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Abstract. 

The object of this work was to investigate and expand on previously carried out 

research into elastic-plastic crack tip fields using the first two terms of the Williams 

expansion to characterise the degree of crack tip constraint. As a precursor to this research a 

history of fracture mechanics is also presented. 

In the present work crack tip fields in small scale yielding have been detennined using 

modified boundary layer formulations in an attempt to model the influence of the second 

order term of the Williams expansion, the T -stress. The prime object of this thesis was to 

investigate and expand on previously carried out research into a two parameter 

characterisation of elastic-plastic crack tip fields using the second parameter of the Williams 

expansion(T), which attempts to characterise the degree of crack tip constraint. Modified 

Boundary Layer formulations in conditions of plane strain were implemented to derive a 

suitable reference solutions, against which the effects of out of plane strains can be compared 

and the validity of presently established reference fields can be gauged. The effect of out of 

plane non-singular stress, S, on the crack tip stress field were also considered, where 

constraint was largely determined by T. 

A wide range of analyses have been carried out, from the microstructural scale to 

complete engineering components in an attempt to characterise crack tip stress fields. The 

ability to apply two parameter fracture concepts to real engineering structures requires 

methods for calculating T for complex components with realistic semi-elliptical defects. A 

simple engineering method for achieving this was developed making use of linespring 

elements in the finite element package ABAQUS. This approach was validated by the 

calculation of T for semi-elliptical cracks at the chord-brace intersection of a tubular welded 

joint, modelled using the mesh generation program PATRAN. 

The micromechanics of cleavage, using the Ritchie-Knott-Rice model have also been 

constructed. This work relates the ratio of J for unconstrained and constrained geometries to 

critical microstructural distance, critical cleavage stress and the toughness ratio on the strain 



hardening effect. The elastic-plastic behaviour of short and deeply cracked bend bars has 

previously been described by Betegon and Hancock based on the first two terms of the 

Williams expansion. A local cleavage criterion has been applied to these fields to indicate the 

effect of loss of constraint on lower shelf toughness of shallow cracked bend bars. The 

work models the maximum temperature at which cleavage can occur in these geometries to 

show the effect of constraint and aJW ratio of cracked bend bars on the ductile-brittle 

transition temperature. This has also been backed by a significant experimental research 

program. 

Finally constraint dependent toughness has been considered in relation to failure 

assessment methodologies. A simple engineering method for modifying these Failure 

Assesssment Diagrams has been presented, this consists of considering the constraint 

matched toughness of the strucutre. This procedure recovers the original Failure Assessment 

Line and unifies the constraint dependent fracture toughness within defect assessment 

schemes which utilise Failure Assessment Diagrams. 



Acknowled2ements. 

I wish to express my sincere gratitude to my supervisor Professor John. W. Hancock, 

for his invaluable guidance, patience, constant advice and encouragement throughout the 

course of this research, and afterwards. Thanks are also due to Dr. John Sumpter of the 

Defence Research Agency under whose auspices this research under a Ministry of Defence 

research grant was carried out. 

Gratitude is also extended to Hibbit, Karlsson and Sorensen, INC. for access to 

ABAQUS under academic licence. 

I would also like to express my thanks to Mr Alex Torry for his great assistance in the 

experimental research carried out within this thesis. There are numerous other people who 

in some way have contributed to this thesis and the work contained within, to you all, thank 

you. 

Finally I would like to thank my family, especially my mother for all her support 

throughout. 



Abstract. 

Acknowledgements. 

Contents. 

List of Figure Captions. 

Introduction. 

Table of Contents. 

Chapter 1: Linear Elastic Fracture Mechanics. 

1.1: Griffith's Criterion. 

1.2: Stress Field at a Crack Tip. 

1.3: Determination of Stress Intensity Factors. 

1.4: Small Scale Yielding. 

1.5: Validity of Linear Elastic Fracture Mechanics. 

Chapter Two; Benchmarkin&: Linear Elastic Fracture Mechanics 

2.1: Introduction. 

2.2: Numerical Methods. 

1 

3 

5 

8 

10 

11 

13 

13 



2.3: Detennination of the Stress Intensity Factor. 15 

2.3.1: Displacement Method. 15 

2.3.2: Stress Method. 15 

2.3.3: Virtual Crack Extension Method. 16 

2.3.4: Line Spring and Shell Element Method. 16 

2.3.5: Published Solutions. 16 

2.4: Conclusion. 18 

Chapter Three: Elastic Plastic Fractyre Mechanics. 

3.1: Introduction. 19 

3.2: Crack Tip Opening Displacement, (0). 20 

3.3:The I-Integral. 21 

3.4: The Engineering Approach. 29 

3.5: Limits of Single Parameter Characterisation. 31 

3.6: Two Parameter Characterisation. 33 



3.7: Elastic T-Stress. 34 

3.8: Higher Order Asymptotic Solutions. 37 

3.9: Small Strain Difference Tenn, Q. 39 

3.10: Local Failure Criterion. 41 

3.11: Conclusion. 47 

Chapter Four: Boundary Layer Formylations. 

4.1: Introduction. 48 

4.2: Numerical Methods. 49 

4.3: Results. 51 

4.4: Discussion. 52 

4.5: Conclusion. 53 

Chapter Fiye: Generalised Plane Strain Analysis. 

5.1: Introduction. 55 

5.2: Numerical Methods. 57 



5.3: Results. 58 

5.3.1: Positive T-Stress Analysis. 58 

5.3.2: Negative T-Stress Analysis. 58 

5.4: Neutral Axis. 59 

5.5: Conclusion. 60 

Chapter Six; Line Sprini: Analysis of Semi-Elliptical Cracks in a Tubular T­

.l21!!.t.. 

6.1: Introduction. 61 

6.2: Detennination of Non-Dimensional Stress Intensity Factor. 63 

6.3: Detennination of T-Stress. 64 

6.4: Numerical Method. 66 

6.4.1: Benchmarking. 66 

6.4.2: Tubular T-loint Analysis. 66 

6.5: Results. 67 



6.5.1: Benchmarking. 67 

6.5.2: Tubular T-Joint Analysis. 67 

6.6: Discussion. 68 

6.7: Conclusion. 68 

Chapter Seven: The Effect of Constraint on the Micro-Mechanics of the 

Ductile-Brittle Transition. 

7.1: Introduction. 69 

7.2: Cleavage Fracture. 70 

7.3: Ductile Fracture. 71 

7.4: Temperature Effects on Material Properties 72 

7.5: Numerical Methods. 73 

7.6: Discussion. 76 

7.7: Conclusions. 77 



Chapter Eh:hti Constraint Based Failure Assessment Diaerams. 

8.1: Introduction. 78 

8.2: R6 Failure Assessment Diagrams. 79 

8.3: Classical Failure Assessment Diagrams. 82 

8.4: Constraint Based Failure Assessment Diagrams. 84 

8.5: Analytical Results. 88 

8.6: Experimental Validification. 89 

8.7: Discussion. 90 

8.8: Conclusion. 92 

Chapter Njne: Experimental Fracture Mechanics. 

9.1: Introduction. 93 

9.2: Notch Tensile Experiments. 93 

9.2.1: Experimental Notch Theory. 93 

9.2.2: Experimental Results. 95 



9.3: Torsion Experiments. 96 

9.3.1: Torsion Theory. 96 

9.3.2: Torsion and Tension Experimental Results. 97 

9.4: Finite Element Analysis of Notch Tensile Specimens. 98 

9.4.1: Notch Tensile Finite Element Results. 98 

9.5: Three Point Bend Experiments. 99 

9.5.1: Three Point Bend Theory. 100 

9.5.2: Three Point Bend Experimental Results. 102 

9.6: Conclusion. 103 

Final Conclusions. 105 

References. 107 



Figure Captions. 

Figure 1.1: Infinite Centre Cracked Panel with Fixed Ends. 

Figure 1.2: Load-Displacement Graph for crack of Length a. 

Figure 1.3: Elastic Energy Release Graph for Propogation of Crack from a to a+da. 

Figure 1.4: Schematic of Fracture Modes. 

Figure 1.5: Crack in an Infinite Plate Stress Distribution. 

Figure 1.6: Geometric Parameter for Centre Cracked Test Specimen. 

Figure 1.7: Contour Placement as Crack Tip Advances for Virtual Crack Extension. 

Figure 1.8: Definition of Small Scale Yielding. 

Figure 1.9: Graphical Representations of Plastic Zones. 

Figure 2.1: Schematic of Model Analysis. 

Figure 2.2: Model of an Eight Noded Biquadratic Displacement, Linear Pressure Element 

with Reduced Integration. 

Figure 2.3: Schematic of Displacement Loading. 

Figure 2.4: Deformed Displaced Analysis Mesh. 

Figure 2.5: Midside Node Illustration on a Collapsed Eight Noded Plane Strain Element 

at a Crack Tip. 

Figure 2.6: Line-Spring Element (LS3S). 

Figure 2.7: Normal Midside Node Position. 

Figure 2.8: Quarter Point Node Arrangement. 

Figure 2.9: Results from LEFM Benchmarking. 

Figure 3.1: Dugdale 'Strip-Yield' Model for Crack Tip Plasticity. 

Figure 3.2: Idealised Schematic of the Results of Rosenfield et al. Investigation. 

Figure 3.3: Definition of Crack Tip Displacement (0). 



Figure 3.4: Detennination of J by Potential Energy Difference. 

Figure 3.5: Definition of the J-Integral. 

Figure 3.6: Crack Contour Integral and Crack Tip Coordinate System. 

Figure 3.7: Path Independence of the J-Integral. 

Figure 3.8: Varaition of <In for Plane Strain (Shih et aI. 1981). 

Figure 3.9: In for Various Work Hardening Exponents. 

Figure 3.10: Deeply Cracked Bend Bar in Pure Bending. 

Figure 3.11: Moment-Rotation Diagram for a Non-Hardening Material. 

Figure 3.12: Change in Work Done for a Non-Hardening Material. 

Figure 3.13: Load-CMOD Experimental Trace. 

Figure 3.14: Slip Line Fields for CCP and DECB in Tension and SECB. 

Figure 3.15: Biaxiality Parameters for Single Edge Cracked Specimens, Sham (1991). 

Figure 3.16: Full Prandtl Field. 

Figure 3.17: Plasticity around Crack Tip for L ::::; 0 Field. 
00 

Figure 3. 18:Plasticity around Crack Tip for..I ::::; -0.443 and -0.7 Fields. 
00 

Figure 3.19: Graphed Value of the Power of the Second term in the Asymptotic 

Expansion of Sharma and Aravas(1991). 

Figure 3.20: Site of Most Probable Crack Initiation. 

Figure 4.1: Small Strain Crack Tip Node Arrangement. 

Figure 4.2: Large Strain Crack Tip Node Arrangement. 

Figure 4.3: Boundary Layer Formulation Mesh. 

Figure 4.4: Ramberg-Osgood Stress-Strain Curves (n::::;3, 6, 13 and 00). 

Figure 4.5: Hoop Stress Directly Ahead of the Crack Tip (n::::;oo, T=O). 

Figure 4.6: Normalised Mean Stress Directly Ahead of the Crack Tip (n=oo, T=O). 

Figure 4.7: Hoop Stress Directly Ahead of the Crack Tip (n=3, T=O). 

Figure 4.8: Normalised Mean Stress Directly Ahead of the Crack Tip (n=3, T=O). 

Figure 4.9: Small Strain Normalised Hoop Stresses (n=6). 



Figure 4.10: Large Strain Normalised Hoop Stresses (n=6). 

Figure 4.11: Small Strain Normalised Mean Stresses (n=6). 

Figure 4.12: Large Strain Normalised Mean Stresses Directly Ahead of the Crack Tip (n=6). 

Figure 4.13: Plastic Equivalent Strain Directly Ahead of the Crack Tip (n=6). 

Figure 4.14: Small Strain Normalised Hoop Stress Directly Ahead of the Crack Tip 

(n=13). 

Figure 4.15: Large Strain Normalised Hoop Stress Directly Ahead of the Crack Tip 

(n=13). 

Figure 4.16: Small Strain Normalised Mean Stress Directly Ahead of the Crack Tip 

(n=13). 

Figure 4.17: Large Strain Normalised Mean Stress Directly Ahead of the Crack Tip 

(n=13). 

Figure 4.18: Plastic Equivalent Strain Directly Ahead of the Crack Tip (n=13). 

Figure 4.19: Curve fit for Boundary Layer Formulation of n=oo, T=O. 

Figure 4.20: Curve fit for Boundary Layer Formulation of n=3, T=O. 

Figure 4.21: Curve fit for Boundary Layer Formulation of n=6, T=O. 

Figure 4.22: Curve fit for Boundary Layer Formulation of n=13, T=O. 

Figure 5.1: Bounded Planes Diagram. 

Figure 5.2: Finite Element Mesh. 

Figure 5.3: Displaced Mesh for Deep Crack Analysis. 

Figure 5.4: Displaced Mesh for Shallow Crack Analysis. 

Figure 5.5: Generalised Plane Strain Analysis of a body exhibiting + T and -S stresses. 

Figure 5.6: Generalised Plane Strain Analysis of a body exhibiting +T and +S stresses. 

Figure 5.7: Plane Strain Analysis of a body exhibiting + T stress. 

Figure 5.8: Generalised Plane Strain Analysis of a body exhibiting -T and -S stresses. 

Figure 5.9: Generalised Plane Strain Analysis of a body exhibiting -T and+S stresses. 

Figure 5.10: Plane Strain Analysis of a body exhibiting -T stress. 



Figure 5.11: Neutral Axis for Tension Loading. 

Figure 5.12: Neutral Axis for Pure Bending. 

Figure 5.13: Comparison of Tension and Bending Fields. 

Figure 6.1: Part Through SuIface Crack. 

Figure 6.2: Line-Spring Modelling. 

Figure 6.3: Idealised Model of Line-Spring Concept. 

Figure 6.4: Idealisation of Semi-Elliptical Crack. 

Figure 6.5: Geometry and Load Dependent Parameters after Sham (1991). 

Figure 6.6 Schematic of Tubular Welded Joint 

Figure 6.7: Geometry of Tubular Welded Joint (Huang and Hancock (1986». 

Figure 6.8: Benchmarking Results. 

Figure 6.9: Comparison of Benchmark Analyses Biaxiality with Sham (1991). 

Figure 6.10: Comparison of Stress Intensity Ratios for T-Joint Analyses. 

Figure 6.11: T-Joint Analysis Results. 

Figure 7.1: Transgranular Cleavage. 

Figure 7.2: Ductile Failure. 

Figure 7.3: Ductile-Brittle Transition. 

Figure 7.4: Cleavage Steps. 

Figure 7.5: Cleavage Tongues. 

Figure 7.6: Ritchie, Knott and Rice Stress Con tolled Cleavage Model. 

Figure 7.7: Temperature Dependent Yield Stress after Benett and Sinclair (1966). 

Figure 7.8: Idealsied Failure Loci. 

Figure 7.9: Family of Small and Large Strain Solutions for n=13. 

Figure 7.10: Non-dimensionalised J-T loci for Cleavage at a Range of fracture Stresses 

for n=13. 

Figure 7.11: Normalised Experimental J-T loci, after Beteg6n (1990). 

Figure 7.12: Effect of Temperature on Toughness with varying Degreees of Constraint. 



Figure 7.13: Effect of Temperature on Toughness with varying Degrees of Constraint. 

Table 1: Chemical Composition of BS4360 grade.50D Steel. 

Figure 7.14: Temperature Dependence of J-T Loci for a Critical Cleavage Stress of 1400 

MPa. 

Figure 7.15: Temeprature Dependence of J-T Loci for a Critical Cleavage Stress of 1800 

MPa. 

Figure 7.16: The Influence of Geometry on Toughness. 

Figure 7.17: The Effect of ~ on the Transition Temperature for a Range of Specimen 

Widths. 

Figure 7.18: The Effect of Size on the Transition Temperature for a Range of Geometries. 

Figure 7.19: Variation of Initiation J as a Function of Temperature, after AI-Ani ( 1991 ). 

Figure 7.20: Experimental Results for Deep and Shallow Cracks, after Sumpter ( 1982). 

Figure 7.21: Variation of Initiation J as a Function of Temperature for BS4360 Grade 

500. 

Figure 8.1: Original and Simplest Form of a Failure Assessment Diagram. 

Figure 8.2: The General Failure Line as given by R6 Revision 3. 

Figure 8.3: Single Edge Cracked Bar under Three Point Bending (SEC3PB). 

Figure 8.4: Centre Cracked Plate under Remote Tension. 

Figure 8.5: Refence and Limit Loads as Derived by Shih and Millar. 

Figure 8.6: hI factors for CCP and SEC3PB. 

Figure 8.7: Idealised Failure Loci. 

Figure 8.8: J-T History showing the Intersection Point for Loci, described by m=0.1.2. 

n=13. 

Figure 8.9: Geometry Specific Failure Assessment Diagram, SEC3PB, n=13. 

Figure 8.10: Geometry Specific Fail ure Assessment Diagram. SEC3PB, n=6. 

Figure 8.11: Geometry Specific Failure Assessment Diagram, CCP, n=13. 

Figure 8.12: Geometry Specific Failure Assessment Diagram, CCP, n=6. 



Figure 8.13: Failure Assessment Diagram, SEC3PB, n=13, m=O. 

Figure 8.14: Failure Assessment Diagram, SEC3PB, n==6, m==O. 

Figure 8.15: Effect of Strain Hardening Rate (m=O). 

Figure 8.16: Failure Assessment Diagram, SEC3PB, n=13,m=l. 

Figure 8.17: Modified Failure Assessment Diagram, SEC3PB, n=13, m=!. 

Figure 8.18: Failure Assessment Diagram, SEC3PB, n=6, m=!. 

Figure 8.19: Modified Failure Assessment Diagram, SEC3PB, n=6, m= 1. 

Figure 8.20: Failure Assessment Diagram, SEC3PB, n=13, m=2. 

Figure 8.21: Modified Failure Assessment Diagram, SEC3PB, n=13, m=2. 

Figure 8.22: Failure Assessment Diagram, SEC3PB, n=6, m=2. 

Figure 8.23: Modified Failure Assessment Diagram, SEC3PB, n=6, m=2. 

Figure 8.24: Failure Assessment Diagram, SEC3PB, n=13, m==3. 

Figure 8.25: Modified Failure Assessment Diagram, SEC3PB, n=13, m=3. 

Figure 8.26: Failure Assessment Diagram, SEC3PB, n=6, m=3. 

Figure 8.27: Modified Failure Assessment Diagram, SEC3PB, n=6, m=3. 

Figure 8.28: Mild Steel Plate Three Point Bend Tests (Sumpter and Forbes (1992». 

Figure 8.29: Mild Steel Plate Centre Crack Tension Tests (Sumpter and Forbes (1992». 

Figure 8.30: Weld Data Three Point Bened Tests, Sumpter (1993). 

Figure 8.31: Plate Steel Three Point Bend Tests (Beteg6n (1991). 

Figure 8.32: BS 4360 Grade 50D Steel Three Point Bend Tests (MacLennan). 

Figure 8.33: A 710 Three Point Bend Tests (Hancock, Reuter and Parks (1991). 

Figure 8.34: Chemical Composition of low grade Mild Steel. 

Figure 8.35: Chemical Composition of Beteg6n Test Plate. 

Figure 8.36: Chemical Composition of A 710 Steel. 

Figure 8.37: Experimental Material Loci. 

Figure 8.38: Experimental Material Loci. 

Figure 8.39: Failure Assessment Diagram, Sumpter and Forbes (1992), SEC3PB, n=5. 



Figure 8.40: Modified Failure Assessment Diagram, Sumpter and Forbes (1992) 

,SEC3PB , n=5. 

Figure 8.41: Failure Assessment Diagram, Sumpter and Forbes (1992), CCP, n=5. 

Figure 8.42: Modified Failure Assessment Diagram, Sumpter and Forbes (1992) ,CCP , 

n=5. 

Figure 8.43: Failure Assessment Diagram, Sumpter Weld Data, SEC3PB, n=1O. 

Figure 8.44: Modified Failure Assessment Diagram, Sumpter Weld Data ,SEC3PB , 

n=lO. 

Figure 8.45: Failure Assessment Diagram, Betegon (1991), SEC3PB, n=14. 

Figure 8.46: Modified Failure Assessment Diagram, Betegon (1991), SEC3PB, n=14. 

Figure 8.47: Failure Assessment Diagram, MacLennan, SEC3PB, n=6. 

Figure 8.48: Modified Failure Assessment Diagram, MacLennan, SEC3PB, n=6. 

Figure 8.49: Failure Assessment Diagram, Hancock, Reuter and Parks (1991), n=lO. 

Figure 8.50: Modified Failure Assessment Diagram, Hancock, Reuter and Parks (1991), 

n=10. 

Figure 8.51: Combined Failure Assessment Diagram. 

Figure 8.52: Combined Modified Failure Assessment Diagram. 

Figure 8.53: Lower Bound Failure Assessment Diagram. 

Figure 8.54: Modified Lower Bound Failure Assessment Diagram. 

Figure 9.1: Schematic Ductile Brittle Transition. 

Figure 9.2: Notch Tension Specimens. 

Figure 9.3: Stress Distribution( after Bridgman (1952». 

Figure 9.4: Crack in Centre of Notch Tensile Specimen. 

Figure 9.5: Liquid Nitrogen Test Setup for Notch Tensile Experiments. 

Figure 9.6: Low Temperature Test Setup for Notch Tensile Experiments. 

Figure 9.7: High Temperature Test Setup for Notch Tensile Experiments. 

Figure 9.8: Applied Load versus Specimen Diameter Reduction. 

Figure 9.9: Average Axial Stress versus Plastic Strain. 



Figure 9.10: Torson Experimental Specimen. 

Figure 9.11: Angle of Twist of Torsion Specimen. 

Figure 9.12: Stress Triaxiality for Temperature Tests. 

Table 1: Torsional Experimental Results. 

Figure 9.13:Cleavage Instability for Liquid Nitrogen Experiments. 

Figure 9.14a:Micromechanical Examination of Plane Tensile Specimen Experiment (-

80C). 

Figure 9. 14b:Micromechanical Examination of A Notch Specimen Experiment (- 80C). 

Figure 9.15: D Notch Finite Element Mesh. 

Figure 9.16: A Notch Finite Element Mesh. 

Figure 9.17: Plane Finite Element Mesh. 

Figure 9.18: Triaxiality of Finite Element Analyses. 

Figure 9.19: Maximum Principal Stress for Finite Element Analyses. 

Figure 9.20: Equivalent Plastic Strain for Finite Element Analyses. 

Figure 9.21: Diagram of Three Point Bend Specimen. 

Figure 9.22: Liquid Nitrogen Temperature Experiment Set-up. 

Figure 9.23: Three Point Bend Specimen with Clip Gauge Attached Knife Edges. 

Figure 9.24: Tank and Specimen Arrangement. 

Figure 9.25: Results of Three Point Bend Experiments. 

Figure 9.26: J versus Crack Extension at Room Temperature (SEC3PB). 

Figure 9.27: Crack Tip Opening versus Crack Extension at Room Temperature 

(SEC3PB). 

Figure 9.28: J versus Crack Extension at -50C (SEC3PB). 

Figure 9.29: Crack Tip Opening versus Crack Extension at -50C (SEC3PB). 

Figure 9.30: Detailed Crack Tip Photograph. 

Figure 9.31: Transition Curve for BS4360 Grade 50D. 



