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Abstract 

Analytical, numerical and experimental analyses have been performed to investigate 

the effects of thermocouple wire electrical insulation on the temperature measurement 

of a reference surface. Two diameters of K-type thermocouple, 80μm and 200μm, with 

different exposed stripped wire lengths (0 mm, 5mm, 10mm, 15mm and 20mm) were 

used to measure various surface temperatures (4oC, 8oC, 15oC, 25oC and 35oC). 

Measurements were made when the thermocouple probe is in direct contact with the 

surface and the wires are extended vertically and exposed to natural convection from 

outside environment. Experimental results confirmed that the thermal effect from the 

electrical insulation on temperature measurement was within -0.5oC and therefore it 

can be neglected. Moreover, the experimental results agree well with those obtained 

by both the analytical and numerical methods and further confirm that the diameter of 

the thermocouple has an impact on the temperature measurement. Analytical results 

of the thermocouple wire with insulation confirm that there is no specific value for the 

critical radius and the rate of heat flux around the thermocouple wire continuously 

increases with the wire radius even when this is larger than the critical radius. 

Experimental and numerical analyses have been performed to investigate the heating 

impact of using thermocouples for the temperature measurement of small volumes of 

cold water. Two sizes of K-type thermocouple have been used: 80µm and 315µm to 

measure the temperature of the cold water inside a small chamber while the 

thermocouple wires were extended vertically in the outside environment.  For this 

study, the chamber temperature was adjusted to 4oC. The results show that the heating 

effect of the thermocouple decreases for the greater depth measurements and this effect 

is eliminated when the thermocouple junction is close to the chamber bottom surface. 

The increase in the thermal resistance between the bottom surface and the 

thermocouple junction raises the heating effect of the thermocouple impact. Moreover, 

the exposed length of thermocouple wires to the environment has no effect over a 

specific length where the wire end temperature is equal to that of the environment.  

Experimental and numerical analyses have been carried out to study the effect of using 

subchannels in heat sink to minimise the effect of hotspots generated on a chip circuit. 

Two devices of heat sink – with and without subchannels – were fabricated in order to 

investigate this effect. The first device was manufactured with a normal parallel 

channel while the second one was designed to extract more heat by dividing the main 

channels above the hotspot into two subchannels. A hotspot heat flux (16.7×104 

[W/m2]) was applied at the centre of the channels while a uniform heat flux (4.45×104 

[W/m2]) was applied at upstream and downstream of the channels.  Five mass flow 

rates have generated under gravity force to investigate the performance of devices 

under different operating conditions. The results showed the maximum surface 

temperature was reduced by 4oC the temperature uniformity was improved. Moreover, 

thermal resistance was reduced by 25% but the pumping power was increased as a 

result of the presence of the subchannels.  
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Chapter 1  

Introduction 

1.1 Thermocouple impact 

Thermocouples are one of the most prevalent temperature sensors that are used in 

the real experiments. The probe and wires of the thermocouple interface with a system 

during temperature measurement, altering the temperature field at the attachment 

point. Consequently, the sensor disturbs the medium and records a different value than 

expected from the measurement at the point of contact. This type of effect was 

classified by Moffat as system/sensors interaction error [2]. 

The principal reason for this effect on measurement is the presence of a temperature 

gradient along the wires. If the wires are passing through a medium with a temperature 

higher than that of the probe, heating impact occurs and the reading is higher than 

expected. Moreover, a cooling impact takes place when temperature of the wires is 

lower than that of the probe and the reading is lower than expected. Therefore, in order 

to minimise the impact of the thermocouple, both probe and wires should be at the 

same isothermal plane.  

The impact of the thermocouple depends on several parameters such as the attachment 

method, wire size, probe size, fixing glue, insulation material and thickness, 

temperature gradient along the wires, etc.[3-6]. Moreover, the increase in the 

difference between the thermal conductivity of thermocouple wires and that of the 

system leads to an increase in the effect of the thermocouple.  

Various attachment methods can be used to measure surface temperatures, depending 

on the physical application. Furthermore, the attachment methods specify the route 

along which the wires and the probe can be placed to measure surface temperature. 

Fig. 1.1 shows three typical positions of the thermocouple during surface temperature 

measurement. Fig. 1.1a shows the vertical thermocouple position, in which the probe 

in contact with the surface and the wires are exposed to natural convection from the 

outside environment. A thermocouple consists of two dissimilar wires which have 

different thermal conductivities. Therefore, the impact is a combination of conduction 
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heat transfer through both wires. The greater the temperature difference between 

environment and surface temperature, the larger the effect of the thermocouple.  

The cooling effect takes place when the thermocouple wires are in an environment of 

temperature lower than surface temperature. Heat transfer is conducted through the 

probe and then along the wires out of the surface when Ts is higher than Tinf. (See 

Fig. 1.1). Consequently, the surface temperature at the contact area will be lower and 

the thermocouple measures a lower temperature than expected. Conversely, a heating 

impact occurs when Ts is lower than Tinf. due to heat transfer by conduction through 

the wires to the surface. Therefore, the surface at contact area will therefore have a 

higher temperature and the temperature measured will be higher than expected. 

Fig. 1.1b shows the parallel position, in which the wires are in contact with the surface 

while simultaneously encountering convection from the environment. Consequently, 

the probe and the wires will be at different temperatures, and error in measurement 

occurs due to the heat transfer by conduction through the wires. As discussed in the 

preceding paragraph, heating or cooling effects occur when Ts is lower than Tinf  or Ts 

is greater than Tinf, respectively. Moreover, the error in temperature will be more 

complex when surface temperature Ts varies along the wires. 

 

 

 

 

 

 

 

 

 

 

    (a) vertical position       (b) parallel position       (c) inside the body 

Fig. 1.1: Three-dimensional models of thermocouple in contact with surface in 

different directions. 
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Fig. 1.1c shows the insertion of the thermocouple inside the body near the surface to 

measure the temperature. If the surface temperature varies along the wires, a 

temperature gradient will be present and error in measurement is expected. 

The error in thermocouple reading becomes larger with the increase in thermocouple 

wire diameter in all cases shown in Fig. 1.1. Furthermore, Fig. 1.1(a-b) shows that 

when no fixing glue is used; adding material to attach the probe to the surface may 

cause some error [4, 6-8]. Inserting the thermocouple inside the body requires a hole 

to be made, as shown in Fig. 1.1c. The temperature field will be changed due to the 

existence of the hole and thus will affect the thermocouple reading. 

Conduction heat transfer through thermocouples wires is enhanced when the thermal 

conductivity is greater. Consequently, a thermocouple with lower thermal conductivity 

produces less effect on the measurement process [9-12]. Moreover, the type of 

electrical insulation can affect temperature measurement. Increased insulation 

thickness enhances heat flux to the thermocouple up to the size at which heat transfer 

begins to drop [8]. A small diameter bare thermocouple wire is highly recommended 

to minimise the error [13]. 

Thermocouple interaction with liquids is different than with solids. Inserting a 

thermocouple inside fluid flow to measure temperature will obstruct the flow and 

generate fluid boundary layers around the probe, increasing convection heat transfer 

and causing reading error [14]. Moreover, the presence of the probe can change the 

flow direction and behaviour [15].  

Generally, the most important points to be considered is the placing of thermocouple 

wires and probe in the same isothermal plane in order to eliminate temperature gradient 

and thus reading error. If there is no possibility to avoid this, the following should be 

considered: 

1. Using a small size thermocouple. 

2. Using as small a difference in thermal conductivity between thermocouple 

material properties and measured medium as possible 
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3. Removing the electrical insulation, can reduce error depending on the physical 

application. 

4. Minimise the size of attachment fixing glue. 

During temperature measurement, the error produced by the interaction of the 

thermocouple should be considered and the reading must be corrected. However, if the 

impact of the thermocouple is smaller than experimental error (e.g. fixed and random 

errors), this correction can be neglected. 

1.2 Non-uniform heat flux generation liquid cooling 

Recent developments in technology and industry require treating huge quantities of 

information and data efficiently and with optimum time management. Dealing with a 

high volume of information requires high-efficiency microprocessors and rapid 

computational time [16]. Consequently, the cooling system should be designed to 

permit high heat dissipation from the processor. Microprocessor heat flux generation 

is non-uniform due to the performance of different operations on each part of the chip 

[17]. Maximum chip temperature should be kept below the endurable limit of the 

material and avoid any sharp changes in temperature distribution between the chip 

components [16]. The parallel microchannel is the normal method for cooling of high-

density heat flux generated from a small-scale system [18]. However, using parallel 

microchannels for the cooling process generates non-uniform temperature distribution, 

regardless of whether the heat generated is uniform or non-uniform from chip circuits 

[19]. Therefore, alternative methods should be used to reduce heat generated on the 

hotspot of the chip circuit.  

There is no specific cooling method for removing heat generation from hotspots 

generated above chip circuits. Parallel microchannels can be used after rearranging the 

distribution of the hotspots above the circuit [16, 20]. Changing the inlet flow direction 

in order to increase the mass flow rate of the liquid above the hotspot can mitigate a 

raised temperature [17, 21]. A two-phase flow is a possible method of cooling a chip 

circuit with a variable density of heat flux [22, 23]. The width of the microchannel(s) 

can be varied to target the hotspots by using narrow channels and wide channels for 

the other parts [16]. Extra generated heat can also be extracted by using a superlattice 
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hybrid system as a solid-state cooler which can be placed above the hotspot [24, 25]. 

Each application needs a special design of the microchannels and inlet manifold in 

order to achieve a uniform temperature distribution above the surface.  

The main parameters to be considered in the design of a liquid cooling system for a 

chip circuit with hotspot heat dissipation are: maximum surface temperature; 

uniformity of temperature at the surface; thermal resistance; and pumping power. The 

primary target is a reduction of maximum surface temperature, but at the same time 

uniform temperature distribution and lower thermal resistance are necessary. 

Minimising the pumping power is also important. An increase in cooling system 

complexity can reduce the surface temperature, but this will occur at the expense of 

pumping power; a compromise between these parameters should therefore be 

considered. 

1.3 Objective  

1.3.1 Thermocouple conduction error 

1.3.1.1 Thermocouple electrical insulation effect 

In the present study, two different diameters (80µm and 200 µm) of Type K 

thermocouple were used to measure a surface temperature with direct contact between 

the junction and the surface without any fixing glue, as shown in Fig. 1.2. During the 

experiments thermocouple wires were extended vertically and exposed to a natural 

convection from outside environment. Because of the environment temperature is 

different than the surface temperature, heat flux then will be conducted through the 

thermocouple wires and the probe to (or from) the surface and therefore the surface 

temperature will be altered. A cooling effect is happening when the surface 

temperature is higher than environment temperature and therefore the thermocouple 

will measure a temperature lower than expected value. Whereas, heating impact is 

taking place when the environment temperature is higher than surface temperature and 

the thermocouple will measure a higher temperature than the expected. 

The study examined the impacts of different lengths of wire stripped of electrical 

insulation on surface temperature measurement using a thermocouple. The electrical 
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insulation was stripped for different lengths: 0mm, 5mm, 10mm, 15mm, and 25mm 

for both thermocouple sizes. A Peltier element was used as the target surface for 

generating different surface temperatures (4oC, 8oC, 15oC, 25oC, and 35oC). 

Experimental results were compared to analytical and numerical calculations in order 

to fully understand the various heat transfer mechanisms in play. 

 
 

 
 

a) cooling effect when𝑇𝑠˃𝑇𝑖𝑛𝑓 b) heating effect when𝑇𝑖𝑛𝑓˃𝑇𝑠 

Fig. 1.2: Effect of thermocouple conduction error on surface temperature 

measurement: a) cooling effect, b) heating effect. 

1.3.1.2 Thermocouple conduction effect on small volume of cold water 

The objective is to studying the heating impact of a thermocouple(s) on the 

temperature measurement of a small volume of water in a cooling system. The small 

volume of water is inside a chamber in the first row of TG40 cooling system. TG40 

system consists of 5 rows with 8 chambers in each row, see Fig. 1.3 [26]. Two lids are 

covering all chambers and separating them from outside environment. There are two 

main parts in each row: plastic insert and copper block, the plastic insert is placed 

inside the copper block. The water inside the plastic insert was cooled by the copper 

block which its temperature is controlled by TG40 system. There are two wells in each 

chamber inside the plastic insert, a small well (with volume about 4mm3) and a large 

well (with volume about 32mm3), both of them are filled with water, see Fig. 1.4.  

The first set of experiments was performed to measure the water temperature 

distribution inside the large well of the plastic insert without lids by using a 

thermocouple. The second set was to measure water temperature distribution inside 
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the copper block to confirm the block temperature. Two different sizes of 

thermocouple (80μm and 315μm) were used to measure the temperature. 

During the experiments, thermocouple wires were extended vertically and exposed to 

natural convection from the outside environment while the probe was immersed inside 

the water. Because the environmental temperature was higher than that of the water 

inside the chamber, the heat transfer was therefore conducted to the water through the 

thermocouple wires and the probe. This caused a heating impact on the water around 

the probe and the water temperature will be altered. Consequently, thermocouple will 

measure the affected water temperature which is higher than the actual value. 

Experimental and numerical analyses have been adopted to investigate the heating 

impact effect of the thermocouple. Depending on this validation, numerical results of 

the full chamber geometry were considered solely to examine the temperature 

distribution inside the large and small wells without the effect of the thermocouple. 

 

Fig. 1.3: CENTEO’s TG40 cooling system. 
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Fig. 1.4: Two-dimensional cross-sectional view of the chamber. (Note: this figure is 

Fig. 5.2 re-inserted here). 

1.3.2 Cooling of non-uniform heat flux 

The expected results from the section 1.3.1 will give us a good understanding of the 

effect of thermocouple on temperature measurements. Depending on this results, the 

appropriate locations of the thermocouple wires and the probe attachment methods 

will be chosen in this part of the research to minimize the impact of the thermocouple. 

Consequently, the temperature measurement(s) will be more accurate obtained and 

better understanding of the system behaviour is obtained.  

In the present study, the increase of the liquid-solid interaction area has been adopted 

to remove the extra heat flux generated on the hotspot to reduce the maximum surface 

temperature above the chip circuit. Heat generated above the chip circuit is non-

uniform due to the effect of different operations performed by the circuit. 

Consequently, the temperature distribution will be non-uniform above the surface and 

hotspots are created. 

Two heat sinks were fabricated: the first one with parallel channels and the second 

with subchannels by dividing the main channels into two subchannels above the 
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hotspot. Twelve microheaters were used to generate the hotspot at the middle position 

and uniform heat fluxes upstream and downstream of the flow. 

Experimental and numerical results were adopted to investigate the effect of adding 

subchannels above the hotspot and to predict the thermal and hydraulic performance 

of the new design. 

1.4 Thesis outline 

In Chapter 2, a literature review has been presented about the available techniques for 

reducing the high temperature of the hotspot in non-uniform heat flux generated on a 

chip circuit. 

In Chapter 3, a brief description is given of the governing equations for flow and 

thermal fields with the applied boundary conditions. In addition, the finite element 

method used for the formulation of the partial differential equations and the solving 

method are briefly discussed. COMSOL Multiphysics software was used to solve two 

benchmark cases based on the FEM method in order to investigate the validity of using 

FEM to solve the flow through microchannels. 

Chapter 4 outlines the effect of thermocouple electrical insulation on a surface 

temperature measurement. Two sizes of thermocouple were used to examine the 

cooling and heating effects on temperature measurement. Furthermore, the insulation 

was stripped off in order to study its influence on the measurement process. During 

temperature recording, the thermocouple was held in a vertical position, while the 

probe was in direct contact with the surface without the use of any glue. Analytical, 

numerical and experimental results have been conducted to analyse the effect of the 

thermocouple(s). 

The heating effect impact of using different sizes on a small quantity of cold water was 

investigated in Chapter 5. Two sizes of thermocouple were used to investigate the 

heating impact of a thermocouple on a small cold volume of water. The water 

boundary temperature was kept at 4oC and the thermocouple probe was immersed in 

the cold water during the measurement process, while the wires were held vertically 

into the environmental temperature. Heat transfer by conduction occurred through the 
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wire into the water as the environmental temperature was higher than that of the water. 

The measurement from the thermocouple was higher than expected due to the heat 

transfer to the water. Experimental and numerical methods have been adopted using 

COMSOL Multiphysics software.  

In Chapter 6, two models of parallel channels with and without subchannels were 

designed to investigate the effect of adding subchannels. Experimental and numerical 

analyses have been considered. The model(s) was fabricated using copper material and 

the manifold was made from low thermal conductivity material to minimize heat 

losses. Twelve microheaters were used to generate a hotspot at the middle of the 

channels and uniform heat fluxes at upstream and downstream positions. Therefore, a 

wide parallel channel was used to cool the uniform heat dissipation, while narrow 

channels were involved on the hotspots. 

The conclusions used to target the results’ chapters have been included in Chapter 7. 

Moreover, recommendations and suggestion for the future works were listed as well. 

 



 

 

 

Chapter 2  

Literature Review 

2.1 Thermocouple conduction error 

When thermocouple wires are exposed to an environment with a temperature different 

to that of the object being measured, heat transfer occurs through the wires, which 

disturbs the system, alters the thermocouple junction temperature and causes an impact 

on the temperature measurement. 

Boelter and Lockhart [8] conducted experimental work to measure the temperature of 

a thick stainless steel plate. The plate was kept at constant temperature(s) by heating 

one side and cooling the other side, using hot and cold air flow respectively. Two types 

of thermocouple were tested (iron-constantan and Chromel-Alumel) with different 

wire sizes; the thermocouples were attached to the cold air side during the 

measurement process. They also investigated the influence of vertical and horizontal 

thermocouple attachment methods on the surface temperature measurement. They 

suggested that the impact of the thermocouple on measurement can potentially be 

minimised by using an inter-thermocouple wire inside a plate or by extending the wires 

along the surface being measured for a length more than 50 times the wire diameter.  

Tarnopolsky and Seginer [11] performed an experimental analysis to study the effects 

of wire diameter and electrical insulation on error due to the conduction through 

thermocouple wires during temperature measurement of vegetable leaves. Small 

wire(s) size (AWG40) Type T thermocouples were placed parallel to the surface, while 

the probe was attached using special glue and the surface was exposed to cold (or hot) 

air flow. Different surface contact lengths of insulated and uninsulated thermocouple 

wires were tested. They verified that the glued length of the thermocouple wire (size 

AWG40) of the Type T with Teflon insulation was reduced from 22mm to 14mm when 

the insulation is removed to achieve a uniform temperature between the junction and 

the measured surface. Moreover, the glued length is reduced to 10mm when 

thermocouple Type K was used. He et al. [6] conducted a CFD analysis and compared 

results between the effects of vertical and parallel positions of thermocouples on 
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surface temperature measurement. Thermocouple(s) were attached to a uniform heat-

generating surface that was cooled by air flow at different speeds. They showed that 

placing wires parallel to the surface can reduce the impact of the thermocouple on 

measurement by more than half as compared with a vertical position. He et al. [6] 

showed that the relative errors (with respect to the difference between the undisturbed 

surface temperature and the ambient temperature) were 11.8% and 27.1% for the 

horizontal and vertical position respectively.  

Various thermocouple arrangements inside low-conductivity materials exposed to 

high heat transfer were examined experimentally by Brewer [27] and Dow [28]. They 

proved that a relatively high error due to thermocouple impact was produced when 

thermocouple wires passed through a low-conductivity material parallel to the heat 

flow. They therefore recommended placing the wires at the same isothermal surface 

of the junction for several diameters to minimise the error. Singh and Dybbs [3] 

measured temperature variation inside the body by inserting thermocouples at different 

depths, parallel as well as normal, to temperature variation through the body. They 

reported that the thermocouple wires and the junction should be at the same isothermal 

plane in order to reduce error. Consequently, if experiment conditions do not permit 

this, the temperature reading should be corrected. However, the correction is not 

appropriate if the experimental error of the thermocouple is larger than the error due 

to the impact of the heat conduction through the wires. 

Another strategy was adopted by Li and Wells [5] to measure surface temperature by 

pushing a thermocouple through a hole opposite the surface. The surface temperature 

was measured during the quenching process by a Type K thermocouple which was 

inserted into the hole near the surface. Experimental and numerical studies confirmed 

that when the thermal conductivity of the hole is less than the surrounding material, 

heat transferred to the thermocouple junction will be less and the measured 

temperature is lower than expected. Therefore, the effect of both hole and 

thermocouple wires should be considered during the temperature measurement. 

Furthermore, Li and Wells [5] proved that an increase in the hole diameter caused a 

larger effect on the temperature measurement. Two-dimensional analysis by Bartkus 
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et al. [29] predicted that most of the error in thermocouple measurement within the 

body comes from the increase in thermal resistance between the thermocouple 

insulation and the surrounding materials. Experimental and numerical results by Atia 

et al. [9] consolidated the conclusions of Li and Wells [5] and Bartkus et al. [29]. 

Moreover, Attia et al. [9] studied the effects of different thermocouple material 

properties (E, J and T) and the surrounding material on temperature measurement 

inside the body. They showed that an increase in thermocouple thermal conductivity 

augmented heat transfer and thus underestimated temperature readings. Furthermore, 

the existence of a thermocouple hole altered the temperature field around the 

thermocouple and caused a reading error [9]. 

Tarnopolsky and Seginer [11] observed that a thermocouple with lower thermal 

conductivity (Type K) requires 60% less contact length than one with a higher 

conductivity (Type T). Dow [28] pointed out that because of its high thermal 

conductivity, alumina tubes produce a greater impact on measurement by 277 [K] 

higher than resin-glass insulation when used as an insulation material for thermocouple 

wires. Numerical results of Kidd [10] used skin-technique to confirm that pairing 

chromel-constantan wires gave a lower conduction error than other materials used for 

thermocouple wires. Experimental results of Boelter and Lockhart [8] showed that 

iron-constantan gives a higher error in temperature measurement than Chromel-

Alumel. Shaukatullah and Claassen [4] performed experimental results for the 

temperature measurement of a chip surface with different thermocouple sizes and 

attachment methods. They attached number of thermocouples radially (where there is 

a temperature gradient along the wires) and axially along the isothermal plane. They 

reported that the error due to heat conduction through the wires was 5.5% of the actual 

reading while the experimental error was 1.5%. 

Boelter and Lockhart [8] confirmed that for the same size of the thermocouple there is 

a small effect from electrical insulation on temperature measurement when the 

thermocouple diameter (including the insulation) is equal to the critical radius. Mohun 

[30] discussed analytically the effect of electrical insulation for temperature 

measurement inside a solid wall. Mohun showed that the presence of electrical 

insulation over a critical length can only affect the thermocouple reading if the wires 
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pass through a variable environmental temperature. Tszeng and Zhou [31] used the 

finite element method to analyse conduction error through thermocouple wires when 

the probe was in direct contact with the surface of a body. They showed that when the 

body temperature is 1000oC, the insulated wire can cause an impact of 25oC 

temperature drop while the uninsulated wires has negligible impact (about 0oC).  

Moreover, the increase in the wire diameter 0.02mm to 0.15mm leads 30oC 

temperature measurement difference. Tszeng and Zhou [31] recommended using bare 

wire with a small diameter rather than a larger diameter thermocouple with insulation. 

Woolley [12] confirmed that alumina oxide Al2O3 insulation causes higher 

measurement error than glass braid insulation during temperature measurement at the 

interface between aluminium and sand during a metal casting process. These results 

have been demonstrated for different sizes of thermocouples (AWG124, AWG30, 

AWG36, and AWG44) and for very high temperature differences (~1500K). Similarly, 

Tszeng and Saraf [13] showed that a thermocouple of small size has less impact on 

measurement. 

Experimental results presented by Perera et al. [7] studied the effect of different fixing 

methods of the thermocouple on an LED lens for surface temperature measurement. 

They indicated that using thermal adhesive tape or silicone elastomer have an identical 

effect on the measurement. Furthermore, fixing the thermocouple junction with a spot 

weld gave better results than soldering or condenser-discharge welding (Boelter and 

Lockhart [8]). Shaukatullah and Claassen [4] showed that using silver epoxy, either 

alone or with insulating epoxy, to fix the thermocouple to the surface gave a good 

contact and consequently lower error in temperature measurement. Attaching the 

thermocouple to the surface with polyimide or aluminium tapes produced higher errors 

due to poor contact. He et al. [6] state that an increase of the epoxy drop diameter from 

2.5mm to 7.5mm led to reduced measurement error, but that this increased again for a 

diameter of 10mm. Their results confirmed that the thermocouple error can be 

                                                 
1 AWG is abbreviation of American Wire Gage. The sizes AWG24, AWG30, AWG36, and AWG44 

are equivalent to 0.511mm, 0.255mm, 0.127mm, and 0.05mm respectively.  
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minimized when using high thermal conductivity silver filled epoxy instead of classic 

epoxy of low conductivity. 

Another approach was taken by Robertson and Sterbutzel [32], who used two 

thermocouples and a heater which were attached to a probe. The first thermocouple 

was in direct contact with the surface and measured the disturbed temperature, while 

the second, away from the surface, measured the temperature of the probe itself. Both 

thermocouple outputs were fed into a power controller which supplied a heater current 

proportional to the temperature difference. Consequently, the heater reduced the 

temperature difference between the thermocouples. When both thermocouples were at 

the same temperature there was no heat flux along the thermocouple wires and the first 

thermocouple accurately recorded surface temperature. 

