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ABSTRACT

The apparently different physical problems of forced
vibrations and elastic stability are both cases of a single
phenomenon, the more general expression being the mode of
vibration relation with the axial applied load.

This thesis studies the relationship between the frequency of
vibration éf a loaded structure and the magnitude of the applied
loads and its application to the analysis of elastic stability.

In the case of a flat plate, it will be shown that the square
of the frequency ratio is very close to being linearly related to
the applied inplane loads, and this relatioﬁ can be extended to
include two dimensional and three dimensional frameworks having
axial symmetry and subjected to purely axial loads. Experimental
and analytical results have been obtained which agree closely with
the theoretical predictions (exact or approximate).

A literature review on this subject has disclosed that
earlier experimental work appears to contradict the expected
results obtained from the theory, especially when three
dimensional structures were analysed and tested. A few experiments
done in the past years studied only the two dimensional cases with
relative success but those dealing with space frames and plate

structures led to different conclusions being drawn.
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The accuracy of these earlier experiments is questionable and so
the results obtained have to be considered critically.

Many components forming the flight vehicle structure are
susceptible to various types of aeroelastic instability of which
the most noticeable is flutter. However, flutter analyses are, to
a large extent, dependent on predictions of vibration frequencies.
Characteristics of different structural elements, in particular,
three dimensional frames, and plates subjected to.inplane loadings
and having various constraint situations, could be obtained
experimentally as well as theoretically in order to solve for the
dynamic problem.

The problem of determining the natural vibration
characteristics of isotropic and, more generally, orthotropic
rectangular plates in the absence of inplane loads, for various
boundary conditions, has been the subject of numerous theoretical
and expe;imental investigations during the past years, but the
effect of inplane loads on the natural  frequency of simply
supported and fully or partially clamped plates has been studied
almost entirely analytically, due to difficulties which arose when
attempting experimental investigations.

This research will deal with the direct effect of the stress
level due to axial loads applied on the axially symmetrical and
rigidly jointed space frame structure as well as the isotropic
rectangular flat plate (details of the plate analysis are shown in
part II of this manuscript) while under forced vibration, and

subjected to different boundary conditions.
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Experimental results obtained in this investigation are
compared firstly with closed-form theoretical results, and then
checked against analytical results obtained via computer analysis
using the Finite Element Method. Finally, the results are checked
against any available results, exact or approximate obtained by
other investigators.

An application of the Finite Element Method constitutes an
important part of this work by providing the analytical solution
to the problem. This method is made as simple and economic as
possible by improving on the assembly routines making them easy to
check, ana}yse, and assemble.

The elements chosen for this method of computer analysis are
two node bars for the space frame structure, and rectangular-
elements with four nodes located at the corners for the isotropic
plate structure. The node numbering is made in such a way to save
space in memory and time of assembly, execution, and space
allocation.

This research work leads to a different interpretation of
other researchers's experimental and analytical results on both
physical and mathematical grounds.

Analytical graphs for each case are suggested to be used in
the analytical solution of similar problems if subjected to

similar conditions.



Finally, the present experimental method is applied to a
cantilevered monocoque beam structure, and a theoretical analyses
is done based on the Finite Element Method. Both methods
(experimental and analytical) gave a further confirmation of

results obtained previously both analytically and experimentally.
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PART I

STABILITY AND VIBRATION OF THREE

DIMENSIONAL FRAME STRUCTURE

SUBJECTED TO AXIAL LOADS



CHAPTER 1

BACKGROUND ON FRAME ANALYSIS

1.1 Introduction

Knowledge of structural stability is of paramount importance
to practising structural engineers. In many instances, see
references [19) and [21], buckling is the primary consideration in
the design of various structural configurations.

Structural engineers often have to study and investigate the
dynamical behavior of structures with many degrees of freedom. For
example, in the design of frame structures, plates, or shells, the
engineer would wish to know the natural frequency of vibration of
the system in hand in order to estimate the 1likelihood of
resonance due to external loads.

It is therefore imperative to study both the analytical and
the experimental aspects of the problem.

The emphasis in presenting the Finite Element Method of
analysis is to determine that it facilitates computational work
and is capable of producing results with reasonable accuracy when
compared with the exact solutions.

The elastic theory of small deflection assumptions (23] as

well as the theories of undamped vibrations [17] and ([22] were



used for these analyses. The basic equation of motion to be solved

are simplified to have the following mathematical form:
[A] {X} + x [B] {X} =0 eq. 1.1

Where [A] represents the global stiffness matrix of the structure
(elastic and geometric), and [B] represents the mass matrix of
the structure including all inertia effects, \'s are the
eigenvalues, {X} and {*} are the displacement and the acceleration
veétors.

The experimental study of model structures is a useful
complement to analysis. It is applicable to complicated structures

if handled with the needed attention and care.

1.2 Concept of Stability
As the external 1loads are applied quasi-statically, the

elastic structure deforms while the static equilibrium 1is
maintained. If, at any level of the external loading, when an
infinitesimal external transient disturbance 1is applied, the
structure reacts by simply performing oscillations about the
deformed equilibrium state, the equilibrium is said to be stable.
The disturbances could be defined in the form of displacement or
force.

It ies emphasized that when the disturbance is applied, the
level of tﬁe external loads is kept constant (23].

On the other hand, if the elastic structure either remains

in the disturbed position or tends to diverge from the deformed



equilibrium state,the equilibrium is said to be unstable. The
least value of the external load corresponding to this condition
is the "critical load" or "buckling load". This can be illustrated

by the following sketch:

Stability concept

Figure -1-

This eystem consistes of a ball of mass m resting at
different points on the surface with zero curvature normal to the
Plane of the figure . Points of zero slope on the surface denote
positions of static equilibrium (pointse A, B, and C).

However, the character of equilibrium at these po;nt- is
substantially different. At A, i{if the system is given an
infinitesimal disturbance and released, the ball will simply
oscillate about the static equilibrium position A. Such
equilibrium position is called stable. At point B, if the process
of disturbing is repeated, the mass will tend to move away from
the static equilibrium position. Such an equilibrium position B is
called unstable.

Finally, at point C, if the system is disturbed, the ball will
tend to remain in the disturbed position. Such an equilibrium is

called the neutral equilibrium.



In structures or structural elements, the loss of stability
is associated with the tendency of the configuration to pass from
one deformation pattern to another, the buckling mode. For
instance, a 1long slender column loaded axially will, at the
critical condition, pass from the straight configuration (pure
compression) to the combined compression and bending state.
Similarly, a perfect thin spherical shell wunder external
hydrostatic pressure, at the critical condition, passes from pure
membrane state to a combined compression and bending state.

This characteristic of elastic structures has been recognised
for many years and it was the first to be used to solve stability
Problems. Now it allows the analyst to reduce the problem to an
eigenvalue problem which is easier to handle by digital computers,
since the application of buckling criteria is essential for the
designer especially when safety and economy are of prime concern.

Mathematical similarity between the elastic stability and
vibration of a structure may be demonstrated by considering the
example .of a forced vibration relation and the stability of an
initially curved beam member, as shown in [4] and [12].

Suppose that the static- def}ection function of a uniform
beam is expanded in a series of terms corresponding to the modes
of vibration. Then it is known that, under a harmonic load, the
shape of the deflection curve for a forced vibration with
frequency w is obtained by multiplying all terms of the static-

deflection function by:

(1/7¢1 = (w/wo)?)] eq.1.2



Similarly, it can be shown that if the shape of an initially
curved column is expanded in a Fourier series, the shape of the
deflection curve under the applied axial load P is obtained by

multiplying all terms of the unloaded deflection function by:

(1/7(1 - p/poy)] eq.1.3

It is this similarity between the above two factors (eq's 1.2
and 1.3) that might lead one to seek the relation between the
applied loads and the square ratio of the frequency of vibration
of the structure.

This suspicion will be corroborated for the case of three
dimensional frames and 1isotropic plates axially loaded and

subjected to various boundary conditions.

1.3 Buckling of Framed Structures

In aerospace, mechanical, and civil engineering, frames of
various types are widely used in main or auxiliary structural
configurations. Examples could be found in a helicopter fuselage,
an engine mounting, bridges, and multistorey buildings, see ([21]
and (23). These frames are subjected to different kinds of
loadings, concentrated and distributed, which, in many cases, may
cause buckling of an element or group of elements of the frame.
Usually, the frame members are rigidly connected to each other as
well as to the other structural parts, so that deformation in one
element will cause deformations in the neighbouring elements. This

may result in loss of stiffness of the whole structure.



Knowledge of the critical buckling load is essential for the
design phases of both simple and complex structures.

The theoretical analysis of stability of two dimensional
frames is well established so far as structures consisting of
members subjected to essentially axial loading are concerned. The
discussion of this section will deal primarily with such and
similar systems. However, not a great effort has been made, so
far, to study the stability of three dimensional frame structures
or other complex structural geometries.

In a framework, the members (as a rule) should be rigidly
connected to one another at the joints. As a consequence of this,
no single compression member can buckle without all the other
members in the frame being deformed, in other words, the elastic
restraint at the end of a given compression member depends ndt
only on the members immediately connected to it but also on each
and every member of the entire system.

This explains why, when the critical load of a member is of
interest, the whole frame will be analysed and investigated as one
single unit.

So far as the literature survey is concerned (see section
1.6) all experimental and analytical results found were for two
dimensional frames only, and these emphasized correctly (6], for
the structural configuration considered, the existence of a linear
relationship between the natural frequency ratio squared and the
applied axial loads. But very little could be found concerning the
same phenomenon for three dimensional frames, which are of great

importance in modern antennas and space applications.



The objective of this research work is to enlighten this
situation by experimental and theoretical analysis, since the
space frame is the most general type of framed structures. The
individual member of the space frame may carry a combination of
axial force, torsional moment, and bending moments in both
Principal directions. It is assumed that each member is straight °
along the axis and that its cross section is uniform throughout

its length.

l.4 Modes of Buckling of Frames

Consider the following figure, assuming that the loads are
applied in such a way as to avoid any bending moments ( the same
assumption is used for the three dimensional framework). This is
additional to the assumption of small deformation elastic theory
(21]) in the analysis.
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Buckling modes of portal frames

Figure =2-



Cases 1 and 2 show that it is self evident that the buckling
takes place when the applied load P is equal to the critical loaa
of the column Pore It is also clear that the upper end of each
column is elastically restrained by the beam which is rigidly
connected to the columns, the critical load therefore depends not
only on the column stiffness, but also on the stiffness of the
beam.

Assumptions can be made on the rigidity of the beam. As shown
in the first case, if it is infinitely rigid, then we get four
times the Euler load of a column as the critical load for the
member. If instead the assumption is made that the beam is
infinite1§ flexible, then the critical value of the load P will be

approximately half of the previous one. That is to say:

2.05 Pg < Poy <4Pg eq.1.4

where Pgo = #? EI/1? is the Euler load.
The same line of thought can be applied to frames whose upper
joints are free to move laterally, and the previous relation

becomes:

0.23 Pe < Pcr < Pe eq.l.5

Comparing the above two results, one notices that the
buckling load required for the symmetrical buckling case is larger
than that required for the antisymmetrical one regardless of the
stiffness of the members. It can be concluded therefore, that the

above portal frame will always be inclined to buckle sideways



unless it is forced to buckle otherwise, and this is true for

multistorey frames [(19] if based on the same assumptions.

1.5 Methods Used to Find the Critical Load

The critical load can be calculated analytically by different

methods some of which are summarised in this section. For further

details on these methods, one can refer to a specific literature

study on this subject if needed. Some of the commonly used methods

are presented here based on their historical backgrounds:

1) Energy
2) Finite
3) Finite

4) Finite

Some

Methods.
Difference Methode.
Strip Method.