Introduction. 

The development of fracture mechanics was originally motivated by a series of 

catastrophic fractures of high strength steels associated with welded joints. With the 

increased usage of high strength steels in the latter half of the nineteenth century the 

frequency of these accidents rose to an alarming level. A number of these accidents were due 

to inadequate design and inept fabrication, but a high proportion were due to flaws and 

defects within the materials. 

The advent of welding, and the introduction of covered electrodes in 1912 allowed 

mass production of high quality structural weldments. This allowed the complete fabrication 

of structures, leading to the launch in 1921 of the first all welded merchant ship. This new 

method of construction was to experience problems, in a catalogue of disasters. In the 

1930's three truss welded bridges in Belgium failed. In 1943 the first all welded tanker 

constructed by the Kaiser company of the United States broke in half in the fitting out dock. 

By 1953 of the 4694 all welded ships constructed, 233 had been subject to hull failures of 

some form, and 1056 had been subject to potentially dangerous structural failures. As a 

result of analysis of these failures it was found that the primary causes of fracture were stress 

concentrations and material defects. These fractures were found to have been particularly 

brittle, promoted by the low temperatures and the state of the stress triaxiality at the flaw. 

Under these conditions steels can fracture by cleavage, with minimal energy absorption. It 

was also found that above a transition temperature the form of fracture changed from a brittle 

to ductile mode. This temperature was found to be a function of the welding procedure. 

Although these findings highlighted a number of serious problems with all welded 

ships. It was however impossible to return to riveting because of the economic advantages 

of welding, and its potential to revolutionise design, as long as these problems could be 

overcome. 

A key feature of the all welded design is that the structure is a single monolithic unit, of 

which even the most trivial weld is an integral part. This means that a crack propagating 

from a single weld is capable of passing through the whole structure with nothing to impede 

its progress. A prime example was the T2 tanker Ponagansett which broke up in calm 

conditions as a result of a crack originating at a tack weld holding a cable clip to the deck. 



Stress concentrations at hatch corners in cases like this are particularly important. In real 

engineering structures, such as oil rig jackets it is inevitable that there will be flaws present, 

so there is a need for a rational method of assessing the significance of flaws, and developing 

materials that are capable of tolerating them. 

Concurrent with the growth in welding, new high strength alloys were being 

developed, notably in the aerospace industries. Some of these high strength alloys were 

banned from use due to their small critical crack size, thereby negating any advantage of their 

high strength. In the aerospace industry where the weight of a component has a considerable 

influence on performance characteristics, lower safety factors are applied to induce a 

corresponding weight saving. Service stresses in these applications could be high enough to 

induce cracks especially when environmental effects and stress concentrations were 

considered. These low stress fractures induced by small critical cracks were very similar to 

brittle fractures of welded low strength steel structures, in that there is very little plastic 

deformation, although their failure micro-mechanism are frequently described as ductile. 

From this background fracture mechanics was developed to meet the need to assess the 

effects of flaws and to measure the fracture toughness of structural materials. A central 

purpose of fracture mechanics is to predict the critical crack size at which fracture will occur 

and how long it will take the crack to grow from an initial size to the critical fracture 

condition. 

Fracture mechanics is split into two distinct branches: linear elastic and elastic plastic 

fracture mechanics ( henceforth lefm and epfm). The applicability of these branches is 

governed by the size of the plastic zone and the amount of crack tip deformation. As long as 

the plastic zone is small compared to the critical dimensions of the body then lefm is valid, 

under conditions described as small scale yielding. Outwith these conditions epfm becomes 

relevant since the plastic zone is no longer a minor perturbation of the elastic stress field. 

Classical fracture mechanics has endeavoured to establish the relationship between the 

crack size and the applied load, on the basis of a one parameter characterisation, of the stress 

and strain fields at the crack tip. In a series of recent developments the severe restrictions of 

classical epfm have been relaxed by a two parameter characterisation of the elastic-plastic 

fields. The purpose of the present work is to extend the previous work on two parameter 

characterisation and determine the range of validity for such an approach, and show the 

applicability of the higher order terms in the description of crack tip stress fields. 
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1: Introduction to Linear Elastic Fracture Mechanics. 

1.1: Griffith's Criterion. 

A fundamental relationship of fracture mechanics was developed by A.A Griffith 

(1921) who considered the energetics of unstable crack growth in an elastic material. 

Griffith considered the problem of crack growth in an infinite plate containing a centre crack, 

with a constant tensile displacement applied to the remote boundaries as shown schematically 

in Figure 1.1. A schematic load-displacement graph for the applied remote stress is shown 

in Figure 1.2. The elastic energy contained in the plate is the area under the graph. As the 

crack increases in length by da, the stiffness decreases. As the crack length increases from a 

to a+da the potential energy of the body drops corresponding to the area OAC in Figure 1.3. 

Griffith postulated that crack propagation could only occur if there was sufficient 

elastic energy released to provide the necessary energy to create fresh surfaces. Crack 

advance is energetically favourable when: 

au ? aw ( 1.1) 

da da 

Where U is the elastic energy and W is the energy required to break a unit area of material. 

Griffith then made use of the stress field calculations for a sharp crack after Inglis (19 I 3) and 

calculated U and ~~ per unit thickness as: 

u=cr2
1ta

2 (1.2) 
2E' 

au = cr21ta 0.3) 
da E' 
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Where in plane strain E' is defined as E' = _E_ while in plane stress E' = E E being 
(l-v2) , 

Young's modulus. The energy release rate per unit thickness, ~~ is normally denoted G 

which is defined as the 'elastic or potential energy release rate'. The elastic energy release 

rate is therefore defined as: 

G = 1t~:a 0.4) 

The energy required for crack propagation by decohesion of the atomic bonds is assumed for 

a first approximation to be constant for each increment of crack advance. This means that R 

the crack resistance is constant, and can be defined: 

W = 2a"l (1.5) 

dW 
R= -= 2"1 (1.6) 

da 

Y is the surface energy per unit area. In the Griffiths criterion G is the surface energy per unit 

area of the material. The Griffith criterion for crack propagation requires that G must at least 

be equal to R before crack propagation can occur. If R is constant there must be a critical 

value of G denoted Gc. In plane strain conditions the critical value of the elastic energy 

release rate, GIC is defined in terms of the fracture stress cr( 

2 
GIC = 1t~~a (1.7) 

Griffith applied the energetics of crack propagation to glass which is an extremely 

brittle material on the assumption that the crack resistance would only contain surface energy 

terms. However in almost all materials plastic flow occurs at the crack tip, and is the major 

energy absorption process as recognised in the important step made by McClintock and Irwin 
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(1965). Plastic deformation at the crack tip absorbs a large amount of energy during crack 

propagation, and has thus emerged as the major component energy required for the formation 

of the fresh surface. This therefore means that even for brittle materials R consists mainly of 

plastic energy and the surface energy influence is small enough to be neglected. 

Irwin (1957) modified Griffiths criterion to include a plastic energy term and expressed 

the potential energy release rate: 

G = 2yp (1.8) 

Where Yp is the plastic component of the surface energy per unit area. 

1.2: The Stress Field at a Crack Tip. 

The deformation of a cracked body can be described in terms of three basic loading 

modes. In Mode One tensile stresses are applied perpendicular to the crack, and the 

associated displacements are symmetric about the crack plane. Mode Two loading is 

described as 'in plane' shear and the associated displacements are anti-symmetric about the 

crack plane. Mode Three is an 'out of plane' shear sometimes referred to as 'anti-plane 

shear', in which the only displacements generated are parallel to the crack plane. Schematic 

representations of these three modes of loading are shown in Figure 1.4. 

Interest is now restricted to mode one loading since in the engineering sense it is the 

most important form of loading for components. For linear elastic bodies the stresses, air 

ahead of a crack can be written as a series expansion given by Williams (1957): 

This series expansion uses polar co-ordinates (r,6) centred at the crack tip, with r being 
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the distance from the crack tip, and incorporates functions which depend on the angular 

coordinate e as illustrated in Figure 1.5. As the crack tip is approached, (i.e as r tends to 

zero), the third and higher order terms tend to zero. At the crack tip the first term is infinite 

and the second term finite. In classicallefm this allows the second and higher order terms to 

be ignored in comparison to the first term. The first term represents the dominant singularity 

whereas the second term of this expansion has been denoted as the T-stress by Rice (1974). 

The T -stress is as a uniaxial stress parallel to the crack flank whose magnitude has been 

define by Levers and Radon (1983) in terms of a biaxiality parameter (P). 

Irwin (1957) considered the analysis of Westergaard (1939), who had studied the 

stress field of an infinite plate with a crack of length 2a, located on the x-axis from -a to +a 

and subject to a remote tensile loading. Close to the crack tip (r«a) classical lefm restricts 

interest to the first term of the Williams expansion (1.9): 

crxx = ~ COs(~) [1- sin(~) Sin(3f-)] 

(1.10) 

Irwin (1957) noted that these solutions could be written in the generalised fonn: 

(1.11) 

Where K
1
= cr--J(rta) is defined as the elastic stress intensity factor, and describes the 

way the stresses approach the singularity at the crack tip, fij(e) are universal functions and 

are independent of geometry. The stress intensity factor is dependent on geometry, unlike 

the stress concentration factor which is infinite for all bodies containing sharp cracks. A 

crack will extend when stresses and strains reach a critical value over a micro-structurally 
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significant distance, which is both material and loading dependent. In a linear elastic material 

there is a direct relationship between the potential energy release rate (G) and the stress 

intensity factor (K). Fracture will only occur when both the stress intensity factor and the 

energy release rate reach their critical values, thus the energy and the stress field approach are 

equivalent. The relationship between these two factors can be generalised and for mode I 

loading is defined as: 

K2 
GI=_I 

E' 
( 1.12) 

Given that the stress intensity factor determines the stress field, crack extension will occur at 

a critical value of K, denoted ~C' The stress intensity factor can always be expressed in the 

form: 

( 1.13) 

Here 0' is a reference stress and f(.lL) is a function of geometry. which is tabulated for a large 
W 

number of geometries by Rooke and Cartwright (1976) and Tada, Paris and Irwin (1974) as 

well as Murakami (1987). Figure 1.6 illustrates this function of geometry, f(~) for a centre 

cracked test specimen. For the case of a single edge crack in a semi-infinite plate with f(~) 

equal to 1.12, Tada, Paris and Irwin (1974), (1.13) reduces to a simple analytic expression: 

K = 1.12av'1ta (1.14) 

The in plane stresses are independent of the thickness of the plate but the out of plane stress 

depends on whether plane strain or plane stress conditions apply: 

O'zz = 0 for conditions of plane stress. 

and 
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<J'zz = v(<J'xx+<J'yy) for conditions of plane strain. 

The displacements(u,v,w) associated with these fields have been given in a general 

form by Rice (1969): 

and ( 1.15) 

v = 2~ b~)} sin(~) {K+ 1-2COS~~)} 

where 

K = (3 - 4v) for plane strain 

K = (~~~) for plane stress 

The out of plane displacement w is necessarily zero in plane strain. In the case of plane 

stress however the out of plane strain must be integrated with respect to z to determine the 

out of plane displacement: 

W = -2v .....K.- cos ft z 
E V21tr 2 

( 1.16) 

1.3: Determination of Stress Intensity Factors. 

The stress intensity factor characterises the way that the stress field approaches the 

singularity at the crack tip. Two simple direct methods for determining K from the stress and 

displacement fields are now discussed. A third method called virtual crack extension which 

is an indirect method is also briefly reviewed. 

The stress method makes use of the Westergaard equations (1.10). Considering only 

the stress <J'yy directly ahead of the crack tip (9=0), equation (1.11) simplifies to: 
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( 1.17) 

An alternative technique makes use of equation (l.IS) to write K as: 

K = Limit 

r-+O 
( 1.18) 

The third method for the calculation of the stress intensity factor is termed virtual crack 

extension, and is an indirect method of solution. This method relies on the relationship 

between the crack tip stress intensity factor (K) and the potential energy release rate (G). The 

crack tip is surrounded by two contours (r I, r 2) as illustrated in Figure l. 7, virtual crack 

extension is achieved by moving the internal contour (r d a small distance (da) simulating a 

degree of crack advance. External to the outer contour (r2) the stiffness matrix of the body 

remains the same. The only subsequent difference is in the region between the internal and 

external contours. Therefore for the unit of crack advance only the change in overall 

stiffness between the contours has to be resolved. The stiffness matrix of the body can be 

considered as the sum of the individual element stiffness matrices, Zienkiewicz (1971) 

Virtual crack extension has the advantage of only requiring the calculation of the 

stiffness change between the contours surrounding the crack tip as opposed to a full stiffness 

calculation for the entire body. 
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1.4: Small Scale Yieldinjl. 

Linear elastic fracture mechanics is based on the requirement that the body is largely 

elastic, and that the zone of plastic deformation is small compared with the critical 

dimensions of the body. The fundamental assumption is that the size of the plastic zone is 

small compared with the specimen dimensions and the outer field is adequately characterised 

by the first term in the Williams expansion, Figure 1.8. This is the critical assumption which 

is the lynch pin of single parameter linear elastic fracture mechanics. 

The plastic zone size can be estimated by using either the Von Mises or Tresca yield 

criteria in conjunction with the elastic stress field. In this context it is convenient to express 

the stress field in terms of principal stresses (01,0'2,0'3): 

o} = V2~r cos ~ (l +si~) 
( 1.19) 

Here the third principal stress is dependent upon whether plane stress or plane strain 

conditions apply. For plane stress the Tresca yield criterion becomes: 

A ~ - K cos8 (1+sl'n8 ) = 0'0 
1 - V3 - V21tf"2 "2 (1.20) 

Where 0"0 is the yield stress in uniaxial tension. This gives an approximation for the 

radius of the plastic zone (r/ 

r = _1_ (K)2 cos28 (I + sin 8/ Plane Stress. 
y 21t 0'0 2 2 

(1.21 ) 

r = _1_ (K)2 sin28 Plane Strain. 
y 21t 0"0 

( 1.22) 
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These equations show that the radius of the plastic zone is proportional to (~J, as 

illustrated in Figure 1.9. The plane stress plastic zone is the larger of the two, especially 

directly ahead of the crack. The approximation for ry for plane strain conditions tends to zero 

(v=O.5) at this angle, even though at this angle the largest principal elastic stresses are 

encountered. This is possible because yielding is controlled by shear stresses and the 

difference in principal stresses is almost zero. 

In plane stress the largest shear stresses cut through the body, as opposed to plane 

strain where they act in the plane of the crack. Irwin and Kies (1958) showed that since 

thickness affects the plastic zone of the body it must affect the fracture toughness (Kc) as 

well. Low values of fracture toughness in thick plates result directly from the small plastic 

zone size associated with plane strain conditions. This implies that cracks in thick sections 

are very dangerous. As a consequence, methods for determining fracture toughness, 

especially in conditions of plane strain are particularly important. Kc in general is not a 

material property since it is dependent upon the material thickness. However it is possible to 

define a material property in thick sections when Kc reduces asymptotically to the KIC value 

for plane strain conditions. 

1.5: Validity of Linear Elastic Fracture Mechanics. 

The validity of classical linear elastic fracture mechanics is codified in both American 

and European standards: 

B, a, W-a ~ 2.5 (KI)2 (A.S.T.M.-E399-83) 
0'0 

( 1.23) 

B, a ~ 2.5 (KI) 
2 

(B.S. 7448 Part l) 
0'0 

Where B, a, and (W-a) are the body thickness, crack length and the remaining ligament 
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respectively. The aim of plane strain fracture toughness is to determine the lower limiting 

toughness of a thick sectioned material, Knott (1973). Conditions and test procedures for 

valid lefm tests are given in ASTM (1988). In plane strain and mode one conditions this is 

denoted as K1C' the difference between K and K1C can be considered as paralleling the 

difference between strength and stress. Krc is determined by loading a test specimen with a 

defect present until the crack extends, the value at which the crack initiation occurs is termed 

K 1C- This form of testing however assumes a high degree of crack tip constraint, 

corresponding to a state of plane strain. Plane strain toughness tests are only really suitable 

for the testing of thick section testpieces, since plane strain conditions will prevail in the 

middle section of the testpiece while plane stress conditions occur at the testpiece surfaces. 

The dimensions quoted in (1.23) ensure that the plastic zone radius is approximately 

sixteen times the maximum radius of the plastic zone for plane strain conditions. This 

ensures that the size of the plastic zone is small compared to the critical dimensions of the 

body. Outwith these dimensions it is appropriate to use elastic plastic fracture mechanics. 
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2: BenchmarkinK Linear Elastic Fracture Mechanics. 

2.1: Introduction. 

Lefm is based on the premise that it is possible to characterise the stress field near the 

crack tip by the stress intensity factor within the conditions of small scale yielding. In this 

chapter the stress intensity factor (K) is derived by a number of different analytical 

techniques. These analyses were conducted using a model mesh generated using the 

commercially available package PATRAN (1988) while the actual analyses were carried out 

on an IBM 3090 making use of the finite element package ABAQUS (1988a, b). These 

analyses were then compared with the results gained from standard solutions (Rooke and 

Cartwright (1976), Tada, Paris and Irwin (1973) and Murakami (1987». The purpose was 

to confirm the computational techniques to be used in the thesis on well defined elastic 

problems before proceeding to the more complicated elastic-plastic problems. 

2.2: Numerical Methods. 

Two different approaches to the computational benchmarking of K were undertaken. 

The first utilised a full field continuum analysis using two dimensional plane strain 

isoparametric elements. The second approach used line-spring and shell elements. 

The benchmarking analyses were carried out on a single edge cracked bar (SEC), with 

a crack length to body width (~) ratio of 0.5, and a height to width ratio of 3 as illustrated in 

Figure 2.1. The continuum model comprised one hundred and eighty four eight noded 

second order isoparametric plane strain elements (CPE8RH) as shown in Figure 2.2. In all 

the analyses Poisson's ratio was set at 0.3 while Young's modulus was 200 GPa. A 

displacement loading was applied to the upper node set of the model shown in Figure 2.3, 
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this deformed the mesh as illustrated in Figure 2.4. The imposed boundary conditions were 

such that the ligament was fixed in the y (2) direction while the end of the ligament was fixed 

in the x (1) direction to prevent rigid body motion. Due to the conditions of symmetry and 

loading conditions of the analysis it was necessary to only model half of the body. 

A second analysis was carried out using the same mesh but altering the position of a 

portion of the mid-side nodes at the crack tip. These mid-side nodes were moved to a quarter 

of the radial distance (r) of the element length, Figure 2.5. This is termed quarter point 

node refinement. This alteration forces the displacements near the crack tip to adopt the 

correct form of displacement function, in which the displacements approach the crack tip as a 

singularity of the form, -If, as discussed in detail by Barsoum (1976) and Henshell and Shaw 

(1975). 

An alternative approach modelled the body with shell elements and the crack with line­

spring elements. The line-spring elements introduce a local solution into the analysis by 

allowing the mesh an additional degree of freedom along the line of the crack. This is 

achieved by introducing a compliance with respect to the additional degree of freedom 

associated with the crack. Within ABAQUS, K is recalculated from the relative rotations and 

displacements conjugate to the compliance. The advantage of this approach is that less 

elements are required to model the body than in the continuum analysis and it is therefore 

computationally less complex, and an easier problem to solve. In this analysis fifty second 

order shell and ten line-spring elements, as shown in Figure 2.6 were utilised where plane 

strain conditions are maintained by preventing any displacement parallel to the crack face, and 

the analysis was no more expensive than that of an uncracked shell geometry. The results of 

these three analyses were then compared with published results. 
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2.3: Determination of the Stress Intensity Factor. 

In the continuum analyses, K was determined by the stress, displacement and virtual 

crack extension methods using both normal and quarter point node configurations. 

2.3.1: Displacement Method. 

The displacement method is a direct method of evaluation of the elastic singularity, 

from the displacements described by (1.16), recalling that (u,v) are displacements relative to 

the crack tip. K was then non-dimensionalised by Ko, which is defined in terms of a 

nominal applied stress, 0: 

Ko = crfiCii (2.1) 

The function (crY~) was then plotted against the nodal distance from the crack tip(r) 

non-dimensionalised by the crack length(a). These graphs were then extrapolated to the tip to 

find the appropriate stress intensity factor. Figures 2.7 and 2.8 show the results for both 

methods of node positioning. 

2.3.2: Stress Method. 

The stress method is a direct method for evaluating K, making use of equation (1.16) to 

express the stresses directly ahead of the crack tip (8=0), which simplifies the universal 

function fijC8) to 1. 

The non-dimensionalised stress intensity factor is then plotted against the non-

dimensionalised distance from the crack tip. These graphs are then extrapolated to the tip to 

find the stress intensity factor for the geometry. Figures 2.7 and 2.8 show the results of the 

stress method for both mid-side node configurations. 
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2.3.3: Virtual Crack Extension Method. 

Virtual crack extension is an indirect method of determining K through the energy 

release rate (G). Since G = 1 for plane strain conditions the stress intensity factor is related to 

the elastic energy release rate by (1.13). The l-Integral is determined by the virtual crack 

extension method established by Parks (1974). In these analyses six contours were used in 

the solution of the l-Integral with the second contour chosen for convenience since these 

contours are path independent the choice is unimportant. This method was used with both 

mid-side node configurations and the results are shown in Table 2.9. 

2.3.4: Line Spring and Shell Element Method. 

As explained in the introduction to this chapter in the line-spring analysis K is 

calculated from the relative rotations and displacements of the cracked geometry, with 

reference to the additional degree of freedom introduced by the line-spring element. K, is 

therefore an output variable in this form of analysis, while Ko was determined from the 

reaction forces on the body. 

2.3.5: Published Solutions. 

Solutions for many geometries have been tabulated by Rooke and Cartwright (1976), 

Tada, Paris and Irwin (1974) and Murakami (1987). A uniform displacement produces both 

a tensile force and a closing moment. In a linear elastic problem it is possible to consider 

both the force and moment components separately and then superimpose them to get the 

complete solution. Tada, Paris and Irwin (1974) give the stress intensity calibration 

functions for tension and bendin~~ = 0.5): 

(2.2) 
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Tension: 

1 = \/(1 - JlJ1 fULl (2.3) 
I wJ '\W Tension 

Bending: 

0.53 = \,/fl---:'----a)3 fUL). (2.4) 
WJ '\W Bending 

From (2.1) specific values can be determined for both the bending and tension components 

of K) for a single edge cracked bar subject to a displacement loading and then non­

dimensionalised to obtain KJ. In tension and bending the nominal stresses are defined to be: 
Ko 

Therefore the tension and bending components resolve for this specific geometry become: 

Klnending _ 

KOn.ndin. 

- 1.499 

Superimposing these solutions gives the final stress intensity factor: 

K ITo1•, = 1.9425 
KOTension 

(2.7) 
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2.4: Conclusion. 

The results of all the fOnTIS of analysis are compared with the published results of Tada, 

Paris and Irwin (1974), Table 2.9. From this table it can be seen that all of these answers are 

within 0.5% of each other. Of particular interest is the accuracy of the line-spring and shell 

analysis, which although computationally simple gives excellent accuracy and economic 

benefits in comparison to the continuum solution. 

Comparing Figures 2.7 and 2.8 it can be seen that by altering the position of the mid­

side nodes the accuracy of the solution is increased, by ensuring the displacements follow the 

correct displacement function, ensures the correct fonn of singularity. 

