
VALIDATING NEXT GENERATION
SEQUENCING FOR MEIOFAUNAL

COMMUNITY ANALYSIS AND
INTERACTION PREDICTION

BEN NICHOLS

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF ENGINEERING

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

OCTOBER 2015

© BEN NICHOLS



Abstract

Advances in DNA sequencing technologies, particularly the advent of next generation se-
quencing (NGS) platforms, have revolutionised the field of metagenomics and allowed great
progress to be made in the way that microbial communities are analysed. However, the
wealth of data now available thanks to these advancements has made the possibilities far
more numerous than just the obvious applications, with a wide variety of novel and diverse
studies conceivable. The technologies themselves have also created further areas for research
as better methods of handling the, often overwhelming in quantity and misleading in content,
data are sought.

The analysis carried out in this thesis demonstrates the wide range of study possible stem-
ming from two experiments involving the sequencing of meiofauna DNA. The first of these
involves community analysis of marine benthic meiofauna with particular emphasis on di-
versity and distribution. The second experiment involves the sequencing of pooled nematode
samples in order to investigate the effects of sample richness and species relatedness on the
generation of chimeric reads in sequencing data.

It is shown that the data generated from these two experiments can be used to help formulate
an algorithm to simulate PCR and therefore assist the generation of realistic noisy NGS data.
These data can, in turn, be used to generate a simulated in silico microbial community for
analysis, the results of which reveal insights into the accuracy of chimera detection software
and the reliability of metagenetic community analyses. Worryingly, these results suggest that
findings from similar in vitro studies are not as reliable as originally perceived.

The same experimental data may also be used to investigate interactions between meiofauna
species based on the incidental presence of prey species highlighted from the sequencing of
individual meiofauna organisms. It is shown that these data can be used to accurately predict
a nematode’s feeding type without having to examine the organism directly. It is also shown
that there is no correlation between this method of inferring interactions between species and
other methods which have been used in the past. This suggests that the earlier methods are
inadequate when used for the detection of feeding interactions.
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Chapter 1

Introduction

1.1 Introduction

Most of the work presented in this thesis involves computational analysis of next generation
DNA sequencing (NGS) data after the actual experimental work has already taken place.
However, knowledge of the technology and methods used to generate these data is critical
for the understanding of this work. For example, strategies for the removal of noisy se-
quences will, naturally, make use of information about how sequencing noise is generated.
This chapter covers all relevant background knowledge for the complete understanding of
the analyses presented throughout this thesis.

The fundamental aspects of DNA sequencing are summarised in Section 1.2. Section 1.3
describes computational sequence representation and alignment, which are used in many of
the bioinformatic tools that are featured in later chapters. Issues related to sequencing noise
are covered in Section 1.4. Aspects of microbial community analysis, a subject which bene-
fits greatly from the use of NGS data, are outlined in Section 1.5. Section 1.6 then goes on to
explain how these ideas are brought together to produce the studies described in this thesis.

1.2 DNA and Sequencing

1.2.1 DNA

The underlying feature of all of the analysis described in this thesis is the study of Deoxyri-
bonucleic acid (DNA) sequences. DNA is an essential component of all living organisms
and DNA molecules are generally stored in the nuclei of eukaryotic organisms and the cell
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cytoplasm of archaea and bacteria. The function of DNA is to encode the genetic informa-
tion of an organism, which it is able to do because of its structure.

A DNA molecule is, fundamentally, comprised of two complementary strands made up of
four different nucleotides, or nucleobases (bases) - Adenine (A), Cytosine (C), Guanine (G)
and Thymine (T). These bases are arranged sequentially and it is the order of this sequence
which maps the biological information held within the DNA molecule. The two complemen-
tary strands both hold the same information expressed differently. As shown in Table 1.1
each of the four nucleotides has a complementary partner which takes the same position on
the complementary strand. Thus if the leading DNA strand has the sequence ACGT then the
complementary strand will have the sequence TGCA.

Nucleotide Name IUPAC Code Type Complementary Nucleotide
Adenine A Purine T
Cytosine C Pyrimidine G
Guanine G Purine C
Thymine T Pyrimidine A

Table 1.1: The four nucleotides that comprise a DNA molecule.

DNA molecules are divided into regions called genes which, typically, control specific func-
tions of the organism to which the DNA belongs. Genes from a particular organism can be
compared to the equivalent genes of other organisms to detect biological differences which
may, or may not, have an affect on the functionality or appearance of the organisms in ques-
tion.

The deceptively simple structure of a DNA molecule is what makes it ideal for storing infor-
mation and it is also this simplicity that allows this information to be readily analysed after
it has been read because it can be stored as long strings of the four letters, A, C, G and T
(the sequence of the complementary strand need not be recorded because it can be inferred
directly from the main sequence). A common way to store the information is in fasta format
in a text file which simply lists each sequence in a dataset, a format which lends itself well
to computational analysis. From these files, to give two examples, complex analysis of mi-
crobial communities based on their DNA sequences and simulations of biological processes
can be performed away from the laboratory.

The actual “reading” of the genetic information (by extracting and sequencing the DNA)
is more complex.
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1.2.2 DNA Sequencing

DNA sequencing is the process of documenting the sequences of bases from DNA molecules.
Historically, there have been many ways of doing this but the studies in the later chapters deal
mainly with next generation sequencing techniques. One of the earlier methods that is also
referred to is Sanger sequencing for which there is an overview in Section 1.2.2.

Primers

A DNA Primer is a short strand of DNA which is used to instigate DNA synthesis. It is
required because a new DNA strand can only be formed by attaching bases sequentially to
the end of an existing strand of DNA. Primers are used during DNA sequencing to replicate
the existing DNA that is undergoing analysis.

PCR Primers

In PCR (see Section 1.2.3), primers are generally used in pairs consisting of a forward primer

and a reverse primer. The primers highlight a targeted region of DNA by each attaching to
a conserved section either side of it - the primers attach because they are chosen to be a
complementary match (or, in practice, close to a match) to these conserved sections. The
two ends of a DNA strand are labelled 3′ and 5′. The forward primer will attach to the
leading strand of DNA which always synthesises in the 5′ → 3′ direction and the reverse
primer will attach to the complementary strand which synthesises in the opposite direction.
Thus, the desired region of DNA is highlighted as shown in Figure 1.1.

5′ → 3′

Forward Primer GCTTGTCTCAAAGATTAAGC→
||||||||||||||||||||

Leading Strand 5’ -TAATTCGAGTTTCTAATTCGGATGGCGT. . .TAGACACAGCGGACGACGGAAGGAACCT- 3’
Target Region

Comp. Strand 3’ -GCTTGTCTCAAAGATTAAGCCTACCGCA. . .ATCTGTGTCGCCTGCTGCCTTCCTTGGA- 5’
||||||||||||||||||||

Reverse Primer ←GCGGACGACGGAAGGAACCT
5′ ← 3′

Figure 1.1: Forward and reverse PCR primers. The forward primer binds with the leading strand and the
reverse primer binds with the complementary strand to form two duplicated molecules. Notation referring to
the direction of each primer is relative to the leading strand.
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Sanger Sequencing

Sanger sequencing (1) requires the use of a DNA polymerase which is an enzyme used to
create DNA molecules by assembling nucleotides. DNA polymerase is often used to repli-
cate an existing DNA molecule and is the essential ingredient in PCR which is described in
Section 1.2.3. In addition, Sanger sequencing uses normal deoxynucleoside triphosphates
(dNTPs: dATP, dCTP, dGTP and dTTP) which contain the bases A, C, G and T and can be
used for DNA synthesis in conjunction with modified, chain-terminating di-deoxynucleotide
triphosphates (ddNTPs: ddATP, ddCTP, ddGTP and ddTTP) which cause synthesis to cease
when they are incorporated at the end of a chain. This sequencing method also requires the
use of a primer and a single-stranded DNA template.

Four separate experiments are conducted, all of which include dNTPs containing all four
bases but only the ddNTP containing one specific base. That is, there will be one experiment
which only uses ddATP, one that uses ddCTP, one that uses ddGTP and one that uses ddTTP.
DNA extension is initiated and will terminate, in each experiment, when a ddNTP molecule
is incorporated into the chain. After a large number of DNA extensions have occurred in,
for example, the experiment using ddATP it will be apparent at which positions on the DNA
strand the base T (the complementary base to A) appears. The data from all four experiments
can then be combined to give a complete DNA sequence.

The ddNTPs are radioactively or fluorescently labelled and the resultant sequence can be
visualised using auto-radiography or UV light.

1.2.3 Next Generation DNA Sequencing

Low cost and high throughput Next Generation Sequencing methods have allowed analysis
to take place that was, previous to the availability of NGS platforms, either unrealistic or
completely impossible. NGS methods parallelise the process which allows thousands or
millions of sequences to be recorded concurrently.

The data used for analysis in this thesis were generated using pyrosequencing and for this rea-
son, the procedure for this method has been outlined in this section. Sequencing by synthesis
(Illumina sequencing) has also been covered to allow comparison between pyrosequencing
and another NGS method.

Although NGS methods are highly advantageous in terms of time and cost, there is a trade-
off in the level of accuracy of the data produced. Some of these concerns are addressed in
Section 1.4.
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PCR Amplification

In all NGS methods, the DNA to be analysed must first be amplified. To prepare the sample
for sequencing, an amplification step is carried out using Polymerase Chain Reaction (PCR).
Thermal cycling is used to repeatedly melt and cool the DNA. When a strand of DNA is
copied, this copy can then also be copied; this leads to an exponential amplification effect.
PCR is used to amplify a particular target region of the DNA - this is selected using primers
(small pieces of DNA, complementary to the target region).

The process typically involves 20-40 cycles of the following steps (240 gives approx 1012

copies):

1. Denaturation – this step takes place at temperatures between 94 and 98◦C for around
20 to 30 seconds. Hydrogen bonds are broken to split the DNA into two strands.

2. Annealing – the temperature is reduced to 50-65◦C. The primers bind to both single
strands of DNA. Hydrogen bonds are only able to form when there is a close match,
ensuring that the primers are annealed to the correct region.

3. Extension – the temperature is adjusted depending on the polymerase used. Nu-
cleotides are attached to complete the DNA strands. These strands can now be copied
in the same way as the original.

Figure 1.2: The PCR process. Image has been taken from (2).
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454 pyrosequencing

454 pyrosequencing (3) was the first NGS technology to be introduced and was available
commercially in 2005. This introduction revolutionised the field of metagenomics, with
DNA sequencing available to many researchers around the world for the first time.

Before sequencing can take place, the DNA sample must be properly prepared (see Fig-
ure 1.3). The process begins with DNA denaturation and fragmentation. The single-stranded
fragments are then attached to beads in preparation for emulsion PCR amplification which
results in millions of amplicons attached to each bead in preparation for sequencing. The
beads are put into wells which are then filled with helper immobilisation and enzyme beads
and nucleotides repeatedly flow over the wells in the order A→T→G→C. When these nu-
cleotides match with a nucleotide on the strands in a well (A⇔T or G⇔C), a reaction occurs
and light is emitted. The intensity of the light relates to the number of nucleotides that have
been attached to a particular well. The light intensities are recorded as a flowgram which
can, in turn, be used to infer the sequences of the amplicons.

The Average read length was originally about 110 base pairs but this has since increased
to over 400 and reads as long as 1000 base pairs are possible. Because the technology allows
one million wells to be filled, up to one million reads are possible in a single run. Compared
to other platforms, pyrosequencing is fast and produces long reads but the cost per run is
relatively expensive and homopolymer length errors are possible. Much of the sequencing
data analysed in this thesis was generated using 454 pyrosequencing.

Illumina Sequencing by Synthesis

Gregory et al. (4) describe the use of Illumina GAIIx sequencing to examine biodiversity.
This method was developed after 454 pyrosequencing and was first available a year later in
2006. It follows the same strategy of amplifying a region of the gene and sequencing the re-
sulting amplicons. To begin, a DNA sample is fragmented and prepared for amplification by
ligation of two unique adaptors to each end of each fragment. The sample is then amplified
using the chosen number of PCR cycles.

Prior to sequencing, clusters are generated using a flow cell (see Figure 1.4). The flow cell is
coated with oligonucleotides which correspond to the sequences of unique adaptors ligated
to the PCR amplified fragments, this allows the fragments to be bound to the flow cell. The
flow cell is also coated with primers, this results in the unattached end of a fragment binding
with a primer on the flow cell creating a ‘bridge’ with both ends of the fragment attached to
the flow cell. A process called bridge PCR amplification follows whereby isolated clusters
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Figure 1.3: 454 pyrosequencing preparation. Top left: fragmentation and denaturation. Top right: fragments
are attached to beads and amplified using emulsion PCR. Bottom right: beads are transferred to wells. Bottom
left: immobilised enzymes are added to wells in preparation for pyrosequencing. Image has been taken from
(3).

are amplified as the result of repeated denaturation and extension.

Sequencing by synthesis occurs with the sequential flow of nucleotides across the flow cell
(see Figure 1.5). These nucleotides are fluorescent and colour coded and only one nucleotide
can be bound to each strand per cycle. Excess nucleotides are washed away. Laser excitation
and image capturing are used to determine which nucleotide was bound to each strand and
this process is repeated until sequencing is complete.

Originally only short reads of around 50 base pairs in length were possible with Illumina
sequencing, however, this later improved to around 300 base pairs. This sequencing method
has the advantage of being able to produce a high number of reads per run at a low operating
cost but the equipment itself is very expensive. Unlike pyrosequencing, homopolymer length
errors are not an issue because only one base is read at a time but single base errors can still
occur.
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Figure 1.4: Illumina: sample preparation and bridge PCR amplification. Image has been taken from (5).
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Figure 1.5: Illumina: sequencing by synthesis. Image has been taken from (5).
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Ion Semiconductor Sequencing (Ion Torrent)

Figure 1.6: Ion Torrent sequencing. Image has been taken from (6).

Ion Torrent sequencing (7) is a method which uses semiconductor sequencing. As with
the techniques used in 454 pyrosequencing, DNA is amplified using PCR and bases are se-
quentially flowed past the DNA strands in microwells. When a base binds with a strand a
hydrogen ion (H+) is emitted which increases the acidity of the solution in the well and this
change in pH is detected by an ion sensor.

Ion Torrent sequencing can produce read lengths of up to 400 base pairs. The equipment
is fast and relatively inexpensive but, as the methodology is similar to that of pyrosequenc-
ing, homopolymer length errors are possible.

Sequencing by Oligonucleotide Ligation and Detection (SOLiD)

SOLiD uses fluorescently labelled di-base probes, of eight nucleotides in length, which bind
to a target DNA fragment (9). These probes contain four different dyes which correspond to
four unique sequences of two nucleotides in length. The probes ligate to each fragment for a
chosen number of cycles, determining the eventual read length, with the first two nucleotides
of the probe highlighted for each cycle. The fact that the identity of the first two nucleotides
is known allows a unique sequence to be inferred from the resulting coded sequence that is
detected from the coloured dyes.

This process is repeated five times using different primers, with the position of the new
primer offset by one base on the first repetition and one further base on each subsequent
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Figure 1.7: Sequencing by oligonucleotide ligation and detection (SOLiD). Image has been taken from (8).

repetition. This has the effect of interrogating each nucleotide twice in total and, therefore,
results in a reduced number of errors because the same error would have to occur twice for
it to go unnoticed.

The main drawback of SOLiD is that only very short reads are possible. However, due
to the built-in mechanism that double checks each sequence, the error rate is relatively low
compared to other NGS methods. In addition to this, homopolymer errors are impossible
with SOLiD and operating costs are low.

Third Generation Sequencing Platforms

Whilst NGS technologies have been enormously beneficial, they have also created a num-
ber of problems such as sequencing noise. Limitations on throughput and read length have
also fuelled further research. Most third generation sequencing technologies are still in the
development phase but it is hoped that performance will be greatly improved by employing
real time single molecule sequencing methods which also eliminate the requirement for PCR
amplification.

Some examples of third generation sequencing platforms are Helicos single molecule se-

quencing (10), nanopore sequencing (11) and single molecule real-time sequencing (Pacific
Bio) (12). The Pacific Bio platform is designed for much longer read lengths (around 10000)
and the equipment runs fast but is expensive. Another disadvantage is that relatively few



1.3. Computational Representation and Manipulation of Sequencing Data 31

reads are generated per run.

1.3 Computational Representation and Manipulation

of Sequencing Data

1.3.1 Fasta Format

After sequencing has taken place, it is necessary that the information obtained is represented
in an easily readable format. The format of the output from different sequencing technologies
is different in each case so post sequencing processing software is supplied by the manufac-
turers in order to achieve this. The most commonly used representation, as mentioned earlier
in this chapter, is the fasta format which is used extensively throughout the analysis carried
out in this thesis. A fasta file contains two lines for each sequence in the dataset:

1. Sequence name - This line can contain any unique identifier for the sequence but it
must start with the ‘>’ character. Often it can contain extra information such as the
abundance of the sequence which can be included using information returned from one
of the various sequencing platforms.

2. Sequence - This is simply the sequence represented as a string of letters (A, C, G or
T).

1.3.2 Sequence Alignment

To make sense of sequencing data in order for it to be useful, a vast array of software is
available to process and analyse the data (one example of this is the noise removal software
which is discussed later in this chapter). Many of these software tools make use of alignment
algorithms which are used to compare sequences with each other.

When comparing the same region of a gene from multiple different organisms, it is often
the case that the sequences will appear similar and exhibit only a few differences, particu-
larly if the organisms in question are similar. It should be noted that the equivalent genes, and
regions of genes, vary in length from organism to organism both within species and across
species. Therefore, genetic differences can take the form not only of nucleotide substitutions
but also of gaps in a sequence. These differences are caused by the genetic mutations which
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drive evolution and, thus, sequence alignments can be used to better visualise the evolu-
tionary differences between two or more organisms and hypothesise about the intermediate
evolutionary steps which led to these differences.

A typical alignment algorithm will attempt to compare sequences and introduce gaps in such
a way that the fewest number of differences are present at each position on the alignment.
The result of this is that an aligned fasta file will have the same format as a standard fasta file
with the exception that gaps (represented as the ‘-’ character) may be included in a sequence
in addition to the four nucleotides, A, C, G and T.

A pairwise alignment is an alignment between two sequences and a multiple alignment oc-
curs between more than two sequences. Two sequences may be aligned differently within
a multiple alignment than they would be in a pairwise alignment, this is because optimal
pairwise alignments may contradict the goal of a multiple alignment algorithm to minimise
the total number of differences contained within the full alignment. A global alignment

has an algorithm which aims to reduce the number of differences between sequences across
their entire length whereas a local alignment has an algorithm which searches for areas of
similarity within localised regions of the input sequences.

The Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm (13) is a widely-used example of a global alignment al-
gorithm and is best understood by following an example in which two short sequences are
used as input to form a pairwise alignment.

Before the algorithm can be started, three parameters are required. These are the score for a
matching nucleotide pair (m), the penalty for a mismatching nucleotide pair (mm) and the
penalty for inserting a gap (g). The values of these input parameters may be varied based on
different preferences for different applications of the algorithm but in the algorithm’s sim-
plest form, the parameters m = +1, mm = −1 and g = −1 are used. In the following
example, the sequences AGTCA and AGGTCC are aligned using the aforementioned pa-
rameters.

To initiate the algorithm, a matrix is drawn with sequence A down the left hand side and
sequence B along the top as shown in Table 1.2 and the cells are filled in as follows:

• A zero is inserted into the top-leftmost cell and the other cells are left empty.

• Each cell can be accessed from adjacent cells directly above, directly to the left or
diagonally above and left.
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A G G T C C
0 ← -1 ← -2 ← -3 ← -4 ← -5 ← -6

A ↑ -1 ↖ 1 ← 0 ← -1 ← -2 ← -3 ← -4
G ↑ -2 ↑ 0 ↖ 2 ← 1 ← 0 ← -1 ← -2
T ↑ -3 ↑ -1 ↑ 1 ↖ 1 ↖ 2 ← 1 ← 0
C ↑ -4 ↑ -2 ↑ 0 ↑ 0 ↑ 1 ↖ 3 ← 2
A ↑ -5 ↑ -3 ↑ -1 ↑ -1 ↑ 0 ↑ 2 ↖ 2

Table 1.2: Needleman-Wunsch matrix for a pairwise alignment of the sequences AGTCA and AGGTCC. Green
cells show one of the the best paths from the bottom right cell to the top left cell which gives one of the optimal
alignments.

• If a cell is accessed from directly to the left then this represents the insertion of a gap
in sequence A and the gap penalty, g, is applied.

• If a cell is accessed from directly above then this represents the insertion of a gap in
sequence B and the gap penalty, g, is applied.

• If a cell is accessed from diagonally above and left then either parameter m or param-
eter mm is applied depending on whether the cell is a match or a mismatch.

• The best possible score for each cell is calculated, and the cell from which it was
accessed is recorded. This is denoted by an arrow, as shown in Table 1.2.

• Note that sometimes more than one path will result in the same score, meaning that
multiple alignments are equally optimal. For simplicity, additional alignments have
not been illustrated in this example.

• When the matrix is complete, the aligned sequences can be read in reverse order from
the bottom right cell by following the arrows back to the top left cell. Diagonal arrows
indicate no gap, horizontal arrows indicate a gap in sequence A and vertical arrows
indicate a gap in sequence B.

Reading the two sequences from the path shown by the green cells in Table 1.2 reveals that
one possible optimal alignment for the two input sequences is:

AG-TCA

AGGTCC

The Needleman-Wunsch algorithm has been adapted to use more sophisticated scoring sys-
tems. For example, it may be desirable to impose heavier penalties depending on which nu-
cleotides are involved in a mismatch. It might also be desirable to impose a heavier penalty
for the first gap in a string of gaps. The algorithm is still widely used, especially in situations
where alignment precision is more important than the speed of the algorithm.
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The example in this section shows a simple global pairwise alignment. Other algorithms
exist for local alignment (e.g. the Smith-Waterman algorithm (14)) and for multiway align-
ment in which algorithms must deal with increased dimensionality.

Alignment Software

A number of tools are available to generate alignments from sequences, using fasta files as
input. Different types of alignment algorithm may be specified depending on the level of
speed and accuracy required - a trade-off in accuracy may be required to perform a very
large multiple sequence alignment. Three of the most widely used sequence alignment tools
are MAFFT (15), Clustal X (16) and muscle (17).

1.4 Sequencing Noise

Sequencing noise is, unfortunately, a problem that is prevalent in all NGS methods. Erro-
neous sequences masquerade as real DNA sequences in sequencing output and, in order for
meaningful analysis to take place, they must be distinguished from the genuine data. This
section deals with the noise that is found in 454 pyrosequencing data.

1.4.1 Types of Noise

Noisy sequences are often created when a genuine sequence, for whatever reason, has errors
applied to it. These errors can manifest themselves in two main ways which are discussed in
this section and are illustrated in Figure 1.8.

Single Base Errors

Single base errors occur when one nucleotide in a sequence is substituted for an erroneous
nucleotide. There are two types of single base error and the most common of these oc-
cur when a purine is substituted for another purine (A ⇔ G) or a pyrimidine is substituted
for another pyrimidine (C ⇔ T) and is known as a transition. Pyramidine for purine -
(A or G)⇔ (C or T) - substitutions are less common and are known as transversions.

Indel Errors

Insertions and deletions are categorised together as indel errors. These occur when a sub-
sequence of one or more bases are added or removed from a DNA sequence.
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True Sequence GCTTGTCTCAAAGATTAAGCCATGCATGTCCATAAGCCGATT
1. Transition GCTTGTCTCAAAGATTAAGCCATGCGTGTCCATAAGCCGATT
2. Transversion GCTTGTCTCAAAGATTAAGCCATGCATGTCCATAAGACGATT
3. Insertion GCTTGTCTCAAAGATTAAGCCATGCAGATCTGTCCATAAGCCGATT
4. Deletion GCTTGTCTCGATTAAGCCATGCATGTCCATAAGCCGATT

Figure 1.8: Types of sequencing noise: 1. A transition of A⇒ G has occurred. 2. A transversion of C⇒ A
has occurred. 3. The sub-sequence ‘GATC’ has been inserted. 4. The sub-sequence ‘AAA’ has been deleted.

1.4.2 Sources of Noise

There are three main sources of noise in 454 pyrosequenced data. These are described by
(18) and are summarised in this section.

Sequencing Errors

Noisy sequences produced in pyrosequencing are caused by homopolymer length errors

which are a type of indel error. A homopolymer is part of a sequence made up of con-
secutive nucleotides of the same type (AA, AAA, etc.) The light intensities (continuous) do
not match perfectly with the homopolymer lengths (discrete), thus the variance in the distri-
bution of the light intensity for a given chain length is a source of sequencing noise. This
variance increases with length.

PCR Single Base Errors

Single base errors may be caused during PCR when the wrong nucleotide binds to the tem-
plate strand. Erroneous instances of A ⇔ G and C ⇔ T binding (transitions) are more
likely than other errors (transversions). The probabilities of single base errors are shown in
Table 4.1.

Nucleotide A C G T
A 0.9995 7.2× 10−6 5.1× 10−4 7.7× 10−6

C 1.1× 10−5 0.9996 2.1× 10−6 4.1× 10−4

G 3.5× 10−4 3.2× 10−6 0.9996 2.1× 10−5

T 9.0× 10−6 5.7× 10−4 1.4× 10−5 0.9994

Table 1.3: Probabilities of single base errors based on data from mock communities (18). Rows are the true
nucleotides and columns are those observed, therefore the probabilities of true nucleotides being observed are
shown on the main diagonal and the probabilities of errors are shown off the main diagonal.
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Chimeras

Chimeras are PCR artefacts that are named after a monster from ancient Greek mythology.
The mythological chimera was a composite of different creatures (19), specifically a lion, a
goat and a snake and it lends its name to the PCR artefact because PCR chimeras are com-
prised of parts of different DNA molecules.

Chimeras are formed when the PCR extension step is incomplete. This results in a frag-
ment of DNA that can act as a primer for a different sequence in another round of PCR and
has the effect of forming a sequence which is really a combination of two or more differ-
ent partial sequences, as shown in Figure 1.9. The proportion of chimeras present varies
from dataset to dataset. Some datasets can be composed of 90% chimeric reads and this is
obviously a large problem that must be addressed.

1. Primer binds to target sequence:
Primer GCTTGTCTCAAAGATTAAGC→

||||||||||||||||||||
Sequence A -GCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGCATAAGCCGATTAATGGTGAAGC-

2. Extension fails:
Primer GCTTGTCTCAAAGATTAAGCCATGCATGTCTa

|||||||||||||||||||||||||||||||
Sequence A -GCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGCATAAGCCGATTAATGGTGAAGC-

3. Fragment forms:
Fragment GCTTGTCTCAAAGATTAAGCCATGCATGTCT

4. Fragment binds with another sequence:
Fragment GCTTGTCTCAAAGATTAAGCCATGCATGTCT→

| | |||||| | | |||| |||||
Sequence B -CATGCTAAAAAAGATCAGGTCATGGGTGTCTGTCATTTATTAGAACAAAACCAATTG-

5. Chimera forms:
Chimera GCTTGTCTCAAAGATTAAGCCATGCATGTCTGTCATTTATTAGAACAAAACCAATTG-

Figure 1.9: PCR chimera formation.

