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I SWIM 

This thesis presents a detailed study, based on 

dimensional analysis and confirmed by experiment, of 

the factors which affect the shear strength of prestress- 

ed concrete beams without shear reinforcement. Sixty - 

eight pre-tensioned concrete beams of six different 

I- sections and one rectangular section were tested 

under one - or two-point loading and twenty-three pre- 

tensioned concrete beams of five-different I- sections 

were tested under uniform loading. 

The final mode of failure as well as the ultimate 

failure load were observed to be functions of many 

variables, some of which cannot be evaluated. As a 

result the shear force at diagonal tension cracking 

rather than the ultimate failure load was taken as the 

limit of the usefulness of the beam in shear. Accord- 

ingly an expression was developed for predicting the 

diagonal-tension cracking shear force under one - or 

two - point loads, and this expression was modified to 

piýedict the total uniform load at the diagonal tension 

crack in the case of a uniformly loaded beam. 

Based on Mohr's failure theory, an expression for 

the shear - compression failure load was derived. It 

was shown that the ultimate strength of beams without 

shear reinfoýcement must be limited-to the diagonal 

tension cracking load or the shear - compression load, 

whichever is the lesser. 

The equations developed -were coipared, for specific 

V 



cases, with other published expressions and code design 

rules. Other published test results were shown to be 

in good agreement with the derived expressions. 

0 

0 
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I NOTATION 

All symbols used are the standard 
symbols Of BSCP 110: Part lt 19? 2 (30) 

except as indicated below: - 

av shear span. 
(28929). C horizontal projection of a diagonal crack 

I( '33 4 d distance between centroids of flanges 

Eci 
static secant modulus of elasticity of concrete 
at transfer. 

e eccentricity of the prestressing tendons from 
centroidal axis of beam. 

f stress; concrete compressive stress at 
compression face at any stage of loading. 

f 
av average normal compressive stress in the 

compressive zone of beam. 

fc 
concrete compressive stress at compression 
face of seition at failure (which corresponds 
to strain CO. 

fI 
C uniaxial. compressive strength of concrete 

(taken as 0.8 f 
cu 

fI 
ct tensile strength of concrete (cylinder-sPlitting 

value). 

f 
cu characteristic concrete cube strength, taken as 

1.25 x (compressive strength of 150 x 300 mm, 
cylinders). 

f0 
maximum compressive strength of concrete in 
flexure (= 0.67 fcu for CP 110). 

f tensile stress in prestressing tendons at beam pb 
-failure. ' 

pi stress in tendons before deduction of losses. 

fptr 
atresss in tendons after elastic shortening. 

f 
P. 2% 0.2% proof stress of prestressing tendons. 
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fprism 

f 
sv 

fý 

fxx 

f 
yy 

flif 2 

h 
k1 

k2 

I 
te)5 28,29) 

compressive strength of concrete prisms" I 
fo 

permissible tensile stress in web reinforcement"3 

uniaxial tensile strength of concrete. 

normal flexure stress in the compressive zone- 
of beam (taken as f 

av). 
stress normal to the longitudinal axis of the 
beam due to applied load and reaction. 

principal stresses in a two dimensional stress 
system. 

clear distance between flanges (34) 
0 

ratio of average normal flexure compressive 
stress to maximum normal flexure compressive 
stress. 

ratio of the depth to the line of action of 
the normal compressive force to the neutral 
axis depth at failure. 

t 

k3 
ratio of the maximum normal flexure compressive 
stress, fo, to compressive strength of concrete, 30)) f 

cu(= 
fo 

= 0,68 for CEB (27) 
and = 0.67 for BSCP 110 

fcu 

U ratio of neutral axis depth at failure to effect- 
ive depth. 

Lt transmission length(83). 

bending moment at any stage of loading. 
MU 

ultimate resistance moment at ultimate shear 
failure. 

M moment - shear ratio at failure. 
C 

first moment of area of cross-section above and 
about the neutral axis. 

qC 
uniformly distributed load per unit length of 
the span at diagonal tension-crack. 

qCL total uniformly distributed load at diagonal 
tension crack (written as WC in the photographs). 

qut total uniformly distributed load at failure 
(written as Wu in the photographs). 
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v shear force at any stage of loading. 

vC 
ultimate shear resistance of concrete 
shear force at diagonal cracking. 

VP 
vertical component of the effective prestress 
at the section considered(32). 

Vs 
shear force resisted by web steel. 

Vu 
shear force at failure. 

v '' shear stress. 

c ultimate shear stress in concrete (Table 5 
of CP 110), nominal shear stress for concrete 

"Ve 
F-d 

w 

Ivh 
horizontal shear stress. 

v 
max. maximum shear stress. 

v XY average shear stress in the compression zone 
at failure. 

v 
xymax maximum shear stress in the compression zone 

or in the web at failure. 

IV distance from the centroid pf concrete to 
centroid of the tensile reinforcement. 

y 
t distance from centroid axis of cross-section, 

neglecting the reinforcement, to extreme fibre 
in tension(32). 
ecleo 

ratio of uniaxial compressive strength to, 
uniaxial tensile strength of concrete =f C/ft 

strain; concrete compressive strain at 
compression face of section at any stage of 
loading. 

EC concrete compressive strain at compression 
face of section at failure. 

eu ultimate concrete strain in compressi 
*(= 0.0035 for CEB-FIP(27) and BSCP 1100ho)) 
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F'o corýcrete compressive strain at compression 
face. of section when fo ig reached (= 0.002 
for CEB-FIP and 0.244 xl57f--cu for BSCP 110). 

Epa strain in tendons produced by the applied 
loading. 

tpb strain in tendons at beam failure. 

Epe strain in tendons due to the effective pre- 
stress. 

Epi strain in tendons before deduction of losses. 

Ept. 
-' strain in tendons due to concrete prestress 

at level of tendon "= fpt 

a (52) Ec 
slopes of cables 

XCL distance of the critical section in shear 
from a support in a uniformly loaded beam 
failing by diagonal tension. 

distance of the critical section in shear 
from a support in a uniformly loaded beam 
failing in shear compression. 

ev shear steel ratio(= 
Asv 
'Ed- 

reduction factor(32) (ACI(318 - 71)given as 
0.85). 

4 

110te: - In Chapters 6 to 8, expressions containing the terfil 1000V 
0 

will be dimensionally correct only when Vc is expressed in 

kNv ft in N mm, 
29 

and other dimensions in mme 
ct 
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APTER 1 

INTRODUCTION 

In the design of concrete structures, it is generally 

desirable to ensure that ultimate strengths are governed by 

flexure rather than by shear 
ý112) A prestressed concrete 

beam under the combined action of a shear force and be ing 

moment may fail in shear before its ultimatd flexural strength 

is attained if it is not adequately designed for shear. The 

problem of shear failure in prestressed concrete beams is 

important mainly because, unlike flexural failure of correct- 

ly designed beams, it is characterised by small deflections 

and lack of ductility. Shear failure can occur very sudden- 

ly and without warning and it is qometi-mes violent and cat- 

astrophic as illustrated in Figures 5.1. d to 5. l. h. 

The collapse of a large part of the roof of a U. S. Air 

Force warehouse in August 1955, due to the failure of the 

major structural frames by diagonal tension cracking, expos- 

ed the inadequacy of the design methods suggested in the 

then current codes and created fresh interest in the study 

of shear in reinforced concreteý3) Nowadays the introduct- 

ion of the concept of limit state design in the codes of 

practice requires a thorough knowledge of shear failure 

since design for the ultimate limit state results in size 

reductionýin turn may increase the danger of shear failure. 

In view of the large number of factors affecting the shear- 

ing strength-, - and the complexity of the stress conditions 

in the web of a cracked prestressed concrete I- beam, a 

fully mathematical solution is not a practical possibility. 

1 



As I -' beams are in practice the most commonly used 

prestressed concrete structural members, the majority of 

the test specimens in this investigation were I- sections 

with differing geometrical properties. The dimensions 

were varied to permit a systematic study of the parameters 

affecting the shear strength of prestressed concrete beams 

without shear reinforcement under point loads and uniform 

loads, so as to establish an expression for predicting 

the shear force below which shear reinforcement is un- 

necessary. Beams without shear reinforcement are not 

common in practice, but they were used in this investig- 

ation because in them the diagonal cracking shear force 

could be defined clearly and the variables affecting it 

could be studied. 

A shear failure in beams without shear reinforcement 

may be defined as a failure for which the primary cause 

is the formation of an inclined tension crack due to the 

combined action of a bending moment and shear force. In 

prestressed concrete beams without shear reinforcement 

the following types of failure have b een observed: - 

(a) Splitting of concrete due to diagonal tension crack* 
(b) Web crushing under compress. ion- 
(C) The compressive zone is subjected to compression and 

shear and can fail either by splitting or crushing 
of concrete in the compressive zone- 

(d) Splitting of concrete along the longitudinal rein- 
forcement following the formation of the inclined 

tension crack, 
The final mode of shear failure depends on various 

factor &4) 
which in turn govern the reserve capacity of 

a beam after the formation of the inclined tension crack- 
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ing. Sorýe beams in this investigation carried a con- 

siderable load beyond t. he first inclined tension crack- 

ing load. In some instances the failure load Vu Was 

70% greater than the first inclined cracking load V C> C 
but the amount of this excess could not be predicted 

as it involves some unpredictable factors. Hence the 

shear force at the formation of the first diagonal crack 

rather than the actual maximum load has to be taken as 

the ultimate load for a beam without shear reinforce- 

ment. This load has been studied in this investigation 

using dimensional analysis and has been expressed in 

terms of the beam properties and either the av/d or 

the Ud ratio depending on the type of loading. 

In some instances, such as beams with rectargular 

cross-sections tested at higher av/d or L/d ratiost 

shear-compression failure initiated by a flexure - 

shear crack has proved to be the dominant mode of fail- 

ure. -Kar's 
(42943) 

prestressed rectangular beams were 

good examples of this type of shear failure. For such 

cases an expression based on Mohr's failure hypothesis 

with a straight line envelope to the failure stress 

circles was developed in this investigation to predict 

shear force at failure. Then the lesser of the first 

diagonal tension cracking load and shear - compression' 

failure load is taken as a limit of the useful capacity 
I 

of a beam without shear rpinforcement in shear. 
The expressions developed as described above were 

compared, for specific cases, with other published 

expressions and code design rules. The equations 
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developeb were also compared with the test results 

published by other investigators and good agreement 

was observed. 

/ 

0 

4 



I CHAPTER 2. 

HISTORICAL REVIEW 

2.1 General: - 

The shear strength of concrete beams has been a subject 

of considerable interest to various investigatorsý115-8) 

In 1973, an excellent report was published by the joint 

A. S. C. E. - A. C. I. Committeý2) which referTed to over 200 

documents and reviewed recent research results and design 

proposals con . cerning the shear strength of reinforced con- 

crete stru . ctures. Despite the tremendous number of refer- 

ences in this subject, the Committee pointed out that 

the question of shear strength is far from eing 

I settled.. In some instances the explanations of behaviour 

and-design concepts that are presented are somewhat speculat- 

ive and may change as more information becomes available". 

A comprehensive review of the published work on shear 

in concrete beams seems impossible to accomplish in a thesis 

-of this nature,. and accordingly reference will be made only 

to some major papers. a 

As shear strength of prestressed concrete beams can 

reliablybe related to that of "unprestressed" beams, a 

review of some of these papers is necessary. 

2.2 She ar in Reinforced Concrete Beams: 

2-2.1 Concept of shear strength: 

Controversy characterised the early development of 
(6) shear design from 1900 to 1910 Some engineers believed 

that horizontal shear, 'h' was the basic mechanism of shear 

.5 



strength in reinforced concrete beams. Accordingly, 

shear stresses were computed by the equation: 
VQ 

h Ib (2.1) 

A second group of engineers recognised that the 

basic mechanism of shear strength is diagonal tension 

computed by: 
v 

Zb (2.2) 

It took a full decade of heated discussion to 

arrive at diagonal tension and equation 2.2 as basic 

design tools. This was accomplished largely through 

the efforts of Yorsch in Germany and Talbot in United 

States. 

2.2.2. In 1951 Clark(9)carried out 62 tests on beams 

with no web reinforcement and on beams with varying 

ratios of-web reinforcement. From the test results, 

he derived the following semi-empirical expression for 

the maximum shear stress vc as: 

v* 
f1v 

+ ý0.12 
(0,8 fcu) 

c= 
17*3 48.4Q (2.3) 

av/d 

Clark was the first to include the av/d ratio in shear 

equations and he was the first to account quantitatively 

for all the variables listed by Talbot(lO)in 1909 as 

influencing the shear strength of reinforced concrete 

beams. 

2.2.3 In an investigation sponsored by the Reinforced 

Concrete Research Council at the University of Illinois) 

U. S. A., Moody, Viest, Elstner and Hognestad presented'a 
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series oý tests in three reports 
(lljl2) 

and these test 

results were analytically studied by Moody and Viest 

in the fourth report 
(13) 

0 
The authors observed that the phenomenon of dia- 

gonal cracking was one which involved the combination 

of flexural and s. hear stresses. Various attempts were 

made to express this phenomenon in terms of rational 

theory based on the ordinary theory of flexure and they 

have not yielded any solution. Hence an empirical 

equation for cracking load was reported. This equation 

includes both concrete strength and the av/d ratio, and 

is as follows: 

For 8.7 kf 
cu -4 43.3 N/mm2 

vc 0.8 f 
CU 

(1, 
- 09 1, 

av 
v 0.8? 5 bd 0.12x .8f1- 69.2 d cd 

(0 
cuý 

and for 43.36; f &L51.9 I/= 2 
cu 

v 
VC 

0.12x 8w 43.0.8 x 3.3 0.1 
a. 

d) c 
. 
0.875 bd 

(0- 3)(1 
69. 

ý2 
d 

(2.4) 

Equation 2.4 shows that the rate of increase of the 

nominal shearing stress, vc, is decreasing v. ith increasing 

concrete strength, and that for concrete strength greater 

than-f 
cu ='43.3 N/mm 2, the nominal shearing stress is 

independent of f This equation was derived from test cu 
data with a limited range of variables. The range of 

av/d in test beams was 0.57 to 3.03, and hence equation 
2.4 is not necessarily applicable to longer shear spans. 

For the ultimate shearing stress, they assumed that 

7 



the ultimate moment could be expressed by the same type 

of equation as for pure flexure ( see'Section 2.3 )o 

2.2.4. V. orrow 'and Viest (14) in their tests covered a 

wide range of a ratios ranging from 0.96 to 7.79. 
v/d 

As a result of this wide variation in av/d ratios, 

different modes of failure were observed, which could 

be seen from their photographs. Analysing their test 

results, they reported that the concentration of concrete 

compressive stresses at a critical section was caused 

by concentrated rotations at the bompressive end of the 

diagonal crack, the tensile stresses on the 'compression 

face' were caused by larch-action' present-after the 

formation of the diagonal crack. The concentration of 

compressive strains at the critical section led to a 

premature crushing of the compressive zone of concrete 

and thus to failure before the flexural capacity was 

reached. 

They gave two semi-empirical expressions similar 

to those of Moody and Viest. Oneýfpr the diagonal 

tension crack load in terms of the nominal shearing 

stress which is given by: 

3.19 
v 0.12 +-0.8 f C (14/Vd)c cu (2.5) 

Where Ec is given from Kesler's data as 
460 x(O. 8 fcu)+ 12456 NIM 2 

is The othe for 'shear-compression' strength in terms 

of shear moment capacity. 

They concluded that the presence of a diagonal 

tension crack is dangerous even in short beams. This is 

8 



because diagonal tension cracks in beams without shear 

reinforcement are considerably wider than flexural cracks; 

furthermore, a few repetitions of load may cause the dia- 

gonal tension crack to spread and possibly result in 

splitting along the reinforcement or in a premature shear 

failure. Accordingly for beams without vieb, reinforcement, 

the diagonal tension cracking load may have to be consid- 

ered in design as the ultimate capacity in shear. 

2.2.5. Whitney(16) reported that the value of the 

unit shear at diagonal cracking, is-not a simple function 

of concrete strength, since it depends largely on the 

tension reinforcement. He proposed the fd1oviing equat- 

ions, for one-or two-point loads. 

v 0.346 -11/=2 + 0.26 
Mu 

2 II/=2 (2,. 6) 
c bd 

and for uniformly distributed load 

v=0.484 N/mm 2+0.54 MU 1 
II/mm 2 (2. 

'? 
) 

c bY2 ý 0.5 L/T 
where 

Mu0.8 feu for over-reinforcbd beams. 
bd 3 
1ý 

2y fýy L fo bdý 
fL1-l.? 

-X(0.8 f- r under- 
cu 

)reinforced 

beams. 

Balanced reinforcement is given by 

Ro -'ý 0.456x 
(0.8 fcu) 

Like Morrow and Viest, VilAtney considered the diagonal 

cracking load as the ultimate strength in shear of the 

beams without shear reinforcement. 
2.2.6. In the United Kingdom, Taub and Neville(17) 

9 



conducted a large number of tests and they emphasised 

the importance of the moment-shear ratio. They showed 

itlso that the lattice analogy is not satisfactory for 

the design of bent-up bar reinforcement and recommended 

the use of a combination of bent-up bars and vertical 

stirrups to achieve the most effective resistance to 

shear failure. 

2.2.7. Smith (18) developed an expression for the 

cracking load taking 'account of the influences 

of the ratio of the main reinforcement, ?, and the av/d 

- ratio. Smith gives for sections already cracked in 

flexure: 

Y+7.5 c-0.? - 186 + 0.0015? 
v (9 

- 
1) 

2 
Eh- d 9FO--13Fcu 0.0) 

a v/d > 2*4 (2.8) 

where 0.79 0.8 f 
CU, 

is the modulus of rupture. 

On the basis of tests by Krefeld and Thurston (19) 

Smith concluded that the critical shear force at the 

critical section of a. uniformly loaded simply supported 

beam can be expressed by the equation: 

(U. D. L. ) 
= 0.247 

(1 
+ 7.5 Q)xO. 79 

fo-. 
Bfcu (2.9.1 

bh 

where the critical section is aý a distance X from 

the support and -X is given by the following equation: 

X (L -X) T-1.2 
(2.9.2 

d (L - 2X 
Smith(l) later on revised equation 2.8 to give 

more weight to the influence of the ratio of main 

reinforcement and he gave the following: - 
for eA 1.25% 

VC 
= 1.57 0.79 

ý0---B--ý-u 
0.13 + 0.0224 

ay2 (3 v 
bd d) 

(1 
+ 14ý 

10 - 



for Plý-1.25% 

VC 
v I 

bd = 0.? 9 FO 
-8f cu 

10.13 

+ 0.0224 
(3 

d)2 
(+ ? OP (2.10.2 

when a the second term in the squ; re brackets 
v/d, 

"*Of 

of both equations is dropped. 

2.2.8. Brock in a private communication to the Shear. 
(1) Study Group , presented a more general approach to the 

problems of shear in beams without shear reinforcement. 

This was in the form of an interaction diagram between 

the ultimate moment and the a V/d ratio. 

This can be su=arised by the following equations: 

Mflex 0.456 0.268 
.8 fcu bdiý 

(- 
F'o 

for under-reinforced sections, i. e. when P 4eo 

and 
Mflex 

- 0.8 f bd2 = 0.293 + 0.04 (P/Po) 
cu 

for over-reinforced sections i. e. when PA 

where Fo 
= 0.456 x (0.8 f 

cu) 
/ fy L 

(2.11) 

The section attains its full flexural moment of 

resistance M, flex when 
0 I, 

'IV 
>- 

144 fy L 
d 8000 

where av (or M at the critical section)is less than 
Id Vd-- 

144 f 
YL 8000 there is shear deterioration except for 

cases where M, 2), e 0.1()6 flex/(0.8 fcu bd 0 
For very sinLall values of a v/d 

there is a splitting 

type of failure which is assumed to be analogous to 

the Brazilian tensile test in which a cylinder of 

concrete is loaded along its sides. Recently this 
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approach veas used by Desayl (20) 
too. 

2.3. Shear-compression ApDroach. 

The co=onest approach in determining the ultimate 

load capacity of beams failing in shear is the so-called 

shear-compression approach. This type of failure was 

envisaged by Laupa et al 
(21) 

as being essentially the 

same as flexural failure, the only difference being 

that the depth of the compressed zone was reduced by 

diagonal cracka extending considerably'higher than 

flexural cracks at failure. This results in crushing 

of concrete at the head of critical shear crack. 

In this approaC-h, the dowel force is ne--glected, 
it being assumed that the stiffness of the dowel formed 

by the main steel is greatly reduced when the horizon- 
(22) tal part of the crack is formed With this assum- 

ption the internal structural behaviour is similar to 

that of a simple tied arch. The external load is 

supported by an inclined, arch-like, thrust in the, 

concrete above the shear crack, and -ýhe horizontal 

component of thrust at-the support is resisted by 

the tension steel acting as a tie. 

This concept of the structural behaviour of a 

beam containing a shear crack is supported by measure- 

ments of strains in the concrete which show that the 

centre of compression in the concrete falls as the 

support is approached 
(23) 

41 
Provided that the anchorage of the main rein- 0 

forcement is sufficient for the tie-force, and that 

the geometry of the crack is such that the larch' does 

1.2 



not become-unstable, i. e. fails by instability of the 

compression zone, collapse of the structure is caused 

by the crushing failure of the concrete at the crown 

of the arch. This ultimate compression load is given 

generally, by: 

Ilu = VU XaV=k1k3f cu 
bku d2 (1 -k2k U) 

(2.12) 

The coefficients (k 1k3) and k2 are generally ascribed 

values equal to normal flexural ones, viz. 

Bjuggren 
(1) klk3fcu = 0.5 fcu (2.13.1) 

(13 
=1-4.58xl44K(o. 

Bfcu X Moody and Viest kkf]. 121 -5 
i) 

1 
.3 

cu 10 
(0.8 f 

cu 
(2.18.2) 

Laupa et al 
(21)k 

1ý3f cu= 
(1 

- 37 10.8xl44x(O. fcu) K 
-LO 5 

(0.8 f 
cu 

(2.13.3) 

Regan (24) klk3fcu = 0.67 x(O. 8 f 
CU) 

(2.13.4) 

Walther(25) and Ojha (26) have assumed that the capacity 

of the concrete to resist longitudinal stresses is 

reduced by the existence of a shear crack. Walther 

applied a biaxial failure criterion to the average 
4 

compressive and shear stresses above the head of a 

shear crack and obtained: 

k '2 
fprism 

(2.13.5) 
lk3fcu 1+3.2(Vctp 

where f is the compressive strength of concrete prism 
prisms. 

The main difficulty in equation 2.12 lies in a- 

realistic assessment of the*neutral axis depth kud. 

The neutral axis depth, kud, in equation 2.12 differs 

from the normal flexural one because the flexural 

13 



assumption that all sections plane before loading 
I 

remain plane during loading is not valid in the presence 

of shear cracks, At the same time kUd is not generally 

equal to the ultimate flexural neutral axis depth 

because in most shear failures the main steel has not 

yet yielded at failure. 

A detailed derivation of the expressions used in 

determining the neutral axis depth is beyond the scope 

of this review. The final expressions derived by 

some investigators in calculating Iýu are shoym as 

follows: - 

--Bjuggren: 
mu20.5 k1k3ku 

Yc -Ub d 

where k 
PEs Eu 

- f 
cu 

and ýu =. 0.003 

Moody and Viest: 

m 
11 

2 
Pf st 0.42 ef6t 

TCU bd 
r- 

f 
cu kl k 3(5.8 fcu) 

where 
-4 f 

st ý 0.729s 6.9 10 Es + 

Laupa et al: '- 

M 

fcu 
u 

bd2 kl k3ku 

where k 1.11 -! - 

and ku np + 

(1 - 0.4 ku) 

2 

PES 
f 

CU 

(2.14.2) 

+ 
1450 k, kS(0.8 fcu) 

PE 
s 

.(1-0.45 ku) 

ý1.23 
--0.92 lý 

(np) 2+ 2»np 

where n= 
ES 

+ 10000 
Ec 144xO. 8 f 

cu 

(2.14.3) 
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Laupals equation appears to predict a decrease of 

beam strength with increasing concrete strength, 
(see equation 2.13-3), but it is not 

. 
intended to ýe 

applicable in such cases. ' 

Regan: 

muI 

f bd kjkýku (1 0.375 k 
U) 

(2.14.4) 
cu 

where ku n02 
no + 

n02 

no 
3eEs Eu 

2xO. 8 f 
cu 

t=0.0035 
u 

The values of k1k3 are given by equations 

2.13.2 - 2.13.4 

Z. 4. Some Code AODroaches to Desipm of Bearns for 

Shear Strength: 

European Concrete Committee - International 

Federation of Prestressing. 

The 1970 CEB - PIP Reco=endat; -ons(27)state 
that 

the resistance mechanism of a beam or slab subject to 

shear loading depends essentially on the mode of 

cracking under design loads. The Committee recognises 
three cases of behaviour, but from a practical point 

Of view only two are discussed, viz. AB anI C. 

Case AB is characterised by the development of 

web-shear cracks without ftexural cracks at ultimate. 
In the region in which web-qhear cracks occur, web 

reinforcement must be provided for the difference between 

the principal tensile stress at ultimate and a reduced 

is 



I 
value of the tensile strength of concrete (Clause 

R 43 - 132). Failure due to crushing of the web 

should be prevented (Clause R 43.131). 

Case C corresponds to those regions having 

flexure-shear crackinta,, 
., 

(dlause R43.14). The max- 

imum shear is limited to prevent crushing of'the 

web. The shear3 VC, carried by concrete is a 

function of the amount of longitudinal reinforce- 

ment and the square root of concrete strength. 

For prestressed concrete beams the design proc- 

edure involves checking Case AB and C. In case C 

the shear, Vc, carried by the concrete is increased 

as a function of'average prestress. 

2.4.2. U. S. S. R. Building Codes. 

The shear strength carried by concrete is 

assumed(28129) to be a function of the tensile strength 

of concrete and the horizontal projection of the diag- 

onal crack, ICI. The valiie of 'C' is taken as that 

length giving the minimum value of'(Vc + V. ), and 

these are given by: 

0.15 f bh2 prism VC 
C 

C 
fDrism bh 

zs 
v 

or Vc +V0.6 
fprism Asv fyv bh (2.15) 

Sv 

where fprism is the strength of concrete prisms. 

The maximum shear stress on the web is limited to 

prevent crushing of the inclined concrete struts in 

the web. 

3.6 



2.4.3. British Code of Practice. 

The provisions for shear in the new code BSCP 110: 

Part 1: 1972(30)differ considerably from those in BSCP 
(31) 115: 1959 . BSCP 115; 1959 treats shear by limiting 

the principal tensile str6ss in regions of a member 

uncracked in flexure to values given in Table (6) of 

the Code. For regions cracked in flexure this Code 

is very vague and only gives the warning that "special 

consideration should be given to the shear resistance 

under ultimate load conditions where the section is 

cracked in bending". However, the new Code, BSOP 110: 

Part 1: 1972 gives separate expressions for the shear 

carried by the concrete in regions of a member un- 

cracked in flexure and regions'cracked in flexure. 

For regions uncracked in flexure the BSCP 110 

limits the tensile stress at the centroidal axis to 

0.24ýý. The shear force, VC01 corresponding to 

this-principal tensile stress, is the shear force 

carried by the concrete at the limit state of collapse. 

From elastic theory, and neglecting the stress normal 

to the longitudinal axis, due to applied load 
%7 j 

and reactions, V 
col 

is given as: 
2 V 

co = 0.6? bh Vft+0.8 ftf 
cp 

. where ft=0.24r-fcu 

Code equation (45) 

For regions cracked in flexure, the BSCP 110 gives - 
the value of shear force ciarried by the concrete as 
Vcr, given by: 

V 
cr 

0., 5- fpe_ 
fpu 

ý 0.1 bwd ýf-cu 

vc bd + 
mo v Code equation (46) 
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where vc is the ultimate shear stress and is given 

as a function of Pand fcu in Table (5) of BSCP 110, 

and Y10 is the moment necessary to produce zero stress 

in the concrete at the depth d, given by Mo = 0.6 fI pt Y 

The shear force at the inclined crack should be 

taken as the lesser of the Code equations (45) and 

(46). 

2.4.4. American Building Code: 

The American Building Code ACI (318 - 71)(32) 9 
has two alternative methods for calculating the shear 

force carried by the concrete in regions of a member 

not cracked in flexure. One given in terms of aver- 

age shear stress, v ew, 
derived from the principal 

tensile stress equation as: 
V 

v0 . 29 + 0.3 f+ -2- Equation(11.12) d 
D 

cw 

(0 P-8 
fcu 

cp Ew' d-) 
of ACI(318-71) 

a. nd the other by limiting the principal tensile stress 

at the beam centroid to 0.33 VO---8fcu- 

It For regions cracked in flexure, it gives vci 

as the average shear stress at diagonal cracking. 