Of the two direct methods of evaluation of K the stress method appears to be the more 

accurate of the two on the basis of this investigation. Although the virtual crack extension 

method is clearly the most accurate method of evaluating K. 
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3: Elastic Plastic Fracture Mechanics. 

3.1: Introduction. 

Fracture mechanics is based on the ability to describe the stress fields surrounding a 

crack tip by a suitable characterising parameter. Within the lefm regime stress fields can be 

characterised by the stress intensity factor (K), or equivalently the elastic strain energy 

release rate (G). Within these limits, fracture occurs at stress levels appreciably below the 

yield stress and is colloquially termed brittle in an engineering sense, even though there is 

associated local plastic deformation at the crack tip. Engineering components are designed to 

accommodate localised plastic flow to alleviate the stress levels at stress concentrations. It is 

therefore necessary to find parameters that can adequately describe the crack tip stress fields 

when the plastic zone has developed to a size that invalidates the conditions of lefm. 

In the development of classical epfm two parameters have been developed to 

characterise the crack tip field, the crack tip opening displacement (0), Wells (1961), and a 

strain energy release rate termed the J-Integral, Rice (1968). 

Wells (1961) interpreted the 'strip yield model' for plane stress which had been 

developed independently by Dugdale (1960) and Barenblatt (1962) in terms of fracture. In 

this case yielding is assumed to be confined to a narrow zone directly ahead of the crack tip. 

In effect, yield was accounted for by the addition of a plastic strip to the crack length as 

illustrated in Figure 3.1. Cohesive stresses were applied to prevent the crack opening and 

simulate non-hardening plasticity. Rosenfield et al (1966) have shown this model to be 

broadly appropriate for fully developed plane stress yielding by etching the plastic zones of 

thin fracture specimens, Figure 3.2 shows an idealisation of their results. Plastic flow 

consists of two intersecting shear bands at 450 through the thickness of the body. Yield is 

therefore localised to a narrow region of height equalling that of the body thickness. 

Wells(l961) noted that plasticity caused the crack to open with a ' near square ended 
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contour' which resulted in a finite crack tip opening (0). Wells's proposition was that there 

would be a critical crack tip opening (Ot) at which a crack in a laboratory specimen and in an 

engineering structure would both fail. 

The J-Integral is an energy release rate introduced independently by Cherepanov 

(1967). Eshelby (1968) and Rice (1968), with the major credit towards its adoption in 

fracture mechanics being attributed to Rice (1968). 

3.2: Crack Tip Open ina: Displacement ((D. 

The crack tip opening displacement can be regarded as a measure of the plastic strain 

close to the crack tip. Wells's proposition was that the crack tip would advance when the 

material directly ahead of the crack tip had achieved a critical level of strain and this in tum 

would reflect itself in a critical level of crack tip opening as shown in Figure 3.3. This idea 

was extended by Dugdale (1960) into the general yielding regime by presenting 0 in the 

form: 

0= 8aaQ In sec.mL (3.1) 
1tE 200 

Expanding as a series gives: 

0= 1tq2
a [1 + tt

2 (.sL)2 + - -] (3.2) 
Eao 24 00 

For lefm conditions, (0« (0) the strain energy release rate can be written: 

G = tta2a (3.3) 
E 

This allows the first term in the series to be expressed: 
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8=~ (3.4) 
A 0'0 

Where A is dependent upon the strain hardening rate, n and the yield strain, £0. This is 

often expressed in tenns of parameter ~, Kumar, German and Shih (1981), where A is 

identical to ct. It is therefore possible to write a general fonnulation for small scale yielding 

in mode I defonnation in the fonn: 

(3.5) 

Specific values of A have been reported by Rice (1968), Rice and Johnson (1970), 

Levy et al. (1971), Rooke and Bradshaw (1969) and Robinson and Tetelman (1973) who 

have either determined A computationally or experimentally. A is approximated from these 

results to be 1 for conditions of plane stress and 2 for plane strain. Values of A have been 

directly related to ~ as given by Hutchinson (1968) and Shih (1978). 

3.3: The .I-Inteeral. 

Crack tip characterisation by a path independent integral was proposed independently 

by Cherepanov (1967), Eshelby (1968) and Rice (1968). Most simply understood as a 

measure of the difference between the potential energy of two non-linear elastic bodies with 

slightly differing crack lengths as illustrated in Figure 3.4. Here the difference between the 

areas under the graph can be expressed as JBaa and where au is the potential energy change 

of the body: 

J = _l au (3.6) 
B aa 
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Eshelby (1968) has described a number of path independent contours based on a 

theorem of energy conservation. The nature of the argument may be developed in a 

qualitative manner, consider a counter-clockwise contour from the lower to the upper crack 

faces. This contour consists of a series of elements ds, Figure 3.5. Applied to each element 

is a traction force F, which is a vector and moves the contour a small distance, .1u, Figure 

3.6. The work done on each element ds is F..1u, where the dot product accounts for the 

different directions of the two vectors. The total work done on the material surrounding the 

crack tip is given by integrating around the contour: 

1 (F..iu)ds (3.7) 

This can now be expressed in terms of crack advance, .1a: 

IIa 1 (F.~)dS (3.8) 

As the contour moves the energy balance of the crack tip is changed due to the loss and 

gain of energy from both internal and external conditions, i.e. the work done by external 

forces. If the strain energy density is W then the change in strain energy in the area .1ady is 

W.1ady. The net loss in the strain energy of the material contained within the contour can be 

obtained by integrating around the path: 

.ia i W dy (3.9) 

The net change in energy of the system contained within the contour can be defined as: 

(3.10) 
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Rice (1969) has expressed the I-Integral in the following two dimensional form for a non­

linear material: 

(3.11) 

The I-Integral is defined as a counter-clockwise contour integral where W is the strain 

energy density (W = [ O"'jdE'j) • F is the traction vector nonnal to the contour integration 

path, u is the displacement vector and s is the arc length. This description is based upon 

deformation theory plasticity or equivalently non-linear elasticity. 

The path independence of these integrals can be proved by considering two separate 

integration contours r 1 and r2 surrounding a crack tip as shown in Figure 3.7. Since the 

integrand disappears on the crack faces I 2-J 1 is the integral of the boundaries surrounding 

the area between J 1 and J2• thereby transforming the line integrals into an area integral by a 

Green-Gaussian transformation this gives 12-11=0. 

If an arbitrary circular contour of radius r fully encloses the crack tip. the general 

definition of the two dimensional J-Integral can be expressed: 

(3.12) 

The strain. the strain density and the traction depends upon the radius and polar angle 

of the contour (r, 8). In conditions of small scale yielding the contour can be selected to fall 

completely within the area dominated by K. This establishes the relationship between the 

integral and K: 
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(3.13) 

A similar direct relationship in a linear-elastic sense is possible between the crack tip 

opening displacement and the I-integral. The crack tip opening displacement can be related 

to the potential energy release rate, 0 and since for lefm 0=1: 

(3.14) 

Here ~ is a parameter (Hutchinson(1978) and Shih(1981» as shown in Figure 3.8, 

which depends on both the strain hardening rate, n and the yield strain, Eo' 

Interest will now be focused on a non-linear elastic material that follows a constitutive 

relationship governed by an equation of the form described by a Ramberg-Osgood stress 

strain curve: 

(3.15) 

Here n is the strain hardening exponent and 0'0 is a flow stress while a. is a material 

constant and EO is a reference strain defined to be EO == ~. Close to the crack tip the plastic 

strains dominate and it is possible to neglect the initial linear portion of the strain relationship: 

(3.16) 

This uniaxial stress-strain relationship is usually generalised by J2 (Von Mises) 

deformation plasticity to a multiaxial stress state: 

(3.17) 
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Where Sij is the deviatoric stress and O'e is the effective stress defined as: 

(3.18) 

From (3.12) it is clear that there must be an energy singularity exhibited at the crack 

tip, that depends inversely on the distance from the crack tip. Since the parameters are of the 

order of O'ijEij Hutchinson (1968) and Rice and Rosengren (1968) concluded that the 

singularity must have a strength of the order of 1. For power law hardening materials this 
r 

singularity corresponds to stress and strain singularities of the form: 

(3.19) 

Having established the strength of the stress and strain singularities and by relating the 

general form of the I-Integral to the dependence of r to a power it is possible to characterise 

the field parameters for a non-linear material in terms of I as determined independently by 

Hutchinson (1968) and Rice and Rosengren (1968): 

(3.20) 

Here a is a dimensionless constant, In is a dimensionless function of the strain 

hardening exponent, n which is tabulated in Figure 3.9, while O'ij, £ij and iii are angular 

functions of the strain hardening rate after Shih (1983). I can now be considered both as an 
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energy and as a field parameter. 

It is possible to express J in terms of elastic and plastic components: 

J tota1 = Jelastic + Jplastic (3.21) 

There are a number of methods to determine J in fracture mechanic specimens. 

Consider a deeply edge cracked bar subjected to a pure bending moment as shown in Figure 

3.lO. The moment-rotation relationship for a non-hardening material, illustrated in Figure 

3.11, is only a function of the body thickness, B and the remaining ligament, (W -a). A 

dimensional argument shows that the moment on the body can be expressed in the following 

form: 

M(a) = a 00 B (W -af (3.22) 

Where a is a dimensionless constant, not the a in the Ramberg-Osgood relationship. 

Now for a crack of slightly different length (a+da) the moment can be expressed as: 

M(a+da) = a 00 B (W-(a+da»2 (3.23) 

The change in moment is then given by dM: 

dM = M(a+da) - M(a) = -2aooB[ (W-a)da + da2] (3.24) 

Neglecting second order terms the change in the moment dM can be expressed in the 

form: 

dM = -2aooBCW-a)da (3.25) 

The work done on the body is defined as the area under the moment-rotation curve (M­

e), Figure 3.12, and the incremental change in work done is: 
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dU=8dM 

Now from (3.6) J can be expressed as: 

J = 2U 
B(W-a) 

(3.26) 

(3.27) 

On this basis Rice, Paris and Merkle (1973) derived the plastic component for deeply 

cracked geometries from the total area under the load-displacement response. The same form 

of dimensional argument can be applied to a deeply cracked bar subjected to pure tension 

where the limit load is expressed in the form: 

P = a ao B (W -a) (3.28) 

Following the argument leading to (3.27) the plastic component can be expressed as: 

J . _ U plastic 
plastic - B (W -a) 

(3.29) 

This has led Sumpter and Turner (1973, 1976), to express the plastic component of J 

in a general relation of the form: 

Uplastic 
J plastic = TJ plasticB (W -a) (3.30) 

Where n 1 . is a geometry dependent dimensionless constant defined as: 'Ip astlc 

TJplastic = 0.32 + 1~~) -49.5(~)2 + 99.8(~y 

TJplastic = 2 

27 

.Jl.. > 0.282 
W 

~ S 0.282 

(3.31 ) 



Sumpter and Turner (1976) express the fracture toughness of the body in the fonn: 

J - . Uelastic . Uplastic 
-l1elastlcB(W_a) + llplastlc

BCW
_a) (3.32) 

Where llelastic is also a non-dimensional geometric constant. Sumpter and Turner 

(1976) expressed this equation in a crOD compatible fonn, through a load (PJthat would 

give an approximation to the plastic work tenn, through a conjugate displacement V plastic' 

J = K2(1-v2) + llplasticP L V plastic . W 

E B (W-a) a + r(W-a) 
(3.33) 

This complication was removed when they expressed their formulation in a more 

readily useable fonn which relates J to crack mouth opening displacement (CMOD): 

(3.34) 

In equations (3.33 and 3.34) r is a rotational constant and UYplastic is the plastic area 

under the load-CMOD trace as illustrated in Figure 3.13. The rotational constant r can be 

expressed in the fann: 

r = 0.3 + 0.5(~) 

r = 0.45 

28 

.JL < 0.3 
W 

W~0.3 

(3.35) 



3.4: The Ene"ineerin& Approach. 

The evaluation of J can be carried out in a manner developed by EPR! (1981), based 

on the work of Illyushin (1946). Illyushin (1946) first noted that the field parameters, 

stress, strain and displacement for a power law hardening material of the form E = a crn must 

be related to the load in the following manner: 

craP E apn u a pn (3.36) 

The loads are proportional to the stresses, and the strains to the load levels raised to the 

power of the hardening rate. Since the plastic component of J can be interpreted in relation to 

the work done: 

Jplastic a Uplastic (3.37) 

This can therefore be expressed in terms of the load since the work done is a product of 

the load and displacement: 

Jplastic a P . u 

J plastic a p . pn 

J . a pn+1 plastIc 

(3.38) 

This was the basis for the EPRI (1981) approach which is an estimation procedure for 

elastic-plastic materials that have a power law material response. Following this dimensional 

argument Kumar et al (1981) expressed the plastic component of J in the form: 

(a) (P )n+ I Jplastic = acroEochl W' n P
r 

(3.39) 

Here P is a reference load hl(JL n) is a non-dimensional function of the strain 
r ' W' 

hardening rate and geometry dependent constant. The dimensional scale is introduced 
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through the ligament (c) in the case of a single edge cracked bend bar or half the crack length 

(a) in the case of a centre cracked panel. It is also possible to express the elastic component 

of J in a similar form. The full field solution for cracked configurations is then given as the 

sum of the elastic and plastic components: 

Jtotal = J (ae)elastic + J (a)plastic (3.40) 

The elastic portion of the analysis is based on Irwin's effective crack length (ae) 

concept. Irwin's concept is based on the influence of the plastic zone on the crack length 

within the elastic regime where the crack length can be considered to be effectively given by: 

ae = a +0ry 

where (3.41) 

r = _1_ [n-1] (KI)2 and 0 = 1 
y ~1t[n+I] 0"0 (1 +~y 

Here ~=2 in plane stress and ~=6 for plane strain, ry is the radius of the plastic zone. 

For a single edge cracked bar the full field solution can be expressed in the following 

manner: 

(3.42) 
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3.5: Limits of Sina=le Parameter Characterisation. 

There are a number of limitations to the application of 1 in fracture mechanics. If a 

crack propagates there is unloading on the new surfaces formed. For materials undergoing 

incremental plasticity this unloading is in the form of a linear elastic unloading and since most 

solutions for elastic-plastic fracture mechanics are determined using deformation plasticity, 1 

cannot be applied rigorously to an extending crack. Stump and Zywicz (1993) have shown 

the path dependence of incremental plasticity in small strain theory, showing its sensitivity to 

constraint effects. 

The basis for a single parameter characterisation of the crack tip stress and strain fields 

is that the region described by the HRR singularity must fully encompass the fracture process 

zone. This condition is termed I-Dominance, McMeeking and Parks (1979) and Shih and 

German (1981) have given limiting conditions for I-Dominance for deeply cracked bars. 

McClintock (1968) showed that the plastic slip-line solutions depend on geometry and 

loading. McClintock (1968) showed that the slip line fields for single edge cracked bars in 

bending (SECB) and double edge cracked bars (DECB) as well as centre cracked bars (CCP) 

in bending develop non-unique slip line fields, as shown in Figure 3.14. McClintock (1968) 

has also shown that within the crack tip region there can be no unique stress and strain field 

for weakly hardening materials in the limit of full plasticity. A dimensional argument (Rice 

(1976» shows that I-Dominance applies under geometric conditions of the form: 

c ~ M(EQ, n) ..L 
0"0 

(3.43) 

M is a dimensionless constant which depends on the strain hardening exponent and the 

yield strain. Paris (1972) suggested a value for M of between 25 and 50 to maintain plane 

strain conditions in the fracture process zone. Rice (1976) and Amazigo (1978) have shown 
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that in full plasticity the distances over which I-dominance is achieved decreases directly as a 

function of the strain hardening rate (n). McMeeking and Parks (1979) considered deeply 

cracked geometries, of the form of single edge cracked bend bars (SECB) and centre cracked 

panels (CCP) using large strain plastic deformation theory comparing their results with the 

small scale yielding solution (T=O). In this case I-dominance criteria only involves the 

remaining ligament. For a single edge cracked bar in bending the remaining ligament has to 

exceed 25 1 while for the centre cracked panel this value rises to 200 1. 
00 00 

Shih and German (1981) carried out a series of detailed finite element analyses of 

cracked bend bars (CBB) using smaI1 strain theory. Results of these analyses were then 

compared with the HRR field to determine the deviation from I-dominance. Agreement was 

found between full field solutions and the HRR field as long as the plastic zone was 

substantially smaller than the remaining ligament for the CCP analyses although as soon as 

large scale deformation was approached the fields deviate from I-dominance due to a loss of 

constraint. Shih and German (1981) confirmed the size requirements given by McMeeking 

and Parks (1979). 

These studies considered the effect of deformation on deeply cracked geometries where 

plasticity is confined to the uncracked ligament, whereas most defects begin not on a 

macrostructural but on a microstructural size scale. AI-Ani (1988) and AI-Ani and Hancock 

(1991) have considered shallow cracked bars in bending and tension, where shallow cracks 

are defined such that plasticity is not confined to the ligament. The transition from deep to 

shallow cracked geometries also corresponds to the transition in sign of the second term of 

the Williams (1957) expansion from a tensile to compressive component. AI-Ani and 

Hancock (1991) have shown plasticity to be confined to the ligament for single edge cracked 

bend bars (SEC3PB) ~ ~ 0.3. Following the same restrictions plasticity is confined to the 

ligament in single edge cracked tension bars (SECT) for ~ 2: 0.55 and for double edge 

cracked bars (DEC) ~ ~ 0.95. The results of these analyses show that for these geometries 

there is a loss of I-dominance before 200 1, where the crack length is the controlling 
00 

dimension for shallow cracks. Agreement was found with the analyses of McMeeking and 
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Parks (1979) and Shih and German (1981) for deeply cracked geometries. 

3.6: Two Parameter Characterisation. 

Larsson and Carlsson (1973) examined elastic plastic crack tip fields for a wide range 

of geometries including double edge cracked (DEC), single edge cracked bend bars (SECB), 

compact tension specimens (CTS) and centre cracked panels (CCP). Full field solutions 

were then compared to crack tip fields determined from boundary layer formulations. 

A boundary layer formulation is a technique that allows the elastic stress and 

displacement distribution obtained from a K field to be applied as the boundary conditions of 

an area that surrounds the crack tip. Larsson and Carlsson (1973) compared the plastic 

zones determined from the previous analyses with reference plastic zones determined by the 

boundary layer technique obtained from the first term of the Williams (1957) expansion (K). 

This comparison showed discrepancies between the plastic zone in specific geometries and 

the boundary layer of up to 30%. Following discussions with Rice, Larsson and Carlsson 

attributed this difference to the first finite term in the Williams (1957) expansion. By 

modifying the boundary tractions by the addition of a non-singular term it was possible to 

model the stress fields of full field solutions through a two parameter characterisation based 

on T. 
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3.7: Elastic T Stress. 

Following the work of Larsson and Carlsson (1973) and using the notation of Rice 

(1974) the first terms of the Williams (1957) infinite expansion can be expressed: 

(3.44) 

The third term and higher order terms are significant only at the outer boundaries. Close to 

the crack tip the stress field can be approximated by the first two terms of this expansion: 

(r-70) (3.45) 

The elastic T -stress has been calculated for a number of geometries by Leevers and 

Radon (1983), Kfouri (1986), Sham (1991) and AI-Ani (1988) who gave the magnitude of 

the T-stress in terms of a biaxiality parameter, p: 

(3.46) 

Leevers and Radon (1983) and Sham (1991) have tabulated values of the biaxiality for a 

numher of important geometries and these are shown in Figure 3.15. 

Bilby et al. (1986) first considered the applicability and validity of J-T characterisation 

for a wide range of geometries, where good agreement was found between a two parameter 

characterisation and the finite specimen fields. Betegon and Hancock (1991) considered the 

loss of l-dominance with respect to the T -stress and showed that compressive T -stresses 

cause the stress field to diverge from the small scale yielding solution (T=O) as the load is 

increased. The small scale yielding solution develops self similar fields, which differ 

significantly from the HRR field. Tensile T-stresses were shown to cause the stress levels to 
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rise slightly from the small scale yielding solution as the load is increased, and approach the 

HRR field. Betegon and Hancock (1991) showed that the decrease in the associated stress 

levels from the small scale yielding solution is dependent solely on the T -stress and is 

independent of the distance ahead of the crack tip, r~o. 

T -stresses were also found to affect the plastic zone following the work of Larsson and 

Carlsson (1973). Tensile T -stresses decrease the size of the plastic zone and cause the plastic 

lobes to rotate backwards, while compressive T-stresses enlarge the maximum radius of the 

plastic zone and cause the plastic lobes to swing forward. The angular orientation of the 

maximum radius of the plastic zone is located at 37t for.I.. = 1 while for a compressive T-
4 0"0 

stress of the order l = -1 this same orientation was found at K, Wang (1991). Associated 
0"0 4 

also with compressive T-stresses are high levels of toughness, corresponding to a reduction 

in constraint as load increases. Betegon and Hancock's (1989) small strain results match 

those of Bilby et al. (1986) who considered large geometry change solutions for a non­

hardening material to gauge the effect of compressive T-stresses acting on stress fields 

within the blunting zone. The deviation from small scale yielding field for compressive T­

stresses is independent of distance ahead of the crack tip and has been expressed by Betegon 

and Hancock (1991) in the form: 

(
O"ij' = (crt

SY

) + 0.6 (.I..) _ 0.75 (.I..)2 , n=oo O"oh 0"0 T=O 0"0 0"0 

(3.'+7) 

( 
SSY) 

(
O"ij ' = O"ij + 0.64 (l) _ 0.4 (l)2 , n= 13 O"oh 0"0 T=O 0'0 <10 

Wang (1991) checked this calculation and gave the stress fields for a modified 

boundary layer formulation at a strain hardening rate of n= 1 0 as: 

(O"ij ) = (crtSY
) + 0.617 (L) _ 0.565 (-I.)2 + 0.123 (-I.)3 

0"0 T 0'0 T=O 0'0 0'0 0'0 
(3.48) 
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These results showing the relationship between the local stress field and T reinforced 

the work of Bilby et al (1986) who considered a similar effect for non-hardening materials. 

Du and Hancock (1991) attributed the difference in the stress fields to the hydrostatic stress 

(om)· For sufficiently positive values of T (T ~ 0.446(0) the full PrandtI field is developed 

and plasticity fully envelops the crack tip as shown in Figure 3.16. In this figure Region I is 

an area where the stress fields due to the yield criteria are homogenous in the form of either 

compressive or tensile component parallel to the crack flanks. This arises form the Hencky 

equations and the straight lines in the wedge on the crack flanks. These stresses may be 

expressed in polar coordinates (r, 8): 

Orr = k (I-cos 28) 

Gee = k (I-cos 28) 

ore = k sin 28 
om = k 

(3.49) 

Here k is the yield stress in shear and om is the mean stress. The remaining stress 

fields can be deduced from the Hencky equations, Hill (1952), which express equilibrium in 

the form of the rotation of the slip line fields. The stress state in Region II can be expressed 

in the form: 

Gee = Orr = ozz = am = k ( I + 3; - 28) 

arB = k 

(3.50) 

Whereas in the diamond section, Region III the stress fields are expressed in the 

following simple stress state: 

aee = k ( 1t + 1 + cos 28) 

Orr = k ( 1t + 1 - cos 28) 
0zz = om = k ( 1t + I ) 

Ore = k sin 28 
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Du and Hancock (1991) used modified boundary layer formulations to determine the 

stress fields for non-hardening plane strain deformation, through the angular distributions of 

the stress fields at the crack tip to determine the degree of crack tip plasticity. For 

compressive T -stresses an elastic region is developed from the crack flanks to an angular 

span close to ~, being at a maximum for the most compressive stresses. The extent of crack 

tip plasticity is as shown in Figure 3.17 where for a T=O field the crack tip plasticity does not 

extend back to the crack flanks and the angular span of the field is approximately 130°. The 

angular spans approaching the remaining ligament are shown in Figure 3.18 as the stress 

fields become less constrained. 

