
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Harvey, Paul (2015) A linguistic approach to concurrent, distributed, and
adaptive programming across heterogeneous platforms. PhD thesis.

http://theses.gla.ac.uk/6749/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/6749/

A LINGUISTIC APPROACH TO
CONCURRENT, DISTRIBUTED, AND
ADAPTIVE PROGRAMMING ACROSS

HETEROGENEOUS PLATFORMS

PAUL HARVEY

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

OCTOBER 5, 2015

c© PAUL HARVEY

Abstract

Two major trends in computing hardware during the last decade have been an increase in
the number of processing cores found in individual computer hardware platforms and an
ubiquity of distributed, heterogeneous systems. Together, these changes can improve not
only the performance of a range of applications, but the types of applications that can be
created.

Despite the advances in hardware technology, advances in programming of such systems
has not kept pace. Traditional concurrent programming has always been challenging, and
is only set to be come more so as the level of hardware concurrency increases. The differ-
ent hardware platforms which make up heterogeneous systems come with domain-specific
programming models, which are not designed to interact, or take into account the different
resource-constraints present across different hardware devices, motivating a need for runtime
reconfiguration or adaptation.

This dissertation investigates the actor model of computation as an appropriate abstraction to
address the issues present in programming concurrent, distributed, and adaptive applications
across different scales and types of computing hardware. Given the limitations of other
approaches, this dissertation describes a new actor-based programming language (Ensemble)
and its runtime to address these challenges. The goal of this language is to enable non-
specialist programmers to take advantage of parallel, distributed, and adaptive programming
without the programmer requiring in-depth knowledge of hardware architectures or software
frameworks. There is also a description of the design and implementation of the runtime
system which executes Ensemble applications across a range of heterogeneous platforms.

To show the suitability of the actor-based abstraction in creating applications for such sys-
tems, the language and runtime were evaluated in terms of linguistic complexity and per-
formance. These evaluations covered programming embedded, concurrent, distributed, and
adaptable applications, as well as combinations thereof. The results show that the actor pro-
vides an objectively simple way to program such systems without sacrificing performance.

Acknowledgements

Behind the words in this document there are many years of stories. The following is an
acknowledgement and thank you to the people who helped make this the case.

My thanks and appreciation go to my supervisor Joseph Sventek who guided the work in this
dissertation. I have learned a lot from him and had fun in the process. Also to my second
supervisor Wim Vanderbauwhede, who offered many helpful and different perspectives on
this work, as well as many entertaining conversations about Japan.

During my PhD, I had the opportunity to work at the University of Aizu in Japan. My thanks
go to Saji Hameed for being colleague, caretaker, and tour guide during my stay.

I am grateful to the Carnegie Trust for the Universities of Scotland for funding this research.

To my friends who took the time to let me annoy them: Balir Archibald, Callum Cameron,
Martin Ellis, Kristian Hentschel, Paul Jackma, Simon Jouet, Alexandros Koliousis, Fergus
Lehey, Craig McGluaghlin, Magnus Morton, Syed Waqar Nabi, Lauren Norrie, Stephen
Strowes, and Kyle White.

To my family, for the love, support, and encouragement that they gave. Especially from my
little brother and his motivational pictures of champagne and sunsets.

And finally, but most deservedly, to my best friend, co-adventurer, and partner Phillipa. I am
eternally grateful for your love, support, kindness, and occasional but necessary kick up the
arse which saw me through this, as well as having the odd adventure along the way.

“Don’t you see that the whole aim of Newspeak is to narrow the range of
thought? In the end we shall make thought-crime literally impossible, because
there will be no words in which to express it. Every concept that can ever be
needed will be expressed by exactly one word, with its meaning rigidly defined
and all its subsidiary meanings rubbed out and forgotten.”

— George Orwell, 1984
On the power of controlling expression.

CONTENTS

Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Contributions . 3

1.3 Publications . 3

1.4 Projects . 4

1.5 Outline . 5

2 Related Work 6

2.1 Actor Languages . 6

2.2 Adaptation Techniques . 14

2.2.1 Wireless Sensor Networks . 15

2.2.2 Virtual Machine Replacement . 18

2.2.3 Non-WSN Computing . 19

2.2.4 Service Discovery . 21

2.2.5 Offloading Techniques . 23

2.3 Accelerator-Based Programming Approaches 25

2.3.1 API Approach . 25

2.3.2 Semi-automated Approach . 25

2.3.3 Automated Approach . 27

2.4 Program Analysis . 29

2.4.1 Movable Types . 29

2.5 Summary . 31

Contents

3 The Ensemble Programming Language 33

3.1 Basic Language Structure . 34

3.1.1 Actors . 35

3.1.2 Channels . 36

3.1.3 Interfaces . 40

3.1.4 Stages . 41

3.1.5 Types . 41

3.1.6 Security . 43

3.1.7 Failure Model . 43

3.1.8 System Actors . 45

3.2 The Movable Memory Space . 46

3.2.1 Movability . 47

3.2.2 Ensemble Move Semantics . 48

3.2.3 Approach . 53

3.2.4 Analysis . 54

3.2.5 Intermediate Representation . 55

3.3 Integration of Actors and Accelerator-Based Concurrency 58

3.3.1 OpenCL . 59

3.3.2 Language Model . 61

3.3.3 Compiler Modifications . 64

3.3.4 Execution Model . 64

3.4 Adaptability in Ensemble . 65

3.4.1 Defining Unique Attributes . 66

3.4.2 Queries . 66

3.4.3 Discovery . 68

3.4.4 Actor Adaptation . 72

3.4.5 Location Transparency Via Channels 76

3.4.6 Stage Adaptation . 77

3.5 Summary . 78

Contents

4 The Ensemble Virtual Machine 79

4.1 InceOS . 80

4.2 Compiling Ensemble Applications . 80

4.2.1 Representing Ensemble In Java 81

4.2.2 Linker . 83

4.2.3 Dependencies . 84

4.3 Ensemble VM Design and Implementation 88

4.3.1 JVM Support . 89

4.3.2 Structure of the Ensemble VM . 90

4.3.3 Supported Platforms . 91

4.3.4 Communication Model . 92

4.3.5 Memory Model . 93

4.4 Adaptability . 96

4.4.1 Discovery . 96

4.4.2 Location Transparency via Channels 100

4.4.3 Actor Adaptation . 105

4.4.4 Stage Adaptation . 109

4.5 OpenCL Integration . 109

4.5.1 Interpreter . 110

4.5.2 Lazy Evaluation . 110

4.5.3 Multiple Implementations . 111

4.6 Heavily Resource-Constrained Platforms 112

4.6.1 Compilation and Linking . 112

4.6.2 Memory Model . 114

4.6.3 Explicit Communication . 115

4.7 Security . 116

4.7.1 Communication . 116

4.7.2 Execution . 116

4.8 Summary . 117

Contents

5 The Actor as the Unit of Abstraction 118

5.1 The Actor as the Abstraction for Embedded Programming 119

5.1.1 Applications . 120

5.1.2 Experimental Setup . 121

5.1.3 Code Complexity . 122

5.1.4 Memory Usage . 122

5.1.5 Performance . 126

5.1.6 Movability . 129

5.1.7 Real World Deployment . 130

5.2 The Actor as the Abstraction for Accelerator-based Concurrency 131

5.2.1 Applications . 132

5.2.2 Code Complexity . 133

5.2.3 Performance . 134

5.3 The Actor as the Abstraction for Adaptive Programming 137

5.3.1 Applications . 138

5.3.2 Evaluation . 141

5.3.3 Adaptable GPU Programming . 142

5.3.4 Draughts . 143

5.3.5 Media Player . 146

5.4 Summary . 146

6 Conclusions and Future Work 148

6.1 Thesis Statement Revisited . 148

6.2 Contributions . 150

6.3 Future Work . 151

6.3.1 Formal Verification . 151

6.3.2 JIT Compilation . 153

6.3.3 Mobile Phones . 153

6.3.4 Load Balancing . 153

6.3.5 Summary . 154

Contents

Appendices 156

A Formal Specification of Movability 156

A.1 Formulating the Move Analysis . 156

A.1.1 Intraprocedural Move Analysis . 156

A.1.2 Interprocedural Move Analysis . 158

A.2 Alias Analysis . 158

A.2.1 Intraprocedural Alias Analysis . 158

A.2.2 Interprocedural Alias Analysis . 160

B Class File Description 161

C Adaptation Performance Evaluation 166

C.1 Native Ensemble Results . 166

C.1.1 Resource Consumption . 166

C.1.2 Performance . 167

C.2 Micro Benchmarks . 169

C.2.1 Adaptation of Actors . 169

C.2.2 Discovery of Language Types . 170

C.2.3 Transmission Times . 171

Bibliography 177

LIST OF TABLES

List of Tables

3.1 Description of Ensemble Exceptions . 44

3.2 List of available IR instructions and their internal uses. 56

3.3 List of available values and their internal uses. 58

4.1 Average percentage composition of class files. ‘Used’ and ‘unused’ indicate
whether information is present in the modified class file. 85

4.2 Specification of the Ensemble Supported Platforms 91

4.3 Result of Simultaneous Distributed Channel Operations 103

4.4 Average percentage composition of class files. ‘Used’ and ‘unused’ indicate
whether information is present in the modified class file. 113

4.5 Mapping from Ensemble to Java to MSPGCC data types. 114

5.1 Comparison of Ensemble and nesC code. 122

5.2 Statically allocated memory for native and interpreted RadioSenseToLeds. . 125

5.3 Statically allocated memory for DataLogger and the base station. 126

5.4 Instructions per second. 127

5.5 Running times of interpreted and native programs. 128

5.6 Difference Between Single Threaded and Concurrent Code per Approach . 133

5.7 Media Player Image Sizes . 146

B.1 Description of the Runtime Type Encodings 165

C.1 Transmission Size of Different Data Types 171

LIST OF FIGURES

List of Figures

3.1 Ensemble Overall Architecture . 34

3.2 Ensemble Channel Configurations . 36

3.3 Duplication of Data for Pipelined Actors 46

3.4 Actor Local and Movable Heaps . 47

3.5 Actor and Movable Heaps Before and After complexC is Sent Across a
Channel . 50

3.6 Transformation from Ensemble to Ensemble IR 57

3.7 OpenCL in Ensemble Execution Model 65

4.1 Ensemble Compilation Process . 81

4.2 Architecture of the Ensemble VM . 90

4.3 Steps to compile and execute an Ensemble application. The ‘split-VM’ ar-
chitecture is shown in the separation between PC and sensor node. 113

5.1 Dynamic memory usage of the RadioSenseToLeds application. 123

5.2 External fragmentation: number of free blocks in the interpreted RadioSense-

ToLeds application. 124

5.3 External fragmentation: largest free block in the interpreted RadioSense-

ToLeds application. 125

5.4 Dynamic memory usage of the DataLogger application. 126

5.5 Memory usage graph for the movable version of the DataLogger program. . 128

5.6 Memory usage graph for the forwarding example program. 129

5.7 External fragmentation for the forwarding example program. 130

5.8 Largest free block over time for the forwarding example program. 130

5.9 Topology of the LUD Application . 132

List of Figures

5.10 Performance between C-OpenCL, Ensemble-OpenCL and C-OpenACC Nor-
malised to Ensemble GPU . 134

5.11 Command Line Draughts Interface . 139

5.12 Time Taken to perform adaptation on the NXT 142

5.13 Local and Remote Creation Times for a Kernel Actor 143

5.14 Adaptation Performance of the Draughts and Mobile Media Applications . 145

C.1 Comparison of TinyOS and Native Ensemble Size Consumption on Tmote Sky167

C.2 Comparison of TinyOS and Native Ensemble Performance on Tmote Sky . 168

C.3 Adaptation Performance for Null Actors 170

C.4 Adaptation Performance as the Code Size (Number of Procedures) per Actor
Changes . 172

C.5 Adaptation Performance as the Amount of per Actor State Changes 173

C.6 Adaptation Performance as the Number of Actor Channels Change 174

C.7 Time Taken to Discover Actors or Stages as the Query Complexity Varies . 175

C.8 Time Taken to Transmit Data Between Remote Actors 176

Acronyms

Acronyms

ABC Assignments, Branches, and Conditions.

AFAPL Agent Factory Agent Programming Language.

AST Abstract Syntax Tree.

BRS Bigraphical Reactive Systems.

CELF Compact Executable and Linking Format.

CFG Control Flow Graphs.

CG Call Graph.

CPU Central Processing Units.

ELF Executable and Linkable Format.

EVM Ensemble Virtual Machine.

FPGA Field-Programmable Gate Array.

GPU Graphical Processing Units.

HPC High Performance Computing.

IR Intermediate Representation.

JIT Just In Time.

JVM Java Virtual Machine.

PIC Position Independent Code.

RSSI Received Signal Strength Indication.

Acronyms

UUID Universally Unique ID.

VM Virtual Machine.

WSN Wireless Sensor Networks.

1

Chapter 1

Introduction

Single core Central Processing Units (CPU) were once the champions of increasing applica-
tion performance. This was achieved by increasing the number of instructions executed per
cycle, increasing the depth of pipelines, and performing more speculative execution, granting
more instruction level parallelism at higher clock speeds [1, 2]. From the early 2000s, clock
propagation delay, heat dissipation, energy constraints, and the memory wall [3] have meant
that single core CPUs are no longer the champions of increasing application performance as
their clock speeds are no longer increasing, and the practical limits of instruction level par-
allelism have been reached for sequential applications. Instead, hardware developers have
turned to an army of champions. This has been realised in two ways: an increase in the num-
ber of CPU cores per hardware device, such as multicore CPUs and Graphical Processing
Units (GPU), and the ubiquity of distributed systems composed of heterogeneous hardware
devices - i.e. the many different types of connected computer in the world today.

Multicore processors are capable of concurrently executing many threads of control simul-
taneously, requiring developers to create applications accordingly. Traditional concurrent
programming relies on multiple threads of execution which share state. This approach often
leads to programming errors, such as data race conditions and deadlock. As the number of
cores is set to increase to the hundreds and beyond, the threaded approach to programming
simply does not scale.

As well as increasing the number of processing cores locally, improved battery technology
and low-power micro-controllers have enabled distributed systems of heterogeneous devices
to become embedded in the world around us. These systems consist of many different types
of device, from small battery-powered sensors, to mobile phones and tablets. This range of
devices represents different levels of computing scale, with many different operating condi-
tions, resource constraints, and programming models.

The goal of this work is to ease the burden of programming these concurrent and heteroge-
neous distributed systems such that they can be used by non-specialist programmers. This

1.1. Thesis Statement 2

work shows that using an actor-based abstraction to create applications for either individual
systems, or collections of such systems, not only provides a natural way to express solutions
to the problems of such programmers, but does so in a way which is simpler than exist-
ing techniques and easily facilitates new programming options in the general case, such as
runtime application reconfiguration, or adaptation. Here, adaptation refers to the ability for
software to change the topology of connections between communicating entities, and either
install or migrate executing software to remote locations at runtime. Additionally, moving
some of this burden into a runtime which supports the actor-based abstraction, further sim-
plifies the task of the programmer. By presenting a more appropriate programming model,
and pushing complexity into the runtime, this work aims to increase the use of concurrent
and heterogeneous distributed systems.

This goal is to show that by creating applications which are composed of encapsulated actors
which communicate by explicit message passing, not only can one address existing problems
in programming such systems, but one enables a number of these systems to be programmed
collectively. To prove this assertion, this dissertation describe the design and implementation
of an actor-based programming language and runtime system. Using these tools, the actor
abstraction is applied to programming embedded devices, highly concurrent devices, and
adaptive programming of heterogeneous devices at different levels of computing scale.

1.1 Thesis Statement

Hypothesis : The use of encapsulated, shared-nothing loci of computation and explicit mes-

sage passing, found in the actor programming model, will both enable and simplify the

programming of concurrent, distributed, and adaptive applications across heterogeneous

platforms at different levels of computing scale.

This assertion will be demonstrated by

• The creation of a general purpose actor language, with the actor as the unit of adapta-
tion and concurrency

• The creation of a compiler for the actor language that translates applications into an
intermediate language, which is executed by a virtual machine on different classes of
hardware platforms, and enabling actor adaptation across the scale space.

• An evaluation of the application of the actor-based abstraction to embedded program-
ming.

• An evaluation of the application of the actor-based abstraction to kernel-based pro-
gramming.

1.2. Contributions 3

• An evaluation of the application of the actor-based abstraction to adaptive program-
ming.

1.2 Contributions

This work contributes to the abstraction of programming concurrent, distributed, and adap-
tive applications in the following ways:

• The development of a new actor-based programming language which natively supports
the discovery and reconfiguration of actors at runtime, as well as a channel-based
abstraction of the network medium.

• The development of a lightweight runtime to execute actor-based applications on a
number of platforms, including highly-constrained, embedded devices.

• A simple type mechanism and compiletime analysis to minimise memory consumption
in the context of a shared nothing environment.

• An investigation of the impact of actor-based programming on embedded program-
ming in terms of linguistic complexity and application performance.

• The first in-language application of actors to accelerator-based programming of par-
allel devices as well as an investigation of the impact of actor-based programming
on accelerator-based programming in terms of linguistic complexity and application
performance.

• An exploration of the impact of actor-based programming on adaptive programming
in terms of linguistic complexity and application performance

1.3 Publications

The work reported in this dissertation has led to the following publications:

• “Parallel Programming in Actor-Based Applications via OpenCL”

P. Harvey, K. Hentschel, and J. Sventek
16th International Conference on Middleware (to appear)

• “A Virtual Machine for the Insense Language”

C. Cameron, P. Harvey, and J. Sventek
6th International Conference on MOBILe Wireless MiddleWARE, Operating Systems,
and Applications

1.4. Projects 4

• “Channel and Active Component Abstractions for WSN Programming: A Language

Model with Operating System Support”

P. Harvey, A. Dearle, J. Lewis, and J. Sventek
1st International Conference on Sensor Networks

During the work on this dissertation, the following papers were also published by this author
on related topics:

• “Accelerating Lagrangian Particle Dispersion in the Atmosphere with OpenCL”

P. Harvey, S. Hameed, and W. Vanderbauhede
2nd International Workshop on OpenCL

• “Wireless Sensor Network Simulation With Xen”

P. Harvey, and J. Sventek
The 46th Annual Simulation Symposium

1.4 Projects

Given the amount of implementation required to explore the hypothesis, a number of projects
were carried out by undergraduate students which contributed to this work. The background,
motivation, ideas, proposal, and supervision of these projects were carried out by the au-
thor, however, the implementation was completed by students. The following is a list of the
projects and students:

• Callum Cameron : The implementation of the Ensemble VM on the Tmote Sky em-
bedded platform.

• Kristian Henstchel : The extension of the Ensemble language to use an OpenCL library
in Java.

• Craig McLaughlin : The addition of the movable type and compiletime analysis to the
Ensemble type system.

In each case, the implementation from the student project was integrated into the main
project, and then expanded upon by the author.

1.5. Outline 5

1.5 Outline

The dissertation is structured as follows:

Chapter 2: covers related works in the areas of actor languages, adaptation methodologies
and implementations, parallel programming approaches, embedded programming styles, and
compiletime analysis.

Chapter 3: describes the design of the Ensemble language which is used as the mechanism
to explore the hypothesis.

Chapter 4: chronicles the design and implementation of the Ensemble Virtual Machine,
including support for runtime discovery and adaptation of actors and stages across multiple
hardware platforms at different levels of computing scale.

Chapter 5: argues that the actor is the appropriate programming mechanism for concur-
rency, distribution, and adaptation. This is evaluated in three different areas: embedded
programming, accelerator-based concurrency, and multi-platform adaptation.

Chapter 6: summarises the points made in the dissertation and discusses future directions
for the work.

Additionally, there are three appendices:

Appendix A provides a formalised description of the compiletime analysis associated with
the movable type described in Section 3.2.

Appendix B describes the format of the modified Java class files which are generated from
the Ensemble linker, and executed by the Ensemble VM.

Appendix C presents the results on performance and space consumption of native Ensem-
ble applications on embedded hardware. This appendix also presents the microbenchmark
results for the performance of the individual adaptation operations in Ensemble.

6

Chapter 2

Related Work

The increase in the number of processing cores in modern CPUs, coupled with the ubiq-
uity of distributed systems composed of heterogeneous devices, has led to a set of disparate
and unconventional programming styles required to program such devices and systems. As
well as dealing with the inherent issues of multithreaded programming, such as deadlock
and scalability, programmers must now also consider the resource constraints and network-
ing capabilities of different hardware platforms. As these technologies are used more and
more by non-specialist programmers to solve a wide range of problems, the challenge of
programming such systems is even more problematic.

The goal of this dissertation is to reduce the burden of programming such systems via the
abstractions presented by the actor model of computation. Although the issues associated
with programming these systems must be considered collectively, for discussion they can be
partitioned into four equivalence classes: concurrent programming, embedded programming,
distributed programming, and adaptive programming. To discuss the related work in these
areas, this chapter is arranged as follows. Section 2.1 provides an overview of a number of
different actor languages. Section 2.2 discusses motivations and technologies with regards
to runtime adaptation of software, at different levels of computing scale. A summary of
the challenges of programming parallel devices is presented in Section 2.3. An overview of
relevant program analysis approaches in given in Section 2.4, and Section 2.5 summarises
the points made.

2.1 Actor Languages

One programming model which addresses programming concurrent and distributed systems
is the actor-model of computation. Applications using this model are expressed in terms of
actors. An actor is a self-contained entity with private state and its own locus of control,

2.1. Actor Languages 7

usually a thread. An actor communicates with other actors via message passing, often (but
not exclusively) in an asynchronous fashion. The actor model was first proposed by Hewitt
et al. [4] as a model of independent execution and communication. Agha [5] extended the
model, introducing mailboxes to store sent messages for later consumption. Without muta-
ble shared state, actors enable a safe programming model for concurrency, with good per-
formance [6]. Deadlock and race conditions caused by locking mechanisms around shared
state cannot occur as there is no shared state or locking mechanism. Furthermore, the use of
message passing between actors provides an abstraction that is transparent to the location of
the actors involved. Therefore, message passing can transparently be used for communica-
tion between actors on the same hardware, or over a network. Such abstraction of location is
known as location transparency.

Despite the substantial advantages offered by the actor model, there are a number of trade-
offs when compared to languages, such as C, which should be considered. Firstly, the lack
of shared state introduces overhead in the language, and potentially the runtime. Rather than
simply enabling two threads access to a shared array, the actor model requires this array to be
sent between them. For developers writing performance critical code, who are comfortable
with the potential issues, the use of shared memory may be more appropriate. Secondly, the
infrastructure code which is required to facilitate inter-actor communication may be too ver-
bose for simple applications, where scripting approaches may be more suitable. Thirdly, the
peering relationship between actors does not by default support an indication of the priority
of a message sent between actors - there is no default way to distinguish between messages of
a high or low priority. However, individual implementations of the actor model have methods
for coping with this, such as multiple channels being used to create priority hierarchies.

Since the actor-model was first described, there have been a number of languages which are
based on this model. It would not be possible to provide a discussion of all actor languages,
instead, representative examples from each equivalence class is made in this section. Of the
actor languages and systems discussed in the literature, three equivalence classes are present:

• Languages which are targeted at particular problem sets.

• Languages which are embedded in other languages or systems.

• Languages which are for research purposes.

The following shows that the existing approaches are not sufficient to prove the hypothesis.

Niche Problem Sets

Erlang [7, 8] is a well-known programming language and runtime system developed in 1986.
It mixes functional programming and an actor based model of concurrency. Actors exchange

2.1. Actor Languages 8

asynchronous messages to communicate information with each actor possessing a message
buffer (known as a mailbox) to hold messages until they are processed. It also supports hot

swapping (or replacement) at the granularity of a function. Adaptation in Erlang consists of
exchanging the functionality of how a received message is processed, rather than the loadable
modules or code migration discussed in Section 2.2.1. Erlang supports location transparent
communication between actors. Remote actors are either explicitly bound to another actor
by knowing the remote actor’s address, or the remote actor is spawned and then bound to
the spawning actor. In order to deal with the unreliable nature of communication between
remote actors, Erlang uses a combination of exceptions and runtime support following the
let it crash philosophy. Remote actors are linked together either implicitly when they are
spawned, or explicitly if being connected to, and when a remote actor generates an uncaught
exception it kills itself and propagates a kill message to the actors to which it is connected.
They, in turn, kill themselves and propagate the message to the actors to which they are
connected. This continues until all actors are dead or the kill message is caught and handled.
The assumption is that the actor which catches the message is able to enact recovery.

While Erlang is a very mature language and runtime and is well suited to the domain for
which it is designed (telecommunication systems), there are some shortcomings. There is
no syntactic notion of a process, thread, or actor. Instead there are modules with collections
of functions. As the size of an application grows, the lack of clarity within the language
makes comprehension difficult when trying to determine the behaviour of the application.
Also, the fine grained hot swapping makes adaptation challenging, requiring the user to have
detailed knowledge about what code should be relocated at the function level, rather than
the process/thread/actor level. Erlang does not natively support process migration, and there
is no provision in the language for it. Also, in terms of scale the smallest device that can
successfully run an Erlang application is the RaspberryPi1 (see Section 4.3.3). This platform
has approximately 4 orders of magnitude more RAM than the smallest platform targeted by
this work (Section 4.3.2).

ActorNet is an actor language and system for Wireless Sensor Networks (WSN) built on top
of TinyOS. It has the ability to relocate an actor from one small battery-powered computer
used in WSNs (mote) to another as actors are interpreted. Actors are programmed in a lan-
guage based on the functional language Scheme [9], with appropriate extensions for actors,
such as the send keyword to facilitate message passing. Little or no detail is given on the
semantics of message passing including discovery and binding between actors. The work
claims that this language is simple, however each actor is specified as a number of functions
and lambda expressions, resulting in a non-linear flow of code. It is also the case that the
language does not present an intuitive abstraction over hardware, using static numbers to
reference hardware devices: io 0. This language is interpreted by an interpreter running

1http://www.erlang-embedded.com/ - Accessed October 2013

2.1. Actor Languages 9

on a TinyOS mote. The runtime system is multi-threaded with stack-based threads, however
as TinyOS is event-based, allocation and scheduling of these threads is done within the run-
time. This is in contrast to the static preallocation approach used in TinyOS by default, Sec-
tion 2.2.1. Coexistence of two such different abstractions is not efficient in space or power,
especially when not implemented within the kernel [10], and there are no detailed results on
the effect of these features. ActorNet provides a virtual memory system using external flash
to enable more runtime memory which is required to be able to interpret the applications,
however the only listed applications perform simple operations such as printing. It is unclear
how much space a more complex application would require. ActorNet is only implemented
for the Mica2 hardware platform2. No work has been done on ActorNet since 2005. There
is no discussion about how the language or runtime deals with transparency in relation to
environmental entanglements.

Environmental entanglement refers to the links between an actor (or software unit) and its
current execution environment. Examples include bindings to other actors, both in terms
of the actual bindings themselves, as well as the higher level interaction between actors.
Consider an actor A which has a file open on a given machine. Should this actor be migrated
to another machine, what should happen to the file and the actor’s link to that file? Should
the file be copied, or moved entirely, should the actor have a remote reference to the file,
or should the actor not be allowed to migrate in this situation? Environmental entanglement
is a challenging issue and influences the design and implementation of languages and their
runtimes.

JoCaml [11] is a system for mobile agents built inside of the Object-Caml (Ocaml) language.
Although not strictly an actor language, the work broadly has similar goals to this thesis.
The language has the ability to create uni-directional, typed channels, as well as being able
to remotely instantiate or migrate processes; in this context, a process refers to a thread.
The language aims to be simple, expressive and consistent such that JoCaml applications are
location transparent in a way that is understandable.

JoCaml channels are different from Ensemble channels, as when defining a channel both
end points of the channel are declared, as in Rust (Section 2.4.1), making dynamic runtime
binding of channels impossible. Also, channels do not simply convey messages, instead, they
accept data and then invoke code to process this data at the receiver process. This requires
that upon receipt of a new message a new thread is created at the receiver. This would not be
a feasible approach on a resource-constrained device.

Axum 3 (codename Maestro) is a domain-specific actor-based programming language de-

2http://bullseye.xbow.com:81/Products/Product pdf files/Wireless pdf/MICA2 Datasheet.pdf - Accessed
July 2014

3channel9.msdn.com/shows/Going+Deep/Maestro-A-Managed-Domain-Specific-Language-For-
Concurrent-Programming/ - Accessed November 2012

2.1. Actor Languages 10

veloped by Microsoft. It is domain-specific in that it is intended for use in highly concurrent
applications. Actors communicate via locally synchronous and remotely asynchronous mes-
sage passing. Although not directly discussed, it is assumed that this design choice in Axum,
and other systems [12, 13], is made because function/method calls are used for local mes-
sage passing, and network-based packet transmission is used for remote message passing.
Actors may be grouped into domains to enable direct sharing of actor state between actors
within the domain. To facilitate message passing, an actor (Agent in Axum parlance) has
a channel associated with it. Channels are complex data types, containing multiple unidi-
rectional buffers, functions, and even communication protocols specified via state machines.
There is no discussion of how network failures are managed, if migration is a design consid-
eration, or the implication of how the sharing of state between domains, requiring locking
primitives, would not undermine the point of using shared-nothing semantics. There is little
documentation of Axum other than blog posts. Work on the project was discontinued in
20104.

Embedded Languages

Scala [14, 15] is a popular functional language. Scala applications are interpreted by the
Java Virtual Machine (JVM). One of the main goals of Scala is to fuse functional and ob-
ject orientated programming, where functions are available as a part of objects, rather than
objects in their own right. The fusion of styles has met with mixed success [16].

Within Scala, concurrency is not an inherent part of the language, and is provided by li-
braries that offer actor-based concurrency. There are a number of different implementations,
currently the akka5 actor framework is the most popular. It addresses a number of limitations
of the previous actor implementation and offers a verbose, configurable setup.

Actors have private state and interact via asynchronous message passing. Synchronous mes-
sage passing is also possible via asynchronous message passing and futures in user level
applications, where logic will block on the result of the future to ensure that the message has
been delivered. In terms of distributed computing, Scala, like Erlang, is able to communicate
with or spawn remote actors, although unlike Erlang, the error mechanism exclusively uses
Java-like exceptions. Within Scala there is no first class location type, instead, remote actors
are instantiated with IP addresses, and then references to these actors are used. Like Erlang,
there is the ability to hot swap code, however migration is not provided by the language.
The language does support gaining references to other actors by specifying a Unix style path
to the actor, however, this requires knowledge of the actor’s location, and is not a generic

4msdn.microsoft.com/Forums/en-US/axum/thread/ae809d82-42ba-42bb-9199-e1e9489a82fe - Accessed
November 2012

5http://akka.io/ - Accessed October 2013

2.1. Actor Languages 11

approach. Due to the presence of all of these runtime features, the Scala code base is quite
large. The Scala for Android project6 highlights that ignoring the OS and Java runtime, the
scala runtime occupies 8MB of storage. Conditional compilation can be used to reduce this
to 25KB of storage, with the hello world application requiring 10KB of storage. This rep-
resents almost 15% of the available storage on the smallest platform targeted by this work,
and represents a static application. In terms of RAM, if Scala were to conform to the J2ME
specification, it would still require 3 orders of magnitude more RAM than is available on the
smallest platform targeted by this work.

Salsa [17] is an actor-based programming language embedded within Java. Salsa applica-
tions are preprocessed to generate standard (or vanilla) Java applications which are compiled
in the normal way. By embedding itself within Java without any special runtime require-
ments, Salsa is automatically available on many JVM supported platforms.

Salsa is embedded within Java, using a pre-parser to generate vanilla Java code. While this
provides Salsa with the large number of libraries Java has to offer, there is no list which
specifies which of these are Salsa safe, in the context of the actor semantics of the language.
This raises another point, that the Salsa compiler does not prevent or warn of inappropriate
interaction with Java applications. This could lead to violation of the state encapsulation of
actors. While Salsa does gain portability from the JVM, it is not clear if the restraints im-
posed on JVM implementations for embedded systems, discussed later, prevent Salsa being
available on such platforms. As Salsa targets internet applications, this seems likely. The
performance of Salsa applications is poor [18].

Another language within a language is Stage [18, 16]. Stage is an actor-based language
which is embedded within Python. The goals of Stage are similar to this work, specifically,
to address concurrency, distribution, and process mobility, although they do not attempt to
address heterogeneous systems. Stage supports asynchronous, as well as synchronous mes-
sage passing, however message passing is done via explicit send or receive methods
on objects, where actors are represented as Python objects; unlike other languages in this
section which are pre-processed in some way, Stage uses existing Python with extra func-
tionality added to the runtime. Stage supports location transparency for communication, and
weak actor migration (Section 2.2.5). Migration can occur between cores on a processor,
or nodes on a network, however the former requires a Python interpreter to be running on
each core, and the latter requires intelligence in the network to facilitate non-local migration,
specifically, a trail of forwarding components to forwards message to actors which have mi-
grated. Migration in Stage is expressed via callback functions, meaning that actors cannot
“continue where they left off”. The use of an event-based mechanism in this case leads to
disjoint flows of control.

6https://code.google.com/p/scalaforandroid/ - Accessed October 2013

2.1. Actor Languages 12

Considering the similarity of the goals between Stage and this work, it is an interesting
piece of work, however there are some issues. Firstly, as it is embedded within Python,
Stage programs use dynamic typing, and as such do not provide the programmer with a
strict programming environment7. Stage has modified the Python runtime to enable features
such as communication transparency, consequently, it is not clear how portable this work
is. Also, apart from there being no further work on this project, there is no mention of how
environmental entanglements are addressed.

The C++ actor framework (CAF [6]) is a C++ library providing actor-based concurrency.
Using layers of C++ templates, developers perform template metaprogramming to create ac-
tors and explicitly send messages between them. The author’s goals are similar to this work:
using an actor-based abstraction to simplify programming of concurrent and distributed sys-
tems. Actors are represented by lightweight threads, and the framework supports its own
scheduling system. The framework has shown good performance compared to other popular
approaches of programming such systems in terms of performance and memory consump-
tion.

By creating a framework in C++, CAF enjoys good performance, and easy integration with
existing projects. However, despite the good performance results, there are a number of limi-
tations of this approach compared to this work. Firstly, the use of template metaprogramming
is required to take advantage of the popularity of C++, however its use is a non-trivial ex-
ercise [19], acting as a barrier to non-expert programmers. Also, while the framework does
support an abstraction of inter-node communication via message passing, it does not support
the discovery of other actors at runtime, and is not capable of supporting runtime adap-
tation because applications are compiled to static binaries. Also, to successfully marshal
and demarshal user defined types for remote communication, developers must register
these types. This is done automatically in this work by the language. Like this work, CAF
supports an actor-based abstraction of OpenCL kernels (Section 3.3.1) for programming par-
allel hardware architectures, although unlike this work, CAF specifies kernels in terms of C
strings. This means that they do not support kernels containing multi-dimensional arrays or
nested references within structures, requiring developers to marshal and demarshal such data
types themselves. Also, given the abstraction of the memory allocation and data movement
used, it is not possible to leave data on a parallel device, a common optimisation used to
greatly reduce execution time. Furthermore, as kernels are compiled by a separate compiler
at runtime, error messages are less meaningful and delayed, unlike this work. CAF does not
support applications on truly heterogeneous hardware platforms, only homogeneous hard-
ware platforms. Finally, despite the desire of the authors to target the Internet of Things, they
are currently working towards porting their system to a RaspberryPi, a platform with signif-
icantly more resources than the battery-powered embedded devices which are also targeted

7It should be noted that there are many opinions on this matter.

2.1. Actor Languages 13

by this work.

Research Languages

Insense [20] is a component-based language designed to simplify WSN programming. Com-
ponents are like actors, and communicate using explicit synchronous message passing along
typed channels. It is possible to send a channel as a message, but it does not yet support
sending a component as a message, as in the π-calculus [21]. Insense is not a functional
language, instead presenting a reduced quasi-Java programming style. Insense does not sup-
port while loops, recursion, nested data types, dynamic arrays, or memory allocation within
control structures or loops. Also, Insense does not support location transparent communica-
tion, local or remote discovery of types, and actors can not be relocated or migrated. Insense
applications are executed by InceOS [22]. The Insense language and its runtime form the
base upon which this work is built.

Emerald [23] is an object-based language, in which every programming entity from files to
booleans are objects. The language enables objects to communicate by method invocation.
This is the same for local or remote objects, thus the language supports location transparency.
Although not an actor language with explicit channels, Emerald supports the ability to pass
a global object reference from one object to another. If the receiving object is remote, the
referenced object will be migrated. As the language directly supports process migration, a
number of language constructs exist to assist with the task, specifically the ability to fix,
unfix, and move code between defined locations. There was also the ability to visit
a location. This operation would migrate to the location, execute, and then return. All of
these features are specified in the language as keywords.

Emerald was designed when applications targeted specific machine hardware, and as a result
the Emerald runtime was written entirely in C, relying on specific encodings of language
types and stack formats to support code migration. It is unclear from the literature how
dynamic communication topologies would be achieved without automatically causing code
migration. Unlike other languages with well-defined communication channels, or mailboxes,
when sending a global object reference between objects, this would cause the automatic
migration of the component. Also, given that all entities in the language are objects, the
space requirements are likely to be high, which is not good for embedded hardware, however
there is no documentation to examine this.

The Actor-Based Concurrent Language (ACBL) refers to a family of languages:

• ABCL/1 [24] was the original incarnation of the language and is discussed here

• ABCL/R [25] and ABCL/R2 are the first and second generations of ABCL which use
reflection and are a subset of ABCL/1

2.2. Adaptation Techniques 14

• ABCL/c+ [26] is a variant of ABCL/1 which is based on C rather than Lisp

The language was created to address the high degree of parallelism found in many differ-
ent areas of computing, from A.I. to operating systems. The language is Lisp-like, and is
based on objects with private state that interact via asynchronous message passing. AB-
CL/1 provides a select statement to make a guarded choice between messages. This work
does something very similar, except the choice is between channels, not messages. Futures
are provided to check on previously sent messages. It is also possible to use synchronous
message passing.

This work was active between 1986 - 1990 and gives no examples of distributed program-
ming or performance evaluation. Given lack of subsequent work, it is more focused on an
academic exploration of the model, than deployment. However, it is worthy of note as one
of the pioneers of the actor model.

H.A.L. is the High-level Actor Language [27], and is an experimental tool for parallel and
distributed programming. It is an object-orientated language with an actor based concur-
rency model, which is compiled into C programs [28]. It supports both synchronous and
asynchronous message passing, with synchronous message passing being built from asyn-
chronous message passing. The language is based on Scheme. The work explores a number
of interesting topics such as reflection and message forwarding. The language is built to exe-
cute on the CHARM [29] runtime, thus the language is available on multiple platforms with-
out needing to have a multi-targeted compiler. Another interesting feature is that CHARM
provides a distributed kernel, along with the issues involved with distributed garbage collec-
tion. However, such systems often lead to great complexity and challenges, as discussed in
Section 2.2.5. The work hints at exceptions being present, but does not explicitly state this,
nor does it give any real world examples, or performance results. HAL does not support
runtime adaptation or discovery.

2.2 Adaptation Techniques

The ability and motivation to replace, relocate, and migrate software varies between different
scales of computing device. Given the increased deployment and usage of such devices, as
well as the different operating conditions and resource constraints that they present, it is now
necessary to enable software executing on such devices to adapt.

Embedded systems, such as WSNs, find these features desirable due to the remote locations
in which they are deployed. Data centres and High Performance Computing (HPC) clusters
use these techniques to achieve load-balancing. These adaptation techniques were origi-
nally explored in the late 20th century, however never widely proliferated. The following is

2.2. Adaptation Techniques 15

an overview of the current state of the art in approaches to adaptation across a number of
different computing scales. Based on this overview, Chapter 5 describes how an actor-based
approach can be used to enable and simplify adaptation both within and between the different
computing scales discussed.

2.2.1 Wireless Sensor Networks

There are a number of different techniques that are used in WSNs to replace or relocate soft-
ware, namely binary updates, loadable modules, middleware, and virtual machines. These
techniques are representative of embedded systems in general.

Binary Updates

The default in TinyOS [30] (and Mantis [31]) is image-based replacement. Here an entire
binary file is sent via the radio and upon reception at the target node, the binary is saved
to external flash. The existing binary is then rewritten, and the mote restarted. Should
every mote in the network require update then no extra information is required, however
version numbers are used to distinguish between motes who do and do not require update.
Although applications for TinyOS are written in the component-based language nesC [32],
the binary which is generated at compiletime has had all application structure removed. This
is intentional as the compiler uses many optimisations such as whole program in-lining to
reduce the size of the binary. The result is a highly optimised and highly coupled binary.
Deluge [33] and XNP [34] are used to disseminate the whole binary image. As a replacement
strategy, this method is safer in terms of the complexity of the update mechanism when
compared to other techniques discussed below, however, it requires large amounts of power
to transmit the entire binary via the radio.

A more efficient technique is binary differential patching [35, 36]. The essence of this ap-
proach is that the differences between the binary present on a mote and the new update binary
will be sent to the mote. The existing binary will be patched and the mote restarted. This
techniques requires less data to be sent than the full binary, however the data to be sent along
with the required metadata leaves this method relatively energy expensive. Also, it requires
the diff process to be aware of the current binary running on the mote to be updated. Both
approaches require the mote to be restarted.

Loadable Modules

The goal of loadable modules is to replace or relocate a component (or module), providing a
more fine grained way to adapt software. In this way, only a small amount of data needs be

2.2. Adaptation Techniques 16

transmitted, and no reboot is required. There are a number of different incarnations of this
approach.

Contiki [37] uses dynamic linking at runtime to support reprogramming [38]. At compile-
time, the compiler generates Compact Executable and Linking Format (CELF) object files.
These files are the same as normal Executable and Linkable Format (ELF) files, except that
they contain 8 or 16-bit information, rather than 32 or 64-bit information. This is done as
embedded systems have smaller word sizes than non-embedded systems, and reduces the
amount of transmitted data. These files contain machine code, data, and names of functions.
This code can not be executed until these names have been resolved into physical addresses.
On the deployed node is a symbol table containing the names and locations of all functions.
Upon reception of a CELF file, all symbol names are translated to addresses (linked) and
the machine code is moved (relocated) into program memory. A detailed exploration of the
power and space requirements for this and other techniques is documented [38], however
adaptation is controlled via an API, and has no integration with the programming model.
Also, this approach requires a complete symbol table to be present on the node at all times,
and it is the developer’s responsibility to handle an expected function not being present.

The SOS [39] kernel has a similar approach, however it uses Position Independent Code
(PIC) which does not require the linking stage above. PIC uses relative references rather
than absolute addresses, and does not require the symbolic linking as described above. To
generate PIC, compiler support is needed. The benefit is a simpler reprogramming mecha-
nism, however, not all platform architectures support PIC. Those platforms which do often
place restrictions on the size of such code, and compiler support for such code is not wide
spread [38].

Lorien [40, 41] is a component-based operating system focused on runtime relocation and
replacement of components, but not migration. It is built upon the OpenCom component
model [42]. As the system and application elements of Lorien are components themselves,
most of the system is runtime configurable; the only exception is a small section of code
which is used to manage reconfiguration. Interconnections between the components are
achieved via interfaces, and each component specifies what it offers and requires. Thus,
system integrity can be enforced at runtime by ensuring that components being removed,
or inserted will meet the constraints. Essentially, function pointers are used to decouple the
component connections in a similar manner to C++ vtables. Lorien uses a slightly augmented
C to write programs, however there is little discussion of a programming model, particularly
in relation to the concurrency model. Developers are require to manually specify the depen-
dences between components, and the system does not support runtime discovery of entities
or location transparent communication.

As previously mentioned, the default method of reprogramming in TinyOS is image-based,

2.2. Adaptation Techniques 17

however, Dynamic TinyOS offers module-based replacement. Munawar et al. [43] have
modified the compilation process of TinyOS so that a monolithic binary file is no longer cre-
ated. The user specifies one or more nesC components to be included within a module, and
the compiler then generates a corresponding ELF file for the module, just as in Contiki. The
general problem with this approach it that TinyOS is designed to execute with all informa-
tion available at compiletime, including the number of tasks to allocate a large enough array
for the scheduler, or the number of required timers. To mitigate these issues, such resources
are over-provisioned to safeguard against these problems in the future. This requires the
allocation of resources in a pessimistic way. The advantage of this approach is that TinyOS
application elements can be replaced, rather than replacing the entire OS image. However, it
is not clear how flexible this replacement strategy is, for example, if the user initially selects
multiple components to constitute a module, is it possible to separate these components at
a later date into separate modules? Migration, runtime discovery of entities, and location
transparent communication is not supported.

AFME [44] is a framework which uses the declarative Agent Factory Agent Program-
ming Language (AFAPL). The entire system is implemented in Java for the sunSPOT plat-
form [45]; the sunSPOT is a sensor mote specifically designed for Java. The language itself
does not provide state encapsulation between agents. In order to enforce state encapsulation,
all communication must pass explicitly through well defined software modules, however this
is not enforced by the system. Inter-node communication is possible, however this is ex-
plicit, with the user being required to enforce reliability, if desired. In terms of migration,
the system can only support weak migration (Section 2.2.5), as the JVM prevents a Java
thread access to its internal state. Also, the system does not deal with object-entanglement

- i.e. should an object reference a co-located object, a copy of the object must already exist
at the remote location. Remote references, runtime discovery, and remote object loading are
not supported.

