structure 

(elastic and geometric), and [B) represents the mass matrix of 

the structure including all inertia effects, ~·s are the 

eigenvalues, ixl and iiI are the displacement and the acceleration 

vectors. 

The experimental study of model structures is a useful 

complement to analysis. It is applicable to complicated structures 

if handled with the needed attention and care. 

1.2 Concept of Stability 

As the external loads are applied quasi-statically, the 

elastic structure deforms while the static equilibrium is 

maintained. If, at any level of the external loading, when an 

infinitesimal external transient disturbance is applied, the 

structure reacts by simply performing oscillations about the 

deformed equilibrium state, the equilibrium is said ' to be stable. 

The disturbances could be defined in the form of displacement or 

force. 

It is emphasized that when the disturbance is applied, the 

level of the external loads is kept constant (23]. 

On the other hand, if the elastic structure either remains 

in the disturbed position or tends to diverge from the deformed 

3 



equilibrium atate,the equilibrium ia said to be unatable. The 

leaat value of the external load correaponding to this condition 

ia the "critical load" or "buckling load". This can be illu8trated 

by the following aketch: 

D 

Stability concept 

Figure -1-

c 

This ayatem conaiatea of a ball of lIlasa _ re8ting at 

different point. on the aurface with zero curvature nor .. l to the 

plane of the figure • Points of zero .lope on the .urface denote 

po.ition. of .tatic equilibrium (point. A, B, and C). 

However, the character of equilibriu. at the.e point. i. 

infinitesimal di.turbance and releaaed, the ball will .illlply 

o.cillate about the static equilibriulll po.ition A. Such 

equilibriulll po.ition ia called .table. At point B, if the proce •• 

of di.turbing i. repeated, the .... will tend to MOve away frolll 

the .tatic equilibrium position. Such an equilibrium position a i. 

called unatable. 

Finally, at point C, if the .yatem i. di.turbed, the ball will 

tend to relllain in the di.turbed po.ition. Such an equilibrium i. 

called the neutral equilibrium. 

4 



In structures or structural elements, the loss of stability 

is associated with the tendency of the configuration to pass from 

one deformation pattern to another, the buckling mode. For 

instance, a long slender column loaded axially will, at the 

critical condition, pass from the straight configuration (pure 

compression) to the combined compression and 

Similarly, a perfect thin spherical shell 

bending state. 

under external 

hydrostatic pressure, at the critical condition, passes from pure 

membrane state to a combined compression and bending state. 

This characteristic of elastic structures has been recognised 

for many years and it was the first to be used to solve stability 

problems. Now it allows the analyst to reduce the problem to an 

eigenvalue problem which is easier to handle by digital computers, 

since the application of buckling criteria is essential for the 

deSigner especially when safety and economy are of prime concern. 

Mathematical similarity between the elastic stability and 

vibration of a structure may be demonstrated by considering the 

example ·of a forced vibration relation and the stability of an 

initially curved beam member, as shown in (4) and (12). 

Suppose that the static- deflection function of a uniform 

beam is expanded in a series of terms corresponding to the modes 

of vibration. Then it is known that, under a harmonic load, the 

shape of the deflection curve for a forced vibration with 

frequency .., i8 obtained by multiplying all terms of the static­

deflection function by: 

eq.l.2 
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Similarly. it can be shown that if the shape of an initially 

curved column is expanded in a Fourier series. the shape of the 

deflection curve under the applied axial load P is obtained by 

multiplying all terms of the unloaded deflection function by: 

(I/O - p/Po) ) eq.l.3 

It is this similarity between the above two factors (eq's 1.2 

and 1.3) that might lead one to seek the relation between the 

applied loads and the square ratio of the frequency of vibration 

of the structure. 

This suspicion will be corroborated for the case of three 

dimensional frames and isotropic plates aXially loaded and 

subjected to various boundary conditions. 

1.3 Buckling of Fraaed Structures 

In aerospace. mechanical. and civil engineering. frames of 

various types are widely used in main or auxiliary structural 

configurations. Examples could be found in a helicopter fuselage. 

an engine mounting. bridges. and multistorey buildings. see (21) 

and (23). These frames are subjected to different kinds of 

loadings. concentrated and distributed. which. in many cases, may 

caUSe buckling of an element or group of elements of the frame. 

Usually. the frame members are rigidly connected to each other as 

well as to the other structural parts. so that deformation in one 

element will cause deformations in the neighbouring elements. This 

may result in loss of stiffness of the whole structure. 

6 



Knowledge of the critical buckling load is essential for the 

design phases of both simple and complex structures. 

The theoretical analysis of stability of two dimensional 

frames is well established so far as structures consisting of 

members subjected to essentially axial loading are concerned. The 

discussion of this section will deal primarily with such and 

similar systems. However, not a great effort has been made, so 

far, to study the stability of three dimensional frame structures 

or other complex structural geometries. 

In a framework, the members (as a rule) should be rigidly 

connected to one another at the joints. As a consequence of this, 

no single compression member can buckle without all the other 

members in the frame being deformed, in other words, the elastic 

restraint at the end of a given compression member depends not 

only on the members immediately connected to it but also on each 

and every member of the entire system. 

This explains why, when the critical load of a member is of 

interest, the whole frame will be analysed and investigated as one 

single unit. 

So far as the literature survey is concerned (see section 

1.6) all experimental and analytical results found were for two 

dimensional frames only, and these emphasized correctly (6), for 

the structural configuration considered, the existence of a linear 

relationship between the natural frequency ratio squared and the 

applied axial loads. But very little could be found concerning the 

same phenomenon for three dimensional frames, which are of great 

importance in modern antennas and space applications. 
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The objective of thill research work ill to enlighten this 

situation by experimental and theoretical analysi.. lIince the 

IIpace frame ill the most general type of framed structures. The 

individual member of the space frame .. y carry a combination of 

aXial force. torsional mo~ent. and bending moments in both 

principal directions. It is assu.ed that each member 1s straight 

along the axi. and that itll cros. section is uniform throughout 

it. length. 

1.4 Hode. of Buckling of Fra.e. 

Con.ider the following figure. a •• uming that the load •• re 

applied in .uch a way all to avoid any bending moment. ( the .ame 

assumption is u.ed for the three dimensional framework). This is 

.dditiona1 to the ••• umption of s .. ll defor .. tion elastic theory 

(21) in the ana1y.is. 

p 

.----------- C 
B 

~,...- ~ 

~--------------~ \ 
\ 
\ 
\ , 
\ , 
I , 
I 

/ 

Symmetric Mode. 

I , 
I 
I 
I 
I 
• I 
•• , 
\ 

" \ 

p 

B PI _-----~-~P ,t:J---__ - I 
I ' I I -/ 

I I i 

D .A D 

. Ant1synune~c~swl)· bucklin, 

Buckling .od •• of portal fr .... 

Figure -2-

8 



Cases 1 and 2 show that it is self evident that the buckling 

takes place when the applied load P is equal to the critical load 

of the column Per' It is also clear that the upper end of each 

column is elastically restrained by the beam which is rigidly 

connected to the columns, the critical load therefore depends not 

only on the column stiffness, but also on the stiffness of the 

beam. 

Assumptions can be made on the rigidity of the beam. As ahown 

in the first case, if it is infinitely rigid, then we get four 

times the Euler load of a column as the critical load for the 

member. If instead the assumption is made that the beam ia 

infinitely fleXible, then the critical value of the load P will be 

approximately half of the previous one. That is to say: 

eq.l.4 

where Pe •• ' EIll' is the Euler load. 

The same line of thought can be applied to frames whose upper 

jOints are free to move laterally, and the previous relation 

becomes: 

O.2~ Pe < Per < Pe eq.l.~ 

Comparing the above two results, one notices that the 

bUckling load required for the symmetrical buckling case is larger 

than that required for the antisymmetrical one regardless of the 

stiffness of the members. It can be concluded therefore, that the 

above portal frame will always be inclined to buckle Sideways 

9 . 



unless it is forced to buckle otherwise, and this is true for 

multistorey frames (19) if based on the same assumptions. 

1.5 Methods Used to Find the Critical Load 

The critical load can be calculated analytically by different 

methods some of which are summarised in this section. For further 

details on these methods, one can refer to a specific literature 

study on this subject if needed. Some of the commonly used methods 

are presented here based on their historical backgrounds: 

1) Energy Methods. 

2) Finite Difference Method. 

3) Finite Strip Method. 

4) Finite Element Method. 

Some of these methods will be used in the analytical study of 

this research work, they will be illustrated and used to solve for 

the space frame and flat plate analyses. 

The Finite Element Method based on the Matrix Analysis Method 

is selected for its proven computational advantages over the other 

methods. 



1.6 Literature Review 

The topic of the relationship between the stability and the 

vibration of structures has a long history. It has been the 

interest of many scientists since 1929, when Grauers first 

studied the rectangular plate subjected to vibration. However, no 

conclusions were drawn out of that study. In 1936, Stephens (20J 

provided some useful results although his analyses were 

incorrect, as will be explained later. He was one of the first to 

attempt this kind of analysis with relative success. 

Chu (6J in 1949, had tested and confirmed the existence of a 

linear relation between the square of the frequency and the 

applied loads in the cases of a pin-jointed column and a two 

dimensional framework. 

Even though most of Chu's work (6J was useful and reliable, 

there st i 11 remains much to learn about the three dimensional 

frames and other more complicated structures (plates and shells). 

Stephens, in his 1936 paper, was one of the first scientists 

to present experimental methods for determining: 

1) The degree of end restraint of a structural member. 

2) The magnitude of the load by frequency measurement. 

He used D'Alembert's principal to obtain the vibration and 

deflection equations but, considered only the transverse 

translational inertia, neglecting effects due to any rotary 

inertias which might arise. This is considered to restrict his 

approach to only one class of deflection behaviour. 

11 



Starting from the partial differential equation of motion: 

+ - 0 eq.l.6 

which include. all material propertiea. def1ectiona. and the time 

variationa. lead. to a atraight-forward aolution of the above 

linear fourth order partial differential equation aa: 

y. A coa wt + B .in wt eq.l.7 

where. A and B are function. of X. and w. and w • 2 w f. 

Applying the boundary condition. he evaluated the unknown. A 

and B. and obtained a graph relating K to c. which 1. reproduced 

in f1gure-3-. 

Ie 

c Ilrl 

Stephen c-K relation. ref.(20J 

Fi&ure -3-
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Where, c is the end fixity coefficient, K is the frequency 

factor, 2wLZ f o!a, and a - Jii7P. 

However, Stephens's relationship between K and c is not 

unique, since there may be more than one value of K corresponding 

to each value of c. This might be expected from the physics of 

the problem, the following .argument to illustrate it is made as 

follows: 

It is feasible for two identical bars with differently 

restrained ends to have the same fixity coefficient c. However, 

different modes of vibration and hence, different frequencies 

would be anticipated. 

We considered a strut elastically restrained at each end, 

and assumed the restraint to be such as to give an end fixity 

coefficient c equals to 2.047 ( one end fixed, the other pinned ). 

The value of K for such a strut could be calculated. Assuming the 

same spring constant on both sides and the length of the strut to 

be 2L, and taking the origin of the coordinates at the midpoint of 

the strut~ then the boundary conditions will be: 

Y • 0 at 

and " , ElY .:J ( Y at 

where ( is the spring constant. 

According to Lurie (13) the general buckling solution of the 

fourth order ordinary differential equation is of the type : 

Y - A COli IS X + B Bin IS X + D X + F eq.I.8 
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where 15 1 • 
P 
EI and P • c 

By applying the boundary conditions the unknowns could be 

found easily and : 

fI.tC 
II - 2L 

rc 
cot fI --

2 

eq.l.9 

eq.l.l0 

But. from Timoshenko and Young (22J the general solution to 

the free vibration equation is given as: 

Y • A COB U + B Bin U +D COBh U + F Binh U 

where ~4_ 
..,z 
HI 

and _ is the mass per unit length. 

By applying the above boundary conditions: 

Then. «. 2EI>.. 
tan ~L + tanh ~L 

Since « should be the same for both cases. then: 

2 HI~ -tan ~L + tanh ~L 
flEI..IC 

2L 
fin 

cot 2 

Now. using the value of C - 2.047. then we find that-

K - (2~L)1 - 14.258 

14 

eq.l.ll 
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eq.l.13 

eq.l.14 



According to Stephens [20]. K - 15.421. which does not agree 

with equation 1.14. This may allow us to conclude that the single 

relation between c and K as accepted by Stephens in his earlier 

work [20J is not justifiable. and it suggests that the values on 

the curve might be higher. 

Lurie [12J 1952. did verify Chu's work [6]. checked the 

simply supported column using experimental tests. both (Lurie and 

Chu) obtained a good agreement for the plane frame analysis. but 

for the rectangular plate tests the extrapolated critical value 

appears to be lower than the exact (theoretical) value. The linear 

relationship between applied loads and the square of the frequency 

is no longer obtainable by Lurie for the isotropic plates and. to 

a certain extent. even for space frames. which leaves one 

suspecting either the accuracy of the instrumentations used or in 

the interpretation of conclusions drawn and results obtained. 

In 1955. Bishop [4J provided a numerical technique based on 

related tables to calculate the natural frequencies of vibrating 

plane frames. Some experiments were conducted to check the natural 

frequency of the plane frames. and his method was shown to 

facilitate the determination of the principal modes of vibrations. 

He admitted (4) that the natural frequency equations become 

extremely complicated as the number of beams embodied in the 

structure is increased. 

Bishop's method is claimed to be exact as far as the 

elementary theory (21) of beam vibration is concerned. but this 

method is indeed in contrast with the well known energy method 

based on Lord Rayleigh's principle [17). This energy principle is 

known to produce only an approximate solution. but a reliable one. 
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Bishop's method, when tested on symmetric and antisymmetric 

portal frames, found the first six natural frequencies which were 

in very good agreement with his own previous analysis. 

Nevertheless, all his and other previous analyses as well as 

the related tests were of extreme importance to the research on 

the frame structures at that period of time, but, unfortunately, 

for the space frame structures this method did not demonstrate its 

power to solve the dynamic problem (buckling and vibration 

combined). 

In 1964, Gladwell (8) solved the same problem as that done by 

Bishop (4) using another method, based on an assumed mode shape 

instead of Bishop's tables, and setting all his analysis in a 

matrix form. This matrix formulation has the advantage over all 

the previous analyses if digital computers are to be used. 

Stability and inertia matrices were emphasised in an equation 

of the type: 

( C - MZ A ) U - 0 eq.1.15 

Where, by the stability matrix C is meant the total of the 

elastic and the geometric matrices, and by ,the inertia matrix A 

the mass and inertia of the main structure, so that equation 1.1S 

is similar to equation 1.1. 

Kinetic and Potential energy were evaluated successfully, and 

it was demonstrated that. especially when the structure tends to 

be geometrically more complicated. the matrix form is more 

convenient to use. 
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CHAPTER 2 

EXPERIMENTAL PREPARATION AND EQUIPMENT USED 

2.1 Introduction 

Over the years, a few investigations had been conducted to 

correlate theory and experiments. Chu (6) was one of the first in 

trying to verify the relation between the applied loads and the 

frequency of vibrations; his investigation dealt only with two 

dimensional frames and portal frames. Although he obtained a 

linear relationship between the axial applied loads versus the 

square of the frequency ratio, these results were criticised by 

Lurie [11) in 1951 as being not so conclusive and general as one 

expects to achieve. Lurie [12] in a later paper stated that, from 

energy considerations, this relation could not describe the true 

behaviour which relates the two phenomena of buckling and 

vibration. However, no further discussions were obtained to 

Sustain these conclusions. 

Lurie [11] produced similar results as Chu (6) for the same 

portal frame structure and -then he attempted other types of two 

dimensional structures ( rigidly jointed trusses) for which he 

reported different conclusions. Furthermore, Lurie tried the same 

eXperiment on an isotropic plate subjected to axial loads and 
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caused to vibrate, concluding, again, that a nonlinear relation 

eXists between the applied loads and the square of the frequency 

of vibration ratio. 

One of the objectives of the present experimental work on 

three dimensional structures (space frames and isotropic plates) 

is to find a reliable relationship between theoretical predictions 

and experimental verifications, and to give the possible reasons 

behind the discrepancies found between theory and experiments. 

Sources of error in experimentation can be ·numerous. one 

should be careful at all stages of an experiment, by giving full 

attention to most particulars. 

Provided this is done, attention can be devoted to 

interpreting the results obtained from the graphs produced from 

the data obtained by both theory and experimentation. 

2.2 Material Properties 

As one of the sources of error mentioned in the above section 

(2.1), the material properties could, if not verified carefully, 

lead to differences between the final analytical and theoretical 

results. 

Property tests on the material used in these experiment8 gave 

a density and an ela8tic modulus which differed slightly from the 

values quoted in the literature. 

Direct tension tests were conducted on a material specimen 

USing an Instron Tensile Machine connected to an XY-Recorder Type 

26000 A3 by Bryans Industries to verify the material properties 

before testing starts. 

18 



2.3 Buckling Load Estimation 

After deciding on the geometry of the space frame (see figure 

7 ) to be tested, one could easily produce a rough estimate of its 

static buckling load by assuming the applied loads to act along 

the vertical axis of the frame so that each bar is loaded aXially 

and, hence, each bar is subjected to the same amount of stress. 

The buckling value for this space frame was estimated to be 

about 360 Newtons. The need to experimentally achieve equal axial 

loads in each member of the space frame led to the use of a 

spherical bearing located at the point of intersection of the axes 

of the members. 

To help in avoiding some problems which could have been the 

cause of some of the errors in previous works, problems such as 

the mass of the load associated with the main mass of the 

structure, and the presence of some undesired bending or torsional 

moments due to the load position being some distance away from the 

point of application of the applied load to the structure, 

especially when the system is vibrating, a spring is introduced to 

carry the applied loads, transmitting them to the point of the 

axes intersection. This spring is suspended from the spherical 

bearing. 

The point of the application of the load is very important if 

the presence of bending or torsional moments is undesired. When 

present, surely they will change the experimental conditions and 

results. 
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In studying the problem as conducted by Lurie [12] on the two 

dimensional rigid jointed truss and the isotropic plate, it was 

realised that part of the claim of nonlinear behaviour of the 

structure may have been caused on the one hand, by some bending 

moments due to the position of the applied loads, or, on the other 

hand, by the mass of the main structure being effectively 

increased by the applied load masses. 

2.4 Apparatus Used 

Since accuracy is a major objective of this research work, 

all the instruments used have been tested and calibrated. Some of 

these instruments had been calibrated by the manufacturer, but 

others had to be calibrated in the laboratory. The instruments 

used are: 

1) A Narrow Band Spectrum Analyser Type 2031, see figure-4-, 

which has been designed and tested by the manufacturer according 

to class II of lEe Publications 348. The spectral analysis takes 

place in 400 constant bandwidth lines across a frequency range 

which is selectable from 0_10 Hz to 0_20 KHz. The analysis takes 

place in real time for the whole frequency range. 

The resul ts produced could be averaged exponentially or 

linearly prior to displaying them on an 11 inches display screen, 

which may also be used to show the time function and the 

instantaneous spectrum. The instrument could hold the maximum 

spectrum when desired by the analyst, it is also supplied with a 

memory and could be connected to a computer and a plotter to plot 

stored data and analyse it. 

20 



The N.B.S.A. analyses the frequency by Fourier Transform 

Procedure (FTP) in the form of Discrete Fourier Transform (OFT) 

for a finite number of discrete samples. 

Narrow Band Spectrum Analyser 

Figure -4-

2) An Exciter is used in contact with the structure through a 

transmitter. and activated by either a Function Generator Type TWG 

501. or. for more precise harmonic waves. by a Beat Frequency 

Oscillator Type 1022. The input frequency of vibration could be 

varied continuously. 

3) Philips Multimeter Type PM 2521 Automatic. to check the input 

frequency. 