3.8: Hi&:her Order Asymptotic Solutions. 

Li and Wang (1986), Sharma and Aravas (1991) Xia, Wang and Shih (1993) and 

Yang, Chao and Sutton (1993a, b) have considered to varying degrees defining higher order 

asymptotic solutions of crack tip fields based on small strain theory, retaining the HRR field 

as the leading term, expressing the stress fields in the form: 

O"ij (r, e, n) __ Ks r5""(,O,) (8, n) + K t (I) (8 ) + v I r O"iJ' , n ..... 
0"0 IJ 

s = _-_1_ 
n+l 

(3.52) 

Here K and K are the amplitudes of the first and second terms respectively, while the s I 

strength of the radial dependance of each term is expressed in the form rS and rl. The HRR 

field is identified with the first term of the series, t is the radial dependence of the second 

term and is the order of 0.05 <= ten) => 0.07 for 5<n<20 as illustrated in Figure 3.19 

Sharma and Aravas (1991). It is possible to express the two components of this expansion 

in the same functional form: 
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aij Cr, e) _ ( J )_1- ~( ) (1) t-:il) 
- I I+n a JJ e, n + K r aij (e, n) + ... 

aD aaoEo nr 
(3.53) 

Li and Wang (1986) developed a similar two term approach by matching the two term 

expansion to the centre cracked panel results of Shih and German (1981). Yang et al. 

(l993a, b) and Xia et al (1993) have expressed the stress field at the crack tip including 

higher order terms in a form: 

I Apr~cr(P)ij (e) 
P=I 

(3.54 ) 

Where r = L, where L is the characteristic crack length, s/3 is the stress exponent, A/3 is 

the amplitude and cr~ (9) is the angular function for the (3 term in the series expansion. Yang 

et al. (l993a, b) identified the first term in this asymptotic expansion with the HRR field, 

which leads to the notation: 

(3.55) 

The first three terms of this infinite asymptotic series expansion (3.54) were found to 

be defined by two parameters(J, Az) for all strain hardening rates. In plane strain conditions 

the stress (aj} ahead of the crack tip the series can be truncated due to the similarity of the 

angular distributions of further higher order terms and can be expressed by the first three 

terms of the series: 

(3.56) 
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where 

(3.57) 

The stress fields are thus expressed in terms of controlling parameters J and A2. 

3.9: Small Strain Difference Term. Q. 

There is no unique choice of second global parameter to describe the stress fields that 

surround the crack tip. T -stress is simply an elastic parameter that has no rigorous physical 

basis in fully plastic conditions, although excellent qualitative and quantitative results past the 

region of limit load have been made by a number of researchers, Wang (1991), Parks 

(1991), Betegon and Hancock (1991), Du and Hancock (1991) and AI-Ani and Hancock 

(1991). Other research by O'Dowd and Shih (1991, 1992) has questioned the validity of the 

T-stress approach as you move towards full plasticity. 

O'Dowd and Shih (1991,1992) have carried out detailed finite element analyses on a 

large range of geometries in an attempt to determine a suitable elastic-plastic constraint 

characterising parameter. O'Dowd and Shih (1991) considered a two term expansion where 

the second term of the expansion is termed Q, where Q has been defined to be the amplitude 

of the second order field. 

O'Dowd and Shih (1991, 1992) considered boundary layer formulations where the 

remote tractions are given by the first two terms of the linear elastic Williams (1957) 

expansion. From this two parameter description the only length scale introduced in the 

boundary layer formulation is in the form (KI or L) therefore displacements and quantities 
0"0 0"0 

with the dimension of length must scale with it. For fully plastic geometries O'Dowd and 

Shih (1991, 1992) have expressed the field parameters in terms of the global parameters (J. 

Q) where the field parameters can only depend on distance through r~o. therefore in a 
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plasticity analysis: 

°ij _ f. (roo S. Q) Eij _ .. (roo S. Q) . _ J I.. (roo S. ) 
00 - IJ T' , 'Eo - glJ -J-' , ,uI - cro'il -J-' ,Q (3.58) 

Where fij , gij and hi are dimensionless material dependent parameters. This description 

constitutes a Q-family of solutions. For a mode I small strain problem the solution is 

expressed in a two term expansion: 

(3.59) 

The second order term has also been obtained by Li and Wang (1986) and Sharma and 

Aravas (1991) through a perturbation analysis where the HRR field was the dominant 

singularity. Q'Dowd and Shih (1991) followed a different course attempting to derive 

difference fields; small scale yielding solutions to modified boundary layer problems were 

determined and considered to be exact solutions, then compared to the HRR solution in an 

annular region, 1 < r~o < 5 deriving a difference field: 

(3.60) 

This approach differs from that of Li and Wang (1986) and Sharma and Aravas (1991) since 

(3.59) offers an approximation of the exact solution whereas the summation of the HRR field 

and the difference field must provide an exact match to the solution since it incorporates all 

higher order terms. Q'Dowd and Shih (1991) state a distance independence in the difference 

field between the SSY and the HRR fields and describe the stress fields in the form: 

(3.61) 

Therefore by this description the difference field is described by Q ahead of the crack. 
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O'Dowd and Shih (1991) state that the difference field ahead of the crack tip possesses a 

simple structure which corresponds to a uniform hydrostatic stress, therefore Q is defined as: 

O'ee - O'ee (HRR) 
Q == ----'---....:.... 

aD 
e = 0 rO'o = 2 , J (3.62) 

O'Dowd and Shih (1991) have proposed two forms of stress field descriptions derived from 

two significantly different reference fields: 

O"ij = O"ij (HRR) + QO'o8ij 

O"ij = O'ij (SSY) + Qao8ij 

(3.63) 

Shih, O'Dowd and Kirk (1991) offer the SSY reference field as the most accurate description 

of the Q-family of fields. The initial distance dependence offered by O'Dowd and Shih 

(1991) appears to significantly differ from that of Beteg6n and Hancock (1991) and Wang 

and Parks (1991) where the difference field between the SSY and HRR fields was shown to 

be distance dependent. Q can then be described at some distance ahead of the crack tip as: 

Q = crij - O"ij (SSY) 

0"0 

3.10: Local Failure Criterion. 

(3.64) 

Fracture resistance can be expressed in global terms with parameters such as K)C and 

JIe in lefm and epfm respectively, where this is a global approach to fracture. Another 

approach is possible by modelling the macroscopic fracture behaviour in terms of a local 

failure criteria. This criteria is based on the elastic-plastic stress-strain history at the fracture 

point along with a micromechanical model for the physical process of fracture. 

Ludwik and Scheu (1923) first postulated failure on the attainment of a critical stress 
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level. Slip induced cleavage cracks will propagate in an unstable manner when the local 

tensile stress (O'yy) reaches a critical value (O'f) , which is independent, or very weakly 

dependent of temperature and strain, Orowan (1948), Knott (1966, 1967), Oates (1968, 

1969) and Wilshaw, Tetelman and Rau (1968). 

Ritchie, Knott and Rice (1973) related the critical stress approach to the macroscopic 

fracture toughness of a cracked body by examining the temperature dependence of K1C' It is 

possible for the critical cleavage stress to be exceeded at the crack tip for sufficiently low load 

levels before fracture occurs so therefore not only must the critical stress be considered but 

also the size scale over which it applies, Rice and Johnson (1970). The application of the 

critical stress criterion in the stress strain gradients ahead of a crack requires the introduction 

of a microstructural size scale over which the stress levels are applicable. Ritchie, Knott and 

Rice (1973) postulate that brittle failure wiIl occur when a critical cleavage stress, O'f' is 

attained over a microstructurally significant distance from the crack tip, r*. Cleavage fracture 

is associated with the cracking of grain boundary carbides therefore on first approximation 

the characteristic distance could be considered to be of the order of one grain diameter. 

However within the plastic zone ahead of the crack tip the stress field is non-uniform and it is 

possible that the stress level would be insufficient to propagate across the second grain. 

Therefore Ritchie, Knott and Rice (1973) have found that the necessary stress intensification 

ahead of the crack tip has to be achieved over a sizescale which is a small multiple of the 

grain diameter dependent on the form of stress raiser. In the case of a sharp crack the 

required stress level can occur very close to the crack tip therefore the crack can be initiated at 

the first grain boundary carbide, for unstable failure to occur the stress criterion must be met 

over the next grain diameter. Therefore for a sharp crack to propagate in an unstable manner 

in mild steel, the local tensile stress must exceed O'f at a characteristic distance of 

approximately two grain diameters from the crack tip, Ritchie, Knott and Rice (1973). More 

sophisticated models have been developed by Beremin (1983) and Lin, Evans and Ritchie 

(1986) who have addressed the statistical problem associated with the application of weakest 

link criteria to the finite volumes of material ahead of the crack tip field. In contrast 
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Anderson and Dodds (1991) have developed a contoured volume approach. 

Beremin (1983) expressed the critical cleavage stress in relation to the length of 

microcracks (10) in respect of the metallurgical features: 

(3.65) 

Where Yp is the plastic surface energy, unstable fracture will occur if the principal stress 

normal to the boundary carbide planes is of a high enough level. From this description there 

is an obvious size effect in fracture, with the probability of finding a microcrack of suitable 

length for fracture to occur being a function of the volume involved. Beremin (1983) 

performed a statistical analysis considering small portions of the stressed volume (Vo) based 

on the probability of finding a crack of suitable length (lb) to enable unstable fracture. They 

therefore expressed the probability of failure in terms of these portions of the total volume as 

simply: 

P( 0,) = ~- POD) diD 
Jill 

(3.66) 

The cumulative probability of failure on the entire specimen is expressed in relation to 

material constants as: 

Pr = 1- exp [- (~:r] (3.67) 

Where cr u and m are material constants while cr w is the weibull stress. 

Lin, Evans and Ritchie (1986) also considered cleavage failure based on weakest link 

statistics applied to the microstructural failure mechanisms. Their approach is based upon the 

prediction of the macroscopic fracture toughness of the body based on a known distribution 

of particles and defines the critical distance at which the initial cracking event will occur. 
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Beremin (1983) based their analyses on microcrack lengths whereas Lin, Evans and Ritchie 

(1986) proposed a method based upon carbide size where the strength of each carbide is 

inversely proportional to their size. Therefore, there is a competing process between 

carbides of differing sizes with fracture occurring at the highest stressed carbide, Curry and 

Knott (1979). The cleavage fracture toughness is then estimated by sampling the plastic zone 

for the presence of an eligible particle for which the fracture criteria can be satisfied. In the 

same manner that a failure probability for individual elements within the plastic zone based 

on microcrack lengths is achieved by Beremin (1983), Lin, Evans and Ritchie (1986) 

expressed in terms of a strength distribution. Where the total failure probability due to the 

propagation of the weakest particle is: 

(3.68) 

Where g(S)dS is the strength distribution and can be expressed in a three parameter Weibull 

model as: 

(3.69) 

So is a scale parameter, Su is the lower bound strength, m is a shape factor and ~ is the 

number of particles per unit volume. Whereas f is the number of eligible particles a\"ailable 

to take place in the fracture process. 

At low temperatures because the plastic zone is small the site of crack initiation is close 

to the elastic-plastic interface, whereas at higher temperatures this same site lies well within 

the plastic zone due to its increased size. Two idealisations are used to describe the stress 

field distributions, at low temperatures the far field linear elastic solution is used (1.12) 
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whereas at higher temperatures the near tip HRR solution is utilised. By defining active 

elements in which the stress is constant it is possible to express the elemental survival 

probability as a minimum at a characteristic distance r* from the crack tip: 

r* = [1 -V2] [2n + 3 - m]n + 1 (KI)2(0'0)n + 1 an + 1 
In 2n + 3 0'0 Su 

Which occurred at the stress: 

0'* = [ 2n + 3 ] Su 
2n + 3 - m 

(3.71) 

(3.70) 

As shown in Figure 3.20. When cleavage occurs 0'* and r* can be equated with the critical 

cleavage stress (O'f) and the microstructurally significant distance of the Ritchie, Knott and 

Rice (1973) analysis. In statistical terms r * represents the distance at which crack initiation is 

most liable to occur. For a sharp crack the local stresses progressively decrease with 

distance from the crack tip. The value of r* reflects the competition between the far field, 

close to the elastic-plastic interface where the number of eligible particles is high but the 

stress level is low and the near tip field where the number of eligible particles is low but the 

stress level is high. 

The statistical methodologies presented by both Beremin (1983) and Lin, Evans and 

Ritchie (1986) gave good agreement with experimental results however there are a number of 

important points that should be realised. These models rely on idealised stress field 

descriptions. The models are also only valid for the propagation of a microcrack from a 

carbide particle into the matrix. These are invalid if the controlling process is the propagation 

of a microcrack through the grain boundary which occurs near the transition temperature, 

Holtzman and Man (197 I). 

Anderson and Dodds (1991) have proposed an alternative approach which predicts the 

variation of fracture toughness with constraint changes by scaling in relation to the small 

scale yielding limiting solution. The probability of cleavage fracture is dependent on a 

triggering microfeature, which suggests that the volume of the material within the process 
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zone where the local stress exceeds the critical cleavage stress is the limiting feature. 

Therefore the probability of cleavage fracture in a cracked specimen is: 

(3.72) 

Where Pfis the failure probability, al is the maximum principal stress and Veal) is the total 

volume over which the principal stress is equal to or greater than <11' Anderson and Dodds 

(1991) attempt to predict the variation of fracture toughness with constraint changes by 

comparison with a reference solution, and not determine absolute toughness values. 

Anderson and Dodds (1991) utilise the stress field distribution of (3.58), in terms of the 

maximum principal stresses and then equate the stressed areas of the finite body to the Q;::() 

reference field. The area associated with the reference field (Q=O) enclosed by a principal 

stress level of (~~): 

(3.73) 

The area enclosed by this principal stress level depends on J as well as the level of stress 

triaxiality, therefore the area associated with Q;tO: 

Therefore the level of fracture toughness can be expressed as: 

!Ps= 
10 
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(3.74) 



Where JFB is the toughness associated with a crack in a finite body with Q :# O. This 

toughness ratio quantifies the size and geometry dependence of cleavage fracture toughness 

and predicts the sharp increase in fracture toughness with a reduction in ~. 

3.11: Conclusions. 

There is no unique method for quantifying crack tip constraint, the two principal 

methods espoused are, the elastic T-stress and the small strain difference term, Q. However 

the validity of both descriptions has been called into question. 

The validity of the T -stress has been questioned at high levels of plasticity beyond limit 

load. However there is no doubt that the T-stress approach correctly identifies the plain 

strain geometries which lose constraint, and does so beyond the confines of small scale 

yielding. Whereas Q is simply a stress field difference term, therefore the accuracy of this 

approach cannot be questioned. However this theory is hindered by the lack of a simple 

engineering method for resolving Q, even the simplest engineering component would require 

a detailed full elastic-plastic analysis. 

Two parameter fracture mechanics has the ability to expand radically present failure and 

defect assessment methodologies such as R6 Rev. 3 and PD6493. These methodologies 

presently rely upon a single parameter characterisation of stress fields and therefore do not 

take advantage of the enhanced toughness associated with unconstrained geometries. 

Further advances based on utilising this enhanced toughness of unconstrained fields in 

relation to failure assessment diagrams are considered later in this work. 
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Figure 3.1: Dugdale 'Strip-Yield' Model for Crack Tip Plasticity. 
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Figure 3.2: Idealised Schematic of the Results of Rosenfield et al Investigation. 
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Figure 3.4: Detennination of J by Potential Energy Difference. 



Crack Tip 

Crack Tip 

y F 

r 

x 
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Figure 3.10: Deeply Cracked Bar in Pure Bending. 

14 



M 

a 

e 

Figure 3.11: Moment-Rotation Diagram for a Non-Hardening Material. 

M 

dU= e dM 

a 

a+da 

e 

Figure 3.12: Change in Work Done for a Non-Hardening Material. 
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4: Modified Boundary Layer Formulations. 

4.1: Introduction. 

In the present work the crack tip fields in small scale yielding have been determined 

using modified boundary layer formulations. The elastic displacements (u, v) associated 

with the leading two terms of the Williams expansion can be expressed as: 

u = -2~- (-2~)} cos(~) {K-l +2sin~~)} + _r T_(-,-1_-_~---,2)---,C_O_S_8 
(4.1 ) 

v = 2~ (2~)} sin(~) {K+I-2cos2(~)} _ r T(v - ~2) sin 8 

Where (r, 8) are cylindrical coordinates centred at the crack tip and K = (3 - 4v) for 

plane strain. These displacement functions can then be applied as boundary conditions on a 

region surrounding the crack tip to govern the outer elastic field. This form of analysis 

removes the need to model the whole body when studying crack tip deformation. 

Two types of analyses were considered, small and large strain solutions. Small 

geometry change solutions maintain a sharp crack tip as shown in Figure 4.1, this form of 

solution does not model the finite geometry changes associated with crack tip blunting and is 

therefore inherently a small strain solution, as exemplified by the HRR field. At the crack 

surface there is no free surface normal to the crack plane and as the crack tip is approached all 

the principal stresses become singular. In reality this is an impossibility since there will 

always be finite plastic deformation at the crack tip associated with the crack tip blunting and 

the formation of a real surface at the crack tip. The results of such an analysis are considered 

to be valid outwith the region of crack tip blunting which is usually taken to be of the order 

of 21. 
0'0 
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To investigate the influence of crack tip blunting on the stress fields large strain 

analyses were also carried out. This form of analysis allows blunting to occur at the crack 

tip. Numerical problems associated with strain singularities at the tip were avoided by the 

use of an initially blunt crack tip as illustrated in Figure 4.2. This technique gives a 

reasonable approximation to the blunting of a sharp tip after the diameter of the original crack 

tip has increased to two or three times its original opening as discussed by McMeeking 

(1977). 

4.2: Numerical Method. 

Plane strain boundary layer formulations were implemented in ABAQUS ( 1988a, b) 

using the focused mesh as shown in Figure 4.3. It was only necessary to model half of the 

body due to the symmetry associated with mode I loading. The mesh involved 360 hybrid 

second order reduced integration isoparametric elements arranged in 30 concentric rings of 

12 elements. The radius of the first ring of elements was less than one millionth of the radius 

of the outer ring, to provide a suitably fine and detailed mesh. In the case of the small 

geometry change solutions 25 independent but coincident nodes were located at the crack tip. 

These nodes were arranged symmetrica]]y around a key hole notch for the large strain 

solutions, displacement boundary conditions were then applied to the outer boundary of the 

mesh. Although this formulation gives no reference to geometric dimensions such as 

ligament length, a dimensional scale is introduced by the radius at which the elastic field is 

introduced. Solutions from these analyses were obtained for plastic zone radii very much 

less than the radius of the outer boundary, as described by Tracey (1976) and Parks and 

Wang (1988). These conditions therefore satisfy the requirements of small scale yielding, 

the stresses being self similar when normalised ahead of the crack by the yield stress (0'0)' 

while the distance ahead of the crack (r) was non-dimensionalised by L. The amplitude of 
0'0 

the stress triaxiality, thereby inferring the degree of crack tip constraint was measured by 
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nonnalising the mean stress (O'm) by the Mises stress (cr). 

The crack driving force (1) was calculated from the displacement of a chosen node on 

the outer boundary of the model by calculating K from equation (4.1). The material response 

was linear elastic up to the yield stress while the subsequent response was matched with the 

plastic response by a Ramberg-Osgood relationship from 5% above the yield stress. 

Analyses were carried out for a number of strain hardening rates ( n= 3, 6, 13 and infinity), 

V= 0.3, cx= 317 with E= 200GPa, EO= 0.001 and 0'0= 200MPa. The Ramberg-Osgood 

relationships for the hardening rates are illustrated in Figure 4.4. These analyses were based 

on small strain flow plasticity (ABAQUS, 1988a), adopting an incremental form of the 

Prandtl-Reuss flow rule. The large strain solutions allow the crack tip to blunt to 2B, before 

they were considered to be valid, thereby negating any effect the original crack geometry may 

have had upon the crack tip fields. 

In the case of non-zero T -stresses displacement boundary conditions were applied in a 

two step approach so as to ensure a constant T-Stress, by applying the full T-Stress 

displacement in the first step. The displacement due to the K+T field was then applied 

incrementally in the subsequent step. The non-zero T-stresses applied in the following 

analyses are compressive in nature and correspond to L = -0.3, -0.5, -0.7 and -0.9. 
0'0 
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4.3: Results 

Numerical solutions were compared with the HRR field, determined from the tabulated 

results of Hutchinson (1968) and Shih (1983). The hoop stresses directly ahead of the crack 

tip for a non-hardening material for both large and small strain analyses for a K field (T=O) 

are shown in Figure 4.5. The large strain solution differs from the HRR field outside the 

blunting region, 2J by 4%, while as the small strain solution is extrapolated to the crack tip 
00 

the HRR field was found to be recovered. Small and large strain solutions can be seen to 

match at distances in excess of 2J. The low comparable stress levels for the large strain 
00 

solutions can be attributed to the loss of stress triaxiality which is associated with crack tip 

blunting. Figure 4.6 compares the stress triaxiality (~) with the HRR field which differs by 

7% at (;;). 

The stress triaxiality was chosen as a test for the dominance of the HRR field since this 

parameter should be independent of radial distance, to the neglect of higher order terms. It 

can be clearly seen from this figure that this appears not to be the case. The existence of an 

HRR field can only be confirmed at the crack tip (r=O) and not at any significant finite radial 

distance from it. 

The same comparisons are made for the hoop stress and triaxiality for a material with 

strain hardening exponent (n=3) as illustrated in Figures 4.7 and 4.8. Again it may be 

concluded that the HRR field is recovered as r -+ 0 but significant discrepancies arise at finite 

distances from the crack tip. 

A full range of compressive T-stresses have also been modelled. Figures 4.9-4.13 

illustrate the stress fields for small and large strain solutions with a strain hardening exponent 

of six, directly ahead of the crack tip. The normalised hoop stresses are shown in Figures 

4.9-4.10 for the full range of T -stresses while the stress triaxialities are shown in Figures 

4. I 1-4.12. The equi valent plastic strain for the large strai n analyses are shown in Figure 

4.13, over the distances in which large strain effects are important. The stress fields 
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exhibited correspond to a range ofT values. The highest stress levels are given by the T=O 

field, the other T fields being, L = -0.3, -0.5, -0.7 and -0.9. Figures 4.14-4.18 consider a 
00 

series of complementary analyses for a hardening rate of n= 13. Presented again are the 

normalised hoop stresses and the amplitude of the stress triaxiality in the same order as the 

previous analyses for the full range of compressive T -stresses. 

4.4: Discussion. 

Sharma and Aravas (1991) describe stress fields in terms of higher order asymptotics in 

which the HRR field is recovered when interest is restricted to the first term. It is therefore 

possible to consider a similarfunctional form offered by Sharma and Aravas (1991) using 

the notation of O'Dowd and Shih (1991a) to define the amplitude of the second term as Q: 

Numerical values of the exponent t, the radial dependance of the second term are given 

by Sharma and Aravas (1991), while Q is the undefined amplitude of the second order term. 