Element Method.

of these methods will be used in the analytical study of

this research work, they will be illustrated and used to solve for

the space

frame and flat plate analyses.

The Finite Element Method based on the Matrix Analysis Method

is selected. for its proven computational advantages over the other

methods.

10



1.6 Literature Review

The topic of the relationship between the stability and the
vibration of structures has a 1long history. It has been the
interest of many scientists since 1929, when Grauers first
studied the rectangular plate subjected to vibration. However, no
conclusions were drawn out of that study. In 1936, Stephens [20]
provided some wuseful results although his analyses were
incorrect, as will be explained later. He was one of the first to
attempt this kind of analysis with relative success.

Chu [6] in 1949, had tested and confirmed the existence of a
linear relation between the square of the frequency and the
applied loads in the cases of a pin-jointed column and a twé
dimensional framework.

Even though most of Chu's work [6] was useful and reliable,
there still remains much to learn about the three dimensional
frames and other more complicated structures (plates and shells).

Stephens, in his 1936 paper, was one of the first scientists
to present experimental methods for determining:

1) The degree of end restraint of a structural member.
2) The magnitude of the load by frequency measurement.

He used D'Alembert's principal to obtain the vibration and
deflection equations but, considered only the transverse
translational inertia, neglecting effects due to any rotary
inertias which might arise. This is considered to restrict his

approach to only one class of deflection behaviour.

11



Starting from the partial differential equation of motion:

: 3%y %

& at?

= 0 _ eq.l.6

which includes all material properties, deflections, and the time
variations, leads to a straight-forward solution of the above

linear fourth order partial differential equation as:
Y = A cos wt + B sin wt eq.l.7

where, A and B are functions of X, and w, and w = 2 v f.
Applying the boundary conditions he evaluated the unknowns A
and B, and obtained a graph relating K to c, which is reproduced

in figure-3-.
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Stephen c—K relation, ref.[20]

Figure -3-
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Wherg, c is the end fixity coefficient; K is the frequency
factor, 2wL2fy,/a, and a = JEI/p.

However, Stephens's relationship between K and ¢ is not
unique, since there may be more than one value of K corresponding
to each value of c. This might be expected from the physics of
the problem, the following .argument to illustrate it is made as
follows:

It is feasible for two identical bars with differently
restrained ends to have the same fixity coefficient c. However,
different modes of vibration and hence, different frequencies
would be anticipated.

We considered a strut elastically restrained at each end,
and assumed the restraint to be such as to give an end fixity
coefficient ¢ equals to 2.047 ( one end fixed, the other pinned ).
The value of K for such a strut could be calculated. Assuming the
same spring constant on both sides and the length of the strut to
be 2L, and taking the origin of the coordinates at the midpoint of

the strut, then the boundary conditions will be:
Y=0 at X = L
and EIY = 5 ¢ Y' at X =& L
where ¢ is the spring constant.
According to Lurie [13] the general buckling solution of the

fourth order ordinary differential equation is of the type :

Y= Acose BX+BsginpBX+DX+F eq.1.8

13



2
and P = ¢ -EZ%;—

where p? =

By applying the boundary conditions the unknowns could be

found easily and :

¥ J/C
B = e eq.1.9
Jc Jc
« = gEI 1A cot ¥ 3 eq.1.10

But, from Timoshenko and Young [22] the general solution to

the free vibration equation is given as:

Y = A cos XX + B sin XX +D cosh XX + F sinh XX eq.1l.11

2
where A% =

;: and m is the mass per unit length.

By applying the above boundary conditions:
2EIX

el
Then, « = tan AL + tanh AL =4 i

Since « should be the same for both cases, then:

2 EI)M - wEIJC cok s/C eq.1.13
tan AL + tanh AL 2L 2 te

Now, using the value of ¢ = 2.047, then we find that—

K = (2)0L)? = 14.258 eq.l.14

14



According to Stephens [20], K = 1353.421, which does not agrée
with equation l.14. This may allow us to conclude that the single
relation between ¢ and K as accepted by Stephens in his earlier
work [20] is not justifiable, and it suggests that the values on
the curve might be higher.

Lurie [12]) 1952, did verify Chu's work [6], checked the
simply supported column using experimental tests, both (Lurie and
Chu) obtained a good agreement for the plane frame analysis, but
for the rectangular plate tests the extrapolated critical value
appears to be lower than the exact (theoretical) value. The linear
relationship between applied loads and the square of the frequency
is no longer obtainable by Lurie for the isotropic plates and, to
a4 certain extent, even for space frames, which 1leaves one
suspecting either the accuracy of the instrumentations used or in
the interpretation of conclusions drawn and results obtained.

In 1955, Bishop (4] provided a numericgl technique based on
related tables to calculate the natural frequencies of vibrating
Plane frames. Some experiments were conducted to check the natural
frequency of the plane frames, and his method was shown to
facilitate the determination of the principal modes of vibrations.
He admitted (4] that the natural frequency equations become
extremely complicated as the number of beams embodied in the
Structure is increased.

Bishop's method is claimed to be exact as far as the
elementary theory [21] of beam vibration is concerned, but this
method is indeed in contrast with the well known energy method
based on Lord Rayleigh's principle [17]. This energy principle is

known to produce only an approximate solution, but a reliable one.

15



Bishop's method, when tested on symmetric and antisymmetric
portal frames, found the first six natural frequencies which were
in very good agreement with his own previous analysis.

Nevertheless, all his and other previous analyses as well as
the related tests were of extreme importance to the research on
the frame structures at that period of time, but, unfortunately,
for the space frame structures this method did not demonstrate its
Power to solve the dynamic problem (buckling and vibration
combined).

In 1964, Gladwell [8] solved the same problem as that done by
Bishop (4] using another method, based on an assumed mode shape
instead of Bishop's tables, and setting all his analysis in a
matrix form. This matrix formulation has the advantage over all
the previous analyses if digital computers are to be used.

Stability and inertia matrices were emphasised in an equation
of the type:

(C-wiA)Uu=o0 eq.1.15

Where, by the stability matrix C is meant the total of the
elastic and the geometric matrices, and by the inertia matrix A
the mass and inertia of the main structure, so that equation 1.15
is similar to equation 1l.1l.

Kinetic and Potential energy were evaluated successfully, and
it was deﬁonstrated that, especially when the structure tends to
be geometrically more complicated, the matrix form 1is more

convenient to use.

16



CHAPTER 2

EXPERIMENTAL PREPARATION AND EQUIPMENT USED

2.1 Introduction

Over the years, a few investigations had been conducted to
correlate theory and experiments. Chu [6] was one of the first in
trying to verify the relation between the applied loads and the
frequency of vibrations; his investigation dealt only with two
dimensional frames and portal frames. Although he obtained a
linear relationship between the axial applied loads versus the
square of the frequency ratio, these results were criticised by
Lurie (11] in 1951 as being not so conclusive and general as one
expects to achieve. Lurie [12] in a later paper stated that, from
energy considerations, this relation could not describe the true
behaviour which relates the two phenomena of buckling and
vibration.. However, no further discussions were obtained to
sustain these conclusions.

Lurie [11] produced similar results as Chu [6] for the same
Portal frame structure and then he attempted other types of two
dimensional structures ( rigidly jointed trusses) for which he
reported different conclusions. Furthermore, Lurie tried the same

éxperiment on an isotropic plate subjected to axial 1loads and
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caused to vibrate, concluding, again, that a nonlinear relation
exists between the applied loads and the square of the frequency
of vibration ratio.

One of the objectives of the present experimental work on
three dimensional structures (space frames and isotropic plates)
is to find a reliable relationship between theoretical predictions
and experimental verifications, and to give the possible reasons
behind the discrepancies found between theory and experiments.

Sources of error in experimentation can be numerous; one
should be careful at all stages of an experiment, by giving full
attention to most particulars.

Provided this 1s done, attention can be devoted to
interpreting the results obtained from the graphs produced from

the data obtained by both theory and experimentation.

2.2 Material Properties

As one of the sources of error mentioned in the above section
(2.1), the material properties could, if not verified carefully,
lead to differences between the final analytical and theoretical
results.

Property tests on the material used in these experiments gave
a density and an elastic modulus which differed slightly from the
values quoted in the literature.

Direct tension tests were conducted on a material specimen

using an Instron Tensile Machine connected to an XY-Recorder Type
26000 A3 by Bryans Industries to verify the material properties

before testing starts.
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2.3 Buckling Load Estimation

After deciding on the geometry of the space frame (see figure
7 ) to be tested, one could easily produce a rough estimate of its
static buckling load by assuming the applied loads to act along
the vertical axis of the frame so that each bar is loaded axially
and, hence, each bar is subjected to the same amount of stress.

The buckling value for this space frame was estimated to be
about 360 Newtons. The need to experimentally achieve equal axial
loads in each member of the space frame led to the use of a
spherical bearing located at the point of intersection of the axes
of the members.

To help in avoiding some problems which could have been the
cause of some of the errors in previous works, problems such as
the mass of the load associated with the main mass of the
Structure, and the presence of some undesired bending or torsional
moments due to the load positioq being some distance away from the
point of application of the applied load to the structure,
especially when the system is vibrating, a spring is introduced to
carry the applied loads, transmitting them to the point of the
axes intersection. This spring is suspended from the spherical
bearing.

The point of the application of the load is very important if
the presence of bending or torsional moments is undesired. When

Present, surely they will change the experimental conditions and

results,
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In studying the problem as conducted by Lurie [12] on the two
dimensional rigid jointed truss and the isotropic plate, it was
realised that part of the claim of nonlinear behaviour of the
Structure may have been caused on the one hand, by some bending
moments due to the position of the applied loads, or, on the other
hand, by the mass of the main structure being effectively

increased by the applied load masses.

2;4 Apparatus Used

Since accuracy is a major objective of this research work,
all the instruments used have been tested and calibrated. Some of
these instruments had been calibrated by the manufacturer, but
others had to be calibrated in the laboratory. The instruments
used are:

1) A Narrow Band Spectrum Analyser Type 2031,see figure-4-,
which has been designed and tested by the manufacturer according
to class II of IEC Publications 348. The spectral analysis takes
Place in 400 constant bandwidth lines across a frequency range
which is selectable from 0_10 Hz to 0_20 KHz. The analysis takes
Place in real time for the whole frequency range. |

The results produced could be averaged exponentially or
linearly prior to displaying them on an 11 inches display screen,
which may also be used to show the time function and the
instantaneous spectrum. The instrument could hold the maximum
Spectrum when desired by the analyst, it is also supplied with a
memory and could be connected to a computer and a plotter to plot

Stored data and analyse it.
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The N.B.S.A. analyses the frequency by Fourier Transform
Procedure (FTP) in the form of Discrete Fourier Transform (DFT)

for a finite number of discrete samples.

Narrow Band Spectrum Analyser

Figure -4-

2) An Exciter is used in contact with the structure through a
transmitter, and activated by either a Function Generator Type TWG
301, or, for more precise harmonic waves, by a Beat Frequency
Oscillator Type 1022. The input frequency of vibration could be
varied continuously.

3) Philips Multimeter Type PM 2521 Automatic, to check the input
frequency.

4) A light-weight piezo-electric Accelerometer Type B&K 4375,
made of titanium, with given manufacturgr calibration and other

8pecifications as shown below:
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Accelerometer used

Figure-5-

5) The accelerometer ie connected to a Low Frequency Charge
Amplifier of Type B & K 2628, which has been calibrated and
checked earlier in the laboratory. This charge amplifier is
directly connected to the Narrow Band Spectrum Analyser, both

instruments form the output of the system.