Neglecting the dead load v is given by the follow- Op I cil 
ing expression: 

0.5 VO-8 fcU + fpe 
vei 0 0.05 0-81 fm +- 2 Yt b'd (a 

v/d) 
Equation(11.1ý of 
ACI (, qlB-? l) 

0 is a reduction factor of 0.85 

. 
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2.5. Shiýar in Prestressed Concrete Beams: 

2.5.1. Prestressing introduces extra compressive 

stresses which are expected to reduce the final tensile 

stress resulting from shear. Thus the prestressing 

force creates a new variable in addition to those 

already mentioned for ordinary reinforced corcrete 

beams. The factors affecting the shear of prestressed 

concrete beams and their behaviour unler various con- 

ditions of loading and levels of prestressing have 
(213-54) been discussed in various papers 

The shear strength of simply supported prestress- 

ed concrete beams without shear reinforcement under 

one-or two-point loads have been studied by Hicks (33) 

Sethunarayanan Sozen, Zwoyer and Siess (26) 

(37) (38) Evans and Hosny walther , Warner and Hall 

'Evans and Schumacher(40) , Swamy (41) 
, Kar (42,43) 

Arthur(44) and Arthur and Mahgoub (45). 

Kar(42,43) I Wilby and Razir (46), Hanson and 

Hulsbos(47) I and Arthur, Ehatt and Duncan(48) made 
fa 

investigations on uniformly loaded beams. Bennett, 

Abdul-Ahad and Neville(49) have studied the problem 

of moving loads. 

Among the investigators who studied the effect 

of shear reinforcement on the shear strength of 

prestressed concrete beams were 1.11'acGregor, ýozen 

and Siess(50) and they also reported on the behaviour 

of prestressed concrete be ams with draped reinforce- 
(51) 

ment A paper which dealt with the shear 

strength of continuous beams of prestressed concrete 
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was by Jena and Pannell (52) 

Now some of the papers which dealt with the 

shear strength of prestressed concrete beams without 

shear reinforcement will be reviewed in more detail. 

2.5.2. Shear strenath under one- or two-Doint loads: 

2.5.2.1. Hicks (33) in his tests covered a wide range 

of av/h ratiosin an attempt to relate a v/h 
to the 

various types of failure and to investigate the C> 

effect of shear span and concrete strength on shear 

strength. The specimens were 16 pre-tensioned con- 

crete beams. One cross-section of unsymmetrical 

I- section was used. The bottom and top flange 

breadths were 127 and 178 mm respectively, the web 

breadth was 38 mm, the flange thickness was 70 mm 

and overall depth was 254 mm. 

The prestressing force was developed by using 

ten -5 mm diameter indented wires having an ultimate 

strejigtn of 1590 N/mm 2. The wires were distributed 

in such a way to give zero and 133.8 N/mM2 compressive 

stress at the top and bottom fibres respectively and 

this was regarded as constant in all the beams. The 

concrete strength, which was one of the main variables, 

was varied between 34.0 and 4?. 0 N1= 2. 

By varying the a v/h ratio between zero and 8.15, - 

four types of failure were observed which gave 4icks 

his limits of the a ratio within which each type v/h 
of failure occurred. For a 1.5, 'shear distort- v/h ": 
ion' would prevail which describes the state of web 

20 



cracking"and crushing followed by failure of the 

separate flanges in flexure, cracks appear at the 

top flange above the reaction and in bottom flange 

below the load. 'Diagonal compression' would be the 

failure pattern for a v/h 
between 1.5 and 4.5. The 

main difference between this type of failure-and 

the shear distortion was that, in the diagonal 

compression failure the vertical cracks in the top 

and bottom flanges occurred away from the reaction 

and load points. At higher a v/h ratiosýbetween 

4.5 to 9.0, failures tended to resemble the 

'diagonal tension' type. This occurs by a sudden 

splitting of the web and causes the beam to fail 

immediately without any traces of web crushing. 

Above a v/h m 9.0 flexure failure would be expected. 

For those beams failing in diagonal tension, 

Hicks suggested the following equation for the 

principal tensile stress at failure at the neutral 

axis: 4 
I 

ft= fet - 0.187 
(21h 

-2 av/h A: 2 ý2.16) 

He concluded his investigation by suggesting 

a reduction factor of 0.7. to be applied to the 

ultimate flexural moment for av/h 47.0 for design 

purposes. 

This was. an investigation of restricted scope 

since Hicks used only one. type of cross-section 

with a constant prestressing force. 
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2.5.2.2,, On the other hand tests reported by 

Sethunarayanan (34) 
on pre-tensioned I beams with 

various cross-sections revealed that the transition 

from one mode of failure to another depended not 

only on a v/h ratio, but also on the amount of pre- 

stress and strength of concrete. This was later 

confirmed by Arthur's 
(44) 

tests. 

Sethunarayanan's tests were conducted on 32 

pretensioned I beams with top flange breadth ranging 

from 127 to 178 mm and with a constant bottom flange 

breadth of 1? 8 mm. The thickness of the top flange 

ranged from 50.8 to 81.2 mm and that of the bottom 

flange was constant at 63.5 mm. The web breadth 

ranged from 35.0 to 62.2 mm. The distance between 

the centroids of the flanges was taken as the effect- 

ive depth and this ranged, accordingly, between 171 

and 184 mm. 

The prestressing force was developed through 

5 mm diameter indented wires varied in number between 

5 and 10. The wires were stressed and distributed 

over the cross-section to give a variation in f 
cp 

2 
ranging from zero to 7.75 N/mm The concrete strength, 

feul varied from 84.4 to 41.6 N/mm 20 

Prom his 

the following 

load: - 

vc = fct 
(1 

+ 

Equatio4 2.17 

test results Sethunarayanan developed 

expression for the diagonal cracking 

1+f 

a 
cp/fct h bv, (2.17) 

v/d' 
shows that is inversely proportional VC ,* 
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to flange t1iickness which conflicts with ArthuýJ44)find- 

ings. He also developed an analysis based on the truss 

analogy for the cases in which web crushing followed the 

initial inclined cracks. 

2.5.2.3. As a part of an investigation of prestressed con- 
(36) 

crete for highway bridges., 8ozen, Zwoyer and Siess 

carried out tests on 43 and 56 rectangular and I-section 

concrete beams respectively. All the beams were 152 by 

304 mm, overall in cross-section. For I-beams the b 
w/b 

ratio had values of 0.29 and 0.50, and the hf/d ratio 

ranged from 0.28 to 0.50. The end-blocks were 456 mm, long. 

5 mm, diameter hard drawn wire was used with f 
pu 

varying from 1660 to 1870 N/mm2. The stress in the pre- 

stressing wires, at test, varied between zero and 970 

N/mm2 and the prestressing steel ratio, P, varied from 

0.10; 6 to 0.96% giving a variation in f 
cp 

between zero 
2 

and 6.23 N/mm . 
All the I-beams and eight of the rectangular beams 

were pre-tensioned, the rest being post-tensioned and 

grouted. All but three of the I-beaw had prestressed 

external stirrups to prevent propagation of cracks into 

the end-block. Those external stirrups were placed, one 

at each junction of the web and the end-block and one 
immediately on the outside of each reaction block. 

The beams were tested simply supported with av/d 

ranging from 2.7 to 5.4 and most of the tests were - 

conducted between av/d = 3.2 and 4.2. 

The strain measurements in the top surface of the 

beam showed that after web cracking, the longitudinal 

23 
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I- 
strains adjacent to the load points were higher than in 

the zone'between-them, which led to the conclusion that 

web cracking effect was to cause concentrations of strains 

leading to crushing of concrete. 

Ninety beams failed in shear and the remaining nine 

failed in flexure either by crushing of the concrete or 

fracture of the steel. The modes of shear failure 

observed were given a detailed description in their 

bulletin. They classified the shear failures into two 

categories: lahear-compression' and 'web-distress'. The 

shear-compression failure was described as similar to 

flexural compression failure except that the concrete 

I crushed at the upper end of the inclined crack where 

there was a very high strain concentration. This mode 

of failure was observed in both rectangular and I beams. 

On the other hand web-distress could take any one of the 

following forms: 

Secondary inclined tension cracks formed near the 

supports and above mid-height of the beam, which 
separate the compression flange from the web, 
leading to violent failure. 

Inclined cracks near the loading points extending 
horizontally toward the supports tending to separate 
the web from the bottom flange entirely, or 

Crushing of the web under high compressive stresses 
due to larch action', created by the loss of shear 
flow between the stee 1 and compression flange. 

Based on their definition of the inclined tension 

cracking load as the load at which the inlined crack 

started to affect the behaviour of the beam, they 
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analysed thbir test results and derived the following 

semi'empirical expression for the inclined cracking load: 
f 

Vc =f 
(1 

+fP bwb d 
t (2.18) 

a v/d 
where fl, was given as a function of (0.8 f as t cu 

ft 

B+ 
41.5 

_ N/MM2 I--16.92 

cu 

. 

0.8 f (2.19) 

I- They gave B=1.0 for concrete with regular coarse 

aggregate (maximum size 38 mm) and B=2.0 for small 

size coarse aggregate (maximum size 10 mm). 

They concluded that the inclined cracki-ng load 

should be taken as the limit of the usefulness of a 

beam in shear since the development of inclined cracks 

was unstable.. 

The limited number of tests outside the range of 

av/d ratio of 3.2 to 4.2, means that the confidence which 

can be placed in equation 2.18 is limited, and may lead 

to seriously unsafe overestimates of the strength 

particularly for low values of av/d(45) 0 
2.5.2.4. Evans and Hosny (37) 

analysed the test results 

carried out by Hosny on post-tensioned prestressed 

concrete beams, together. with the results of similar 
(33,6 ) (37) tests reported by Zwoyer and Thornton 

Hosny's beams were 3 rectangular and 17 1 beams. 

The'specimens were 101 by 304 mm in overall. The I 

section had its top and bottom flange thicknesses as 
62 and 70 mm respectively and the web breadth was 47.0 
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to 50.8 mm. This gave a variation in,, hf/d of 0.240 to 

0.245 and in bw/b from 0.46 to- 0.50. 

The prestressing force was developed through I'lacalloy 

I- - bars. All the beams were grouted qxcept two. The per- 

centage of the prestressing steel, ?, ranged from 2.453 

to 2.98?. The average prestress in the concrete at 

test, fcpl ranged from l.? 2 to 5.25 N/=2. The concrete 

strength measured as (0.8 f 
cu 

) ranged from 34.? to 

'58.1 jj/MM 2. 

Thornton's beams were 13 pretensioned I beams with 

prestressed compression reinforcement placed at 11.0 mm 

below the top fibres. Two cross-sections were basic- 

ally used with b 
W/b as 0.3? 5 and a variation in h f/d 

of 0.188 to 0.210. The percentage of the prestressing 

steel wires, e, was 0.437 and 0.485 giving a value Of 

fcp ranging from 0.61 to 3.16 NIMM 2. The strength of 

the concrete v vas intended to be constant and was 42.6 

(=0.8 f, 
u) 

N/mm 2 The av/d ratio ranged from 2.32 to 

3.48. 

Evans and Hosny gave a full description of the modes 

of failure observed in Hosny's tests which were: 

Shear-compression, diagonal crushing of the web and 

shearing of the compression zone, the last being 

observed in I sections with web reinforcement. In 

their analysis of these test results, they took the 

nominal shear stress to be'a function of F. '-feu, 
the cross-section properties, the prestressing force 

and a v/d ratio and gave the following,, expression for 

ultimate shear force: - 
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For rectangular section where ?,, ý0.350 and 2.57! 5ý! Y-46-70 
Id 

= 
(0.83 

+ 0.15 p fpýj 0.8 fcu N, Z VU (av/d) 

For an I section where 2.32 
a, 

3.60 d 

?) bw Z L1.91 + 0.15 fp" 

v/d) 

(2.20) 

(2.21) 

From their analysis of the I section results, they 

noticed that the ratio of maximum principal tensile 

stress to the tensile strength of concrete was constant 

for a v/d-ý" 
3.0. They gave the following relationships 

for the value of the maximum principal tensile stress, 

ft as: - 

f=4.99 - 0.624) ; or 
aV63.0 

(2.22) t l.? 5 +a v/d 
d 

f=0.312 V 0.8 ff or -Lv -: ýkM (2.23) t cu d 

The applicability of equations 2.21 - 2.23 is rather 

limited since they are based on a very narrow range of 

av/d values. 
(39) 2.5.2.5. Warner and Hall developeb expressions for 

the principal tensile stress, ft) as a function of av/d 

and fhe concrete strength. 

For f 
cu -ý,. 

43.3 H/= 2 

ft01 
. 034 f 

cu 
(6.85 - 3.9 a v/d) for av 1-1.5 

d 
fC 0.034 f 

cu 
for av>1.5 

d 
For f 

cu --' 
43.3 N/mm 2 

aa 
f (6.85 - 3.9 v )(0.077 0.001 f )f for -X 1-1.5 td cu cu d 
f (0.077 - 0.001 f )f for (2.24) t cu cu d 
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40) 
2.5.2.6. Evans and Schumacher( conducted tests on 

5 rectangular and 49 1 section fully bonded post- 

tensioned concrete beams. The percentage of the pre- 

stressing steel, length of shear span, shape of beam 

cross-section and curing method were taken as major 

variables. 

Basically three shapes of cross-sections viere 

employed, rectangular and two I-sections with nominal 

b 
w/b ratio of 0.84 and 0.50 and hf/d ratio was found 

to range from . 29 to . 31. The I beams had solid end 

-blocks broader than flange breadth. 

Three types of steel were usea, viz, Lee-YcCall 

bars or Gifford-Udall cables of 7 and 5 mm diameter 

hard drawn prestressing wires. The percentage of 

the prestressing. steel, p, was varied between 0.21 

and 4.77. The beams were stressed, at minimum, 10 

days after casting and grouted immediately afterv; ards. 

fcp v alues ranged from 1.45 to 5.60 N and fcu 

ranged from 40.5 to 69.5 NIMM 2*A 

Most of the beams failed by shear-compression, 

diagonal cracking alone, diagonal cracking followed 

by web-crushing, or fle xur al failure. 13 of the 

beams failed in flexure and two showed failure of 

the web following the formation of cracks at the 

upper web flange junction. 

They anaiysed their test results and came out 

with two expressions, one for shear-compression 

failure and the other for diagonal crpcking failure. 
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For rectangAar sections failing in shear-compression, 

they gave: 
f 

Vu = 
(1.400 

- 1.388pjýR) 
cu v/d 

fcu ku (1.00 - . 42 ku) 

(2.25) 

where 
efpu/fcuL 0.72 

For I-section failing in shear-compression, 
ff 

Vu = (1.400 - 1.,,, p Ru)(3.45FýIu- - 0.19)kbd fc ku(l-. 42k 
f 

cu 
f 

cu av/d u 
(2.26) 

where 0.241 
f 

13U 1 0.8 fcU 

in the above two equations 2.25 and 2.25: 

-2 
k=1.2 - 0.66lx 10 fcu (2.27) 

and kf RR (0.534 + 0.063 Pfpe) (2.28) 
U fcU 

hf for I-sections. 
d 

For diagonal cracking load, they gave: 

fl f 
0.10 + 0.275ý V=3.33 ct 1+2,13) bwd (2.29) 

c fl 
ct 

They concluded that the lesser of the shear- 

compression load and the diagonal cracking load should 

be taken as the limit of usefulness of a beam failing 

in shear. 
The authors realised that equation 2.29 might 

not be applicable to other I- sections because 

the ratio hf 
was not varied in their tests, although 

it would be 
d 

expected to have an influence on the 

diagonal cracking load. 
0 
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2.5.2.7. -Swamy 
(41) 

carried out a preliminary investigation 

on seven post-tensioned, unbonded, hollow rectangular 

beams to study diagonal cracking failure. 

All the beams were 229 = by 152 overall with 

effective depth of 203 mm, having b 0.25 and c: ý w/b 
h f/d = 0.25. The prestressing steel used was. Macalloy 

high tensile steel bars and the percentage of the pre- 

stressing steel, _ 
?, ranged from 0.?? 0 to 1.540, giving 

a var 
. 
iation in f 

cp 
from 4.43 to 8.23 IV= 2. The con- 

crete strength, f 
cul ranged from 59.2 to ? 3.4 N/m.,, a 

2 

The beams v-#, ere loaded at third-points giving av/d as 

3.? 5. 

The tensile steel and the compressive concrete 

strains and deflections all showed essentially elastic 

behaviour until failure occurred. The principal tensile 

stress obtained from the strain gauge readings taken in 

I three directions at the centre of the web at the mid- 

point of the shear span were found to beer little 

relation to either the theoretical stresses or the 

tensile stress of concrete. Accordingly Swamy con- 

eluded that the principal tensile stress was an 

unsuitable criterion for predicting the cracking load. 

Failure took place by diagonal cracking in all the 

beams except two which failed by flexure initiated by 

yielding of steel and they gave warning of distress 

before failure. There was practically no difference 

between the cracking load and the ultimate load, so 

Swamy considered the diagonal, cracking load as a 

measure. of shear capacity of the beam. Because of 
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the small h=ber of the test beams no attempt was made 

to dev. elop an expression for the diagonal cracting load. 

2.5.2.8. Kar (42,43) 
conducted tests on 26 rectangular 

and 9 I-beams which were all post-tensioned and grouted. 

The rectangular beams were composed of ten 125 

by 250 mm, nine 125 by 300 mm and seven 100 by- 200 mm. 

The I-beams were all 150 by 300 in overall with b 
w/b 

as 0.254 and hl. ranging from 0.358 to 0.383. The 

prestressing steel was 5 mm diameter and 7= diameter 

high tensile steel wires. The concrete strength, 

measured as (0.8 f 
CU, 

), was varied between 27.9 and 

38.9 N/mm 2 
and the a v/d ratio ranged from 2,0 to 

6.0. 

The majority of beams failed by shear-compression 

and the rest by web-crushing. For the prediction of 

the shear-compression failure load, Kar based his 

analysis on a modified linear strain diagram, 

equilibrium of internal forces and equilibrium of 

internal and external moments. Then-he developed 

expressions which require a trial and prror procedure 

to determine VU for rectangular beams. 

Kar (42) 
examined the web of the I-beam and found 

that the plane of rupture prior to cracking was subject 

to non-uniform longitudinal compressive stress. Accord- 

ingly Kar proposed Seth' S(42) failure criterion under 
0 

combined stresses which is identical in nature with 

Coulomb's internal friction theory for biaxial stress 
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conditions,, to be appTied to the rupture conditions on 

the web of the I beam. Using the experimental results, 

KI ar(42)modified Seth's failure criterion to take into 

account the influence of av/d and developed the 

following equation for predicting the web-shear 

cracking shear force: 

Cr I bvi(O. 8 fcu) 
(i + C1)2- 2Cl(l + Cl) ve 2Q 

(N'Prcu) 

112 
L (i -Cl 

2) 
- -. 

) 2 
FT 

C- _u 

where Cr = 0.953 - 0.0565 av av ;ý2.0 
-h 757. 

or 
Cr 1.88 - 0.52 av 

h 

and - 
0.8 fcu + ftý G, 
0.8 f 

cu -ft 

a. . 2.0 
h 

where ft=0 . 624 1 0.8 f 
au 

(2.30) 
(44) 

2.5.2.9. Arthur carried out tests on 55 pretensioned 

concrete I beams, treating as major variables the solid 

end-blocks, the strength of concrete, prestressing 

force, beam cross-section and av/d ratio. 

Basically four cross-sections were used. Three of 

the cross-sections were 152 by 304 = in overall with an 

effective depth of 272 mm. The fourth one was 152 by 

228 mm with an effective depth of 200 =. The ratio 

of 
b, 

w/b was varied between 0.33 and 0.50, three differ- 

ent values viere chosen and 
h f/d was 0.19 and 0.25. 

The prestressing-steel was indented tensile steel 

wires with diameters of 2.65 mm and 5 mm. The aver- 

age effective prestress, 
f 

cp, ranged from 4.17 to 
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6.20 ll/= 2. The concrete strenja:, th, fcul varied between 

06.5 and 68.9 N/mm2. 

The av/d ratios covered ranged from 1.12 to 4.57. 

The mode of failure observed was mainly diagonal crack- 

ing either alone or followed by either web distortion, 

web crushing or flexural compression. Shear-compress- 

ion failure init. iated by a flexure-shear crack was 

also observed in-some cases. 

The solid end-blocks were found to have no effect 

on the cracking load. In 86% of the tests conducted, 

. the shear loads carried by the beams exceeded the 

diagonal cracking load, but this excess could not be 

predicted. Accordingly Arthur limited the useful 

capacity of a beam failing in shear tO the diagonal 

cracking load. The following expression was developed 

for its prediction. 
f 3.34 

Ve =f (1 + 22) bw hf (0.73 + T--) T7 (2.31) ct et v/d 

for hf/d 0.19 Is 

where the,, fl values are those given by Dewarls(55) 
ct 

eXpr'essions: 

fc't 
= 0.25 f 

cu 
2/3 for crushed rock 

or ft = 0.23 f 2/3 for gravel 
ý2.32) 

ct cu 

Equation 2.31 above is'based on two values of h f/d 

so its applicability is rather limited, and it tends 

to over-estimate the value of VC at high values of 

h. f/d (see Section 7.2). It is not applicable in the 
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case of a 'rectangular beam. Arthur suggested a 

reduction factor of 0.7 to equation 2.31 for design 

purposes, 
(52) 

2.5.2.10. Jena and Pannellcarried. out tests on two 

series of 20 two-span unbonded prestressed concrete 

I-beams of bw = 76.0 mm. The first series was 152 mm 

wide by 
. 
229 mm deep overall5with hf"= 57.5 and the 

- second series 152 mm wide by 305 mm deep overall, 

with hf = 70.5. Each of the twenty beams had a total 

length of 4.9 m and was continuous over two sPans of 

2.3 m each. The prestressing steel was two-strands 

of 12.7 mm nominal diameter. The cable profile is 

shown in Figure 2.1. The effective prestress in the 

strands ranged from 765 to 1061 NIMM 2. The concrete 

strength, fcul varied between 35.9 to 56.2 N/mm 2. 

Two-point loads were applied, at equal distances 

on either side of the central support. Of the 20 

beams tested, 17 failed in shear, remainder failing 

in bending. Jena and. Pannell compared the limiting 
a 

principal tensile stresses at the centroids of the 

17 unbonded prestressed concrete beams failing by 

diagonal tension cracking with others obtained from 

pretensioned and post-tensioned I beams with similar 

modes of failure and found that there was no dist- 

inguishable difference between the data derived from- 

both cases. During their tests they observed that 

the diagonal tension crack appeared suddenly in the 

web at or near the point of contraflexure and very 
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close to fhe centroidal axis of the uncracked section. 

Thus basing their analysis on the principal tension 

theory, Jena and Pannell using their own results and 

those of others 
(33j34j42) 

, derived expressions for the 

maximum principal tensile stress at the neutral axis 

as a function of a v/h and concrete strength. They 

gave the following expression for calculating the 

cracking shear force: - 

VI bw f 2. f+Af sin 9 
CQt+ 

ft 
cp s pe 

where ft is equal to 0.55V fcu 

a v/d 
(8) 2.5.2.11. Borisanskij and Nikolaev at the NIiB 

(Reinforced Concrete Institute) in Yoscow studied 

( S' 3) 

the conditions for the formation of diagonal cracks 

in beams. As well as I beams, prestressed T beams 

were studied with flanges in the tension or the 

compression zone. It was shown that diagonal cracks 

in the web do not develop at the places where the 

principal stresses, as calculated f; r elastic behav- 

iour, are assumed to be greatest. 

Gvozdev(8) in calculating the principal tensile 

stress took into consideration the compressive stresses 

acting on the horizontal planes near the points of 

8PPlication of loads and reactions. By using the data 

from Paduart's theoretical studies and the resultp 

of the deformation tests on beams by Borisanskij and 

Nikolaev, Gvozdev Proposed the following expressions 

for determining local compressive stresses: 
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2h( Ye 
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yy 

1 
-Y- y 

0.8 b-T h'r 0.8h) 
w (2.34) 

I where P is the value of point load, y is the distance 

between the point on the beam from the compression 

face and X'is the distance between the point on the 

beam and the section 'where the load is applied. 

Equation 2.84 predicts a zero value for fyy at 

the mid of shear span at centroidal axis for a v/dý 
2.0 

(d = 0.8 h) 9 
2.5.3. Shear strength under uniformly distributed load. 

(46) 
2.5.3.1 Wilby and Nazir conducted tests on 5 post- 

tensioned prestressed concrete I beams, 4 of them 

with grouted ducts and all with unreinforced webs 

to study their behaviour and strength under multiple 

point loads. Thebeams were all simply supported 

on sprins corresponding to L/d = 5.4. The beams were 

152 by 304 mm overall. Only one crobs-section, with 
'b 
bw=0.33, 

hf = 0.25 and effective depth = 254 =m, was 
d 

used, The prestressirig, force was developed through 

4e-McCall bars, which were stressed initially to 

413 N/mm 2. The only variable was the concrete 

strength which varied between 28.0 and 58.0 N/=2 

The modes of failure observed were the destruction 

of the web either by splitting along the line of the 

diagonal crack or by the crushing, of concrete due to 

the arch action. It was found that the critical 
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diagonal crack crossed the neutral axis at an average 

distance of 0.22Lfrom a support. Strain measurements 

were taken with electrical strain gauges forming an 

equilateral triangle at points on the centroidal axis 

0.22 L from each support. Those measurements showed 

that the discrepancy was quite appreciable when com- 

pared with the theoretical values of the D. rincipal 

tensile stress. This led 17ilby and Nazir to con- 

elude that the theoretical principal tensile stress 

as a means of predicting the initial diagonal cracking 

load has no meaning. They also f6und that the princi- 

pal tensile stress calculated from the measured strains 

corresponding to the formation of the first diagonal 

cracks did not compare with the tensile strength of 

concrete. In this respect their results were in good 

agreement with those obtained by Swamy(41) , although 

they pointed out that their experimental measurements 

were susceptible to some slight amoqnt of error because 

the strains at a point were measured along the three 

sides of an equilateral triangle enclosing, instead of 

precisely, at the point. Also they mentioned that 

Owing to the short span, the portion undergoing 

diagonal faiiure experiences some of the vertical 

stresses due to the load points. 

Although ! heir tests were restricted in number and 

the concrete strength %as the only variable, they der- 

ived the following expression for web-cracking load 

1 
qcL = 4.94 feu + 61.3 MI (2.35) 
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2.5.3.2. Kar 
(43) 

carried out tests on 14 post-tensioned 

prestressed rectangular concrete beams under uniformly 

distributed load with simply supported ends. The spec- 

imens were four beams 100 by 200 mm overall with L/d 

= 15,3 and ten 125 by 300 mm overall with L/d = 13.1. 

Ile found that the-critical section in shear-compression 

type of failure lay at 0.315 L from the nearest support, 

and this confirms Hanson and Hulsbos(4? ) 
observations 

on two pre-tensioned I-beams under the same type of 

loading who found the critical section in his I- beams 
C> 

at 0.33 L from the nearest support, 

Kar gave the following relationship between the 

point-load case and the uniformly distributed load 

case for use in prediction of the shear-compression 

failure load of the latter: 

qL B-33 Vu (av/d) 
u L/d (2.36) 

2.5.3 . 
. 3. Arthur , Bhatt and Duncan (48) 

studied the 

strength in shear of 19 pretensioneý concrete I-beams 

with unreinforced webs under uniformly distributed 

load with simply supported ends. The uniformly dis- 

tributed load was applied using the fire-hose tech- 
(47) 

nique used by Hanson and Hulsbos and by Leonhardt 
(61) 

and Walther 

Basically three different cross-sections were 

employed. The specimens w6re 153 by 304 = overall 

with b 
w/b ranging from 0.416 to 0.500, hf/d = 0.187 

and the effective deDth, d= 272 mm., All the bea=s 

were pre-stressed by nine 5 mm diameter high tensile 
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steel wires. The value of prestressing force at test 

ranged from 134 to 184 KN giving a variation in f 
cp 

between 5.40 and 7.00 N/mm 2. The concrete strength, 

given as tensile strength derived from split cylinýer 

value, ranged from 2.84 to 3.93 N/mm 2. The L/d ratio 

covered ranged from 6.18 to 9.52. 