It is possible to express the T=O fields for a number of strain hardening rates in terms of the 

two term expansion as illustrated in Figures 4.19-4.22: 

d lRR 

(
Oij) _ ij _ 0 18 (rao)O.05 , n=oo (4.3) 
00 (T=<» - 00 . J 

IIRR 

(
Oi j ) = °ij . _ 1.4 (roofO013 ,n=3 (4.4) 
00 (T=O) 00 J 

HRR 

(Oij) = Oij _ 0.65 (rao r005 
, n=6 (4.5) 

00 (T=O) 00 J 
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(O'ij ) _ ~ (rO'o)0.065 - ----0.3-
0'0 (T=O) 0'0 J 

• n=13 (4.6) 

The radial dependence of the second term in the expansion (t) was taken from Shanna 

and Aravas (1991) while the amplitude Q was taken as an average of the stress field 

differences over the range graphed for each strain hardening rate. 

4.5: Conclusion. 

The use of unmodified boundary layer formulations (T=O) indicates that the HRR field 

exists only at the crack tip and not at any finite distance from it. This can be justified by 

considering the radial dependance of the stress triaxiality (O'~ ). which has been shown for a 

wide range of hardening rates. The HRR field can therefore be considered to be the first 

tenn of a series expansion. since at any finite distance from the crack tip the higher order 

tenns of this series expansion become significant. 

Large strain solutions can be matched with the small geometry change HRR field at 

distances of the order of two crack tip openings. Crack blunting causes a local loss of 

triaxiality which is recovered at this distance from the crack tip. This is not formally a 

rigorous comparison since the comparison is between a large strain solution and small strain 

solution. and appears to be more fortuitous rather than founded on any rigorous basis, 

especially when compared to the movement of the peak stress levels. 

It appears from this series of analyses that the use of the HRR field as a generic 

reference field cannot be justified. especially when considering the effect of compressive T­

stresses as shown in Figures 4.9-4.19. Single parameterisation of any form cannot possibly 

characterise these stress fields. This would argue the necessity for comparing stress fields 

with the small strain solution as an appropriate small scale yielding reference solution rather 

than with the single parameter characterisation of the HRR field used previously by Shih and 
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German (1981). The use of this small scale yielding field (T=O) is based on the observation 

that the second tenn is distance independent in relation to the small scale yielding. 
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Figure 4.1: Small Strain Crack Tip Node Arrangement. 

Figure 4.2: Large Strain Crack Tip Node Arrangement 



Figure 4.3: Boundary Layer Fonnulation Mesh. 
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5: Generalised Plane Strain. 

5.1: Introduction. 

The purpose of this series of analyses was to detennine the effect of out of plane strain 

on elastic-plastic crack tip fields. This was accomplished by comparing results of full field 

solutions of geometries with positive (tensile) and negative (compressive) T-stresses, and 

compressive and tensile out of plane strains. 

For comparison with these analyses two forms of reference field were utilised. In the 

case of the positive T, comparisons were made with the plane strain small scale yielding 

(T=O) boundary layer formulation. The reference fields for the negative T analyses were 

determined from modified boundary layer formulations. 

The T -stress is a non-singular uniaxial in-plane stress, parallel to the crack flanks. A 

non-singular out of plane term (S) can be introduced following Rice (1974). In elastic plane 

strain conditions the three dimensional asymptotic stress fields can be expressed in the fonn: 

[ O'ij] = _I [ fij (e )J 0 0 0 
K ,11 TOO] 

<12m 0 0 S 
(5.1 ) 

The elastic stress-strain relation is: 

Ezz = ~ [O'zz - '\) (O'xx - O'yy)] (5.2) 

Using the plane strain conditions (Ezz=O) gives: 
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Also all the shear functions are zero, this allows the stress field to be expressed as: 

Thus on the crack flanks Oyy = 0, 0xx = T and ozz = S, where the out of plane non­

zero singular term in the Williams (1957) expansion has been denoted S. In plane strain 

conditions the relation between Sand T is established by the stress-strain relation: 

(5.5) 

Hence in plane strain the non-zero stress field components can be expressed: 

Oxx Cr, e) = .~ fxx (e) + T y",1[r 

Oyy (r, e) = .~ fyy (e) (5.6) 
,,,,1[r 

Ozz (r, e) = .~ fzz (e) + uT 
,,,,1[r 

In the present work generalised plane strain deformation has been imposed so that S is 

no longer simply equal to the plane strain value uT. Generalised plane strain analysis 

describes the deformation of bodies that have a constant curvature with respect to one axial 

material direction. The body may be visualised as lying between two planes which are 

orthogonal to the axial direction. These planes are allowed to move as rigid bodies with 

respect to each other and therefore cause an axial strain in the material direction. In these 

analyses the bounding planes were parallel to each other and prevented from rotation. The 
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elements used for these analyses had eight conventional nodes that determine the position and 

motion of the element in the two bounding planes as illustrated in Figure 5.1. The two 

additional out of plane nodes govern both the relative rotation of the planes and the change in 

axial length of the axial material fibre that connects these two nodes, these nodes are common 

to all the elements in the mesh. 

5.2: Numerical Method. 

Two series of elastic-plastic analyses were carried out on shallow and a deeply edge 

cracked bend bars (SECB). The shallow cracked bars had an J:L ratio of 0.1, while the 
W 

deeply cracked bar ~=0.9. These particular ratios were chosen to generate a fully 

constrained fields in the case of the deeply cracked geometry, and unconstrained fields for 

the shallow cracked geometry. Both geometries had a height to width ratio of 3. 

The meshes for these series of analyses were constructed using the commercial mesh 

generation program PA TRAN (1990). These meshes contained 170 second order 

generalised plane strain elements, which are 10 noded quadrilateral elements with biquadratic 

displacement, linear pressure and reduced integration. Due to the symmetry of these 

analyses it was only necessary to model half of the body and it was necessary only to 

generate one mesh for both series of analyses. Both crack lengths could be defined by the 

application of appropriate boundary conditions to the same mesh as illustrated in Figure 5.2. 

The models were subjected to a uniformly distributed load applied along the top node 

set. The elastic material constants, Youngs modulus and Poisson's ratio were set at 200 GPa 

and 0.3 respectively. Boundary conditions were such that the base of both meshes was fixed 

in the two direction with a single node also being fixed in the one direction to prevent rigid 

body motion. The two additional out of plane nodes have only limited degrees of freedom 

and their own coordinate system which prevents them from rotating. To generate the out of 

plane loading a displacement was applied to the second node to give an out of plane strain. 

Displaced meshes for both geometries are shown in Figures 5.3 and 5.4. 
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5.3: Results. 

5.3.1: Positive T·Stress Analyses. 

The positive T-stress analyses are compared with a reference field which is the small 

scale yielding solution (T=O). Figure 5.5 shows the normalised hoop stress (c;:: ) ahead of 

the crack as a function of nonnalised distance, (r~o). In this series of analyses the body 

exhibiting a compressive out of plane strain appears to be the most sensitive of all the 

analyses in relation to the breakdown from the small scale yielding solution as shown in 

Figure 5.5. Breakdown from the chosen reference field is characterised by a deviation of 

±10% from the specified reference field. The compressive out of plane strain appears to 

breakdown in relation to the reference field at a compressive strain of -5Eo and a 

corresponding defonnation level (c~o) of 18.5., where c is the remaining ligament. 

In contrast the tensile plane strain analysis appears to be relatively insensitive to out of 

plane effects and does not exhibit a similar breakdown until the out of plane strain is of the 

order of 27eo as shown in Figure 5.6 for a deformation level (c~o) of 11.6. When the same 

deeply cracked geometry subject to in plane loading effects only is considered at comparable 

levels of plasticity it has also deviated significantly from the small scale yielding solution due 

to the effect of the in plane bending stresses as shown in Figure 5.7. 

5.3.2: Nef:ative T ·Stress Analyses. 

In the short crack geometry the results are compared with modified boundary layer 

formulations. Compressive out of plane strains did not show any deviation from the chosen 

reference fields. The body exhibits behaviour consistent with that of modified boundary 

layer fonnulations to high values of deformation (a~o) of I 1.3 with a normalised out of plane 

strain (e~: ) of -4.81 as illustrated in Figure 5.8. 
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The tensile out of plane analysis exhibits the same form of behaviour, not deviating 

from the modified boundary layer formulation as shown in Figure 5.9 up to deformation 

levels (a~o) of 8.7 when the normalised (£;03) out of plane strain was 23.3. This same 

behaviour was found also to hold for the body loaded solely with in plane effects as shown 

in Figure 5.10. 

5.4: Neutral Axis. 

These series of analyses are not solely concerned with out of plane effects, but have 

also considered the in plane effect of the global bending field. The neutral axis is defined in 

this section as the point on the ligament (c) where the stress field directly ahead of the crack 

tip switches from a tensile to a compressive field. 

InitialIy two geometries have been considered, a deeply cracked bar subjected to a 

tensile out of plane component. Two forms of analysis are carried out, one analysis 

considers the effect of a uniformly distributed applied tensile force and the other an applied 

bending moment. The effect of these two significantly different fields were then considered 

in relation to the development of the global bending field on the ligament. 

The distance of the neutral axis from the crack tip is termed rn and the ingress of the 

compression field which one naturally expects is tracked by the use of a second distance 

parameter (r) which relates directly to the crack tip blunting. where r is: 

r = 2) (5.7) 
aD 

It is therefore possible to illustrate the ingress of the compression field across the remaining 

ligament as a ratio of the two distance terms, (r~). The results of these analyses for tension 

and pure bending are illustrated in Figures 5.11 and 5.12 where the deformation levels are 

also shown. From these figures it is clear that the ingress of the compression field is more 
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pronounced in the bending field, than in the remotely applied tension. 

Considering both series of analyses jointly in Figure 5.13, in both cases the fields 

exhibit the same trends. The loss of J-dominance in these analyses can be directly related to 

the ingress of the compression field towards the crack tip rather than out of plane effects. 

5.5: Conclusion. 

In near plastic strain conditions elastic plastic crack tip fields are dominated by in plane 

effects and not as may have first been supposed the out of plane strain. In general the loss of 

J-dominance due to the in plane effects was caused by the ingress of the remote compression 

field due to bending. 

In bodies which exhibit positive T -stresses crack tip deformation is limited by the 

ingress of the compression field induced by the applied bending moment. In this case the in­

plane effect has the greatest effect 

Bodies which exhibit negative T -stresses again appear to be dominated by the in-plane 

effects, although the influence of the compression field was reduced due to the size of the 

ligament in a short crack problem. 

The influence of out of plane effects in these series of analyses appears to be minimal 

since the most dominant effect has been the ingress of the in plane bending field. 
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6: Line-sprine Analysis of Semi-elliptical cracks in a Tubular T -Joint. 

6.1: Introduction. 

The line-spring concept was introduced by Rice and Levy (1972) to determine the 

stress intensity factors for shells and plates containing part through thickness cracks. This 

particular form of defect is of interest in the design of reactor pressure vessels, pipelines and 

other thin walled structures. In the Rice and Levy (1972) model, as illustrated in Figure 6.1, 

the crack is idealised by the use of generalised line-spring elements which act across the 

discontinuity in a thin shell. The definition of a thin shell is such that the surface length of 

the crack is large in comparison to the thickness of the shell. Line-spring elements as defined 

in ABAQUS (1988) are computationally inexpensive tools, Rice (1972) and Parks and Wang 

(1988). A defect idealised by line-spring elements is a series of one dimensional finite 

elements placed along the part through flaw, this allows local flexibility at one side of the 

defect in respect to the other. At each point along the defect a local orthogonal axis system is 

defined (t, n, q) as shown in Figure 6.2, where A and B are points on opposing crack 

flank~. Here t is the tangen.t to the shell along the flaw, n is the normal to shell and q is given 

by the vector product: 

q=t*n (6.1) 

Rice and Levy (1972) proposed that a three dimensional body could be idealised as a 

two dimensional continuum which is subjected to both an axial force (F) and a moment per 

unit length (M). These conditions induce rotations and displacements of the mid-surface of 

the shells relative to each other. With the body idealised as a two dimensional continuum the 

crack can be regarded as a one dimensional discontinuity, as illustrated schematically in 

Figure 6.3. The force and bending moment carried by each section of the uncracked 
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ligament can be denoted F(x) and M(x) respectively, while the relative rotations and nonnal 

displacements of the plates are denoted 8(x) and Sex) respectively. In linear elasticity the 

response of the crack to the loading is expressed as: 

[ 
8(x) 1 = [Cll (X) C12(X)] [F(X) ] (6.2) 
Sex) C21 (X) C22(X) M(x) 

Here the matrix [C] is the local elastic compliance of the body, which can be regarded 

as the response of a generalised linear spring. Rice and Tracey (1972) matched this response 

to that of a single edge cracked bar of crack depth a and width t in conditions of plane strain. 

Each section of the crack can be regarded as an edge cracked bar as illustrated in Figure 6.4 

which also shows a model of the line-spring compliance. 

The basic concept of the line-spring element is that an additional degree of freedom is 

introduced along the line of a crack in an uncracked geometry where the local solution is 

embedded to achieve the global response. This is achieved by the compliance generated by 

the additional degree of freedom within these elements. From the relative displacements and 

rotations coupled t? the compliance ABAQUS (1988) determines the I-Integral and the stress 

intensity factor as a function of position along the crack. The relative opening displacements 

and rotations for mode I deformation are respectively: 

(6.3) 

S = ( Os - SA ) . t 

The corresponding mode two and three relations are given by: 

8m = ( Os - 0 A ) . t ( 6.4 ) 
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am = ( as -a A ) . q 

The tenn an plays no part in the defonnation of the body. 

6.2: Determination of Non-dimensional Stress Intensity Factor. 

The stress intensity factor K is calculated through the relative displacements and 

rotations of the line-spring elements for every integration point in the elements used to 

represent the flaw. The results of this series of analyses were then normalised by Ko which 

in tension is defined as: 

Ko = 0' rna (6.5) 

Now let (~) be denoted Ar for the tensile loading component. For a crack subjected to 

a bending moment per unit thickness the normalising parameter is defined as: 

Ko = 6M fi@ (6.6) 
t2 

Similarly (~) is denoted Ab for the bending component. In combined tension and 

bending K can be expressed separately in terms of tension and bending components and then 

superimposed to find K as exemplified in Chapter Two' s benchmarking of Lefm. 
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6.3: Determination of T Stress. 

Following Levers and Radon( 1983) the T stress can be defined through a biaxiality 

parameter ~: 

(6.8) 

Following from equation (6.5) T can now be written in the non-dimensional form: 

Where 

a = at (tension) 
a = ab (bending) 

In a linear elastic analysis K and the T stress components for tension and bending can be 

resolved separately and then recombined. Superimposing solutions for tension and bending 

allows T to be expressed for the full solution as: 

(6.10) 

Where the subscripts t and b represent tension and bending respectively. In the case of 

tension the nominal tensile force acting upon each section is given from the numerical 

analysis as a force gradient denoted S II: 

aF 
SII=­ax 
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Which when combined with the thickness of the body represents a stress tenn: 

For the tension component of the analysis T can be expressed as: 

R'\. S'I T t = I-'tl\,t-
t 

For the bending component of the analysis: 

(6.13) 

From the analysis the moment gradient at each section of the line-spring is given by: 

Therefore the bending component T b can be defined as : 

The values for both ~bAb and PtAt are given by Sham (1991) illustrated in Figure 6.5, the 

full solution is given: 

T - R ~ S I' + R A 6S 22 
- I-'II\,I-

t
- I-'b b t 2 
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6.4: Numerical Method. 

6.4.1: Benchmarkina:. 

The benchmark analyses consider a series of flat plate geometries with a range of 

geometries through shallow to deeply cracked where through cracks are modelled, 

(0.1 ~ ~ ~ 0.9). These benchmark models contain 181 nodes with 60 elements, of which 

10 are line spring elements (LS3S) with the remainder being second order shell elements 

(S8R). Only half of the mesh was modelled due to conditions of symmetry, plane strain 

conditions were imposed by displacement boundary conditions on the right hand node set of 

the model. 

6.4.2: Tubular T-Joint analysis. 

The second mesh under consideration was a tubular T-joint discussed by Huang and 

Hancock (1986) and Du and Hancock (1989), a schematic of which is shown in Figure 6.6, 

with the actual geometry being shown in Figure 6.7. This joint was subjected to uniaxial 

tension with a uniformly distributed force applied to the brace, while the ends of the chord 

were fixed. Due to the symmetry of the geometry the problem can be reduced to one quarter 

of the actual structure under analysis. The cracks were located at the site of maximum stress 

concentration, which under these loading conditions is situated at the toe of the weld adjacent 

to the saddle point. The cracks are on the chord side of the chord-brace intersection \vhich is 

the site of maximum stress concentration with the cracks being one brace wall thickness from 

the centreline intersection. Three crack geometries were analysed. Semi-elliptical cracks 

with a maximum crack depth to thickness ratio a!f=0.2, 0.6 and 0.9, with a surface length 

ratio of 2cff=4 were modelled. 

In this model a total of 210 eight noded double curved shell elements were used to 

represent the T-joint, thus giving a system with 4000 degrees of freedom. The semi-elliptical 

cracks were represented by the line-spring concept of Rice and Levy( 1972) as implemented 
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in ABAQUS( 1988). 

6.5 Results. 

6.5.1 Benchmarkina:. 

Figures 6.8 and 6.9 show the results of the series of plate analyses as well as the 

previous results of Sham (1991). The biaxiality results are compared with the values given 

by Sham (1991) for a body subject to pure tension, these values can be matched up to a 

certain level but differ from these values for very deep cracks, aJW> 0.7. The discrepancies 

between the two series of results can be explained by the differing loading mechanisms used 

in the analyses, Shams (1991) results are achieved through force loading as opposed to the 

displacement loading for these analyses 

6.5.2 Tubular T-.Joint analysis. 

The results in this series of analyses mirror the work of Du and Hancock (1989) who 

originally calculated the stress intensity factor for the geometry as shown in Figure 6.10. 

The two deeper analyses, aff=O.6 and 0.9 exhibit positive or tensile T stresses which 

maintain J dominance of the geometries in question. While the afT ratio of 0.2 exhibits a 

negative or compressive T stress which necessitates the use of a two parameter 

characterisation. The purpose of the T -joint analysis was to demonstrate the computational 

simplicity with which T can be obtained for semi-elliptical cracks in complicated three 

dimensional engineering structures. The results of the T stress calculations are shown in 

Figure 6.11. 
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6.6: Discussion. 

The tubular T -joint the line spring analysis mirrors the full three dimensional analyses 

of Du and Hancock (1989). The difference associated with the stress intensity factors for the 

shallowest crack arises from the different stress concentrations produced by the shell and 

continuum analyses, this arises from the modelling of the weld profile in the three 

dimensional analysis, this influence is negated as the crack depth is increased. Another point 

to be noted on the utilisation of the line-spring is that as the crack front approaches the free 

surface the physics of the line spring breaks down since the material moves from conditions 

of plane strain to plane stress. 

6.7: Conclusion. 

Line-spring analysis allows the determination of the first and second terms of the 

Williams (1957) expansion. As examples, line-spring analyses of tubular T -joints and the 

internally pressurised cylinders show good agreement with the results of continuum models. 

This agreement confirms the observation that the line-spring method is an accurate and 

computationally inexpensive method for the calculation of the non-singular term T, and 

thereby infer the degree of crack tip constraint. 
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7; The Effect of Constraint on the Micro-mechanics of the Ductile-Brittle 

Transition. 

7.1; Introduction. 

Temperature dependent transitions in the failure modes of steels are of vital importance 

to the integrity of engineering structures. Within the context of plain carbon structural steels 

three principal modes of failure have been distinguished. 

At low temperatures failure occurs by cleavage instability by the direct separation of the 

low index crystallographic planes as shown in Figure 7.1. As the temperature increases the 

failure mode passes through a transition region where initial crack extension is by void 

growth and coalescence but the final failure occurs by cleavage instability. Whereas at higher 

temperatures the toughness reaches the upper shelf, where crack extension occurs solely by 

ductile mechanisms, as illustrated in Figure 7.2. 

As the temperature increases there is not only a change in the fracture mode but also in 

the material toughness, where the upper shelfis ductile in nature with high toughness levels. 

Brittle failure (cleavage) mechanisms are associated with low toughness levels as exemplified 

in the transition curve shown in Figure 7.3. It is obviously desirable to operate engineering 

structures on the upper shelf, due to the increased toughness and the possibility of crack 

growth. The transition temperature between brittle and ductile mooes has therefore particular 

significance for materials and structures that operate at or near this temperature. Attempting 

to specify a transition temperature can be subjective since the temperature will occur within 

the transition region where the two failure modes are competing to satisfy their individual 

failure criteria. In reality the onset of the upper shelfis characterised by significant amounts 

of stable crack growth. 

In this chapter interest is centred on the effect of geometry and size on the lower shelf 

toughness and transition temperature. Failure loci are interpreted in terms of the effect of 
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specimen size and temperature on the lower shelf toughness in terms of the second 

parameter in the Williams expansion (1957). Finally the shift in transition temperature 

associated with the change in geometry from deep to shallow cracked bars is predicted. 

7.2: Cleayaee Fractyre. 

The lowest energy absorbent form of fracture exhibited by engineering materials is 

cleavage, where this form of fracture is termed brittle. In ferritic steels the main mode of 

failure is by transgranular cleavage. Cleavage is the most dramatic form of failure and in a 

significant way contributed to the development of engineering fracture mechanics. The 

likelihood of cleavage failure occurring is increased by higher strain rates and low 

temperatures as exemplified in a toughness transition curve. 

Cleavage occurs by the direct separation of low index crystallographic planes, such as 

the cube planes {lOO} in b.c.c. metals. As a result the fracture surface is highly reflective 

because of the facets associated with each grain orientation. Features common in cleavage 

failure include steps and tongues. Steps are achieved when two parallel cracks 

simultaneously pass through a material grain, when these cracks intersect they form a step as 

shown in Figure 7.4. Tongues are formed at twin matrix intersects as illustrated in Figure 

7.5. 

Brittle materials have high yield strengths but a reduced ductility and are therefore 

unable to accommodate significant plastic deformation. In such materials despite the 

localised plastic flow associated with crack tip blunting the local stress levels are still high 

enough to break interatomic bonds. Within this analysis a critical stress criterion based on 

the Ritchie, Knott and Rice (1973), (henceforth RKR) criterion was used as defined in 

Chapter 3. Cleavage failure is associated with the cracking of grain boundary carbides, this 

necessitates that the RKR approach is applied over some characteristic distance (Rice and 

Johnson (1970», which is a multiple of the grain diameter as illustrated in Figure 7 .6. 
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7.3: Ductile Failure. 

Ductile failure is a strain induced process where failure occurs in the fonn of void 

nucleation and coalescence. Failure of this fonn will occur when the strain reaches a critical 

value which is dependent on the stress state, (MacKenzie, Hancock and Brown (1977». 