Numerical results of Kulkarni et al. [14] verified that the flow around a thermocouple 

probe generates an increased amount of heat transfer coefficient, and that this 

consequently causes an error in the temperature measurement. They demonstrated that 

when a thermocouple probe is placed close to the wall, the measurement error is 

increased due to the rapid acceleration and convection flow developing over the 

boundary. However, this error is minimised when the flow Reynolds number is 

relatively low. Heitor and Moreira [15] showed that the existence of an object changed 

the direction and behaviour of flow, particularly during preparing flow for combustion. 

Moreover, the thermal interaction between the probe and surrounding fluids generates 

more perturbation. Rabin [33] proved that the behaviour of flow inside a measured 

system affects measurement error; in particular, laminar flow around the thermocouple 

produced a greater measurement error than that of the turbulent flow. 

Experimental analysis of Hindmarsh et al. [34] showed that the presence of a 

thermocouple junction affects a water droplet freezing when it is suspended by a 

thermocouple to measure its freezing stages. Conduction through the wires forced the 

freezing to begin from the centre toward the outer surface of the water droplet. Xu and 

Gadala [35] demonstrated that the high thermal conductivity of fluid surrounding a 

thermocouple wire increases the error in measurement due to conduction through the 

wires. During surface cooling by water, the error is larger than that of the air cooling 
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due to the difference in high heat transfer coefficient. However, analytical results of 

Rabin [33] showed that an increase in the length of the immersed thermocouple wires 

inside the flowing fluid leads to a reduction in the error due to the conduction of heat 

through the wires. Moreover, Rabin confirmed that the effect of the conduction can be 

minimised when the size of the thermocouple is small.  

Fang and Ward [36] used two sizes of thermocouple to measure the temperature at the 

interface between liquid water and its vapour. Two Type K thermocouples, 25.4 µm 

and 80.3 µm, have been used. The wires of 24.5µm were extended horizontally within 

the measured medium to a length that equalled 20 times the junction diameter to avoid 

any possible conduction error. However, the wires of the larger size thermocouple 

(80.3µm) were extended to 110 times the junction size.  

Kobus [37] compared single-wire and two-wire thermocouple models and found that 

the two-wire model is more accurate than the single-wire because the thermal 

conductivity is very different. 

2.2 Liquid cooling of non-uniform heat flux 

The principal purpose of using microchannels is to remove the maximum amount of 

heat generated from a limited space [18]. This technology is used to remove uniform 

heat generated from integrated circuits [18, 38, 39]. Due to non-uniform heat 

dissipation from electronic circuits, however, hotspots are generated [20, 40]. Parallel 

microchannels have been used to cool uniform and non-uniform heat flux distribution 

but, due to unequal flow rate distribution through microchannels,  non-uniform 

temperature distributions have been generated [18, 21]. Different design approaches 

have therefore been developed to extract greater heat flux from the hotspots. 

Different technologies are available to minimise the effect of hotspots on the 

performance of a non-uniform heat flux generation chip circuit. Two-phase flow 

boiling through parallel microchannels for cooling hotspots has been studied by 

several authors [41-50]. A superlattice can be employed as a solid-state cooler which 

can be placed above the hotspot to extract the extra heat generated [24, 25]. Single- 

and two-phase porous media with microchannels have been studied numerically [22] 
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and experimentally for cooling hotspots [23]. Another type of two-phase flow of spray 

cooling by breaking the flow into small droplets to generate a small layer of vapour 

can cool the heat generated at hotspots [51, 52].  

A single-phase liquid is the primary target of microchannel cooling of chip circuits 

[18]. Therefore, the present study exploits the benefit of increasing solid-liquid 

interaction area by adding subchannels above the hotspot to extract the extra heat 

generated for a single-phase flow. 

Locations and amounts of heat generated at the hotspot on the chip surface determine 

the type of microchannel design in order to achieve uniform temperature distributions. 

Hegde et al.  [53]  attached a two-layer heat sink to the chip surface which generates 

various heat flux scenarios: ascending and descending along the microchannels, 

upstream, middle, and downstream heat dissipation. Numerical results of Hegde 

confirmed that the parallel fluid flow through the channels gives lower surface 

temperature with the descending heat flux generation. Furthermore, counter flow 

showed a similar surface temperature for ascending and descending heat dissipation. 

Hedge and Seetharamu [53] numerical results showed that the parallel flow with partial 

heat at the downstream gave lower temperature in comparison with counter flow case. 

The last observation of  Hedge and Seetharamu [53] validates the experimental results 

of Wei [1] who confirmed that lower surface temperature has been obtained for the 

parallel flow with downstream heating.   

Another approach is to redistribute the hotspot locations to obtain a uniform heat flux 

above the chip circuit. Chauhan et al.  [17, 20] numerical results showed that the 

changing in the flow direction where the cold fluid met the hotspot at the entrance or 

in opposite direction. In addition, Chauhan [20] used a counter flow between two 

adjacent microchannels; the results showed that placing hotspots at the inlet gave more 

cooling action. The numerical analysis of Zhang [40] et al. and Li et al. [16] used the 

same method of rearranging the hotspots on the chip circuit, but, they increased the 

channels density above the hotspots.  Xie et al.  [54] numerically analysed a 

combination between two and  three different manifolds and two hotspot locations (in-

line and diagonal arrangements perpendicular to the flow direction). Xie showed that 
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a lower and more uniform temperature was achieved when the inlet and outlet ports 

were located at the middle and perpendicular to the heat sink surface, but a greater 

pressure was also produced. Analytical analysis by Biswal et al. [55] showed the effect 

of the size of the heat source on thermal resistance. When a heat source is 25% of the 

size of the heat sink, thermal resistance is reduced by 16% for fully developed flow 

(14% for not fully developed flow) when the hotspot is moved from inlet to the middle 

position. Biswal et al. [55]showed that an increase in the size of the heat source in 

comparison with heat sink area led to a reduction in base thickness. 

The cooling effect of the cross-linked microchannel on different locations and density 

of the hotspot were studied by Ling [56]. Placing the hotspot upstream led to a lower 

temperature than downstream because of lower water temperature coming into contact 

with the hotspot. Moving the cross-linked microchannel after the hotspot showed 

better improvement in comparison with the position above the hotspot. Microchannels 

with two passes along the chip circuit were investigated by Liu et al. [57]. Three 

separate heaters were attached to the back of a heat sink to get non-uniform heating. 

Two designs of manifold were studied experimentally: the first made the flow 

perpendicular to, and second parallel to, the flow in the microchannels. The authors 

found that placing the hotspot at the inlet created a higher temperature than middle and 

downstream positions. The presence of the hotspots at the inlet raise the liquid 

temperature and therefore the cooling capacity is reduced when liquid comes in contact 

with the other parts of the surface. Moreover, if the hotspot was upstream or 

downstream the liquid temperature will be lower when the flow approaches the hotspot 

and the cooling capacity will be higher.  

The using of the parallel channels for cooling a unifrom heat flux generation above the 

chip circuit, produces a non-uniform surface temperature distribution. Therefore, 

variable channel widths have been investigated by several authors for cooling uniform 

heat flux generation in order to improve the temperature uniformity. A reduced 

channel width gives better thermal performance, as confirmed by Saad et al. [58]. An 

experimental comparison between flat plate heat and five heat sinks of different 

channel widths (0.2mm, 0.5mm, 1mm, and 1.5mm) was investigated. There was a 
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greater reduction in surface temperature when using fins compared with a flat heat 

sink. Moreover, an increase in the flow rate led to a rapid decrease in surface 

temperature of the flat heat sink, unlike the case with minichannels [58]. Barrau et al. 

[59] experimentally investigated the effect of varying channel widths with flow 

direction for a uniform heat flux heat sink. The manifold was designed to supply liquid 

water at the middle section through a slot and deflected 90o to enter the channel section. 

The channel(s) height and wall thickness were 2.5mm and 0.5mm respectively. 

Channel(s) width varied from 3.5mm at the middle section (flow upstream) to 0.5mm 

at downstream. Various values of uniform heat flux and mass flow rates were applied 

at the back of the channels and inlet ports respectively. Uniform temperature 

distribution was achieved, with a small effect on pressure loss compared with 

conventional microchannels. Riera [60] experimentally and numerically confirmed the 

results of the previous investigation [59]. Riera [60] repeated the same design 

configuration as above but with the smaller size. Channel(s) width varied in five 

stages: 1.528mm below the flow inlet at the middle location of the channels and 

0.136mm downstream of the flow. Channel height of 0.3mm and wall thickness of 

0.1mm remained constant along the channels.  

The same designs of variable channel widths have been applied for cooling of non-

uniform heat flux generation. The placing of narrow channels above the hotspot 

increases the solid-liquid interaction area and then reduces surface temperature. 

Hotspot with heat flux of 1250 W/m2 can be cooled by using a different design of 

microchannels, reducing the channel width above the chip circuit (Prasher and Chang 

[61]). Experimental results of Prasher and Chang demonstrated lower thermal 

resistance has been achieved with narrow channel cooling. Numerical analysis of 

Minliang [62] and Wang [63] followed the same procedure by narrowing the width of 

microchannels above the hotspot to increase the fluid-solid interaction area. Optimum 

design by Göker [64] confirms that reducing microchannel width at the hot spot 

increases heat transfer and consequently increases pressure drop. Zhang et al. [40] and 

Li et al. [16] divided a chip into low and high heat flux areas and reduced the width of 

the microchannels above the hotspots to minimise the temperature in comparison with 
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uniform heating. Their numerical results showed a good improvement in surface 

temperature.  

Optimum manifold and microchannel designs have achieved a minimisation of the 

effect of the hotspot on temperature uniformity (Sharma et al. [65]). Sharma designed 

a manifold to direct water flow inlets on the hotspot and an outlet above the uniform 

background heat dissipation. In addition, small-width microchannels were placed on 

hotspots, while larger widths were used above the uniform flux. Lower thermal 

resistance and smoother temperature distribution were obtained, but higher pumping 

power was required. An experimental study conducted by Sharma [66], using the a 

similar design of Sharma et al. [65], by directing water flow above the hotspots 

locations on which the channels widths is less than the widths above the uniform heat 

flux.  Sharma et al. [66] used a special design of manifold by throttling the flow above 

the channels whether these were placed above the hotspots or uniform heat flux. Two 

models of have been investigated with different heat flux generation: first model was 

150 W/cm2, and 20 W/cm2 and the second model was 300W/cm2, 40W/cm2, and 20 

W/cm2. The design proposed by the author improves the temperature uniformity by 

4oC and 15oC for the first and second model respectively. Instead of reducing the 

channel width(s) above the hotspot(s), varying the channel depth(s) was investigated 

by Dias [67]. Dias [67]suggested variable depth microchannels to reduce the high 

temperature at the hotspot. Above the hotspot, the channel will be deeper than the 

background heat flux; a deeper channel means more heat transfer interaction area 

between fluid and solid.  

Another technique can be selected to increase the solid-liquid interaction area. The 

effect of using oblique fins was investigated numerically by Lee [68] and 

experimentally by Lee [69], in studies comparing conventional microchannels with 

two different configurations of oblique fins. Numerical [68] and experimental [69] 

analyses confirmed that the use of oblique fins led to a decrease both in chip 

temperature and temperature difference above the chip surface. Varying the fin density 

according to the heat dissipated at the hotspot can improve temperature uniformity 

[69], but at the cost of pressure increase. Lee [70] added a fin pins array to the hot 
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spots in order to extract the high heat flux and obtain uniform temperature with a higher 

pressure drop. The number of fin pins on downstream hot spots was greater than 

upstream in order to compensate for the rise in temperature of water that had passed 

through upstream hotspots. Goodson [71] suggested a complex manifold design to 

control volume flow rate by supplying a high flow rate to the hotspot, thereby reducing 

its temperature, while reducing the flow rate provided to the lower heat flux area. This 

can be achieved by controlling the flow by supplying the cooling fluid directly to the 

hotspot through short passages at a greater pumping power. Goodson [71] used 

different microchannel sizes and fins of different heights to obtain a uniform 

temperature above the chip surface but the pressure drop was increased. 

Another study for cooling the hotspot is injecting cold water directly above the hotspot 

to reduce the temperature and obtain a more uniform temperature distribution Fan and 

Hassan [72]. A numerical analysis was performed for flow through a single 

microchannel heat sink crossing a jet of cold water flow(s) from a spiral inlet above 

the hotspot(s). Fan and Hassan [72] show that the increase of flow velocity through 

the microchannel led to a decrease in temperature when jet flow velocity was constant. 

Moreover, for a constant microchannel inlet velocity, the increase in jet velocity led to 

a decreased hotspot temperature. Fan suggested the addition of pins inside the channel 

to increase the solid/liquid interaction area. Furthermore, the density of the fin pins 

was increased downstream of the channels due to fluid’s high temperature. 

Four separated blocks generating differing heat fluxes were cooled by separated 

parallel microchannels in a study by Xu [73]. Water was used as the cooling liquid; it 

was supplied to the system through a single inlet port and collected through two or 

four outlet ports. The four microchannel sets were each linked together by a unique 

channel. Each microchannel set had a specific number of channels with variable space 

width between the neighbours channels depending on the heat generated at each block. 

The flow rate(s) through the heat sink was controlled by using a computer controlled 

pump to get different flow rates. The system of 5ports (one inlet and four outlet) gave 

a better performance than the 3-port system (one inlet and two outlets).  A lower 

pressure drop and thermal resistance were obtained from 5-ports. 



 

 

 

Chapter 3  

Governing Equations and Numerical Methods 

3.1 Governing differential equations 

Heat transfer analysis of the interaction between solid and liquid includes solving a 

system of equations through solid and liquid simultaneously. Continuity and Navier-

Stokes equations of incompressible steady-state flow behaviour can be written as 

follows [74]: 

Continuity equation: 
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Navier-Stokes equations: 
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where u, v and w are the velocity components [m/s] in the 𝑥-, 𝑦- and 𝑧-directions 

respectively, ρ is the density [kg/m3], 𝜈 is the kinematic viscosity [m2/s], and p is the 

pressure [Pa]. Fx, Fy, and Fz are body force [N] in the x-, y-, z- directions respectively. 

The energy equation describes the heat flow through the liquid and solid by 

considering convection terms in the equation as follows: 

ρ Cp (u
∂T

∂x
+v

∂T

∂y
+w

∂T

∂x
)= k (

∂
2
T

∂x2
+

∂
2
T

∂y2
+

∂
2
T

∂z2
) (3.5) 

where Cp is the specific heat capacity [J/kg K], and k is the thermal conductivity [W/m 

K]. 
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Analytical solution(s) of Eqs.(3.1) and (3.5) is applicable for a simple physical system, 

such as one-dimensional and in some cases simple two-dimensional. However, flow 

through heat exchanging systems is more complex and it is impossible to find an 

analytical solution for the velocity and temperature distributions. A numerical solution 

should therefore be considered for the above differential equations. Many numerical 

methods are available, such as finite difference, finite volume or finite element 

methods. In the present analysis, the finite element method (FEM) is the numerical 

method that has been used to solve the three-dimensional equations (3.1)-(3.5). 

3.2 Finite element method  

The finite elements method (FEM) is a numerical method which discretises the 

geometry of a model into sub-geometries. The smallest sub-geometry is called the 

element which consists of a number of nodes. Combination of all the elements within 

the full geometry results in mesh elements (See Fig. 3.1). The shape of this element 

can be 1D, 2D or 3D, depending on the model dimensions and complexity (See Fig. 3.2 

and Fig. 3.3[75-77]). The relationship between the variable within each element is 

called the shape function (or interpolation function) [77]. Shape function is a 

polynomial function which is defined on each node. The number of nodes determines 

the degree of the shape function within each element. 

                           

Fig. 3.1: Demonstration of mesh elements. 

The number of unknown variables specifies the degree of freedom within an individual 

element and through the full system. 

Node 

Element 
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a)1D 

element 

b) 2D triangular 

element 

c) 2D 

quadrilateral 

element 

d) 2D 

rectangular  

element  

e) 3D 

hexahedron 

element  

f) 3D 

tetrahedron 

element  

Fig. 3.2: Types of linear one-, two- or three-dimensional elements. 

 

 

 
   

  
 

a)1D 

element 

b) 2D 6 nodes 

triangular 

element 

c) 2D 10 nodes 

triangular element 

d) 2D 9 nodes 

rectangular 

element  

e) 3D 

hexahedral 

element  

f) 3D 

tetrahedral 

element  

Fig. 3.3: Types of quadratic one-, two- or three-dimensional elements. 

The accuracy of the numerical solution is usually improved by increasing the degree 

of the shape function [75]. However, this leads to an increase computational time and 

memory required due to the increase number of the degree of freedom. 

The shape function should have the following properties to satisfy solution of the 

PDEs: 

1. No discontinuity within the elements. 

2. Compatibility of each element to its neighbors. This means the degree and the 

number of nodes should be the same at the element boundaries. 

3. The behavior of the shape function should be continuous at the element boundaries 

and within all the elements of the model. 

4. Geometric isotropy: the shape function should have the same properties in the 

transformation from one coordinate system to another.  

The general form of the shape function is written as follows [78]: 

Tn(x)= ∑ αkxk-1

n+1

k

 (3.6) 

where T is the polynomial shape function (temperature as an example), n is the 

polynomial degree, α is a constant, x is the coordinate along the element. Therefore, 
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for the 0th, 1st, and 2nd degrees the shape functions can be written respectively as 

follows in one-dimensional system: 

 

T0(x)=α1 

T1(x)=α1+α2x 

T2(x)=α1+α2x+α3x2 

(3.7) 

A higher degree of the shape function (for one- and two dimensional problems) can 

also be predicted from a Pascal’s triangle, as shown in Fig. 3.4. 

     

Fig. 3.4: Pascal’s triangle for higher order of shape function [78]. 

In order to understand the behaviour and properties of the function over the element, 

a linear first order shape can be considered (See Fig. 3.5). The linear shape is written 

as follows (from (3.7)): 

T(x)=α1+α2x (3.8) 

where T represents the temperature variation along the element. Let Ti and Tj represent 

the temperature at nodes i and j respectively. These values are then substituted into 

Eq.(3.8). 

 

Fig. 3.5: 1D linear element. 
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Ti(x)=α1+α2xi 

Tj(x)=α1+α2xj 
(3.9) 

Consequently: 

α1=
Tixj-Tjxi

xj-xi

 

and 

α2=
Tj-Ti

xj-xi

 

(3.10) 

α1 and α2 are substituted back into Eq.(3.8), then: 

T(x) = [
xj-x

xj-xi
] Ti+ [

x-xi

xj-xi
] Tj (3.11) 

or: 

T(x)  =NiTi+NjTj=[NiNj] [
Ti

Tj
] (3.12) 

where Ni and Nj are the shape functions written as 

Ni= [
xj-x

xj-xi

] , Nj= [
x-xi

xj-xi

] (3.13) 

Eq. (3.12) can now be written in the matrix form: 

T=[N][T] (3.14) 

where 

[N]=[NiNj],  [T]= [
Ti

Tj
] (3.15) 

Here [T] is the matrix of a variable that should be calculated and represents degrees of 

freedom of the element. Degrees of freedom in the model are the total number of 

unknown variables on each node(s).  

Shape function(s) are equal to one at the specific node and zero at the other node(s). 

Moreover, the derivative is constant along the element, as shown in Fig. 3.6. The 

characteristics of other shape functions of different degrees and dimensions are found 

in detail in [76, 79]. 
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The partial differential equation(s) (PDE) is transformed into integral form in order to 

be solved by FEM [77]. The outcome equations of FEM area, system of linear or 

nonlinear matrices which can be solved in order to find the final solution. Several 

different approaches which can be used to convert PDEs into FEM form. One of the 

most important forms is the Method of Weighted Residual (MWR). 

 
 

a) shape function variation 

 
 

b) shape function derivative 

Fig. 3.6: Shape function properties 

The governing differential equations for any system is as follows: 

L(T ) =0 in Ω  (3.16) 

It is assumed that the trial function approximates the solution of Eq.(3.16): 

T ≈T= ∑ aiNi(x)n
i=1  (3.17) 

Eq.(3.17) is substituted into Eq.(3.16) 

L(T) ≠ 0  

or 

L(T)  ≠ R(residual) 

(3.18) 

The residual is multiplied by a proper function and integrated over the entire domain 

in order to specify the parameters a1, a2, . . . . . .an. Then: 

∫ wi(𝒙)

Ω

Rdx=0 (3.19) 

j i 

Ni Nj 

l l j i 

dNj/dx 

dNi/dx 
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where 𝑤𝑖(𝑥) is called the weighting function. Different methods are available to 

determine the weighting function which can satisfy Eq.(3.19). One of the most popular 

methods is the Galerkin approximation [77]. 

According to Eq.(3.19), a proper weighting function should be specified in order to 

convert continuity, Navier-Stokes and energy equations(3.1)-(3.5) into the FEM 

integral form as follows: 

First choose the proper shape functions for velocity, pressure and temperature field as 

shown in Eq.(3.20) 

u = ∑ Ni(x, y, z)ui 

v = ∑ Ni(x, y, z)vi 

w =  ∑ Ni(x, y, z)wi 

p = ∑ Npi(x, y, z)Pi 

T = ∑ Ni(x, y, z)Ti 

 

(3.20) 

where 𝑁𝑖 and 𝑁𝑝𝑖 are the shape functions; 𝑁𝑝𝑖 is the function for the pressure and its 

degree is less than 𝑁𝑖 [80]. Substitute Eqs.(3.1) to (3.5) and Eq.(3.19) into Eq.(3.19). 

The results are as follows: 

Continuity equation: 
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Navier-Stokes equations: 
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Energy equation: 
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The elements equations are combined and the boundary conditions (See sections 3.3.1-

3.3.2) are applied; the results are written in matrix form [80] for both the velocity and 

temperature fields: 

[K][U]=[f] 

[K][T]=[f] 
(3.26) 

where [K], [U], [T], and [f] are the stiffness matrix, the vector of unknown velocity, 

the unknown temperature, and the force vector respectively. 

Eq.(3.26) represents a system of linear (or nonlinear) equations which can be solved 

to determine the unknown variables. Where fluid properties are temperature-

independent, hydraulic and energy equations can be solved separately. Moreover, both 

fluid and thermal equations are solved simultaneously when temperature-dependent 

properties are considered.  

Generally, the finite element method can solve PDEs of the system of single, two or 

more materials systems. The density of the mesh elements should be increased if there 

is a sharp change in the variables through the boundaries. For example, if fluid flow in 

the microchannels experiences sharp velocity change near the walls then the density 

of the elements must be increased to capture this change. 

3.3 COMSOL Multiphysics software 

COMSOL Multiphysics (COMSOL for abbreviation in the consecutive sections) is 

commercial software that is based on the finite element method as a numerical 

technique. COMSOL uses Galerkin method to convert PDEs into FEM integral form 

[81]. COMSOL can also solve a single- or multi-physics problem, steady or transient 
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models with different boundary conditions and materials are built-in in the software 

library. The software also provides a facility for defining more material or the 

boundary conditions which are not available in the library. 

Navier-Stokes Eqs.(3.1) and (3.4) and energy equation (3.5) are already available in 

COMSOL for steady and transient state simulations with different boundary 

conditions. Consequently, both physics can be imported into the COMSOL working 

environment and solved for different models. The present analysis compares the 

experimental with the numerical results of solving Navier-Stokes and energy equations 

for different systems. 

3.3.1 Hydraulic boundary conditions 

The following boundary conditions are adopted for Navier-Stokes [75]: 

1. Non-slip boundary conditions for the solid-liquid interaction wall(s): 

u=0 (3.27) 

2. Inlet (or outlet) velocity boundary conditions: 

 The first inlet velocity boundary condition can be defined as a velocity vector 

with three-dimensional components along x-, y-, and z-axis as follows: 

𝒖𝑜=Ui+Vj+Wk (3.28) 

 The second inlet (or outlet) velocity boundary condition is defined as a normal 

inlet velocity: 

u=-nUo (3.29) 

The normal vector n pointed to the outlet of the boundary. 

3. Outlet (or inlet) boundary condition  

p=p
o
 (3.30) 

representing imposed pressure on the outlet boundary. 
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4. Simulating large models in FEM consumes time and computer memory. Therefore, 

it is recommended to exploit the benefit of symmetry in geometry to cut the size to 

half or even a quarter. Consequently, the following symmetry boundary condition 

can be applied at the cut plane: 

u∙n=0 

t∙ (-pI+μ(∇u+(∇u)T)) n=0 
(3.31) 

there t  is the tangential vector to the boundary. Eq.(3.31) shows that there is no 

motion through the symmetry boundary and shear stress equals to zero. 

5. Open boundary is considered when the system is open to large volume and no 

constraints are applied: 

u∙n=0 

μ(∇u+(∇u)T)n=0 
(3.32) 

3.3.2 Thermal boundary conditions 

Convection-conduction boundary conditions are as follows: 

1. General heat flux applied to the boundary: 

n ∙(k∇T)=q
o
+h(Tinf-𝑇𝑜) (3.33) 

where q
o
 represents the heat flux normal to the boundary, which could be heat 

generated from the electric heater. COMSOL has a direct option to apply q
o
[W/m2] 

at the specified boundary. The second term represents the heat transfer by 

convection for the surfaces that are exposed to free or forced convection imposed 

by fluid flow. Convection heat transfer coefficient h can be defined as a numeric 

value or as a function of geometry dimensions. Standard functions of h are installed 

in COMSOL library, such as vertical and horizontal surface. Tinf [oC] is the 

environment temperature.  