Charge amplifier

Figure—6—
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6) Strain gauges of Type N11_FA_8_.120.23 of resistance of about
120 Q0 are located at various positions of the structure (use of
these strain gauges is necessary in the case of the plate
structures only). These strain gauges are connected to an
extension box.

7) An extension box, Peekel type 5UD; only a quarter bridge
gauge is needed for the analyses, this box 1is connected to a
strain gauge reader.

8) A strain gauge instrument, Peekel type 581 DNH, which reads

each individual direct strain value.

2.5 Experimental Set Up Procedure

The space frame structure to be tested is formed of four
solid bars made of brass type BS 2874 M_Extruded, 470 mm long, and
4.75 mm in diameter. All the four bars are rigidly connected at
one end to a joint fitting in which a bearing is housed at the
calculated point of intersection of the axes of the bars. The
bearing supports a short link to which the spring is connected.
The other end of each frame bar is rigidly fixed to a horizontal
steel foundation plate with a circular hole at its centre to
accomodate the load to pass freely. The shape of the complete

space frame structure is shown in figure- 7 -
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The space frame used

Figure - 7 -
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A schematic sketch diagram of the space frame structure and

all equipment connected to it is shown in the figure below:

Input Section Output Section

S.G. Exc. Accel. -)- C.A.

Y

EwMm, Structure

N.B.S.A.

Schematic diagram of the experimental set up

Figure-8-

S$.G. = Signal Generator.
EXC. = Exciter.

ACCEL.= Accelerometer.

C.A. = Charge Amplifier.
P.M. = Phillips Multimeter.

N.B.S.A. = Narrow Band Spectrum Analyser.
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CHAPTER 3

MATRIX ANALYSIS AND COMPUTER METHOD

3.1 Difference between Stiffness and Flexibility Methods

The ready availability of digital computers has
revolutionised the analysis and, to a lesser extent, the design of
complex structures. They can be programmed to perform extremely
complex calculations with the minimum input of base data. Matrix
Structural analysis based on the displacement method 1{is
Particularly suited to exploit the power of computers, see ref [1])
and (3].

One of the advantages of the displacement (stiffness) method
over the force (flexibility) method is that it is more conducive
to computer programming. Once the analytical model of a structure
has been defined, no further engineering decisions are required in
the displacement (stiffness) method in order to carry out the
analysis. In this respect it differs from the flexibilty method,
although the two methods have similar mathematical forms.

In the flexibility method the unknown quantities are
redundant actions that must be arbitrarily chosen; but in the
Stiffness method the unknowns are the joint displacements which
are automatically specified in the structure. Thus, in the

displacement method the number of unknowns to be calculated is the
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same as the number of independent components of displacement
associated with the node (joint) system of the structure.

Another attractive aspect of the stiffness method is that the
technique varies very little as the structural form is changed
from the two dimensional frame to the three dimensional frame or
to even more complex structures such as plates or shells, while

the flexibility method could widely vary.

3.2 Matrices Use in the Finite Element Method

It is the responsibility of the design engineer to devise
arrangements and proportions of members that can withstand
economically and efficiently the conditions anticipated during the
life-time of the structure. The central aspect of this function is
the calculation of the distribution of stresses within the
structure and the displacement state of the system. It is useful
to show and describe modern methods of performing this kind of
calculation, in particular for a structure such as those used here
(space frame and plate) under elastic linear behaviour where
elementary theory assumptions are used, see (2] and [3].

It is recognized that for anything other than a one
dimensional structure it is not likely to be easy to give an exact
solution, therefore it is imperative to use numerical methods such
as Finite Element Method or Finite Strip Method, where the basic
concept 1is that any continua can be modeled analyticaliy by
subdividing it into elements, each of which can be assumed to have
the same form of displacement function, considering, of course,

the right set of boundary conditions.
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Obviously the Finite Element Method and Matrix Analysis are
complementary. The methods of matrix algebra are used to
facilitate the analysis of the numerous equations resulting from
the application of the Finite Element Method of representing a
structure. This relation is used in the theoretical analysis of

this work.

3.3 Elements Used for Matrix Analysis
The main purpose of this work is the development and use of
the stiffness matrix for a twelve degrees of freedom member as

representative of an element of the space frame and as shown

below:
. ug
Yl uqy
uz
“1% ui0
A2
%] /U5
v 7~ 3 -
41 Mug -
3
Z

Space framework element

Figure-9-

The construction of the matrix requires an understanding of
the stress_strain behaviour in the structure, furthermore it {is
faciittated by the use of energy principles and theorems. These
concepts could have been thoroughly studied but, llnc; they are

described in many texts, only a brief discussion is presented

here.
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3.3.1 Stress_Strain Relation

Homogeneity and isotropy assumptions of the material used
lead to the stress-strain relationship being defined by three
properties which are:
i_ E, Young's Modulus which is the ratio of direct stress to
corresponding strain in a uniaxially stressed element.
ii_ G, Shear Modulus, representing the ratio of shearing stresses
to shearing strains.
iii_ v, Poisson's Ratio, as the numerical value of the ratio of
transverse strain to axial strain in the Jeformed uniaxially

stressed element.

3.3.2 Work and Energy

The relationship between force and displacement at a point
could be represented by the work done on a structure by the
external forces when the point is given unit displacement. The
strain energy the structure can gain for a given displacement is

presented in the following equation:

U = 1/2 [Fl{a} eq.3.1

Which is equal to the work done on the structure. Equation
3.1 is true if the assumed linear relationship between stress and
8train holds, in other words, if the s8mall deflection theory

assumptions are used.
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3.3.3 Coordinate Transformations

Very often in structural analysis, it is needed to resolve
forces and couples into components along and perpendicular to the
structure's axis.For the three dimensional structures a coordinate
transformation procedure is applied. Direction cosines are the
cosines of the angles between the member axis and the set of
orthogonal reference axes, these will be used to form the
transformation matrix needed. Usually they are denoted by letters
such as 1, m, n corresponding to x-, y-, z- axes respectively. For
three dimensional structures a transformation matrix of 3-rows by
3-columns is available in the literature. The direction vectors of
the element axes are given in the following matrix which is the
basis for the space frame transformation used to resolve both the

forces and the couples.

[ ] [ ]

d, 1, my ny

dz = 12 mp Ny eq.3.2
d’ 1’ My Ny

=3 L L -

Where each of 14, my, ny (i= 1,2,3 ) represents the direction
cosines of the orientations of the element axes (local axes) with

respect to the reference axes (global axes).
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3.3.4 Direction Cosine Tables for the 3-D Space Frame Used
Dividing each bar into two elements for simplicity, where
both parts of each bar will have the same direction cosines as
will be shown in the following tables. All values agree with
orthogonality conditions. It is necessary that for each set a
transformation matrix is assigned, but for the computer analysis

this could be done automatically when dealing with many elements.

[0 -0.866 0.5 ] [ -0.5 -0.866 O ]
Ry,s = | O 0.5  0.866 R;,e = | 0.866 -0.5 0
| -1.0 o0 0 | | o 0 1.0
[0 —0.866 —0.5] [ 0.5 -0.866 O ]
Ry ,= |0 0.5 -0.866 R, g = | 0.866 0.5 0
| -1.0 o o | | o 0 1.0

where, ni’j (i= 1,2,3,4, and j= 5,6,7,8) is the direction cosine

matrix for elements 1 and j as shown above. The above are
obtained from the general calculation of the direction cosines
following the procedure based on an angle of orientation «, which
denotes the angle between the two sets of axes having one axis in

common.
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Cx Cy Cy

—~CxCycosx-Czsinx /Cx*+Cz? cosx  —CyCzcosat Cysina

CxCysinx-Czcosax —/Cxi4+Cz? sinax CyCzsinat+Cxcosx

] /Cy? + Cz? JCx? + C 2 |

Using the information of the above table, one could easily

produce tables in ltj as shown in the earlier tables, see Weaver

et .10[23'.

Rotation of axes for the space frame member

Figure-10-
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3.4 Concept of the Member Elastic Stiffness Matrix
Essentially, the concept of the elastic stiffness matrix can
be understood by considering the simple case of a pin-jointed
element of the frame structure.
Assuming linear elasticity, one could use the following

equations:

from the equilibrium of forces: Fy + F, =0 eq.3.4

where F is a force in the direction of the element axis and

positive in the sence 1-2.

the net extension of the bar: e=1L, - L, eq.3.3

where L, is the initial, unloaded length and L, is the final,

loaded length.

axial strain: eg = (L - L,)/L, eq.3.6
axial stress: o = E €4 eq.3.7
axial force: F = - F; = ag A eq.3.8

having followed all above steps, one end up with:
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= EA/L, eq.3.9

If one uses the transformation matrix [R], this analysis
could be extended to the three dimensional structures. Without
getting into further details, the elastic stiffness, the geometric
stiffness, and the mass matrices which ' were used for our
computational Finite Element Analysis of the space frame structure
have been reproduced in the following pages in a lower triangular

matrix form.
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3.4.1 Elastic Stiffness Matrix for the 3_D Space Frame

8" 241 E" B“ Sy-etric

Egy Egz Egs Egq Egs Egg Eg; Egg
Eg; Eg; Epy Egy Egs Egg Eg; Egg Egy
Ej01 E102 E103 E104 Ej0s E106 E107 Ejoe Ejos Ejos0

El!l EIIZ Ell’ Ell‘ Eus EIIB Ell? Ell. Ens Euno Ellll

[Es23 Eg22 Ey23 Eq24 Eg2s Ey26 Ej27 Ej2e Ey2e Ej210 Eg211 Ejgzy2)

References; Cook (7] and Melosh (15]

All terms must be multiplied by factor « = E Iz/L’. where, E
is the Young's modulus, I is the moment of inertia with respect
to the third axis 2, L is the element given length, palL/Kz, where

Kz is the radius of gyration, q=GJe/EI;, and C=I,/I,.
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All above matrix terms Ej4 have the following values:

Ey™ 1,%p% + 12 1,2 + 12 C1,4?

Ezy = 1ymp? + 12 1,m; + 12 Clgm,
Ezz = m%p? + 12 m,?2 + 12 Cmy?

Es; = ng1,p%2 + 12 n;1, + 12 Cn,l,
Esz = myn ;p? + 12 myn, + 12 Cmgny
Ess = ny2p? + 12 n;2 + 12 Cny?

Eqy = 6 L1153 — 6 LC1,1,

E¢z = 6 Llgm; — 6 LCl,m,

Eqs = 6 Lnzly — 6 LClzn,

E¢e ™ 1,%L%3q + 4 L3C1,% + 4 L2%1,2
Es1 = 6 Ll,my — 6 LCl3m,

Esz = 6 Lmamyg — 6 LCazmy

Egy = 6 Lny;my — 6 LCm,;n,

Ese = 1,m;L%q + 4 L3Cl,m; + 4 L%1my
Ess = my?L¥q + 4 L3Cm,? + 4 L?m,?
Egy = 6 Ll;ny — 6 LCn;l,

Egz = 6 Lmany — 6 LCmsn,

Egs = 6 Lnzng — 6 LCnzn,

Ege ™ n,1,L3q + & LZCn,1,; + 4 Lingl,
Egs ™ myn,L%q + 4 12Cam,n; + 4 Limyn,
Egg ™ n,?L%q + 4 L2Cn,? + 4 LZn,?
Eyy = — 1,2 p2 — 12 1,2 — 12 C14¢
Ey; = — 1,myp? — 12 1,m; — 12 Clymy
Eyy = — 14ngp? — 12 12n; — 12 Clyny
Eye = 6 LC1,13 — 6 L1,1,

E,s = 6 LCI,M: - 6 lelll’ )

36



E;g =

Eg, =
Egg =
Egg =
Ejo1
Ejo2
Ejos
Ejoe
Ejos
E os

8107

6 LClgn,; — 6 Llzn,

1,202 + 12 1,2 + 12 C1,2

- 1;mp? — 12 1,m; — 12 Clymy
— mylp? — 12 mp? ~ 12 Cmy?