1.4.3 AmpliconNoise for Noise Removal

Data is initially provided as a flow file in a binary file format; this can be translated into a text
file containing information, including the number of reads, the number of flows (number of
nucleotides flowed across the plate), flowgram data and the read sequence. Before starting
the noise removal process, the following unwanted reads are filtered out:
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• Reads without the right barcode. A barcode is a short, unique sequence of nucleotides
that is used to identify each read. If a read doesn’t have a valid barcode then it is
assumed to be corrupted and is filtered out.

• Reads without the right primer.

• Reads shorter than 360 base pairs in length.

Additionally, reads longer than 720bp are truncated at 720bp.

After filtering, the noise removal process begins by using the AmpliconNoise algorithm.
This is split into two stages called PyroNoise and SeqNoise. These algorithms deal with re-
moving noise produced during sequencing and removing point errors produced during PCR
respectively.

PyroNoise

Prior to conversion into more readable formats, such as fasta format, the sequencing data
generated by pyrosequencing is stored as flowgrams which hold records of the light inten-
sities that were observed. PyroNoise analyses the flowgram data in an attempt to distinguish
between good reads and noisy reads.

To summarise the PyroNoise algorithm, firstly the probability is calculated that a given flow-
gram was generated from a sequence of nucleotides corresponding to the information from
an error-free flowgram. From this, a distance metric is generated which is the negative natu-
ral logarithm of this probability, normalised by the flowgram length.

Clusters of sequences are formed based on their flowgram distances and the likelihood func-
tion of the observed data is maximised using an EM (expectation-maximisation) algorithm.
For every iteration of the EM algorithm, the number of clusters decreases and the consensus
sequences of the final clusters give the true denoised sequences found by PyroNoise.

SeqNoise

SeqNoise uses similar techniques to PyroNoise to eliminate single base pair PCR errors but
the two algorithms are separated because it is more appropriate to use flowgram data in Py-
roNoise and textual sequence data in SeqNoise.

As with PyroNoise, a distance metric is calculated by taking the negative natural logarithm of
the probability that a given read comes from an error-free sequence. Again, an EM algorithm
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is used to maximise the likelihood function of the observed data and clusters of sequences
are generated to each represent one true sequence.

1.4.4 Chimera Removal Software

Perseus

Perseus (18) is a program which generates the Chimera index for each read. This is a value
greater than or equal to zero with higher values corresponding to reads that are most likely
to be chimeras. Using this index, chimeras can be identified and eliminated from the data.

To begin with, the program attempts to determine the two most likely parents of the can-
didate read and the most likely break point. Every read is aligned with every other read of
greater abundance (parent reads will be of greater abundance because they will have expe-
rienced at least one more round of PCR than the chimera). The two most likely parents are
found and the break point that minimises the number of differences between the candidate
read and the read created from combining the two parents is determined.

The PCR error corrected distance between these two sequences is calculated. If this value is
less than 0.15 then the candidate is considered to be, potentially, a chimera. If the value is
greater than 0.15 the read is classified as a good read at this point.

The next step is to find the probability of the candidate sequence evolving naturally. A
three way alignment is formed, incorporating the candidate sequence and the two parent se-
quences. The sequence which is the common ancestor of all three sequences is found using
parsimony. The following labels are used:

• A – The parent sequence that matches the candidate sequence most closely.

• B – The other parent sequence.

• C – The candidate sequence.

• D – The sequence ancestral to A, B and C.

• x – The number of differences between A and D.

• y – The number of differences between B and D.

• xB – The number of differences between A and D on the part of the alignment match-
ing B.
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• yA – The number of differences between B and D on the part of the alignment match-
ing A.

• nA – The length of the part of the alignment matching A.

• nB – The length of the part of the alignment matching B.

• N – The total length of the alignment.

For C to have evolved naturally there must be at least xB (out of x total) differences between
A and D on the part of the alignment matching B and at least yA (out of y total) differences
betweenB andD on the part of the alignment matchingA. The probability of this happening
is

Pr(X1 ≥ xB)× Pr(X2 ≥ yA)

where X1 and X2 are random variables such that

X1 ∼ Bin(x,
nB
N

)

and
X2 ∼ Bin(y,

nA
N

).

This assumes an equal probability of changing for each nucleotide in the sequence.

The negative natural logarithm of this probability is the Chimera index. The lower the proba-
bility of the sequence evolving naturally, the higher the Chimera index. Perseus uses logistic
regression to classify chimeras and remove them from the data.

The algorithm is only designed to remove bimeras (chimeras with two parent sequences).
Trimeras and quadmeras are also possible and it is found that Perseus deals adequately with
these without explicitly targeting them.

Logistic Regression

Logistic regression is a deterministic classification technique that can be used to predict
whether a read is a chimera given its Chimera index, I . A logit link function is chosen so
that:

Pr(Chimera|I) =
1

1 + exp(−[α + βI])
, I ≥ 0 .

When a logistic regression is carried out on a dataset, values for α and β can be found and so
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the probability of each sequence being a chimera can be calculated using the above formula.
From this, a chimera index which yields a probability of 0.5 is used as the cut-off point
between good sequences and chimeras.

UCHIME

UCHIME (20) utilises a different algorithm to generate a score, much like the chimera index
in Perseus, which signifies the likelihood of a given sequence being chimeric.

The main step in the algorithm involves the analysis of a three-way alignment of a query
sequence with its potential parent sequences. Parents are chosen either from a reference
database or, as with Perseus, directly from the dataset being analysed (de novo). The most
likely parent sequences are selected based on their similarities with opposing ends of the
query sequence. The UCHIME score is based on the number of instances in which the query
sequence matches one parent but differs from the other - if the sequence matches mostly the
first parent at one end and the second parent at the other end then it will receive a high score.

The UCHIME algorithm makes use of the number of ‘yes’ and ‘no’ votes on each sec-
tion of the query sequence. A ‘yes’ vote on the left hand side is defined as a position on the
alignment where the query sequence matches the first parent but does not match the second
parent, and vice versa for a ‘no’ vote. A ‘yes’ vote on the right hand side is recorded at
all positions on the alignment where the query sequence matches the second parent but not
the first. At positions on the alignment where the two parents match each other but not the
query sequence, an ‘abstain’ vote is recorded. The uchime score is then calculated using the
following equations:

HL =
YL

β(NL + n) + AL
,

HR =
YR

β(NR + n) + AR

and
H = HL ×HR.

In the above, H is the final UCHIME score, HL and HR are the UCHIME scores for the left
and right parts of the alignment respectively, YL, YR, NL, NR, AL and AR are ‘yes’, ‘no’ and
‘abstain’ votes for each part of the alignment and β and n are input variables used to weight
the effect of a ‘no’ vote.

UCHIME has been shown to have a processing speed advantage over Perseus whilst main-
taining comparable levels of accuracy (20).
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1.4.5 Other Noise and Chimera Removal Software

The AmpliconNoise and Perseus procedures for noise and chimera removal have been shown
to work well (18) and have been integrated into some of the most used pipelines for process-
ing sequencing data, such as QIIME (21) and Mothur (22). Other software is available either
through these pipelines or as stand-alone programs to perform similar tasks which allows the
user a better choice to decide on an appropriate methodology.

1.5 Analysis of Microbial and Meiofaunal Communi-

ties

It is often desirable to assess the properties relating to the makeup of a given community
of organisms such as its species diversity and richness. Whilst it is relatively easy to col-
lect the necessary data required for these analyses in larger organisms, obvious problems
present themselves when dealing with communities of smaller organisms such as microbes
and meiofauna due to community population size and the microscopic nature of the creatures
therein. The developments in NGS technologies described in Section 1.2.3 have opened up
more ways to achieve this and have allowed new analysis to take place, the scope of which
was never before possible.

Strategies vary depending on the nature of the communities involved and the goals of the
research to be carried out. In communities of bacteria or archaea, when selecting a gene
from a sample to be sequenced, the 16S rRNA gene is often chosen because it contains a
number of conserved and variable regions (labelled V1 to V9) and it is present in all species
of bacteria and archaea. In order to gain data from which to analyse the diversity of a mi-
crobial community, a selection of the variable regions are amplified and then sequenced. For
bacteria and archaea, the V6 region is usually incorporated into this selection because it is
the most variable region and will, therefore, provide the most information about the differ-
ences between the members of the community.

For the sequencing of meiofaunal communities and individual meiofaunal organisms de-
scribed in Chapter 2 and analysed in later chapters, the V1-V2 regions of the 18S nuclear
small subunit (nSSU) rDNA gene were sequenced. Primers were chosen to target approxi-
mately 450bps of the gene that are known to be highly variable in meiofauna (23).
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1.5.1 Operational Taxonomic Units

An operational taxonomic unit (OTU) refers to a group of organisms that are genetically
related to each other to a specified degree of similarity. OTUs are often thought of as being
equivalent to species, especially when used in reference to microorganisms for which the
boundaries between species are difficult to define (as is the term species itself). However, the
cut-off levels of similarity used for generating OTUs are generally arbitrary and are chosen
to represent the relatedness deemed appropriate for the study in question. For the analysis
of meiofauna sequencing data, OTUs with a 96% cut-off have been shown to most closely
resemble species (24).

OTU Generation - Clustering

OTUs are generated by forming clusters of sequences based on their similarity. To initiate the
process, a Jukes-Cantor (25) evolutionary distance matrix is calculated based on the number
of differences between sequences when a multi-way alignment is formed. Following this, a
hierarchical clustering algorithm can be applied, summarised by the following steps.

• Clusters are initialised by allocating each sequence to a separate cluster.

• The two clusters with the closest distance are combined to form one new cluster.

• The previous step is repeated until the distance between all clusters is greater than the
chosen cut-off.

There are three standard variations of this algorithm which are based on how the distances
between clusters are evaluated. For complete-linkage clustering, the inter-cluster distance
is chosen to be the distance between the most distant individual members of each cluster.
Single-linkage clustering is the opposite to this, the two closest individual members of each
cluster are used. Average-linkage uses the mean value of the full set of pairwise distances
between members of each cluster.

For OTU generation, complete-linkage is the most commonly used method because it pre-
vents the distance between any two members of a given cluster being greater than the chosen
cut-off distance. It also does not suffer from the chaining phenomenon in which single se-
quences are added to a large cluster one by one. This phenomenon is one of the disadvantages
inherent in single-linkage clustering.
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1.5.2 Species Richness

Species richness (or OTU richness) is the number of different species present in a commu-
nity. In microbial communities, not all species will be included in a given sample so it is
valuable to establish how much of the overall species richness has been uncovered. One way
of doing this is rarefaction in which reads are randomly sampled a specified number of times
for each sample size. As the sample size increases, the mean number of species or OTUs in
the sampled set is recorded and plotted. If the rarefaction curve (see Figure 1.10) approaches
an asymptote then most of the species in the community will be present in the sample. If the
curve still has a relatively steep gradient once all reads have been sampled then this suggests
that the community has been under-sampled and much species richness remains hidden.
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Figure 1.10: Rarefaction curves for simulated community abundance data generated from a log-normal distri-
bution. There are approximately 63000 individuals from 5000 OTUs in the full dataset (top curve) and 10000
individuals were sampled from this to generate the bottom curve. Note that the trajectory of the bottom curve
suggests a degree of under-sampling - in fact there are around 1500 OTUs missing from this sample.

Because species richness increases with sample size, it may be sensible to rarefy data when
comparing multiple samples. This simply involves subsampling each sample so that they are
all reduced to the same size (usually the size of the smallest sample).
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Estimators of Species Richness

There are a number of different non-parametric methods of estimating the species richness
based only on observed data. The Chao1 estimator (26) is

S1 = Sobs +
F 2
1

2F2

where Sobs is the observed number of species in the sample, F1 is the number of singleton
species in the sample and F2 is the number of doubleton species in the sample. The theory is
that if rare species (singletons) are being discovered then there are likely to be yet more rare
species to be found; as more of these singletons become doubletons then it becomes more
likely that the majority of species have already been discovered.

The Chao2 estimator applies the same ideas when only occurrence data is available instead
of abundance data:

S2 = Sobs +
Q2

1

2Q2

where Q1 is the number of species that only occur in one sample and Q2 is the number of
species that occur in exactly two samples.

The Jackknife estimator (27) is calculated by

Sjack = Sobs +Q1

(
m− 1

m

)
where, again, Sobs is the observed number of species and Q1 is the number of species occur-
ring in only one sample. The variable m is the total number of samples.

The final richness estimator shown in this section is the bootstrap estimator (28),

Sboot = Sobs +

Sobs∑
k=i

(1− pi)2

where pi is the proportion of samples in which the ith species is present.

There is much debate over which estimators are most useful (29) (30) and the choice of
which to employ may be dependent on the nature of the data to be analysed. For the meio-
fauna community data described in Chapter 2, most estimators produced similar results but
the Chao1 richness estimator was chosen because it is known to function well regardless
of sample size and is informative when used with data that contain many low-abundance
species (30).



1.5. Analysis of Microbial and Meiofaunal Communities 45

1.5.3 Species Diversity

Species diversity (or OTU diversity) is the relative number of species in a community. The
diversity of a community is related to its richness but if the number of individuals in the
community changes, and assuming that the number of species remains constant, then the
diversity will change whereas the richness will not. There are a number of different diversity
measures but one of the most common, and the one used in later chapters, is the Shannon

index (31),

H ′ = −
S∑
i=1

{pi ln(pi)}

where S is the total number of species and pi is the probability of a randomly chosen indi-
vidual belonging to species i. The higher the value of H ′, the greater the diversity of the
sample is deemed to be. The Shannon diversity index is maximised when all species have
equal abundance.

Alpha, Beta and Gamma Diversity

Sometimes it is useful to categorise diversity into three different types (32). Alpha diversity

is the traditionally defined measure of diversity at one particular site and can be measured
using the Shannon index.

Beta diversity is the diversity measured over a range of different sites and describes how
much of the whole diversity can be seen by observing a single site. The most widely used
measure of beta diversity is simply

β = (S/ᾱ)− 1

where S is the total number of species in all sites and ᾱ is the mean species richness per site.
One is subtracted from the value so that the minimum beta diversity is set to zero.

The Shannon index may also be used to calculate gamma diversity which is the overall
diversity of all known sites.

1.5.4 Species Evenness

Species evenness (or OTU evenness) describes how balanced a community is in terms of
the abundance of its composite species. For example, a community with one very domi-
nant species will have a low evenness. Species evenness is usually measured using Pielou’s
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evenness (33),
J ′ = H ′/ ln(S)

where H ′ is the Shannon diversity and S is the total number of species.

1.5.5 Dissimilarity Indices

It is often of interest to investigate the similarities and differences in the community content
of two different samples. To do this there are several measures of dissimilarity available
which are based on the abundances of different species (or OTUs, or other taxonomic ranks).
The Bray-Curtis dissimilarity index (34) is one such measure:

Bij = 1− 2Cij
Si + Sj

where Cij is the sum of the lowest of the two abundances of individuals belonging to species
that occur in both samples i and j. Si and Sj are the total number of individuals in sample i
and sample j respectively.

The Bray-Curtis dissimilarity index is also known as the Hellinger distance. When trans-
formed into a similarity measure (1−Bij) it is equivalent to the Sørensen similarity index.

1.5.6 Analysis of Variance

Analysis of Variance (ANOVA) is a statistical technique which is used extensively across
many different areas of research and it is used in this thesis to interpret results in Chapters 2
and 5. There are a number of different variations in the methods that are used for ANOVA
but the general principle involves an investigation into the effects of explanatory variables
on another variable of interest. The idea is that, typically, the variable of interest will exhibit
a high degree of variance over all observations but when the dataset is compartmentalised
based on the explanatory variables then the variance in each compartment will be lower. The
level of reduction in the variance reveals how large of an effect, if any, each explanatory
variable has on the variable of interest.

To determine whether or not a particular explanatory variable has an effect on the variable
of interest, an F-test can be performed. For example, if the variable can be expressed as a
number of different categories then the F test statistic is:

F =
variance between categories
variance within categories.
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The F test statistic can then be compared to the F-distribution (35) with (c − 1), (n − 1)
degrees of freedom where c is the number of categories and n is the total number of obser-
vations. The p-value is taken to be the probability that a random variable generated from the
F-distribution with (c − 1), (n − 1) degrees of freedom will be greater than F . A p-value
lower than 0.05 is usually considered to be significant.

All standard ANOVA presented in this thesis was performed using the lm and anova func-
tions available in R.

1.5.7 Species Interaction Networks

Types of Interactions

There are a number of different ways in which species can interact with each other within a
community. Interactions can be labeled as one of the following types:

• Predation involves members of one species using members of another species as a
source of food. This is clearly beneficial to the predator species and detrimental to the
prey species.

• Parasitism is another type of interaction that is good for one species but bad for the
other. The negative impacts on the host species are not as pronounced because they
are not always fatal.

• Mutualism refers to a symbiotic relationship between two species which is mutually
beneficial. One example of mutualism is a situation where a predator species feeds on
the parasites of another species.

• Commensalism is similar to mutualism except that the relationship only benefits one
species with the other unaffected. An example is a scavenger species taking advantage
of food left over by a predator species.

• Amensalism is a relationship which is detrimental to one of the species involved and
has no effect on the other. A larger organism may accidentally kill a smaller organism
without receiving any benefit.

• Competition between two different species occurs when both species require similar
resources within the community. These interactions have negative consequences for
both species because there would be more resources available if one of the competing
species were not present.
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Food Webs

A food web is a network of all of the predator-prey interactions within a community. An
organism in a food web is ranked according to its trophic level which describes the number
of links between a predator and the environment (trophic level zero). Strictly herbivorous
organisms are said to a have a trophic level of one, their direct predators have a trophic level
of two and so on. Fractional trophic levels are possible if an organism predates on organisms
of different trophic levels.

Interactions Based on Co-occurrence Data

A community containing many different species will be subject to a large number of inter-
actions between these species and the cumulative effect of these interactions will influence
the respective population size of each species. The quantity and variety of these interactions
means that their effect on species populations is often difficult to judge but, nevertheless,
attempts have been made to use co-occurrence matrices to infer interactions between species
in a community.

These analyses compare community composition between different sites and suggest that
some of the variation in different species’ abundances is caused by interactions between
species.

The methods outlined in this section may be used separately but, sometimes, a number of
different strategies can be applied to the same data. In these cases, only the interactions
appearing in all of the resultant networks survive to give a consensus between all of the
strategies used. For example, an “ensemble network” incorporating four different measures
was generated in a study by Faust et al. (36).

Correlation and Dissimilarity Matrices

One way of inferring interactions from co-occurrence data is to compute the correlation be-
tween each pair of OTUs. Two appropriate statistics for this purpose are the Pearson corre-

lation (37) and the Spearman correlation (38). Dissimilarity indices such as the Bray-Curtis

index, also described in Section 1.5.5, and the Kullback-Leibler divergence (39) can also be
used to infer interactions based on how different samples are with respect to their OTU com-
position.

More detail about these indices and their usage in the context of co-occurrence data analysis
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is provided in Section 5.4.4. In each case, the result of the analysis will be a square matrix
containing values to show how correlated or dissimilar each pair of OTUs are to each other.

SparCC

Some of the more basic methods of interaction inference are somewhat unreliable because
the relative abundances found from sequencing data do not correspond directly to the true
number of organisms belonging to each species. These abundances can be affected by vari-
ance in the number of copies of a gene present in different species. SparCC is another
approach used to infer correlation values from co-occurrence data which takes this into ac-
count and has been shown to produce good results on simulated data (40).

Results show (40) that the aforementioned compositional ambiguity is driven by OTU di-
versity within communities and the SparCC algorithm makes use of these findings to formu-
late a matrix of correlations which can be used to predict an interaction network. The true
network of interactions is assumed to be sparse, meaning that most potential interactions
between OTUs do not exist or are negligible. The SparCC approach is described in more
technical detail in Section 5.4.2.

Local Similarity Analysis

Local Similarity Analysis (LSA) is another technique which can be used to investigate rela-
tionships between pairs of OTUs and was first introduced in 2006 by Ruan et al. (41). LSA
can be used to detect similarities between OTUs in different samples but it is applied when
the samples are part of a study using time series. For this reason it was not used for any of
the research presented in this thesis but a brief overview follows in this section.

LSA requires time series data that has undergone a normal transformation (42). Normally
transformed abundance data is observed for two OTUs over n time intervals to give two time
series, O11, O12 . . . O1n and O21, O22 . . . O2n. An integer value, D, is chosen to specify the
maximum distance between time series points that an interaction can take place. A positive
score matrix, P , and a negative score matrix, N , both with dimensions of n × n, are then
calculated using the following algorithm taken from (41):

• For i, j = 1, . . . n :

P0,i = Pj,0 = 0 and N0,i = Nj,0 = 0.

• For i, j = 1, . . . n with |i− j| ≤ D :

Pi+1,j+1 = max[0, Pi,j +O1,i+1 ×O2,j+1] and
Ni+1,j+1 = max[0, Ni,j −O1,i+1 ×O2,j+1].
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• P (O1, O2) = max[Pi,j] for 1 ≤ i, j ≤ n and
N(O1, O2) = max[Ni,j] for 1 ≤ i, j ≤ n.

• MaxScore(O1, O2) = max[P (O1, O2), N(O1, O2)] and
Flag(O1, O2) = sign[P (O1, O2)−N(O1, O2)].

The local similarity score of the two time series, LS(O1, O2) can be calculated using the
formula,

LS(O1, O2) =
MaxScore(O1, O2)

n
.

Whether LS(O1, O2) is for positive or negative correlation between the two series is found
from the sign returned by Flag(O1, O2).

1.5.8 Ecological Models – Neutral Theory versus Niche Theory

Hubbell’s unified neutral theory of biodiversity and biogeography (or just “neutral the-
ory”) (43) states that every species will have the same chance of success per capita as every
other species that shares the same trophic level on a food web. The theory claims that random
events are the dominant force which determine which species will make up a community and
that competitive advantages of certain species are negligible. It follows that, in this model,
the level of diversity at any location is driven entirely by chance.

In contrast, niche theory (44) states that species will tend to occupy environments (niches)
that they are most suited to. It also states that competition between two trophically similar
species for the same niche can result in one of these species being driven away if it is signif-
icantly worse at adapting to that niche. Niche modelling can be used to predict the presence
of certain species in a location before they are observed there based on environmental fac-
tors. For example, if one site is sufficiently similar to another site (i.e. it provides the same
niche) then it is likely that the community composition of the two sites will be similar.

In practice, both theories can be applied in certain circumstances. Sometimes, within the
same community, a neutral model may be appropriate for some species but a niche model
will be a better representation for others. In simple terms, some species are more sensitive
to their environment than others.
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1.6 Thesis Overview

Chapter 2 describes two experiments that were carried out between 2007 and 2008. The first
of these was a study of meiofauna communities in sand sediment samples collected from var-
ious sites in Europe and one in Africa (Gambia). The aim of this study was to investigate the
distribution and diversity of the various meiofauna phyla in the collected samples. The sam-
ples were pyrosequenced (Section 1.2.3) and the resulting sequencing data were processed
for noise removal (Section 1.4). OTUs were generated and many of the methods outlined
in Section 1.5 were utilised to reveal valuable new information about the distribution and
diversity of meiofauna.

The second experiment described in Chapter 2 involves the analysis of individual nema-
tode samples and pooled nematode samples, with the component nematodes selected based
on their phylogenetic relatedness to each other. Again, samples were pyrosequenced and
processed for noise removal (Section 1.2.3 and Section 1.4). The results from the Perseus
chimera detection software were used to investigate drivers of chimera formation, answering
questions about the effects of sample composition and the nucleotide diversity at various re-
gions of genes.

Chapter 3 builds on the knowledge of how PCR works in practice (Section 1.2.3) and, in
particular, how PCR chimeras are formed (Section 1.4.2) in order to design algorithms to
simulate chimera formation in PCR. The implementation of these algorithms are tested and
parameters are calibrated using the results relating to chimera formation found in Chapter
2. A good PCR algorithm is an important development because it can be used as part of the
generation of in silico community datasets which allow fast and inexpensive analysis to be
performed on, for example, the appraisal of chimera detection software.

The topic of Chapter 4 is the generation, using the software developed in Chapter 3, and
subsequent analysis of in silico microbial communities. Because the full composition of
such a dataset is known (i.e. there is no hidden diversity) then a clear picture can be drawn
from its analysis using the techniques outlined in Section 1.5. It can be seen how well these
techniques really perform when attempting to analyse microbial communities. The true im-
pact of noise can also be illustrated because, in an artificial dataset, all noisy reads will be
flagged as such and so there is less room for ambiguity.

Although the experiments presented in Chapter 2 were not designed for this purpose, Chapter
5 demonstrates their versatility by using the resultant data for the generation of interaction
networks, including food webs of predator-prey interactions (Section 1.5.7). Co-occurrence
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data from the meiofauna community analysis is used to infer interactions between species. It
is also hypothesised that foreign DNA which was sequenced during the individual nematode
experiments is part of the main individual nematode’s diet. This is intriguing because it of-
fers a new method for inferring predator-prey interactions between species that are too small
for this to easily be achieved by observation.
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Chapter 2

DNA Sequencing Experiments on
Meiofauna

2.1 Introduction

2.1.1 Credit for Experiments and Analysis

Much of the analyses carried out in Chapters 3–5 are based on two pre-existing studies on
marine benthic communities of meiofauna (45) and individual meiofaunal organisms (46).
This chapter describes both of these experiments and presents, in detail, the analysis carried
out on the resultant data.

All of the analyses presented in this chapter were either carried out by Ben Nichols as part
of the collaborative effort for the publication of the two above cited articles or have been
repeated independently by Ben Nichols for inclusion in this thesis. All figures presented in
this chapter have been produced by Ben Nichols from the available experimental data ex-
cept where explicitly stated. Data collection and laboratory work were carried out by other
authors of the above cited articles and the methods have been presented in this chapter to
enable a complete understanding of the analyses that were undertaken.

2.1.2 Terminology: The Marine Benthos, Meiofauna and Protists

The marine benthos is the name given to the community of organisms that dwell in the sandy
sediment on the sea bed. A subgroup of these organisms are known as meiofauna which are
small invertebrates categorised by their size. Because of the variability of the within-species
sizes of these organisms, the definition of meiofauna is not precise. However, an approxi-
mate guide is to include organisms which are too large to fit through a 45µm mesh but small
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enough to fit through a 1mm mesh. Abundant meiofauna phyla include nematodes, platy-

helminthes and arthropods.

Protists are a large and genetically diverse group of eukaryotic unicellular organisms (or mul-
ticellular organisms without specialised tissues) which do not have much in common with
each other apart from their simple structure. Some metazoan (animal) protists, also known
as protozoa, can be found in the marine benthos and were analysed in conjunction with the
meiofauna for comparison. Examples of protist phyla are alveolata, cercozoa, rhizarea and
stramenopiles.

2.2 Experiment 1: Metagenetic Analysis of the Distri-

bution and Diversity of Marine Benthic Meiofauna

2.2.1 Introduction

Macroecology is the study of communities of organisms and the relationships of these or-
ganisms with their environment over large areas. Macroecological studies attempt to explain
why communities differ in composition based on their location and how much variation is
attributable to the changes in environment from location to location.