Middleware

LooCi [46] is a component-based middleware platform for WSNs, which was initially built
on Java to work with the sunSPOT platform, and subsequently Contiki and OSGi [47]. Un-
like the channels found in this work, LooCi uses a global event bus to enable communication
between components. A component registers interest in certain events, and advertises the
events that it generates. It is the responsibility of “intelligence in the networking layer” to
ensure that events are delivered appropriately, thus abstracting over the underlying commu-
nication medium, however, this intelligence is never explained. LooCi supports the reloca-
tion of components using the mechanisms of the underlying system. For example, Contiki
macros are added to create components and events, and the Contiki elfloader is used to move

2.2. Adaptation Techniques 18

the components. Again, this offers replacements and relocation, but not migration. It is
possible to store an ELF file on a mote for later dissemination, however the general model
requires motes to query a component store located on a PC behind the WSN gateway; loca-
tion transparent communication and general runtime discovery of entities is not supported.
Currently, components can not be moved between systems; a Contiki component can not be
moved to a Java system. As LooCi is a middleware platform it can take advantage of existing
systems, however this means that there is no unifying programming model.

2.2.2 Virtual Machine Replacement

A Virtual Machine (VM) is a software implementation of a machine that executes a custom
set of instructions often known as bytecodes. The most popular example is the Java VM.
The advantage of VMs is that they present a homogeneous abstraction layer, regardless of
the underlying hardware. Consequently, an application can be compiled into bytecodes and
then executed on any hardware platform that has an appropriate virtual machine. Further-
more, the single hardware abstraction presented by VMs simplifies runtime adaptation. On
resource-rich hardware, such as desktop PCs, the use of VMs is not an issue; however, due
to the resource-constrained nature of sensor motes, the implementation and use of a VM is
challenging. For sensor networks, the advantage comes from reduced radio power usage as
bytecodes are smaller than binaries, but at the expense of runtime interpretation.

Maté [48] is an application-specific virtual machine which executes as a component on top
of TinyOS and interprets Maté scripts. A Maté application is a collection of up to eight
capsules, each containing 24 assembly-like instructions. The interpreter itself consists of
an operand stack and a return address stack. Maté was the first VM on a mote. Due to the
size restrictions placed on a Maté application, the type, size, and complexity of applications
which can be written is severely restricted.

More recently, work has been done to create a Java compatible VM on sensor motes, specif-
ically Darjeeling [49] and Mote Runner [50]. Both systems implement a 16-bit stack
operand-sized instruction set and support a subset of the Java bytecodes, and by extension
the Java language itself. The most notable omissions are reflection, arraylists, generics, and
recursion. Both approaches use the split-vm approach, where class files are linked on a desk-
top machine into a much smaller and denser format. The VM running on the node executes
this format rather than the original class files.

There are two distinct differences between these systems. Firstly, Darjeeling is designed
to support the Java language, where as Mote Runner is designed to support multiple high-
level languages including C#, Java, and JavaScript. The goal of Mote Runner is to remove
the learning curve required for traditional WSN programming. Ultimately both techniques

2.2. Adaptation Techniques 19

are compiled to bytecodes, however Mote Runner has the more challenging task of unify-
ing a number of different programming abstractions to be applicable on sensors, as well as
injecting constraints (as discussed below) into these high-level languages.

The second difference is in the concurrency model provided. Darjeeling offers stack-based
threads which are dynamically resizeable, whereas Mote Runner offers event-driven concur-
rency via callbacks, as used in nesC. Mote Runner believes that stack-based threads are not
suitable in WSNs. As a result, Mote Runner application logic must be specified in terms of
function callbacks.

A more general point about VMs is performance when compared to native code. The cost
of portability is that time must be spent interpreting the bytecodes. For sensor networks this
cost is shown in detail by Dunkels et al. [38] and highlights that VMs take longer to execute
and consume more power than native code. The advantage is that it provides a convenient
platform to explore runtime adaptation.

2.2.3 Non-WSN Computing

Xen [51] is a virtual machine monitor (or hypervisor) which allows a number of operating
systems to run on a single machine simultaneously; Xen itself is the only element to run
on the actual hardware. The other operating systems run within virtual machines known as
domains. Xen manages each domain’s access to the physical resources and prevents different
domains from interfering with each other - i.e. by two nodes trying to concurrently access
and modify the same area on disk.

Xen uses a virtualisation technique known as paravirtualisation. This is contrast to full vir-
tualisation as used by VMware [52]. No changes are required in a system to work with
VMware, whereas to work with Xen an operating system must be ported in a similar fashion
as a system is ported to a new piece of hardware. While this requires more work for the
developer, the advantage comes from better runtime performance.

Within Xen it is possible to pause, save, move, and replay a XEN domain from one machine
to another. Further work has been done to show that this can be done at runtime with very
small overhead and downtime [53]. This work shows that it is possible to not only migrate
domains as a proof of concept, but also in real world examples. This approach is designed
specifically for the administration of clusters of computers. As adaptation is at the OS level,
it is a heavy-weight and coarse-grained approach.

Mirage [54] proposes an alternative application of Xen to large-scale, distributed comput-
ing, sometimes referred to as cloud computing. Mirage is a programming framework that
enables a user to write an application in a dialect of the Objective Caml language. Each ap-
plication is then compiled into a custom, standalone Xen domain. This has the advantage of

2.2. Adaptation Techniques 20

removing the OS and many layers of software required in a traditional Xen domain, leaving
an application-specific binary. This is in the same spirit as conditional compilation.

In terms of performance, testing against custom database benchmarks have shown that Mi-
rage performs better than an equivalent application running on Linux at scale. However,
certain details are missing from the description of the testing. Specifically, it is claimed that
Mirage performs better as the scale of the application grows, however there is no discussion
of the number of instances used or how these are allocated. The minimum binary size of a
Mirage instance was 600KB, two orders of magnitude smaller than the Linux equivalent and
several orders less than the Windows equivalent, however still at least one order of magnitude
too big for a sensor mote.

The work of Giurgiu et al. [55] explores the migration of sections of an application between
mobile devices and the cloud based on using Java and OSGI component modules. The
work addresses the issue that static partitioning of applications for code offloading in mobile
phones is not adequate. Instead, they have implemented a system which dynamically profiles
an application, and decides what and when to offload code to the cloud. The system is built
upon R-OSGI [56]. As applications in this system are written in Java, there is no linguistic
mechanism to enforce loosely coupled applications, hence the developer must be relied upon
to create suitably partitioned code.

MPI [57] is a well-known framework for message passing communication which is sup-
ported by a number of different programming languages, and has been used by many sys-
tems, particularly in high performance computing8. The system is accessed via a per-
language API. In MPI different loci of execution are known as processes, where processes
are assigned to CPU cores. These processes can be spawned across local or remote machines,
where each processes is uniquely identified by its rank. The total number of processes and
their ranks are determined when an application is launched with MPI.

MPI supports remote creation of processes and location transparent communication, al-
though users must manually marshal/demarshal complex data types in the language. Fur-
thermore, there is no compiletime support for type checking two ends of the communication
pipeline, although session types can be used to help address this issue, Section 6.3.1. MPI
supports static hardware discovery based on predefined configuration files, however, is it not
designed for a dynamic execution environment, where nodes come and go. MPI does not
support transparent process migration. If desired, users must use a manual checkpoint and
restart mechanism at the language level. Finally, due to the API-based nature of MPI, it leads
to low-level, verbose applications [58]. While this gives fine-grained control over application
development, it can act as a barrier to non-expert programmers.

An alternative to Java and the JVM is Forth [59, 60]. Forth is a language and runtime which

8http://www.open-mpi.org/ - Accessed May 2015

2.2. Adaptation Techniques 21

is composed of words, symbols, such as “+” or “-”, and numbers. These words can either be
well known or defined by the developer. Words are kept in a dictionary which is consulted
at runtime to find the definition of a word. A program or word is expressed in reverse polish
notation and consists of words, symbols and numbers. Forth interpreters are very simple,
small, and easily extensible as most of the work is done in specifying the words for the
dictionary. Forth code can either be interpreted or compiled. Different interpreters deal with
missing words in different ways, although there is no clear strategy. Some will store missing
words to be populated later, some throw errors. One advantage that Forth has over the JVM
is that new words can easily be added to the dictionary at runtime, thus new functionality is
very easily available. By contrast, the Java VM itself would need to be modified, recompiled
and reinstalled in order to add a new bytecode.

In a similar ethos, both Python [61] and Ruby9 support dynamic code generation and execu-
tion at runtime, although this is done at a comparatively higher level within the programming
language. While these would support the remote creation of code instances quite easily, there
are a number of draw backs. The runtimes for these systems are comparatively large, requir-
ing 13.1 MB and 6.1 MB for Python (3.2 minimal) and Ruby (1.9.1), respectively, to support
a hello world application. These sizes are larger that the storage capability of some of the
embedded devices targeted in this work. This is not to say that a smaller runtime could not
be created, but a lower level intermediate representation offers a simpler runtime, requires
less data during remote communications, and potentially provides more scope for compile-
time/runtime optimisations.

Like the JVM, the common language runtime (CLR) [62] is a virtual machine providing
services such as memory management, security, and exception handling, and is also designed
to execute a common intermediate language. The CLR is a part of the .NET framework.
Unlike the JVM, the CLR was designed to execute multiple different languages from the
outset, whereas the JVM has become the target of many different languages [63]. Mono10 is
an open source version of the .NET framework.

Given the existing support for Java, a subset of the Java bytecodes were chosen as the starting
point for the Intermediate Representation (IR) of the language. These bytecodes were then
extend, and a custom VM was implemented across the scale space. The modifications made
to the bytecodes and the custom VM are discussed in Chapter 4.

2.2.4 Service Discovery

Given the nature of the distributed systems being targeted by this work, it is not realistic
to rely on persistent connections between physical devices. This requires the use of an on-

9https://www.ruby-lang.org - Accessed May 2015
10http://www.mono-project.com/ - Accessed May 2015

2.2. Adaptation Techniques 22

demand discovery mechanism to locate entities which are currently visible. There are a
number of approaches for providing such a service. Common amongst them is the need to
associate some set of properties with the entities which can be discovered at runtime, and
the ability to query those properties to gain references to the entities they represent. This
approach is used in Jini [64], CORBA [65], dns-ds [66], and Bonjour [67]. The design of
these systems has influenced how the location of actors and stages discussed in Section 3.4
is expressed in the language and implemented in the runtime. The following expands on two
fundamental points raised by these technologies.

Push vs. Pull Discovery

When locating entities at runtime, the publication of properties associated with an entity can
either be recorded locally, requiring a query operation to search remotely for these entities,
or the publication can push this information to all other remote sites.

Having publishing devices push information to other devices reduces the time and network
traffic for query operations, but requires greater amounts of local storage space at each re-
mote site, and can lead to remote sites hosting information which is never used or out of date.
Conversely, having the query search remotely causes more network traffic, but saves on local
storage space. As queries only occur when required, only currently accessible devices will
be interrogated, and any information is less likely to be out of date.

Structural vs Named Equivalence

The ability to determine if two types are equivalent is necessary both statically at compile-
time and dynamically at runtime. The equality of two types may be determined via a type’s
name, or a type’s structure [68].

Name equivalence means that types with the same name are considered equivalent. Note
that these names are often compiler generated, rather than the type names used by the pro-
grammer. Here, two types are equivalent if they have the same name. The advantage of this
approach is its simplicity. The disadvantage is that applications compiled independently may
have equivalent types with different names. Two types which are the same but with different
names will not be compatible, even if this is desired. Name equivalence is often considered
a very restrictive approach.

Structural equivalence means that two types with different names are considered equivalent,
if for each feature within the second element’s type, there is a corresponding and identi-
cal feature in the first element’s type. By ensuring that two types are equivalent based on
their structure, functional correctness is guaranteed because the compiler can ensure that the

2.2. Adaptation Techniques 23

correct operations are applied to the data types, even between code which is compiled in-
dependently. The disadvantage of structural equivalence is that two equivalent types may
have different associated semantics. For example, even though a child type and an adult type
are structurally equivalent, an adult type may be used in a very different manner. If only
using structural equivalence, a child type may be used incorrectly in the place of an adult.
Structural matching is often considered a liberal approach to equivalence.

2.2.5 Offloading Techniques

In the 1980’s through to the late 1990’s, much work was done on process migration in
desktop computing. Milojicic et al. [69] have surveyed this field and give an overview of the
application areas, research and implementations, and present reasons as to why migration
never caught on.

In general, the application areas for process migration cover load balancing and distribution,
the exploitation of resource locality, resource sharing, fault resilience, systems administra-
tion, and mobile computing. These concepts can be summarised by saying that process mi-
gration enables applications, either autonomously or with outside direction, to be liberated
from their current execution environment for the purposes of efficiency, safety or policy. The
survey notes suitable applications areas are those that exhibit parallelism, long lifetimes, and
mobility; this is corroborated by Smith et al. [70].

The aforementioned research on process migration covered many different areas and many
different systems. The general findings can be summarised in a number of points.

Firstly, migration-capable systems which use message passing are easier to design and im-
plement than those that do not, especially in terms of location transparent communication.
This is because message passing offers a decoupling of interaction between software entities.
This opinion is also expressed by Smith et al. [71]. However, it is noted that this advantage is
at the expense of complex communication logic within the runtime. In order to ensure mes-
sage delivery after process migration, some approaches use message forwarding; however,
this can lead to complex network routing and is not efficient. A more desirable approach is
taken by the V kernel [72] (and Xen), where routing information is updated after migration,
however the details are not discussed in depth.

Secondly, environmental entanglement is not solved, with all application and user level ap-
proaches requiring that any process to be migrated must be isolated. Some of the micro ker-
nel approaches, particularly Mach [73], provided distributed shared memory and distributed
inter-process communication to mitigate some elements of entanglement, although this can
lead to very complex runtimes.

2.2. Adaptation Techniques 24

Thirdly, one of the factors which contributed to the lack of success for process migration was
complexity within the runtime systems. This is especially true for Mach, where the support
for distributed memory management and IPC became very complex.

Other examples included a lack of applications, migration not being required as other tech-
nologies (RPC, discussed below) were available and well understood, a lack of wide spread
infrastructure support - i.e., Windows did not support migration, and security concerns.

The work does suggest ways to address these issues, however these are quite general and
based on assumptions about the computing environment and changing trends in comput-
ing technology, some of which have only now been realised in terms of mobile computing
hardware, and the applications that are executed on them.

Other work on migration focused around modifications to Java to extend the serialisable
functionality which was already present; to not only move a component from one location
to another, but to enable it to also take its execution state. Generally this work fell into two
categories, one which modified the Java VM to support migration [74, 75], and preprocessing
of Java code to insert mechanisms to save the state before migration and restore the state
after migration [76], the so-called checkpoint-restart approach. The work of Baumann et
al. [77] describes another system which provides mobility around Java, but also presents a
classification of different types of mobile programming by introducing different levels of
mobility: remote execution, weak migration, and strong migration.

Remote execution covers remote produce calls (RPC) and the Java equivalent, remote method
invocation (RMI) [78]. This is the ability to invoke a procedure or method on a remote ma-
chine. Here a stub piece of code is automatically generated during the compilation process
on each machine. Its duty is to abstract over the heterogeneity of different machines as well
as handle networking issues such as marshalling. It should be noted that RPC/RMI operates
within the semantic space of a single memory region, as opposed to actors which use the
shared-nothing semantics to create applications with distinct memory regions. Hence, actors
are more naturally suited to distributed applications.

Weak migration is the ability to relocate the code and data but not the process state. Consid-
ering an actor system, this means that an actor can be inserted at a remote location, but will
start from the beginning of its behaviour. This provides the ability to replace, and relocate
an actor. Migration is still possible with this scheme, but requires the actor’s behaviour itself
to orchestrate this, using the checkpoint-restart method.

Strong migration refers to the ability to relocate the code, data, and state of a process.
Again, considering an actor system, this is the ability to pause an executing actor, save its
state, transport it to another machine, and let the actor resume execution as though nothing
had happened.

2.3. Accelerator-Based Programming Approaches 25

2.3 Accelerator-Based Programming Approaches

To address the limitations of single core CPUs, accelerators, such as multicore CPUs and
GPUs, and co-processors, such as the Xeon-Phi [79], provide the user with multiple phys-
ical threads of execution, thus enabling many computations to occur simultaneously. As
described in Section 3.3.1, programming such devices is primarily achieved by having some
controller logic (host) situated on the main CPU which will initialise, control, and commu-
nicate with some application logic (kernel) on the accelerator. This approach closely relates
to the actor model of computation, where different loci of computation communicate explic-
itly. This is discussed further in Section 3.3, but to provide context, the following presents a
survey of the state of the art in this field.

A number of different approaches have been designed to program parallel computing hard-
ware platforms and are discussed in the rest of this section. These styles can be categorised
into three equivalence classes: API access, semi-automated parallelisation, and automated
parallelisation.

2.3.1 API Approach

The most low level approach to programming an accelerator is to enable access via an API
within an existing language. Examples of this include Python [80] , Java 11, and the original
implementations in C/C++ of OpenCL [81] and CUDA [82].

While an API is a simple approach, requiring no modifications to the host language, the
general drawback of using an API is the need to write large amounts of boilerplate code
simply to setup the programming environment, as described in Section 3.3.1. This boilerplate
code often follows the steps required to setup and initialise the relevant framework, and can
have very little relation to the programming idioms of the host language - e.g., the Java API
requires the use of pointer objects. Similarly, the code required to express the calculations
on the accelerator is written in a C-like language, which is embedded in the host language
as a string. For non-C-like languages, such as Java and Python, this can be challenging
for programmers without experience in C/C++. More generally, this leads to two different
programming styles for the host and the accelerator.

2.3.2 Semi-automated Approach

Much work has been done on semi-automated translation of serial programs to parallel
OpenCL or CUDA code. OpenCL is discussed further in Section 3.3.1. The techniques used

11http://www.jocl.org/ - Accessed June 2014

2.3. Accelerator-Based Programming Approaches 26

include recognition of common parallelisable patterns in the source code, such as nested
loops that can be unrolled and executed in parallel. However, most rely on the programmer
to provide annotations or some form of refactoring applied to the original code.

OpenACC [83] is a set of explicit annotations for C or Fortran code. The simpler anno-
tations are similar to macros, and are used for allocating and writing to buffers. However,
higher level annotations also exist, which offer substantial control over how a loop should be
unrolled and scheduled. Using these hints, the compiler attempts to generate well-optimised
code for the supported patterns. The system allows the use of previous code written in
the original language with fewer modifications than is required to use the OpenCL API.
OpenMP [84] is also a directive-based approach which targets single/multicore CPUs, but is
supported by open source compilers, unlike OpenACC.

By their nature, annotations are extraneous to the logic of the underlying application. This
has the advantage that the existing logic can be used as a starting point, with annotations
extending or enhancing the functionality. However, annotations must be applied to each

construct to be parallelised, resulting in applications which are increasingly difficult to follow
as their size increases. This is also true for any library code. Also, there is no guarantee that
the compiler will be able to generate an effective parallel strategy for the annotated section
of code. For example, if there is a non-linear data dependency in a for loop, sequential code
may be generated instead of parallel.

hiCuda [85] is a similar approach for the CUDA framework, applying annotations to se-
quential C. The paper indicates that annotated applications provide similar performance to
hand-crafted CUDA.

AMD’s open-source Aparapi12 system allows partial offloading of Java code at runtime,
depending on the available OpenCL device’s capabilities. The same program may execute on
a system without OpenCL support, where it will use a Java threadpool. Aparapi relies on the
programmer to refactor a function or loop into an inner class with a run method containing
the computation. The Java bytecode for this method is translated to OpenCL/C code at
runtime. The programming model is similar to this work as it requires some refactoring but
still allows the kernel code to be written in a subset of the original language, making use
of the primitives (such as classes) provided by that language to express the required meta-
information. It also abstracts, to a certain extent, the exact memory layout and management
of data movement and provides automatic adjustment to the available devices, rather than
having the programmer optimize the code for a specific device. Aparapi offers a trade-off
between a simplified programming model, and a non-trivial performance cost [86]. A much
smaller performance penalty is found when using Ensemble, Section 5.2.

Functional languages, such as Haskell, provide an alternate approach. Purely functional

12code.google.com/p/aparapi - Accessed October 2014

2.3. Accelerator-Based Programming Approaches 27

languages are side-effect free. In principle, this enables the runtime system to extract paral-
lelism by executing expressions in parallel. In practice, it is difficult for the runtime system
to ensure that a given expression is large enough to warrant the overhead of forking a thread
to compute its value in parallel with other expressions. Glasgow Parallel Haskell (GPH) [87],
therefore, provides a par annotation, which programmers can use to identify promising ex-
pressions for parallel computation. The par annotation does not change the semantics of the
program, instead enables exploitation of the existing potential parallelism. This is similar
to the directive-based approach, but much simpler due to the comparatively constrained pro-
gramming model of functional programming. Concurrent Haskell [88] provides additional
operators to enable threads to be forked explicitly, thus enabling a developer to express a
program in a concurrent manner, if this is appropriate. However, exploiting the potential
parallelism provided by both concurrent and parallel Haskell efficiently continues to be a
challenging problem [89].

2.3.3 Automated Approach

A different approach to simplify the creation of massively parallel programs is to hide from
the developer all the low-level details such as memory allocation, the specification of work
sizes, and when to dispatch a kernel. A number of new domain-specific languages have
been developed to provide such higher level abstractions. Their primitives describe data
movement and computation through operations such as map, reduce, stencil, and other vector
operations. By separating the description of the algorithm from the implementation, the
underlying OpenCL/CUDA code generation can be swapped out transparently to the user,
and, at least in theory, pick the best representation for the available device. In general, the
effectiveness of the approach relies on the quality of the code transformation from source
language to OpenCL/CUDA.

One of the earliest efforts in this direction is the Accelerator system developed by Microsoft
Research [90]. This extends the C# programming language with lazy and immutable parallel
arrays, which can be converted to and from normal arrays. These parallel arrays can only be
operated on as a whole by using a large set of predefined operations. The runtime system Just
In Time (JIT) compiles DirectX shaders, and performs the accumulated operations when the
arrays are converted back. Accelerator pre-dates both OpenCL and CUDA, and is an early
approach to simplifying general purpose use of GPUs. This approach could be extended to
generate OpenCL kernels for the array operations instead. The runtime system can optimise
the shader code for the available device architecture, and the authors report performance
similar to hand-optimized shader code, with the main hindrance being the JIT compilation
step and resolving the dependency graph at runtime.

LIME (Liquid Metal) [91], developed by IBM, is a Java-based language with added parallel

2.3. Accelerator-Based Programming Approaches 28

operations. Its semantics are based on task and connect statements, as well as explicit map
and reduce operators. Tasks are functions that can be connected together at compiletime,
enabling static topologies. This enables the compiler to effectively optimise code, however
making it impossible to change inter-task topologies at runtime. Such dynamic reconfigu-
ration is useful for load balancing or reprogramming at runtime. The optimising compiler
detects when such a function can be parallelised, for example by checking that it has no
side-effects. (The Ensemble system also has no global side-effects, but does not require im-
mutable state.) The LIME compiler decides which functions to offload, and scans for data
parallelism in functions that behave as filters. A number of heuristics for optimizing the use
of OpenCL memory regions are demonstrated. Marshalling is used to transfer data from the
Java program to native code (implemented via the JNI). It is de-marshalled on the host in
native C code, before being transferred to the OpenCL device. The authors admit that the
primitive implementation of this marshalling is relatively slow. It is not clear from this work
how kernel work and group sizes are determined, though it can be assumed to be based on
the data size. LIME compiles from augmented Java to a program composed of Java with
native (JNI) code and OpenCL/C kernels.

SkelCL [92] is a library of hand-implemented and optimized skeletons of parallel program-
ming patterns for computation and communication which are then filled in with user func-
tions. It targets OpenCL systems, including those with multiple GPUs [93]. These skeletons
are optimized to avoid memory bank conflicts and similar issues. User functions are passed
as source code strings and merged with the skeleton code before being compiled to OpenCL
kernels. In effect, they work like higher order functions. One drawback of this approach
is the need to use stack-like operations to assign variables and values to multi-argument
functions. Also, as the compilation of these functions happens at runtime, the user must
wait before compiler errors or warnings are displayed. Lazy copying is employed to avoid
data transfers if the next user of a piece of data is running on the same device. This is a
feature that the Ensemble language expresses explicitly through movability within the type
system, discussed in Section 4.5.2. As SkelCL hides the use of OpenCL, the different mem-
ory regions are not accessible to the programmer. While this does simplify the programming
model, it limits the use of the more powerful features of OpenCL which are often required
for non-trivial applications. The authors show performance results that are comparable to
handwritten CUDA and OpenCL code, with fewer lines of code.

Chestnut [94] is a data parallel language built around special types, such as parallel arrays
and vectors, that are used to define the parallelism of loops using these data structures. It is
especially suited for stencil and grid operations, providing methods to easily access adjacent
elements in a multi-dimensional array within a parallelised loop. Chestnut is compiled into
C++ with the author’s own Walnut library which includes CUDA code to access the GPU.
The evaluation shows performance close to hand-written CUDA code. The authors also

2.4. Program Analysis 29

introduce a graphical designer that can be used to generate Chestnut source code, which can
then be modified to the programmer’s needs. Another novel feature is a built-in visualisation
method to show the computation results. The language does not support structs or objects
yet, and is limited in the types of parallelism that can be expressed.

2.4 Program Analysis

One of the issues associated with shared-nothing semantics in the actor-model is the cost in
terms of runtime resources, as described in Section 3.2. This manifests itself as the need to
duplicate data when it is communicated between actors. The use of language types and com-
piletime analysis can be used to mitigate these costs; this work describes these as movable

types. To place this work in context, the following is a summary of related efforts.

2.4.1 Movable Types

The ideas expressed in this work are similar to other concepts within the literature. If data
transmission between actors is considered as an operation on the type of memory being
transmitted, then modifications can be made to this type to dictate the number of times that
data can be sent; if the data can only be sent a single time, then there is no need to duplicate
the data.

The Islands approach [95] describes the use of bridges to encapsulate islands of state within
object-based languages in the presence of aliasing. Conceptually, an actor is a stricter form
of a bridge, since the state inside an actor will never escape its scope. Destructive reads
are similar to the movability property. The approach in this work differs in syntactic cost;
the compiler tracks movable types throughout the program from a single annotation at the
memory allocation point (new), whereas (in addition to object allocation points) the “access
mode” of parameters and function results must be specified in [95].

Rust [96] has a similar memory and concurrency model to this work. A task in Rust is similar
to an actor with defined communication channels, although Rust uses static channels defined
at compiletime. In Rust, communication is performed using pipes; a channel is a sending
endpoint of a pipe, a port is a receiving endpoint for a pipe. The notion of channels and
pipes are equivalent to in and out channels in Ensemble, respectively. Tasks cannot share
data with each other and must transfer ownership using a global exchange heap. The Send

trait acts to communicate data between tasks, ensuring that the data is no longer used by the
sender after being sent. The Send trait allows only owned boxes to be sent between tasks,
where an owned box is an object that has a single pointer (owning pointer) to it. A managed

2.4. Program Analysis 30

box is an object that can have any number of pointers (managed pointers) to it. The heap can
be viewed as split into regions for owned and managed boxes, respectively.

The notion of borrowing is provided in Rust by borrowed pointers, to which managed or
owning pointers can be assigned using an automatic pointer conversion operation provided
by the language. For example, an owning pointer can be borrowed by passing it as an ar-
gument to a function accepting a borrowed pointer. During the execution of the function
(known as the lifetime of the borrowed pointer), the owning pointer cannot be used since the
object is on loan to the function; the function is known as the borrower. When the borrower
returns, the owning pointer may be used again. Further, a borrower cannot send the object
over a communication channel to another task; the object may only be sent from an owning
pointer. These rules for move semantics in Rust require the programmer to know about life-
times and pointer conversion operations. While Rust provides a rich set of semantics for data
movement, a non-specialist programmer will find it difficult to grasp such concepts easily.

This work has been strongly influenced by Rust, and the movement property is an amalgama-
tion of the managed and owned pointers in Rust, allowing multiple references to the object
within an actor (analogous to multiple references within a task), yet still maintains the task-
level ownership analogous to an owned pointer in Rust. Additionally, there is no need for the
programmer to understand lifetimes or pointers since these concepts are not made explicit
in the move semantics defined in Ensemble (see Section 3.2.2). Instead, the programmer
simply annotates heap allocation points with mov and the compiler tracks references to all
such objects. No other annotations are required at any point as this is tracked entirely by the
compiler analysis (see Section 3.2.4).

Ownership types [97] were developed for providing strict, static object encapsulation for
object-based languages. Clarke et al. [97] describe two type annotations to define variables
which are accessible globally (norep), and those which are only accessible by the object
which created it (rep). The work described in this dissertation provides the rep semantics
for all actors by definition, as an actor is the owner of its entire state. “Ownership transfer”
is conceptually the same as the movability property, allowing objects to “jump” across the
articulation point represented by the actor. In the object graph described by Clarke et al.
there is no dual of the channel mechanism, however, this can be considered as gateways or
bridges (as in [95]) to allow an object to move across the boundary. It should also be noted
that alias protection is reserved with movability since only one actor will have any aliases to
an object at one time, though that actor can have any number of aliases of its own.

Uniqueness types [98] are similar to ownership types, but apply at the variable level, ensur-
ing that a variable is used in a single threaded way. This approach requires that there only
be a single reference to a variable which has been declared unique. Once a variable of this
type has been used, in a function call for example, the type system ensures that it cannot be

2.5. Summary 31

used again after the function returns. However, a new distinct variable of type unique can be
created which points at this data and is returned to the function caller, thus preserving refer-
ential transparency. The state encapsulation presented by actors ensures that messages sent
between actors are unique, while not being the case within actors internally. Alternatively,
movability enforces uniqueness on movable types which are sent to different actors.

A type system that allows transference of object ownership by using a “permission” based
mechanism is presented by Naden et al. [99]. The system provides a simple mechanism for
procedures to borrow, or even consume, an object through changing the permission attribute.
The system could easily provide higher-level abstractions on top of the defined permission
semantics to provide a form of the movability property. Indeed, a movable type acts in
much the same way as an object initially set with a “shared” permission. Send and receive
primitives could be defined as functions which change the permission of the provided ob-
ject to “none”. The system also gives the programmer tight control of aliasing through the
permission system. The programmer has to explicitly manage the permissions, and have
detailed knowledge of language theory to understand the effect of permissions on aliasing,
which could detract from the task of developing the application. The approach in this work
minimises the burden placed on the programmer, requiring very few changes to an applica-
tion to enable the extension, using compiletime analysis to perform the movability tracking
throughout the program and the management of aliases.

2.5 Summary

In order to program recent generations of hardware devices, a developer must be familiar
with thread-based, accelerator-based, embedded, and distributed programming. Addition-
ally, they must also be aware of the different hardware constraints of the potential hardware
platforms that they may use. Given these hardware platforms and the different operating con-
ditions that they present, there is a growing need to modify an application or its execution
environment at runtime. This places an additional or unrealistic burden on the developer,
who is often a non-expert, and increasingly a non-computer scientist.

The previous discussion in this chapter has given an overview of the state of the art in this area
of programming. These approaches are highly tuned to their specific problem areas. A num-
ber of different actor languages have been surveyed in Section 2.1. The languages discussed
either focus on a single problem area, or are in some way disadvantaged, either because of
the necessity to implement system functionality at the language level, constraints imposed
by the language itself, or a non-strict compiler which enables inappropriate interaction with
the underlying language. Section 2.2 surveys a number of different techniques required to
perform program adaptation, including discovery and reconfiguration, at different levels of

2.5. Summary 32

computing scale. While they exist, they are not integrated with programming models, do
not support strong migration, and are not supported across multiple scales of heterogeneous
hardware platforms. Section 2.3 describes three approaches to programming parallel hard-
ware devices. These integrate easily with existing programming styles at the cost of brevity,
require new programming styles and increased performance costs, or increase existing pro-
gram complexity and obfuscate the flow of logic. Finally, Section 2.4 provides an overview
of program analysis.

So far, there has been little work towards providing a single programming abstraction for
all of these challenges or supporting this across a wide range of heterogeneous platforms,
such that non-specialist programmers can easily exploit parallel or distributed heterogeneous
systems.

33

Chapter 3

The Ensemble Programming
Language

The two prevailing trends of modern computing hardware are increasing interaction between
heterogeneous platforms, and that these platforms are becoming increasingly concurrent.
This new execution environment is challenging for the shared memory, sequential program-
ming models which are currently used. Also, given the number and range of hardware de-
vices, there are many different programming models and styles. As computing hardware is
increasingly used by non-computing scientists who want to apply this new hardware tech-
nology to their own problem domains, existing programming approaches can be a limiting
factor.

The goal of this dissertation is to show that an actor-based approach enables the creation of
applications which take advantage of concurrent hardware and interconnected heterogeneous
platforms. Additionally, this approach provides not only a functionally equivalent, more
flexible and straight forward programming model than current models, but one that does not
sacrifice performance.

This chapter discusses the linguistic approach to this goal, specifically the creation of a
new programming language: Ensemble. The new language is based on the actor model
of computation which consists of isolated loci of computation which interact by message
passing. The point of this chapter it is not to show that the Ensemble programming language
is the most appropriate actor-based language, but rather that it is a conduit through which to
explore the concepts of actor programming.

The basic language constructs are described in the next Section, including a discussion of the
communication semantics for actors, and abstraction of physical locations. A discussion of
a moveable memory space which overcomes the limitation of the shared-nothing semantics
actors and automated memory management is found in Section 3.2. Section 3.3 describes the
integration of the OpenCL programming framework within the language which is the first

3.1. Basic Language Structure 34

use of actor as the abstraction of accelerator-based concurrency. The process of discovering
and reconfiguring actors and stages at runtime from within the language is discussed in
Section 3.4. The chapter then concludes with a summary of the points made.

3.1 Basic Language Structure

Figure 3.1: Ensemble Overall Architecture

Ensemble is a programming language based on the actor model of computation and the
principles of the π-calculus [21]. It has been designed to simplify the expression of ap-
plications which are concurrent or distributed across multiple heterogeneous devices. The
two core concepts of the actor programming model are message-passing communication and
shared-nothing loci of computation. By imposing this structure on the design of applications,
actor-based programming is implicitly suited to concurrent and distributed applications in a
location transparent way. As there are a number of actor-based languages (Section 2.1), this
section will only describe the salient aspects of Ensemble.

Figure 3.1 shows the hierarchical composition of the language. Applications expressed in
Ensemble are collections of actors which interact via message passing along channels. Ac-

3.1. Basic Language Structure 35

1 type Isender is interface(out integer output)
2 type Ireceiver is interface(in integer input)
3
4 stage home{
5 actor sender presents Isender {
6 value = 1;
7 constructor() {}
8 behaviour {
9 send value on output;

10 value := value + 1;
11 }
12 }
13
14 actor receiver presents Ireceiver {
15 constructor() {}
16 behaviour {
17 receive data from input;
18 printString("\n received : ");
19 printInt(data);
20 }
21 }
22 boot{
23 s = new sender();
24 r = new receiver();
25 connect s.output to r.input;
26 }
27 }

Listing 3.1: Simple Ensemble Send and Receive Example

tors are located within stages, which represent memory spaces; there may be one or more
stages per physical device. Consequently, the main entities of Ensemble are: stages, actors
and channels. Listing 3.1 shows a simple Ensemble application in which one actor sends a
linearly increasing value to another across a connected channel within a single stage.

3.1.1 Actors

In Ensemble, an actor is a first class entity which represents a single locus of control with
encapsulated state. An actor is defined with a name and one or more user defined interfaces
(Section 3.1.3), as seen in Listing 3.1, lines 5 and 14. The interface is used to define the
channels which may be used in the body of the actor. The following line references refer to
Listing 3.1.

The body of an actor consists of three distinct sections. The first section is used to optionally

3.1. Basic Language Structure 36

Figure 3.2: Ensemble Channel Configurations

define any actor specific state constructs (line 6). The entities defined in this section are
only available within the enclosing actor. The second section is used to define one or more
constructors for the given actor (lines 7 & 15). Any actor-defined state may be referenced
from a constructor. The third section is used to define the actor’s behaviour clause (lines 8-
11 & 16-20). The behaviour clause contains the logic of the actor, and is repeated infinitely,
until explicitly told to stop. Telling an actor to stopwill not kill it immediately, instead the
actor will complete the current path through the behaviour clause before stopping. Killing
an actor immediately would likely interfere with the overall application logic because of the
channel connections, and the expected interactions via such channels, between actors. This
choice simplifies the reasoning of stopping an actor.

Actors may create other actors, however actors may not stop other actors. To do so would
violate the encapsulation of actors, and mitigate the simple flow of logic offered by per actor
behaviour clauses. An actor must stop itself. However, one actor may send a message to
another actor via the channel mechanism, requesting that the receiving actor commit suicide.

3.1.2 Channels

In Ensemble, communication between actors is achieved by passing messages along typed,
unidirectional channels. Channels are first class entities in the language and are arranged
into two sets: in channels which consume data, and out channels which produce data.
This distinction is necessary as a channel represents one half of a connection; two channels
must be connected together before data may be sent between actors. The two channels being
connected must be of opposite direction (in + out), and convey the same data type. It is
a compiletime error (and logically wrong) to connect two channels of the same direction or
different types together. Channels convey data of any language type or user defined type,
including channels. The ability to send channels between actors enables dynamic runtime

3.1. Basic Language Structure 37

topologies of actors. Figure 3.2 shows the possible configurations of channel connections at
runtime.

Many actor languages choose to use implicit actor mailboxes to facilitate communication,
hence messages are sent directly to actors. Ensemble uses multiple channels as it decouples
actors from each other and enables the reconfiguration of channel connection topologies at
runtime. Also, this enables channels to be used without concern for whether or not they are
connected, as explained below.

Blocking-Rendezvous Channel Communication

By default, communication between actors in Ensemble follows the blocking-rendezvous

model. This means that data is only passed between actors when both the sender and the
receiver are explicitly trying to communicate.

For example, consider actor A trying to send a message on channel output which is con-
nected to channel input in actor B. If actor A executes a send on output, the execution
of the actor A will block until actor B executes a receive on channel input. Equally, if
actor B executes a receive on channel input it will block until actor A executes a send
on channel output. In this way, both actors must rendezvous before messages are sent.

By default, a deep-copy is made when sending data from one actor to another. This is done
to enforce the shared-nothing semantics of the actor model, and ensures that each actor has
a distinct copy of the data without requiring immutable state, hence, race conditions are not
possible. When the data conveyed by a channel is another channel a duplicate of the channel,
including any existing connections, is created and sent to the receiving actor. Once received,
the channel is adopted by the receiving actor. This ensures that both sending and receiving
actors have distinct channels, which have identical connections; hence this guarantees that
one actor can not use a channel which is owned by another actor. Deep-copying in this
manner is not always efficient, and is discussed further in Section 3.2.

There is no requirement in the language for a channel to be connected before a communica-
tion action is performed on it. In the previous example, should actor A attempt to send and
actor B attempt to receive when their channels are not connected, they will both block
indefinitely. Any subsequent connect operation on these channels will bind them together,
facilitate the message being sent from A to B, and unblock A and B. This feature is useful
in decoupling the overall application design and individual actor logic. Here the actor sim-
ply waits for input, without having to worry about the overall topology. This is common in
distributed and event-driven applications, where logic will wait for input.

As well as single channel operations, it is also possible for an actor to receive data from mul-
tiple channels in a single action via the select statement, see lines 30-40 in Listing 3.2.

3.1. Basic Language Structure 38

1 type Isender is interface(out integer output)
2 type Ireceiver is interface(in integer input)
3 type Iselector is interface(in integer input1;
4 in integer input2)
5 stage home{
6 actor sender presents Isender{
7 val = 0;
8 constructor(integer init){
9 val := init;

10 }
11 behaviour{
12 send val on output;
13 val := val + 1;
14 }
15 }
16
17 actor receiver presents Ireceiver{
18 constructor(){}
19 behaviour{
20 receive val from input;
21 printInt(val);
22 printString("\n was received");
23 }
24 }
25
26 actor selector presents Iselector{
27 example = 42;
28 constructor(){}
29 behaviour{
30 select{
31 receive val from input1 where example > 39: {
32 // do stuff
33 }
34 receive val from input2 : {
35 // do stuff
36 }
37 default : {
38 // do other stuff
39 }
40 }
41 }
42 }
43 boot{
44 send1 = new sender(-100);
45 send2 = new sender(0);
46 send3 = new sender(100);
47
48 recv = new receiver();
49 connect send1.output to recv.input;
50
51 sel = new selector();
52 connect send2.output to sel.input1;
53 connect send3.output to sel.input2;
54 }
55 }

Listing 3.2: Ensemble Channel Interactions

3.1. Basic Language Structure 39

A select statement is used to non-deterministically choose between one or more in chan-
nels based on the state of the channels and an optional boolean guard (where clause). The
boolean guard values are used to decide which channels of the select statement may be cho-
sen from, and forms a set of eligible channels. These expressions are evaluated at runtime,
and may contain any literal, expression, variable or procedure which is in scope. Once a set
of eligible channels have been determined, they are examined to determine if any are ready
to provide data immediately. If there is more than one such channel, a non-deterministic
choice is made and the data is retrieved from that channel with the same logic as receive.
If there were one or more eligible channels, but none of which are ready to provide data, the
actor will block on all eligible channels unless a default clause is provided, in which case
the default clause will fire. A blocked actor will awaken when data is pushed to one of
the channels upon which it has blocked.

The select statement is one way in which user level timeouts can be implemented. By
selecting between a set of channels conveying useful data, as well as one registered with
the timer actor (Section 3.1.8) to deliver data after a set time, the actor will only block as
long as the timeout. Conceptually, select is similar to the select function in the sockets
networking API [100].

Buffering

In practice, always blocking on single channels can lead to channel deadlock, where a num-
ber of actors are blocked awaiting messages from each other. This can be particularly prob-
lematic where messages are sent in non-deterministic order from actors which interact with
the outside world; consider an actor waiting for a timeout. This is particularly true for actors
which consume and produce data across channels at different rates.

For this reason, in channels may optionally be defined with buffers. Here, the communica-
tion semantics are modified as follows. An actor always sends on an out channel; a message
will be buffered if the in channel to which it is bound has buffer space available. If there
is no space in the buffer, the sending actor will block as before. When the receiving actor
invokes a receive on the in channel, it will either retrieve any data in the buffer, or default
to the blocking-rendezvous semantics. For the purpose of simplicity, only in channels may
have buffers. The use of buffering enables asynchronous communication and hence provides
a way to avoid deadlock. The correct provision of buffer sizes is an application specific
detail.

It is important to note that the completion of a send operation guarantees that the message
has been conveyed to an actor, but it does not guarantee that the actor has processed the
message. If required, such guarantees should be implemented within the application. Also,
communication guarantees ordering per connection, but not between actors. Consider the

3.1. Basic Language Structure 40

actors connected as shown in c) of Figure 3.2. In this case, all data sent from S1 will arrive
in order relative to S1, and equally for S2. However, there is no causal ordering of data
delivery between S1 and S2. Section 4.4.2 provides a discussion of how this guarantee is
provided at runtime.

Another option to relieve channel deadlock would have been to perform analysis to determine
if the current configuration of channel connections would result in deadlock, as is done in
the GO language [101], however this was not feasible for a number of reasons. Firstly,
in Ensemble, all channel connections are dynamic and occur at runtime. This precludes
the use of static analysis at compiletime, as the topology is not static. Secondly, unlike
GO, Ensemble’s channels facilitate location transparency (Section 3.4), which would require
distributed analysis of the connection graph. While this is possible, it is beyond the scope of
this dissertation.

3.1.3 Interfaces

An interface is a language construct which is used to define one or more channels, Listing
3.2 lines 1 - 4. An interface is a static entity, consisting of only the channels expressed in its
definition. Any channel defined in an interface is available within an actor which presents
that interface.

In order to preserve the encapsulation semantics of the language, there are limitations on the
actions possible on channels which are dereferenced from an interface. This is because such
channels represent the actual channels of the actor referenced by the interface, rather than the
channels of an actor which are connected to such channels. Consequently, channels deref-
erenced from interfaces may only be bound to, or sent along a channel. It is not possible to
disconnect, send along, receive from, or select across such a channel. To do so
would violate the isolation of the referenced actor, as one actor would be able to manipulate
another actor’s state directly. The connect operation is such a violation, however it is nec-
essary to enable useful work between this actor’s channels and the remote actor’s channels.
It is allowed as it does not modify any existing connections in the channel. In contrast, to
perform a disconnect would potentially remove connections between the remote actor
and third party actors, and is a clear violation of the semantics of the language. This does
not prevent the local actor from performing a disconnect on the local channel which was
bound to the interface channel, or having the actor referenced by the interface performing a
disconnect on its local channels.

This discussion is mainly relevant to the use of adaptation, discussed in Section 3.4.3.

3.1. Basic Language Structure 41

3.1.4 Stages

A stage represents a memory space within which actors operate. Conceptually, there may
be many stages per physical computer, although currently there is only one per physical lo-
cation; this is a limitation of the runtime, rather than the language or model, Section 4.4.2.
A stage is defined with a name, which is used as an identifier at runtime, Listing 3.2 line 5.
Note that this name is not necessarily universally unique, however there are other mecha-
nisms which can be used to determine uniqueness, see Section 3.4. An actor may reference
the current stage it occupies with the here keyword.