— nymp? — 12 men; — 12 Cmgny
6 LCl,mg — 6 L 1sm,

6 LCmpamy — 6 Lmpmy

6 LCmyn,; — 6 Lmzny

1,mp? + 12 1,m, + 12 Clgm,
mi2p% + 12 mp? + 12 Cmy?

- ngl;0% = 12 npl; — 12 Cnyly
— myngp? — 12 man; — 12 Cmgny
- ng2p? - 12 np? - 12 Cny?

6 LCI:“’ - 6 ngl\z

o

LCmany — 6 Lmgn;

6 LCnzng — 6 Lnzny

ngl,0% + 12 npl, + 12 Clyn,
min,;p? + 12 men; + 12 Cmgny

ng2p? + 12 n,p? + 12 ny?

= 6 Ll1;13 — 6 LC1,;1,

= 6 Llgm; — 6 LClzmg

= 6 Llgn, — 6 LClzny

= _ L%21,%2q + 2 L%2C1,% + 2 L21,4?

= _ L?1,m;q + 2 L3Clm; + 2 L?1,my
= — L¥1,nyq + 2 L23Cl,n; + 2 L¥1,4n,

= 6 LCl,l, - 6 lelg
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Ejos = 6 LCl,mg — 6 Llgm,

Ej09 = 6 LCl;ny — 6 Llgn,

Ej010 ™ L%21,2q + 4 L2C1,% + 4 L2142

Egq
Eqys2
Eqys
Ejze
Eqss
E;se
Ey1z
Ej1e

Eysn

6

6 LClgm, + 6 Ll,m,

6 LCmomy + 6 Lmpmy

6 LCmany + 6 Lmgn;

L%1ym;q + 2 L3Clzmz + 2 L31gmy
L’my%q + 2 L?Cm;? + 2 LZmy?
L’min,q + 2 LZCampn,; + 2 Limgn,
LClym; — 6 Llm,

LCamzmy — 6 Lmymy

thn, -6 L MmaN2

Ejg30 = L71,m,q + 4 L3Cl,m; + 4 L¥1,m,

Eyggy = Lim;%q + 4 LiCm,;? + 4 L¥m,?

Elll = 6 Ln,l; -6 locngl’

Ey22
Egzs
Eyzq
Egzs
Eyzg
Ey2>
Esze

6

6

6

Lmany — 6 LCmyn;

Lnzny — 6 LCnzny

L%14n;q + 2 L%Clzn,; + 2 L¥14n,
L’myn;q + 2 L¥Cazn; + 2 Limgn,
L?n;2q + 2 L%Cn,;? + 2 LZn,?
LClgny; — 6 Llzny

LCagn; — 6 Lmpny

Lann, -6 l-ngl\’

Ey270 = LZ1,n,q + 4 LICl,n,; + 4 L¥14n,g

Ey249 = L?myn,q + 4 L?C myn,; + 4 L¥myn,

Ejz12 = L¥n,2q + 4 LZCnp? + 4 L%n,%.
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3.4.2 Geometric Stiffness Matrix for the 3_D Space Frame

Gey Ggz2 Ggs Guo ‘ Symmetric

Gas Gez Ges Ges GCas Gess Gesr Gas
Ggy Ggz Ggy Gy Gss Gsg Gss Gss Gss
G101 G102 G103 G104 G105 G106 G107 G108 G109 Gio10

Gys1 G312 Gy G146 G115 Gr16 G117 Grae G119 Gir10 Gir111

LGI!I Glll Gl!! Gll‘ GIZS Gllﬂ 6127 Gll. Gl!' G:zxo c!lll Glll!.

References; Bathe et al.(3)]) and Melosh[15].

All terms should be multiplied by factor B = o0A/30L, where o
is the applied stress, A is the cross sectional area of the bars ,

and L is the element bar length.
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All above matrix terms have the following values:

36 (1,2 + 1,%)
36 (1;m; + 1gm,)
36 (mp? + my?)
36 (1;n; + 1lyn,)
36 (mzn,; + myny)
36 (np? +my?)

0

3L (1ym; — 1;my)
3L (13n; — 1zny)
4L%3(1,% + 1,%)
3L (1;-, - 1ym;)
(1)

3L (m3n; — mznj,)
4L'(1,Q, + lymy)
4LZ(m;2 + my?)
3L (1;ny — 1l4n;)
3L (mzny — myn;)
0

4L%(nz1,; + nyly)
4L%(mzn; + mgny)
4L2(n,2 + ng?)
-36(122 + 1,%)
-36(1;m; + 1lymy)
-36(1zn; + 1lyny)
0

3L (1’.2 -— lz-’)
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Goy =
G014
Gio2
Gios
Gioe
Gios
Gios

Glo7

3L (130, — 1,n,)
36(1,% + 1,%)
-36(1,m; + lymy)
=36(m;? + my?)
-36(mzn,; + myngy)
3L (1,my — 1l3mp)
0

3L (mgn; — mznjy)
36(1,m,; + 1lgmy)
36(my2 + my?)
-=36(1zn; + 1l3nj)
-36(mzn,; + myny)
-36(nz% + njy?)
3L (1zn3 — 13n;)
3L (mzny — myny)
0

36(1;n, + 1lgny)
36(m;n, + mgny)
36(n,? + njy?)

=0

= 3L (1ymp — 1:‘;)

= 3L (lgl\z -— lgn’)

- -—Lz(lzz + 1,’)

- —Lz(lg-z + lgmy)

- _Lz(lznl + 1lanjy)

=0
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Gios = 3L (1;my — 13m;)

G‘os = 3L (12“, — 13“2)

Gio1o = 4L%(12% + 1,%)

Gygg
G112
Gygs
Giis
Giis
Gii6
Gy
Gise

Giis

3L (1;m3 - 1lgm;)
0

3L (myn; -~ myn,y)
-L#(1;m; + lgmy)
—L¥(m;? + my?)
—L%(mznz + mgny)
3L (1gm; — 1,my)
0

3L (mzny — mynz)

Giz10 = 4L*(1,m; + 1lmy)

Ggg“ = ‘Lz(-zz + -”)

G‘g‘ = 3L (lzl\, -— lgl\z)

G2z
Gy2s
Gizq
Gizs
Giz2a
Giy25

Gi!.

3L (mz;ny — mgn;)
0

—L%Z(1znz + 1lyny)
—LZ(mznz + mgnjy)
=LZ(nz%2 + ny?)
3L (13nz — 1zny)

3L (mynp; — mzny)

Gy29 = 0

Glz;o L 41-2(12“2 + l,n,)

G‘tll' - ‘Lt(-zn' + -,n’)

Glzgz - ‘Lz(nzz + n,')
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3.5 Consistént Mass Matrix for the 3-D Space Frame

[my 4 1

Rg; WMg; MWMgy Ng, Ngg Symmetric

WMgy WMg; Mgy Ng, Wgs Ngg

By, WMy, WM;; M, W5 WM;g W,

Mgy Mg, WMy Mgy Mg MWgg Mg, Mgy

Mgy My, Myy Mgy Mygs Mgg Myg; MNMgg Mpy

Myoy Mypo2 Myoy Myo04 Myos Mo M107 Mi0s Mios Mio010

Mygyg Mgy Mygy Mygg Myyg Myyg Mygy Mygg Mygg Myyg09 Myggy

Mgy Myz2 Myzy Myzq Myps Myzg Mypzy Myzg Myzp My290 Myzgg Mypggz)f

Reference; Przemieniecki [16].

All terms must be multiplied by a factor y = p A L where, p
is material density, A is cross sectional area of the bars, and L
is the element bar length.

The véluea of the terms appearing in the above matrix are

calculated as follows:
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Mz =

Mgy =

m,, =

1/3

(13/35 +6I,/5ALZ?)

(

13735 +6Iy/5ALz)

Jyx/3A

(
(

(

L%/105 +2I,/15A)

L%/105 +21I,/15A)

(11L/210 +I1,/10AL)

11L/210 + I,/10AL)

1/6

(9/70 — 6Iz/5AL%)

(
(
(

13L/420 - Iz/10AL)

9/70 — 6Iy/5AL?)

-13L/420 + Iy/10AL)

Mioe = Jx/6A

LITEY
LIEY
LIS
LITY"
W26

My28

(13L/420 — Iy/10AL)
—(L?/140 + I,/304)
(11L/210 +I4/10AL)
(-13L/420 + I;/10AL)
—(L%/140 + I;/30A)

—(11L/210 + I;/10AL)
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All the other values of m; § not specified here are of zero
value. The direction cosines 14, mj, n; have been illustrated in a
matrix form according to each element position earlier.

It is worth emphasizing that Iy, I I, represent the mass

yl
moments of inertia for each element including all extra (linear
and rotational) inertia effects on the sdtructure produced by

components forming the joints between the structure members.

r

3.6 Computation of the buckling load and the natural frequency:
Buckling load and natural frequency of vibration of the frame
were computed by the F.E.M. No allowance was. made for the slight
increase in stiffness arising from the finite length of the joint
fittings at the loaded and fixed nodes. Bearing in mind that the
work in this section was primarily intended to establish
Principles and techniques, a very simple nodal pattern was used,

resulting in each member of the framework being represented by two

elements.

3.6.1 Computation of the static buckling load:

The computed values for the buckling load was 220 Newtons.
This is very close indeed to the value obtained from the
Preliminary mathematical model analysis, as used to decide on the
strength and stiffness of the loading spring and to estimate the

frequency of vibration, see Appendix 1.

3.6.2 Natural frequency computations

In a similar computer analysis, the frequencies of the frame
were obtained and the 1lowest amongst them (the natural or
fundamental frequency) was obtained. The value of this frequency

was 32 Hz. which is very close to both estimated and experimental

values,
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CHAPTER 4

EXPERIMENTAL AND COMPUTER RESULTS

4.1 Experimental Results

The experimental tests which have been conducted on the space
frame structure, shown earlier in figure-7-, were made firstly, to
find the resonant frequency of the structure in order to locate
the position of any possible nodes to identify the structure modes
of wvibration. Various positions of both the exciter and the
accelerometer were used and axial 1loads ranging from zero to
slightly more than a half of the estimated buckling load were
applied. The upper limit to loading was imposed in order to save
the structure for possible confirmatory tests.

As would be expected, the frequéncies of the primary
(fundamental) and the higher modes of vibration were found easily,
using the facility of the frequency analyser, figure-4-, which is
able to produce a full spectra of natural frequencies.

Secondly, the tests were designed to study the nature of the
relationship between the level of axial loading and the frequency
of vibration of the frame structure. In presenting the results
graphically the frequency ratio is based on the experimentally
determined frequency at no load and the load ratio is based on the
calculated buckling value in section 3.6.1.

The following graphs, figures 11 and 12, clearly establish
that the relationship between the axially applied loads and the
S8quare of the primary frequency ratio is very close to being

linear, as predicted by the theory and demonstrated numerically
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for the primary mode of vibration by the approximate Finite
Element Method which employs a displacemeént function based on
simple bending theory.

Thirdly, the experiments helped in predicting the (exact)
buckling load for the whole structure by extrapolating a straight
line connecting the points in the following graphs until it
reaches the value of (w/wo)z = 0. At that point the critical load
is obtained; this load is found to be very close to the exact one,
within an acceptable error of 10Z for both experimental and
analytical results.