Despite design to the contrary many engineering structures contain stress concentrations, 

these cause localised yield and plastic flow which reduce the stress levels. Although yield 

and plastic flow cause a reduction in the stress levels it also replaces the stress concentration 

with a strain concentration. Ductile failure will occur when a critical strain is reached which 

is a function of the stress state. Therefore the ductility of the body is highly dependent on the 

stress triaxiality of the body, (Hancock and MacKenzie (1976». It is necessary to make sure 

that the material can sustain this level of strain, where the ductility of the material is highly 

dependent upon the stress triaxiality (~ ). The triaxiality is defined in tenns of am the 

hydrostatic or mean stress and cr the Mises stress which can be expressed in tenns of the 

principal stresses: 

(7.1) 

Ductility is vitally important in forming processes, which involve plastic defonnation 

and the ability to withstand stress concentrations by localised plastic flow due to yielding. 

Ductile failure is caused by void coalescence which is due to void growth which in turn is 

controlled by the level of stress triaxiality. Void growth models have been considered by 

Berg (1962), McClintock (1968) and Rice and Tracey (1972). Rice and Tracey (1972) 

expressed conditions for failure initiation in global parameters in tenns of the stress triaxiality 

and a critical volume fraction of voids. Favoured sites for void growth are second phase 

particles and inclusions which are fonned during the manufacturing processes. These are 
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favoured because they are sites of stress and strain concentration, (Argon, 1m and Safoglu 

(1975), Thomson and Hancock (1984». The largest of these particles cannot accommodate 

significant plastic deformation due to the brittle nature of second phase particles and therefore 

fail early in the loading process forming voids within the matrix. 

Ductile failure is caused by void coalescence and growth which is controlled by the 

level of stress triaxiality. Void growth models have been considered by Berg (1962), 

McClintock (1968) and Rice and Tracey (1972). Rice and Tracey expressed conditions for 

failure initiation in global parameters such as the volume fraction of voids. They considered 

an initially spherical void within a rigid non-hardening plasticity model where the rate of 

change of the mean void radius (R) with the plastic strain at high values of the triaxiality 

parameter was found to be well approximated by: 

ORR = 0.28 ct£P exp 3~ (7.3) 
2a 

If failure occurs at a critical void radius or volume fraction, the failure initiation strain 

(ef
) is inversely proportional to the void growth rate: 

ef = a exp (-~~m) (7.4) 

Where a is a material constant. 

7.4: Temperature Effects on Material Properties. 

At low temperatures both b.c.c. and h.c.p. metals fail by cleavage whereas the failure 

modes of f.c.c. structures are unaffected by temperature. This temperature dependency is 

reflected in the yield stress of b.c.c. metals which increases markedly as the temperature 

reduces as illustrated in Figure 7.7 after Bennett and Sinclair (1966), At low temperatures 

the resistance to thermally activated processes inhibits slip and plastic flow the effect of 
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which is to raise the yield strength and thereby reduce the ductility of plain carbon structural 

steels: 

Oy = 745.6 - 0.056 T In (k) (7.5) 

Here T is the temperature in Kelvin, a is a constant equal to 108 s -1, £ is the strain rate, 

taken to be 1.6 x 103 and 0y is the yield stress in MPa. 

7.5; Numerical Methods. 

Local failure criteria have been applied to elastic-plastic crack tip fields, based on the 

ability to describe the crack tip fields of shallow cracks with modified boundary layer 

fonnulations. The work expresses the critical value of J for shallow cracked bend bars to 

that of the small scale yielding solution, as a function of T thereby defining a failure locus as 

shown in Figure 7.8. Crack tip defonnation under small scale yielding has previously been 

modelled by modified boundary layer fonnulations, where the boundary conditions are 

specified by the first two parameters of the Williams (1957) expansion, K and T. Beteg6n 

and Hancock (1991) considered this problem where the crack tip plasticity was modelled by 

a Ramberg-Osgood stress-strain relation with a power law hardening exponent, n=13. 

Given the framework of small strain theory the stress fields directly ahead of the crack tip can 

be described by the family of solutions as shown in Figure 7.9. Beteg6n and Hancock 

(1991) have expressed the stress field in terms of higher asymptotics based on the small scale 

yielding field: 

Oee = Qssy + 0.64 (~) _ 0.4 (~)2 (7.6) 
00 00 00 00 

The stress field may be written: 
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(rao)-0.07143 (rao)0.065 ( T) ( T)2 4.03 -J - 0.3 -J- + 0.64 - - 0.4 -
ao ao 

(7.7) 

Small strain solutions, as exemplified by the HRR field exhibit stress singularities at 

the crack tip whereas large strain solutions define finite maximum stress level as shown in 

Figure 7.9. This maximum finite stress level occurs at a distance which is approximately 

two crack tip openings from the tip. As the T-stress becomes more negative the maximum 

finite stress achievable reduces and the distance at which it is achieved approaches the crack 

tip. 

As discussed in Chapter 3, the RKR analysis postulates that brittle failure will occur 

when a critical cleavage stress (or) is attained over some microstructurally significant distance 

(r·) from the crack tip. However it is possible to remove this dependency on distance by 

comparing the family of stress fields with a reference T=O, field, at a given stress level, it is 

possible to remove the distance term. r*: 

r*oo 

J(Tlc = J(T=olc 
J(T=olc r*oo 

J(T)., 

(7.8) 

The T=O field is the limiting field which applies at infinitesimally small applied loads, 

and is hence identified as the small scale yielding field (SSY). The ratio JJ(T~ is shown in 
(T=O~ 

Figure 7.10 as a function of..I. for a range of critical stress levels. The form of the failure 
ao 

locus is clearly captured in comparison with the experimental loci as illustrated in Figure 

7.11, while an exact fit depends on the critical cleavage stress level. Supplying dimensional 

values of ar and r* allows the temperature dependence of J to be modelled. as shown in 

Figure 7.12-7.13. In these Figures r* was taken to be 100 ~m combined with a critical 

cleavage stress of 1400 MPa, which is an appropriate value for a plain carbon steel described 

by BS 4360 Grade 50D. The chemical composition of this structural carbon steel is given in 
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Table l. For the purpose of a sensitivity study the results of an analysis with a fracture 

stress of 1800 MPa are also shown. The data are truncated at the maximum temperature at 

which cleavage initiation can occur. 

The J-T loci shown in Figures 7.14 and 7.15 unify the geometry dependence of 

toughness by quantifying the associated constraint of the crack tip fields by T. It is possible 

to reinterpret this information in terms of a range of specific geometries, in this case interest 

is restricted to edge cracked three point bend bars. J is related to the applied load by the 

engineering approach as defined in Chapter 3, where J is expressed as elastic and plastic 

components and then combined. The T-stress is defined through the biaxiality parameter and 

the stress intensity factor. 

For any given specimen, geometry and size the J-T history can be determined, 

allowing failure to be predicted at the intersection with the J-T failure locus. On this basis it 

is possible to determine the effect of temperature, size and geometry on the lower shelf 

toughness of the material as shown in Figure 7.16. The maximum temperatures at which 

cleavage initiation can occur are also shown in Figures 7.17 and 7.18 as a function of 

geometry and size. 
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1.6; Discussion. 

The RKR analysis and its refinements provide a foundation for modelling the 

temperature dependent cleavage of deeply cracked bend bars. The ability to describe the 

crack tip fields of unconstrained specimens, such as edge cracked bend or tension bars with 

short cracks allows the method to be extended to a wide range of geometries. A particular 

difficulty with the RKR analysis, and a source of much discussion, Curry and Knott (1976) 

has been the size of microstructural distance, r*. Fortunately this can be removed by 

comparing the effect of constraint on cleavage toughness, as shown in Figure 7.10, and 

presenting data in the non-dimensional form ~. Dimensional values can be supplied by 
J(T=O)., 

using the RKR method to determine J(T=O).,. The experimentally determined temperature 

dependence of the yield stress, Bennet and Sinclair (1966) now allows the temperature 

dependence of J to be determined as shown in Figures 7.12 and 7.13. Such results can be 

compared with those of Anderson and Dodds (1991) who use an amplitude parameter to 

scale the HRR field to fit the fields of bend bars. This also leads to the ratio of the toughness 

of short and deeply cracked bars, and like the present method the ratio is independent of the 

micro-structural distance. However unlike the present analysis of weakly hardening 

boundary layer formulations, Anderson and Dodds (1991) analysis appears to be 

independent of the critical stress, (jf. 

It is now appropriate to turn to the conditions under which cleavage cannot initiate 

ahead of a crack tip. Here it is necessary to recognise that the large strain solutions indicate 

that there is a maximum stress achievable at finite distances ahead of a blunting crack tip, as 

shown in Figure 7.9. In small scale yielding J(T=O~ this is approximately 3.96 times the 

yield stress. At elevated temperatures cleavage initiation is prevented by the fact that the yield 

stress is too low to allow the local stress to reach the critical cleavage stress. The maximum 

temperature at which cleavage is possible is given by the temperature at which the maximum 

principal stress can just reach (jf. The maximum stress that can be achieved ahead of the 

crack decreases with constraint, as shown in Figure 7.9. This implies that the highest 
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temperature at which cleavage can initiate failure is lower in short crack geometries than in 

deeply cracked configurations as shown in Figures 7.17 and 7.18. This is in accord with 

experimental observations Li (1985), Li, Zhou and Li (1986) and AI-Ani (1991) that the 

transition temperature decreases with (a/W) ratio. 

The effect of size on the transition temperature, 4>c, for specific geometries is shown in 

Figure 7.17 . Size independence is exhibited by the deep cracked geometries, for which T is 

positive or close to zero, given (W-a) ~ 25J. The transition temperature of the shallow 
ao 

cracked configurations is however geometry dependent until a critical size is reached Figure 

7.18 shows the effect of specimen size on the transition temperature for a range of 

geometries. Geometry and size independence occur only in very large specimens. This 

temperature shift associated with specific geometries can then be compared with experimental 

observations of AI-Ani (1991), Sumpter (1982) and MacLennan shown respectively in 

Figures 7.19-7.21. 

7.7: Conclusions. 

A J-T description of elastic plastic crack tip fields has been combined with local 

fracture criteria to indicate the effect of constraint on toughness, as measured by a J -T failure 

locus. An identical approach is possible in terms of Q. Such failure loci can be interpreted in 

tenns of the effect of size and geometry on both the lower shelf toughness and the ductile­

brittle transition temperature as measured by the maximum temperature at which cleavage 

initiation can occur. The analysis indicates that the transition temperature decreases with 

crack tip constraint in accord with experimental data. The model also predicts the size 

dependence of the transition temperature for short and deeply cracked geometries. 
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7.1: Transgranular Cleavage. 

7.2: Ductile Failure. 
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Figure 7.3: Ductile-Brittle Transition. 



7.4: Cleavage Steps. 

7.5: Cleavage Tongues. 
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Figure 7.6: Ritchie. Knott and Rice Stress Controlled Cleavage Model. 
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Chemical Composition (Wt%). 

C Si Mn P S Cr Mo Cu Nb 

0.17 0.29 1.3 0.01 0.008 0.09 0.01 0.11 0.045 

Table 1: Chemical Composition of BS4360 grade 50D Steel. 
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8; Constraint Based Failure Assessment Diaerams. 

8.1; Introduction. 

Engineering structures invariably contain defects and imperfections which compromise 

their structural integrity. It is necessary therefore to have a clear design and failure 

assessment methodology for critical components, especially in petrochemical and nuclear 

industries. In the first instance structural design is based on an assumption that defects are 

not present. Plastic collapse is avoided by limiting the nominal stresses to a fraction of the 

yield or ultimate tensile strength. 

Such design methodologies are not intended to take account of defects and 

inhomogeneities present within structural materials. It is therefore necessary to derive a 

simple applicable engineering method to ensure structural integrity in the presence of material 

defects. Fracture mechanics offers a way to rdate the relevant loading, material properties 

and defects which will lead to failure. 

Several methodologies have been developed worldwide for detennining structural 

integrity. The two principal methods are the J estimation methodology as provided by EPRI 

(1981) and the R6, Rev. 3 (1986) approach developed originally by the Central Electricity 

Generating Board (CEGB). Further methodologies developed either in Europe or America 

are based on linear elastic fracture mechanic methods. For example, ASME XI is applicable 

to the collapse of austenitic steel piping whereas in Gennany KTA rules are utilised and have 

many similarities to the ASME validification procedures. 

The J estimation approach evaluates elastic-plastic parameters in tenns of J for a range 

of geometries and materials responses. The British approach which has been codified in both 

R6, Rev. 3 (1986) and PD6493 (1991) has a number of similarities to these procedures. In 

the linear elastic regime it incorporates both the ASME and KTA approach although 

modifications made in Revision 3 are based on the J estimation scheme derived by EPRI 
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(1981). 

8.2: R6 Failyre Assessment Diae-rams. 

Within the United Kingdom the major method for ensuring structural integrity is the 

Failure Assessment Diagram as formulated in R6 (1976) and PD6493 (1991) which defmes a 

failure assessment curve. R6 evolved from research carried out originally by the then 

CEGB, principally from the 'Two Criteria' approach of Dowling and Townley (1975). R6 

was originally introduced in 1976, and has subsequently been revised twice, presently being 

in its third revision, R6, Rev. 3 (1986). In its simplest form R6 assumes that failure will 

occur when the applied load reaches the lower of, either a load to cause a LEFM failure or a 

load capable of causing plastic collapse. 

The Failure Assessment Diagram is a graphical representation of a transition between 

two distinctly separate failure mechanisms, LEFM and plastic collapse. The area enclosed by 

the axes and the conservatively drawn failure line is termed the safe region. The vertical axis 

represents the normalised stress intensity factor whereas the horizontal axis represents the 

normalised limit load. Any combination of geometry and loading that falls outwith this 

region may lead to failure of the structure. A given load case depends on the yield strength, 

toughness and the geometry of the structure or component and is represented graphically as a 

single point on a Failure Assessment Diagram. 

In its original form the Failure Assessment Diagram was a simple square box, as 

illustrated in Figure 8.1. The problem with this form was that all the important structural 

cases were found to occur in the top right corner of the diagram. This therefore demands a 

more accurate analysis of the transition from brittle failure to plastic collapse. 

Three methods for deriving a Failure Assessment Diagram are offered in Revision 3 of 

R6 (1986): a general curve, a material specific curve, and a J integral analysis method. The 

general curve is recommended for materials that do not exhibit a yield discontinuity in the 
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stress-strain relationship and is the result of applying the EPRI J estimation procedure. The 

failure locus is described by the relationship; 

Where Po is the limit load. The code allows a material specific curve to be generated 

for any metal regardless of its stress-strain relationship or yield discontinuities, through the 

relation; 

r~---·(-p-}3 -
! - 00 

/ BEirne Po 

\ 

}-_._ .. + .- --- -
I P 00 2EElrnc 
I Po 

(8.2) 

Here Etrnc is the true strain for a stress equal to UTS. this method is felt to offer a more 

acceptable approximation to the flaw tolerance than the general curve especially for materials 

operating in the strain hardening regime. 

Finally the code allows a Failure Assessment Diagram to be generated through a J­

Integral analysis, for a specific material and geometry. This analysis requires that the elastic 

(Jclastic) and plastic (Jplaslic) components of J have to be calculated. The abscissa of the 

Failure Assessment Diagram is therefore now described as; 

K, _ i J(ci~stick· 
Kic - V -}('[~~~i- (8.3 ) 

Where J(T==Ok denotes fully constrained deformation identified wi th the T=O field. The 

abscissa is still given by the ratio of the applied to limit load. In practice the material specific 

and the J-analysis methods are rarely used in the United Kingdom. as the general curve as 

illustrated in Figure 8.2 is widely believed to give satisfactory results for materials in 

common use. All three forms of curve are truncated at an abscissa value (pP ) ; 
o max 
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p <Jo + <J [ -] {PoLax = 2<Jo 
(8.4) 

Here <Jo is the yield stress and cr is the ultimate tensile strength, this cut off occurs at 

1.64 for a strain hardening exponent of 6 and 1.19 for 13. In the Failure Assessment 

Diagrams the load to limit load ratio is termed Lr and the cut-off is defined ~all to maintain 

consistency with R6 Rev. 3, where the normalised stress intensity factor is termed Kr . 

The nature of present Failure Assessment Diagrams and defect schemes can be 

considered to be inherently pessimistic, thereby ensuring structural integrity. However the 

pressure to minimise 'downtime' by avoiding unnecessary repairs is increasing. 

Unneccesary levels of conservatism must therefore be avoided in the assessment of defects. 

The purpose of fracture mechanics is to determine the 'fitness for purpose' of 

structures and components which contain defects. Current international approaches attempt 

to ensure the integrity of structures through the measure of a single parameter, such as 1. A 

lower bound fracture toughness is obtained from deeply cracked bend specimens, which 

develop a high degree of constraint and when applied to structural defects ensure a 

conservative approach. Although this approach is 'safe' it is ultra conservative when applied 

to cracks which develop unconstrained flow fields, such as short edge cracks in bending or 

tension and centre cracked panels. Therefore this conservative approach penalises 

unconstrained flow fields. 

The current defect assessment methods also deny a fundamental objective of fracture 

mechanics, that data should be transferrable from one geometry to another. This is now 

addressed by the concept of constraint matching which has been discussed by Sumpter and 

Hancock (1991) in the context of J-T, but is a philosophy which can also be advanced in 

terms of J-Q. 

The motive of the present work is to incorporate the effect of constraint on the Failure 

Assessment Diagrams and allow the advantage of constraint enhanced toughness effects. 

This has been achieved for a wide range of size scales and for geometries including centre-
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cracked plates in tension (CCP) and single edge cracked bars in three point bending 

(SEC3PB) for a number of strain hardening exponents. A methodology has been derived 

that allows constraint dependent and also modified Failure Assessment Diagrams to be 

derived, this methodology is then compared with available experimental results. 

8.3; Classical Failure Assessment Dia&:rams. 

Failure Assessment Diagrams can be derived by making use of the J estimation scheme 

of Kumar, German and Shih (1981). The crack driving force J is taken for the purpose of 

these series of results to be the sum of the elastic and plastic components; 

J(total) = J(elastic) + J(plastic) (8.5) 

In the present analysis these parameters are determined on the basis of the original 

crack length rather than the effective crack length as proposed by Irwin (1951) and described 

in (3.41). Analyses were carried out for the SEC3PB and CCP geometries as shown in 

Figures 8.3 and 8.4. The elastic component of the crack driving force has been expressed by 

Kumar, German and Shih (1981) as a function of the applied load such that; 

J(elastic) - (E-t (8.6) 
O'oeoChl(~' n=l) - Pr 

Here P is the applied load, Pr is a suitably defined reference load, 0'0 is the yield stress, 

c is the remaining ligament, eo is a reference strain usually taken to be a; and hI (\tr' n=l) is 

a strain hardening and geometry dependent variable. Kumar, German and Shih (1981) 

define the reference load (Pr) for a SEC3PB as; 

P
r 
= 1.456 Bc2cro (8.7) 

s 
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Here s is the span of the specimen. In contrast the limit load of an edge cracked bar has 

been given by Millar (1966) as; 

Po = m B
W2a

o (8.8) 
s 

Where m is a geometric parameter defined as; 

m = 1 - 0.33 ~ - 6 (~)2 + 15.5 (~r -19.8 (~r 

m = 1.26 {I - ~)2 ~~O.295 

~ ~ 0.295 

(8.9) 

In the case of three point bending the reference and limit load differ as illustrated in 

Figure 8.5. In the case of the CCP the limit load (Po) and the reference load (Pr) are one and 

the same; 

P _ P _ 4BcO'o 
0- r- V'J (8.10) 

The plastic component of J can be expressed in the following fonn; 

(8.11) 

Here ex is a material constant which features in the Ramberg-Osgood stress-strain relation 

(3.15). This has a similar functional fom1 as the solution for the elastic portion of the crack 

driving force. The full solution for SEC3PB is then expressed as the sum of the elastic and 

plastic components as follows; 

(8.12) 
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In this functional fonn the geometric size scale is introduced by using the remaining 

ligament (c) as the relevant dimension. However for the CCP geometry the size scale is 

introduced in tenns of half the crack length (a); 

(8.13) 

In these expressions hI (w' n) is a tabulated function of geometry and strain hardening 

exponent (n) given by Kumar, Gennan and Shih (1981) and illustrated in Figure 8.6. From 

such expressions J can be calculated for any relevant geometry and material for a given 

applied load. 

8.4: Constraint Based Failure Assessment Djal:rams. 

EPRI and R6 are single parameter fracture mechanics approaches and constraint 

independent failure based on a critical value of J. It is proposed to introduce the effect of 

constraint into this failure methodology and thereby expand the applicability of R6. For this 

series of analyses to determine the effect of constraint on the Failure Assessment Diagrams, 

idealised J-T failure loci have been described by a relation of the fonn; 

J(T~ _[ 1 ]m 
J(T=Ok - exp (eTa) 

J(T)c = 1 
J(T=O). 

(8.14) 

A constraint independent failure locus (m=O) was used to show the inherent geometry 

dependence offailure as illustrated in Figure 8.7. As the load is incremented J increases as is 
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described in the form of a J-T history as shown in Figure 8.8, where this history intercepts 

the failure locus defines a failure condition which can be represented as a single point on a 

Failure Assessment Diagram. Therefore by carrying out a number of these analyses over 

different size scales it is possible to construct a Failure Assessment Diagram. 

To construct the R6 Failure Assessment Diagram the stress intensity factor was 

determined from the applied load using the relevant K calibration given by Murakami (1987) 

and Rooke and Cartwright (1976); 

CCpRemote 
Tension 

(8.15) 

KI=6MJM(1.11-1.55(~}+7.7t(~y-13.5(~r+ 14.2 (Wr) SEC 3PB 

The elastic component of J, Jelastic was related to K for plane strain conditions by; 

K2(1-v2) 
J(elastic) = E (8.16) 

The vertical axis of the R6 Failure Assessment Diagram is taken to be; 

KI = 
KIC 

(8.17) 

Where J(T=O)o is used to define geometry independent failure in highly constrained J 

dominated loading conditions characterised by non-negative values of T, in the Failure 

Assessment Diagrams Kr is again used to maintain consistency with R6 Revision 3 (1986). 

This leads to a geometry dependent Failure Assessment Diagram. It is possible to carry out a 

normalisation taking account of the associated degree of constraint at the intersection J -T 

history with the locus. Instead of normalising by the small scale yielding solution the 

normalisation is carried out by the associated value of J, dependent upon the crack tip 

constraint. This is achieved by matching the constraint of the structure or component under 
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test to the appropriate value within a J -T locus (J (T).J; 

Y J( elastic). 

J(T). 
(8.18) 

The unifying constraint dependent failure of the modified failure assessment approach can be 

seen when considering the original decomposition of J, (8.5) rearranging gives; 

(elastic). = A / ~ _ J(plastic). 

J(1').; 'V J(1'), 
(8.19) 

For any specific geometry this can be further expressed in terms of the applied loads and a 

relevant dimension; 

~ J(elastick = 
J(T), 

Which can be reduced to; 

h (JL Yk)n+l 
1 W' nAp! 