It was observed that all the beams cracked on 

a line through. a reaction. In 9 beams the ultimate 

load was the same as or only slightly greater than 

the web-craCking load. Thus Arthur et al regarded 

the web-cracking load as the ultimate load for fail- 

ure in shear with unreinforced webs. The following 

semi-empirical expression was developed for predict- 

ing the web-cracking load. 0 
qL=f" (1 + 

fcP) "bw a (0.1 + 0.51f) (9.85 - 0.79 
c ct f/ d 

ct 
(2.37) 

The constant and the coefficient of 
hf in the second 

d 
bracket were chosen arbitrarily as only one value of 
h f/d was used. Equation 2.37 predicts a zero value 

for the cracking load at L/d = 12.47 which restricts 

iis applicability at high values of Vd. 

Arthur, Bhatt and Duncan in their analytical 

approach, took the principal tensile stress theory 

as a criterion for failure. A computer progra-mme 
based on the. simple theory of bending of beams was 

first prepared to. search the web for the position of 

maximum principal tensile stress. The results obtain- 

ed showed the maximum occurring either over the suPoorts 
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I 
at 3-5= above the centroidal axis or at mid-span 

depending on the value of the load and the length of 

span. From this it was concluded that the simple 

bending theory approach which neglected the effect of 

local stresses due to the reactions gave misleading 

information for maximum principal tensile stress in 

value-and position. Then another approach was attempt- 

-- ed based on elastic stress analysis which allowed 

approximately for the effect of the reactions, and 

vertical stresses due to the loading, in addition to 

normal bending and shear stresses. The reactions 

were treated as point loads on an infinite wedge. 

By equating the resulting maximum principal tensile 

I stress in the web to the tensile strength of the 

concrete, a reasonable agreement with their experi- 

mental results was obtained. 

2*6. Analytical Approach Using Finite Element: 

. Any attempt at a detailed analytical stress 
0 analysis over the whole loading range ofa prestr. essed 

concrete beam has to recognise the non-linear behav- 

lour of the beam due to cracking as well as non- 

linear material properties. 

The advent of computers and modern methods of 

analysis, such as the finite element method 
(56) 

led to attempts by some. investigators (57-59) 
to 

achieve the above objective. 

An accurate analytical determination of the 

displacements and the internal stresses and 
deform- 
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ations in a reinforced or a prestressed concrete 

structure throughout its load history is complicated 
(58) 

by a number of factors: 

The structural system is composed of two materials, 

concrete and steel. 

2. The structural system has a continuously changing 
topology due to the cracking, of concrete under 

increasingqoad. 

3.. Governing relationships and failure criteria under 
combined stress states are difficult to obtain. 
(See Section 3.6). 

4. The stress-strain relationship for concrete is 

non-linear and is a function of many variables. 
(See Section 6.2.2. ). 

5. Concrete deformations are influenced by shrinkage 
and creep. 

6. Deformations and stress are time-dependent on 
load and environmental history. 

7. The effect of dowel action in the steel reinforce- 
ment, bond bet%een the reinforcement and concrete, 
bond slip, and aggregate interlock at cracks are 
difficult to incorporate into a general analytical 
model. 

Although no attempt has been made to include all 

the above factors in an analytical'model, it seems 

that there is a potential for this finite element 

technique, mainly as a research tool, to explore the 

behaviour of Yeinforced-and prestressed concrete beams 

under the combined action-of shear and bending when 

more information concerning the above mentioned 

factors becomes available. 
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2,7. Concluding Remarks: 

The review of previous work on the shear strength 

of prestressed concrete beams without shear reinforce- 

ment shows that: 

2.7.1. None of tne existing expressions is generally 

applicable because:. 

1. The geometric properties of the cross-section 

-were treated differently. All but Sethunarayanan 
(34) 

and Arthur (44) ignore the flange thickness, hf, as a 

variable. Sethunarayanan included the effect of 

the flange thickness in his equation 2.17 in 

terms of the clear distance between flanges. On 

i the other hand Arthur used a constant value of the 

flange thickness, hf, throughout his tests and he 

included hf as a variable directly proportional to 

V. in his equation 2.31 Sethunarayanan and 

Arthur'S, - equations are o contradictory nature a 

with respect to the variable hfo 

2. All but Sozen et al(36)did not"include the effect 

of b /bw in their expressions. 

3. The data recorded in the literature for concrete 

strength is not uniform. A wide range of express- 

ions is used for the tensile strength of concrete. 
4. LTost of the tests were conducted at a v/d ratios 

between 2.5 and 4.2 except a few cases 
(33,34,44) 

which dealt with valu6s of a less than 2.5. 
v/d 

Sozen et al conducted tests on 99 beams, the 
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majority of them with av/d between 3.2 and 4.2,, which 
(45) makes equation 2.18 of a restricted scope 

2.7.2. Although only uniformly distributed load con- 

stitutes a practical type of loading, we find that most 

of the available test data relate to beams under one- 

or two-point load. 

2.7.3. The well-known failure criteria for concrete 

subjected to normal and shear stresses cannot be 

applied in the case of beams without being modified 

to take into account the affect of av/d* 
(25142) 

2.7.4. A fully mathematical solution is not practic- 

able in case of prestressed concrete beams subjected 

to combined bending and shear. 

2.7.5. There are gaps in the experimental results 

available which indicate that a wider range of. 

variables needs to be covered in a systematic way. 

a 

0 
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I CHAPTER 3 

STUDY OF THE PARAMETERS AFFECTING 

THE SIMAR STREINIGTH OF PRESTRESSED 

C01*-CRETE BEAMS AND CRITEMIA USED 

IN PREDICTING FAILURE OF CONCRETE 

3.1 Introduction: 

The review in the foregoing Chapter showed that the 

parameters which. seem to affect the shear strength of 

prestressed concrete beams without shear reinforcement 

are : the geometric configuration of the cross-section, 

the concrete strength, the intensity of the prestressing 

force, the position of the prestressing tendons and the 

shear span. 

Professor R. Walther, in a lecture on 'shear proble=s 

U, in reinforced concrete beams' given on 31st October 102 

in the Department of Civil Engineering at the University 

of Glasgow, disagreed with Table 5 of B. S. C. P. 110 *. part 1: 

(30) 19? 2, which takes the shear stress as a function of the 

longitudinal steel ratio. He claimed that the shear stress 

was a function of the amount of longitudinal steel in excess 

of that needed for bending, i. e. shear stress is a function 

of (As prov. ). In dealing with prestressed concrete beams 
(As req. ) 

the above ratio will have little influence on diagoral 

tension cracking since the area of excess longitudinal 

steel likely to be used is small compared with that likely 

to be used in reinforced concrete beams. Hence that factor 

will be neglected and factors mentioned above will be 

discussed in more detail. 
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3.2. The Geometric Configuration of the Cross-section: 

The effect of the cross-section configuration 

on shear strength has been shown by test results 
(17 60-62) 

obtained by several investigators I. Ferguson 

and Thompson 
(60) 

and Leonhardt and Walther(613 showed 

that failure loads increase with increasing web breadth. 

For instance, Ferguson and Thompson's beams Al and D2 

differed only in web breadths, which were in the ratio 

. of 1.75 -. 1. The ultimate shears of these two beams 

were found to be in the ratio of 1.79 1 1, i. e. the 

ultimate shear strength was-directly proportional 

to the web'breadth. 

The effect of flange dimensions on the shear 

strength was demonstrated by Taub-and Neville 
(17) 

on rectangular and T beams with comparable web 

breadths. Similar tests on flange width were report- 

ed by Placas and Regan (62) 
on T beams with 150 mm 

web breadth. It was found that the beams with 

300 mm or wider flanges had about 20% greater ulti- 

mate shear strength than rectangular beams. It was 

-concluded that only the portion of the flange 

immediately adjacent to the web could transmit a 

component of the shear in the compression zone. 

The effect of beam size was shown by Leonhardt 

and Walther's (61) 
, Kani's 

(63) 
and'Taylor's 

(64) 
tests. 

Leonhardt and Walther concluded that in beams with 

external dimilarity but constant bond quality, shear 

strength was fairly independent of the beam size. 
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Kani, using beams differing only in depth, found that the 

shear stress at failure decreased with increasing boom 

depth. Koni concluded that as the depth increas6d, the 

splitting forces due to the 'wedging bond action' of the 

reinforcement increased, and as a result, the failure of 

the two deeper series of Kani's beams involved splitting 

along the reinforcement while the smaller beams did not. 

Taylor showed that the size effect could be reduced if 

the size of the coarse aggregates was changed in proport- 

ion to the beam size. Taylor 'suggested a reduction factor 

of 0.6 to the she. ar stress carried by a concrelte beam with 

d>4.0. 
b 
3.3. Concrete Strength. 

Shear does not directly cause the failure of reinforced 

or prestressed concrete beams, but its effects appear as 

tensile stress leading to diagonal tension cracks. Although 

the tensile strength of concrete is not convenient for use 
in design, as the compressive strength is the usual prop- 

erty specified, it sounds reasonable to relate the diagonal 

cracking load to the tensile strength of concrete. The 

values for the tensile strength of concrete reported in Ike 

literature were obtained in a variety of ways. 

-Sethunarayanan used the cylinder splitting value. Sozen et al 

related the modulus of rupture of concrete to cylinder 

compressive strength and used two-thirds of this derived 

modulus of rupture as a measure of the tensile strength of 

concrete. - Evans and Hosny took the xensile strength of 

concrete as directly proportional to end Evans 
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and. Schumacher used 0.72 of the tensile'strength obtained 

from briquette tests. Arthur used values derived from 

Dewar's expressions. 

As the indirect tensile strength of concrete derived 

from the split cylinder value tends to give more uniform 

results than other types of tensile tests, it is used 

in this investigation as a measure of the tensile strength 

of concrete. 
3.4 Prestressing Force: 

As already mentioned the prestressing force induces 

---, ---extra compressive stresses which reduce the-final tensile 

stress resulting from shear. The position of the prestress- 

ing force creates a variation across the depth of the beam 

in the value of the prestress in the concrete. Since the 

position at which the crack will open is unknown, the value 

of the prestressing stress at that point will be taken to 

be proportional to*the average prestress in the concrete, 

f Also, as the value of the inclined tension cracking CT) 0 
load depends to some degree on the presence or absence of 

flexural cracks, it is expected that the eccentricity of 

the prestressing force should have some effect. So the 

effective depth, d, rather'than the overall depth, h, 

will be considered as a variable. Some investigator&42,52) 

took h as a variable where no flexural cracks were expect- 

ed . 
3.5 The Shear Span: 

The importance of this variable on the shear strength 

has been emphasised by the majority of investigators. Thus 

the effect of the bending moment and the vertical stresses 
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due to the relative positions of the failure plane, the 

load and the reaction will be introduced by considering 

the shear span, av 

3.6 A Failure Criterion for Concrete. 

The various modes of shear failure all involve 

cracking or crushing of concrete under complex state of 

stress as, e. g., when diagonal cracking, shear-compression 

failure, splitting or web crushing occurs. Several studies 

have attempted to determine which of the classical failure 

theories is most applicable to concrete, but Goode and 

Helmy 
(67) 

state that none of these theories successfully 

pred. icts its failure under all complex states of stress. 

The strength of concrete under combined shear and direct 

stresses seems to be well predicted by -the octahedral 

stress theory 
(68) 

0 The simplest cracking criterion is 

based on the principal tensile stress or principal tensile 

strain theories of failure. These approaches have been 

shown to be useful in predicting tensile failure when 

applied to certain simple state of stress bnd have 

been shown to give reasonable results when applied to 

the tensile cracking of a reinforced concrete beamý under 
(70) Combined shear and bending moment Frequently the 

stresses in a structure can be idealized to a biaxial 

state of stress with the stress in the third direction 

equal to zero as shown in Figure 3.1. Kupfer, Hilsdorf 
(71) ('79) 

and Rýsch ondat er, in 19 72, Liu, Nilson and Slate' *- 

have shown that as f1 and f2 are varied, the element 

shown in Figure 3.1. a will have the strengths shown by 

the solid lines in Figure 3.2. Figure 3.2 is sy=etrical 
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about a 45 0 axis and it may be divided into three regions: 

M: biaxial compression, (II) biaxial tension, and (III) 

combined compression and tension. The failure criterion 

based on uniaxial strengths is given by the rectangle 

indicated by dashed lines. 

Several observations can be made: (a) In Region I 

biaxial compression increases the compressive stress 

at failure above the uniaxial compressive stress, (b) 

In Region II biaxial tension has little effect on the 

tensile stress at failure, and (c) Region III shows 

that the combined compression and tension may appreciab- 

ly reduce both the tensile and the compressive stresses 

at failure. ý 
(73) Alternatively,, Mohr's theory of failure yields 

acceptable strength predictions for either of the cases 
(52996) (74) 

shown in Figure 3.1. Parabolic and straight line 

envelopes have been proposed for the family of Mohr's 

circles representing failure conditions. Any stress 

condition that corresponds to a Mohr: s circle that is 

tangent to or intersects this envelope is assu=ed to 

represent a failure condition. 

Based on either the Mohr theory of failure or the 

Kupfer, Hilsdorf and Rusch diagramS3 relationships have 

been derived, (25,42974-76) Figure 3.4yfor the strength 

of elements str6ssed as shown in Figure 3.1. b. This 

envelope, Figure 3.4, represents all the combinations 

of shearing and axial stresses on the vertical plane of 

the element shown in Figure 8.1. b which results in 

failure of the element. The implication, of such diagram 
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is that the. -presence of shearing stres3es will reduce the 

compressive strength of concrete(25). Combined shear and 

compressive stresses occur in the compression zone of 

beams except in regions of constant moment. 

3.7. Principal Tensile Stress and Diagonal Tension Cracking. 

(77) racks Guyon found that the diagonal tension c., 

always coincided with the paths of stress trajectories, 

but he did not show at which positions the principal 

tensile was critical. MacGregor et al(51)regarded the 

principal tensile stress at the elastic centroid as 

critical, whilst others 
(33,37,39,41952) believed that 

this principal tensile stress should be related to con- 

crete strength and the a v/d ratio. However, when Kar 
(42) 

tried to relate the principal tensile stress to FO. 8 feu 

and to a v/d using his own results and those of other 
&33,34,86) 

the plotting showed a considerable scatter even for the 

same value of av/d* He obtained slightly better predict- 

ions of the cracking load by the use of Mohr's failure 

theory for concrete subjected to combined shear and 

normal stresses after he introduced a correction factor 

evaluated from the experimental data. This was a function 

of a v/d, equation 2.30. 

Bhatt(53)by using a method which allows approxim- 

ately for the effect of local stress. concentrations on 

the normal bending and shear stresses in a pre-tensioned 

I-beam, took the maximum principal tension in the web 

as a criterion and this was found to occur at the lower 

web - flange junction for the majority of cases analysed. 

He concluded that the maximum principal tension cannot 
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be the onlS, criterion in the case of the diagonal cracking 

of the web. Then he used the maximum principal tension 

and the Bresler Pister 
(68) 

criterion'to determine fail- 

ure loads in tests carried out by several other investigat- 

ors. 
(34936,44) He found ýhat both criteria predicted 

approximately equal failure loads and the Bresler - 

Pister criterion always predicted failure at mid-shear- 

span along the lower web-flange junctions. He also found 

that-both approaches showed that the Ov/d ratio had an 

important effect on the predicted failure load. 

From the above discussion it emerges that the stress 

conditions in the web of a prestressed concrete I-beam are 

extremely complex. It is, 
-however, 

reasonable to assume 

that failure will occur when a failure criterion for con- 

crete. is reached at some point in the shear span. 

In the circumstances, a rational semi-empirical approach 

based on dimensional analysis has been adopted. 

3. b. Semi-empirical Approach Based on Dimensional Analysis. 
- 

By applying the dimensional analysis technique to 

the variables that seem to affect the value of the 

diagonal cracking load, the basic format of the express- 

ion can be obtained; then regression analysis can be 

applied to determine the empirical constants and their 

relationship in order to obtain agreement with test data. 

Referring to Section 3.1, the relationship connect- 

ing the variables that seem. to affect the value of 

the diagonal cracking load for simply supported pre- 

stressed concrete beams under one- or two-point loading 

is indicated by the equation, 
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f (Vcl'fcpl b, bw, d, fLt, av, hf )=0 (3.1.1) 

By applying Buckingham's Pi theorem 
(78) 

, equation 

3.1.1. can beexpressed in terms of a complete set 

of dimensionless products. Any product TI of these 

variables has the following form: - 
k* k5 fCjk6 k7 hýB Vckl fk2 k3 

bw4 dt av cp bf (3.1.2) 

where kl, k 29 ------9k. are the exponent 
-s 

of 

a dimensionless product. 

If F (= Force) and L (= Length) are the basic 

dimensions, then the dimensions of the variables 

in equation 3.1.1 are: 
-2 -2 

V=F, f, FLfFL and bw b= hf 
c ct cp 

= av L 

Applying Buckingham's theorem, 

No. of variables =8 

No. of basic dimensions = 

No. of dimensionless ratios = 

Then a complete set of 6 dimensionless products 

of the variables can be derived. -Since 
av/d and 

h f/d are seen to be dimensionless products, the 

ah variables v and f may be tentatively disregarded. 

Then thb dimensional matrix is 

vfb bw df 

001 
11 -2 

where each column consists of the exponents in the 

dimensional expression for the corresponding variable. 

In the above dimensional matrix, the rank is Uo and 
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the nuýber of variables is six. Consequently, there 

are four dimensionless products in a complete set. 

The equations cor: ýesPonding to the dimensional 

matrix are: 

k1 4- k2+ 

2k 2+k3+k4+k5 

The matrix solution is: 

VC fcp b bv, 

31000 

40100 

k60 

-2k6 0 (3.2) 

d ct 

-2 -1 

0. -1 

11 50010 -1 0 

171 60001 -1 0 

Acc'ordingly, a complete set of dimensionless 

products is: 

'IV hV 171 --Tjf II cf 1234 '44 fet 
b 

and 
bw 

5d6 7F 

By referring to Section 3.2, the following transform- 

ation is made to achieve greater experimental control 

of the variables: - 
av 11 41 = 

hf 
113/1-1 

Vc 
Jj 

d2-63 d bwd r ct 

fcP b0= bw , 14 rc-t 371 5 /Il 615 and Ilra 
-zr 

The justification of replacing f(IT 111121 
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by f (11ý, 1 IIý 21 I: [ý) is that the relationship 

-I among 1 11 1121 IC -_-and 1) is unknown, all that is 

known is that a relationship exists. A relationship 

among 11 11 
ý1121 

and 1161 implies a relationship 

among 171 11 1'1 1 
_--and 11 1 since the variables 1 21 6 

Ill IT 21 _, and 11 6 are determined by 1719 
J* If 

IT 21 -, --. and 176 and vice versa. 

Consequently there is a function Fo, such that 

h P0 fcP 
Ibf, 

av, LW 
0 (3.3) 

.0 f ct bw dd 

This may be written in the explicit form: 

ve 
J? l bI hf 

I 
BVI ýw (3.4) 

bwd f 
ct 

bw 7F -d d) 

where I'll is a functional notation. 
Th e term bw will be dropped because - of its negligible a- 
effect on the value of the cracking load within the 

practical range of normal proportions 
(63979). 'Kani (63) 

did not find any significant change in shear stress 

when the beam breadth was changed from 150 to 600 mm 

and statistical studies by Iyengar et al 
(79) 

on a 
0 

large amount of data showed no significant effect of 
bw in the range from 0.25!; bw 41.0. d --ff- - 

Consequently equation 3.4 will take the more 

specific form: 

vc P2 fb9 hf 
, 

av (3.5) 
bd f-1-- w ct f ct 

EW dd 

where F2, is a functional notation. 
I 
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I _CIIAPTER 
4 

EXPERIMENTAL WOMý 

4.1. Test Soecimens: 

The experimental progra=e was planned to demonstrate 

the effect of each of the dimensionless parameters shown 

in equation 3.5 on the value of the cracking load, VC. 

The grouping of the variables in the manner shown, in 

equation 3.5 requires a wide variation in the cross- 

sectional properties of the beam. As design formulae 

should be the logical outcome of any research of this 

naturej the test specimens were designe'd to resemble 

as far as possible, those which could be used in pract- 

ice. Accordingly h f/d and b /bw were allowed to vary 

systematically within the bounds of realistic values. 

hfid was varied from zero to 0.33 and b 
w/b 

from 0.25 

to 1.00. The av/d ratio ranged from 1.25 to 6.00 and 

the L/d ratio from 6.0 to 17.78. The overall cross- 

section dimensions were 200 by 300 mm, and the spec- 

imens were 3.25 m and 4.75 m in length; the latter 

being'used with L/d ratio of 17.78, Seven different 

cross-sections were tested under one-or two-point 

loading, and five cross-sections, under uniformly 

. 
distributed load. Full details of the test SDecimen 

cross-sections and geometric properties are given in 

Figures 4.1,4.2 and Table 4.1 
1 

4.2. Materials: 

4.2.1. Cement: 

"Ferrocrete" rapid-hardening Portland cement and 

"Blue Circle" ordinary Portland ce=ent were used; the 
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30 

0 7mmwire 

Figure 4.1. 

Table 4.1 

i2-5mm strand 

Figure 4.2 

Becm 
ma rk 

ti 
I 

mm 

4. 
t2 

mm 

bw 

mm 

1 
Axio-3 
c 
MM2 

1 
lxlo-7 
c 
MM4 

A 37-5 1 2-S 75 3 3.44 34-97 
B # 20.0 so 29-25 34.1-3 

c S7-5 12 -5 75 38.44 39-63 

D It 20-0 so 35-25 39-30 

E 77-5 1 2.5 75 43-44 42.5 6 
F & 20.0 so 41-25 42-50 
G 00.0 00.0 200 60-00 45-00 

Geometric properties of cross-section 
of the specimens 
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latter was used owing to difficulty in obtaining the 

rapid-hardening Portland cement at one period. 

4.2.2, Aggregates: 

Mid-Ross sand and gravel were used for all beams 

but six. When Mid-Ross stopped production, IVndford 

sand was"used for beams D11 to D14. The maximum size 

of the aggregate used was 10 m. Both of these mater- 0 

lals are of morainic origin, and the gravels are 

irregular in shape. 

4.2.3. Concrete !.. ix, * 

The mix was designed(80)to attain about 35 II/=2 

cube compressive strength in 5 days. Slight differences 

I in the mix proportions were required from time to time 

to achieve this strength. Full details of mix proport- 

ions and their properties are given in Table 4.2. 

4.2.4., Prestressing Steel: 

In ?2 of the beams, the prestressing steel was 

seven 7 mm diameter indented (Belgian pattern) high 

tensile steel wires. Plain wires of the same diameter 
0 

had to be used-in six beams owing to difficulty in 

obtaining indented wires at'one period. At a later 

stage 12.5 mm diameter strands were used with 13 beams 

, so as to cover high ratios of av/d and '/d and to see 

the effect of different arrangements of prestressing 

tendons. Figures 4.3 shows the stress-strain behaviour 

and the properties of a typical batch of each type. 

4.3. Fabrication of Soecimens: 

4.3.1. The formwork Nvas designed (81)suff 
iciently rigid 
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TABLE 4.2 

Concrete Properties and 
Details of Prestress. 

Beam ' 
at 

I 
Mix proportions 

S, _ 
- 

C. F. f 
u 

f 
ci 

f I 
ct 

f Ty- Apsfpe 
mark test 

um 
p 

c 
29 

cu 
at at pe 

Max 
in 
d W C S 2 / 

tý t 97ý2 
& 

of 
te- 

4l 
121 

ays G mm M N l N 

A1 26 . 40 1.00 . 80 2.50 20 . 88 54.5 431.4 51.3 3.50 7P 247.5 
2 137 35 . 94 58.8 44.0 54.3 3.49 71 225.7 

.3 
20 25 . 91 54.5 42.8 55.3 3.41 " 249.5 

4 29 - - 53.8 45.5 52.8 3.12 " 247.5 
5 29 - - 57.8 43.0 55.6 2.94 " 243.4 
6 42 - - 54.0 40.8 59.0 3.43 258.3 
7 27 20 . 85 60.3 40.5 51.0 3.68 251.5 
8 13 . 44 1.00 . 95 3.00 20 . 92 50.1 34.2 43.7 2.71 258.0 
9 28 is of 25 . 91 53.0 34.5 42.8 3.15 246.5 

10 27 it it - - 53.8 37.3 45.2 3.45 219.4 
11 25 . 40 1.00 1.24 1.86 35 . 92 52.6 38.3 40.9 3.08 1? 9.9 
12 14 . 44 1.00 . 95 3.00 - - 49.1 31.5 36.5 2.59 197.0 

B1 35 . 40 1.00 1.24 1.86 45 . 90 50.2 36.0 46.3 3.36 71 206.8 
2 86 111 1 of fr 50 . 96 50.3 37.8 50.5 2.86 " 215.9 
3 35 35 . 92 59.5 41.3 58.0 3.15 " 209.1 
4 27 35 . 85 51.3 33.0 48.8 3.30 " 214.7 
5 64 45 . 95 - 38.0 46.4 3.26 " 164.1 

.6 49 . 40 1.00 . 80 2.50 30 . 90 - 37.0 52.1 3.30 194.6 
7 23 of It it 35 . 88 - 39.0 50.6 3.52 209.7 
8 28 It to 25 . 89 --; -3 8.0 41.8 3.04 204.8 
9 33 it to 30 . 87 54.8 47.0 52.8 3.01 165.0 

10 19 It it 45 . 91 - 40.0 53.5 3.72 219.1 
11 184 It it 45 . 89 - 41.0 53.5 3.51 " 229.9- 
12 26 41 1.00 . 84 2.61 - - - 34.5 46.0 3.00 " 7 141 . 13 18 of it of - - - 29.5 41.5 2.90 " 144.1 
14 24 it It It - - 33.5 47.0 2.76 1??. 5 
15 13 31.0 41.4 2.91 184.0 
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TABLE 4.2 (Cont'd) 

Beam Age Mix proportionp Sl-',. '*. F. f 
cu 

ff 
ci cu 

f 
ct 

Ty- Apsfpe 

mark at 
test 

um- 
p 

28, 
at at 

pe 
of max. 

in l 
I t est test te- KN 

dayE w c S G mm N- N/=2 N IMM 2 NIMM 2 nd- 
on, c 

C1 21 . 40 1.00 . 80 2.50 20 .. 88 54.5 43.4 50.0 3.52 ?P 25?. 9 

2 120 If 20 . 88 58.8 44. C 46.5 3.33 ?1 240.4 
3 26 25 ' . 91 54.5 42.8 55.9 3.68 ?1 242.6 
4 25 If - - 53.6 45.5 53.1 3.01 246.0 
5 2? - - 5?. 8 43.0 51.0 3.29 241.? 
6 42 30 . 89 54.0 40.8 59.0 3.43 258.4 

-7 28 20 . 85 60.3 40.5 50.8 3.40 250.7 
8 15 . 44 1.00 . 95 3.00 20 . 82 50.1 34.2 45.0 2.74 252.5 
9 29 . 44 1.00 . 95 3.00 25 . 91 53.0 34.5 43.8 3.17 244. %, 

10 23 11 If it - - 53.0 37.3 42.3 3.22 221.8 
11 21 . 40 1.00 1.24 1.86 35 . 92 -52.6 38.3 45.0 3.14 188.4 
12 13 . 44 1.00 . 95 3.00 - - 49.1 31.5 35.0 2.49 200.3 
13 20 . 41 1.00 . 84 2.61 25 . 95 - 34.5 46.9 3.48 153.4 
14 26 If it it 40 . 92 - 29.5 46.5 3.14 154.6 
15 23 it to it . - - - 33.5 47.0 3.45 194.9 
16 14 it to fl - - - 31.0 41.4 2.91 207.2. 
1? 28 . 40 1.00 . 84 2.61 - - 30.9 37.2 2.70 2S 98.0 
18 31 - 34.0 45.8 2.89 95.? 
19 36 It - 37.0 51.0 3.01 94.2 
20 379 . 41 1.00 0.81 2.61 34.0 34.2 2.97 108.0 

D1 26 . 40 1.00 . 80 2.5 so . 90 - 37.0 48.6 2.94 ?1 224.9 
2 13 IF I# If 30 . 90 - 39.0 49.4 3.05 " 22?. 3 
3 30 to 35 . 88 - 38.0 53.3 3.. lo " 188.9 
4 34 is 30 . 88 54.8 47.0 51.5 3.30 176.9 
5 726 45 . 91 - 40.0 45.0 3.55 187.2 
6 611 It 45 . 89 - 41.0 54.1 3.52 188.6 
? 28 . 40 1.00 . 84 2.61 - - - 30.9 37.2 2.? 0 2S i98.7 
8 31 is It - - - 34.0 45.8 2.89 95.9 
9 36 37.0 51.0 3.01 95.2 
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TABLE 4.2 (Cont'd) 

Beam Age, sl- C. F 
at Mix proportions um- 

mark test p 
in 
days W1 CI Sl G mm 

D10 378 .4 
Ila 14 " 
lit 30 if 
12 22 .4 
is 15 11 
14 14 .4 

1.00 . 81 2.6 
it 
it it 

1.00 . 81 2.5 
it, 

1.00 . 81 2.5 

cu 
f, 

ci 
f 

cu 
fI 

ct 
Ty- Apsfpe 

28 
at at 

Pe 
Of max* 

, test test te- , ICII 
/mml N/mný j IT/mm2 l N/=2 I ndj 

on 
' 

451 . 89154.81 34.01 34.21 2.9712SI104.8 
46.5 56.0 3.45 " 109.3 

43.5 54.8 3.29 " 108.2 

46.0 61.3 3.34 " 119.9 

34.2 46.5 1 2.52 if 1 116.0 

36.9 43.9 2.88 " 121.4 

E 11 42 44011.001 .02.50120 1 . 91157.11 41.01 64.11 3.731711190.3 

-2- 11 it ff It 15 . 92 53.2 41.8 52.? 3.1? " 160.8 
3 11 ft it 20 . 85 56.5 42.3 55.? 3.3? " 224.2 
4 11 it it 20 . 96 54.0 45.5 50.0 3.29 " 225.0 
5, 8 it 30 . 90 55.3 40.4 53.1 3.1? " 245.9 
6 -14 20 . 8? 53.2 40.8 50.0 3.22 " 2? 4.5 
? 15 20 . 91 53.1 38.8 46.0 3.10 7P 242.4 
8 138 25 . 90 54.0 4?. 0 57.2 3.55 233.0 
9 20 . 40 1.00 . 84 2.61 - - - 30.0 40.8 2.93 ?1 189.3 

10 20 11 if ft - - - 37.1 42.1. 3.31 195.5 
11 27 . 40 1.00 . 84 2.61 - - - 32.5 39.5 2.87 1 216.8 
12 47 " of ff it - - - , 31.7 43.5 2.70 194.2 

F 11 33 ý4011.00 11.2411.86145 1 
. 90150.2 1 36.0 1 47.51 3.141711187.7 

2 34 it 50 . 96 50.3 37.8 49.3 3.30 193.5 
3 41 35 . 92 59.5 41.3 54.9 3.30 220.7 
4 21 35 . 86 51.3 83.0 49.4 3.08 242.1 
5 62 45 . 95 - 38.0 52.6 3.03 137.4 
6 21 41 1.00 . 81 2.61 - - - 30.0 42.3 3.10 " 178.9 
7 20 of it - - 37.1 40.9 3.03 " 188.0 
8 28 32.5 42.1 2.99 " 207.5 
9 47 31.7 43.7 2.80 " 186.0 
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TABLE 4,2 (Cont'd) 

Beam Age Sl- P. 
If 

f i ff 
lApsfpe 

T w at . Mix -prop orti ons um- cu 
2S c . cu ct y - 

mark test p at at pe 
of 

pax, 
in test test te KN 
days 

w c S G mm .1 
/4 N/mE N/mg /mm 2 nd r on 

G1 40 . 40 1.00 . 80 2.5 C 20 . 91 57.1 41.0 65.8 3.69 71 192.0 

-2 13 15 . 85 56.5 42.3 54.5 3.45 224.4 
3 14 15 . 95 53.2 41.8 53.0 3.64 139.8 
4 12 20 . 96 54.0 45.5 53.2 3.30 213.0 
5 7 30 . 90 55.3 40.4 43.4 2.71 223.0 
6 12 90 . 87 53.2 40.8 49.? 3.48 252.0 
7 20 20 . 97 53.1 38.8 46.0 3.11 7P 239.3 
8 903 25 . 90 54.0 47.0 '54.4 3.94 230.0 

Notes. 