2. Absolute temperature To can be defined at any inlet, outlet or external boundary. 

3. The contact boundary between different surfaces can be represented by "Thin 

Thermally Resistive Layer", which is defined as [75]: 
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 -n(–kd∇Td)=-
kres

dres
(T

u
-Td) 

(3.34) 

-n  (-𝑘𝑢∇𝑇𝑢) = −
𝑘𝑟𝑒𝑠

𝑑𝑟𝑒𝑠
(𝑇𝑑 − 𝑇𝑢) 

where kd and ku are the thermal conductivities of the contacted surfaces [W/m K]. 

kres [W/m K] and dres [m] are thermal conductivity and thickness of the thin layer 

between surfaces. Tu and Td represent the contact surface temperatures [K]. This 

boundary condition is adopted when pair is assumed between the surfaces. 

4. COMSOL assumes that the boundary between two different materials is a 

continuous boundary: 

-n1q
1
-n2q

2
=0 (3.35) 

This condition is applicable for solid-liquid interaction surfaces where heat transfer 

by conduction is equal to convective heat flux. 

5. Convective boundary which is normally applied at exit boundary defined as 

Eq.(3.36) assumes an adiabatic condition at solid exit boundaries and that all heat 

is totally extracted by convection.  

6. Another important boundary condition is the periodic boundary conditions. This 

type of boundary is applicable when the model consists of multiple similar small 

cells. Studying one cell reveals the behaviour of the full model. The model in 

Centeo TG40 in Chapter 5 consists of many small similar chambers in each row, 

so studying one single chamber is sufficient to understand the performance of the 

full system. Boundary conditions of a single chamber with neighbours are periodic. 

Other boundary conditions which are available on COMSOL as a direct input value or 

function can be defined by inserting the proper function at the specific boundary.  

3.3.3 Material properties 

Water has been chosen as a working liquid for the numerical analysis of Chapter 5 

and Chapter 6. The properties of water are available in the COMSOL library. 

q
cond

∙n = -k∇T∙n = 0, q
conv

∙n = ρ Cp ∇T u∙n (3.36) 
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Therefore, the water properties built-in to COMSOL have been compared with 

available data in the literature, as shown in Fig. 3.7-Fig. 3.9. 

 

Fig. 3.7: Density of water with temperature according to the equation built in  

COMSOL library and the data in Bejan [74] and Tanaka [82]. 

 

Fig. 3.8: Thermal conductivity of water with temperature according to the equation 

built in COMSOL library and the data in Bejan [74] and Ramires [83]. 
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Fig. 3.9: Dynamic viscosity of water with temperature according to the equation in 

COMSOL library and the data in Bejan [74] and Kestin [84].  

A good match is observed between the thermal conductivity and viscosity of water 

extracted from the COMSOL built-in equations and that of the references mentioned 

in Fig. 3.8 and Fig. 3.9. However, COMSOL overestimates water density in 

comparison with the references mentioned in Fig. 3.7. For this reason, the water 

properties of Bejan [74] have been selected for the subsequent analysis. The there is 

no major change in the specific heat capacity of water within the temperature range in 

the consecutive  chapters, then its value is taken to be equal to 4178[J/kg K] [74]. 

3.3.4 Meshing process, element and shape function  

The meshing process may be performed on a specific point, edge, boundary, or 

subdomain, or for full geometry. The tetrahedral element is the default element for the 

free mesh process. The tetrahedral element is chosen for irregular geometry such as 

curved surfaces or the existence of small objects. The shape function in COMSOL is 

called Lagrange shape. Lagrange quadratic function P2-P1 is the default function in 

COMSOL. The Lagrange quadratic function P2-P1 is mixed between the second and 

first order degrees of the shape function. It is recommended for the Navier-Stokes 

equation to choose a second order polynomial for the velocity distribution and first 

order pressure [75]. Quadratic shape function is also used for solving energy equations. 
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Different solvers are available in COMSOL, depending on selected physics and 

linearity, model dimensions, the number of degrees of freedom and the available 

computer memory. COMSOL solvers check the PDEs linearity and split it into several 

groups of linear equations in order to solve the equations [85].  

3.4 Solved examples by COMSOLv3.5a 

Two benchmark cases have been initially studied using COMSOL in order to assess 

the applicability of COMSOL and to be familiar with the working environment of the 

software.  

3.4.1 Two-layers stacked microchannel 

The following case is considered by Wei [1]; both experimental and numerical 

solutions are used to solve flow, convection and conduction process for a two-layer 

heat sink. The finite volume method (FVM) has been used as a numerical method to 

solve model equations. Silicon and water were used as the substrate material and 

cooling liquid respectively. Fig. 3.10 to Fig. 3.12 represent the boundary conditions 

and dimensions of the tested model; Table 3.1gives the details of the model 

dimensions. 

 

                  

Fig. 3.10: 3D Computational model for FEM. 
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Heat is supplied at the lower boundary of the model. The counter flow was studied 

where hot fluid enters at the lower channel while the cold fluid passes through the 

upper channel. 

Channel Length Hc1 Hc2 H1 H2 

10 0.284 0.243 0.48 0.48 

Wc4 Wu Wc1 Wc2 Wc3 

0.053 0.1 0.056 0.054 0.061 

The flow is assumed to be laminar and steady-state for both heat transfer and 

incompressible fluid. The following boundary conditions are considered: 

Lower layer:  

Inlet conditions: Inlet temperature = 295.55 [K], Uniform inlet velocity = 0.4421[m/s]. 

Outlet conditions: Pressure = 0 (atmospheric), convective heat transfer. 

Upper water:  

Inlet conditions: Inlet temperature = 295.67 [K], Uniform inlet velocity = 0.5127 [m/s]. 

Outlet conditions: Pressure = 0 (atmospheric pressure), Convective heat transfer. 

 

Fig. 3.11: 2D cross section about z-x plane of the computational model for FEM. 

All dimensions are in mm. 

 

Table 3.1 Micro channel dimensions (mm) of the model [1]. 

10  

Nine heaters supplied a uniform flux 

1.92  
0.243  

Water inlet to 

upper layer 

Water 
inlet to 
lower 
layer 

0.48 

0.196  

0.284  

0.237  
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Fig. 3.12: Dimensions of stacked micro channels [1]. 

 

 

   

Fig. 3.13: Silicon thermal conductivity [86]. 

A constant heat flux of 70 W/cm2 (5% of the heat input is lost as radiation to the 

environment) is applied at the lower boundary. The other boundaries are considered as 

non-slip wall and insulated boundaries for fluid flow and heat transfer respectively. 

According to these boundary conditions, the flow is laminar for both fluids. 

Temperature-dependent properties for water and silicone are considered for numerical 
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analysis. Water properties vary according to the temperature, as shown in Fig. 3.7 to 

Fig. 3.9, while heat capacity is considered as a constant value (4178 [J/kg K]) [74]. 

Silicon thermal conductivity is extracted from Glassbrenner and Slack [86] as shown 

in Fig. 3.13. The other properties of the silicon are constant  ρ = 2330 [kg/m3] and 

Cp=712 [J/kg K] [87]. 

3.4.1.1 Numerical analysis and results 

A half geometry has been investigated due to symmetry about the z-x plane, as shown 

in Fig. 3.10. A symmetry boundary condition is applied to the model z-x section. A 

tetrahedral element with the Lagrange quadratic shape function is considered for the 

model. Lagrange quadratic shape function is recommended for the flow problem by 

COMSOL [75], and was also adopted by Parsa [88] and Adrover [89]. COMSOL 

automatically checks the mesh element quality, which may affect the solution results. 

A good mesh quality is obtained for the present model, as shown in Fig. 3.14. 

COMSOL calculates mesh quality for the tetrahedral element as follows: 

Q =
72√3V

(h1
2
+h2

2
+h3

2
+h4

2
+h5

2
+h6

2
)
3 2⁄  (3.37) 

where V is the volume and h1, h2, h3, h4, h5, and h6 are the edge lengths of the element 

[75]. Mesh quality should be Q>0.1 in order to avoid the effect of low quality on the 

solution.  

Fig. 3.15 shows a good agreement between the COMSOL results and  numerical and 

experimental results of Wei [1] for the heat sink bottom surface temperature.  

Moreover, Fig. 3.15 demonstrate also the mesh independent solution of the model 

when COMSOL is used with different number of mesh element. Another model 

validation is shown in Fig. 3.16 and Fig. 3.17, which demonstrate temperature 

distribution at different cross-sections along the channel axis for two mass flow rates. 

As shown from these figures, a good agreement is found between the results of the 

present numerical investigation performed by COMSOL and those of [1]. 
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Fig. 3.14: Two-layers model mesh quality. 

 

 

Fig. 3.15: A comparison between the temperature along the channel between the 

present numerical model and results of Wei [1] for amass flow rate of 83ml/min. 
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x= 0.65mm x=5mm  x=9.35mm 

Fig. 3.16: A comparison between the present model and Wei [1] for temperature 

contours for cross-section at different axial locations for a mass flow rate of 

83ml/min.  

      

x= 0.65mm  x=5mm x=9.35mm 

Fig. 3.17: A comparison between the present model and Wei [1]for temperature 

contours for cross-section at different axial locations for amass flow rate of 300 

ml/min. 
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3.4.2 Three-dimensional microchannel 

The second case represents a single microchannel used for cooling a chip. A constant 

heat flux is supplied at the upper boundary, as shown in Fig. 3.18. This case was 

adopted and investigated by the finite difference numerical method by Qu and 

Mudawar [90]. Fig. 3.19 shows a cross-section of the channel with all dimensions. 

Single phase, steady state, incompressible, laminar, and fixed properties are given for 

both water and silicon, which is used as a substrate material with no radiative heat 

losses. The thermal properties of water and silicon are chosen from sections 3.3.3 

and 3.4.1. 

Boundary conditions 

Inlet boundary conditions are: Reynolds number 140, temperature 20oC, uniform heat 

flux is 90W/cm2 on the top heat sink surface, and all other surfaces are assumed to be 

adiabatic (See Fig. 3.18 and Fig. 3.19). 

 

 

Fig. 3.18: Three-dimensional geometry of the heat sink, 10 mm in length. 
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Fig. 3.19: Cross-section of the channel; all dimensions are in µm. 

3.4.2.1 Numerical analysis and results 

A tetrahedral element with Lagrange quadratic shape function is chosen to analyse the 

model with COMSOL. A mesh-independent solution is confirmed by comparison of 

the bottom channel surface temperature with a different number of mesh elements, as 

shown in Fig. 3.20. A good mesh quality is achieved for this model, as shown in 

Fig. 3.21. Convergence criterion for the relative error is set at 10-6. 

 
Fig. 3.20: Mesh-independent solution for the channel bottom wall temperature result 

of Qu and Mudawar [90]. 
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Fig. 3.21: Single channel model mesh quality. 

The average temperatures of the walls along the axial distance for both top, side and 

bottom walls are calculated from: 

Tw,avg(x)=
1

L
∫ Twdl

L

 (3.38) 

where 𝑇𝑤,𝑎𝑣𝑔(𝑥) [K] represents the average temperature at a specific axial distance x, 

L (for side, top, bottom channel walls) wall width, and 𝑇𝑤 [K] temperature distribution 

along the wall’s perimeter at a specific x-axis location. 

Fluid bulk temperature is calculated from: 

Tb,avg=
∫ ρTudA

∫ ρudA
 (3.39) 

As can be seen in Fig. 3.22 and Fig. 3.23 that a good match is achieved between the 

results of the present study and those of  [90] for the average temperature distribution 
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for the top and bottom walls of the channel and the heat sink. Furthermore, there is a 

good agreement for the fluid bulk temperature results, as shown in Fig. 3.24. 

 

Fig. 3.22: Comparison between the COMSOL (dashed lines) and Qu and Mudawar 

[90] (solid lines) results for the temperature distribution along the axial axis of the 

channel and heat sink to top walls. 

 

Fig. 3.23: Comparison between the COMSOL (dashed lines) and Qu and Mudawar 

[90] (solid lines) results for temperature distribution along the channel axial axis of 

the channel and heat sink bottom walls. 

22

24

26

28

30

32

34

36

38

40

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

T
em

p
er

at
u
re

 [
o
C

]

Distance along the channel [m]

Channel top wall _COMSOL

Heat Sink top wall_COMSOL

 Channel top wall_Qu and Mudawar

Heat sink top wall_Qu and Mudawar

22

24

26

28

30

32

34

36

38

40

0 0.002 0.004 0.006 0.008 0.01

T
em

p
er

at
u
re

 [
o
C

]

Distance along the channel [m]

Channel bottom wall_COMSOL

Heat sink bottom wall_COMSOL

 Channel bottom wall_Qu and Mudawar

Heat Sink bottom wall_Qu and Mudawar



Chapter 3                                                Governing Equations and Numerical Methods 

 

45 

 

 

Fig. 3.24: Comparison between the COMSOL (dashed line) and Qu and Mudawar 

[90] (solid line) results for bulk temperature distribution along the channel axial axis. 

Heat flux results to the liquid water of Qu and Mudawar [90] from top, side, and 

bottom channel walls confirm the validity of the COMSOL model, as shown in 

Fig. 3.25 to Fig. 3.27.  

 

Fig. 3.25: Comparison between the COMSOL (dashed line) and Qu and Mudawar 

[90] (solid line) results for heat flux distribution along channel top wall. 
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Fig. 3.26: Comparison between the COMSOL (dashed line) and Qu and Mudawar 

[90] (solid line) results for heat flux distribution along channel side wall. 

 

Fig. 3.27: Comparison between the COMSOL (dashed line) and Qu and Mudawar 

[90] (solid line)(dashed lines) results for heat flux distribution along channel bottom 

wall. 
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where Dh[m] is the hydraulic diameter, q" [W/m2] is the average perpherial heat flux at 

a specific axial location, kf  [W/mK] fluid thermal conductivity. Results for Nuave are 

shown in Fig. 3.28 to Fig. 3.30. There is a good agreement with the present study.  

 

Fig. 3.28: Comparison between the COMSOL (dashed line) and Qu and Mudawar 

[90] (solid line) results for average Nusselt number along the channel top wall. 

 

 

Fig. 3.29: Comparison between the COMSOL (dashed line) and Qu and Mudawar 

[90] (solid line) results for average Nusselt number along the channel side wall. 
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Fig. 3.30: Comparison between the COMSOL (dashed line) and Qu and Mudawar 

[90] (solid line) results for average Nusselt number along the channel bottom wall. 

3.5 Conclusions 

Two cases of the microchannel with uniform heat flux supplied have been studied [1, 

90]. The first microchannel model has been analysed numerically using FVM [1], 

while the finite difference method is adopted by Qu and Mudawar [90] to study the 

second model. Both cases studied the thermal and hydraulic performances of the flow 

through microchannels. Similar cases will be discussed through the preceding 

chapters. similar Multiphysics software based on the finite element method was 

adopted to analyse the models numerically. According to the comparison of the 

numerical and experimental results, COMSOL is appropriate software to solve 

conjugate heat transfer problems with a high degree of accuracy. 
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Chapter 4  

Effects of Thermocouple Electrical Insualtion on the 

Measurement of Surface Temperature  

The objective of this work is determine the effect of stripping thermocouple electrical 

insulation on surface measurement. Analytical, numerical, and experimental analyses 

have been performed to investigate the effect of different stripped lengths on 

temperature measurement of surface.  

Two sizes of thermocouple type K, 80μm and 200μm,with different stripped lengths 

(0 mm, 5mm, 10mm, 15mm and 20mm)were used to measure different Peltier surface 

temperatures of 4oC, 8oC, 15oC, 25oC and 35oC. The thermocouple wires were 

extended vertically and exposed to natural convection from the external environment. 

A thermocouple was attached to a micrometer and pressed against the surface to 

measure the temperature without fixing the probe with any additional material. The 

thermocouple was connected to a TC08 pico log data acquisition system to convert the 

readings using computer software. 

A model of equivalent single wire was chosen instead of a two-wire model of the 

thermocouple to simplify the analytical analysis. Analytical modelling of 

thermocouple wires assumed that each wire is similar to a vertical very long fin, with 

its end temperature equal to the environmental temperature.  

Analytical study proved that 20mm of totally bare or totally insulated wires has a 

negligible effect on heat flux rate due to convection to (or from) thermocouple wires.  

Maximum heat flux rate around the insulated cylindrical cross-section occurs where 

the diameter including insulation reaches a value is called critical radius. Critical 

radius depends on the cylinder thermal conductivity and heat transfer coefficient with 

the outside environment [91]. However, the heat transfer coefficient of natural 

convection around the thermocouple wire (including insulation) varies with diameter 

[74]. As a consequence of these analytical results of thermocouple wire with insulation 

confirmed that there is no specific value of the critical radius. Heat flux rate around 
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thermocouple wires continuously increases with wire diameter, even where this is 

larger than the critical radius (or diameter). 

Numerical simulation was performed on a two wires model by using COMSOL 

Multiphysics software with finite element method. The results also confirmed that 

there is a negligible effect from the electrical insulation. Moreover, experimental 

results supported the analytical and numerical results and revealed that the size of the 

thermocouple causes an impact on temperature measurement. 

4.1 Experimental techniques 

4.1.1 Experimental set up 

The Peltier effect was found by Peltier in 1834 [92]. When an electric current passes 

through two connected dissimilar materials, heating or cooling effects are generated, 

depending on the current direction. A basic operating circuit is shown in Fig. 4.1(a-b), 

consisting of two semiconductor materials, n-type and p-type, connected together.   

The cooling effect occurs when the current flows from n-type to p-type, while heating 

effect occurs when the current flows back from p-type to n-type. Peltier effect is related 

to a Peltier coefficient which controls heating or cooling effect. 

The temperature-controlled surface consisted of a conventional Peltier device, with 

one side attached to a large heat sink and the other side exposed to the environment 

with a small PT100 thermometer adhered using high thermal conductivity glue, as 

shown in Fig. 4.2. The temperature working range of PT1002 is between -50oC-500oC 

and the full dimensions are shown in Fig. 4.3. Fig. 4.4 shows the electrical connections 

made to the Peltier plate, consisting of two power supplies, a Peltier plate, a switch (to 

reverse the current) and a PT100 signal conditioning circuit feeding into a voltmeter.  

The temperature of the Peltier plate was controlled by changing the current supplied 

(magnitude and current direction). The PT100 thermometer was connected to the 

                                                 
2 The model number of PT100 is F4050B which was supplied by OMEGA, the tolerances in temperature 

and resistance (at 0oC) are ±(0.3+0.005t)[oC] and ±0.12[Ω] respectively. See website for details: 

http://www.omega.co.uk/pptst/F1500_F2000_F4000.html. 
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voltmeter and a TC08 pico log data acquisition system in order to independently record 

the Peltier surface temperature.  

                 
(a) 

                          
    (b) 

Fig. 4.1: Diagram showing the Peltier effects: (a) cooling effect and (b) heating 

effect [92]. 
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Fig. 4.2: Thermocouple probe in contact with Peltier surface. 

 

 

Fig. 4.3: PT100 temperature sensor dimensions. All dimensions are in mm. 
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Fig. 4.4: Electrical connections to the Peltier plate. 

4.1.2 Measurement procedure 

Each thermocouple was fixed to a Z-positioning micrometer stage and pressed down 

against the Peltier surface until the thermocouple reading became steady-state (See 

Fig. 4.2). The two thermocouples used were type-K with bare wire diameters of 80μm 

(250µm including PFA insulation) and 200μm (500µm including PTFE insulation); 

see Table 4.1 and Table 4.2 (See section 4.4).  

The aim of this study is to investigate the effect of thermocouple impact on temperature 

measurement. Therefore, two specific sizes and types of thermocouple were used. Any 

type or size of thermocouple may also be used, but their effect will vary depending on 

the size and properties of the wires as well as their insulation. 

The average environmental temperature was recorded while the Peltier surface 

temperature (as measured using the PT100) was set to 4oC, 8oC, 15oC, 25oC, and 35oC 

as the surface temperature (measured by the thermocouple) was recorded. The 

insulation on the thermocouple wires was stripped off to various lengths from the 

probe: 5mm, 10mm, 15mm, and 20mm, to investigate the effect on the temperature 

measurement. Five runs were performed for each stripped length to confirm the 

reproducibility in each of the experiments. The position of PT100 is in same level of 
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Peltier surface, therefore it was assumed that PT100 has no impact on temperature 

measurement of the surface.  

Table 4.1 Thermocouple type K material properties. 

*manufacturer Labfacility. 

The uniformity of the Peltier surface temperature was confirmed by a photograph using 

a thermal image camera FLIR A325 setup shown in Fig. 4.5. Fig. 4.6 shows the 

approximate uniform temperature distribution for the Peltier surface.  

The temperature at spots ‘1’ and ‘2’ was 33.2oC and 33.8oC respectively. The thermal 

imaging camera detects thermal radiation from a surface and then converts it to an 

image that can be seen by eye [96]. However, thermal radiation depends on the 

emissivity of the surface, which in turn depends on the surface temperature, material 

and characteristics [91]. The radiation from the surface can be influenced by the 

reflection from the surroundings, which can be detected by a thermal camera. 

Therefore, a slight difference in surface temperature can be seen in Fig. 4.6. 
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Fig. 4.5: Thermal imaging picture for the Pltier device using FLIRA325 camera. 

 

 

Fig. 4.6: Temperature distribution of Peltier surface of spots 1 and 2 temperature 

was 33.2oC and 33.8oC respectively. 

4.1.3 Thermocouple calibration 

A thermocouple calibration process was performed by comparing the thermocouple 

reading when fully submerged in crushed ice and boiling water with the standard water 

freezing and boiling temperature respectively, as shown in Fig. 4.7 (a-b) [93]. A Pyrex 

beaker of two litres was filled with crushed ice, and the thermocouple probe was 

immersed for a sufficient length of time to avoid any effect of outside temperature on 

the reading. Additionally, during the calibration process a proper distance was left 
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between the thermocouple probe and the bottom of the beaker to prevent the effect of 

heat transfer with the beaker standing base. Freezing or water boiling standard 

temperature was considered (to 2 d.p.) to be those at standard atmospheric conditions 

(e.g. 1 atm) where water boils at 99.98oC3 and freezes at 0oC[97]. 

 
(a) 

 
(b) 

Fig. 4.7: Thermocouple calibration: (a) Comparison with water boiling point, (b) 

Comparison with water freezing point . 

 

 
Fig. 4.8: PICO log data acquisition cold junction compensation. 

                                                 
3The boiling point of 99.98°C was used in accordance with the strict two-point calibration of Vienna 

Standard Mean Ocean Water (VSMOW) and as used elsewhere in the literature, see e.g. R. Tillner-Roth 

and D. G. Friend, J. Phys. Chem. Ref. Data, 1997, vol. 27, No. 1, 199. 

17

18

19

20

21

22

23

24

0 50 100 150 200

T
em

p
er

at
u
re

 [
o
C

]

Time in minutes

TC1 TC2

TC3 TC4

TC5 Ambient TC

Small-PT100 Reference Cold Junction



Chapter 4                                                Effects of Thermocouple Electrical Insulation 

 

57 

 

The TC08 was connected to a laptop via a USB cable to record the readings. It was 

recommended by Pico Technology Technical Support to unplug the laptop from its 

power supply to avoid incorrect earthing that may impact on the TC08, resulting in 

inaccurate measurement [98]. One advantage of the TC08 is that it incorporates cold 

junction compensation, eliminating measurement variations caused by fluctuations in 

environmental temperature during the experiments, as shown in Fig. 4.8 [99]. 

4.2 Experimental results 

Fig. 4.9 (a-b) to Fig. 4.13(a-b) show the results of different exposed wire lengths for 

both sizes of thermocouple, 80µm and 200µm. The vertical axis indicates the 

difference between the thermocouple measured temperature and the Peltier surface 

temperature (PT100 measured), while the horizontal axis represents the Peltier surface 

temperature. The maximum temperature drop is equal to 2oC and 4oC for 80µm and 

200μm respectively, with an environmental temperature of 13oC and Peltier surface 

temperature of 35oC. 

Experimental working conditions (atmospheric: 13oC and 1 bar) were essentially 

constant for each of the thermocouple sizes and every exposed wire length. During the 

experiments and due to the temperature difference between Peltier surface (4oC-35oC) 

and the environment (13oC), heat was conducted along the thermocouple wires. 

Fig. 4.9 to Fig. 4.13 show the impact of thermocouple on temperature measurement 

versus actual Peltier temperature. The plots in Fig. 4.9 to Fig. 4.13 should have zero 

slopes if there is no impact of thermocouple; however, this is clearly not the case. It 

can also be seen that the 200µm thermocouple has a higher conduction effect than the 

size 80µm for different stripped lengths, as shown in Fig. 4.14. The reason for this is 

that the larger diameter provides a larger heat transfer area and consequently the heat 

flux to or from the thermocouple is higher. During the experiment the thermocouple 

probe was pressed against the Peltier surface in order to increase the contact area with 

the surface and minimise the thermal contact error [91]. The probability of getting the 

same contact area in each experiment for the size 200µm is greater than for the size 

80µm because of the probe size. Therefore, it can be seen in Fig. 4.9 to Fig. 4.13 that 

the experimental error of the 80µm is larger than for the 200µm, and consequently the 
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error bar is larger. Moreover, change in the Peltier surface temperature leads to a 

change in the air circulation around the thermocouple probe. Consequently, the 

combined effect of the air circulation (due to the varying surface temperature) and the 

effect of the probe contact area with the surface cause a different experimental error, 

resulting in a different error bar length, as shown in Fig. 4.9 to Fig. 4.13. 