1 - 2 1 
l..hl(JL, n=1 i.E..) + hI(-..a.., ny£.r+ 
a. W ~Pr W ~Pr 

(8.20) 

(8.21) 

This can be further reduced and the Failure Assessment Diagram given by option three 

in Revision 3 of R6 is thus independent of ~; 
O'oeoC 

(elastic). _ 
1(T), -

1---~~--~--------

I hl(W' n=1) (P )1.n - - - +1 
<X hl(~' n) Pr 

(8.22) 
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J(elastic)., mod'fied .. J = Kr II based on the prevIous notatIon defined by R6 Rev. 
{T)c 

Where the ratio 

3. Therefore following Ainsworth (1984) it is clear that the strain hardening and the inherent 

geometry dependence depends on the ratio: 

a hI (~, n) 
hl (~, n=l) 

(8.23) 

This dependence is illustrated in Figures 8.9-8.12 with the abscissa being represented 

in relation to load ratio in respect to the limit load. These figures illustrate the inherent 

geometry dependence for two geometries (SEC3PB, CCP) and strain hardening rates (6, 

13). It is therefore possible to derive an upper and lower failure curve due to geometry and 

thereby set Up an envelope of operation in which the structure results have to be defined in 

both cases of normalisation. In the analyses of Kumar, Gennan and Shih (1981) and the 

above figures a. is set to unity. 

Although the geometry and hardening rate sensitivity can be minimised by a suitable 

choice of reference load, rather than the limit load, this loses part of the appeal of Failure 

Assessment Diagrams. The general failure assessment line lies below the material specific 

load for loads less than Lrmax for the cases considered and indeed the general curve proposed 

is deliberately intended to be pessimistic. However this is not a universal result and 

combinations of factors in 8.23 can lead to the material specific curve lying below the general 

curve. This point has been raised by Ainsworth (1992). The point which is being 

emphasised here, is that in the Failure Assessment Diagram there is an inherent geometry and 

hardening sensitivity which is not connected in anyway with constraint effects. This arises 

from the terms in 8.23 even when failure occurs at a critical value of J or COD and the 

material is constraint insensitive. This issue will reoccur in considering the experimental data 

in relation to the first option in R6 Rev.3, and is a cogent argument for the lower bound 

toughness data. 
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8.5: Analytical Results. 

A series of classical and modified R6 Failure Assessment Diagrams have been 

generated for materials which exhibit constraint dependent failure as described by failure loci 

given by 8.14. Specific calculations were performed for SEC3PB with crack length to width 

ratios (~) of 0.1, 0.2 and 0.3. The ratios were chosen to exhibit a wide range of constraint 

from very negative to slightly positive T-stresses, for ~ > 0.3 toughness values are taken to 

be identical and constraint independent consistent with the experimental evidence of Beteg6n 

and Hancock (1991). 

The stress-strain relationship is described by the Ramberg-Osgood equation where the 

material constant ex has been set to unity. The first series of results shown in Figures 8.13-

8.14 are for the constraint independent locus (m=O), Showing both classic and modified 

Failure Assessment Diagrams for strain hardening exponents, 6 and 13. In this and the 

following idealised cases the abscissa is the applied load normalised by the limit load as 

defined by Millar (1966). The strain hardening dependence is illustrated for a shallow crack 

SEC3PB in Figure 8.15. 

Figures 8.16-8.19 show the effect of constraint on the classic form of Failure 

Assessment Diagram. These results are also mirrored in the remaining loci (m=2 and 3) with 

the effect of constraint becoming more pronounced as the slope of the respective locus 

becomes more severe as illustrated in Figures 8.20-8.27, with Figures 8.24-8.27 showing 

the most constraint dependent failure loci (m=3). As the slope of the locus becomes more 

severe geometries with high negative T stresses can be seen to reach higher normalised 

values of K at the corresponding intersection points with the failure locus. 

88 



8.6; Experimental Yalidification. 

This failure methodology is then applied to the experimental results of Sumpter and 

Forbes (1992), Sumpter (1993), Beteg6n and Hancock (1991), Hancock, Reuter and Parks 

(1991) and MacLennan. These experimental results are tabulated in Figures 8.28-8.33 where 

the steels are plain carbon manganese with varying hardening rates (n), given in the 

experimental tables. Failure modes for the majority of these experiments are cleavage 

instability, although Hancock, Reuter and Parks (1991) experiments are ductile in nature with 

the structural limitation relating to crack growth of two hundred microns being employed. 

The chemical composition and material properties are given in Figures 8.34-8.36 with the 

chemical composition of B S 4360 Grade SOD being given previously in Chapter 7. 

Experimental results in the form of Failure Assessment Diagrams are presented in the form of 

the abscissa being applied load normalised by the appropriate limit load. The failure loci (1-

T) for these materials are illustrated in Figures 8.37-8.38. 

The data from these series of experiments are presented in the form of classic and 

modified Failure Assessment Diagrams for each series of test results. Figures 8.39-8.42 

show the results for Sumpter and Forbes (1992) for both the SEC3PB and CCP results. The 

mild steel plate SEC3PB data of Sumpter and Forbes (1992) end data points from the 

shallow cracks fall around the cut-off point as specified by R6, Revision 3. While the 

experimental results are clearly shown to be above the universal failure curve. With the 

material specific curves following the same form as the universal failure curve. In the 

modified diagram the majority of these results collapse onto a single line. This is compared 

with a lower material specific curve corresponding to a SEC3PB (~ = 0.875) and the upper 

line being SEC3PB (~= 0.125). These forms of results are again mirrored in the plate data 

for CCP after Sumpter and Forbes (1992) with the upper line of the modified envelope 

corresponding to CCP (~ = 0.125). Within the classic diagram the CCP exhibits higher 

toughness levels than the corresponding SEC3PB results. 

Figures 8.43-8.44 shows the weld plate results of Sumpter (1993) clearly showing a 
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high constraint effect in the classic diagram and the expected collapsed effect in the modified 

Failure Assessment Diagram. In the modified SEC3PB diagram the experimental results are 

compared with material specific results corresponding to a SEC3PB (~= 0.875) and the 

upper line being SEC3PB {~= 0.125} 

Beteg6n (1991) results are illustrated in Figures 8.45 and 8.46 and exhibit clearly well 

defined behaviour in both the classic and modified Failure Assessment Diagrams where the 

envelope lines are again defined as SEC3PB (~= 0.125) and SEC3PB (~= 0.875). 

Where the very low temperature results of Maclennan are shown in Figures 8.47 and 

8.48 which again in both cases exhibit the previously defined behaviour. In the modified 

Failure Assessment Diagram the envelope is defined for SEC3PB (~ = 0.1) and SEC3PB 

(W = 0.5). The experiments of Hancock, Reuter and Parks (1991) are shown in Figure 8.49 

and 8.50 with the modified envelope defined as SEC3PB (~ = 0.1) and SEC3PB (~ = 0.3). 

8.7: Discussion. 

The loss of crack tip constraint results in an increased resistance to both cleavage and 

ductile tearing. There are therefore major structural advantages to be gained by utilising the 

enhanced toughness of low constraint configurations in plane strain. 

The universal failure curve as offered by R6 Rev. 3 general curve has been shown to 

be ultra-conservative in the case of constraint dependent failures as illustrated for example in 

Figure 8.22. Proposed in this chapter is a form of normalisation that allows the degree of 

crack tip constraint to be incorporated into the integrity analysis by matching the constraint 

dependent toughness. This allows a form of modified Failure Assessment Diagram to be 

generated which relates a particular structure to a specific failure curve or if necessary a 

family of curve, as exemplified in the modified Failure Assessment Diagrams given for 

available experimental data. 

In the approach proposed, an inherent geometry dependence has been found for the 

analyses considered which prevents a single failure curve being defined. This inherent 
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geometry effect has been considered by Ainsworth (1984) who believes that by matching the 

reference load parameters it is possible to eliminate this geometry dependence. Combined 

classic and modified Failure Assessment Diagrams are shown grouped in Figures 8.51-8.52 

for all hardening rates. Within the modified Failure Assessment Diagrams it is possible to 

find a trend for the SEC3PB specimens of similar hardening rates even though they have 

significantly dissimilar material parameters. 

The general failure assessment curve in most cases is found to lie below those of the 

material specific curves although this is not a universal rule and a combinations of factors in 

(8.13) can lead to the material specific curve falling below that of the general curve. This 

point has also been raised by Ainsworth (1992) therefore in the Failure Assessment Diagram 

there is an inherent geometry and hardening sensitivity which is not connected in anyway 

with constraint effects. 

The simplicity of this constraint (T) based structural engineering approach is underlined 

by the fact that no plasticity analyses have to be undertaken to complete a structural integrity 

case. There is however controversy over the limitation of J-T theory in this description. 

there can be little doubt that the T stress approach correctly identifies the plane strain 

geometries which lose constraint and it does so beyond the strict confines of LEFM. 

Karstensen, Nekkal and Hancock (1994) argue that T effectively quantifies constraint for 

edge cracked bars up to the cut off at Lrmax. Further, the deviations from the J-T description 

at higher load levels are such that the loss of constraint is underestimated. This results in a 

conservative description of the toughness enhancement, and argues strongly for the relevance 

of the J-T approach in the context of surface flaws. In the case of centre cracked panels the 

J-T description breaks down close to limit load but is still conservative for a/W ratios greater 

than 0.3 in uniaxial tension at all loads. 

No matter how constraint matching is achieved, Figures 8.13-8.27 show that there are 

major structural advantages to be gained by utilising the enhanced toughness of low 

constraint plane configurations in plane strain below the cut off at ~ax. However the 

enhanced toughness results in points on a FAD which depend both on the geometry and the 
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constraint sensitivity of the material. This is a major difficulty, which can be resolved by 

using a modified Failure Assessment Diagram in which the toughness used to nonnalise the 

applied stress intensity factor Kr is the constraint matched value. This procedure recovers the 

original FAD curves using simply modified axes. 

The proposed defect assessment procedure is to construct a failure locus in which the 

toughness is quantified by measuring the toughness of shallow and deeply cracked bend bars 

as a function of T. This is used to match the constraint of the defect in the structure with an 

appropriate toughness by detennining T for the structure. The Failure Assessment Diagram 

is then plotted using the constraint matched toughness instead of K1C. Theses development 

of constraint modified Failure Assessment Diagrams development have been supported by 

the analysis of a large number of plane strain toughness experiments. 

In a real engineering structure it is desirable to use a lower bound failure locus to 

quantify the material behaviour due to effect of scatter associated with any experimental or 

structural results. The results of such an application to the experimental material data is given 

in Figures 8.53-8.54. 

8.8: Conclusion. 

A practical engineering approach to detennine structural integrity has been presented. 

This methodology accounts for significant constraint effects associated with shallow crack 

geometries, allowing enhanced material toughnesses to be taken into account. It is therefore 

possible to provide in the fonn of a modified failure diagram a structural integrity assessment 

which has resolved the constraint and geometry sensitivity of previous methodologies. 
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Figure 8.12: Geometly Specific Failure Assessment Diagram. CCP. n=6. 
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Figure 8.22: Failure Assessment Diagram. SEC3PB. n=6. m=2. 
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Figure 8.23: Modified Failure Assessment Diagram. SEC3PB. n=6. m=2, 
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Figure 8.24: Failure Assessment Diagram. SEC3PB. n-13. m=3. 
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Figure 8.25: Modified Failure Assessment Diagram. SEC3PB. n-13. m-3. 
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Test W(m) B(m) S(m) 
Number 

1 0.029 0.024 0.120 

2 0.029 0.024 0.120 

3 0.029 0.024 0.120 

7 0.029 0.023 0.120 

8 0.029 0.023 0.120 

9 0.029 0.023 0.120 

10 0.029 0.024 0.120 

11 0.031 0.024 0.124 

12 0.031 0.024 0.124 

13 0.031 0.024 0.124 

17 0.031 0.024 0.124 

18 0.031 0.024 0.124 

19 0.031 0.024 0.124 

20 0.031 0.024 0.124 

21 0.033 0.024 0.132 

22 0.033 0.024 0.132 

23 0.033 0.024 0.132 

25 0.033 0.024 0.132 

26 0.035 0.024 0.140 

27 0.035 0.024 0.140 

28 0.035 0.024 0.140 

30 0.035 0.024 0.140 

37 0.030 0.024 0.120 

38 0.030 0.024 0.120 

39 0.030 0.024 0.120 

Test Temperature = ~O°C 
Yield Stress (-50°C) = 245 MPa. 

JL Pr (kN) 
W 

0.057 62.3 

0.043 74.0 

0.028 77.0 

0.095 54.8 

0.060 62.0 

0.135 45.0 

0.075 61.3 

0.075 6l.3 

0.074 62.1 

0.085 57.9 

0.100 53.9 

0.086 57.9 

0.071 66.4 

0.090 57.0 

0.209 43.0 

0.120 54.1 

0.145 51.0 

0.214 44.3 

0.222 44.3 

0.246 41.4 

0.392 28.1 

0.226 43.5 

0.131 49.8 

0.048 72.3 

0.066 62.0 

ex = 6.65 
n=5 

Jglastic J~otal I. 
(kJ/m2) (kJ/m2) CTO 

7.316 132.0 -0.858 

7.798 268.0 -1.049 

5.734 245.0 -l.143 

9.711 124.0 -0.695 

8.141 166.0 -0.878 

9.312 62.0 -0.492 

8.929 134.0 -0.789 

8.102 120.0 -0.733 

8.110 122.0 -0.745 

8.064 91.0 -0.672 

8.412 134.0 -0.603 

8.296 95.0 -0.676 

9.050 102.0 -0.804 

8.295 144.0 -0.649 

10.136 89.0 -0.269 

9.172 37.0 -0.521 

9.627 74.0 -0.441 

9.050 58.0 -0.271 

11.013 50.0 -0.243 

11.058 33.0 -0.192 

10.702 32.0 0.044 

10.791 26.0 -0.230 

9.050 91.0 -0.498 

7.685 194.0 -0.972 

7.611 106.0 -0.787 

Table 8.28: Mild Steel Plate Three Point Bend Tests (Sumpter and Forbes (992)). 



Test W(m) B(m) 2.a. 
Number W 

1 0.140 0.023 0.088 

2 0.140 0.023 0.089 

3 0.140 0.023 0.088 

4 0.140 0.023 0.088 

5 0.140 0.023 0.087 

6 0.140 0.023 0.088 

7 0.140 0.023 0.088 

9 0.140 0.023 0.088 

10 0.140 0.023 0.088 

11 0.140 0.023 0.108 

12 0.140 0.023 0.109 

13 0.140 0.023 0.109 

14 0.140 0.023 0.11 

15 0.140 0.023 0.108 

16 0.140 0.023 0.107 

20 0.140 0.023 0.108 

Test Temperature = -50°C 
Yield Stress (-50°C) = 245 MFa. 

Pf(kN) 

368.0 

348.0 

341.0 

346.0 

354.0 

380.0 

366.0 

355.0 

379.0 

254.0 

238.0 

239.0 

224.0 

238.0 

244.0 

248.0 

ex = 6.65 
n = 5 

Jglastic notal -I. 
(kJ/m2) (kJ/m2) 00 

14.97 107.0 -0.602 

13.94 100.0 -0.578 

12.85 72.0 -0.558 

13.23 122.0 -0.566 

13.29 125.0 -0.570 

15.96 155.0 -0.622 

14.81 132.0 -0.599 

13.93 131.0 -0.581 

15.88 133.0 -0.620 

14.05 143.0 -0.532 

13.03 107.0 -0.511 

13.15 147.0 -0.513 

12.19 158.0 -0.492 

12.33 156.0 -0.499 

12.54 151.0 -0.505 

13.39 134.0 -0.520 

Table 8.29: Mild Steel Plate Centre Crack Tension Tests {Sumpter and Forbes (1992)). 



Test W(m) B(m) SCm) .JL Pc (kN) 
J~lastic notal 

Number W (kJ/m2) (kJ/m2) 

4537/15 0.0265 0.0242 0.106 0.08 159 70.286 900 

4538/29 0.0264 0.0248 0.1056 0.086 155 67.712 750 

4538/31 0.0283 0.0248 0.1132 0.119 140 70.631 410 

4537/22 0.028 0.0248 0.112 0.131 133 68.442 300 

4536/10 0.028 0.0245 0.112 0.134 117 55.061 100 

4538/32 0.0297 0.0243 0.1188 0.188 127.5 87.167 240 

4537/19 0.0297 0.0248 0.1188 0.207 114.5 74.772 110 

4538/34 0.0313 0.0248 0.1252 0.233 102.5 65.437 100 

4537/20 0.0313 0.0247 0.1252 0.240 98.5 63.084 90 

4538/35 0.0358 0.0244 0.1432 0.319 59 30.248 31 

4537/21 0.0362 0.0247 0.1448 0.341 65 40.162 41 

4536/14 0.050 0.0247 0.20 0.518 28.5 15.431 16 

4538/41 0.050 0.0246 0.20 0.534 55 64.426 82 

Figure 8.30: Weld Data Three Point Bend Tests. Sumpter (1993) 



Test W(m) B(m) SCm) 
Number 

1 0.022 0.022 0.088 

2 0.022 0.022 0.088 

3 0.022 0.022 0.088 

4 0.022 0.022 0.088 

5 0.022 0.022 0.088 

6 0.022 0.022 0.088 

7 0.022 0.022 0.088 

8 0.022 0.022 0.088 

9 0.022 0.022 0.088 

10 0.022 0.022 0.088 

11 0.022 0.022 0.088 

12 0.022 0.022 0.088 

Test Temperature =20oC 
Yield Stress (20°C) = 760 MPa 

-'L 
W 

0.044 

0.059 

0.094 

0.099 

0.117 

0.138 

0.151 

0.213 

0.218 

0.3 

0.41 

0.48 

Pc (kN) 
Jglaslic 

(kJ/m2) 

136.4 44.26 

144.4 64.43 

125.7 73.39 

117.2 66.73 

98.7 54.85 

116.9 89.43 

100.5 71.89 

84.4 72.12 

80.7 67.61 

75.3 89.69 

50.9 73.5 

42.2 76.07 

J~ola1 

(kJ/m2) 

827.8 

1018.6 

586.5 

254.7 

483.2 

512.5 

387.0 

192.6 

149.8 

363.8 

168.6 

208.3 

ex = 1.4 

n = 14 

I 
0"0 

-0.845 

-0.832 

-0.641 

-0.587 

-0.46 

-0.498 

-0.412 

-0.249 

-0.203 

-0.095 

0.063 

0.139 

Figure 8.31: Plate Steel Three Point Bend Tests CBeteg6n (1991». 

Test W(m) B(m) SCm) -'L Pc (kN) 
notal Temperature 

0"0 (MPa) 

No. W (kJ/m2) ( DO) 

2 0.05 0.025 0.203 0.5 27.5 12.74 -196 654 

4 0.05 0.025 0.203 0.5 27.7 12.93 -196 654 

7 0.0278 0.025 0.203 0.1 33.8 11.33 -196 654 

8 0.0278 0.025 0.203 0.1 28.9 10.16 -196 654 

18 0.05 0.025 0.203 0.5 42.5 29.72 -142 589 

19 0.0278 0.025 0.203 0.1 51.5 294.6 -142 589 

ex = 8.08 

n=6 
Figure 8.32: BS 4360 Grade SOD Steel Three Point Bend Tests (MacLennan ). 



Test 
Number JL B(m) W(m) 

W 

T3 0.1 0.016 0.0141 

T5 0.1 0.016 0.0141 

17 0.1 0.016 0.0141 

T9 0.1 0.016 0.0141 

TO 0.1 0.016 0.0141 

T13 0.1 0.016 0.0141 

Tl 0.2 0.016 0.016 

T2 0.2 0.016 0.016 

TlO 0.2 0.016 0.016 

T12 0.2 0.016 0.016 

T4 0.3 0.016 0.018 

T6 0.3 0.016 0.018 

T8 0.3 0.016 0.018 

TIl 0.3 0.016 0.018 

Test Temperature = 20 C 

Yield Stress == 470 MPa 

a (m) 

0.0014 

0.0014 

0.0014 

0.0014 

0.0014 

0.0014 

0.0032 

0.0032 

0.0032 

0.0032 

0.0544 

0.0544 

0.0544 

0.0544 

Pr(kN) 

18.6 

18.0 

17.8 

17.5 

18.4 

18.3 

17.6 

18.2 

18.2 

18.8 

18.6 

18.9 

18.4 

17.8 

ex = 0.85 
n = 10 

JgJastic 

(kJ/m2) 

31.194 

29.214 

28.568 

27.613 

30.526 

30.196 

37.656 

40.268 

40.268 

42.966 

47.259 

48.796 

46.248 

43.281 

J~otal 

(MJ/m2 

1.06 

1.13 

0.648 

0.506 

0.602 

0.976 

0.814 

0.492 

0.354 

0.675 

0.610 

1.09 

0.50 

0.374 

Figure 8.33: A 710 Three Point Bend Tests (Hancock, Reuter and Parks (1991 )). 



Chemical Composition (Wt%). 

C Si Mn P S Cr 

0.19 0.04 0.59 0.01 0.032 0.09 

Figure 8.34: Chemical Composition of low grade Mild Steel. 

Chemical Composition (Wt%). 

C Si Mn P S Al Ni Nb 

0.11 0.17E 1.14 O.OH 0.003 0.031 0.692 0.03 

Figure 8.35: Chemical Composition of Beteg6n Test Plate, 

Chemical Composition (Wt%). 

C Si Mn P S Cr Mo Cu Ni Ti 

0.05 0.25 0.47 0.01 0.04 0.74 0.21 1.2 0.85 0.03~ 

Figure 8.36: Chemical Composition of A 710 Steel. 
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Figure 8.37: Experimental Material Loci. 
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Fjgure 8.38: Experimental Material Loci. 
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Figure 8.39: Failure Assessment Diagram, Sumpter and Forbes (992), SEC3PB. n=5. 
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Figure 8.40: Modified Failure Assessment Diagram. Sumpter and Forbes (992), SEC3PB. n-5. 
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Figure 8.41: Failure Assessment Diagram. Sumpter and Forbes (992), CCP. 0-5. 
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Figure 8.42: Modified Failure Assessment Diagram. Sumpter and Forbes (992), 

CCP, 0=5. 
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Figure 8.43: Failure Assessment Diagram. Sumpter Weld Data. SEC3rB. 0-10. 
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Figure 8.44: Modified Failure Assessment Diagram. Sumpter Weld Data. SEC3rB. n-lO, 
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Figure 8.45: Failure Assessment Diagram. Betegon (1991). SEC3PB. n=14, 
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Filrure 8.46: Modified Failure Assessment Diagram. Beteg6n 0990. SEC3PB. n=14, 
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Figure 8.47: Failure Assessment Djagram. MacLennan. SEC3PB. 0=6. 
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Figure 8.48: Modified Failure Assessment Diagram. MacLennan. SEC3PB. n-6. 
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Figure 8.52: Combined Modified Failure Assessment Diagram. 
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Figure 8.53: Lower Bound Failure Assessment Diagram. 
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9: Experimental Fracture Mechanics. 

9.1: Introduction. 

Tests have been carried out on shallow and deeply cracked three point bend bars 

(SEC3PB) to show the effect of constraint on toughness and in particular its effect on the 

ductile-brittle transition as illustrated in Figure 9.1. To complement these experiments tests 

have also been carried out on torsion and notched tensile specimens. In the case of notch 

tensile geometries control of the notch geometry allows constraint to be varied in a systematic 

manner (Bridgman (1952) and Hancock and MacKenzie (1976». 

9.2: Notch Tensile Experiments. 

Following Bridgman (1952) it is possible to generate different degrees of constraint by 

varying the notch profiles of axisymmetric circumferentially notched specimens, illustrated in 

Figure 9.2. The influence of notches on fracture behaviour has been known since its flrst 

utilisation in structural concepts by Kircaldy (1860), although its early formulation into 

fracture theory is attributed to Ludwik and Scheu (1923) and Haigh (1923). 

9.2.1; Experimental Notch Theory. 