4) A light-weight piezo-electric Accelerometer Type B&K 4375. 

made of titanium. with given manufacturer calibration and other 

speCifications as shown below: 
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Acceleroaeter used 

Figure-5-

5) The accelerometer ill connected to a Low Frequency Charge 

Amplifier of Type B & K 2628. which has been calibrated and 

checked earlier in the laboratory. This charge amplifier 18 

directly connected to the Narrow Band Spectrum Analyser, both 

lnlltruments for. the output of the system. 

CLarge aaplifier 

Fisure-6-
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6) Strain gauges of Type Nll_FA_8_l20_23 of resistance of about 

120 n are located at various positions of the structure (use of 

these strain gauges is necessary in the case of the plate 

structures only). These strain gauges are connected to an 

extension box. 

7) An extension box, Peekel type SUD; only a quarter bridge 

gauge i8 needed for the analyses. thi8 b.ox is connected to a . 

strain gauge reader. 

8) A 8train gauge instrument. Peekel type 581 DNH. which reads 

each individual direct 8train value. 

2.5 Experi.ental Set Up Procedure 

The . 8pace frame structure to be tested is formed of four 

solid bars made of brass type BS 2874 H_Extruded. 470 mm long. and 

4.75 mm in diameter. All the four bars are rigidly connected at 

one end to a joint fitting in which a bearing i8 housed at the 

calculated point of intersection of the axe8 of the bars. The 

bearing supports a short link to which the spring i8 connected. 

The other end of each frame bar is rigidly fixed to a horizontal 

steel foundation plate with a circular hole at its centre to 

accomodate the load to pass freely. The shape of the complete 

space frame 8tructure is shown in figure- 7 -
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The space frame used 

Figure - 7 -
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A .chematic .ketch diagram of the .pace frame .tructure and 

all equipment connected to it i •• hown in the figure below: 

Input Seotion Output Seotion 
~r. ----________ -L ____________ ~, rr------------~~----------~ 

8.G. ~ Exe. Aeeel. ~ C.A. , f , ( , ~ J , 

. .. 

P.M. 
N.B.S.A. 

Structure 
, 

Scheaatic diagr .. of the experi.elltal .et up 

Figure-8-

* S.G •• Signal Generator. 

* £XC •• Exciter. 

* ACCEL •• Acceleroaeter. 

* C.A •• Charle "plifier. 

* P.H •• Phillip. Hultiaeter. 

* H.B.S.A •• Harrow Band Spectrua Analy.er. 
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CHAPTER 3 

MATRIX ANALYSIS AND COMPUTER METHOD 

3.1 Difference between Stiffness and Flexibility Methods 

The ready availability of digital computers has 

revolutionised the analysis and, to a lesser extent, the design of 

complex structures. They can be programmed to perform extremely 

complex calculations with the minimum input of base data. Matrix 

structural analysis based on the displacement method is 

particularly suited to exploit the power of computers, see ref (1) 

and (3). 

One of the advantages of the displacement (stiffness) method 

OVer the force (flexibility) method is that it is more conducive 

to computer programming. Once the analytical model of a structure 

has been defined, no further engineering decisions are required in 

the displacement (stiffness) method in order to carry out the 

analysis. In this respect it differs from the flexibilty method. 

although the two methods have similar mathematical forms. 

In the flexibility method the unknown quantities are 

redundant actions that must be arbitrarily chosen; but in the 

stiffness method the unknowns are the joint displacements which 

are automatically specified in the structure. Thus, in the 

displacement method the number of unknowns to be calculated is the 
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same as the number of independent components of displacement 

associated with the node (joint) system of the structure. 

Another attractive aspect of the stiffness method is that the 

technique varies very little as the structural form is changed 

from the two dimensional frame to the three dimensional frame or 

to even more complex structures such as plates or shells, while 

the flexibility method could widely vary. 

3.2 Matrices Use in the Finite Element Method 

It is the responsibility of the design engineer to devise 

arrangements and proportions of members that can withstand 

economically and efficiently the conditions anticipated during the 

life-time of the structure. The central aspect of this function is 

the calculation of the distribution of stresses within the 

structure and the displacement state of the system. It is useful 

to show and describe modern methods of performing this kind of 

calculation, in particular for a structure such as those used here 

(space frame and plate) under elastic linear behaviour where 

elementary theory assumptions are used, see [2] and [3]. 

It is recognized that for anything other than a one 

dimensional structure it is not likely to be easy to give an exact 

solution, therefore it is imperative to use numerical methods such 

as Finite Element Method or Finite Strip Method, where the basic 

concept is that any continua can be modeled analytically by 

subdividing it into elements, each of which can be assumed to have 

the same form of displacement function, considering, of course, 

the right set of boundary conditions. 
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Obviously the Finite Element Method and Matrix AnalY8i8 are 

complementary. The method8 of matrix algebra are u8ed to 

facilitate the analY8is of the numerous equation8 re8ulting from 

the application of the Finite Element Method of representing a 

structure. Thi8 relation i8 uaed in the theoretical analyais of 

this work. 

3.3 Ele.ents Used for Hatrix Analysis 

The main purp08e of thi8 work is the development and U8e of 

the stiffness IIUltrix for a twelve degrees of freedom member as 

repre8entative of an element of the space frame and as shown 

below: 

Space fr..evork el~nt 

Figure-9-

us 

The construction of the matrix require8 an understanding of 

the stress_strain behaviour in the structure, furthermore it is 

faci'litated by the U8e of energy princip1e8 and theorems. These 

concepts could have been thoroughly studied but, since they are 

described in many text8, only a brief di8cu88ion is pre8ented 

here. 
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3.3.1 Stress_Strain Relation 

Homogeneity and isotropy assumptions of the material used 

lead to the stress-strain relationship being defined by three 

properties which are: 

i_ E, Young's Modulus which is the ratio of direct stress to 

corresponding strain in a uniaxially stressed element. 

ii_ G, Shear Modulus, representing the ratio of shearing stresses 

to shearing strains. 

iii_ v, Poisson's Ratio, as the numerical value of the ratio of 

transverse strain to axial strain in the deformed uniaxially 

stressed element. 

3.3.2 Work and Ener&y 

The relationship between force and displacement at a point 

could be represented by the work done on a structure by the 

external forces when the point is given unit displacement. The 

strain energy the structure can gain for a given displacement is 

presented in the following equation: 

U • 1/2 (F) .6. eq.3.1 

Which is equal to the work done on the structure. Equation 

3.1 is true if the assumed linear relationship between stress and 

strain holds, in other words, if the small deflection theory 

assumptions are used. 
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3.3.3 Coordinate Transformations 

Very often in structural analysis, it is needed to resolve 

forces and couples into components along and perpendicular to the 

structure's axis.For the three dimensional structures a coordinate 

transformation procedure is applied. Direction cosines are the 

cosines of the angles between the member axis and the set of 

orthogonal reference axes, these will be used to form the 

transformation matrix needed. Usually they are denoted by letters 

such as I, _. n corresponding to X-, y-. z- axes respectively. For 

three dimensional structures a transformation matrix of 3-rows by 

3-co1umns is available in the literature. The direction vectors of 

the element axes are given in the following matrix which is the 

basis for the space frame transformation used to resolve both the 

forces and the couples. 

d. 1. m. n. 

d z - 1 z mz nz eq.3.2 

d, 1, m, n, 

Where each of 1i' mi, ni (i- 1,2,3 ) represents the direction 

cosines of the orientations of the element axes (local axes) with 

respect to the reference axes (global axes). 
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3.3.4 Direction Cosine Tables for the 3-D Space Frame Used 

Dividing each bar into two elements for simplicity, where 

both parts of each bar will have the same direction cosines as 

will be shown in the following tables. All values agree with 

orthogonality conditions. It is necessary that for each set a 

transformation matrix is assigned, but for the computer analysis 

this could be done automatically when dealing with many elements. 

R l ,. -

R, 7 -• 

o -0.866 

o 0.5 

-1.0 0 

o -0.866 

o 0.5 

-1.0 o 

0.5 

0.866 

o 

-0.866 

o 

-0.5 -0.866 0 

0.866 -0.5 o 

o 0 1.0 

0.5 -0.866 0 

R •• _ - 0.866 0.5 o 

o o 1.0 

Where. R1,j (1- 1,2,3,4, and j- 5,6,7,8) is the direction cosine 

matrix for elements 1 and j as shown above. The above are 

obtained from the general calculation of the direction cosines 

following the procedure based on an angle of orientation «, which 

denotes the angle between the two sets of axes having one axis in 

common. 
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II. • 

CxCy·in«-Czco.« 

lex' + cz ' 

Cz 

-CyCzco.«+ Cx·in« 

Icx' + Cz ' 

CyCz·in«+Cxco.« 

Ic z + C z x z 

U.ing the information of the above table. one could ea.ily 

produce table. in Rij a •• hown in the earlier table ••• ee Weaver 

et al. (23). 

--~-J-T,,'IJ:-1,--/-r+---"--I, 

" /"" / '". }./...... '// --__ -1' " 
-----__ :J/ 

~,~ 

J-, 
I 

, . 

Rotation of axe. for the .pace fra.e ~ber 

Figure-10-
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3.4 Concept of the Member Ela8tic Stiffne88 Matrix 

E8sentially, the concept of the elastic stiffness matrix can 

be understood by considering the simple case of a pin-jointed 

element of the frame structure. 

Assuming linear elasticity, one could use the following 

equations: 

from the equilibrium of forces: FI + F z - 0 eq.3.4 

where F is a force in the direction of the element axis and 

p08itive in the sence 1-2. 

the net extension of the bar: e • Lz - L. eq.3.5 

where La · ia the initial, unloaded length and L z is the final, 

loaded length. 

axial strain: 8 a - (Lz - LI)/La eq.3.6 

axial stress: 0a - E 8 a eq.3.7 

axial force: eq.3.8 

having followed all above steps, one end up with: 
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eq.3.9 

If one uses the transformation matrix (R), this analysis 

could be extended to the three dimensional structures. Without 

getting into further details, the elastic stiffness, the geometric 

stiffness, and the mass matrices which ' were used for our 

computational Finite Element Analysis of the space frame structure 

have been reproduced in the following pages in a lower triangular 

matrix form. 

34 



3.4.1 Elastic Stiffness Matrix for the 3_D Space Frame 

E .. 

Eu E:u 

Eu En E33 

E. I E., E., E •• S~tr1c 

ESI E., Es, E •• ES5 

E. I E., Ein E •• E •• E •• 

E71 E7, E 7• E74 E7• E7• E77 

E. I E., E., E •• E. s E •• E.7 E •• 

E,I E" E,. E'4 E,. E,. E,7 E,. E" 

E iol Eloz E,o, E,04 E I05 E,o. E,07 E,08 E,o, E,o,o 

Ell' E'12 Ell' E"4 EllS E'18 E1l7 E1l8 E", E",o Ell 11 

E", E,z, E." E IZ4 E lz • E lz • E,z7 E.,. E l " 
E.,.o E l , I. E. Z1Z 

ReferenceSi Cook (7) and Melosh (15) 

All terms must be multiplied by factor « • E lz/L', where, E 

i8 the Young's modulus, I z ia the moment of inertia with respect 

to the third axis Z, L is the element given length, p.L/KZt where 

Rz is the radius of gyration, q-GJe/El z , and C-Iy/l z • 

3S 



All above matrix terms Eij have the following values: 

Ell- l,zpz + 12 lzz + 12 CI, z 

Eza - 1,ID,pz + 12 lzmz + 12 Cl,m, 

E zz - ID,ZpZ + 12 IDzZ + 12 CID,Z 

ESt • n,l,p ' + 12 nzlz + 12 Cn,l, 

E3Z -Ja,n,pz + 12 mznz + 12 CID,n3 

E" -n, zpz + 12 nzz + 12 Cn,z 

E4, • 6 Llzl, 6 LClzl, 

E.z -6 Ll,·z 6 Lel z·, 

E., • 6 Lnzl, 6 Lelzn, 

E •• • 1,ZLZq + 4 LZCl zz + 4 LZ1,z 

E5I • 6 LIz·, 6 Lel,·z 

E5Z • 6 I...z·, 6 LCaz·, 

E5, • 6 Lnz·, 6 LCazn, 

E54 -It·tLZq + 4 LZCl z• z + 4 LZI,., 

E •• • .,zLZq + 4 LZCazz + 4 LZ.,z 

E., • 6 Llzn, 6 LenzI, 

E. z • 6 I...zn, 6 LCa,nz 

E., • 6 Lnzn, 6 Lenzn, 

E •• • n,I,LZq + 4 L'Cnzl z + 4 L'n,l, 

E •• • .,n,L'q + 4 lZC.zn, + 4 LZ.,n, 

E •• • n,ZLZq + 4 LZCnzz + 4 LZn,' 

E7 , • liz pZ 12 l"~ 12 CI,z 

E1Z • la.aPz 12 lz·z 12 CI'·3 

E13 • ltntpz 12 lznz 12 CI3n3 

E74 - 6 
LCIzI, 6 Llzl, 

E75 - 6 LCI 3ID z 6 LI ZID, 
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E76 • 6 LCI,n, - 6 LI,n, 

E77 • l,'p"+ 12 I,' + 12 CI, 
, 

Eat • l,m,p' - 12 l,m, - 12 C1,m, 

E., • m, 'p' -12 m,' 12 Cm,' 

E., • n,m,p' 12 m,n, 12 Cm,n, 

E •• • 6 LC1,m, 6 L 1,m, 

E.& • 6 LCm,m, 6 Lm,m, 

E •• • 6 LCm,n, 6 Lm,n, 

Ee7 • l,m,p' + 12 l,m, + 12 CI,., 

Eee • m, 'p' + 12 m,' + 12 Cm,' 

Eu • n,l,p' 12 n,l, 12 Cn,l, 

E" • m,n,p' 12 m,n, 12 Cm,n, 

E" • n, 'p' - 12 n,' - 12 Cn,' 

E,. • 6 LCI,n, 6 Ll,n, 

E,& • 6 LCm,n, 6 Lm,n, 

E,. • 6 LCn,n, 6 Ln,n, 

E'7 • n,l,p' + 12 n,l, + 12 CI,n, 

E,e • m,n,p' + 12 m,n, + 12 Cm,n, 

E" • n,'p' + 12 n,' + 12 n,' 

E,o, • 6 LI,I, 6 LCI,I. 

E,o, • 6 LI,m, 6 LCI,m, 

E,o, • 6 Ll,n, 6 LCI,n. 

E,04 • L'l,'q + 2 L'C1 z 
, + 2 L'l,' 

a,os • L'l,.,q + 2 LIClz., + 2 L'l,., 

a,oe - L'l,n,q + 2 L'Cl,DI + 2 L'I,D, 

£'07 • 6 LClzl, - 6 LI,l, 
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E,o. • 6 LCI,., 6 LI,., 

E,os • 6 LCI,n, 6 LI,n, 

E,o,o • L'I,'q + 4 L'CI,' + 4 L'l,' 

E," • 6 LCI,., + 6 LI,., 

Ell' • 6 LCm,., + 6 L.,., 

E", • 6 LC.,n, + 6 L.,n, 

E'14 • L'll.lq + 2 L'Clz.z + 2 L'l,., 

Ells • LZ.IZq + 2 LZa.z z +, 2 LZ.,z 

Elle • LZ.lnlq + 2 LZa.znz + 2 LZ.,n, 

EII7 • 6 LCI,·z 6 LIz·, 

Ell. • 6 La.z·, 6 l.az·, 

Ells • 6 La.zn, 6 L .,nz 

E IIIO • LZII·lq + 4 LZCl z• z + 4 LZI,., 

HIIiI • LZ.IZq + 4 LZa.z z + 4 LZ.,z 

EIZI • 6 Ln,lz 6 Lenzi, 

Elzz • 6 l.azn, 6 La.,nz 

Elz , • 6 Lnzn, 6 Lenzn, 

E IZ4 • LZ1lnlq + 2 LZClznz + 2 LZI,n, 

Elzs • LZ.lnlq + 2 LZa.znz + 2 LZ.,n, 

Elz• • LZnlZq + 2 LZCnz z + 2 LZn,z 

EIZ7 • 6 LCI,nz 6 Llzn, 

Elz• • 6 La.,nz 6 l.azn, 

E lzs • 6 Lenzn, 6 Lnzn, 

E lzlo • LZllnlq + 4 LZClznz + 4 LZI,n, 

E,zll • LZ·lnlq + 4 LZC .znz + 4 LZ.,n, 

E,zIZ • LZnlZq + 4 LZCnz z + 4 LZn,z. 
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3.4.2 Geometric Stiffness Matrix for the 3_D Space Frame 

Gll 

GZ1 GZZ 

GJI G,Z G" 

G. S G. Z G., G •• S~~r1c 

GSS GSZ Ga , Ga. Gss 

Gas Gaz Ga , Ga. Gas Gaa 

G7S G7Z G7 , G7 • G75 G7• G77 

Gas Gaz G., G •• G. 5 G •• G.7 G •• 

G,s G,z G" G,. G,s G,. G'7 G,. G" 

G SOS Gsoz GIO , G SO• GI05 G SO• G I07 G IO• G SO' 
G SOIO 

G ISI G IIZ Gil. Gil. Gsss Gsla G SI7 GSI • GSI , GSIIO GSSII 

G SZS Gszz Gsz , Gsz• Gszs Gsza G SZ7 G sz • G sz • G IZIO G SZSS GSZIZ 

References; Bathe et al.(3) and Melosh(15). 

All terms should be multiplied by factor ~ • oA/30L. where a 

is the applied stress. A is the cross sectional area of the bar •• 

and L is the element bar length. 
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All above matrix terms have the following values: 

Gil -36 (l,' + 1,') 

Gu -36 (l,., + 1,.:s) 

G" -36 (.,' + .,') 

Gu -36 (lzn, + l,n,) 

G" -36 (.,n, + .,n,) 

G" -36 (n,' +0,') 

G. 1 -0 

G., -3L (1,., I,.,) 

G., -3L (l,n, l,n,) 

G •• -4L'{l,' + 1,') 

GS1 
_ 3L (1,., - 1,.,) 

Gs , -0 

Gs , -3L (.:sn, - .,n,) 

Gs • -4L'(l,., + 1,.,) 

Gss -4L'(.,' + .,') 

G. 1 -3L (l,n, - 1,n,) 

G., -3L (.,n, - .,n,) 

G., -0 

G •• -4L'(n,l, + n,l,) 

G. s -4L'(.,n. + .,n,) 

G •• -4L'(n,' + n,') 

G7I --36{1.' + 1.'> 

G7 • --36(1,., + 1,.,) 

G7 • --36{1,n, + 1.n,> 

G7 • -0 

G7S -3L (1,., - 1, •• > 
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G7S - 3L (l,nz - 1 zn,) 

G77 - 36(l z
z + 1,z) 

G., - -36(l z• z + 1,.,) 

G. z • -36(mzz + .,z) 

G •• - -36(.znz + m,n,) 

l,mz) 

G. s • 0 

G.s • 3L (m,nz - .zn,) 

G. 7 • 36(l z• z + 1,.,) 

G •• • 36(·zz + m,z) 

G., - -36(l znz + l,n,) 

G. z - -36(.zn z + m,n,) 

0., • -36(nz z + n,z) 

G. 4 • 3L (lzn, l,nz) 

G. s • 3L (lDzn, m,nz) 

G.s • 0 

G. 7 • 36(lznz + l,n,) 

G.. - 36(·zn z + .,n,) 

G •• - 36(nz z + n,z) 

G,o, • 0 

G,oz • 3L (l,·z 1 z·,> 

G,o, • 3L (l,Dz lzD,> 

0'04 • _Lz(lzz + l,z) 

O,os • -Lz(lz• z + 1,.,) 

O,oe • -Lz(l zDz + I,D,) 

0 107 -0 
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GIOa • lL (lz., 

G tO , • lL (l,n, 

Gttt • lL (1,., 

Gt 12 • 0 

G t t, • lL (.,n, 

1,·z) 

1,n,) 

1,·z) 

Gtt4 • -L'(l,.z + 1,.,) 

Gtt •• _Lz(.zz + .,z) 

Gtta • -Lz(.znz + .,n,) 

Gtt 7 • lL (l,.z 

Gtt a • 0 

Gil' - 3L (.zn. - .,nz) 

GIIIO - 4L' (l z• , + 1,.,) 

G"'I _ 4L' (.z' + •• ') 

GI21 • 3L (l zn, - 1,n,) 

GIZZ - 3L (.zn, - •• n,) 

Gil. - 0 

G U4 - -LZ(lznz + 1,n,} 

G,z. - -Lz(.znz + .,n,} 

G,z. - -L'(nz' + n,z) 

G'Z7 - 3L (l.n, - l,n,) 

G,z. - 3L (.,n, - .zn,) 

G", - 0 

G",O - 4LZ(lzn, + 1,n,) 

Gil', - 4L' (.,nz + .,n,} 

G"IZ - 4LZ(n, Z + n,') 
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3.5 Consistent Mas. Matrix for the 3-D Space Frame 

mt t 

-Zt -zz 

-'t -.Z -.. 
-4t -42 -4. -44 

-St -52 -5' -54 -55 S~tr1c 

-St -.2 -.. "4 -SS -s. 