Within a stage there are two main sections. The first section is used to define language con-
structs to be used within this stage. This section usually contains actor definitions, but may
also include query and procedure definitions, Listing 3.2 lines 6-42. Equally, this section
may be left empty. Defining an empty stage is useful when creating an Ensemble environ-
ment across multiple physical locations for use with adaptation, Section 3.4.

The second section is the boot clause, Listing 3.2 lines 43-54. The boot clause acts
as the main for this stage and will be invoked upon its creation. Any statement may be
invoked within the boot clause, except actor specific actions, such as publishing properties
(Section 3.4.1). Again, this clause may be left empty. The boot clause is primarily used to
instantiate actors, and connect channels. Any actors instantiated within this boot clause will
be created and execute within the context of this stage.

Whereas actors are entirely controlled from within the language, stages are controlled from
the command line, outwith the language. This is discussed further in Section 3.4.6.

3.1.5 Types

Listing 3.3 shows the default types available in the language, as well as how to define new
types. All types in Ensemble must be initialised with legal values when declared; there is
no NULL type in the language. This is done to make the language safer and remove the
possibility of invalid values. Although it is still possible to create incorrect code from a
logical perspective, there will be no runtime type errors or illegal references.

Memory is allocated from the heap using the new keyword. As Ensemble uses automatic
garbage collection to simplify memory management, there is no explicit action to return
memory to the heap.

The Any Type

The any type is an infinite union type, which may be used to abstract any other type. Al-
though a particular type may be cast to an any type, the original type can only be recovered

3.1. Basic Language Structure 42

1 type Itype_examples is interface(out integer output)
2 type my_struct is struct(integer a)
3 type my_enum is enum(alpha, beta, gamma, delta)
4
5 stage home{
6 actor type_examples presents Itype_examples {
7 int_val = 1;
8 uint_val = 1u;
9 long_val = 1L;

10 double_val = 0.0;
11 str_val = "hello";
12 bool_val = true;
13 struct_val = new my_struct(int_val);
14 array_val = new my_struct[100] of struct_val;
15 constructor() {}
16 behaviour {
17 ...
18 }
19 }
20 boot{
21 s = new sender();
22 }
23 }

Listing 3.3: Declaration of Ensemble Types

via the use of the project statement, as shown in Listing 3.4.

The project statement ensures that the any type can only be decoded to types which are
defined within the current scope. This provides safety in the language as an any type cannot
be arbitrarily cast to any other type. Should the underlying type of the any not be one of
the types specified in the project clause, the mandatory default clause will be selected. In
this case, the any type can still be used; for example, the value can be sent along a channel
or used with another project statement.

One advantage of the any type is in combination with channels. By only receiving messages
of the any type over a single channel, the receiving actor can either successfully decode the
type and process the data, or discard the data. This enables logic more similar to traditional
actor-based approaches which do not use explicit channels, but rather send messages to actors
directly as proposed by Hewitt [4].

Collections

Currently, the only language-specified collection type is an array. Ensemble arrays are fixed
length, although this size can be specified as either a literal value, or expression. Arrays
may contain references but all elements must be of the same type. However, an array with
elements of the any type is allowed.

3.1. Basic Language Structure 43

1 type Iexample is interface(in any input)
2 type complicated_struct_type is struct(integer alpha;
3 string beta)
4 ...
5 behaviour{
6 receive any_val from input;
7
8 project any_val as mesg{
9 integer : {

10 printString("Got an Integer!\n");
11 printInt(mesg);
12 }
13 complicated_struct_type : {
14 printString("Got a complicated_struct_type!\n");
15 printInt(mesg.alpha);
16 printString(mesg.beta);
17 }
18 default : {
19 printString("Don’t recognise the type\n");
20 }
21 }
22 }

Listing 3.4: The Any Type and Project Statement

Given the types available in the language, higher level collections can be created. For ex-
ample, it is possible to create user-defined linked lists using the struct and any types;
linked lists are used within the draughts example, discussed in Section 5.3.1. Although it
would have been useful to have a more complete set of collections, it was not the focus of
this work.

3.1.6 Security

Security is not represented within the language as it was beyond the scope of the work. This
said, Section 4.7 discusses security within the runtime.

3.1.7 Failure Model

The failure model in Ensemble uses a combination of explicit and implicit error handling.
This is done to simplify the programming model, while enabling the option of fine grained
control.

Explicit Error Handling

Explicit error handling is enabled via exceptions, which are defined by the language; it is not
possible to create a user-defined exception. This choice was made to ensure that exceptions

3.1. Basic Language Structure 44

Exception Description
OutOfMemoryException All heap memory allocated

NullPointerException There was a NULL pointer found in the runtime
IndexOutOfBoundsException Trying to access out with the bounds of an array

DivisionByZeroException Trying to divide by zero
DuplicatePropertyException Trying to publish an array of properties where there

are two properties with the same key
StageNotFoundException The supplied stage was not accessible

ChannelNotFoundException The supplied channel was not accessible
ConnectionFailureException A network error occurred

SpawnException An error occurred with the spawn process
MigrationException An error occurred with the migration process

ActorNotCompatibleException The targeted actor may not be replaced by the one
provided

Table 3.1: Description of Ensemble Exceptions

are used for truly exceptional events, as opposed to being used as flags. Using exceptions
in this way minimises the complexity of code. The primary purpose of exceptions are to
report on failures in the distributed features of Ensemble. Table 3.1 describes the possible
exceptions in the language, and Listing 3.5 shows an example of explicit exception handling.

Implicit Error Handling

Implicit error handling is influenced by the let it fail model, as first introduced with Er-
lang [102]. In this model, programmers are advised to let their applications crash, rather
than use large amounts of defensive code to protect against exceptional situations; in this
model, it is better to let the application fail and propagate a failure message to all connected
actors until one can deal with the failure message, or the entire system has died. At this point
the system should restart.

The key advantage of this approach is that a crashed system will always restart in a defined
state, as opposed to explicit exception handling which can lead to obfuscated logic flows; it
should be noted that Erlang supports both approaches. This mindset is particularly relevant
when applied to distributed systems, which are inherently unreliable. There is always a
non-zero chance that unpredictable events will cause network failure1.

Uncaught exceptions in Ensemble will always be implicitly caught and handled by the en-
compassing stage, at which point the stage will restart the actor. In this way, all actors are
supervised by the stage on which they are performing.

A key difference between Ensemble and Erlang is that Erlang will propagate failure messages

1http://gizmodo.com/5644050/bored-hunters-in-oregon-are-regularly-shooting-down-googles-fibers - Ac-
cessed January 2015

3.1. Basic Language Structure 45

1 actor calculate presents Iexample{
2 // Some Initialisation
3
4 behaviour{
5 for i = 0 .. white1.length - 1 do {
6 try{
7 if(b.b[white1[i]] == 0 and ...) then {
8 score := score + mob;
9 }

10 }
11 except IndexOutOfBoundsException {
12 printString("check your bounds!\n");
13 }
14 }
15 // Other work
16 }
17 }

Listing 3.5: Exceptions in Ensemble

to all connected actors, whereas Ensemble will not. While this enables the failing actor and
its connections to restart in a defined state, it limits the ability of Erlang applications to
scale as a mesh connection must exist between all actors at runtime. This level of connection
simply does not scale, and would be particularly difficult to support on the non-homogeneous
networks types to which Ensemble is targeted. Consequently, Ensemble actors which fail do
not propagate a failure message to connected actors. Section 3.4.5 discusses how failure is
handeled with channels.

3.1.8 System Actors

There are a number of actors which are implicitly defined by the language. These actors
exists to abstract direct interaction with hardware, and represent a way to avoid an application
being tied to a specific physical location, also known as environmental entanglement. By
using channels to interact with other actors, there is no difference in communication between
application actors or system actors.

The use of system actors also provides a way to ignore the location transparency which
channels normally provide, Section 3.4.5. For example, by having an actor which represents
the sockets API, low level network programming can still be made available.

3.2. The Movable Memory Space 46

Figure 3.3: Duplication of Data for Pipelined Actors

3.2 The Movable Memory Space

The lack of shared state in the actor programming model makes it naturally suited to parallel
and distributed applications. As there is no need for programmer-defined serialised sections
of code, actors are inherently concurrent, without the concern of data race conditions. Mes-
sage passing facilitates actor interaction, without sacrificing these advantages.

As described in Section 3.1.2, data is duplicated before being sent from one actor to an-
other via a channel to preserve the shared-nothing semantics. While this does ensure correct
semantic operation, it leads to increased heap usage and fragmentation. Furthermore, as
Ensemble uses automated memory management it is not possible for the user to manually
address this issue. This automation has the advantage that low level memory management
is abstracted from the programmer, making the language safer and simpler, however, it also
means that the user has no way to explicitly return a piece of memory to the heap when no
longer required. Also, all data types in Ensemble must be initialised at creation to prevent
variables being in an undefined state. While making the language safer, this means that there
will always be data to deep-copy. This increased heap usage and fragmentation is particu-
larly problematic in small, resource-constrained devices such as WSN motes where there is
little RAM.

To highlight the problem, consider a situation where data is being operated on by a pipeline of
actors where each actor accepts data, does some processing, and forwards the data onwards,
Figure 3.3. As the data is sent from one actor to another it will be copied, even though each
actor will simply wait for the next piece of data and has no need to keep a reference to the
processed data. A better situation would be where the sending actor would simply hand-

over the data. Here no duplicate would be made, removing the increased heap usage and
fragmentation. This is the purpose of movability.

This section describes the semantic model behind the movable memory space, its inclusion
within Ensemble, and the compiletime analysis required to enforce the rules of movability.

3.2. The Movable Memory Space 47

Figure 3.4: Actor Local and Movable Heaps

1 // data allocation from actor heap
2 alpha = new [1024]integer of 0;
3
4 // data allocation from movable heap
5 beta = mov new [1024]integer of 0;

Listing 3.6: Allocating Memory From Local and Movable Heap

3.2.1 Movability

To address increased heap usage and fragmentation, an additional memory space is proposed:
the movable heap. In addition to the local heap associated with each actor, the purpose of the
movable heap is that any memory allocated from it will be unique amongst all actors, such
that data allocated from this heap which is sent along channels will not need to be duplicated.
Figure 3.4 shows the conceptual model of the heaps in Ensemble.

Movability in Ensemble is an optional feature of the type system. It is not an annotation. It
enables data to be allocated from the movable data heap, by adding the mov keyword in front
of the new keyword during allocation, as shown in Listing 3.6. If used inappropriately, com-
piletime errors are provided to indicate where and why an error has occurred. The primary
purpose is to reduce memory consumption and fragmentation.

The concept of unique data is a simplification of the memory spaces which are seen in the
Rust programming language2, which has a similar memory and concurrency model. Unlike
Rust, Ensemble has a much less static programming model; Rust channel topologies may
not be reconfigured at runtime. Also, Ensemble requires much less intervention from the
programmer to indicate what is movable; Ensemble requires a single keyword, whereas Rust
requires multiple keywords for the different memory spaces. As Ensemble actors are not

2rust-lang.org - Accessed Feburary 2015

3.2. The Movable Memory Space 48

only encapsulated, but also the core unit of abstraction in the language, there is truly no
shared state at any point within an Ensemble application.

3.2.2 Ensemble Move Semantics

As well as defining the semantics of movable memory, it is important to describe the in-
teraction of movable and non-movable memory. To preserve the movable semantics, some
limitations must be placed on what is possible. In the following, “moved” refers to a piece
of data which can be sent across a channel without being duplicated. Also, the following
discussion describes in great detail the assumptions and use cases of movability. During ac-
tual development of an application, much of the burden of understanding any error cases is
alleviated by the compiler, which describes how and where an error has been detected.

By using a single addition to the type systems, as well as describing at compiletime via errors
which explain where and how an alias has been violated, control over moveability is offered
to the user in a straight forward and tractable way. Ultimately, movability is an optimisation
and is not required for the correct operation of an application, and can be removed without
effecting the logic of an application.

Structures

The semantics for struct data types in Ensemble is to recursively apply the move semantics
for references to heap memory. For example, a struct which has been marked as movable will
have all primitive fields moved, and the references within the struct will have their movability
checked to determine whether to deep-copy or move the reference. The following describes
this process for the cases in Listing 3.7.

Case 1 - Allocation from Local Heap A duplicate is made of simpleA, and is sent on the
channel. The sending and receiving actor will have a unique version of the data.

Case 2 - Allocation from Movable Heap The reference to simpleB is sent. The sender
must reassign a value to simpleB before access, otherwise a compiler error is generated.
The receiver has a unique copy of simpleB.

Case 3 - Allocation from Local Heap A duplicate is made of complexA, including the data
pointed to by simpleA, and is sent on the channel. The sending and receiving actor will have
a unique version of the data.

Case 4 - Allocation from Local and Movable Heap A duplicate is made of complexB but
not simpleB, as it is allocated from the movable heap. The duplicated complexB with a
reference to simpleB is sent on the channel. complexB may be accessed by the sender, but

3.2. The Movable Memory Space 49

1 type simpleStruct is struct(integer i);
2 type complexStruct is struct(integer i ; simpleStruct s);
3 ...
4 actor Sensor presents ISensor {
5 simpleA = new simpleStruct(1);
6 simpleB = mov new simpleStruct(10);
7
8 complexA = new complexStruct(1, simpleA);
9 complexB = new complexStruct(10, simpleB);

10 complexC = mov new complexStruct(10, simpleA);
11 complexD = mov new complexStruct(10, simpleB);
12
13 behaviour {
14 // Case 1
15 send simpleA on chan;
16
17 // Case 2
18 send simpleB on chan;
19
20 // Case 3
21 send complexA on chan;
22
23 // Case 4
24 send complexB on chan;
25
26 //Case 5
27 send complexC on chan;
28
29 // Case 6
30 send complexD on chan;
31 }
32 }

Listing 3.7: Struct Movability Example

simpleB must first be assigned to, otherwise a compiletime error is generated. The receiver
has a unique copy of the complexB and any internal references.

Case 5 - Allocation from Local and Movable Heap The reference to complexC is sent,
with a deep-copy of simpleA as it was not allocated from the movable heap. The sender
must assign a value to complexC before access otherwise a compiletime error is generated.
Not that simpleA may have been aliased before being sent. Even though complexC must
be assigned to before being accessed in the sender, a duplicate must be made of simpleA as
there may be other references to it. Figure 3.5 illustrates the state of references to the local
and movable heaps for this example.

Case 6 - Allocation from Movable Heap A reference to complexD is sent. The sender must
reassign a value to complexD before access, otherwise a compiler error is generated. This
reassignment will also remove the reference to the internal simpleB in the sender. If there
were other references to simpleB in the sender which were accessed after transmission,

3.2. The Movable Memory Space 50

Figure 3.5: Actor and Movable Heaps Before and After complexC is Sent Across a Channel

without being reassigned to, the compiler would generate an error. The receiver has a unique
copy of complexD and simpleB.

Arrays

A flexible array is one in which the size is unknown at compiletime - i.e. the array size
can be initialised by an expression whose value isn’t known until runtime. The presence
of flexible arrays in Ensemble creates a problem for the movability analysis in determining
how many references exist to an array element. Furthermore, array indices may be arbitrary
expressions, making it infeasible to determine at compiletime which array element is being
accessed; this is an issue when determining whether movable memory is being accessed after
having been moved.

To handle the complexity, restrictions are placed on arrays, and extensions to the existing
array creation mechanisms are provided. In the following discussion we assume an array
element is a reference to a heap-allocated object. When declaring an array, a value or instance
is normally passed, with each element being initialised to reference this value. In order to
support movability, a template object may be provided to the new operator when declaring an
array (lines 3 & 6, Listing 3.8). This creates a distinct object for each array element, rather
than all elements referencing the same object.

For non-movable arrays, reference-counting of the array elements is performed, and the
array is deep-copied on send operations. For movable arrays, the array is reference-counted
and individual elements have the same count as the entire array. In other words, assigning
from a moveable array element will increment the count of the array, not the single element.
In this way, alisases between a variable and an array element are equivalent to the variable
aliasing the entire array, for the purpose of ensuring the correct operation of movability
at compiletime. Hence, sending a variable which aliases a movable array’s element will
invalidate the entire array. Equally, sending a dereferenced element of a movable array

3.2. The Movable Memory Space 51

1 type simpleStruct is struct(integer i);
2 ...
3 a = new simpleStruct[n] of simpleStruct(0);
4 c = mov new simpleStruct(2);
5
6 b = mov new simpleStruct[n] of simpleStruct(0);
7 d = new simpleStruct(2);
8
9 // error, a is array of references to non-movable memory

10 a[n] := c;
11
12 // error, b is array of references to movable memory
13 b[n] := d;

Listing 3.8: Cannot assign movable memory to non-movable array or vice versa

(send x[i] on output;) will invalidate the entire array (x). When a movable array is
sent, only the reference is passed and no deep copy is made.

By default, it is illegal to make reference assignments to references in movable arrays from
non-movable references, and vice versa. This is necessary as it would not be possible to de-
termine which are (non-)movable at compiletime. Hence, only arrays created in the movable
heap (using mov) are considered to contain references to movable memory. Consequently,
all elements of the array must be movable. Listing 3.8 shows that assignments to array el-
ements of objects in opposing memory spaces results in a compiletime error. Note that the
assignment, c := a[n], would be valid as this will decrement the reference count on the
movable object c referenced before the assignment, and increment the reference count on
the non-movable object a[n] references. This is also true for d := b[n].

It is possible to assign movable memory to non-movable memory or vice versa via the ex-
plicit use of the copy keyword. This keyword will safely convert movable data into non-
movable or vice versa. Previously, a[n] := c would generate a compiletime error, as
the two references point at different memory. Should it be appropriate, the developer may
instead write a[n] := copy c. This will duplicate the data pointed to by c, and concep-
tually convert it to be of the same type of a[n]. This is true regardless of which side is
movable or non-movable. This use of copy is a way to use duplication in a localised way.

Channels

In order to declare the memory of an object being received across a channel as movable, the
definition of the in channel should contain the mov keyword, Listing 3.9 line 2. An actor
who uses this interface will use the receive or select statements in the regular manner
with the mov input channel. The only difference is that the data received will be contained

3.2. The Movable Memory Space 52

1 type ImovableReceive is interface(
2 in mov simpleStruct mov_input; // <-- movable heap object
3 out simpleStruct output;
4 out integer int_output
5)

Listing 3.9: Declaration of an in channel with movable data

1 a = mov new Foo;
2 behaviour {
3 send a on chan;
4 stop;
5 }

Listing 3.10: Ill-formed Behaviour Clause

within the movable memory space, and the compiletime analysis will track the data to ensure
that the object is only ever moved once. It is important to note that it does not matter whether
the data from the sender was in the movable heap or not. The data was either in the local
heap and deep copied, or the data was in the movable heap and is unique. In either case, the
data is now entirely owned by the receiver, and state encapsulation is preserved.

It is also important to note that although the data which a channel conveys may be marked
as movable, the channel declared in the interface itself cannot be marked as movable. As the
channels of the interface are associated with an actor when it is defined, they are permanent
and cannot be removed. To do so would complicate the logic of discovering actors described
in Section 3.4.3 due to the changing type of the actor. This said, any channels declared at
runtime can be allocated from the movable heap, and be sent without deep-copy. This is an
optimisation applied to the accelerator-based applications discussed in Section 5.2.

Effect on Behaviour Clause

Movable memory references which are sent within the behaviour clause, either directly, or
indirectly via a procedure call, must be initialised or re-initialised at some point within the
behaviour clause without any enclosing control flow construct. The use of the stop state-
ment within the behaviour clause does not negate this requirement. For example, Listing 3.10
shows an ill-formed behaviour clause. Even though a will never be sent twice because of
the presence of the stop statement, the program is not valid since, in general, the pres-
ence of a stop statement does not guarantee behaviour termination after one iteration (see
Listing 3.11).

3.2. The Movable Memory Space 53

1 a = mov new Foo;
2 behaviour {
3 send a on chan;
4 receive v from intchan;
5 if v == 1 then {
6 stop;
7 }
8 }

Listing 3.11: Stop does not guarantee correct execution

3.2.3 Approach

In order to enforce the semantics of movability, an application is represented as a series of
Control Flow Graphs (CFG) [103]. This is done as it is a convenient representation upon
which to perform the analysis. A CFG represents a procedure as a directed graph, G =

(N,E), where the nodes,N , contain the procedure’s instructions, and the edges,E, represent
control flow through the application. Here, control flow refers to the constructs of the source
language that determine whether or not a section of code is executed. Traditional control
flow constructs are the if, while, and for statements. The CFG, by convention, has a
unique entry node, and a unique exit node.

The nodes in a CFG represent a basic block, which is a sequence of instructions where the
only branching code occurs at the end of the block. In other words, if a program enters a
block during execution, then all of the instructions inside the block are executed. Each block
has zero or more successor blocks, and zero or more predecessor blocks represented by the
directed edges of the CFG.

A Call Graph (CG) [104], or call multigraph [105], is a directed graph, G = (N,E), where
the nodes of the graph,N , represent procedures in the application, and the edges of the graph,
E, represent calls from the source node to the destination node. It is a useful representation
of the relationship between caller and callee, and serves as an information repository on
procedures during analyses.

The supergraph [106] representation of a program connects the CFGs of callers and callees,
using interprocedural edges.

The following section gives an overview of the steps required to ensure the correct and safe
usage of data allocated from the movable heap at compiletime. A formal description of the
movability analysis can be found in Appendix A.

3.2. The Movable Memory Space 54

3.2.4 Analysis

Abstractly, the core of the analysis is concerned with keeping track of which movable vari-
ables have been sent across channels. Should such a variable or one of its aliases be sent
across a channel and then subsequently accessed before it has been reassigned to, an error is
generated.

This is achieved by performing data flow analysis in the front end of the compiler, after the
type checking phase. The analysis is done in two passes. The first pass is the alias analysis
which computes for all application variables their set of potential but unknown aliases (may-
aliases) at each program point. This information is then used in the second pass which
performs movability tracking and error detection on the program to determine whether or
not any movable variables have been accessed inappropriately.

Before the analysis is performed, the Ensemble application is represented using the IR de-
scribed in Section 3.2.5. This was done to have a convenient representation of an application
for this analysis, rather than overloading the existing Abstract Syntax Tree (AST). Using this
representation, both analyses perform a reverse pre-order traversal of the graph representing
the Ensemble application. This is done as it is a simple way to remove back edges, and
represents a linearisation of control flows.

Alias Analysis

The alias analysis is used to track all aliases which could potentially refer to movable mem-
ory. During the analysis, each point in the application has an associated In and Out set
which is used to hold the variables which are present on input to and out from each pro-
gram point respectively. For the intraprocedural analysis, the In and Out sets are modified
by assignment to references and call sites. For the interprocedural analysis, the call and
return nodes generate and remove aliases between actual and formal reference parameters,
respectively.

The interprocedural analysis uses the call-string approach [107]. The key concept in the
call-strings approach is to maintain a token stack, where each token represents a procedure
call which has not yet returned. The tokens on the stack are known as the call string, or the
calling context.

If a call node is encountered during the analysis, it is appended to the context and the data
flow information is propagated along the call edge to the entry node of the CFG representing
the callee. When a return node is encountered, the corresponding call node is removed from
the context, and the data flow information is propagated along the return edge to return node
of the CFG representing the caller. For all other nodes in the supergraph the alias sets are
updated by the intraprocedural data, and the context (stack) is unchanged.

3.2. The Movable Memory Space 55

For programming languages without recursion the maximum length of the calling context
is bounded by the depth of the call graph. Therefore, if the original data flow problem
terminates, so too does the interprocedural extension of the problem. As Ensemble supports
a limited form of recursion, where a procedure may only recurse on itself, it is sufficient
to evaluate one level of recursion and return when the procedure attempts to recurse again.
This is because each subsequent level of recursion (and analysis) would duplicate any alias
modifications present in the first two levels. This would not be possible if one procedure
were able to call another recursively.

At the end of the first pass, a set of aliases for all application points has been built.

Move Analysis

The move analysis is concerned with keeping track of which variables have been sent across
channels. Should a variable or one of its aliases be sent across a channel and then subse-
quently accessed before it has been reassigned to, an error is generated. This access could
also include attempting to send the data across a channel.

The analysis itself consists of performing the reverse pre-order traversal of the graph and
applying these rules for each node.

The combination of these analyses enable the safe usage of movable types at runtime via
compiletime guarantees.

3.2.5 Intermediate Representation

In order to perform the analysis, the AST which is generated by the compiler frontend is
transformed into an IR which provides the necessary information for the analysis, without
complicating the implementation of the AST.

Programs, Actors, and Functions

The IR defines a representation for the entire application, enabling the analysis to obtain
information about a variety of application properties. The top level representation describes
an entire Ensemble application; it holds mappings for all actors, globally defined procedures,
and interfaces defined within the program. Additionally, it maintains the program CG and
the CFG for a stage’s boot clause (actor initialisation, connection statements, etc).

3.2. The Movable Memory Space 56

Kind Description Form Uses
assign Assignment a := b uses(a), b, uses(b)

call Procedure call f (a1, a2, . . .) a1, uses(a1), a2, uses(a2), . . .
cjump Conditional jump cjump cond,B1,B2 cond, uses(cond)

connect Connect statement connect a to b a, uses(a), b, uses(b)
decl Declaration statement a = b b, uses(b)

disconnect Disconnect statement disconnect a a, uses(a)
jump Unconditional jump jump B1 -
nop No operation nop -
recv Receive statement receive a from b b, uses(b)
ret Return statement return r r, uses(r)

send Send statement send a on b a, uses(a), b, uses(b)
stop Stop statement stop -

Table 3.2: List of available IR instructions and their internal uses.

Instructions

To simplify the representation for analysis, the IR was defined as closely modelling En-
semble constructs, but deconstructing control flow constructs into simple conditional and
unconditional jump instructions. Expressions are decomposed so that at most three operands
appear in one instruction along with a binary operator. Some expressions, such as array
and structure dereference expressions, are not deconstructed to simplify tracking compos-
ite movables. Having access to the left and right hand side of an expression simplifies the
comparison of movable status. This is necessary to restrict array assignments to comparable
memory types (see Section 3.2.2), and also because the type checker cannot determine this
for all application situations, such as the movable status of a value returned by a function
call.

The IR instructions are collected together into basic blocks. The exit point at the end of the
block is either a conditional or unconditional jump to at most two blocks. Each block may
have any number of predecessor blocks. Table 3.2 gives an overview of the instructions in
the intermediate representation. Figure 3.6a shows an Ensemble code snippet, Figure 3.6b
shows the corresponding Ensemble IR upon transformation (basic block labels have been
added for clarity), and Figure 3.6c displays the corresponding control flow graph segment.

Value Representation

The IR also represents application variables and values. As the data flow analyses require
a representation for application variables, it was convenient to use the same representation
within IR instructions as for the data flow values rather than the more commonly used bit-
vector representation. The additional space overhead within the data flow sets is not onerous,

3.2. The Movable Memory Space 57

if val == 0 then {
printString("Rec: got tic\n");

} else if val == 1 then {
printString("Rec: got toc\n");

} else if val == 2 then {
printString("Rec: got tac\n");

} else if val == 3 then {
printString("Rec: got def\n");

}
if val == 0 then {

printString("Rec: got tic\n");
} else {

printString("Rec: got toc\n");
}

(a) Ensemble Source

B40:
t20 := val == 0
if t20 then goto B41 else goto B42
B41:
printString("Rec: got tic\n")
goto B48
B42:
t21 := val == 1
if t21 then goto B43 else goto B44
B43:
printString("Rec: got toc\n")
goto B48
B44:
t22 := val == 2
if t22 then goto B45 else goto B46
B45:
printString("Rec: got tac\n")
goto B48
B46:
t23 := val == 3
if t23 then goto B47 else goto B48
B47:
printString("Rec: got def\n")
goto B48
B48:
t24 := val == 0
if t24 then goto B49 else goto B50
B49:
printString("Rec: got tic\n")
goto B51
B50:
printString("Rec: got toc\n")
goto B51
B51:
goto EXIT

(b) Ensemble IR (Textual)

(c) Ensemble IR (Graphical)

Figure 3.6: Transformation from Ensemble to Ensemble IR

3.3. Integration of Actors and Accelerator-Based Concurrency 58

Description Form Uses
Array construction new <type> [n1] · · · [nk] of init uses(n1), . . ., uses(nk), uses(init)
Binary operation a op b a, b, uses(a), uses(b)

Channel construction new out integer -
Structure construction new <type> (v1, v2, . . .) uses(v1), uses(v2), . . .

Copy Operation copy v v, uses(v)
Array subscript expression v1[v2] abs base(v1), uses(v1), v2, uses(v2)
Structure field expression a.x abs base(a), uses(a)

Constant integer 4 -
Identifier v -

Literal v -
Channel selection (select statement) select {ticker, tocker, tacker} ticker, ticker, tacker

IR Temporary t4 -
Unary operation unary op v v, uses(v)

Function call f (a1, a2, . . .) a1, uses(a1), a2, uses(a2), . . .

Table 3.3: List of available values and their internal uses.

and provides efficient access to various properties of application variables that can be used
in the analysis to generate detailed error messages and obtain memory type information.

Table 3.3 summarises the possible values that can appear in an Ensemble application. Here,
the abs base() is used to find the absolute base value in array subscript and struct field ex-
pressions. Notice that a call is represented both as an IR instruction and a value. The value
encodes Ensemble procedures that return values, whereas an IR call instruction corresponds
to a void procedure. To distinguish between the two, we use the term function to describe a
routine returning a result and procedure to describe a routine returning void.

3.3 Integration of Actors and Accelerator-Based Con-

currency

Due to power consumption, heat dissipation, and clock propagation limits, modern hardware
architectures are now designed with many, concurrent processing elements, as opposed to
single processing elements with increasing clock rates; examples of such architectures in-
clude GPUs and multicore CPUs. These hardware platforms are designed to provide the
user with multiple physical threads of execution, thus enabling many computations to occur
simultaneously.

On single CPU architectures, threads have traditionally been used to enable parallel exe-
cution. However, due to the different nature of GPU hardware architectures, a number of
different programming techniques are used. OpenCL is a standardised programming frame-
work available for the main GPU vendors (NVIDIA and AMD), as well as other parallel
hardware architectures.

3.3. Integration of Actors and Accelerator-Based Concurrency 59

While OpenCL enables access to these architectures, there are three main limitations. Firstly,
the user is required to write large amounts of boilerplate code to create the OpenCL envi-
ronment for a particular calculation. Secondly, the programming style requires explicit data
movement between the host CPU and the OpenCL device; this requires flattening multi-
dimensional arrays and structures of non-primitive types. Thirdly, the language and style
used to program the device is often different from the programming language being used on
the host. A similar argument can be made against the CUDA framework; since CUDA is only
available on NVIDIA hardware, this work explores the more broadly applicable OpenCL.

This section describes the first application of actor-based programming to accelerator-based
concurrency at the language level by including the OpenCL framework within the Ensemble
programming language. Natively, Ensemble applications can run concurrently in a task-
parallel context, where actors embody the units of computation. Given the overall hypothe-
sis of this dissertation, the combination of actors and accelerator-based programming shows
that moving from low-level C code to a concurrent, shared-nothing, high-level actor pro-
gramming model simplifies the use of OpenCL by providing appropriate structuring, thus
enabling greater access to high-performance and heterogeneous computing.

3.3.1 OpenCL

OpenCL is a programming framework for heterogeneous and parallel computing. It is stan-
dardised, and is managed by the Khronos working group3. In OpenCL, users are required to
think in terms of host and device code, where a host is a coordinator application on the CPU,
and a device is an accelerator. An accelerator may be a CPU, GPU, Field-Programmable
Gate Array (FPGA), or co-processor such as the Xeon Phi [79].

OpenCL Configuration

In OpenCL, the host is tasked with setting up, dispatching, and collecting results from a
device. OpenCL is accessed through an API, which enables relatively low-level access to
data types and functions in order to program and interact with one or more accelerators.

Creating an OpenCL environment consists of first querying the hardware at runtime to de-
termine the available vendor platforms, and the devices available in each platform. Plat-
forms are essentially drivers provided by the hardware vendor, and the devices represent
the actual accelerators. Then, a context must be created. A context is an umbrella
structure that holds the device(s) to be used, as well as other runtime software constructs.
A command queue is then associated with each device and placed within the context.

3https://www.khronos.org/opencl/ - Accessed October 2014

3.3. Integration of Actors and Accelerator-Based Concurrency 60

A command queue is used to issue commands to a device. Commands include device
queries, memory management operations, and kernel (Section 3.3.1) invocations. After this,
a user creates a programwith the kernel source file, and compiles it at runtime. The specific
function to be executed within the compiled source is then used to create the kernel object.
At this point the OpenCL environment has been constructed and is ready to be configured
and used for a specific computation.

From here the user allocates memory on the device and then copies host data into this mem-
ory. The device memory is then associated with the correct position in the kernel arguments.
Then, the number of dimensions upon which the kernel should work is calculated, and the
kernel is launched on the device, with this information, via the command queue. Usually,
the host then blocks attempting to read data back from the device once it has finished its
computation. Once all computation is complete and the device is no longer required, there
are appropriate destructor functions.

The device itself is treated simply as a functional unit. Data and code are passed to the
device, the device executes this code, and the results are read back by the host.

Kernels

A device runs a special piece of code known as a kernel. An OpenCL kernel is written in
a C-like syntax and represents the logic of a single thread. The number and groupings of
threads are supplied during the configuration stage on the host. These values are known as
the local and global worksizes, and are used to optimise the allocation of threads to the
underlying hardware for a given dataset.

Within a kernel, the currently executing thread may be identified via the API. This can be
used to customise application logic. The kernel is expressed as a function with parameters.
Information for the actual computation is passed to this function as arguments by the host.

The OpenCL model uses a memory hierarchy in which memory is split into global,
local, private, and constant regions. This is a direct mapping to the hardware con-
figuration of memory found in GPUs, however the same model is applied to all hardware
devices. Global memory is shared amongst all threads, local memory is shared between
a specified group of threads, and private memory is specific to a thread. Global and lo-
cal memory are subject to unsynchronised modifications, although there are mechanisms to
synchronise access. Constant memory is shared by all threads, but is read only. A simple
OpenCL kernel is shown in Listing 3.12.

The similarity between the isolated nature of computation in actor-based programming and
the OpenCL model is strong. Both require explicit data movement between loci of compu-
tation. In Ensemble, the channel mechanism provides a natural way to facilitate this without

3.3. Integration of Actors and Accelerator-Based Concurrency 61

1 __kernel void square(__global float* input,
2 __global float* output,
3 const unsigned int count){
4 int i = get_global_id(0);
5 if(i < count)
6 output[i] = input[i] * input[i];
7 }

Listing 3.12: OpenCL Kernel to Compute the Square of An Input Array

the need to go outside the language or obfuscate existing code, consequently, OpenCL ker-
nels are represented as actors. The requirement for separate programming of host and device
also matches the distinction between actors. A full example of matrix multiplication in En-
semble is shown in Listing 3.13 and is referred to throughout this section. Here, the green
colour represents additions to the language, and light yellow shows compiler-enforced struc-
ture. These highlighted sections represent the only modifications to the language.

3.3.2 Language Model

In Ensemble, an actor is marked as being a kernel by adding the opencl keyword to its
definition (line 21). This tells the compiler that the actor’s interface should only contain a
single channel, and that a slightly different structure is expected within the behaviour clause.
After this keyword, an optional set of angle brackets may be supplied by the user to specify
certain configuration information to the runtime. This information includes one of the GPU,
CPU, or ACCELERATOR language keywords in order to specify the device type to be
used by this actor: a GPU, CPU, or generic accelerator type. This last case is used for
devices such as the Xeon Phi [79]. Also, the device index is used to specify the device
to be used. This is often required to distinguish between multiple devices within the same
category. Both of these configuration parameters are optional, may be used independently of
each other, and may be specified in any order. Should the device type not be specified,
the default device dictated by the OpenCL runtime is used. Should the device index not
be specified, the 0th device is chosen. In this way, kernels are integrated into the language,
as opposed to a separate source file in a different language.

The single channel required in the actors interface conveys an opencl struct type as
defined by the developer (lines 6-11). This is a normal struct except that the opencl
keyword tells the compiler that the fields of the struct should contain two integer arrays,
an in channel, and an out channel. The arrays convey the local and global worksizes
required to dispatch the OpenCL kernel, as discussed in Section 3.3.1. The two channels are
the input and output channels for the data to and from the kernel, respectively. The channels

3.3. Integration of Actors and Accelerator-Based Concurrency 62

1 type data_t is struct (
2 real [][] a;
3 real [][] b;
4 real [][] result
5)

6 type settings_t is opencl struct (

7 integer [] worksize;

8 integer [] groupsize;

9 in data_t input;
10 out real [][] output
11)
12 type dispatchI is interface(
13 out settings_t requests;
14 out data_t dout;
15 in real[][] din
16)
17 type mulI is interface(
18 in settings_t requests
19)
20 stage home{

21 opencl <device index=0, device type=CPU> actor Multiply presents mulI {

22 constructor() {}
23 behaviour {

24 receive req from requests;

25 receive d from req.input;

26 x = get_global_id(0);
27 y = get_global_id(1);
28 dim = get_global_size(0);
29 c = 0.0;
30 for i = 0 .. (dim-1) do {
31 c := c + (d.a[y][i]) * (d.b[i][x]);
32 }
33 d.result[x][y] := c;

34 send d.result on req.output;

35 }
36 }
37 actor Dispatch presents dispatchI{
38 constructor() {}
39 behaviour {
40 s = 1024;
41 ws = new integer[2] of s;
42 gs = new integer[2] of 0;
43 i = new in data_t;
44 o = new out real[][];
45 connect dout to i;
46 connect o to din;
47
48 ocl_struct = new settings_t(ws,gs,i,o);
49 d = generate_data(s);
50
51 send ocl_struct on requests;
52 send d on dout;
53 receive result from din;
54 }
55 }
56 boot{
57 d = new Dispatch();
58 m = new Multiply();
59 connect d.requests to m.requests;
60 }
61 }

Listing 3.13: GPU Matrix Multiplication in Ensemble

3.3. Integration of Actors and Accelerator-Based Concurrency 63

are created and configured in the host actor (lines 43-46), sent to the kernel actor via the
input channel (line 51), and then the data is sent (line 52). The host then waits for data from
the actor (line 53). This is an example of the dynamic nature of Ensemble channels, and
enables any type of data to be conveyed to and from the kernel actor safely without requiring
any extra compiler analysis beyond normal language processing.

Within the behaviour loop of the kernel actor, it is required that the first two statements
are receive statements (lines 24-25). This first statement receives an opencl struct

instance. This enables the runtime to prepare the kernel for dispatch to the device with
the appropriate dimensions by using the worksize and groupsize values. The second
statement is used to receive the data that the kernel will process. It is also required that the
last statement is a send statement (line 34). This is used to send the processed data onwards.
The send statement is also used as a marker, with all statements between the second receive
and send statements representing the OpenCL kernel (lines 26-33). The standard set of
OpenCL calls natively available in a kernel are also available within an OpenCL behaviour
clause between these markers (lines 26, 27, 28), including the math functions. Also, the
global, local, and private memory modifiers are available, enabling the developer
to take full advantage of the different memory regions which are available in the OpenCL
model to improve performance.

One of the key advantages of embedding OpenCL within the language is the ability to pre-
serve multi-dimensional array and structure dereferencing. Currently, OpenCL requires that
arrays and structures containing pointers are flattened when being passed to a kernel. In En-
semble, this process is automated, leaving the users with normal dereferencing of such data
types within the kernel. This also has the advantage of providing the user with warnings and
errors for kernels at compiletime, rather than having to wait until runtime kernel compila-
tion. Furthermore, as all the OpenCL actors are connected by channels, should the user wish
to change the device upon which the OpenCL actor should run, the language only requires
that the device type be modified in the actor definition. No other change is required. Also,
should the developer wish to use a different kernel or a different device at runtime, all that is
required is to reconnect the configuration channel to an appropriate kernel actor’s configura-
tion channel. Should the local stage not support OpenCL, kernel actors may be spawned at
remote stages, enabling more possible (re)configurations. This is discussed in Section 3.4.4.

By tagging an actor as an OpenCL kernel, a user must still write parallel code within the
behaviour clause, however by integrating this into the language model, the process is sub-
stantially simplified compared to a C version, see Section 5.2.3.

3.3. Integration of Actors and Accelerator-Based Concurrency 64

Movability

One of the greatest costs in performance for OpenCL applications is data movement. Specif-
ically, the movement of data between the host and the device during the execution of an
application. This cost is often mitigated by leaving data on an accelerator for as long as
possible. This concept is in direct conflict with the shared-nothing semantics of the actor
programming model.

The presence of the movable heap in Ensemble offers a solution to this problem. In addition
to removing the need for data duplication when sending data between actors, moveable data
can be used to mark GPU data for lazy evaluation. Hence, if movable data is sent from
one kernel-actor to another on the same device, without being accessed in the interim, the
data will remain on the device. This is discussed fully in Section 4.5.2. Hence, movability
enables this common GPU optimisation in the actor programming model without violating
the shared-nothing semantics.

3.3.3 Compiler Modifications

The compiler was modified to apply slightly different rules to an OpenCL actor, enforcing
the structure described in Section 3.3.2. The channel operations mirror the explicit data
movement required by OpenCL, and it is the channel operations that dictate the creation
of device buffers and the movement of data between the host and the device. struct

values are flattened so that each field is sent separately, with the compiler generating the
appropriate code within the kernel to manage this. Multi-dimensional arrays are flattened
to single dimensional arrays. Again, the compiler will generate appropriate kernel code to
manage this. Primitive values are sent as 1D-arrays of one element so as to ensure updates
within the kernel are applied to the value. Passing a pointer to the host variable is not an
option. A potential optimisation here is to wrap all passed primitive variables in a single
array.

3.3.4 Execution Model

Figure 3.7 shows the execution model when using OpenCl with Ensemble. Rather than the
actor running on the device directly, an OpenCL actor is compiled into a bytecode repre-
sentation of the actor in the normal way. The Ensemble compilation process and runtime
representation is discussed in Section 4.2. A C representation of the code identified as the
kernel is generated, and stored as a string within the actor’s bytecode. Should the kernel
actor contain functions defined in other code sections, the compiler will generate C equiv-
alents within this string. This is completely hidden from the developer. The bytecode is

3.4. Adaptability in Ensemble 65

Figure 3.7: OpenCL in Ensemble Execution Model

interpreted as normal, and acts as the host in the traditional OpenCL sense. This actor han-
dles the incoming and outgoing channel communications, as well as preparing, launching,
and collecting data from the kernel. This also enables multiple kernels to execute on a single
device.

3.4 Adaptability in Ensemble

Given the encapsulation of actors, and the use of message passing to facilitate communi-
cation, the actor model is perfectly suited to transparently enable distributed programming.
Although this is true of other languages, Ensemble expresses each phase of the adaptation
process, from discovery to reconfiguration, entirely within the language, without the need
for external configuration files or out-of-language APIs (Section 2.2). Also, whereas other
actor-based languages will only support the creation of a new actor remotely, Ensemble also
supports the strong migration of running actors from one stage to another across heteroge-
neous hardware platforms.

Adaptability, or runtime reconfiguration, in Ensemble applies to stages, actors, and chan-
nels. Adapting these entities consists of four distinct steps: defining unique attributes of
language entities, defining queries to distinguish between these entities based on attributes,
discovering these entities at runtime, and then using the discovered entities to adapt the run-
time environment by creation, destruction, or reconfiguration. This section describes how
adaptability is expressed entirely within the language; Section 4.4 provides a discussion of
the runtime implementation of adaptability. Section 2.2, which contains a discussion of a
number of different on-demand service discovery approaches, provides a background for the
discussion in this section.

3.4. Adaptability in Ensemble 66

1 type property is struct(string key ; any value)

Listing 3.14: The Ensemble Property Type

1 // a query definition
2 query example_query(integer alpha; bool beta; string gamma){
3 alpha > 67 and
4 alpha < $remote_key_ex1 or
5 (beta and $remote_key_ex2 != gamma) and
6 can_run(example_actor);
7
8 // a query instance
9 example_instantiation = example_query(1, true, "test");

10 }

Listing 3.15: A Query Clause

3.4.1 Defining Unique Attributes

An actor is defined with a name and a set of interfaces. This name is used when creating
new instances of actors as the compiler can guarantee that no two actors will have the same
name. However, in a distributed context, where applications are compiled independently of
each other, it is possible that there may be multiple actors defined with the same name. This
is equally true of stages. It is important to note that Ensemble has no limitation on actors
from different applications interacting with each other; indeed this is a likelihood given the
runtime reconfiguration of actors. As similarly named actors may be operating within the
same stage, names alone are not suitable to uniquely identify actors. To achieve this goal,
the property type is used.

The property type represents a key-value pair consisting of a string for the key and an
any for the value, Listing 3.14. This struct must be defined by the language as the compiler
ensures that the any type holds a primitive value, otherwise an error is generated. The
primitive value is required to simplify the formulation of queries, Section 3.4.2.