The triaxiality of a stress state can be quantified by a dimensionless parameter in which 

the mean stress is normalised by the effective stress (~). Where the mean and the effective 

stress have previously been defined in terms of the principal stresses. The extent of plastic 

flow can be expressed in a similar functional form, involving the principal plastic shear strain 

increments; 
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I!P 

€p = 1 dip (9.2) 

The average effective plastic strain across the neck of the specimen is given by; 

EP=2In(~) (9.3) 

Here do is the original and d is the current value specimen diameter. The effective 

plastic strain across the section of the specimen is constant while the axial (O'z), hoop (O'e) 

and radial (O'r) stresses vary across this section as shown in Figure 9.3 after Bridgman 

(1952). The value of (t) rises from t at the surface to a maximum on the axis of the 

specimen; 

O'm = 1 + In (-L + 1) (9.4) cr 3 2R 

Here R is the external notch radius. In these specimens the maximum triaxiality 

occurs at the centre of the specimen. Failure initiation can be detected experimentally by 

examining the average axial stress as a function plastic strain which rises as the material work 

hardens and then drops suddenly. The drop in the average axial stress level corresponds to 

the formation of a distinct crack in the centre of the specimen by void coalescence this causes 

a reduction in load bearing cross sectional area as illustrated in Figure 9.4. The strain at 

which this drop occurs has been defined as the plastic strain for failure initiation, (eel. At 

strain levels below that of failure initiation discrete holes are found across the cross section of 

the specimen, Hancock and MacKenzie (1976). 

94 



9.2.2; Experimental Results. 

Three specimen geometries were considered in this part of the experimental program. 

These are denoted D-notch, A-notch and Plane geometries following Hancock and 

MacKenzie (1976) and Hancock, Mackenzie and Brown (1977). The Plane geometry is 

slightly waisted around the centreline to ensure that necking begins in the central notch 

region. 

The steel under consideration in these experiments was a normalised Carbon­

Manganese structural steel, commonly used in offshore applications and designated Grade 

500, under BS4360 (Chemical composition of this steel is given in Chapter 7). The yield 

stress at room temperature is 390 MPa, temperature and strain dependence of the yield stress 

of similar steels has been described by Bennett and Sinclair (1966). 

The machine used for all experimental analyses was a 250 kN Instron test frame under 

strain control. Test temperatures were measured using a Copper-Constantan thermocouple 

attached to the specimens by a silicon sealant. Tests were carried out to determine ductility as 

a function of triaxiality, at temperatures of -196 C, -80 C, 20 C and 200 C. In these 

experiments -196 C was attained by utilising a tank filled with liquid nitrogen as illustrated in 

Figure 9.5. For the other temperatures below ambient, a brass tank was used with liquid 

nitrogen circulated around the tank to maintain the desired temperature, shown in Figure 9.6. 

The high temperature test (200 C) was achieved using a furnace as shown in Figure 9.7. 

The results of one series of room temperature tests (20 C) are shown in Figures 9.8 

and 9.9. These figures show the load and the average axial stress (kN/mm2) against both the 

diameter reduction and the nominal effective plastic strain respectively for the three form of 

specimens tested. The stress state triaxialities are shown graphically in the next section 

combined with the torsion results for the five series of notch tests, two series of tests were 

carried out at room temperature. 
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9.3; Torsion Experiments. 

Torsion experiments were attempted at three separate temperatures, 200 C, 20 C and -

80 C, these were carried out in an attempt to cover the full range of possible constraint or 

triaxial stress states, within a torsion experiment there is no triaxiality (~= 0). The design 

of the specimens used in these experiments is illustrated in Figure 9.10. 

Experiments were carried out on an A very reverse torsion test rig at a constant twist 

rate of thirty degrees per minute. The furnace and cooling arrangements was similar to the 

axisymmetric tensile experiments with the orientation of the furnace and cooling apparatus 

being along the horizontal Plane as opposed to the vertical. Specimen twist was determined 

from a scribe line along the specimen length, where the scribe line was not of a sufficient 

depth to influence the stress fields. 

9.3.1; Torsion Theory. 

For a cylindrical bar of sufficient length subjected to a uniform twisting moment then 

similar conditions along the length of the specimen as well as symmetry conditions lead to a 

linearly varying strain distribution from the centre of the specimen, Crandall and Dahl 

(1959). Symmetry and isotropic conditions mean that direction of twist is unimportant since 

twist and elongation in one direction will be consequently mirrored in the opposite possible 

direction. 

As illustrated in Figure 9.11 the angle of twist can be directly related to the angle of the 

scribe line: 

y = tan e (9.5) 

Where y is the maximum shear strain and e is the rotation of the scribe line. The shear 

strain can be written in terms of the equivalent strain by the relation: 

96 



9.3.2: Torsion and Tension Experimental Results. 

The results for the torsion experiments are given in Table I, while the notch and 

torsion experiment results are represented graphically in Figure 9.12. From this series of 

experiments it would appear that there is a temperature dependent trend in ductility for these 

torsion experiments. Although the specimens have comparable twist angles the small 

differences between each of these angles is magnified due to the nature of (9.5) therefore the 

equivalent plastic strain (iP) varies approximately between 1.3 and 1.8 for these experiments. 

With the highest degree of ductility being exhibited unsurprisingly by the high temperature 

experiment. 

In the case of the tensile experiments the ductility is almost temperature independent for 

the experiments in the range between 80 C and 200 C as shown in Figure 9.12. Aboutorabi 

(1985). The liquid nitrogen experiments exhibited significantly reduced ductility and a 

micromechanical examination by scanning electron microscope showed failure by cleavage 

instability as illustrated for these experiments in Figure 9.13. In all the experiments the 

specimens followed the rule that the higher the triaxiality of the system then the lower the 

final ductility of the specimen. For the experiments carried out at -80 C micromechanical 

examination reveals that the Plane and A notch specimens showed ductile initiation leading to 

cleavage instability as illustrated in Figure 9. 14(a-b). 
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9.4: Finite Element Analysis of Notched Tensile Specimens. 

Finite element analyses were carried out on the three axisymmetric specimens to 

provide better estimates of the triaxiality. Three axisymmetric analyses were implemented in 

ABAQUS (1993) with the specimens being modelled as illustrated in Figures 9.15 - 9.17. 

Due to symmetry conditions it was only necessary to model a quarter of the body. These 

meshes were constructed using the commercial mesh generator PA TRAN (1990) from 

axisymmetric eight noded biquadratic, hybrid, linear pressure reduced integration elements. 

The Plane geometry was slightly waisted around the centreline to ensure that necking begins 

in the central notch region. 

The specimens were subjected to a remote uniform axial displacement with Youngs 

modulus and Poisson's ratio were set at 200 GPa and 0.3 respectively. Analyses were 

carried out for a strain hardening exponent (n) of 6 with 0 0 = 400 MPa corresponding to 

BS4360 Grade 500 steel. 

9.4.1: Notch Tensile Finite Element Results. 

The stress state is most severe in axisymmetric notches at the centre of the specimen, 

Hancock and Mackenzie (1976) and the results presented here relate purely to the centre of 

these specimens. All the parameters are plotted against the logarithmic diameter change, 

Figure 9.18 illustrates the change of the measure of stress state triaxiality (O~n). where the 

deepest notch (D notch) has the most severe stress state for all specimens. Figure 9.19 

illustrates the normalised axial stress where again the deep notch exhibits the higher stress 

levels with the Plane specimen exhibiting the least severe of the fields. Figure 9.20 shows 

theequivalent plastic strain with comparable levels of ductility necessitating a larger relative 

diameter change in the deep 0 notch as opposed to the Plane specimen. These results are 

consistent with the previous analysis of Hancock and Brown (1983). 
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9.5: Three Point Bend Experiments. 

Three point bend experiments reported in the literature have shown that the level of 

fracture toughness was significantly affected by crack depth, Aboutorabi (1985), Sumpter 

(1986), Sorem et. al (1989) Beteg6n (1991) and AI-Ani and Hancock (1991). 

The purpose of the current experiments was to monitor the effect of crack depth on 

fracture toughness and model the ductile-brittle transition for both shallow and deep cracks, 

from the lower shelf (-196 C) through to room temperature ( 20 C). The experimental 

methods are based upon the work of Sumpter (1987). 

In the present investigation, two (~) ratios, 0.1 and 0.5 were considered. Both bars 

had the same uncracked ligament (c=W-a=25mm). [t was possible to generate both negative 

(W = 0.1) and positive (w = 0.5) T-stresses with these geometries and thereby study the 

effect the degree of crack tip constraint has upon the ductile-brittle transition 

Specimens were machined from 25mm thick plate with the orientation of the specimen 

being in the roIling direction of the steel as illustrated in Figure 9.21. The specimens were 

fatigue cracked from 5mm notches machined at the mid-point of the specimens. Fatigue 

precracking was carried out on lOOkN Dartec three point bend test rigs. Fatigue cracks were 

grown halfway through the specimens and then machined to the appropriate ~ ratio. These 

specimens were tested on the same experimental test frame as the notched tensile specimens. 

The SEC3PB were tested under displacement control, at a displacement rate of no more than 

O.5mmlmin. For low temperature experiments the specimens were contained in a bath of 

liquid nitrogen as shown in Figure 9.22. Due the low temperatures involved in this test it 

was impossible to utilise a clip gauge, due to the embrittlement of the connecting wires on 

contact with the liquid nitrogen. In these low temperature tests it was possible only to record 

the movement of the crosshead and the load applied to the specimen. Specimens tested at 

liquid nitrogen temperatures were allowed to soak in liquid nitrogen to eliminate temperature 

gradients through the specimens. 

At room temperature it was possible to attach a clip gauge using knife edges attached to 
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the specimen to measure the crack mouth opening displacement (CMOD), the method of 

attachment is shown in Figure 9.23. Temperatures between ambient and -140 C were 

achieved by attaching brass tanks to both sides of the specimen around the crack tip and 

pumping liquid nitrogen through these at varying flow rates to reach the desired temperature 

as shown in Figure 9.24. Additional Kaowool insulation also surrounded the experimental 

specimens to prevent temperature gain. 

9.5.1; Three Point Bend Theory. 

The experimental analysis of the SEC3PB tests follows that of Sumpter and Turner 

(1976) and Sumpter (1987). The critical stress intensity factor was determined through the 

calibration given by Tada, Paris and Irwin (1973); 

K = ~maf".JL} (9.7) 
2BW2 'W 

Here S is the span of the specimen, f~W) is a geometry, W is the width and P is the 

applied load. The geometric function is defined as; 

f~W) = 1.07 - 2. 12o(W) + 7.71(wf - 13.55(wf+ 14.2~Wr 

It is now possible to express the stress intensity factor K in the form; 

K = PA (9.9) 
B YW3 

Where A is defined as; 

100 

~=4 
W 

(9.8) 

~=8 
W 



(9.10) 

When the failure is not governed by purely elastic terms the elastic and plastic 

components of J can be resolved separately as discussed in Chapter 3, (3.21). Sumpter and 

Turner (1976) expressed the fracture toughness of a specimen in terms of the area under a 

load-displacement trace, this aIJows J to be related directly to the plastic component of crack 

mouth opening displacement (CMOD). 

K2(l-V2) 'YIplasticUVplastic W J ---- + ~ ~------- -----~------

- E B(W-a)' ar + r(W-a) 
(9.11 ) 

Here Bt must incorporate the crack depth plus the height of knife edges if used, while r 

is a rotational constant defined in (3.35). The constant 'YIplastic is given in (3.30) and 

UVplastic is the plastic area under the load-CMOD trace. 
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9.5.2: Three Point Bend EXDerimental Results. 

The results of this series of experiments are tabulated in Figure 9.25, with the 

fracture toughness of the specimens expressed in terms of both Jc and Ot where possible. 

Figures 9.26-9.29 show these fracture toughness in relation to the amount of crack growth 

(;:\a) at room temperature (20 C) and at -soc. The crack growth (;:\a) and crack tip opening 

displacement (5t) are determined from detailed scaled crack tip photographs as shown in 

Figure 9.30. 

At room temperature (20 C) and -50 C the J - Resistance and Ot - Resistance curves 

show that at both temperatures the toughness of the shallow crack markedly exceeds that of 

the deeply cracked geometry, no matter which characterising parameter is used (J, 5). The 

failure mechanism for these tests was ductile tearing which is consistent with the 

experimental observations of Aboutorabi (1985) and Sumpter (1987). 

In the case of the limited number of experiments at -100 C, two shallow and one 

deeply cracked geometries were tested. For both types of geometries failure initiation was 

ductile in nature whereas the final failure was due to cleavage instability, this can be 

explained in terms of competing processes. Ductile failure is stress and strain state sensitive 

whereas cleavage is controlled by the maximum principal stress. Failure initiation is 

controlled by whichever mechanism is satisfied first. Again the shallow crack toughness 

significantly exceeds that of the deeply cracked geometry. 

Experiments carried out below -138 C all failed by cleavage instabilities for both 

geometries, with the shallow crack exhibiting a higher degree of fracture toughness than the 

deeply cracked geometry. Experiments carried out at liquid nitrogen temperatures (-196 C) 

produced geometry independent results. Figure 9.31 expresses the variation of J initiation 

(Ji) as a function of temperature, for geometries subject to ductile tearing. Jj is measured at 

a crack extension of 200J..lm as interpolated from Figures 9.26-9.29. The corresponding 

cleavage experiments are taken at maximum load even when small amounts of ductile 

tearing preceded Experiment 15 being regarded as somewhat dubious and subsequently 

ignored. 
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9.6. Conclusions. 

The experimental programme has attempted to demonstrated the effect of constraint 

on the ductile-brittle transition. The central result is given in Figure 9.30 and may be 

compared with the micro-mechanical modelling shown in Figure 7. 16. On the upper shelf 

crack extension occurs by ductile tearing the shallow cracked geometry is markedly tougher 

than the deeply cracked configuration. This is due to the loss of constraint associated with 

the negative T stress, which decreases the void growth rate as a function of plastic strain 

(Rice and Tracey 1969). This effect is also clearly shown in comparing the ductility of 

constrained and unconstrained notched tensile bars, where the ductility decreases markedly 

with constraint(triaxiality). The notched tensile bars also demonstrate that ductile failure is 

only weakly temperature sensitive, and experiments on cracked structures usually support 

this observation in showing little or no temperature dependence on the upper shelf in the 

absence of time dependent creep effects. 

On the lower shelf the failure mechanism is by cleavage, at very low absolute values of 

toughness. At these levels the dimension of the ligament and crack length meets the size 

criterion proposed by McMeeking and Parks (1979), and in addition the small applied loads 

result in very small(negative) values of the T stress. As a consequence there is very little 

geometry dependence of the toughness. This effect was correctly modelled in Chapter 7 

where a local approach based on a Ritchie Knott and Rice model was used. Thus Figure 

7.16 shows geometry independent toughness being recovered on the lower shelf, which is 

also shown by the experimental data of AI-Ani in Figure 7.19 and that of Sumpter in Figure 

7.20. 

The micro-mechanical modelling predicts that with increasing levels of plastiCity a 

geometry dependent constraint effect should appear and the transition curve for deep and 

shallow cracked specimens should diverge as they are correctly observed to do in Figure 

9.31. The analysis also predicts that the onset of ductile tearing should occur at higher 

temperatures in constrained than in unconstrained specimens. However experimentally this 

effect occurs at temperatures between -lOOC and -150C where the difficulty of consistent 

and accurate temperature control has prevented there being sufficient data to check the 

prediction. 

The computational modelling resulting in Figure 7.17. suggests that the shift in the 

ductile-brittle transition should be approximately equal to 60 C between geometries with a 
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25mm ligament and aIW ratios of 0.1 and 0.5. This is broadly consistent with the data of 

AI-Ani and Sumpter. The present experimental results do not exhibit such a sharp shift in 

transition temperatures, and although the shift in the ductile brittle transition temperature is 

more subjective, the trend is correctly predicted. Ideally it would have been desirable to 

have carried out more experiments as cleavage failure in particular is well known to exhibit 

high levels of scatter. The modelling has been based on critical local cleavage stresses of 

1400 and 1800 mPa. The toughness and the transition temperature are particularly sensitive 

to the exact value of the cleavage stress. The data is more appropriately described using a 

cleavage stress close to 1800MPa. This limited experimental program has demonstrated the 

capacity to model geometry and constraint effects, however it is clear that the number of 

free variables (cleavage stress and the critical micro-structural distance) make the method 

very flexible in terms of fitting data, but more problematic in terms of predicting the 

geometry and constraint dependence of toughness. 
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Figure 9.4: Crack in Centre of Notch TensjIe Specimen. 
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Figure 9.5: Liquid Nitrogen Test Setup for Notch Tensile Experiments. 
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Figure 9.6: Low Temperature Test Setup for Notch Tensile Experiments. 
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Figure 9.7: High Temperature Test Setup for Notch Tensile Experiments. 
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Figure 9.8: Applied Load versus Specimen Diameter Reduction. 
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Figure 9.10: Torsion Experimental Specimen. 
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Figure 9.11: Angle of Twist of Torsion Specimen 
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Figure 9.12: Stress Triaxiality for Temperature Tests. 

Temperature (C) Torsional Load (Nm) Slope Angle (8) eP 

20 57.5 69 1.50 

200 52.5 72.5 1.83 

-80 67.5 
66.5 1.33 

Table 1: Torsional Experiment Results. 



Figure 9.13 : Cleavage Instability for Liquid Nitrogen Experiments. 



Figure 9.14a: Micromechanical Examination of Plane Tensile Specimen Experiment 
(-80 C). 



Figure 9.14b: Micromechanical Examination of A Notch Specimen 
Experiment (-80 C). 



Figure 9.15; 0 Notch Finite Element Mesh. 
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Figure 9.16: A Notch Finite Element Mesh. 
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Fi1!ure 9.17: Plain Finite Element t-.ksh. 
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Figure 9.18: Triaxiality of Finite Element Analyses. 
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Fi~re 9.19: Maximum Principal Stress for Finite Element Anal~·ses. 
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Figure 9.2Q: Eqiyalent Plastic Strain for Finite Element Analyses. 
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Figure 9.21: Diagram of Three Point Bend Specimen. 
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Figure 9.23: Three Point Bend Specimen with Clip Gauge Attached Knife Edges. 
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Figure 9.24: Tank and Specimen Arrangement. 



Test ~ Temperature(oC) Aa(mm) Experimental 
No. W 

Ot (mm) Jc (MN/m) 
Mode 

2 0.5 -196 - - 0.0127 Cleavage 

3 0.5 +20 0.393 0.79 0.766 Ductile 

4 0.5 -196 - - 0.0129 Cleavage 

5 0.5 +20 0.5 1.178 1.140 Ductile 

6 0.1 +20 0.429 1.821 2.748 Ductile 

7 0.1 -196 - - 0.01l3 Cleavage 

8 0.1 -196 - - 0.0102 Cleavage 

9 0.1 +20 0.789 2.964 4.113 Ductile 

10 0.1 -so 0.5 1.643 2.1SO Ductile 

11 0.1 -SO 1.786 3.036 4.130 Ductile 

12 0.5 -50 0.393 1.172 0.9216 Ductile 

13 0.5 -so - - 1.907 Ductile 

14 0.5 -100 - - 0.1631 Ductile/Cleavage 

15 0.1 -100 - - 2.185 Ductile/Cleavage 

16 0.1 -100 - - 1.260 Ductile/Cleavage 

I7 0.5 +20 0.589 1.75 1.142 Ductile 

18 0.5 -142 - - 0.0304 Cleavage 

19 0.1 -138 - - 0.294 Cleavage 

20 0.5 +20 0.00 0.53 0.595 Ductile 

21 0.5 +20 1.794 2.71 2.555 Ductile 

39 0.5 -50 0.00 0.741 0.889 Ductile 

40 0.5 -SO 0.274 1.00 1.175 Ductile 

Figure 9.25: Results of Three Point Bend Experiments. 
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Figure 9.27: Crack Tip Opening versus Crack Extension at Room Temperature (SEC 3PB1. 
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Figure 9.29: Crack Tip Opening versus Crack Extension at -50 C (SEC 3PB). 
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Figure 9.30: Detailed Crack Tip Photograph. 
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Figure 9.31; Transition Curve for BS4360 Grade 50D. 



Final Conclusions. 

The object of this work was to investigate and expand upon two parameter 

engineering fracture mechanics. There is no unique method for quantifying the degree of 

crack tip constraint, however the work within this thesis concentrated on the second term of 

the Williams expansion (T). The validity of this approach has been questioned at high 

levels of plasticity beyond limit load. However there is no doubt that the T -stress correctly 

identifies the plane strain geometries which lose constraint and does so beyond the confines 

of small scale yielding. 

Unmodified boundary layer formulations (T=O) were used to investigate the validity 

of the HRR field as the generic small scale yielding reference solution. The results of 

which showed that the HRR field was only rigorously correct at the crack tip since at finite 

distances from the tip the associated higher order terms became significant. From these 

analyses the use of the HRR field was shown to be lacking, especially in relation to 

compressive T -stresses. Single parameter characterisation of these stress fields is therefore 

impossible and the small strain solution is proposed as an appropriate small scale yielding 

reference solution. 

Effects of out of plane strain on elastic-plastic crack tip fields were also considered. 

Comparisons were made between full field solutions of geometries with tensile and 

compressive T stresses and compressive and tensile out of plane strains. In near plastic 

strain conditions elastic-plastic crack tip fields are found to be dominated by in-plane 

effects. The loss of J-dominance was attributable to the ingress of the remote compression 

field due to bending. In bodies which exhibit tensile T stresses crack tip deformation was 

shown to be limited by the ingress of the compression field induced by the applied bending 

moment. In bodies which exhibit compressive T stresses the influence of the compression 

field was reduced due to the size ofthe ligament in short crack problems. 

A line-spring analysis allowing the determination of the first and second terms of 

the Williams (1957) expansion is presented for semi-elliptical cracks in tubular T-Joints 

expanding upon the work of AI-Ani (1988). These results provided good agreement with 

the full continuum analyses. This agreement therefore confirms the observations that the 

line-spring method is an accurate and computationally inexpensive method to infer the 

degree of crack tip constraint. 
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A J-T description of elastic-plastic crack tip fields has been combined with local 

failure criteria to indicate the effect of constraint on toughness. Such failure loci can be 

interpreted in terms of the effect of size and geometry on lower shelf toughness and the 

ductile-brittle transition temperature as measured by the maximum temperature at which 

cleavage initiation can occur. This transition temperature has been shown to decrease with 

crack tip constraint. This model also predicts the size dependence of the transition 

temperature for short and deeply cracked geometries. 

Existing failure assessment methodologies are ultra conservative in the case of 

constraint dependent failures. Proposed is a practical engineering approach to account for 

crack tip constraint within integrity analyses through matching constraint dependent 

toughness. This allows a modified Failure Assessment Diagram to be generated relating a 

particular structure to a specific failure curve. The simplicity of this constraint based 

approach is underlined by the fact that no plasticity analyses have to be undertaken. This 

methodology therefore allows the major structural advantages of the enhanced toughness of 

low constraint structures to be utilised, solving the problem of geometry and constraint 

dependent toughness. This is achieved by using a modified Failure Assessment Diagram 

in which the toughness used to normalise the applied stress intensity factor is the constraint 

matched value, which recovers the original Failure Assessment Diagram with simply 

modified axes. This methodology has subsequently been adopted in the latest revision of 

R6. 
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