This study focuses on investigating the macroecology of meiofauna living in various ma-
rine benthic sites across Europe and Africa using next-generation sequencing techniques.
Little is known about the macroecology of meiofauna when compared to that of larger or-
ganisms. The obvious reasons for this are that meiofauna are harder to observe and are much
more diverse than larger animals. As a result, there is much debate about the nature of the
distribution patterns of meiofauna and other small organisms - an example of this being the
confusion over the wide distribution of marine meiofauna, despite the fact that these organ-
isms don’t usually have a planktonic larval stage (47).

The availability of next-generation sequencing has changed the way microbial communi-
ties are analysed (48) and, more recently, these strategies have been applied to communities
of small eukaryotic organisms (49) (50) (51) (52). The studies outlined in this chapter aimed
to apply these methods towards the marine benthos meiofauna which is comprised of many
understudied species-rich phyla and, previously, had received little analysis in these regards.
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2.2.2 Materials and Methods

Sample Collection

Samples of sandy sediment were collected at 23 locations - shown in Table 2.1 - around the
UK (16 sites), France (2 sites), Spain (2 sites), Portugal (2 sites) and Gambia (1 site) during
the summers of 2007 and 2008. The samples were obtained from the low-tide mark using
a standard corer methodology (53) - 44mm diameter × 100mm cores were used to collect
three samples at each site, approximately 10m apart from each other. The locations of the
sampling sites are shown in Table 2.1 and Figure 2.1.

In addition to this a further core was taken for sediment analysis using a Malvern Mastersizer
2000 as in (49). Environmental data was also obtained - seawater salinity from DEFRA (54)
and seawater surface temperature from NOAA (55).

Sampling Site Abbreviation Country Latitude Longitude
Prestwick PWK UK 55◦ 30′ 28.86′′ N 04◦ 37′ 29.34′′ W
Littlehampton LH UK 50◦ 48′ 07.56′′ N 00◦ 32′ 23.10′′ W
Mersey Egremont EGR UK 54◦ 29′ 11.28′′ N 03◦ 36′ 17.58′′ W
Moggs Eye MEye UK 54◦ 54′ 18.54′′ N 01◦ 21′ 14.22′′ W
Skye Staffin SkyeStaf UK 57◦ 38′ 09.24′′ N 06◦ 13′ 44.52′′ W
Dunnet Bay DBay UK 58◦ 36′ 52.08′′ N 03◦ 21′ 02.34′′ W
Seaham Seah UK 54◦ 51′ 16.86′′ N 01◦ 20′ 40.02′′ W
Exe Exe UK 50◦ 36′ 27.90′′ N 03◦ 30′ 29.28′′ W
Harwich HW UK 51◦ 56′ 13.50′′ N 01◦ 17′ 25.68′′ E
Sheerness Sheer UK 51◦ 26′ 24.66′′ N 00◦ 45′ 50.64′′ E
Porthtowan Porthw UK 50◦ 28′ 01.44′′ N 05◦ 02′ 08.88′′ W
Newborough Newb UK 53◦ 08′ 36.78′′ N 04◦ 24′ 22.98′′ W
Firth of Forth FirthF UK 55◦ 52′ 22.32′′ N 02◦ 04′ 53.52′′ W
Fraserburgh Fraser UK 57◦ 40′ 35.64′′ N 01◦ 59′ 52.38′′ W
Freshwater West FreshW UK 51◦ 39′ 27.12′′ N 05◦ 03′ 50.46′′ W
Silecroft Silecr UK 54◦ 12′ 57.66′′ N 03◦ 21′ 17.10′′ W
Praia Limpa PrLimpa Portugal 37◦ 05′ 27.48′′ N 08◦ 27′ 19.20′′ W
Vila Nova de Milfontes VNM Portugal 37◦ 43′ 26.70′′ N 08◦ 47′ 33.36′′ W
Mera Mera Spain 43◦ 22′ 41.88′′ N 08◦ 20′ 16.50′′ W
Sada Sada Spain 43◦ 20′ 34.02′′ N 08◦ 14′ 22.26′′ W
Cap Ferret CapFer France 44◦ 20′ 40.32′′ N 01◦ 16′ 33.90′′ W
St. Jean StJean France 43◦ 23′ 40.08′′ N 01◦ 39′ 37.02′′ W
Gambia Gamb Gambia 13◦ 28′ 08.52′′ N 16◦ 39′ 51.72′′ W

Table 2.1: Abbreviations and geographical information for the 23 sampling sites.

The samples were stored and preserved in 500ml storage pots with 300ml of DESS (20%
DMSO and 0.25M disodium EDTA, saturated with NaCl, pH 8.0) (56). The whole core
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Figure 2.1: Map of the 22 European sampling sites. The 23rd sampling site is located in Gambia (not shown).
Figure taken from (45).
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from each sample site was used to administer meiofaunal size faction and DNA extrac-
tion (49) (23).

Primer Design and PCR Strategy

Primers were chosen to anneal to regions of the 18S rDNA gene that are highly conserved in
meiofauna and are either side of a highly variable region which is ideal for the selection of
operational taxonomic units (OTUs) (23). These primers were the forward primer:

SSU FO4 (5’-GCTTGTCTCAAAGATTAAGCC-3’)

and the reverse primer:

SSU R22 (5’-GCCTGCTGCCTTCCTTGGA-3’)

which amplified approximately 450bp of the V1-V2 regions of the nuclear small subunit
rDNA (18S rDNA).

Fusion primers, PCR amplification and 454 sequencing were carried out using the proce-
dures outlined in (23) and (49).

Data Analysis and Generation of OTUs

Four half-plates of 454 Roche GSFLX pyrosequencing generated sequences which were then
processed using AmpliconNoise for denoising (18). Short sequences (those with fewer than
199 bp) and singletons were removed, resulting in an average sequence length of 200-220
bp. Chimeras, like any erroneous extra sequence, are known to artificially inflate diversity
levels and so were identified and removed using Perseus (18).

After noise removal and chimera checking was complete, a distance matrix was calculated
for all sequences to show how similar each sequence is to every other sequence. Two differ-
ent sets of OTUs were generated using a complete linkage clustering algorithm, a “farthest
neighbour” clustering method which involves measuring the distance between the most dis-
tant members in each cluster and grouping clusters together based on this distance.

In the first set, OTUs were represented by clusters of sequences with at least 99% simi-
larity within each cluster and in the second set, 96% was chosen to be the cut-off. The 99%
cut-off was chosen to investigate the distribution of intra-species genotypic diversity. The
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96% cut-off was chosen because the AmpliconNoise analysis of a reference nematode com-
munity (24) shows that this level of similarity closely resembles actual taxonomic species
richness. Therefore, the 99% OTU clustering can be thought of as the distribution metric

and the 96% OTU clustering can be thought of as the richness metric.

Megablast was used on the GenBank/EMBL/DDBJ nucleotide database for taxonomic as-
signment. The OCTUPUS annotation and parsing toolkit (49) was used for OTU annotation
and this was restricted to matches of 90% or better.

Diversity and Community Analysis

The fewest number of reads, prior to noise-removal and clustering, generated for any of the
23 sites was 9490. To standardise the data, this number of sequences were randomly selected
from each site so that they each contained 9490 sequences (218270 in total).

Site-specific rarefaction curves were created using the DiversityEstimates software available
in AmpliconNoise and phylum specific rarefaction curves were generated through EstimateS
8.2.0 (57) which uses a variety of different richness estimators. The Chao1 estimator was
chosen because it is not greatly affected by sample size and is most informative when used
on datasets which are skewed towards the low-abundance classes (30) and is therefore ap-
plicable for datasets involving an unevenly distributed selection of microorganisms which
exhibit both of these properties. This analysis was repeated using the specaccum (species
accumulation) function in the Vegan package in R.

Cluster dendograms and multidimensional scaling (MDS) with 50 random starts were gen-
erated using PRIMER 6 (58). This required the computation of Sørensen’s similarity coeffi-
cient among samples using a presence/absence similarity matrix. This analysis was repeated
using the hclust function in R.

PRIMER 6 was also used to perform a similarity profile test (‘SIMPROF’) permutation
test which is designed to test whether similarities observed in the data are of greater or
smaller magnitude than those expected by chance. A permutational multivariate analysis of
variance (‘PERMANOVA’) was also performed to test for significant differences in the com-
position of the samples obtained from different sites. These analyses were based on 1000
different permutations of Sørensen’s similarity coefficient calculated using untransformed
presence/absence data from all sites.

To test if there was a relationship between geographical distance (minimum coastal dispersal
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distance between sites) and the composition of the samples a Mantel-type test (’RELATE’),
using Primer, was carried out on two distance matrices - the first was the distance matrix of
geographical distances and the second was the community composition (presence/absence
data).

Similar RELATE tests were carried out on euclidean distance matrices calculated from the
recorded environmental variables - seawater salinity, seawater surface temperature and sedi-
ment grain size in order to determine the effect of these variables on community composition.
In order to reduce the effect of false positives, sequential Bonferroni corrections were applied
where appropriate because these are considered to be more sensitive to false positives than
standard Bonferroni corrections (59).

To find out the most useful geographic and/or environmental parameters for describing pat-
terns occurring within each phylum, the adonis function in the Vegan package in R was
used. This function performs a partition multivariate analysis of variance which partitions
distance matrices among sources of variation and performs permutation tests to determine
the significance of the partitions, in this case Bray-Curtis distances were calculated for each
phylum against the environmental and geographical parameters (sea water temperature, sea
water salinity, sediment grain size and latitude). The permutation tests work by generating
999 random permutations of the observed data and performing ANOVA on each of these.
The F-statistics returned from these tests are compared with the F-statistics returned from
an ANOVA test on the true data to calculate the p-values which determine the significance
levels.

It has been shown that Hubbell’s Neutral Theory of Biodiversity (43) can be approximated as
a hierarchical Dirichlet process (60). In order to investigate the appropriateness of a neutral
model when applied either to individual phyla or to all phyla present in this study, a hierar-
chical Dirichlet process was fitted to the community data using a Bayesian strategy. From
the fitted model, neutral metacommunities were generated (one of each phylum and one for
the all phyla combined) and the likelihoods of the abundances in these metacommunities
were compared with the likelihoods of those in the corresponding observed datasets. The
proportion of these likelihoods that exceeded the observed value was recorded as a pseudo
p-value that the data followed a neutral model. This analysis could be used to investigate
localised neutrality or neutrality across all sites.

ANOVA in R was used to assess which explanatory variables the neutrality, or lack of, ex-
hibited by particular phyla could be attributed to. The variables that were investigated were
phyla richness and whether the phyla was meiofaunal or protist.
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2.2.3 Results

Sequence Data and Sampling Efficiency

After denoising and chimera removal the total number of reads generated from all sampling
sites was reduced from 877423 to 694802. Figures 2.2 and 2.3 are rarefaction curves with an
OTU cut-off of 96% showing that sequencing effort was incomplete for most samples with
a significant proportion of the existing diversity at species level unidentified.

Figures 2.4 and 2.5 are similar rarefaction curves, with a 99% OTU cut-off, showing that
a significant proportion of within species diversity remains unidentified.

Community Diversity, Composition and Richness

The proportion of 99% OTUs in each sampling site that were shared with at least one other
sampling site and, by association, the proportion of unique OTUs are shown in Figure 2.6. It
can be seen that the outgroup reference site in Gambia has the highest proportion of unique
OTUs (74%), suggesting that geographical distance plays a part in the composition of meio-
fauna communities. Cap Ferret (France) and Sheerness (UK) had the next highest proportion
of unique OTUs with 60% and 53% respectively.

Figure 2.7 presents the same information for 96% OTUs. The sites are generally distributed
in the same way, with those that had a higher proportion of unique 99% OTUs also having a
higher proportion of unique 96% OTUs and those that had a lower proportion of unique 99%
OTUs also having a lower proportion of unique 96% OTUs. In particular, the three sites with
the most unique OTUs - Gambia, Cap Ferret and Sheerness - are unchanged. One exception
to this was Seaham which was ranked fifth in terms of its unique 96% OTU proportion but
only fourteenth at the 99% level.

At all sites, the proportion of unique 96% OTUs was lower than the proportion of unique
99% OTUs and overall there was a lower proportion of unique 96% OTUs than unique 99%
OTUs (27% versus 39%). This suggests that there is more variation in community composi-
tion at the species level than the phylum level and confirms that there are more rare species
than rare phyla. This is clearly the case because species belonging to rare phyla will be rarer
still.

The bulk of all unique and shared OTUs were made up by nematodes and platyhelminthes
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Figure 2.2: Rarefaction curves for the first 12 sampling sites using 96% OTUs. Denoised reads were clustered
into OTU groups of 96% or greater similarity. Subsamples of increasing size were taken and the number of
unique OTUs in each subsample was plotted.
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Figure 2.3: Rarefaction curves for the final 11 sampling sites using 96% OTUs. Denoised reads were clustered
into OTU groups of 96% or greater similarity. Subsamples of increasing size were taken and the number of
unique OTUs in each subsample was plotted.
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Figure 2.4: Rarefaction curves for the first 12 sampling sites using 99% OTUs. Denoised reads were clustered
into OTU groups of 99% or greater similarity. Subsamples of increasing size were taken and the number of
unique OTUs in each subsample was plotted.

0 10000 20000 30000 40000 50000 60000 70000

0
10
0

20
0

30
0

40
0

50
0

Number of reads

N
um

be
r o

f 1
%

 O
TU

s

Sheerness
Littlehampton
Exe
Porthtowan
Praia Limpa
Vila Nova de Milfontes
Mera
Sada
Cap Ferret
St. Jean
Gambia

Figure 2.5: Rarefaction curves for the final 11 sampling sites using 99% OTUs. Denoised reads were clustered
into OTU groups of 99% or greater similarity. Subsamples of increasing size were taken and the number of
unique OTUs in each subsample was plotted.
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Figure 2.6: Unique and shared OTUs (99%) at each sampling site. A shared OTU is defined as an OTU that
appears at more than one sampling site.

with nematodes contributing more to the unique OTUs and platyhelminthes contributing
more to the shared OTUs, as can be seen in Figure 2.8.

The main meiofauna phyla are investigated in terms of their richness and distribution across
sites in Figures 2.9 and 2.10. The data were clustered into 96% OTUs which were each as-
signed to the correct phylum. Figures 2.9 and 2.10 suggests that the distribution of phyla in
continental European sites is more heterogeneous than those in the UK which are more dom-
inated by the abundant meiofauna such as nematodes and platyhelminthes. There was also a
positive correlation between the presence of nematodes and platyhelminthes across all sites -
a sequentially Bonferroni-corrected Spearman correlation value of ρ = 0.0025 was returned
with a significant p-value of P < 0.05. No other significant phyla richness correlations were
discovered.
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Figure 2.7: Unique and shared OTUs (96%) at each sampling site. A shared OTU is defined as an OTU that
appears at more than one sampling site.

In all but one site, Nematoda was the most dominant phylum in terms of number of OTUs. A
general phyla richness ranking of Nematoda followed by Platyhelminthes and then Arthro-
poda is observable with the other, less abundant, phyla more variable in rank (Figures 2.9
and 2.10).

The only association between OTU richness and the environmental variables was between
mollusc richness and latitude (ρ = −0.658; P = 0.0006).

The Mantel-based tests showed that there were significant relationships (P < 0.05) be-
tween phylum community composition and most variables analysed (the finer grain size -
D0.1, seawater surface temperature, geographical distance and latitude) for most meiofauna
phyla. Seawater salinity was only significant for Annelida and Tardigrada, whilst the coarser
grain size was only significant for the more abundant meiofauna (D0.5 was significant for
Platyhelminthes and Nematoda; D0.9 was significant only for Nematoda). None of the vari-
ables showed significant associations with any of the protist groups - Rhizaria, Alveolata and
Stramenopiles. This information can be found in Table 2.2.

Table 2.3 shows the results of variance partitioning analysis on the factors, latitude, seawater
surface temperature, sediment grain size and seawater salinity. In most phyla, latitude and
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Figure 2.8: 99% OTUs from each phyla expressed as their proportional contribution to the composition of each
category (unique or shared). A shared OTU is defined as an OTU that appears at more than one sampling site.

Phylum
D0.1 D0.5 D0.9 SST (◦C) Salinity (%) Distance (km) Latitude

ρ P ρ P ρ P ρ P ρ P ρ P ρ P
Nematoda 0.394 0.001* 0.302 0.002* 0.164 0.009* 0.41 0.002* -0.101 0.778 0.279 0.005* 0.413 0.002*
Platyhelminthes 0.345 0.003* 0.281 0.007* 0.180 0.07 0.380 0.002* -0.106 0.814 0.320 0.002* 0.416 0.004*
Copepoda 0.289 0.008* 0.195 0.420 0.125 0.12 0.247 0.014* -0.041 0.634 0.098 0.14 0.168 0.053
Mollusca -0.067 0.786 -0.039 0.676 -0.039 0.653 0.053 0.282 -0.002 0.492 0.245 0.003* 0.144 0.053
Annelida 0.126 0.125 0.118 0.134 0.057 0.289 0.348 0.005* 0.107 0.018* 0.140 0.083 0.263 0.015*
Tardigrada 0.083 0.184 0.026 0.406 0.003 0.448 0.141 0.072 0.174 0.038* 0.162 0.039* 0.193 0.025*
Rhizaria 0.027 0.380 0.054 0.267 0.002 0.486 0.037 0.341 0.002 0.504 0.002 0.466 0.032 0.314
Alveolata 0.034 0.339 -0.045 0.685 0.074 0.771 0.054 0.240 0.002 0.480 0.072 0.188 0.103 0.132
Stramenopiles 0.023 0.353 0.049 0.269 0.051 0.271 0.012 0.396 0.013 0.508 0.013 0.402 0.031 0.350

Table 2.2: Spearman’s correlation (ρ) and Mantel test p-value (P ) between community similarity and vari-
ous environmental variables - grain size (D0.1, D0.5 and D0.9), surface seawater temperature (SST), seawater
salinity, geographical distance and latitude - for the main meiofauna and protist (Rhizaria, Alveolata and Stra-
menopiles) phyla. Significant p-values are marked with an asterisk.

seawater surface temperature account for most of the variance (R2) in the communities and
show very significant (P < 0.01 or P < 0.001) associations with community structure. The
exceptions to this are Annelida, which still returned a significant result for the relationship
(P < 0.05), and Tardigrada which did not return a significant result.

Conversely, the sediment grain size and the seawater salinity did not explain much of the
variance in the communities or show significant associations with community structure in
any phyla apart from Gastrotricha. For Gastrotricha, seawater salinity made up almost as
much variance as the latitude and seawater surface temperature and showed a significant
(P < 0.05) association with community structure.
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Figure 2.9: Phylum richness at each sampling site, calculated using the number of 96% OTUs.

Phylum Latitude/SST S01 Salinity Residual
Nematoda 0.173*** 0.051 0.051 0.725
Platyhelminthes 0.103*** 0.058 0.048 0.791
Copepoda 0.127** 0.061 0.039 0.772
Gastrotricha 0.130** 0.046 0.127* 0.699
Annelida 0.099* 0.074 0.055 0.772
Mollusca 0.096** 0.069 0.028 0.806
Tardigrada 0.061 0.054 0.086 0.798
***P < 0.001; **P < 0.01; *P < 0.05; . P < 0.10.

Table 2.3: Variance partitioning analysis output to show environmental variables and their ability to explain
community structure. The R2 values shown represent the variance attributable to each factor - note that a lot
of residual (unexplained) variance is present. The factors S01 and SST are grain size and seawater surface
temperature respectively.

Note from Table 2.3 that the effect of latitude and seawater surface temperature were not
evaluated at the same time. This is because these two factors are highly correlated with each
other and, therefore, gave the same results for R2 values and significance level. Note also
that the residual R2 values are all around 0.7 to 0.8. This means that much of the variance
observable in community structure is unexplained by the environmental and geographical
factors that were examined.

The clustering analysis, illustrated in Figure 2.11, indicated that most of the samples taken
from the same sampling site were more closely related to each other than they were to sam-
ples taken from different sites. An exception to this is one of the samples from Praia Limpa
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Figure 2.10: Percentage of total OTUs made up from each phylum at each sampling site. 96% OTUs were
used.

(PrLimpa1) which bore more resemblance to some UK samples than it did to the other two
Praia Limpa samples.

The clusters were tended to be grouped with observable geographical trends. Geographi-
cally closer sites were generally more similar than distant sites. Samples from Gambia, as
expected, formed an isolated dissimilar cluster. UK sites tended to be more closely related
to each other than mainland European sites and vice versa. There were some exceptions,
however. For example, the two French sites of St. Jean and Cap Ferret appeared dissimilar
to each other, indicating that other factors influence sample composition in addition to geo-
graphical distance.

The phylum-specific rarefaction curves shown in Figure 2.12 suggest, due to their relatively
steep gradients, that these phyla (Nematoda, Platyhelminthes, Arthropoda, Annelida and
Gastrotricha) were under-sampled and that much of their diversity remains hidden.

The data that were found after fitting hierarchical Dirichlet processes to community data in
Table 2.4 show that when the community is viewed as a whole, a neutral model is not a good
fit. However, if the model is fitted to individual phyla then a neutral model does appear to be
an appropriate fit for the majority, especially when applied on a localised scale. More abun-
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dant phyla, such as nematodes and Platyhelminthes, are the exception to this and ANOVA
results show that there is significant evidence that neutrality is related to the phyla richness
on a local scale (Table 2.5). There is also some evidence that neutrality is related to richness
across all sites and that it is related to the type of phyla on a local level, with protist groups
more likely to follow a neutral model.

Phyla Classification 96% OTUs
Pseudo p-value

(all sites)
Pseudo p-value

(localised)
All Phyla - 1290 0.000 0.000
Alveolata Protist 52 0.635 0.740
Annelida Meiofauna 35 0.770 0.805
Arthropoda Meiofauna 100 0.039 0.337
Cercozoa Protist 25 0.953 0.902
Gastrotricha Meiofauna 30 0.474 0.584
Mollusca Meiofauna 31 0.565 0.544
Nematoda Meiofauna 413 0.000 0.000
Platyhelminthes Meiofauna 181 0.014 0.173
Stramenopiles Protist 100 0.000 0.403
Tardigrada Meiofauna 20 0.563 0.776

Table 2.4: Pseudo p-values calculated from fitting neutral models as hierarchical Dirichlet processes to com-
munity data for different phyla. A pseudo p-value is calculated as the proportion of the likelihood of the fitted
metacommunity that exceeded the observed value.

Scope of Neutral Model
Richness

(96% OTUs)
Type of Phyla

(Meiofauna or Protist) Residual R2

All Sites 0.057 . 0.404 0.624
Localised 0.004 ** 0.092 . 0.189
***P < 0.001; **P < 0.01; *P < 0.05; . P < 0.10.

Table 2.5: ANOVA output to show significance of explanatory variables for the appropriateness of a neutral
model.

2.2.4 Discussion

In microbial macroecology it is accepted that, generally, more abundant species are likely
to be well dispersed and have high ubiquity levels and, in contrast, rarer species are more
likely to be localised (61). The study described in this section shows similar effects on meio-
fauna with the most abundant phyla (Nematoda and Platyhelminthes) containing numbers of
shared OTUs that were disproportionately high when compared with less abundant phyla.
This corroborates the previous beliefs about how species’ ecology affects dispersal and sug-
gests that more abundant species are more likely to be highly dispersed.

In most samples, Nematoda, followed by Platyhelminthes and Arthropoda were the most
dominant phyla. The numbers of the less dominant phyla were more variable from sample
to sample with no obvious hierarchy below the aforementioned three phyla. This suggests



2.2. Experiment 1: Metagenetic Analysis of the Distribution and Diversity of Marine
Benthic Meiofauna 69

that, for more abundant taxa, a neutral model of ecology is not appropriate for the marine
benthos, although it may be applicable to the less abundant organisms in isolation. In addi-
tion to this, the observed correlation in abundance between Nematoda and Platyhelminthes
suggests that they may be competing for the same resources which would promote the idea
of an ecological niche.

The most influential factors on community composition were the latitude and seawater sur-
face temperature which are highly correlated with each other because, of course, seawater is
warmer closer to the equator. It is apparent that, as in larger organisms, certain meiofauna
species thrive in the warmth whereas others prefer cooler temperatures. This characteristic is
not noticeable in protist groups (Table 2.2), suggesting that it may not be present in smaller
eukaryotic organisms. This is further evidence that meiofauna distribution is niche-driven
and that protist groups are perhaps, more affected by spatially limited dispersal..

The above observations are reinforced by the results gained from fitting neutral models as
hierarchical Dirichlet processes. These results agreed that neutral models were generally a
poorer fit when applied to more abundant phyla and that neutrality was more likely to occur
in protist groups, especially when viewed at a local level.

An important question that arises from this analysis is: how would seasonality affect the
gathered data? All of the samples were collected during the summer in the Northern Hemi-
sphere but it would be enlightening to see how the communities changed during the year,
indeed there have been a number of studies into the effects of seasonality on marine eu-
karyotic communities (62) (63) (64) all of which show some seasonal change in community
structure. This leads to further questions regarding the relative importance of location and
climate - how closely would the community of a northerly site in summertime resemble that
of a more southerly site later in the year when the temperature has dropped to a similar level?

The type of sediment (with fine silt having a particularly marked effect) has been shown
to have an effect on community composition, with that of the phyla Nematoda and Platy-
helminthes most influenced by this factor. Continued study in this area may be able to
determine requirements and preferences towards different sediment types for each phyla.

The levels of variation between samples taken from the same site were generally very low
when compared to variation between different sites. However, there were still some similar-
ities between geographically distant samples that may reflect co-existence between certain
species of meiofauna.
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As has been shown to be the case in all domains of life (65) (66), levels of similarity in
meiofauna communities decreases as geographical distance increases although this effect is
not as pronounced in the protist groups. The samples taken from Gambia, the most geo-
graphically distant site, showed high levels of beta diversity (diversity between samples) but
had the lowest overall community richness. This may be explained by low evenness levels
at this site. Other sites showed high levels of both alpha and beta diversity (Cap Ferret,
Sheerness and Harwich) which indicates a high rate of turnover at these sites. This could be
attributable to unrecorded changes in environmental conditions.

A degree of cosmopolitanism in some species of meiofauna is evident from this study with
a proportion of OTUs being shared between multiple sites. Around 40% of OTUs, however,
were unique to a particular site which gives evidence for diverse localised communities with
a high level of beta diversity. This pattern was noticeable for all phyla and all sampling sites
and is similar to that of a previous study (67) which showed 30% of protist taxa as endemic.

The rarefaction analysis indicates that a large amount of species diversity remains undis-
covered, showing that the marine benthos is a very diverse and enigmatic environment - due
to the evidence of under-sampling inferred from the rarefaction data there is reason to believe
that the diversity of the meiobenthos is currently underestimated.

Because of the apparent under-sampling, it is difficult to ascertain whether certain species
are genuinely absent from particular sites or if they were merely not sampled. What should
be apparent is that there are many low abundance species which have not been analysed
adequately and, therefore, their ecology remains more mysterious compared to the better
understood ecology of the more abundant species. The limitations on sampling depth mean
that this is an unavoidable consequence of this study and others like it.