Mix proportions were by weight. W= water, C= cement, S= sand 
G= gravel(10= maximum). Where the cement proportion is under- 
lined the cement used was ordinary Portland Cement, otherwise 
R. H. P. C. was used. C. F. = compacting factor. 

2. f 
cu 28 

= compressive strength on 100 mm cubes at 28 days. 

. 
(Average of 3). 

f= tensile strength of concrete. (Cylinder split test). ct 
at' test 

3.71 = Seven 7 mm indented prestressing wires. 
7P = it plain . of 
2S = Two 12.5 mm prestressing strands. 
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Figure 4.3: Typical stress-strain curves for tendons 

used. 
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I 
and tight to prevent loss of mortar from concrete at 

all stages and to maintain the forms in their correct 

position, shape and profile. 

Specimens were cast in pairs in a semi-long-line 

process in rectangular steel moulds with timber web- 

formers fixed inside to give the required I-sections. 

Seven wires were used in the wire-stressed beams, two 

being placed in the top flpnge to give the correct 

distribution of Prestress, as shown in Figure 4.1. 

Later on, two 12.5 mm diameter strands were used, as 

shown in Figure 4.2, together with one untensioned 

7 mm diameter wire placed in the top flange to provide 

I an anchorage for the end zone stirrups. The prestress- 

. 
ing tendons for the manufacture of a pair of beams 

were tensioned and the two beams were cast at the same 

time'.. using the same. mix. The prestressing tendons 

were passed through the bearing platesIshown in Figure 

4.41-of the prestressing frame and the end plates of the 

forms; the former provided the reýction for the tension- 

ing force. The anchorage was provided by the use of 

split-wedge and barrel-type anchor grips. Before tension- 

ing, the tendons were free of rust and were cleaned of 

surface oil. No other reinforcement. was used except in 

the end zones where 3 mild steel stirrups of 3.2 = 

diameter were provided. These stirrups were designed 

according to Marshall and-blattock's(82) formula given by: 

At=0.02 A 
PS 

f 
Pi 

( 4.1) 
f 

sv 
Lt 

where At = total cross-sectional area of web reinforce=ent. 
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(a) JncR Anchor Pracket m] Jack 'F-c e, plate 

(b)ea-, ' li, -. cIior-! ) ra c I-, etv. n] Fa cop la te 

Figure -. 4: The M-n-ring Plotes of the Pro-strccsýýing '12, cl 
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One stirrup at each end was extended to form a hook for 

lifting the beam. 

4.3.2. Tensioning aDnaratus: 

Two alternative tensioning devices were employed, 

one for the wires and the other for the strands. For 

the wires a hand-controlled P. S. C. monowire jack oper- 

ated by a motor-driven hydraulic pump with a delivery 

pressure of 70 N/mm 2 
was used. A C. C. L. 160 KN - 

Stress-0-Yatic Jack was used to stress the 12.5 mm 

strands. This Jack operates with a calibrated load- 

cell. Figure 4.5 shows the two tensioning devices. 

4.3.3. Tensioninp, process: 

The distance between the outer faces of the bearing 

plates was approximately 7.3 m. All the tendons were slrd: %3ýLL 
/stressed individually. The stress in each tendon was 

increased at a gradual and steady rate. The tendons 

were overstressed by about 5% for two minutes to reduce 

stress loss due to relaxation of the prestressing steel 
(83) 

0 

Then the stress was reduced to the required level and 

the tendon was anchored. After the anchorage of the 

tendon, the force exerted by the tensioning apparatu6 
I 

was decreased gradually to avoid any shock to the tendon 

or anchorage. 

The prestressing force applied was checked by strain 

measurements on the wires by means of 203 mm Demee gauge 

readings on collars attache%,. 'A to the wires. The strain 

developed in the wires was taken as the difference in 

strain readings, after the slack was removed and the 

tendons were. locked. This was checked against extension 
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Figurd 4.5: Tensioning Devices 

(A hand-controll-e-I P., '-j. C. monowire jack , Land n C. C. L. 
160 KNT Stress-o-1, latic Jack) 

Di mensi 0 ns dePe ndon Zhe 
g co me try Of cr oss-sectic n\ 

C, (3 
2345678 etc. 

,Sh 

lom 
Iii@ 

101 mm C/C -I- Q3- iý -F 
C 

01 

Appr ox imu t ely 1000 mm 
_]_ 

d'epends or. becim I 

Figure 4.6. Arr3nr7, e-', l, ent of gauge rarks, for aý, n-surinp, 
the concrete strain. (The gauge marl-s were ý-Iued to both 

siýes o-P the bonn). 

68 



measurements taken for the wires by a. scale attached 

to the wire and the jack. The calibrated pressure gauge 

built in the hydraulic system and Vogtmeter were used 

also to check the wire force. For the strands, the 

tendon force was checked against extension measurements, 

the calibrated pressure gauge reading and the load-cell 

attached to C. C. L. device reading. 

4.3.4. Mixing and casting: 

The concrete was cast after the stressing of the 

tendons. It was mixed in a pan-type mixer. The aggreg- 

ates and cement were mixed dry, then water_was added. 

I Slump, and compacting factor were determined immediately 

after mixing. The number of batches needed for a pair 

of beams varied between 8 and 12. The batches were 

. plaýed in layers of uniform height through the beam. 

Meanwhile control specimens were made with concrete 

taken from all the batches in standard steel moulds 

placed on top of vibrating table. Four 150 x 300 mm 

cylinders and six 100 mm cubes weremade with each beam. 

Compaction was achieved by vibrating the mould 

0 

by means of a Tremix vibrator bolted to the centre of 

the mould base. The mould was supported on hard rubber 

cushions. A poker was also used in the early stages 

when one of the Tremix vibrators was out of order. 

A small vibrating table was placed on the top of the, 

specimen near the end zones to improve compaction in 

those zones. 

After casting was complete, the tops of the cast 

specimelis were trowelled smooth. After 6 hours, the 
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bolts on the sides of the shutters were loosened and the 

specimens were covered with damped sacks. 

After 24 hours, the side shuttersvere removel,. 

Experience showed that the removal of the form sides 

could be achieved without damaging the specimens by 

attaching two steel plates of appropriate dimensions 

to the surface of the timber in contact with concrete 

near the ends of the form sides and then by jacking 

against those plates through a bolt acting-in a nut 

welded to the outside of the form. 

The control specimens were then demoulded and 

placed on the top of the specimens, and all were then 

I cured under damp sacking covered with polythene for 3 

days. 

. After 5 days, and provided that a cube test 
(30) indicated that the required strength had been reached I 

the wires were released all together and uniformly 

0 
by an inviard. movement of one of the bearing plates. 

Before and after transfer, readings7Yere taken on 

Demec points which had been fixed to the specimens 

for estimating the prestressing losses and to investi- 

gate the transmission length as shown in Figure 4.6. 

The results of these are shown in Figures Aeý and A. 2 

in Appendix A. 

4.4. Instrumentation. Loadinc, ADDaratus and Test 
Procedure: 

4.4.1. Instrumentation is required to give quantitative 

results to test the theoretical work involved. In 

concrete structures due to local cracking and uncertaint.,; 
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I 

about the stress-strain relationship of concrete, the 

instrumentation can hardly be as efficient as desired. 

Despite this some instrumentation intended to reveal 

the behaviour at different stages of loading was 

undertaken. Load-deflection curves for the mid-span 

were recorded for all the beams. Those load-deflection 

forice 
(84) 

curves were used in the way described by I 

to. obtain an estimate of the prestressing force actually 

present at the time of test whenever this was possible. 

The shapes of these plots were not always sufficiently 

clearly defined, so in the final calculations, the 

effective prestressing force estimated from the surface 

strain measurement was used. A typical example of 

calculating the prestressing losses using C. E. B. - 
(27) (30) F. I. P. and B. S. C. P. 110 Recommendations are 

shown in Appendix B. 

4.4.2. All the beams were tested simply supported. 

The majority under either-central point loading or 
It 

symmetrical two-point loading'in a 900 KN capacity 

Olsen crew-type universal testing machine. Later 

on, 23 tests were conducted on beams under uniformly 

distributed load. The load was uniformly distributed 

over the entire beam-span surface by means-of the 
(47948161) 

water-filled fire-hose technique These 

specimens were tested at six span to effective depth 

ratios ranging from 6.00 io 1?.? B. Typical testing 

arrangements are shown in Pigure 4.? . 
4.4.3. The specimen was set centrally in the testinky 
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(a) Unýer two-point loading. 

(b) Under unifori. rily distrilýuted load. 

I (using water-Ifillel -fire-hose technique) 

Figure 4.?: Typical Tcstinf, - Arrangements 
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machine on pads of wet plaster which accommodated 

any irregularities of the beam shape. After the 

plaster had set, the load was applied in suitable 

increments. After each increment of loading, the 

load was held constant while strains were measured 

and any cracks marked. The magnitude of the increments 

in loading depended on the development of the crack 

pattern. The loading measuring apparatus was flex- 

ible enough to follow up any change in the beam behav- 

iour; the inclined cracking loads after vilhich the be- 

haviour of the beam would be affected were easily 

obtained from an autographic plot of the central 

deflection against load for each specimen. Some 

typical plots are shown in Figures 5.2 and 5.3. 

In some cases where diagonal cracking was observ- 

ed in one of the shear spans of the test specimen, the 

shear span showing the cracking was clamped externally 

by channels and threaded steel rods. By so restraining 
0 

the development of failure in the span already cracked, 

the other shear span frequently showed diagonal tension 

cracking. 'Shen the beam failed suddenly by a diagonal 

crack in one of the shear spans, it was sometimes poss- 

ible to make more than one test in the intact portion, 

thus making extra useful results available. 

During testing, the development of crack patterns 

was carefully studied, the distance of the intersection 

of the critical crack with the centroidal axis in the 

case of a uniformly distributed load being measured 

(see Figure 6.8 The load at the first inclined 

73 



0 
tension crack and ultimate load were noted. All the 

results are shown in Tables 5.1 and 5.2. Photographs 

were taken of each beam after the completion of the test. 

Some typical examples of different types of shear fail- 

ure are shown in Figures 5.1. a to 5.1. L and Figure 6.7. 

For each beam, four 150 x 300 mm cylinders were 

split and four 100 = cubes were crushed in accordance 

with B. S. 1881; 'Part 4: 1970. A relationship between 
I 

the tensile strength of concrete, f 
ct, 

derived from 

cylinder split tests, and the cube strength of concrete, 

f 
cul was developed and the following expressions were 

obtained: 

f/=f2 
et cu + 1.45 (4.2) 

or f/ 
28 

1f -cu (4.3) 
ct = 0.456 

and equation 4.2 was used in the final calculations. 

Figure 4.8 shows equations 4.2 and 4.3 compared with 

other equations for predicting the tensile strength 

of concrete 
(27,30,36, 

. 
55) 

against the"exPerimental 

results obtained in this investigation. 

S 
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CHAPTER 5 

DESCRIPTION of TESTS 

5,1 Introduction: 

Distress in shear begins with shear cracking,, 

Two types of shear cracks are distinguished*. web- 
(S2,85) 

shear cracks and flexure-shear cracks The 

web-shear cracks originate independently in the web 

and they may lead to the type of shear failure shown 

in Figure 5.1. a. Flexure-shear cracks occur in 

regions already_cracked in flexure and these shear 

cracks are extensions of the flexure cracks and they 

may bring about the type of shear failure illustrated 

in Figure 5.1. b. 

5.2. Development of the Shear Crack Patterns and the 

, 
Observed Ijlodes of Shear Failure:. 11 

. 5.2.1. Shear-failures develoned from web-shear_cracks,: 

In the majority of the tests carried out in this 

investigation the shear crack started as a web-shear 

. crack. These web-shear cracks can be divided into 

two types depending on the speed of their formation. 

In one type the formation of the web-shear crack is 

a gradual process and in the other it is sudden, 

explosive and destructive. 

The gradual formation of the web-shear crack 

starts with very minute inclined web cracks in the 

middle of the web without any appreciable charge in 

the load - deflection curve being observed. As the 

load inqreeses these minute cracks start to link up 
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Figure 5.1. a. Shear failure as a result of web-shear 

crack followed by bond failure (mode of failure 

classifiea as diagontil crack m-id bond failure). 

a v/d = 2.0ý vu=1.00 Vc Ex 
* 

I Pt* = 1.01 VC Vc Calc. 

Figure 5.1. b. Sheor failure initiated by a flexure- 

shear crack (mode of failure cicnassified as shear- 
comoression ). 

a v/d 2.0) 
vu 

1.617 
Vc ExPt- 0.77 7c- Vc Ceic. 

P%ote 
In the photographs the standard international form of 
the date is used, i. e. Year/1"onth/Day. 
See Pa, 7e 82. 
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to form a continuous web-shear crack as illustrated 

in Figure 5.1. c and the load sustained by the beam 

suddenly drops as shown by the load-deflection curve 

of Beam B7 in Figure 5.2. At this stage the principal 

tensile. stress might be equated to the tensil. e*strength 

of concrete. This was observed with I-beams at a v/d 
1.25. Depending on the quality of bond, further 

increase in loading may lead to the formation of more 

parallel inclined cracks and eventually web-crushing 

which was observed to be the predominant mode of 

failure in such cases as shown in Figure 5.1. c for 

Beam B6 and Beam B? and other examples as given in 

Table 5.1. The web-crushing failure. in itself is a 

gradual process by which the'load decreases gradually 

as the web starts. to crush as shown by the inclined 

curve of upper part of the load-deflection curve of 

Beam-B ? shown in Figure 5.2. In these cases the 

ultimate load could be as high as 3,.. 7 of the first 

inclined cracking load. 
-6 
. 

The second type of web-shear crack appears 

auddenly and without warning in the uncracked web- 

zone traversing a considerable height of the web 

and extending rapidly both ways followed immediately 

by an explosive collapse of the beam along the inclined 

crack. With sections and depending on the value of 

fcp and the a v/d ratio, the sudden formation of this 

web-shear crack (diagonal tension crack) will take 

place be. fore any vertical flexure crack appears in 

78 



Figure 5.1. c. Showing (a) Non-explosive web-shear 

crack formation (b) web crushing mode of failure 

as shown by circles in 'B6' and IB? ' - 

a v/d = 1.25, vu 1.1? - 1.691 Vc "Not - 0.3? - 1.12, 
vc Vc Calc. 

Figure 5.1. d. Sudden explosive formation of a diagonal 

tension cracý in an uncracked web zone. No slipping 
was observed. 

a v/d = 3.0, f 
cu = 51.0 N/mm 21f 

cp = ?. 52 N/mmý Lu 
= 1.09, 

VC 

. 
Vc Expt. 

-=1.03 Vc C-)Ico 

Note; The figures indicate the load (=2V) in kips at 
which a crack had nenetrated as far as the horizontal 
line indicated. 
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the beam. This is shown in Figure 5.1. a for Beam C1 

at av/d 2.0. However, with greater values of av/dI 

i. e. a v/dý!: 
3.0 flexure cracks first start to form in 

the flexure span and as the load is increased, flexure 

cracks appear in the s4ear span in the regions of 

maximum bending moment or a distinct flexure-shear 

crack might take place at a distance from the load 

point greater than or equal to the effective depth, 

depending on the a v/d ratio. While the flexure - 

shear crack is gradually widening and proceeding 

towards the point load, a sudden opening of an 

explosive destructive diagonal tension crack may 

I take place in the uncracked web. This extends from 
1. the support to the load point and sometimes results 

in the destruction of bond between the concrete and 

steel leading to immediate collapse of the beam. 

Examples of these are shown in Figures 5.1. d to 

5.1. f. In some instances it was observed that, 

while the load was held constant for a few minutes 

while readings were taken, this sudden explosive 

diagonal crack formed, as shown by Beam E4 at 

a This was also observed v/d 
4.0 in Figure 5.1. g. 

by Sozen et al(36)in their tests. 

5.2.2. Shear failures developed from flexure-shear 
cracks. 

The development of shear failures from flexure- 

shear cracks was observed in this investigation in all 

ranges of av/d : ýt2.0 depending on the cross-sectional 

properties and fcp values. With the rectangular 

80 



Figure 5.1. e. Sudden explosive formation of a 
diagonel tension crack in an uncracked web-zone. 
Slipping of' wires was observed. 

v 3.0) f 
cu = 43.7 I., /nlr, 2 on, 

f 2. d, J cp = 7.4_3 N/mm 
Vu 

1.007 
Vc Expt. 

1.08 - 1.13 Vc VC Caic. 

"19 

5.1. f. , -. oJe of failure in A10. 
Sudden formation of a diagonal tension crack 
followed by bond destruction. 
avf2f2 

dm 3*01 cu = 43.2 N/mm and cp = 6.56 N/mm 
VU 

= 1.0of 
Vc Expt. 

1.29. vc Vc Calc. 
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Figure 5.1. g. Sudden formation of diLgonal tension 

crack in E4 while the load was held constant for few 

minutes. 

a f2f 
v/d cu = 50.0 N/mm and cp = 5.18 N/nh 

v 

-, = i. cop vc 
Vc Eynt. 0.96 VC Calc. 

Figure 5.1. h. L-ode of failul-e in A6. Explosive opening 
-0 oa *JiaE. on, -d tension craciý originating from a flexure 

crack, accompaniel by bond destruction and separation 
oj. ' the top flange. 

avf2f2 
d=3.0, cu 59.0 N/MM and cp N/mm 

VV 'L 
Vu=Vc 

F'xOt. 1.02 
cC Calc. 

VVC 
I. ote ct Expei =ental 

VC C31C. Vc Cplculate] using equation 6.5 CD - 
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cross-section at a v/d = 2,0, vertical'flexure cracks 

appeared first in the flexure span. With increase in 

load, a flexure crack might appear in the shear span 

in the regions of maximum bending moment or a distinct 

flexure-shear crack might take place at a distance 

equal to or less than the effective depth (a 
v/d = 2.0)9 

followed by an appreciable drop in the load. Further 

increase in loading would lead to a gradual widening 

of the crack which in turn would start a process of 

internal redistribution of stress between concrete 

and steel resulting in strain concentration at the 

top of the inclined crack 
(11,86,42) 

9 At this stage 

the crack would become sufficiently inclined and 

start to extend downwards. The beam could either 

fail very gently with crushing of concrete near the 

point load or by the sudden opening and extension 

of the flexure-shear crack both ways resulting in the 

explosive destruction of the beam.. This is exemplified 
I 

by Beam G3 tested at av/d = 2.0, which also showed 

some traces of crushing near the point load as shovm 

in Figure 5.1. b. Similar behaviour and crack patterns 

were observed with an I section A6 at av/d '= 3*01 

f 
cu 

= 59.0 N/mm 2 
and f 

cp 
7.34 

1 
N/mm 2. The diagonal 

crack opened suddenly with propagation along the level 

of tension reinforcement. The increased shear force 

pressed down the longitudinal steel and caused the 

destruction of the bond between the concrete and steel 

which led to splitting of the concrete as illustrated 
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in Figure 5.1. h. This case could be compared with 

Beam A 10 with similar properties to Beam A6 

except for f and f Beam A6 had a higher value CU. cp- 
of (f + f, ) compared with either A 71 A8 or A 10 

cp ct 
and this might explain why the diagonaý tension cracks 

in these three beams formed independently of the exist- 

ing flexure-shear crack. This behaviour is reflected 

also in their load-deflection curves as shown in 

Figure 5.3 for Beam A6 and Beam A 10. 

With a increasing to 4.0, f ranging between 
v/d - cp - 

5.21 and 5.77 N/m2 and f 
Cu 

from 35.0 to 42.3 N/mm 2 

diagonal tension cracks originating from flexure. 
. 

cracks were found to initiate shear failure in many 

cases. The inclined crack showed a distinct tendency 

to become horizontal toward the nearest support at the 

level of the bottom web-flange junction. However in 

some-instances, a series of hor#ontal cracks, which 

seemed to extend from the inclinedcrack, developed 

along the bottom web-flange junction. With, increase 

in load, these cracks linked up and widened so leading 

to loss of bond. This resulted in the separation of 

the bottom flange from the web and eventually failure 

of the beam as shown for type C beam in Figures 5.1A 

and 5.1. j. The corresponding load - deflection curves 

for Beam C 10 and Beam C 12 are shown in Figure 5.3. 

It is possible that this horizontal cracking was 
initiated by microscopic 'bond' cracking caused by the 

drying shrinkage of cement paste, which induces high 
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Fi. -ure 5.1. i. Nlode of shear failure in C10. Diagonal U 

., 
from a flexure crack led to tension crack originating 

the separation of bottom flange from the web and was 
followed by bond failure. 

a v/d = 4.01 f 
cu = 42.3 N/mm 2 

and 
f 

cp = 5.77 N/mm 2 

vuvc Expt. 
- 0.90 

v 
1.001 

v 

Figure 5.1. j. ýtlode of shear failure in C12. 

Diagonal tension crack developing from a flexure 

crack and extending along the bottom web-flange 
junction leadine to the separation of the bottom 

flange from the web. The 'arching' eff"ect and the 

crushing of the web near tne reaction was observeJ. 

a v/d = 4.01 f 
cu = 35.0 N/mm 2 

and 
f 

cp = 5.2'1 N/mm2. 
VU 

= 1.001 
Vc Expt. = 1.00 Vc Vc Ca1c. 
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internal'tensile stresses at the mortar-aggregate 

interface Beam C 11 in Figure 5.1. k. shows 

an example of the effect of reducing f 
cp 

from 5.77 

N/mm 
2, 

Beam C 10 case, to 4.90 N/mm2 on the initiation 

of shear failure compared with Beam C 10. In the case 

of Beam C 11 the diagonal tension crack formed inde- 

pendently of any flexure crack and its behaviour 

afterwards with increase in load was similar to that 

described aboVe for Beam C 10 and Beam C 12. 

5.2.3. Shear failures developed from secondary 
inclined tension cracking. 

What is described as a secondary inclined tension 
(36) 

cracking was observed in Beams A 12, B1 and F 1. 

With Beam B, 1 tested at a v/d = 4.0, an inclined 

tension crack opened suddenly in the vicinity of the 

support at a shear force of 89.9 KN, and a series of 

short inclined cracks followed i=ediately thereafter 

along the upper web-flange junction. With increase in 

load these short inclined cracks linked up and widened. 
0 

Then this damaged shear span was strengthened by clamp- 

ing it by channels and threaded rods to force shear 

failure on the other shear span and the test continued 

from this stage. a shear force of 44.5 KN a non- 

explosive inclined tension crack opened in the vicinity 

of the reaction and propagated just beneath the upper 

web-flange junction towards the load point and the - 

shear force dropped to 35.6 XN. Further attempts to 

increase the load led to the formation of an inclined 

crack extending from the support to the load point 
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followed by crushing at its upper end*near the upper 

web-flange junction and the formation of a horizontal 

tension crack in the top flange near the middle of 

the shear span. The load then dropped to zero. A 

load-deflection of behaviour of Beam B1 is shown in 

Figure 5.2. 

With Beam A 12 tested at av/ .d ý-' 3.0, an inclined 

tension crack. opened suddenly in the web at a shear 

force of 60.1 n just over the reaction and propagated 

aloq,, y the upper web-flange junction. This was followed 

immediately by the formation of another inclined tension 

crack in the uncracked part of the web in the same 

shear span which extended along the upper web-flange 

junction into the flexural span and backwards along 
\-I the lower bottom web-flange. junction to the support 

as shom on the L. H. S. of Figure 5.1. L. The load- 

deflection curve is shown in Figure 5.3. This damaged 

shear span was clamped and the*tesý was repeated to 

force the shear failure to occur in the intact shear 

span. A similar behaviour and crack patterns were 

observed in the unclamped shear span, but at a shear 

force of 55.6 Ell. Some crushing was observed in the 

upper web-flange junction as shown on the R. H. S. of 

Figure 5.1. L. 
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Figure yode of shenr ftailure ill C11. Diagonal 

e: K-ure -ick 
doveloped indepenýeiat of anýr fl 

crack and extending along-, týie bottom web-flanEe 
Junction separating , 

the bottom flange from the web. 
No slipping was observed. C: > 

f2f 4.0, cu = 45.0 Nlrml aný cp 4.90 14/i-am 
vu 

1.07 VC 

a 

Vc r. '>T)t '- = 0.97 Vc Cale. 

Figure 5.1. L. Shear failure in A12 as a result of 
secon, ary inclined tension cracking. 

VU. 
- = 1.001 

Vc Expt, 
vc Vc Calc. 0.97 - 1.05 
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04 

100 

n., 
VA 

so 

Beam 
N0 

fcu 
WnM2 

fcp I 
WMM2 

cl v 
mm 

cý) I 

mm 
cý/d 

BI 46-3 S-S9 't S. S9 106C 630 4-0 
B4 48-8 7-05 7.05 

1 

530 1690 2-0 

B7 50-6 11 6- 45 330 597 1-25 
89 52-6 5-64 1190 570 4-5 
Blo 53*5 7,49 930 $90 3-5 

0-0 2.5 

Figure 5.2 

S-0 7*5 10-0 12-S 

CENTRAL DEFLECTION IN mm. 