Generally, we can conclude from these results that the effect of the stripped insulation 

of any length on the temperature measurement is small enough to be neglected (within 

0.5oC), or, more accurately, the experimental error for a typical system is higher than 

the effect of the stripped insulation [3]; see Fig. 4.15. In addition, the temperature 

difference between the environment and the working range of the Peltier surface (4oC-

35oC) is not great enough to have a strong effect on the temperature measurement (See 

Fig. 4.33). 

4.3 Thermocouple impact versus experimental errors 

The precision of any experimental measurement is minimizing the total difference 

between the real value and measured value. There are two types of the experimental 

errors: the first is a systematic (or bias) error and the second is a random (or precision) 

error [100, 101]. The systematic error represents approximately a constant value 

during all the runs of the experiments. This error can be predicted by calibrate the 

device with standard reference point.  The random error can be caused by several 

reasons such as human fluctuations, device fluctuations, and other unknown sources. 

The random error can be called sometimes by repeatability error or precision error. 

The precision of any experimental results is evaluated by the degree of scattering of 

the experimental data around the mean value in the normal (or Gaussian) error 

distribution [100]. The normal error distribution gives the probability of the repeated 

experimental data to be within a certain interval. The width of the interval can be 

determined the value of the standard deviation. The  probability of experimental data 

falling within one, two and three standard deviation are 68.27%, 95.45% and 99.73% 

respectively [100].  

According to above discussion, the calibration process was performed to predict the 

bias error, see in section 4.1.3. Whereas, the error bars in Fig. 4.9 to Fig. 4.13 represent 
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the scattering of the experimental data within ±one standard deviation (i.e. the 

probability was 68.27%). The impact of the thermocouple on temperature 

measurement can’t be classified as a bias or random error because it depends of the 

physical application and experimental conditions. In the present study, the impact of 

the thermocouple can be specified by the difference between thermocouple 

measurement temperature and PT100 temperature record. The Y-axis in Fig. 4.9 to 

Fig. 4.13 represents the impact of the thermocouple on measurement. Different case is 

shown in Chapter 5 where the actual value of the temperature can’t be measured 

directly without disturbing the system. Therefore, a comparison has been made 

between the experimental and numerical results to predict the heating impact of the 

thermocouple.  

 

 

Fig. 4.9: Effect of non-stripped length distance of stripped electrical insulation of 

thermocouple on temperature measurement for the sizes: (a) 80µm and (b) 200µm.  

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

3 7 11 15 19 23 27 31 35

T
d
if

f.
[o

C
]

(a) 80µm

Experimental average of zero mm stripped length

-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

3 7 11 15 19 23 27 31 35

T
d
if

f.
[o

C
]

Peltier surface temperature [oC]

(b) 200 µm

Experimental average of zero mm stripped length

Heating effect,  

Tinf-Ts=9oC 

Cooling effect,  

Ts-Tinf=22oC 

Heating effect,  

Tinf-Ts=9oC 

Cooling effect,  

Ts-Tinf=22oC 



Chapter 4                                                Effects of Thermocouple Electrical Insulation 

 

60 

 

 

 

Fig. 4.10: Effect of 5mm distance of stripped electrical insulation of thermocouple on 

temperature measurement for the sizes: (a) 80µm and (b) 200µm.  

 

 

Fig. 4.11: Effect of 10mm distance of stripped electrical insulation of thermocouple 

on temperature measurement for the sizes: (a) 80µm and (b) 200µm.   
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Fig. 4.12: Effect of 15mm distance of stripped electrical insulation of thermocouple 

on temperature measurement for the sizes: (a) 80µm and (b) 200µm.  

 

 

Fig. 4.13: Effect of 20mm distance of stripped electrical insulation of thermocouple 

on temperature measurement for the sizes: (a) 80µm and (b) 200µm.  
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Fig. 4.14: Comparison between mean experimental data of variable distance of 

stripped electrical insulation with average environmental temperature of 13oC. 
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4.4 Mathematical modelling 

4.4.1 Thermocouple wire length 

It can be assumed that each strand of thermocouple wire behaves as a very long one-

dimensional fin exposed to free convection from the outside environment (See 

Fig. 4.16). In this case, the following analysis can be used to provide an analytical 

prediction of the wire length over which the temperature becomes equal to that of the 

environment. Fin analysis considers heat transfer by conduction occurring along the 

thermocouple wire due to its high thermal conductivity in comparison with the 

 

 

Fig. 4.15: Comparison between mean experimental data of  variable distance of 

stripped electrical insulation with average environmental temperature of 13o C. 
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surrounding insulation; as such it assumes that there is no radial temperature gradient 

across the metal wire [3] (See Fig. 4.16). 

It must be considered that a thermocouple consists of contact between two dissimilar 

metals. Both wires have different physical and thermal properties and should therefore 

be considered to each have a different effect on the thermocouple junction temperature. 

To simplify this, a single equivalent wire model was adopted rather than a two-wire 

model (See Fig. 4.17) [9, 102]. The equivalent bare wire diameter is calculated: 

Dweq=√2Dw (4.1) 

where Dw is the metal wire diameter (See Table 4.2). 

Fig. 4.17 shows that the total insulation thickness of both wires in horizontal direction 

equal to the average difference between the diameter of both wires with and without 

insulation. Moreover, the insulation thickness in vertical direction equal to the 

difference between wire diameter with and without insulation. Therefore, the 

equivalent insulation outer diameter is calculated by considering the average thickness 

around each wire (See Fig. 4.17) [102], which becomes: 

teqins=
1

2
× [

2×Dins-2×Dw

3
+

Dins-Dw

2
] (4.2) 

where D𝑖𝑛𝑠 is the wire diameter with insulation (See Table 4.2). Therefore, the 

equivalent insulation thickness is: 

                                         

Fig. 4.16: Cylindrical cross-section of thermocouple wire with insulation. 

Outside environment  

h, Tinf 
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teqins=
1

2
× [

4×tins

3
+

2×tins

2
] =

7

6
tins (4.3) 

Therefore, the equivalent insulation diameter is: 

Deqins=Dweq+2 ×teqins=Dweq+
7

3
tins (4.4) 

 

Equivalent thermal conductivity 𝑘𝑤𝑒𝑞 for a single wire model is calculated from [3, 

103]: 

kweq=
kw1+kw2

2
 (4.5) 

where 𝑘𝑤1 and 𝑘𝑤2 are the thermal conductivities of the thermocouple wires given in 

Table 4.1. 

 
 

Two wires One equivalent wire 

Fig. 4.17: Cross-sectional area of two wires and one equivalent wire. 

Heat balance for the fin elemental cross section of width 𝑑𝑥 with heat lost by 

convection is calculated using Eq. (4.6) (See Fig. 4.18) [91]: 

dq
conv

=
2π(T-Tinf)dx

ln(
Deqins
Dweq

)

kins
+ 2

Deqins h

 
(4.6) 

where 𝑇 is the temperature along the centreline of the metal wire by assuming no radial 

temperature gradient, h is the heat transfer coefficient of the free convection, 𝑇𝑖𝑛𝑓 is 

the environmental temperature, Deqins is the thermocouple insulation equivalent 

Dins 

2×Dins 

Dw 

tins 

Deqins 
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diameter, Dweq is the bare wire equivalent diameter as shown in Fig. 4.17, and kins 

insulation thermal conductivity. The values of Deqins, and Dweq are listed in Table 4.2. 

 

Fig. 4.18: One-dimensional conduction and convection through fin with insulation. 

According to the Fourier Law, through heat input the elemental area is calculated: 

q
x
=-kweq Aw

dT

dx
 (4.7) 

Heat output from the element is: 

q
x+dx

=-kwAw (
dT

dx
+

d
2
T

dx
2

dx) (4.8) 

where Aw=πrw
2  is the metal wire cross-section area. 

Combining Eqs.(4.6), (4.7)  and (4.8), we obtain: 

d
2
T

dx
2

-m2(T-Tinf)=0 (4.9) 

Eq.(4.9) represents the differential equations of a fin exposed to natural convection. m 

is a constant which is calculated from: 

qx 

dx 

qx+dx 

x 
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m=
√

4

kweqDw
2

2

ln(
Deqins
Dweq

)

kins
+

2

Deqins h
 

 
(4.10) 

h is considered to be a constant along the fin to simplify the differential equation. 

Applying the following boundary conditions for a very long fin with outside boundary 

conditions as shown in Fig. 4.16 and Fig. 4.18: 

T=T0 at x=0, and (4.11) 

 

T=Tinf  when  x→∞ (4.12) 

The following solution for the temperature is obtained: 

T=Tinf+(T0-Tinf) e-mx (4.13) 

where 𝑇0 is the fin's base temperature. 

Table 4.2 Thermocouple wire diameter with measured insulation thickness. 

Bare wire radius [µm]*, rw=Dw /2 40 100 

Wire diameter with insulation 

[µm]* rins=Dins/2 
125 250 

Insulation thickness [µm], tins 85 150 

rweq=Dweq/2 [µm], Eq.(4.1) 56.57  141.5  

teqins[µm] Eq.(4.3) 99.2 175 

 reqins=Deqins/2[µm], Eq.(4.4) 155.75 316.5 

h [W/m2 K], Eq.(4.15) 124 53.3 

rcr[µm], Eq.(4.16) 2419.4 5464.5 

              * measured by accurate micrometer. 

The best approximation is to consider the thermocouple wire as a vertical thin cylinder 

so that the Nusselt number 𝑁𝑢𝐻 can be calculated [74]:   
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NuH=
4

3
[

7RaHPra

5(20+21Pra)
]

1 4⁄

+
4(272+315Pra)H

35(64+63Pra)D
 (4.14) 

where NuH= hH ka⁄ ; Rayleigh number; RaH= gβ
a
∆TH3 αaνa⁄ ; Prandtl number, 

Pra= νa αa⁄ ; 𝐻 [m] is the cylinder height, D is diameter, and ka is air thermal 

conductivity. νa; αa; β
a
; μ

a 
; and Cpa are the kinematics viscosity, thermal diffusivity, 

thermal expansion coefficient, dynamic viscosity, and specific heat capacity 

respectively; see Table 5.2 (section 5.2 in Chapter 5). 

The calculation of NuH from Eq.(4.14) assumed that thermocouple wires are similar to 

thin cylinder with constant average heat transfer coefficient h along the wire(s). 

Moreover, the temperature difference between the wire surface and the environment 

was assumed to be fixed along the wire(s). Therefore, Eq.(4.14) gives us an indication 

on the variation of h with curvature of the wires not the exact value.  

The heat transfer coefficient (h) is then derived as: 

h=
4ka

3 H
[

7RaHPra

5(20+21Pra)
]

1 4⁄
+

4(272+315Pra)ka

35(64+63Pra)D
 (4.15) 

The maximum temperature difference between the environment and surface in the 

present experiments was observed to be equal to (∆T= 22
o
C) (See section 0). 

Substituting this temperature difference, a value of H is assumed in Eq.(4.15) to 

calculate h. These values are then substituted in Eqs.(4.10) and (4.13) to calculate a 

new value of 𝐻. The calculation above is repeated until 𝐻 reaches a constant value 

which represents the calculated length of the thermocouple wire where it's temperature 

reaches the environmental temperature. Fig. 4.19 shows the variation of h with the 

wire diameter for different values of H, which has a negligible effect of the value of h. 

According to the Eq.(4.15) and due to the large order difference in value between the 

wire length H and wire diameter (wire length in centimetre while the diameter in 

micrometre), the variation in diameter will be dominant. Therefore, the second term in 

Eq.(4.15) is dominant on the calculation of h. Moreover, Fig. 4.19 shows that h starts 
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to become independent on the wire diameter at larger values while a small effect of 𝐻 

becomes obvious.  

 

Fig. 4.19: Variation of heat transfer coefficient with diameter. 

 

Fig. 4.20 and Fig. 4.21 show the required length for the wire end temperature to equal 

to that of the environment for each diameter of thermocouple with and without 

insulation. The increase in the diameter of the thermocouple leads to an increase in the 

area that is exposed to convective heat transfer with the outside environment. 

Moreover, a larger wire diameter means an increase in the cross-sectional area, which 

allows more heat to be conducted through the wires. Consequently, a greater length is 

required for the 200µm diameter to reach the environmental temperature in 

comparison to the 80µm diameter wires. It is also shown that there is no effect from 

the length of electrical insulation for these two thermocouples. 
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Fig. 4.20: Fin length required to reach the environmental temperature where each 

curve starts with the Peltier surface temperature for the size 80µm. 

 

Fig. 4.21: Fin length required to reach the environmental temperature where each 

curve starts with the Peltier surface temperature.  
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4.4.2 Thermocouple insulation 

Heat transfer to a cylindrical shape with insulation around it depends on the ratio 

between the insulation thermal conductivity and the heat transfer coefficient with the 

outside environment [91]. This ratio is called critical radius (rcr), and is equal to: 

rcr=
kins

h
 (4.16) 

As insulation thickness increases, the heat transfer area with the outside environment 

increases (see Fig. 4.16). The Convection heat transfer rate with the outside 

environment will also increase. A continuous increase in insulation thickness leads to 

an increase in cylinder outer diameter and consequently heat transfer rate, until 

maximum heat transfer rate is achieved where the cylinder outer diameter with 

insulation is equal to 𝑟𝑐𝑟 . 

Continuous increase in insulation thickness means cylinder outer diameter becomes 

larger than 𝑟𝑐𝑟 and heat transfer will begin to decrease [91]. This criterion is valid when 

the heat transfer coefficient with the environment is constant but for this study h is 

varying with wire diameter (See Eq.(4.15) and Fig. 4.19).  

The following two cases study the effect of h on heat flux exchange between the 

cylinder and outside environment. The first Case 1 assumed that h is constant and its 

value is calculated from Eq.(4.14) based on the values of the equivalent radius in 

Table 4.2. The second Case 2 considered the variation of h with diameter according to 

the Eq.(4.14) and the calculation starts with values in Table 4.2.  

Case 1: Assuming constant h as calculated using Eq.(4.14) and solving Eq.(4.6), the 

results shown in Fig. 4.22 can be generated. Heat flux continuously increases until the 

wire diameter becomes equal to the critical radius, at which point the heat flux begins 

to decrease. Table 4.2 shows the critical radius for each of the thermocouple sizes. This 

behaviour of heat flux is explained by the fact that the thermal resistance to convection 

heat transfer is minimal when the cylinder outer diameter is equal to 𝑟𝑐𝑟, as shown in 

Fig. 4.23. 
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Fig. 4.22: Variation of heat flux with wire radius of constant h. 

 

 

Fig. 4.23: Variation of thermal resistance of the thermocouple wires with insulation 

of size 80 µm with constant and variable h. 
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However, due to the small size of the thermocouple wire, the effect of wire curvature 

on the convection heat coefficient ℎ around the wires should be considered [74]. This 

case has been discussed in detail in Case 2 below. 

Case 2: The same calculation procedure as in Case 1 is repeated. However, this time 

the effect of wire curvature on h is also considered [74]. The variation of h with the 

wire diameter can be calculated using Eq.(4.15). In this case there is no minimum value 

of thermal resistance, as shown in Fig. 4.23. Therefore, a constant increase in heat flux 

with no apparent critical radius is observed, as shown in Fig. 4.24.  

Fig. 4.24 shows that there is no critical diameter for the wire and the heat flux continues 

to increase with the wire diameter. In this case there is no a specific critical diameter 

as h varies inversely with the wire diameter (Eq.(4.15)). Increasing in diameter leads 

to decrease in ℎ, and at the same time thermal resistance to heat convection decreases, 

see Eq.(4.6). The dominator of Eq.(4.6) represents the thermal resistance which 

decreases with increasing in wire diameter (See Fig. 4.23) while the nominator remains 

constant. Therefore, heat flux continues to increase. 

 

Fig. 4.24 Variation of heat flux with wire radius and variable h. 
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q
x
=kwm

π

4
Dweq

2 (To-Tinf)e
-mx (4.17) 

where 𝑚 is calculated using Eq.(4.10). Fig. 4.25 shows the variation of the heat flux 

along the thermocouple wire. Environmental temperature is Tinf=13
o
C, and To=35

o
C 

represents the base temperature, i.e. To-Tinf=22
o
C. Therefore, heat transfer occurs 

from the thermocouple wire to the environment (cooling effect), which is considered 

as positive heat flux. It is shown in Fig. 4.25 that heat flux is higher for a larger 

diameter, and that the distance required to reach zero heat flux is greater. There is also 

a negligible effect of thermocouple electrical insulation on the heat flow through the 

wires for all sizes. Environmental temperature is considered as a constant along the 

wire; therefore, the effect of the insulation is negligible [30].  

 

Fig. 4.25: Variation of heat flux along thermocouple wire for both thermocouple 

sizes. 
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(or from) a surface and alter the measured temperature [104]. The probe therefore 

measures the disturbed temperature rather than the actual surface temperature. 

Consequently, the temperature distribution along the thermocouple junction and wire 

can be analysed by considering them as a stepped fin [105, 106] (See Fig. 4.26). The 

thermocouple wires represented by the single wire model (See section 4.4.1) were 

considered to be a very long fin, while the thermocouple junction was considered to 

be a fin with a prescribed end temperature [91]. Therefore, the junction temperature 

distribution can be calculated using Eq.(4.18) for the length 0≤x≤Dp: 

θp

θb

=

(
θL

θb
) sinhmpx+sinhmp(Dp-x)

sinhmpDp

 (4.18) 

where mp=√hpp
p
/kpAp,kp=kweq is calculated using Eq.(4.5). θp=Tp-Tinf, θL=TL-Tinf,  

θb=Tb-Tinf, Tp temperature variable of the probe [K], 𝑇𝐿 probe temperature at top [K], 

T𝑏 bottom’s temperature at bottom [K], and Dp probe diameter. 

Thermocouple wire temperature can be calculated using Eq.(4.13) for the length (Dp 

≤x≤Lw): 

where 𝑚𝑤 is calculated using Eq.(4.10), θw=Tw-Tinf; Tw temperature variable of the 

thermocouple wire [K]. At x=Dp:  TL=Tw, and at the joint between the probe and the 

wires the following boundary condition is applied [105, 106]: 

-Apkp

dTp

dx
=-Aweqkweq

dTw

dx
+h(Ap-Aweq)(TL-Tinf) (4.20) 

where Ap=(π 4⁄ )Dp
2 and A𝑤𝑒𝑞=(π 4⁄ )D𝑤𝑒𝑞

2 . 

Substituting Eqs.(4.18) and (4.19) into Eq.(4.20): 

θw

θL

=e-mw(x-Dp) (4.19) 
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θL=

mp

sinhmpDp

mp coshmp Dp

sinhmp Dp
+αmw+

(1-α)hp

kp

θb (4.21) 

where, 𝛼 = A𝑤𝑒𝑞 Ap⁄ . 

 

Fig. 4.26 Analogy of thermocouple with probe geometry as a stepped fin. 

4.4.3.2 Electrical resistance analogy 

An electrical resistance analogy of the thermal interaction of the thermocouple with 

the environment and surface is shown in Fig. 4.27. The thermocouple measures the 

average temperature of TL and Tb, which represent the top and bottom temperatures of 

the junction (See Fig. 4.26). Fig. 4.26 can be redrawn as electrical resistance, as shown 

in Fig. 4.27. Assuming a very low value for 𝑅𝑚, meaning that it can be neglected [104]: 

q=
Ts-Tb

Rc

=
Tb-TL

Rp

=
TL-Tinf

Rw

 (4.22) 

where R𝑚 is constriction thermal resistance [m2 K/W], Rc contact thermal resistance 

[m2 K/W], R𝑝 probe thermal resistance [m2 K/W], and Rw wire thermal resistance [m2 

K/W]. 

Dp Tb 
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Dw Tm 

Ts 
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Fig. 4.27 Electrical resistance analogy of thermocouple thermal resistance. 

Heat flux transfers through all resistance are equal to the heat flux transferred to the 

probe q
p
 plus the wires q

w
. Therefore: 

q=q
p
+q

w
 (4.23) 

Fin analysis for both the thermocouple wire and junction heat fluxes is calculated using 

Eqs.(4.18) and (4.19): 

q
p
=

coshmpDp-
θL

θb

sinhmpDp
√hpp

p
kpApθb (4.24) 

 

q
w

=kweqmw

π

4
Dweq

2 θL (4.25) 

Eqs.(4.24) and (4.25) are substituted into Eqs.(4.22) and (4.23): 

θb=
θs-RcθL(Zw-Zp)

1+ZpRc coshmp Dp

 (4.26) 

Eq.(4.26)is substituted into Eq.(4.21): 

θL=
θs A1

1+Rc Zp coshmp Dp+A1Rc(Zw-Zp)
 (4.27) 

where: 

Zw=kwmw

π

4
Dweq

2  (4.28) 

 

Zp= √hpp
p
kpAp sinhmpDp⁄  (4.29) 
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A1=

mp

sinhmpDp

mp coshmp Dp

sinhmp Dp
+αmw+

(1-α)hp

kp

 (4.30) 

θLis calculated using Eq.(4.27) and the results substituted into Eq. (4.26) to compute 

θb while θs is taken to be the value measured using the PT100 device (See section4.1).  

 
(a) 449μm 

 
(b) 635μm 

Fig. 4.28 Thermocouple probe size shown in microscope pictures: a) 80μm, b) 

200μm and c) 315μm. 

Thermocouple tip sizes on the 80µm and 200µm diameter thermocouples were 

measured using a microscope and were found to be 449μm and 635μm respectively, 

as shown in Fig. 4.28. These values were used with values of Rc of 0.000025, 0.00035, 

and 0.000045m2 K/W for the size 80µm and between 0.000045, 0.0005, and 

0.000055m2 K/W for the size 200µm have been substitute into Eqs.(4.26) and (4.27) 

to calculate the results of Fig. 4.29 (a-b).  

The experimental data of stripped insulation with length 0mm and 20mm were chosen 

for comparison with analytical results. Fig. 4.30 and Fig. 4.31 shows good agreement 

with the experimental results to within 0.5oC for the values of Rc: 0.00035 m2 K/W for 

the size 80µm and 0.000055m2 K/W for the size 200µm. Furthermore, analytical 

results show that the effect of the insulation is negligible for totally insulated and 

uninsulated wire of length 20mm for zero thermal contact resistance (𝑅𝑐 = 0). 

Consequently, the other stripped lengths (5mm, 10mm, and 15mm) should also have 

negligible effect. The analysis presented above is one-dimensional and assumes the 

contact area between the probe and the surface is equal to the probe diameter. Thermal 

contact resistance depends on the shared area between the probe and the surface; in 
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reality the probe geometry is irregular, making it too complex to specify an actual 

contact area. It is therefore difficult to specify the actual value of 𝑅𝑐. 

 

 

Fig. 4.29 Comparison between experimental, analytical and numerical results for 

different values of thermal contact resistance between probe of and Peltier surface 

for thermocouple sizes: (a) 80µm and (b) 200µm. 20mm stripped insulation of the 

experimental results is chosen for comparison. 
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Fig. 4.30 Comparison between analytical and numerical results of the values of Rc 

equal 0.00035 m2K/W for size 80µm. Bars lengths and labels represent percentage 

deviation and temperature difference from experimental results respectively. 20mm 

stripped insulation is chosen for comparison. 

 

 
 

Fig. 4.31 Comparison between experimental, analytical and numerical results of the 

values of Rc equal to  0.000055m2K/W for size 200µm. Bars lengths and labels 

represent percentage deviation and temperature difference from experimental results 

respectively. 20mm stripped insulation is chosen for comparison. 
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4.4.4 Numerical modelling 

A three-dimensional model of the actual geometry of a thermocouple was created as 

shown in Fig. 4.32. This model considered the actual size of the thermocouple wires 

and insulation, but the geometry of the junction was represented as a cube with side 

length equal to the junction diameter. Consequently, the contact area is the bottom 

surface of this cube.  

 

Fig. 4.32: Demonstration graph of thermocouple three-dimensional model for 

numerical analysis. 
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In order to model thermal contact resistance in COMSOL, it is necessary to define 

thermal joint conductivity ℎ𝑗[107] from Fourier’s law (Eq.(4.7)): 

q=hj∆T [W/m2] (4.31) 

where: 

hj=
kres

dres

[
W

m2K
] (4.32) 

where 𝑘𝑟𝑒𝑠 and 𝑑𝑟𝑒𝑠 represent thermal conductivity of the contact layer between the 

surface and the junction and its thickness respectively. It is seen that ℎ𝑗  is the reverse 

of 𝑅𝑐.  

COMSOL applies a slit boundary condition [107] ( See Eq.(3.34) section 3.3.2 Chapter 

3) to include the effect of contact resistance: 

-n(-kd∇Td)=-
kres

dres

(Tu-Td) 

(3.34) 

-n (-ku∇Tu)=-
kres

dres

(Td-Tu) 

where subscript 𝑑 and 𝑢 refer to the downside and upside of the slit.  

Boundary conditions of Eq.(3.34) can be defined in COMSOL by creating a contact 

pair between the thermocouple junction and the Peltier surface. The ratio  kres/dres is 

equivalent to thermal joint conductivity hj[107], which is equal to the inverse of Rc. 

The values of Rc0.000035m2 K/W for 80µm size and 0.000055m2 K/W for 200µm 

were selected from analytical analysis to substitute for hj in the numerical analysis. 

These values were chosen as they gave good agreement with experimental results to 

within 0.5oC (See section 4.4.3.2). This model was used to investigate the effects of 

the two different exposed wire lengths (0mm and 20mm) on the junction temperature. 