-7t -72 -7. -74 -75 -7S -77 

DIet Dle2 DIe, Dle4 lies lie. 11.7 IDee 

DI,t 11'2 ID,. -'4 1D'5 DI,. 11'7 DI,e ID" 

lit 0 t IIt02 Dlto. IIt04 Dlt05 IItos Dll07 1I10e 1110' Dli010 

Dlill lit 12 DIll. 11114 11115 ID t t. -117 1111. Dl t t, DllllO III t 11 

lit 2 t Dlt 2 2 IItZ, -t24 lit 25 IDt 2. -t27 1112. 1112' 1112 t 0 IIlllt IIlt21l 

Referencei Przemieniecki [16J. 

All terms IIUSt be multiplied by a factor 7 - pAL where. p 

is Dlaterial density. A is cross sectional area of the bar •• and L 

is the element bar length. 

The values of the terms appearing in the above lIatrix are 

calculated as follows: 
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. ,., 

-II • 1/3 

." • (13/35 +6I z /5ALz ) 

." • (13/35 +6Iy /5AL') 

1144 • J X/3A 

"55 • (L'/105 +2Iy /15A) 

.... • (L'/105 +2IZ/15A) 

-77 • "II .... · .. " 
." • II" 

-1010 • 1144 

"1111 • "55 

"1'1' • II •• 

-5' • -(IIL/210 +Iy/IOAL) 

m., • (1IL/210 + IZ/IOAL) 

"71 • 1/6 

... , • (9/70 - 6I z /5ALZ ) 

.... • (13L/420 - Iz/IOAL) 

-" • (9/70 - 6Iy /5AL') 

a,s • (-13L/420 + Iy/IOAL) 

11104 • J x/6A 

al U • (13L/420 Iy/IOAL) 

11115 • -(L'/140 + Iy/30A) 

-II' • (1IL/210 +Iy/IOAL) 

11111 • (-13L/420 + Iz/IOAL) 

11 1 ,. • -(L'/140 + I z /30A) 

all. • -(IIL/210 + Iz/IOAL) 
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All the other values of -ij not specified here are of zero 

value. The direction cosines Ii' -i' ni have been illustrated in a 

matrix form according to each element position earlier. 

It is worth emphasizing that Ix. I y • I z represent the mass 

moments of inertia for each element including all extra (linear 

and rotational) inertia effects on the structure produced by 

components forming the joints between the str-ucture members. 

3.6 eo_putation of the buckling load and the natural frequency: 

Buckling load and natural frequency of vibration of the frame 

were computed by the F.E.M. No allowance was. made for the slight 

increase in stiffness arising from the finite length of the joint 

fittings at the loaded and fixed nodes. Bearing in mind that the 

work in this section was primarily interided to establish 

principles and techniques. a very simple nodal pattern was used. 

resulting in each member of the framework being represented by two 

elements. 

3.6.1 eo_putation of the static buckling load: 

The computed values for the buckling load was 220 Newtons. 

This is very close indeed to the value obtained from the 

preliminary mathematical model analysis. as used to decide on the 

strength and stiffness of the loading spring and to estimate the 

frequency of vibration. see Appendix 1. 

3.6.2 Natural frequency computations 

In a similar computer analysis. the frequencies of the frame 

were obtained and the lowest amongst them (the natural or 

fundamental frequency) was obtained. The value of this frequency 

Was 32 Hz. which is very close to both estimated and experimental 

values. 
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CHAPTER 4 

EXPERIMENTAL AND COMPUTER RESULTS 

4.1 Experimental Results 

The experimental tests which have been conducted on the space 

frame structure, shown earlier in figure-7-, were made firstly, to 

find the resonant frequency of the structure in order to loca'te 

the position of any possible nodes to identify the structure modes 

of vibration. Various positions of both the exciter and the 

accelerometer were used and axial loads ranging from zero to 

slightly more than a half of the estimated buckling load were 

applied. The upper limit to loading was imposed in order to save 

the structure for possible confirmatory tests. 

As would be expected, the frequencies of the primary 

(fundamental) and the higher modes of vibration were found easily, 

using the facility of the frequency analyser, figure-4-, which is 

able to produce a full spectra of natural frequencies. 

Secondly, the tests were designed to study the nature of the 

relationship between the level of axial loading and the frequency 

of vibration of the frame structure. In presenting the results 

graphically the frequency ratio is based on the experimentally 

determined frequency at no load and the load ratio is based on the 

calculated buckling value in section 3.6.1. 

The following graphs, figures 11 and 12, clearly establish 

that the relationship between the axially applied loads and the 

square of the primary frequency ratio is very close to being 

linear, as predicted by the theory' and demonstrated numerically 
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for the primary mode of vibration by the approximate Finite 

Element Method which employs a displacement function based on 

simple bending theory. 

Thirdly, the experiments helped in predicting the (exact) 

buckling load for the whole structure by extrapolating a straight 

line connecting the points in the following graphs until it 

reaches the value of (w/wo)z • O. At that point the critical load 

is obtained; this load is found to be very close to the exact on~, 

within an acceptable error of 107. for both experimental and 

analytical results. 

Linearity between loading applied axially and the square of 

the frequency ratio holds very well even for the higher modes of 

vibration, but these relationships cannot give the primary 

buckling value, but instead give higher buckling loads 

corresponding to higher order of buckling mode shapes • 

It will be easy by inspecting the following graphs (more 

graphs are reported in Appendix 3) to find a nonlinear 

relationship between the loads applied and the square of the 

frequency ratio, as this is intentionally done experimentally and 

shown in related graphs, see figure-13-, in order to study the 

reasons behind the discrepancies reported earlier in the 

literature (11), (12), and (13). Sources of non-linearity could 

be: misreading the instrument data, external noises mixed with the 

structure vibration, material internal non-linearity such as 

composite materials, and by deviating the applied loads from being 

axial to being applied laterally. All the above are possible 

sources of non-linearity in the relationship between applied loads 

and the square of the frequency ratio. 
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Basically, it is emphasised here that most of the results 

obtained produce a linear relationship between applied load level 

and the squared ratio of the frequency of vibration, and this 

contradicts results obtained in earlier analytical and 

experimental investigations [12]. 

The following figures illustrate the experimental graphs 

obtained at different stages of the set up of the loads applied to 

the structure. 

Figure-ll-, experiments 4 and 7, emphasise the existence of a 

linear relationship between the aXially applied loads and the 

squared ratio of the frequency for the primary mode of vibration. 

Figure-12-, experiments 17 and 20, show the same phenomenon for a 

higher mode. A higher buckling load is obtained due to this higher 

mode of excitation. Figure-13-, experiments 21 and 22, show the 

non-linearity aspect as it appears to exist when applying the 

loading laterally instead of aXially at the intersection point of 

the structural bars, which are rigidly connected to each other. 

More of these experimental graphs are shown in Appendix 3 at 

the end of the manuscript. 

4.1.1 Experimental Graphs 

The graphs of figures-ll- and -12- (more graphs are in 

Appendix 3) represent the experimental results obtained from the 

Space frame analysis. The data of the first ten graphs. see table 

-1-. were taken at the fundamental frequency of vibration of the 

framed structure. The data for the next ten graphs were taken at 

approximately the second mode of vibration. In all these tests the 
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load was applied along the vertical axis of the structure and all 

bars forming the space frame are subjected to the same compre8sive 

loads. The data of the nonlinear graphs which are obtained by 

applying the loads laterally are of similar frequncy and mode 

ranges. 

To test the sensitivity of the experimental results to the 

positioning of the exciter and the accelerometer. different 

combinations of excited and instrumented bars were tried. a8 

reported in table-1- below. in each case the exciter or 

accelerometer being placed at the mid-point of the bar. This table 

summarizes the arrangements used and gives the natural frequencies 

for the unloaded condition. 

Experiment No. Frequency obtained Exciter on Acceler. 

1 33.75 Hz. 3 1 
2 30.00 Hz. 3 2 
3 31.00 Hz. 4 2 
4 30.00 Hz. 1 3 
5 28.75 Hz. 4 1 
6 32.50 Hz. 3 3 
7 32.00 Hz. 3 4 
8 32.00 Hz. 2 4 
9 31. 75 Hz. 4 3 

10 32.00 Hz. 2 1 
11 65.00 Hz. 3 1 
12 53.00 Hz. 3 2 
13 55.00 Hz. 4 2 
14 60.00 Hz. 1 3 
15 58.00 Hz. 4 1 
16 6~.00 Hz. 3 3 
17 63.50 Hz. 3 4 
18 64.00 Hz. 2 4 
19 62.75 Hz. 4 3 
20 64.00 Hz. 2 1 

Table-l-

On the experi.ental set uP. p08itioning of the exciter 

and accelerometer for the axial load case. 
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It is important to note that in the nonlinear graphs, see 

also Appendix 3, similar arrangements of exciter and accelerometer 

positioning have been followed. In figure-13- the sudden drop in 

the frequency ratio at about ~~% of the buckling load computed for 

the axial case can be understood on physical grounds as the 

buckling of one bar can occur without the whole stucture 

collapsing; the structure will still accept further loading before 

the final collapse since three out of four bars are still fully 

effective but, of course, the total (effective) stiffness of the 

structure has been significantly reduced. 

Static strain measurements were made on the compression 

member to substantiate this phenomenon, figure-lOa- shows a marked 

discontinuity in the strain-load relationship. 

Although referring to a particular case, these results 

demonstrate the possiblility of a nonlinear relationship existing 

between the applied loads and the ratio squared of the frequency 

of the structure if certain conditions are not met, such as; the 

applied load must be purely axial, the boundary conditions must 

not produce any subsidiary effects which can change the behaviour 

of the structure and the primary mode of the frequency of 

vibration must be easily obtained. 

Detailed discussion of the experimental graphs will be given 

in the next section in order to study all features of these 

eXperimental results clearly. 

c ... 
~ en 

XI81 

Load (N) 

Figure-lOa-
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4.1.2 Observations on the Experimental Graphs 

Analysing the experimental graphs in figures 11,12,13, and 

the graphs in Appendix 3, one can make the following observations: 

Experiments 1,2,3,ll,15,16,and 19 show a slight drop in the 

frequency immediately after the first load is applied, thereafter 

the system starts to stablise. This is possibly due to some 

prestress in the structure which could be partly due to forces 

introduced when connecting the bars to the base plate, partly due 

to manufacturing prestresses due to heating processes, and partly 

due to certain boundary conditions. 

Data of experiments 4 to 10, 12 to 14, 17 and 18 were taken 

at the best possible laboratory quietness and the loading was 

applied very slowly. 

It is apparent from the above graphs, in both modes (primary 

modes and higher modes) of vibration uBed, that the relation 

between the applied axial loads and the squared ratio of the 

frequency is close enough to be considered linear, and to support 

further this assertion, a linear regreSSion procedure was 

introduced to the experimental graphs to make the linearity more 

eVident to the reader. 

In the last graphs, experiments 21 to 27 obtained by loading 

the structure laterally, a similar drop in the frequency i. 

observed at the early stages of loading and a sudden higher drop 

in the frequency is again observed when the load in the mOBt 

heavily compressed bar is about ~O Newtons, and thiB is due to the 

early buckling of that bar leaving the structure to continue . to 
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carry more loading at a lower stiffness. Some of the next points 

are observed to be at higher frequency values. This is due to the 

nature of this type of lateral loading in which some of the bars 

will be axially in tension, where an increase in stiffness is 

predicted, and the others will be axially loaded in compression, 

where a decrease in stiffness is obtained. If the first effect is 

greater than the second then, as a resul t, an increase in the 

frequency is seen. 

Generally speaking, the variation of position of the exciter 

and the accelerometer do not appear to effect the results. 

Experiments 27 and 28 are made at the next higher frequency of 

vibration, show a continuing increase in the frequency as the load 

is applied. A study of the available literature suggests that this 

phenomenon has not been observed by other experimenters and no 

adequate explanation has been found in published theory. Possibly, 

since the structure is rigidly jointed at the point of the load 

application, bending moments have arisen from the antisymmetric 

load orientation which would have produced additional bending and 

torsional effects in the members. 

These speculations could account for the effective (total) 

stiffness increasing rather than decreasing linearly as the load 

level is increased. 

The foregoing work was preliminary to the main object of this 

investigation which was to examine the behaviour of vibrating flat 

plate structures subjected to uniaxial loadings under different 

boundary conditions. Part II of this work deals with the 

experimental tests and finite element computational analysis of 

simple plate structures. 



EXPERIMENTAL GRAPHS OF 
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EXPERIMENTAL GRAPHS OF 
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EXPERIMENTAL GRAPHS OF 
FREQUENCY-STRESS LEVEL RELATION OF THE 
LATERALL Y LOADED SPACE FRAME STRUCTURE 
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4.2 Finite EI~nt Results eo.pared with EZperi.ental Results. 

As explained earlier. a computer programme has been developed 

based on the Finite Element Method techniques using the stiffness 

method assumptions. where each bar of the three dimensional frame 

structure is divided into two equal parts. Matrices euch a. 

elastic. geometric. and mass have been calculated as shown earlier 

in chapter 3. These matrices are used in the programme to 

calculate the eigenvalues and associated eigenvectors. 

The results of the computer analysis for the frequency of 

vibration for the loaded space frame structure (dynamic analysie ) 

have produced an almost linear relationship similar to that 

obtained by experimental means and predicted by the theory (exact 

or approximate). When experimental reeults and computer results 

are compared on the same graphs. it is found that a close 

agreement does exist. the only very slight difference reported 

here being that the analytical resulte( Finite Element Method) 

produce a lower-bound solution while the experimental ones are of 

a slightly upper- bound solution. Extrapolating to hl/uo)Z • 0 

gives a buckling load which is close to that obtained in the 

static computer analysis. 
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4.2.1 Analytical Observations 

From figure -14-, the first graph represents the analytical 

solution for the relation between the applied axial loads and the 

squared ratio of the frequency at the lowest possible mode of 

vibration of the structure. This lowest is considered to be the 

fundamental mode of vibration. A linear relation does appear to be 

dominant and there is no need for any linear regression procedure 

to be involved. In the next graph, the frequency is measured at a 

higher mode of vibration, and the relation does not seem to be as 

linear as the previous one but, rather a series of flat curves. 

This is undoubtedly a consequence of a very simple nodal pattern 

used to represent the structure which inevitably will result in a 

less accurate prediction of the frequency of the higher modes of 

vibration. 

However, it is likely to be best represented by a linear 

relationship and a linear regression procedure has been used to 

give the straight line shown in figure-14-. 

These aspects have been discussed in section 4.1.2 in more 

detail. To summarise; our observations suggest that linearity does 

appear to be the case at the lower modes of vibration since then 

the modes of buckling and the modes of vibration seem to coincide 

but, for the higher modes, this linearity begins to deviate due to 

the factors explained in the previous sections. 

For the higher modes, the analytical analysis seems to rely 

on the relation between the applied loads and the elements forming 

the total stiffness matrix; if the relationship is linear then, a 

linearity between the applied loads and the squared ratio of the 

frequency will appear otherwise, the contrary is true. 
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4.2.2 ANAL YT I CAL GRAPHS OF 
FREQUENCY-STRESS LEVEL RELATION OF TIE 
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4.2.3 Comparative Graphs Discussion 

The following graphs illustrate the relationship between the 

applied axial loads and the square of the frequency ratio of the 

space frame structure as far as the analytical procedure is 

concerned, the modes of vibration are computed and related graphs 

are shown in the lower mode (fundamental) and a higher mode (first 

harmonic) of the vibration frequencies. 

The next four graphs are illustrated to show the good 

agreement between analytical and experimental analyses; some 

random experiments were selected for these comparisons at both 

lower and higher modes of vibration of the space frame structure. 

At the lower mode of vibration (fundamental mode) experiments 4 

and 7 are in good agreement with the computer values, there is a 

tendency for the experimental values to get slightly higher than 

the analytical values, but on the overall analysis, the agreement 

between the two results is very close. 

At higher modes (first harmonic), experiments 17 and 20 seem 

to agree with the computer values, but the tendency for the 

experimental values to diverge from the analytical values is more 

clear this time due to the suspected failure in matching between 

the experimental and the analytical analyses mode shapes at higher 

frequencies of vibration and at higher applied axial loads. 

Both situations are illustrated in the following graphs of 

figure-15- and figure-16- of section 4.2.4. 
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4.2.4 
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4.2.5 eo.puter Flow Chart 

FLOW CHART ON THE USE OF THE F. E.M. PROGRAM 
TO ANALYSE THE SPACE FRAME STRUCTURES. 

10 O ... T ... 
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I< 
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KM 
MASS M ... TRIX CAlCUl ... TION 

ASSEMBLY ROUlltE 

I<E1; I<GT, KST, I<MT 

.. NAG IS A ROUTINE ,. ... CKAGE USED 

TO EV ... LUATE EIGENV"'LUES AND 

EIGENVECTORS USING MATRICES 
sa REFERENCES 
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4.3 Conclusions and Discussions 

To conclude the work on the space frame structure analysed in 

part I, it can be affirmed that a relationship exists between the 

aXially applied loads and the square ratio of the frequency of the 

structure vibration, and this relation tends to be linear if the 

resulting experimental graph points are treated as such. by using 

a linear regression procedure, (Appendix 2), where some of the 

scattered points will on the average be aligned with the more 

linear ones. From these analyses we observe that this linear 

relationship gives a buckling load close enough (wit~in lO~ error) 

to the theoretical (exact) buckling load. 

From the analytical results using the Finite Element Method 

of analysis, we can confirm that for the lowest possible mode of 

vibration, the relationship obtained between the applied axial 

loads and the squared ratio of the frequency is linear but, for 

the higher mode of vibration case reported in figure-16- when 

higher values of loads are applied, this linearity tends to 

diverge due to an irregular change in the values forming the total 

stiffness matrix, ( Elastic Stiffness and Geometric Stiffness 

combined ), which can be explained as the change due to the 

variation in each value of the Geometric Stiffness caused by the 

change in the axially applied loads, and this change, is not of a 

constant factor on the overall spectra of loads applied. 

Comparing the experimental and the analytical results shows 

them to be very close (within 3~ difference) for both low and high 

modes of the frequency of vibration but, for the higher frequency 
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modes, both experimental and analytical ( Finite Element Method) 

analyses tend towards the nonlinearity due to the difference 

between the modes of vibration and the modes of buckling of the 

structure. 

Finally, both methods (experimental and theoretical) can 

produce a linear relationship between the applied loads and the 

squared ratio of the frequency if certain measures are taken, some 

of these precautions are summarized as follows: 

1) The applied loads must be applied aXially on each member of the 

structure, in our analysis this have been secured by introducing a 

spherical bearing at the point of the bars intersection where the 

load has been located. 

2) The loads must be applied statically in order to avoid any 

unwanted excitations to the system. 

3) The mass of the applied loads must not be associated in any way 

with the main structural mass. In our case we introduced a spring 

system in tension for this purpose. 