Load-deflaction curves for type B beaLa, 

is-0 
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-0 

loc 

5 
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Figure 5.3: Typical load deflection curves 
(Types A and C beams) 
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TABLE 5.1 

Experimental results under 
one - or two-point loads. 

Beam 
mark 

av (1-2a 
V, 

d a v 
f 

C" t f 
cp 

Vc 
KN 

vu 
KN 
. 

vu Mode 
of 

MM Mm mm d 
N/mm2 N1= 2 I vies vieo EaST vv es t' V , 

fail- 
ure 

1 
c 

Al ? 95 1360 265 3.00 3.29 7.40 87.1 - 87.3 - 1.00 DCI*VM 
0 of 86.7 - 86.7 1.00 DO 

2 930 890 It 3.50 3.39 6.75 64.5 - C 77@, - - 1.20 DCAM 
3 530 1885 it 2.00 3.42 6.33 77.8 - ? 7. E - 1.00 DO 

810 It it 76.4 - 76.4 1.00 DC/BF 
it it, 0 It 7.46 101.2 - 101.2 - 1.00 DO 
4 it 1890 to 3.34 6.81 1012 - r 104., - 1.03 DC/V, D 
IT if 820 It to It It - 81.4 - 81.4 1*00 DC 
it it 0 it It to 94.3 90.1 - 100.1 1 . 11 DC/"", ', ]) 
5- to 18vo to it 3.42 6.67 87.8 - 87. E - 1.00 DO 
it to 1355 it of It - 94.5 - 94.5 1.00 DO 
it It 830 is it If 7.28 102.3 95.6 - 109.0 1.14 DO 
It it 0 it It If 98.7 - 98. -1 - 1.00 DO 
6 795 1155 3.00 3.56 7.34 - 80.1 - 93.4 1.17 S' DVTRý 
7 1160 it it 3.27 7.52 79.5 - 87. C - 1.09 DO 
it 0 to it It It 74.5 87.9 - 87.9 1.00 DO 
8 1355 to 2.47 7.43 - 80.3 - 80.3 1.00 DO 
it it 0 it It it . It 75.6 - 75. E - 1.00 DO 
9 It 1160 If 2.98 7.37 - 79.0 - 80.1 1.01 DC/BF 
it ft 0 it It of to - 79.4 - 79.8 1.01 DO 

10 it 1160 11 11 3.05 6.56 82.3 70.1 82. - 1.00 DCAM 
11 930 890 It 3.50 2.91 5.38 53.4 58.5 71.42 1.33 DO 

if 0 to of of 55.6 - 64. %. r 1.16 DO 
12 It 890 it to 2.75 5.86 60.1 55.6 60.1 1.00 DC/, WD 

Bl 1060 630 265 4.00 3.10 5.89 38.9 44.5 - 44.5 1.00 DCAIW 

it 3.26 7.07 47.4 48.9 - 48.9 1.00 
TFS 

DCAWD 
3 530 1690 2.00 3.52 6.79 66.7 71.2 - 76.1 1.07 DC/SCC 
11, 630 if it of - 74.5 - 74.5 1.00 DC/SC#C 
4 1690 it it 3.19 7.05 66.2 67.7 80.1 - 1.21 DCPM 
It It 630 to it It 7.34 83.4 67.7 63.4 - 1.00 DC /VtT 
5 11193 1 560 If 4.50 3.28 5.61 40.0 

_- 
40. C 

,- . 
1.00 

, 
DC/BF 
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TABLE 5.1 (Cont'd) 

Beam 

mark 
av 

mm 

ý-2, 
aý 

mm 

d 

mm 

av f1t 
c 

N/mm2 

fcp 
2 NIMM 

VC 

KN 

Vý 

KN 

Y Vu 
o 
f 

ode 
f 
ail- 

u Vý re. 
East West East West 

B6 330 2090 265 1.25 3.31 5.99 80.1 77.8 - 117. C 1.50 DCAM 
it It 1430 It It 

1 

It 93.4 89.0 - 149. c- 1.68 DCA'. 'C 
7 2085 It 3.26 6.45 90.1 90.1 - 122.1 1.36; DC/'. i-D - /BF 

1200 of 102.3 85.1 - 111.2 1.31 DC/ViD 

J 
TF 

to It 597 It of It - 86.2 - 145.4 1.69 DCAVC 
8 2085 265 1.23 3.23 6.30 78.1 78.1 - 99.5 1.27 DCAM 

/BF 
It It 1445 It it is 83.7 100.4 - 117.0 1.17 DC,, 'iVL 
9 1190 570 4.50 3.30 5.64 37.2 - 37.2 - 1.00 DC/BF 

10 930 890 3.50 3.23 7.49 - 55.6 - 55.6 1.00 DC/B: - 
it 400 680 1.50 It it 71.2 84.5 - 84.5 1.00 DC/B1 

11 ? 30 1190 2.75 3.36 7.86 57.8 - 57.8 - 1.00 DC/Bz- 
It it 0 it 11 of 58.9 62.3 - 62.3 1.00 DC 

C1 530 1890 265 2.00 3.24 5.77 87.3 87.8 clam 87.8 1.00 DC/BF 
It it 530 it it 6.71 102.3 87.8 pýýd 123.2 1.40 DCAY1 
2 330 1890 1.25 3.11 5.94 93.7 122.3 151.2 - 1.62 DC1,111 
to It 715 It It 129.0 129.0 189.0 - 1.47 DC/V, 'C 
3 1060 810 4.00 3.45 6.31 - 60.0 68.9 1.15 IF 
4 It $1 3.35 6.40 - 57.8 66.7 1,15 F 
5 530 1890 2.00 3.27 5.66 - 77.8 - 77.8 1.00 DC/M 

1358 It It it it 87.0 85.4 87.01 - 1.00 DC/B1 
It, it 830 it of 81.0 - 96.7 - 1.19 DCAI 
It It 0 it It it It 93.4 - 124.5 - 1.33 DC 
6 320 2090 1.25 3.33 6.46 120.1 129.0 - 137.9 1.07 DC/'. '#"i 
It 1430 It It it - 111.2 - 111.2 1.00 DC/81 
of 1100 It It to - 109.0 - 133.5 1.22 D'C /=' 1 
It It 640 It It 142.4 133.5 - 169.1 1.27 DC 
7 if 2090 of 3.26 5.87 101.2 115.7 133.5 - 1.32 DC/B] 

It 1430 It 100.1 - 113.4 - 1.13 DCI*; rj 
/BF 

it 770 120.1 127.7 - 209.1 1.64 DC/`. V( 

92 



TABLE 5.1 (Cont'd). 

Beam 

nark 
a v -2 V 

d a f 
n 

fcý VC v 
u 

KN 
vu Yo de 

of 
fail- 

MM mm d N/me NIMM 2 East West East - West ure 
VC 

-08 530 1890 26.1- 2.00 3.061 6,24 74.9 74.9 1.00 DC/BF 
1355 82.3 - 82.3 - 1.00 DC/BF 

640 - 94.5 - 98.4 1.04 DCAO 
9 330 2110 1.25 3.01 5.72 105.2 105.2 - ll?. 5 1.12 DC/VM/ 

BP 
It it 960 11 124.6 124.6 - 195.8 1.5? DC/Vv'C 

10 1060 630 11 4.00 2.96 5.77 - 52.5 - 52.5 1.00 DC/BFS 
11 111 IT It 3.06 4.90 51.7 48.9 - 52.1 1.0? DC/BFS 
lo it to 2.? 0 5.21 51.2 52.8 - 52.8 1.00 DC/VTD 
17 1350 0 225 6.00 2.73 2.55 27.8 - 40.9 - 1.47 DC/VD 
18 0 3.04 2.49 - 25.6 - 40.0 1.56 DC/BFS 
19 1180 490 5.25 3.27 2.45 - 31.1 54.5 1.75 SC 
D1 530 1690 265 2.00 3.19 6.38 66.7 66.7 -- - DC 

#I If, 630 " it It It 71.2 66.7 86.5 - 1.21 DC11. VC 
2 1690 265 2.00 3.21 6.45 - 68.9 - 68.8 1.00 DC 
3 795 1230 3.00 3.35 5.36 38.9 45.6 - 45.6 1.00 DC/BF 
4 570 1190 it 4.50 3.29 5.02 36.1 36.1 36.1 clam 1.00 DCAM 

iý ped 
5 1060 530 4.00 3.06 5.31 43.9 clamp 43.9 1.00 DCAM 

6 795 1230 3.00 3.39 5.35 51.2 td 51.2 1.00 DC/WD 
7 1350 0 225 6.00 2.73 2.80 35.0 23*4 35.0 1.00 DC/TFS 
8 It to It If 3.04 2.72 - 23.4 26.7 1.14 DCAM 
9 1180 490 5.25 3.27 2.70- 24.5 - 36.1 1.47 DC/'11D 

El 795 1360 265 3.00 3.74 4.38 70.6 71.2 75.9 1.07 DG 
it 415 it If* If 72.3 - 72.3 - 1.00 DC 
it 530 0 2.00 85.6 81.0 85.6 - 1.00 DC 
2 IT 1890 3.33 3.33 - 69.1 - 73.6 1.07 DC 
If It 1240 It III It 75.8 - 75.8 - 1.00 DC 
If it, 0 it it If - 69.9 - 75.8 1.08 DC 
3 it 1880 it 3.37 4.88 86.2 86.2 1.00 DC 
it It 1240 Ir it it - 86.7 - 86.7 1.00 DC 

680 it it it 5.16 88.4 98.4 153.5 - 1.74 DC/'I-'C' 

.4 
1060 830 4.00 3.29 5.18 56.2 57.8 - 57.8 1.00 DCAVD 

5 it It 3.17 - 5.6 68.9 68.9 I 'VID 1.00 DC/ 
5,90 530 2.00 84.5 92.3 92.3 1.00 DC 
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TABLE 5.1 (Cont'd) 

Beam 

mark 
a v 

ý-2a, )' d af v 
,t 
c fcp i VC 

KN 

VU 

KN 
Tu 

Mode 
of 
Fail- 

MM MM mm d N/mM2 2 East West East West ure 
VC 

E6 79Z 1360 265 3. OC 3.22 6.32 92.3 80.1 92.3 - 1,00 DC 
7 IT 11 of TV 3.10 5.58 - 66.7 - 66.7 1.00 DC 
tI it 448 it TV IT 11 68.9 - 68.9 1.00 DC 
It it 0 IT IT TV 72.1 - 81.0 1.12 DC/IND 
a 1060 630 IT 4.00 3.52 5.32 - - 68.9 - F 

Fl 106C 680 265 4.00 3.14 4.55 41.4 29.7 41.4 1.00 DVTFS/ý 
BF 

2 635 3.21 4.69 41.1 39.5 41.1 1.00 DC/". VD 
3 530 1690 2,00 3.41 5.12 64.5 66.7 - 98.5 1.48 DC/', 7C 

It 400 IT it, 5.35 ? 1.2 75.9 - 105.3 1.39 DCANC 
4 IT* 1690 11 TV 3.28 5.58 66.7 66.7 - 93.0 1.39 DC/WC 
IT, it 630 if IT IT 5.87 71.2 79.0 - 87.2 1.10 DC/1"01C 
5 1200 570 11 4.5 3.33 3.33 - 31.1 - 32.8 1.05 DC/TFS 

Gl 530 1890 1" 2.00 3.80 3.04 126.8 - 126.8 - 1.00 DC 
It it 595 IT IT, IT It 136.6 -, 136.6 - 1.00 DC 
2 1880 IT it 3.40 3.74 144.6 - 151.6 - 1.05 Sc 
3 1890 265 2.00 3.34 2.00 - 84,5 - 136.0 1.61 SC 
TV of 880 2.00 11 97.9 - 129.3 1.82 SC 
it TO 0 it TV It 2.83 122.3 - 122.3 - 1.00 DC 
4 1060 830 11 4.00 3,35 3.55 - - 75,3 - F 
5 530 1890 2.00 2.94 3.73 - 108.4 - 108.4 1.00 DC 
IT IT 0 IT to IT 3.73 120.1 - 120.1 1.00 DC 
6 795 1355 tv 3.00 3.23 3.88 94.5 - 98,0 - 1.04 SC 
IT 530 0 11 2.00 11 w - 111.2 -- 
IT It 0 fI IT IT 4.20 160.1 - 165-0 - 1.48 SC 
7 400 2150 11; 1.50 3.26 3.39 - - 174.1 - BF 
8 560 1790 It 2.00 3.39 3.83 - - 147.7 p 

94 



TABLE 5.1 (Cont'd) 

Notes. 

f 
ct 

f 
cu -+1.45 - Equation (4.2). 

28 
2. Mode of failure: 

BF bond failure (observed by the slipping of the 

tendons after the formation of the diagonal 

tension crack). 
BFS bottom flange separation. 
DC diagonal tension cracking. 
F flexure failure. 
SC shear compression. 
SCO shrinkage crack opened. 
TFS top flange separation. 
WC web crushing. 
WD -web distortion. 

followed by. 
Vu 
V Ultimate failure load 

d l ki l i c a ona , crac ng oa D 
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TABLE 5.2 

Experimental results under 
uniformly distributed load. 

Beam 

mark 

b 
w -d 

d 

fI 
Ct 

2 

f 
cp 

'r 

qcL- 
KN 

qut 
KN 

qut - Mode 
of 
fail- 

mm MM mm I/mm C N/mm 
est East West 

qct ure 

B12 50.0 265C 265 10.0 3.09 4.48 153.5 133.4 - 181.3 1.36 DC 
13 212C 8.0 2.93 4.? 3 166.8 180.1 - 235.? 1.31 DC, /'. 'IC 
14 193C ?. 28 3.13 6.0? 200.2 220.2 - 314.9 1.43 DCAID 
15 159C 6.0 2.93 6.29 231.0 209.0 - 275.8 1.32 DC/T: -ý 

C13 75.0 -265C 265 10.0 3.13 3.79 199.0 - 267.0 - 1.34 DC/SF 
14 212C 8.0 3. *ll 3.86 222.4 235.7 - 315.8 1.34 DC/TK 
15 193C 7.28 3.13 5.07 266.9 289.1 - 346.9 1.20 DC/dD 
16 159C 6.0 2.93 5.39 275.0 275.0 - 360.3 1.31 DC/ 

TFS 
20 265C 225 11.78 2.6? 2.81 152.3 - 187.9 - 1.25 DCAIM 

D10 50.0 2650 225 11.78 2.67 2.97 126.3 - 154.6 - 1.22 DCAM 
lla 58.0 4000 17.78 3.45 3.10 114.0 - 114.0 - 1.00 DC/V; D 
llb 3.41 3.07 100.1 115.6 146. 8 1.27 DC/TT 
12 2650 11.78 3.64 3.40 160.0 129.0 222.4 - 1.39 DCAVD 
13 3930 17.47 3.11 3.29 91.2 - 103.4 - 1.13 DC/! WD 
14 3.02 3.45 - 104.5 - -111.2 

1.06 DCAM 

E9 ? 5.0 2650 265 10.0 2.91 4.14 213.5 - 271.1 1.27 DC 
10 2120 8.0 2.95 4.32 240.2 246.7 346. 9 1.41 DC/TT 
11 1590 6.0 3.10 4.99 311.4 311.4 378. 1 1.21 DC/TT 
12 1930 7.28 3.00 4.47 298.0 275.8 299.8 1.01 DC/BF 

F6 50.0 2650 265 10.0 2.98 4.12 177.9 169.0 249.1 1.40 DCA-VD 
? 2120 1" 8.0 2.91 4.42 213.5 213.5 - 258.0 1.21 DC/iM 
8 1590 6.0 2.? 5 5.03 235.7 231.3 - 342.5 1.48 D%lf/ 

TFS 
9 

11930 7.28 3.01 4.57 200.1 204.6 - 35.7 1.15 DC/ 
TFS 

Note. 
Symbols for mode of failure are as shown on page 95 
TT = test terminated. 
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0 
5.3. Prediction of Shear Failure Type: 

The above analysis of the occurrence of shear 

failures and the photographs provided show that, within 

the range of variables covered in this investigation, 

the final mode of shear failure and hence the ultimate 

shear failure load could be affected by 
(4) (a) the 

locaiion of the diagonal tension crack in the shear 

span, (b) the. position of the upper end of the inclined 

crack with respect to the compression face, and (c) the 

quality of bond. The first two factors can be consider- 

ed to be functions of the cross-sectional-properties, 

the av/d ratio, the prestressing force and the concrete 

strength. Bond, the failure of which is characterised 

by the longitudinal splitting of concrete along the 

tendons, is an indeterminate quantity because of the 

many factors affecting its quality. 

Although all shear failures in I-sections origin- 

ating from flexure cracks took place in the higher 
4 

range of values of av/d and all the shear failures 

initiated by the simple diagonal crack (web-shear 

crack) occurred in the lower range of values of a v/dI 
the two categories overlapped in the middle of the 

range. Web-crushing following the formation of a 

diagonal crack was observed to be the predominant mode 

of failure for I-sections at lower ranges of a v/dI 
i. e. a v/d ý 1.25, provided that there was a good 

bond between concrete and steel; but it was also 

97 



observed'that the web-crushing also-took place at the 

upper range of av/d accompanied by 'arching' effect. 

From the above discussion and the photographs 

shown in Figures 5.1. a to 5.1A , it is clear that. the 

value of a v/d at which the change from one type of shear 

failure to the other depends on several indeterminate 

factors in addition to the properties of the beam. 

Thus it is not. possible to predict with any certainty 

what will follow the formation of a diagonal crack 

from a knowledge of only one variable, namely a v/d* 
I 

a 

0 
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5.4. ComDarlson between the Shear Crack Patterns 

observed under Uniform Loadinz and Point Loading: 

The photographs (Figures 5.1-a. to 5-1-L ) show 

that under point loading the diagonal tension crack 

generally forms in such a position that the upper 

end of the crack points towards the point of applicat- 

ion of the load. The louer end of the diagonal crack 

extends in the direction of th-- support, and this 

extension may be in the form of a nearly straight 

line continuation of the diagonal tension crack as 

shovm in Figures 5.1. al 5.1. c, 5.1. d. 5.1. e and 

5.1. g. In contrast, in some cases, the inclined 

crack continues down to the lower web-flange junction 

or to the level of the tendons and thence along the 

lower web-flange junction to the support, as shown 

in Figures 5.1. b, 5.1. fl 5.1. h2 5.1A, 5.1. j. and 

5.1. k. 

All the beams tested under uniform loading in 

this investigation showed similar shear crack patterns 
4 

to those observed under 

pattern seems therefore 

arrangement of loading. 

and mode of failure imp' 

exist some relationship 

loads, and tnis will be 

point loading and the crack 

to be unaffected by the 

This similarity in behaviour 

lies that there should also 

between their shear cracking 

discussed in Section 6.1.3. 

Under ýniform loading it was observed that more 

than one diagonal tension crack may form in either 
half of the beam as shown for Beam B 14 in Figure 
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I 
6.7. b; some of these cracks may develop from flexure 

cracks as shown for Beam D 14 in Figure 6.7. e. These 

two cases are similar to the cases of Beams A12 and A10 

as shovm in Figures 5.1. L and 5.1. f respectively. This 

crack pattern can also be seen in the photographs of- 

Arthur et al, 
(48) 

i 

-The critical diagonal tension crack for all the 

I-boams tested under uniform loading in this investigat- 

ion formed on a line through a reaction. In this respect 

they showed behaviour similar to that of the reinforced 

rectangular beams reported by Leonhardt and Walther 
(61) 

and to that of the prestressed I-beams tested by Arthur 
(48) 

et al None of them showed the shear-compression 

mode of failure observed in Kar's (43) 
prestressed 

. rectangular beams. Thus it may be concluded that as 

well as the span to effective depth ratio, the magnitude 

of prestress and-the web breadth play an important role 
in d6termining the mode of failure under uniform loading. 
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CHAPTER 6 

ANALYSIS OF TEST RESULTS 

6.1. Prediction of the Diagonal Tension Cracking Load. 

Diagonal tension cracking loadand ultimate 

shear failure load. 

Unaer some ranges of variables, the ultimate shear 

failure load, for a beam without shear reinforcement, 

was equal to the first diagonal tension cracking load, 

and the beam could either fail to sustain further 

increase in loading or collapse simultaneously with 

the fomation of the diagonal tension'crack. For a 

different range of variables it might exceed the crack- 

ing load by a substantial amount as shown in the second 

last column of Table 5.1. Since the magnitude of the 

ultimate shear failure load depends on the final mode 

of shear failure and the latter was shown in Section 

5.1 to be a function of many indeterminate variables, 

it seems necessary to limit the useful capacity in shear 

of a beam without shear reinforcement to the first 

diagonal tension cracking load, and 
Qs 

will be 

defined as the shear force at which the diagonal tension 
(36) 

crack will start to affect the behaviour of the beam 

Prediction of the first diagonal tension 

cracking load under one- or two-noint loading. 

As mentioned in Section 4.1, the experimental 

progra=e was plpnned to bring out the eff6ct of each 

of the dimensionless variables shown in equation 3.5 

re-written below: 

v 
C--L = F2 fcP 

Ib 
hf av (3.5) bwd fclt . 

(fýt 

'6; dId) 
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I 
where V corresponds to the shear force at the format- 

c 
ion of a diagonal tension crack which develops when 

the diagonal-tension stress (principal tensile stress) 

exceeds the tensile strength of the concrete. The- 

effect of the stresses normal to the longitudinal 

axis, which are usually ignored by present codes of 

practice 
(30,32) 

, is taken care of by the variable 

(av/d). Thus equation 3.5 is basically a principal 

tension criterion. 

Figure 6.1 shows the relationship between 

1000 Vc/(N df1 t) and f 
cplf 

It for four cross-sections IcC 
and one value of av/d for each. Despite the scatter 
in the test results which may be due to the random 

occurrence of voids and flaws resulting from imper- 

feet compaction, a linear relationship could be 

assumed to exist in which the ordinate increases as 

f 
CP 

/fc't increases. This could be formulated as: 

1000 VC 
A+B 

fc1o 
ft bd 

et w 

where the values of A and B for a given cross-section 

depend on the value of av/d. Values of A and B depend 

also upon the way in which the tensile strength of 

concrete is evaluated, as the latter can be determin- 

ed in a variety of ways. The ratio A/B was taken as 
(36) (40) unity by Sozen et al Evans and Schumacher 

and Arthur (44), 
when the tensile strength of concrete 

was taken to be approximately equal to f, 
Ct. 

So, by 

taking A/B as unity, equation 6.1 could be modified 
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Figure 6.1: Effect of f If I upon Vc 
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Pigure 6.2: Effect, of a v/d upon VC 
(Results for type B beams) 
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I 
to have the following form: 

ff 
1000 VC F3 hf 

, _"ý_ 
= .0 

(6.2) 

Ct(l +f cp db W-) Trc-t 

where P3 is a functional notation. 

The test data obtained from type B beam over 

a wide range of av/d ratios were plotted in Figure 

6.2. These test data demonstrate that cracking shear 

force, VC, is inversely proportional to a v/d ratio. 

Figure 6.3 shows a linear relationship between 

0 and 
h f/d for a given value of av/d. For'a'given 

value of 
h f/d, the value of 0 increases as b/bw 

increases. This leads to the assumption that the 

flange projections contribute to thq value of 

They may be related in the following form: 

0C+D hf (6-3) 

in which the second term on the R. H. S. is proportional 
to the area of flange projections. Both C and D 

10 
depend on av/d. Figure 6.4 shows this linear relat- 

ionship between 0 and (b hf 
d 

for a given value of v/d. 

Therefore the final semi-empirical expression 

for the diagonal cracking load can be written as: 
1000 vc 

f 
bwd 

ct 
bw 

L (1 

0 

; gct 
d) (6.4) 

the ratio C/D being taken. constant for simplicity. 

Using a least-squares method based on the data 

plotted in Figure 6.4 the value of D$ was found to be 

1.50. Similarly Bland Cowere found to be 0.10 and 
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0.31 respectively from the data plotted in Figure 

6.5. Accordingly equation 6.4 may be written as: 

1000 vc 

0.10 + 0.31 
v/d fb d[l. 5 +f ct w 

ýF] (i 
+ 

if! 
pt 

(6.5) 

The ratios of the experimental val. ues of VC to 

the values predicted by equation 6.5 to all the test 

results obtained in this investigation under one - 

or two-point loading gave a mean value of 0.98 with 

standard deviation of 0.09. 

Figure 6.5 shows that the curve tends to be 

horizontal at higher values of av/d, i. e. the rate 

of decrease of W tends to be zero at higher values 

of av/d. This shows that, for the specimens whose 

failure in shear was not initiated by flexural 

cracks, the effect of stress normal to the longitud- 

inal axis due to the load and the reactions is either 

becoming constant or diminishing at higher values of 

v/d. This 6.6 which shows a *is illustrated by Figu3ýe 

the variation of the stress normal to the longitudinal 

axis, fyy, just prior to the formation. of the diagonal 

tension crack with av/d ratio at different levels of 
f fj cp/ ct for type B beam assumed to be in the centroidal 

axis in the vicinitY of the mid shear span. These relat- 
ionships were derived from-the principal tension 

equation. If the principal tensile stress, ft, is 

taken as positive, elastic theory gives 
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fcp + fvv fCp -2 ++v ft24 xy max (6.6 

where v xymax I bw 

Putting f= fl and rearranging, equation 6.6f 
t ct 

can be written as: 

V2 f xy max ±-3Z = f .4 ý2 ct f 
C41 + fcp/fct) 

where V xy max is the maximum shear stress just prior 

to the diagonal cracking and is determined from the 

value of Vc given by equation 6.5 . Thus Figure 6.6 

shows that equation 6.5 pr&dicts, for a given value 

of fcp/fcit, nearly constant values for fyy at values 
a of v/d>, 3.0. Figure 6.6 also shows that the use of 

the principal tension equation taking fyy as zero may 

lead to an overestimate of the value of Vc at higher 

af. f. 
values of v/d especially with low levels of cp/ cý. 

This is indicated by the fact that Figure 6.6 gives 

tensile valu'es for f 
yy at higher v4lues of av/d and 

f fl low values of cp/ ct. 

Under certain sets of material and cross-section 

variables, some specimens at high a v/d ratios exhibit 

shear failures initiated by flexural cracks, as 

illustrated in Figures 5.1. b and. 5.1. h to 5.1. j. 

In such cases, any reduction in the diagonal cracking 

load with increase in av/d may be attributed to the 

influence of the flexural cracks, as they reduce the 

stiffness of the specimen. The load-deflection 

curves for such specimens confirm this, as they show 
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I 
a definite reduction in slope, indicating a reduction 

in stiffness beyond a point corresponding to the 

occurrence'of flexural cracks. This is shown for 

Beam B9 in Figure 5.2 and for Beam C10 in Figure 5,3. 
(30) This was taken into account by BSCP 110: 1972 

03 2) 
and by ACI (318-71) . Both of these codes give 

two expressions for calculating Vc, one for sections 

uncracked in flexure and the other for those cracked 

in"flexure. However, despite the general indication- 

that shear-compression is likely to occur with a v/d> 

3.0 the strand-stressed I- beams-with f 
cp ranging 

between 2.45 and 2.81 N/mm2 tested at av/d of 5.25 

and 6.0 all failed by diagonal tension cracking, the 

experimental value of the diagonal cracking shear 

force being accurately predicted by equation 6.5 

as shown in Figure 6.5 by circles. But as a design 

expression should be the logical outcome of researcli 

of this nature, a general solution for diagonal crack- 

ing taking into account tte effect 0 of flexure cracks 

is felt to be desirable. For design purposes this 

could be done empirically by assuming the rate of 

decrease of ý with increase in a v/d to be constant 

and equal to the rate of decrease-at a v/d = 3.0 

for all values of av/d> 3.0. This is justified 

because for all beams tested at a v/d = 3.0, the 

ultimate shear failure load resulting from a sudden 

major diagonal-tension crack was sensibly the same 

as that at the formation of the inclined'tension 

. 
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crack (uS'ually flexure-shear crack), as shown in the 

second last column in Table 5.1 .A tangent to the 

curve in Figure 6.5. at av/d = 3.0 gives the follow- 

ing expression 
1000 vc 

= 0.31-0.034 av 

.5 4( bfd 
ct -rf 

ýP- dL 
t) 

bwI 
ct1 

f 

for av- > 3.0 
d 

(6.7) 

Equation 6.7 is shown in Figure 6.5 and its limit- 

ations will be discussed later on when it will be 

compared with other published experimental results. 

Prediction of firstdiagonal tension cracking 
load in a uniformly loaded beam. 