Linearity between loading applied axially and the square of
the frequency ratio holds very well even for the higher modes of
vibration, but these relationships cannot give the primary
buckling value, but instead give higher buckling loads
corresponding to higher order of buckling mode shapes .

It will be easy by inspecting the following graphs (more
graphs are reported in Appendix 3) ¢to find a nonlinear
relationship between the loads applied and the square of the
frequency ratio, as this is intentionally done experimentally and
shown in related graphs, see figure-13-, in order to study the
reasons behind the discrepancies reported earlier in the
literature [11], ([12], and ([13]. Sources of non-linearity could
be: misreading the instrument data, external noises mixed with the
Structure vibration, material internal non-linearity such as
Composite materials, and by deviating the applied loads from being
axial to being applied laterally. All the above are possible
Sources of non-linearity in the relationship between applied loads

and the square of the frequency ratio.
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Basically, it is emphasised here that most of the results
obtained produce a linear relationship between applied load level
and the squared ratio of the frequency of vibration, and this
contradicts results obtained in earlier analytical and
experimental investigations [12].

The following figures illustrate the experimental graphs
obtained at different stages of the set up of the loads appliea to
the structure.

Figure-11-, experiments 4 and 7, emphasise the existence of a
linear relationship betwegn the axially applied loads and the
squared ratio of the frequency for the primary mode of vibration.
Figure-12-, experiments 17 and 20, show the same phenomenon for a
higher mode. A higher buckling load is obtained due to this higher
mode of excitation. Figure-13-, experiments 21 and 22, show the
non-linearity aspect as it appears to exist when applying the
loading laterally instead of axially at the intersection point of
the structural bars, which are rigidly connected to each other.

More of these experimental graphs are shown in Appendix 3 at

the end of the manuscript.

4.1.1 Experimental Graphs

The graphs of figures-l1- and -12- (more graphs are in
Appendix 3) represent the experimental results obtained from the
Space frame analysis. The data of the first ten graphs, see table
~1-, were taken at the fundamental frequency of vibration of the
framed structure. The data for the next ten graphs were taken at

approximately the second mode of vibration. In all these tests the
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load was applied along the vertical axis of the structure and all
bars forming the space frame are subjected to the same compressive
loads. The data of the nonlinear graphs which are obtained by
applying the loads laterally are of similar frequncy and mode
ranges.

To test the sensitivity of the experimental results to the
positioning of the exciter and the accelerometer, different
combinations of excited and instrumented bars were tried, as
reported in table-~l- below, in each case the exciter or
accelerometer being placed at the mid-point of the bar. This table
summarizes the arrangements used and gives the natural frequencies

for the unloaded condition.

Experiment No.| Frequency obtained Exciter on Acceler. on
1 33.75 Hz. 3 1
2 30.00 Hz. 3 2
3 31.00 Hz. 4 2
4 30.00 Hz. 1 3
5 28.75 Hz. 4 1
6 32.50 Hz. 3 3
7 32.00 Hz. 3 4
8 32.00 Hz. 2 4
9 31.75 Hz. 4 3

10 32.00 Hz. 2 1
11 65.00 Hz. 3 1
12 53.00 Hz. 3 2
13 55.00 Hz. 4 2
14 60.00 Hz. 1 3
15 58.00 Hz. 4 1
16 65.00 Hz. 3 3
17 63.50 Hz. 3 4
18 64.00 Hz. 2 4
19 62.75 Hz. 4 3
20 64.00 Hz. 2 1
S
Table-1-

On the experimental set up, positioning of the exciter

and accelerometer for the axial load case.
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It is important to note that in the nonlinear graphs, see
also Appendix 3, similar arrangements of.exciter and accelerometer
positioning have been followed. In figure-13- the sudden drop in
the frequency ratio at about 55% of the buckling load computed for
the axial case can be understood on physical grounds as the
buckling of one bar can occur without the whole stucture
collapsing; the structure will still accept further loading before
the final collapse since three out of four bars are still fully
effective but, of course, the total (effective) stiffness of the
structure has been significantly reduced.

Static strain measurements were made on the compresaion.
member to substantiate this phenomenon, figure-10a- shows a marked
discontinuity in the strain-load relationship.

Although referring to a particular case, these results
demonstrate the possiblility of a nonlinear relationship existing
between the applied loads and the ratio squared of the frequency
of the structure if certain conditions are not met, such as; the
applied load must be purely axial, the boundary conditions must
not produce any subsidiary effects which can change the behaviour
of the structure and the primary mode of the frequency of
vibration must be easily obtained.

Detailed discussion of the experimental graphs will be given
in the next section in order to study all features of these

experimental results clearly.

Strain

13 15 52
xi1e!

! ' Load ¢N)

Figure-10a-
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4.1.2 Observations on the Experimental Graphs

Analysing the experimental graphs in figures 11,12,13, and
the graphs in Appendix 3, one can make the following observations:

Experiments 1,2,3,11,15,16,and 19 show a slight drop in the
frequency immediately after the first load is applied, thereafter
the sgystem starts to stablise. This 1is possibly due to some
prestress in the structure which could be partly due to forces
introduced when connecting the bars to the base plate, partly due
to manufacturing preatresse; due to heating processes, and partly
due to certain boundary conditions.

Data of experiments 4 to 10, 12 to 14, 17 and‘ls were taken
ati the best possible laboratory quietness and the loading was
applied very slowly.

It is apparent from the above graphs, in both modes (primary
modes and higher modes) of vibration used, that the relation
between the applied axial 1loads and the squared ratio of the
frequency is close enough to be considered linear, and to support
further this assertion, a 1linear regression procedure was
introduced to the experimental graphs to make the linearity more
evident to the reader.

In the last graphs, experiments 21 to 27 obtained by loading
the structure laterally, a similar drop in the frequency 1is
observed at the early stages of loading and a sudden higher drop
in the frequénCy is again observed when the load in the most
heavily compressed bar is about 50 Newtons, and this is due to the

early buckling of that bar leaving the structure to continue to
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carry more loading at a lower stiffness. Some of the next points
are observed to be at higher frequency values. This is due to the
nature of this type of lateral loading in which some of the bars
will be axially in tension, where an increase in stiffness is
predicted, and the others will be axially loaded in compression,
where a decrease in stiffness is obtained. If the first effect is
greater than the second then, as a result, an increase in the
frequency is seen.

Generally speaking, the variation of position of the exciter
and the accelerometer do‘ not appear to effect the results.
Experiments 27 and 28 are made at the next higher frequency of
vibration, show a continuing increase in the frequency as the load
is applied. A study of the available literature suggests that this
phenomenon has not been observed by other experimenters and no
adequate explanation has been found in published theory. Possibly,
since the structure is rigidly jointed at the point of the load
application, bending moﬁents have arisen from the antisymmetric
load orientation which would have produced additional bending and
torsional effects in the members.

These speculations could account for the effective (total)
stiffness increasing rather than decreasing linearly as the load
level is increased.

The foregoing work was preliminary to the main object of this
investigagion which was to examine the behaviour of vibrating flat
Plate strgctures subjected to uniaxial loadings under different
boundary conditions. Part II of this work deals with the
eéxperimental tests and finite element computational analysis of

Simple plate structures.
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EXPERIMENTAL GRAPHS OF
FREQUENCY-STRESS LEVEL RELATION OF THE
AXIALLY LOADED SPACE FRAME STRUCTURE
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EXPERIMENTAL GRAPHS OF
FREQUENCY-STRESS LEVEL RELATION OF THE
AXIALLY LOADED SPACE FRAME STRUCTURE
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EXPERIMENTAL GRAPHS OF
FREQUENCY-STRESS LEVEL RELATION OF THE
LATERALLY LOADED SPACE FRAME STRUCTURE
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4.2 Finite Element Results Compared with Experimental Results.

As explained earlier, a computer programme has been developed
based on the Finite Element Method techniques.using the stiffness
method assumptions, where each bar of the three dimensional frame
structure 1is divided into two equal parts. Matrices such as
elastic, geometric, and mass have been calculated as shown earlier
in chapter 3. These matficea are used in the programme to
calculate the eigenvalues and associated eigenvectors.

The results of the computer analysis for the frequency of
vibration for the loaded space frame structure (dynamic analysis )
have produced an almost linear relationship similar to that
obtained by experimental means and predicted by the theory (exact
or approximate). When experimental results and computer results
are compared on the same graphs, it is found that a close
agreement does éxist. the only very slight difference reported
here being that the analytical results( Finite Element Method)
produce a lower-bound solution while the experimental ones are of
a slightly upper- bound solution. Extrapolating to (w/wg)? = 0
gives a buckling load which is close to that obtained in the

static computer analysis.
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4.2.1 Analytical Observations

From figure -14-, the first graph represents the analytical
solution for the relation between the applied axial loads and the
squared ratio of the frequency at the loweét possible mode of
vibration of the structure. This lowest is considered to be the
fundamental mode of vibration. A linear relation does appear to be
dominant and there is no need for any linear regression procedure
to be involved. In the next graph, the frequency is measured at a
higher mode of vibration, and the relation does not seem to be as
linear as the previous one but, rather a series of flat curves.
This is undoubtedly a consequence of a very simple nodal pattern
used to represent the structure which inevitably will result in a
less accurate prediction of the frequency of the higher modes of
vibration.

However, it 1is 1likely to be best represented by a linear
relationship and a linear regression procedure has been used to
give the straight line shown in figure-1l4-.

These aspects have been discussed in section 4.1.2 in more
detail. To summarise; our observations suggest that linearity does
appear to be the case at the lower modes of vibration since then
the modes of buckling and the modes of vibration seem to coincide
but, for the higher modes, this linearity begins to deviate due to
the factors explained in the previous sections;

For the higher modes, the analytical analysis seems to rely
on the relation between the applied loads and the elements forming
the total stiffness matrix; if the relationship is linear then, a
linearity between the applied loads and the squared ratio of the

frequency will appear otherwise, the contrary is true.
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4.2.2 ANALYTICAL GRAPHS OF
FREQUENCY-STRESS LEVEL RELATION OF THE
AXIALLY LOADED SPACE FRAME STRUCTURE
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4.2.3 Comparative Graphs Discussion

The following graphs illustrate the relationship between the
applied axial loads and the square of the frequency ratio of the
space frame structure as far as the analytical procedure is
concerned, the modes of vibration are computed and related graphs
are shown in the lower mode (fundamental) and a higher mode (first
harmonic) of the vibration frequencies.

The next four grabhs are illustrated to show the good
agreement between analytical and experimental analyses; some
random experiments were selected for these comparisons at both
lower and higher modes of vibration of the space frame structure.
At the lowér mode of vibration (fundamental mode) experiments 4
and 7 are in good agreement with the computeg values, there is a
tendency fér the experimental values to get slightly higher than
the analytiéal values, but on the overall analysis, the agreement
between the two results is very close.

At higher modes (first harmonic), experiments 17 and 20 seem
to agree with the computer values, but the tendency for the
experimental values to diverge from the analytical values is more
clear this time due to the suspected failure in matching between
the experimental and the analytical analyses mode shapes at higher
frequencies of vibration and at higher applied axial loads.