The richness estimates, using the Chao1 estimator, suggest that there are 2500 meiofauna
OTUs in the combined sampled area. Around the UK there was an average of approximately
60 unique OTUs per site with a minimum distance between sites of 20km. Extrapolating this
to the 356,000km of the worlds coastline returns an estimate of approximately one million
unidentified coastal meiofauna species globally. This estimate is reached using a conser-
vative cut-off of 96% OTUs and is restricted to coastal meiofauna which suggests that the
prediction of 2.21 eukaryotic marine species (68) is a major underestimate.

Of the 2500 estimated meiofauna OTUs across all sampling sites, over 830 of these are
nematodes. Other estimates for marine nematode richness have predicted that there are 450
species around the British Isles and 1837 species around Northern Europe (47) (69). There



2.2. Experiment 1: Metagenetic Analysis of the Distribution and Diversity of Marine
Benthic Meiofauna 71

are also reports that 30–40% of free-living Nematoda identified in field surveys of the seas
of Europe are new to science (70). Although there is controversy regarding marine species
richness, it seems certain that currently richness is underestimated and much of the undis-
covered richness is likely to be made up of microorganisms in less explored habitats such as
the deep sea and soil (68).
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Figure 2.11: Clustering dendrogram to show the similarity of all 69 samples based on Sørensen’s coefficient
applied to presence/absence data for each sample. The hclust function in R was used to generate the dendro-
gram.
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Figure 2.12: Phylum-specific rarefaction curves to show the mean expected number of 96% OTUs (using
the Chao1 richness estimator) against sample size. Curves were estimated from 100 randomisations without
replacement using the specaccum function in the Vegan package in R.
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2.3 Experiment 2: Investigating the Effects of Genetic

Diversity and Sample Richness on Chimera For-

mation

2.3.1 Introduction

The arrival of next generation pyrosequencing has allowed great progress to be made into the
analysis and understanding of prokaryotic and eukaryotic microbial communities (71) (72)
(49) (73). One of the barriers to this is the formation of chimeras during PCR (Section 1.4.2)
- this is a major issue that affects the reliability of NGS and jeopardises the validity of any
conclusions drawn from studies using such technologies. A series of experiments were car-
ried out (46) in which pooled samples of multiple nematodes were sequenced (a variable
region within the 18S nSSU gene was chosen) and analysed in order to investigate the for-
mation of chimeras. In addition to this, similar experiments were carried out on 74 sam-
ples, each containing a single species of nematode. The exact sequences for these 74 single
nematodes were known because they had been found separately using Sanger sequencing
(Section 1.2.2).

The proportion of chimeras in datasets generated from nSSU sequencing has been shown
to vary from 30–70% (74) (75) (76) and five factors have been shown to influence recombi-
nation during PCR (77) (76) (75). These are the number of PCR cycles, PCR extension time,
DNA template concentration, Taq DNA polymerases and amplicon size. Chimera formation
can be inhibited by attempting to optimise the PCR protocol but no method has managed
to be sufficiently successful, meaning that post-sequencing chimera detection is the only
method available to combat this problem.

The effects of the phylogenetic diversity and richness of a sample on chimera formation
have, until now, undergone little investigation barring a small study which was carried out
on the effects of sequence similarity on chimeras using cloned 16S rRNA genes and mixed
bacteria genomic DNA (76) (78). This study did not consider sample richness and pre-dated
the current second-generation sequencing perspective of amplicon pool diversity.

The main goals of the research presented in this section were to, firstly, investigate the effect
of sample richness, evenness and genetic diversity on the formation of chimeras and to link
this to diversity estimates. The second goal was to investigate the role of variation within the
amplicon sequences, and also the variation of the secondary structure of the nSSU molecule
on chimera formation.
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2.3.2 Materials and Methods

Sample Preparation

The sequences of 74 Sanger-sequenced individual nematode species were blast aligned to a
contemporary Nematoda phylogenetic framework (79). In order to divide these sequences
into pools of closely related species and distantly related species, an alignment was created
using ClustalX and the pairwise distances (p-distance) between sequences were calculated
using MEGA-4.1 (80). Closely related pools were formed from sequences with mean p-
distance (MPD) of less than 25% - referred to as ‘phylogenetically close’. Distantly related
pools were formed from sequences with MPD of greater than 40% - referred to as ‘phylo-
genetically distant’. In all, 30 pools were formed - 15 phylogenetically close pools (5 with
12 species, 5 with 24 species and 5 with 48 species) and 15 phylogenetically distant pools of
the same makeup.

DNA Extraction and Preparation

DNA was extracted from DESS-preserved nematodes (56) using a DNeasy blood and tissue
kit (Qiagen Inc). The DNA was eluted in 40µl of AE buffer and stored at -20◦C. A Nanodrop
spectrophotometer was used to quantify DNA extracts from all individual nematodes which
were then diluted to 0.5ng/µl.

PCR Amplification and Sequencing Analysis

The forward primer:

SSU FO4 (5’-GCTTGTCTCAAAGATTAAGCC-3’)

and the reverse primer:

SSU R22 (5’-GCCTGCTGCCTTCCTTGGA-3’)

were again used to amplify approximately 450bp of the V1-V2 regions of the nuclear small
subunit rDNA (18S rDNA).

Fusion primers were developed (49) and PCR amplification reactions and the thermocycle
for the targeted region were optimised using 0.25ng/µl of genomic DNA template in three
40µl reactions, where Pfu DNA polymerase (promega) was used for each of the phylogenet-
ically close and distant nematode pools and all individual DNA extracts.



2.3. Experiment 2: Investigating the Effects of Genetic Diversity and Sample Richness
on Chimera Formation 76

PCR thermocycling was initiated with a 2 minute denaturation step at 95◦C which was fol-
lowed by 35 cycles - intended to optimise the number of chimeras formed (74) (76) (78) -
of 1 minute at 95◦C, 45 seconds at 55◦C and 3 minutes at 72◦C for each cycle and a final
extension of 10 minutes at 72◦C. Negative controls using pure water only were applied for
all amplification reactions.

Top VisionTM LM GQ Agarose (Fermentas) on a 2% gel was used to undertake the elec-
trophoresis of the triplicate PCR products and the QIAquick Gel Extraction Kit (Qiagen)
was used to purify the expected 450bp fragment in accordance with the manufacturer’s in-
structions. An Agrilent Bioanalyser 2100 was used to quantify all purified PCR products
before they were all diluted to the same 10ng/µl concentration.

Sequencing was performed at Liverpool University’s Centre for Genomic Research, UK,
using a 454 Roche GSFLX. All PCR amplifications were sequenced in a single direction
(A-Amplicon) with the single nematodes sequenced on a quarter of a plate and the pooled
nematodes sequenced on three quarters of a plate.

Denoised Reads and Chimera Detection

AmpliconNoise was used to remove the noise from the resulting amplicons following the
filtering, flowgram and clustering steps described in Chapter 1 and Perseus was used, also as
described, to identify the chimeras.

The output from Perseus gives the most likely break point for each chimera based on its
two identified parent sequences - calculated by minimising the number of differences from
each contributing parent when both are aligned with the chimera. These break points were
standardised for the whole dataset by forming a four-way alignment of each chimera, its
two parents and a reference sequence (Caenorhabditis elegans) using ClustalX (16). The
position of each break point on the reference sequence was recorded to give a standardised
break point. The frequency of each standardised break point could then be recorded to assess
which regions of a sequence were most susceptible to chimera formation.

The potential role of the 18S rDNA amplicon region’s secondary structure on chimera for-
mation was investigated using MFold RNA-folding software (81).
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Generation of OTUS

OTUs were generated with a 99% identity cut-off using a complete linkage clustering al-
gorithm as described in Section 2.2.2. The number of OTUs in each sample was used as an
estimate of taxa richness and the effects of this metric on chimera formation was investigated.

Species Diversity and Nucleotide Diversity

As has been discussed in Chapter 1, species diversity or, more accurately for the analysis in
this chapter, OTU diversity is measured using the Shannon index,

H ′ = −
S∑
i=1

{pi ln(pi)}

where S is the total number of OTUs and pi is the probability of a randomly chosen individ-
ual belonging to OTU i.

Nucleotide diversity was also calculated using this index. An alignment of all good (non-
chimeric) sequences with the C. elegans reference sequence was formed and a value of H ′

was found for each position on this alignment. In this case, S = 4 represents the number of
possible nucleotides and pi is the proportion of nucleotide i at the position in question.

Analysis of Variance

To analyse the relationship between explanatory variables (e.g. relatedness, number of in-
dividuals in experiment, number of reads, diversity of sample) and the overall chimera per-
centage, analysis of variance (ANOVA) was used.

A linear model was fitted to the data, giving a multiplicative coefficient for each explana-
tory variable. ANOVA was carried out to determine a p-value for each explanatory variable,
i.e. the probability that its coefficient is equal to zero. In other words, a small p-value is
evidence that the associated explanatory variable has an effect on the chimera percentage.
Unnecessary variables were removed and the model was refitted to give an accurate ANOVA
table.

Three models that were analysed were:

1. Chimera percentage versus relatedness, number of individuals and number of reads.
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2. Chimera percentage versus relatedness, number of OTUs and number of reads.

3. Chimera percentage versus relatedness, Species Diversity and number of reads.

These models had to be analysed separately because there is obvious dependence between
number of individuals, number of OTUs and Shannon index. The linear modelling (lm) and
ANOVA functions found in R were used for this analysis.

2.3.3 Results

The ANOVA output suggested that Relatedness (p-value 3.5×10−6), Species Diversity (p-
value 4.5×10−4) and the number of OTUs (p-value 7.9×10−3) all had a significant effect on
the number of chimeras formed.

Output from Perseus indicated that the amount of chimeras present ranged from around 14%
to 60% of the total sequences - see Table 2.6. From the ANOVA results, it can be seen that
the two main causes of this variation are species diversity and species relatedness. This is
illustrated in Figures 2.13 and 2.14 where it can be seen that the more distantly related pools
produced more chimeric sequences (Figure 2.13) and also more chimeric reads as a percent-
age of the total number of reads (Figure 2.14). A clear positive correlation between species
diversity and the chimera percentage can also be seen in both cases. This correlation was
also observed by (82) and (78) using bacterial data.

An important influence on the formation of chimeras is the position where PCR fails, thus
forming the fragment of DNA from which the chimera is generated. Clearly, if a sequence
contains a region that is more susceptible to PCR failure then the probability of chimera
formation is increased. Figure 2.15 shows the relationship between nucleotide diversity at a
given position and the break point frequency at that position. There is a negative correlation
between the two variables, that is, more conserved regions of the sequence tend to result
in break points and regions were nucleotide diversity is higher contain fewer break points..
The relationship was shown to be significant, with a sufficiently small probability (p-value
3.9×10−4) of there being no correlation.

The majority of break points occurred between positions 80 and 200 on the alignment. Fig-
ure 2.16 shows the break point frequency (bottom graph) and nucleotide diversity (top graph)
at each of these positions. The relationship can be seen in the way the peaks in the top graph
line up with the troughs in the second graph and vice versa.

Break point histograms divided into the six different pools (closely and distantly related
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pools of 12, 24 and 48 nematode species) are shown in Figures 2.17 and 2.18. These demon-
strate similar break point distributions for all pools, particularly the small peak around posi-
tion 100 and a larger peak around position 170 on the alignment with the reference sequence.

Related #Species #OTUs at 99% #Sequences Chimera% #Reads
Close 48 87.6 138.40 35.60 13882.20
Close 24 40.4 63.20 34.55 3809.00
Close 12 35.8 42.80 14.57 6159.80

Distant 48 63.2 161.00 58.98 5657.80
Distant 24 53.6 119.00 53.57 10134.20
Distant 12 34.4 58.20 39.93 7638.20

Table 2.6: Data for each experiment. Values shown are the means of the five repetitions.
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Figure 2.13: Chimera formation against species diversity shown for closely related and distantly related pools.
The species diversity for each sample was calculated as the Shannon index of the denoised data.

2.3.4 Discussion

The number of chimeras generated (up to 60% in some datasets) confirm that 35 rounds of
PCR do tend to generate a large number of chimeras, as has already been claimed by previ-
ous studies (76) (82) (83). This result reinforces the necessity of running chimera detection
software in order to process sequencing data to a state where they are fit for analysis. Failure
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Figure 2.14: Chimeric read percentage against species diversity shown for closely related and distantly related
pools. The species diversity for each sample was calculated as the Shannon index of the denoised data.

to do so will undoubtedly lead to over-inflated OTU richness and erroneous diversity estima-
tion in environmental samples (18) (84) (85).

The number of OTUs, after chimera removal, found in each sample were generally around
double the number of nematodes chosen for that sample. Reasons for the extra OTUs could
be the presence of undetected chimeras or possibly genetic material from other organisms
found on or in the chosen nematodes (as prey). Another possibility is the fact that organisms
often contain multiple copies of heterogeneous nSSU genes (86).

The impact on the dataset of these multi-copy nSSU genes, all single nematodes were am-
plified with unique MID-tag sequences. Of these amplifications, 61 were single copy 18S
rDNA and 11 were double copy, however all taxa were represented by a similar number of
taxa in PCR reactions suggesting that the presence of multi-copy nSSUs had little effect.

The significant results demonstrating that distantly related pools of nematodes and pools
of nematodes containing more species tend to yield more chimeras clearly give strong ev-
idence that phylogenetic diversity and species richness are contributing factors to chimera
formation in nSSU amplicon pools. Further evidence to support this hypothesis can be seen
from the comparison of the Shannon diversity indices of the samples. Samples with higher
Shannon indices tend to produce more chimeras.
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Figure 2.15: Nucleotide diversity (Shannon index) against break point frequency. A four way alignment was
formed, using ClustalX, between each chimera, its two parents (as identified by Perseus) and the C. elegans
reference sequence. The number of break points (as identified by Perseus) at each point on the alignment
were recorded. The nucleotide diversity was calculated using the Shannon index at each point on a multiway
alignment between all good sequences and the C. elegans reference sequence.

The investigation into the effect of nucleotide diversity on chimera break points yielded
results which show that regions of lower nucleotide diversity are more likely to instigate
chimera synthesis. These results compare favourably with studies on the bacteria 16S rRNA
gene which found correlations between sequence similarity and chimera formation to ex-
ist (77) (74) (78). A likely explanation for this is that more conserved regions will be better
equipped to bind with a PCR fragment acting in lieu of a primer, as they are more likely to
share matching sequence segments with the fragment.
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Figure 2.16: Nucleotide diversity (Shannon index) and break point frequency plotted against position of break
point. The lines show the same information with smoothed data. A four way alignment was formed, using
ClustalX, between each chimera, its two parents (as identified by Perseus) and the C. elegans reference se-
quence. The number of break points (as identified by Perseus) at each point on the alignment were recorded.
The nucleotide diversity was calculated using the Shannon index at each point on a multiway alignment be-
tween all good sequences and the C. elegans reference sequence.
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Figure 2.17: Break points for closely related nematode species. A four way alignment was formed, using
ClustalX, between each chimera, its two parents (as identified by Perseus) and the C. elegans reference se-
quence. The number of break points (as identified by Perseus) at each point on the alignment were recorded.
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Figure 2.18: Break points for distantly related nematode species. A four way alignment was formed, using
ClustalX, between each chimera, its two parents (as identified by Perseus) and the C. elegans reference se-
quence. The number of break points (as identified by Perseus) at each point on the alignment were recorded.
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Chapter 3

Modelling the PCR Process to
Simulate Realistic Chimera
Formation

3.1 Introduction - Why is a New PCR Model Required?

Polymerase Chain Reaction (PCR) is the principal method of amplifying target DNA regions
and, as such, is of great importance when performing microbial diversity studies. An unfor-
tunate side effect of PCR is the formation of unwanted byproducts such as chimeras.

The main goal of the work covered in this chapter is the development of an algorithm that
simulates realistic chimeras for use in the testing of chimera detection software and for inves-
tigations into the accuracy of community structure analyses. Experimental data has offered
insights into identifying factors which may cause the formation of chimeras and has pro-
vided evidence of how influential these factors can be. This chapter makes use of some of
this evidence in order to build a model with which to simulate the PCR process. This model
helps to better explain the formation of chimeras and is therefore able to provide aid to future
studies that intend to use PCR.

As is discussed in the following section (Section 3.1.1), whilst a number of PCR models
exist, there is a sparsity of models built for the purpose of artificial chimera generation.
Those that do simulate chimeras, do so in such a way that the amount produced is based on
the user’s desired number of chimeras. A more realistic model would rely on the composition
of the input sequences and values of parameters modelling PCR conditions to drive chimera
generation - the number of chimeras produced and their composition should be dependent
on the input and not predetermined. Simulation software meeting these requirements would
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be very welcome.

An advantage of simulated data is the presence of complete information - because the in-
put data is known then it is possible to separate the output data into chimeras and good reads
with 100% accuracy. If, then, the simulation proves to be realistic enough it will be ex-
tremely useful for testing chimera detection software without the required time and expense
of experimental data.

It has been claimed that the leading chimera detection tools, Perseus and UCHIME, can
detect nearly all chimeras in a dataset with few false positives (18) (20) but just how con-
fidently can these assertions be made? Both Perseus and UCHIME were tested on mock
community datasets with good results, however, it would be desirable to see how the results
would compare if they were tested using a dataset with a more realistic community structure,
chimera frequency and chimera composition. The models formulated in this chapter are used
in Chapter 4 to generate in silico datasets designed for this purpose.

If chimera removal software does not perform as well as has been imagined then this would
be cause for concern. The presence of undetected chimeras in datasets could give a false pic-
ture of community structure, likely overestimating richness and diversity levels, and would
ultimately add a significant degree of uncertainty to the findings of any research that has been
carried out on such data.

The findings from Chapter 2 show that chimera formation is a complicated process affected
by a number of different factors such as relatedness, species diversity and nucleotide di-
versity. All of these factors contribute and interact to influence the formation of chimeras
in ways that are difficult to understand using experimental data alone. It would, therefore,
be very interesting to see whether a model designed to simulate chimera formation could
help to explain how this complex system works. If a model could somehow incorporate all
of these factors, then the different interactions between them could be explored and it may
be possible to determine which factors have the most influence on the formation of chimeras.

There is the possibility that other, as yet unknown, factors could also contribute to the level of
chimera formation. In addition to this, the amount of randomness involved is not understood.
A good model of the PCR process, designed specifically with chimera formation in mind,
would allow comparisons to be drawn between experimental and simulated data. This would
allow improvements to be made to chimera identification and noise removal techniques.

In conclusion, there is clearly a need for a PCR model that better simulates chimera gen-
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eration.

3.1.1 Existing Models of PCR

Many different studies into the simulation of PCR have been carried out in the past. Differ-
ing limitations, areas of study and goals relating to the usage of these simulations have led
to varying levels of complexity and various different applications.

Some existing PCR simulators operate by selecting target regions from a set of longer
genome sequences when given the primer sequences as input and return the required am-
plicon sequences as output. Rubin et al. (87) present such a model which is designed
to investigate the production of non-targeted PCR products using a simple algorithm that
matches primer sequences to suitable template DNA sequences based on a maximum mis-
match threshold. The study concludes that, according to the results of the simulation, more
unwanted PCR products are formed in practice than predicted by the model.

Another similar PCR simulator is ecoPCR (88) which takes a primer pair as command line
input and makes use of the Wu-Manber algorithm (89) for pattern searching. This algorithm
compares two strings and indicates whether or not the longer string contains a substring that
is “approximately equal” to the shorter string. In other words, two strings are treated as iden-
tical if they are within a specified Levenshtein distance (90) of each of other. The Levenshtein
distance is, in basic terms, a measure of the number of insertions, deletions or substitutions
required to convert a given string into a target string. In the context of simulating PCR,
the Wu-Manber algorithm is used to search for the optimal region of a given sequence with
which to bind a primer. Output from ecoPCR includes the amplicon sequence, its length,
the number of mismatches on each primer and various taxonomic information relating to the
sequences.

There are also several websites which offer PCR simulation via the input of sequences and
primers directly into the user’s web browser as well as changing variables relating to PCR
conditions. Examples of such websites are cybertory.org (91), bioinformatics.org (92)
and amnh.org (93). The usage of these tools is generally limited to data containing fewer
input sequences.

Primer Prospector (94), whilst not designed specifically as a PCR simulation tool, may be
used in the same way as much of the software described in this section. The tool assesses
the ability of a primer pair to act on a dataset of sequences and outputs statistics based on the
proportion of these sequences that can be expected to amplify as well as a file containing all
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of the amplicons generated.

As is the case with those outlined so far in this section, the majority of available tools
simulate PCR by extracting the targeted sequence fragments from the reference. They pre-
dict probable PCR products and generate statistics about potential mismatch locations and
primer efficiency but they do not imitate a PCR process. An exception to this is Grinder (95)
which produces simulated PCR amplicons with chimeras and single-base PCR errors in-
cluded. Chimeras may be generated from an input parameter specifying the percentage of
chimeras required and, similarly, the number of PCR errors can be controlled by inputting
the required mutation rate and distribution. In Grinder, a chimera may be generated in one of
two ways - the first method is randomly selecting a pair of parents and a random break point
and the second is similar to the method used by CHSIM. Chimeras are then randomly added
to the output data based on the required chimera proportion.

CHSIM is the name of the chimera simulation algorithm which was used to generate chimeras
for the purpose of testing UCHIME (20). The algorithm selects parent sequences which share
an identical sub-sequence (k-mer) of given length, this k-mer is used as the crossover section
between the two parents (i.e. the break point is contained somewhere within this section).
Chimeras are generated at random, weighted in favour of those containing the most abundant
k-mers present in the pool of potential parents. This is intended to make break points more
likely between similar sequences in regions of high sequence similarity. A preset number
of chimeras are generated in this way and added to the original pool of parents after each
simulated round of PCR.

3.1.2 Choosing a Good Model

In order to choose a good model for any procedure, several things should be considered such
as the model’s complexity as well as the parameters and input required for the model. The
number of different variable parameters will impact on the model’s complexity and it may
be decided that it is best to ignore certain variables in order to simplify the model. It is im-
portant to correctly identify the sources of variation that affect the process in practice and to
model these realistically using appropriate methods. One example of this is the selection of
appropriate probability distributions from which to draw random variables.

A good model should also be easy to implement and run quickly enough so as to be prac-
tical. The functionality of the model should be expressible in the form of an algorithm that
can be implemented in code. When implementing the algorithm, compatibility with existing
software and file formats (for input and output) must be taken into consideration. If large
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amounts of data are to be processed then it is desirable to use an algorithm that minimises
the number of calculations in order to reduce the running time. Sometimes it may be better,
or even necessary, to forfeit some accuracy in order to produce a faster algorithm.

Most factors that should be considered when choosing a good model will have an effect
on its complexity and often a trade-off between complexity and accuracy will be necessary.
A simple model is more desirable if it is as effective as more complicated models. However,
if a model is oversimplified then there is a danger that its output will be unrealistic. For
example, a very simple model of PCR would be to take as input the initial abundance of each
DNA sequence and increase this amount based on the number of PCR rounds, such that

anew = aold × 2n

where aold and anew are, respectively, the original and resultant abundances of the sequence
and n is the number of PCR rounds. To calculate the new abundance, the old abundance is
multiplied by a factor of two raised to the power of n because each sequence splits into two
new sequences during each round of PCR.

Output from this model will not be useful in practice because it does not take into account the
randomness and errors inherent in PCR amplification. In particular, it ignores the facts that
amplification is not 100% efficient and that the amplification step can fail before completion,
creating artefacts that further complicate matters.

3.2 Methods

Chimera break point distributions taken from experimental and simulated data were com-
pared using the two sample Kolmogorov-Smirnov test (96). This test returns a p-value to
indicate the probability that the two samples are similarly distributed. This means that an
insignificant p-value (typically p > 0.05) will reveal no information about the similarity of
the two sample distributions but it can be concluded that they are similar enough that there
is no obvious distinction.

The Kolmogorov-Smirnov test is typically used for samples with continuous data, however
it has been adapted for discrete samples in the R package, dgof, and is therefore applica-
ble for the analysis of break point distributions. Before each Kolmogorov-Smirnov test was
carried out, the larger of the two samples being tested was sub-sampled to the same size
of the smaller. Because different sample selections give different p-values, the process was
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repeated 100 times in each case and the mean p-value was taken.

Correlation between break point frequencies occurring in experimental and simulated out-
put was assessed using Pearson’s correlation coefficient, rXY , which is calculated using the
formula,

rXY =
1

n− 1

n∑
i=1

(
Xi − X̄
sX

)(
Yi − Ȳ
sY

)
where n is the number of observations in each sample (both samples must contain the same
number of observations), Xi and Yi are the break point frequencies at position i in sample X
and sample Y respectively, X̄ and Ȳ are the mean break point frequencies across all positions
in sample X and sample Y respectively and sX and sY are the sample standard deviations.
As for the Kolmogorov-Smirnov test, the two samples were sub-sampled to the same size
100 times and the mean of the 100 different Pearson’s correlation coefficients was recorded.

Similarity in nucleotide composition between simulated chimeras and chimeras generated
experimentally was assessed using the ‘global search’ function in USEARCH (97). One
dataset of chimeras (e.g. experimental chimeras) was used as a query dataset to be searched
against a reference dataset (e.g. simulated chimeras). Sequences in the query dataset were
paired with the most similar sequence in the reference dataset and a similarity score was
recorded (number of matching nucleotides divided by alignment length).

3.3 The PCR Process

This section presents a summary of PCR as a procedure, the steps of which must be emulated
to develop a realistic model of the process. The PCR process is also summarised visually in
Figure 3.1.

In order to prepare a sample for sequencing, an amplification step is carried out using Poly-
merase Chain Reaction (PCR). Thermal cycling is used to repeatedly melt and cool the DNA.
When a strand of DNA is copied, this copy can then also be copied; this leads to an expo-
nential amplification effect. PCR is used to amplify a particular target region of the DNA -
this is selected using primers (small pieces of DNA, complementary to the target region).

The process typically involves 20-40 cycles of the following steps (240 gives approx 1012

copies):

1. Denaturation – this step takes place at temperatures between 94 and 98◦C for around
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Figure 3.1: The PCR process.
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20 to 30 seconds. Hydrogen bonds are broken to split the DNA into two strands.

2. Annealing – the temperature is reduced to 50-65◦C. The primers bind to both single
strands of DNA. Hydrogen bonds are only able to form when there is a close match,
ensuring that the primers are annealed to the correct region.

3. Extension – the temperature is adjusted depending on the polymerase used. Nu-
cleotides are attached to complete the DNA strands. These strands can now be copied
in the same way as the original.

Forward and Reverse Primers – After the annealing step, when the DNA molecule has
been split into two strands, the primer binding onto one of these strands is called the forward

primer. Extension can only occur in the 5’→ 3’ direction, this means that the primer bind-
ing to the second strand of the complementary pair must induce extension in the opposite
direction to the first. A different primer, the reverse primer, must be used for this.

Chimera Formation – Chimeras can be formed when the PCR extension step is incom-
plete. If PCR fails at a certain point then an incomplete sequence of DNA is produced, this
fragment can act as a primer for a different sequence in another round of PCR. This has the
effect of forming a sequence which is really a combination of two or more different partial
sequences. The proportion of chimeras present varies from dataset to dataset. Some datasets
can be comprised of 90% chimeric reads. This is obviously a large problem that is addressed
using noise removal software.