Having actors from different applications working within the same environment could be a
possible security issue. Security considerations were mostly beyond the scope of this project,
but there is a brief discussion in Section 4.7.

3.4.2 Queries

The first step in locating either actors or stages is to define a query. Listing 3.15 shows an
example query definition and is referred to in this section. A query definition is similar to

3.4. Adaptability in Ensemble 67

a procedure definition in that it has a name and an optional set of parameters, however, the
body of a query definition only consists of a boolean expression.

Application of the boolean expression to the universe of actors (or stages) yields a set of
actors (or stages); the set can be empty, consist of a single actor (or stage), or 2 or more actors
(stages). The expression itself may only use primitive types, which includes the string
and stage types; user-defined types may not be used as this would require the user to
define comparison operators for each defined type. This decision was made to simplify the
queries, and errors are reported at compiletime. The query parameters may also be used in
the expression, so long as they are primitives. Parameters may only be compared against
similarly typed variables or values, otherwise a compiletime error is generated. There are
two exceptions to this rule: remote keys and the can run() operator.

Remote keys are names which refer to the key field of properties which are expected to be
found at the remote stage or actor, (lines 4 & 5). Remote keys are identified by names pre-
fixed with the $ symbol. So as to remove any coupling between actors or stages, it is possible
to use remote keys in a query which do not match properties defined in any stage or actor
within the scope of the query definition. Hence, no compiletime error will be generated for
comparisons against remote keys as the evaluation happens at runtime. Should the remote
key not exist during evaluation, the relevant clause in the expression will return false, pre-
serving the logic of the complete expression in a meaningful way. This has the advantage of
not requiring any central design or coordination of queries or properties in order to guaran-
tee legal operation, although it is the responsibility of the user to guarantee logically correct
operation.

The can run() operator is used to give the developer some advanced indication as to
whether or not a stage will support an actor. The operator takes the name of a defined actor
and returns true if the stage evaluating the query can execute the specified actor, otherwise
false, (line 6).

A query definition is similar to a procedure definition, however, a query definition always
implicitly returns a query type. A query type is the representation of an instance of a
query definition. It is a first class entity in the language, which may be sent along channels
or used in discovery.

Although there are languages, such as SQL, which are designed to specify queries, it was
decided to use a language-specific format to specify the query. This was done to reduce the
amount of extra effort required on the part of the developer, who would be required to learn
SQL or some other domain specific language. Furthermore, it is not yet apparent that the
Ensemble-based approach either lacks sufficient expressiveness or is overly verbose for the
applications discussed in Chapter 5.

3.4. Adaptability in Ensemble 68

1 actor test presents Itest{
2 props = new properties[1] of property("dummy", any(0));
3
4 constructor(){
5 publish props;
6 }
7 behaviour{
8 // do something
9

10 unpublish;
11
12 // do something else
13
14 receive other_props from input;
15
16 publish other_props;
17 }
18 }

Listing 3.16: Property Definition in Pseudocode

3.4.3 Discovery

Discovery is the process of locating either actors or stages based on the properties that they
possess, which are evaluated by queries. This is different to approaches such as Scala, where
actors are located by an IP address, or Salsa, where actors are located by name or IP address.
Within Ensemble, discovery happens at runtime, and is completely controlled from within
the language. Having all adaptation operations integrated within the language simplifies its
use, expression, and comprehension. There is no need to supply lists of IP addresses, or
hostnames in order to locate or reconfigure the language entities (Section 2.2). That said, it
is required to pre-deploy stages, as they are not configurable from within the language. This
is similar to the MPI approach, and is discussed in Section 4.3.2.

Actor Visibility

Before an actor is discovered it must explicitly have a set of properties associated with it.
This is done by first creating and initialising an array of properties, and then linking this
array with the enclosing actor via the publish statement, Listing 3.16. An actor must
explicitly publish itself in order to be discovered, as actors are not visible by default.
Note that an array of properties may be sent along a channel, rather than being constructed
locally. Again, the publish statement is part of the language, and not part of a library.
Once an actor publishes itself, it may be discovered by other actors.

3.4. Adaptability in Ensemble 69

The unpublish statement is used to make the calling actor hidden, and removes the asso-
ciated properties. Should an actor wish to update its properties, it need only reissue a publish
statement with the specified properties, rather than first unpublishing. It is important to note
that it is not possible for one actor to publish or unpublish another, as to do so would violate
the encapsulation of actors. This approach gives the user programmable control over how
and in what way an actor is located at runtime.

An actor may only publish a set of unique properties. As property arrays are constructed at
runtime, it is not possible to check this assertion at compiletime. Instead, the runtime will
perform this check and generate an exception if the list does not consist of uniquely named
properties. This is done to ensure correct runtime behaviour.

Actors were chosen as discoverable entities to enable the reconfiguration of channel connec-
tions. Equally, channels could have been chosen instead of actors, however, this would have
increased the complexity of Ensemble applications, as each channel would require a set of
associated properties. Also, accessing channels in this way provides a grouping mechanism
which would not be present when accessing channels directly.

Stage Visibility

Unlike actors, publish and unpublish statements do not apply to stages as they are
always visible. Instead of user-defined arrays of properties, a pre-defined set of properties
are associated with each stage:

• #NAME: A string representing the name of this stage as defined in its definition.

• #CORES: An integer representing the number of CPU cores available at this stage.

• #AVAIL RAM: An integer representing the current number of bytes of free RAM
available at this stage.

• #ACTORS: An integer value representing the current number of actors resident on
this stage.

• #OPENCL: A boolean value indicating if OpenCL actors are supported on this stage.

• #DISTANCE: An integer representing the physical distance between the querying and
queried stage.

• #CPU LOAD: An integer representing the current load across all CPUs as a percent-
age.

• #HOSTNAME: A string representing the name of the underlying physical platform.

3.4. Adaptability in Ensemble 70

• #NET ADDR: A string representing the network address of the underlying physical
platform.

These properties reflect attributes of the stage instance, as well as runtime values. For exam-
ple, when queried, the #AVAIL RAM property value will represent the amount of free RAM
currently available in the system, rather than a pre-defined value. The #DISTANCE property
is discussed further in Section 4.4.1. This was done to enable decisions to be made when con-
sidering load-balancing at runtime. The control of fine-grained load-balancing from within
the language is beyond the current scope of this work, but is an area of future work. The
current properties are exemplars of appropriate key-value pairs for a stage, and serve as a
starting point for future work; they are not necessarily complete or correct. The decision to
use static properties is discussed further in Section 3.4.6

Finding Actors

Once a query has been defined, published actors must be explicitly discovered via the language-
defined findActors() procedure, Listing 3.17. This procedure takes an interface

type and a query type. The decision to use a language-defined procedure was made as a
simple quasi-English statement, as has been used for other operations in the language, was
not found.

The searching actor is required to specify an interface to ensure that it will be able to safely
and correctly access the channels of any discovered actors. Also, the specified interface acts
as a filter, preventing actors who do not present such an interface from being eligible for
discovery. In order to decouple the design and compilation of Ensemble applications, an
actor is defined as supporting the specified interface if it structurally matches as opposed to
name-based equivalence. The two approaches are discussed in Section 2.2.4. Here, structural
matching was chosen as Ensemble applications are expected to be compiled independently
and still interoperate, hence the functional correctness and type safety of structural equiva-
lence was chosen. The implementation is discussed in Section 4.4.1. Although this approach
does not guarantee semantic correctness, the query can be used to help provide a stronger
guarantee than structural matching alone.

The expression which the specified query represents is evaluated against the properties of
actors which are visible in both the local and remote stages; it is possible to identify only
local actors using the desired (local) stage’s name within the query definition. Actors where
the entire expression within the query evaluates to true are considered eligible, and are
returned to the searching actor. The combination of the interface, properties, and queries can
enable a desired actor or set of actors to be accurately pinpointed.

3.4. Adaptability in Ensemble 71

1 proc findActors(interface i; query q) : typeof<i>[];

Listing 3.17: Pseudocode for the findStages Prototype

1 // locating a stage via discovery
2 proc findStages(query q) : stage[];
3
4 // creating a stage reference manually
5 a_stage = new stage("192.168.0.1");
6 b_stage = new stage("host.gla.ac.uk);

Listing 3.18: findStages Prototype

Once the search is complete, an array of interfaces of the type specified is returned by the
findActors() procedure to the calling actor. Each interface is a reference to a unique
actor. The main difference between an actor reference created by new and one of these
references being that a reference to a newly created actor can access all channels that the
actor presents, whereas a reference to a discovered actor only enables access to the channels
specified in the interface used to find it. If no actors are found, this array will be empty.

Ensemble does not support generics, and so creating an array of this type is a special case
handled by the compiler. These interfaces have the type of the interface passed to the
findActors() procedure. Also, as the type and number of available channels is known at
compiletime, the compiler can generate errors if the actor reference itself or the dereferenced
channels are used improperly. These interfaces may be used in the same way as any other
interface (Section 3.1.3). It is important to note that located actors may have more channels
than specified in the interface used for discovery. Although actors may present multiple
interfaces, they are only considered eligible should the specified interface match at least one
of the presented interfaces.

Currently, there is no way of distinguishing between the actors which have been returned
from a discovery. The only certainty is that all references support the specified interface, and
meet the conditions defined in the query. In situations where a more specific choice needs to
be made, a search can be repeated using a query with more precise requirements.

Another approach would be to provide a function to the discovery process which would apply
an ordering to the results. The sorting condition would refer to the properties referenced by
the boolean expression in the query. This is the approach taken in the DPL language [108],
and is a potential avenue of future work.

3.4. Adaptability in Ensemble 72

Finding Stages

The process of locating stages is similar to and simpler than locating actors. In order to
discover a stage the findStages() procedure is used, Listing 3.18. Like actors, this pro-
cedure takes a query type, but does not require an interface as stages do not use interfaces
or channels. This procedure will return an array representing the stages which were found
and that satisfied the specified query. If no matching stages were found, this array will be
empty. Also like actors, there is not currently any way of distinguishing between the stages
which have been returned. The only certainty is that all stages in the array meet the condi-
tions specified in the query. Again, to find a specific stage, a more precise query could be
reissued, or a sorting condition could be supplied.

As well as gaining a reference to a stage via discovery, a developer may create a reference
to a stage manually using a network address or hostname. Listing 3.18 has an example of
creating a reference to a stage at a known network address, in this case an IP address, and
a hostname. Creating a reference to a stage in this manner does not guarantee the existence
of a stage at the specified network address. This assertion is only tested when trying to use
a stage in an adaptation operation, as discussed in the remainder of this section. This option
can be useful when the topology of the distributed system is known a priori, and the ad-hoc
discovery mechanism is superfluous.

Once a reference to a stage is obtained, it can be either sent to another actor or used to modify
the runtime configuration of actors, as described in the following section.

3.4.4 Actor Adaptation

The motivation to adapt or change the runtime environment of different types of application
in different domains has been established in Section 2.2. Consequently, this section will
describe how Ensemble supports adaptation or reconfiguration at runtime from within the
language.

Spawn

Spawning an actor is the process of creating a new actor at an explicitly specified stage;
this stage can be the current stage, or a different stage. Spawning a new actor is similar to
creating an actor with the new keyword, with the addition of a reference to the stage at which
it should be created. As with new, the constructor of the desired actor should be supplied;
this includes constructors which require any values or variables. Listing 3.19 shows different
variations of actors being spawned.

3.4. Adaptability in Ensemble 73

1 behaviour{
2 stages = findStages(example_query);
3 if(stages.length > 0) then{
4 // create a baby actor without a reference
5 spawn baby() at stages[0];
6
7 spawn baby(1, "hello", example_proc()) at stages[0];
8
9 // create a baby actor with a reference

10 reference = spawn baby() at stages[0];
11 }
12 }

Listing 3.19: Spawn in Ensemble

1 behaviour{
2 stages = findStages(example_query);
3 if(stages.length > 0) then{
4 // migrate the actor to the stage referenced by stages[0]
5 migrate stages[0];
6 }
7 }

Listing 3.20: Migrate in Ensemble

Actors may be spawned either with or without a reference to the new actor, Listing 3.19
lines 10 and 5, respectively. Actors which are spawned with a reference are semantically
equivalent to an actor created with the new keyword, the only difference is that actors created
with new can only be local, whereas actors created with spawn can be either local or remote.
It is also important to note that actors which represent OpenCL kernels (Section 3.3) can also
be spawned.

Should a stage be unreachable while trying to spawn, the StageNotFoundException
will be thrown. If the actor cannot be created at the stage, an appropriate exception will be
thrown in the actor invoking the spawn to reflect the problem. The most common exception
is the ConnectionFailureException exception. If an exception is generated, the
actor will not be spawned.

Migration

Unlike other actor-based languages, Ensemble natively supports actor migration without the
need for extra-language constructs. Migration is an explicit action in the language which
pauses the execution of the invoking actor, moves the actor, its channels, and its state to

3.4. Adaptability in Ensemble 74

1 behaviour{
2 // replace the actor referenced by baby
3 // with a new child actor
4 replace baby with child();
5 }

Listing 3.21: Replacement in Ensemble

a different stage, and continues the execution of the actor immediately after the migration
operation, Listing 3.20.

Migration is an actor specific operation, and can only be invoked by the calling actor; one
actor cannot explicitly tell another actor to migrate. This follows the spirit of actor encap-
sulation and again serves to simplify the programming model. This also removes the need
to have language primitives which will fix or unfix an actor to a particular stage, as in
Emerald [109], which was required to prevent actors migrating each other. Such functional-
ity could be provided at the application level if required.

Actors who have references to files or other resources which are located on a particular
physical machine are not allowed to be migrated. This is enforced at compiletime as the
compiler is aware of the relevant types. This limitation can be overcome by using actors
and channels to abstract such location-dependent types. An example of this is seen in the
media player application, Section 5.3.1. Here, file access is abstracted by an actor which
accepts file names and returns byte streams. This approach could be extended by having all
I/O interaction being abstracted by system actors. This would have the added advantage that
such actors can be discovered at runtime. Currently, there are a number of system actors
which abstract hardware access, however direct access is left to provide the developer with
choice.

As well as all of an actor’s code and state, any actor connected by channels before it per-
forms a migration operation, will still be connected after a migration from either actor’s
perspective. Should an error occur during migration, the actor will not be moved to the new
stage, instead continuing on the original stage, and an appropriate exception will be gener-
ated. This is a similar situation to spawning a new actor. Note that it is legal to migrate
an actor to the stage it is currently on, however it is not legal to migrate an actor which
represents an OpenCL kernel, this is discussed in Section 4.5.3.

Replacement

As well as the ability to move actors between stages, it was also desired that actors be re-

placeable at runtime. This is useful in situations where an actor is not operating as desired
due to incorrect or outdated software. This situation is particularly observed in WSNs, where

3.4. Adaptability in Ensemble 75

hardware is often difficult to access after deployment [110]. In such situations, it is prefer-
able to update remotely via software, rather than retrieve the device, reprogram, and then
re-deploy; this is generally known as over-the-air programming. Although not yet fully im-
plemented, the following is a description of the semantics of replacement.

The replacement statement requires a reference to the actor to be replaced, and the construc-
tor of the new actor, as shown in Listing 3.21. As with spawn, constructors with arguments
may be used. The new actor will inherit all the channels and connections of the actor it
replaces. Consequently, the new actor must present at least the same number and type
of channels as the actor being replaced. This assertion can be partially guaranteed by the
compiler at compiletime, as the channels of the new and old actor can be compared; if
they do not match an error is generated. However, actors which are located via the dis-
covery mechanism may present more channels than are specified in the interface which is
used to locate them (Section 3.4.3). In this case, it is not possible to ensure correctness at
compiletime. Hence, it is the responsibility of the runtime to ensure correctness. Should
the new actor not be compatible, the ActorNotCompatibleException will be gen-
erated. As the language is designed to be used by non-experts or non-computing scientists,
the use of reflection or runtime analysis to either indicate why the actors are incompatible
or fix the issue was undesirable. Instead, a new way of discovering actors was introduced:
findReplaceable(). This function is identical to findActors() except that only
actors where all of the specified and examined channels match are considered as being eligi-
ble to be returned. In this way, findReplaceable() provides a mechanism to avoid the
ActorNotCompatibleException.

While ensuring that the same channels are present in both the new and old actors provides
type-safety and functional correctness, it does not guarantee that correct and safe interaction
with other actors. This is especially true as the new actor does not need to have the same
state, procedure or query definitions. To minimise this, an actor is conceptually replaced
at the beginning of an iteration of its behaviour clause. This means that an actor must wait
until all internal operations and external interactions with other actors have completed before
being replaced. This provides a clear point at which to reason about the logic of replacement.
Languages like Erlang and Scala support the idea of runtime code replacement, or “hot-

swapping” of code, however this refers to logic, rather than the combination of logic and
state.

Currently, the replace statement and the findReplaceable() operation are sup-
ported, hence there are no modifications required to the language to enable replacement.
Also, the VM supports the discovery of replaceable actors, however, the final implementa-
tion of replacing an actor is not yet complete.

3.4. Adaptability in Ensemble 76

3.4.5 Location Transparency Via Channels

The use of message-passing is one of the main advantages of the actor model. Apart from
facilitating the isolation of actors, it can also abstract the locations of actors while enabling
communication. Hence, actors in the same or different stages can interact in the same way,
without any change to existing code; all channel operations in Ensemble are location trans-
parent.

Given that all distributed environments are subject to non-deterministic failures, this must
be reflected within the language and is done so via exceptions. Exceptions related to com-
munication in Ensemble are mainly generated from failure in the underlying communication
medium or runtime.

As well as these failures, there is one which is generated from an inconsistent state in the lan-
guage. The ChannelNotFoundException is generated by the language when a channel
cannot be located during a connect operation. This situation can occur in between gaining
an actor reference, either via a channel or discovery, and the referenced actor having mi-
grated to a different stage or expired. This is an issue with the runtime as it only updates
references with explicit connections, such as channels, on migration. This particular excep-
tion indicates that the last known stage was contacted and replied, but the desired actor and
channel could not be found, as opposed to some hardware or software failure. In this case,
a new reference to the actor must be acquired. This can happen for both local and remote
channels, however, most often occurs for remote channels. This exceptions tells the user
that the last known stage for the referenced actor is alive, and responding to queries. Should
the stage be dead, the StageNotFoundException is thrown. In this situation the actor
attempting to connect may either try a different channel or repeat the discovery process to
locate the actor at its new stage.

Once a connection has been made between two channels, it will persist regardless if either of
the connected channels is sent as data across channels, or the actor who owns the channels
migrates between stages. It is the responsibility of the runtime to ensure this.

When using channels to communicate, the TIMEOUT exception is thrown to indicate that the
attempt to push or pull data across the specified channel has gone beyond a system-defined
timeout value. It is important to understand the situations in which this can happen, as a
single unreachable connection is not enough to generate an exception. When attempting to
push or pull data on a channel, a timeout will only be generated once all possible connections
have failed to adequately indicate that they cannot convey data. For example, an exception
will not be generated if at least one connection is able to indicate that it has no data avail-
able to push/pull, as the actor would block on this channel. This obeys the communication
semantics discussed in Section 3.1.2, as the non-responsive channels can be considered as

3.4. Adaptability in Ensemble 77

unconnected. An exception would only be generated if all connections do not reply with any
useful information, which indicates a hardware or software failure.

Although an actor can only be discovered when published, once the channels of an actor
have been bound to, the visibility of the actor has no effect on the ability to use these chan-
nels. Consequently, by discovering actor references through the discovery mechanism, the
channels of an actor can be accessed and bound to; the location of the actor is irrelevant.

From a language perspective, location transparency is a simple goal to achieve as, by design,
the channel operations do not change for local or remote connections. The main effort to
support location transparency is found in the implementation, Section 4.4.2.

3.4.6 Stage Adaptation

The combination of reconfigurable channel topologies and actor placement enables the fine-
grained modification of Ensemble applications at runtime. However, in some situations it is
more desirable to operate at the more coarse-grained level of applications, rather than that of
actors. The stage provides an appropriate language construct for this level of abstraction.
Although stage migration is not currently supported, the following is a discussion of using
the stage as a unit of application adaptation.

By using a stage to contain all actors of an application, or all actors of a certain equivalence
class, and then migrating this stage between physical machines, entire sets of actors can be
moved in a simple, logical action. From the actor’s perspective they are still acting within
the same stage, and all channel connections would be unaffected. There are a number of
considerations with this approach.

Firstly, with this approach the responsibility is on the programmer to use stages in an appro-
priate manner. Just as a developer may use an actor per application or an actor per procedure,
all actors could be held in a single stage, or spread across multiple stages.

Secondly, migrating an application of actors is currently possible without migrating stages.
By maintaining a set of channels connected to actors in an application, a user could manually
inform each actor that it should migrate to a specific stage, with each actor listening for
this message and migrating itself. Here, an array of channels can be used to abstract an
application of actors. This has the advantage that the actors need not be on a single stage,
but does require the user to manually inform each actor to migrate. Stage migration would
offer a simpler abstraction.

Thirdly, stages are currently created and destroyed outwith the language, from the command-
line. Although the ability to move a stage between physical locations is not yet implemented,
stage migration would also be controlled in the same manner, and would not require any
modification to the language. Manipulation of a stage in this manner would enable a third

3.5. Summary 78

party to control load balancing of sets of actors based on external factors, such as resource
constraints or policy decisions. Similarly, implementing load-balancing within the runtime
would enable automated stage/actor reconfiguration, but this is an area of future work.

By enabling adaptation at both the actor level and the stage level it would be possible to
have both coarse-grained and fine-grained control over the runtime arrangement of loci of
computation and resource consumption in a way which is natural to the actor-model.

3.5 Summary

This chapter introduced the Ensemble programming language which was created to enable
an exploration of the hypothesis with respect to actors, given the limitation of other existing
approaches as identified in Section 2.1. The use of actors naturally provides race-free mem-
ory access, and parallelism. In addition, the following three areas have been introduced.

Memory Consumption To reduce runtime memory consumption required by the shared-
nothing semantics of the actor model, a movable memory space was added to the language.
Unlike similar approaches, movability is expressed very simply in the language by a single
keyword (mov), using compiletime analysis to ensure its correct usage.

Accelerator-Based Concurrency Noting the parallel between accelerator-based con-
currency and the actor model of programming, Ensemble is the first to natively enable an
OpenCL kernel to be expressed as an actor, where the idea of host and device interaction is
more naturally expressed as actors, and explicit memory movement is abstracted by chan-
nel operations. Memory optimisations are available through the use of movability. Also,
by expressing the kernel as Ensemble source code, compiletime assistance is provided to
create correct kernels, and verbose initialisation of OpenCL is automatically handled by the
runtime.

Adaptive Programming By leveraging the encapsulation of actors, the remote creation,
relocation and replacement of actors at stages is provided natively within the language. A
language mechanism is provided to both describe and discover actors or stages based on
inherent properties, such as type, as well as user-defined properties at runtime, rather than
predefined configuration files. Furthermore, channel connections between actors are sup-
ported both locally and remotely. This is irrespective of the physical location of the actor or
stage.

79

Chapter 4

The Ensemble Virtual Machine

In order to realise the actor-based programming model presented by Ensemble in Chap-
ter 3, it was necessary to create a runtime environment. This runtime needs to support the
actor-based programming model, as well as runtime adaptation, location transparent channel
operations, and OpenCL kernels. Additionally, this must be done in a way which is sup-
ported across multiple hardware platforms with vastly different operating characteristics and
resource constraints.

To achieve this, it was decided that Ensemble applications would be compiled into an IR
and executed by a VM. Having a platform-independent representation enables the adaptation
described in the language to be achieved without the need for multiple compiler backends and
hardware specific binaries. Instead, the compiler need only target a single VM. Section 2.2
discusses the merits of different intermediate representations. Java bytecodes were chosen
as the instructions for the VM due to general familiarity Java bytecodes in the computing
community. Howeverm these bytecodes have been modified to meet the size and memory
requirements of this work. In this section the term runtime will be used to refer to the
combination of the VM and the C-based InceOS implementation upon which it rests. InceOS
is described in Section 4.1.

Section 4.2 describes how Ensemble applications are compiled to augmented Java bytecodes.
Section 4.3 discusses the design and implementation of a modified JVM to execute Ensemble
applications. This work is expanded upon in Section 4.4 to include support for runtime
adaptation and inter-stage channel communication. Support for the abstraction of OpenCL
kernels by actors is discussed in Section 4.5. Section 4.6 describes the modification to the
compilation process and runtime to support Ensemble applications on embedded hardware.
There is a brief discussion of security concerns caused by the actor model supported in this
work in Section 4.7, and then a summary of the points raised in Section 4.8.

4.1. InceOS 80

4.1 InceOS

The virtual machine described in this chapter is built upon the actor-specific operating system
InceOS [22]. InceOS was originally designed to execute on the embedded Tmote Sky [111]
platform, however, during the course of this work, it has been expanded upon and ported to
more platforms. A more complete description of the internal mechanics of InceOS, as well
as a detailed space and performance evaluation has been documented [112].

InceOS is a C-based pre-emptive multitasking operating system, where the unit of execution
is the actor. By default, each actor is represented as a data structure containing system
information, the actor’s state and channels, plus a single thread of control. Section 4.3.2
describes the use of threads in more detail. The OS provides a system call API to control the
life cycle of actors: creation, modification, and destruction. The OS also natively supports
the interaction of actors via message passing, ensuring the shared-nothing semantics. Again,
this control is provided via a system call API.

The OS enables dynamic memory allocation using either first fit or best fit allocations poli-
cies, however, this can be configured and/or extended. Also, the OS provides garbage collec-
tion via a reference counting system. Access to system hardware, such as timers, radios, file
systems, networking, and sensors is achieved via system actors, discussed in Section 3.1.8.
This helps to remove environmental dependencies by having user actors interact with system
hardware via message passing, thus giving location transparency.

The default scheduling of actors is done in a round-robin fashion, where system actors which
have been woken by a hardware interrupt, such as a button press, are scheduled at the head
of the queue. As well as facilitating message communication, the OS is able to use the
channel-based connections between actors to help schedule the actors. Specifically, the OS
only contains a run queue and a kill queue. Actors which are blocked waiting for messages
do not need to be stored in a queue, and are only rescheduled when a message is either
being requested or delivered. This is achieved by examining the references which are held
internally by the OS. Hence, the interaction of actors determines their scheduling. Should
actors be computationally intensive and not block, they will be pre-empted, and the system
will default to round-robin to ensure fairness.

4.2 Compiling Ensemble Applications

Figure 4.1 shows the process of compiling an Ensemble application to an executable format.
Firstly, the Ensemble source is translated to Java source code. Section 2.2.3 discusses the
justification of using Java bytecode. Next, the Java source is compiled to Java bytecode
using the Java compiler (javac). The class files which are generated are combined with

4.2. Compiling Ensemble Applications 81

javac

Java
source

Linker

Linkerjavac

Java
sourceStandard

library

Program Execution

Virtual
machine

Class Files

Class Files

Modified Class
Files

Modified Class
Files

Ensemble Source
Ensemble to
Java compiler

Class
Files

Class
Files

Figure 4.1: Ensemble Compilation Process

ChannelIn<integer> int_chan = new ChannelIn<integer>(0, "i");

Listing 4.1: Java Definition of an IN Channel with no Buffer, which Conveys an Integer

a standard library, also implemented in Java, and are then passed through a custom linker,
which generates new class files containing augmented bytecode. These bytecodes are then
executed by the Ensemble VM.

4.2.1 Representing Ensemble In Java

After the validity of an Ensemble application has been checked by the compiler, it generates a
Java source code version of the application. This is straightforward as Ensemble’s arithmetic
operations, memory allocation, and array or structure dereferencing are naturally expressed
in Java. All actions which are specific to Ensemble, such as actor, channel, discovery, adap-
tation or OpenCL operations, are represented by Java methods. As these are operations, Java
classes are not required. These methods are defined in a standard library, but only act as
wrappers to underlying operations in the runtime, see Section 4.2.2. The actors, channels,
interfaces, structures, and arrays are represented as Java classes.

Actors

Each actor in an Ensemble application is compiled to a Java class which extends a standard
Actor class. Both actor state and channels from interfaces are stored as fields in the class.
The predefined Actor class is necessary to provide a static start method which is used to
begin the execution of an actor as a new and independent entity. There is also a static stop
method, which is used to stop the execution of the actor. Both functions act as hooks into the
VM.

4.2. Compiling Ensemble Applications 82

Channels

A channel is represented by either the ChannelIn or ChannelOut class, where one class
is instantiated for each Ensemble channel. The classes are generic, meaning that the data
type which is conveyed by the channel is generated by the compiler, rather than having all
channels convey the Object type. javac will type-check all channel operations at com-
piletime in addition to the Ensemble compiler, hence no runtime type-checking is necessary.
The Ensemble compiler outputs the appropriate type of the channel based on its definition in
the application. Listing 4.1 shows the Java representation of a channel which accepts an in-
teger. The constructor for the channel will take an integer to indicate the size of the channel’s
buffer and a string representing an encoding of the type of the data conveyed by the channel.
The string encoding is needed for remote channels, and is discussed in Section 4.4.2. Note
that only in channels may have a buffer specified, as described in Section 3.1.2.

Channels are one of the classes treated specially by the VM. A Java channel wraps a native
InceOS channel, and applications use native Java methods to access the underlying InceOS C
functions. These functions pass data opaquely from sender to receiver, so the size of the type
being passed must be specified when creating an InceOS channel directly. An advantage of
generics is that all Java channels simply pass a pointer, hence the specified size is the same
for all data. A drawback to using generics is that primitives must be boxed and unboxed

before and after being passed over a channel, which can be time-consuming if a channel is
used frequently.

Structures

Structures defined in Ensemble are also represented by Java classes, where the fields of the
Ensemble struct are replicated in the Java class. Ensemble interfaces are defined similarly,
but only contain channels. In this context, an Ensemble interface has no relation to a Java in-
terface. Both structures and interfaces extend the EnsembleStruct class which contains
the prototypes of the duplicate() and onReceived() functions.

The duplicate method is used to create a deep copy of the struct and its fields before it
is sent across a channel. For each struct class, the compiler will generate appropriate Java
code to duplicate the fields used in the class. The onReceived method is invoked on the
data received from a channel. This is necessary when the data being sent is a channel, as the
ownership of the channel must be transferred to the receiving actor to maintain actor encap-
sulation, see Section 4.3.4. Again, the compiler will generate appropriate code to override
this function if required.

As an aside, Ensemble variables of type any are represented by the Object type, with
other objects being cast appropriately.

4.2. Compiling Ensemble Applications 83

4.2.2 Linker

After the Java source code has been generated, both it and the standard library are compiled
by the Java compiler to generate class files. The resulting class files are then passed through
the Ensemble linker. The purpose of the linker is to modify both the structure and contents
of the class files to be more suitable for Ensemble applications.

Java bytecodes were chosen as the intermediate representation due to the maturity of both
Java and its community. Specifically, there are many tools and libraries designed to work
with Java bytecodes for development, optimisation, and analysis. Also, Java bytecodes and
the JVM are well documented. This serves to simplify both current and future development
of the Ensemble VM.

Interaction with Native Code

The Ensemble VM is built upon InceOS directly, meaning that the lifecycle operations of
actors and channels are implemented in C. In Java, this functionality is accessed through na-

tive Java methods. A native method is called from the JVM [113], but has been implemented
in a different language. This necessitates the use of a C-like stack, in addition to the JVM
thread’s stack. In a standard JVM, native methods are called using the same instructions as
normal methods, and the constant pool is used to resolve and load the necessary native code.

Instead of this, a new invokenative bytecode instruction has been introduced within
the Ensemble VM specifically for calling native methods. This instruction behaves like
invokestatic, except that its argument is treated as identifying a native method rather
than an interpreted method. The structure of most native methods is to extract native data
from the arguments, to make a system call, and to convert any result back into Java form.
The existing invocation instructions invokestatic, invokespecial, and
invokevirtual are only used to invoke interpreted methods.

A standard library of Java native methods is used to represent certain InceOS operations,
such as sending data across a channel. These methods are only wrappers for native methods,
and are declared with the native keyword to indicate this to the compiler. The linker will
generate a C header file containing both a macro per wrapper function and the number of
stack frames used by that function’s parameters. This is necessary to clear the parameters
from the stack after the function has been called. This approach means that native methods
must be static. There is currently no support for virtual invocation of native methods, but this
has not been found necessary in implementing Ensemble applications.

The new bytecode has reduced the amount of space required at runtime as no bytecode repre-
sentation of the standard library is required. Instead, the interpreter need only use the number

4.2. Compiling Ensemble Applications 84

of the native method, as defined in the macros of the generated header file. This is more ef-
ficient as most native methods, such as creating channels, will always be present within the
runtime. For those which are not, conditional compilation can be used to reduce runtime
resource consumption. This is particularly useful when targeting embedded platforms, see
Section 4.6.

4.2.3 Dependencies

Although actors do not share state, they do share types. This is true in both the language and
the runtime, where it is necessary to have actors create user data types or invoke procedures.
While this sharing does not lead to inconsistent state in the language, it does generate depen-
dencies between the class files which represent these types at runtime. This is necessary for
actor adaptation, see Section 4.4.3.

To address this, the compiler determines the dependencies between the different Ensemble
entities before generating the Java source code. When creating the Java classes that represent
the Ensemble types, the compiler generates the custom @dependency annotation for the
class being generated. This annotation contains a list of classes upon which the class cur-
rently being generated depends. The linker uses this annotation, and embeds both the number
and names of the dependencies into the class file for the particular type. During any action
which would potentially require a new data type to be present in a stage, such as a spawn
or migrate, the runtime can use this information to determine any unmet dependencies. In
the future, it would be better to use runtime analysis of the class file’s symbolic references
to determine dependencies, rather than store these directly in the class file, thus reducing the
size of class files.

As well as explicit inter-class dependencies, the compiler also optimises for subroutine us-
age. Procedures or queries which are defined either outwith or within an actor only have Java
code generated if they are invoked within an actor. This means that space is not consumed
for subroutines which are never invoked. However, this does mean that each actor will have
its own copy of any invoked subroutine. Although this may lead to multiple copies of the
same function, it is useful for reducing inter-class dependencies, as well as simplifying the
spawn and migration process discussed in Section 4.4.3.

Class File Format

Java class files contain member definitions (fields and methods), metadata, and constant
pools. Past analyses of Java programs show that, on average, class files can be as little
as 33% method definitions [114], and only 20% bytecode [115]. However, this may not

4.2. Compiling Ensemble Applications 85

Data Standard library Programs
(33 class files) (20 class files)

Constant pool 66.5% 67.5%
Class metadata used 0.2% 0.2%

Class metadata unused 5.2% 7.6%
Field metadata used 0.2% 0.2%

Field metadata unused 7.4% 1.5%
Method metadata used 2.3% 2.7%

Bytecode 3.5% 7.3%
Method metadata unused 14.6% 13.0%

Method total 20.4% 23.0%
Total used 72.8% 78.0%

Total unused 27.2% 22.0%

Table 4.1: Average percentage composition of class files. ‘Used’ and ‘unused’ indicate
whether information is present in the modified class file.

be representative of Ensemble applications, and in particular the standard library, which
contains mainly class and native method definitions.

The class files from the standard library and various Ensemble programs have been analysed
to find how much of their data can be discarded. The results are shown in Table 4.1. Most
of the unused data is related to linking. The rest is mainly metadata related to Java features
unsupported by the VM, or which is encoded in the VM’s new instructions (e.g. the size
of fields, and whether methods are native). Appendix B fully describes the new class file
format.

Inter-Class References

Currently, the class files representing specific Ensemble entities are symbolically referenced
by name. If all Ensemble applications were compiled from a single source file, the compiler
would be able to ensure that no two types could have the same name, hence this referencing
approach would be safe. However, as Ensemble applications are designed to be able to work
together when compiled independently, this approach does not guarantee uniqueness - two
distinct types may posses the same name.

To solve this problem using a decentralised approach, a unique naming scheme is adopted.
By taking a MD5 hash [116] of an Ensemble type’s class file at compiletime, a 128-bit
identifier is produced to identify a class in place of a literal name. The Java Universally
Unique ID (UUID) library1 is used to generate this number. Using a hash of the post-linked
class file has the advantage that if two identical actors are compiled independently, they will

1http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html - Accessed February 2015

4.2. Compiling Ensemble Applications 86

posses the same UUID. The generation and use of UUIDs is not visible to either the language
or the user.

As a UUID is represented as a finite number, it does not guarantee a truly unique number
- it is possible that two different classes will hash to the same UUID. There are a number
of points to consider. Firstly, by inspecting the number of bits used in the UUID and the
approach used in the library, there are 2126 potential values which the UUID may take. This
is sufficiently large for the purposes of this work, making a collision extremely improbable.
Should this not be sufficient, it may be possible to increase the number of bits used to repre-
sent the key. Also, metadata may be used to add context specific information. Examples of
such meta data include the literal name of the type, or the string encoding used for the type.
Secondly, as the UUID is generated from the class file, it is possible that two actors which
have been named distinctly may be found as equivalent. This is essentially structural match-
ing. Unlike the discussion in Section 3.4.3, this will not lead to unexpected logical errors.
For raw types, there is no issue in choosing one type over another if they are structurally
the same. For actor classes, the UUID includes the actual implementation of the behaviour
clause in addition to the data types used. This means that both the actor’s state and logic are
used to generate the UUID, hence the UUID is generated from a unique representation of the
actor.

Encoding

Although the compiler ensures that only valid Ensemble applications will compile success-
fully, the presence of runtime discovery, reconfiguration, distribution, and the any type re-
quires that there exist some encoding of an entity’s type at runtime.

Encodings fall into two categories: those which represent primitive types, and those which
represent aggregate types, such as structs and actors. Table B.1 in Appendix B describes
the mapping between types and encodings. This string-based encoding was chosen as it
was simple, both to implement and to perform type comparisons at runtime. In the future,
using the hash of an encoding, rather than the encoding itself, may be more space and time
efficient.

Similarly to the inter-class dependencies discussed in Section 4.2.3, the compiler will deter-
mine an encoding for an entity’s type at compiletime, and annotate the class file generated
for this type with the custom @encoding annotation containing the string encoding. The
linker will then encode this information into the class file. Also, an encoding of the data
which a channel conveys is supplied to a channel when created. This is necessary for com-
munication across remote channels, see Section 4.4.2. As runtime type information is only
required in the distributed case, its use has been kept to a minimum.

4.2. Compiling Ensemble Applications 87

Optimisations

Although Ensemble applications are translated to Java source code, and then compiled using
the Java compiler, they do not use all the features of Java. As well as not implementing a
number of Java features, the linker performs a number of optimisations to reduce the size of
the class file.

‘Static Only’ Classes In Java, all methods and fields must be part of a class; there is no
such thing as a ‘top-level method’ or a global variable. However, some classes within the
standard library contain only static methods and static fields which are never instantiated,
never extended, and never used as the type of a variable. As this only applies to classes
which are integral to the runtime and are always present on each stage, there is no need to
include a class definition for them; only the methods and fields themselves are included.
A class suitable for this treatment is marked with the custom @static only annotation
by the compiler, which is detected by the linker. All wrapper classes for system actors are
marked as static only, giving significant space savings.

Empty Methods Java object construction occurs in two stages. The new instruction allo-
cates the memory required for an object, and then the object’s constructor is called. All Java
classes are required to have a constructor. javac generates default constructors where nec-
essary, which do nothing but call the superclass’s constructor, to ensure this rule is satisfied.
This leads to long chains of calls to methods that do no useful work at all.

The linker detects these methods and removes them from the generated class files. All calls
to these methods are also removed. This continues iteratively until all constructors and static
methods which do nothing, transitively, have been removed. Some modification of the byte-
code around the removed call sites is necessary to ensure correct execution. In particular,
method arguments which are pushed to the operand stack before a call must now be disposed
of as the call no longer happens. If an argument was pushed immediately before the call, the
pushing instruction is removed; otherwise, an appropriate number of pop instructions are
inserted.

Virtual methods are not removed even if they do nothing, so that virtual calls continue to
work as expected.

Native Methods The invokenative instruction refers to native methods by IDs as-
signed by the linker, made available to the VM through a C header file. Hence no information
about native methods is stored.

4.3. Ensemble VM Design and Implementation 88

Direct Bytecode Generation Ensemble applications are currently compiled to Java,
and then to bytecode using javac, before being modified by the linker. There would be
several advantages in compiling Ensemble directly to augmented bytecode:

• Reduction in code size – a number of the classes and methods in the standard library
exist only for compatibility with the code generated by javac. Certain methods in
the ‘primitive classes’ such as Integer, and classes to support exceptions, are not
strictly necessary, but are required to link with classes generated by javac.

• Optimisation of bytecode – the code generated by javac might not represent En-
semble idioms in the most efficient way. Optimising at the compilation stage, with
knowledge of the changes to the instruction set made by the VM, might be easier than
attempting to optimise javac-generated bytecode in the linker.

• Variable and stack usage – the Ensemble VM uses bitmaps to record which local
variables and stack slots contain objects, so that garbage collection works correctly.
These must be maintained at runtime because javac-generated code reuses slots for
different types throughout the lifetime of a method call. By contrast, in Darjeeling
(Section 2.2.2) a frame has separate variables and stacks for objects and primitives, so
that the information needed for garbage collection is available statically [49]. This is
possible because of the extensive bytecode rewriting Darjeeling performs during the
linking stage. A similar process could be adopted in Ensemble.

Although there are clear advantages, time constraints prevented the use of direct bytecode
generation in this work.

4.3 Ensemble VM Design and Implementation

Once compiled to Ensemble class files containing augmented Java bytecodes, Ensemble
applications are interpreted by the Ensemble Virtual Machine (EVM). The EVM is a spe-
cialised Java virtual machine [113] which is designed to execute Ensemble applications on
a range of hardware platforms including highly resource-constrained platforms, reasonably-
provisioned platforms, well-provisioned platforms, and highly-parallel hardware platforms.
The EVM is implemented on top of InceOS both on bare metal and on Linux-based plat-
forms.

The choice to create a new VM, as opposed to using the JVM, was three-fold. Firstly, the
JVM is designed to execute Java applications. As described throughout Section 4.2, there are
a number of Java features which are not useful to actor-based applications, hence the JVM

4.3. Ensemble VM Design and Implementation 89

does not best fit the needs of this work. Secondly, although targeting the JVM would enable
Ensemble applications to execute on a large number of JVM supported hardware platforms,
these platforms predominately fit into the reasonably to well-provisioned category. This
work is focused on exploring the use of actors in a wider spectrum of hardware platforms.
Also, as the hardware platforms become more constrained, so too does the support for Java
features. Thirdly, targeting the JVM would not enable the native support of actor runtime
adaptation, specifically thread migration. To do so would require the JVM to enable access
to the state of running threads, which will never be supported in the JVM due to security
concerns. As discussed in Section 2.2.5, the alternatives either increase space overheads,
increase performance cost, or require the use of modified JVMs.

As the EVM is intended to operate across a large number of hardware platforms, a bal-
ance must be found between space consumption and performance. For smaller, resource-
constrained platforms, the EVM must optimise for space, whereas, the EVM for larger plat-
forms must optimise for time. Hence, the following discussion will leave the reader noting a
number of obvious optimisations.

4.3.1 JVM Support

Although executing a form of Java bytecodes, the EVM is not designed to support Java
applications. This is in contrast to other actor languages such as Scala and Salsa which are
compiled to Java bytecodes in order to run on JVMs. Consequently, the following JVM
features are not supported:

• Synchronisation - As there is no shared state or locking mechanisms in Ensemble,
there is no need to synchronise. More generally, there is no need to support the
Java concurrency model.

• The Java Standard Library - Ensemble has its own standard library. Only a minimum
number of classes from java.lang are supported, with as few methods as possible.
These classes include Object, String and primitive wrapper classes. They are
necessary due to the use of Java source code in the compilation process.

• Reflection - Ensemble does not enable the use of reflection in applications. Apart
from the complexity that this would introduce, it also has the possibility to break actor
encapsulation. Consequently, no API support is available for reflection. Although
some type information is available at runtime for use with adaptation, it is only visible
to the runtime.

4.3. Ensemble VM Design and Implementation 90

Figure 4.2: Architecture of the Ensemble VM

• Interfaces - Ensemble does have an interface type, which is used to add channels to
actors. These interfaces are distinct from Java interfaces. As Ensemble is not object-
orientated, interfaces are not used to dictate the implementation of actors in the Java
sense. Although inheritance is used in the Java representation of an Ensemble appli-
cation, this is done for convenience and is not visible to the developer.

As these features are not used, the bytecodes associated with them have not been imple-
mented. Some features, such as multidimensional arrays and exceptions are supported, but
in a restricted fashion.

4.3.2 Structure of the Ensemble VM

The structure of the Ensemble VM is shown in Figure 4.2. Each VM represents a stage.
A stage is described as a memory space, rather than a physical machine, because multiple
stages may conceptually exist within a single machine. Note that this is not currently the
case, see Section 4.4.2.

The VM either executes as a process on Linux-based systems, or as the sole application on
InceOS-based systems. Within the VM, a thread is created for each actor. When the VM is
executing on Linux-based systems, the Pthread library [117] is used. When the runtime
is executing on InceOS, the InceOS thread library is used. Each actor thread executes C
code which interprets the bytecode representation of an actor’s behaviour clause. The thread
executes the interpreter in an infinite loop until explicitly told to stop in the language, at
which point the actor and its resources are garbage collected, and the thread exits. The
daemon actor is implemented in C, and is executed natively by a thread, rather than an
interpreter.