Fig. 4.29(a-b) shows a comparison between experimental and numerical results for the 

80µm and 200 µm thermocouples. There is a good agreement between the 
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experimental and numerical analysis for size 80µm, as shown in Fig. 4.29a and 

Fig. 4.30. 

Fig. 4.30 shows the maximum divergence of approximately 7% between the numerical 

and experimental results for the size 80, while the greatest temperature difference in 

comparison with the experimental results is 0.49oC. The size 200µm deviates from the 

experimental results by 3.5%, with a temperature difference of approximately 1.1oC 

when the surface temperature is higher than that of the environment as shown in 

Fig. 4.31. Furthermore, numerical results showed that the effect of insulation is 

negligible for totally insulated and uninsulated wire of length 20mm for zero thermal 

contact resistance 𝑅𝑐 = 0. 

In the case of one-dimensional analysis, the contact area was assumed to be equal to 

the probe(s) diameter (See section4.4.3 and Fig. 4.26). In the three-dimensional 

numerical model, a squared shape contact area with side length equal to the probe 

diameter was used (See Fig. 4.32). Both analyses assumed that the contact area was 

larger than actual value seen in experiments due to the spherical geometry of the actual 

probe. Moreover, surface roughness leads to increased thermal resistance in 

experiments, an effect that was not considered in the analyses above. Accordingly, the 

analytical and numerical analyses underestimate thermal resistance and consequently 

the calculated temperature drop is lower than the true value. 

The percentage deviation of theory from experiment for both the numerical and 

analytical results is dissimilar, as shown in Fig. 4.30 and Fig. 4.31. The analytical 

analysis is a one-dimensional approach where both thermocouple wires are assumed 

to act as a single equivalent wire (See section 4.4.1). Consequently, the effect of 

ambient temperature is considered on a single wire with an equivalent diameter and 

thermal conductivity; this differs from the actual thermocouple wire properties and 

size (See Table 4.1and Table 4.2). Conversely, in the numerical analysis the model is 

three-dimensional and the actual size and properties were used (see Fig. 4.32). 

Experimental working conditions were approximately the same for both sizes of 

thermocouple. By comparing experimental, analytical and numerical results, it can be 
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concluded that the thermal contact resistance of the thermocouple is in the order of 

1×10-5 m2 K/W and 1×10-4 m2 K/W for 80µm and 200µm respectively. 

 Fig. 4.33 shows a calculation of the effect of the electrical insulation when the Peltier 

temperature is above the range considered in the present experiments. The insulation 

has a negligible effect for the 80µm thermocouple even when surface temperature 

reaches 800oC. However, there is a noticeable effect (about 2oC) of insulation for the 

200µm thermocouple when the temperature reaches 250oC. Therefore, for larger 

thermocouples the effect of insulation should be taken into consideration at elevated 

surface temperatures. 

 

Fig. 4.33 Analytical results for the thermocouple error measurement for Peltier 

surface temperature up to 800oC beyond the experimental working range.  

4.5 Conclusions  

Analytical, numerical and experimental analyses have been performed to investigate 

the effects of different insulation lengths on thermocouple measurements of surface 

temperature. During the experimental work, the thermocouple probe was in direct 

contact with the surface while the wires were exposed to natural convection from the 

outside environment. Two sizes of thermocouple (80µm and 200µm) were used to 

measure a surface temperature. A satisfactory agreement was found between 
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experimental, analytical, and numerical results within the range of surface 

temperatures measured (4oC-35oC) and an average environmental temperature of 

13oC. From this, the following can be concluded: 

1. Stripping different lengths (0mm, 5mm, 10mm, 15, and 20mm) of insulation has 

a negligible effect on the heat transfer along the thermocouple wire and 

consequently on surface temperature measurement. 

2. Both sizes of thermocouples considered, 80μm and 200μm, have different 

insulation thickness; however, stripping different lengths has no impact on either 

measurement. Therefore, the effect of the stripped insulation is independent of 

thermocouple size within the temperature measured range (4oC-35oC). 

3. The effect of stripped insulation on the thermocouples with a wire diameter of 

200μm becomes relevant when the Peltier surface temperature reaches 250oC, 

while for 80µm diameter wires insulation has negligible effect even for surfaces 

above 800oC.   

4. Regardless of the stripped length of insulation, a larger diameter of thermocouple 

wire has a greater impact on surface temperature measurement than a smaller 

thermocouple wire. 

5. The effect of the wire's curvature on heat transfer has been considered due to the 

small size of the wire. The impact of this curvature means that there is no specific 

critical diameter of the thermocouple wire(s) over which heat transfer to the wires 

decreases (See Fig. 4.22 and Fig. 4.24 and Eq.(4.16)).  

6. If the experimental error in temperature measurement is higher than the impact of 

using the thermocouple (with or without insulation), the error is negligible. 

Therefore, any stripped length of electrical insulation can be said to have no 

impact on measurement accuracy.   

7. The effect of the electrical insulation can be neglected until the surface 

temperature reaches 800oC for 80μm thermocouples, while for the 200μm 

thermocouples the effect of the insulation must be considered when the surface 

temperature reaches 250oC.



 

 

 

 

Chapter 5  

Thermocouple Heating Impact on the Temperature 

Measurement of Small Volumes of Water in a 

Cooling System 

Two different sizes of thermocouple (80μm and 315μm) were used to measure the 

temperature of a small volume of water inside a chamber in the first row of a micro-

well thermostatically controlled system (TG40).This system consists of 5 rows with 8 

chambers in each row, as shown in Fig. 5.1. The temperature of the first row was 

maintained at 4oC, while that of the last row was at 20oC. The thermocouple was placed 

vertically and its movement was controlled by a micrometre to measure the 

temperature of the large well in a single chamber of the first row. The large well 

(shown in Fig. 5.2) contained a small volume of water with an average height of 

approximately 6 mm and a cross-sectional area of 4mm2. 

The thermocouple was connected to a PICO log data acquisition (TC08) system to 

record the measured data onto a computer and saved to an Excel file. The zero position 

of the thermocouple began when the thermocouple probe was in contact with the water 

surface, and the measurement continued at incremental step of 0.25mm below the 

water surface until the depth of 5mm was reached, at which point the temperature 

variation observed was negligible.  

The first set of experiments was performed to measure the temperature distribution 

inside the large well of the plastic insert without lids (See Fig. 5.2). The second set 

was to measure the temperature distribution inside the copper block. Five runs for each 

experiment were performed for each depth and for each thermocouple size.  

The thermocouple wire was extended vertically and exposed to natural convection 

from the outside environment during the temperature measurement. Because the 

environmental temperature was higher than that of the water inside the chamber, the 

heat transfer was therefore conducted to the water through the thermocouple wires and 
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the probe. This caused a heating impact on the water temperature around the probe 

which was inserted inside the large well. Consequently, the thermocouple will measure 

the affected water temperature not the actual value. 

The natural convection heat transfer model was considered in the numerical analysis 

with an option of the variable fluid density acting as a driving force. Density change 

occurs because of the temperature difference between the outside atmosphere and 

working water. Moreover, a laminar single-phase air-water system heated from above 

was considered in the simulation.  

Finite element methods (FEM) are adopted as the numerical method to solve the 

governing differential equations of motion and heat transfer. This numerical method 

was built on COMSOL Multiphysics software. 

The results show that the larger size of thermocouple has a greater impact on the 

temperature measurement. The presence of the plastic insert between the water inside 

the large well and the copper block leads to an increase in thermal resistance. 

Therefore, inserting the thermocouple inside the water led to a rise in the heating 

impact of the thermocouple. However, the difference in the heating impacts was 

eliminated in the copper block experiments when the thermocouple probe was very 

close to the copper surface. 

A strong agreement has been obtained between the numerical and experimental results 

of the temperature distribution inside the large well of the plastic insert and inside the 

copper block. Depending on this validation, numerical results of the full chamber 

geometry are considered solely to examine the temperature distribution inside the large 

and small wells without the effect of thermocouple. 

Thermocouple wires stretched vertically through the environment have a specific 

length over which their temperature becomes equal to that of the environment. Above 

this length there will not be an effect of the length of the wire on the temperature 

measurement.  
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5.1 Experimental techniques 

5.1.1 TG40 model description 

Centeo’s TG40 is a mobile device, temperature-controlled microplate in SBS (Society 

for Biomolecular Screening) design that permits to the researchers to monitor the 

temperature during the experimental process. TG40 keeps the samples against sudden 

temperature variation while is being transported through the lab during the experiment. 

The maximum operation of TG40 during transportation is 30 minutes by using the 

built-in battery [26]. TG40 microplate is connected to external power supply through 

the dock station for recharging the built-in battery as shown in Fig. 5.1. Moreover, 

TG40 device can be connected to external computer in order to control the temperature 

of each row. 

The TG40 system consists of five rows of rectangular copper blocks with eight 

chambers per row (See Fig. 5.1). The maximum working range of temperature of the 

copper block was usually between 4oC and 60oC. However, in this study the 

temperature of the first row was adjusted to 4oC, while the last one was set to 20oC 

with a temperature difference of 4oC maintained between every two consecutive rows. 

 

Fig. 5.1: CENTEO’s TG40 cooling device. 
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Each chamber in the plastic insert has two wells containing aqueous liquid (with 

different NaCl concentrations) as shown in Fig. 5.2. However, to simplify the analysis, 

the small and large wells were filled with tap water in the experiments. The base part 

Table 5.1 Properties of cyclic olefin copolymer and polystyrene. 

 

 

  

Fig. 5.2 Two dimensional cross-sectional of the chamber. All dimensions in mm. 

of the chamber was made of copper, while the material of the plastic insert was cyclic 

olefin copolymer (COC) and the first and second lids were made from polystyrene 

(Table 5.1). Note that the upper lid covered all 40 chambers and left an air gap of 

Material types Density 

[kg/m3] 

Thermal conductivity 

[W/(m K)] 

Heat capacity 

[J/(kg K)] 

Cyclic olefin 

copolymer 
1020[108] 0.15 [109] 

1340-

1466[110]  

Polystyrene 1065[111] 0.14[111] 
1340-

1466[110] 

Curved surface due 

to the surface tension 

Copper block 

Air gap 

Large well 

Small well 

First lid 
Second lid 

Plastic insert 

(Air) 

(Water) 

Air gap 

1.1 

0.55 

0.08 

10 

10 

2 
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0.55m thickness above the chambers. The other air gap, generated due to 

manufacturing tolerances, was confined between the plastic insert and copper 

(Fig. 5.2). 

The thicknesses of the first lid, second lid, and the air gap between them were 0.08mm, 

1.1mm, and 0.55mm respectively. The depth of the small well was 1mm; the outer 

dimensions of the chamber were approximately (10×10×10) mm3, including the lids. 

5.1.2 Experimental setup 

Fig. 5.3 shows the experimental setup, which consisted of three main parts: the base 

holding the TG40 cooling device, micrometer movement, and PICO log data 

acquisition TC08, which converted the thermocouple signal into data read by 

computer. 

The plastic base was fabricated to align the TG40 dock station with micrometer in 

order to measure the temperature of the middle chamber in the first row as shown in 

Fig. 5.3. TG40 dock station was connected to external power supply for continuous 

operation during the experiments. A special Centeo’s TG40 software was installed in 

a laptop and the micoplate TG40 was linked to a laptop through USB cable in order to 

control the temperature of each row.  

Two thermocouples used were type-K with bare wire diameters of 80μm (250µm 

including PFA insulation) and 315μm (600µm including PFA insulation)4, (See 

Table 4.1 in section 4.1.2 in Chapter 4) for thermocouple materials properties) to 

measure the temperature inside the large well in order to study their heat impact effect 

on the measurement. During the measurement process, the thermocouple(s) were held 

vertically by a micrometre while the wires were extended into the outside environment. 

Another two thermocouples of size were used to record ambient temperature. All 

thermocouples were connected to PICO log data acquisition TC08 which was liked to 

the laptop for recoding the temperatures. 

                                                 
4 The manufacturer of both thermocouple is Labfacility with codes Z2-K-2 X 5 and Z2-K-5.0-C81-MP 

for 80µm and 315µm respectively. 
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Fig. 5.3 Experimental setup for theTG40 cooling system with micrometre tool 

movement. 

5.1.3 Measurement procedure 

The experimental work has concentrated only on measurement of the temperature of 

the large well. Upon obtaining a satisfactory agreement between the experimental and 

simulation results, the prediction of the temperature inside the small well will be solely 

based on the numerical methods described in section 5.3. This is due to the small size 

of the small well, meaning that using the thermocouple will have a large impact on the 

well temperature measurement.  

During the plastic insert experiments the large well was filled with 42µl of water in 

order to achieve a water height of 5mm. Water volume (42µl) was calculated from the 

CAD file of a single chamber. A micro pipette of 20µl size was used to measure water 

quantity during the experiments. Moreover, due to manufacturing tolerances and the 

irregular geometry of the water surface (See Fig. 5.18 and Fig. 5.19 in section 5.3.2.1) 

the calculated water height from the CAD file was different to the actual value. The 

actual water height was therefore measured by using the thermocouple tip and 

micrometer while taking the bottom surface of the large well as a reference point (See 

Fig. 5.3). The average water height was found to be approximately equal to 6mm.The 

following steps were followed through each run of the experiment: 
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1. Connect the dock station to an external power supply and the TG40 cooling device 

to a laptop. Login to the TG40 software and set the first row temperature equal to 

4oC and the last row equal to 20oC with 4oC temperature step between two 

consecutive rows. Wait for enough time in order to reach each row in the TG40 the 

specified steady state temperature. 

2. Plug-in the thermocouples into PICO log data acquisition TC08 to recod the 

temperature. Attach the required size of the thermocouple to the micrometre and then 

position the probe at centre line of the large well in the plastic insert. 

3. The starting point for the thermocouple measurement was when the probe came into 

contact the water surface, noticeable by the sudden drop in the temperature recording 

or by viewing the probe with a digital microscope. Thermocouple measurement was 

recorded at each 0.25mm step below the surface; this movement was controlled by a 

micrometre. Wait for seconds after each step till thermocouple reading reaches 

steady state and then record the temperature with an average sixty-second duration 

at each step. 

4. Temperature of twenty step below the water surface were recorded till the 

thermocouple reading records no change in the measurement.  

5. Repeat the steps 1-5 for each thermocouple size and for five times. 

 An identical set of experiments was repeated by filling the copper block with an 

amount of water to obtain the equivalent height of the water inside the plastic insert. 

Consequently, the copper block contained 116µl of water in order to obtain the same 

height of water inside the plastic insert. The copper block experiments were performed 

to predict the copper block temperature which will be used as a boundary condition 

for the numerical method (See section 5.3.2.4). 

Thermocouple calibration was then performed by comparing the reading to the 

freezing or boiling point of water, as explained in section 4.1.3 Chapter 3. The 

calibration process is to predict the bias error of the instrument that has been used in 

the measurement .Whereas, the error bars in Fig. 5.4-Fig. 5.5 and in Fig. 5.7-Fig. 5.8 

represents the precision error of the repeated run of the experiments ( See section 4.3 

inChapter 4.     



Chapter 5                                                              Thermocouple Heating Impact 

 

93 

 

5.1.4 Geometry uncertainty 

Due to manufacturing tolerances, there is a difference in the dimensions between the 

CAD drawing of TG40 and the real system. These tolerances will affect the size of the 

plastic insert and the copper block and, consequently, the air gap between them (See 

Fig. 5.2). For the CAD drawing of TG40, it was assumed that the plastic insert is in 

direct contact under the small well. This was not the actual case, where there was an 

air gap between the plastic insert and copper block under the small well. The gap was 

therefore measured and was found to be within the order of +10-1mm.  

5.1.5 Experimental results 

5.1.5.1 Copper-water experimental results 

Fig. 5.4 and Fig. 5.5 show the experimental results of the water temperature 

distribution inside the copper block measured by the thermocouple of sizes 80μm and 

315μm respectively. Fig. 5.4 and Fig. 5.7 show that the error bars are larger for the 

measurement of the thermocouple of the size 80µm. The probe size of the 

thermocouple 80µm is smaller than that of the thermocouple 315µm (See Fig. 5.28 in 

 

Fig. 5.4: Experimental results of water temperature distribution inside the copper 

block for the thermocouple size 80μm. Error bars are within ± one standard 

deviation. 

section 5.3.5.1). The possible reason for that are: for each run, the possibility of getting 

the same starting point for the thermocouple 80µm is lower (in comparison with 
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315µm) when the thermocouple probe touches water surface. Furthermore, the 

thermocouple is supposed to measure the temperature distribution along the middle 

line through the plastic chamber or the copper block. Therefore, it was not possible to 

position the thermocouple in the same middle position during each experiment. 

Consequently, the error for each experimental run will be different. Secondly, the 

effect of surface tension on the thermocouple probe will vary the shape of water 

surface around the probe and therefore the heat transfer interaction with the 

thermocouple probe is different for each time. 

Fig. 5.6 shows a comparison between the mean experimental measurements of the 

thermocouples, 80μm and 315μm, inside the water in the copper block. The 315μm 

thermocouple recorded a higher environmental heat impact at a depth near the water 

surface than that of the 80μm thermocouple. However, the heat impact effect of both 

the thermocouples decreased gradually until they were approximately equal at the 

bottom of the copper block. 

 

Fig. 5.5: Experimental results of water temperature distribution inside the copper 

block for the thermocouple size 315μm. Error bars are within ± one standard 

deviation. 
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Fig. 5.6: Comparison between the mean experimental temperature of water inside 

the copper block for 80µm and 315µm. 

5.1.5.2 Plastic insert experimental results 

Fig. 5.7 and Fig. 5.8 show the experimental results of the water temperature inside the 

plastic insert measured by the thermocouple of sizes 80μm and 315μm respectively.  
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Fig. 5.7: Experimental results of water temperature distribution inside the plastic 

insert for the thermocouple size 80μm. Error bars are within ± one standard 

deviation. 
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Fig. 5.7 shows that the error bars are larger for the measurement of the thermocouple 

of the size 80µm. The possible reason for that are: for each run, there is no possibility 

of getting the same starting point when the thermocouple probe touches water surface 

(See section 5.1.4.1 for details). 

Fig. 5.9 shows a comparison between the mean experimental measurements of the 

thermocouples, 80μm and 315μm, inside the water in the plastic insert. The 315μm 

thermocouple recorded a higher environmental heat impact at a depth near the water 

surface than that of the 80μm thermocouple. The heat impact effect of both the 

thermocouples decreased gradually and continued to the bottom surface of the plastic 

insert.  

Fig. 5.10 shows a comparison between the mean data of the experimental 

measurements of both the copper-water and plastic-insert water models. The behaviour 

of the mean experimental results is similar for both sets at the points just below the 

water surface. However, this behaviour begins to differ at deeper positions. 

 

Fig. 5.8: Experimental results of  water temperature distribution inside the plastic 

insert for the thermocouple size 315μm. Error bars are within ± one standard 

deviation. 
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Fig. 5.9: Comparison between the experimental means of the water temperature 

distribution inside plastic insert for both sizes of thermocouples. 

  

 

Fig. 5.10: Comparison between the experimental means of the water temperature 

distribution inside the copper block or plastic insert for both sizes of thermocouples. 
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The difference occurring in the results is due to the presence of the plastic insert, which 

introduces more thermal resistance between the copper block and the water inside the 

large well (See Fig. 5.2).  

Water temperature near the copper block is approximately equal to the copper block 

temperature. Convection processes at this position with the wires can therefore 

eliminate the heating impact effect, regardless of the size of thermocouple. The energy 

balance of the thermocouple wires reveals that the heat transferred by convection to 

the wires from the outside environment was equal to the heat transferred to the water 

from the submerged part of the wires. Therefore, the heat impact effect of both the 

thermocouples was greater at the first few depths and gradually decreased at lower 

positions. This occurred due to the greater length of the wire within the water as the 

thermocouple moved downward. In addition, the length of the wires above the water 

surface was maintained at the required length at which the end temperature equalled 

that of the environment. The heating effect is approximately eliminated near the 

bottom of the copper block. 

The effect of the thermal resistance, due to the presence of the plastic insert between 

the water inside the large well and the copper block, continues to the deeper positions 

in the plastic insert experiments. The heating impact effect therefore continues to the 

final position, particularly for the larger thermocouple. For example, at a depth of 

3.5mm and for the copper block experiments the heating impact of both thermocouples 

is approximately eliminated and thus the thermocouple should measure the water 

temperature at this point. In the plastic insert experiments at the same depth, heating 

is available, particularly for the larger size of thermocouple.  

5.2 Mathematical Modelling 

Thermal analysis was conducted on a single chamber located in the first row. Free 

convection heat transfer was considered for the air gap(s), as well as for the water 

inside the well(s) (Fig. 5.2). The steady-state conditions governing differential 

equations for the flow and energy are written in section 3.1in Chapter 3. 
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For the natural convection, the driving force inside the TG40 system was the change 

in the density due to the temperature difference between the bottom and top surfaces 

of the system. Therefore, assuming Boussinesq approximation (for both air and water 

inside the chamber [112-114]), this force, acting only in the vertical direction, is 

included in the right-hand side of Eq.(3.4) (See section 3.1 in Chapter 3). Therefore, 

the body force term in Z-direction is written as [74]: 

Fz= g[1-β(T-Tinf)] (5.1) 

where g [m/s2] is the gravity acceleration and β [1/K] is the thermal expansion 

coefficient. The body forces in X- and Y-directions are assumed equal to zero (See 

section 3.1 in Chapter 3). 

The air density change was calculated from [74] 

ρ
air

=ρ
o

[1-
T-Tinf

Tinf

] (5.2) 

where ρ
air

 [kg/m3] is the air density, ρ
o
 [kg/m3]is the air reference density at 20oC, T 

[K] is the temperature and Tinf [K] is the environment temperature. However, the water 

properties are calculated from Fig. 3.7-Fig. 3.9 (See section 3.3.3 in Chapter 3). The 

other properties of air and water are given in where H [m] is the height, ν [m2/s] is the 

kinematic viscosity. 

Table 5.2. The energy equation is identical to Eq.(3.5) (See section 3.1 in Chapter 3). 

The interface between air and water inside the chamber is considered to be stable and 

continuous boundary [112-115]. 

Laminar flow is considered in the simulation because the value of the Grashof number 

(Gr), Eq.(5.3); characterising the flow feature in the system becomes less than 109 for 

both air and water [74, 87]. For instance, with the wire length of 30 mm, which is the 

longest length of the thermocouple (Fig. 5.13), and with a temperature difference of 

∆T=T -Tinf = 16
o
C, the Grashof number is calculated to be 64096.2 for air and is 

equal to 4087.44 for water (with height 5mm), (See where H [m] is the height, ν [m2/s] 

is the kinematic viscosity. 
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Table 5.2 for air and water properties). 

Gr=
gβ(T-Tinf)H

ν2

3

 (5.3) 

where H [m] is the height, ν [m2/s] is the kinematic viscosity. 

Table 5.2 Air and water properties at atmospheric pressure and 20oC [74]. 

Air Water 

νa[m2 s⁄ ] 15×10
-6

 ν𝑤[m2 s⁄ ] 1.004×10
-6

 

αa[m2 s⁄ ] 20.8×10
-6

 α𝑤[m2 s⁄ ] 0.142×10
-6

 

ka[W mK⁄ ] 0.025 k𝑤[W mK⁄ ] 0.59 

Pra 0.72 Pr𝑤 7.07 

β
a
[ 1 K]⁄  3.403×10

-3
 β

𝑤
[ 1 K]⁄  2.1×10

-4
 

μ
a
[kg m.s⁄ ] 18.1×10

-6
 μ

𝑤
[kg m.s⁄ ] 10.02×10

-4
 

Cpa[kJ kg.K⁄ ] 1.006  Cpw[kJ kg.K⁄ ] 4.182 

In a system of two immiscible fluids, when the system is heated from above the 

occurrence of anticonvection is possible (Welander[112]). However, the 

anticonvection phenomenon cannot occur in the air-water system inside the TG40 

chamber. Welander [112] showed that for anticonvection to occur in the air-water 

system the ratio of the properties, μ
a 

β
a
Cpw μ

w 
β

w
Cpa⁄ , should be greater than 9 or 

smaller than 1/9 where µ, β, and Cp are the dynamic viscosity, thermal expansion, and 

specific heat capacity respectively. However, in the TG40 system studied here the ratio 

μ
a 

β
a
Cpw μ

w 
β

w
Cpa⁄ , using the air and water properties at 20oC, becomes 1.217, which 

is much lower than 9 and higher than 1/9. Therefore, a flat surface at the air-water 

interface is considered in the numerical simulation, which essentially ignores the effect 

of thermocapillary convection as unlikely to occur at the air-water interface inside the 

chamber [112, 114, 116].  
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5.3 Numerical analysis 

The finite element method has been used as a numerical method, which is built on 

COMSOL Multiphysics software. Numerical analysis considers a half-model due to 

the symmetry in chamber geometry. Fig. 5.11 initially shows some simulation results 

of the temperature in the TG40 system with lids, which shows the half-geometry 

results.  

 
Fig. 5.11: 3D half geometry of the TG40 showing the simulated temperature results 

with lids. 

The free convection boundary condition was applied at the upper surface of the first 

lid. The lower boundary condition represents the contact boundary between the air gap 

and the copper block, which is equal to 4.05oC (See Fig. 5.2 and section 5.3.5.1). 