4) The stucture must not be prestressed or prebuckled before the 

analysis is started. 

5) Avoid any external excitations as much as possible in order to 

prevent any extra vibrations added to the introduced vibrations. 

6) The boundary conditions on the structure should work as 

designed to avoid any subsidary constrains on the system. 

7) Regarding the analytical results, (when F.E.M. is used), the 

more elements used the more exact the results will be. 

8) A check on the relation between the Geometric Stiffness and the 

applied loads is important to understand the true relation between 

the applied loads and the frequency of excitations. 
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9) The Mass Matrix used in the analysis was based on the 

distributed mass assumption which is more efficient than the 

method of lumped masses which proved to be less accurate in 

similar analyses. 

10) All matrices used should be based on the same assumed 

deflected shape function. and the small deflection theory should 

be considered in these analysis. 

Finally. an analytical graph is suggested to be used in the 

design process of a space frame structure under similar 

conditions. it gives useful information of the structure behavior 

at an early stage of the design process. 

Figure-17-

Suggested analytical graph 

for space frame structures 
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PART II 

STABILITY AND VIBRATION OF 

ISOTROPIC PLATES AND APPLICATIONS 

70 



CHAPTER S 

BACKGROUND AND LITERATURE REVIEW 

S.l Introduction 

External surfaces as well as internal parts of flight 

vehicles have been found to be susceptible to various types of 

aeroelastic instabilities, the most noticeable of which is 

flutter. However, flutter analyses are, to a large extent, 

dependent on the prediction of vibration characteristics of 

different structural elements, in particular, plates subjected to 

inplane loads, under various constraint conditions. 

The problem of determining the natural vibration 

characteristics of isotropic and. more generally, orthotropic 

rectangular plates, subjected to inplane loads in the presence of 

different boundary conditions, has been the subject of numerous 

theoretical investigations. 

There have been few experimental investigations due, 

pOSSibly, t~ the difficulties arising when attempting to produce 

specified boundary and loading conditions. 

The following chapters of this part deal with the effect of 

the stress level on the frequency of vibration of a rectangular, 

isotropic, thin flat plate axially loaded and under various 
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boundary conditions. Available research is found to have the 

major portion of it based on theoretical analysis while few 

experimental investigations have been reported. 

Experimental results obtained in this investigation are 

compared; first against theoretical results, then against 

analytical results obtained by computer analysis using the method 

of Finite Elements, and, finally, compared with the results of 

other investigators when available. 

The Finite Element Method, is presented in an easy and a 

simple method of programing which also provides some saving in 

computer storage space and time. The assembly routine of the 

elements is made as simple as possible by arranging that the 

digital computer does all the work. 

The elements used for the Finite Element Method are chosen of 

a rectangular shape, with four nodes located at the corners. This 

element shape is appropriate to the rectangular plates under 

consideration. Other element shapes could be employed for plates 

of different geometry or if holes or other material 

discontinuities are present. 

5.2 Literature review" Plate Buckling" 

The modern need and use of steel and high-strength alloys in 

the fields of engineering design such as bridges, naval ships, 

aircraft, and aerospace structures has made elastic instability a 

problem of great importance. 

In recent years practical requirements have led to extensive 

research and investigation, both theoretical and experimental, in 
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order to study the conditions governing the stability of plates 

and shells~ 

To provide a typical example which can be analysed without 

undue difficulty, a study of the relation of the aXially applied 

loads to the square of the frequency ratio of a rectangular plate 

is investigated experimentally and analytically. 

The problem of determining the natural vibration 

characteristics of an isotropic rectangular plate in the absence 

of inplane loads but with various boundary conditions has been the 

subject of numerous theoretical investigations, see reference (6). 

In fewer instances has the effect of inplane loads been studied. 

The more general cases of isotropic and orthotropic plates with 

elastically restrained edges have received even less attention. 

especially when dealing with the dynamical aspects of the problem. 

The most comprehensive treatment of the effect of inplane 

loading on the vibration of plates with elastically restrained 

ends is due to Schulman. 1945. who treated the case of an 

isotropic rectangular plate subjected to inplane forces with 

elastic restraints along the longitudinal edges. and with simple 

supports along the lateral edges. The constant inplane loads 

throughout the plate were assumed to be due to constrained thermal 

expansion of the plate. The exact natural frequency was derived. 

However. two assumptions were made, these being: 

1) that the mode shape remained unaltered with the increase of the 

load, thus obtaining a linear relationship between frequency 

squared and load applied (i.e. temperature variation). 

2) that an energy approach using the Lagrange equation was 

appropriate. 
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All the results are available in reference [61, in terms of 

frequency and temperature graphical relationships. 

Orthotropic plates under uniaxial and biaxial direct stresses 

were analysed first by Wittrick, [441, in 1968, by Williams [401, 

in 1974, and by both Wittrick and Williams, (41), [421, (45), [46)' 

and [471 from 1969 to 1983. 

But in all the available literature, the lack in experimental 

analysis is very evident. 

When studying stability and vibration, exact solutions are 

not always available, so that experimental verifications of 

approximate analyses become necessary. Unfortunately, either they 

tend to be costly or difficult to perform, especially when trying 

to explore ~he behaviour of complex structures. 

Most of the recent published research work has been concerned 

primarily with exploring the approximate analytical methods, and 

attempting closed form solutions by studying various methods. 

Among these analytical approximate methods, the Finite 

Element Method seems to produce very reliable information as long 

as the assumed boundary conditions (geometric and natural) are 

satisfied. 

5.3 Plate Stability 

For the calculation of the critical values of forces applied 

in the middle plane of a plate at which the flat form of 

equilibrium becomes unstable and the plate begins to buckle, one 

could follow the same analysis as that used for compressed bars. 

There exist many ways to investigate the stability of a thin plate 
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1) By assuming that from the beginning the plate has some 

initial curvature or some lateral (out of plane) loading. Then the 

values of the forces in the middle plane at which deflections tend 

to grow indefinitely are usually the critical loads. This method 

of analysis may incorporate nonlinear analysis, in which case it 

could produce only an approximate value, but, for our analysis, 

this last statement does not apply due to the linear assumptions 

used. 

2) Assume the plate buckles slightly under the action of forces 

applied in its middle plane, and then calculate the magnitude of 

the forces in order to keep the plate in such slightly buckled 

shape. The differential equation of the deflected surface in this 

case is known as: 

eq.S.l. 

Where Nx • Ny. and Nxy are the normal and shear loads. 

The simplest case is obtained when Nx • Ny • and Nxy must 

have constant values throughout the plate. In the general case, 

even though the problem gets more involved since variable 

coefficients may appear in the above differential equation, the 

solution concept is likely to be the same. 

3) The energy method can be used to investigate the plate 

buckling and stability. This method is quite useful in the ca8es 

where an approximate solution of the above differential equation 

is needed, or when the plate is reinforced by 8tiffener8 and it is 

required to produce a good approximation to the buckling load. In 

Such a case, we assume the plate is stressed by loads acting in 
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its middle plane and undergoes some small lateral bending 

consistent with the boundary conditions. Such limited bending cari 

be produced without stretching of the middle plane. and we need 

only to consider the energy due to the bending and the 

corresponding work done by the forces acting in the middle plane 

of the plate. 

Manelbetsch [25], in 1937. presented his results on the study 

of the inplane compressed plate. with all edges built in. by using 

two approximate methods. each of which produced an approximate 

buckling load. either higher or lower than the exact value reached 

experimentally. but. earlier than this work. Taylor. in 1933. 

using the power series method. obtained good results. Then. Faxen 

extended this method of the power series and obtained the exact 

solution before Levy [20] in 1942. who presented the exact 

solution based on the same power series as that used by Faxen. 

Weinstein and Trefftz. about 1950. independently have shown 

that Taylor's solution leads to a lower values of the critical 

load due to few terms used in the power series. 

Another approximate method of solution is the energy method 

first developed by Timoshenko [33]. This method has proved to be 

efficient in most stability problems with dependable results. 

The Ritz method has shown that problems of this type can be 

solved exactly if infinite series of the properly chosen functions 

are used. 

The values obtained for the buckling load by means of the 

energy method are of an upper-bound nature. meaning that the 

structure is put under more constraints than it should have been 

normally. while the values obtained by fewer series terms are of a 
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lower-bound nature when compared with the exact solution, due to 

the fewer constraints used on the analysed structure. 

It is reasonable enough to locate the critical load between 

the Taylor-Trefftz and Timoshenko values at all times as long as 

the structure is elastic, and obeys the classical 

assumptions. 
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theory 

4) The displacement method is a widely used method for Finite 

Element Analyses (see references (1], (2], (4], (13], (30], (41] 

and (50]), the same method is followed for the three dimensional 

frame structures and the isotropic plate analyses by reducing the 

problem to an eigenvalue problem which is easier to solve by 

numerical methods. 

Relations for the stability study of plates are similar to 

those reported in the stability study of two or three dimensional 

frame structures and, when based on the energy considerations, can 

be explained as: 
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a) If the work done by these forces is smaller than the strain 

energy of bending for every possible shape of lateral buckling, 

that is, 6W < 60, the flat form of equilibrium of the plate is 

said to be stable. 

b) If the work becomes larger than the strain energy of bending 

for any shape of lateral deflection, that is, dW > dUo the plate 

is then said to be unstable • 

c) Finally, at the instant at which the work done is equal to 

the strain energy of the system that is, dW • dUo the system is 

neutral and the load then acting is the critical load. 

78 



5.4 Calculus of Variations ( Applied Cases ) 

5.4.1 Stability of simply supported plates" Inplane Loads" 

It is easily shown that, by the varying the total potential 

wi th respect to the lateral def lection for a rectangular plate 

loaded in its plane, a partial differential equation identical to 

equation 5.1 in the previous section is developed. 

If we, for simpliCity, consider the case of uniform axial 

compression in one direction only applied to a simply supported 

plate, equation 5.1 will reduce to: 

eq.5.2 

Correspondingly, the total potential yields the following 

equation: 

U+V .(D/2)JJIV"oz +W"yy +2VozVyy -2(1-v)V"xy-(Hz /2D)V"zldzdy 

eq.5.3 

If we assume the deflected shape according to the boundary 

conditions as: 

w - ~ 81n (..x/a) 81n (nry/b) eq.5.4 

which satisfies all geometric and natural boundary conditions, a 

and b being the length and the width of the plate while m and n 

denote the number of half waves in the x- and y- directions into 
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which the plate buckles then ~x - a/- and ~ - bin represent the 

length and the width of one half-wave in the x- and y- directions. 

as shown in the following figure. 

Balf-vave. in x and y directions 

Figure -19-

Substituting the deflected shape function into the total 

Potential expression in equation 5.3 and integrating gives: 

then. by taking the variation on the total energy with respect to 

Aw.n we obtain: 

eq.5.6 

It will be noticed that. for this particular case. -the sallie 

t"esult can be obtained by direct substitution of the assullled 

deflected shape function into the lateral equilibriuIII equation. In 
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other words, the assumed deflected shape function is a solution of 

the equilibrium equation 5.1. 

Hence, the expression for the buckling of the plate out of 

its original plane can be obtained simply by establishing the 

values of • and n which render Nx a minimum • Two specific cases 

reflecting a widely different plate geometries are of practical 

interest and therefore, they are illustrated by considering a 

rectangular plate with sides a and b as fOllows: 

Case 1, a < b, 

This case represents a short and wide plate for which the 

minimum value of Nx is obtained by setting. • 1 and minimising Nx 

with respect to the buckle ratio a/~y in the equation: 

eq.5.7 

The minimum value is given, obviously, by setting a/~y • 0, thu8i 

eq.5.B 

This result i8 analogous to Euler buckling load for a slender 

strut. The plate effect appears in the factor (l-u')-I, by 

rewriting equation 5.B in the formi 

eq.5.9 
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by introducing an inertia term I y • we get: 

eq.5.10 

Where, Iy - t'b/12 as the moment of inertia. 

ease 2, a > b, 

This case represents the other extreme, a narrow strip plate, 

for which the minimum is obtained by setting n • 1 and minimising 

the equation with respect to a/).x' This leads to the following 

result: 

eq. 5.11 

where, « - ~/b, and then, by taking the variation with respect to 

«. one gets: 

eq.5.12 

The real root which corresponds to the minimum is « - 1 and then: 

eq.5.1J 

The same result is obtained when we deal . with a square plate 

(a • b). In fact, as long as m has an integral value, the critical 

stress (ocr • Nx/t) is the smallest stress which can cause the 

plate to buckle. More generally, for plates with alb other than 

integral, the square buckle pattern is precluded and a somewhat 

82 



higher ~ritical stress could result. However. the discrepancy 

diminishes rapidly with the increasing of alb ratio and becomes 

negligible at about alb. 4. 

5.4.2 Stability of the Plate of Boundary Conditions Other 

Than All sides Simply Supported ( Uniaxial Compression ) 

a) Plate loaded on the two clamped edges. while the other two are 

simply supported: 

The solution to this case has been obtained by Leissa (19) 

using the following form for the deflected shape : 

v - f(x) sin (ry/b) eq. 5.14 

oc ~fNtr-

r s 

l s 
X 

Figure-20-

The assumed equation must satisfy the geometric boundary 

conditions. i.e •• f(x) • 0 and f'(x) • 0 at x • 0 and a. 

When we substitute into the total potential energy equation. this 

leads to: 
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U+V - (Db/4)I'f'" +(w/b)'f' +2v(w/b)'f"f+ 2(1-v)(w/b)'f" 

-(Nx /2D)f"Jdx 
eq.5.15 

Applying the variation with respect to f following the 

variation equation in the form: 

6f(U + V) - 0 eq.5.l6 

Equation 5.15 and 5.16 upon integration by parts. taking in 

consideration the geometric boundary conditions. lead to the 

following ordinary differential equation: 

fe"~, + A' fe, + 8 4 f • 0 eq.5.l7 

where. A' .( Nx/D ) - 2(w/b)' and 

, 
By using Laplace Transformations with F(O) • 0 and F (0) • 0 

as the new boundary conditions at x • 0 and then using the 

Laplace inverse we get: 

f(x) • (Fl(cos cx - cos dx)+F2(1/c sin cx - ltd sin dx»)/(dz-c Z ) 

eq.5.l8 

Again.using the boundary conditions at x • a will lead to two 

simultanous equations in Fl and F2. and for these latter to exist. 

the determinant of the coefficients must vanish. thereby leading 

to the stability determinant: 
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(coa ca - coa da) (lIe ain ca - lId ain da) 

- 0 

(-c ain ca + d aln da) (coa ca - coa da) 

Expanding the determinant and simplifying the results through 

trigonometrlc identities we get: 

4 + (K -4) coa (c+d)a - K coa (c-d)a - 0 eq.S.19 

where, K is larger than 4 and d and c are always real with: 

eq.S.20 

and, eq.S.21 

The buckling equation 5.19 can be solved for the lowest value 

of K corresponding to a given ratio alb yielding a buckling 

coefficient and hence, giving the critical value of axial load Nx • 

As an example, for alb ratio of unity ( square plate), the 

critical value of K • 6.7432, which is the same as the exact 

solution obtained by Timoshenko (33) on the basia of solving the 

partial differential equation S.2. 

For any value of the ratio alb, the wave form but, of course, 

not the amplitude of the buckled plate, can be ascertained from 

the funct ion f(x). Naturally, as the plate becomes longer, more 

and more buckles will appear. 
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When alb > ~ for inatance. the aolution indicates that K - 4. 

this meaning that the plate ia long enough and the effect of the 

clamped loaded edges becomes negligible. 

For alb -1. where only one wave will appear in each direction 

one can assume f(x) - A sin wx/b as in equation 5.19. this leads 

to ~ - 6.75. which is very close indeed to the exact solution. 

b) Isotropic plate loaded at two siaply supported edges. the other 

two edges are cla.ped: 

oc ~fNtr-

r c 

l c 
x ., 

Figure-21-

One can assume the following deflected shape function: 

W - A. sln(arx/.)(1- cos(2wy/b» eq.5.22 
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and following the same procedure as in section 5.4.2 (a) leads to: 

K • 1+ 8/3 «2 + 16/3 «4 
«Z 

eq.5.23 

« - ~x/b' and ~ is the buckle half wavelength in x-direction. 

By letting _ • a/be, for square plate (alb • I), it gives the 

following table: 

- ICscr 

1 9.0 
2 ' 8.0 
3 12.3 

Table -2-

The approximate critical value for X for a square plate is 

8.0 (K • 8), while the exact value is K • 7.69. 

To conclude this discussion, it is important to note that the 

knowledge of the buckled shape for the previous problems could 

lead to a precipitate choice for the half wavelength _ • 1 for 

both cases, but, a8 has been shown, the smallest value of the load ' 

corresponds to _ • 2, two half wavelengths between the simple 

supported edges. 
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c) Rectangular plates having two opposite sides si.ply supported. 

the other two edges .. y have any type of constraint: 

For uniform inplane forces, equation 5.22 still applies for 

this case when the edges X • 0 and x • a are simply supported and 

the other two edges are open to any constraint as shown, see 

Figure -22-. A deflection function which satisfies the boundary 

conditions of zero deflection and bending moment along the edges, 

in general, is given by: 

W(x.y) _ t Y.(y) sin (<<X) eq.5.24 

where « _ .. /a. Using equation 5.24 in equation 5.15, then 

applying equation 5.16 yields: 

where m • 1,2 ••••••••• m • 

This differential equation has a general solution of the 

type: 

Y. _ "- sin •• y + a. cos •• y + C. sinh "y + Da cosh "y. 

eq.5.26 

where 

eq.5 . 27 
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eq.5.28 

It is seen that equations 5.25 is exactly of the same form as 

for the case of an isotropic plate investigated in references [6] 

and [12], the only difference being is the definition of the 

parameters •• and .. • 

The standard procedure is to satisfy the boundary conditions 

along the other two sides y • 0 and y • b, whatever they may be. 

Thie is done by the substitution of equation 5.26 into these 

conditions. The determinant of the resulting four homogenous 

equations in ~. a.. c.. and n. is then set equal to zero for a 

non trivial solution. 

Apparently, the foregoi~g procedure has not been followed 

thoroughly in the literature, as will be seen from some numerical 

results presented here. 

The boundary conditions of plates having loads acting on the 

edges are different than those of the unloaded plate edges because 

of the component of inplane force which acts normal to the 

deflected middle surface of the plate. That is, the transverse 

edge reaction is as explained in reference (19]. By looking at 

equations 5.27 and 5.28, it can be seen that the parameters •• and 

•• can be of positive, zero, or complex values. The solution of 

equation 5.26 in the existing literature is based only on the 

Positive solution. No study is known in which an understanding of 

the character and range of applicability of the other forms of the 

solution has been accomplished. It appears that very little effort 

has been made to obtain the other possible solutions of the 

problem. 
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Further study of this subject, considering all possible 

values of the parameters of the obove equations, would be useful 

to understand them and to see their practical applicability on the 

stability of structures. 

5.5 Literature Review" Plate Vibration" 

The natural frequency of a rectangular plate wi th ei ther 

clamped or simply supported edges is readily available. However, 

the fact of the existance of a relation between this natural 

frequency and the level of the stresses in the plate could in some 

situations be very important. Lurie (24) 1952, showed how the 

fundamental frequency is eaSily determined as a function of the 

rectangular plate buckling factor K. This had been achieved simply 

by assuming a sine function in a selected direction (i.e. 

x-direction ) so that the buckling differential equation takes the 

form: 

+ ( ) f - 0 eq.5.29 

where Nx is the only applied load. 

In a rather similar way, the corresponding vibration equation 

could have the following form: 

Where p is the mass per unit area. 

P ",z 

D ) f - 0 eq.5.30 

By applying the boundary conditions to the general solution the 
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critical buckling coefficient K is found in the following 

equations: 

eq.5.31 

K 
eq.5.32 

Equation 5.32 will provide the natural frequency, this is 

done by the use of either NACA reports or Timoshenko Theory (33) 

in order to obtain the value for K. 