4.3. Ensemble VM Design and Implementation 91

Platform RAM Storage Processor OS Networking
Desktop 16GB 1TB Core i7: 4 cores @ 3.3GHz Linux Ethernet/wifi/Bluetooth
Laptop 8GB 500GB Core i7: 2 cores @ 2.4GHz Linux Ethernet/wifi/Bluetooth
GPU 4GB N/A 64 threads x 44 cores @ 1.03GHz Linux N/A

RaspberryPi 256MB 8GB 1 core @ 700MHz Linux Ethernet/wifi/Bluetooth
Lego NXT 64KB 256KB 1 core @ 60MHz InceOS Bluetooth
Tmote Sky 10KB 48KB 1 core @ 8MHZ InceOS Zigbee

Table 4.2: Specification of the Ensemble Supported Platforms

The VM maintains lists of the loaded classes. It also keeps lists of all created actors and
channels.

4.3.3 Supported Platforms

One of the key challenges being addressed by this work is the growing use of connected,
heterogeneous hardware platforms, and the challenge of programming such systems. In
order to show that applications using the actor model simplify programming such systems,
it was necessary to implement the EVM on a number of different hardware platforms. There
are currently seven supported hardware platforms, which are described in Table 4.2. The
platforms have been split into four equivalence classes which represent a range of different
scales of computing hardware:

• Highly-provisioned and parallel hardware in blue.

• Normally-provisioned or common hardware in green.

• Reasonably-provisioned hardware in orange.

• Highly-constrained or embedded hardware in red.

These platforms were chosen to show both the applicability of the actor model of computa-
tion at different levels of computing scale, and also the feasibility and usefulness of adapt-
ability across the platforms. Note that parallel hardware architectures, such as the GPU and
multicore platforms, are accessed via OpenCL, which is discussed in Section 4.5. Also, due
to severe resource constraints, the EVM is implemented in a reduced fashion on the Tmote
Sky platform. This is discussed in Section 4.6. Because of this, the EVM was ported to
the Lego NXT platform. Although it has more resources that the Tmote, it has substantially
less than the RaspberryPi, and is an example of an embedded hardware device. Time con-
straints prevented an implementation on a mobile phone, but this is the next logical platform
to support.

Excluding the Tmote Sky, each platform runs the same version of the VM (with appropriate
hardware drivers). Hence, given sufficient space on the platform, any Ensemble actor may

4.3. Ensemble VM Design and Implementation 92

execute on any platform without requiring cross compilation, recompilation, or modification
in any way. A complete discussion of the differences in the implementation for the Tmote
Sky platform can be found in Section 4.6, however, the main differences are that Ensemble
applications on this platform are statically compiled to a single binary, and do not support
inter-node adaptation. The embedded version does run Ensemble applications on the EVM,
but does not support location-transparent communication via channels, or the runtime cre-
ation or relocation of actors to different hardware platforms, although explicit inter-node
communication is supported.

4.3.4 Communication Model

In order to implement the communication model in the language, the EVM uses the function-
ality provided in InceOS which natively supports both actors, channels and their respective
operations. Example of these operations include send, receive, stop, and migrate.
As discussed in Section 4.2.2, the operations on actors and channels are implemented as
native Java methods which are modified by the linker to be custom invokenative byte-
codes, with the argument being the operation to perform. During interpretation, the EVM
will use this argument to call the relevant InceOS function, converting any arguments on the
Java stack to parameters to the C function. As these functions are well-defined, the number,
type, and order of arguments are known a priori. After the function has returned, the VM
removes the relevant arguments from the stack, as well as converts any returned values from
the C function and places them on the Java stack.

The functions which provide the channel operations mirror both the operations and seman-
tics described in the language, see Section 3.1.2. Although there are no locking mechanisms
in the language, the runtime requires their use to ensure serialised access to certain oper-
ations, especially data transmission. This is especially true on hardware platforms which
support parallel execution. When running on bare metal, InceOS has complete control of
interrupts and thread scheduling. Also, on these platforms there is only a single processing
core, meaning that briefly disabling hardware interrupts is sufficient to guarantee serialised
code execution. When using Pthreads, scheduling is more challenging. In this case, a single
mutex is used to ensure serialised access to all channel code, as well as a single mutex for
actor code. As channels and actors contain references to each other, and actors operate in
parallel, two separate mutexs are required because some actor and channel operations require
access to both data structures, and some only require access to a single data structure.

The use of a global lock simplifies the implementation and saves on space, but acts as a bot-
tleneck because actors are fully isolated entities which are capable of executing concurrently.
In the future, it is possible that for resource rich platforms, the VM could be implemented
with a per actor/channel locking mechanism. Indeed, a formally verified proof already exists

4.3. Ensemble VM Design and Implementation 93

for the send and receive operations [118]. As stated at the beginning of this section, there are
many ways to implement the language model.

Scheduling

An advantage of using blocking communication is that the interaction of actors via blocking
channels naturally dictates the scheduling policy of the actors themselves. An actor which
has blocked on a channel can only become eligible to run through the rendezvous of channel
actions; the most recent rendezvous action unblocks the actor. This is possible as each
channel is aware of the actors to which it is connected; thus when a channel action occurs,
only the relevant actors are examined. For actors which are compute intensive, the runtime
uses pre-emption to ensure execution fairness. Currently, user actors are scheduled in a round
robin manner, with priority given to system actors. The exploration of different scheduling
patterns or the use of priorities at runtime is left for future work.

Duplicating Data For Communication

As discussed in Section 3.1.2, data is normally duplicated when sent across channels in
order to preserve the shared-nothing semantics of the actor model. When channels are sent
between actors, it is not enough to duplicate the channel object to be sent. In addition to
creating a new channel and replicating any existing connections to other channels, the new
channel must be adopted by the receiving actor. Adoption is the process of adding a reference
between an actor and a channel, as well as a reference between the channel and the actor. This
bidirectional relationship is necessary for channel connections and communications, as well
as actor scheduling: a channel must always be owned by an actor. The onReceived()
function in both the ChannelIn and ChannelOut classes is used to execute adoption
when a channel is received, otherwise it is invoked directly by the runtime.

4.3.5 Memory Model

The EVM is a stack-based VM, like the JVM. An alternative register-based model was
rejected due to the large memory requirement, despite the better potential for optimisa-
tions [119]. By comparison, stack-based bytecode tends to be slower but smaller than equiv-
alent register-based code. Using fewer resources is generally beneficial, however, the need
to limit memory consumption was required for certain hardware platforms, Section 4.6.

4.3. Ensemble VM Design and Implementation 94

Slot Size

To support the stack-based model, a new call frame or stack frame is allocated for each
procedure call. Like the JVM, the Ensemble VM allocates a new frame from the heap as
required, as opposed to using a static number of pre-allocated frames.

Every call stack frame has an operand stack consisting of fixed-size slots. Local variables
are stored in separate slots of the same size. The JVM specification requires slots to be 32
bits, to match the word size of common desktop CPUs. Values of all data types occupy one
slot, except for long and double, which occupy two. However, instructions are defined in
terms of the number of slots upon which they operate, with no reference to the actual size of
the slots. This means that the slot size can be changed without any change to the bytecode,
as long as each data type still occupies the same number of slots. This is relevant for the
discussion in Section 4.6.2.

Stack Frames

A minimal stack frame with no slots and no local variables occupies 32 bytes of RAM, with
each additional slot or variable requiring four bytes. The number of slots and variables used
by a method is known at linktime, so the whole frame can be allocated as a single unit.
This has the advantage that only the memory currently required is used by the VM stack,
rather than pre-allocating a stack based on the worst case need. Memory must be allocated
in advance for an actor’s C stack, which is used to run the interpreter and native methods.
This is on the order of a few hundred bytes per actor when using InceOS, and is an internal
default value when using the Pthread implementation on Linux.

A stack frame contains a pointer to the previous stack frame, the return address, a reference to
the method being executed by the frame, and arrays for the operand stack and local variables.
Additionally, stack frames contain bitmaps used to track which of the operand stack slots and
local variables contain references; this is currently required for garbage collection

Objects

All objects are allocated on the heap. A class definition includes a reference to the class’s
superclass (as in standard Java, all classes descend ultimately from Object), the size of its
fields, and a virtual method table.

When an object is instantiated, space is allocated for its fields. Unlike stack slots, fields can
differ in size, and are packed in memory. The size of a field must therefore be known when
accessing it. A standard JVM keeps this information in the constant pool, but the EVM in-
stead uses new type-specific versions of the getfield and putfield instructions. These

4.3. Ensemble VM Design and Implementation 95

have been introduced for the different field sizes to reduce the amount of information con-
tained in the classfile. The instruction to use in each case is chosen at linktime.

Some classes are treated specially. String contains a pointer to a native string. Arrays
contain a pointer to a native array, as well as the size, dimensions, and element class of the
array. The class of an array itself is the special placeholder array class, and variants of the
instanceof and checkcast instructions have been introduced to test the element type
and dimensionality of arrays. Additional space is allocated for these classes by the VM.

Static Fields

Ensemble does not support static fields as they could break the strict encapsulation of actors.
They are not allowed in bytecode programs.

Garbage Collection

The VM uses the reference counting garbage collector provided by InceOS. All objects
are reference counted. Bytecode instructions which manipulate objects also increment and
decrement the reference counts appropriately. The choice to use reference counting is be-
cause the EVM is built upon InceOS which was designed for embedded systems, where the
need to efficiently return memory to the heap as soon as possible is required. This said, the
choice of garbage collection technique is orthogonal to the use of actors.

It is necessary to monitor, at runtime, which slots and local variables in a stack frame cur-
rently contain references, so that when a method returns, their reference counts can be decre-
mented appropriately. This is done using bitmaps which are allocated along with the stack
frame.

As with any basic reference counting system, the InceOS collector cannot handle cycles in
the object graph. To some extent the Ensemble language mitigates this by always duplicat-
ing complex data types which are sent over channels, however, as structures may reference
each other, cycles are possible. Also, should the user circumvent the language rules (e.g. by
providing hand-written Java code to javac), then the system cannot guarantee that objects
will be collected. The presence of cycles can be mitigated through the use of cycle detec-
tion [120] or the use of a tracing collector. This would either require a modification of the
existing mechanism, or the implementation of a new garbage collector, respectively.

In the Ensemble VM, the use of reference counting influences how out-of-memory condi-
tions are handled. In most reference counting systems, a tracing collector is present as a
backup. This is run when there is not enough memory to service an allocation request, so
that any cycles no longer needed can be collected. Only if there is still insufficient memory is

4.4. Adaptability 96

an out-of-memory error signalled. In the Ensemble VM, however, no such backup collector
is currently present. An out-of-memory condition results in an exception being thrown; if
this is not handled, the actor is restarted. If the VM itself has insufficient memory to generate
the error, it will fail. This is particularly problematic on embedded systems where failure is
hopefully indicated by a flashing led.

Movability

The use of movability in Ensemble was primarily designed for highly resource-constrained
platforms, as the increased heap usage and fragmentation can represent a non-trivial reduc-
tion in the amount of available RAM. Consequently, it was important that the correctness of
movability be determined at compiletime, rather than runtime. As a result, the only manifes-
tation of movability at runtime is that the compiler will not generate code to duplicate data
allocated from the movable heap before being sent over channels.

Also, even though the language model describes two heap spaces, there is only a single
heap from which all data is allocated. The compiletime analysis ensures that data from the
two conceptual heaps will not interact. Movable channels sent between actors must still
be adopted upon receipt; even without duplication, they must transfer ownership from the
sender to the receiver.

4.4 Adaptability

This section describes how adaptability is implemented - specifically, the ability to discover
actors and stages, use channels to communicate with other actors regardless of location, as
well as the ability to spawn, migrate and replace actors at runtime. As noted previously,
the shared-nothing semantics of actors, coupled with explicit message passing, presents the
perfect computational model for distributed and adaptive computing. While other actor lan-
guages support spawning actors, this work is the first to natively support the strong migration
of running actors between different types of hardware platform from within the language.

4.4.1 Discovery

The discovery of actors and stages at runtime is split into two parts: how these language
types are identified and referenced, and how the runtime supports interacting with different
platforms across different technologies.

4.4. Adaptability 97

The Query Type

As described in Section 3.4.2, queries are used to identify sets of actors or stages at run-
time. To achieve this, the boolean expression within the query definition is converted into
a bytecode representation at compiletime. As only primitive values may be used, the byte-
code need only express simple arithmetic or boolean operations. The only exception is the
can run() operator, which is encoded as a bytecode itself. Hence, the interpreter for these
operations is much simpler than the interpreter of the actor’s behaviour.

Using the values and boolean operations from the query definition, a query instance is
created at runtime. This cannot happen at compiletime as a query may use variables, the
values of which are not known at compiletime. The compiler will generate a list of bytes
representing the boolean operations, in the order which they should be executed. Also, the
depth of the stack required to compute the query is calculated at compiletime, so that only
the required amount of stack space is allocated when the query is evaluated. The stack size,
the array of bytecodes, and the list of values used in the query are stored in the runtime query
representation. In this way, a query represents a closure.

Discovery Through the Runtime

When an actor attempts to locate another entity via the findActors(), findStages(),
or findReplaceableActors() operations, the specified query is sent to all stages in
range. If actors are being searched for, an interface is also sent. Network communication is
discussed later in this section. In the language, an interface type is specified, however, the
compiler will generate a string-based encoding of the interface, using the approach discussed
in Section 4.2.3.

Before the query is transmitted, it is encoded. To reduce the size of the transmitted informa-
tion, all data is encoded once, with each bytecode operation referencing this data. References
are 8-bits long, limiting the number of unique values in a query to 256; this limitation has not
yet proven restrictive. This optimisation is useful when the same value is compared multiple
times, for example, when comparing that a value lies between certain limits.

Once received by a stage, the discovery type is checked. If for actors, the interface encoding
is compared against all actors which have been published at this stage. Only actors that have
an interface containing channels which match the supplied interface may be queried. An
actor may have multiple interfaces, but only one need match. However, if looking for an
actor which may be replaced, the specified interface must match all the interfaces of an actor
for it to be queried. As the interfaces are represented as strings, the matching is a string
comparison. This does not apply to stages as they do not use channels or interfaces.

4.4. Adaptability 98

Next, the boolean expression of the query is executed by a simple stack machine against
the values in the query, and either the properties of the local stage, or the properties of each
eligible actor depending on the type of discovery.

For actors, the properties are static entities which were explicitly published. A property
consists of a key and a value. The remote keys (Section 3.4.2) which are used in the query
are place holders for the keys of the properties of the actor currently being examined. If there
is a match between the name and type of a remote key and the key of an actor’s property, the
value of the actor’s property is used in place of the remote key in the query. If there is no
match, or the types do not match, that particular clause of the expression evaluates to false.
Hence, a valid result is obtained if the actor does not have properties which match those used
in the query. This is useful as an actor may have similarly named properties with different
types. Should the boolean expression which represents the query evaluate to true, a remote
reference is constructed for the actor and the channels of its matched interface. This is then
repeated for all other eligible actors.

For stages, only its name is a static value. All other values are determined at runtime as they
reflect resources which change at runtime, such as the amount of RAM currently available
at a stage. Section 3.4.3 describes the currently supported stage properties. In the query,
these runtime values are accessed in the same manner as remote keys. However, rather than
returning a static value, the runtime will be queried to produce the requested value. If this
stage meets the criteria of the query, a remote reference is constructed and returned to the
querying actor.

A stage’s properties are inherited by the actors who execute within it. Hence, actors may
be discovered using attributes of the current runtime environment, as well as their own in-
dividual properties. This is useful when looking for existing actors to perform tasks. For
example, if looking for an actor to perform processing, it would be useful to eliminate actors
on stages who have high CPU usage. Unlike the other static properties, the #DISTANCE
property is not implemented in the same manner across all platforms. This property is used
to represent the physical distance between stages or actors during a query. At present, this
is only implemented via Bluetooth, using the Received Signal Strength Indication (RSSI). If
not implemented by a stage, the relevant clause will return false. This value can be used in a
coarse-grained way to detect locality to other stages, and could be expanded to accommodate
the RSSI of wifi, or even use GPS if available. This approach would require a standard def-
inition of distance which could be mapped to the underlying technology. The use of meters
would be the most likely choice as they are standardised.

Once all appropriate references have been constructed, they are sent back to the initial query-
ing actor. If there were no references, then no reply is sent. At the initial stage, an array is
created and populated with any received references. Note that this array may be empty if

4.4. Adaptability 99

no replies are received before the discovery timeout fires, discussed in the following section.
This array is then placed on the call stack, and represents the return value of the search. As
this is a standard array, it may be used in the same manner as any other array in the language.
The VM will appropriately handle the reference counts of any arguments on the stack.

In addition to contacting remote stages, the VM will also query any local published actors
and the local stage. In this case, there is no need to encode or transmit any data. The same
query process is used as for remote actors. Any eligible actors are added to the list of actor
references.

Discovery Through the Ether

The discovery process in Ensemble is based on the idea of Zero Configuration Networking, as
discussed in Section 2.2.4. This approach was chosen for two reasons. Firstly, given the dif-
ferent equivalence classes of hardware devices, the different networking hardware that they
use, and the fact that some hardware platforms are physically mobile, it was not practicable
to assume that there would be a central oracle (name server/broker) which devices would
be able to query and register. Secondly, given that the goal of this work was to explore the
use of applications which are reconfigured at runtime, a centralised repository of data may
either become outdated quickly, or would require a large amount of network communication
to keep the information up-to-date.

To facilitate the discovery of actors and stages described in Section 4.4.1, the runtime uses
a range of communication technologies to discover and interact with different physical ma-
chines. For platforms using Ethernet or wifi, IP multicast [121] is used to locate the devices
concurrently. Each device will then respond via TCP if it has eligible references to commu-
nicate. The information required to create a connection is supplied in the initial multicast
information. Devices using Bluetooth require a discovery phase to locate all devices in
range, and then each device in turn is connected to and communicated with. The Zigbee
radio transceiver found on embedded devices uses primitive broadcast and receive actions.
These operations can be combined with flood [122] and AODV-based [122] protocols to
enable more advanced forms of communication.

Ensemble uses an on-demand approach to discovering other entities at runtime. When an
actor performs a publish, the list of properties and the visibility of the actor is recorded
at the local stage. No information is communicated to other physical machines. When one
actor attempts to locate another actor or stage, it will broadcast this request through one or
more communication media, depending on the radios which are supported on the current
device.

It is important to note that the language model does not dictate this approach to discovery,
and it would be equivalent to use a dedicated infrastructure. Indeed, for enclosed networks of

4.4. Adaptability 100

computer hardware, such as clusters or data centres, it may be appropriate to have a hierarchy
of oracles in order to prevent the flood of discovery requests which may occur in the default
implementation. This would help as the number of stages increases.

4.4.2 Location Transparency via Channels

It is the responsibility of the runtime to enable channels to be used in a location transparent
way. This means that the blocking rendezvous communication model must be replicated in
a distributed context to maintain the same semantics as the local case.

The representation which is used for a channel is extended to indicate if it is a local channel,
or reference to a channel in a remote stage. In this way, there are few changes required to the
non-distributed version of the runtime. Each remote version of a channel keeps a record of
a unique runtime ID associated with this channel, the direction of this channel (in or out),
and the stage at which this channel is located. The type of the channel does not need to be
specified as there is no way in the language to gain a reference to a channel without knowing
its type, hence the compiler will ensure that all interaction with this channel is legal. The
rules for using such a channel are described in Section 3.1.3.

Distributed Channel Interactions

To minimise the impact on the runtime, the existing functions which implement the channel
operations were extended to accommodate remote channels: no change was made to any
function API. Instead, the C structs used to represent channels were modified to indicate if
they are local or not. This information is used to determine if a local or remote channel
operation is invoked.

In the language, two connected channels will stay connected until explicitly disconnected,
or an error occurs. In the runtime, when two remote channels are connected each channel
will create a proxy to represent the remote channel and store it locally. As well as informa-
tion about the other channel, the proxy will store information about the location of the other
channel. This includes the network address of the physical machine where the remote chan-
nel is located. Unlike the language, the runtime does not use persistent connections between
connected channels. Instead, each time an actor wishes to perform a channel operation, a
new connection must be made to the remote platform. The format of the network address is
used to determine which network technology should be used - i.e. TCP, Bluetooth, Zigbee.
Given the unreliable nature of both the hardware platforms and communication technologies
used in this work, it would be infeasible to guarantee persistent connections; this is also the
conclusion of the Ambient system [123]. Also, the presence of persistent connections in
the Erlang runtime between different nodes acts as a limiting factor to the scaling of Erlang

4.4. Adaptability 101

applications [124]. Furthermore, migrating actors with open TCP connections would require
kernel modifications. Finally, by not being bound to a single communication technology,
others could be used if the primary choice is not available: e.g., there is no wifi signal, so try
Bluetooth.

Once a connection has been made between two channels, the semantics of send and receive
are the same for both local and remote communication. The only difference is that when the
runtime attempts to check the state of a remote channel, it must first create a connection
to the remote stage. Additionally, these channel actions may now generate an exception if
an error occurs. The possible exceptions are described in Section 3.1.7. If a channel has
multiple connections, remote and local channels have an equal likelihood of being chosen.

The logic of select is slightly different. The first phase of select is to build a list of
eligible channels from those specified to be selected from. Should one of these channels be
remote, the remote stage will be contacted to get the state of the remote actor. Normally,
if this list contained multiple channels which are ready to send, one would be chosen non-
deterministically and the data transferred. However, if in the first phase a remote channel is
found in a state that can pass information, it will automatically be selected as the channel to
be used and its data transferred, without considering other channels. This is required as there
is no distributed lock: if a remote channel is found in a usable state in the first phase, by
the time it is queried in the second phase, it may no longer be usable, even if other channels
are. By this point, the select will have blocked on that remote channel, assuming that it had
data. This could lead to deadlock, hence, a remote channel with data will be selected and
received from in the first phase. To ensure fairness between local and remote channels in the
first phase, the order in which the channels are examined is rotated in a round robin manner
between select operations. Again, remote and local channels are of equal priority.

Channel operations within a stage are protected by a lock (Section 4.3.4). Hence, it is nec-
essary to regulate the actions of distributed channel operations to avoid distributed deadlock.
Table 4.3 describes the interactions of channel operations in a distributed context, and how
such deadlock is avoided. Each row indicates the action being performed and how it reacts
when it encounters the action specified in the column. ** means that the encounter can not
occur.

Remote disconnection is different from other operations as it is a lazy operation. When an
actor invokes the disconnect operation on a channel, any connections to local channels
are removed, but only the local references to remote channels are removed; the remote chan-
nel is not informed that the connection has been dissolved. Instead, when the remote channel
attempts to communicate with this channel, the stage where the channel is expected will re-
ply, indicating that there is no longer a connection. In this way, the disconnection notification
is deferred, but still obeys the channel communication rules of the language.

4.4. Adaptability 102

Daemon Actor

When created, a stage will instantiate a daemon actor. This actor has no channels. The
daemon actor is implemented in C and is responsible for handling incoming discovery, adap-
tation and communication requests.

As discussed previously, discovery is implemented using zero configuration, rather than us-
ing a dedicated infrastructure. The daemon actor is responsible for listening to such messages
from the network, processing them, and replying. It is the daemon actor who performs the
evaluation of queries against published actors.

For channel operations in general, the daemon actor is responsible for listening and accepting
connections. It then either invokes the requested channel operation on the correct channel,
or replies to the requester indicating an appropriate error, such as CHANNEL NOT FOUND.
For operations on channels which are found, the daemon uses modified versions of the
send, receive, select, and connect functions to complete the requested action. The
daemon actor is also responsible for accepting and processing incoming actor spawn and
migration requests.

4.4. Adaptability 103

Se
nd

R
ec

ei
ve

Se
le

ct
C

on
ne

ct
D

is
co

nn
ec

t

Se
nd

**
Se

nd
ha

s
pr

io
ri

ty
.

Se
nd

ha
s

pr
io

ri
ty

.
C

on
ne

ct
io

n
re

tu
rn

s
su

cc
es

s
as

se
nd

im
pl

ie
s

co
nn

ec
tio

n.
Se

nd
co

nt
in

ue
s

no
rm

al
ly

.

D
is

co
nn

ec
t

ha
s

pr
io

ri
ty

.
Se

nd
w

ill
di

sr
eg

ar
d

th
is

ch
an

ne
l

an
d

re
m

ov
e

th
e

co
nn

ec
tio

n.

R
ec

ei
ve

R
ec

ei
ve

rw
ai

ts
.

**
**

C
on

ne
ct

io
n

re
tu

rn
s

su
cc

es
s

as
re

ce
iv

e
im

pl
ie

s
co

nn
ec

tio
n.

R
e-

ce
iv

e
co

nt
in

ue
s

no
rm

al
ly

.

D
is

co
nn

ec
t

ha
s

pr
io

ri
ty

.
R

e-
ce

iv
e

w
ill

di
sr

eg
ar

d
th

is
ch

an
ne

l
an

d
re

m
ov

e
th

e
co

nn
ec

tio
n.

Se
le

ct
Se

le
ct

w
ai

ts
.

**
**

C
on

ne
ct

io
n

re
tu

rn
s

su
cc

es
s

as
se

le
ct

im
pl

ie
s

co
nn

ec
tio

n.
Se

-
le

ct
co

nt
in

ue
s

no
rm

al
ly

.

D
is

co
nn

ec
t

ha
s

pr
io

ri
ty

.
Se

le
ct

w
ill

di
sr

eg
ar

d
th

is
ch

an
ne

l
an

d
re

m
ov

e
th

e
co

nn
ec

tio
n.

C
on

ne
ct

C
on

ne
ct

io
n

re
tu

rn
s

su
cc

es
s

as
se

nd
im

pl
ie

s
co

nn
ec

tio
n.

C
on

ne
ct

re
tu

rn
s

su
cc

es
s,

as
th

e
re

ce
iv

e
m

ea
ns

th
e

co
nn

ec
tio

n
al

-
re

ad
y

ex
is

ts

C
on

ne
ct

io
n

re
tu

rn
s

su
cc

es
s

as
se

le
ct

im
pl

ie
s

co
nn

ec
tio

n.
R

et
ur

n
su

cc
es

s.
C

on
ne

ct
io

n
fa

ils
.

D
is

co
nn

ec
t

D
is

co
nn

ec
tr

et
ur

ns
su

cc
es

s
D

is
co

nn
ec

tr
et

ur
ns

su
cc

es
s

D
is

co
nn

ec
tr

et
ur

ns
su

cc
es

s
D

is
co

nn
ec

tr
et

ur
ns

su
cc

es
s

D
is

co
nn

ec
tr

et
ur

ns
su

cc
es

s

Ta
bl

e
4.

3:
R

es
ul

to
fS

im
ul

ta
ne

ou
s

D
is

tr
ib

ut
ed

C
ha

nn
el

O
pe

ra
tio

ns

4.4. Adaptability 104

As the daemon actor is used to demultiplex incoming messages to the relevant actor, there
may only be a single stage per physical machine because the daemon will use the network
address (IP/Bluetooth) of the machine that it is at to be contacted. Hence, to support multiple
stages per machine some mechanism to demultiplex incoming messages to stages is required.
Then the daemon within each stage can deliver messages to the correct actors. This is a
similar problem faced by MPI [57]. In MPI, this is solved by the inclusion of a daemon
process where each new MPI process must register with this daemon at creation. The daemon
will then forward relevant messages to the appropriate process. In this way, a single network
address can be shared, and multiple stages may exist per physical machine. A similar scheme
is envisaged for this work.

Marshalling and Demarshalling

In order for data to be sent between remote actors it must be translated to a stream of bytes
and then reconstructed at the remote end. The runtime will automatically marshal and de-
marshal any data type in the language, language defined or otherwise, without intervention
from the user. There are many different approaches to this, including a number of libraries
for C2, Python3, and Java4. Rather than use an existing library, which may not even fit on
some of the targeted hardware platforms, custom data marshalling is used. This also benefits
from being tightly integrated with the VM.

Data marshalling is based on the existing reference counting system. When an object is to
be garbage collected, its references are visited. This will continue until a language defined
object is encountered. For each language type, there is a pre-defined destructor function. For
marshalling, an equivalent set of functions are defined which encode the type to a stream of
bytes. Hence the same graph traversal is used. This graph traversal is done twice: once to
calculate the amount of space required for the marshalled data, and once to encode the data.

At the receiving end of a remote channel, there is no reference graph to follow. Instead, the
string encoding of the data type the channel conveys (Section 4.2.3) is used to reconstruct
the object(s). This has the advantage that neither the type nor associated classes need to
be transmitted, as the compiler gives two guarantees. Firstly, two connected channels will
convey data of the same type, meaning that data will always be decoded correctly. Secondly,
as the data type conveyed by the channels must have been defined prior to the declaration of
the channels, the class files representing the transmitted data type will be available at both
the sending and receiving stages. Hence, class files need not be transmitted with the data
itself. This is a strong advantage of using typed channels, rather than sending all data types

2https://github.com/protobuf-c/protobuf-c - Accessed March 2015
3https://docs.python.org/2/library/pickle.html - Accessed April 2015
4http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html - Accessed May 2015

4.4. Adaptability 105

to a single actor’s mailbox directly, as in many actor languages.

This said, one complication is a channel which convey data of the any type. In this simple
case, the receiving channel will only need to know that the data is of the any type, hence
of type Object. However, should the application ever wish to access the inner data type,
it must be reconstructible. Consequently, when data of type any is sent, both the data and
an encoding of its type must be sent. The inner data type will then be reconstructed using
the encoded type information, rather than the type of the channel. Using this information,
the data will be reconstructed if an appropriate class can be found, otherwise, the data will
remain in an encoded state. The resulting data will be wrapped in an Object to create an
any type. This data type can be used as normal, including being used with the project
statement.

The project statement uses the instanceof instruction to determine if two objects are
of the same type. From a linguistic point, this guarantees that the application either has
a definition of the any’s inner type, and can be used safely, or the inner type cannot be
accessed. For the VM, this means that there is a class file for the inner data type. If no class
file is found, the instance of the any (Object) type can still be assigned to or sent to other
actors, but the inner type is inaccessible.

4.4.3 Actor Adaptation

Given the encapsulation of actors, they represent the perfect unit to enable modular program
composition, but also the perfect unit to enable runtime adaptation. Ensemble enables this
to be expressed natively as a part of the language (Section 3.4), hence the VM must support
this. This adaptation is split into spawn, migrate, and replace.

Spawn

The purpose of spawn is to create a new actor. Unlike the new operator, spawn is responsi-
ble for creating a new actor at a specific stage. This stage can either be the same as the current
stage, but more likely a different stage on a different physical machine. In either case, the
process is the same from a linguistic perspective, however differs within the runtime. Also,
unlike a new operation, a spawned actor may be created with or without a reference to it.
This either replicates the new operation in a potentially distributed context, or offers a fire

and forget approach to actor creation. The latter can be useful for a factory actor which is
asked to create an actor, but does not need to reference it.

The process of spawning an actor at a stage consists of transferring the class files of the actor,
any initial state, and the class files upon which the actor depends to a specified stage. Once
all state has reached the remote stage, a new instance of the actor is created.

4.4. Adaptability 106

Initially, a connection is made with the specified stage using the information stored within the
stage object which is passed to the spawn statement. If a connection cannot be established,
an exception is generated at the spawn call site, and the spawn is aborted. If the connection
is successful, the classes which the actor is dependent upon, as described in the actor’s class
file (Section 4.2.3), are encoded for transmission along with the class for the actor.

To ensure that all transitive dependencies are met, the dependencies for all types must be
found and encoded for transmission, including those not directly referenced by the actor.
This is done recursively at runtime. As described below, Ensemble does not use on-demand
loading of classes like Java, instead requiring that all class files be present before an actor is
executed at a stage.

In addition to the class files, if an actor to be spawned is passed any values or variables via
its constructor, these will be marshalled using the approach described in Section 4.4.2. This
data will then be added to the encoding along with which particular constructor should be
invoked.

Assuming successful transmission, the remote stage will first decode and allocate space for
each transmitted class which does not already exist at the stage. Each stage maintains a list
of all loaded classes. The remote stage will then create a temporary stack. Any values or
variables which have been supplied for the actor’s constructor are pushed to the stack. The
constructor will then be invoked, and the actor created in a paused state. No type-checking
need be performed at this point, as the Ensemble compiler has already guaranteed that any
values are legal for the specified constructor. After the actor is created, the temporary stack
and its contents are garbage collected. The remote stage will then communicate to the actor
that invoked the spawn that the new actor was created successfully. Both local and remote
actors will then continue execution. Otherwise, the remote stage will indicate why the actor
was not spawned, perform the necessary garbage collection, and a relevant exception will
be generated at the spawn call site. The set of potential exceptions are the same as when
invoking a new operation, with the addition of the StageNotReachableException.

The above describes the process for actors which are spawned without any reference. For
actors which require references, once the new actor has been created in a paused state, the
remote stage will create a reference for it and its channels. This is the same type of reference
as is returned for actors found using the discovery mechanism. This reference is then trans-
mitted to the invoking actor together with the confirmation that the new actor was spawned
successfully, and both actors continue with their execution. Otherwise a relevant exception
is generated as before. Should the specified stage be the local stage, the runtime will treat
this as a special case and create the actor locally in a similar manner to a new operation.

An obvious optimisation would be to add an extra step before the transmission of the data
which conveys the classes which are about to be transmitted. Here, the remote stage could

4.4. Adaptability 107

indicate which classes are already present, thus potentially reducing the number of classes
which need be sent. Unlike the JVM, which uses on demand loading of classes, the Ensemble
runtime ensures that all required classes are present at a stage before an actor is instantiated.
Although this approach may transfer classes which are not used, it ultimately simplifies the
system, and guarantees that all dependencies will be met at the completion of the spawn. This
is the same approach as in Emerald (Section 2.1). Given the unreliable runtime environment
being explored in this work, it may not be possible to load a class from across the network
at a later date, as the physical device may no longer be accessible. Also, it was decided that
exposing class loading errors would unnecessarily complicate the language.

Migrate

Migration of an actor is where an executing actor will pause its execution, relocate to a
specified stage, and then continue execution. As described in Section 3.4.4, this is supported
natively in the language, and enables fine-grained adaptation of Ensemble applications.

As in a spawn, the actor’s class files must be transmitted, but also the state that it possesses
and the stack upon which it is currently executing. It is important to note that this state
includes all channels and their connections. This is an example of strong migration.

To migrate an actor, the classes upon which the actor depends are encoded in the same
manner as for spawn. Next, the state of the actor, including its channels, are encoded using
the marshalling mechanism discussed in Section 4.4.2. This includes any messages which
are in the buffer of an in channel. After the classes and the state, the actor’s stack is serialised.
The stack represents the current execution state of the actor and consists of the call frames
of any invoked procedures plus a frame for the behaviour clause.

The data to migrate an actor is encoded as a data pool and a stack. The data pool contains the
marshalled data items, and the stack consists of the stack frames, with offsets into the data
pool for any object references. This saves space for objects which are referenced multiple
times.

Once the transmission is received, the data objects, including the actor, are reconstructed.
Also, the reference counts for each object must be restored. If the counts are not recon-
structed correctly, this will cause memory errors as the actor executes and attempts to release
memory to the heap naturally. At this point, the stack is rebuilt, with all values and variables
popped onto the stack in the correct places. The interpreter is then pointed to the bytecode
after the bytecode which invoked the migration, and the actor is placed in a paused state.

Once the initial stage has received confirmation that the actor has migrated successfully,
the final action is to delete the local actor, return any resources which it used, and tell the
migrated actor to continue execution.

4.4. Adaptability 108

Note that migration must maintain any channel connections between both the actor being
migrated and the actor connected by the channel. This is the responsibility of the migration
operation after the actor has been reconstituted at the new stage. While the actor is being
migrated, it is placed into the MIGRATION state. This is done to prevent channel operations
reaching inconsistent states: for send attempts, the actor will not be in a state which is
eligible to receive data, hence the sending actor will either try another connection, or block.
For connection attempts, the actor will appear as being not found, and generate an exception
at the connecting actor (Section 3.4.5). In this case, the connecting actor must try a different
channel or perform another discovery to locate it at its new stage. Once the actor has been
reconstructed at the new stage, it is placed back into the RUNNING state, and must then
recreate any connections which existed before the migration. This uses the existing connect
mechanism. Should the actor now be co-located to any previously remote channels, both
ends of the connection will be given local channel representations to increase performance.

If an actor requests to migrate to the local stage, migration does nothing and execution con-
tinues locally.

If there are any exceptional conditions, such as connection failure or lack of RAM on the
new stage, the migration will be aborted and an exception will be raised at the migration call
site. Any allocated resources at the remote stage will be released.

Replace

Section 3.4.4 describes the process and requirements on locating and replacing actors. Al-
though this is implemented in the language, it is not completely implemented in the runtime.
Locating replaceable actors is supported, but the actual replacement is not.

Once appropriate actors have been found, replacement is envisaged as an advanced form of
spawn. As well as relocating the relevant class files to the new stage and creating the actor,
the new actor must also assume the channel connections of the existing actor. As described
in the language, no consideration need be made for the state of the existing actor.

The one potential flaw with this approach is regarding channels which have been created at
runtime, rather than declared in the interface. As these are not visible during discovery, even
with findReplaceble(), there is the potential to cause unforeseeable application level
logic errors. There are two points to consider here:

Firstly, any channel which is sent across another channel is not directly usable by the sending
actor. Either a duplicate of the channel is sent, in which case two distinct channels are
created, or the channel was movable and cannot be used until a new assignment is made. As
the sent channel is unusable by the sending actor in a meaningful way, replacement will have
no effect. Secondly, if two opposite channels are created at runtime from the heap, connected

4.5. OpenCL Integration 109

together, and one is sent to another actor, a problem would exist. In this case, the channel
which is not sent can be used to communicate in a meaningful way with the other channel
which has been sent. As such channels are not present in an actor’s interface, there is no way
to know of their existence using the current approach. Should such an actor be replaced, the
interaction with other actors could become broken. This can be avoided by always declaring
the channels to be used within the interface, and is a coding idiom of the language. However,
this represents a limitation of this approach.

As well as knowing which actors can be replaced, it is important to know when an actor can
be replaced, such that the logic of replacement can be reasoned about. When an actor invokes
the stop statement, it will exit the next time it completes all code in its behaviour clause, at
which point the actor’s resources are returned. By having the execution finish at this point,
it simplifies the reasoning of stopping the execution of this actor, and its interaction with
others. The same logic will be used for replacement. When an actor is to be replaced, it will
exit after having completed executing all code in its behaviour clause. At this point, a new
actor with the same channels and connections would be created before the original actor is
destroyed. Unlike stop, the replacement of an actor may be performed by another actor, as
well as by itself.

4.4.4 Stage Adaptation

Currently, stages exist in a single physical location and cannot be migrated. However, Sec-
tion 3.4.6 described the potential advantages to moving a stage. To this end, stage migration
can be considered as the migration of its constituent actors and its name from one physical
location to another. As the mechanisms exist to migrate actors, the process of migrating a
stage is mostly implemented and would only require some functional abstraction to carry out
the procedure. Given time constraints, this was beyond the scope of this project, however,
would be useful in future work to enable exploration of the migration of computation at both
the fine grained actor level, as well as the coarse grained stage or application level.

4.5 OpenCL Integration

As described in Section 3.3, Ensemble uses actors to abstract accelerator-based programming
of parallel hardware platforms, such as GPUs and multicore CPUs. Specifically, Ensemble
actors are used to represent OpenCL kernels (Section 3.3.1), with the explicit data movement
between the host and parallel hardware device (accelerator) being represented by channel
communication. The remaining boilerplate code is automatically handled by the runtime. In
this way, the actor model of computation is used to simplify kernel-based concurrency.

4.5. OpenCL Integration 110

In order to add OpenCL support into the Ensemble runtime, a number of modifications were
made. Firstly, support for OpenCL is optional, and conditionally compiled into the runtime.
This was necessary to ensure that RAM and ROM on resource-constrained platforms without
OpenCL support were not unnecessarily consumed. In this way, the same source tree is still
available for multiple platforms, reducing maintenance and update effort.

Secondly, during the initialisation of the runtime, a single matrix is created to hold refer-
ences to the different platforms and devices available in this system. This is done to en-
sure that there is only a single command queue per device, rather than each kernel actor
creating a new one. This was necessary as race-conditions were observed with multiple
command queues per device when reading data. The information passed in the declara-
tion (Figure 3.13, line 21) of an OpenCL actor is used to index into this matrix at runtime to
determine the appropriate context and command queue. If no information is given in
the declaration, default values are used.

Thirdly, OpenCL wrapper functions were created and made available to the interpreter to
simplify and abstract the interaction between the VM and the OpenCL API.

4.5.1 Interpreter

Within the interpreter, all OpenCL operations are implemented in C for performance. Each
operation described in Section 3.3.1 is implemented as a custom native operation in the VM
which is invoked by the invokenative bytecode. Also, each OpenCL actor is given
an OpenCLEnvironment variable. This is a runtime structure only visible within the
interpreter that is used to store metadata about the platform, device, and device type, as well
as the relevant command queue and context for a given OpenCL actor. This structure
is populated when the actor is created using the information contained in the previously
described runtime matrix.

4.5.2 Lazy Evaluation

In OpenCL, a common idiom is to leave data on a device for as long as possible, thus reduc-
ing the time spent copying data between the device and host, and ultimately the application’s
execution time; data movement is often the largest performance bottleneck. In actor-based
languages there is no shared state, hence when messages are sent between actors, a duplicate
is created and sent. This ensures no shared state between the actors, and that each actor
has a unique copy of the data. While this is correct, it costs time, requires greater memory
consumption, and precludes keeping data on the device.

4.5. OpenCL Integration 111

To prevent such duplication, Ensemble supports marking non-primitive types as movable
(mov), as discussed in Section 3.2. This approach has been applied to the OpenCL kernels
in Ensemble. Marking the in channel to the kernel actor used for data as moveable (mov)
has two effects. Firstly, once any non-primitive data is copied to the device it is marked as
no longer being on the host, and copies of relevant OpenCL data structures are associated
with the runtime representation of the data type. Secondly, the compiler will not generate
the code to read this data back from the device. Thus, when the data is sent onwards it will
hold a reference to the data which is still on the device.

At this point there are two possibilities for the data that is sent onwards. The first option
is that the data successfully arrives at another OpenCL actor executing on the same device
without being accessed by the host. In this case, the pointer to the device data is set as the
appropriate kernel argument, and the kernel is dispatched. Here, the data was kept on the
device at all times. The second option is that the data is either accessed directly by host code,
or the data is sent to an OpenCL actor associated with a different context. In both cases, the
runtime reads the data back from the device and returns the device memory. As Ensemble
uses automatic garbage collection, should the host reference count ever reach zero, both host
and device memory will be returned. In this way, the choice to use mov gives the user control
over memory usage.

One benefit of lazy evaluation is that the runtime can automatically determine, using the
OpenCLEnviroment, if the incoming data needs to be moved to the current context, and
then do so if required. Currently, OpenCL manages data movement between devices in a
single context, but not in different contexts.

4.5.3 Multiple Implementations

Currently, the ensemble compiler will only generate a C representation of the kernel specified
in an actor. This kernel is stored as a string in the actor’s class file. As a kernel actor
is represented as normal class file, it is possible to spawn kernel actors to stages which
support OpenCL. A kernel actor may not be migrated as OpenCL does not enable access
to the intermediate results of a computation, hence the state could not be captured and then
rebuilt on a different hardware device.

One avenue of future work would be to have the Ensemble compiler generate equivalent
kernel logic which could be interpreted as a normal actor by the VM. Thus, when a kernel
actor is spawned at a stage which does not support OpenCL, it could still execute. This
non-OpenCL implementation may be sequential, but could also be threaded in order to take
advantage of multiple CPU cores at the current stage without the need for OpenCL. This
would also enable research into runtime load balancing between different implementation of

4.6. Heavily Resource-Constrained Platforms 112

the same kernel. Here the runtime could find the most optimal implementation for a given
set of operating constraints.

4.6 Heavily Resource-Constrained Platforms

The previous discussion in this chapter has described how the actor-based computation of En-
semble applications is executed on a number of different hardware platforms. One hardware
platform class which is often ignored and unsupported by most other programming models,
actor or otherwise, are small, resource-constrained battery-powered computers. In order to
show that the actor programming model is appropriate in the smallest of execution environ-
ments, it was necessary to implement a version of the VM on a highly resource-constrained
hardware platform (mote).

This was done on the Tmote Sky platform [111] which has 10KB RAM, 48KB ROM, and
uses the MSP430 microprocessor (16-bit 8MHz). Given the small amount of RAM and
ROM available on this device, it was not possible to support all of the features of Ensem-
ble. Instead, only the base version of the language without adaptation, accelerator-based
concurrency, or location transparent channels is supported. Also, the compilation process
and execution model had to be modified. Despite these modification, realistic and useful
actor-based applications may be run, see Section 5.1.1.

The following describes the modifications which were made to the Ensemble VM in order
to accommodate these highly constrained platforms.