Periodic and symmetrical boundary conditions are considered for the sides of the 

chamber and the cross-section boundaries respectively; see Fig. 5.16 for the details of 

the boundary conditions. The average environment temperature was 18oC, which is 
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higher than the copper block temperature. Fig. 5.11 shows that the temperature of the 

upper lid is higher than that of the base (copper block) of the chamber. The same reason 

explains the temperature inside the small well shown in Fig. 5.12, where the 

temperature is higher at the upper water surface in the well. 

 
Fig. 5.12: Temperature variation inside the small well with lids. 

Thermocouple wire made a heating impact on the large well temperature measurement 

during the experiment. Therefore, wires were treated as a very long fin and the 

temperature corresponding to the environmental temperature was determined [91]. 

The fin base temperature began with the water surface temperature in the large well, 

which was assumed to be equal to 4.05oC, and the room/environmental temperature 

was measured to be Tinf = 18oC. These results are presented in Fig. 5.13 for both 

thermocouples, with further details already given in Chapter 4. 

 



Chapter 5                                                              Thermocouple Heating Impact 

 

103 

 

 

Fig. 5.13: Fin length required to reach the environmental temperature for the TG40 

case. 

Fig. 5.14 and Fig. 5.15 now demonstrate the numerical results of the impact of the 

thermocouple sizes, 80μm and 315μm, on the temperature distribution of the large well 

at a depth of 1.25 mm below the water surface.  

 

Fig. 5.14: Demonstration of the effect of the 80µm thermocouple on the water 

temperature inside the large well at1.25mm depth. 
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The results show that the heating impact was greater for the thermocouple with larger 

size (315µm), as the heat interaction area with the outside environment is larger. 

Consequently, the heat transfer by conduction through the wires to the large well is 

higher.  

 
Fig. 5.15: Demonstration of the effect of 315µm thermocouple on the water 

temperature inside the large well for 1.25mm depth. 

5.3.1 Full geometry simulation 

In the numerical simulation, a half-geometry of the TG40 is considered due to the 

symmetry (as shown in Fig. 5.16), which represents a three-dimensional cross-section 

of a single chamber. As mentioned, the numerical analysis is performed for a single 

chamber at the middle position of the first row of the TG40 (See Fig. 5.1).  The copper 

block will not be considered in the simulation as its temperature is constant and the 

temperature gradient across the block’s wall is assumed to be very small (See Fig. 5.2). 

Therefore, the air gap between the copper block and the plastic insert is considered to 

be an individual subdomain. The contact boundary between the air gap and the copper 

block is set to a constant temperature (4.05°C), (See section 5.3.5.1). 

  



Chapter 5                                                              Thermocouple Heating Impact 

 

105 

 

Symmetry boundaries in the cross-section of the geometry are defined for the hydraulic 

and thermal simulations. Periodic boundary conditions are considered for the sides of 

the chamber that are connected to the other chambers in the same row. The upper 

surface of the second lid is subject to free convection at the atmosphere. The 

boundaries of the air gaps between the lids (opposite to the symmetry boundaries 

shown in Fig. 5.16 and next to the second row) are considered as open boundaries. The 

interface between air and water inside the chamber are considered to be continuous 

boundary [112, 113], ( See section 5.2). The water height inside the large well has been 

discussed in section 5.3.2.1.  

 

 

Fig. 5.16: 3D geometry of a single chamber with boundary conditions. 

5.3.2 Simulation without the model lids 

A simulation(s) without lids (See Fig. 5.2 and Fig. 5.16) and with inserting the 

thermocouple inside the water in the large well (or the water inside the copper block) 

has been considered in this section. 

Periodic BCs. 

Constant temp. (4.05oC) 

Free convection BCs. 

Symmetry BCs. 
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5.3.2.1 Water depth inside the large well 

Several parameters affect the water depth inside the large well (or the copper block), 

and consequently the thermocouple zero position for the simulations without lids (See 

section 5.3.2.2). These are, for example, manufacturing tolerances in the plastic insert 

size and copper block, an increase in water height due to the thermocouple immersing, 

complex geometry of the water surfaces which are formed due to the surface tension 

between the water and plastic inserts (or the copper block) as well as between the 

thermocouple probe and water surface (See Fig. 5.17 and Fig. 5.18). Furthermore, due 

to the complex geometry of the water surface inside the large well (and copper block) 

      

Fig. 5.17: Contact geometry between the water surface and thermocouple probe 

[117]. 

 

Fig. 5.18: Thermocouple probe touching the water surface inside the plastic insert. 
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and difficulty in predicting the shape of geometry, a flat surface is assumed in the 

numerical simulation, as shown in Fig. 5.19. Consequently, the three different surfaces 

were defined: a) calculated from the water volume that fills the large well; b) second 

curved surface formed due to surface tension; and c) virtual surface that has been 

adopted in the simulation, chosen to specify thermocouple zero position for starting 

simulation. 

 

Fig. 5.19: Water surface(s) and thermocouple zero position: a) Primary chosen 

surface; b) Surface formed by the surface tension; c) Simulation virtual surface. 

Three different water depths (6mm, 6.25mm, and 6.5mm) have been modelled in the 

numerical simulation of the plastic insert to include other effects, such as using 

different thermocouple sizes. There is no substantial difference between the three 

heights in comparison with experimental results. The model with the water depth of 

6.25mm gives good agreement between the experimental and simulation results for 

both sizes of thermocouple (See Fig. 5.31 and Fig. 5.32 in section 5.3.5.2) . This value 

of calculated water height is not far from the measured height of 6mm (See section 0). 
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This value of the calculated water height (6.25mm) has been used for the full geometry 

and copper-water numerical simulations as well.  

5.3.2.2 Thermocouple zero position 

The thermocouple probe at the first point(s) was not totally submerged in the water 

during the measurement of the water temperature and, at the same time, part of it was 

still exposed to the outside environment. It is therefore difficult to exactly specify the 

length of the probe below the water, particularly considering the complex geometry of 

the water surface (See Fig. 5.17-Fig. 5.19 and section 5.3.2.1), because the 

thermocouple measures the air temperature just above the water surface which is 

higher than the water temperature. Consequently, the starting point(s) (or the zero 

position of the thermocouple probe) of the simulation was selected as the point at 

which the probe touched the water surface. Therefore, in the simulation the 

thermocouple probe measures the air temperature only, while this was not the case in 

reality since the probe was still positioned at the interface between the air and water. 

This may explain the jump found in the simulation data at the zero point(s) in Fig. 5.25-

Fig. 5.26 and Fig. 5.31-Fig. 5.32, because the thermocouple measured the air 

temperature just above the water surface, which was higher than the water temperature. 

5.3.2.3 Simulation with the plastic insert 

The same boundary conditions have been applied to the chamber lower boundaries of 

the geometry, as explained in Fig. 5.16. However, the only difference here is that the 

lids have been removed and a thermocouple is inserted to measure the temperature 

inside the large well. Therefore, the upper surface of the plastic insert and each 

thermocouple wire are exposed to natural convection from the outside environment. 

Due to the complex geometry of the plastic insert upper surface, it was difficult to 

determine an accurate formula(s) of the heat transfer coefficients for all surfaces, 

which are required in the simulations. A virtual air subdomain is therefore added and 

extended vertically to the point at which the thermocouple wire end temperature is 

equal to the environmental temperature [75]. This additional subdomain implicitly 

calculates the heat transfer coefficients between the environment and thermocouple 

wires and the upper surface of the plastic insert (See Fig. 5.20 and Fig. 5.21). 
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Fig. 5.20: 3D geometry of TG40 chamber with plastic insert and with a 80µm 

thermocouple inserted in large well. 

The preliminary prediction of the air subdomain height is 10mm for the 80μm 

thermocouple; while it is 30 mm for the 315μm thermocouple (See Fig. 5.13); the 

numerical simulation for the three-dimensional model analysis gives wire lengths of 

10mm and 20mm for the 80μm and 315μm thermocouples respectively. In addition, 

the upper surface of the virtual air subdomain, as in the previous case, is assumed to 
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be the open boundary condition and its temperature equal to that of the environment. 

Note that the effect of the thermocouple electrical insulation was neglected [118]. 

 

Fig. 5.21: 3D geometry of TG40 chamber with plastic insert and with a 315µm 

thermocouple inserted in large well. 

5.3.2.4 Simulation without the plastic insert  

Experiment and numerical simulations have been adopted for the copper block without 

the plastic insert to confirm the temperature of the block. Copper block temperature is 

the bottom boundary condition for numerical simulation (Fig. 5.16). Water height 

inside the copper block is therefore assumed to be equal to the calculated value 
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(6.25mm) in order to calculate its temperature. This assumption can be seen to be 

acceptable by observing results for the plastic insert, where the water height inside the 

large well is very close to the measured value (See Fig. 5.31 and Fig. 5.32 in 

section 5.3.5.2). 

Simulation of the copper block with water follows the same procedure, with a virtual 

air subdomain added above the copper block and water. Water inside the copper block 

and the virtual air subdomain are included only in the simulation, and the contact 

boundary between the water and copper is set to 4.05ºC. Fig. 5.22 shows the three-

dimensional simulation model for the measurement of the water temperature inside the 

copper block using thermocouple size 80µm. A similar model shown in Fig. 5.22 can 

be used to analyse the water temperature using thermocouple size 315µm except the 

air domain height will be larger (See Fig. 5.21).  

 
Fig. 5.22: 3D simulation model of the copper block with thermocouple inserted 

inside the water. 

Periodic BCs 

Symmetry  BCs 

Water inside 

copper block 

Tinf 

Air subdomain 

Periodic 

BCs 



Chapter 5                                                              Thermocouple Heating Impact 

 

112 

 

5.3.3 Simulation procedure and mesh resolution test 

COMSOL Multiphysics software with finite element method was used to solve 

Eqs.(3.1)-(3.5), (See section 3.1 in Chapter 3). Due to a complex geometry, free 

meshing has been used with tetrahedral elements. Small geometry has been meshed 

with a fine mesh element size, particularly in and around the thermocouple wires and 

the probe (See Fig. 5.23 and Table 5.3). However, a massive increase in the number of 

mesh elements leads the solution to converge to a value higher than the specified 

convergence criterion (equal to 10-6), i.e. the solution is trapped at a specific value and 

does not converge. 

 

 Fig. 5.23: 3D meshes of the chamber without lids with 80µm thermocouple. 

An individual simulation was performed for each thermocouple position. Zero position 

of the thermocouple probe begins where the probe is in contact with the water surface 

(See Fig. 5.19). The thermocouple probe was then moved at 0.25mm step increments 
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below the water surface until a depth of 5mm was achieved. Therefore, there were a 

total of 20 simulation models for each case. 

5.3.4 Mesh resolution test 

Two models with water height of 6.25mm inside the plastic insert were selected to 

check the mesh independence in numerical solution. Thermocouple probe temperature 

was selected as a reference point for comparison between the solutions of different 

numbers of mesh elements. 

Mesh dependence solution was checked using two models for water height 6.25 mm 

and thermocouple depth(s) position of 0.5mm and 1mm below water surface for 80μm 

and 315μm for respectively (See Table 5.3). The last mesh size was selected for this 

case, while for other positions of thermocouple the number of mesh elements increases 

automatically because the wire length increases in the model (See Fig. 5.24). Copper 

block temperature is equal to 4.05oC for both models. 

Table 5.3 Mesh dependent solution on the thermocouple probe temperature with the 

plastic insert. 

No. of mesh 

elements 

Probe temperature, 

315μm size (at depth 

1mm) 

No. of mesh 

elements 

Probe temperature, 

80μm size (at depth 

0.5mm) 

64697 5.526 90139 4.407 

76863 5.769 112232 4.4135 

82141 5.7695 134240 4.4155 

It was observed in Table 5.3 that there is a negligible change in probe temperature if 

the number of mesh elements is increased by more than 134240 and 82141 for the 

sizes of 80μm 315μm respectively. The number of mesh elements is increased when 

the thermocouple depth below water is increased, as shown in Fig. 5.24. Accordingly, 

thermocouple wire length inside the large well increases, and consequently the number 

of mesh elements should increase around the wires. 
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(a) 1mm depth position 

 
(b) 5mm depth position 

Fig. 5.24: Comparison between number of mesh elements for two positions of 

thermocouple at depths 1mm and 5mm. 

5.3.5 Numerical results and model validation 

5.3.5.1 Copper block simulation results 

Numerical simulation was performed with different values of copper block 

temperature for both sizes of thermocouple: 80μm and 315μm. Fig. 5.25 and Fig. 5.26  

show a comparison between the experimental and simulation results of the temperature 

distribution inside the water in the copper block. The values of the copper block 

temperatures (4.05oC and 4.1oC) and (4oC and 4.05oC) give good agreement with the 

experimental data for the thermocouple sizes 80µm and 315µm respectively. 

Therefore, the value of the copper block temperature (4.05oC) was adopted for the 

numerical analysis and during the experiments. The average environmental 

temperature was 18oC.  

Fig. 5.27 shows the deviation of the experimental results from the numerical results. 

Fig. 5.27 was produced by comparison the average of the experimental results with 
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Fig. 5.25: Temperature distribution of water inside the copper block with different 

block temperature (Tcb) for the thermocouple size 80μm. 

 

Fig. 5.26:  Temperature distribution of water inside the copper block with different 

block temperature (Tcb) for the thermocouple size 315μm. 

numerical analysis. The main uncertainty in the measurement process is specifying the 

accurate zero position of the thermocouple probe in each run. Therefore, each of the 

experiments has its own starting position which is different from the other run. This 

error will effect percentage deviation of the numerical results from the experimental 

results. Moreover, in the numerical simulation the assumption of a flat water surface 

in the copper block insert can lead to more deviation from the experiments. Fig. 5.27 

shows that the deviation of numerical results of the size 315µm is larger than that of 

80 µm. The explanation of that is the probe diameter of the thermocouple size 315µm 
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is larger than the size 80 µm (See Fig. 5.28). Therefore, the possibility of the error of 

specifying starting zero position of the measurement process is greater for the 

thermocouple size 315µm. Moreover, the assumption of spherical shape of the probe 

in the numerical analysis may lead to greater deviation of the numerical results from 

the experimental values while the actual shape of the probe is not totally spherical. 

 

Fig. 5.27: Deviation of the copper block numerical results from the experimental 

results for both sizes of thermocouple 80μm and 315μm with copper block 

temperature equal to 4.05oC. 

 

 
(a) 449μm 

 
(b) 860μm 

Fig. 5.28: Thermocouple probe size shown in microscope pictures: a) 80μm, and c) 

315μm. 

Fig.5.29(a-b) shows a comparison between the means of the experimental results of 

the copper block (See Fig. 5.6) and simulation results of the same model without 
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thermocouple. It is clearly shown that the thermocouple of larger size has a higher heat 

impact. 

 

 

Fig.5.29: Comparison between: (a) the experimental means of the copper block-water 

system of the 80µm and 315µm thermocouples (See Fig. 5.6)  with (b) simulation 

results of the same model without thermocouple. 

Fig.5.30 shows the heating impact that both sizes of thermocouple have on the actual 

temperature measurement of the water in the copper block. The vertical axis presents 

the difference between the experimental mean and simulation data without the effect 

of thermocouple. It shows that there is a greater heating impact effect at the first points, 

but that this decreases at deeper points below the water surface. During the 

experiments, part of the thermocouple wires was submerged within the water, while 

the other part was exposed to free convection from the outside environment. 
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Fig.5.30: Comparison between heat impact of both sizes of thermocouple with copper 

block. The y-axis represents the difference between experimental mean results and 

simulation results without thermocouple. 

5.3.5.2 Plastic insert simulation results 

Three different heights were simulated (6mm, 6.25mm, and 6.5mm) for both sizes of 

thermocouple 80μm and 315μm, as shown in Fig. 5.31 and Fig. 5.32. There is no 

fundamental effect of the water height on the simulation results. Therefore, the depth 

of 6.25mm gives good agreement between the experimental and simulation results for 

 
Fig. 5.31: Comparison between the experimental and simulation results with the 

plastic insert for different water heights inside the large well for the thermocouple 

size 80μm. 
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both thermocouples. This value was adopted for the numerical analysis and during the 

experiments.  

 

Fig. 5.32: Comparison between the experimental and simulation results with the 

plastic insert for different water heights inside the large well for the thermocouple 

size 315μm. 

Fig. 5.33 the percentage deviation of the numerical results from the experimental  

 

Fig. 5.33: Deviation of the plastic insert numerical results from the experimental 

results for both sizes of thermocouple 80μmand 80μm with copper block 

temperature equal to 4.05oC. 
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values. The discussion of Fig. 5.27 in section 5.3.5.1 is valid for the Fig. 5.33. 

Fig.5.34shows a comparison between the means of the experimental results of the 

plastic insert (See Fig. 5.9) and simulation results of the same model without 

thermocouple. It is clearly shown that the thermocouple of larger size has a higher heat 

impact. 

 

 
Fig.5.34:  Comparison between: (a) the experimental means of the plastic insert 

system of the 80um and 315um thermocouples (See Fig. 5.9)  with (b) simulation 

results of the same model without thermocouple.  

Fig.5.35 demonstrates similar behaviour of the results in Fig.5.30 in section 5.3.5.1 

except the effect of plastic insert appears near the bottom of the plastic insert where 

the heating impact is still dominant to the end. The presence of the plastic insert 

increases the thermal resistance between thermocouple probe and copper block which 

leads to more effect of the thermocouple wires conduction error. 
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Fig.5.35: Comparison between heat impact of both sizes of thermocouple with 

plastic insert. The y-axis represents the difference between experimental mean 

results and simulation results without thermocouple. 

5.3.6 Small well temperature distribution 

According to the previous results presented earlier in Fig. 5.25-Fig. 5.26 and Fig. 5.31-

Fig. 5.32, the simulation results alone can be used to predict the other required results 

for the TG40 cooling system, designed to keep a protein solution in the small well at 

a certain temperature (See Fig. 5.2). TG40 was designed to keep the temperature inside 

the small well uniform and close as much as possible to the copper block temperature.  

Two main parameters may affect the temperature of the small well: firstly, the water 

height inside the large well, and secondly the air gap between the plastic insert and 

copper block. Therefore, it is necessary to investigate the effect of these parameters 

and examine parameters which have greater effect on the temperature of the small 

well.  

The existence of the air gap between the copper block and the plastic insert is due to 

the manufacturing tolerances of TG40 device, see Fig. 5.36. The increase in the air gap 

below the small well will enhance the thermal resistance between water inside the well 

and the copper block.  Consequently, the cooling effect of the copper block on the 

water inside the well will be reduced and the temperature inside the small well is rising, 

see Fig. 5.37.  
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Fig. 5.36: 3D model of the small well in TG40 device and the position of the air 

gap. 

Fig. 5.37 shows the numerical results and effects of increasing the air gap between the 

copper block and the plastic insert on the temperature distribution inside the small 

well. An increase in the air gap of 0-0.4 mm leads to a temperature difference of around 

0.5oC. A zero gap, which can be considered as a reference point, means the bottom  

 

Fig. 5.37: Effect of varying the air gap on temperature distribution inside the small 

well. X-axis represents the distance along the centre line starting from zero mm (well 

bottom surface) to 1 mm (water surface in the well),   see Fig. 5.36. 
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surface of the small well is in direct contact with the copper block and there is no air 

gap below the well. The increase in gap size therefore leads to an increase in thermal 

resistance between the well and the copper block. Consequently, the resistance to the 

cooling effect of the copper block will be greater and leads to a rise in the temperature 

of the small well. 

An increase in the water height inside the large well has a small effect in comparison 

with that of the air gap between the plastic insert and copper block. Fig. 5.38 

demonstrates that an increase in water height inside the large well has a small effect 

on temperature distribution inside the small well. Therefore, the increase in the air gap 

shown in Fig. 5.37 has a greater influence than that of the water height inside the large 

well. 

 

Fig. 5.38 Effect of variation the water height inside the large well on temperature 

distribution inside the small well. X-axis represents the distance along the centre line 

starting from well bottom surface to (water surface in the well),   see Fig. 5.36. 

5.4 Conclusions 

Use of a thermocouple to measure the temperature of a small volume of liquid which 

is cooler than the environmental temperature causes a heating effect. In other words, 

the readings obtained from the thermocouple give an overestimation of the real 
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temperature of the liquid. The reading from the thermocouple therefore requires a 

correction to obtain a true value. The results showed that: 

1. The heating effect of the thermocouple decreases measurements for at a greater 

depth, and this effect is eliminated when the thermocouple junction is close to the 

copper block.  

2. The increase in the thermal resistance between the copper block and the 

thermocouple junction raises the heating effect of the thermocouple. This is clearly 

shown in Fig. 5.10, where the effect of the large size of thermocouple is greater 

than that of the smaller one. 

3. The length of thermocouple wires exposed to the environment has no effect over a 

specific length where the wire end temperature is equal to that of the environment. 

But this critical length increases with an increase in thermocouple size. 

These results are then used to relate experimental results with a FEM simulation of a 

system without inserted thermocouple. This simulation is employed to investigate the 

impact of various parameters on the TG40 performance, without the errors caused by 

temperature measurement tools. Therefore, the following have been concluded: 

1. The resistance to the cooling effect of the copper block is enhanced when the air 

gap between copper block and plastic insert is increased. Consequently, the 

temperature inside the small well is raised.   

2. The increase in the water height inside the large well has negligible effect on the 

temperature of the small well.



 

 

 

 

Chapter 6  

Liquid Cooling of Non-Uniform Heat Flux of Chip 

Circuit by Subchannels 

Experimental and numerical analyses have been performed to study the effect of using 

subchannels to enhance heat transfer from the hotspot generated on a chip circuit by 

non-uniform heat flux. Two models of heat sink– with and without subchannels– were 

fabricated in order to investigate this effect. 

The first model was manufactured with a parallel channel with the hotspot at the 

middle position of the channels. The second model was designed to extract more heat 

by dividing the main channels above the hotspot into two subchannels.   

Heat was generated by using twelve microheaters made from thin platinum film. The 

heaters were divided into three sets with four microheaters for each. High voltage was 

supplied to the middle set of microheaters to generate a hotspot and lower voltage was 

applied to the upstream and downstream sets in order to generate a uniform heat flux.  

Inlet and outlet manifolds have two inlet ports in order to minimise any potential mal-

distribution of mass flow rate through the channels. The models were fed with filtered 

water from a large container through two plastic tubes.   

According to the results and the conclusions of the Chapter 4 and Chapter 5, the 

attachment methods of the thermocouples in the present work have been chosen to 

minimise the impact of the thermocouple(s) on the temperature measurement.  The 

thermocouples were fixed perpendicular to the surface in order to avoid a temperature 

gradient and then heat conduction along the wires. Consequently, the effect of the 

thermocouple will be reduced and the temperature measurement will be more accurate. 

Moreover, a thermal paste was added between the thermocouple probe and surface to 

improve thermal contact and the wires were wrapped by thermal insulation to prevent 

any thermal contact with the other surfaces. Therefore, three thermocouples were 

attached to the bottom surface of the inlet manifold and another three attached to the 
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outlet manifold to record surface temperature. The water inlet temperature was 

measured by immersing a thermocouple in a water container and two thermocouples 

were inserted into outlet ports to monitor outlet water temperature. Five different mass 

flow rates were generated under gravity by changing water container height.  

Numerical modelling of the two models was carried out using commercial COMSOL 

Multiphysics software, based on finite element method as a numerical technique. The 

experimental results were compared with numerical results to validate the numerical 

model. A good agreement between the experimental and numerical results was 

achieved.  

The results showed that adding subchannels improves the uniformity of temperature 

distribution and reduces the maximum temperature on the bottom surface. Moreover, 

thermal resistance was reduced but pumping power increased as a result of the 

presence of subchannels.  

6.1 Experimental techniques 

6.1.1 Model fabrication 

Eleven channels were fabricated on a copper plate by using Datron CAT 3D-M6 with 

an accuracy of ±1µm.  The properties of the copper are shown in Table 6.1. Two 

cooling devices were manufactured with and without subchannels as shown in Fig. 6.1. 

The dimensions of the cross-sectional area of the main channel(s) were 0.9mm×0.9mm 

while the subchannel dimensions were 0.3mm×0.9mm with wall thickness of 0.3mm 

for both.  

The total length of the channels was 12mm for both models with subchannels of length 

4mm added to each at the middle of the modified model, as seen in Fig. 6.1, in order 

to extract the heat flux generated on the hotspot. Inlet and outlet manifold length was 

4mm and width was 12.9mm which was equal to the width of the channels section. 

The total model dimension was 22.6mm×15.5mm×1.5mm while the channels section 

area was 12mm×12.9mm. Model thickness was 1.5mm including the channel height 

of 0.9mm and the base thickness of 0.6mm.  
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Table 6.1 Copper properties [87]. 

 

 

 

 

 

 

(a) without subchannels 

 

                                                           

 

(b) with subchannels 

Fig. 6.1: Models of microchannels: (a) without and with subchannels, all dimensions 

are in mm. 