According to Lurie (24), the vibration problem does differ in 

one aspect from that of buckling, that is to say; the fundamental 

frequency always corresponds to m • 1. Hence, the last equation 

becomes: 

K 
eq.5.33 Cab)Z 

This may not correspond to the lowest value of K for a given 

aspect ratio of the plate (a/b). where a and b are the dimensions 

of the plate, whereas in the case of buckling _ is always chosen 

to give the lowest value of the coefficient K. 

Regarding the plate vibration, D. Young (49) in 1950, 

selected the Ritz method for a rectangular plate analysis to 

produce an upper-bound solution, this is to say that Young's 

natural frequencies are higher than those of the exact solutions 

for the same plate under the same conditions. The method seems to 

work but very lengthy calculations need to be performed and there 

are preferred boundary conditions. 
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The Ray1eigh-Ri tz method was app1 ied by S. Durvasu1a et a1 

(8) in 1967. and an analogy between the vibration problem and 

buckling under uniform compressive loads was obtained by simply 

evaluating the corresponding natural frequency from the exact 

solution. 

This method is purely theoretical and in the case of our 

study there will be a parallel to it experimentally as well as 

theoretically. 

The Rayleigh-Ritz and Ga1erkin methods were compared (8) to 

confirm that the Rayleigh-Ritz method is consistently better than 

the Ga1erkin method. However. the tendency is for both methods to 

converge towards the exact solution as the energy parameter is 

varied. Each method will approach the exact solution from a 

particular direction. one ( Rayleigh-Ritz ) is an upper-bound 

while the other ( Galerkin ) is a lower_bound. 

Vibrations of clamped plates have been investigated by 

Laura (16) 1974. using simple polynomials and the Ga1erkin method 

to determine the response of a thin. elastic rectangular plate 

clamped along the boundaries and subjected to sinusoidal 

excitations. This work could be applied to different categories of 

plates and to different applied loads. Laura's work (16) showed a 

good agreement between approximate and exact values under certain 

conditions. 

Correlation between orthotropic and isotropic plate 

assemblies was studied by W.H Wittrick and Williams (47) 1974. 

Subjecting the plate to uni-axialand bi-axial stresses for 

different end conditions. 
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This work achieved a relation between the buckling 

coefficient K and the side ratio C as shown in the following 

equation: 

It - + C ( I - -.~D-wI_Z_ 
J DIDz 

) eq.5.34 

where C - 2.4 for the case of ends simply supported and sides 

clamped, and C - 2.46 for the case of all edges clamped, see 

ref. (44) • 

5.6 Vibration of Rectangular Plates 

5.6.1 Orthotropic Considerations 

The differential equation of motion of a plate is expressed 

in general as follows: 

eq.5.35 

Where, Dx. Dxy. and Dy are the constants of the rectangular 

orthotropy, and p is the mass per unit area. 

There are few published results, Leissa (19), gives a 

solution for the plate vibration when both inplane forces and 

orthotropy are present. The inplane forces Rx. Nxy and Ny are 

assumed to be functions of only the spatial coordinates x,y (or 

R,e in the case of polar coordinates). That is, they do not depend 

either upon time or upon the transverse (out of plane) deflection 

w. Further assumptions: 
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1) The vibration is assumed to be free. 

2) The equations of motion are assumed to remain linear. 

The inplane forces which are not depending on W could be 

realised in one of the following ways: 

1) The boundary conditions are with no fixity in the plane of the 

plate. 

2) The deflection is sufficiently small relative to the initial 

tension or compression in the plate so that the inplane forces are 

not significantly effected. 

Here, the plate equation is solved considering the general 

case in which there is orthotropy, inplane loading and vibrations, 

assuming the small deflection theory to hold for the analysis. 

To solve this equation, we introduce an approximation such 

as: 

W(x.y.t) - A (x/a) B (y/b) e iwt eq.5.36 

where, Y is the natural frequency, A (x/a) and B (y/b) are the 

mode shapes that satisfy the boundary conditions of the sides 

parallel to the x- and the y- axes respectively and which have to 

be determined. 

Only for the special case of two opposite edges simply 

supported is an exact solution known. For all other cases an 

approximate solutions will suffice. Using approximate methods such 

as Galerkin's which reduce eqation 5.35 to the following ordinary 

fourth order differential equation: 
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x"" «() - 2 .2 ~ X"«() - .4 B X«() • 0 eq.5.37 

where ( • x/a. 

eq.5.38a 

and eq.5.38b 

One way of solving the above equation is to assume (16J: 

X«() • Xa + Xb eq.5.39 

Where Xa and Xb in the above equation are the roots of the 

characteristic equation. More details of the solution of this 

problem are reported in reference (19J. 

5.6.2 Isotropic Considerations 

It is emphasised that the inplane forces are generally found 

first by solving the plane elasticity problem for the known 

boundary values of Nx • Nxy • Ny. If these quantities are constant 

around the boundary. it is generally accepted that they are 

constant throughout the plate as well. After some necessary 

8implifications, the assumptions of isotropy will reduce equation 

5.29 to the following equation of motion: 

eq.5.40 
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where p is the mass per unit area. 

Assuming sinusoidal response (W • W Bin .. t), the above equation 

becomes: 

eq.5.41 

where, W • W(x.y). Equation 5.41 can be factorised in the 

following relation: 

eq.5.42 

where, eq.5.42.1 

eq.5.42.2 

eq.5.42.3 

and, eq.5.42.4 

Results were found in the literature for all the 21 possible 

combinations of the boundary conditions for isotropic rectangular 

plates, with or without the presence of inplane forces. As will be 

shown later, published results exist for only a few cases where 

inplane forces are present. 

To illustrate the extreme cases,equation 5.41 could be again 

rewritten as: 

eq.5.43 
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where, HI - Hx •• z· Hy • Hxy·O. and k4_ pwz/D, when more than one 

inplane loads are present. In this equation: 

y 

x 

Figure-22-

c..e a) Rectangular plate. having all .ide •• i_ply .upported: 

eq.5.44 

which. clearly .ati.fie. the boundary condition. of the plate 1n 

the above figure, Lei8sa(16J has .hown that u.ing equation 5.14 in 

eqUation 5.13, will yield the following frequency equation: 

eq.5.45 

eq.5.46 
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which is the solution to the unloaded plate. 

2) As either HI or Hz or a combination of them. becomes large and 

negative. (level of the compression). the frequency tends to 

reduce towards the zero value. the loading at zero frequency will 

be the critical buckling loading. This parallels the behavior of 

the space frame structure experimentally covered in detail in part 

I of this thesis. For example. with Nz • 0. the critical value 

given by the equation is: 

eq.5.47 

3) If both HI and Hz are compressive. it is seen from equation 

5.45. that the fundamental modes of vibration do not necessarily 

OCcur when m • 1 and n • 1 but depend upon Ns • Nz and the ratio. 

This is shown clearly in Herrmenn I s analysis [II] which states 

that the fundamental frequency for the critical load will always 

occur when n • 1. but not necessarily when m • 1 when alb> 1 • 

meaning that the length of the plate is a factor in the selection 

of the mode of vibrational displacements. 

Lurie[21] and [24]. was considered one of the earliest 

sCientists to conduct experimental tests on plates in vibration. 

but his reported nonlinear curves relating the square of the 

frequency to the inplane applied loads increased the necessity for 

more investigation in the theory and in the related experiments in 

order to verify the correctness of his findings. 

The results obtained in part I differed from those found and 

predicted by experimental ists in the past. This suggestes that 
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more experimental tests on other types of structure are to be 

desired. The isotropic plate problem is investigated theoretically 

and experimentally following the same line of assumptions. 
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CHAPTER 6 

THE FINITE ELEMENT METHOD 

6.1 Review 

The Finite Element Method has been and will be mostly studied 

and used to produce solutions as close as possible to the exact 

ones; these solutions can be more or less accurate depending on 

many.factors, some of which are controllable such as the selection 

of the shape functions, and the selection of the number of 

elements and their shape and size, others are not easily 

controlled such as the software speed, and the storage limits. 

Many authors have used this method to solve very complicated 

problems which are not easily tackled by simpler means, some of 

these solutions were tested and proved to ' be reliable, while 

others are not. 

A historical review of this method of analysis is valuable to 

emphasise that it has a long established and a very reliable 

ancient mathematical background. In the seventeenth century Newton 

(1643-1723) introduced the calculus of variation which forms the 

core for this present method, Euler (1707-1783) ,and D' Alembert 

(1717-1783) have treated the variational principle from an 

integral point of view, as D'A1embert defined that in the 

"Traite'" in 1743, see reference [43]. 

100 



When we deal wi th structures, nonlineari ties could arise 

ei ther from the geometry of the problem or from the material 

properties. These nonlinearities make it difficult to use ordinary 

lin~ar analysis, so it was a necessity to introduce other methods 

see [1], [4], and [50], to overcome this problem, the only price 

paid was in the accuracy of results obtained, which to a certain 

extent could be accepted. 

To follow this argument in more detail one could refer to 

historical papers which cover all aspects of Finite Element 

Methods, see reference [43] for more details. Most recently 

Argyris [2] underlined the great achievement in using matrices in 

the field of structural analysis by reducing the stability and 

vibration problems to a simple eigenvalue problem. This work, when 

introduced and applied by Argyris himself, produced great 

advantages to the analyst and to the digi tal machines as well. 

Gere and Weaver [9], produced a similar treatment of the problem 

Using the matrix analysis as the basis of the method of informing 

the computer regarding the problem to be solved. In their books 

[9] and [37] they introduced and used special codes such as 

NASTRAN to solve for the stress analysis of elastic or plastic 

materials. 

On the theoretical background, we are not to forget the 

advances achieved by Timoshenko and Gere [33], as they produced a 

reliable reference on stability analysis of structures. This 

reference is used as a guideline for this research work, 

especially during its first stages in order to develop an approach 

based on a sound and a well accepted theory. 
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The essential similarity of buckling and vibration analyses 

by the Finite Element Method is well established. 

The wide range of use of the Finite Element Method is seen in 

its many successful engineering and science applications, see 

refrence [SO) for further details. 

6.2 Comparison between the F.E.M. and other Analytical Methods 

The following scheme is made available to show the position 

of all the various methods and their classifications depending on 

historical origins, see reference (4). 

Method of Analysis 

Analytical Methods Nu.erical Methods 

I 
EXact Methods 
( separation 
of variables 
and Laplace 

transformation 
methods) 

Approx.Methods 
(Rayleigh-Ritz 
and Ga1erkin 

methods) 

Numerical 
solution 
of the 

differential 
equations 

I 

I * F.S.M 

Numerical 
integration 

Finite 
differences 

I 
F.E.M** 

* F.S.M. is the abbreviation of the Finite Strip method and, 

** F.E.M. i~ the abbreviation of the Finite Element Method. 

102 



6.3 General Steps towards the F.E.M. Programs 

The solution of the general continuum problem by the Finite 

Element Method always follows an orderly step by step process. The 

following steps are followed in constructing the computer program 

needed for the analytical solution of the dynamic problem: 

Step 1). Discretisation of the structure: 

A definite number of the structural elements is obtained by 

subdividing the whole structure into small elements. The element 

number. type. size and their arrangement has to be decided in this 

phase. 

Step 2). Selection of a proper interpolation: 

or displacement function: 

This usually takes the form of a polynomials. the choice 

being made to give a reasonable accuracy of the solution to the 

problem. 

Step 3). Derivation of element stiffness matrices: 

From step 2. the stiffness matrices are computed either from 

equilibrium considerations or by using a suitable variational 

principle. 

Step 4). Assembly of the matrices: 

This is done by adding the element matrices according to the 

POsition of each element node and the constraint conditions around 
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it. The assembled matrices are often called global or total 

matrices. 

Step 5). Solving for the unknowns: 

Either by direct methods or by using available subroutines 

designed to handle the size of the problem; the NAG subroutines 

were used for this research work. 

6.4 Finite Ele.ents and Rectangular Plates 

Observing the selection of element type. one finds that the 

geometry of the structure dictates to a certain extent the shape 

of element to be chosen. In a very general way the triangular 

element is the common selection for almost any problem including 

thin plates. Sometimes a combination of triangular and rectangular 

elements is used. in other situations only rectangular elements 

might be prefered. Our case of analysing the isotropic rectangular 

plates does not contain any geometric irregularities (such as 

irregular shapes. the presence of holes. or discontinuities). so. 

accordingly. the rectangular element was chosen to represent the 

plates under investigation. Of the various sequences used to 

number the element nodes. to represent linear displacements or 

rotations. some are seen to be advantageous than others. We 

selected Przemieniecki's [29) numbering system due to the proven 

versatility of this numbering of similar problems in the digital 

machines. 

The following figure shows the set up of the element axes and 

numbering sequence which is used in this analysis. 
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__ ~a ________ U~~ 

Rectangular plate ele.ent with 

node displace.ents in bending 

Figure-23-

By selecting the plate element as in figure 23 ensures at 

least an approximate continuity of the slopes • The element nodal 

di.pla~ement vector can be represented by: 

eq.6.1 

The following polynomial expression is used. see reference (50). 

to represent the out of plane displacement of the element: 

eq.6.2 

Introducing the nodal coordinates into equation 6.2 and 

aSSUming ax • V. y • and 0y • V. x • then one can obtain: 
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f u Ie - [ elf • I eq.6.3 

where [ C I. is dependent upon the nodal coordinates. this 

equation can be written in the following form: 

eq.6.4 

to provide the unknown values of i • I. 

The elemental displacement function is dependent on iule: 

eq.6.5 

where [PI. is often referred to as the shap~ function. and matrix 

[L) has the form 

eq.6.6 

Once. the elemental displacement function ."Je is obtained. we 

could generalise the strain-displacement. and the stress-strain 

relations as: 

eq.6.7 

where [B) is the curvature matrix obtained by differentiating 

equation 6.S and using the: 

* iole - (E HE Ie eq.6.8 
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Here the stresses and the strains are generilised. and ~a.e is a 

row of stresses. 

where 

and (E*] • (E/(l-v Z ») 

1 

v 

o 

v 

1 

o 

o 
o 

(i-v)/z 

eq.6.9 

eq.6.10 

The elastic rigidity matrix for an isotropic plate is derived as: 

ID] - t'/12 IE·) eq.6.11 

All the above manipulations are very useful for the 

calculation of the stiffness matrices for the elements. as for the· 

elastic stiffness for instance. one could compute only: 

eq.6.12 

~o. -ID) (8) ~u. eq.6.13 

F • II ~ T D B u dRy eq.6.14 

F • ff (B)T (D) (8) u dxdy eq.6.15 

eq.6.16 
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(kle - II (BIT (DI (BI dsdy eq.6.17 

where (B) • (8) (C)-I, see reference (46J. 

Introducing the element nodal force vector ~Q~e' then the 

element equilibrium equation is given by: 

eq.6.18 

and, when treating the global structure equilibrium is represented 

by: 

eq.6.19 

where (K) is the total (elastic and geometric, see Appendix 5 for 

their full development) stiffness matrix, IQI is the total force 

vector, and iu. is the displacement vector. 

Hence,the general analytical procedure for solving the plate 

(or shell) problem by the Finite Element Method (see references 

(4), (28), [291, [30), (46) and [50» which involve the following 

steps: 

1) Determine the elastic stiffness matrix, the geometric stiffness 

matrix, the mass matrix, and load vector for the element shape 

selected. 

2) Assemble the matrices in the order of numbering chosen when 

selecting the element geometry and coordinates. 
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3) If the dynamic problem is to be solved, the mass matrix must be 

assembled and introduced in the analysis, otherwise elastic and 

geometric stiffnesses are sufficient for the buckling analysis 

alone. 

4) For stability analysis (buckling) use the equation of the type: 

eq.6.20 

Where Ka and Kg denote the elastic stiffness matrix and the 

geometric stiffness matrix respectively. 

5) For dynamic analysis (vibration) one follows: 

(K) .u~ + ~ (Km) .u~ · 0 eq.6.21 

where, K is the total (elastic and geometric) stiffness matrix 

(elastic and geometric), X. is the mass matrix (consistent mass 

matrix) excluding the inertia effects. 

The concept of calculating the stiffness matrices will be 

illustrated, and typical elastic stiffness, gemetric stiffness, 

and mass matrices will be produced to introduce the theory behind 

obtaining and using these matrices. Some difference 1n the 

matrices was found in the literature due to the different 

assumptions on shape functions and whether or not the 

compatibility equations were truely satisfied. These differences 

could lead one to obtain different results when measurements are 

not taken carefully and assumptions are not followed correctly. 
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6.4.1 Finite element flow chart of the plate 

~ow C~T ON THE USE OF THf F. E.M. PROGRA~ 
ANALY THE ISOTROPIC REC ANGULAR PLATE 

DATA 

10 ~---------'r---------~ 

ELASTIC STIFFNESS MATRIX 

GEOMETRIC STIFFNESS MATRIX 

MASS AND INERTIA MATRIX 

BOUNDARY CONDITIONS 

ASSEMBLY ROUTINE 

KET, KG't . KST, KMT 

* NAG IS A ROUTINE ,.ACKAGE USED 
TO EVALUATE EIGENVALUES 
AND EIGENVECTORS USING 
MATRICES 
SEE REFERENCES 
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CHAPTER 7 

CONCEPT OF MATRIX METHODS IN PLATE ANALYSES 

7.1 General theory 

The matrix methods of structural analysis, developed 

specifically for the use ·of digital computers, have become now 

Universally accepted in the fields of structures and design. These 

methods provide the means for a rapid and accurate stress and 

deflection analysis of simple and complex structures subjected to 

static and/or dynamic loads. The matrix methods can be used very 

effectively in stability analysis as well as in vibration analysis 

as explained earlier in part I. 

In the conventional stability analysis two possible 

approaches are normally used: either the differential equations 

describing the equilibrium in the deflected state of the structure 

are formulated and the lowest eigenvalue representing the buckling 

load condition is found for given boundary conditions, or 

alternatively, if the differential equations are too complex to 

prescribe (i.e. nonlinear equations). approximate deflection 

8hapes are used in the strain energy expression for large 

deflections which are subsequently minimised with respect to the 

unknown amplitudes, leading to the stability determinant whose 

lowest root represents the instability condition. 
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When designing a wing. fuselage. or any other structure. the 

use of the conventional method is extremely difficult therefore. 

we should rely on the matrix method approach for the stability and 

vibration analysis. 

The matrix methods of determining buckling loads have 

recently received considerable attention. and a large number of 

papers have appeared. Both displacement and force methods have 

been used for the stability analysis ( the difference between the 

force and the displacment methods was illustrated in part I of 

this manuscript) based on the concept of discrete element 

idealisation as will be iliustrated later in this chapter. 

When the total stiffness or resultant stiffness matrix is 

mentioned. it is meant that this matrix is obtained by summing 

algebraically the elastic stiffness matrix and the geometric 

stiffness matrix for the given element. for which the total matrix 

is an initial state dependent (sensitive to applied loads and 

change in geometry). 

The basic concept of geometrical stiffness was first used by 

Turner (see Leissa (19) and Melosh (27» for the analysis of 

structures idealised into pin_jointed bars and triangular plates 

carrying membrane stresses. The method studied was essentially 

based on the strain energy formulation for large deflection 

analysis. Similar approaches have been used by several other 

authors for the analysis of structures made up of bars and beams 

see Pian (28). triangular plates (29) and (30). rectangular plates 

(26). and shell structures (35) where a set of displacement 

functions was assumed. 
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7.2 Displacement Functions 

A deflection function that ensures .the deflection and the 

slope combatibility was first introduced by Dawe (7] in 1967. 

One of the displacement functions used by Dawe was introduced 

to calculate the stiffness properties of the rectangular plate in 

bending in the following form: 

Uz - ~ u eq.7.1 

where. u - i Ul.uZ.·············.u.z~ eq.7.2 

or. eq.7.3 

where. u is the displacement vector. Wi are the deflections in the 

z- direction. and 9 x i and 9 y i are the rotations of the nodes. 