4.6.1 Compilation and Linking

To execute on embedded hardware, the Ensemble VM was modified to the use the split-VM

model, similar to the VMs discussed in Section 2.2.2. A traditional JVM uses lazy loading

of class files. Classes are compiled independently, and all references to other classes are
symbolic. The JVM loads a class file when it is first referenced, and resolves all symbolic
references before continuing execution. However, this is a demanding process, and class files
are often larger than the whole main memory of a sensor node.

The essence of the split-VM approach is to resolve all references offline, on a more powerful
machine, and link the class files into a single file which the VM can execute. This places
less demand on the embedded hardware. The linked file can be smaller than the original
class files by an order of magnitude or more. As the linker has resolved all dependencies,
the constant pool has been removed from Ensemble class files for this platform. Table 4.4
shows the savings gained by the new linking process. The removal of the constant pool
provides significant savings. Furthermore, in addition to the existing techniques used in

4.6. Heavily Resource-Constrained Platforms 113

Data Standard library Programs
(26 class files) (37 class files)

Constant pool 68.1% 64.0%
Class metadata used 0.3% 0.2%

Class metadata unused 5.9% 4.1%
Field metadata used 0.3% 0.2%

Field metadata unused 10.9% 2.5%
Method metadata used 1.9% 2.1%

Bytecode 2.4% 13.0%
Method metadata unused 10.3% 13.9%

Method total 14.6% 29.1%
Total used 4.8% 15.4%

Total unused 95.2% 84.6%

Table 4.4: Average percentage composition of class files. ‘Used’ and ‘unused’ indicate
whether information is present in the modified class file.

Figure 4.3: Steps to compile and execute an Ensemble application. The ‘split-VM’ architec-
ture is shown in the separation between PC and sensor node.

the linker (Section 4.2.2), the dependency list is no longer part of the class file. Finally,
even though actor and channel adaptation is not supported, string-based type encodings are
required at runtime to decode any types for inter-stage communication, but in a limited
fashion (Section 4.6.3). Channels may still be sent between actors, but only locally.

The split VM system used by the Ensemble VM has five steps, shown in the application

section of Figure 4.3.

1. Ensemble code is compiled to Java source code. Each actor and type is a Java class.

2. The Java source is compiled to Java bytecode using javac.

3. The linker is run twice; first to link the standard library, and second to link the bytecode
program against the standard library.

4. The VM is compiled using MSPGCC. The output of the linker is statically compiled
into the C program at this stage, and stored in program memory

4.6. Heavily Resource-Constrained Platforms 114

Table 4.5: Mapping from Ensemble to Java to MSPGCC data types.

Ensemble type Java type Size (slots) MSPGCC type Size (bits)

integer, unsigned, boolean int 1 int 16

byte byte 1 char 8

real double 2 float 32

long long 2 long 32

reference reference 1 void* 16

5. The resulting binary is installed on a mote or run in simulation.

The linker produces a second output: a symbolic information file which allows other appli-
cations to link against the corresponding binary. This is used to separate the standard library
from applications. The standard library contains classes which applications rely on, such as
Object and Integer, native method declarations, and wrapper classes for system actors.

Conditional Compilation

InceOS provides many standard library functions and actors, only some of which may be
used by a given application. The VM cannot simply ignore functionality which is not used
by Ensemble applications, and must reference everything, which uses most of the Tmote
Sky’s 48 kB program memory and leaves little space for bytecode.

This is overcome using conditional compilation in the linker and the VM. Only the core of the
system is enabled by default, and the user enables any additional actors required. These actor
provide access to sensors, physical storage, and radio communication. Because the standard
Java toolchain does not support conditional compilation, a custom @ifdef annotation is used
by the linker to mimic the behaviour of the C preprocessor directive. The VM build system
ensures that a matching set of system actors is compiled. Any interpreted program which
uses only these actors can then be run without having to modify the VM image or the standard
library installed on a mote. Currently, this process is manual, however, it could be automated
by using the compiler to analyse applications to determine which system actors it depends
upon, and include these in the compilation. As discovery is not supported on this platform,
system actors are visible in all scopes.

4.6.2 Memory Model

As the Tmote Sky is a 16-bit architecture, the Ensemble VM was modified from 32-bit to
16-bit to match the native word size of the MSP430 microprocessor. Table 4.5 describes the

4.6. Heavily Resource-Constrained Platforms 115

mapping between Ensemble, Java, and MSP430 types in terms of the number of VM slots
consumed and the number of bits required to represent them. Also, as the VM now has a
smaller word size, a stack frame only consumes 16 bytes of RAM, with each additional slot
or variable requiring two bytes. No changes were required to the bytecode instructions as
they are defined in terms of slots, and not words.

As with the other platforms, objects and stack frames are allocated from the heap as required,
and the reference counted garbage collection provided by InceOS is used.

4.6.3 Explicit Communication

Space limitations prevented the use of channels to abstract inter-stage communication. In-
stead, a well defined system actor is used to enable explicit communications with other
stages: the radio actor. The radio actor is an actor which is written in C, and executed
by a thread. Like the daemon actor, it is created when the runtime boots.

Before interacting with the radio actor, a user actor must first construct a radio packet.
This is a language defined structure which consists of an integer address field, and an any
payload field. A user actor must create such a structure and populate it with the network
address of the physical node to be sent to, and the data to be sent. For wireless sensor
networks, sensor nodes are commonly numbered using integers from 0 to the number of
nodes in the network.

Once constructed, a radio packet is sent to the radio actor via a channel. The radio actor
currently provides the broadcast, unicast, and received channels. The broadcast and unicast
channels accept radio packet types. Any data sent on the broadcast channel will be
broadcast to all motes in range. Any data sent on the unicast channel will be transmitted to
the mote addressed in the radio packet if it is in range. User actors may use the receive
channel to listen for either type of communication. In this way actors and channels can also
be used to provide explicit inter-stage communication. If necessary, a similar approach could
be used with other platforms.

Communication does not yet support reliable or multi-hop communication, however it may
be implemented in user space. Also, the number of channels which the radio actor presents
could be expanded to included implementations of reliable communication, or multi-hop
routing protocols to deliver packets to arbitrary points in the network. The radio actor itself
is well defined, meaning that it may be referenced by any Ensemble actor without needing to
first locate it.

Note that as the information in a radio packet is an any type, it must first be projected
in order to access the inner-data type. The string based encoding is used in a similar way to
the main Ensemble VM.

4.7. Security 116

4.7 Security

Security considerations were beyond the scope of this work. However, given the ability
to spawn/migrate/replace actors at runtime, as well as the concept of having actors from
different applications executing within the same stages, there is the possibility for foul play.
Hence, there is a need to have some consideration of security.

As the language is designed to be simple and usable by non-computer scientists, there was
a strong motivation not to complicate the language with security protocols: for example, it
may have been possible to annotate a channel to use a specific security protocol. Instead,
it is preferable to use the runtime to provide a safe operating environment, within which
applications can operate.

4.7.1 Communication

As Ensemble uses existing networking technologies, there are existing approaches to secure
IP [125], Bluetooth5, and Zigbee [126]. Instead, protection would be required at the stage
level. Both Erlang and MPI’s default security model is to use a shared password between
nodes which is supplied when a node is instantiated. Nodes which share a similar password
may communicate, where those who do not may not communicate. This technique can also
be used for stages in Ensemble. Should two stages not share the same password not only will
actors and stages not be discovered, but if a stage/actor is found by an eligible stage, and then
shared with an ineligible stage, the ineligible stage would not be allowed to communication
with the eligible stage.

4.7.2 Execution

There are a number of issues with regard to having actors which may be reconfigured at
runtime:

• Although the system enables actors from different applications to work together on the
same stage, they are all isolated in separate memory spaces by the VM. Hence actors
from different applications can safely execute in a stage.

• Java does not enable access to the state of running threads due to security concerns,
hence migration may not be implemented natively. Although Ensemble provides mi-
gration, it is a native operation. This state is accessed by the runtime, and will never
be accessible by user code.

5https://www.bluetooth.org/en-us/specification/adopted-specifications - Accessed February 2015

4.8. Summary 117

• As actors are capable of spawning other actors, actor (fork) bombing is possible. This
can be mitigated by limiting the number of actors within a given stage, or the rate at
which actors are spawned/created.

• It is possible to create an actor in a stage which is performing useless intense computa-
tion with the purpose of preventing other actors from doing useful work. All Ensemble
platforms currently support pre-emptive multi-threaded execution, hence even if an ac-
tor is not manually blocking, the runtime will ensure fair execution for all actors.

4.8 Summary

In order to support the actor-based programming model in the Ensemble language across
heterogeneous hardware platforms, applications are first compiled to Java source code, and
then to bytecodes using the existing Java compilation process. The resulting class files are
then processed by a custom linker to reduce their size, and remove unused Java features.
These bytecodes are then executed on a custom-built virtual machine, which has been ported
to a number of different hardware platforms from different equivalence classes of system
scale.

In order to support the distribution and adaptability expressed in the language, the runtime
was expanded to enable discovery of actors and stages at runtime in a decentralised way, lo-
cation transparent inter-stage channel communication, as well as the creation and relocation
of actors between different physical hardware platforms. This also included reporting failure
in a meaningful way.

Additionally, the runtime was extended to include support for the OpenCL framework, where
actors represent kernels. As well as automating much of the boilerplate code required to
initialise OpenCL devices, the channel communication mechanism was modified to abstract
the movement of data to and from an accelerator. By using the existing compiletime analysis
for movability, lazy evaluation was employed to reduce the amount of data movement.

Finally, to explore the application of actor-based programming at the smallest scale of com-
puting, the VM was ported to a wireless sensor device. This required the use of the ‘split-vm’
approach, whereby an application is linked on a powerful machine, leaving a statically linked
binary which is loaded onto the sensor mote. Space constraints prevent actor reconfiguration,
but do allow a suitable environment for sensor network applications.

118

Chapter 5

The Actor as the Unit of Abstraction

The previous two chapters have described a programming language based on the actor model
of computation designed to simplify programming of concurrent, distributed, and adaptive
applications across different equivalence classes of hardware platform, as well as the design
and implementation of a runtime to facilitate the model expressed in the language.

The purpose of this chapter is to apply the actor model, as expressed in the language and
runtime, to the areas of concurrent, distributed, and adaptive computation across different
hardware platforms in order to show that the actor is the correct unit of abstraction when
programming embedded, highly parallel, and heterogeneous systems either in isolation or in
concert.

Before the discussion, it is worth noting that any application written using actors can also be
written in any other Turing complete language. The power of actors is in the structuring of the
application. By forcing a developer to express their application in terms of autonomous loci
of computation that interact with explicit communication, the application is loosely coupled,
modular, and naturally suited to concurrency, distribution, and adaptation.

This Chapter is split into five sections. Section 5.1 discusses the actor as an appropriate unit
of abstraction for programming embedded systems, specifically WSNs. There is a compar-
ison between this work and TinyOS, the de-facto standard in the field, in terms of quantita-
tive linguistic complexity and runtime performance across a range of applications. There is
also an analysis of the runtime impact of movable types. In Section 5.2 the actor model is
shown to be an appropriate abstraction level for programming parallel hardware platforms,
by simplifying the use of the OpenCL framework. Again, there is a quantitative linguistic
comparison and performance evaluation on a number of applications. The use of the actor as
the unit of adaptive programming across heterogeneous hardware platforms is discussed in
Section 5.3. Its use is motivated by a number of examples where adaptation is required, as
well as a performance analysis showing that the advantages of adaptation is greater than the
cost. Finally, Section 5.4 gives a summary of the points made in this chapter.

5.1. The Actor as the Abstraction for Embedded Programming 119

5.1 The Actor as the Abstraction for Embedded Pro-

gramming

Resource-constrained embedded systems are being increasingly embedded in our surround-
ing environments, to both collect data from and effect changes in such environments. Even
watches are now powerful enough to execute non-trivial computation, and are advancing the
definition of embedded hardware1. Wireless sensor networks are one category of resource-
constrained embedded system which exhibits all of the traits found in the domain; limited
battery power, RAM, ROM, and processing power. In this work, WSNs have been used as
a case study for the application of actor-based programming to embedded systems, with the
results being generally applicable to systems with similar constraints.

Wireless sensor networks enable a wide variety of activities to be performed autonomously,
and are currently being used in many diverse areas including measurements of mountain per-
mafrost [127] and grapevines [128]. Such networks take highly constrained hardware devices
(motes) and connect them via short-range radios to form useful monitoring tools, protection
systems, and research systems. In programming such devices, a number of unconventional
programming models have evolved. For example, the TinyOS [30] and Contiki [129] embed-
ded operating systems use an event-driven programming model, although realised through
different abstractions.

Event-driven systems respond to events. These events can be generated by the hardware, for
example by interrupts, or by software. An event triggers an associated event handler, which
handles the event and results in some computation being initiated that may, in turn, generate
further events. In event-driven systems, there is no single locus of execution; rather, there
are a number of them each triggered by an event. Such systems have become popular for
embedded systems since they do not require the same memory and processing overheads
as threads (e.g., for stacks and context switching), yet provide a concurrent computational
model. Another advantage is that concurrency control is simplified since, in many (single-
CPU) systems, multiple event handlers do not run simultaneously [30].

Widely-used operating systems for wireless sensor networks impose unusual programming
models to compensate for the limited resources available on embedded hardware platforms.
For example, TinyOS [30] uses the nesC language, with an event-driven ‘split-phase’ pro-
gramming model. In nesC, all operations are non-blocking, and programs use many call-
backs which can make the flow of control difficult to follow [22]. Equally, Contiki [129]
programs are written in C, but use macros and continuations to simulate a traditional threaded
environment on top of an event-driven core. Other approaches, such as MagnetOS [130] and

1http://www.apple.com/pr/library/2014/09/09Apple-Unveils-Apple-Watch-Apples-Most-Personal-Device-
Ever.html - Accessed May 2015

5.1. The Actor as the Abstraction for Embedded Programming 120

SwissQM [131] also support unusual execution models. MagnetOS treats the whole network
as a single VM, and SwissQM treats it as a database. Programmers using these systems must
have extensive knowledge of low-level and embedded programming. Domain experts wish-
ing to use WSNs in their own fields – often described as the intended users of these systems
– are unlikely to have this knowledge.

These models are non-intuitive to programmers due to the introduction of unnecessary non-
intrinsic complexity. In particular, the introduction of the TinyOS split-phase execution
model is a barrier to understanding, writing and reasoning about WSN programs. The same
argument could also be levelled at programming with TinyOS threads [132] or Contiki pro-
tothreads [133], but is not included for brevity.

This work hypothesises that the use the actor-based programming model simplifies devel-
opment for resource-constrained embedded systems, removing much of the complexity of
even-based programming, while still affording the developer the power to create complex
applications. Also, the use of a VM specifically designed to execute such applications does
not prevent their use in resource-constrained environments. This is shown by implementing
such applications in Ensemble, and executing them both natively and by the Ensemble VM
on the Tmote Sky.

5.1.1 Applications

In order to evaluate the complexity and performance of an actor-based approach to WSN
applications, the following examples where chosen:

• BlinkA is a simple application that periodically blinks the three different LED’s of the
Tmote Sky at different rates. BlinkB performs the same operation using the TinyOS
thread library (TOSThreads [132]).

• TestSineSensor periodically samples a sensor, after which it forwards the obtained
value over the serial link. Under TinyOS, it is implemented using TOSThreads.

• RadioStress uses three threads to send messages to another mote where three threads
are listening for messages from their counterparts. Under TinyOS, it is implemented
using TOSThreads.

• RadioCountToLeds involves two motes, one maintains a counter which is transmitted
over the radio to the other mote which displays the lower three bits of the transmitted
value on its LED’s.

• RadioSenseToLeds is a similar application, except that it collects and sends sensor data
as opposed to a software counter.

5.1. The Actor as the Abstraction for Embedded Programming 121

• Sense is similar to RadioSenseToLeds, but it only uses one mote and does not send
sensor values over the radio.

• TestRoundRobinArbiter is an example of an access control mechanism where three
resource users request access from a central controller, which grants access to each in
turn.

• Fourier performs a Fourier transform on an array of 40 integers repeatedly.

• Grid is based on the notion of using ad-hoc grids in sensor networks to mitigate the
power consumed by excessive radio transmission of data [134]. This application con-
sists of two types of node: leaders, who make requests, and slaves, who service re-
quests. Initially the leader broadcasts a request asking for any free slave. Once a slave
replies to this request, the leader collects enough sensor data to fill an array of size
10 and transmits it to the slave that acknowledged it. The slave performs a Fourier
transform on the received data, calculates the maximum value and returns this to the
leader.

• DataLogger is a prototype application to monitor the effects of fluid flow on riverbed
sediment. This require continuous measurement of four different sensors at 50Hz,
logging this data to storage, and radio communication between the sensor collecting
the data and a user controlled base-station for data collection and reporting. This
program uses many of the optional actors provided by the standard library, including
the acceleration and tilt sensors, the radio, the storage module, timers, and runtime
error checking.

The Grid, Fourier, and DataLogger applications were not provided by TinyOS, but all other
were. The combination of these applications cover intense computation, radio transmission,
interactions between actors on a single node and combinations thereof, and are representa-
tive of the typical actions of applications on this type of device. In particular, Datalogger
represents a typical embedded application, where data is sampled, stored, and reported over
the radio.

5.1.2 Experimental Setup

All experiments were performed on the Tmote Sky hardware with fully charged batteries
at the start of each experiment. Performance results were confirmed on the Cooja simula-
tor [135].

5.1. The Actor as the Abstraction for Embedded Programming 122

Lines of Code Actors/Components Wiring Statements Interfaces
Application Ensemble nesC Ensemble nesC Ensemble nesC Ensemble nesC
BlinkA 28 40 2 6 3 5 1 5
BlinkB 30 54 4 7 1 6 1 6
TestSineSensor 13 45 2 7 2 8 1 7
RadioStress 50 94 5 13 9 12 1 12
RadioCountToLeds 55 103 5 7 4 7 2 7
RadioSenseToLeds 57 101 6 8 6 8 2 8
Sense 29 43 3 5 3 4 1 4
RoundRobinArbiter 49 180 5 11 10 15 2 24
Fourier 19 30 1 2 0 1 1 1
Grid 97 177 5 8 7 8 1 8
DataLogger 567 2552 5 22 20 37 5 68

Table 5.1: Comparison of Ensemble and nesC code.

5.1.3 Code Complexity

Both Ensemble and nesC applications are composed of components/actors, interfaces, and
wiring statements. Accordingly, these features were used as metrics to judge code complex-
ity. Table 5.1 shows the results. The table shows the application, number of lines of code
used, number of components/actors either written or referenced, number of wiring/connect
statements, and the number of interfaces used. Obviously each of these features could be
manipulated -e.g., every Ensemble application could be written in a single actor. To prevent
this, each Ensemble application uses an actor representing each activity of the program and
the system actors.

The table shows that the applications can be written in Ensemble with fewer elements from
each category, excluding the Fourier application where both languages require one inter-
face. Although it does not necessarily follow that fewer is better, the previous discussion
of the simpler composition of Ensemble and these results show that it is possible to write
functionally-equivalent programs in Ensemble which are simpler.

5.1.4 Memory Usage

The initial implementation of Ensemble directly generated C code which was compiled with
InceOS to generate a binary. This binary was then uploaded to a sensor mote. The RAM
and ROM requirements of using this method are described in Section C.1.1. As the purpose
of porting the Ensemble VM to the Tmote Sky was to provide a platform to enable runtime
adaptation, the following results are for the Ensemble VM.

The static memory usage of Ensemble applications has been examined in Section 4.6.1. En-
semble applications also allocate memory dynamically from the heap. Because the garbage
collector uses reference counting, memory is freed as soon as it is no longer referenced.

5.1. The Actor as the Abstraction for Embedded Programming 123

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 50 100 150 200 250 300 350

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

b
y
te

s
)

Time (malloc/free operations since initialisation)

VM
Native

Maximum used

Figure 5.1: Dynamic memory usage of the RadioSenseToLeds application.

RadioSenseToLeds

In Figure 5.1, the ‘VM’ plot shows the dynamic memory usage of the RadioSenseToLeds

application over time, running on the Ensemble VM. Time is measured in the number of
allocations and deallocations since the end of the OS initialisation sequence.

Memory tracking starts at the beginning of the boot clause, after system initialisation. Most
of the memory allocated before this is used for the C call stacks of the system actors and the
stage. The large increases at around times 50 and 60 are the creation of the sender and
receiver actors (again, most of the memory is used for the C stacks). The large drop at time
70 is the termination of the actor created to execute the code in a stage’s boot clause. Periodic
usage is observed after time 100, as the sender’s behaviour is executed repeatedly.

The ‘Native’ plot shows the behaviour of the same program, compiled using an Ensemble to
C compiler. The memory usage is considerably lower, mainly because the stack size needed
for each actor is calculated at compiletime and set in the C code. This is in contrast to the
VM, where the stack size of each actor must be large enough to run the interpreter, regardless
of which Ensemble application is being run. However, it should be noted that there is still
more than enough memory available to run the interpreted program, approximately 50%
of the 10 KB RAM on the sensor. Note that the important result here is that the runtime

5.1. The Actor as the Abstraction for Embedded Programming 124

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350

N
u

m
b

e
r

o
f

fr
e

e
 b

lo
c
k
s

Time (malloc/free operations since initialisation)

Figure 5.2: External fragmentation: number of free blocks in the interpreted RadioSense-
ToLeds application.

and application are able to fit within the limited amount of RAM available on the hardware
platform. The cost of higher RAM usage, when compared to the native result, is larger power
consumption. The ability to measure this was beyond the ability of the author, however, it
should be noted that the main consumer of power on such devices is the radio, not the RAM.

As memory is allocated and freed, the region of memory used by the allocator becomes
fragmented. Figure 5.2 shows the total number of free blocks, and Figure 5.3 shows the size
of the largest free block, in the interpreted RadioSenseToLeds program over the same time
period as Figure 5.1. Although memory is being allocated and freed throughout this time,
the level of fragmentation is bounded, and does not increase to the point where it becomes
problematic. Fragmentation is addressed in Section 5.1.6.

Table 5.2 compares the total static memory requirements for the interpreted and native ver-
sions of RadioSenseToLeds. For the interpreted version, ROM usage includes the linked
standard library, the bytecode program, and all C code. Again, the native version is con-
siderably smaller, but there is still enough memory available for the VM and interpreted
application.

Interpreted applications consume more memory than their native equivalents, however, the
VM is not intended to compete with the memory footprint of native execution. Instead, the

5.1. The Actor as the Abstraction for Embedded Programming 125

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0 50 100 150 200 250 300 350

L
a

rg
e

s
t

fr
e

e
 b

lo
c
k
 (

b
y
te

s
)

Time (malloc/free operations since initialisation)

Figure 5.3: External fragmentation: largest free block in the interpreted RadioSenseToLeds
application.

Type RAM (bytes) ROM (bytes)

Interpreted 632 38982

Native 590 22440

Table 5.2: Statically allocated memory for native and interpreted RadioSenseToLeds.

VM is intended to make Ensemble more flexible and robust, and to be a base upon which to
build useful features such as runtime adaptation. Higher memory consumption is considered
an acceptable tradeoff for these features.

DataLogger

Figure 5.4 shows the dynamic memory usage of a more complex interpreted program,
DataLogger. Between times 500 and 3500, the program is reading from the sensors. The
large spikes during this time are buffers filled with data being passed to the flash actor;
these are arrays which are copied when they are sent over a channel, in keeping with the
strict encapsulation of actors. Between about 4000 and 6000, data is being streamed from
flash to the radio. Table 5.3 shows the static memory usage for DataLogger and the base
station. Despite the complexity of the application, there is still more than 2 kB of RAM and

5.1. The Actor as the Abstraction for Embedded Programming 126

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

b
y
te

s
)

Time (malloc/free operations since initialisation)

Figure 5.4: Dynamic memory usage of the DataLogger application.

Program RAM (bytes) ROM (bytes)

DataLogger 636 42866

Base Station 724 41566

Table 5.3: Statically allocated memory for DataLogger and the base station.

6 kB of program memory free. This demonstrates that the Ensemble VM is capable of
running a realistic and potentially useful application.

5.1.5 Performance

As with Section 5.1.4, the following discussion is in relation to the Ensemble VM.
Section C.1.2 has a performance comparison between native Ensemble and nesC code. The
following discusses the most relevant results for the VM.

Instructions per Second

One measure of the VM’s performance is the number of bytecode instructions executed per
second. The VM was instrumented to capture this data, and several programs were run.

5.1. The Actor as the Abstraction for Embedded Programming 127

Program Runtime No runtime

checks checks

RadioSenseToLeds 128 132

Fourier 29051 29176

Arithmetic 42894 42871

Table 5.4: Instructions per second.

These measurements were taken on a Tmote Sky sensor node running at 8 MHz. Table 5.4
shows the results.

Different bytecode instructions take different times to execute. The number of instructions a
program executes per second depends on which instructions it uses. Arithmetic simply
performs integer arithmetic in a loop; this is perhaps unrealistic, but it demonstrates the
VM’s highest speed.

Table 5.4 also shows the effect of runtime error checking on instruction throughput. With
runtime error checking enabled, the VM detects various problems as they occur, and throws
an appropriate exception. Checks include testing for null pointers, testing for out-of-bounds
array accesses, and reporting out-of-memory conditions. If exceptions are not caught by the
interpreted program, the offending actor is restarted. With runtime checks disabled,
execution continues after an error with undefined behaviour.

As shown in Table 5.4, runtime error checking does not have a significant performance
overhead. Thus the only reason to disable error checking is if the memory saved by doing
so is needed for bytecode storage.

Execution Time

Counting instructions per second is an artificial measure of performance. A more important
measure is the time taken for an application to do something useful; it is unimportant how
many instructions are executed in the process. Table 5.5 shows the running times for several
applications, both as interpreted applications running on the VM, and as native applications.
The figures are the average running times of one hundred executions of each application’s
behaviour. For each of the interpreted applications, runtime error checking is enabled.

For a computationally intensive task such as the fast Fourier transform, native code is more
than an order of magnitude faster than interpreted code. In contrast, for an I/O bound
program such as RadioSenseToLeds, the overhead of interpretation is negligible.

A sensor node VM would be expected to run mainly I/O bound applications. It is unlikely
that computationally intensive tasks, such as the fast Fourier transform, would be written in

5.1. The Actor as the Abstraction for Embedded Programming 128

Program Time (s) Standard

Deviation (s)

RadioSenseToLeds (VM) 0.233 0.001

RadioSenseToLeds (Native) 0.230 0.001

Fourier (VM) 2.420 0.001

Fourier (Native) 0.161 0.000

Table 5.5: Running times of interpreted and native programs.

 0

 2000

 4000

 6000

 8000

 10000

 0 1000 2000 3000 4000 5000 6000

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

b
y
te

s
)

Malloc/Free operations since initialisation (180 second simulation)

Figure 5.5: Memory usage graph for the movable version of the DataLogger program.

interpreted code. In fact, the C implementation used by the native Fourier example is
available to interpreted programs as a native method in the standard library. Similar
computationally intensive tasks, where the overhead of interpretation is large, could be
implemented in C and exposed to the high-level interpreted program in the same way. This
demonstrates that the VM is fast enough for its intended use.

type IDataGather is interface(in bool controller;
out bool sas;
in mov integer[] sasDone;
out integer[] writeChan)

Listing 5.1: Modification Required to DataLogger Example for Movability

5.1. The Actor as the Abstraction for Embedded Programming 129

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000 12000

M
e
m

o
ry

 c
o
n
s
u

m
p
ti
o

n
 (

b
y
te

s
)

Malloc/Free operations since initialisation (180 second simulation)

Movable version
Non-movable version

Maximum used

(a) Memory usage graph for the forwarding example program simu-
lated in Cooja.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000 12000

M
e
m

o
ry

 c
o
n
s
u

m
p
ti
o

n
 (

b
y
te

s
)

Malloc/Free operations since initialisation (180 second simulation)

Movable version
Non-movable version

Maximum used

(b) Memory usage graph for the forwarding example program on
physical Tmote Sky.

Figure 5.6: Memory usage graph for the forwarding example program.

5.1.6 Movability

In order to show the effectiveness of movable types (Section 3.2), the effect of memory
allocated from the local and movable heaps was evaluated at the WSN scale against a
number of real and contrived Ensemble applications. A comparison is made in terms of
absolute memory consumption, memory fragmentation, number of memory allocations, and
the largest available block of contiguous memory at a given point in time.

Figure 5.4 shows the memory consumption of the DataLogger application using normal
memory allocation, whereas Figure 5.5 show the memory consumption for the same
application using movable memory. Again, the x-axis shows time in terms of the number of
malloc and free operations performed, rather than wall clock time. By comparing the results
we see that the spikes observed between allocations 500 to 3500 are less severe in the
movable version. This was achieved by marking the in channel to the data logger as
receiving movable memory, hence, there was no duplication of data when sending data to
the storage actor. Listing 5.1 highlights (in yellow) the only change to the DataLogger

application necessary to provide the efficiency savings of the movable version over the
non-movable version.

This application was amenable to the use of movability, requiring only a single addition of
the mov type to specify that an in channel receives movable memory. This removed the
need to deep-copy the received data which is subsequently sent on.

The forwarding application (Section 3.2) has been used to generate the results in
Figures 5.6, 5.7, and 5.8. These figures show the amount of memory consumed, the number
of free memory blocks available, and the largest free block available as the application
executes, respectively. For convenience, the latter two figures were generated from data
produced by the Cooja simulator. The simulator gives acceptable results when
approximating real hardware as shown by the similarity of the results on both real hardware
and the simulator, as seen in Figures 5.6a and 5.6b, respectively.

5.1. The Actor as the Abstraction for Embedded Programming 130

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000 14000

N
u

m
b

e
r

o
f

fr
e
e
 b

lo
c
k
s

Malloc/Free operations since initialisation (180 second simulation)

(a) External fragmentation for non-movable version of forwarding ap-
plication.

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
u

m
b

e
r

o
f

fr
e
e
 b

lo
c
k
s

Malloc/Free operations since initialisation (180 second simulation)

(b) External fragmentation for movable version of forwarding appli-
cation.

Figure 5.7: External fragmentation for the forwarding example program.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000 12000 14000

L
a

rg
e

s
t

fr
e
e

 b
lo

c
k
 (

b
y
te

s
)

Malloc/Free operations since initialisation (180 second simulation)

(a) Largest free block over time non-movable version of forwarding
application.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

L
a

rg
e

s
t

fr
e
e

 b
lo

c
k
 (

b
y
te

s
)

Malloc/Free operations since initialisation (180 second simulation)

(b) Largest free block over time for movable version of forwarding
application.

Figure 5.8: Largest free block over time for the forwarding example program.

By examining the results in Figures 5.6a and 5.6b it can be seen that the use of movability
has not only reduced the total amount of memory consumed by the application, but also the
number of allocations made. Comparing the results in Figures 5.7a and 5.7b shows that
movability has reduced the number of free blocks available, and hence the fragmentation in
the heap. This is confirmed by Figures 5.8a and 5.8b which show the largest available
contiguous memory block at a given point in time for the non-movable and movable
versions of the application, respectively.

5.1.7 Real World Deployment

At the time of writing, the Ensemble language and runtime are being used to create a
system for the purpose of data collection. This is being done by the Urban Big Data Centre
at the University of Glasgow2. The application consists of reading values from the light,
temperature, and humidity sensors, and then both logging this information locally, and
periodically transmitting this information to a central sink node. This sink node will be
connected to a desktop machine, which will upload this information to a server. The

2www.ubdc.ac.uk/ - Accessed March 2015

5.2. The Actor as the Abstraction for Accelerator-based Concurrency 131

application will run on the Tmote Sky hardware platform, and is similar to the
radioCountToLeds, and the DataLogger examples.

The real world deployment will both validate the example applications used to evaluate
Ensemble at this level of scale, and when complete will enable an evaluation both of
Ensemble in the wild, and provide an opportunity to subjectively evaluate the practicality,
suitability, and usefulness of actors in this application domain for the developers
themselves. As the focus of this work has been on the development of the language and
runtime, as well as an evaluation from an objective perspective, a subjective evaluation has
been beyond the scope of this work.

5.2 The Actor as the Abstraction for

Accelerator-based Concurrency

Due to power consumption, heat dissipation, and clock propagation limits, modern
hardware architectures are now designed with many, concurrent processing elements, as
opposed to single processing elements with increasing clock rates; examples of such
architectures include GPUs and multicore CPUs. These hardware platforms are designed to
provide the user with multiple physical threads of execution, thus enabling many
computations to occur simultaneously.

Software threads have traditionally been used to enable parallel execution on CPU
architectures. However, due to the different nature of GPU hardware architectures, a
number of different programming techniques are used. OpenCL is a standardised
programming framework available for the main GPU vendors (NVIDIA and AMD), as well
as other parallel hardware architectures including FPGAs.

While the OpenCL API enables access to these architectures and others, there are three
main limitations. Firstly, the user is required to write large amounts of boilerplate code to
create the OpenCL environment for a particular calculation. Secondly, the programming
style requires explicit data movement between the host CPU and the OpenCL device; this
requires manually flattening multi-dimensional arrays and structures of non-primitive types.
Thirdly, the language and style used to program the device is often different from the
programming language being used on the host. A similar argument can be made against the
CUDA framework; since CUDA is only available on NVIDIA hardware, this work is
focused on the more broadly applicable OpenCL.

Alternatively, OpenACC is a pragma-based approach to concurrent programming, where a
developer explicitly annotates sections of code to be parallelised, as well as the data which
should be moved between host and device (Section 2.3.2). While this approach abstracts

5.2. The Actor as the Abstraction for Accelerator-based Concurrency 132

Figure 5.9: Topology of the LUD Application

much of the boilerplate code of OpenCL, applying the simple annotations to single threaded
code does not guarantee good performance and is not effective for all application classes.

This section describes the application of actor-based programming to accelerator-based
concurrency at the language level by including the OpenCL framework within the
Ensemble programming language. The hypothesis is that moving from low-level C code to
a concurrent, shared-nothing, high-level actor programming model simplifies the use of
OpenCL by providing appropriate structuring, thus enabling greater access to
high-performance and heterogeneous computing. This work demonstrates that applications
written using actors exhibit less complexity via quantitative metrics compared to
handwritten OpenCL in C (C-OpenCL), and that these applications run efficiently on
different hardware platforms, with low overhead when compared to C-OpenCL and
equivalent or better performance to OpenACC annotated C (C-OpenACC). This is shown
for a number of different types of application, including a real-world document ranking
example.

5.2.1 Applications

Using the modifications to the language described in Section 3.3, a range of applications
were created to evaluate the linguistic complexity and performance of actor-based OpenCL
in Ensemble as compared to equivalent C and OpenACC implementations. The applications
covered include matrix operations, multiple kernels, parallel reduction and a real world
application.

• Matrix Multiplication multiplies two 1024 x 1024 matrices in a single kernel.

5.2. The Actor as the Abstraction for Accelerator-based Concurrency 133

Lines of Code Cyclomatic Complexity ABC
Application C Ensemble OpenACC C Ensemble OpenACC C Ensemble OpenACC
Matrix Multiplication 154 -8 5 -1 -2 0 134 2 1
Mandelbrot 96 -4 12 -1 1 0 22 -6 2
Reduction 266 72 3 19 4 1 103 10 0
LUD 144 7 7 5 -8 1 200 -11 0
Document Ranking 45 -16 3 53 -1 0 405 -29 0

Table 5.6: Difference Between Single Threaded and Concurrent Code per Approach

• Mandelbrot computes a 1000 iteration Mandelbrot set in a single kernel.

• LUD (Lower Upper Decomposition) factorises a square matrix of 2048 elements,
and is a common operation in matrix calculations: this example uses three kernels in
series. Figure 5.9 show the topology and connections of the actors in this application.

• Matrix Reduction finds the minimal value in an array of 33,554,432 elements using
parallel reduction in a single kernel.

• Document Ranking takes a set of documents and using a template determines if
these documents are wanted, or unwanted: this uses a single kernel.

5.2.2 Code Complexity

Table 5.6 shows the (arithmetic) difference between the concurrent and non-concurrent
code versions for each approach. For example, the C-OpenCL version of Matrix
Multiplication required 154 more lines of code than the single threaded C version, whereas
the Ensemble-OpenCL version required 8 fewer lines than the single threaded Ensemble
version. As well as the lines of code written, the table also shows McCabe’s cyclomatic
complexity [136] for the applications. This metric quantitatively assesses the number of
different paths through a program. Also shown is the Assignments, Branches, and
Conditions (ABC) metric that assesses the size/complexity of code [137]. In each case, the
number shown is for the entire application; negative values indicate a decrease in the
specified metric.

By comparison to C-OpenCL, both Ensemble-OpenCL and C-OpenACC require fewer
lines of code, and are simpler by both metrics, with the only exceptions being the matrix
multiplication and Mandelbrot cyclomatic complexity examples. The negative values seen
are due to the kernel code/actor effectively replacing the outer for loop in the
single-threaded version, thus reducing code and complexity. Annotating code with
OpenACC pragmas generally has little effect on the code size or metrics. The main impact
is from having to explicitly specify the sizes of the data to be moved, requiring variables to
be accessed.

5.2. The Actor as the Abstraction for Accelerator-based Concurrency 134

0.01

0.1

1

10

100

N
o

rm
a

li
se

d
 E

x
e

cu
ti

o
n

 T
im

e

kernel from to Overhead

(a) Matrix Multiplication

0.1

1

10

100

1000

N
o

rm
a

li
se

d
 E

x
e

cu
ti

o
n

 T
im

e

kernel from to Overhead

(b) Mandelbrot

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

li
se

d
 E

xe
cu

ti
o

n
 T

im
e

kernel from to Overhead

(c) LUD

0.001

0.01

0.1

1

10

100

N
o

rm
al

is
e

d
 E

xe
cu

ti
o

n
 T

im
e

kernel from to Overhead

(d) Reduction

0

1

2

3

4

5

6

7

8

c-gpu ensemble-gpu c-cpu ensemble-cpu openmp-cpu

N
o

rm
a

li
se

d
 E

x
e

cu
ti

o
n

 T
im

e

kernel from to Overhead

(e) Document Ranking

Figure 5.10: Performance between C-OpenCL, Ensemble-OpenCL and C-OpenACC Nor-
malised to Ensemble GPU

The implicit kernel for loop, plus the actor and channel abstractions accounts for the better
results generally shown by Ensemble-OpenCL compared to C-OpenACC. The main
discrepancy being the reduction example, which required very different kernel logic to the
single-threaded equivalent in both Ensemble and C, however, this mindset is advocated by
both approaches, unlike OpenACC.

5.2.3 Performance

Figures 5.10a-5.10e show the comparative performance of Ensemble-OpenCL, C-OpenCL
and C-OpenACC for the applications described above. Here the CPU and GPU suffix
indicates the if the result is for a CPU or GPU, respectively. C-OpenACC refers to both
GPU and CPU results, as the PGI compiler was used for both OpenACC and OpenMP

5.2. The Actor as the Abstraction for Accelerator-based Concurrency 135

pragmas. Each column in each figure displays the time taken to complete the given
application, normalised to the Ensemble GPU results. This is done to highlight relative
application performance, rather than absolute execution performance. The columns are split
to show the relative amount of time taken to move data to a device, move data from a
device, to execute a kernel, and the overhead which represents the total relative application
execution time minus these values. This does not apply to C-OpenACC as it was not
possible to correctly identify the distinct operations due to the pragma-based abstraction.

Figures 5.10a and 5.10b show the results for the matrix multiplication and Mandelbrot
applications, respectively. The OpenCL actions (data movement and kernel calculations)
are nearly equivalent between the C and Ensemble versions. The higher overheads in the
Ensemble version are due to interpreter overhead for the non-kernel code. C-OpenACC
shows similar performance on the GPU for Figure 5.10a, however much worse performance
in Figure 5.10b, even when using the fine-grained gangs and worker annotations to
explicitly specify the groupsize and worksize to be used on the GPU. Whereas an
explicit kernel can take advantage of each thread’s position within the 2D architecture of the
GPU, the C-OpenACC abstraction cannot, hence the poor performance.

Figure 5.10c is of particular note as it highlights one of the advantages of using channels. In
this application there are three kernels, each performing a different operation. In the
Ensemble version, a controller actor plumbs the channels of the kernel actors together,
creating a pipeline of kernels, Figure 5.9. The controller then sends the data, and waits for
the final result. By comparison, the C-OpenCL version sequentially invokes each kernel
from the host. As C-OpenACC is annotated single-threaded code, it also invokes the
relevant code sequentially.

This application highlights the advantage of movability within Ensemble. Without
movability, LUD took approximately three minutes (not shown) to complete on the GPU
due to all the data movement involved; with movability, it takes approximately five seconds
on the GPU. Here we can see that by using movable types, the time taken by Ensemble is
comparable to the C version. Again, the higher overheads are caused by the non-OpenCL
code being interpreted by the unoptimised Ensemble VM, not data movement.

In order to obtain comparable performance from OpenACC, annotating the outer loop of
the relevant code was not sufficient, requiring use of the non-trivial gangs and worker
annotations. This makes the distinction of host and device explicit, with the added
disadvantage of being inline in the code, rather than having distinct sections of code. Again,
worse performance is seen from the CPU.

Figure 5.10d shows that Ensemble-OpenCL closely tracks the performance of C-OpenCL.
C-OpenACC performs poorly for this application on both the GPU and CPU due to this
type of application requiring different logic to take advantage of parallel hardware. Again,

5.2. The Actor as the Abstraction for Accelerator-based Concurrency 136

annotating the sequential version is not enough for this type of application.

Figure 5.10e shows results for a real world example and indicates that the kernel execution
time in Ensemble-OpenCL is greater than in C-OpenCL. This is due to some fundamental
differences between the host languages, rather than the programming models. Firstly, in
Ensemble there are no NULL values. This means that all data types must be initialised at the
point of creation. This has the advantage of making the language safer, but can lead to
increased execution time when the first actual use of a variable it to write to it - i.e.
initialisation was not required. In this application, two arrays are initialised in the kernel,
within a loop with many iterations. A similar action is taken in the C version, however the
two initialisation loops are combined, effectively halving the amount of work done by the C
version. Loop unrolling in the code generated from the Ensemble compiler could help with
this.

Secondly, the ability of C to use an integer value as both a boolean indicator and numerical
value leads to faster code when compared to Ensemble, which has no such overloading.
Ensemble uses separate types for numeric and boolean values, which in this application
requires a number of control structures to be used, and causes greater execution time.

Thirdly, the C-OpenCL version uses short vector types and operations. Ensemble does not
yet support OpenCL specific types such as short vectors, and the associated vector
operations upon such types. This limitation is due to time constraints, rather than
implementation or theoretical barriers. Such types and operations will be added to the
Ensemble type system, and will reduce the execution time. Again, this is a limitation of
Ensemble, not actors.

The second observation is the smaller data movement time in Ensemble-OpenCL compared
to C-OpenCL. This was an unexpected consequence of movability (Section 3.2). In this
application, the kernel execution was run multiple times during each individual run to
collect sufficiently large time values. In the C-OpenCL version, the data is copied to and
from the device each time. No changes or modifications are made to the data between
movements. This is also true in the Ensemble version, however due to the lazy evaluation
logic the data on the device is never moved back to the host, as it is not required to do so.

The PGI compiler was not able to compile this code, hence no results were obtained for the
GPU or CPU from C-OpenACC. The CPU results were generated from the OpenMP
pragmas and the gcc compiler. Even with the gcc compiler, the results still show slower
CPU results by comparison with the other methods.

From the results shown, the general trend is that the performance of hand coded C-OpenCL
is comparable to Ensemble-OpenCL. As both C and Ensemble are using the OpenCL
runtime, the main difference in time between these approaches comes from the overhead of
the Ensemble VM. There are optimisations that can be applied to the implementation, as

5.3. The Actor as the Abstraction for Adaptive Programming 137

discussed previously, however the fact that Ensemble is an interpreted language accounts
for the majority of the overhead when compared to the C version, as opposed to issues with
the language’s actor-based structure.

Given these results and the previous discussion, it has been shown that:

• Ensemble-OpenCL always enables simpler, functionally-equivalent code with many
fewer lines of code compared to C-OpenCL, and generally simpler, equivalent code
with fewer lines when compared to C-OpenACC;

• Ensemble-OpenCL applications present commensurate performance to C-OpenCL on
GPU & CPU;

• Relative performance of Ensemble-OpenCL to C-OpenACC ranges from equivalent
to significantly better on GPUs, and from better to vastly better on CPUs.

5.3 The Actor as the Abstraction for Adaptive

Programming

The combination of improved battery technology and more power-efficient computing
hardware has resulted in the proliferation of heterogeneous distributed systems. This
internet of things consists of embedded devices, wearable devices, hobbiest devices, parallel
devices, and commodity devices. Given the different resource and power constraints found
in such systems, it is important that applications be able to reconfigure or adapt their
runtime execution environment in order to make best use of the resources available.

Adaptable systems can be used in interesting and useful ways for personal, industrial,
academic, or educational purposes. The deployment of WSN hardware in hazardous
environments [127], makes retrieving hardware to update the software challenging,
requiring adaptation or over-the-air programming at the firmware level [33], or the module
level [46, 38]. At the opposite end of the spectrum, data centres use adaptation to facilitate
load-balancing. Virtualisation systems, such as Xen [51], provide coarse-grained adaptation
at the OS level. A similar argument can be made for the computing clusters which are used
in HPC, often for large scientific computations.