The lid of the cooling device was fabricated from polycarbonate material [119] with 

two inlet and outlet ports in order to minimise potential mal-distribution of the mass 

flow rate through the channels as shown in Fig. 6.2. The design of the lid gives 

flexibility to choose any ports as inlet or outlet. The copper channels and the lid were 

aligned to make a groove around the channel frame perimeter with a trace on the 

bottom surface of the lid with height and width of 0.5mm each as shown in Fig. 6.1 

and Fig. 6.2. Special epoxy with thermal conductivity of  0.2 [W/(m K)] (LOCTITE® 

5145TM [120]) was used to glue the copper plate and the lid together. Water with 

Density [kg/m3] 8933 

Specific heat capacity [J/kg K] 385 

Thermal conductivity [W/m K] 401 
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filtered to remove particles down to 0.2µm [121] was fed to the models through two 

stainless steel small pipes which were inserted into the inlet holes. Moreover, outlet 

water flowed out of the model through outlet stainless pipes (See Fig. 6.2). Transparent 

plastic tubes were used to provide and collect water to and from the model(s) 

respectively (See ref.[122] for the full tube specifications). 

 

Fig. 6.2 Lid of the model has been fabricated with two inlets and two outlets. Lid 

symmetry allows the choice of any ports as inlet or outlet. 

Twelve microheaters (Pt 6.8 M 1020 [123]) were used to generate the uniform and 

hotspot heat fluxes. The nominal resistance of each microheater was 6.8 Ohm at 0oC 

which ensured a maximum current of 2A within the working temperature range from 

-40oC to +500oC. The dimension of a single microheater is shown in Fig. 6.3. These 

microheaters were soldered to PCB (See ref [124] for full specifications of this PCB) 

                  
Fig. 6.3: Dimensions of single Pt6.8 microheaters. All dimensions in millimetres. 
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Fig. 6.4: Twelve microheaters circuit welded on PCB board with the wiring. 

 

Fig. 6.5: Full geometry of the channels with subchannels: 1) and 2) inlet (or outlet 

ports), 3) lid, 4) microheaters and PCB, 5) base made of ceramic, 6) copper 

channels, 7) positions of the thermocouples on the back of the channels, and (8) 

ceramics base. 

(See Fig. 6.4). High voltage was supplied to the middle heaters to generate a hotspot 

while a lower voltage was supplied to the off-centre heaters. A small quantity of 

thermal paste [125] was added between the channel copper plate and the microheaters 
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to improve thermal contact. The lid and the ceramics base were drilled with four holes 

of size 2mm in order to join all the parts with M2 screws (See Fig. 6.5). The base 

material was made from machinable ceramic [126]. 

6.1.2 Thermocouple attachment methods 

The results of Chapter 4 Chapter 5 afforded deep understanding of the effect of 

thermocouple’s interaction with a system on the temperature measurement. The 

conclusions recommended that the thermocouple wires and the probe should be in the 

same isothermal plane. Consequently, the temperature gradient along the wires will be 

avoided and then the impact of the thermocouple on the temperature measurement is 

eliminated. Furthermore, it was recommended in Chapter 4 that the thermal contact 

resistance between thermocouple probe and the measured surface added an additional 

obstacle on accurate temperature measurement.   

Therefore, in the present work, the locations of thermocouples were selected to be 

perpendicular to the bottom surfaces of the inlet and outlet manifolds (See Fig. 6.5 and 

Fig. 6.6). Those locations were chosen in order to avoid passing thermocouple wires 

through a variable temperature medium and to minimize effect of the conduction 

through the wires. Thermocouple wires were passed through the holes in the ceramics 

base and then pushed through the thermal insulation material to prevent any contact 

between the wires and the other surfaces (e.g. ceramics base) as shown in Fig. 6.5,  

Fig. 6.7 and Fig. 6.9 [118]. A small drop of thermal paste [125] was added between 

the thermocouple probe and copper surface to improve heat transfer and also to 

minimise thermal contact resistance. The positions of each thermocouple are shown in 

Fig. 6.6(b). 

Alternatively, direct measurement of surface temperature on the hotpot and uniform 

heat fluxes needed to glue the thermocouple to the back surface of the channel section 

or push through thermocouple wires inside a hole in the copper plate over the 

microheaters (See Fig. 6.5 and section 1.1 in Chapter 1). Surface temperature 

distribution under the channels will not be uniform (See section 6.4). Therefore, if this 

method was chosen to measure the temperature, conduction heat transfer may take 

place through the wires and cause measurement error [118]. The presence of 
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thermocouple wires works as an obstacle between the microheaters and channels and 

change heat flux distribution under the channels. Consequently, heat supplied by the 

microheaters to the area of the channel surface above the thermocouple wire will be 

less than the neighbours. Then heat flux distribution to channels will be altered.  

Six thermocouples of type K of size 200µm (See Table 4.1 in section 4.1.2 in Chapter 

4 for thermocouple materials properties) each were glued with epoxy (LOCTITE® 

5145TM) [120] to the bottom surface of the inlet and outlet manifolds at six positions 

to measure the temperature (See Fig. 6.5 and Fig. 6.6). Each thermocouple was held 

 

 

 

  

(a) (b) 
Fig. 6.6: (a) Attachment method of thermocouples at the back of the channels, (b) 

positions of  the thermocouples at the back surface of the manifolds, all dimensions 

are in mm. 

by a micrometer for at least 24hrs to get a full strength of the epoxy. The extra epoxy- 

shown in Fig. 6.6(a) -was removed in order to fit the microheaters at the back of the 

channels. It should be mentioned that adding a large quantity of epoxy to glue the 

thermocouple will have confined pockets of air and make the thermocouple probe 

move and this may measure a different temperature.  
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Another two thermocouples of type K of size 200µm were inserted into the plastic tube 

close to outlet ports to measure water temperature. The inlet water temperature was 

measured by immersing thermocouple type K of size 200µm the water container.  

 

Fig. 6.7: Position of microheaters and thermocouples on the ceramic base. 

6.1.3 Experimental set-up  

Filtered water was used as a working fluid supplied from a 7-litre water container with 

a large surface area (30cm×30cm). Different levels of the container were chosen to 

generate various flow rates under gravity action [127]. Two 20ml syringes were 

 

Fig. 6.8: Water container with two 20ml syringes were connected to plastic tubes 

to supply water to the model. 

connected to the container to supply water to the model through two plastic tubes as 

shown in Fig. 6.8. The other terminals of the plastic tube were fitted to the model inlet 

ports as shown in Fig. 6.9.  

20ml syringes 
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Fig. 6.9: Wrapping all the model parts with an external thermal insulation for the 

whole system to minimise heat losses. 

 

 

Fig. 6.10: Experimental setup: 1) water container, 2) plastic tubes feed water to the 

cooling device, 3) plastic tubes collect water from the cooling device, 4) pico TC-

08data logger, 5) power supplies, 6) cooling device, 7) water collection, 8) digital 

scale. 

Two another plastic tubes were connected to the outlet ports to collect water into the 

outlet containers as shown in Fig. 6.9 and Fig. 6.10. The outer and inlet diameter of 

the plastic tube were 3mm and 1.65mm respectively and the other specifications can 
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be found in Tygon® tubing Formulations [122]. The device was wrapped with an 

additional thermal insulation to minimise heat losses as shown in Fig. 6.9. 

Each four set of heaters was connected in series to a single power supply to generate 

the required heat flux as shown in Fig. 6.11. Each set of H1 to H6 represented two  

 

Fig. 6.11; Schematic diagram of the experimental setup H1to H6 representing two 

heaters connected in series. Sets H1 & H4, H2 & H5 and H3 & H6 are connected 

in series. 

microheaters which were connected in series. Each set of H1& H4, H2 & H5 and H3 

& H6 was linked in series and was provided by voltage from a single power supply. 

Uniform heat flux was generated by applying lower voltage to the micro-heater sets of 

H1 and H4, and H2 and H5, while a higher voltage is supplied to the set of H3 and H6 

to generate the hotspot at the middle position of the channels. Thermocouples were 

connected to a laptop through a Pico data logger TC08 to record the readings. The 
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characteristics of the TC08 data acquisition system and the method of avoiding noise 

effect on temperature measurement can be found in section 4.1.2 in Chapter 4. Water 

inlet temperature was measured with a thermocouple type K which was connected to 

a 2000T thermocouple thermometer type K which is manufactured by digitron [128]. 

The calibration process of thermocouples was performed in comparison with freezing 

and boiling points of water (See section 4.1.3 in Chapter 4). 

Two power supplies were used to provide the required voltage: the first was a GPS-

3303 series power supply with two channels of voltage range 0-30V and current 0-3A 

with accuracy of 0.01%+3mV manufactured by GW Instek [129]. The second power 

supply was a single channel device model PL154 manufactured by Thurlby Thandar 

Instruments with an accuracy of 0.1% for voltage and 0.3% for current [130] (See 

Fig. 6.10). A digital scale was used to weigh the collected water during the experiments 

as shown in Fig. 6.10 and Fig. 6.11. 

6.1.4 Experimental methodology and steps 

Experiments were performed inside a temperature controlled room for different 

pressure heads (25cm, 38cm, 47cm, 61cm, and 79cm). A water container was chosen 

with a large surface area in order to ensure that there was a negligible change in water 

height during the experiments. The following steps were followed during each run and 

for each pressure head: 

1.  Filling the container with the proper amount of filtered water above the required 

level by five millimetres. Gravity effect more stable in producing a continuous flow 

rate [127]. 

2.  Set the room temperature for the required temperature (21oC). 

3.  The model and water were left for enough time to get thermal equilibrium for each 

part of the model before starting each run of the experiment.  

4.  Plug-in thermocouples to TC08 which should be connected to the laptop recorded 

thermocouple readings to monitor thermocouple temperature. The other 

thermocouple was plugged into a 2000T thermometer to measure inlet water 

temperature. 
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5.  Leaving the water flow through the model before switching on the power supplies 

in order to avoid the quick rise of temperature and potential damage to the system.  

6. Switch on the power supply(s) and adjust the voltage and the current for each set of 

the microheaters. A Higher voltage was applied to the central set of the microheaters 

H2&H5 (See Fig. 6.11) to produce 11.3W as a hotspot heating power while 3W 

was supplied to each off-centre sets (H1&H4 and H1&H4) to generate the uniform 

heat flux. Experimental working conditions will be different for each mass flow 

rate. Therefore, readjust the voltage and the current to generate approximately the 

same power supply for each microheaters set and for each run. 

7.  Leaving the water flow through the model until the water surface in the container 

reached the required level. Moreover, monitoring thermocouple readings ensured 

that the steady-state was achieved. Two important steps are performed here: firstly, 

the system is at the steady state, and secondly, the thermocouple readings recorded 

when the required pressure head was obtained. 

8.  Start to record thermocouple readings for five minutes. 

9.  Switch off power supplies and then stop water flow. 

10. Change the water level by changing position of the water container and repeat steps 

1-9 for the next mass flow rate. 

11. Repeat steps 1-10 for five times in order to ensure the repeatability of the 

experiments results. 

6.2 Experimental results and discussion 

The results in this section (and in the numerical analysis section 6.4) were drawn with 

respect to Reynolds number (Re) based on the hydraulic diameter of the main for both 

models without and with subchannels. Therefore, Re was calculated from  

Re=
ρ UmDchannel

μ
 (6.1) 

where Um [m/s] represents the inlet average velocity to the channel and Dchannel [m] is 

the hydraulic diameter of the main channel(s). Um and Dchannel were calculated for a 

single channel from  
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Um=
1

n
[

mtotal

ρ Achannel

] (6.2) 

where 𝑛 is total number of channels, mtotal [kg/s] total inlet mass flow rate to the ehat 

sink and Achannel [m
2] is cross-sectional area of the channel.  

And  

Dchannels=
4×Achannel

channel perimeter
 (6.3) 

6.2.1 Power supply and heat losses 

During the experiments power was supplied for the twelve microheaters which were 

connected in series into three groups, (See Fig. 6.11). The fluctuation in total power 

supply to the microheaters is demonstrated in Fig. 6.12 and Fig. 6.13.  

Fig. 6.12: Total power supplied to the twelve microheaters at different Reynolds 

number for the model  without subchannels. 

 

Fig. 6.12 and Fig. 6.13 show that the deviation in maximum power supply was about 

0.15W for both models. Microheaters were made from thin platinum film (Pt 6.8 M 

1020 [123]) and their resistance was temperature dependent [131], so the model 

bottom surface temperature varies according to the change in pressure and mass flow 

rate. Therefore, voltage supplied to the central set of the microheater should be 

adjusted to attain the required power supply for each run of the experiments. Since the 
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adjustment process cannot ensure exactly the same voltage and current on each run, 

there is a little change in voltage and current supplied to the models. 

Heat losses from the model(s) were calculated by comparing heat transfer to water 

with heat supplied by the microheaters as shown in Fig. 6.14 and Fig. 6.15. Heat 

transferred  to the water and power supplied by microheaters was calculated from [132] 

Q̇=ṁwCp
w

(Twout-Twin) (6.4) 

where Q̇ [J/s], ṁw [kg/s], Cp
w

 [J/kg K], Twout [K], and Twin [K] are heat extracted by 

the water,  water mass flow rate, water heat capacity, water outlet temperature, and 

water inlet temperature, respectively. Power supply to microheaters is calculated from; 

P=IV (6.5) 

where P [W], I [A], and V [V] are power supply, current, and voltage respectively. 

Heat lost by conduction occurred through the wires that came out of the model(s) to 

connect the microheaters to the power supplies. The other possible source of heat loss 

was through stainless tubes which were fitted to the inlet and outlet ports. The 

maximum average heat loss was about 5% from each model which is also shown in 

Fig. 6.14 and Fig. 6.15.  

 
Fig. 6.13: Total power supplied to the twelve microheaters at different Reynolds 

number for  the model  with subchannels. 
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Fig. 6.14: Percentage deviation of heat losses from the model without subchannels 

at different Reynolds number. 

 
Fig. 6.15: Percentage deviation of heat losses from the model with subchannels at 

different Reynolds number. 

6.2.2 Thermocouples results 

Fig. 6.165 shows a comparison between the experimental readings of the 

thermocouples (Thermocouple 1, Thermocouple 2 and Thermocouple 3) which were 

attached to the bottom surface of the outlet manifold for both the models with and  

                                                 
5 Ie should mention here that Fig. 6.16 and Fig. 6.17 represent a comparison between the means of the 

experimental results for both systems and the other experimental runs were omitted from the figures to 

avoid the overlapping. Full experimental results are shown in Fig. 6.28, Fig. 6.29, Fig. 6.31, and 

Fig. 6.32 where the experimental and numerical results are compared.  
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Fig. 6.16 Comparison of the experimental results the models with and without 

subchannels for  Thermocouple1, Thermocouple 2 and Thermocouple 3 attached to 

the bottom surface of the outlet manifold. Error bars are within the range ± one 

standard deviation.   
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without subchannels. The channel’s width above the hotspot was reduced to one-third 

of the main channels (See section 6.1.1).  Consequently, the solid-liquid interaction 

area increased, and the flow was accelerated at the entrance as a result of the 

contraction at the subchannels. Therefore, more energy was extracted from the hotspot 

by the water liquid, leading to a drop in surface temperature. This reduction in 

temperature could be detected by the thermocouples attached on the bottom surface of 

the outlet manifold.   

The hotspot has a negligible effect on the readings of thermocouples attached to the 

inlet manifold (See Fig. 6.17). Moreover, the only expected effect on the 

thermocouple(s) reading came from the conduction through the base of the inlet 

manifold.  

Thermocouple 5 measurement showed a lower temperature for the model with 

subchannels. The two inlet ports located at an equal distance from middle line of the 

inlet manifold (See Fig. 6.5) caused more mixing at the middle position of manifold 

for the model with subchannels, see Fig. 6.18 and Fig. 6.19. Fig. 6.18 and Fig. 6.19 

show the mixing of two streams coming from inlet ports at the middle line of the inlet 

manifold of the models with and without subchannels where Thermocouple 5 is 

located. 

They show that two streams of liquid met at the middle line while the flow in front of 

the manifold inlet(s) went directly to the channels. It is also shown that the velocity at 

middle line for the model without subchannels is higher than the other model. The 

presence of the subchannels caused more pressure drop and retarded the flow. 

The other thermocouples (Thermocouple 4 and Thermocouple 6) had approximately 

the same reading for both models because they were located near the inlet ports and 

the effect of inlet velocity boundary conditions was more dominant than the mixing 

process.  
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Fig. 6.17: Comparison of the experimental results the models with and without 

subchannels for  Thermocouple 4, Thermocouple 5 and  Thermocouple 6 attached 

to bottom surface of the inlet manifold. Error bars are within the range ± one 

standard deviation. 

 

25

26

27

28

29

30

31

32

33

34

50 60 70 80 90 100 110 120 130 140 150 160

T
em

p
er

at
u
re

 [
o
C

]

Re

Thermocouple 4 Without_subchannels

With_subchannels

24

25

26

27

28

29

30

31

32

33

34

50 60 70 80 90 100 110 120 130 140 150 160

T
em

p
er

at
u
re

 [
o

C
]

Re

Thermocouple 5 Without_subchannels

With_subchannels

24

25

26

27

28

29

30

31

32

33

50 60 70 80 90 100 110 120 130 140 150 160

T
em

p
er

at
u
re

 [
o
C

]

Re

Thermocouple 6
Without_subchannels

With_subchannels



Chapter 6                                                           Liquid Cooling Non-Uniform Heat Flux 

 

144 

 

 

 

Fig. 6.18.Velocity distribution and direction at inlet manifold for the model without 

subchannels for the pressure head 75cm. 

 

Fig. 6.19. Velocity distribution and direction at inlet manifold for the model with 

subchannels for the pressure head 75cm. 
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Fig. 6.20 shows a comparison between the averaged measured temperature of the 

outlet water for both models. A high heat transfer rate to water occurs at subchannels, 

therefore, the outlet water temperature reading shows a higher value for the model with 

subchannels. 

Fig. 6.20 Comparison of the water outlet temperature between the models with and 

without subchannels at different Reynolds number. 

6.3 Mathematical modelling 

Steady-state conditions, single-phase and laminar flows were considered for the liquid 

flowing through the microchannels. The governing differential Eqs.(3.1)-(3.5) (See 

section 3.1 in Chapter 3) describe the hydraulic and thermal behaviour but omit the 

body force term.  

Two inlet velocity boundary conditions were investigated with a uniform inlet velocity, 

as well as with a fully developed inlet velocity [74] (See sections 3.3.1 and 3.3.2 

in Chapter 3).  

Vin=2Vavg (1-
r2

R2
) (6.6) 

Where Vavg average inelt velocity [m/s], Dh=2R hydraulic diameter[m]. At the outlet 

boundary, atmospheric pressure is set equal to  
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p=0 (6.7) 

Thermal boundary conditions: Constant inlet temperature, Convective heat flux outlet 

boundary condition(s) and hotspot and uniform heat fluxes were applied at the middle 

and off-middle positions respectively. 

6.4 Numerical analysis 

The following assumptions were made in the numerical simulations in comparison 

with the actual cooling device(s) presented in Fig. 6.5 and Fig. 6.21 

1. The effect of heat transfer through the lid was ignored to simplify the computational 

model and also to save computation time as shown in Fig. 6.21.  

                       
(a) Micro-channels without subchannels 

 

                    
(b) Micro-channels with subchannels 

Fig. 6.21 3D computational domain for both models with (a) and without (b) 

subchannels. 

Inlet (or outlets) ports 

of diameter 2mm 

Inlet (or outlets) ports of 

diameter 2mm 
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This assumption implied that the boundary condition of top surface was considered 

to be adiabatic because of the lid’s low thermal conductivity. 

2. The numerical model assumed that the channel cross-section was to be a right-

angled rectangular shape, whereas, the actual geometry may have some deviation 

from a rectangular shape, (See Fig. 6.22). 

3. Model(s) internal surfaces were assumed to be smooth. 

4. The mass flow rate distribution through the inlet ports was assumed to be equal. 

Therefore, an average velocity was calculated based on the total mass flow rate 

through both inlet ports. 

5. The heat generated from each individual microheater was assumed to be uniform 

over the single heater and over all the heaters.  

6. The heat lost from the system was calculated by measuring water outlet and inlet 

temperature and comparing it with heat supplied by the micro-heaters. The 

percentage average loss was assumed to be equal for each single micro-heater.   

7. Microheaters were supposed to be in perfect contact with the back surface of the 

channel copper plate.  

8. Differential pressure was assumed to be the same across both cooling devices. This 

assumption can be evaluated as follows:   Steady state energy equation for the model 

including the tubes and model(s) is written [133] 

p
1

ρg
+

v1
2

2g
+z1= (

p
2

ρg
+

v2
2

2g
+z2) +hf+hk+hm (6.8) 

                        
(a) right angle cross-section 

                      
(a) deviation from right angle cross-section 

Fig. 6.22 Deviation of channel cross-sectional area from right angle rectangular 

shape. 
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where p, v and z are pressure, velocity and height respectively. Subscript 1 and 2 refer 

to the water surface level in the container and the exit from model respectively. hf, hk 

and hm are head losses due friction, losses as a result of fittings and losses through 

cooling device(s) respectively. 

Applying Eq.(6.8) for both models with and without subchannels 

[z1= (
v2

2

2g
+z2) +htotal]

m1

 (6.9) 

 

[z1= (
v2

2

2g
+z2) +htotal]

m2

 (6.10) 

where p
1
=p

2
 because the pressure on the water surface in the container and at exit from 

the model(s) is equal to atmospheric pressure. Assuming v1≅ 0 comparison with exit 

velocity v2. htotal = hf+hk+hm, m1 and m2 for model with and without subchannels 

respectively. The difference in total losses between two models for each pressure head 

can be expressed in the difference between Eq.(6.9) and (6.10): 

htotalm1
-htotalm2

= (
v2

2

2g
)

m2

- (
v2

2

2g
)

m1

 (6.11) 

The variation of mass flow rate through each model and tubes for different pressure 

head is shown in Fig. 6.23.  

 

Fig. 6.23: Variation of mass flow rate with pressure head for the model with 

subchannels and without subchannels. 
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It reveals that there is no major difference in mass flow rates between two models. It 

is necessary to calculate v2 form Fig. 6.23 for plastic tube diameter 1.65mm in order 

to calculate the pressure drop difference between the models as shown in Fig. 6.24. 

Consequently, it is possible to assume the pressure drop across each model is 

approximately the same. 

6.4.1 Boundary conditions and water properties  

An average inlet velocity was adopted from experimental results as listed in Table 6.2. 

Heat fluxes were applied in an area of the size of 12mm×15.5mm where the area of 

hotspot and uniform heat which fluxed at upstream and downstream was each 

4mm×15.5mm. The effective area of each micro-heater, excluding the blue part 

(micro-heater wiring), was equal to 2mm×8mm (See Fig. 6.3). The average effective 

length of 8mm was chosen for all microheaters. The average power provided to the 

middle sets of microheaters (H2 and H5) was 11.25W while it was 3W for each off-

middle sets (H1and H4) or (H3 and H6). Therefore, heat flux calculation included the 

effect of heat losses but the other surfaces were assumed to be adiabatic. Applied heat 

fluxes are shown in  

Table 6.3.Water was chosen as the working liquid where its properties were 

temperature dependent. The variation of water properties are shown in Fig. 3.7-Fig. 3.9 

(See section 3.3.3 in Chapter 3). 

 

Fig. 6.24: Difference between pressure losses for both models for different pressure 

heads.  
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Table 6.2 Average inlet velocity boundary conditions at different pressure heads. 

 Without subchannels With  subchannels 

Height [cm] Vin [m/s] Vin [m/s] 

26 0.077 0.06 

39 0.11 0.084 

47 0.14 0.1 

62 0.176 0.132 

79 0.2 0.17 

 

Table 6.3 Thermal inlet boundary conditions. 

Inlet temperature [oC] 21 

Uniform heat flux [W/m2] 4.45×104 

Hotspot heat flux [W/m2] 16.7×104 

6.4.2 Meshing process and mesh dependency test 

A free meshing process with tetrahedral mesh elements was chosen because of the 

irregular geometry of the model. The number of elements was increased at the entrance 

to the channels and on the interaction surface in order to capture flow conditions at 

these locations. COMSOL Multiphysics provides a tool which is called mesh quality 

(See section 3.4.1.1 Chapter 3) to ensure that meshing process does not affect the 

solution (See Fig. 6.25) [75]. 

A mesh independent solution for both models was investigated for the highest pressure 

head of 79cm which gave the flow Reynolds number (Re) of 150 and 152 for the 

models with subchannels and without subchannels respectively. To assess the mesh 

resolution on the numerical solutions, velocity and pressure results are shown in 

Fig. 6.26 and Fig. 6.27 have been taken along the centreline of the middle channel and 

bottom surface temperature at the middle position of the surface. Fig. 6.26(a-c) show 

that the number of three mesh element sets 1300422, 1551830, and  1737391  were  

examined  for  the model without subchannels.    
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(a) model without subchannels 

 

 

(a) model with subchannels 

Fig. 6.25 Mesh elements quality for numerical analysis for both models without (a) 

and with (b) subchannels. 
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Fig. 6.26 Numerical solutions at different mesh resolutions of the model without 

subchannels for Re=152: (a) pressure, (b) velocity along the centre line of the middle 

channel and (c)  Bottom surface temperature along the middle position of the model. 
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Fig. 6.27 Numerical solutions at different mesh resolutions of the model with 

subchannels for Re=150: (a) pressure, (b) velocity along the centre line of the middle 

channel, and (c)  bottom surface temperature along the middle position of the model. 

Fig. 6.26a shows a negligible change in pressure results shown for three sets of mesh 
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chosen for subsequent numerical analysis. The same trend is shown for the model with 

subchannels and the solution of mesh elements 2243226 was adopted as mesh 

independent solution as shown in Fig. 6.27(a-c). 