The value of ~ is put in a matrix of the form: 

(1+2()(1-()ZCl+2n)(1-n)Z 

(1+2()(1-()zn(1-n)zb 

-(1-()zCl+2n)(1-n)z. 

(1+2()(1-()zC3-2n)n z 

-Cl+2()(1-()z(1-n)n zb 

-(1-()z(3-2n)nza 

(3-2()(z(3-2n)n z 

-(3-2()(zCl-n)nzb 

Cl-()(zCJ-2n)n za 

(J-2()(z(1+2n)(1-n)z 

(J-2()(zn(1-n)zb 

(1-()(z(1+2n)(1-n)za 
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Equation 7.4 is used to determine elements of the total 

strain matrix!! <as will be shown later in equation 7.13). the 

general forms of which are given in the equations which relate 

strains to displacements. as will be illustrated next. 

7.3 Stiffness Deteraination Based on the Assu.ed Displ.ce~nts 

The nonlinear total strain_displacement equations for elastic 

continua are: 

. Z 2 2 
exx - u.x + 1/2(u .x +v .x +w .x> eq.7.S 

eq.7.6 

eq.7.7 

eq.7.8 

eq.7.9 

eq.7.10 

where u. V and ware the three displacements in the X-I y- and z-

directions. 

The total strain vector is: 

eq.7.11 
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the total strain vector can be divided into linear and nonlinear 

terms: 

E - EL + en eq.7.12 

Following the work of Leissa [19], we assume ~ to represent a 

matrix of linear strains EL due to unit displacement u, while t 

~il and t ~i2 will represent the column matrix of the nonlinear 

strains: 

eq. 7.13 

eML _ t ~il u * ~i2 u eq.7.14 

where i. x.y,z. 

Any thermal stresses (strains) associated with the mechanical 

stresses (strains) could be added to the elastic strains in the 

form: 

e - E + eT eq.7.15 

where e. eL + ENL as shown in equation 7.12. 

Since the structure is elastic, Hooke's Law relates the 

stresses,a, and strains,e, in the following form: 

o-Ee+~CltT eq.7.16 

where E and Eor are the matrices of elastic constants, CIt is the 

coefficient of thermal expansion, and T is the temperature 

difference to which the structure is subjected. 

The strain energy expression can now be easily evaluated from 

the integral: 
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eq.7.17 

Simply, by substituting the values in equations 7.S to 7.10 

into the above equation 7.17, assuming the nonlinear product terms 

to be very small compared with the single nonlinear strain terms, 

and separating linear and nonlinear stresses by two distinct 

matrices, an expression for the strain energy equation is obtained 

as: 

U - 1/2 J(UT~T~ + 2uT~TEt«T + eTTEET + 2toT(~iIU)·(~i2U»d. 
eq.7.18 

It is emphasised that 0 is considered constant when 

differentiating with respect to the displacement u, so by using 

equations 7.S to 7.15 terms into 7.18 and using the integrals 

defining the elastic and the geometric matrices as will be shown 

later, we obtain: 

eq.7.19 

where Ire' is the elastic stiffness matrix, simply obtained by 

evaluating the integral: 

J bT 
E b d. eq.7.20 

and Kg, the geometric stiffness (initial state dependent) matrix, 

is similarly obtained from: 
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eq.7.21 

and finally Pr. the thermal force matrix. when needed is given by: 

eq.7.22 

It should be noted here that. for vibration analysis it is 

suitable to compute the total stiffness matrix K • Ke + Kg instead 

of dealing with each matrix separately. this results in economic 

advantages in the computer applications. 

Equation 7.18 can be simplified by writing !!1 • i !!xl !!yl 

!!zl~ and !!2 • i!!x2 !!y2 !!z2~ which replace the summation sign in 

order to simplify the integration. 

eq.7.23 

Equation 7.23 allows for a systematic investigation of the 

effect of higher order terms in the strain_displacement 

relationships. 

Clearly. the above equation is independent of the choice of 

the coordinate system to be used for the analyses. this is an 

advantage of the method which may be applied even in the analysis 

of axis ymmetrica I shell structures. 
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Other names have been used in the past to identify Kg. such 

as the Incremental Stiffness Matrix. the Initial Stress Matrix. 

and the Coefficient Matrix. but recently the term "Geometric 

Stiffness Matrix" has become the most used due to the fact that it 

is really the result of a small change in the geometry of the 

structure. 

In the following sections. the above geometric matrix is 

evaluated for the plate element chosen for our analysis. follow.ed 

by the other sections to evaluate the elastic stiffness matrix and 

the consistent mass matrix. all the above matrices were made for 

an assumed compatible displacement and consistent masses ( for 

full details on these matrices see related references). 
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7.3.1 Geometric Stiffness Matrix 

All terms must be multplied by ~ • (Nxob/1260 a) where. e 

and b are the plate length and width: 

552 

66b 12bz 

-42e 0 56ez 

204 39b 21e 552 

-39b 9bz 0 -66b 12bz 
S~tric 

-21a 0 28a2 -42a 0 56az 

-204 39b 21e -552 66b 42a 552 

39b 9bz 0 66b 12bz 0 -66b 12bz 

-21e 0 7a2 -42a 0 -14az 42e 0 56az 

-552 66b 42e -204 39b 21e 204 -39b 21e 552 

-66b 12bz 0 -39b 9bz 0 39b -9bz 0 66b 12bz 

-42a 0 14az -21a 0 -7az 21e 0 28a2 42a 0 56e2 

Reference Przemieniecki (29) 
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7.3.2 Elastic Stiffness Hatrix 

All terms must be multiplied by u - D/15ab. 

where D - Et'/ 12 (1 - u').the elastic rigidity coefficients are: 

A 

B C 

D E F 

G H I A Symmetric 

-H L H -B C 

I H R D -E F 

V W X Y Z N A 

W Q H Z S H -8 C 

-X H T -N H P -D E F 

Y -Z N V -w X G -H -I A 

-Z S H W Q H H L H B C 

-N H P -X H T -I H R -D -E F 

Reference Przemieniecki (29) and Zienkiewiez [50). 

All parameters used in the above matrix have the following form: 

A- 60('" + ,,') + 3(14 - 4u) 

B- (30,,' + 3(1 +4u»)b 

c- (20,,' + 4(1 -u»)b' 

D--(30,,' + 3(1 + 4u»)a 

E--15vab 
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F- (20~Z + 4(1 -v»)az 

G- 30(~z - 2yz) -3(14 - 4v) 

H __ [30yZ + 3(1 -v»)b 

I- (-15~z + 3(1 + 4v»)a 

L- [lOyZ - (1 -v)]bZ 

M- 0 (zero) 

N- (30~Z + 3(1 -v»)a 

p- (10~z - (1 -v»)aZ 

Q- (5yZ + (1 -v»)b Z 

R- [ 10~z - 4(1 -v)]aZ 

s- (10yZ - 4(1 -v)]bZ 

T- [5~z + (1 -v)]aZ 

v- 30(~z +yz) + 3(14 - 4v) 

w- [-15 y Z + 3(1 -v)]b 

x- [15~Z - 3(1 -v»)a 

Y--30(2~z - yZ) - 3(14 -4v) 

z- (-15 y Z + 3(1 + 4v»)b 

~- (a/b)' 

y- 1/~. 
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7.3.3 Other Geometric and Elastic Stiffness developments 

An alternative analysis based on total potential energy 

variation. was given in Kapur and Hartz (13). which obtained 

elastic and geometric stiffnesses by starting from the potential 

energy due to in-plane stress in a rectangular plate element: 

v - t/2 II (DaV",x + 0YW",y + 2Txy V,xV,yl dxdy eq.7.24 

where t is the plate thickness. and the strain energy equation is 

given by: 

u - 1/2 II MT x dxdy eq.7.25 

where ox' 0y. and "'xy are normal and shear stresses. v is the 

displacement function. M is the column matrix of moments per unit 

length. and x denotes the curvature and twist vector at any 

position in the plate. By adding equations 7.24 and 7.25. using 

simplifying terms, we end up with the total energy equation: 

eq.7.26 

or. E - 1/2 !!T ( Ke + Ks) !! eq.7.27 

where ~ is the strain matrix. For full development of the elastic. 

geometric stiffness matrices see Appendix 5. 
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7.4 Hass matrix determination 

From the computational point of view. it could be easier to 

compute the equivalent mass matrix for the unassembled element. 

using local coordinates to start with. then making use of the 

transformation rules to obtain the total mass for the structure as 

a whole. 

The element mass matrix for instance (see references (14]. 

[26]. [28]. and [30]) is given by: 

· - J p aT a dv eq.7.28 

where p is the material density (mass per unit volume). and ~ is 

the factor matrix of all nodal displacements in the local 

coordinate axes shown in equation 7.4. When the integration is 

accomplished. then. by using the direction cosine matrix of 

transformation (D.C.H]. we will obtain the global mass m for all 

the structure from the local system. In other words: 

Uglobal -(D.C.M) ulocal eq.7.29 

where (D.C.M) is an n x n matrix. where n is the total number of 

degrees of freedom for the element. and u is a matrix representing 

displacements. 

For the case of our analysis where a rectangular plate is 

used. there are two different approaches for the displacement 
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distributions; in the first the displacement is incompatible. 

meaning that the displacement of adjacent plate elements are 

compatible in translation. but not so for the rotations at the 

common edges at the nodes; in the second both translations and 

rotations are compatible. 

For the plate in our analysis the selection is for the second 

approach in order to achieve more precise results. 

Having obtained aT as shown in equation 7.4. then .by 

substituting in equation 7.28 we will get the following mass 

matrix for a compatible displacement. 
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7.4.1 Hass Hatrix for a Rectangular Plate Element 

Based on Compatible Displecement: 

m, , 

-ZI -zz 

-II -liZ -IS 

-41 -4Z -41 -II S~tric 

--4Z -5Z -51 --ZI -ZZ 

-41 --51 -'Ill -II --liZ -Ill 

-71 -72 -71 -41 -75 -78 -II 

--72 -.Z -.1 -75 -.5 --5S --ZI -ZZ 

--71 -.1 -'I --78 --51 -'8 -II -12 -Ill 

-41 --75 -78 -71 --7Z -71 -41 --42 --41 -II 

--75 -.5 --51 -72 -.Z --.S -42 -52 -51 -ZI 

--78 -51 -'8 --71 --.1 -'I --41 --5S -81 -II 

Reference Przemieniecki (30) 

-ZZ 

--liZ -Ill 

All terms of the above matrix must be multiplied by the 

coefficient c. (pab)/176400. 

All -ij (i and j are specified) have the following values: 

m,,- 24,336 

mu- 3,432b 

-Zz. 624bz 
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ma,- 216a2 

187'- 2.916 

-7Z. 702b 



m31 --3,432a m73--702a 

m3z--484ab m75--1,188b 

-33- 624.Z _7&--2.028. 

-41- 8,424 mez--162bz 

m4'- 2,028b me3- 169ab 

m43-- 1 ,188a me5- 216b' 

msz--468b z 
m,3--162a ' 

m53- 286ab m,8--468az 

To be noted again that a and b are length and width of the 

plate element. 
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CHAPTER 8 

EXPERIMENTS AND EQUIPMENT USED 

8.1 Introduction 

During the years 1983-1986, experiments were conducted in the 

Department of Aeronautics and Fluid-Mechanics at Glasgow 

University as part of research into the relation between the 

stress level in a structure and the resonant frequency under 

forced vibration. 

In part I of this thesis, the work on a three-dimensional 

frame structure was described and discussed. 

In this chapter, we will turn our attention to a more 

complicated problem, namely, the plate problem, and the tests 

performed on isotropic, thin, flat plates. Results and concluding 

remarks will follow in chapter 9. Here the design criteria, the 

equipment used, the method employed, and an extension to the 

three-dimensional thin walled structure will be discussed. 
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8.2 Plate Hodels 

A 8et of three i80tropic . flat steel plate8 were made 

available. These were pieces of precision ground gauge plate and 

were supplied by the manufacturer to dimension8 45)(5)(0.08 cm, 

45)(15)(0.08 cm and 45)(15)(0.16 cm. 

The8eplates were mounted in a 8pecial te8t rig with edge 

members of a designed U- and V-section so that both clamped and 

simply supported boundary condition8 could be simulated, as 8hown 

in the following pictures and 8ketches. 

I 
II 
I 
II 
II 
II 
II 
II 
!l 
II ,I 
I 

II 
II 
II ......... 

Flgure-24-
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Sketche. of the plate. with 

different boundary condition. 

Figure-25-
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The plates were subjected to uni-axial, inplane loading only 

for simplicity in testing and computer analysis. The figure below 

shows the load direction employed. 

By applying a continuous uniform pressure along the upper 

edge of the plate, and holding the plate in the manner shown in 

the pictures below, the plate was ready to be tested 

experimentally. The material properties were taken to be: 

E a 2.09 X lOll N/m2 , p - 7.8 X 106 Kg/m 3 
, and v - 0.3, as the 

Young's modulus, material density, 

respectively • 

• ..L 

Plate set up for testing 

Figure-26-
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8.3 Equipment Used for the Experiment 

Apart from the plate itself and the test rig, the equipment 

was essentially the same as used earlier for testing the 

three-dimensional frame structure. 

The test rig was mounted between the plattens of a small 

screw loading ' type of testing machine, surface mounted strain 

gauges were employed to check the uniformity of the stress level 

in the loaded plate. Each plate was checked for flatness. 

Pictures of the equipments used for the plate test are shown 

below: 

Plate sideway containers 

Figure-27-
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Plate set up 

Figure-28-

Phillips Multimeter 

Figure-29-
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8.4 Experimental Procedure 

The general procedure was as follows: The plate was 

sinusoidally excited by applying a varying lateral force produced 

by the small electromagnetic exciter which was driven by the 

signal generator. The response was picked up by the accelerometer, 

amplified and transmitted to the Narrow Band Spectrum Analyser 

which gave the frequencies and amplitudes of the harmonics in the 

signal. 

The signal generator frequency was varied until the resonant 

condition was obtained. which was identified by observing the 

amplitude of the dominant harmonic. The accelerometer position was 

varied on the plate surface in order to identify the position of 

any nodal points. 

The load, measured by the one ring"':type load cell, was 

increased in small increments and at each level of loading the 

frequency and the amplitude of the dominant harmonic was observed 

and recorded. The calibration chart for the load cells is shown 

below: 
JIt2 

CAlIMA T/CH ~ au lUllS &6,,' Il.D /WHIlE JEST 

DlflSlCHS 

Load-GalI8e chart 

Flgure-JO-
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The load was applied statically and the increments in loading 

followed the same treatment in order to neglect the inertia 

effects which would be present if the loads were applied in any 

other way. 

A check on the frequency of excitation was provided by the 

Phillips frequency meter, this being particularly useful at the 

lowest and highest frequencies used. 

8.5 Some Important Observations 

The early experiments showed the existance of a set of 

harmonics. It was noted that the frequency of the harmonic of 

greatest amplitude did not coincide with the excitation frequency 

in the response at resonance. It suggested the possibility of the 

existance of a mode shape difference between the buckling modes 

and the vibration modes. If all the analysis were based on the 

different modes of buckling and vibration a nonlinear relationship 

between the applied loads and the square of the frequency ratio is 

the most acceptable answer but, when both modes of buckling and 

vibration were very close to each other, an almost linear 

relationship appeared to exist between the applied axial (inplane) 

loads and the square of the frequency ratio. 

It was noted also that when there is a drop in the excitatiort 

frequency values (lower modes of vibration) the amplitude of the 

response harmonics show a noticeable increase, this increase is in 

linear relation with the plate out of plane deflection under the 

applied loads. The applied loads were kept at less than GOr. of the 

expected buckling load, this margin allows for more testing of the 
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same plate to get more information and to save the time consumed 

in replacing a permanently deformed plate. 

Laboratory induced noise coming from other machines in the 

department was avoided as far as possible by running most of the 

experimen~s in the evening wh~n most of the machines are at rest. 

Regarding the strip type of plates, the boundary conditions 

were slightly different, as shown in figure -32-. One side of the 

plate is left free, while the other three edges were clamped. The 

test rig for this condition differed from that used for the other 

two plates. 

8.6 Extended use of the experi~ntal set up 

Final experiments were conducted on a Three-dimensional thin 

walled structure. The monocoque beam shown below was designed and 

tested using a procedure similar to that previously employed for 

the isotropic plates but with some difference in the loading 

direction. 

Bending loads instead of axial loads were applied, and the 

data collected were only for the lower plate of the monocoque 

structure, where this specific plate was subjected to a varying 

axial compression. The stress condition for this plate differs 

from that of the other components of the beam, and, of course, 

from that of the earlier tested plates. 

The mass producing the bending load was supported by a spring 

in order to separate the mass of the system from the mass of the 

load. These loads were increased, and variation was detected in 

both frequency and amplitude of the vibration. 
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This experiment was made as an application of what had been 

done earlier on single plates. to show that for even more 

complicated structures. the relation between the stress level and 

the ratio of the frequency squared is overall linear. as verified 

earlier for the space frames and the plates. 

The computer programme made for the monocoque structure WAS 

not intended for the whole structure but considered only the 

lower. compression plate. The boundary conditions Assumed for the 

plate were clamped at the root and along the two axial edges which 

are connected to the vertical webs and free at the loaded end. The 

number of elements used for the analysis ( F.E.M.) was 15 of size 

9 x 3 cm. so that there were three spanwise rows of six nodes 

each. 

Honocoque structure 

Figure-31-

In the above structure. for the computer set up. the inplane 

loads for the elements of the lower plate were increased by A 

constant increment from the loaded end to the root to account for 

the stress increase so that each element carries an end load 

corresponding to the engineering theory of bending value at its 

midpoint. 

For this reason, the geometric stiffness matrix was increased 

progressively so that the assembly procedure was modified slightly' 

to allow for this increase, as shown in the following flow chart. 
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8.6.1 Flow chart used for the .anocoque structure 

FLOW CHART ON THE USE "OF THE FE M PROGRAM 
TO ANALYSE THE M ONOC UE STRUCTURE 

10 

z 

• 

GO TO '0 

DATA I 

ELASTIC STIFFNESS MATRIX 

GEOMETRIC STIFFNESS MATRIX 

MASS AND INERTIA MATRIX 

ASSEMBLY I 

GENERAL ASSEMBLY 

• HAG IS A ROUTINE 'ACICAGE USED 
TO EV"'-UATE EIGENVALUES 

AHD EI GEHVECTORS USING 
MATRICES 
SEE UFERENCES 
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CHAPTER 9 

CORRELATION BETWEEN EXPERIMENTAL 

AND THEORETICAL ANALYSIS 

From the results obtained by testing the steel plate strip of 

45 x 5 x 0.08 cm. a graph illustrating the stress-frequency 

relationship has been produced. With only a few points. it was 

possible to trace a linear relation between the axial applied 

loads and the square of the frequency ratio with respect to the 

resonant frequency of the unloaded plate vibration. 

It is worthy to mention. that there is no apparent change in 

mode shape in vibration or in buckling for this type of plate. The 

value deducted for the critical stress is very close ( within 54 ) 

to the theoretical and exact value. 

It should be noted that when increasing of the excition 

frequency value occurs ( double or triple of that of the first 

mode) the linearity can still persist, but with a higher value of 

the critical load obtained, but these values could easily be 

reduced to the exact one when divided by a factor, two or three. 

depending on how much the frequency of excitation mode was raised. 

The reason to substantiate this phenomenon is based on the 

fact that if the mode shape of vibration of the plate is doubled 
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or tripled. it will coincide with the second or the third mode of 

the buckling load forming a linear relationship between the 

applied loads and the square ratio of the frequency of vibration. 

If the factor raising the order of the mode shape is known 

exactly. by using it in the related graphs will lead to the 

buckling load determination at the (w/uo)Z - 0 but. this is not 

likely to occur in the theoretical analysis unless special 

equations are introduced to involve the mode order factor. 

The following figure shows the plate strip used for the first 

experimental tests. the boundary conditions are C-C-C-F. which 

differ from those for the other plates used later. 