6.1.3.1. General: 

This project was extended to cover the uniformly 

distributed load case, as this constitutes a practical 

type of loading, in order to discover whether the 

results already obtained in the case of one - or two-' 

point-loads could be applied in the case of the uni- 

formly distributed load, 

In this investigation all the uniformly loaded 

beams cracked on a line through a re'action as shown 
in Figures 6.7. a to 6.?. e and the distance from the 

support to the point of intersection of this inclined 

tension crack with the centroidal axis was found to- 
bear some relation to ýdyatio, 

as shown in Figure 

G. B. Figure 6.9 shows the relationship bIe. tween the 

distance from the support to the failure section in 

the compression face as reported by Kar (42,43), Hanson 

ill 
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Figure 6.7. d: Bo, -, n C20, t/d = 11.78 

I., igure G. 7. e: Beam D14, L, /3 = 17.47 
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(47) (61) 
and Hulsbos and Leonhardt and Walther . Leonhardt 

and Walther's results were obtained from ordinary 

reinforced concrete beams which cracked on a line 

through the reaction, but Hanson and Hulsbos' results 

and Kar's were for failbres caused by flexure-shear 

crack. The latter had an average value of o. 33Lfrom 

the nearest support. 

From Figures 6.8 and 6.9, it may be concluded 

that, for beams that crack through a reactiong the 

position of the critical section is a function of 

, 
Vd, while for thoseln which failure is initiated by 

a flexure-shear crack the failure sections in the 

compression face will occur at a distance of about 

0.33L from a support.. 

6-i. 3.2. Prediction of the diagonal cracking load.. 
qcL, under uniformly distributed load from 

the one - or two-point loading results., 

By using the moment-shear ratio term 
(MV )cinstead 

of av in equation 6.5, then the laAer will become: 

VK 10 + 0031 (6,8) 
a 

(0- 
FV-dt 

r C-P bw df where K= f' 1 fl -9 1L at 
(+ 

at) 1000 
+(bw -) df] 

VC is assumed to be the shear force at the critical 

section, i. e. at a distance; h ct 
from the nearest 

support of a simply supported beam with a uniformly 

distributed load. If qc is the load per unit length 
I 

at cracking, then 

VC qct 
2X 

2 
(1 

- C) (6.9) 
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c Me 
2c 

t2 

Im N= XCL 
andFVd)c d1 2Ac 

By subs tituting equations 6.9 and 6.11 into equation 

6.8, we will have: 

qcL 
2ý K 0.10 + 0.31 (1 - 2ýc) 

2 L/d Ac (1 -A c)-) 

or 

qcL 2K 0.10 + 0.31 (6.12) 
2Ac Vd ýC (1 

Then the section of' least shear resistanc-6-according 

to equation 6.5 will be obtained by differentiating 

equation 6.12 with respect to)\c and equating to 

zero, so we get: 
dqj 

. 0.1 2k 2-2 
dýc (1 2Xc) 

or 

0.31 (1 2ýc)-) 0 I/dA2 (1 >ýc 
c) 

r-) 

ý)2 =A 0.2 L/d )? c 
(1 

c c 0.31 (l 
-2 

)3 

After rearranging we get: 
2 112.40 3+ ýc 

+ 2)Xc + 
(i 

9.80ýc 1.55 0 (6.13) L/d - 
77-d 

The solution of the above equation will give the 

value of Xc which will result in a minimum value 

for qJ in equation 6*12. The solution of equation 

6.13 is obtained using the Newton-Raphson iterative 

formulaPg) Thevalues ofý c for different values for 
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ý/d 
ratios are shown in Table 6 .1 below: 

Table 6.1 

U/d Xc M ) qc V d c K 
6.00 . 244 . 360 L/d 

. 9508 
6.18 . 243 . 358 Yd 

. 9345 
7.28 . 233 . 334 Vd 

. 8511 
8.00 . 228 . 323 Vd 

. 8080 
8.42' . 224 . 316 Vd 

. 7859 
9100 . 221 . 308 ýd 

. 7590 
9.52 . 218 . 301 Vd 

. 7366 
10.00 . 216 . 298 L/d 

. 7182 
13.00 . 200 . 267 L/d 

. 6310 
15,00 . 192 . 252 ýd 

. 5911 
20.00 . 175 . 222 L/d 

. 5224 

The last column q of Table 6,1, J is plotted in, 
K 

Figure 6.10 together with the present experimental 
(42943,47,48) 

results and those reported by other investigators 

6.1.3.3. Development-of anexpression for predicting 
q ct using the exogrimental results of the 

uniformly loaded beams. 

An alternative approach to the attempt above, to 

adjust the results for point loaded beams to suit the 

uniformly loaded case, is. to attempt to develop an 

expression for the uniformly loaded case entirely 
independently* 

Starting with an equation similar to equation 
6.2 one can write: 

0 
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1OC30 q hf 
V 22- (6.14) 

-fet 
(1 

+4 
bIV d 

; 
PP_ 
c 

)bw 

t 

where a functional notation. Equation 6.14 F4 Is 

can be rewritten as follows: 

1000 qcL 
,=A 1) 

hf 
+B (6,15) 

-fc't +f bw d 
bw d 

&P (1 
fct) 

h 
where the term A 1) reflects the effect of (bw 

-d 
the flanges of an I section on the value of-q CL& 

W can either be a constant or a function ofý/d 

and B*is a function of 
Yd. 

Figure 6.11 shows the relationship between 

1000 qcý 
and hf for different 

bw f bw d 
ct + bw d 

(1 

values of L/d. The straight lines indicate that 

different, values for A and B apply for the different 

ý/d 
ratios. 

Figure 6.12 shows the plot of A and B derived 

from Figure 6.11 in terms of ý/d. Because of the 

scatter of A- values with 
L/d, 

no general trend for 

A with respect-to L/d can be formulated. Thus an 

average value of 0.? 5 for A- values was chosen. The 

value of B can be represented by the equation: 

B 6.74 + 0.36 L/d (6.16) 

Thus equation 6,15 will become: 

- 
1000 qj 

- 0.36 + 0.75 b1 Lf 
+ 6.74 

fl d L/d 
at 

(1 
+ 

Lfc6 bwd 
(6.17) 
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I! igure 6.11: Effect of beam properties on diagonal 
cracking load. 
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Figure 6.12: Diagonal cracking load and beam properties 
in terms of Vd. 
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6.1.3.4. CO"MDarison between equations 6.12 and 6.17. 

Equations 6.12 and 6.17 were used independently 

to predict the value of the cracking load, qcl-, for. 

all the tests in this series and the results published 

by others 
(42,43,47,48) 

The values predicted were 

compared witn the corresponding experimental values 

and the results are shown in Table 6.2. The mean 

value of the ratio of the experimental load to 

calculated load and corresponding standard deviation 

are also shown for each set of data in Table 6.2. 

There 
) 

is little difference between the values 

predicted by the two equations, and this confirms 

that all the. assumptions Made in deriving equation 

6.12 from equation 6.. 5 were reasonable. Accordingly 

equation 6.12 can be used for predicting the diagonal 

cracking load, qCL, in the case of a uniformly 

loaded beam. 

6.2. Prediction of Shear-compressi-on Failure Load: 

6.2.1. General. 

Equations 6.5 and 6.12' predicted the first 

diagonal tension cracking load reasonably well for 

all the beams in which shear cracking was not 

influenced by the presence of flexure cracks. At 

higher a v/d ratios the resistance of the web section 

to the formation of major. diagonal tension cracks is 

high because the breadth, bwj is very thick as in 

rectangular sections or because the prestress level, 
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TABLE 6.2_ 

Comparison of results of tests on 
uniformly loaded beams with values 
predicted by diagonal tension equations 

(6.12) and (6.1? -) 

Author Beam 
mark 

L 
d Ratio qC L' ExT)t. 

q0L Cale. 
Eqn. 6',,. 12 Eqn. 6.17 

Present B12 10.00 1.05 1.07 
Investigat- 0.91 0.93 ion 

13 8.00 1.00 1.03 
1.08 1.11 

14 7.28 0.95 0.97 
1.04 1.07, 

15 6.00 0.98 1.00 
- 0.88 0.91- 

C13 10.00 1.06 1.09 
14 8100 1.05 1.07 

1.06 1.08 
15 7.28 1.01 1.03 

1.10 1.12 
10- 6.00 0.92 0193 

0.92 0.93 
20 11.78 1.27 1.29 

D10 
I 
it 1.08 1.07 

11a 17.78 1.10 1.04 
llb 0.98 0.92 

0 
1.13 1.06 

12 11.78 1.10 1.10 
0.90 1189 

13 17.47 0.90 0.84 
14 

, 
1003 0.96 

E9 10.00 1.05 1.07 
10 8.00 1.01 1.04 

1.04 1.07 
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TABLE 6.2 (Cont'd). 

Author Beam L 
Ratio qcL Expt. 

mark d 
q LC 

c alc. 
Eqn. 6.12 Eqn. 6.17 

Present Ell 6.00 1.00 1.03 
Investigat- 1.00 1.03 ion . 

12 7.28 1.16 
. 
1.20 

1.08 1.11 
F6 10.00 1.06 1.07 

1.00 1.01 
7 8000 1.09 1.13 

1.09 1.13 
8 6.00 0.95 1.00 

0185 0.91 
9 7.28 0.95 0.99 

0.97 1.01 

Mean value of ratio 1.021 1.034 
Standard deviation . 085 . 089 

Hanson and 
Hulsbos(47) F17 10.58 '1.07 1.08 

1.11 1.12 

Arthur C9 9.52 0.84 0.86 
et al 

(48) 
10 7.28 0.95 0.96 

1.05 1.07 
12 9.52 0.80 0.82 
13 8.42 0.88 0.90 

0.93 0.95 
14 9.52 0.90 0.93 

1.06 1.09 
15 8.42 0.77 0.79 

0.90 0.92 
16 7.28 

. 
0.92 0.94 

. 
0.97 0.99 
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TABLE 6.2 (Cont'd) 

Author Beam I 
mark 

Arthur C17 

et al 
(48) 

D6 

7 
8 
9 

10 

11 

E5 
6 
7 
8 
9 

Mean value of ratio 
Standard deviation 

Kar(43) A-U-2 

-3 
-4 
-5 
-6 
-8 
-9 

-11 

-2 
-4 
-5 

Mean value of* ratio 
Standard deviation 

L 
d 

6.18 

8.42 

9.52 
7.28 
6.18 

6.18 
8.42 

9.52 
8.42 
7.28 
6.18 
8.42 

13.10 

tt 

15.30 
it 

, 124 

Ratio qcL, Ex-pt. 
qL- c Calc. 

Eqn. 6.12 lEqun. '6.17 

0.85 0.86 
0.89 0.91 
0.97 0.99 
1.03 1.06 
0.93 0.95 
1.12 1.14 
0.87 0.87 
0.87 0.87 
0.88 0.88 

. 
1.02 1.05 
1.07 1.09 
1.17 1.21 
1.09 1.11 
1.28 1.29 
1.18 1.18 
0.99 1.01 
1.18 1.20 

0.98 1.00 

. 126 . 128 

0.68 0.? 3 
0. ?7 0.82 
0.71 0.76 
0.66 0. ?l 
0.? 4 0.? 9 
0.? 4 0.? 9 
0.73 0.79 
0.64 0.69 
0.71 0.82 
0.59 0.69 
0.74 0.86 
0.58 0.67 

0.69 0.76 
0.061 0.061 



fcp, is very high. In such cases, for example that 

of rectangular beams at relatively high av/d or 
L/d 

ratios 
(42,43) 

, the ultimate failure in shear is 

frequently shear-compression initiated by a flexure- 

shear crack. In this type of failure it is difficult 

to define precisely the first diagonal tension crack 

and hence the load at which it occurs. In the follow- 

ing sections an attempt will be made to calculate the 

shear-60=pression failure load which in turn will be 

compared either with equation 6.5 or with equation 

6.12 as appropriate. It is recommended that the 

lesser be taken as the limit of usefulness in shear 

of a beam without shear reinforcement. 

To achieve this. object, it is necessary to have 

full-knowledge of the stress-strain behaviour of 

concrete in compression and to find a simple but 

appropriate failure criterion for concrete in the 

compression zone. 0 

6.2.2.. Equation for the stress-strain curve of 

, 
concrete in COMDression.. 

The stress-strain curve for concrete in compression 

is adequately represented by a parabola3 either termin- 
0 

ating at a maximum stress f0 corresponding to a strain 
to, or continuing beyond this point at a constant 

stress equal to the maximum, up to a limiting strain 6u. 

The exact geometry cfthe stress-strain curve is 

dependent'on a large number of factors, the most 
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significant of which are the concrete mix, the strain 

rate'and duration of loading (90) 
and the strain gradient 

across the concrete 
(91,92). In design methods it is im- 

practicable to take proper account of the effects of 

the rate of loading and the st -rain gradient upon the 

stress-strain characteristics, and therefore most 

of the expressions given for the stress-strain curves 

are in terms of concrete crushing strength alone. The 

stress-strain curves for differing concrete strengths 

are generally, for convenience, taken to be geometric- 

ally similar and are expressed in the form: 

f1f 
0=F5 

(E /E 0) (6.18) 

where F is a'functional notation. An example of 5 
thia type is given by Desayi and Krishnan (93) 

as: 

f1f 
0= 

2t/Eo 
[1 

+ (el E 0) 
2] (6.19) * 

As it is normal in design to consider only the 

rising branch and the part over which the stress is 

approximately constant, the idealized stress-strain 

curve given by BSCP 110: Part 1: 1972 (30) 
will be 

used here. This curve is shown in Figure 6.13 

and can be represented by the following equations: 
-ýcu 

11.29 106 2t f 5.5 x 103 for =to 
f 0.67 f 

cu 
for Fo 0.0035 

where Eo = 0.244 x 153 
If -C-U-, 

(6.20) 
0 

6.2.3. Failure criterion for the-shear-comDression zone: 

The strength of an element in the compression zone 
depends on the normal flexure stress fxx, the shearing 
stress vxy, and the stress normal to the longitudinal 
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axis f 
yy . 

The first two of these stresses are related 

to one another by the configuration of loading so 

that their effect can be taken into account by the 

effective moment-shear ratio(X-ý * V, )C 
Full consideration o-f the strength of concrete 

under a complex state of stress i's outside the scope 

of this investigation, and further discussion will be 

based on the Mohr failure theory. Mohr's theory 

has been found to be valid for biaxial stresses 
(25,69) 

and this is generally the state of stress in the 

_- compression zone-of concrete beam. -So in-order to 

establish the relation between normal and shearing 

stresses which, when acting together, cause failure 

to occur in the compression zone, the shape of Mohr's 

. failure envelope should be known. 

Various suggestions about the shape. of the envel- 

ope have been made in the past, and this is discussed 

in Section 3.6. In this investigation a straight line 

envelope to M-ohr's circles of failure, based on pure 

tension and pure compressive strength circles was 

adopted. By using the geometric relationships derived 

from that envelope together with the principal stress 

equation, the following expression was derived for the 

failure criterion in the compression zone. 

21 

2 fxx 
t t + 

ývy 
ft ft 

(6.21) 
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whereYis the ratio between uniaxial compressive and 
ý=fq uniaxial tensile stress, i. e. C/ 

The derivation of equation 6.21 is. given in Appendix E. 

Shear-compression failure is observed either at 

high values of av/d where the failure loads are not 

high enough to produce any appreciable value of 
f 

yy 

or in rectangular sections with moderate shear spans 

where the value of 
f 

yyj if it is assumed to be inverse- 

ly proportional to b, will be small. Neglecting f 
yy 

in equation 6.21 may thus lead to-a small error on 

the safe side, and equation 6.21 will be reduced to 

the following form: 

6- fxx 
+U 

(fxý) 2 
(6.22) 

(1+02 t 

The value of ý can be obtained-from equation 4.2 as: 

1 22.4 fcu : rc 
= (6.23) 

: rt fcu -1- 40.6 N/m=m 
Ia 

and f' is taken here as 0.8 f and*ft f 
04 

c cu t ct 

so fI=0.8 f (6.24) t CU/ 
W 

For simplicity, from Figures 6.13 and 6.14. a 7 ., f xx 
is taken as f 

av where f 
av 

is the average normal 
flexure stress in the compression zone given by: 

f 
av = k, x 0.67 fcu (6.25) 

where k, is the ratio between average. normal flexure 

stress and the maximum normal flexure stress. 
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I 
k1 is a function of the value of Ec/8o at the extreme 

compressed fibre (see Section 6.2.6. ). 

By substituting equations 6.24 and 6.25 into 

equation 6.22 vie will have: 

1 0.64 + 0.536 (6 - 1) k 0,. 449 Iýk 2 
VCU) 

(6.26) 

Equation 6.26 i's a failure criterion for an element 

in the compression zone under normal and shear stresses. 

6.2.4. Equilibrium condition: 

Referring to Figure 6.15. a, ana neglecting the 

dowel action of the longitudinal reinforcement and 

the vertical component of the force due to aggregate 

interlock on the inclined crack, one can write from 

the equilibrium of external and internal moments that: 

aV0.67 kfkdbd (l. - kk (6.27) 
vuI cu U2u 

and from equilibrium of vertical forces: 

vu =v xy 
kUdb 

1$ 
(6.28) 

where kU is the ratio of the neutral axis depth to 

effective depth and k2 is the ratio of the depth to 

the line of ac#on, of the normal compressive force 

to-the neutral axis depth. 
, E%I- 

-From equations 6*2? and 6.28 we get: 

v XY 0.6?. kl (1_ k2 ku) 
(6.29) f 

cu a v/d 
To determine the value of the average shear stress, 
but not the position of the neutral axis itself, it 
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v 
is reasonable to adopt the simplified-assumption 

(25y26) 

that (1 -k2ku)=0.9 (6.30) 

By combining equations 6.26,6.29 and 6.30 we get: 

k2 ((, 
+. 6)2 1.48 (16 - 1) k, - 1.77 =0 
r/d)2+ 

1.2411)- 1 (a,, (6.31) 

v- 
So u can be calculated using equations 6.28,6.29 

and 6.31 if the neutral axis depth factor, kul is 

known. 

6.2.5. Neutral axis depth factor ku 

The tendon-strain e 
pb at failure may-be consider- 

ed to bý made up of two parts: (a) the strain ýpe due 

to f 
pe and (b) the additional strain e 

pa produced by 

the applied loading as shown in Figure 6.14. b . Thus 

Epb = Epe + Epa (6.32) 

Assuming an idealized case of perfect bonding between 

steel-and concrete, E pa can be written as: 

Epa = Ec 1- ku. ) + 
fpt 

(6.33) ku EC 

Substituting equation 6.33 into equation 6.32 then 
Epb = Epe + q8o (1- ku + fpt (6.34) 

ku Ec 

whe're c< 
Ec 
E0 

From equation 6.04 

k 0C F, 0 
U (6.35) Epb + Eo - Epe 

- 
L= 
Ec 

Referring to Figure 6.14. a and aDplying the equilibrium 
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0 
con itions: 

0.67 k1f 
cu 

k 
U, 

db 

From equations 6. C5 and 

f 
pb 

0.670(Eo klfcu 

Aps (Epb + O(Eo 

The value of ý< (= e- c/ F- o 

Aps fpb (6.36) 

6.36 

bEd- 
fpt 

(6.37) 

pe Ec 

can be determined from 

Section 6.2.6, and equation 6.87 can be-solved 

graphically using the stress-strain curve of the 

tendon on a strain compatibility basis. Having found 

-Pailure Epb, then f 
pb and hence the tendon strain at , 

ku can be calculated from equation 6.35. 

6.2.6. Evaluation of k and k in terms of 12 
c/, Lr'o ý---Snd their limitations: 

Referring to Figures 6.13 and 6.14 a, and by 

definition: 

k 

fo Ec 
fd. 

ec fo 

for'l. 0 e_ 0.0035 
-ö 0.244 x 10 x 

7fcu 

and k2 by definition is equal to: 
k2 

=1 k1f0 E2 

f 

c0 

-1.2. _4 lk + 1) (6139) 4 o( (3 cK (6 'e 
for 1.0 0.0035 

-3 0.244 x 10. K 

Vf 
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where and to ýc K- 0.0035' 
to 

6.2.7. Evaluation of Vu: 

klj k2 and ku can be calculated as shown in the 

previous Sections, and therefore (1 -k2kU) can be 

determined. If the latter differs considerably from 

0.9 (see equation 6.80), then the new value of 

(1 - k2ku) should be used in equation. 6.29 to con- 

0 struct equation 6.26. This will lead to a new value 

of k1. This procedure should be repeated till there 

is a reasonable agreement between the calculated and 

the assumed value of (1 -k2ku 
Vu can then be 

calculated using the final values of kl, k2 and kU 

in equations 6.29 and 6.28. 

6.2.8. Prediction of shear-compression failure load 
in a uniformly-loaded simDl)r suT)r)orted beam. 

6.2.8.1. Failure section and equilibrium condition: 

The position at which. failure will occur in the 

shear-compression case in a simply. supported uniformly 

loaded beam is not immediately apparent. The process 

of flexure-shear cracking is progressive and does not 

stop suddenly when a crack reaches a particular section, 

but the crack tends to progress towards the centre of 

the span, 

Neglecting the effect of aggregate interlock the 

shear crack should theoretically progress with increas- 

ing load until the shear resistance of the concrete at 
its head is equal to the external shear force. The 
length of the crack should thus increase with increasing 
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load. 
10 

Assume that the failure plane in shear-compression 

lies at a distance Nut from the nearest support. Then 

by referring to Figure 6.15. b, and neglecting the 

dowel f oi 

from-the 

that: 

qu >ýu 
2 

and from 

7ce and aggregate interlock, one can write 

equilibrium or external and internal moments 

q22 u Au L-0.67 k1 fCUku dbd (1-k2 ku) 
2 

(6,40) 

equilibrium of vertical forces: 

qu qu XuL v XY 
ku bd 2 

Combining equation 6.40 and equation 6.41, gives: - 

vxv 
= 0.67 kl (1 - k2 ku) (1 

_2X u). (6.42) f 
cu L/d Xu (1 - Xu) 

As mentioned before, experiments showed that uniformly 

loaded simply supported beams whicý failed in shear- 

compression, had critical sections at a distance 0.3,3L 

from a support. Hence putting )ýu = 0.33 in equation 

6.42 , gives: - 

kl (1 - k2 ku) (6.43) f 
CU. L/d 

Assuming (1 - k2ku) = 0.9 and combining equations 
6.26 and 6.43, gives: - 

k2 )2 + 0.554 - 0.662 1) kl - 0.79 =0 1 (L/d)2 (6.44) 
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The solution of equation 6.44 yields values for k, 

24 L for f 
cu 

>,, ZO. 0 N/mm and for all values of /d>,, 7.01 

which are all greater than 

0.33 x 0.0035 
0.244%1703ýýCu 

which is the maximum value for kI (see equation 

ýU>z 
6.38). Hence for all values of ýd >,, 7.0 and fc 

30.0 N/mm the value of k'l should be'limited to 

the maximum value of k-, given above. The value of 
1ý 
.U can be caiculated from equations 6.35 and 6.37 

i 
and by substituting the values of kj, k2 and kU 

into equations 6.42 and 6.28, Vu, the shear force 

at the critical section,. can be calculated. 

To determine the value of quL, from Vu, it will 

be assumed that this value of Vu is the shear force 

at a distance 0.5 d from the critical section measur- 

ed in the direction of decreasing bending moment. 

Hence 

vu. = 
qu L. 

qu d 
2 

or qu L= 6 Vu L/d 
(6.44) L/d +3 

A more conservative assumption is to take Vu at d 

from the critical section This gives 

V, 
u= 

qu L 
-- 

qu 
2 

or qu 6 Vu L/d 
(6.45) L/d +6 

Equations 6,44 and 6.43 will be discussed later in 
Section.?. 5.2 when they will be compared with experi- 
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0 

mental results. 
6.3. Comparison between Diagonal Tension Equation 

and Shear-6ompression Ecuation. 

One - or two-point loading case: 

A typical specimen of the general dimensions of 

the type C beams-used in the tests and stressed by 

seven ? mm diameter wires was studied in order to 

study the results predicted by equations 6.5 and 

6.28 for various values of concrete strength, pre- 

stress and shear span to effective depth ratio. 

Pigures 6.1.7.1 and 6.17.2 show the value of 

shear force at failure as predicted by the diagonal 

tension equation 6.5, the shear-compression equation 

6.28 and ultimate flexure(94) , as a function of a v/d. 

In Figure 6. l?. 1 f 
cu, was taken as 50,0 N/mm 2 

and 
fcP 

was chosen as 3,5 and 7 NIMM 2. Figure 6.17.1 

. 
shows that, within these ranges of variables, beams 

of type C will never fall in shear-compression. 
4f Figure 6.17.2 shows the effect of varying cu between 

35.0 and 45.0 N'1=2 with 
f 

cp constant at 5.0 N/=2 

on the mode of failure of specimen C. This case, too, 

shows that diagonal tension is the dominant mode of 

failure of a type C spedimen. For a v/d> 5.0, ultimate 

flexural failure will be reached before diagonal tension 

failure can occur. 
6.3.2. Uniformly-distributed load case: 

For this case two-typical specimens were studied, 

one with the general dimensions of type D in the present 
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I 
series of tests stressed by two 12.5 = diameter 

strands, and the other similar to type A-U-5 
(43) 

reported by Kar For the D type beam with 

bw = 50 mm, fcu was taken as 50.0 NIMM 2 
and fcp 

was varied'from. 2.0 to 5.0 NI=2. For the A-U-5 

type with b= 125 mm, feu was assumed to be 45,0 

H/MM2. Figure 6.18.1, for the D type beam, shows 

that diagonal tension is the dominant mode of fail- 

ure for fcp. '-4.0 N/mm2, but that flexure failure 

will become the mode of failure at fcp >z5. O N/mm2 

and G/d >,, 12.0. -As the breadth of the web-increases 

or in a rectangular case as shown in Figure 6.18.2 

for the A-U-5 type beams, shear-compression is dom- 

inant for b/d 1-10 and fcP = 2.0 NIM 2. For fcp > 

2.0 N/mm2 and L/d> 8.0, flexure failure will dominate. 

For fcp 42,0 and 
ý/d: >10.0 the shear-compression fail- 

ure and flexure failure overlap. For fcp =0 and for 

all values of L/d4 20 the diagonal tension failure is 

dominant. This latter case can also be observed in 

Leonhardt and Waltherýs photographs for rectangular 

beams of b= 190 mm. 

From the above it can be concluded that the web 

bre'adth plays an important role in determining the 

mode of failure in a uniformly loaded case. Prom the 

case studied which is shown in Figure 6.18.1 and con- 

firmed by experiments in this investigation in the 

higher range of U/d on type D-beam, it can be concluded 

that the shear-compression type of failure observed in 
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Kar's rectangular beams will never occur at all L/d 

ranges for sections with 
b 

w/d Z 0.25. 

4 
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CHAPTER 7, 

COITARISON WITH OTHER RESULTS AIM DESIGN RULES 

7.1. BSCP 110: Part 1: 1972 (30) 
and ACI (318 - 71) 

BuildiTL7 Code(32) Design Equations. 

Equations (45) and (46) of CP 110: Part 1: 1972 

contain partial. safety factors of 1.50 relative to 

concrete strength and 1.25 relative to the prestressing 

force. For the purpose of this comparison, these safety 

factors incorporated in the Code have been removed, 

giving: - 
f 

VcO = 0.67 bw ýft 1+ CP Code equation (45) 
ft 

where ft0.361fcu 

fpý and Vcr 0.55 
Le 

vc bwd +a mo 

- 0.5) d v/d 
Code equation (46) 

I 
where Mo = fpt 5r 

The shear force at diagonal cracking should be taken 

as the lesser of the Code equations (45) and (46). 

If the dead load is neglected ancl straight tendons 

are assumed, the ACI (318-71). Building Code gives under 

a web, -shear crack, the ultimate shear resisiance of a 

section as Vcw where: 

Vcw 0 bwd 0 29 VO. 8 fcu + 0.3 fc ACI equations 
(0 

P) (11-3 and 11-12) 

and Vci as an upper limit to the ultimate shear strength 

of a section und; r flexure-shear where: 

(0.5 V0.8 feu + fpe) Vei 0 bvid 0.05 [FO. 6 fcU + 
2(4) bw d av 

ACI equations 
(11-3 and 11-11) 
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To permit comparison, the capacity reduction factor 

was removed and the lesser of the above two express- 

ions was taken as the shear force at diagonal cracking. 

7.2. Comnarison of Equations 6.5 and 6.7. for 

one- or two-point Loading with Published 
Equations and Code Rules. 

To compare equations 6.5 and 6.7 with other pub- 

liqhed design equations and code rules, two typical 

specimens were studied, one with the general dimens- 

ions of type B in the tests and the other with those 

of type F, both being stressed by means of seven 7 mm 

diameter indented wires. The concrete strength and 

the prestressing force were chosen to be within the 

practical range. The concrete cube strength was taken 

as 50.0 NIMM2 in both cases. 