Both situations are illustrated in the following graphs of

figure-15- and figure-16- of section 4.2.4.
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4.2.4

GRAPHS COMPARING EXPERIMENTAL
VERSUS ANALYTICAL RESULTS FOR AN
AXIALLY LOADED SPACE FRAME STRUCTURE
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4.2.4
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GRAPHS COMPARING EXPERIMENTAL
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4.2.5 Computer Flow Chart

FLOW CHART ON THE USE OF THE E E.M. PROGRAM
TO ANALYSE THE SPACE FRAME STRUCTURES.
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4.3 Conclusions and Discussions

To conclude the work on the space frame structure analysed in
part I, it can be affirmed that a relationship exists between the
axially applied loads and the square ratio of the frequency of the
structure vibration, and this relation tends to be linear if the
resulting experimental graph points are treated as such; by using
a linear regression procedure, (Appendix 2), where some of the
scattered points will on the average be aligned with the more
linear ones. From these ;nalyses we observe that this 1linear
relationship gives a buckling load close enough (within 10%Z error)
to the theoretical (exact) buckling load.

From the analytical results using the Finite Element Method
of analysis, we can confirm that for the lowest possible mode of
vibration, the relationship obtained between the applied axial
loads and the squared ratio of the frequency is linear but, for
the higher mode of vibration case reported in figure-16- when
higher values of 1loads are applied, this 1linearity tends to
diverge due to an irregular change in the values forming the total
stiffness matrix, ( Elastic Stiffness and Geometric Stiffness
combined ), which can be explained as the change due to the
Variation in each value of the Geometric Stiffness caused by the
change in the axially applied loads, and this change, is not of a
constant factor on the overall spectra of loads applied.

Comparing the experimental and the analytical results shows
them to be very close (within 3% difference) for both low and high

modes of the frequency of vibration but, for the higher frequency
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modes, both experimental and analytical ( Finite Element Method)
analyses tend towards the nonlinearity due to the difference
between the modes of vibration and the modes of buckling of the
structure.

Finally, both methods (experimental and theoretical) can
produce a linear relationship between the applied loads and the
squared ratio of the frequency if certain measures are taken, some
of these precautions are summarized as follows:

1) The applied loads must be applied axially on each member of the
structure, in our analysis this have been secured by introducing a
spherical bearing at the point of the bars intersection where the
load has been located.

2) The 1loads must be applied statically in order to avoid any
unwanted excitations to the system.

3) The mass of the applied loads must not be associated in any way
with the main structural mass. In our case we introduced a spring
system in tension for this purpose.

4) The stucture must not be prgstressed or prebuckled before the
analysis is started.

5) Avoid any external excitations as much as possible in order to
Prevent anyvextta vibrations added to the introduced vibrations.
6) The boundary conditions on the structure should work as
designed to avoid any subsidary constrains on the system.

7) Regarding the analytical results, (when F.E.M. is used), the
more elements used the more exact the results will be.

8) A check on the relation between the Geometric Stiffness and the
applied loads is important to understand the true relation between

the applied loads and the frequency of excitations.
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9) The Mass Matrix used in the analysis was based on the
distributed mass assumption which is more efficient than the
method of 1lumped masses which proved to be 1less accurate in
similar analyses.
10) All matrices used should be based on the same assumed
deflected shape function, and the small deflection theory should
be considered in these analysis.

Finally, an analytical graph is suggested to be used in the
design process of a space frame structure under similar
conditions, it gives useful information of the structure behavior

at an early stage of the design process.
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Figure-17-
Suggested analytical graph

for space frame structures
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PART II

STABILITY AND VIBRATION OF

ISOTROPIC PLATES AND APPLICATIONS
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CHAPTER 5

BACKGROUND AND LITERATURE REVIEW

5.1 Introduction

External surfaces -as well as internal parts of flight
vehicles have been found to be susceptible to various types of
aeroelastic instabilities, the most noticeable of which 1is
flutter. However, flutter analyses are, to a large extent,
dependent on the prediction of vibration characteristics of
different structural elements, in particular, plates subjected to
inplane loads, under various constraint conditions.

The problem of determining the natural vibration
characteristics of isotropic and, more generally, orthotropic
rectangular plates, subjected to inplane loads in the presence of
different boundary conditions, has been the subject of numerous
theoretical investigations.

There have been few experimental investigations due,
Possibly, to the difficulties arising when attempting to produce
specified boundary and loading conditions.

The following chapters of this part deal with the effect of
the stress level on the frequency of vibration of a rectangular,

isotropic, thin flat plate axially loaded and under various
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boundary conditions. Available research is found to have the'
major portion of it based on theoretical analysis while few
experimental investigations have been reported.

Experimental results obtained in this investigation are:
compared; first against theoretical results, then against
analytical results obtained by computer analysis using the method
of Finite Elements, and, finally, compared with the results of
other investigators when available.

The Finite Element Method, is presented in an easy and a
simple method of programing which also provides some saving in
computer storage space aﬁd time. The assembly routine of the
elements is made as simple as possible by arranging that the
digital computer does all the work.

The elements used for the Finite Element Method are chosen of
a rectangular shape, with four nodes located at the corners. This
element shape 1is appropriate to the rectangular plates under
consideration. Other element shapes could be employed for plates
of different geometry or if holes or other material

discontinuities are present.

5.2 Literature review " Plate Buckling”

The modern need and use of steel and high-strength alloys in
the fields of engineering design such as bridges, naval ships,
aircraft, and aerospace structures has made elastic instability a
Problem of great importance.

In recent years practical requirements have led to extensive

research and investigation, both theoretical and experimental, in
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order to study the conditions governing the stability of plates
and shells.

To provide a typical example which can be analysed without
undue difficulty, a study of the relation of the axially applied
loads to the square of the frequency ratio of a rectangular plate'
is investigated experimentally and analytically.

The problem of determining the natural vibration
characteristics of an isotropic rectangular plate in the absence
of inplane loads but with various boundary conditions has been the
sub ject of numerous theoretical investigations, see reference (6].
In fewer instances has thé effect of inplane loads been studied.
The more general cases of isotropic and orthotropic plates with
elastically restrained edges have received even less attention,
especially when dealing with the dynamical aspects of the problem.

The most comprehensive treatment of the effect of inplane
loading on the vibration of plates with elastically restrained
ends is due to Schulman, 1945, who treated the case of an
isotropic rectangular plate subjected to inplane forces with
elastic restraints along the longitudinal edges, and with simple
supports along the lateral edges. The constant inplane loads
throughout the plate were assumed to be due to constrained thermal
expansion of the plate. The exact natural frequency was derived.
However, two assumptions were made, these being:

1) that the mode shape remained unaltered with the increase of the
load, thus obtaining a linear relationship be;ween frequency
8quared andjlbad applied (i.e. temperature variation).

2) that an energy approach using the Lagrange equation was

appropriate.
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All the results are available in ;eference [6], in terms of
frequency and temperature graphical relationships.

Orthotropic plates under uniaxial and biaxial direct stresses
were analysed first by Wittrick, [44], in 1968, by Williams [40],
in 1974, and by both Wittrick and Williams, [41]), [42], [45]), [46]
and [47] from 1969 to 1983.

But in all the available literature, the lack in experimental
analysis is very evident.

When studying stability and vibration, exact solutions are
not always available, so that experimental verifications of
approximate analyses become necessary. Unfortunately, either they
tend to be costly or difficult to perform, especially when trying
to explore the behaviour of complex structures.

Most of the recent published research work has been concerned
primarily with exploring the approximate analytical methods, and
attempting closed form solutions by studying various methods.

Among these analytical approximate methods, the Finite
Element Method seems to produce very reliable information as long
as the assumed boundary conditions (geometric and natural) are

satisfied.

5.3 Plate Stability

For the calculation of the critical values of forces applied
in the’ middle plane of a plate at which the flat form of
equilibrium becomes unsgable and the plate begins to buckle, one
could follow the same analysis as that used for compressed bars.

There exist many ways to investigate the stability of a thin plate
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1) By assuming that from the beginning the plate has some
initial curvature or some lateral (out of plane) loading. Then the
values of the forces in the middle plane at which deflections tend
to grow indefinitely are usually the critical loads. This method
of analysis may incorporate nonlinear analysis, in which case it
could produce only an approximate value, but, for our analysis,
this last statement does not apply due to the linear assumptions
used.

2) Assume the plate buckles slightly under the action of forces
applied in its middle plane, and then calculate the magnitude of
the forces in order to kéep the plate in.such slightly buckled'
shape. The differential equation of the deflected surface in this

case is known as:

Wexxx + 2 "xxyy + "yyyy = (1/D)(Nyg Wyy 4 2 ny U*Y + uywyy)
eq.5.1.
Where N, Ny, and Ny, are the normal and shear loads.

The simplest case is obtained when Ny , Hy » and ny must
have constant values throughout the plate. In the general case,
even though the problem gets more involved since variable
coefficients may appear in the above differential equation, the
solution concept is likely to be the same.

3) The energy method can be used to investigate the plate
buckling and stability. This method is quite useful in the cases
where an approximate solution of the above differential equation
is needed, or when the plate is reinforced by stiffeners and it is
required to produce a good approximation to the buckling load. In

such a case, we assume the plate is stressed by loads acting in
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its middle plane and undergoes some small lateral bending
consistent with the boundary conditions. Such limited bending can
be produced without stretching of the middle plane, and we need
only to consider the energy due to the bending and the
corresponding work done by the forces acting in the middle plane
of the plate.

Manelbetsch [25]), in 1937, presented his results on the study
of the inplane compressed plate, with all edges built in, by using
two approximate methods, each of which produced an approximate
buckling lbad, either higher or lower than the exact value reached
experimentally, but, earlier than this work, Taylor, in 1933,
using the power series method, obtained good results. Then, Faxen
extended this method of the power series and obtained the exact
solution before Levy ([20] in 1942, who presented the exact
solution based on the same power series as that used by Faxen.

Weinstein and Trefftz, about 1950, independently have shown
that Taylor's solution leads to a lower values of the critical
load due to few terms used in the power series.

Another approximate method of solution is the energy method
first developed by Timoshenko [33]. This method has proved to be
efficient in most stability problems with dependable results.

The Ritz method has shown that problems of this type can be
solved exactly if infinite series of the properly chosen functions
are used.

The values obtained for the buckling load by means of the
energy method are of an upper-bound nature, meaning that the
Structure is put under more constraints than it should have been

normally, while the values obtained by fewer series terms are of a
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lower-bound nature when compared with the exact solution, due to
the fewer constraints used on the analysed‘structure.

It is reasonable enough to locate the critical load between
the Taylor—Trefftz and Timoshenko vaiues at all times as long as
the structure is elastic, and obeys the classical theory

assumptions.

i

Buckling stress cocficicnt & for uniaxially compressed plate.

Ref [33]

Figure -18-

4) The displacement method is a widely used method for Finite
Element Analyses (see references [1], (2], (4], (13], (30], [41]
and [50]), the same method is followed for the three dimensional
frame structures and the isotropic plate analyses by reducing the
Problem to an eigenvalue problem which is easier to solve by
Numerical methods.

Relations for the stability study of plates are similar to
those reported in the stability study of two or three dimensional
frame structures and, when based on the energy considerations, can

be explained as:



a) If the work done by these forces is smaller than the strain
energy of bending for every possible shape of lateral buckling,
that is, AW < AU, the flat form of equilibrium of the plate is
said to be stable.

b) If the work becomes larger than the strain energy of bending
for any shape of lateral deflection, that is, AW > AU, the plate
is then said to be unstable .

c) Finally, at the instant at which the work done is equal to
the strain energy of the system that is, AW = AU, the system is

neutral and the load then acting is the critical load.
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5.4 Calculus of Variations ( Applied Cases )

5.4.1 Stability of simply supported plates " Inplane Loads"

It is easily shown that, by the varying the total potential
with respect to the lateral deflection for a rectangular plate
loaded in its plane, a partial differential equation identical to
equation 5.1 in the previous section is developed.