3.4 Model 1

3.4.1 Model Outline

The repetitive cyclic nature of PCR suggests that an intuitive model is an iterative procedure
with the same steps being repeated for every simulated round of PCR. The basic input infor-
mation that will be required are the number of rounds of PCR, the primers to be used, the
DNA sequences to be amplified and their initial abundances.

There are two factors that drive the way PCR progresses. The first of these is the rate of
failure of PCR, when the two parts of a DNA strand do not combine with primers or frag-
ments to begin amplification and, instead, simply recombine with each other. This failure
rate will depend on the relative concentrations of sequences, primers and fragments and can
be calculated each round. The second factor is the rate of failure during extension. Parame-
ters used in this model should be chosen with these factors in mind.
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• Set initial pool of sequences and abundances.

• Set empty pools of forward and reverse fragments.

• Set primer sequences and initial primer abundances, ap.

• Set λ.

• Set number of PCR rounds.

• For each round of PCR, r:

– Recalculate α from sequence, fragment and primer abundances.

– For each sequence s (abundance as and length ls):

* For each fragment/primer f (abundance af ):
· Calculate PCR failures as a Binomial(as,α) random variable.
· Decrease as by this amount.
· Record differences and break point for fragment f .
· Calculate weight, Wf , for fragment f .

* Generate vector of quantities [cp, c1, . . . ] as Wallenius(Xs, [ap, a1, . . . ], [Wp,W1, . . . ]) ran-
dom variable.

* Add chimeras to pool of sequences.

* Repeat for reverse fragments/primers.

* For each fragment/primer, f (length lf ) and
for each potential break point, b = (lf + 1) . . . (ls − 1):

· Generate number of fragments of length b as a Binomial(cf , λ) random variable.
· Add these fragments to fragment pool.
· Decrease cf .
· Double the remaining value of cf - successful amplification.

* Repeat for reverse fragments/primers.

• End of algorithm.

Figure 3.2: Simera algorithm for Model 1. λ is the rate of failure during PCR extension at each nucleotide point
on a sequence. α is the PCR failure rate and is calculated using the formula in Section 3.4.1. The fragment
weightings, Wf , are calculated using the formula in Section 3.4.1.
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Figure 3.3: PCR simulation using Model 1. This process is performed for all sequences, s, and repeated for the
desired number of PCR rounds.
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One possible approach for modelling PCR, and the approach used in this chapter, is to use in-
teger values for the abundance of each sequence. This means that a sequence will be treated
in the model as an individual strand of DNA and allows the model to be closely analogous
to the actual process. Because of this, discrete probability distributions, such as the binomial
distribution, will be required to generate the random variables necessary for the model.

The steps which make up the algorithm for the model are described in detail in the remainder
of this section. The complete algorithm is referred to as Simera, a portmanteau of the words
“simulation” and “chimera”. The Simera algorithm is presented in Figure 3.2 and visualised
in Figure 3.3.

Assumptions

For this model it is assumed that failures during the PCR extension step will occur at a fixed
rate. That is, extension is equally likely to fail regardless of the position on the DNA strand
being amplified and regardless of the nucleotide content at this position.

Complete PCR failures - PCR failures without any extension - are assumed to be depen-
dent on the relative primer abundance which will decrease in later rounds.

It is assumed that the ability of a fragment to act in place of a primer is directly affected
by its degree of similarity to the true primer. Further to this, it is assumed that fragments
generated by forward extension (5′ → 3′) may only act in place of forward primers and
those generated by reverse extension (5′ ← 3′) may only act in place of reverse primers.

Input Parameters

1. n – The number of rounds of PCR to be simulated.

2. λ – This parameter is the rate of failure, during the extension step, at each nucleotide
on a sequence. It is used to determine if the first nucleotide is duplicated, then the
second, etc. until the entire sequence has been amplified. If amplification fails at any
point then a fragment is produced. λ is a probability between zero and one, and should
typically be very small. λ may depend on PCR conditions so should be variable from
dataset to dataset.
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Sequences

A list of initial sequences and their relative abundances shown as integer values are required
as input for the Simera algorithm. The sequences will each be a string of DNA nucleotide
codes [A,C,G,T] and only the region selected for amplification need be included. In practice,
for implementations of the model, a fasta file is a good way to represent these data.

Primers

Information about the forward and reverse primers must be also be supplied as input. The
primers will be a string of DNA IUPAC codes [A,C,G,T] and will typically be about 20
base pairs long. Unlike the DNA sequences, primers may also contain ambiguous IUPAC
codes [R,Y,S,W,K,M,B,D,H,V,N] which each represent two or more of the four specific DNA
nucleotides. For example, a primer containing the code M in the first position actually rep-
resents a collection of primers where 50% contain the A nucleotide and 50% contain the C
nucleotide in the first position.

These codes are included in primers because they are more versatile and can, therefore,
be better at selecting sequences which have a high degree of nucleotide variation at certain
points. The ambiguous IUPAC codes and the nucleotides which they represent are shown in
Table 3.1.

As input data, the abundance of each primer is also required. This should be an integer
value and should be greater than the number of primers required to perfectly amplify all se-
quences for the given number of rounds, n. Therefore, if the initial sequence abundance is
aseq then the initial primer abundance should be

aprimer > aseq × 2n.

Fragments

Two lists of sequence fragments are also required. Initially these are empty but, during the
simulation, fragments will be generated and recorded. The first pool is a pool of forward frag-
ments - those generated from forward primers - and the second is a pool of reverse fragments.
The abundance of each fragment is defined the same way as in the pool of sequences. During
the simulation the primer abundance and the abundance of incomplete sequence fragments
will be used to calculate the probability of chimera formation where a fragment is selected
in place of the primer.



3.4. Model 1 96

Code Proportion of A Proportion of C Proportion of G Proportion of T
R 1/2 0 1/2 0
Y 0 1/2 0 1/2
S 0 1/2 1/2 0
W 1/2 0 0 1/2
K 0 0 1/2 1/2
M 1/2 1/2 0 0
B 0 1/3 1/3 1/3
D 1/3 0 1/3 1/3
H 1/3 1/3 0 1/3
V 1/3 1/3 1/3 0
N 1/4 1/4 1/4 1/4

Table 3.1: Representation of specific DNA codes by ambiguous IUPAC codes. The non-zero entries show
which of the four nucleotides (A,C,G,T) each IUPAC code is capable of representing.

PCR Failure

The first step in the Simera algorithm is to calculate how many copies of each sequence
fail to amplify. These sequences are determined at the beginning of each round, and their
numbers are reduced accordingly so that the inactive sequences are not referenced during the
amplification step.

This will be dependent on the ratio of total sequence abundance to total combined sequence,
primer and fragment abundance - i.e. the fraction of all elements present in PCR that are
comprised of full sequences. In the first round of PCR there will be relatively many primers
(but no fragments) and few sequences so this ratio will be small. As the rounds progress,
more sequences will be generated and primers will be used up so the ratio will increase in
size. It is logical to conclude that if primers and fragments are in plentiful supply then there
will be fewer instances when sequences fail to bond with them to instigate amplification.
This reasoning has been confirmed from results that show PCR efficiency is at its highest
when amplicon quantity is at its lowest and vice versa (98).

To determine how many sequences fail to amplify completely in each round, the PCR failure
rate is calculated as the parameter α and used to generate a binomial random variable for
each sequence:

α =
sequence abundance

sequence abundance + fragment abundance + primer abundance

Failures ∼ Bin(as, α)

where as is the abundance of sequence s. The effective abundance of sequence s, Xs is
the remaining number of molecules of sequence s that are available for PCR extension and
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chimera formation.
Xs = as − Failures

Dealing With Reverse Primers

If the model is to follow the PCR process analogous then, when the simulation of a sequence
splitting into two strands takes place, two differing sequences should be recorded. The first
will be the original sequence of nucleotides and bind with the forward primer before com-
mencing extension. The second sequence will be the reverse complement - meaning that the
order of the sequence is reversed and that each nucleotide is swapped for its corresponding
complementary nucleotide (A⇔ T and C⇔ G) - of the first sequence and will bind with the
reverse primer.

In order to increase efficiency (and conserve memory in the implementation of the algo-
rithm) a good shortcut is to use the reverse compeiment of the reverse primer instead of the
genuine reverse primer. This means that both complementary strands for every sequence do
not need to be recorded and instead only one strand is required. Binding can be simulated by
attaching the forward primer and the new (reverse complement) reverse primer to opposite
ends of two copies of this strand as shown in Figure 3.4.

Choosing the Best Fragments for Chimera Formation

As declared in the assumptions in Section 3.4.1, fragments will be less effective at binding
with sequences than primers so, to make the model realistic, fragments must be penalised
by giving more weight to the probability of a sequence binding with a primer. Some frag-
ments will also be more adept than others at acting as primers so this must also be taken into
account. This is done by comparing the last twenty nucleotides on the candidate fragment
with all possible positions on the sequence. The functional part of a typical PCR primer
is around twenty nucleotides long, therefore using twenty nucleotides from a fragment is a
logical choice when the fragment will be acting as a primer.

The number of differences between the fragment and the sequence at each point is recorded,
giving the minimum number of differences and the position at which this minimum value
occurs for each candidate sequence.

In the example in Figure 3.5 it can be seen that position C gives the fewest differences be-
tween the fragment and the sequence. In this case there are zero differences compared to two
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Real Primers
5′ → 3′

Forward Primer GCTTGTCTCAAAGATTAAGC→
||||||||||||||||||||

Leading Strand 5’ -TAATTCGAGTTTCTAATTCGGATGGCGT. . .TAGACACAGCGGACGACGGAAGGAACCT- 3’
Target Region

Comp. Strand 3’ -GCTTGTCTCAAAGATTAAGCCTACCGCA. . .ATCTGTGTCGCCTGCTGCCTTCCTTGGA- 5’
||||||||||||||||||||

Reverse Primer ←GCGGACGACGGAAGGAACCT
5′ ← 3′

Simulated Primers
5′ → 3′

Forward Primer GCTTGTCTCAAAGATTAAGC→
||||||||||||||||||||

The Only Strand 5’ -GCTTGTCTCAAAGATTAAGCCTACCGCA. . .ATCTGTGTCGCCTGCTGCCTTCCTTGGA- 3’
Target Region

Duplicate Strand 5’-GCTTGTCTCAAAGATTAAGCCTACCGCA. . .ATCTGTGTCGCCTGCTGCCTTCCTTGGA- 3’
||||||||||||||||||||

Reverse Complement ←CGCCTGCTGCCTTCCTTGGA
of Reverse Primer
5′ ← 3′

Figure 3.4: Simulated forward and reverse PCR primers. Notation referring to the direction of each primer is
relative to the leading strand.

Position A
Fragment AAAAAAAAAAGGGGGGGGGG
Sequence -AAAAAAAAAAAAGGGGGGGGGG-
Position B
Fragment AAAAAAAAAAGGGGGGGGGG
Sequence -AAAAAAAAAAAAGGGGGGGGGG-
Position C
Fragment AAAAAAAAAAGGGGGGGGGG
Sequence -AAAAAAAAAAAAGGGGGGGGGG-

Figure 3.5: Determining the optimal position for a fragment to act as a primer. Position C is chosen because
there are fewer differences.
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and one in positions A and B respectively. So far, only fragments acting as forward primers
have been considered. Fragments acting as reverse primers are analysed separately in the
same way, except that the first twenty nucleotides of the fragment are compared with the
sequences instead of the last twenty.

Once the optimal position and the number of differences has been found for each fragment
then each fragment f can be weighted based on its suitability using the set of parameters

Wf = e−df

f = 1 . . . nfrag

where df is the number of differences for fragment f and nfrag is the total number of frag-
ments. This assigns higher weights to fragments with fewer differences, as required and all
weights are forced to be between zero and one. The equation for Wf takes into account the
fact that a greater quantity of energy will be required to bind fragments with a large number
of differences, making it much less likely that these fragments will successfully bind.

A weight, Wp, for selecting a primer is calculated in the same way. In the case where
the primer contains ambiguous IUPAC codes, a non integer number of differences may be
awarded if parts of the primer result in a partial match to the sequence. For example, if the
primer contains the code M then this will result in a difference of 0.5 if it is compared with
either of the codes A or C (see Table 3.1). The primer is designed to be able to align well
with part of the sequence so it will, typically, have very few or zero differences. It is easy
to see that if there are zero differences between the primer and part of the sequence then a
value of Wp = 1 will be calculated.

These weights, together with the set of abundances of each primer and fragment, can be used
to determine which primer or fragment each sequence will bind with. Wallenius’ multivariate
non-central hypergeometric distribution can be used for this purpose because it models the
selection of items without replacement based on their abundance and allowing unequal prob-
abilities of selecting items of differing type, such as the primers and fragments of varying
quality in this model. Selection without replacement is appropriate because when a primer
or fragment binds with a sequence then it will no longer be available for use in the current
round.

For each sequence, random variables are drawn from the Wallenius distribution to identify
the quantity of each primer or fragment to be selected for amplification.

C ∼ Wallenius(Xs,A,W)
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where

C = [cp, c1, . . . cnfrag ], A = [ap, a1, . . . anfrag ] and W = [Wp,W1, . . .Wnfrag ].

The parameters ap and a1 . . . anfrag are the abundances of the primer and fragments respec-
tively.

Amplification and Fragmentation

Each sequence can either bind with a fragment to form a chimera or bind with the cor-
rect primer to commence amplification. Amplification can either continue until the entire
sequence has been amplified as intended or it can fail part of the way through to form a se-
quence fragment. When a sequence is ready for amplification it will be split into two strands,
one will use the forward primer (or a forward fragment) and the other will use the reverse
primer (or a reverse fragment). This means that amplification can be split into two separate
processes. For each sequence to be amplified the abundance is set to zero then increased
by one if the forward strand successfully amplifies and increased by one again if the reverse
strand amplifies.

Consider the process to amplify forward strands - the reverse process is symmetrical and
will not be described in detail. The sequences can be examined in turn. The parameter λ is
used to determine whether the first nucleotide in the sequence is amplified. If it is then the
second is amplified with the same probability and so on until the entire sequence is ampli-
fied. If at some point a nucleotide fails to amplify then amplification stops entirely for the
sequence and the incomplete sequence is added to the pool of (forward) fragments. To model
this, the primer and fragments are examined separately and binomial random variables are
used for each possible fragment of sequence s. In the case of the primer,

Yz ∼ Bin(cp, λ)

z = (lp + 1) . . . (ls − 1)

where ls and lp are the length of the sequence and the primer respectively. The new fragment
is created by joining together the lp nucleotides of the primer with nucleotides in positions
(lp + 1) to z in sequence s. Yz copies of the fragment are added to the pool of fragments and
cp is reduced by Yz. The process is then repeated for each (old) fragment, f , in place of the
primer, substituting cf and lf for cp and lp, respectively.
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For each sequence there are (ls − lp) possible fragments. This is the case because ampli-
fication can fail at position (lp + 1) through to position ls, giving (ls − lp) possible failure
points. The integer z is the same as the length of the fragment created.

The PCR round is now complete and a new round can commence.

3.4.2 Implementation

The Simera algorithm was implemented using C++ code. This implementation makes use
of the randomc and stocc libraries (99) which provide the random number generator and
probability distributions necessary to implement the algorithm. The latter of these libraries
required slight modification to enable compatibility.

The program requires as input the sequences to be amplified and their initial abundances,
the primer pair, the number of rounds of PCR to be simulated, the number of reads to be
sampled post-simulation and the value of the parameter λ.

Pre-processing and Formatting

The input files and parameters must be in the correct format for the Simera program to
function correctly. The number of rounds of PCR to be simulated, the number of reads to be
sampled post-simulation and the value of the parameter λ can be supplied as command line
input and the primer pair can be supplied as a fasta file. The sequences to be amplified must
also be in fasta format with each sequence having a unique name containing the sequence’s
abundance as the final part of this name. The sequences themselves must be truncated so that
only the target regions to be amplified, flanked on either side by the two primer-compatible
regions, are present.

3.4.3 Calibration

To determine the value of the parameter λ, simulated data were compared with the exper-
imental data described in Section 2.3. To mimic this experiment, the good sequences (as
detected by Perseus) from the experiments containing 12, 24 and 48 closely and distantly
related nematode species were used as input for 35 simulated rounds of PCR - the same
number of rounds as the original experiment. The same number of reads produced for each
experiment were sampled from the output of each corresponding simulation and the number
of chimeras produced in each case were recorded. Different values for λ were tried, each
experiment was repeated five times and the value that gave the closest match between the
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experimental data and the simulated data was found to be λ ≈ 5 × 10−6 as can be seen in
Figure 3.6.

This value for λ can be considered accurate for simulations of PCR under the same con-
ditions as those used to generate the experimental data. To simulate PCR with different
conditions, different values for λ may be more appropriate.
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Figure 3.6: Number of chimeras simulated using the Simera algorithm for different values of λ. The parameter
λ is the failure rate, during the extension step, at each nucleotide position on the query sequence. 35 rounds
of PCR were simulated using the good sequences (as detected by Perseus) from pooled experiments on 12, 24
and 48 closely and distantly related nematodes as input.

3.4.4 Results

In order to assess the performance of the model, simulated data were again compared with
the experimental data described in Section 2.3. The good sequences (as detected by Perseus)
from each of the closely and distantly related pooled nematode experiments were used as
input for 35 simulated rounds of PCR. True break points and parents are available as output
from the simulation software, however to compare the simulated data with realistic data it
was necessary to find the break points and parents in the same way as the original experiment.

As with the analysis described in Section 2.3, the output from Perseus returned most likely
break point for each chimera based on its two identified parent sequences. These break points
were standardised for the whole dataset by forming a four-way alignment of each chimera,
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its two parents and the C. elegans reference sequence using ClustalX (16). The position of
each break point on the reference sequence was recorded to give a standardised break point.
The frequency of each standardised break point could then be recorded to assess which re-
gions of a sequence were most susceptible to chimera formation.

Break point frequencies from the experimental and simulated data are shown in conjunc-
tion with the equivalent results for the second algorithm in Section 3.5.4 (Figure 3.12) and
their distributions appear to be similar. A Kolmogorov-Smirnov test, adapted for use with
discrete distributions in the dgof R package (100), was performed and yielded a p-value
of 0.607, indicating that there was no evidence that the two sets of data were drawn from
distinct distributions. In addition to this, the two sets of break point frequencies have a Pear-
son’s correlation coefficient of 0.735. It can be inferred from these results that the simulated
data are distributed similarly to the experimental data.
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3.5 Model 2

3.5.1 How Can Model 1 be Improved?

It has been shown in Section 3.4 that the first PCR model is a faithful model of the PCR pro-
cess which can accurately simulate the generation of realistic chimeras. The main negative
issue with the model is that the implementations of it run too slowly to be useful for studies
involving medium-sized to large datasets.

Ways of generalising and adapting the model must, therefore, be sought in order to increase
the speed of simulations without significantly reducing the accuracy and reliability of the
output. This is achieved in this section by taking a more abstract approach which involves
creating a pool of the most likely chimeras prior to the main body of the algorithm being ex-
ecuted. All simulated chimeras may now only come from this pool and this, in turn, means
that individual fragments no longer need to be recorded. Instead, only the overall number of
fragments is required.

3.5.2 Model Outline

The updated algorithm for Model 2 is named Simera 2. The two parts of the Simera 2
algorithm are described in detail in the remainder of this section. The complete algorithm is
presented in Figure 3.7 and visualised in Figures 3.8 and 3.9.

Assumptions

In this model chimeras are still formed in the same way, the difference is that rarer chimeras
will now be ignored. Therefore, in addition to the assumptions made for Model 1, it is
assumed that rare chimeras will be generated in low enough abundances during PCR that
they will not be selected when reads are sampled during sequencing.

Input and Parameters

Most of the input for the second algorithm is the same as the first:

1. A list of initial sequences and their initial abundances.

2. Forward and reverse primers and their initial abundances.

3. λ – The rate of failure at each nucleotide on a sequence.
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• Set initial pool of sequences and abundances, total abundance is atot.

• Set empty pool of chimeras of size ctot.

• Set primer sequences and initial primer abundances, ap.

• Set λ.

• Set number of PCR rounds.

• Set number of chimeras to generate, cgen.

• Repeat cgen times:

– Select two random sequences, si and sj of length li and lj (li < lj).

– Generate a random break point, b, on si.

– Form chimera from first b bases of si and the last lj − b bases of sj .

– Calculate probability of this chimera forming.

– If probability is in the highest ctot probabilities, add to pool of chimeras.

• For each round of PCR, r:

– Set potential amplification pool:

* new atot = old atot × 2.

– Reduce atot by PCR failures:

* Efficiency = primer abundance+frag abundance
prim abundance+frag abundance+seq abundance.

* Fail rate = 1− Efficiency.

* Failures = Binomial(Fail rate, atot).

– Reduce atot by fragments formed:

* Prob(fragment) = 1− [1− λ(seq length−primer length)].

– Randomise chimeras and sequences:

* β = mean primer weight×primer abundance
mean prim weight×prim abund+mean frag weight×frag abund.

* sequences = Binomial(β, atot).

– Increase individual sequence abundances:

* Hypergeometric (sequences, old sequence abundance vector).

– Select chimeras:

* Multinomial (chimeras, chimera prob vector).

– Add selected chimeras to sequence pool.

– Reduce primer abundance by number of sequences formed.

– Increase fragment abundance by number of fragments formed.

– Reduce fragment abundance by number of chimeras formed.

• End of algorithm.

Figure 3.7: Simera 2 algorithm for Model 2. λ is the rate of failure during PCR extension at each nucleotide
point on a sequence.



3.5. Model 2 106

Pool of
sequences

Random
sequence A

Random
sequence B

Random
fragment

Generate
chimera

and record
probability

of formation

Figure 3.8: PCR simulation using Model 2: Chimera formation step. This step is to be repeated until the desired
number of chimeras is reached.

4. A list of potential chimeras - a specified number of chimeras are to be recorded for use
later on in the algorithm. The pool is empty initially.

Chimera Formation Step

The Simera 2 algorithm comprises of two steps. The first of these involves constructing all
possible chimeras and calculating the probability of each chimera forming. At a later stage
in the algorithm, the probabilities associated with the individual chimeras will be used to
select a chimera at random when one is created. This removes the need to generate a new
chimera every time one is formed and, it is hoped, will not impact on the realism of the first
model.

To generate all possible chimeras, all possible fragments are aligned with all sequences and
the best chimera (fewest mismatches) is found, as described in Section 3.4.1. The probability
of a fragment of length l forming is

Prob = λ(1− λ)k

where k = l − p and p is the length of the primer used to form the fragment. The integer, k,
is the same value as the number of successful nucleotide extensions prior to failure.

This probability is then combined with the relative abundance of each sequence and the
number of mismatches between the fragment and the sequence to calculate the probability
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Figure 3.9: PCR simulation using Model 2: PCR step. Repeat this step for the desired number of PCR rounds.
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of each chimera forming,

Prob = λ(1− λ)kaiaje−m

where ai and aj are the relative abundances of the two sequences and m is the number of
mismatches.

A specified number of the most probable chimeras are recorded for later use. For larger
datasets, generating all possible chimeras will be too computationally intensive and, instead,
a predefined large number of chimeras may be generated randomly and the most probable
chimeras are selected from these.

PCR Step

The following PCR step is intended to approximate the first Simera algorithm outlined in
Section 3.4, it is to be repeated for the specified number of rounds.

PCR failures are calculated using exactly the same method as in the original model, except
they can be calculated for all sequences together rather than each sequence separately:

Failures ∼ Bin(at, α)

where at is the total sequence abundance. The probability of a sequence fragmenting is

Probfrag = 1− (1− λ)k

which is just one minus the probability of the sequence amplifying successfully. This proba-
bility can then be used to calculate the number of fragments created for each sequence in the
current round:

Fragments ∼ Bin(as,Probfrag)

where as is the abundance of sequence s. This works the same way as fragmentation in the
first Simera algorithm but here only the number of fragments is recorded instead of each
fragment being recorded individually. This method avoids the need to use Wallenius’ distri-
bution to select individual fragments based on their weightings.

The number of sequences available for amplification, at, is reduced by the number of failures
and fragmented sequences.
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The number of successfully amplified sequences is determined using the parameter β, where

β =
mean primer weight× primer abundance

(mean prim weight× prim abundance) + (mean frag weight× frag abundance)
;

Amplified sequences ∼ Bin(at, β).

The number of individual sequences amplified is then found using a hypergeometric random
variable, as follows:

S ∼ Hypergeometric(Amplified sequences,A)

where A is the vector of individual sequence abundances. This amplifies the sequences all at
once, compared with the first Simera algorithm which amplifies each sequence separately us-
ing successive binomial random variables. Accuracy is lost because mean fragment weights
are used rather than the exact values.

Any remaining sequences are used to generate chimeras and this stage is where the two
algorithms differ the most. In the Simera 2 algorithm, the chimeras are chosen from the pre-
pared pool using a multinomial distribution rather than being created from a fragment pool
when required. This is much quicker.

C ∼Multinomial(Remaining sequences,P)

where P is the vector of the probabilities of formation for each chimera. Generated chimeras
are then added to the pool of sequences for the next PCR round.

3.5.3 Implementation

The Simera 2 algorithm was implemented using C++ and the program has the same input
requirements and dependencies as the original Simera program.

3.5.4 Results

The implementation of the Simera 2 algorithm has been shown to be able to handle large,
realistic datasets and it is used for this purpose in the following chapter. To verify that this
algorithm is a good approximation of Simera, both algorithm implementations were used to
simulate chimeras for the same datasets - the closely and distantly related nematode pools
which were also used in Section 3.4.4 - with the same input parameters (35 rounds of PCR
and λ = 5× 10−6). It was not possible to compare the models using larger datasets because
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of the inhibitive speed of the original Simera implementation. However, it was theorised that
if the models work comparably on smaller datasets then the same should be the case for the
larger datasets analysed in the next chapter.

When the simulated output from the Simera 2 algorithm was subsampled, using the same
sample size as that used for the original Simera data, the average number of chimeras pro-
duced was 42.2, compared with 44.6 for the original Simera data and 43.2 for the real exper-
imental data.

To compare the type of chimeras which were formed, the break points were again observed.
On this occasion there was no need to use the method involving Perseus and the C. elegans

reference sequence because all break points were available as output from the simulation
software. The break points of all chimeras generated in each of the simulated experiments
were compared, and the distributions of these are shown in Figure 3.10.
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Figure 3.10: Break point frequencies for simulated data comparing results from the Simera and Simera 2
algorithms. For each algorithm, 35 rounds of PCR were simulated using the good sequences (as identified by
Perseus) from pooled experiments on 12, 24 and 48 closely and distantly related nematodes as input. Break
points are returned as output from the Simera and Simera 2 implementations.

The two distributions appear very alike, suggesting that both models produce the same
chimeras and that Model 2 is an excellent approximation of Model 1. To verify these as-
sertions, a Kolmogorov-Smirnov test, again using the dgof package in R, was performed on
the two sets of frequency data. A p-value of 0.970 was returned, indicating that there was no
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evidence that the two datasets were drawn from distinct distributions. Additionally, the two
datasets of break point frequencies are closely correlated, as can be seen in Figure 3.11, with
a Pearson’s correlation coefficient of 0.914. These results provide strong evidence that the
two algorithms generate very similar output when provided with identical input.