Plate .trip 

Fi&ure-3~-

The following graph. figure-3)-. which relate. the .. quare 

ratio of the frequency to the applied axial loads is based on the 

data obtained experimentally. 
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By extending the straight line joining the experimental 

pOints to the point of zero frequency ratio ( (W/Wo)Z • 0 ), one 

can detect the buckling load value. This result of the 

experimental buckling load of 850 Newtons falls within 5? lower 

than the exact buckling load of 875 Newtons, which is an 

acceptable error. The numerical results produce as close result 

(790 Newtons) as the experiments predict. 

In the following page, the experimental and the analytical 

graphs, figure -33-, are shown for the strip plate analysis: 
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All plates were located in their respective holders, which 

simulate the desired boundary conditions as has been shown in 

earlier sketches. The loads were statically applied and increased 

while the frequency of the plate vibrations are applied, recorded 

and their respective amplitudes noted. 

The exciter and the accelerometer were carefully moved from 

one end of the plate to the other to search for any possible nodes 

to account for a new mode shape in the structure. 

For lower modes of vibrations, no more than the first mode 

shape is detected experimentally, but as has been discussed 

earlier, .a change in the mode shape was apparent at a certain set 

of loads producing a change in the slope of the relation between 

the applied loads and the squared ratio of the frequencies of 

vibration. 

It is useful to underline the importance of the role of the 

mode shape changes after certain load increments, this, in fact, 

produces a change in the overall linearity behaviour in the 

theoretical results (via Finite Element Method), but when this 

phenomenon has been carefully studied, a linear relation results 

for each set of loads ( individual linearity) between the applied 

stresses and the . square of the frequency ratio, and the final 

critical load is within only 5 - 6 r. in error when compared with 

the exact values. 

The following graphs, figures -34- to -37-, show the 

experimental and the computer results for the plates of (alb - 3), 

subjected to selected boundary conditions made available for the 

experimental and the theoretical analysis. 
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For the fully clamped plate, considering the analytical 

results in particular, as shown in the previous graph, figure-37-, 

the change in the total stiffness matrix (Elastic and Geometric) 

due to the increase in the applied loads produces a change in the 

vibrational mode shapes in the plate, if these changes in the mode 

shape are amplified it leads to a local linear relationship 

between the vibrational and the buckling mode shapes, which is a 

necessary condition to ensure a linear relation between the 

applied loads and the square ratio of the frequency of vibration, 

but when the two modes are different, a nonlinear relationship is 

shown in the graph for the overall analysis of the fully clamped 

plate. 

This phenomenon neither appeared in literature, nor was it 

encountered in the present experimental analysis for this set of 

boundary conditions. 

The general linear relation, therefore, is slightly disturbed 

for the case of the fully clamped plate, this is due to the change 

in the buckling mode shape as will be shown in figure-38-. 

Although this situation occurred only analytically (F.E.H.). 

a linear relationship is suggested, based on the experimental 

analysis. The piecewise linearity is due to the approximation 

procedure in the computational analysis of this investigation and 

the handling of the boundary condition and the assumptions 

relative to the approximate methods. 

The buckling mode shapes for the fully clamped plate are 

illustrated in figure -38-. They are produced from the computer 

data obtained from the F.E.H. output data of the node 

displacements corresponding to the eigenvalues. These buckling 

modes give an indication of the plate behaviour under the applied 

inplane loads when forced to vibrate. 

In fig-37-,the computer analysis show a piecewise linear 

relation between the square ratio of the frequency and the applied 

loads. This is due to the (piecewise) similarity between the 

buckling and the vibration mode shapes. If this necessary relation 

between the mode shapes is not accomodated. a nonlinear relation 

between the frequency and the applied loads will be the outcome of 

the analysis,see Appendix 4 (figures A4.9 and A4.10). 
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Bucklina .ades of the cla.ped plate 

F18ure-38-
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Figure-39- shows the experimental and the analytical results 

for the monocoque beam structure. 80th graphs show a linear 

relationship between the squared ratio of the frequency of 

vibration and the applied inplane loads. 

In the case of the thicker plate analysis, a higher buckling 

load value is obtained, see ref.[19]. It is important to state 

that, for this plate, the tendency towards nonlinearity becomes 

more evident. This phenomenon is due only to the change in the 

mode of vibration as the load is increased. Each mode of vibration 

corresponds to a particular mode of buckling and, consequently, of 

the slope of the (M/MO)Z against the load curve. In other words, 

only ~he mode shape is controlling the nonlinearity for these 

elastic, isotropics, flat plates. 

Loads applied, in all the previous experiments on the plates 

and on the monocoque beam structure, were kept under 607. of the 

expected critical load ,see figure-39-, in order to allow the 

experiments to be repeated before any permanent deformation occurs 

of the structure's geometry due to buckling or postbuckling. 

Finally, graphical results from other sources (see Appendix 

4) are reported for comparison, this information is included to 

show how important this study is for the structural safety. Taking 

an overall view, the experimental and analytic results show that 

the linear relationship between the applied loads and the square 

ratio of the frequency are predominant in most of the cases 

considered. 

149 



-----·-----~----~--~·-------·--------- ·--·----l 

GRAPHS OF THE I 
J=REQUENCY-STRESS LEVEL RELA.TION IN A ..... . 

MONOCOQUE FIXED END BOX BEAM STRUCTURE 

X10-! 
1 

1 

~T~·~t·-;---i·--fB·~--f2"'··-t·r---f s---tS--~0 

X1S-1 
1 

1 
a 

a 
a 

D 

EXPERIMaNT RESULTS 

a 

COMPUTER RESULTS 
VIA F.E.M. 

FIGURE NO.39 

X1S-1 



With regard to the Finite Element Method computer analysis. 

the plate is divided into different element meshes. some of the 

elements are of the same aspect ratio of the plate dimensions of 

alb. 3 while others have an aspect ratio of unity (alb • 1). The 

elements of alb • 3 were chosen. they produce more reasonable 

results due to their having the same aspect ratio as the whole 

plate. The more elements used to divide the structure the closer 

we get to the exact results. 

1eee ~QC" 

.. • u 
~ 
c: 2ee -
j 
II) 

38 35 

D.D.F. 

Figure-40-

Approach to the exact results 

18 1 
XI.1 

• 

e 

Comparing the computer results with the experimental result •• 

after careful consideration. we can say that they are similarly 

linear. the only departures from linearity appearing in the 

computer results for the clamped plate are pOSSibly explained as 

follows: 
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The computer graphical results are linear for each range of 

loads, and this phenomenon will continue until a final 

characteristic mode is reached by the structure, most of the 

analytical points agree very well with the experimental values 

when the modes of the two approaches are similar. The departure 

from linearity, when it occurs, and as shown in some analytical 

results, is due to the sudden change in the vibration mode shape 

which occurs at certain loads, which mathematically speaking. is 

due to the change in the form of the geometric stiffness matrix 

and hence of the total stiffness matrix reSUlting in a change of 

the mode of the structural vibration. 

This nonlinearity was most noticeable in the fully clamped 

plate, for the mixed boundary condition plates it was less evident 

and for the fully simple supported plate this phenomenon was 

almost absent. This suggests that the boundary conditions the 

plate is subjected to influence the effect of the applied load in 

the plane of the plate. 

As a final remark on this subject, one is very much inclined 

to affirm that linearity dominates the relationship between the 

applied loads and the square of the frequency ratio of the 

structures if careful consideration is given to the representation 

of the boundary condition. 

The following graph, figure-41-, shows a summary comparison 

between experimental, analytical and exact results obtained 

earlier in this investigation. 

Three distinct lines are shown for each case of the plate 

boundary conditions, the upper set of lines represent the fully 

clamped plate and the lower set represent the fully simply 
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supported plate, in between these two sets the plates with mixed 

boundary conditions are located. For each case, the upper line 

represents the exact solution, the middle 1 ine represents the 

experimental results, and the lower line represents the 

approximate analytical (F.E.H.) results. 

The stiffness of the plate is seen to decrease in the 

analytical analysis while it is in its higher values for the 

experiment and the exact analysis. This summary graph shows how 

close all three sets of analyses are. 

Finally, it is to be noted that in the simply supported plate 

(SSSS) exact line and the mixed plate (SSCC) analytical line are 

very close, they are represented on the graph only with one line, 

see figure-41-. 

is 
Jlet 

Figure-41-
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CHAPTER 10 

CONCLUSIONS AND FUTURE PROSPECTS 

Conclusions 

As a result of the previous discussion of this research topic 

both the theoretical and the experimental investigation outcome 

are summarized in the following conclusions: 

1) A linear relationship does exist between the square ratio of 

the frequency of vibration and the axial loads applied to some 

selected types of three dimensional frame structures if certain 

conditions were satisfied, the conditions were explored in detail 

in chapter 4 of part I of this manuscript. 

2) The load at the zero value of the square ratio of the frequency 

of vibration obtained by extrapolating in the given graphs gives a 

close estimation of the buckling load ( within 6~ of the exact 

buckling load ). 

3) The geometric stiffness matrix is initial state dependent, and 

this explain,s the relation between the applied loads and the 

effective stiffness matrix of the structure (total stiffness 
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matrix); the geometric stiffness alone leads the relationship 

between the applied loads and the square ratio of the frequency to 

to be linear if the elastic and the geometric matrices are 

similar. ie., the ratio between any pair of elements in one matrix 

is the sam~ as that between a similarly located pair in the other. 

4) When the analysed structure was of a plate strip (the ratio of 

alb ~ 1 ), where a and b are the plate dimensions, a linear 

relationship was clearly shown between the square ratio of the 

frequency of vibration and the applied uniaxial loads. 

5) It is shown in figure-37-, for the fully clamped plate 

; analysed, that a piecewise linear relationship exists between the 

applied inplane loads and the square ratio of the frequency of 

vibration. This is due to a progressive change in the mode of 

vibration and, consequently, to the corresponding buckling mode. 

This linearity, if not studied carefully (as seems to have been 

the case in some early investigations, see Appendix 4), could lead 

to erroneous conclusions. 

For all other boundary conditions the overall linearity is 

seen to be more likely to occur due to the similarity in the mode 

shapes of buckling and vibration. 

6) The Finite Element Method is a reliable method of analysis, 

prOVided that the results obtained are checked carefully, this 

method and other simi lar numerical methods are used when exact 

solutions are not available or when experimental analysis could 

not be eaSily accomplished. 
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7) In the thicker plate (t - 0.16 cm ) when tested, higher modes 

of buckling and vibrations ( 2nd and 3rd modes) are in a better 

agreement, and a linear relationship is obtained between the 

applied loads and the square ratio of the frequency of vibration 

for both analytical and experimental analysis. This could be 

expected, since the out-of- plane geometrical imperfections will 

have less effect on the uniformity of the in-plane stresses than 

was so in the case of the thinner plate analysed earlier. 

8) For the thin plate (t • 0.08 cm), the nonlinearity between the 

applied loads and the square ratio of the frequency could be 

caused by either prestresses in the plate, out-of- plane 

imperfections as explained above, or non-coincidence of the mode 

shapes of vibration and the buckling, as has been illustrated by 

the analytical graphs shown in the text. 

9) Good agreement between theory and experiment has been shown in 

the previous discussion and the related graphs were shown in the 

previous chapters of this manuscript to illustrate this agreement. 

10) Experimental verifications are very important when exact or 

approximate results fail to eXist, as has been verified in the 

literature survey throughout this investigation, so the 

experiments were done in order to obtain results for practical 

problems. 

11) The experimental set up gave a variety of boundary conditions 

which could be used when analysing the structure. For the 
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rectangular plate this facility is advantageous by providing more 

applications in both mechanical and aeronautical areas of research 

investigations. 

12) The exact solutions (when found) lie above both the 

experimental and the analytical (F.E.M.) solutions. The more 

constraints are on the structure in the first case (exact) and 

cause the absolute value of the frequency to arise. For the 

analytical (F.E.M.) case these constraints are less, to reduce the 

size of the matrices to be used in the analysis, consequently, the 

absolute value of the frequency is less. Finally, the constraints 

used for the experiment cause the frequency to be in between the 

above two cases, see chapter 9, figure-41-, which illustrates this 

relation for a plate at different boundary conditions. 

13) The application of this method of analysis on a more complex 

structure is possible experimentally as well as analytically, only 

a slight modification is needed to use the analytical method. This 

is essentially in the assembly procedures. The existing 

experimental design rig could be used for various types of 

structures and could be modified to meet other requirements. 

14) Some of the commercially available computer packages such as 

PAFEC, FLASH2 could not apply eaSily to the dynamic part of the 

analysis due to their poor handling of the stiffness matrix of the 

structure. The static analysis, when using these packages, gave 

similar results to those obtained by the Finite Element Method 

programme made especially to solve the static as well as the 
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dynamic cases. The stiffness matrix formulation in the above 

packages fails to include the geometric stiffness sensitivity to 

the applied external loads. 

The mass matrix in the above packages also does not account 

for all the inertia effects in the vibrating structure. 

15) A suggested graph relating the applied loads to the square 

ratio of the frequency of vibration for rectangular isotropic 

plates of alb - 1 is introduced as a practical and theoretical 

solution, this graph can help the designer at the early stages of 

the design process on these or similar structures subjected to a 

uniform axial load and forced to vibrate at the same time. 
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Future Prospects 

Further development of this method analytically and 

experimentally could lead to study more complex structures such as 

shells. stiffened plates. Some work could be done even on 

composite material and structures subjected to different types of 

loads in order to verify the relation between the vibration 

frequency in the structure and the applied loads in order to avoid 

all distructive testing methods and to give to the engineer a good 

design criteria. 

More computer analysis is needed to study the aspects of 

nonlinearities observed earlier but. from an experimental point of 

view. similar structures could be well tested on simple rigs and 

most available equipment. 

This method could be applied in booms. antennas. and space 

platforms proposed for future space applications due to their 

structural similarities to the three dimensional structure tested 

in this investigation. 

All this and any other future related studies will be 

beneficial for both accademic and industrial areas of research and 

development. 

159 



REFERENCES 

1) ANDERSON R.G., IRONS B.M, and ZIENKIEWICZ O.C., "Vibration and 

Stability of Plates Using Finite Elements," International Journal 

of Solids and Structures, Vol.4, 1968, pp.l031-1055. 

2) ARGYRIS J .H. ,"Recent Advances in Matrix Methods of Structural 

Analysis," Progress in Aeronautical Sciences, Vol.4, 1964. 

3) BASSILY S.F. and DICKINSON S.M. ,"Buckling and Vibration of 

In-Plane Loaded Plates Treated by Unified Ritz Approach," Journal 

of Sound and Vibration, Vol.59, No.1, 1978, pp.I-14. 

4) BATHE K.J. and WILSON E.L.,"Numerical Methods in Finite Element 

Analyses." Printise-Hall. 1976. 

5) CARMICHAEL T.E •• "The Vibration of a Rectangular Plate with 

Edges Elastically Restrained Against Rotation," Quart. Journal of 

Mechanics and Applied Mathematics, Vol.12, Part I, 1959, pp.29-42. 

6) COURANT R •• "Variational Methods for the Solution of Problem of 

Equilibrium and Vibration," Bulletin of American Mathematical 

SOciety. Vol.49, 1939, pp.I-23. 

160 



7) DAWE D.J. ,"On Assumed Displacements for the Rectangular Plates 

Bending Elements," Royal Aeronautical Society, Vol.71, 1967, 

pp.722-724. 

8) DURVASULA S. and SPRINIVASAN S. t "Vibration and Buckling of 

Orthotropic Rectangular Plates," Journal of Acoustic Society of 

India, Vol.19, No.3, 1967. 

9) GERE J.M. and WEAVER W.Jr,"Matrix Algebra for Engineers," Van 

Nostrand Company, N.Y., 1965. 

10) HEARMON R. F. S. , "The Frequency of Vibration of Rectangular 

Isotropic Plates," Journal of Appl ied Mechanics, Trans. ASME., 

Vol.74, 1952. 

11) HERRMANN G.,"Dynamic Stability of Structures," Proceedings of 

the International Conference, 1965. (Edited by George herrmann) 

12) JUBB J.E.M., PHILLIPS LG. and BECKER H.,"Interpolation of 

Structural Stability, Stiffness, Residual Stress and Natural 

Frequency," Journal of Sound and Vibration, Vol. 39, 1975, 

pp.121-134. 

13) KAPUR K.K., and HARZ B.J., "Stability of Plates Using the 

Finite Element Method," Journal of Engineering Mechanics Division. 

A. S. C. E •• Vol.92. No.EM2, 1966. 

161 



14) KAPUR K.K. , "Prediction of Plate Vibration Using Consistent 

Mass Matrix," American Journal of Aeronautics and Astronautics, 

Vol.4, 1966, pp.565-566. 

15) KIELB R.E. and HAN L.S. , "Vibration and Buckling of 

Rectangular Plates Under In-Plane Hydrostatic Loading," Journal of 

Sound and Vibration, Vol.70, No.4, 1980, pp.543-555. 

16) LAURA P.A.A. and ROMANELLI E. , "Vibrations of Rectangular 

Plates Elasticity Restrained Against Rotation along edges and 

Subjected to a Bi-Axial State of Stress," Journal of Sound and 

Vibration, Vol.37, 1974, PP.367-377. 

17) LEE Y.C. and REISMANN II., "Dynamics of Rectangular Plates," 

International Journal of Engineering SCiences, Vol.7, 1969, 

pp.93-113. 

18) LEISSA A.W. ,"The Free Vibration of Rectangular Plates," 

Journal of Sound and Vibration, Vol.31, 1973, pp.237. 

19) LEISSA A.W. "Vibration of Plates", NASA SP-160, 1969. 

20) LEVY S.,"Buckling of Rectangular Plates with Built-in Edges," 

Journal of Applied Mechanics, Vol.9, 1942, pp.171-174. 

21) LURIE H., "Effective End Restraint of Columns by Frequency 

Measurements," Journal of Aeronautical Sciences, Vol.18, 1951, 

pp.566-567. 

162 . 



22) LURIE H.,"A Note on the Buckling of Struts," Journal of the 

Royal Aeronautical Society, Vol.55, 1951, pp.181-184. 

23) LURIE H.,"Vibrations of Rectangular Plates," Journal of 

Aeronautical Sciences, Vol.18, 1951, pp.137-140. 

24) LURIE H.,"Lateral Vibrations Related to Stiuctural Stability," 

Journal of Applied Mechanics, Vol.19, No.2, 1952, pp.195-204. 

25) MANELBETSCH J. L. ,"Buckling of Compressed Rectangular Plates 

With Built-In Edges," Journal of Applied Mechanics, ASHE, Vol.59, 

1937. 

26) MELOSH R.J.,"Basis for Derivation of Matrices for the Direct 

Stiffness Method," Journal of the American Institute of 

Aeronautics and Astronautics, Vol.l, 1963. 

27) MELOSH R.J.,"A Stiffness Matrix for the Analysis of Thin 

Plates in Bending," Journal of Aero. Sciences, Vol.28, No.64, 

1961, pp.34-42. 

28) PIAN T.H.,"Derivation of Element Stiffness Matrices," Journal 

American Institute of Aeronautics and Astronautics, Vol.2, 1964, 

Pp.576-577. 

29) PRZEMIENIECKI J. S. ,"Theory of Matrix Structural Analysis," 

MCGraw Hill, 1968. 

163 



30) PRZEMIENIECKI J.S.,"Equivalent Mass Matrecies for Rectangular 

Plates in Bending," Journal of American Institute of Aeronautics 

and Astronautics,Vo1.4, 1966, pp.949,500. 

31) LORD RAYLEIGH ."Theory of Sound," MacMillan and Co., London, 

Second Edition. Vol.l. 1894. 

32) TIMOSHENKO S.P ."Vibration Problems in Engineering," D.Van 

Nostrand Co •• New York. 1928. 

33) TIMOSHENKO S.P. and GERE J.M •• "Theory of Elastic Stability." 

McGraw-Hill Company Ltd •• 1978. 