If we, for simplicity, consider the case of uniform axial
compression in one direction only applied to a simply supported

plate, equation 5.1 will reduce to:
D VW + NyWyy = 0 eq.5.2

Correspondingly, the total potential yields the following

equation:

WV -(nlz)”[u'a HWiyy +22UpyWyy —2(1-vIW 3y~ (Ny/2D)W?  1dydy,
eq.5.3

If we assume the deflected shape according to the boundary

conditions as:

W= A, sin (mrx/a) sin (nwy/b) eq.5.4

which gatisfies all geometric and natural boundary conditions, a
and b being the length and the width of the plate while m and n

denote the number of half waves in the x- and y- directions into
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which the plate buckles then Ay = a/m and x, = b/n represent the

length and the width of one half-wave in the x- and y— directions,

as shown in the following figure.

Half-waves in x and y directions

Figure -19-

Substituting the deflected shape function into the total

Potential expression in equation 5.3 and integrating gives:
WY = (D/2){[(mr/a)2+(nw/b)? )% - N /2 A% (mr/a)i}ab/4 eq.5.5

then, by taking the variation on the total energy with respect to

Aun we obtain:
Ny =D w*(0"% + \y-')'/\g" €q.5.6

It will be noticed that, for this particular case, the same
Yesult can be obtained by direct substitution of the assumed

deflected shape function into the lateral equilibrium equation. In
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other words, the assumed deflected shape function is a solution of
the equilibrium equation 5.1.

Hence, the expression for the buckling of the plate out of
its original plane can be obtained simply by establishing the
values of m and n which render Ny a minimum . Two specific cases
reflecting a widely different plate geometries are of practical
interest and therefore, they are illustrated by considering a

rectangular plate with sides a and b as follows:

Case 1, a ¢ b,

This case represents a short and wide plate for which the

minimum value of Ny is obtained by setting m = 1 and minimising Ny

with respect to the buckle ratio a/xy in the equation:

Ny = (Dx?/a?)(1 +(a/ky)2]2 eq.5.7

The minimum value is given, obviously, by setting alxy = 0, thus;

(Ny)eritical = #°D/a? eq.5.8

This result is analogous to Euler buckling load for a slender

strut. The plate effect appears in the factor (1-v?)~!, by

rewriting equation 5.8 in the form;

(Nxb)er = (#2Et?b)/(12(1-v?)a?) eq.5.9
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by introducing an inertia term Iy, we get:
Per = (#?ELy)/(1-v?)a? eq.5.10

Where, Iy = t3b/12 as the moment of inertia.

Case 2, a > b,

This case represents the other extreme, a narrow strip plate,
for which the minimum is oBtained by setting n = 1 and minimising
the equation with respect to a/\x. This leads to the following
result:

Ny = #?D(1+x?)?/b?«? eq.5.11

where, « = A,/b, and then, by taking the variation with respect to
@, one gets:

2 (1 + a*)(«? - 1) = 0. eq.5.12
The real root which corresponds to the minimum is « = 1 and then:
Ny = 4 s2D/b? eq.5.13

The same result is obtained when we deal with a square plate
(a = b). In fact, as long as m has an integral value, the critical
8tress (0qy ™ Ny/t) is the smallest stress which can cause the
Plate to buckle. More generally, for plates with a/b other than

integral, the square buckle pattern is precluded and a somewhat
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higher critical stress could result. However, the discrepancy

diminishes rapidly with the increasing of a/b ratio and becomes

negligible at about a/b a 4.

5.4.2 Stability of the Plate of Boundary Conditions Other

Than All sides Simply Supported ( Uniaxial Compression )

a) Plate loaded on the two clamped edges, while the other two are

simply supported:
The solution to this case has been obtained by Leissa ([19])

using the following form for the deflected shape:

W = f(x) sin (wy/b) eq.5.14
v$
| ~ S &
5 — <
) | €
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™ fo—
e
> S < o
5 =
Figure-20-

The assumed equation must satisfy the geometric boundary

conditions, i.e., f(x) = 0 and f'(x) = 0 at x = 0 and a.

When we substitute into the total potential energy equation, this
leads to:
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HV = (nb/t.)][f"z +(w/b)*£% +2u(s/b)2f" £+ 2(1-v)(w/b)2f'2
~(Ny/2D)f'?)dy
eq.5.15

Applying the variation with respect to f following the

variation equation in the form:

8¢(U + V) = 0 eq.5.16

Equation 5.15 and 5.16 upon integration by parts, taking in
consideration the geometric boundary conditions, 1lead to the
following ordinary differential equation:

£ + A% f'' 4+ B4*f = 0 eq.5.17

where, A? =( Nx/D ) - 2(w/b)? and B*= (w/b)* .
By using Laplace Transformations with F(0) = 0 and F'(O) = 0
as the new boundary conditions at x = 0 , and then using the

Laplace inverse we get:

f(x) = [Fl(cos cx - cos dx)+F2(1l/c sin cx - 1/d sein dx)]/(d%*-c?)
eq.5%.18
Again,using the boundary conditions at x = a will lead to two
simultanous equations in Fl and F2, and for these latter to exist,
the determinant of the coefficients must vanish, thereby leading

to the stability determinant:
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(cos ca - cos da) (1/c 8in ca - 1/d sin da)

(-c 8in ca + d sin da) (cos ca - cos da)

Expanding the determinant and simplifying the results through

trigonometric identities we get:

4 + (K -4) cos (ctd)a - K cos (c-d)a = 0 eq.5.19

where, K is larger than 4 and d and ¢ are always real with:

(dc)? = 1/2(w/b)?{K-2 + J(K-4)K } eq.5.20
and, (ac)? = 1/1('a/b)'|xpz + J(K-4)K} eq.5.21

The buckling equation 5.19 can be solved for the lowest value
of K corresponding to a given ratio a/b yielding a buckling
coefficient and hence, giving the critical value of axial load N.

As an example, for a/b ratio of unity ( square plate), the
critical value of K = 6.7432, which is the same as the exact
solution obtained by Timoshenko (33] on the basis of solving the
partial differential equation 5.2.

For any value of the ratio a/b, the wave form but, of course,
not the amplitude of the buckled plate, can be ascertained from
the function f£f(x). Naturally, as the plate becomes longer, more

and more buckles will appear.
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When a/b > 5 for instance, the solution indicates that K = 4,
this meaning that the plate is long enough and the effect of the
clamped loaded edges becomes negligible.

For a/b =1, where only one wave will appear in each direction

one can assume f(x) = A sin wx/b as in equation 5.19, this leads

to K = 6.75, which is very close indeed to the exact solution.

b) Isotropic plate loaded at two simply supported edges, the other

two edges are clamped:

vl
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R c < X
1 e
—>s Spe—
b +—.
.——’.‘ | F
> | P
! " c g ~
x
Figure-21-

One can assume the following deflected shape function:

W= A, sin(mwx/a)(1l- cos(2ry/b)) eq.3.22
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and following the same procedure as in section 5.4.2 (a) leads to:

Ka 1+ 8/3 «? + 16/3 «* eq.5.23
2
[+ 4

X = Ag/bs» 8nd Ay is the buckle half wavelength in x_direction.
By letting m = a/bx, for square plate (a/b = 1), it gives the

following table:

L Kyer
1 9.0
2 8.0
3 12.3
Table -2-

The approximate critical value for K fdr a square plate is
8.0 (K = 8), while the exact value is K = 7.69.

To conclude this discussion, it is important to note that the
knowledge of the buckled shape for the previous problems could
lead to a precipitate choice for the half wavelength m = 1 for
both cases, but, as has been shown, the smallest value of the load’
corresponds to m = 2, two half wavelengths between the simple

supported edges.
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c) Rectangular plates having two opposite sides simply supported,
the other two edges may have any type of constraiﬁt:

For uniform inplane forces, equation 5.22 still applies for
this case when the edges x = 0 and x = a are simply supported and
the other two edges are open to any constraint as shown, see
Figure -22-. A deflection function which satisfies the boundary
conditions of zero deflection and bending moment along the edges,

in general, is given by:
W(x,y) = £ Yu(y) sin (ax) eq.5.24

where « 5, mwr/a. Using equation 5.24 in equation 5.15, then

applying equation 5.16 yields:
(Ym) yyyy- (2«? + N2/D)(¥p)yy +(x* -k* +N;«?/D)(¥Yy)=0 eq.5.25
where m - l,z.........ﬂ.

This differential equation has a general solution of the

type:

Ya = An 5in ¥uy 4 By COS ¥uy 4 Cy 8inh &uy 4 Dy cosh &,y.

eq.5.26

where

m .44((¢’+N,ID)z—J?a'—k‘+N,a’/D)] + («*+N,/2D)} eq.5.27
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L -/{[(¢*+N,/n)*-/(«'—k‘+u,a’/b) - («<%+N,/2D)} eq.5.28

It is seen that equations 5.25 is exactly of the same form as
for the case of an isotropic plate investigated in references (6]
and (12], the only difference being is the definition of the
parameters vy and &, .

The standard procedure is to satisfy the boundary conditions
along the other two sides y o g and y o b, whatever they may be.
This is done by the substitution of equation 5.26 into these
conditions. The determinant of the resulting four homogenous
equations in Ay, By, Cgu, and Dy is then set equal to zero for a
non trivial solution.

Apparently, the foregoing procedure has not been followed
thoroughly in the literature, as will be seen from some numerical
results presented here.

The boundary conditions of plates having loads acting on the
edges are different than those of the unloaded plate edges because
of the component of inplane force which acts normal to the
deflected middle surface of the plate. That is, the transverse
edge reaction is as explained in reference [(19). By looking at
equations 5.27 and 5.28, it can be seen that the parameters v, and
®n can be of positive, zero, or complex values. The solution of
equation 5.26 in the existing literature is based only on the
positive solution. No study is known in which an understanding of
the character and range of applicability of the other forms of the
solution has been accomplished. It appears that very little effort
has been made to obtain the other possible solutions of the

Problem.

a9



Further study of this subject, considering all possible
values of the parameters of the obove equations, would be useful
to understand them and to see their practical applicability on the

stability of structures.

5.5 Literature Review " Plate Vibration "

The natural frequency of a rectangular plate with either
clamped or simply supported edges is readily available. However,
the fact of the existance of a relation between this natural
frequency and the level of the stresses in the plate could in some
situations be very important. Lurie [24] 1952, showed how the
fundamental frequency is easily determined as a function of the
rectangular plate buckling factor K. This had been achieved simply
by assuming a sine function in a s8elected direction (i.e.

X~-direction ) so that the buckling differential equation takes the

form:
d*f 2 m?s?2 d?%f st Ny, m?x?
ax® aZ ax? + ( a® - xDa' ) £f=0 eq.5.29

where Ny is the only applied load.
In a rather similar way, the corresponding vibration equation

could have the following form:

. 2 _2 42 L 2
:xf -2 :z - :x§ + ( -a: - PDU R il

where p is the mass per unit area.

By applying the boundary conditions to the general solution the
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critical buckling coefficient K is found in the following

equations:

2
Ny = K_"E'l’)_ eq.5.31
2_4
2 n°w®D K
we = . Cab)? eq.5.32

Equation 5.32 will provide the natural frequency, this is

done by the use of either NACA reports or Timoshenko Theory [33]}
in order to obtain the value for K.

According to Lurie (24]), the vibration problem does differ in

one aspect from that of buckling, that is to say; the fundamental

frequency always corresponds to m = 1. Hence, the last equation

becomes:

2 . "D K
u (ab)*

eq.5.33

This may not correspond to the lowest vaiue of K for a given
aspect ratio of the plate (a/b), where a and b are the dimensions
of the plate, whereas in the case of buckling m is always chosen
to give the lowest value of the coefficient K.