In addition to the true break points provided by the software, the break points found by
aligning each chimera, its parents (as detected by Perseus) and the C. elegans reference se-
quence were also recorded and again compared with those from the experimental data. The
break point frequencies are shown in Figure 3.12 and they appear to be distributed similarly
to the experimental break points as well as the break points generated using the Simera 1
algorithm. A two sample Kolmogorov-Smirnov test between the Simera 2 break points and
the experimental break points returned a p-value of 0.592, meaning that there was no evi-
dence to suggest that the two samples were differently distributed, and the two samples were
positively correlated with a Pearson’s correlation coefficient of 0.682.

The quality of chimeras generated with the Simera algorithms was compared with that of
those generated using the existing PCR simulator, Grinder 0.5.3. Two different methods of
chimera generation were used. The first was Grinder’s default method which simply creates
chimeras based on a random break point, the second method applies the same technique as
used by CHSIM which requires both parents to share an identical k-mer of length 10. In or-
der to specify the required k-mer length, Grinder must be supplied with the input parameter,
‘ck’, so the first method has ck = 0 and the second has ck = 10.

Break points for the chimeras generated by Grinder were found using the same method as
was used to find the break points of those generated using the Simera algorithms, and the
distributions are shown in Figure 3.13. As expected, the distribution when ck = 0 is fairly
flat and bears little similarity to the distribution of the experimental break points. The dis-
tribution when ck = 10 seems more realistic with some peaks and troughs appearing in the
same regions. However, there is an excessively large number of break points over 200 and
the remainder of the peaks are not as high as their experimental counterparts. Overall, to
the naked eye, the distribution does not seem as realistic as those generated from the Simera
algorithms.

All simulated sets of break points were compared with the set of experimental break points
and the Kolmogorov-Smirnov p-values, along with the Pearson’s correlation coefficients,
are displayed in Table 3.2. The p-value of 0.471 and correlation coefficient of 0.520 give no
indication that chimera break points generated using Grinder with ck = 10 are distributed
differently from the experimental data but these numbers are lower than those found using
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the Simera algorithms which means that there can be greater confidence that the Simera-
generated chimera break points share the experimental distribution. The very low p-value
shown supplies very strong evidence that the break points generated using Grinder with
ck = 0 are not distributed in the same way as the experimental break points.
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Figure 3.11: Break point frequencies for simulated data generated using the Simera algorithm plotted against
the same data generated using the Simera 2 algorithm. 35 rounds of PCR were simulated using the good
sequences (as identified by Perseus) from pooled experiments on 12, 24 and 48 closely and distantly related
nematodes as input. Break points are returned as output from the Simera and Simera 2 implementations.

Simulation Method K-S Test p-value Pearson’s Correlation
Simera 1 0.607 0.735
Simera 2 0.592 0.682
Grinder (ck=0) 0.000005 0.289
Grinder (ck=10) 0.471 0.520

Table 3.2: Kolmogorov-Smirnov test p-values and Pearson’s correlation coefficients returned when various sets
of simulated break points were compared with experimental break points.

To investigate sequence similarity between simulated and real data, the chimeras generated
from the closely and distantly related experiments were compared with the chimeras gener-
ated from the corresponding simulations using both algorithms. Using the good sequences
which were detected by using Perseus on the experimental output, each simulation was re-
peated five times and the generated chimeras were pooled to create reference datasets for
each simulated experiment. The reference datasets were subsampled so that both Simera and
Simera 2 reference datasets were the same size for each experiment. USEARCH was used
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Figure 3.12: Break points of chimeras generated from the Simera and Simera 2 algorithms compared with
those from pooled experiments on 12, 24 and 48 closely and distantly related nematodes. For the simulated
chimeras, 35 rounds of PCR were simulated using the good sequences (as identified by Perseus) from the
pooled experiments as input. In all three cases a four way alignment was formed, using ClustalX, between each
chimera, its two parents (as identified by Perseus) and the C. elegans reference sequence. The number of break
points (as identified by Perseus) at each point on the alignment were recorded.
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Figure 3.13: Break points of chimeras generated from Grinder, using both ck = 0 and ck = 10, compared with
those from pooled experiments on 12, 24 and 48 closely and distantly related nematodes. For the simulated
chimeras, 35 rounds of PCR were simulated using the good sequences (as identified by Perseus) from the
pooled experiments as input. In all three cases a four way alignment was formed, using ClustalX, between each
chimera, its two parents (as identified by Perseus) and the C. elegans reference sequence. The number of break
points (as identified by Perseus) at each point on the alignment were recorded.
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to find the closest matches between chimeras in the query dataset and those in the reference
datasets and the number of exact matches (100% similarity) and matches with greater than
99% similarity were recorded. The two simulated datasets were compared against each other
in the same way to see how many chimeras were present in both.

Figure 3.14 shows the results from this analysis. The output from Simera contained slightly
more identical matches to the experimental chimeras than the Simera 2 output (31.5% ver-
sus 28.8%) and also slightly more near (> 99%) matches (59.7% versus 53.2%). The two
simulations were shown to be producing similar chimeras with approximately 80% of the
chimeras produced using Simera 2 closely matching (> 99%) those produced by Simera.
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Figure 3.14: Sequence similarities (using USEARCH) when comparing experimental chimeras against datasets
of simulated chimeras and when comparing datasets generated using the two different Simera algorithms.

Species
Relatedness

Number of
Species

Number of Chimeras
in Reference Databases

Expected 100%
Matches

100% Matches
(Simera)

100% Matches
(Simera 2)

Close 12 4744 18.0% 20.0% 20.0%
Close 24 7309 6.6% 38.1% 42.9%
Close 48 15822 3.5% 18.4% 15.8%

Distant 12 2442 9.3% 44.4% 38.9%
Distant 24 5093 4.6% 35.6% 26.4%
Distant 48 11018 2.4% 32.7% 28.8%

Table 3.3: Expected 100% matches for experimental chimeras versus actual 100% matches when compared
with reference datasets of chimeras generated using the Simera and Simera 2 algorithms. USEARCH was used
to determine percentage similarity between sequences.
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The number of exact matches between experimental chimeras and those simulated for the
reference sets was far greater than would be expected for randomly generated chimeras.
Examining, for example, the experiment on 24 closely related nematodes, the number of
different potential chimeras can be calculated. Each of the 24 input sequences is 220 base
pairs in length, meaning that there are 200 potential break points on each sequence. This re-
sults in 200 different potential fragments for each sequence which, multiplying by 24, makes
4800 total potential fragments. Each of these fragments can form one chimera when paired
with any of the 23 other sequences, so there are 23 × 4800 = 110400 possible chimeras
resulting from this dataset. As there were only 7309 chimeras generated for the reference
datasets used for this experiment then, under a random uniform model of chimera generation,
the expected proportion of the experimental chimeras appearing in the reference datasets is
7309/110400 = 0.066 or 6.6%. This result contrasts with the actual percentage of matches
for this experiment which were 38.1% for the reference dataset of chimeras generated using
the Simera algorithm and 42.9% for the reference dataset of chimeras generated from the
Simera 2 algorithm.

Table 3.3 shows the expected exact matches for each of the six experiments. In every in-
stance these are significantly lower than the actual exact matches which is strong evidence
that the simulated chimeras are more realistic than uniform randomly generated chimeras.
Expected matches are lower for experiments with a higher number of input sequences be-
cause there are more potential chimeras for these. This analysis does not consider chimeras
generated from other chimeras but the inclusion of these would further increase the num-
ber of different potential chimeras and, therefore, further decrease the amount of expected
matches.

3.6 Discussion

The model presented in Section 3.4 provides an accurate representation of PCR. It has few
parameters and assumptions and the output is shown to reflect real experimental results. The
drawbacks of this model are related to speed limitations associated with the implementation
of the algorithm and its usage is restricted to very small datasets which mean that it can’t be
used for the majority of analyses.

A second model is presented in Section 3.5, the algorithm of which solves the problems
associated with Model 1. Furthermore, the results obtained from simulations utilising the
second model’s methodology show no indication of being any less accurate than those ob-
tained from simulations involving the first model’s methodology.
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The abundance and nucleotide composition of chimeras generated, both in vitro and in sil-

ico, can vary somewhat even when PCR is performed under the same conditions on identical
samples. This is, presumably, caused by the random occurrences of PCR extension failure
and makes it difficult to determine the degree of realism present in the data output from the
simulations. However, results show that around a quarter of the chimeras found in the ex-
perimental data involving pooled nematode samples were reproduced perfectly during the
simulated experiments and around a half were reproduced at a level of better than 99% sim-
ilarity. Because of the potential for PCR and sequencing noise, it is reasonable to suggest
that some of the closely matching chimeras were, in fact, exact matches.

The fact that many chimeras were reproduced exactly is encouraging, as are the results
showing that the chimera break points are distributed similarly in experimental and simu-
lated datasets. This is evidence that the chimeras are being generated in the same way, i.e.
that the same ‘type’ of chimeras are being produced, even if their nucleotide composition
is subject to natural variance. Furthermore, the distributions of break points on chimeras
generated using the Simera algorithms compare favourably to the distributions of those on
chimeras generated using Grinder. This is evidence that Simera generates more realistic
chimeras than the best existing PCR simulators.

Section 3.1.1 discusses some existing PCR simulation software and notes that most avail-
able tools involve the selection of amplicons from a reference database by matching primer
sequences to areas of similarity on the reference sequences. Because both Simera algorithms
require ready-made amplicons as input, the models presented in this chapter work best when
used in conjunction with existing software. For example, amplicons can be selected from a
reference database using Primer Prospector and these amplicons can then be used as input
for one of the Simera algorithms. This procedure is followed, and explained in more detail,
in Chapter 4 for the generation of in silico datasets.

Overall, it can be concluded that both models presented in this chapter can be used to produce
realistic simulated PCR output, particularly with respect to the chimeras generated during the
process. In addition, the Simera 2 algorithm can be implemented sufficiently well to allow
these simulations to be carried out on large, realistic datasets.
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Chapter 4

Analysis of In Silico Datasets

4.1 Introduction

The previous chapter describes the development and implementation of the PCR simulation
algorithm. One of the most useful applications of the simulation software is its utilisation in
the generation of in silico datasets representing real next generation sequencing data. The
same simulations can be replicated numerous times to find the level of variance in the output.
Different input parameters can also be changed to find the PCR setups corresponding to the
best performance in reconciling the noisy dataset with the input dataset. Results should give
an indication of the reliability of the information found from microbial community analysis.

The analysis of these in silico datasets is most useful for measuring the performance of
chimera removal software, as it is simple to check whether the known chimeras in the data
are detected or not. Realistic in silico datasets with identifiable chimeras will provide a
more accurate performance analysis of chimera removal software than the previous testing
methods which used mock community datasets.

4.2 Methods

Various methods were used to generate in silico datasets but not all methods were used for
every dataset. This section presents a general overview of all methods used. In the results
section (Section 4.3) specific information is included about how the different datasets that
were analysed were generated.
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4.2.1 Clustering

All OTU Clustering was performed using UCLUST (97) integrated in the QIIME environ-
ment (21). UCLUST uses a centroid-based medium to high-identity clustering algorithm
where sequences are added to clusters based on their similarities to the centroid sequence.
This centroid sequence is the sequence that most closely represents all members of the clus-
ter.

Unless otherwise stated, the default UCLUST settings of 97% OTUs, de novo cluster identi-
fication, pre-filtering of identical sequences and pre-sorting of sequences by abundance were
applied. In some cases 99% OTUs and cluster identification using a reference database were
used instead.

4.2.2 Selecting Primers and Amplicons

Suitable virtual primers for the chosen data were selected, these were the forward primer:

515F (5′-GTGNCAGCMGCCGCGGTAA-3′)

and the reverse primer:

806R (5′-GGACTACHVGGGTWTCTAAT5′-).

These primers are often used to highlight regions of the 16S gene. They were tested us-
ing Primer Prospector (94) on the data to be used for creating the in silico dataset and the
output was analysed to ensure that they were effective primers. The amplicons that were
used in the various in silico datasets were selected using these primers in Primer Prospector.

4.2.3 Adding an Abundance Distribution

Abundance distributions were generated using the inbuilt random variable generating func-
tions in R. The required number of random variables (matching the number of sequences in
the dataset) and the chosen values for the distribution parameters were used as input.

4.2.4 Simulating PCR

PCR was simulated using the Simera 2 software which runs the algorithm described in Chap-
ter 3. Simera 2 requires that the number of PCR rounds and the number of reads to be sam-
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pled are used as input along with the fasta file that represents the community to be sequenced.

4.2.5 Simulating PCR Single-Base Errors

PCR single-base errors were randomly added to fasta files when required. The probabilities
of each error occurring are shown in Figure 4.1 and these were found during the development
of AmpliconNoise (18).

Nucleotide A C G T
A 0.9995 7.2× 10−6 5.1× 10−4 7.7× 10−6

C 1.1× 10−5 0.9996 2.1× 10−6 4.1× 10−4

G 3.5× 10−4 3.2× 10−6 0.9996 2.1× 10−5

T 9.0× 10−6 5.7× 10−4 1.4× 10−5 0.9994

Table 4.1: Probabilities of single base errors based on data from mock communities (18). Rows are the true
nucleotides and columns are those erroneously observed.

4.2.6 Simulating Sequencing Noise

Flowsim (101) was used to simulate sequencing noise on fasta files when required, gener-
ating simulated flowgram files. Flowgram files were converted back to fasta format using
scripts available in QIIME.

4.2.7 Noise Removal

The AmpliconNoise pipeline was used to remove simulated noise when required, as de-
scribed in Chapter 1.

4.2.8 Chimera Detection

UCHIME v4.240 has been shown to have approximately the same success rate at detecting
chimeras as Perseus (18) but runs much quicker. Therefore, to process the high volume of
chimera checking required for this analysis, UCHIME was chosen and executed with the
default input values.

UCHIME can either be used in “de novo mode” or “reference mode”. The first method uses
only the subject dataset to identify potential parent sequences and, consequently, chimeras
whereas the second method makes use of a reference database in order to identify known
non-chimeric sequences. Both methods were investigated and the results from each com-
pared with each other. Where appropriate, one of the two recommended reference databases
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for 16S data was used. These databases are the ChimeraSlayer (102) reference database and
the RDP classifier training database (v9) (103).

Additional analysis was carried out on a subset of the available simulated data to compare
the results obtained from UCHIME in de novo mode against those obtained from Perseus.
Similarly UCHIME in reference mode was tested against ChimeraSlayer which also uses a
reference database.

4.2.9 Generating Datasets

Two different databases were selected for this study - Greengenes (104) and Silva (105).
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Figure 4.1: Steps followed for the generation and analysis of in silico datasets.

Dataset 1 - Greengenes

The original database contained sequences describing the 16S gene of 381226 individual
bacteria and archaea specimens in fasta format. Some of these sequences were taken from
organisms of the same species so, to ensure that the in silico mock community contained no
duplicates, the sequences were clustered into 97% OTUs using UClust (97).
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Figure 4.2: In vitro versus in silico datasets. The flow chart shows that steps followed in this chapter for creating
in silico datasets are comparable to the amplification and sequencing steps used in laboratory based analysis.
Boxes on the same horizontal level in each chain are analogous.
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One sequence was chosen at random from each cluster to select the organisms present in the
dataset. The region for amplification was selected using a primer pair of 515f and 806r; am-
plicons were extracted from the sequences using Primer Prospector. Any ambiguous IUPAC
DNA base codes [R, Y, S,W,K,M,B,D,H, V,N ] in the fasta file were randomly replaced
by an appropriate IUPAC code relating to a specific nucleotide [A,C,G, T ] with the proba-
bility of specific nucleotide replacement shown in Table 3.1 in the previous chapter. This was
to allow the sequences to represent real data and also for compatibility with the simulation
software.

Following these processes, the dataset contained 7870 sequences and was ready for a dis-
tribution of abundances to be added prior to simulated PCR amplification and noise addition.
This resulting dataset is designed to represent a realistic microbial community that can be
used for the purposes of testing existing noise removal software and for optimising PCR
conditions to increase accuracy.

Dataset 2 - Silva

The Silva dataset is already arranged by species so clustering was not required. 20000 se-
quences were selected randomly and, as with the Greengenes dataset, the 515f and 806r
primer pair were used to select the amplification region in Primer Prospector. Any duplicate
sequences in the amplified region were removed and, as with the Greengenes dataset, am-
biguous IUPAC codes were substituted for specific codes.

8000 sequences were randomly selected from the resulting dataset to create the final dataset.
This number was chosen for three reasons: it is high enough to model a real life dataset; it
is low enough to allow the simulation software to run effectively; it is of a similar size to the
Greengenes dataset, allowing meaningful comparisons to be made between the two.

Following these processes the dataset was prepared for the addition of an abundance dis-
tribution and simulated noise.

4.2.10 Choice of Abundance Distribution

The Log-normal Distribution

The log-normal distribution is a continuous probability distribution closely related to the
Gaussian, or normal, distribution. The natural logarithm of a log-normal random variable
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is normally distributed with mean µ and variance σ2. Thus if X is log-normally distributed
such that X ∼ lnN(µ, σ2) and Y = eX then Y ∼ N(µ, σ2). The log-normal distribution has
probability distribution function,

Prob(X = x) =
1

xσ
√

2π
e−

(lnx−µ)2

2σ2 . (4.1)

Where x > 0.

Log-normal Distribution as a Model for Species Abundance in Microbial Com-
munities

The log-normal distribution has frequently been discussed as a model for species abundance,
both in bacteria and other organisms (106) (107) (108) (109) (110).

The data used in this chapter must be discretely distributed. Although the log-normal dis-
tribution is a continuous distribution, it can still be used because the range of abundances
and the number of species represented in each dataset are both deemed high enough for a
continuous distribution to be a valid approximation.

Fitting a Log-normal Distribution to Experimental Data

Maximum likelihood estimates (MLEs) of the log-normal parameters for a given dataset
can be found by using the experimental data and the log-normal probability distribution
function (4.1). From (4.1) the likelihood function can be calculated as the product of the
probabilities of each of the n observations in the dataset (x1 . . . xn) occurring:

L(µ, σ2|x1 . . . xn) =
n∏
i=1

[
1

xiσ
√

2π
e−

(lnxi−µ)
2

2σ2

]
.

It is possible to express this function as a product of probabilities because the observations
are assumed to be independent and identically distributed (i.i.d.)

Maximising the likelihood function results in finding estimates of the parameters µ and σ2

which are most likely to have yielded the given data. In practice it is easier to maximise the
log-likelihood function (which is simply the natural logarithm of the likelihood function).
This has the same effect because as a variable increases, its logarithm also increases and,
therefore, both functions will be maximised with the same values of µ and σ2. The log-
likelihood function for the log-normal distribution is shown below.
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l(µ, σ2|x1 . . . xn) = ln(L) = ln

(
n∏
i=1

[
1

xiσ
√

2π
e−

(lnxi−µ)
2

2σ2

])
,

l(µ, σ2|x1 . . . xn) = −
n∑
i=1

[
ln(xi
√

2π) +
(lnxi − µ)2

2σ2

]
− nlnσ.

The MLE for µ, denoted µ̂, can be found by differentiating l with respect to µ and setting the
result equal to zero:

∂l

∂µ
=

n∑
i=1

lnxi − µ
σ2

= 0,

1

σ2

[
n∑
i=1

(lnxi)− nµ

]
= 0.

Multiplying both sides by σ2 and dividing by n shows that µ̂ can be found by calculating the
mean of the natural logarithms of all of the observations in the dataset:

µ̂ =
1

n

n∑
i=1

lnxi.

Similarly, the MLE for σ2, denoted σ̂2, can be found by differentiating l with respect to σ
and setting equal to zero. The function is differentiated with respect to σ rather than σ2 for
simplicity - finding the MLE for σ is equivalent to finding that of σ2.

∂l

∂σ
=

n∑
i=1

[
(lnxi − µ)2

σ3

]
− n

σ
= 0,

n

σ
=

n∑
i=1

[
(lnxi − µ)2

σ3

]
.

Multiplying both sides by σ3 and dividing by n shows that σ̂2 can be calculated by finding
the variance of the natural logarithms of all of the observations in the dataset:

σ̂2 =
1

n

n∑
i=1

(lnxi − µ̂).

To test whether a log-normal distribution would be a good fit to naturally occurring species
abundance data, and to estimate appropriate parameters for the distribution, the OTU (99%)
abundance data from the meiofauna community 18S dataset outlined in Section 2.2 was used.
The values of the maximum likelihood estimates of the parameters µ and σ2 for each site in
the dataset can be seen in Table 4.2.
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In addition to this, log-normal distributions were also fitted to a set of 16S data. These
data were taken from a study on bacterial communities in the human gut (111) in which 12
different samples were taken. The maximum likelihood estimates for the log-normal param-
eters are shown in Table 4.3.

Site PWK1 PWK2 PWK3 LH1 LH2 LH3 EGR1 EGR2 EGR3 MEye1 MEye2 MEye3
µ 2.32 3.05 2.10 2.86 1.77 1.91 1.48 1.90 1.38 1.71 1.63 1.85
σ2 2.74 2.68 2.51 4.67 4.23 4.13 2.07 3.07 2.14 3.36 3.01 3.13

Site SkyStaf1 SkyStaf2 SkyStaf3 HW1 HW2 HW3 DBay1 DBay2 DBay3 VNM1 VNM2 VNM3
µ 2.39 2.54 2.09 3.42 2.59 2.80 2.84 2.39 3.24 1.22 1.55 1.59
σ2 4.22 3.21 3.89 2.56 2.29 2.78 3.30 4.72 4.38 2.79 3.53 2.93

Site Mera1 Mera2 Mera3 CapFer1 CapFer2 CapFer3 Seah1 Seah2 Seah3 Exe1 Exe2 Exe3
µ 1.58 1.28 1.34 1.54 1.65 1.67 1.26 1.61 1.99 2.09 1.86 1.78
σ2 2.70 3.21 3.61 2.17 2.41 2.42 2.29 3.08 5.09 3.69 3.09 2.84

Site Porthw1 Porthw2 Porthw3 Sheer1 Sheer2 Sheer3 PrLimpa1 PrLimpa2 PrLimpa3 Sada1 Sada2 Sada3
µ 1.39 1.37 1.61 1.88 1.86 1.93 1.04 1.12 1.36 2.03 1.25 1.84
σ2 4.12 4.42 4.88 4.23 3.26 3.08 2.18 3.47 3.77 3.01 2.42 3.33

Site stJean1 stJean2 stJean3 Newb1 Newb2 Newb3 FirthF1 FirthF2 FirthF3 Fraser1 Fraser2 Fraser3
µ 1.90 1.74 1.69 1.36 1.23 1.76 0.79 1.35 1.95 1.72 1.77 1.61
σ2 4.85 4.26 4.57 2.58 2.70 3.51 2.03 2.89 3.02 4.27 4.29 3.96

Site FreshW1 FreshW2 FreshW3 Silecr1 Silecr2 Silecr3 Gamb1 Gamb2 Gamb3 Min Max Mean
µ 1.49 1.81 1.94 1.29 1.45 1.59 1.93 2.33 2.20 0.79 3.42 1.82
σ2 3.31 4.62 3.47 2.28 2.70 2.80 3.76 3.85 4.33 2.03 5.09 3.35

Table 4.2: Fitted log-normal parameters for all sites in the meiofauna community dataset. Parameters are
maximum likelihood estimates.

Sample 1 2 3 4 5 6 7 8 9 10 11 12 Mean
µ 0.71 0.70 0.98 0.85 1.08 0.97 0.87 0.93 0.82 1.14 1.05 1.09 0.93
σ2 1.10 1.02 1.54 1.51 1.66 1.50 1.14 1.20 1.23 1.76 1.64 1.78 1.42

Table 4.3: Fitted log-normal parameters for all samples in the gut bacteria community dataset. Parameters are
maximum likelihood estimates.

The mean values for the fitted log-normal parameters for the 18S data were found to be
µ = 1.82 and σ2 = 3.35. However, it was decided that it may be sensible to choose values
towards the lower end of the range for performance reasons because lower values for µ and σ
generally produce a smaller overall abundance which allows the simulation software to run
faster. The means of the fitted parameters for the 16S data were µ = 0.93 and σ2 = 1.42

which were lower than those for the 18S data. This further reinforced the decision to use
lower values for the parameters to generate the in silico data.

The log-normal distributions using the mean parameters fitted to both datasets are shown
in Figure 4.3. This plot shows that log-normal distributions with lower parameter values
generally produce a large amount of random variables with lower values, representing lower
abundances. The distribution with higher values for µ and σ2 is flatter, so a higher proportion
of high value random variables, representing higher abundances, will be yielded relative to
distributions with lower parameter values.

When assigning log-normal distributions to the in silico datasets, a log-normal random vari-
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Figure 4.3: Probability density function for the log-normal distribution with two different sets of parameters.
The black line shows the distribution using the mean parameters that were fitted to 18S data and the red line
shows the distribution using the mean parameters that were fitted to 16S data. Note that the distribution is
unbounded in the positive direction and, although the x axis of the plot is cut off at 50, it continues to infinity.

able with the decided upon parameters, Xi, was generated for each sequence, i. This ran-
dom variable was then rounded up to the next integer and was assigned to sequence i as
its abundance. This ensured that the most infrequently occurring sequences would have an
abundance of 1 and the data would follow a discrete approximation to the log-normal distri-
bution.

4.2.11 ROC Analysis

A receiver operating characteristic (ROC curve) is a plot of predictive data against known
binary positive or negative values. The predictive data is typically a set of continuous vari-
ables (scores) representing the probability of a positive result for each data point. To initiate
the analysis all data points are assumed to give a negative result (i.e. the threshold for a true
result is lower than the lowest score in the set). This threshold is gradually increased and, as
positive results are found, the proportion of true positives (the fraction of positive values that
are identified as positive) is plotted against the proportion of false positives (the proportion of
negative values that are identified as positive). This results in a monotonically increasing plot
starting at (0,0) and ending at (1,1) and the area under this ROC curve (AUROC) assesses
how good the predictive data performs. High AUROC values correspond to good predictions.
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ROC analysis can be used to assess the performance of chimera detection software with
a slight difference to the standard method in that the acceptance threshold is decreased in-
stead of increased. For each sequence in a dataset, UCHIME outputs a probability that it is
chimeric and, because the true nature of the simulated sequences is already known, a ROC
analysis can be performed by gradually decreasing the UCHIME acceptance probability from
high to low. Initially, all sequences will be considered good but as the threshold is lowered,
sequences with UCHIME scores higher than this threshold will be flagged as chimeras. True
positives are then plotted against false positives as normal.

4.3 Results

Group Distribution No. Sequences Sample Size Noise Added No. Simulations
A1 lnN(0.79, 2.03) Variable 30000 None 30
B1 lnN(0.79, 2.03) 7870 Variable None 5
C1 Variable 7870 30000 None 25
D1 lnN(0.79, 2.03) 7870 15000 Yes 5

Table 4.4: Summary of all in silico datasets - Greengenes.

Group Distribution No. Sequences Sample Size Noise Added No. Simulations
A2 lnN(0.79, 2.03) Variable 30000 None 30
B2 lnN(0.79, 2.03) 8000 Variable None 5
C2 Variable 8000 30000 None 25
D2 lnN(0.79, 2.03) 8000 15000 Yes 5

Table 4.5: Summary of all in silico datasets - Silva.