For B type beam, fcp was taken. as 8.0 N/=2 

and fpe/fpu as 0.55. For the F type, fcp was taken 

as 6.0 11/mm2 and fpe/fpu as 0.58. The value of the 

cracking load*predicted by each of the published 
a 

expressions as a function of av/d was evaluated and 

the results were plotted as shown in Figures 7.1 and 

7.2, together with the shear force corresponding to 
(94) 

ultimate flexural moment 

For the B type beam (hf = 47.5. mm), Figure 7.1, 

the expression .s of Sethunarayanan (34) 
q Sozen et al(86) 

and Evans and Schumacher (40) 
overestimateVC, but 

Sozen (36) 
et. al come out witý close agreement at 

av/d >5.0, and the expressions of Arthur (44) 
and 

(52)- Jena and Pannell underestimate Vc over the whole 
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0 
r6nge of av/d. Both BSCP 110: 19? 2 and ACI (318-? l) 

are conservative for a v/d /-2.0, but give results 

close to the modified curve (equation 6.7) at higher 

values of a v/d. 

Figure 7.2 shows the comparison based on the 

F type beam with a thicker flange (hf = 87.5 mm). 

Here 8ethunarayanan and Jena and Pannell give 

conservative predictions whilst Evanb and Schumacher 

and Arthur overestimate the value of Vc. Sozen et al 

show some agreement for av/d> 4.0. BSCP 110: 1972 

and ACI (318-71) Building Code unaerestimate the 

value of Vc at av/de-2.0, but they are close to the 

modified curve (equation 6.7) for av/a >3.0. Both 

the British and the American Codes of necessity, being 

design rules, stipulate lower, bounds to the expected 

range of test results, so they would be expected to 

appear conservative. 

7.3. Comoarison of Equation 6.5 for one- or two-point 
Loading with Published Test Re4ults: 

Figures 7.3.1 and 7.3.2 and Table 7.1.1 show , 

a comparison between equation 6.5 and test results 

reported by different authors 
(34-362 41-45,47,49) for 

various rectangular, I and hollow sections with differ- 

ent concrete strength, prestressing levels and av/d 

ratios. Some of these beams were of zero* prestressing 

force(36149)and I others contained web reinforcement 
(47l49). 

From Figure 7.3.1 and Table 7.1.1 it can be seen 
A (47) that, of the beams reported by Hanson and Hulsbos 

(49) 
and Bennett et al with web reinforcement, the test 
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(j ý- 

Author 

Sethu-na 
rayanan 

(36) 
Sozen 
et al 

cp /0 

TABLE 7.1.1. 

Comparison of test results for beams 

under one-or two-point loads by other 
investigators(34,36,41,43 - 45,47949) 

with values calculated with the diagonal 

tension cracking equation(6.5) - 

Beam 
mark 

av 
- d 

vc Extit. 
Vc Calc. 

Author Beam 
mark 

avI 
- d 

Vc Exot. 
- Vc Calc. 

(36) 
1 2.84 0.94 Sozen ý C1233 3.57 1.17 
2 4.26 0.90 et al 1257 3.63 1.14 
9 1.20 fc p Fý 0 2231 3.31 1.25 

10 2.12 0.89 
(36 

i 2240 3.65 1.11 
11 2.13 1.25 Sozen B3211 3.46 0.64 
13A 2.12 0.92 et al 19 3.53 0.71 
13B 4.24 1.07 fcp 0 31 3.53 0.99 
14 2.83 0.92 34 3.56 0.86 
15A 2.13 0.86 41 3.40 0.92 
15B 4.26 0.82 

ý54 3.47 0.85 
17A 2.13 1.07 C3211 3.25 . 89 
17B 4.26 1.01 22 3.60 1.05 
21A 2.13 0.95 37 3.60 1.07 
21B 4.26 1.00 42 3.56 0.77 

50 3.37 0.87 
M43 6.55 0.73 80 3.60 1.06 
1151 6.40 0.86 1 

(41 
1153 6.73 0.77 Swamy Sj 3.75 1.04 
1196 6.42 0.73 sii to 1.19 

31120 5.29 0.79 siii it 1.08 
1129 5.40 0.78 siv it 0.94 
1140 0.91 v to 0.86 
1210 3.24 0.81 svi 1.02 
1261 3.64 1.10 
2126 5.29 0.73 - (43) 

-Kar A-1 5.00 0.74 
2265 3.62 0.96, 

-2 it 0.73 
3115 5.29 1.04 

-4 3.50 1.20 
3231 3.53 1.01 

-5 3.00 1.22 
3254 3.47 0.85 

-6 4.00 0.98 

148 



. 11 

TABLE 7 . 1.1. (Cont'd) 

T 

Author Beam 
mark 

av 
- d 

Vc ExT)t. 
- Vc Calc. 

Author Beam 
mark 

av 
d 

vC EýC! Dtp 
Vc Calc. 

(43) (44) 
Kar A-7 3.86 1.07 Arthur A24 3.43 1.19 

-8 4.14 0.98 25 111 1.25 

-9 3.86 -1.03 26 is 1.21 

-10 5.00 1.07 Bl 3.36 0.82 

-12 4.00 1.00 2 of 0.88 
B-3 3.50 1.11 3 2.52 1.02 

-4 4.00 0.92 of 

-5 4.50 0.97 4 1.68 1.12 

-6 4.67 1.00 5 2.52 1.18 

-7 3.50 1.00 6 1.68 0.86 
-9 5.00 0.84 7.. 11 0.87 

-10 5.00 1.09 It it 1.22 

(44) 8 2.52 1.02 
Arthur Al 2.28 1.09 of if 1.07 

2 4.57 1.06 9 3.36 0.75 
4 it 0.97 of it 0.77 
5 2.28 1.26 10 1.68 1.03 
6 it 1.27 
8 it 11009 1.12 0.98 
9 11. 1.13 ll 3.36 1.16 

10 it 1.19 1.20 
of 'It 1.12 12 2.24 0.92 

11 It 1.08 of If 0.96 
12 If 1.06 Cl 1.68 1.00 
13 it 1.19 to it 1.05 
17 4.57 1.12 2 1.12 0.94 
18 it 1.06 3 2.24 1.09 
19 It 0.87 1.12 

IT it 1.12 6 1.12 1.18 
20 

ý1. q5 7 2.24 0.89 
It 11 41 

03 
It 

0.93 
21 1.03 0.90 
22 It 0.98 It It 1.02 
23 3.43* 1*23 8 1.68 0.86 
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TABLE 7.1.1 (Cont'd) 

Author Beam 
mark 

av 
- d 

VC Expt. 
Vc Cale. 

Author Beam 
mark 

av 
- d 

v Expt. c 
Vc Cale. 

(44) 
Arthur Ce 1.68 0.95 Hanson & -F6 7.05 0.99 

to ft 0.14 (47) 
Hulsbos ff 

Dl 3. S6 1.21 (with 7 4.24 1.33 
2 3.92 0.82 web to ff 1.28 
3 2.52 0.78 reinfor- 

cement) 
8 it 1.24 

0.91 9 5.64 1.15 
4 1.68 0.69 it 6.34 1.04 

0.70 10 4.94 1.31 
0.82 ff of 1.20 
0.91 13 5.64 1.83 
0.70 1.21 
0.84 14 6.35 1.12 

ti it 0.90 ff It 1.07 
ft ff 0.88 15 7.05 1.02 

El 2.80 '0.79 16 7.76 1.02 
2 It 0.93 It it 0.99 
3 3.92 0.93 (49) A03 0.75 1.00 
4 1.68 0.66 Bennett 13 1.50 1 12 

0.80 et al . 
(with 23 2.25 1.41 

0.81 
web 33 3.00 1.25 

0.82 reinfor- B02 0 75 1 23 cement) . . 
12 1.50 1.07 

Arthur & 1 1.68 0.70 f 
(45) 

' 
cp= 0 22 2.25 1.17 

Mahgoub 2 1.76 0.80 
C03 0.75 1.04 

3 0.91 0.73 
13 1.50 1.31 
23 2.25 1.20 

Hanson & FXI 3.39 1.26 
(47) it it 

33 3.00 1.12 
Hulsbos 1.19 

D13 1.50 1.21 
(with F1 2.12 1.08 

23 2.25 1.37 
web VI 11 1.05 
reinfor- 2 2.82 1.35 

33 3.00 1.03 
cement) E13 1.50 1.21 

of 1.19' 
33 3.00 1.17 

3 1.20 
F13 1.50 1.36 

1.08 
23 2.25 1.30 5 3.52 1.24 
33 3.00 1.12 
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F 

V 

0 

0 

TABLE 7.1.1. (Cont'd). 

Author Beam 
mark 

av 
d 

vc Expt. 
Vc Calc. 

(49) 
Bennett G23 2.00 1.10 

et al 33 3.00. 1.14 
(with B13 1.40 1.06 
web 
reinfor- 

23 2.10 1.11 

cement) 23 2.80 1.30 

.,: 
Cc 33 1.00 1.07 

J12 2.00 1.14 
22 2.10 1.14 

E13 1.40 1.14 
23 2.10 1.21 
33 2.80 1.14 

L13 1.40 
., 

J. lg 

ý23 
2.10 1.23 

33 2.80 1.26 
Ta3 1.40 0.99 

13 is 1.04 

. 23 2.10 1.15 
33 2.80 1.11 

IT13 1.40 0.99 
23 2.10 1.07 

09 

0 
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TABLE 7.1.1. (C on Vd) 

Mean value of ratio and standard deviation. 

Author No-0 of 
results. 

Mean Value 
of ratio 

Standard 
deviation 

Sethunarayanan, 14 0.99 0.125 
Sozen et aLl 18 0.93 0.171 

fcp X0 
I Sozen et al 12 0.89 0.138 

f 
cp 0 

Swamy 
-6 

1.02 0.114 
Kar 17 1.00 0.136 
Arthur 76 1.00 0.155 
Hanson and 25 1.16 0.114 
Hulsbos 

> (with web 
reinforce- 
ment) 

Bennett et al 19 1.19 0.119 
(with vieb 
reinforce- 
ment) 
fcp 

=0 
Bennett et al 20 ý10 1.13 0.082 
(with web 
reinforce- 
ýnent) 

cp X0 

il I 

. 

152 



results were more or less within or slightly above 

the + 20% bound. This may mean that the presence 

of web reinforcement has a negligible effect upon the 

value of cracking load calculated according to equation 

6.5. Figure 7.3.2, for beams without web reinforce- 

ment, shows that at higher values of*Pv/d, 
* 

some tests 
(36) 

reported by Sozqn et al seem to lie below the 
I 

,,, 
Ilower bound (-r20%) of equation 6.5, but not outside 

the modified curve given by equation 6.7. On the other 

hand about 90% of the tests-'repo I rted by Kar (42,43) 
on 

i,, 
rectangular beams failing in shear-ccmpression at 

3.0, /,, av/d, c'-ýz5.0, gave cracking load values above the 

lower bound (-20%). of equation 6.5 as shown on Table 

7.2 column 7. So it can be seen from Figure 7.3.2 

thal equation 6.7, ýfter being multiplied by a reduct- 

ion factor of 0.8, can be taken as a lower bound for 

predicting tne cracking load value for design purposes 

for-av/d 45.0 and that for av/d> 5.0 the effect of 
a v/d can be ignored. Thus, for av/dý,, ', 5.0 

1000 vc 
0.25 - 

av 

+f CD) bw d 
[1.5 

+k 
hil . 027 

d 
ct 

1f 
J# i 3j' ct 1 (7.1) 

whilst for av/d> 5.0 

* 
1000 

, 
vc 

0.1 (7.2) 
ff + bw d 

.5+ et 

7.4. Comnarison of the Shear-c'wul o-nression--Equation 6.28 
with Experimental Results and other Published 
Shear-compression Eauations. 
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7.4.1. Some of test results in this investigation and 

some others reported by Kar (43) 
and Arthur(44) on rec- 

tangular and I- section beams show that the final 

mode of shear failure for those specimens was shear- 

compression failure init. iated by a flexure-shear crack. 

The ratio of the experimental to the predicted shear 

force at failure is shown in Table 7.2 column 8. The 

experimental values of 81% of test results Were within 

±20% of the calculated values given by equation 6.28. 

7.4.2. Comoarison of equation-6.28 with other 

published shear-compression eguations: 

To compare equation 6.28 with other published 

expressions 
(40143) 

, the test results of Kar's (43) 

prestressed concrete beams were studied. The compa3ý- 

ison was made between the experimental and the calcul- 

ated value predicted by each expression as shown in 

Table 7. a which also shows the mean value of that 

ratio and the. standard deviation in each case. The 

scatter of the experimental to calculated values in 

termý of av/d is shown in Figure 7.4. From Table 7.3 

and Figure 7.4, equation 6.28'seems to predict the 

shear force at shear-compression failure reasonably 

well when compared with Kar's., expression which was 

derived from the same experimental data from which this 

comparison was made. Kar's, expression is tedious, and 
(40) Evans and Schumacher, 's 

., -expressions, 
i. e. equations 

2.25 ., 2.28 have their limitations as they are governed 

by the percentage of the,, main steel, e as discussed 
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TABLE 7.2. 
0 

Comparison of results of tests on beams 
failing in shear-compression under one- 
or two-point loads by Kar(43), Arthur (44) 

and the present investigator, with equation 
(6.5) and shear-compression equation (6.28). 

Beam 
mark 

-(2) 
f 

cu 2 

(3) 

f 
cp 2 

(4) 

av 

(5) 

vc Expt. Vu Expt. 

(7) 

Vý Expto 

(8) 

Vu Expt. 
N/mm NXm d KN KN v 

c Cale. v 
u Cale. 

(43) 
(Kar) 

-A-1 44.9 2.57 5100 22.0 26.4, -- 0.74 0.95 

-2 43.5 2.07 5.00 19.6 24.0 0.73 0.96 

-4 36.0 2.63 3.50 40.1 55.0 1.20 1.31 

-, g 43.0 3.35 3.00 51.4 68.5 1.22 1.27 

-6 35.0 1.57 4.00 24.5 38.2 0.98 1.12 
-7 37.8 2.64 3.86 34.3 45.0 1.07 1.02 
-8 42.7 4.03 4.14 39.2 43.1 0.98 0.94 

-9 42.3 4.66 3.86 46.5 53.9 1.03 1.04 

-10 39.8 4.66* 5.00 34.3 40.1 1.07 0.98 

-12 '43.6 3.29 4.00 36.7 43.6 1.00 1.02 
B-3 36.4 2.45 3.50 24.5 28.4 1.11 0.93 

-4 40.0 2.42 4.00 19.6 28.9 0.92 1.01 
-5 35.0 2.06 4.50 17.6 25.5 0997 0.98 
-6 37.7 2.98 4.67 23.0 26.9 1.06 0.93 
-7 41.4 3.28 3.50 26.4 39.7 1.00 1.17 
-9 41.6 3.28 5.00 19.1 26.0 0.84 0.94 

-10 44.3 4.14 5.00 28.4 33.3 1.09 1.12 

(44) 
Arthux 
D2 56.7 5.09 3.92 37.8 50.3 0.82 0.83 
E3 53.3 5.05 3.92 46.5 52.7 0.93 0.85 
G6'* 49.7 3.88 3.00 94.5 98.0 0.84 0.97 

C19 51.0 
1 

2.45 
1 

5.25 21.1 54.5 1.03 0.91 

* Author's beams. 
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. 
TABLE 7.3 

Comparison of the shear-compression 
equation(6.28)and other published 
expressions(40,43) ! dth experimental 
results obtained by Kar(43) on rectangular 
prestressed concrete beams. 

Beam a Experimental shear-compression failure load 
mark v 

d Calculated shear-compression failure load 
Equation 2. 25(40) Equation 6.28 Kar (43) 

A-1 5.00 1.25 0.95 0.96 
-2 5.00 1.24 0.96 1.03 
-4 3.50 1.11 1.31 1.19 
-5 3.00 1.05 1.27 1.16 

-6 4.00 1.09 1.12 1.18 

-7 3.86 1*00 1.02 1.07 
-8 4.14 O. M. '0 . 94 0.92 
-9 3.86 0.94 1.04 1.01 

-10 5.00 0.92 0.98 0.98 

-12 4.00 0.84 1.02 1.05 
B-3 3.50 0.85 0.93 0.88 

-4 4.00 0.93 1.01 0.99 

-5 4.50 0.95 0.98 1.08 
-6 4.67 1.05 0.93 0.96 
_? 3.50 1.03 1.17 1.10 
-9 5.00 0.96 0.94 -1.01 

-10 5.00 1.12 1.12 1.19 

mean 1.011 1.041 1.045 

standard 0.127 0.118 0.095 
deviation 
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in Sý-ction 2.5.2.5. 

As mentioned in Section 6.1, because of the many 

variables involved in determining the final mode of 

failure in shear for beams without shear reinforcement, 

and because of indeterminate nature of some of these 

variables, for design purposes the useful capacity of 

such beams- in shear under one - or Awo-point loads 

should be limited to the values given by equations 

7.1 and 7.2. 

7.5. ComT)arison of the-Expressions Developed for 

Uniformly Loaded Beams with Test Results and 
Published Expressions. , 

Comnarison of -the diagonal' tension equation 
6.12 and test results.. 

Figure 6.10 shows the test results in the present 

investigation and those reported by others 
(43j47,48) 

on 

rectangular and I- section beams plotted with equation 

6.12. Table 6.2 shows this scatter in the form of a 

comparison*between the experimental and calculated 

diagonal tension cracking load predi; ted by equation 

6.12. From Table 6.2 and Figure 6.10, it can be seen 

that all the experimental results obtained by Hanson 

and Hulsbos (4? ) 
, Arthur et al 

(48) 
and this investigation 

for the diagonal tension cracking-l oad were within 4- 

20% of the value given by-equation 6.12, even for those 

specimens tested atl, L/d as high as 17.78 (D-type beam' 

stressed with two 12.5 mm strands). In this investigat- 

ion a common feature in all those beams was that the 

I... I 
iss 



diagonal crack opened on a line either through or in the 

vicinity of a reaction, as mentioned in Section 6.1.3.1, 
'9ý'43)specimens which were of rect- On the other hand, Kar 

angular cross-section, all failed in shear-compression 

initiated by a flexure-shear crack. His experimental 

results are also shown in Figure 6.10 for the sake of 

comparison with equation-6.12. The overestimation of 

cracking load given by equation 6.12 in such instances 

is shown in Table 7.4 column 7. Equation 6.12 even 

predicts values greater than the shear-compression 

failure load as can be seen by comparing columns 6 

and ? of Table ?. 4, but this is to; be expected since 

the final mode of failure. was not diagonal tension 

cracking. * The only exceptional case, was (A-U-9), 

with zero prestressing forcel'in which case the 

diagonal tension cracking load predicted by' equation 

6.12 was 0.78 of the experimental ultimate shear- 

compression ýailure load. This case was discussed 

in section 6.3.21 and was illustratqd by the example . 
given in Pigure 6.18.2, 

7.5.2. Comparison of the shear-compr ssion equati, 
6.44 ana 6.45 with Kar's (43) 

test results. 

Kar's rectangular beams were found to fail in 

shear-compression before the formation of the diagonal 

tension cracks. In the previous section it was pointed 

out that values predicted by equation 6.12 were greater 
than the experimental shear-compression failure loads. 

The expressions developed for the shear-compression 

. 
159 



TABLE 7.4 

Comparison of results of-tests on uniformly 
loaded rectangular beamsby Kar(43) failing 
in shear-compression with values calculated 
by shear-compression equations(6.44)andý6.45) 

(1) 
1 

(2) (3) (4) (5) (6) (8) (9) 

Beam f- 
cu 2 

f 
cp 

L 
d 

q c 

l 

qL u qL c qL mark ý%. NýL2 Expt Expt. Calc, U. Exot. 
KN KN IKN qu. L calc. I 

Eqn. Eqn. Eqn. 1 
6-12 6.45 6.44 

A-U-2 ] 44.3 11.96 '112.871 69.9 1'91.0 1102.8 1 0.98 10.82 

-3 48.3 3.35 11 103.2 128.8 1`34.0 %. 0 1.23 1.03 

-4 45.7 4.02 103.2 119.9 145.4. 1.15 0.96 

-5 35.9 3.23 81.0 97.7 122.7 1.17 0.99 

-6 35.9 3.34 92.1 li6.6 124.5 1.34 1.13 

-8 34.8 2.64 81.0 107.8 109.5. 1.30 1.10 

-9 38.0 0.00 42.1 74.3 57.7 1.03 0.86 

-11 42.3 4.02 108.8 125.5 170.0 
. 

1.19 1.06 
B U-1 48.3 3.28 15.00 63.9 80.6 90.0 1.21 1.07 

-2 42.3 4.14. 57.9 65.0 98.1 1.05 0.90 

-4 45.7 4.15 75.0 79.4 101.4 1.18 1.01 

-5 39.6 3.33 47.2 62.8 
- 

81.4 1.09 0.94. 

Mean value of ratio''' 1.16 0.99 
Standard deviation 0.107 0.096 

,L 

160 



failure load in Section 6.2.81 equations 6.44 and 6.45 

were used to predict the shear-compression failure load 

for Karls'beams, and the results of comparison with the 

experimental values are shown in Table 7.4 columns 

and 9. Column 9 shows that the values predicted by 

equation 6.44 are in reasonable agreement with the 

experimental values, while equation 6.45 gave conserv- 

ative predictions, as shown in column 8. Thus it can 

be concluded that the value of the total uniformly 

distributed load at shear-compression failure can 

well be predicted by equation 6.44. 

Hence, for design purpqses, the total uniformly 

distributed load at failure should be limited to 0.8 

times the lesser of that given by equations 6.12 and 

6.44. 

7.5.3. ComiDarison of the diagonal tension eauntions 
with other published exDressions. 

A comparison between equations 6.12 and 6.17 

developed for predicting the total uniformly distribut- 

ed load at diagonal tension, cracking and that. given 
by Arthur et al. 

(48) 
, equation 2.37,, is shown in 

Figures 7.5 and 7.6, together with the experimental 

results obtained. from type B and F beams in this 

investigatio n. Arthur et al's equation 2.37 tends 

to underestimate the value of qc for W-ý9.0 
as it 

predicts a zero value'at ý/d'= 12-47 (see Section 

2-5.3.3. ). For the type. 
_B 

beams, which were of small 
flange depth compared-with",. those reported by Arthur 
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-0 
u 
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0 
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Figure 7.5. a. Type B beam. 

3-0 
---Equation 2.37 

48) 

"a 6-17 

2. S Experimental r esults 

'11ý ., - 0.2-0 - 

�a 

1.5 - 

1-0 
567 .9 10 1 

0 t/d 

Figure 7.5. b. Type F beam. 

Figure 7.5. Comparison of results of tests on type B 
and type F beams(ýgjer uniform load with the proposed 
and. Arthur et al expressions for diagonal iension 
cracking load, q c 
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et al, eqfiation 2.37 underestimates at all 
L/d 

values. 

This is because, as. mentioned in Section 2.5.3.3p of 

the arbitrary choice of the'coefficient and the constant 

which describes the geometry of the flange. 

. 
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0 CHAPTER 8 

CONCLUSICNS AND RECOISU21DAT IONS FOR 

FURTHER RESEARCH 

8.1. Conclusions: 

For the number of specimens tested and the 

range of variables tackled in this investigation, the 
I 

following conclusions may be drawn: - 

8.1.1. Distinctly different characteristics of behav- 

iour were shown by the specimens after ýhe formation 

of the diagonal tension crack. This behaviour could 

not be predicted from a knowledge of a v/d or 
L/d 

alone. 

8.1.2. Because there arel, at,, presentlindeterminate 

variables controlling any margin of shear strength 

beyond inclined cracking, the useful ultimate shear 

strength of prestressed concretebeams-wi . thout shear 

reinforcement should be limited to the inclined crack- 
ing shear force. 

The flange projections of jan I- section can 

contribute up to 40% of the., value of the inclined 

cracking shear force depending on their configuration. 

8.1.4. The diagonal tension cracking load can be 

predicted to an accuracy of 20% by the following 

expressions. 

8.1.4.1. Under one - or two-point loading. 

1000 VC 
+bh 7 w f# ft ,115 ý+ . _. 1) f (0.10 

+ 0.31 ) 

ctbwdctda v/d 

h Equation (6,5) 
b "f ý 1.0 where I-1d Tw 
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8.1.4.2. Under uniformly distributed load: 

IOCO qj )h 
--., 5 4b-1 -x f 

-21+ 
fcP- 

fýt bw d fo t b,,; d 
ct - 

0.10 0.31 
1-2AC + -7d Nc (1. 

Equation (6.12) 

where ýC: is given by: - 

+- 2)A3 + 18.6ý\2 + 9.30ýc 
_ 

1.55 =0 c Urd-j/lc T"d T-7d- 
Equation (6.13) 

and 10 d 

The values ofýc as a function of L/d is shown in 

Table 6.1 and the relation of qCL Ath L/d (equation 

6.12) is shown graphically in Figure 6.10 

The shear-comp: pession, failure -load, based on 

-11-! ohr's criterion of failure using, a straight line 

envelope, can be calculated to within : L20% using 

the following equations: - 

8.1.5.1. Under one or two-point loading: 

VU =V XY 
kUbd Equation (6.28) 

where 

2 2 2 
. 64 + 0.536 V- 1) k 0.449 9 kl] 

c +-6)4 ý ýc 

10 

and k is given by: Equation (6.26) 

2(l +j)2 '(1 + b2 
+ 1.24ý)- 1.48 1) k, - 1.77 =0 /d) 

"Equation (6.31) 
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F-0 

-Lpb o- 
Epe - OF 

Equation (6.. 35) 

Under uniformly distributed load: 

q6 
Vu L/d Equation (6.44) 

u L/d +3 

wher .e Vu =V XY 
ku bd as Equation (6.28) 

and v is given by-equation 6.26- shown in 
XY 

(8.1.5.11 where 

k=10.33 XO. 0035 
1 0.244 x 163xrf -cu 

2 
for f 

cu 
>_., 30.0 N/mm and '1/, d >/7.0 

k is given by equatio_n_6.3ý shown in (8.1.5.1). 
U 

8.1.6. The'Code rules of BSCP 110: Part 1: 1972 

and ACI (318-71) are ratherconservative at lower a v/d 

ratios. The other published, bxpressions tend to over- 

estimate the value. of the, cracking load at lower av/d 

ratios. 

8.1.7. When published test resulýs are compared with 

equations 6.51 6.71 6.122- 6.28 and 6.44, close agree- 

ment is obtained over a wide range of variables. 

Compared with beams having shear reinforcement, the 

effect of the latter-upon the'value of-the cracking 

shear force predicted by, e"quation 6.5 is negligible. 

8.1.8. For design purposes,. the, following express- 

ions may be used: - 
8.1.8.1. Under one or two-point loading 

3.66 
0 



-Its 
fl 

0 1000 vc 
h 0.25 - 0.027 av 

ct 
(1 

+bwd 5', +d 

Equation (7.1) 

for av 4 5.0 
d 

0.10 for av > 5.0 Equation(?. 2) 
d 

wheýre 
hf 

l'O 
(bw 

-d 

8-1.8.2. Under uniformly distributed load: 

The lesser of the values given by equations 6.12 

and 6.44 multiplied by a reduction factor of 0.80. 

8.1.9. From the experimental obserVations, it seems 

necessary to provide-a thin-webbed section with ' 
bw/d 140.33 at 2.0 zz: -. 

av/d 44.0, with a minimum amount 

of web reinforcement which will"increase ductility 

and reduce considerably the likelihood of a sudden 

and catastrophic shear failure. 

8.1.10. The experiments conducted on type D- beam 

under uniformly distributed load and the case studied 

in Figure 6.18.1 showed, that sheO-compression failure 

will never occur, in unif ormly loaded beams with 
b 
w/d C 

0.25 for all 
L/d 

values. 

8.2. Recommendations for Further Research: 

8.2.1. Equation 6.5 was. ýdeveloped from tests on 

beams with 
hf 

1.0 w- hich are the types of wd 
beams most commonly used in general building construct- 
ion, but it is questionable,, 

_at 
the present stage, if 

we could allow the, flange-projections, to contribute 

k 
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more than 40% to 

of 
b_ 1) 

R; hfd 

girder bridges of 

igation is needed 

the value of V. for higher values 
(97) 

-Tang quoted some long span box 
b >12.0. Hence further invest- 

b on box beams with /bw >4,0. 

8.2.2. Some shear tests on full-scale prestressed 

concrete box beams are. necessary to study the scale 

effect on equation 6.5. A-few of these tests have 

been reported 
(45) 

8.2.3. The shear failure behaviour of box beams 

and T-beams under uniformly distributed'load should 

be investigated. 