34) TIMOSHENKO S.P •• and KRIEGER S.W •• "Theory of Plates and 

Shells," McGraw-Hill Co •• 2nd Ed •• 1959. 

35) UGURAL A.C •• " Stresses in Plates and Shells," McGraw-Hill Co •• 

1981. 

36) WARBURTON G.B •• "The Vibration of Rectangular Plates," Proc. 

Inst. Mech.Eng., London, Vol.168, 1954. pp.371. 

37) WEAVER W.Jr • "Computer Programs for Structural Analysis." Van 

Nostrand Co •• 1967. 

38) WEEKS G.E. and SHIDELER J.L. ,"Effect of Edge Loadings on the 

Vibration of Rectangular Plates with Various Boundary Conditions," 

NASA TN D-2815,1965. 

164 



39) WHITE R.G. and TEH C.E.,"Dynamic Behavior of Isotropic Plates 

Under Combined Acoustic Excitation and Static Inplane Compression" 

Journal of Sound and Vibration, Vol.75(4), 1981, pp.527-547. 

40) WILLIAMS F.W.,"Natural Frequencies of Repetitive Structures," 

Quarterly Journal of Mechanics and Applied Mathematics, Vol. 24, 

1971, pp.285-310. 

41) WILLIAMS F.W, and WITTRICK W.H.,"Computational Proceedures for 

Matrix Analysis of the Stability and Vibration of Thin Flat Walled 

Structures in Compression," International Journal of Mechanical 

Sciences, Vol.l1, 1969, pp.979. 

42) WILLIAMS F.W. and WITTRICK W.H ,"Exact Buckling and Frequency 

Calculation Surveyed," Journal of Structural Engineers, Vol-I09, 

No.1, 1983, pp.169-187. 

43) WILLIAMSON F.Jr ,"A Historic Note on Finite Element ~ethod," 

International Journal of Numerical Methods in Engineering. Vol.15, 

1980, pp.930-935. 

44) WITTRICK W.H.,"Correlation Between some Stability Problems for 

Orthotropic and Isotropic Plates under Bi-Axial and Uni-Axial 

Direct Stress," The Aeronautical Quarterly, Vol.4, 1952, pp.83-92 

45) WITTRICK W.H.,"General Sinusoidal Stiffness Matrices for 

Buckling and Vibration Analysis of Thin Flat Walled Structures," 

International Journal of Mech. Sci ~ . Vol.10, 1968, pp.949. 

165 



46) WITTRICK W.H. and WILLIAMS F.W., "A General Algorithm for 

Computing Natural Frequencies of Elastic Structures, II Quarterly 

Journal of Mechanics and Applied Mathematics, Vol.24., 1971, 

pp.263-284. 

47) WITTRICK W.H. and WILLIAMS F .W. ,"An Algorithm for Computing 

Critical Buckling Loads of Elastic Structures," Journal of 

Structural Mechanics, Vol.l, 1973. 

48) WITTRICK W.H. and WILLIAMS F .W. ,"Buckling and Vibration of 

Anisotopic or Isotropic Plate Assemblies Under Combined Loading," 

Int. Journal Mech. Sci.,Vol.16, 1974, pp.209-239. 

49) YOUNG D.H. ,"Vibration of Rectangular Plates by Ritz Method," 

Journal of Applied Mechanics, Vol.17, 1950, pp.448-453. 

50) ZIENKIEWIEZ O.C.,"The Finite Element Method, II McGraw-Hi11 

Company U.K. Ltd., 1977. 

166 



APPENDICES 

167 



APPENDIX 1 

Mathematical Model used 

for the Space Frame Analysis 

168 



APPENDIX 1 

MATHEMATICAL MODEL 

A. Mathematical Model 

To start analysing - any engineering problem, a simple 

mathematical model must be constructed, two phases are essential 

to emphasise in this regard: 

Phase 1) The construction of a very simple dynamic system 

with the minimum possible number of degrees of freedom, the 

simplest among which the analysis is satisfied is the Spring-Mass 

(two degree of freedom) system, when one of the springs represents 

the elastic stiffness of the structure represented by the mass 

block m" the other spring represents the external spring 

supporting the external loads applied to the system and 

represented by the block mz as shown in figure AI-I. Out of the 

first phase of analysis we achieve: 

i) A preliminary estimate of the external spring stiffness to be 

designed to support the external loads keeping the effect of the 

mass of this external load to a minimum. 

ii) An estimate of the natural frequency of the system, by solving 

the two coupled system of equations, where the frequencies are 

defined as the square root of the stiffness K to mass. ratio. the 

two coupled equations are: 
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d'X 
-I ~ + (KI + Kz) XI - KzXz • 0 eq.Al.l 

eq.Al.2 

x .... 

, , , , , , . , 

Hatheaatical Hodel 

Figure Al-l 

Phase 2) In this phas~ the structure is divided into a finite 

nu.ber of .mall ele.ent.. connected together through nodes. this 

aecond phase is based on the concept of the energy method. this 

.. thematical procedure being considered a better approach to 

obtain results close to the exact solution. 

This analysis can not be handled easily without the 

inVolvement of the digital computer •• The computer results will be 

compared with the experimental results to see how close the 

approximation is. The Finite Element Hethod was detailed in 

chapters 3 and 6 of this manuscript both from the theoretical 

background and the techniques involved to set it 1n the computer 

programme. Computer flow charts were shown earlier to - illustrate 

the methodology of the programming procedure • 
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B. Frequency Estiaation 

Before analysing and solving the coupled equations shown 

earlier in this Appendix. 

To evaluate the stiffness of the .ain space frame structure 

we considered only the vertical displacement 6 neglecting the 

effects of the other displacement component. 

By considering one bar as shown in figure AI-2. the axial 

load applied to it is only a fraction of the total load applied 

externally to the structure. 

Figure AI-2 

Fro. the s ... ll deflection theory.see ref.(ll) in part I. it 

Was found that: 

• - 6 co. c/L eq.AI.3 

o - Be eq.AI.4 

and P' - 0 It. . eq.Al.5 

where A. E. o. and p' are the eros •• ectional area of the bar. the 
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elastic modulus, the stress, and the applied axial load inclined 

from the vertical at an angle «. 

p' - (6 E AIL) cos « eq.A1.6 

For this case, « - 30° and then the value of P' is: 

P' - ~3 E A 61 2L eq.A1.7 

For all bars of the structure, the total load willbe: 

Ptot • 3 E A OIL eq.AI.8 

The elastic stiffness value is estimated as: 

K - 3 E AIL eq.AI.9 

Solving equations AI.I, and AI.2 simultaneously gives: 

wZ - «K. + Kz )/2a.) + (Kz /2az) + ~ 0.25 (7 -~) eq.AI.IO 

eq.AI.II 

eq.AI.12 

where K. is the structural stiffness, while Kz is the spring 

stiffness, a. and az represent the respective masses of the frame 

structure and the applied load iespectively. 
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APPENDIX 2 

LINEAR REGRESSION PROCEDURE 

The linear regression method is well known. see NAG Library 

Manual ( section G-(.t2-). but for the purpose of the following 

discussion is to illustrate the theory behind the linear 

regression procedure involving all dependent and independent 

variables x and y. For the actual analysis of the space frame 

results. x represents the applied loads and y represents the 

square of the frequency ratio (w/wo ). 

This computer oriented procedure is based on fitting a straight 

line of the form: 

y • • + bx eq.A2.1 

When using all points (xi. Yi) the above equation becomes: 

y • • + bXi + ei eq.A2.2 

where ei is the expected error in the estimation. 

The computer routine calculates the regression coefficients b 

and the regression constant a by minimising the error presented in 

the form E eit the mean values of x and y can be calculated as: 
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x - E xi/N eq.A2.3 

and, Y - E Yi/N eq.A2.4 

where N is the number of pOints considered. 

The standard deviation is calculated as follows: 

Sx • ~ «I/(N-I» t (xi - x)z eq.A2.5 

eq.A2.6 

The regression coefficient b, and the regression constant a, 

can be calculated as follows: 

b • t (xi - x) (Yi - y) 
E (xi - x )2 

a - Yi - bXi 

eq.A2.7 

eq.A2.8 

Assuming the squares attributed to the regression (SQR), by 

evaluating the squares of the deviation (SQD) and the squares of 

the total sum (SQT) and then subtracting them from each other as 

shown below: 

eq.A2.9 

eq.A2.10 

SQR - SQT - SQD eq.A2.11 
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Dividing the last two equations by the degree of freedom 

number which is for the space frame under investigation is: 

DFD - N - 2 - 7 eq.A2.12 

and the degree of restraint is given by: 

DFR • 1 eq.A2.13 

The mean squares of regression and deviation are obtained as: 

MSR - SQB./DFR eq.A2.14 

MSD - SQD/DFD eq.A2.15 

Finally, to calculate the standard error Se of the regression 

coefficient b and that of the regression constant a one uses the 

following equation: 

MSD 
eq.A2.16 

xz 
Se(a) - ~ MSD (liN + ) eq.A2.17 

In the following page, a simple programme on the linear 

regression procedure is shown to demonstrate the efficiency of 

this procedure when used to select the best fit linear relation 

a~ong any spread points obtained experimentally or otherwise. 
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Linear regre •• lon .ample computer programme 

C ___ c_=:= THIS PROGRAM PROVIDES A LINEAR REGRESSION-==-
C _=_ce== TO CONNECT EXPERIMENTAL DATA OBTAINED TO ' -=== 
C e==e=:= FORM THE BEST FIT LINE eETWeEN THE POINTS ee= . 

c 

c 
c 
C 

DIMENSION X(120),VC110),RESULTC21) 
READING T~E EXPERIMENTAL DATA 

READCS,.)N 
READCS,.)CXCI),VCI),I=1,N) 

CALL SVSTE~ TO DRAW THE GRAPH 
SYSTEMS AVAILABLE ARE: ADM3AG,HP747,MAIN FRAM~. 
DRAWING THE AXIS AND LABLING THEM •• 

CALL AXIPOSC1,60 .• ,60-.,120..,1> 
CALL AXIPOSC1,60·.,60·.,11()..,2) 
CALL AXISCAC1,10,Q..,120.,1> 
CAL L A X I S C A C 1 ,1 0, ().., 1·.1 ,2) 
CALL AXU)RAC1,1,U 
CALL AXIDR~C-1,-1,2) 
CALL GRASYf"CX,V ,N,4,Q) 

CALL GRAMOvt 65 .• ,-0..1) 
CALL CHAS IZ C2.;"Z·.) 
CALL CHAHOL C' LOADC lBS) * •• ') 

CALL GRAHOV( 40·.,-Q..2) 
C A'- L C H AH 0 L C 'F I G U R E NO. *'. • ) 
CALL GR~HOVC:-26,.,1,.0) 

CALL CHAHOLC 'CW/WN) * .• ') 
CALL MOV6V2 CO·.,3-.) 
CALL C HAS I Z (1 •• 5, 1·. 5) 
CALL CHAHOLC'Z*·.') 
CALL CHASIZ C2 •• ,Z~.) 

CALL GR AMOVC 70·.,·.8S) 
CALL GRALINC 119,., •• 8S) 
CALL GRAlINC119.,1·.1> 
CALL GRALIN(7(l •• ,1·.1) 
CALL GRALINC70·.,·.8S) 
CALL GRAMOVC7S •• ,1·.0S) 
CALL CHAHOLC 'EXPERIMENT NO •• * .• ') 
CALL GRAHOVC72 •• ,1·.) 
CALL CH AH.OLC 'EXCITER, T ,BAR NO··.*·.') 
CALL GRAMOV( 72·.,·.9S) .-

'CALL CH AHO L< 'ACCELER!.,R,BAR NO·.*·.') 
CALL GRAMOVC 80·.,·.90) 
CALL CH AH OLC IRe RA 01 AL, . TeT AN"L*·.·) 

USE OF THE LINEAR REGRESSION PROCeDURE 
S TAR T SHE R E, U SIN G THE NAG SUB R 0 UTI N E S·. 
IFAILeO 
CALL G02CAFCN,X,Y,ReSULT ,IFAIL) 
VW1eRESULT(7)+RESULT(6)·XC1) 

CALL GRAHOYeX(1),YW1) 
YW2eRESULT(7)+RESULTC6)*XCN) 
CALL GRAliNeXCN),VW2) 
CALL DEVEND 
STOP 
END 
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EXPERIMENTAL GRAPHS OF 
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APPENDIX 4 

RESULTS FROM OTHER SOURCES 

The following graph. reported in thi. Appendix were produced 

by variou. author. in order to inve.tigate the relation between 

the .tre.. variation in the .tructure and the natural frequency of 

vibration (the .quare of the frequency). .ome of the.e graph. 

agree with the re.ult. obtained in the original work in thi. 

the.i.. a. il1u.trated earlier in the text. .ome other. differ. 

not only in the graph. but al.o in the conclu.ion. drawn. 

Each graph i. pre.ented and commented upon according to the 

under.tanding of the author'. conclu.ion •• 

The fir.t araph.. figure. A4-1 to A4-4 were by Lurie. .ee 

ref.[A41, in 1952 and .how that a linear relation.hip between the 

axially applied load ratio to the buckling load and the .quare 

ratio of the frequency of vibration doe. exi.t for the ca.e of two 

di.en.ional frame., neglecting the .mall deviation. fro. linearity 

due to experiaental error •• a •• hown in figure A4-1, curve 1. Ki. 

other curve. on the .ame figure are due to in.ufficient power to 

obtain the .aae level of frequency aode •• a. in the ca.e of curve 

2. Where incon.i.tencie. are found. no .ound rea.on wa. given. 

except that of .tating that a higher-energy .tate wa. occuring. 
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In figure A4-2, curve 1 seems to be linear when considering 

only the first 7 data points given experimentally, but Lurie 

claimes that it is not so due to out of plane buckling of the 

tested rigid-jointed truss. In curve 2 of the same figure, he 

carried more loads on the structure at the lowest resonant 

frequency to obtain a nonlinear relation between the applied loads 

and the square of the frequency. 

In a rather similar way, he carried out experiments on a flat 

rectangular isotropic plate, as shown in figures A4-3 and A4-4, 

stating that the method is not successful ' for this type of 

structures and the nonlinearities are due to the relatively large 

initial deflections encountered in practice. 
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The graph. in figure. A4- Sand A4-6 were obtained by Kielb 

and Han. ref.(A2J. in 1980. The fir.t figure i. for a fully 

clamped i.otropic and rectangular plate where curve. and line. are 

.een varyingly, depending on the a.pect ratio (a/b) of the plate. 

The higher the a.pect ratio, the clo.er to a linear relation i. 

obtained between the applied load. and the .quare of the frequency 

factor.. The .econd figure for.. a .u ..... ry of linear relation. 

between the load. and the .quare of the frequencie. for different 

boundary condition. around the plate. All the above- re.t.ilt. are 

ba.ed on theoretical ground. only. 
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The craph. .hown a. figure. A4-7 and A4-8 are reported by 

Steinert, ref.[A3J, 1968 in a .tudy of the buckling re.l.tance. of 

fra.e .tructure. by .ea.uring their natural frequencle., hl. 

re.ult. in fllure A4-7 are llnear for both .y.metrlc and 

very clo.e it indicate •• till the linear nature between applled 

load. and the .quare of the frequency of vibration of ~he fra.e. 
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Finally, the lDO.t recent work done by Ilanko and Tillman, 

ref.(A4) in 1985 on rectangular i.otropic plate. did not give any 

better clue on why thi. nonlinearity exi.t., in.tead, it gave the 

1.pre •• lon that the higher mode. po •• eaa Ie.. energy and .0 they 

tend to be clo.er to the theoretical line. Thi. .tatement i. not 

fea.1ble on both theoretlcal or phyalcal grounda •• ince the energy 

.hould 1ncrea.e 1n the higher mode. of vibration producing a wider 

gap between the mode. of vibration and the .ode. of buckling. For 

thi. rea.on, thi. laat work can not be a good example of progre •• 

toward. the achievement of a full under.tanding 'Of the 

relation.hip between the frequency ratio of vibration and the 

applied axial (in-plane) load •• 
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To conclude, it i •• een fro. the above graph. that there wa. 

a need for an experi.ental and theoretical correlation to verify 

the relation.hip between the frequency of vibration of a .tructure 

and the axial load. applied on it. 
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the Geometric Stiffness Matrices 
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APPENDIX 5 

DETERMINATION OF THE ELASTIC AND 

THE GEOMETRIC STIFFNESS MATRICES 

t
V2 /X 
r X2 

Figure A5-1 

8'-12 

I) The El •• tic Stiffne •• Matrix Determination: 

i) Starting from a polynomial expre •• ion for the di.placement •• 

+ C. x'y + C. xyl + Cto y' + Caa xly + CII"xY·.· 

eq.A5.1 
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Solving for the arbitrary constants using the following boundary 

conditions. note that the right hand rule is used for the vectors 

eq.A5.2 

as shown in figure A5-2. 

& 

y x 

Figure A5-2 

ii) The boundary conditions are represented in the following 

table: 

Hoele coordinate. di.plac.-ent. 

It y V ex 8y 
1 0 0 Va exa eya 
2 • 0 V, eXI eyl 
3 • b V. ex. ey• 
4 0 b V. ex. eY. 

Table-AS.l 
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The constants in equation AS.l are determined as: 

Cz • -a 6 y , 

C, • b 6 x , 

C. - 3 ( W. - W,) + a (2 6 y , + 6 y .) 

Cs • -Wl + Wz - W3 + W. + a (6 y ' - 6 yz ) - b (6x , - 6 x.) 

C& • 3 (W z - W,) - b (2 6 x , + 6 xz ) 

C 7 • 2 (W, - W.) - a (6 y , + 6 y .) 

Ca • 3 (W, - Wz + W3 - W.) - a (26 y ' - 26yz - 6 y3 + 6 y .) 

C9 • 3 (W, - Wz + W] - W.) + b (26x , + 6 xz - 6 X ] - 26x .) 

C,o· 2 (W, - Wz ) + b (6x , + 6 xz ) 

C ". 2 (-W, + Wz - W] + W.) + a (6 y , - 6 yz - 6 y ] + 6 y .) 

C,z- 2 (-W, + Wz - W] + W.) - b (6x , + 6 xz - 6 X ] - 6 x.) 

iii) Determine the shape functions by substituting for the 

arbitrary constants in terms of the displacements at the nodes of 

the element, we get: 

W - I ( H3i - 2 Wi + H3i - I exi + H3i 8yi). i- 1.4. 

eq ~ A5.3 

where the values of N are represented in the following matrix: 

HI 
H2 
H3 
N4 
HS 
N6 
N7 
Na 
Hg 
NIO 
HU 
N12 

-

-xA fxC + yR. 
bxyA' 
ax'AB 

-xy f I +XC +yD. 
-bxy'A 

ax'yB 
1 - xy + ACx' + BOy' 

A'Bby 
- axAB' 

-By f xF + yD. 
-by'AB 
-axyB' 
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where. 

C • 2x -3 E • 2y -1 

B • 1 -x D • 2y -3 F • 2x -1 

iv) To relate the displacements ul ••••••• u12 to the 

displacement W we can write the following equation: 

eq.A5.5 

where Ni matrix is previously given. 

v) From the strain-displacement relations such as: 

fiX • -z aZw/ax z 

Ci y • -z aZw/ayZ 

7xy - -2z aZw/axay 

eq.A5.6 

or. in matrix form of 3 X 12. the above equations could be 

rewritten as: 

b • - z 

eq.A5.7 

then. the elast ic st iffnes8 matrix could be calculated from the 

equation: 

eq.A5.8 

205 



The above equation is the same as equation 7.20 used in chapter 7. 

and the calculated elastic stiffness matrix based on the above 

equation is shown in section 7.3.2. 

2) Geometric Stiffness Matrix detremination: 

We can use the same matrix Hi developed above in the 

equation: 

eq.A5.9 

when calculated for the tested plate it gives the values of the 

matrix in section 7.3.1 of chapter 7. 

Reference: 
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Methods". The Construction Press. 1981. 
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