Regarding the plate vibration, D. Young [49] in 1950,
selected the Ritz method for a rectangular plate analysis to
produce an upper-bound solution, this 1is to say that Young's
natural frequencies are higher than those of the exact solutions
for the same plate under the same conditions. The method seems to
work but very lengthy calculations need to be performed and there

are preferred boundary conditions.
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The Rayleigh-Ritz method was applied by S.Durvasula et al
(8]in 1967, and an analogy between the vibration problem and
buckling under uniform compressive loads was obtained by simply
evaluating the corresponding natural frequency from the exact
solution.

This method is purely theoretical and in the case of our
study there will be a parallel to it experimentally as well as
theoretically. ‘

The Rayleigh-Ritz and Galerkin methods were compared [8] to
confirm that the Rayleigh-Ritz method is consistently better than
the Galerkin method. Howevér, the tendency is for both methods to
converge towards the exact solution as the energy parameter is
varied. Each method will approach the exact solution from a
particular .Airection, one ( Rayleigh-Ritz ) is an upper-bound
while the other ( Galerkin ) is a lower_bound.

Vibrations of clamped plates have been investigated by
Laura (16) 1974, using simple polynomials and the Galerkin method
to determine the response of a thin, elastic rectangular plate
clamped along the boundaries and subjected to sinusoidal
excitations. This work could be applied to different categories of
plates and to different applied loads. Laura's work [(16) showed a
good agreement between approximate and exact values under certain
conditions.

Correlation between orthotropic and isotropic plate
assemblies was studied by W.H Wittrick and Williams (47] 1974,
subjecting the plate to uni-axial and bi-axial stresses for

different end conditions.
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This work achieved a relation between the buckling
coefficient K and the side ratio C as shown in the following

equation:
) eq.5.34

where C = 2.4 for the case of ends simply supported and sides
clamped, and C = 2.46 for the case of all edges clamped, see

ref.[44].

5.6 Vibration of Rectangular Plates

3.6.1 Orthotropic Considerations
The differential equation of motion of a plate is expressed

in general as follows:

DyW xxxx +2Dxy W xxyy *DyW yyyy oW ¢t

= NyW, xx + 2NyyW xy W oo eq.5.35

where, Dy, ny. and Dy are the constants of the rectangular
orthotropy, and p is the mass per unit area.

There are few published results, Leissa (19], gives a
solution for the plate vibration when both inplane forces and
orthotropy are present. The inplane forces Ng, ny and Ny are
assumed to be functions of only the spatial coordinates x,y (or
R,0 in the case of polar coordinates). That is, they do not depend
either upon time or upon the transverse (out of plane) deflection

W. Further assumptions:
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1) The vibration is assumed to be free.
2) The equations of motion are assumed to remain linear.
The inplane forces which are not depending on W could be

realised in one of the following ways:

1) The boundary conditions are with no fixity in the plane of the

plate.

2) The deflection is sufficiently small relative to the initial
tension or compression in the plate so that the inplane forces are

not significantly effected.

Here, the plate equation is solved considering the general
case in which there is orthotropy, inplane loading and vibratiomns,
assuming the small deflection theory to hold for the analysis.

To solve this equation, we introduce an approximation such
as:

W(x,y,t) = A (x/a) B (y/b) el®t eq.5.36

where, w is the natural frequency, A (x/a) and B (y/b) are the
mode shapes that satisfy the boundary conditions of the sides
Parallel to the x- and the y- axes respectively and which have to
be determined.

Only for the special case of two opposite edges simply
supported is an exact solution known. For all other cases an
approximate solutions will suffice. Using approximate methods such
as Galerkin's which reduce eqation 5.35 to the following ordinary

fourth order differential equation:
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X (£) -2 #2 AX'"(€) -a* BX(¢) =0 eq.5.37

where £ = x/a,
A= f(Dx,Dy.ny,be,N‘). eq.5.38a
and B = f(Dx,Dy,ny,H,Ny,ylb) eq.5.38b

One way of solving the above equation is to assume [16]:

X(€) = Xg + Xp eq.5.39

Where X; and Xp in the above equation are the roots of the
characteristic equation. More details of the solution of this

Problem are reported in reference (19].

5.6.2 Isotropic Considerations

It is emphasised that the inplane forces are generally found
first by solving the plane elasticity problem for the known
boundary values of Ny, ny, Ny. If these quantities are constant
around the boundary, it is generally accepted that they are
constant throughout the plate as well. After some necessary
8implifications, the assumptions of isotropy will reduce equation

5.29 to the following equation of motion:

DV*W + oW ¢t — N V?W =0 eq.5.40
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where p is the mass per unit area.
Assuming sinusoidal response (W = W sin wt), the above equation

becomes:

DV*W - pw?W - NViW =0 eq.5.41

where, W = W(x,y). Equation 5.41 can be factorised in the

following relation:

(v¢ + «?) (v? - B?) W =0 eq.5.42
where, «? = (N/2D)[/(1+4pw?D/N?) -1] eq.5.42.1

B2 = (N/2D)[/(1+4pw?D/N?) +1] €q.5.42.2

B? - «* = N/D eq.5.42.3
and, «?p? = pw?/D eq.5.42.4

Results were found in the literature for all the 21 possible
combinations of the boundary conditions for isotropic rectangular
Plates, with or without the presence of inplane forces. As will be
shown later, published results exist for only a few cases where
inplane forces are present.

To illustrate the extreme cases,equation 5.41 could be again

rewritten as:

D(V'W —k*W) = Ny W xx + Nz W gy eq.5.43
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where, N;= Ny , My= Ny, Nxy=0, and k= pw?/D, when more than one

inplane loads are present. In this equation:

'
- Ha e
E ks
J‘Néwm"mmrr?‘ e

Figure-22-

Case a) Rectangular plates having all sides simply supported:

Using W(x,y) = [ Ay, sin mwrx/a sin nwy/b, eq.3.44
which, clearly satisfies the boundary conditions of the plate in
the above figure, Leissa(l6]) has shown that using equation 5.14 in

€quation 5.13, will yield the following frequency equation:
pu? = D((mr/a)® + (nw/b)¥]? 4N (mw/a)® HNz(nw/b)®  eq.5.45

1) If N,= N, = O,

pw® = D[(mw/a)? + (nw/b)%}? eq.5.46
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which is the solution to the unloaded plate.

2) As either Ny or N, or a combination of them, becomes large and
negative, (level of the compression), the frequency tends to
reduce towards the zero value. the loading at zero frequency will
be the critical buckling loading. This parallels the behavior of
the space frame structure experimentally covered in detail in part

I of this thesis. For example, with N, = 0, the critical value

given by the equation is:

Nycr = -(Dx?/a?)[m + n(na?/mb?))? eq.5.47

3) If both N, and N, are compressive, it is seen from equation
5.45, that the fundamental modes of vibration do not necessarily
occur when m = 1 and n = 1 but depend upon Ny, N, and the ratio.
This is shown clearly in Herrmenn's analysis [l11] which states
that the fundamental frequency for the critical load will always
occur when n = 1, but not necessarily when m = 1 when a/b > 1 ,
meaning that the length of the plate is a factor in the selection
of the mode of vibrational displacements.

Lurie(21] and [24], was considered one of the earliest
scientists to conduct experimental tests on plates in vibration,
but his reported nonlinear curves relating the square of the
frequency to the inplane applied loads increased the necessity for
more investigation in the theory and in the related experiments in
order to verify the correctness of his findings.

The results obtained in part I differed from those found and

Predicted by experimentalists in the past. This suggestes that
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more experimental tests on other types of structure are to be
desired. The isotropic plate problem is investigated theoretically

and experimentally following the same line of assumptions.
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CHAPTER 6

THE FINITE ELEMENT METHOD

6.1 Review

The Finite Element Method has been and will be mostly studied
and used to produce solueions as close as possible to the exace
ones; these'solutions can be more or less accurate depending on
many .factors, some of which are controllable such as the selection
of the shape functions, and the selection of the number of
elements and their shape and size, others are not easily
controlled such as the software speed, and the storage limits.

Many authorsAhave used this method to solve very complicated
problems which are not easily tackled by simpler means, some of
these solutions were tested and proved to be reliable, while
others are not.

A historical review of this method of analysis is valuable to
emphasise that it has a long established and a very reliable
ancient mathematical background. In the seventeenth century Newton
(1643-1723) introduced the calculus of variation which forms the
core for this present method, Euler (1707-1783),and D'Alembert
(1717-1783)‘ have treated the variational principle from an
integral point of view, as D'Alembert Jefined that in the

"Traite'" in 1743, see reference [43].
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When we deal with structures, nonlinearities could arise
either from the geometry of the problem or from the material
properties. These nonlinearities make it difficult to use ordinary
linear analysis, so it was a necessity to introduce other methods
see [1]), [4], and [50], to overcome this problem, the only price
paid was in the accuracy of results obtained, which to a certain
extent could be accepted.

To follow this argument in more detail one could refer to
historical papers which cover all aspects of Finite Element
Methods, see reference [43] for more details. Most recently
Argyris (2] underlined thé great achievement in using matrices in
the field of structural analysis by reducing the stability and
vibr;tion problems to a simple eigenvalue problem. This work, when
introduced and applied by Argyris himself, produced great
advantages to the analyst and to the digital machines as well.
Gere and Weaver [9]), produced a similar treatment of the problem
using the matrix analysis as the basis of the method of informing
the computer regarding the problem to be solved. In their books
(9] and [37] they introduced and used special codes such as
NASTRAN to solve for the stress analysis of elastic or plastic
Mmaterials.

On the theoretical background, we are not to forget the
advances a;hieved by Timoshenko and Gere [33], as they produced a
rYeliable reference on stability analysis of structures. This
reference is used as a guideline for this research work,
€specially during its first stages in order to develop an approach_

based on a sound and a well accepted theory.
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The essential similarity of buckling and vibration analyses
by the Finite Element Method is well established.

The wide range of use of the Finite Element Method is seen in
its many successful engineering and science applications, see

refrence [50] for further details.

6.2 Comparison between the F.E.M. and other Analytical Methods

The following scheme is made available to show the position

of all the various methods and their classifications depending on

historical origins, see reference [4].

Method of Analysis

Analytical Methods Numerical Methods

Exact Methods Approx.Methods Numerical F.S.M‘ F.E.M‘*
( separation (Rayleigh-Ritz solution
of variables and Galerkin of the
and Laplace methods) differential
transformation equations
methods) l
Numerical Finite
integration differences

* F.S.M. is the abbreviation of the Finite Strip method and,

** P E.M. is the abbreviation of the Finite Element Method.
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6.3 General Steps towards the F.E.M. Programs

The solution of the general continuum problem by the Finite
Element Method always follows an orderly step by step process. The
following steps are followed in constructing the computer program

needed for the analytical solution of the dynamic problem:

Step 1). Discretisation of the structure:

A definite number of the structural elements is obtained by
subdividing the whole structure into small elements. The element
number, type, size and their arrangement has to be decided in this

phase.

Step 2). Selection of a proper interpolation:
or displacement function:
This usually takes the form of a polynomials, the choice
being made to give a reasonable accuracy of the solution to the

Problem.

Step 3). Derivation of element stiffness matrices:
From step 2, the stiffness matrices are computed either from
equilibrium considerations or by using a suitable variational

Principle.

Step 4). Assembly of the matrices:
This is done by adding the element matrices according to the

Position of each element node and the constraint conditions around
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it. The assembled matrices are often called global or total

matrices.

Step 5). Solving for the unknowns:
Either by direct methods or by using available subroutines
designed to handle the size of the problem; the NAG subroutines

were used for this research work.

6.4 Finite Ele