In the consumer domain, industry is beginning to take advantage of adaptable software and
the different computers in the surrounding environment. For example, Google’s
Chromecast3 enables Android enabled devices to cast images or videos to a nearby
television or screen, instead of the small screens found on tablets or mobile phones. Apple’s

3https://www.google.co.uk/chrome/devices/chromecast/index.html - Accessed April 2015

5.3. The Actor as the Abstraction for Adaptive Programming 138

Continuity4 goes further and lets you move active software between Apple devices for a set
of office-focused applications. In both systems, customised hardware is required, and only a
specific set of purpose-built applications work.

Despite the potential advantages of adaptable computing, the different categories of
hardware often come with domain-specific programming styles and technologies. For
example, event-driven programming in embedded systems, and accelerator-based
programming in parallel systems, presenting a barrier for adoption of non-experts.

Additionally, there are two main limitations of the above adaptive approaches. The
image-based approach requires the replacement of the entire software runtime environment,
while the more fine-grained replacement requires the use of APIs. The API-based approach
offers no integration with the programming model, requiring the user to have correctly
created de-coupled code, and offers no assistance in reasoning about the overall logic of the
application or how it will be affected by adaptation.

The goal of this work is to support and ease the use of adaptive computing in the general
case. Having the actor as the unit of adaptation simplifies the creation of applications which
are naturally provisioned for adaptation, in particular runtime migration, without the
requirement for specialised libraries, specialist programmer knowledge, or specialist
knowledge of the different hardware platforms on which an application may execute, or
even the networking technologies which connect them. Providing the ability to adapt actor
applications, by default, will make adaptable computing available in the general case,
enabling the exploration of programming multi-platform software adaptation. Whereas
traditional programming models see distributed systems as distinct hardware locations
explicitly interacting with other distinct hardware locations, the actor model abstracts
physical locations, enabling users to focus on solving problems.

Given the previous discussion on the design and implementation of the language and
runtime in Chapters 3 and 4, respectively, this section describes the application of
actor-based computation to adaptive applications. The hypothesis is that the shared-nothing
message passing semantics of actors is the appropriate structuring mechanism to create
adaptive applications, without restrictive performance costs. This is shown by a
combination of raw performance results for the primitive actions of adaptation in the
Ensemble language, as well as the performance of two representative applications.

5.3.1 Applications

In order to test the hypothesis that actors are a simple and appropriate unit of abstraction for
adaptive applications, two applications were created: an application which enables a human

4https://support.apple.com/en-gb/HT204681 - Accessed April 2015

5.3. The Actor as the Abstraction for Adaptive Programming 139

Figure 5.11: Command Line Draughts Interface

to play draughts against a computer player, and a media player which follows a user around
a physical space.

An Adaptive Draughts Engine

One advantage to adaptive computation is the ability to offload data processing to a remote
site. Motivation for this includes power constraints, more appropriate hardware, or cost.
This idea has been explored via techniques such as RPC/RMI (Section 2.2.5). To show how
actors can be used to facilitate offloading, a draughts engine using alpha-beta pruning [138]
has been created in Ensemble. The core computation of the application is when the
computer player decides on which move to make. To do this, the tree of possible future
legal moves is generated from the current board, and the computer player uses heuristics to
decide the best move. Generally, the deeper the search tree, the more challenging the
computer opponent. The game is played via a command-line interface, Figure 5.11. The
application consists of two actor types, one to interact with the user, and one to calculate the
computer player’s next move.

There are two possibilities for runtime adaptation:

• spawn - Before the computer player begins the calculations for its move, it may
decide that the calculations are to be performed locally because the game is on easy
mode, or remotely, because the game is on hard mode. In the remote case, the
computer player searches for a more powerful stage, and spawns an actor remotely,
passing the current game board. Once the remote actor has explored the search tree
and made a decision, it transmits the choice back to the computer player. This style is
similar to the use of RPC/RMI.

• migrate - If the computer player has decided that the calculations should be
performed locally, but the search is taking longer than some predefined time
associated with user response, it may choose to migrate the relevant actors to a

5.3. The Actor as the Abstraction for Adaptive Programming 140

different machine to complete the search faster. These stages can either be discovered
a priori or on demand. Here, the use of migration can transparently enable the
existing work to be transferred to another stage(s) to be completed, rather than
restarting the calculations, or abandoning the search and returning the best result thus
far.

These two approaches highlight that there are different solutions to this problem. In both
situations, the partitioning of the application into actors provides the necessary decoupling
for either spawn or migrate. As the language supports these operations natively, their
use is trivial from the users perspective.

A Mobile Media Player

This application is designed to show how adaptability can be used in a mobile context. This
has been done by creating an application which displays images similar to a slide show.
These images will be displayed on different hardware devices as a user moves through an
area. As Ensemble does not yet have a graphical environment, these images are
ASCII-based. While this is clearly not a modern media example, it represents the salient
features of such an application.

The experiment consists of three actors. One actor is responsible for displaying the images
(display), one actor is responsible for controlling access to the file system (file) at the
starting stage, and one actor is responsible for locating geographically close stages, and
instructing the display actor to either move to the stage closest to the initial stage, or to
return to the initial stage if it is about to go out of range (locator).

This experiment consists of a laptop and three RaspberryPis, each in a different room. The
actors begin on the laptop, and images from the laptop’s file system are shown periodically
on its display. As the user enters a room, the application will detect the RaspberryPi, and
automatically migrate the actor responsible for displaying the image to this device if within
a certain distance. This distance is determined using the #DISTANCE property for a stage.
After this point, the images will be displayed on the RaspberryPi’s output. The assumption
being that the display of the RaspberryPi is more appropriate. As the user leaves the room,
the locator actor will instruct the display actor to migrate back to the laptop. If the user
enters another room with a RaspberryPi, the display actor will migrate directly from the
previous RasperryPi to the new one.

As the files are located on the laptop, access to them is gained through a file system actor,
which accepts paths to files, and returns bytestreams representing images. This interaction
is done via channels which transparently stretch as the display actor migrates, providing
access in the same manner regardless of the stage at which the actor is located. No third

5.3. The Actor as the Abstraction for Adaptive Programming 141

party libraries or restructuring of user code beyond that normally expected of the
actor-model is required to achieve this adaptation.

This example is a prototype. Given more time, a Java implementation of the Ensemble VM
would have been created to enable Ensemble applications to execute on a wide number of
mobile phones. Also, the creation of media codecs in Ensemble would enable the
application to support more advanced media representations.

5.3.2 Evaluation

Given the previous discussion of how adaptation is represented in Ensemble (Section 3.4)
and the limitations or restrictions of adaptation in other actor-based languages in
Section 2.1, the following discusses the performance results of using adaptability in
Ensemble across heterogeneous hardware platforms. The combination of time constraints
and the limitations of other approaches prevented a comparative evaluation. To quantify the
cost of adapting actors, the size and time taken to spawn and migrate actors was measured
with respect to the applications described above. Also, Appendix C characterises the
performance for each adaptation operation in the language in isolation.

The following graphs show turkey box plots. The bottom and top of the boxes represent the
first and third quartile ranges of the data, with the band inside the box representing the
second quartile, or median. The diamond represents the average. The whisker represent the
range of values within 1.5 times the inter quartile range, and the circles represent outliers.
Each box is generated from 100 runs of the specified experiment; this value was chosen as
the results were stable after this many runs.

In the following, the specification of the devices used is discussed in Section 4.3.3.

NXT Platform

Although the NXT platform does support the channel-based abstraction of the network and
runtime adaptation, it was not included in the draughts and media player experiments due to
a limitation with its communication mechanism. Specifically, the Bluetooth radio chip that
it uses attempts to create connections on a restricted Bluetooth channel, hence it cannot
create connections to non-NXT platforms. As Ensemble does not use persistent connections
and must create connections often, this is a limitation on this platform. It is important to
note that this restriction is specific to the NXT hardware platform, and is not an issue with
this work.

Given this limitation, the following results are designed to show that it is possible to provide
the functionality required for adaptation in a highly resource-constrained environment.

5.3. The Actor as the Abstraction for Adaptive Programming 142

0

5

10

15

20

25

30

35

NXT DISCOVERY NXT MIGRATION NXT SPAWN

T
im

e
 (

s
)

Figure 5.12: Time Taken to perform adaptation on the NXT

Figure 5.12 shows the time taken to discover a stage located on a NXT device, as well as
spawn and migrate an actor on to an NXT device from a desktop machine across Bluetooth.
The actors used in these experiments contained a mixture of data types, including channels
and arrays; although channels with existing connections can not be recreated, the runtime
can create remote references, as this is a lazy operation. In this case, the use of the channel
generates an exception as the hardware will not be able to create the connection
successfully.

The large time seen for discovery is a combination of the seven second timeout for
TCP-based connections (of which there are none in this experiment), plus the 10.28 seconds
required to discover all possible Bluetooth devices. The remaining 11.07 seconds is
required to connect to and communication with the stage on the NXT platform. In general,
these times are larger by comparison to the results in the following sections due to the use
of Bluetooth, which is unreliable and requires large buffering time periods, and the slower
hardware found on the NXT. Considering this, the migration time is expectedly larger than
the spawn time. 1540 bytes and 870 bytes were required for migration and spawn,
respectively.

5.3.3 Adaptable GPU Programming

As actors are used to represent kernels (Section 3.3), they are naturally able to take
advantage of adaptation in the language. The only exception is migration, as explained in
Section 4.5.3. Communication with a kernel actor is achieved by channels, hence the
performance results in Section C.2.3 are also true for kernel actors.

To show the ease of adaptation of kernel actors, the logic shown in Listing 3.13 was

5.3. The Actor as the Abstraction for Adaptive Programming 143

-50

0

50

100

150

200

250

300

Local GPU Creation Remote GPU Creation

T
im

e
 (

m
s
)

Figure 5.13: Local and Remote Creation Times for a Kernel Actor

modified to create a kernel actor at a remote stage, instead of creating one locally.
Listing 5.2 shows the modifications in yellow. It is important to note that all calculations
and channel configurations and operations are unchanged. The only changes are the
definition of a query, the location of remote stages, and the creation of a kernel actor at that
stage.

Figure 5.13 shows the time taken to spawn a kernel actor at a local and remote stage. The
experiment was performed between a desktop and a GPU-enabled laptop connected by
Ethernet, where actors were spawned on the laptop. On average, local creation takes 46 ms,
and remote creation takes 113 ms. The large skew in remote creation is caused by variance
in the OpenCL compiler, not the runtime. Although the cost of remote creation is
(expectedly) higher than local creation, the average cost is likely to be significantly less
than the potential benefit of using a parallel hardware architecture5. By constructing
applications in this manner, stages without GPU support can easily take advantage of GPU
enabled stages.

The next step in this work is to refine the discovery mechanism to provide more
fine-grained detail about the types of parallel hardware architectures available, as well as
looking at load-balancing using this feature.

5.3.4 Draughts

Figure 5.14a shows the time to spawn and migrate the actor which is responsible for
calculating the computer player’s move. The application began on the RaspberryPi, and

5The experiments in Section 5.2 showed performance increases of between 7 and 50 times of parallel code
compared to single threaded equivalents

5.3. The Actor as the Abstraction for Adaptive Programming 144

1 ...
2 stage home{
3 opencl <device_index=0, device_type=GPU> actor Multiply presents mulI {
4 constructor() {}
5 behaviour {
6 receive req from requests;
7 receive d from req.input;
8 x = get_global_id(0);
9 y = get_global_id(1);

10 dim = get_global_size(0);
11 c = 0.0;
12 for i = 0 .. (dim-1) do {
13 c := c + (d.a[y][i]) * (d.b[i][x]);
14 }
15 d.result[x][y] := c;
16 send d.result on req.output;
17 }
18 }
19 actor Dispatch presents dispatchI{
20

21 query gpu query(){

22 $OPENCL == true and $OPENCL DEVICE == GPU;

23 }
24
25 constructor() {}
26 behaviour {
27 s = 1024;
28 ws = new integer[2] of s;
29 gs = new integer[2] of 0;
30 i = new in data_t;
31 o = new out real[][];
32 connect dout to i;
33 connect o to din;
34
35 ocl_struct = new settings_t(ws,gs,i,o);
36 d = generate_data(s);
37

38 stages = findStages(gpu query());

39 m = spawn Multiply() at stages[0];

40 connect requests to m.requests;

41
42 send ocl_struct on requests;
43 send d on dout;
44 receive result from din;
45 }
46 }
47 boot{
48 d = new Dispatch();

49 <<Remove the kernel actor creation and connection>>

50 }
51 }

Listing 5.2: Modifications to Make Matrix Multiplication Adaptable

5.3. The Actor as the Abstraction for Adaptive Programming 145

0

2

4

6

8

10

12

14

16

Spawn AI Actor Migrate AI Actor Board Transmission

T
im

e
 (

m
s
)

(a) Adaptation Performance of the Draughts Application

0

5

10

15

20

25

30

35

Migrate Media Player Actor Time to Send Image (13KB)

T
im

e
 (

m
s
)

(b) Adaptation Performance of the Mobile Media Player Application

Figure 5.14: Adaptation Performance of the Draughts and Mobile Media Applications

either spawned or migrated an actor to the desktop. It also shows the time taken to transmit
a representation of a board, which includes the time taken to marshal and demarshal the
data at either stage.

The time taken to migrate is obviously larger than the spawn as the migration must capture
the running state of the actor, in addition to the class files transmitted during a spawn. The
key point here is that the cost of these operations is not onerous by comparison to the
potential benefits of offloading. Given a search depth of three levels, the computers player’s
move will be calculated on the order of seconds in the opening to mid stages of the game.
The cost of adaptation is approximately 100 times faster than the time to complete a search,
while the potential benefit is on the order of seconds, depending on the capabilities of the
stage being migrated to.

5.4. Summary 146

Image Size (KB)
1 13
2 7.3
3 7.2
4 8.2
5 7
6 9.2

Table 5.7: Media Player Image Sizes

5.3.5 Media Player

In order to be useful as a media player, the migration delay of an actor within the media
application must be minimal to prevent the user noticing the transition. For video playback,
a succession of images are displayed at a rate of 24 frames every second to provide the
illusion of movement. This displays a frame every 41.6 ms, hence the migration time must
be less than this. Figure 5.14b shows the time taken to migrate the display actor between a
desktop machine and a RaspberryPi, including any images currently referenced by the actor.

The worst case delay is approximately 29 ms, with the average time being approximately 18
milliseconds. This delay includes the time to reconstruct the actor, its state, and all channel
connections, meaning that after this time the actor will be able to continue operation.

Six images are used in the media player example; the sizes of each image is shown in
Table 5.7. Figure 5.14b also shows the time taken to send the largest image remotely to the
migrated actor. The combination of the average migration time (18 ms) with the average
transmission time (5 ms) is lower than the 40 ms frame rate delay. It is important to note
that this transmission time is less than that seen in Figure C.8 in Appendix C for a similar
data size. This is because the latter figure uses a more complex data type which takes longer
to marshal/demarshal.

5.4 Summary

Given the large number of heterogeneous computing platforms which are currently
available, a number of esoteric programming styles have emerged. The work in this chapter
has argued that the actor-model of computation can be used to present a simpler
homogeneous programming model both within and across different computing domains,
and that executing such a model on a VM does not compromise performance and enables
fine-grained adaptation.

By comparison with nesC and TinyOS, the current de-facto choice in WSN programming,
Section 5.1 shows that the actor-based model of computation has been shown to be both

5.4. Summary 147

simpler and as performant on highly resource-constrained embedded hardware, across a
number of representative and realistic applications. The execution of Ensemble applications
on the Ensemble VM facilitates this without being onerous in either space or time. The use
of a movable memory space enables the shared-nothing semantics of the actor model and
automated garbage collection, without incurring increased memory consumption and
fragmentation.

By noting the parallels between shared-nothing actors, which communicate via explicit
message-passing, and accelerator-based computation, which requires explicit data
movement, actors have been used as an abstraction for accelerator-based programming.
Section 5.2 describes that by marking an actor as a kernel, with its behaviour clause
becoming the logic for the kernel, and using channels to convey data between the
kernel-actor and other actors, the actor model can completely abstract the large amount of
boilerplate code require for OpenCL, and provide a more natural programming model for
such computation. The use of movability provides a type-safe way for developers to take
advantage of common GPU programming optimisations, while again maintain the
encapsulation of actors. The performance of using this approach is comparable to hand
written C code using OpenCL.

Finally, given the numerous operating conditions which are presented by heterogeneous
hardware platforms connected by different networks types, it is no longer sufficient to think
in terms of static software configurations for homogeneous devices. By using the actor as
the unit of adaptation, Section 5.3 has described the performance cost of adapting
actor-based applications across a set of heterogeneous devices. These results show that this
is possible on highly resource-constrained devices, as well as showing minimal cost for
medium to highly provisioned devices, including GPUs.

148

Chapter 6

Conclusions and Future Work

Two major trends in computing hardware in the last decade are the increasing number of
processing cores, both in single CPU chips and in dedicated peripheral devices, such as
GPUs and co-processors, and the increase in ubiquitous heterogeneous distributed systems.
While these advances present significant potential benefits to performance and enable new
forms of digital interaction over traditional desktop computing, programming these devices
is challenging at best. To aid the use of these platforms for non-experts or non-computing
scientists who seek to benefit greatly from these hardware advances, it is essential to
provide better programming abstractions and runtime support.

The goal of this dissertation is to provide such support by showing that an actor-based
programming abstraction can greatly simplify programming such hardware devices and
systems, without incurring any notable performance penalty, enabling developers to focus
on solving problems.

6.1 Thesis Statement Revisited

This section revisits the thesis statement presented at the start of the dissertation to assess
the impact of the work presented in this dissertation. The thesis is as follows:

The use of encapsulated, shared-nothing loci of computation and explicit

message passing, found in the actor programming model, will both enable and

simplify the programming of concurrent, distributed, and adaptive applications

across heterogeneous platforms at different levels of computing scale.

To prove this assertion, the following work has been done:

Chapter 3 describes the design of an actor-based programming language. The decision to
create a new language was due to the limitations of other actor-based approaches. This

6.1. Thesis Statement Revisited 149

language supports the creation of applications based on shared-nothing loci of computation
which interact via explicit, typed message-passing. As well as automated garbage collection
of heap allocated memory, the language supports the idea of a simple movable heap space
to address the increased heap usage and fragmentation caused by the use of shared-nothing
semantics and automated garbage collection. Furthermore, this chapter describes language
support for accelerator-based computation via an actor-based abstraction. This model fits
well due to the parallels between these two idioms.

Chapter 4 describes the process of compiling Ensemble applications into a custom class
file format, as well as the implementation of a runtime which interprets these applications.
The runtime natively supports the concepts expressed in the language, such as actors and
channel-based communication, but also the actor-based abstraction and execution of
OpenCL kernels, and the discovery and runtime adaptation of actors and stages, as well as a
channel-based abstraction of network communication. There is also a discussion of porting
the runtime to a number of different hardware platforms, including resource-constrained
embedded systems.

The main justification of using an actor-based abstraction for programming concurrent,
distributed, embedded, and adaptive applications is made in Chapter 5. The chapter is split
into three sections:

Firstly, a justification of the actor as the unit of abstraction for embedded programming is
made. To show this, a number of applications which covered the different equivalence
classes of activity found in embedded applications were used to compare this work with the
popular TinyOS/nesC system. In terms of linguistic complexity, Ensemble applications
express much simpler, functionally equivalent code when compared to nesC equivalents.
Performance comparisons show that when Ensemble is compiled to C code directly, it
provides at least equivalent performance to TinyOS, and still had plenty of RAM and ROM
available on the embedded hardware. This chapter also discussed the runtime cost of
interpreting Ensemble applications by the custom Ensemble VM on resource-constrained
hardware. The results show comparable performance for typical embedded applications to
the native performance, and do not show excessive resource consumption. Hence,
interpreted applications are a valid base to explore runtime adaptation on embedded
devices. Also, this section proves that the movable memory space can be used to reduce the
increased heap fragmentation and allocation costs incurred by the use of automatic garbage
collection and shared-nothing semantics.

Secondly, a justification that using an actor-based abstraction for programming
accelerator-based concurrency is made. Specifically, by noting the parallels between the
two programming models, an actor is used to abstract the representation of a kernel, and
channel-based communication abstracts the explicit data movements between actors, kernel

6.2. Contributions 150

or otherwise. The use of objective software complexity metrics have shown that the
actor-based abstraction is significantly simpler when compared to equivalent C and simpler
when compared to equivalent OpenACC implementations across a range of applications.
Also, performance results show significant improvements when compared to OpenACC,
and comparable performance to C. By using the movable heap space, developers are able to
leave data on an accelerator (a common optimisation) to improve performance, without
violating the shared nothing semantics of the actor model.

Thirdly, a justification of using actors as an abstraction for adaptive computation is made.
Given the description in previous chapters of how adaptation, as expressed in Ensemble,
overcomes or addresses the limitations in other actor-based languages, this section focuses
on performances results. There are performance results for an embedded device
communicating over Bluetooth to show that such adaptation is both possible and feasible;
limitations in the hardware prevented a full set of experiments. Also, there was reference to
a suite of micro benchmarks in Appendix C showing the minimal cost of individual
adaptation operations, as well as a discussion and results showing the ease of applying
adaptation to kernel-actors and the limited cost of doing so. To motivate the argument of the
actor as the unit of adaptation, two applications were created to represent a number of use
cases for adaptation: a draughts computer game and a mobile media player. The results
showed that little effort was required to apply adaptation to these applications, and that the
performance costs for discovery, spawn, or migration were minimal compared to the
potential performance improvements that runtime adaptation offered.

6.2 Contributions

This work contributes towards the programming of concurrent, distributed and adaptive
systems in the following ways:

• Actor language support for runtime adaptation

In order to test the hypothesis, a new actor-based language was created called
Ensemble. As well as shared-nothing semantics and explicit message-passing, the
language natively supports location transparent communication and runtime
adaptation with appropriate mechanisms for handling both local and distributed
failure.

• The creation of a language-specific VM

To compliment the language, a new VM was created, with the specific purpose of
executing Ensemble applications. As well as natively supporting the operations

6.3. Future Work 151

expressed in the language, such as adaptation, the VM also executes on a number of
different hardware platforms; this includes resource-constrained embedded hardware
devices. Also, the runtime supports a channel-based abstraction of two different
network technologies.

• A language-level discovery mechanism based on user-defined properties

Unlike other actor systems which have limited or no support for runtime actor
discovery, Ensemble enables both actors and stages to be located at runtime based on
user-defined properties. This enables users to customise how and when different
language entities can be discovered, independent of predefined language or runtime
choices.

• Application of actors to accelerator-based programming at the language level

By taking advantage of shared-nothing actors which communicate via message
passing, and then applying this to accelerator-based computation, this work has
shown not only that actors reduce and simplify the code which has to be written, but
also that the performance of such a system is comparable to hand-crafted C-OpenCL.

• Simple Optimisation of Memory Usage via Movability

Through a combination of a single addition to the type systems, and compiletime
analysis, this work has shown that the requirements imposed by the shared-nothing
semantics of actors and automatic garbage collection need not cause increased
consumption and fragmentation of the heap at runtime.

6.3 Future Work

The work described in this dissertation has answered the questions posed by the hypothesis,
and in doing so has laid the foundation for significant future work. This section outlines a
number of directions to be followed.

6.3.1 Formal Verification

Formal verification is the process of ensuring correct, robust, and reliable software through
mathematical analysis of program code. The work in this dissertation has a formal
grounding, as the flavour of actors used are strongly influenced by the π-calculus.
Consequently, there are two potential research direction: bi-graphs and session types.

6.3. Future Work 152

Bigraphs

Bigraphical Reactive Systems (BRS) are a recent formalism for modelling the temporal and
spatial evolution of computation. It was initially introduced by Milner [139] to provide a
fully graphical model capable of representing both connectivity and locality. A BRS
consists of a set of bigraphs and a set of reaction rules, which defines the dynamic evolution
of the system by specifying how the set of bigraphs can be reconfigured. The development
of bigraphs has been directed toward the modelling of ubiquitous systems by focusing on
both mobile connectivity and mobile locality [140, 141]

The hypothesis is that bigraphs can be used to give some guarantees that the use of
actor-based adaptation to evolve an application can be done in a safe manner. By creating a
new backend for the Ensemble compiler, an Ensemble application can be automatically
translated into a bigraphical representation. At this point a developer can approach an
expert with a formalisation of their application, and discuss potential issues, without the
need to understand formal methods; the developer need only write their application as
normal. Given the natural mapping between actors and bigraphs, this code transformation
should be tractable. Initial work has already explored this idea, using hand crafted
transformations on static applications [142].

Session Types

Session types [143] are data types which enforce patterns of interaction between loci of
computation - specifically, the data types which are communicated, as well as the order in
which they are sent. This is most commonly applied to distributed applications, where the
interaction is embodied by messages sent on a network. Session types have already been
applied to several languages including C [144] and Java [145]. Encapsulated actors with
explicit message passing are the perfect candidate for session types. Specifically for
Ensemble, which already uses typed channels.

This would be achieved by extending the language to include a session type. This type
would be defined in a similar manner to a query, and would contain the protocol of the
session. A channel would then be defined in the normal way, using the defined session
type as the data type that it conveys. An extra phase would then be added within the
compiler to ensure that the use of such a channel in an actor’s behaviour clause does not
violate the protocol in the channel’s session. As with movability (Section 3.2), this would
all be done at compiletime, and not require any manifestation in the runtime.

The use of session types would provide guarantees that actors are interacting with each
other in the manner specified in the session type. This would be useful for replacement

6.3. Future Work 153

(Section 3.4.4), providing a strong guarantee that the new actor would interact with others
in a well defined manner.

6.3.2 JIT Compilation

As shown in Section 5.2.3, the main limiting factor in Ensemble performance is the
overhead of host code interpretation. This problem is common in interpreted languages and
is overcome with the use of JIT compilation. While the creation of a JIT is not a new
research question, the creation of a JIT compiler for resource-constrained platforms in the
general case is, and even more so for actor-based systems. Initial work [146] has shown that
this is possible for a modified JVM on single node performing numeric computations.

6.3.3 Mobile Phones

The Ensemble VM is not currently supported on mobile phones. This platform is important
as it is truly pervasive, and porting the Ensemble VM to such a device would enable
research into adaptation in numerous daily situations.

The Ensemble VM is implemented in C. Although such devices do execute C applications,
these are not cross compatible between multiple mobile phone models due to certain driver
dependencies. Instead, a Java-based version of the VM would be created which would run
as a mobile phone app. This would enable the VM to execute on multiple mobile phone
models, without hard dependences built into the VM implementation. Having the Ensemble
VM executed by the JVM would introduce a memory and performance overhead; however,
as the resources available on modern mobile phones are greater than that of RaspberryPis,
this should not be onerous.

6.3.4 Load Balancing

High Performance Computing Clusters

As Ensemble uses adaptation to both deploy and relocate actors from within the language,
the programming of clusters of either homogeneous or heterogeneous machines should be
simpler than current practise.

To explore this hypothesis, an existing set of cluster programming applications will be
written in Ensemble, and compared to existing implementations in terms of linguistic
complexity and performance. Examples include weather simulation [147], ant colony
optimisation [148], and n-body simulation [149].

6.3. Future Work 154

Apart from being desirable in the general case, the simplification of such programming is
required as the creators of such applications are often non-computing scientists. Their goals
are to solve their problems, not write code.

Distributed Heterogeneous Systems

The work described in this dissertation provides the tools for fine-grained application
adaptation at runtime. The next logical step is to use these tools in the most appropriate way.

Load balancing is an obvious starting point. Currently, schedulers in data centres and work
stealing algorithms on clusters focus on observed behaviour of running applications to
inform decisions about when and where to relocate execution. While this is objective, it
completely removes the involvement of the user. As Ensemble exposes these tools to the
user directly, it is well placed to enable an exploration of in-language control of adaptation.
Equally, it may be useful to express some requirements for an actor or stage that can be
used automatically by the runtime to determine if an actor should be relocated to a more
appropriate stage.

A more unconventional approach is an on-demand strategy, using the computer hardware
embedded in the world around us. Based on the examples of products from Google and
Apple (Section 5.3), it is clear that there is a motivation to take advantage of the computing
hardware found in the environment in an on-demand fashion. What if a mobile phone
became a person’s server? Then a hotel room television could continue playing the game
that you started on your phone and migrated just before the battery died. Combining
generic application migration and ubiquitous computing is an interesting and fruitful area
for systems research.

6.3.5 Summary

There are a number future directions that can pursued, based on the foundations provided
by this work. As this work is based on the principals of the π-calculus, the rigours of formal
methods can be applied. Specifically, bigraphs and session types can be used to ensure that
the interaction of actors is correct, and that the runtime adaptation of actors does not lead to
higher-level application logic errors. As the language is interpreted, the use of JIT
compilers can help alleviate some of the performance overheads. This is particularly
interesting in an embedded context. Finally, perhaps the most interesting avenue of future
work is to explore the use of runtime adaptation in different contexts. The need to balance
computing loads in clusters of high-powered computers is well understood, but current
approaches are often automated, excluding the developer. Equally, as computers are
increasingly found in the world around us, the ability to create adaptive applications which

6.3. Future Work 155

can take advantage of these computers in an on-demand fashion presents an interesting
research direction, in both systems and language research.

156

Appendix A

Formal Specification of Movability

This appendix describes the formal definitions used in the movability analysis, and
represents the formal specification of the approach described in Section 3.2.

This section is split into two sections. The first describes the analysis of how data sent
between actors is represented, and the second describes the tracking of data and the
variables which alias them.

A.1 Formulating the Move Analysis

This section presents the data flow equations required to track movability of heap objects
within an Ensemble application. In particular, we first define the intraprocedural data flow
equations for handling movability, abstracting away the handling of aliasing which is
subsequently presented as another set of data flow equations in the following section, then
we extend the equations to the interprocedural setting using the theory presented earlier in
Section 3.2.4.

A.1.1 Intraprocedural Move Analysis

The equations act on a data flow framework defined as (L, F,∪), where L is the bounded
meet semilattice of data flow values, F is the set of flow functions operating on elements of
L, and ∪ is the meet operator to handle control-flow merge points. This bounded meet
semilattice of data flow values is the set of variables which cannot be moved at a specific
program point, therefore the greatest element is ∅ and the least element is the number of
reference variables to movable memory in the program, M . Furthermore, M ≤ V , where V
denotes the set of all variables in the program. Recall, that a use is defined to be any

A.1. Formulating the Move Analysis 157

reference to a variable that does not re-define that variable. If an instruction n is x = y, then
we can say that n is use(y) (“n contains a use of y”).

Next, the flow function fn must be defined. The flow functions for move analysis must take
into consideration the aliases of references, including global, actor member and local
variables, and reference formal parameters. For the moment, assume the aliases of all
references, and reference formal parameters have been computed for all program points u
such that for all references (including reference formal parameters) x, ALIAS(x, u) is the
set of references that may be aliases of x upon entry to program point u (see Section A.2);
that is, x may reference the same memory location as the variables in ALIAS(x, u). Then
our equation can be formulated as:

fn(x) = (x−Killn) ∪Genn if n is use(v), and v ∈ x, then generate an error (A.1)

where

Genn =


{v} ∪ALIAS(v, n) if n is a send operation sending v, v ∈M

{y} ∪ALIAS(y, n) if n is a send operation sending y, y is a reference formal parameter
∅ otherwise

(A.2)

Killn =


{v} if n is an assignment v = r, v ∈M , r ∈ V − (v ∪ALIAS(v, n))

{y} if n is an assignment y = r, y is a reference formal parameter, r ∈ V − (y ∪ALIAS(y, n))

{v} if n is a receive operation receiving v, v ∈M,

∅ otherwise

(A.3)

The side-effect of fn(x) is our error checking on the data flow values reaching program
point n. Thus, for x ∈ L and v ∈ x, if at program point n we send v across a channel, an
error should be generated since v has already been moved in some path from the entry node
of the CFG under consideration to n.

For each program point n, we associate an In and an Out set denoting the data flow values
at the entry and exit of program point n, respectively:

Inn =


∅ if n is the entry node of the CFG⋃
p∈pred(n)

Outp otherwise

Outn = fn(Inn)

A.2. Alias Analysis 158

A.1.2 Interprocedural Move Analysis

To extend the move analysis to the interprocedural setting we utilise the call-strings
approach described in Section 3.2.4, and extend the data flow equations to qualify data flow
values based on the calling contexts. Call and return nodes affect propagation of movability
through aliasing of actual and formal parameters, this issue is discussed in Section 3.2.4.

A.2 Alias Analysis

Consider a control flow graph, G = (N,E), with entry node nentry. At some node n ∈ N ,
two program reference variables, x and y, are may-aliased to each other at n if they refer to
the same object in at least one path from nentry to n. If x and y refer to the same object in
all paths from nentry to n, then we say x and y are must-aliased. This work focuses on
may-alias information.

In order to track all references that could potentially refer to movable memory, a data flow
framework for computing aliases is defined. The framework for alias analysis is loosely
based on the flow-sensitive may-alias analysis work [150]. This approach differs is in the
use of the control flow graph rather than the sparse evaluation graph (SEG), and performing
interprocedural alias computation using the call-strings approach as opposed to realisable
execution paths and alias instances. Our approach has the advantage that the extension to
the interprocedural case is simpler than propagating alias instances, requiring minimal
changes to the definitions of Gen and Kill. While using the SEG would be less
computationally expensive than using the CFG, the size of Ensemble procedures, and hence
the number of nodes in a CFG, in general, is likely to be very small. The following
discusses the intraprocedural and interprocedural cases separately.

A.2.1 Intraprocedural Alias Analysis

We define an alias pair, < x, y > for program reference variables x and y, to denote the
possibility that x and y may refer to the same memory location at some program point. The
data flow equations for alias analysis act on a data flow framework defined as
(LAA, FAA,∪), where LAA is the meet semilattice of data flow values, FAA is the set of flow
functions operating on elements of LAA, and ∪ is the meet operator to handle control-flow
merge points. The elements of the meet semilattice are sets of alias pairs at a specific
program point, therefore our greatest element is ∅ and our least element is the Cartesian
product of the number of variables in the program, V × V .

A.2. Alias Analysis 159

Following [150], the analysis can be defined using In and Out sets for each program point,
noting that only assignment statements to references and call sites modify the sets.
Discussion of call sites is deferred, as this is handled by the interprocedural phase of the
analysis.

Let g : LAA 7→ LAA be the flow function for tracking aliases. Then

gn(x) = (x−Killn(x)) ∪Genn(x) (A.4)

where

Genn(x) =

{(v, u)} if n is v := u, u, v ∈ V

∅ otherwise
(A.5)

Killn(x) =


⋃

w∈V
{(v, w), (w, v)} if n is v := u and (u, v) /∈ x, where u, v ∈ V

∅ otherwise
(A.6)

Equation A.5 says that upon reaching an assignment or declaration statement, n : v := u,
the alias pair (v, u) is added to the gen set for program point n. Note, the aliases of v before
the assignment do not become aliased to u since v := u is equivalent to a pointer
assignment in C. Equation A.6 says that upon reaching a statement, n : v := u, the analysis
adds all alias pairs involving v to the kill set for program point n. If v is involved in any
other alias pair as a prefix, it is replaced by one of its former aliases in the alias pair.

In Section A.1.1 we defined the set ALIAS for each pair, program point n and variable
v ∈ V ; it is the set of the access paths that are may-aliased to each heap object at the
particular program point. For Ensemble, an access path is an expression combining variable
names, subscript operators, and field selectors such that the expression evaluates to a
reference. Equation A.4 does not provide the set ALIAS, but the set of alias pairs valid at a
program point. The move analysis requires the alias mapping, hence ALIAS is defined
formally from the set of alias pairs provided by our meet semilattice LAA.

Defintion A.2.1. The set ALIAS(v, n) returns the transitive closure of the alias pairs of v
upon entry to program point n. Formally, u ∈ ALIAS(v, n) if and only if there exists alias
pairs (v, y1), (y1, y2), . . . , (yn, u) ∈ x at program point n, where x ∈ LAA and represents the
set of data flow values entering program point n, and v, y1, y2, . . . , yn, u ∈ V .

A.2. Alias Analysis 160

A.2.2 Interprocedural Alias Analysis

Using the call-strings approach, we extend the alias analysis to handle call and return nodes
created for each call site; these nodes generate and kill aliases, between actual and formal
reference parameters, respectively. We amend Equations A.5 and A.6 to handle these
interprocedural cases. IntraGenn and IntraKilln handle the intraprocedural cases
described in Section A.2.1. Given actual and formal parameters, ai, fi ∈ V for 1 ≤ i ≤ n

(n ∈ N), and u, v ∈ V , we have:

Genn(x) =



n⋃
i=1
{(ai, fi)} if n is a call node for procedure call p(a1, a2, . . . , an),

n⋃
i=1

⋃
(fi,u),(v,fi)∈x∧v 6=u

{(u, v)} if n is a return node for procedure call p(a1, a2, . . . , an),

{(v, p(a1, a2, . . . , an))} if n is return statement returning v for procedure call p(a1, a2, . . . , an),

IntraGenn(x) otherwise

(A.7)

Killn(x) =


n⋃

i=1

⋃
w∈V
{(fi, w), (w, fi)} if n is a return node for procedure call p(a1, a2, . . . , an),

IntraKilln(x) otherwise
(A.8)

Equation A.7 generates alias pairs between actual and formal parameters upon entry to the
call node for a procedure call site, propagates any aliases created (to formal parameters)
during the analysis of a call upon entry to the return node for a procedure call site, and
handles aliasing of returned references with their respective call sites.

Equation A.8 kills all alias pairs involving formal parameters upon entry to the return node
for a procedure call site. For cases where there are no parameters to the procedure call, no
alias generation or killing is performed.

161

Appendix B

Class File Description

This appendix describes the layouts of the class files generated from Ensemble applications
for the default and embedded cases. It also describes the runtime encoding of Ensemble
types used for adaptation.

162

1 Class {
2 // unsigned integer representing the length of this class
3 u4 class_length;
4 // version of the class
5 u4 version_number;
6 // length of the constant pool in bytes
7 u4 constant_pool_length;
8 // the constant pool
9 ConstantPool[constant_pool_length];

10 // Reference in the constant pool to the name of this class
11 u4 name;
12 // Reference in the constant pool to the super class;
13 // this is 0 only for Object
14 u4 superclass;
15 // number of bytes to allocate for fields, including those
16 // of all superclasses, recursively
17 u1 fields_size;
18 // number of entries in the dependencies list
19 u1 num_dependencies;
20 // List of references to the constant pool classes
21 // representing the dependencies
22 u4[num_dependencies] dep_values;
23 // The number of 1-byte entries in the field types array
24 u1 num_field_types;
25 // char values to decribe the layout of the class field entry
26 u1[num_field_types] field_types;
27 // the length of this is not needed at runtime
28 method[] methods;
29 }

Listing B.1: Default Ensemble Class File Format

1 Class {
2 // offset of the superclass definition;
3 //this is 0 only for Object
4 u2 superclass;
5 // number of bytes to allocate for fields,
6 // including those of all superclasses, recursively
7 u1 fields_size;
8 // number of 2-byte entries in the vtable,
9 // including those of all superclasses, recursively

10 u1 vtable_size;
11 // values to initialise all the vtable entries to
12 u2[vtable_size] vtable_values;
13 // number of fields which are object references
14 u1 num_object_fields;
15 // indices into the fields array for
16 // fields which are objects
17 u1[num_object_fields] object_fields_indices;
18 // only in subclasses of Component
19 [u1 num_channel_fields];
20 // only in subclasses of Component
21 [u1[num_channel_fields] channel_field_indices];
22 // the length of this is not needed at runtime.
23 // These are all ints
24 u2[] named_constants;
25 // the length of this is not needed at runtime
26 method[] methods;
27 }

Listing B.2: Embedded Ensemble Class File Format

163

1 slot_size = 4 bytes
2 // ’uN’ means an unsigned integer N bytes long
3 // offsets are absolute byte positions in the file
4 // starting at 0
5
6 Literal = int // (slot_size)
7 | float // (slot_size*2)
8 // (null-terminated char array; 8-bit ASCII, no UTF)
9 | string

10
11 ConstantPool {
12 u1 position; // the current position in the constant pool
13 u1 type; // the type of the constant pool entry
14 Literal value; // the value in the constant pool
15 }
16
17 Method {
18 // Number of local variables, in slots.
19 // Doubles take up two slots
20 u1 num_locals;
21 // Number of stack slots
22 u1 stack_size;
23 // Number of parameters to the method, including ’this’,
24 // in slots. Needed for virtual invocation.
25 u1 num_params;
26 // in bytes
27 u2 code_len;
28 u1[code_len] code;
29 u1 num_exception_tables;
30 exception_table[num_exception_tables] exceptions;
31 }
32
33 // See the JVM spec for an explanation of these fields.
34 // They are all absolute offsets here, but used as in the spec.
35 Exception_table {
36 u4 start;
37 u4 end;
38 u4 handler;
39 u4 type;
40 }

Listing B.3: Default Ensemble Class file Auxiliary Structures

164

1 slot_size = 2 bytes
2 // ’uN’ means an unsigned integer N bytes long
3 // offsets are absolute byte positions in the file,
4 // starting at 0
5
6 Program {
7 u2 version num
8 [u2 main; // only in user programs]
9 literal[] literals;

10 class[] classes;
11 }
12
13 Literal = int (slot_size)
14 | float (slot_size*2)
15 | string (null-terminated char array; only 8-bit ASCII)
16
17 Method {
18 // Number of local variables, in slots.
19 // Doubles take up two slots
20 u1 num_locals;
21 // Number of stack slots
22 u1 stack_size;
23 // Number of parameters to the method, including ’this’,
24 // in slots. Needed for virtual invocation.
25 u1 num_params;
26 // in bytes
27 u2 code_len;
28 u1[code_len] code;
29 u1 num_exception_tables;
30 exception_table[num_exception_tables] exceptions;
31 }
32
33 // See the JVM spec for an explanation of these fields. They
34 // are all absolute offsets here, but used as in the spec.
35 Exception_table {
36 u2 start;
37 u2 end;
38 u2 handler;
39 u2 type;
40 }

Listing B.4: Embedded Ensemble Class file Auxiliary Structures

165

Data Type Encoding

integer i

string s

real r

unsigned integer u

long l

byte b

B boolean

a any

](type encoding) array where number of ’]’ indicate dimension

I(type encoding)} in channel begin and end marker

O(type encoding)} out channel begin and end marker

S(type encodings)’)’ struct begin and end markers

A(type encodings)} actor begin and end markers

F(type encodings)} interface begin and end markers

; top level interface separator

Table B.1: Description of the Runtime Type Encodings

166

Appendix C

Adaptation Performance Evaluation

C.1 Native Ensemble Results

This section describes comparison between nesC code executing on TinyOS and Ensemble
code executing on InceOS in terms of resource consumption and performance. Unlike the
approach described in Chapter 4, here Ensemble applications are compiled to C code
directly. This code is then compiled with InceOS to generate a static binary.

C.1.1 Resource Consumption

Figure C.1a shows the amount of flash which is consumed on the Tmote Sky by TinyOS
and InceOS when compiled with an application. Figure C.1b shows the amount of RAM
consumed by the data and bss sections of the compiled InceOS and application, and Figure
C.1c shows the equivalent for TinyOS. It can be seen that there is variation between the
applications on TinyOS compared to the relatively static figures for InceOS. InceOS
consumes more flash than TinyOS partially due to the optimisations of the nesC compiler,
but mostly due to the extra support mechanisms found in InceOS.

InceOS dynamically allocates the structures used to represent channels and actors at
runtime. Dynamic allocation accounts for the small values seen in Figure C.1b, and the lack
of conditional compilation causes them to be uniform across the different applications. The
use of dynamic allocation and stacks exacts a runtime cost in RAM. The cost for Ensemble
and InceOS is highlighted via two examples. The first uses a Null actor with no channels
and no code in the behaviour section. This null component requires 188 bytes. After the
system and Null actors are initialised, with both actors and channels being allocated, there
are 4363 bytes of RAM available. The second example uses the actor from the Sense
example. Here the sense actor requires 364 bytes, leaving 4187 bytes of RAM available.

C.1. Native Ensemble Results 167

(a) Flash consumed by applications and specified OS. (b) Space consumed by InceOS applications.

(c) Space consumed by TinyOS applications.

Figure C.1: Comparison of TinyOS and Native Ensemble Size Consumption on Tmote Sky

Taking the sense actor as an example of an average actor, there is enough space on the
Tmote Sky to create 11 such actors. 120 bytes are added to the compiler computed stack
size for an actor to accommodate system calls and interrupts.

InceOS consumes more flash and RAM than TinyOS, however there is still adequate space
available on the motes for even larger and more complex applications; the largest and most
complex application in this evaluation, grid, leaves just under 24 KB of flash and nearly 3
KB of RAM available, 50% and 31% of the total space available, respectively.

C.1.2 Performance

To ascertain if support for the channel and threading mechanisms exact some cost in
performance, the performance of a representative cross section of the applications on both
TinyOS and InceOS was measured. In the following graphs, each data point is the average
of 100 iterations of the application. For example, each point in Figure C.2a is the average
time required to increment a software counter and broadcast this value in a packet over the
radio 100 times. The error bars on each point represent the standard deviation, however
most are not visible as the results are often consistent within the measurement accuracy.
Both TinyOS and InceOS are using a csma/ca protocol for radio transmission - i.e., before
attempting to send, the radio hardware is queried to detect the presence of other radio
transmissions; if radio signals are detected, the transmission is delayed, otherwise the

C.1. Native Ensemble Results 168

(a) Comparison of RadioCountToLeds application. (b) Comparison of RadioSenseToLeds application.