4.3.1 Summary of Datasets Analysed

A variety of different datasets were assembled using the methods described in Section 4.2.
These datasets were designed in such a way that the effects of various attributes of microbial
communities could be examined independently in order to form conclusions about the main
influences on chimera formation and also on inferred community makeup. The different
datasets which were created are summarised in Tables 4.4 and 4.5 and are described in this
section.

Group A - Variation of Initial Species Richness

The effect of the richness of a sample was investigated by varying the initial number of
species represented in the input data. Sequences were randomly sampled from both of the
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in silico datasets to generate subsets containing 500 sequences, 1000 sequences, 2000 se-
quences, 4000 sequences and 6000 sequences in addition to the full datasets (7870 sequences
for the Greengenes in silico data set and 8000 for the Silva in silico dataset). Each dataset was
assigned an abundance distribution made up from lnN(0.79, 2.03) random variables, where
the parameters were taken from the log-normal distribution fitted to the abundance data from
Firth of Forth site 1. This process was repeated 5 times, producing 60 unique datasets - 30
made up of sequences from the Greengenes database and 30 made up of sequences from the
Silva database.

25 rounds of PCR were simulated 5 times for each dataset. After PCR was simulated, 30000
sequences were sampled from the full pool of sequences to represent those that were detected
during sequencing.

Note that, because all of the subsets were assigned the same abundance distribution, re-
ducing the initial number of sequences in a dataset also reduces the initial overall abundance
of that dataset by the same factor.

Group B - Variation of Sample Size

To investigate the effects that the number of reads yielded from sequencing has on the inter-
pretation of the output data, subsamples of different sizes were drawn from simulated data.
The full in silico datasets (7870 sequences for Greengenes and 8000 for Silva) were used
with a lnN(0.79, 2.03) abundance distribution assigned. 25 rounds of PCR were simulated
5 times for both databases and for each simulation, the output sequences were subsampled
with samples ranging from 1000 sequences up to 100000.

Group C - Variation of Log-normal Parameters

Different parameters for the log-normal distribution were selected to examine how the be-
haviour of the simulated data changed with these parameters. Initially, one of the parameters
µ or σ was varied whilst keeping the other constant and then both parameters were varied
simultaneously. For all simulations the full sized datasets were used (7870 sequences from
Greengenes and 8000 sequences from Silva). Each simulation was repeated 5 times with dif-
ferent random variables, representing the abundances of the sequences, generated for each
repetition. After each simulation, 30000 sequences were sampled from the output pool of
sequences.
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Varying µ

The estimated log-normal parameters for the abundance data at each site in the meiofauna
community dataset are shown in Table 4.2. The mean value for σ2 is 3.35 and it was decided
to keep this value constant while varying the value of µ for a set of simulations. The pa-
rameter, µ, represents the mean of the natural logarithm of random variables drawn from a
log-normal distribution. The actual mean of the log-normal distribution is given by e(µ+σ2/2)

so it can be seen that increasing µ (with fixed σ) will also increase the mean of the distribu-
tion.

The values chosen were µ = 0, 1, 2, 3 and 4 which span the range of estimated µ values
for the meiofauna community dataset (min. µ = 0.79 and max. µ = 3.42).

Varying σ

The same method that was applied in Section 4.3.1 was repeated but, this time, the value
of µ was fixed at 1.82 (the mean value of µ in Table 4.2) whilst σ was varied. The parameter
σ represents the standard deviation of the logarithm of the random variables drawn from a
log-normal distribution. The variance of these random variables is given by (eσ

2−1)e(2µ+σ
2).

Therefore, keeping µ constant and increasing σ will increase the variance of the distribution.

The values σ = 0.5, 1.0, 1.5, 2.0, and 2.5 were chosen which covered the range of parameter
values fitted to the meiofauna community dataset (min. σ=1.42, σ2=2.03 and max. σ= 2.26,
σ2=5.09).

Varying both µ and σ

It can be shown that increasing either of the parameters σ and µ, whilst keeping the other
constant, increases the overall abundance of the dataset, A, where Xi is the log-normal ran-
dom variable used to assign the abundance of sequence i and n is the number of sequences
in the dataset.

E[Xi] = e(µ+σ
2/2), i = 1 . . . n; (4.2)

Var[Xi] = (eσ
2 − 1)e(2µ+σ

2), i = 1 . . . n; (4.3)

A =
n∑
i=1

Xi
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⇒ E[A] = nE[Xi] = ne(µ+σ
2/2). (4.4)

Using the above equation for n = 8000 sequences and fixed σ = 1.83 (the mean value of
σ in the meiofauna community dataset), the expected value of A is 42687 for µ = 0 and
2330625 for µ = 4. Similarly, if µ = 1.82 (the mean value of µ in the meiofauna community
dataset) is fixed then the expected value of A is 55949 for σ = 0.5 and 1123767 for σ = 2.5.
Clearly, increasing either of the parameters µ or σ has the effect of increasing the overall
abundance of the dataset.

Section 4.3.1 describes the effect of changing the initial number of sequences in the dataset
and, by association, the overall abundance. Although the results show no correlation be-
tween the initial number of sequences and the effectiveness of chimera removal, it is noted
that a larger starting dataset will result in a smaller proportion of the good sequences being
identified. To avoid confusing the effects of this with the effects of changing the log-normal
parameters, it was desirable to keep the expected abundance of the dataset constant whilst
varying µ and σ together.

If the mean values of µ and σ from the meiofauna community dataset are used in Equa-
tion 4.4 with n = 8000 then the expected abundance, E[A] = 263602 is returned. Keeping
this value constant, a relationship between µ and σ can be derived such that

µ = ln
(

E[A]

n

)
− σ2

2
,

µ = ln
(

263602

8000

)
− σ2

2
,

µ = 3.495− σ2

2
.

Values of µ were calculated for σ=0.5, 1.0, 1.5, 2.0 and 2.5 to give 5 pairs of parameters
that maintained the expected abundance at a constant value of 263602. Log-normal random
variables (7870 for Greengenes and 8000 for Silva) were generated using each pair of pa-
rameters to assign abundance distributions to the full datasets. This was repeated 5 times,
and 25 rounds of PCR were simulated for each of the 50 resultant datasets. 30000 reads were
sampled after the PCR simulation for each dataset.

Values for µ and σ are shown in Table 4.6 along with the expectation and variance, calculated
using Equations 4.2 and 4.3, of the random variables drawn from the resultant probability
distributions. Note that E[Xi] remains constant - as should be the case if n and E[A] are
constant - and Var(Xi) increases as σ increases. Also note that, although n = 7870 for half
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of the datasets in this section, this number is close enough to 8000 for the resulting values of
µ to be the same as those used in the datasets where n = 8000.

σ µ E[Xi] Var(Xi)
0.5 3.37 32.95 308.4
1.0 2.99 32.95 1847.0
1.5 2.37 32.95 9215.3
2.0 1.49 32.95 57613.6
2.5 0.37 32.95 561331.9

Table 4.6: Values of σ, µ, E[Xi] and Var(Xi) for the constant value E[A] = 263602. σ and µ are log-normal
parameters, E[Xi] is the expected value of an associated log-normal random variable, Var(Xi) is the variance
of an associated log-normal random variable and E[A] = nE[Xi] for n = 8000.

Group D - Adding Simulated Noise

The full in silico datasets (7870 sequences for Greengenes and 8000 for Silva) were used
with a lnN(0.79, 2.03) abundance distribution assigned. 25 rounds of PCR were simulated
5 times for both databases and for each simulation. 15000 sequences were sampled from the
output data in order to allow the software used on these datasets to run quickly enough. It is
shown later in this chapter that using a smaller sample size reduces the quality of the output
data in terms of how accurately it can be analysed, however, it is possible to infer the results
for larger sample sizes from the results obtained from these datasets. Each simulated dataset
was treated in five different ways:

1. No noise added. This represents a sample where all noise, apart from the chimeras,
has been removed 100% accurately.

2. PCR single base errors added. See Section 4.2.5.

3. Pyrosequencing noise added. See Section 4.2.6.

4. Both PCR single base errors and pyrosequencing noise added. This represents a sam-
ple which has not been treated for noise.

5. Noise added and then removed using Amplicon Noise. This represents a realistic
sample that has been treated for noise but will still contain some noisy sequences.

Note that, because additional noise is simulated after the chimeras have been simulated,
noisy sequences which have been generated using original chimeras are still considered to
be chimeras for the purposes of this analysis - i.e. they will be considered true positives if
detected by UCHIME.
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4.3.2 Chimera Detection

ROC analysis, as described in Section 4.2.11, was used to analyse how effective chimera
checking software was at detecting chimeras in each dataset. The fasta files of sequences out-
put from the simulations were checked for chimeras using the UCHIME de novo approach,
ROC curves were plotted and AUROC values were compared to perform the assessment.

Figures 4.4 and 4.6 show the ROC curves generated for datasets with varying initial species
richness (Groups A1 and A2). The areas under the ROC curves (AUROC) are shown in
Figures 4.5 and 4.7. There is some variance present in the values but the AUROC values
calculated suggest that chimera detection becomes more difficult as the number of starting
sequences increases with, in general, fewer chimeras classified correctly for richer datasets.
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Figure 4.4: ROC curves to show effectiveness of
chimera detection based on initial number of se-
quences in Group A1 datasets (see Table 4.4).
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Figure 4.5: Areas under all ROC curves gener-
ated from Group A1 datasets (see Table 4.4). Each
simulation was repeated 5 times.

Figures 4.8 , 4.9 , 4.10 and 4.11 show that UCHIME performed poorly when a small number
of reads were sampled post-simulation but fared better when analysing larger samples. There
is some variance in the data associated with which particular sequences were randomly sam-
pled - some very obvious chimeras may have been selected in some samples but not in others
- but the trend is, nevertheless, very noticeable.

For smaller samples, an increase in sample size improves chimera detection dramatically, but
these improvements generally lessen in magnitude as larger samples are taken. Indeed, the
difference in AUROC values between sample sizes of 1000 and 2000 is generally much more
significant than the corresponding difference between sample sizes of 50000 and 100000.
This effect can be seen in Figure 4.12 and suggests that the AUROC values are tending to-
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Figure 4.6: ROC curves to show effectiveness of
chimera detection based on initial number of se-
quences in Group A2 datasets (see Table 4.5).
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Figure 4.7: Areas under all ROC curves gener-
ated from Group A2 datasets (see Table 4.5). Each
simulation was repeated 5 times.

wards a limit of around 0.8 for most of the datasets analysed in this section.

These results clearly show that, in practice, chimera removal will be more effective when
using sequencing technologies that produce more reads - represented in these simulations by
larger sample sizes.
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Figure 4.8: ROC curves to show effectiveness of
chimera detection based on output sample size in
Group B1 datasets (see Table 4.4).
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Figure 4.9: Areas under all ROC curves gener-
ated from Group B1 datasets (see Table 4.4). Each
simulation was repeated 5 times.

It can be seen from Figures 4.13 and 4.14 that there is no obvious difference in the AUROC
values calculated for various different values of µ, suggesting that this parameter does not
affect the effectiveness of chimera detection using UCHIME.
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Figure 4.10: ROC curves to show effectiveness of
chimera detection based on output sample size in
Group B2 datasets (see Table 4.5).
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Figure 4.11: Areas under all ROC curves gener-
ated from Group B2 datasets (see Table 4.5). Each
simulation was repeated 5 times.
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Figure 4.12: Mean AUROC values for all 12 sample sizes (1000 - 100000). Mean values are taken from a
combination of all ROC curves, for that sample size, generated from both Group B1 and B2 datasets (see
Tables 4.4 and 4.5).
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The plots in Figures 4.15 and 4.17 demonstrate that chimera detection is more effective for
datasets in which the sequence abundances are generated using higher values for σ and, there-
fore, have a higher variance. This can also be seen from the results in Figures 4.16 and 4.18
which also show that, generally, the effect of increasing σ lessens as σ increases. As in Sec-
tion 4.3.1, where it was shown that the AUROC values tended towards an upper limit as the
sample size increased, a similar effect can be seen as σ increases. Figure 4.19 shows the
mean AUROC values seem to be tending towards a limit of approximately 0.8.

The AUROC values for data generated from log-normal distributions in which both parame-
ters were varied together, shown in Figures 4.20 and 4.21, are similar to those calculated for
the data where only σ was varied and µ remained constant (Figures 4.16 and 4.18). This sug-
gests that, as expected, it is the parameter σ rather than µ or the total starting abundance that
most influences the effectiveness of chimera removal software for log-normally distributed
data.
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Figure 4.13: Areas under ROC curves generated
from Group C1 datasets (see Table 4.4) with vary-
ing values for the log-normal parameter µ. Each
simulation was repeated 5 times.
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Figure 4.14: Areas under ROC curves generated
from Group C2 datasets (see Table 4.5) with vary-
ing values for the log-normal parameter µ. Each
simulation was repeated 5 times.

Figures 4.22 to 4.25 show the performance of UCHIME for different methods of simulating
noise. It can be seen that in all cases, peak performance for chimera detection is reached
when no additional noise is simulated, that is, for datasets in which non-chimeric noise has
been 100% removed. This suggests that noisy data confuses the chimera checking algorithm
which is logical because the chimeras and their respective parents are less likely to show
similar characteristics with added noise.
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Figure 4.15: ROC curves to show effectiveness
of chimera detection based on different values for
the log-normal parameter σ in Group C1 datasets
(see Table 4.4).
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Figure 4.16: Areas under ROC curves generated
from Group C1 datasets (see Table 4.4) with vary-
ing values for the log-normal parameter σ. Each
simulation was repeated 5 times.
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Figure 4.17: ROC curves to show effectiveness
of chimera detection based on different values for
the log-normal parameter σ in Group C2 datasets
(see Table 4.5).
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Figure 4.18: Areas under ROC curves generated
from Group C2 datasets (see Table 4.5) with vary-
ing values for the log-normal parameter σ. Each
simulation was repeated 5 times.
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Figure 4.19: Mean AUROC values for all values of σ (0.5 - 2.5). Mean values are taken from a combination of
all ROC curves, for that value of σ, generated from both C1 and C2 datasets (see Tables 4.4 and 4.5).
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Figure 4.20: Areas under ROC curves generated
from Group C1 datasets (see Table 4.4) with vary-
ing values for both of the log-normal parameters,
µ and σ. Each simulation was repeated 5 times.
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Figure 4.21: Areas under ROC curves generated
from Group C2 datasets (see Table 4.5) with vary-
ing values for both of the log-normal parameters,
µ and σ. Each simulation was repeated 5 times.
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Simulated noise due to PCR single-base errors has much less of a negative effect on chimera
detection than pyrosequencing noise. When pyrosequencing noise is added, either alone
or in conjunction with other noise, AUROC values lower than 0.4 are calculated and, typi-
cally, more than 60% of chimeras are undetectable thus rendering the software too unreliable
to be of any use. The poor results returned from datasets with simulated pyrosequencing
noise relative to those with simulated PCR noise imply that UCHIME deals with transcrip-
tion/translation errors better than insertion/deletion errors because the latter are created as
part of pyrosequencing noise but not as part of PCR errors.

After the simulated noise has been removed it can be seen that UCHIME performance in-
creases but not quite to the level of that observed on noise-free datasets, reaffirming that
chimera detection is affected by the amount of other noise in the data. This demonstrates the
importance of using an effective noise removal pipeline - poor performance in one area can
have a knock-on effect and adversely impact performance in another area.
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Figure 4.22: ROC curves to show effectiveness of
chimera detection based on different methods of
noise simulation in Group D1 datasets (see Table
4.4).
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Figure 4.23: Areas under ROC curves generated
from Group D1 datasets (see Table 4.4). Each
simulation was repeated 5 times.
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Figure 4.24: ROC curves to show effectiveness of
chimera detection based on different methods of
noise simulation in Group D2 datasets (see Table
4.5).
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Figure 4.25: Areas under ROC curves generated
from Group D2 datasets (see Table 4.5). Each
simulation was repeated 5 times.
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4.3.3 De Novo Chimera Detection Versus Reference-Based Chimera
Detection

The UCHIME reference approach was analysed and compared to the results observed using
the de novo approach that are shown in the previous section. For most of the analysis in this
section, only the results using the ChimeraSlayer 16S reference database are shown. The
effects of using different reference databases are discussed at the end of this section.

Figures 4.26 and 4.27 show the results on datasets with differing initial richnesses. It has
already been shown that chimera detection is less reliable on richer datasets when the de

novo approach is used. However, here it can be seen that varying the initial richness has little
effect on UCHIME’s performance when using the reference approach. The results suggest
that, for richer data, the reference method may be the most sensible choice and that for data
containing fewer OTUs (around 1000) the de novo approach will yield more accurate results.

The composition of the data seems to be more of a factor when using the UCHIME ref-
erence method. Using this method, datasets composed from the Silva database (Figure 4.26)
produce worse results than those composed from the Greengenes database (Figure 4.27),
suggesting that more of the sequences in the Greengenes datasets are present in the refer-
ence database. This means that although initial richness has an impact on which UCHIME
approach works the best, it is also important to consider how comprehensively the chosen
reference database is expected to cover the data to be analysed.
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Figure 4.26: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection in Group A1 datasets (see
Table 4.4).
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Figure 4.27: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection in Group A2 datasets (see
Table 4.5).
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Figures 4.28 and 4.29 reveal a similar pattern when the sample size of the simulated output
data is varied. As has been shown previously, larger sample sizes correlate with more accu-
rate chimera detection when the UCHIME de novo approach is utilised. The reference-based
approach, however, is shown to be a lot less dependent on the sample size and generally
performs just as well for smaller samples. This suggests that for datasets with fewer reads,
reference-based chimera checking should be employed and for datasets with more reads, the
de novo approach is preferable.
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Figure 4.28: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection in Group B1 datasets (see
Table 4.4).
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Figure 4.29: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection in Group B2 datasets (see
Table 4.5).

The same pattern continues in the results displayed in Figures 4.30 and 4.31 where the log-
normal parameter σ and, consequently, the variance of the dataset has less of an effect on
UCHIME’s performance when the reference-based method is used in place of the de novo

method. Therefore, a logical strategy would be to use the de novo approach for datasets with
distributions conducive to good chimera detection, i.e. those with high σ and high variance,
and to use the reference-based method when these conditions are not met. Data which are
distributed log-normally with higher variance and higher σ will tend to contain a few outly-
ing species with much higher abundances than the rest and, therefore, represent communities
with lower evenness values.

Figures 4.32 and 4.33 demonstrate that the presence of noise adversely affects the quality
of UCHIME results regardless of whether the de novo or reference-based approach is used.
Therefore, it is not necessary to consider the level of noise present in the data and, instead,
other factors should be taken into consideration when deciding which approach to use. Note
that the data used to generate Figures 4.32 and 4.33 had a sample size of 15000 reads which
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Figure 4.30: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection using different values for
the log-normal parameter σ in Group C1 datasets
(see Table 4.4).
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Figure 4.31: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection using different values for
the log-normal parameter σ in Group C2 datasets
(see Table 4.4).

causes the reference-based approach to produce better results in this instance.

Figures 4.34 to 4.37 compare the performance of the ChimeraSlayer reference dataset and
the RDP classifier training dataset when used as reference datasets for the referenced-based
approach in UCHIME. The RDP classifier dataset performs slightly better when used on sim-
ulated data generated from both Greengenes and Silva databases. This database contains al-
most twice as many sequences as the ChimeraSlayer database (10049 versus 5181sequences)
so it is likely that it contained more reference sequences that matched with analysed data.

The reference based approach appears to work better on Greengenes data than it does on
Silva data, again showing that some data may have poor representation in reference databases
which could impact the performance of this method.

Note that the AUROC values are deceptive when comparing the two different UCHIME
methods. For example, in Figures 4.36 and 4.37 the reference-based data return larger AU-
ROC values but these can be misleading because much of the extra area is added when the
acceptance threshold is very low - in this region the reference approach does identify more
chimeras but also more false positives. Up to a more sensible threshold level the de novo

approach is superior in this case.
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Figure 4.32: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection in Group D1 datasets (see
Table 4.4).
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Figure 4.33: ROC curves comparing UCHIME de
novo chimera detection with UCHIME reference-
based chimera detection in Group D2 datasets (see
Table 4.5).
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Figure 4.34: ROC curves to show effectiveness
of chimera detection on in silico datasets gener-
ated from the Greengenes database. 30000 out-
put sequences were sampled. The UCHIME de
novo method was compared with the UCHIME
reference method using two different reference
databases.
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Figure 4.35: Areas under ROC curves generated
from different methods of chimera detection on
datasets generated from the Greengenes database.
Each simulation was repeated 5 times.
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Figure 4.36: ROC curves to show effective-
ness of chimera detection on in silico datasets
generated from the Silva database. 30000 out-
put sequences were sampled. The UCHIME de
novo method was compared with the UCHIME
reference method using two different reference
databases.
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Figure 4.37: Areas under ROC curves generated
from different methods of chimera detection on
datasets generated from the Silva database. Each
simulation was repeated 5 times.
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4.3.4 UCHIME Versus Perseus - Chimera Detection

UCHIME was used for the majority of the testing of chimera detection software on the sim-
ulated datasets because, as explained in Section 4.2.8, UCHIME runs faster than Perseus
and their performances have previously been found to be similar. In order to verify this,
and to compare UCHIME against another method of chimera detection for simulated data of
this type, Perseus was also tested on two opposing datasets in four areas of investigation -
richness, sample size, variance of abundance distribution and the addition of noise. Datasets
were identical to those in Table 4.4 with the exception that 15000 reads were sampled instead
of 30000 to reduce the running time of Perseus.
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Figure 4.38: ROC curves to compare the effectiveness of chimera detection between UCHIME and Perseus
on in silico noise-free datasets with relatively high richness, sample size and variance of abundance distribu-
tion. Datasets with initial richness of 7870, sample size of 15000 and abundance distribution with log-normal
parameter σ = 2.0 were used. AUROC values are the mean of 5 replications of each dataset.

Figure 4.38 shows the results from “control” datasets with relatively high richness, abun-
dance distribution variance, a high number of sampled read and no added noise. Subsequent
analyses involve changes to these four variables and are compared to the results shown in
this figure. Generally, Perseus performs comparably to UCHIME for datasets of this type
with a slightly higher AUROC value. However it is to be noted that for a low false positive
percentage, in the leftmost portion of the plot, UCHIME performs slightly better.

Comparing Figures 4.39 and 4.38 shows that Perseus performed better than UCHIME for
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Figure 4.39: ROC curves to compare the effectiveness of chimera detection between UCHIME and Perseus
on in silico datasets with relatively low richness. Datasets with initial richness of 500, sample size of 15000
and abundance distribution with log-normal parameter σ = 2.0 were used. AUROC values are the mean of 5
replications of each dataset.

datasets with 500 starting sequences and slightly worse than UCHIME when the full Green-
genes based in silico dataset of 7870 sequences was used. As with UCHIME, Perseus per-
formed better on datasets with lower richness.

When the sample size of the in silico datasets are varied, as shown in Figure 4.40, the results
from Perseus again follow a similar pattern to those from UCHIME. In the case where 1000
reads were sampled from the simulated output data, Perseus performed very poorly, even
compared to UCHIME, with the majority of chimeras undetected. With a higher sample size
of 15000 (Figure 4.38), Perseus detected a larger number of chimeras and performed com-
parably to UCHIME.

In Figure 4.41 it can be seen that Perseus performed worse than UCHIME on datasets with
low variance abundance distributions (log-normal parameter σ = 0.5) with the majority of
chimeras undetected. Perseus performed much better on datasets with high variance abun-
dance distributions (Figure 4.38) and the results were similar to those using UCHIME.

Figure 4.42 shows that, as with UCHIME, Perseus is less able to detect chimeras if noise is
introduced to the data. The figure also suggests that Perseus deals with PCR and sequencing
noise slightly worse than UCHIME because, even though Perseus returned a higher mean
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Figure 4.40: ROC curves to compare the effectiveness of chimera detection between UCHIME and Perseus on
in silico datasets with relatively few sampled reads. Datasets with initial richness of 7870, a sample size of
1000 and abundance distribution with log-normal parameter σ = 2.0 were used. AUROC values are the mean
of 5 replications of each dataset.
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Figure 4.41: ROC curves to compare the effectiveness of chimera detection between UCHIME and Perseus on
in silico datasets distributed log-normally with relatively low variance. Datasets with initial richness of 7870,
a sample size of 15000 and abundance distribution with log-normal parameter σ = 0.5 were used. AUROC
values are the mean of 5 replications of each dataset.
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Figure 4.42: ROC curves to compare the effectiveness of chimera detection between UCHIME and Perseus
on in silico datasets from which noise has been removed. The same datasets as those described in Figure 4.38
were used with the addition and subsequent removal of PCR noise and sequencing noise. AUROC values are
the mean of 5 replications of each dataset.

AUROC value, UCHIME performed better for low false positive percentages in the region
at the far left of the plot.

Overall, chimera detection with Perseus follows the same trends as with UCHIME. Chimera
detection with Perseus is generally poorer when detection with UCHIME is poor and chimera
detection is better when detection with UCHIME is better. In the case of datasets with low
species richness, Perseus performs better than UCHIME; it is difficult to tell why this is the
case but the Perseus algorithm may be better at selecting potential parent sequences from
a smaller pool. In some cases UCHIME outperforms Perseus but in these cases the perfor-
mance of UCHIME is generally very bad also. In other cases the two algorithms perform
similarly. From the results it seems that it would be advisable to use Perseus on smaller
datasets and UCHIME on larger datasets for reasons related to both performance and soft-
ware running time.
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4.3.5 Chimera Generation

The output files, including the various different sized samples of reads as well as the full
output datasets recorded pre-sampling, from the simulations in this chapter were analysed in
order to obtain information about how chimera generation is affected by the different vari-
ables chosen to generate the in silico data.

The data shown in Table 4.7 suggest that the initial species richness does not have any effect
on the number of chimeras sequenced if the overall sampling size, in this case 30000, remains
the same. This means that the overall percentage of chimeras will be higher in datasets with
lower initial species richness and this is illustrated in Figure 4.43.

Another thing that is noticeable is that, as the number of initial sequences increases, a larger
proportion of good sequences are missed during sequencing. This effect is portrayed in Fig-
ure 4.44 and can be simply explained by the fact that a fixed sample size will, clearly, give
greater coverage on a smaller set. However, it is still important to note that, for large datasets,
many organisms, particularly rarer ones, will be missed during sequencing.

Database Used # Sequences (Initial) # Chimeras # Good Sequences Good Sequences (% of Initial)
Greengenes 500 999.4 472.6 94.5

1000 1025.8 923.6 92.4
2000 828.8 1729.2 86.5
4000 886.4 3094.6 77.4
6000 747.2 4125.2 68.8
7870 903.6 4973.4 63.2

Silva 500 895.8 469.8 94.0
1000 946.0 932.4 93.2
2000 869.0 1756.8 87.8
4000 1033.4 3155.2 78.9
6000 972.6 4294.0 71.6
8000 827.0 5213.4 65.2

Table 4.7: Chimeras and good sequences sampled after PCR simulation on Group A1 and A2 datasets (see
Tables 4.4 and 4.5). Data are mean values from the 5 replications of each dataset.