8.2.4. A slower rate of loading might be expqcted 

to lead to a lower, shear cracking load. Beam E4 

in Figure 5.1. g is". an'example"of'-this possibili ty. 

Hence the effects of different rates of loading 

should be studied* 

8.2.5. Equation 6.5 could be modified to predict 

the cracking load. for the type of loading shown in 

. 
Figure 8.1. The end reaction q, nL,,, ', for such 
loading will be. assumed to be given by the follow- 
ing equation: 

q. 
n 0.10 + __. 

g. 62 
fc$t 1+ 

Ob b hf] (n-; kc) Ac (ýn-Ac)Vd 

.wd 

11.5 
+ (ý; 

-uj 

(I 

(8.1) 

where>ý. Lis the distance of tlie critical section from 

a reaction and is given by the following equation: 

168: 



+ 4n)ý3 + 
(4n2 3?. 2 ), ý2 + 3?. 2n2Ac 

ýC 
Tc c 7d 

3 12.4n 0 '(8.2) Wd 

Further research is needed covering this type of 

loading to verify equation 8.1, 

qc 

hd 

qc 

Figure 8.1 
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APPMTDIX B 

B. 1 Estigration of -1)ýestress Losses in a Typical Beam 

B. 1.2. Geometric andImaterial nroperties of the snecizen 

eam Age Cement Cement "later Humidi- ff ýrestress-ý 
ci cu ark at type content cernent ty NýL2 at ing 

steel test kg/m3 ratio test CN/C 
N1 , rpm 

2 
days 

Al 26 R. H. P. 500 0.40 Normal 43.4 51.5 7= 
C. air indented 

wires 

_%3 -f 
Aps Aver- Es Aver- Acx 10' 1x 10 Peri- Eccen- 

age 2 age L2 
mM2 meter tricify 

=2 6. pix1O 
5 KNIMM f 

pi exposed (e) 
Mm/Mm K RýMM21 mm 

69.5 1 546 1200 
- 

1109.2 133.44 
, '134.97* 11205 

R el. 3. Estimation of the losses in accordance w 
BSCP 110'. Part-l*. 1972(30) 

B. 1.3.1. Elastic losses: 

AfAf 
ps ptr. ps Di 

1+ Es Aps + e2 
Eci Ac -I 

Aps fpi '294.3 KN 

Eci(f 
cu = 43.4) =-ý32, Mj/=2' (Table-1, BSCP 110) 

E -7 2 -7 
s 6.25,299 x 10, .'e 61'. 6 'x 10 A E 
ci c 

2 -7 -2 
and 1+e 360.6 x 10 mm 

Ac I 
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Af 
294.3 -7 294.3 

Ps ptr 6.25 x 269.5 x 360.6 x 10 1.061 

277.5 KN i. e. Prestressing force in the_ 

wires after elastic shortening. 

15.1.3.2. Relaxation, shrinikage and creeD losses: 

Shrinkage strain (Table 41) 300 x 10 
-6 -6 2 

Specific creep (Clause ý4.8.2.5. ) x 48 x 10 = 24 x 10 mm/N 

Prestressing force at transfer 277.5 KN 

Relaxation loss (from BS 2691: 1969) 5% 

13.9 KN 

Average force during loss period ý77.5 13.9 = 270.6 KN 
2 

B. 1.3.3. 'First approximation- 111* - 

Average stress in concrete at centroid of steel 
32 

M2 e 270.6 x 10 x(yl- )N/m 
c 

9,76 N/m ý2 

-6 
creep strain = 9.76 x 24 x 10 mm/= 

-5 
= 23.4 x 10 mm/mm. 

ciýeep + shrinkage strain = (30.0 + 23.4) x 10 

= 53.4 x 10 mm/mm. 

Steel stress loss = 107 NIMM 2 

Steel force loss = 107 x 269.5 x 10 KN 

='28ý8 KN 

Af 
Ps pe 

277.5 -, (13.9 + 28.8) KN 
(approximately) 

234,8 KN 

B. 1.3.4. Estimation of the effective prestressing force: 

Average force during loss period' 277.5 (13.9 + 28 . 8) 
2 

Average stress in concrete at 
-3 22 +e centroid of steel 256.2 x 10 X(WC -I )N/mm 

9.24 N/Mm2 
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-6 
Creep stýain 9.24 x 24 x 10 mm/mm 

-5 
22.2 x 10 mm/mm 

Creep + shrinkage 
strains 

Steel stress loss 

Steel force loss 

-5 
= (80.0 + 22.2) x 10 mm/mm 

-5 
= 52.2 x 10 mm/= 

= 104 N/=2 

,= 
28.1 KN 

. *. Af 277.5 - (13.9 + 28.1) = 235.5 KN 
ps pe 

Total loss at test = 100 - 235.5, x 100 
294.5 

= 20.0% 

F. 1.4. EstimatiOn of losses-using CEB Recommend- 

ations(27). 

F. 1.4.1. Elostic, losses: 

Aps f 
ptr 

294.3 
2 

1+ Es Aps( 1+e) 
Eci Ac 

2 
Eci 6.6 FO--8 ýfcu KN1m (Clause 

.R 
12 - 22) 

38.9 
2 

Es = 5.14 
Eci 

Aps f 
ptr 

294.3 
-7 

5.14 x 269.5 x 360.6 x 10 

294.3 280,3 IKN 

1+ . 05 
i. e. Prestressing force in the wires after 

elastic shortening, " 

B. 1.4.2. Creep strain: f (Clause R 12.31) 

f- Stress in concrete at centroid of prestressiLig 

ýJ, X. t eel X- ýt 
steel 

.) 
/Ec 

28 

where Ot is the creep coefficient 

Ec 28=secant modulus of concrete at 
28 days 
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is the product of five partial coefficients, each 

given in a form of a chart (see Figure B-1) 

Ot 
= ke kdkb ke kt 

where 

k 
c depends on the environmental conditions and it 

gives the effect of drying under load, which is 

very large if the relative humidity is low. 

kd represents the combined effects of ageing and 

hydration as a function of, the type of cementýused. 

kb depends on the mix. It includes the effects of 

water cement ratio and cement content. 

k covers the influence ofýthe size and shape of 
e 

the member in delaying drying.; 

kt shows the development of creep, with time, inciuding 

the delaying effect of the-_larger, 
-sections. 

In this case: 

ke = 2.30 (Wormal air) 

kd = 0.70 (R. H. P. Cement and 21 day loading, 
detensioned after 5 days). 

kb=1.00 (Water/cement. ratio =. O,. 40. and cement 

content = 500, kg/m, 

k is a function of the theoretical thickness e em 
where 

e Area of section M 
perimeter'in contact, ivith atmosphere 

3 33.44 x 10 cm = 5.6 cm 
60.25 x 10 

k 1.20 
e 

kt 0.40 (em = 5.6 and t, ime under load 21 days) 

t=2.3 x -0.7 x 1.0 x 1.2'-x 0.4,, 

= 0.? 73 

175- 



Coefficient ke (environmental conditions). 

e i 

-ooo 

2-30 

100 90 80 70 60 50 40 30 

RELATIVE HUMIDITY OF AIR 

Coefficient kd (hardening at the age or loading). 

21 111111 

,a 
ng 

0 

iý 
1.1 

ý 
F'*-ý [1 -0 1 1 

0-75- 
0.7 - 

"I 0-5ý 
T- , 

( 27) 

E iclu re B-1 *- CEB- FI P Recommen datio ns 
Charts for the Est imatio -nOT- 

Creep and ShrinkQ e 

Coefficient kb (composition of the concrete). 

.Z 
_y 

10 

t22 / 
_ _ 
1 10 

104 lu, 104 

E', 

t- 
137 14 I's 56 90 ISO JW days 

AGE OF CONCRETE AT TIME OF LOADING (T-^. O'C-C0n5L) (t represents the number of days after the application of 
L-1 II 111 1111 11111 1 11 11 1111 loads). 
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Shrinkage strainEr (Clause R 12.32) 

kk k' k 
c b. qpt 

where 

depends on the environment c 
kb as for creep 

ke depends on the theoretical thickness of the member em 
(Approximately equals. to the creep values) 

k depends on-the-percentageýof the steel and is given p 
as 100 to allow for restraint due to steel. 

100 + 20P 

kt defines the development of shrinkage'as a function 

of time (as for creep). 

In this example 
-5 

c= 
27.5 x 10 

kp 100 0.86 
100 + 20 x 269.5 x lCO 

33.44 x 1000 

kk and k as f. or creep. bet 
-5 

r= 27.5 x 10 x 1.0 x'1*2 X-0.86 x 0.4 
-5 

= 11.4 x 10 MM/MM. 

B. 1.4.4. First approximation of losses: 

Thý relaxation loss is given by . CEB (Clause R 11.22) 

as a function of time by a straight-, line law of 

logarithmic type by: 

log ap, t k, +k2 log t 
ap, o 

where A ap, t represent, s, --the loss. through relaxation 

at time t (hours) and C5- ap',, o, the- initial tension. 

The values of the coefficient's k anTk 'depend 2 
on the type of prestressing steel. 
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For simplicity of calculations, the r'elaxation loss 

will be assumed as 5% (as given by BS 2691: 1969) 

Relaxation loss = 14.0 IM 

Average force during loss period 280.3 - 14.0 
2 

= 273.3 EN 

Average stress in concrete at centroid of steel 
:, 3 2 

273.3 x 10 1 X(- e) N/=2 

9.87 N/mmý 

creep strain 9.87 x 0.773 
E 

c28 
2- E 6.6 1 0.8 x 52.0 42.6 KNI= 

c28 
fo 

fcu2g estimated as 52.0 NImm2 

-5 
creep strain = 9.87 x . 773 17.9 x 10 mm/mm 

42.6 x 10 
U 

-5 
creep + shrinkage strain (17.9 + 11.4) x. lo mm/mm 

-5 
29.3 x 10 

2- Steel stress loss 58*6 N/mm 

Steel force loss 15.8'KN 

Aps f 
pe 

(Approximately) = 280.3 (14.0 + 15.8) 

= 250.5 KN 

E. 1.4.5. Estimation''Of the' e'ffective prestressing, force: 

Average force during loss period 
280.3'', (14.0 + 15.8) 

2 
265.4 KN. 

Average stress in concrete, 
I -: -Iý ý 1. ý 12 

at centroid of the steel =*9.57 N/mm 

Creep strain 17.4 x 10 mm/mm 



Creep + shrinkage strain 

Steel stress loss 

Steel force loss 

-5 
(17.4 + 11.4) x 10 

-5 
28.8 x 10 

57.6 N/1=2 

15.5- KN 

Aps fpe ý' 280.3 - (14.0 + 15-5) 

= 250.8 KN 

Total loss at test = 100 250.8 x 100 

294.5 
I 15.0% 

B. 1.5. Total losses estimated-from s- urface strain 

measurement on speckaný'Al = 16.01ZI. 

The CEB and BSCP 110 Recommend a! t ions were applied 

to 12 specimens covering theý! four seasons of . the 

year, the cross sections used,, the prestressing 

tendons employed and different types of, concrete 

mix. CEB Recommendations, were, al%, jays very close 

to the values estimated from, surface strain 

measurement. BSCP 110 in. 
'allýthese 

cases'studied 

overestimated the values-of theýprestressing losses. 

In all the calculations "of the .p, re . stressing losses 

'6"losses'" stimaý- in this investigation,, th e ted' from the 

surface strain meas'urements were, ýused. 

Use of the CEB PIP Recommendations requires, 

some knowledge about the: environme'ntal conditions 

and this may not be, known-toth6 designer'., 

The overestimation of the losses'_ given V y, the 

crude figures of CP, 110 is on the-safe side. Hence 

in the author's opinion"-CP ilo'i s most, suitable for 

design, at least for the time being. 
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Annendix C 

TABLE C. 1 
Calculations steps in analysiB, 

-of 
one-or two-point load cases 

h f b f 
Ct 

f 
-cp v v cExOt 

M, a37-k d t-, 2 - ' -W- N/mm f d 
ct East West East West East Sest 

. 165 2.66? . 2? 5 3.29 2.25 3.00 04098 -, . 2309 1.14 - 
of If of It to - . 4080 - . 2299 - 1.13 

of 3.39 1.99 0 3.5 . 3200 - . 180C - . 95 - ý 
11 It If 3.42 1.85 2.00 . 4089 - . 2304 - - . 90 

OPT of of If is it to 4 015 . 2263 . 89 

19 If it If it 2.18' . 11, . 46? 9 . 2636 1.03 - 
If it If 34-)34 2.04 . 5069 . 2856 1.12 - 
it, is to 01 It - 

. 4033 - . 22? 2 - . 89 
oror it it it to of it 

' . 2632 . 2515 1.02 . 99 
of If It 3.42 1.95 it . 43ý? . 

'2466 
- . 9? - 

it it It it of to . 4? 11 - . 2654 - 1.04 
to of to it 2.13 'Iý . 4809 04464 . 2? 09 . 2582 1.06 . 99 
of it It it to III . 464.0 . 2614 - 1.02 - 

-6 11 11 of 3.56 2.06 
, 

3.00 - 
, -- ý, . 

3696 - . 2082 - 1.02 
7 

is it It 3.27 i 2.00 II% to III. 
. 3706 

ý- 

-- 
- 

. 2088 
it If #I If . 3438 . 4056 . 1937 . 2285 . 95 1.12 

2.47 3.01, - . 4080 - . 2299 - 1.13 
If' It to It it of 

- 
it . 3891 7 . 2192 - 1.08 - 

It it If 2.98 2.46 . 3839 e2163 1.06 
It of If is it It- ý . 3859 . 2174 1.07 

JLO it of If 3.05 2.15 . 4308 . 3669 . 2427 -2067 1.19 1.02 
is 2.91 1.85 3.50 . 3240 . 3550 . 1825 . 2000 . 97 L 06 

it it of It it it - it . 8374 - . 1901 - 1.01 - 
3-2 is It it 2.75 2.13 of . 3511 03248 . 1978 . 1830 1.05 0.97 

131 . 179 4.000 537 3.10 1.90 4.00 
, 
3267 . 3738 41'1604 . 1835 . 90 1.03 

2 of If it 3.26 2.17 
4 *3464 *'3575 '1701 . 1755 *. 96 . 99 

:3 it it of 3.52 1.93 2.00 -4884 . 5215 . 2398 . 2560 . 94 . 00 
it of of to to to . 5439 . 2670 - . 05 
4 #1 If to 3.19 2.21 . '4881 . 4992 *230 . 2451 . 94 . 90- 
of If it If If 2*30 . 5980 E 19 ý *'4854 . 2936 t. 2383 1.15, . 93 
5 

-I-- 
It of to 3.28 l.? l 4.5 . 339? 

L 

- . ý1668 

1- 
. 99 - 
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TABLE C-1 (Cont'd) 

I 
ct2l 

fc! 
3 

I av e ýMnl 
I hf b f1m 

aýk d bw /M fýt d 

: Lo 

cl 

4 
5 

ft 

6 

7 

p 

ast lWest lEast 

Ve Ex nt. 
vc Cý9,1c. 

West West 

. 17914.0001.53713.311 1-811,1.25 1.65031 -63391-3192 1.31121 
. 92 

1 11 . 7610 . 7252 . 3736 . 3560 1.07 
3.25 1.95 i, 

. 7006 . 7006 . 7006 . 3439 . 99 
It . 7979 . 6638 . 3917 . 3259 1.13 

96724 - . 3301 - 
3.23 1.9-5 . 6187 . 6189 . 3037 . 3037 . 87 

. 7443 . 7977 . 3654 . 3916 1105 
3.30 1.71 4.50 . 3142 - . 1542 - . 91 
3.23 2.32 3.50 . 3916 - . 19ý2 1.02 

1.50 . 5951 - . 2921 - . 95 
3.36 2.34 2.75 . 3889 - . 1909 - . 90 

*3960 . 4188 91944 . 2056 . 91 

. 241 2.667 . 401 3.24 1.78 2.00 . 4902 . 2580 
IT to If It . 4874 -- . 2565 - 1.01 
If 2; 07 t' . 5172 '. 4439 . 2722 . 23,90- 1.01 
It If 3.11 1.91 1.25 . 5208 . 6797 '. 2741 . 3597 . 79 
It of it It it . 71? 0 '. ? 170 . 3774 . 3774 1.08 
It it to 3.45 1.83 4.00 93124 - . 1644 - 

It 3.35 1.91 2982 - . 1563 - 
3.27 1.73 2.00 . 4357 - . 2293 - 

If It . 4872 '. 4782 . 2564 . 2517 1.01 
It If . 4536 - . 2387 - . 94 

R 9) fl A 

. 89 

. 02 

. 99 

. 94 

. 95 

. 87 

. 13 

. 97 

. 01 

. 92 

. 03 

. 08 

. 93 

. 88 

. 90 

. 99 

0 1610 41j %. j w I- 0 rý I UU J. Ovo 

3.33 1.94 1.25 . 6125 -. 6579 . 3224 . 3463 . 93 1.00 

96571 -- . 2985 - . 86 

o5559 . 2926 -* . 84 

. 7273 . 6809 . 3828 . 3584 1.10 1.03 
3.26 1.80 . 5566 . 6364 . 2929 . 3349 . 84 . 96 
it 

. 6606 . 2Z? 7 9 
1 30 1: 

89 
. 

3.06 2.04 2.00 - . 3970 . 2089 . 82 

. 4362 - . 2296 - . 90 - 
. 5009 . 2636' 

L. 
03 



TABLE C. 1 (Cont'd) 

Be am 
mark 

h 
-jjf 

b 
-7,7 

W 
o" 

f 
ct 

I/Mm 2 

fcT) 

f 
ct 

'v 
I 

d j 
East' 

I 

West 

ý 

East 

ý 

West 

v iýýt - 
VcCalc. 

East Iýest 

C9 . 241 2.667 . 401 3.01 1.90 1.25 . 6102 . 6102 . 3212 . 3212 . 92 . 92 

of it it it It tl it- . 7227 .? 22? . 3804 . 3804 1.09 1.09 

10 it to 2.96 1.95 4.00 - . 3025 -, , . 1592 . 90 

11 Ir it it 3.06 1.60 . 3267 . 3090 . 1719 . 1626 . 97 . 92 

12 it It ft 2.? 0 1.93 . 3256 . 8358 . 1? 14 . 176? . 96 1.00 

Dl . 255ý 4.00 . 764 3.19 2.00 2.00 . 5269 . 5269- . 2326 . 2326 . 9. L . 91 

it If it it ff it ff . 5625 . 5269 . 2483 . 2326 . 97 . 91 

2 11 it of 3.21 2.01 11 - . 5385 - . 23? 7 - . 93 

3 it it it 3.35 1.60 3.00 . 3372 . 3953 . 1489 . 1? 45 '. 73 '. 86 

4 3.29 1.53 4.50 . 3280 - . 1448 - . 86 - 
5 it- it it 3.06 l.? 4 4.00 . 3951 - . 1745 . 98 - 
6 It It 3.39 1.58 3.00 . 4418 - . 1951 - . 96 - 
7 it it 2.73 1.03 6.00 . 5614 . 3744 . 2339 . 1560 1.54 1.0Z 

8ý it 3.04 . 89 11 - . 3620 - . 1308 - . 9c. 

9 3.27 . 83 5.25 . 3639 - . 1516 - . 95 - 

El . 314 2.667 . 524 3.74 1,17 3.00 . 4377 . 4414 . 2159 . 21? 8 1.06 1.0r, 

it It it it it it it . 4483 - . 2212 - 1.09 - 
it it it to it it 2.00 . 5307 . 5022 . 2618 . 2478 1.03 9, 

2 11 It it 3.33 1.00 11 - . 5252 - . 2591 - 1.0t, 

it it it it 11 Is it . 5761 - . 2842 - 1.11 

It, to it It it It It . 5312 - . 2621 - 
3 of it if 3.37 1.45 1, . 5202 - . 2566 - 1.0, 
it tt It of of it - it . 5202 -- . 2566 - 1.0, 
of of ff it it 1.53 11 . 5127 . 5707 . 2529 . 2815 . 99 1.11 
4 to 3.29 1.57 4.00 . 3372 . 3468 . 1664 . 1711 . 94 .9 
.5 It, 3.17 1.79 11 - . 3858 - -. 1903 - 1.0 
it it to it 2.00 . 4732 . 5169 . 23204 . 2550 . 92 1.0 
6 it it it 3.22 1.96 3.00 . 4892 . 4245 . 2413 . 2094 1.19 1.0 
7 3.10 1.80 . 3869 - . 1909 - .9 
of it . 3996 - . 1971 - . 97 - 
of it. it it . 4182 - . 2063 - 1.01 - 
8 if 3.52 1.52 4.00 - - - - - - 

CIT . 283 3-OC7 . 472 2.73 -. 93 6.00 . 3110 - . 154 - 1.03 - 
ft it it 3.04 

-. 
82 3.00 2730 - . 138 - . 91 

19 of tr 3.27 . 75 5.25" . 3200 - . 162 - 1. Q 

a 

3 
L 
L 
) 

7 
0 

3 
4 

Note: C17, C18, and C19 are shown in the bottom of the page. 
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TABLE C. 1 (Contd) 

3eam 
nark 

h4 f --d- 
b 

- b%v Cý 
f 
ct ct 

m2 t 
f 

CP 
I. f 
ct 

av 
- -d - 

13 

- 

Eastl West 
I 

EastlWest 

Vc Expt. 

ve% 
In I r% 

East West 

: Fj . 830 4.000 . 990 3.14 1.45 4.00 4057 . 2911 . 1629 . 1169 . 92 . 66 

2 3.21 1.46 . 3946 . 3792 . 1585 . 1523 . 89 . 86 

3 3.41 1.50 2. CO . 5741 . 5936 . 2306 . 2384 . 90 . 93 
1.57 . 6123 . 6527 . 2459 . 2621 . 96 1.03 

4 3.28 1.70 . 5684 . 3684 . 2283 . 2283 . 90 . 90 

1.79 . 5910 . 6557 . 2373 . 26ý ̀2 . 93 1.03 

.5 3.33 1.00 4.5 - . 3526 - . 1416 - . 84 

GI . 000 1.000 . 000 3.80 . 80 2.00 S558 - . 2367 - . 93 - 
it . 3825 - . 2550 - 1.00 - 

2 3.40 1.10 . 3760 T . 2507 - . 98 - 
3 3.34 . 60 - . 2958 - . 1972 - . 77 

- . 3427 - . 2285 - . 90 

70 4 03o 6 % - . 2691 1.06 
4 3.35 1.06 4.00 

5 2.94 1.27 2.00 . 3035 - . 2023 - . 79 

1.27 2.00 - . 3363 - . 2242 - . 88 

3.23 1.20 3.00 . 2552 - . 1701 - . 84 - 
2.00 0.0 . 3002 - . 2001 - . 78 

1.30 It . 4073 . 2715 1.06 
7 3.26 1.04 1.50 - - 
8 3.39 1.13 ý. Oo - 

'llotes. 
hf 13 1000 Ve 

I+r cp bw d 
ct 

1000 Vc 
f ct 

fc't (1+ f 
. LM)b d 1,5 f, w 

hf I + 
(hb 

ct w 

-2* 
Vc Expt. v 

v c Experimental 
c Calc. v i c Calculated, us ng equation 6.5 

and 
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Appendix D 

TABLE D. 1 

Calculations steps in analysis of 
uniformly distributed load case. 

F 
eam h f b 

C< 
f t f 

37k - - c cp v c. Pxnt a 5 b 2 T d , - 
' w N/mm ct c Calc. 

East, West East West East lest 

133_2 . 179 4.000 . 53? 3.09 1.45 10.0 1.530 1.330 . 7511 . 653C 1.05 . 91 
13 It it of 2.93 1.61 8.0 1.643 1.643 . 8066 . 8? lC 1.00 1.08 
3-4 of it it 3.13 1.94 7.28 1.642 1.806 . 8060 . 886C . 95 1.04 
3-5 tr It if 2.93 2.15 6.0 1.891 1.891 . 9280 . 840 . 98 . 88 

C]L3 . 241 2.667 . 401 3.13 1.21 10.0 1.447 . 7620 - 1.06 - 
IL4 of If 3.11 1.24 8.0 1.605 l.? 02 . 8450 . 856 1.05 1. OC- 
: L5 it 3.13 1.62 7.28 1.638 1.774 . 8620 . 934 1.01 L 1C 

-3.6 it it 2.93 1.84 6.0 1.663 1.663 . 8750 . 875 . 92 . 92 
20 . 283 . 472 2.67 1.05 11.78 1.649 - . 8362 - 1.27 - 

jc): Lo . 300 4.000 . 900 2.67 1.11 ll.? 8 1.718 - . 7158 - - LOS 
,: Lla 3.450 . 735 3.45 0.90 17.78 1.333 - . 5963 - - 1.1c 
: Llb 3.41 0.90 1.184 1.367 . 5298 . 6116 0.98 1.1-2-4 
: L2 3.64 1.07 11.78 1.627 1.312 . 7280 . 5870 1.10 0.9C 
: L3 3.11 1.06 17.47 1.091 - . 4881 - . 90 - 
3.4 3.02 1.14 1.239 - . 5544 - 1-OiS 

9 . 314 2.667 . 524 2.91 1.42 10 0 1.524 - . 7520 - 1.03 - 
: Lo of 2.95 1.46 8.0 1.662 1.707 . 8200 . 8420 1.01 1.04 
: Ll it 3.10 1.61 6.0 1.934 1.934 . 9540 . 0540 1.00 1. OC 
: L2 it 3.00 1.49 7.28 2.007 1.858 . 9900 . 9170 1.16 LOE 

6 . 330 . 000 
.. 

990 2.98 1.38 10.0 1.891 1.796 . 7590 . 7210 1.06 L OC 
7 2.91 1.52 8.0 2.198 2.198 . 8830 . 8830 1.09 1.0s 
8 2.95 1.71 6.0 2.229 2.079 . 8950 . 8110 . 95 . 8q % 

-9 1" Il 3.01 1.50 7.28 2. CO8 2.053 . 8060 
_. 

8240 . 95 
w 

. 911, 

ljoteq: 

IL c< b/bvl- 1 hf/d 
(j()oo q, )/(fct 

q 
ct Ernt 

qcL Cale. 

0 

1000 qcL)/(fct (1+ fcp/fCt) bwd) 
(1+ fcplft 

qc L 
Ex -- 

ct) bwd(l. 5 +'(b/bw - 1) hf/d) 

nP PI rn an + in. 
q calcul c 
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A, ppendix E 

E. 1 Mohr's ýailure Criterion Assuming a Straight 

Line Envelope: 

From the geometrical relations in Figure E. 1, 

and talking compression as positive. 

f1+f2 `ý 2 OCI OC CE 0. " 3 where CE = CD 

t ff 

22 cosec 0 since 
FDE and TE =c cot Q 

fl j f2 
cosec cot 9 

2 

or 2 OC ý f, +f2= (f' 1f2 )cosec- 2c cot 9 (1) 

With the same sign convention, the following 

expressions can be deduced from the well known 

principal stresses: 

fl - f2 fxx + fyy 
(2) 

f+f (fxx 
_ fyy)2 +4 V2 12 XY 

I 

Prom (1) and (2) 

V(PXX 
- fýy) 

22 
+4 vxy 

(f 
, x. + fyy) cosec -2 c cot G* (3) 

From the geometrical relations in Figure E. 2 with 

compress ion taken as positive 

-- f /. *ff ' c-I GQ = HK PQ M- PQ where 2 2 
sin o 

f, 1 
cf (% _f GQ 2-2 sin (4) 

E t f, ff fc 
c-t and K - 222 sin 0 (5) 

From (5) 

fc 
' - ft 

I+ sin G (6) 

Solving 
1- sin 9 

(6) fore gives E) sin-' fe + ft (7) 
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From Figure E .2: 
fIf 04 

OE = EK + OK where EK t cosec 0 and OK t 
22 

Lt" +s -*L n OE 2 sin 9 

tan c2c sinG 
M, + sine) 

or I 
c 

ft (1 + sinG (8) 
2 cos 9 

From (7) and (8) 

c=- 
(9) 

2 
Substituting (7) and (9) into (3), we'get: 

2c fe f ýV. V) 
(f 

2 'fý F(fxx 
fyy) +4 vxy fc 11 + ft) (fc +f 

or 

2 -\2 2 
Y) = 

(fxx 
+212 +f f= lyý +4 Vx Cf+ 

(f 
cf 

#, 2 ,2fI( 4ft fe + 4f'f'(fxx+fyy)(f'-f-, tcc t) 

After simplifying, rearranging, dividing by fý4 

we get and substituting % as c 
ft ,- 

+0 X-X + t+ t 
. fxx xx 
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