6.4.3 Model validation 

The following was taken into consideration when the numerical results were discussed: 

1- The contact area of the thermocouple with surface in numerical analysis was 

assumed as square with a side length that equalled the probe diameter, while the 

actual contact area depends on the spherical shape of the probe (See Chapter 4). 

Therefore, the calculated surface temperature from the numerical simulations 

represented an average temperature taken at multiple points on the square surface 

area. 

2- The thermocouple measures the temperature of the surface by comparing the probe 

temperature with a reference junction. The position of the effective junction of the 

thermocouple probe may be found inside the sphere of a thermocouple probe. 

During the experiments when the thermocouple probe touched the surface the 

effective junction in the probe may not have been in contact with the surface. 

Therefore, the thermocouple measures the temperature of the effective junction but 

not the surface, which gives a different reading than was expected from the 

numerical simulations (See Chapter 4).  

3- Thermal paste is added to the tip of the thermocouple probe to improve heat transfer 

to the surface. Therefore, a perfect contact between the probe and the surface was 

assumed. 

4- Actual surface roughness of the cooling device(s) causes more circulation and 

increases heat transfer rate. Therefore, the thermocouple gave a lower temperature 

reading than the numerical result where the effect of surface roughness was not 

considered.  

6.4.3.1 Manifold bottom surface temperature results 

A. Model without subchannels 

Fig. 6.28 shows a comparison between the experimental and numerical results of 

temperature for the three thermocouples (Thermocouple 1, Thermocouple 2, and 
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Fig. 6.28 Comparison between the experimental and simulation results of the model 

without subchannels of Thermocouple 1, Thermocouple 2, and Thermocouple3 

attached to the outlet manifold. Error bars are within the range ± one standard 

deviation. 
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Thermocouple 3) which were attached to the bottom surface of the outlet manifold. 

The numerical results showed agreement with the experimental results for both the 

inlet boundary conditions (uniform and fully developed velocity) except for a little 

deviation for Thermocouple 3 for the uniform boundary conditions. Thermocouple 3 

gave a lower temperature reading because the contact area in the numerical simulation 

was considered to be smaller than the actual contact area or, as happened, an active 

junction was not in contact with surface.  

Another comparison between the experimental and numerical results for the 

thermocouples (Thermocouple 4, Thermocouple 5 and Thermocouple 6) which were 

attached to the bottom surface of the inlet manifold is shown in Fig. 6.29.  There is 

also agreement but Thermocouple 5 shows a little deviation from the experimental data 

for the boundary conditions of fully developed inlet velocity. Thermocouple 5 is 

located at the middle line between the inlet ports where the two inlet streams are mixed. 

Assuming fully developed flow as a boundary conditions for the numerical method 

might under predict the temperature value because of the mixing condition at the 

middle positions between the two inlet ports. Consequently, numerical results gave a 

lower temperature for the thermocouple 5. Fig. 6.28 and Fig. 6.29 show that there is 

no major difference in the numerical results between the boundary conditions of 

uniform and fully developed inlet velocity. The flow entered through inlet ports and 

deviated by 90o and was then redistributed through the inlet manifold. Consequently, 

the inlet velocity boundary condition was invalidated when the flow left the inlet ports 

and entered the channels.  The uniform inlet velocity was closer to the actual case than 

the fully developed boundary because the plastic tube was bent before connecting to 

the inlet ports. 

During the experiments water was supplied from a container to the cooling device(s) 

through two plastic tubes (See Fig. 6.10). The water container position was located 

higher than the model to generate different mass flow rates under the effect of gravity. 

Five different heights for water container were chosen using the lengths of tubes.  The 

length of the tubes was enough to generate a fully developed flow at the inlet to the 

model(s). However the plastic tubes were bent before being connected to the model. 
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A separation and secondary flow occurs when the liquid passing through the bent and 

therefore the fully developed flow condition was invalidated. 

 

 

 
Fig. 6.29 Comparison between the experimental and simulation results of the model 

without subchannels for Thermocouple 4, Thermocouple 5 and Thermocouple 6 

attached to the outlet manifold. Error bars are within the range ± one standard 

deviation. 
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Consequently, fully developed flow conditions at inlet to the model ports were 

invalidated because of the effect of the bends in the tubes.  Moreover, the inner tube 

diameter was less than the model’s inlet ports which would change the inlet flow 

conditions for the model. However, two inlet boundary conditions were investigated 

for the numerical analysis. 

Fig. 6.30 shows the percentage deviations of the experimental data of the 

thermocouples’ reading in comparison with the numerical results of a uniform inlet 

velocity boundary condition. 

 

Fig. 6.30: Percentage deviation of thermocouple readings from the experimental 

data for various Reynolds number for the model without subchannels. 

Fig. 6.30 shows that each thermocouple had a different percentage error for each 

pressure head. Each thermocouple measured temperature at different locations (See 

Fig. 6.5 and Fig. 6.6). Furthermore, the contact area between probe and the surface 

was different for each thermocouple which altered the thermal contact resistance (See 

Chapter 4). Moreover, each thermocouple measured a different temperature for each 

pressure head because of the various experimental conditions. Accordingly, it is 

possible to see a different percentage error for each thermocouple. 

B. Model with subchannels 

A good agreement was obtained for the readings of Thermocouple 1, Thermocouple 2 

and Thermocouple 3 in comparison with experimental results for both inlet velocity 

conditions as shown in Fig. 6.31.  
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Fig. 6.31: Comparison between the experimental and simulation results of the 

model with subchannels of Thermocouple 1, Thermocouple 2 and Thermocouple 

3 attached to the outlet manifold. Error bars are within the range ± one standard 

deviation. 
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Fig. 6.32 Comparison between the experimental and simulation results of the model 

with subchannels of Thermocouple 4, Thermocouple 5, and Thermocouple 6 

attached to the inlet manifold. Error bars are within the range ± one standard 

deviation. 
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Another approval of numerical results was achieved for Thermocouple 4, 

Thermocouple 5 and Thermocouple 6 in comparison with experiments data (See 

Fig. 6.32) other than a small deviation in the numerical data of Thermocouple 4 in 

comparison experiments results. 

Fig. 6.33 shows the percentage deviation of numerical results in comparison with the 

experimental data of a uniform inlet velocity boundary condition. It was mentioned 

previously that many parameters have an effect on thermocouple readings such as: 

probe contact area, position of thermocouple and experiment operating conditions.  

Accordingly, the size of the error bars in Fig. 6.33 was different for each thermocouple 

and pressure head.  Thermocouple 4 shows a maximum deviation (5%) in comparison 

with the other thermocouples. 

 

Fig. 6.33 Percentage deviation of thermocouples readings from experimental data 

for different pressure head for the model with subchannels. 
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a higher reading for any thermocouple near that point. Consequently, this may cause a 

deviation in Thermocouple 4 reading. 

6.4.3.2 Water outlet temperature 

Two type K thermocouples were inserted inside the plastic tubes close to the outlet 

ports to measure water temperature. Thermocouple wires were insulated from the 

outside environment to avoid any measurement being affected by conduction through 

the wires [118]. The numerical model can be validated by comparing the water outlet 

temperature for both models with experimental results as shown in Fig. 6.34 and 

Fig. 6.35 respectively.  

 
Fig. 6.34: Comparison between the experimental and simulation results of the water 

outlet temperature for the model without subchannels. Error bars are within the 

range ± one standard deviation. 

A good agreement with the experimental results further confirmed the validity of the 

numerical model.  The presence of the thermocouple junction may cause some flow 

disturbances over the probe and may alter the reading(s). During the experiment(s) 

flow behaviour around the probe may change and lead to a small difference in 

temperature reading. Therefore, the error bars were slightly larger because of the 

variable flow behaviour around the probe which was inserted at the exit from the model 

in a plastic tube. 
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Fig. 6.35: Comparison between the experimental and simulation results of the water 

outlet temperature for the model with subchannels. Error bars are within the range 

± one standard deviation. 

6.4.4 Analysis of numerical results 

6.4.4.1 Channel bottom surface temperature 

Fig. 6.36 shows numerical results of the bottom surface temperature of the channels 

along the full model. It shows that the maximum temperature occurs downstream of 

the hotspot. Thermal and hydraulic boundary layers were re-created at the entrance to 

subchannels because of the presence of an obstacle (subchannels) in the flow direction.  

The thickness of the thermal boundary layer increased towards the end of the 

subchannels. Consequently, the heat transfer rate was increased upstream and 

gradually decreased downstream through the subchannels (See section 6.4.4.3). The 

same behaviour was applicable for the model without subchannels except the 

maximum temperature occurred earlier. A comparison between Fig. 6.36 and Fig. 6.37 

revealed that the maximum temperature occurred for the axial position approximately 

at 7.5cm for the model without subchannels and at 8cm for the model with 

subchannels. 

Fig. 6.37 shows a comparison between the average surface temperatures along the 

axial location of the channels for both the models.  Adding subchannels led to a 

reduction in the maximum surface temperature from 32.5oC to 29oC. Furthermore, 
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(a) without subchannels 

       
(b) with subchannels 

Fig. 6.36 Temperature of the bottom surface under the copper plate for both models 

at the highest pressure head (79cm). 

 
Fig. 6.37 Variation of the average bottom surface  temperature of the channels along 

the centre line  for both the models with and without subchannels of the highest 

pressure head (79cm). 

temperature uniformity was improved by reducing the difference between maximum 

and minimum temperatures from ~5oC (without subchannels) to ~2.5oC (with 

subchannels). 
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Results of the highest pressure head (79cm) were considered for comparison between 

the two models because it gave the highest mass flow rate. Therefore, the effect of any 

change in flow direction or obstruction would be obvious. Consequently, the impact 

of subchannels on the flow behaviour is greater for higher mass flow rate.  

Fig. 6.38 shows a comparison of maximum surface temperature between models with  

 
Fig. 6.38 Variation of the maximum bottom surface temperature with Re for both 

the models with and without subchannels. 

an increase in Re. The increase in Re means more mass flow rate comes into the 

model(s) and therefore heat transfer increase. Fig. 6.38 shows that the increase in the 

mass flow rate augmented the heat transfer rate through both models. Because the 

liquid-solid interaction area in the model with subchannels was larger, there was more 

heat extraction above the hotspot and lower temperature of the channels bottom 

surface. 

6.4.4.2 Bulk temperature 

The main objective of the current work was to increase the total amount of energy 

transfer above the hotpot area by adding subchannels to increase solid-liquid 

interaction area. The increase in energy transferred to liquid water can be detected by 

computing fluid bulk temperature [91]. Bulk temperature was calculated at any axial 

location along the middle channel from Eq.(3.39) (See 3.4.2.1 in Chapter 3). 
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Tb,avg=
∫ ρTudA

∫ ρudA
 (3.39) 

The numerator of Eq. (3.39) represents the total energy carried by the liquid while the 

dominator calculates the total mass flow rate through a cross-sectional area along the 

axial distance of the channels. Comparison between the results presented in Fig. 6.39 

and Fig. 6.40 shows that adding of micro-channels leads to an increase in the energy 

transfer to the liquid water.   

 

 
Fig. 6.40: Fluid bulk temperature for different pressure heads for the model with 

subchannels. 
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Fig. 6.39: Fluid bulk temperature for different pressure heads for the model without 

subchannels. 
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Bulk temperature also increases when the flow comes in contact with subchannels as 

a result of the increase in the solid-liquid heat transfer area. Consequently, this 

enhanced the heat transfer process and improved the system performance above the 

hotspot by reducing the channels’ surface temperature as shown in Fig. 6.36 and 

Fig. 6.37. 

Fig. 6.41(a-b) shows the velocity and temperature distribution at a plane across the 

middle height of the channels for the model without subchannels. Fluid at the channel 

inlet started to interact with the walls and developed hydraulic and thermal boundary 

layers.  

 
(a) velocity 

 
(b) temperature 

Fig. 6.41Velocity and temperature distribution at the channels’middle height for 

the model without subchannels. 

Fig. 6.41b shows that a thin layer of liquid was affected by the heat transfer from the 

channel walls while the temperature of the rest of the liquid had an approximate 

constant temperature. The fluid boundary layer developed at the channel inlet which 

led to a sharp increase in velocity and then a nearly fully developed flow was attained 

downstream of the channel as shown in Fig. 6.26b. Therefore, the velocity effect was 

dominant in the calculation of the bulk temperature from Eq. (3.39) and a linear 

increase was obtained as shown in Fig. 6.39. 
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A different behaviour for the system with subchannels was shown in Fig. 6.42. The 

flow before reaching subchannels had a similar behaviour to the model without 

subchannels (See Fig. 6.41 and Fig. 6.42). The rapid increase in flow velocity through 

the subchannels was due to an area reduction (See Fig. 6.42). The effects of the 

presence of the subchannels accelerated the flow and increased the heat transfer area 

(See Fig. 6.27b and Fig. 6.42). Consequently, energy transfer to the liquid was 

improved which could be detected by the jump in bulk temperature, (See Fig. 6.40). 

Moreover, model with subchannels shows better thermal performance due to lower 

temperature obtained as shown in Fig. 6.41b and Fig. 6.42b. 

 
(a) velocity 

 
(b) temperature 

Fig. 6.42: Velocity and temperature distribution at the channels’ middle height for 

the model with subchannels. 

6.4.4.3 Nusselt number 

Nusselt number Nu is a dimensionless number which relates the rate of convection-

conduction heat rate normal to the liquid-solid interaction surface [87]. Therefore, 

Nusselt number gives a deep understanding of the effect subchannels have on the 

system thermal performance. Nu is calculated from Eq.(3.40) [90] (See section 3.4.2.1 

in Chapter 3). 
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Nu=
Dh

kf

q"

Tw,avg-Tb,avg

 (3.40) 

where 𝑇𝑏,𝑎𝑣𝑔 is calculated from Eq.(3.39) and 𝑇𝑤,𝑎𝑣𝑔 is calculated from Eq.(3.38) (See 

section 3.4.2.1 in Chapter 3). 

Tw,avg=
1

L
∫ Twdl

L

 (3.38) 

where L represents the perimeter length of the surface at a specific location along the 

middle channel’s axial axis. The middle channel was chosen to calculate Nu for 

comparison to save computational time. Fig. 6.43 shows the variation of the Nu 

number along the channel axis for the model without subchannels. The developed 

thermal boundary layer is thin at the channel inlet which means that a high transfer 

rate was taking place. Consequently, there was a sharp increase in Nu at the channel 

entrance as shown in Fig. 6.43. Thereafter, a gradual drop was predicted in Nu because 

of the effect of developing a thermal boundary layer. The hotspot caused a small 

variation in the value of Nu at the middle of the channels as also shown in Fig. 6.43. 

 
Fig. 6.43: Nusselt number variation along the middle channel for the model without 

subchannels for different Reynolds number. 
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A different behaviour of Nu was predicted for the model with subchannels as shown 

in Fig. 6.44. Three distinct behaviours of Nu are seen in the upstream, middle and 

downstream of the channels. The entrance effect is also obvious on the Nu value(s) 

and then the gradual drop as a result of the effect of developing boundary layers, as 

previously mentioned.  

 

Fig. 6.44: Nusselt number variation along the middle channel for the model with 

subchannels different Reynolds number. 

Subchannels above the hotspot enhance the heat transfer rate due to the increase in 

solid-liquid interaction. Moreover, thermal boundary layer(s) on the main were broken 

when the flow reached the subchannels. Therefore, new thermal and hydraulic 

boundary layers were started to create an entrance to the subchannels. Therefore, a 

sharp jump in Nu value(s) was obtained at the subchannels' inlet (See Fig. 6.44). A 

small jump in Nu at the exit of the subchannels was a result of the circulation and there 

was then a sharp drop in Nu at inlet to downstream subchannels, (See Fig. 6.44). A 

comparison between Fig. 6.43 and Fig. 6.44 shows that the performance of the model 

with subchannels has been improved.  
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6.4.4.4 Pumping power and thermal resistance  

Pumping power (Po ) was calculated from Eq. (6.12) [134] 

Po=∆p*V̇ (6.12) 

where ∆p [kPa] is pressure, V̇ is the volume flow rate. The pumping power calculation 

depends on the numerical data of the pressure. 

Thermal resistance was calculated from Eq.(6.13) [134] 

Rth=
∆Tmax

q
1
"×Auniform+q

2
"×Aspot

 (6.13) 

where ∆Tmax=Ts,max.-Twin, Ts,max. maximum surface temperature [oC] and Twin [oC] 

water inlet temperature, q
1
"  and q

2
"  uniform and hotspot heat fluxes [W/m2] 

respectively, Auniform and Aspot uniform and hotspot heat flux surface area [m2] 

respectively.  

 
Fig. 6.45  Comparison of pumping power for both models with and without 

subchannels. 
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generated at entrance to the subchannels. Moreover, the reduction in channel(s) cross-

sectional area to one-third of the main channel area led to an increase in the pressure 

drop and higher pumping power will be required.  The effect of the subchannels will 

be more complex with the increase in the mass flow rate and therefore higher pressure 

drop and pumping power were made as shown in Fig. 6.45. 

The thermal resistance decreases following the drop in the maximum surface 

temperature for the model with subchannels, (See Fig. 6.36-Fig. 6.38 and Fig. 6.46). 

Eq.(6.14) and (6.15) are the best fit equation which can describe the variation with 

thermal resistance with Re. 

For the model without subchannels thermal resistance can be written as  

𝑅𝑡ℎ,𝑁𝑜 = 6.23𝑅𝑒−0.425 (6.14) 

and for the model with subchannels 

𝑅𝑡ℎ,𝑤𝑖𝑡ℎ = 6.51𝑅𝑒−0.5 (6.15) 

 

Fig. 6.46: Comparison of the thermal resistance with Re for the models with and 

without subchannels.  
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6.5 Conclusions  

The effect of adding subchannels above the hotspot has been studied experimentally 

and numerically. A model consisting of eleven channels made from copper with a 

hotspot in the middle was investigated. The objective of adding subchannels was to 

reduce the maximum surface temperature and improve temperature uniformity. 

Model(s) of two inlets and outlets ports were fabricated in order to obtain 

approximately a uniform mass flow rate distribution through channels. A good 

agreement between the numerical and experimental results has been obtained. 

Therefore, the following conclusions were reached: 

1. The increase in the fluid-liquid surface by adding subchannels reduced the 

maximum model bottom surface temperature.  

2. The maximum surface temperature occurred upstream of the subchannels section 

because of the flow direction. 

3. The surface temperature distribution was improved for the model with subchannels 

in comparison with that without subchannels. Consequently, the difference in the 

temperature along the surface was reduced. 

4. There was a drop in maximum surface temperature with an increase in Re for both 

models. 

5. The model with subchannels had a lower thermal resistance in comparison with 

the other model.  

6. The pumping power was increased as a result of the addition of the subchannels. 

7. The advantage of present device is that we can use the same parallel channels with 

a simple change in design by adding subchannels above the hotspot to reduce the 

channels widths. The subchannels can be added wherever the hotspot is available 

and no need to change the design of the other part of the channels.  

8. In the present design, the main channel(s) was divided into two subchannels by 

inserting a fin above the hotspot. Moreover, the main channels can be divided into 

more than two subchannels depends on how much is the density of the heat flux on 

the hotspot. The main limitation is availability of the fabrication facility which can 

produce the smallest channel width.  

9. The disadvantage is the main subchannels width(s) is confined by the main channel 

width. Consequently, the design can be improved by splitting into the main 
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channels and subchannels to control the width(s) according to density of the heat 

flux as suggested by numerical analysis of Li [16]. But this design increases the 

complexity and consequently the pumping power.



 

 

 

Chapter 7  

Conclusions and Recommendations for Future Work 

In this chapter, the overall conclusions are summarised based on the results presented 

in the thesis and some recommendations for the future work are suggested.  

7.1 Conclusions  

It was reported that during the measurement process, when the thermocouple junction 

is in contact with measured medium while the wires are extended and connected to 

measurement device to record the temperature, error occurs when the measured 

temperature by the junction is different than that of the wires. Consequently, the heat 

conducted through the probe, the wires to (or from) the measured medium and the 

thermocouple disturbs temperature which is different than expected. Therefore, this 

error should be considered and included in the measurement process. 

 

In Chapter 40, the cooling and heating effects of different stripped lengths of the 

thermocouple electrical insulation for different wires sizes (80µm and 200µm) on the 

surface temperature measurement have been investigated. The surface temperature 

range was (4oC-35oC) while the wires were extended vertically and exposed to free 

convection from outside environment of temperature 13oC. A good agreement between 

analytical, numerical and experimental results has been achieved. The following have 

been concluded: 

 Stripping different lengths (0mm, 5mm, 10mm, 15, and 20mm) of insulation has a 

negligible effect on the surface temperature measurement within the measured 

range and is independent of thermocouple size. 

 There is no specific critical diameter of the thermocouple wire(s) over which heat 

transfer to the wires decreases. 

 The effect of the thermocouple electrical insulation is negligible if the experimental 

error in temperature measurement is higher than the impact of using the 

thermocouple (with or without insulation).  
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 The effect of the thermocouple electrical insulation can be considered when the 

surface temperature reaches 800oC for 80μm thermocouples and 250oC for 200μm 

thermocouples. 

In Chapter 5, heating impact of different thermocouple sizes 80μm and 315μm on 

small volume of cold water have been analysed both experimentally and numerically. 

The water was in a small chamber of plastic insert which was cooling by a copper 

block inside a thermostatically controlled system. The copper block temperature was 

equal 4.05oC while the thermocouple wires were extended vertically and exposed to 

free convection to the outside environment of temperature 18oC. A good agreement 

between experimental and numerical analyses has been obtained. The following were 

concluded: 

1. The heating effect of the thermocouple is eliminated when the thermocouple 

junction is close to the copper block. Moreover, this effect is increased when the 

thermal resistance between the copper block and the thermocouple junction rises 

due to the presence of the plastic insert. 

2. The length of thermocouple wires exposed to the environment increases with an 

increase in thermocouple size while wire has no effect over a specific length where 

the wire end temperature is equal to that of the environment.  

The cooling of hotspot generated due to non-uniform heat fluxes dissipation above a 

chip circuit have been investigated experimentally and numerically. The increase of 

the solid-liquid interaction area reducing the effect of the hotspot(s) has been studied. 

Different designs are available for enhancing the heat transfer rate and improving the 

thermal performance of the cooling devices.  

In Chapter 6, two heat sinks have been designed and fabricated: the first device has 

been fabricated with parallel channels only while the second one was designed to 

extract the high heat fluxes by dividing the main channels above the hotspot(s) into 

two subchannels. The inlet and outlet manifolds were fabricated with two ports in order 

to minimise the mal-distribution of the flow rate through the channels. The analysis 

was limited to a laminar single-phase flow with water as a cooling liquid. The 

following have been found:  
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1. The addition of the subchannels leads to a reduction the maximum bottom surface 

temperature and improves the temperature uniformity. Furthermore, thermal 

resistance is decreased for the cooling device with subchannels. 

2. The present design can be improved by increasing the density of the fins above the 

hotspot(s) or adding the fins wherever the hotspot(s) is available above chip circuit 

without any essential changes in the heat sink design.  

3. The increase in the Reynolds number minimises the surface temperature for both 

heat sinks.   

4.The heat sink with subchannels requires more pumping power in comparison with 

the one without subchannels. 

7.2 Recommendations for future work 

The present investigation of the cooling and heating effects of the thermocouple 

electrical insulation on surface temperature measurement in Chapter 4 was limited to 

a specific surface temperature range (4oC-35oC). Moreover, in Chapter 5, the heating 

impact of different thermocouple sizes on small volume of cold was only studied. 

Consequently, and according to the conclusions the following recommendations were 

suggested for the future work: 

1. Experimental work is recommended to study the effect of the thermocouple 

electrical insulation for higher surface temperature. 

2. Study the cooling effect of using thermocouple when the environment temperature 

is lower than the water temperature. 

The study of using subchannels for cooling hotspot(s) above a chip circuit was 

conducted for water as a cooling liquid and a laminar single-phase flow. Therefore, 

the present work can be extended to include the followings: 

1. The effect of turbulent can be investigated for both designs. 

2. Two-phase flows can also be studied for the design with subchannels.
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Appendix I: Publications 

Journal paper 

1.   A. Y. Al Waaly, M. C. Paul and P. S. Dobson, Applied Thermal Engineering, 

"Effects of Thermocouple Electrical Insulation on the Measurement of Surface 

Temperature", 2015, vol.  89, pp. 421-431, DOI: 

10.1016/j.applthermaleng.2015.06.020. 

 

Conference paper 

1- A. Y. Al Waaly, M. C. Paul and P. S. Dobson, “Effects of Thermocouple Electrical 

Insulation on the Measurement of Surface Temperature”, 13th UK Heat Transfer 

Conference (UKHTC2013) 2nd – 3rd September 2013, Imperial College, London, 

United Kingdom. 

2- A. Y. Al Waaly, M. C. Paul and P. S. Dobson, “Liquid Cooling of Non-Uniform 

Heat flux of Chip Circuit by Submicrochannels”,  International Conference On 

Advances in Civil, Structural and Mechanical Engineering – CSM, June 01-02, 

University of Westminster, London, United Kingdom. 

Posters presentation 

1- 24th Scottish Fluid Mechanics Meeting, 25th May 2011, Strathclyde University, 

Glasgow. 

2-Iraqi Cultural Attache Conefernce For Engineers, 1-2/10/2011 Iraqi Cultural 

Attache, London, United Kingdom. 

3- 25th Scottish Fluid Mechanics Meeting, 25th May 2011, Heriot Watt University, 

Edinburgh.
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