(c) Comparison of the Sense application. (d) Comparison of the Fourier application.

(e) Comparison of the Grid application. (f) Comparison of the TestRoundRobinArbiter application.

Figure C.2: Comparison of TinyOS and Native Ensemble Performance on Tmote Sky

packets are sent.

In both Figures C.2a and C.2b, the measurements reflect the sender’s action of collecting
the data to be sent and sending it. Both figures show a similar performance increase of
approximately 4 ms for InceOS as compared to TinyOS. This can be attributed to the fact
that the Ensemble behaviour clause is repeatedly executed, rather than in TinyOS where
events must be generated before the application can continue to its next iteration. Figure
C.2c shows the comparison of the Sense application. We can see that InceOS performs a
further 2 ms better than it did in Figures C.2a and C.2b. This is because unlike
RadioCount/SenseToLeds, the InceOS Radio actor is not being used (or being scheduled),
thus giving more time for the Sense actor to execute.

Figure C.2d shows an example of intense computation; the measurements reflect the time
required to complete a fast Fourier transform on a forty element array, and then calculate the
maximum. Again InceOS outperforms TinyOS. This is due to the use of tasks in TinyOS to

C.2. Micro Benchmarks 169

process the Fourier computation. When the task is finished, it must be reposted, requiring an
invocation of the scheduler, whereas the behaviour clause in Ensemble is naturally repeated,
not requiring any intervention by the scheduler, or extra code from the developer. This
highlights that a purely event-driven model is not well-suited to straight computation [129].

The results for the grid application are shown in Figure C.2e. Here the time for a complete
iteration of the application is taken: request a slave, give it work and collect the reply. We
see that InceOS performs substantially better than TinyOS. The 35 ms difference is caused
by a simpler flow through the logic of the Ensemble application and the relatively small
number of actions required to access the sensor and radio components. This is in contrast to
the disjoint flow necessitated by control switching between the event handlers of the
application in nesC, as well as the posting of a task to compute the Fourier transform.

The TestRoundRobinArbiter application results are displayed in Figure C.2f, again showing
an InceOS performance gain when compared to TinyOS. Here the 36 ms gain is because the
Ensemble channel abstraction is used in InceOS to arbitrate access to the shared resource,
whereas additional functionality is required for such arbitration using TinyOS. This
particular application is well-suited to the Ensemble blocking channel interaction which
naturally handles arbitration.

C.2 Micro Benchmarks

In order to characterise the cost of the different adaptive operations that are provided in
Ensemble, performance measurements were made of these operations, and are discussed
below. In the following, each experiment was performed on a desktop machine and a
RaspberryPi which were connected by Ethernet.

C.2.1 Adaptation of Actors

Null Actors

Figure C.3 shows the cost to adapt a Null actor. This refers to an actor with no channels, no
state, and the minimum amount of code required to perform the specified adaptation. This
test is done to show the cost of the technology, before the addition of developer state,
channels, or logic. The results show that in the worst case, 204, 204, and 200 Null actors
may be remotely spawned with a reference, spawned without a reference, or migrated per
second, respectively.

C.2. Micro Benchmarks 170

0

1

2

3

4

5

6

Null Spawn With Ref Null Spawn No Ref Migration

T
im

e
 (

m
s
)

Figure C.3: Adaptation Performance for Null Actors

Actors with Varying Quantities

Figures C.4, C.5, and C.6 show the time taken to adapt actors as the number of channels,
amount of code, and amount of per actor state changes. Adaptation has been decomposed
into spawning an actor without gaining a reference to the new actor, spawning an actor with
a reference to the newly created actor, and migrating an actor. Actors were sent from a
desktop machine to a RaspberryPi across an ethernet connection. In general, the results
show either sub-linear, or linear scaling as the complexity of the independent variable being
tested in each case grows.

In these results it can be seen that the increase in code size of an actor has relatively little
effect on the median results for each of the three actions in Figure C.4. This is also true as
the amount of actor-state changes, Figure C.5. The exceptions being for the 1000 element
arrays of integers or structs. As well as the larger amount of data being sent, the data has
been fragmented at the network layer, hence the larger times and number of outliers in these
cases. As the number of channels grows in Figure C.6, a curve is seen during spawn
actions, which follows the pattern expected as the number of channels doubles. For
migration, a slightly more noticeable jump is observed for 32 channels.

C.2.2 Discovery of Language Types

Figures C.7a and C.7b shows the time taken to discover a stage or actor respectively. In
each case, the number of boolean expressions used in the query was varied to show the cost
of simple and complex queries. There were four stages, each with one actor within range
which would match the specified query in either case, but the figures show the time for one

C.2. Micro Benchmarks 171

Data Size (bytes)
Integer[1] 21
Integer[10] 57

Integer[100] 417
Integer[1000] 4017

Struct[1] 29
Struct[10] 137

Struct[100] 1217
Struct[1000] 12017

Table C.1: Transmission Size of Different Data Types

to respond. The figures show that the cost of increasing the complexity of a query is almost
negligible in terms of performance.

C.2.3 Transmission Times

Figure C.8 show the time taken to transmit different amounts of data between two actors.
One is located on a desktop machine, the other is on a RaspberryPi, and the two are
connected by Ethernet. Table C.1 shows the size of the transmitted data in each case.

The results shows that the transmission times scale as the size of the data. Again, the large
jump for a 1000 array of structures is due to the data being fragmented at the networking
layer. This means that the time taken to transmit data is primarily impacted by the
performance of the networking layer, and not by overheads in the runtime system or
language model.

C.2. Micro Benchmarks 172

0

2

4

6

8

10

12

14

16

18

1 Procedure 10 Procedures 100 Procedures

T
im

e
 (

m
s
)

(a) Time to Spawn an Actor Without a Reference

0

2

4

6

8

10

12

14

16

1 Procedure 10 Procedures 100 Procedures

T
im

e
 (

m
s
)

(b) Time to Spawn an Actor With a Reference

0

2

4

6

8

10

12

14

16

18

1 Procedure 10 Procedures 100 Procedures

T
im

e
 (

m
s
)

(c) Time to Migrate an Actor

Figure C.4: Adaptation Performance as the Code Size (Number of Procedures) per Actor
Changes

C.2. Micro Benchmarks 173

0

5

10

15

20

25

1 array
ints

10 array
ints

100 array
ints

1000
array ints

1 array
structs

10 array
structs

100 array
structs

1000
array

structs

T
im

e
 (

m
s
)

(a) Time to Spawn an Actor Without a Reference

0

5

10

15

20

25

1 array
ints

10 array
ints

100 array
ints

1000
array ints

1 array
structs

10 array
structs

100 array
structs

1000
array

structs

T
im

e
 (

m
s
)

(b) Time to Spawn an Actor With a Reference

0

2

4

6

8

10

12

14

16

1 array
ints

10 array
ints

100 array
ints

1000
array ints

1 array
structs

10 array
structs

100 array
structs

1000
array

structs

T
im

e
 (

m
s
)

(c) Time to Migrate an Actor

Figure C.5: Adaptation Performance as the Amount of per Actor State Changes

C.2. Micro Benchmarks 174

0

2

4

6

8

10

12

14

16

18

20

1 Channel 2 Channels 4 Channels 8 Channels 16 Channels 32 Channels

T
im

e
 (

m
s
)

(a) Time to Spawn an Actor Without a Reference

0

2

4

6

8

10

12

14

16

18

20

1 Channel 2 Channels 4 Channels 8 Channels 16 Channels 32 Channels

T
im

e
 (

m
s
)

(b) Time to Spawn an Actor With a Reference

0

1

2

3

4

5

6

7

8

1 Channel 2 Channels 4 Channels 8 Channels 16 Channels 32 Channels

T
im

e
 (

m
s
)

(c) Time to Migrate an Actor

Figure C.6: Adaptation Performance as the Number of Actor Channels Change

C.2. Micro Benchmarks 175

-2

0

2

4

6

8

10

12

14

16

1 query 2 query 4 query 8 query 16 query 32 query

T
im

e

(m
s
)

(a) Time to Discover a Stage

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 query 2 query 4 query 8 query 16 query 32 query

T
im

e
 (

m
s
)

(b) Time to Discover an Actor

Figure C.7: Time Taken to Discover Actors or Stages as the Query Complexity Varies

C.2. Micro Benchmarks 176

0

5

10

15

20

25

30

35

40

45

50

1 array
ints

10 array
ints

100 array
ints

1000
array ints

1 array
structs

10 array
structs

100 array
structs

1000
array

structs

T
im

e
 (

m
s
)

Figure C.8: Time Taken to Transmit Data Between Remote Actors

BIBLIOGRAPHY 177

Bibliography

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The case for a
single-chip multiprocessor,” in Proceedings of the Seventh International Conference

on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS VII. New York, NY, USA: ACM, 1996, pp. 2–11. [Online]. Available:
http://doi.acm.org/10.1145/237090.237140

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way multithreaded
sparc processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29, Mar. 2005. [Online].
Available: http://dx.doi.org/10.1109/MM.2005.35

[3] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the
obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar. 1995.
[Online]. Available: http://doi.acm.org/10.1145/216585.216588

[4] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for
artificial intelligence,” in Proceedings of the 3rd international joint conference on

Artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1973, pp. 235–245. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1624775.1624804

[5] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems.
Cambridge, MA, USA: MIT Press, 1986.

[6] D. Charousset, T. C. Schmidt, R. Hiesgen, and M. Wählisch, “Native Actors – A
Scalable Software Platform for Distributed, Heterogeneous Environments,” in Proc.

of the 4rd ACM SIGPLAN Conference on Systems, Programming, and Applications

(SPLASH ’13), Workshop AGERE! New York, NY, USA: ACM, Oct. 2013.

[7] J. Armstrong, “Making reliable distributed systems in the presence of software
errors,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2003.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.408

Bibliography 178

[8] H. Svensson and L. ke Fredlund, “Programming distributed Erlang applications:
pitfalls and recipes,” in Proceedings of the 2007 ACM SIGPLAN Workshop on

Erlang, Freiburg, Germany, October 5, 2007, S. J. Thompson and L. ke Fredlund,
Eds. ACM, 2007, pp. 37–42.

[9] J. McCarthy, “Recursive functions of symbolic expressions and their computation by
machine, part i,” Commun. ACM, vol. 3, no. 4, pp. 184–195, Apr. 1960. [Online].
Available: http://doi.acm.org/10.1145/367177.367199

[10] P. Harvey, “XenoContiki,” University of Glasgow, Department of Computing
Science, Tech. Rep., 2009.

[11] S. Conchon and F. Le Fessant, “Jocaml: Mobile agents for objective-caml,” in
Proceedings of the First International Symposium on Agent Systems and

Applications Third International Symposium on Mobile Agents, ser. ASAMA ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 22–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=520788.786423

[12] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: a programming model for
event-driven embedded systems,” in Proceedings of the 2003 ACM symposium on

Applied computing, ser. SAC ’03. New York, NY, USA: ACM, 2003, pp. 698–704.
[Online]. Available: http://doi.acm.org/10.1145/952532.952668

[13] E. Cheong and J. Liu, “galsc: A language for event-driven embedded systems,” in
Proceedings of the conference on Design, Automation and Test in Europe - Volume 2,
ser. DATE ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
1050–1055. [Online]. Available: http://dx.doi.org/10.1109/DATE.2005.165

[14] P. Haller and M. Odersky, “Event-based programming without inversion of control,”
in Proceedings of the 7th joint conference on Modular Programming Languages, ser.
JMLC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 4–22. [Online].
Available: http://dx.doi.org/10.1007/11860990 2

[15] M. Odersky and al., “An overview of the Scala programming language,” EPFL
Lausanne, Switzerland, Tech. Rep. IC/2004/64, 2004. [Online]. Available:
http://lampwww.epfl.ch/∼odersky/papers/ScalaOverview.html

[16] J. Ayres, “Implementing stage: the actor based language,” Imperial College London,
Tech. Rep., 2007.

[17] C. Varela and G. Agha, “Programming dynamically reconfigurable open systems
with SALSA,” SIGPLAN Not., vol. 36, pp. 20–34, December 2001. [Online].
Available: http://doi.acm.org/10.1145/583960.583964

Bibliography 179

[18] J. Ayres and S. Eisenbach, “Stage: Python with actors,” in International Workshop on

Multicore Software Engineering (IWMSE), May 2009. [Online]. Available:
http://pubs.doc.ic.ac.uk/actors-in-python/

[19] Z. Porkoláb, J. Mihalicza, and A. Sipos, “Debugging c++ template metaprograms,”
in Proceedings of the 5th International Conference on Generative Programming and

Component Engineering, ser. GPCE ’06. New York, NY, USA: ACM, 2006, pp.
255–264. [Online]. Available: http://doi.acm.org/10.1145/1173706.1173746

[20] A. Dearle, D. Balasubramaniam, J. Lewis, and R. Morrison, “A component-based
model and language for wireless sensor network applications,” in Proceedings of the

2008 32nd Annual IEEE International Computer Software and Applications

Conference, ser. COMPSAC ’08. Washington, DC, USA: IEEE Computer Society,
2008, pp. 1303–1308. [Online]. Available:
http://dx.doi.org/10.1109/COMPSAC.2008.151

[21] D. Sangiorgi and D. Walker, PI-Calculus: A Theory of Mobile Processes. New
York, NY, USA: Cambridge University Press, 2001, in-depth walk through of the
pi-calculus - very mathematical.

[22] P. Harvey, A. Dearle, J. Lewis, and J. S. Sventek, “Channel and Active Component
Abstractions for WSN Programming - A Language Model with Operating System
Support.” in SENSORNETS, M. van Sinderen, O. Postolache, and
C. Benavente-Peces, Eds. SciTePress, 2012, pp. 35–44. [Online]. Available:
http://dblp.uni-trier.de/db/conf/sensornets/sensornets2012.html/HarveyDLS12

[23] A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy, “The development of the
Emerald programming language,” in Proceedings of the third ACM SIGPLAN

conference on History of programming languages, ser. HOPL III. New York, NY,
USA: ACM, 2007, pp. 11–1–11–51. [Online]. Available:
http://doi.acm.org/10.1145/1238844.1238855

[24] A. Yonezawa, J.-P. Briot, and E. Shibayama, “Object-oriented concurrent
programming ABCL/1,” in Conference proceedings on Object-oriented

programming systems, languages and applications, ser. OOPLSA ’86. New York,
NY, USA: ACM, 1986, pp. 258–268. [Online]. Available:
http://doi.acm.org/10.1145/28697.28722

[25] A. Yonezawa, “A reflective object oriented concurrent language ABCL/r,” in
Proceedings of the US/Japan Workshop on Parallel Lisp: Languages and Systems.
London, UK: Springer-Verlag, 1990, pp. 254–256. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646454.693244

Bibliography 180

[26] N. Doi, Y. Kodama, and K. Hirose, “An implementation of an operating system
kernel using concurrent object-oriented ABCL/c+,” in on ECOOP ’88 (European

Conference on Object-Oriented Programming). London, UK: Springer-Verlag,
1988, pp. 250–266. [Online]. Available:
http://dl.acm.org/citation.cfm?id=60592.60616

[27] C. R. Houck and G. Agha, “Hal: A high-level actor language and its distributed
implementation,” in ICPP (2), 1992, pp. 158–165. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.807

[28] R. Panwar, W. Kim, and G. Agha, “Parallel implementations of irregular problems
using high-level actor language,” in Proceedings of the 10th International Parallel

Processing Symposium, ser. IPPS ’96. Washington, DC, USA: IEEE Computer
Society, 1996, pp. 857–862. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645606.661000

[29] L. V. Kalé, B. Ramkumar, A. B. Sinha, and V. A. Saletore, “The CHARM parallel
programming language and system:part ii – the runtime system,” Parallel

Programming Laboratory Technical Report #95-03, 1994.

[30] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System
architecture directions for networked sensors,” SIGOPS Oper. Syst. Rev., vol. 34,
no. 5, pp. 93–104, 2000.

[31] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald,
A. Torgerson, and R. Han, “Mantis OS: an embedded multithreaded operating system
for wireless micro sensor platforms,” Mob. Netw. Appl., vol. 10, pp. 563–579, August
2005. [Online]. Available: http://dx.doi.org/10.1145/1160162.1160178

[32] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC

language: A holistic approach to networked embedded systems,” in PLDI ’03:

Proceedings of the ACM SIGPLAN 2003 conference on Programming language

design and implementation, vol. 38. New York, NY, USA: ACM, May 2003, pp.
1–11. [Online]. Available: http://dx.doi.org/10.1145/781131.781133

[33] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for
network programming at scale,” in Proceedings of the 2nd international conference

on Embedded networked sensor systems, ser. SenSys ’04. New York, NY, USA:
ACM, 2004, pp. 81–94. [Online]. Available:
http://doi.acm.org/10.1145/1031495.1031506

[34] J. Jeong, S. Kim, and A. Broad, “Network reprogramming.” University of California
at Berkeley, Berkeley, CA, USA, August 2003.

Bibliography 181

[35] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rothermel,
“Flexcup: a flexible and efficient code update mechanism for sensor networks,” in
Proceedings of the Third European conference on Wireless Sensor Networks, ser.
EWSN’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 212–227. [Online].
Available: http://dx.doi.org/10.1007/11669463 17

[36] N. Reijers and K. Langendoen, “Efficient code distribution in wireless sensor
networks,” in Proceedings of the 2nd ACM international conference on Wireless

sensor networks and applications, ser. WSNA ’03. New York, NY, USA: ACM,
2003, pp. 60–67. [Online]. Available: http://doi.acm.org/10.1145/941350.941359

[37] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in Proceedings of the 29th Annual IEEE

International Conference on Local Computer Networks, ser. LCN ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 455–462, contiki OS. [Online].
Available: http://dx.doi.org/10.1109/LCN.2004.38

[38] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic linking for
reprogramming wireless sensor networks,” in Proceedings of the 4th international

conference on Embedded networked sensor systems, ser. SenSys ’06. New York,
NY, USA: ACM, 2006, pp. 15–28. [Online]. Available:
http://doi.acm.org/10.1145/1182807.1182810

[39] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic operating
system for sensor nodes,” in Proceedings of the 3rd international conference on

Mobile systems, applications, and services, ser. MobiSys ’05. New York, NY,
USA: ACM, 2005, pp. 163–176. [Online]. Available:
http://doi.acm.org/10.1145/1067170.1067188

[40] B. Porter and G. Coulson, “Lorien: a pure dynamic component-based operating
system for wireless sensor networks,” in MidSens ’09: Proceedings of the 4th

International Workshop on Middleware Tools, Services and Run-Time Support for

Sensor Networks. New York, NY, USA: ACM, 2009, pp. 7–12.

[41] B. Porter, U. Roedig, and G. Coulson, “Type-safe updating for modular WSN
software,” in Proceedings of the 7th IEEE International Conference on Distributed

Computing in Sensor Systems, ser. DCOSS ’11. IEEE, 2011.

[42] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and
T. Sivaharan, “A generic component model for building systems software,” ACM

Trans. Comput. Syst., vol. 26, no. 1, pp. 1:1–1:42, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1328671.1328672

Bibliography 182

[43] W. Munawar, M. H. Alizai, O. Landsiedel, and K. Wehrle, “Dynamic TinyOS:
Modular and transparent incremental code-updates for sensor networks,” in ICC’10:

Proceedings of the IEEE International Conference on Communications, Cape Town,
South Africa, May 2010. [Online]. Available:
http://www.cse.chalmers.se/∼olafl/papers/2010-05-munawar-icc-dynamictinyos.pdf

[44] C. Muldoon, G. M. P. O’Hare, M. J. O’Grady, and R. Tynan, “Agent migration and
communication in WSNs,” in Proceedings of the 2008 Ninth International

Conference on Parallel and Distributed Computing, Applications and Technologies,
ser. PDCAT ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp.
425–430. [Online]. Available: http://dx.doi.org/10.1109/PDCAT.2008.58

[45] R. B. Smith, B. Horan, J. Daniels, and D. Cleal, “Programming the world with Sun
SPOTs,” in Companion to the 21st ACM SIGPLAN Symposium on Object-oriented

Programming Systems, Languages, and Applications, ser. OOPSLA ’06. New
York, NY, USA: ACM, 2006, pp. 706–707. [Online]. Available:
http://doi.acm.org/10.1145/1176617.1176684

[46] D. Hughes, K. Thoelen, W. Horré, N. Matthys, J. D. Cid, S. Michiels, C. Huygens,
and W. Joosen, “LooCI: a loosely-coupled component infrastructure for networked
embedded systems,” in Proceedings of the 7th International Conference on Advances

in Mobile Computing and Multimedia, ser. MoMM ’09. New York, NY, USA:
ACM, 2009, pp. 195–203. [Online]. Available:
http://doi.acm.org/10.1145/1821748.1821787

[47] N. Matthys, R. Afzal, C. Huygens, S. Michiels, W. Joosen, and D. Hughes, “Towards
fine-grained and application-centric access control for wireless sensor networks,” in
Proceedings of the 2010 ACM Symposium on Applied Computing, ser. SAC ’10.
New York, NY, USA: ACM, 2010, pp. 793–794. [Online]. Available:
http://doi.acm.org/10.1145/1774088.1774252

[48] P. Levis and D. Culler, “Mat: a tiny virtual machine for sensor networks,” in
Proceedings of the 10th international conference on Architectural support for

programming languages and operating systems, ser. ASPLOS-X. New York, NY,
USA: ACM, 2002, pp. 85–95. [Online]. Available:
http://doi.acm.org/10.1145/605397.605407

[49] N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a feature-rich VM for the
resource poor,” in Proceedings of the 7th ACM Conference on Embedded Networked

Sensor Systems, ser. SenSys ’09. New York, NY, USA: ACM, 2009, pp. 169–182.
[Online]. Available: http://doi.acm.org/10.1145/1644038.1644056

Bibliography 183

[50] A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and I. Romanov,
“Mote runner: A multi-language virtual machine for small embedded devices,” in
Proceedings of the 2009 Third International Conference on Sensor Technologies and

Applications, ser. SENSORCOMM ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 117–125. [Online]. Available:
http://dx.doi.org/10.1109/SENSORCOMM.2009.27

[51] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings of the

nineteenth ACM symposium on Operating systems principles, ser. SOSP ’03. New
York, NY, USA: ACM, 2003, pp. 164–177, i have reviewd this from master - go find
there. [Online]. Available: http://doi.acm.org/10.1145/945445.945462

[52] E. Correia, “A virtual solution to a real problem: Vmware,” White Paper, School of
Computing, Christchurch Polytechnic Institute, NZ., Tech. Rep., 1998.

[53] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live migration of virtual machines,” in Proceedings of the 2nd

conference on Symposium on Networked Systems Design & Implementation - Volume

2, ser. NSDI’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 273–286.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251203.1251223

[54] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire, S. Hand, T. Deegan,
D. McAuley, and J. Crowcroft, “Turning down the lamp: software specialisation for
the cloud,” in Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing, ser. HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
11–11. [Online]. Available: http://dl.acm.org/citation.cfm?id=1863103.1863114

[55] I. Giurgiu, O. Riva, and G. Alonso, “Dynamic software deployment from clouds to
mobile devices,” in Middleware, 2012, pp. 394–414.

[56] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi: distributed applications
through software modularization,” in Proceedings of the ACM/IFIP/USENIX 2007

International Conference on Middleware, ser. Middleware ’07. New York, NY,
USA: Springer-Verlag New York, Inc., 2007, pp. 1–20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1516124.1516126

[57] M. P. Forum, “MPI: A message-passing interface standard,” Knoxville, TN, USA,
Tech. Rep., 1994.

[58] E. Holk, W. E. Byrd, J. Willcock, T. Hoefler, A. Chauhan, and A. Lumsdaine,
“Kanor: A declarative language for explicit communication,” in Proceedings of the

Bibliography 184

13th International Conference on Practical Aspects of Declarative Languages, ser.
PADL’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 190–204. [Online].
Available: http://dl.acm.org/citation.cfm?id=1946313.1946335

[59] C. H. Moore, “Forth: A new way to program a minicomputer,” Astron. Astrophys

Suppl, vol. 15, pp. 497–511, 1974.

[60] E. D. Rather and C. H. Moore, “The FORTH approach to operating systems,” in
Proceedings of the 1976 annual conference, ser. ACM ’76. New York, NY, USA:
ACM, 1976, pp. 233–240. [Online]. Available:
http://doi.acm.org/10.1145/800191.805586

[61] E. Shein, “Python for beginners,” Commun. ACM, vol. 58, no. 3, pp. 19–21, Feb.
2015. [Online]. Available: http://doi.acm.org/10.1145/2716560

[62] A. Kennedy and D. Syme, “Design and implementation of generics for the .NET
common language runtime,” in Proceedings of the ACM SIGPLAN 2001 Conference

on Programming Language Design and Implementation, ser. PLDI ’01. New York,
NY, USA: ACM, 2001, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/378795.378797

[63] A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng, N. Ricci, and W. Binder,
“Characteristics of dynamic JVM languages,” in Proceedings of the 7th ACM

Workshop on Virtual Machines and Intermediate Languages, ser. VMIL ’13. New
York, NY, USA: ACM, 2013, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/2542142.2542144

[64] N. Costa, A. Pereira, and C. Serodio, “A Java software stack for resource poor sensor
nodes: Towards peer-to-peer jini,” in Embedded and Multimedia Computing, 2009.

EM-Com 2009. 4th International Conference on, 2009, pp. 1–6.

[65] J. Boldt, “The Common Object Request Broker: Architecture and specification,”
Object Management Group, Specification formal/97-02-25, July 1995. [Online].
Available: http://www.omg.org/cgi-bin/doc?formal/97-02-25

[66] R. Klauck and M. Kirsche, “Enhanced DNS message compression - optimizing
mDNS/DNS-SD for the use in 6lowpans,” in Pervasive Computing and

Communications Workshops (PERCOM Workshops), 2013 IEEE International

Conference on, March 2013, pp. 596–601.

[67] ——, “Bonjour contiki: A case study of a DNS-based discovery service for the
internet of things,” in Ad-hoc, Mobile, and Wireless Networks, ser. Lecture Notes in
Computer Science, X.-Y. Li, S. Papavassiliou, and S. Ruehrup, Eds. Springer

Bibliography 185

Berlin Heidelberg, 2012, vol. 7363, pp. 316–329. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31638-8 24

[68] T. Chothia, D. Duggan, and J. Vitek, “Type-based distributed access control,” in
Computer Security Foundations Workshop, 2003. Proceedings. 16th IEEE, June
2003, pp. 170–184.

[69] D. S. Milo´ičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, “Process
migration,” ACM Comput. Surv., vol. 32, no. 3, pp. 241–299, Sep. 2000. [Online].
Available: http://doi.acm.org/10.1145/367701.367728

[70] P. Smith and N. C. Hutchinson, “Heterogeneous process migration: The Tui system,”
Vancouver, BC, Canada, Canada, Tech. Rep., 1996.

[71] J. M. Smith, “A survey of process migration mechanisms,” Columbia University,
New York, Tech. Rep., 1988. [Online]. Available:
http://www.cis.upenn.edu/∼jms/svy-pm.pdf

[72] D. Cheriton, “Binary emulation of UNIX using the V Kernel,” in Proceedings of the

Summer USENIX Conference, 1990, pp. 73–86.

[73] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young,
“Mach: A new kernel foundation for UNIX development,” 1986, pp. 93–112.

[74] H. Peine and T. Stolpmann, “The architecture of the ara platform for mobile agents,”
in Proceedings of the First International Workshop on Mobile Agents, ser. MA ’97.
London, UK, UK: Springer-Verlag, 1997, pp. 50–61. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647627.732412

[75] M. Ranganathan, A. Acharya, S. D. Sharma, and J. Saltz, “Network-aware mobile
programs,” in Proceedings of the annual conference on USENIX Annual Technical

Conference, ser. ATEC ’97. Berkeley, CA, USA: USENIX Association, 1997, pp.
7–7. [Online]. Available: http://dl.acm.org/citation.cfm?id=1268680.1268687

[76] S. Funfrocken, “Transparent migration of Java-based mobile agents: Capturing and
re-establishing the state of Java programs,” Personal Technologies, vol. 2, pp.
109–116, 1998, 10.1007/BF01324941. [Online]. Available:
http://dx.doi.org/10.1007/BF01324941

[77] J. Baumann, F. Hohl, K. Rothermel, and M. Strasser, “Mole : Concepts of a mobile
agent system,” World Wide Web, vol. 1, no. 3, pp. 123–137, Mar. 1998. [Online].
Available: http://dx.doi.org/10.1023/A:1019211714301

Bibliography 186

[78] J. Waldo, “Remote procedure calls and Java remote method invocation,” IEEE

Concurrency, vol. 6, no. 3, pp. 5–7, Jul. 1998. [Online]. Available:
http://dx.doi.org/10.1109/4434.708248

[79] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance

Programming. Newnes, 2013.

[80] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, “PyCUDA and
PyOpenCL: A Scripting-based Approach to GPU Run-time Code Generation,”
Parallel Comput., vol. 38, no. 3, pp. 157–174, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2011.09.001

[81] A. Munshi et al., “The OpenCl specification,” Khronos OpenCL Working Group,
vol. 1, pp. l1–15, 2009.

[82] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose

GPU programming. Addison-Wesley Professional, 2010.

[83] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openacc: First experiences
with real-world applications,” in Proceedings of the 18th International Conference

on Parallel Processing, ser. Euro-Par’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 859–870. [Online]. Available: http://dl.acm.org/citation.cfm?id=2402522

[84] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable shared memory

parallel programming. MIT press, 2008, vol. 10.

[85] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-Level GPGPU Programming,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 78–90, Jan. 2011. [Online].
Available: http://dx.doi.org/10.1109/TPDS.2010.62

[86] J. Docampo, S. Ramos, G. Taboada, R. Exposito, J. Tourino, and R. Doallo,
“Evaluation of Java for general purpose GPU computing,” in Advanced Information

Networking and Applications Workshops (WAINA), 2013 27th International

Conference on, March 2013, pp. 1398–1404.

[87] P. W. Trinder, E. Barry Jr., M. K. Davis, K. Hammond, S. B. Junaidu, U. Klusik,
H.-W. Loidl, and S. L. Peyton-Jones, “Low level architecture-independence of
Glasgow parallel Haskell (GpH),” in Glasgow Workshop on Functional

Programming, Pitlochry, Scotland, Sep. 1998. [Online]. Available:
http://www.macs.hw.ac.uk/∼dsg/gph/papers/abstracts/low-level-gph.html

[88] S. Peyton Jones, A. Gordon, and S. Finne, “Concurrent Haskell,” in Proceedings of

the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Bibliography 187

Languages, ser. POPL ’96. New York, NY, USA: ACM, 1996, pp. 295–308.
[Online]. Available: http://doi.acm.org/10.1145/237721.237794

[89] T. Harris, S. Marlow, and S. P. Jones, “Haskell on a shared-memory multiprocessor,”
in Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell, ser. Haskell ’05.
New York, NY, USA: ACM, 2005, pp. 49–61. [Online]. Available:
http://doi.acm.org/10.1145/1088348.1088354

[90] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using Data Parallelism to Program
GPUs for General-purpose Uses,” in Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS XII. New York, NY, USA: ACM, 2006, pp. 325–335.
[Online]. Available: http://doi.acm.org/10.1145/1168857.1168898

[91] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink, “Compiling a
high-level language for GPUs: (via language support for architectures and
compilers),” in Proceedings of the 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI ’12. New York, NY, USA: ACM,
2012, pp. 1–12. [Online]. Available: http://doi.acm.org/10.1145/2254064.2254066

[92] M. Steuwer, P. Kegel, and S. Gorlatch, “SkelCL - A Portable Skeleton Library for
High-Level GPU Programming,” in Proceedings of the 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops and PhD Forum, ser.
IPDPSW ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
1176–1182. [Online]. Available: http://dx.doi.org/10.1109/IPDPS.2011.269

[93] ——, “Towards high-level programming of multi-gpu systems using the skelcl
library,” in Proceedings of the 2012 IEEE 26th International Parallel and Distributed

Processing Symposium Workshops & PhD Forum, ser. IPDPSW ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 1858–1865. [Online]. Available:
http://dx.doi.org/10.1109/IPDPSW.2012.229

[94] A. Stromme, R. Carlson, and T. Newhall, “Chestnut: a GPU programming language
for non-experts,” in Proceedings of the 2012 International Workshop on

Programming Models and Applications for Multicores and Manycores, ser. PMAM
’12. New York, NY, USA: ACM, 2012, pp. 156–167. [Online]. Available:
http://doi.acm.org/10.1145/2141702.2141720

[95] J. Hogg, “Islands: Aliasing protection in object-oriented languages,” in Conference

Proceedings on Object-oriented Programming Systems, Languages, and

Applications, ser. OOPSLA ’91. New York, NY, USA: ACM, 1991, pp. 271–285.
[Online]. Available: http://doi.acm.org/10.1145/117954.117975

Bibliography 188

[96] Mozilla, “The Rust Reference Manual,” http://static.rust-lang.org/doc/0.9/rust.html,
2014, [Online; Accessed 17th Feburary 2014].

[97] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership types for flexible alias
protection,” in Proceedings of the 13th ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Applications, ser. OOPSLA
’98. New York, NY, USA: ACM, 1998, pp. 48–64. [Online]. Available:
http://doi.acm.org/10.1145/286936.286947

[98] P. Haller and M. Odersky, “Capabilities for uniqueness and borrowing,” in
Proceedings of the 24th European Conference on Object-oriented Programming, ser.
ECOOP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 354–378. [Online].
Available: http://dl.acm.org/citation.cfm?id=1883978.1884002

[99] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff, “A type system for borrowing
permissions,” in Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, ser. POPL ’12. New York, NY, USA:
ACM, 2012, pp. 557–570. [Online]. Available:
http://doi.acm.org/10.1145/2103656.2103722

[100] W. R. Stevens, UNIX Network Programming: Networking APIs: Sockets and XTI,
2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997.

[101] C. Doxsey, An Introduction to Programming in Go. CreateSpace Independent
Publishing Platform, September 2012.

[102] J. Armstrong, “Making reliable distributed systems in the presence of errors,” Ph.D.
dissertation, Royal Institute of Technology, Stockholm, 2003.

[103] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on Compiler

Optimization. New York, NY, USA: ACM, 1970, pp. 1–19. [Online]. Available:
http://doi.acm.org/10.1145/800028.808479

[104] B. G. Ryder, “Constructing the call graph of a program,” IEEE Trans. Softw. Eng.,
vol. 5, no. 3, pp. 216–226, May 1979. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1979.234183

[105] D. Callahan, A. Carle, M. W. Hall, and K. Kennedy, “Constructing the procedure call
multigraph,” IEEE Trans. Softw. Eng., vol. 16, no. 4, pp. 483–487, Apr. 1990.
[Online]. Available: http://dx.doi.org/10.1109/32.54302

[106] E. M. Myers, “A precise inter-procedural data flow algorithm,” in Proceedings of the

8th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

Bibliography 189

ser. POPL ’81. New York, NY, USA: ACM, 1981, pp. 219–230. [Online].
Available: http://doi.acm.org/10.1145/567532.567556

[107] M. Sharir and A. Pnueli, Two approaches to interprocedural data flow analysis.
Englewood Cliffs, NJ: Prentice-Hall, 1981, ch. 7, pp. 189–234.

[108] ANSA, “ANSA: An engineer’s introduction to the architecture,” Architecture
Projects Managment Limited, Poseidon House, Castle Park, CAMBRIDGE, CB3
0RD, UK, Tech. Rep., 1989.

[109] E. Jul, H. Levy, N. Hutchinson, and A. Black, “Fine-grained mobility in the Emerald
system,” ACM Trans. Comput. Syst., vol. 6, no. 1, pp. 109–133, Feb. 1988. [Online].
Available: http://doi.acm.org/10.1145/35037.42182

[110] A. Hasler, I. Talzi, J. Beutel, C. Tschudin, and S. Gruber, “Wireless sensor networks
in permafrost research-concept, requirements, implementation and challenges,” Proc.

9th Intl Conf. on Permafrost (NICOP 2008), vol. 1, pp. 669–674, 2008.

[111] Moteiv, Tmote Sky Datasheet

http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf, 2006.

[112] P. Harvey, “Inceos: The insense-specific operating system,” University of Glasgow,
Tech. Rep., 2010. [Online]. Available:
http://paul-harvey.org/papers/MSci project 0501942.pdf

[113] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual Machine

Specification, Java SE 7 Edition. Addison-Wesley, 2013.

[114] D. N. Antonioli and M. Pilz, “Analysis of the Java class file format,” Tech. Rep.,
1998.

[115] W. Pugh, “Compressing Java class files,” in Proceedings of the ACM SIGPLAN 1999

Conference on Programming Language Design and Implementation, ser. PLDI ’99.
New York, NY, USA: ACM, 1999, pp. 247–258. [Online]. Available:
http://doi.acm.org/10.1145/301618.301676

[116] R. Rivest, “The MD5 message-digest algorithm,” United States, 1992.

[117] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming. Sebastopol, CA,
USA: O’Reilly & Associates, Inc., 1996.

[118] O. Sharma, J. Lewis, A. Miller, A. Dearle, D. Balasubramaniam, R. Morrison, and
J. Sventek, “Towards verifying correctness of wireless sensor network applications
using Insense and Spin,” in Proceedings of the 16th International SPIN Workshop on

Bibliography 190

Model Checking Software. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 223–240,
expereince using spin to verify the channel mechanism of the Contiki Insense.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-02652-2 19

[119] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg, “Virtual machine showdown: Stack
versus registers,” ACM Trans. Archit. Code Optim., vol. 4, no. 4, pp. 2:1–2:36, Jan.
2008. [Online]. Available: http://doi.acm.org/10.1145/1328195.1328197

[120] D. F. Bacon and V. T. Rajan, “Concurrent cycle collection in reference counted
systems,” in Proceedings of the 15th European Conference on Object-Oriented

Programming, ser. ECOOP ’01. London, UK, UK: Springer-Verlag, 2001, pp.
207–235. [Online]. Available: http://dl.acm.org/citation.cfm?id=646158.680003

[121] B. Williamson, Developing IP Multicast Networks. Cisco Press, 1999.

[122] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks:
A survey,” Wireless Commun., vol. 11, no. 6, pp. 6–28, Dec. 2004. [Online].
Available: http://dx.doi.org/10.1109/MWC.2004.1368893

[123] J. Dedecker, “Ambient-oriented programming in AmbientTalk: combining mobile
hardware with simplicity and expressiveness,” in Companion to the 20th annual

ACM SIGPLAN conference on Object-oriented programming, systems, languages,

and applications, ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp.
196–197. [Online]. Available: http://doi.acm.org/10.1145/1094855.1094932

[124] N. Chechina, P. Trinder, A. Ghaffari, R. Green, K. Lundin, and R. Virding, “The
design of scalable distributed Erlang,” in Proceedings of the Symposium on

Implementation and Application of Functional Languages, Oxford, UK, 2012.

[125] W. R. Stevens, TCP/IP Illustrated (Vol. 1): The Protocols. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1993.

[126] S. Farahani, ZigBee Wireless Networks and Transceivers. Newton, MA, USA:
Newnes, 2008.

[127] A. Hasler, I. Talzi, J. Beutel, C. Tschudin, and S. Gruber, “Wireless sensor networks
in permafrost research concept, requirements, implementation and challenges,” in
Proc. 9th International Conference on Permafrost (NICOP), Jun 2008.

[128] J. Burrell, T. Brooke, and R. Beckwith, “Vineyard computing: Sensor networks in
agricultural production,” IEEE Pervasive Computing, vol. 3, pp. 38–45, January
2004. [Online]. Available: http://portal.acm.org/citation.cfm?id=1435710.1437549

Bibliography 191

[129] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in LCN ’04: Proceedings of the 29th Annual

IEEE International Conference on Local Computer Networks. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 455–462. [Online]. Available:
http://dx.doi.org/10.1109/LCN.2004.38

[130] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. G. Sirer,
“On the need for system-level support for ad hoc and sensor networks,” ACM

SIGOPS Operating Systems Review, vol. 36, no. 2, pp. 1–5, 2002.

[131] R. Mueller, G. Alonso, and D. Kossmann, “SwissQM: next generation data
processing in sensor networks,” in 3rd Biennial Conference on Innovative Data

Systems Research, 2007, pp. 1–9.

[132] K. Klues, C.-J. M. Liang, J. Paek, R. Musăloiu-E, P. Levis, A. Terzis, and
R. Govindan, “Tosthreads: thread-safe and non-invasive preemption in TinyOS,” in
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems,
ser. SenSys ’09. New York, NY, USA: ACM, 2009, pp. 127–140. [Online].
Available: http://doi.acm.org/10.1145/1644038.1644052

[133] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: simplifying
event-driven programming of memory-constrained embedded systems,” in
Proceedings of the 4th international conference on Embedded networked sensor

systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 29–42. [Online].
Available: http://doi.acm.org/10.1145/1182807.1182811

[134] E. Rondini and S. Hailes, “Distributed computation in wireless ad hoc grids with
bandwidth control,” in Proceedings of the 5th international conference on Embedded

networked sensor systems, ser. SenSys ’07. New York, NY, USA: ACM, 2007, pp.
437–438. [Online]. Available: http://doi.acm.org/10.1145/1322263.1322334

[135] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt, R. Sauter, and
P. J. Marrón, “COOJA/MSPSim: interoperability testing for wireless sensor
networks,” in Proceedings of the 2nd International Conference on Simulation Tools

and Techniques, ser. Simutools ’09. ICST, Brussels, Belgium, Belgium: ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2009, pp. 27:1–27:7. [Online]. Available:
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5637

[136] T. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions on,
vol. SE-2, no. 4, pp. 308–320, Dec 1976.

Bibliography 192

[137] J. Fitzpatrick, “More C++ gems,” R. C. Martin, Ed. New York, NY, USA:
Cambridge University Press, 2000, ch. Applying the ABC Metric to C, C++, and
Java, pp. 245–264. [Online]. Available:
http://dl.acm.org/citation.cfm?id=331120.331161

[138] T. Hart and D. Edwards, “The alpha-beta heuristic,” Cambridge, MA, USA, Tech.
Rep., 1963.

[139] R. Milner, The Space and Motion of Communicating Agents, 1st ed. New York, NY,
USA: Cambridge University Press, 2009.

[140] L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss, “Bigraphical models
of context-aware systems.” in FoSSaCS, ser. Lecture Notes in Computer Science,
L. Aceto and A. Inglfsdttir, Eds., vol. 3921. Springer, 2006, pp. 187–201. [Online].
Available:
http://dblp.uni-trier.de/db/conf/fossacs/fossacs2006.html#BirkedalDEHN06

[141] M. Calder, A. Koliousis, M. Sevegnani, and J. Sventek, “Real-time verification of
wireless home networks using bigraphs with sharing,” Science of Computer

Programming, vol. 80, Part B, no. 0, pp. 288 – 310, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642313001974

[142] M. Sevegnani and E. Pereira, “Towards a bigraphical encoding of actors,” June 2014.
[Online]. Available: http://eprints.gla.ac.uk/94772/

[143] S. Gay, V. T. Vasconcelos, and A. Ravara, “Session types for inter-process
communication,” School of Computing Science, University of Glasgow, Tech. Rep.,
2003.

[144] N. Ng, N. Yoshida, X. Y. Niu, and K. H. Tsoi, “Session types: Towards safe and fast
reconfigurable programming,” SIGARCH Comput. Archit. News, vol. 40, no. 5, pp.
22–27, Mar. 2012. [Online]. Available: http://doi.acm.org/10.1145/2460216.2460221

[145] R. Hu, N. Yoshida, and K. Honda, “Session-based distributed programming in Java,”
in Proceedings of the 22Nd European Conference on Object-Oriented Programming,
ser. ECOOP ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 516–541.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-70592-5 22

[146] J. Ellul and K. Martinez, “Run-time compilation of bytecode in wireless sensor
networks,” in Proceedings of the 9th ACM/IEEE International Conference on

Information Processing in Sensor Networks, ser. IPSN ’10. New York, NY, USA:
ACM, 2010, pp. 422–423. [Online]. Available:
http://doi.acm.org/10.1145/1791212.1791286

Bibliography 193

[147] R. Rozumalski, WRF Environmental Modeling System - Users Guide, release
2.1.2.2 ed., National Weather Service SOO Science and Training Resource Center,
May 2006. [Online]. Available:
http://archipelago.uma.pt/pdf library/Rozumalski 2006 SOO\&STRC.pdf

[148] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA, USA: Bradford
Company, 2004.

[149] T. Ishiyama, K. Nitadori, and J. Makino, “4.45 pflops astrophysical n-body
simulation on k computer: The gravitational trillion-body problem,” in Proceedings

of the International Conference on High Performance Computing, Networking,

Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2012, pp. 5:1–5:10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389003

[150] J.-D. Choi, M. Burke, and P. Carini, “Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects,” in Proceedings of the 20th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’93. New York, NY, USA: ACM, 1993, pp. 232–245. [Online]. Available:
http://doi.acm.org/10.1145/158511.158639