For datasets with varying sample size (Groups B1 and B2) it can be seen that as the sample
size increases then the percentage of all good sequences included in the dataset increases
(Figure 4.45) and the overall number of chimeras also increases (Figure 4.45). This was
expected and is a consequence of larger sample sizes containing more sequences, however it
demonstrates the lack of coverage associated with small sample sizes and the extra problem
of more chimeras present in large sample sizes.

The percentage of all sequences that are chimeras generally rises as sample size increases,
as shown in Figure 4.47. This is possibly caused by the dominance of high abundance good
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Figure 4.43: Plot to show the total percentage of all sampled sequences that were chimeras in Group A1 and
A2 datasets (see Tables 4.4 and 4.5).
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Figure 4.44: Plot of percentage of good sequences sampled against the initial number of sequences in Group
A1 and A2 datasets (see Tables 4.4 and 4.5).
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sequences in small samples. As sample size increases the rate of sampling of new good
sequences is slower than the rate of sampling of new chimeras, increasing the chimera per-
centage in datasets with a large number of reads.
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Figure 4.45: Plot of percentage of good sequences sampled against sample size in Group B1 and B2 datasets
(see Tables 4.4 and 4.5).

The most noticeable result from the output data produced from datasets with varying log-
normal parameters (Groups C1 and C2) was that the proportion of the good sequences sam-
pled decreases as the value of σ increases (and µ decreases). This result can be seen in
Figure 4.48 and there appears to be an almost linear relationship between the two variables.

The reason for this result is that, as σ increases, data drawn from the log-normal distribution
tends to have a higher positive skew. This translates to the log-normal model for abundances
by having relatively few sequences assigned with more of the total abundance. Therefore,
for distributions with higher positive skew (higher σ), more reads will be sampled from these
high abundance sequences and fewer sequences will be sampled overall.
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Figure 4.46: Plot of chimeras sampled against sample size in Group B1 and B2 datasets (see Tables 4.4 and
4.5).
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Figure 4.47: Plot to show the total percentage of all sampled sequences that were chimeras in Group B1 and
B2 datasets (see Tables 4.4 and 4.5).

Both the overall number of chimeras formed in the full output dataset and the number of
chimeras sampled from the output dataset also decrease as σ increases (Figures 4.49 and
4.50). Additionally, there is a decreasing trend between the proportion of sampled chimeras
and σ, as can be seen in Figure 4.51. This is possibly because an evenly distributed dataset
will increase the availability of a wider selection of potential parent sequences. A skewed
dataset, conversely, will generally result in the repeated selection of the few high abundance
sequences as parent sequences and this may lead to a higher frequency of independent for-
mation of identical chimeras from the same parents.
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Figure 4.48: Plot of percentage of total good sequences sampled against the value of σ used to generate the
abundance distribution in Group C1 and C2 datasets (see Tables 4.4 and 4.5). Values are the means of the 5
repeated simulations.
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Figure 4.49: Plot of total chimeras generated against the value of σ used to generate the abundance distribution
in Group C1 and C2 datasets (see Tables 4.4 and 4.5). Values are the means of the 5 repeated simulations.
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Figure 4.50: Plot of chimeras sampled against the value of σ used to generate the abundance distribution in
Group C1 and C2 datasets (see Tables 4.4 and 4.5). Values are the means of the 5 repeated simulations.
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Figure 4.51: Plot of the total percentage of all sampled sequences that were chimeras against the value of σ
used to generate the abundance distribution in Group C1 and C2 datasets (see Tables 4.4 and 4.5). Values are
the means of the 5 repeated simulations.
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4.3.6 Community Analysis

As the full input datasets and their associated output datasets could be analysed separately, it
was possible to compare actual statistics relating to community composition of each dataset
with those inferred from the output data after chimeras were removed using UCHIME in de

novo mode. This allows conclusions to be drawn about what types of datasets yield results
with the most accurately representative statistics and whether steps can be taken to account
for any deficiencies inherent in datasets of certain types.

For all of the datasets that were analysed, the estimated richness (using the Chao1 estimator),
the Shannon diversity index and Pielou’s evenness were calculated. Rarefaction analysis was
performed where appropriate in order to determine how much of the full dataset remained
hidden.

It can be seen in Figure 4.52 that for datasets with fewer species, richness is overestimated
whereas for richer datasets, richness is underestimated when analysing the output data. How-
ever, particularly for datasets with around 4000 species or less, the Chao1 estimator gives a
good approximation to the true richness. Figures 4.53 and 4.54 suggest that both diversity
and evenness are underestimated, with the error being greater in richer datasets for diversity
and greater in less rich datasets for evenness.

The rarefaction curves in Figures 4.55 and 4.56 show that richer datasets generally have
more of their richness hidden. Conversely, the flatter curves for datasets with fewer species
show that most of the species are observed in the output generated from these datasets. In
order to perform meaningful analysis of the vast majority of microbial communities, rich
environmental samples are required, therefore the fact that these richer samples tend to pro-
duce less representative data is unfortunate.

As the output sample size increases (i.e. as the simulated number of reads increases), the
estimated species richness increases, as can be seen in Figure 4.57. The gradient of the curve
reduces as the sample sizes increase but it can be seen that the Chao1 estimator greatly un-
derestimates richness for smaller samples, particularly those with fewer than 10000 reads.
A very similar pattern is observable in Figure 4.58 where the diversity of the input data is
underestimated for smaller samples of the output data. Even the richness and diversity val-
ues that were calculated for the largest sample sizes were slight underestimates of the true
measurements taken from the input data.

Figure 4.59 shows that calculated values of Pielou’s evenness are higher, and generally closer
to that of the input data, when smaller samples are taken from the output data.
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Figure 4.52: Group A1 and A2 datasets (see Tables 4.4 and 4.5): Initial species richness plotted against the
estimated species richness, using Chao1, of the output data. Mean values for all simulations are shown.
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Figure 4.53: Group A1 and A2 datasets (see Tables 4.4 and 4.5): Initial species richness plotted against the
Shannon diversity of both the input and output data. Mean values for all simulations are shown.
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Figure 4.54: Group A1 and A2 datasets (see Tables 4.4 and 4.5): Initial species richness plotted against Pielou’s
evenness of both the input and output output data. Mean values for all simulations are shown.
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Figure 4.55: Group A1 datasets (see Table 4.4):
Rarefaction curves using output data from simula-
tions on datasets with varying initial species rich-
ness. The curves were generated by randomly ac-
cumulating the reads, starting from one read, and
counting the number of species present at each
point.
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Figure 4.56: Group A2 datasets (see Table 4.4):
Rarefaction curves using output data from simula-
tions on datasets with varying initial species rich-
ness. The curves were generated by randomly ac-
cumulating the reads, starting from one read, and
counting the number of species present at each
point.
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Figure 4.57: Group B1 and B2 datasets (see Tables 4.4 and 4.5): Output sample size plotted against the
estimated species richness, using Chao1, of the output dataset. Mean values for all simulations are shown. The
true richness values were 7870 for Group B1 datasets and 8000 for Group B2 datasets.

Whilst there is no evidence to suggest that the log-normal parameter µ has any effect on the
observed composition of a dataset, the same cannot be said about the other log-normal pa-
rameter, σ. As has been discussed, a higher value of σ corresponds to higher variance which
produces data with mostly species of low abundance but a few species of very high relative
abundance which dominate the dataset. Lower values of σ produce flatter, more evenly dis-
tributed abundance data.

This misrepresentation of true richness can also be noticed in the rarefaction curves in Fig-
ures 4.63 and 4.64. The slopes of the curves featured here do not indicate that a greater
amount of species richness is hidden in datasets with high σ than is hidden in datasets with
low σ even though this is the case.

It can be seen in Figure 4.60 that higher variance datasets result in a big underestimation of
the species richness, most likely caused by the small number of high abundance sequences
dominating the sampled output, with fewer overall sequences selected. Flatter initial abun-
dance distributions (σ = 0.5) tend to result in good estimates of the true richness.

As higher values of σ correspond to more uneven datasets, it follows that the input diversity
will decrease as σ increases because the Shannon diversity is maximised when all species
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Figure 4.58: Group B1 and B2 datasets (see Tables 4.4 and 4.5): Output sample size plotted against the Shannon
diversity of the output data. Mean values for all simulations are shown. The mean input (true) diversity values
were 8.098 for Group B1 datasets and 8.101 for Group B2 datasets.
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Figure 4.59: Group B1 and B2 datasets (see Tables 4.4 and 4.5): Output sample size plotted against Pielou’s
evenness of the output data. Mean values for all simulations are shown. The mean input (true) evenness values
were 0.903 for Group B1 datasets and 0.901 for Group B2 datasets.
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have the same abundance. This relationship can be observed in Figure 4.61 and is mirrored
in the results for output diversity. However, the calculated values for output diversity under-
estimate the true diversity for all values of σ.

The unevenness of datasets with higher variance abundance distributions can be demon-
strated by observing Pielou’s evenness statistics (Figure 4.62). The evenness of the output
data is generally a good representation of that of the input data but for higher σ values there
is an overestimation. This could be due to the presence of low abundance chimeras in the
output data, giving a greater number of reads with similar abundance.
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Figure 4.60: Group C1 and C2 datasets (see Tables 4.4 and 4.5): Log-normal parameter σ (with constant
µ = 1.82) plotted against the estimated species richness, using Chao1, of the output data. Mean values for
all simulations are shown. The true richness values were 7870 for Group C1 datasets and 8000 for Group C2
datasets.

Figures 4.65 to 4.67 show the results found when µ is varied as well as σ to keep the abun-
dance of the input dataset constant. The results shown in these figures are very similar to
those found in Figures 4.60 to 4.62 (where µ is kept constant while σ and the abundance are
varied) which suggests that it is the parameter σ that is the overwhelming influence on the
observed composition of log-normally distributed datasets and that any effects caused by µ
and the initial abundance are negligible.

For analysis of datasets containing simulated noise (Group D1 and Group D2 datasets) it is
apparent that the presence of pyrosequencing noise has a greater adverse effect on the ac-
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Figure 4.61: Group C1 and C2 datasets (see Tables 4.4 and 4.5): Log-normal parameter σ (with constant
µ = 1.82) plotted against the Shannon diversity of both the input and output output data. Mean values for all
simulations are shown.
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Figure 4.62: Group C1 and C2 datasets (see Tables 4.4 and 4.5): Log-normal parameter σ (with constant
µ = 1.82) plotted against Pielou’s evenness for both the input and output output data. Mean values for all
simulations are shown.
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Figure 4.63: Group C1 datasets (see Table 4.4):
Rarefaction curves using output data from simula-
tions on datasets with varying log-normal param-
eter σ (with constant µ = 1.82). The curves were
generated by randomly accumulating the reads,
starting from one read, and counting the number
of species present at each point.
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Figure 4.64: Group C2 datasets (see Table 4.5):
Rarefaction curves using output data from simula-
tions on datasets with varying log-normal param-
eter σ (with constant µ = 1.82). The curves were
generated by randomly accumulating the reads,
starting from one read, and counting the number
of species present at each point.
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Figure 4.65: Group C1 and C2 datasets (see Tables 4.4 and 4.5): Variable log-normal parameters σ and µ plotted
against the estimated species richness, using Chao1, of the output dataset. Mean values for all simulations are
shown. The true richness values were 7870 for Group C1 datasets and 8000 for Group C2 datasets.
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Figure 4.66: Group C1 and C2 datasets (see Tables 4.4 and 4.5): Variable log-normal parameters σ and µ
plotted against the Shannon diversity of both the input and output output data. Mean values for all simulations
are shown.
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Figure 4.67: Group C1 and C2 datasets (see Tables 4.4 and 4.5): Variable log-normal parameters σ and µ
plotted against Pielou’s evenness for both the input and output output data. Mean values for all simulations are
shown.
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curacy of estimated community richness, diversity and evenness than the presence of PCR
errors.

Figures 4.68 and 4.69 show that adding both types of noise overestimates community rich-
ness. This is, clearly, to be expected because the inclusion of noisy sequences artificially
increases the number of species detected in a sample and, therefore, the observed richness.
This will in turn affect the estimated richness using the Chao1 estimator.

A comparison of data to which no noise has been added (representing perfect noise removal)
with data from which the simulated noise has been removed reveals that the latter data pro-
duces better richness estimates. This is a by-product of the fact that richness estimates are
generally underestimated for noise-free data, as shown earlier in this section, and, because
of this, the residual noise is contributing to a better estimate. Ideally this would not be the
case and the completely noise-free data would produce more accurate richness estimates.

As noisy datasets are of greater richness, it is likely that they will also have higher diver-
sity and this is shown to be the case in Figures 4.70 and 4.71. An interesting observation
from these results is that although the data with imperfectly removed noise yields higher
richness estimates than those with perfectly removed noise, the opposite is the case for di-
versity measures - the data from which the simulated noise has been removed is less diverse.

These differences can be attributed to the evenness of the respective datasets (shown in
Figures 4.72 and 4.73) because a community’s diversity is a function of its richness and
its evenness, thus the datasets from which simulated noise has been removed exhibit lower
evenness. The relative unevenness of these data must be caused by the noise removal pro-
cess, suggesting that some noisy sequences of high abundance may have been conserved in
error and some good sequences of low abundance may have been discarded in error.

Figures 4.74 and 4.75 further show that the addition of pyrosequencing noise has a greater
adverse effect than the addition of PCR errors. They also reiterate that almost half of a
datasets richness will be missing when 15000 reads are samples. This is also the case for
datasets from which simulated noise has been removed, with similar rarefaction curves for
these datasets and those to which no noise was added.
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Figure 4.68: Estimated richness for all Group D1
output datasets (see Table 4.4). Each simulation
was repeated 5 times.
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Figure 4.69: Estimated richness for all Group D2
output datasets (see Table 4.5). Each simulation
was repeated 5 times.
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Figure 4.70: Diversity for all Group D1 output
datasets (see Table 4.4). Each simulation was re-
peated 5 times.
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Figure 4.71: Diversity for all Group D2 output
datasets (see Table 4.5). Each simulation was re-
peated 5 times.
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Figure 4.72: Evenness for all Group D1 output
datasets (see Table 4.4). Each simulation was re-
peated 5 times.

No Noise PCR Errors Pyrosequencing Noise Both Types Noise Removed

Type of Noise

P
ie

lo
u'

s 
E

ve
nn

es
s

0.
80

0.
85

0.
90

0.
95

1.
00

Evenness of Input

Figure 4.73: Evenness for all Group D2 output
datasets (see Table 4.5). Each simulation was re-
peated 5 times.
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Figure 4.74: Group D1 datasets (see Table 4.4):
Rarefaction curves using output data from simu-
lations on datasets with different types of simu-
lated noise. The curves were generated by ran-
domly accumulating the reads, starting from one
read, and counting the number of species present
at each point.
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Figure 4.75: Group D2 datasets (see Table 4.5):
Rarefaction curves using output data from simu-
lations on datasets with different types of simu-
lated noise. The curves were generated by ran-
domly accumulating the reads, starting from one
read, and counting the number of species present
at each point.
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4.3.7 Best Practice

Table 4.8 shows how well it can be expected that different types of dataset can be analysed.
The first three columns show attributes (sample size, richness and diversity) that can be mea-
sured in the data; the following two columns show how these attributes estimate the true
richness and variance of the abundance distribution; the next two columns show the effect of
each type of dataset on chimera detection and chimera generation; the final column shows
the recommended chimera removal method.

This table, along with Table 4.9, shows that, in general, datasets with a large number of
reads but low species richness are easier to analyse and will therefore give more accurate re-
sults. Additionally, a high species diversity, indicating an abundance distribution with higher
variance, is desirable for chimera detection but not for community analysis.

The UCHIME reference method is recommended for datasets with a lower sample size be-
cause the negative effects of fewer reads are less pronounced with this approach. Perseus
is recommended for datasets with low richness and high diversity because it was found to
outperform UCHIME on datasets of this type, as shown in Figure 4.39 in Section 4.3.4. The
UCHIME de novo method is recommended for the remaining types of dataset because it is
either better than Perseus or comparable to Perseus in terms of results but much better in
terms of speed.

Before Tables 4.8 and 4.9 are consulted, it is necessary to consider the following points.

• Noise Removal: It is important that PCR noise and sequencing noise have been re-
moved from the data as comprehensively as possible because the presence of noisy
data severely affects the performance of chimera removal software (Section 4.3.2).
For pyrosequencing data, such as those simulated in this chapter, the AmpliconNoise
pipeline is an effective tool for this purpose. For Illumina data, the Illumina processing
pipeline available in QIIME (21) is recommended.

• Sample Size: The number of reads in the dataset is a very important factor to consider.
Whilst a dataset with a relatively low number of reads will generally have a smaller
chimera percentage, this is overridden by the fact that chimera detection is much poorer
in these datasets and estimates of their community properties are much less accurate
(Section 4.3.2). Thus, a sequencing strategy that maximises the number of reads is
recommended and Illumina is the most appropriate NGS platform for this purpose.

• Reference Based Chimera Detection: For datasets with fewer reads it has been
shown that the UCHIME reference method is the most effective approach (Section 4.3.3).
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However, this is only the case if an appropriate reference database is available. For
16S data it has been shown that the ChimeraSlayer and RDP classifier databases are
good choices. For other types of data the use of the UCHIME reference based method
should depend on the quality of the reference databases available.

Measured Properties True Properties Performance
Sample Size Richness Diversity Richness Variance Chimera Detection Chimera Generation Recommended Software

Low Low Low Unknown Unknown Poor Average UCHIME - reference method
Low Low High Unknown High Poor Low UCHIME - reference method
Low High Low High Unknown Very poor Low UCHIME - reference method
Low High High High High Very poor Very low UCHIME - reference method
High Low Low Low Low Good Very high UCHIME - de novo method
High Low High Low High Optimal High Perseus
High High Low High Low Poor High UCHIME - de novo method
High High High High High Good Low UCHIME - de novo method

Table 4.8: Table to show expected performance and recommended chimera removal strategy for datasets with
different properties.

Desired Richness Desired Sample Size Desired Variance of Sequence Abundances Desired Noise
Chimera Detection Low Large High None
Chimera Generation High Small High NA
Community Analysis Low Large Low None

Table 4.9: Table to show desired attributes for data to possess in order to increase performance in three different
areas.

4.4 Discussion

The analysis in the previous section has demonstrated that input data exhibiting different
properties can drastically affect the composition of the output data. This can, in turn, affect
the accuracy and reliability of the analysis carried out on these data. It is unfortunate that,
in practice, the composition of the environmental samples to be analysed cannot be chosen
in advance to any degree of accuracy. However, once the data has been examined, it can be
decided what allowances must be made depending on the now evident properties of the data.
The main consideration is that sample composition can’t be adjusted but the findings in this
chapter can be used to determine the degree of confidence with which results are treated. In
general, mainly because of the relatively poor performance of chimera removal software on
datasets of this type, results will contain more ambiguity than it was previously believed.

In order to effectively evaluate sequencing data it is first necessary to ascertain what the
purpose of the analysis is, and therefore what properties are required of the results. Table 4.9
summarises the desirable properties for data to exhibit in order to aid three areas of analysis.
For example, richer samples are beneficial if reduction of chimeras is a priority, whereas
samples with low richness will produce more accurate results if the data is being used for
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community analysis.

It is noticeable that low input richness and a large sample size will result in improved chimera
detection but also in an increased level of chimera generation. A low level of chimera gener-
ation should usually be prioritised because prevention is better than cure. However, the only
attribute that a researcher will have any significant control over is the sample size (number
of reads) produced which will vary with different experimental protocols and sequencing
platforms. Despite the fact that small sample sizes will generally reduce the proportion of
chimeras contained within the data, a large sample size will still usually be desirable because
of the greater amount information that it will provide.

For conditions to be optimal for chimera detection it is required that a large sample size
be taken from a dataset with a low initial richness and an abundance distribution with high
variance (high σ). All noise should also have been removed. Even when this is the case
around 20% of chimeras are awarded a UCHIME score of zero, meaning that they are mis-
classified as good sequences regardless of the acceptance threshold. This is an extremely
worrying result, especially when it is considered that conditions will usually be suboptimal
(noise removal will rarely be close to perfect, for example) and, therefore, the number of
undetected chimeras will generally be even greater than this figure of 20%.

One possible reason for these misclassifications is that a chimera could potentially have a
higher abundance than one or both of its parents, and therefore would not be detected by
UCHIME. This can happen when a chimera is generated during an early round of PCR and
one of its parents subsequently experiences more instances of PCR extension failure than
the chimera. Parent sequences may also have lower abundances (or be missing completely)
because of the random sampling.

Closer inspection of the data shows that this is not usually the case for chimeras with
UCHIME scores of zero and, therefore, there must be another reason for the presence of
these misclassified chimeras. The presence of the candidate chimera, plus both of its higher
abundant parents in the analysed data suggests that there could be a problem with the chimera
checking software itself.

In the Introduction chapter to this thesis (Section 1.4.4) the UCHIME algorithm is presented,
showing that the UCHIME score is calculated using the formulae:

HL =
YL

β(NL + n) + AL
,
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HR =
YR

β(NR + n) + AR

and
H = HL ×HR

where H is the final UCHIME score, HL and HR are the UCHIME scores for the left and
right parts of the alignment respectively, YL, YR, NL, NR, AL and AR are ‘yes’, ‘no’ and
‘abstain’ votes for each part of the alignment and β and n are input variables used to weight
the effect of a ‘no’ vote.

It can be seen that, for a UCHIME score of zero to be returned, the number of ‘yes’ votes on
one or both parts of the alignment must be equal to zero. This is not the case when a three-
way alignment between a chimera and its true parents is invoked and, therefore, the problem
must be due to UCHIME selecting the wrong parents from the dataset. It can be concluded
that existing chimera removal software is not adequate and improvements are required in
order to eradicate undetected chimeras as a significant source of noise in sequencing data.

The poor performance of chimera detection software on in silico datasets highlights the fact
that earlier testing methods using mock communities were insufficient. There is now a big
incentive to generate datasets containing realistic chimeras, simulated using algorithms such
as those described in Chapter 3, with the goal of further testing and, ultimately, improving
the chimera removal process.
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Chapter 5

Constructing Interaction Networks
using Pyrosequencing Data

5.1 Introduction

Due to the large population size and diversity found in meiofauna communities, along with
the added difficulty of observing the organisms therein, relatively little is known about their
ecology compared with that of communities featuring larger organisms. In this report, var-
ious ways of determining relationships between such organisms within a community are
investigated and evaluated. Many of the techniques, most of which involve the use of DNA
sequencing data, could also be applied for the analysis of other types of organism and it
is anticipated that they will be particularly relevant for analysing microbial communities.
However, all of the investigations described in this report deal with meiofauna, particularly
nematode, data.

Nematodes, or roundworms, make up a particularly abundant and diverse phylum with over
28000 species described and an estimated 1 million species in total (112). Nematodes have
adapted to nearly every ecosystem on Earth and are particularly abundant on the ocean floor
where they are the dominant meiofaunal phylum. The data used in this report were gener-
ated from marine benthic samples from coastal regions around Europe. Because nematodes
are so populous, especially in the chosen environment, there is ample opportunity to explore
relationships between different species of nematode localised within one site and also across
a range of sites. For these reasons, studying the relationships between nematode species, and
species of other meiofauna phyla in their environment, should provide a good opportunity to
yield worthwhile results regarding inter-species interactions and establish a good platform to
apply the same methods to other organisms and communities.
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Organisms interact with each other in a number of different ways and some of these may
not have intuitively obvious effects (on abundance data, for example). For meiofauna, most
interactions will be based on feeding relationships and competition for resources. The most
obvious interaction is the link between predator and prey, with high abundance of a prey
species having a positive impact on predator species. Indirect predator prey relationships are
also possible and these are explained further in Section 5.3.2. Other possible interactions
include competition, amensalism, mutualism and commensalism (113) (114).

Section 5.2.1 describes an experimental dataset containing nematode sequencing data. In
this data, the presence of unexpected species in samples can be used to infer direct and indi-
rect predator-prey relationships as described in Section 5.3.

Faust et al. (36) use co-occurrence data to infer relationships within the human microbiome.
Section 5.4 describes the use of the meiofauna co-occurrence data (outlined in Section 5.2.2)
to attempt the inference of interactions and several methods of doing this are discussed. The
reliability of using data of this kind is debatable as a number of scenarios can be envisaged
where co-occurrence of two or more species will not necessarily infer the expected relation-
ship. This may be the case in situations where environmental factors play an important part
in the determination of species distributions. In such cases, the effect of interactions on co-
occurrence may be outweighed by these factors.

Comparisons between the two sets of results from the experiments in Sections 5.3 and 5.4
will produce interesting conclusions regarding the effectiveness of using co-occurrence data
to infer these types of relationships.

5.2 Data

5.2.1 Dataset of Individually Sequenced Nematodes (Individual
Dataset)

A series of experiments where pooled samples of multiple nematodes, were sequenced and
analysed in order to investigate the formation of chimeras (46) are described in Chapter 2. In
addition to this, similar experiments were carried out on 74 samples each containing a single
species of nematode. The exact sequences for these 74 single nematodes were known be-
cause they had been found separately using Sanger sequencing. Each sample was identified
by the primer used for sequencing, labelled P1 to P74.
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The samples were sequenced, denoised and filtered for chimeras. All of the remaining
sequence data in the whole dataset were clustered using a complete-linkage clustering al-
gorithm to determine Operational Taxonomic Units (OTUs) at a level of 99% similarity.
Megablast was used on the GenBank/EMBL/DDBJ nucleotide database for taxonomic as-
signment and the OCTUPUS annotation and parsing toolkit (49) was used for OTU annota-
tion, this was restricted to matches of 90% or better.

Despite containing only a single nematode, each sample was revealed to contain a num-
ber of additional OTUs at lower abundance, some corresponding to those from one or more
of the other nematode samples.

5.2.2 Dataset of Meiofaunal Communities (Community Dataset)

Chapter 2 presents research conducted on an experiment involving meiofauna sequencing
data (45). In this study, marine benthic samples were collected from 23 sites in the UK,
France, Spain, Portugal and Gambia.

Again, the samples were sequenced, denoised and filtered for chimeras and all of the re-
maining sequence data were combined and then clustered to find 99% OTUs which were
taxonomically assigned. After taxonomic assignment, the dataset could easily be filtered for
specific phyla if required; a co-occurrence dataset featuring nematode data only was pro-
duced.

5.3 Methods - Analysis of Individual Dataset

5.3.1 Food Web Construction

Using the individual nematode dataset (Section 5.2.1), the consensus sequences obtained for
the 99% OTUs were combined with the 74 Sanger sequences known for each Nematode in
the experiment. These sequences were aligned against each other using MAFFT (FFT-NS-2
algorithm) and FastTree was used to construct a phylogenetic tree from this alignment. Us-
ing the tree, the original Sanger sequences were matched to the OTUs that differed to them
by no more than 1%, some of the Sanger sequences matched multiple OTUs and the data
for these were merged together. Some of the Sanger sequences were deduced to be from the
same organism, some returned no match and one of the sequences was corrupt, this reduced
the number of unique successful experiments to 56.
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74 Individual Nematode Samples
A1 A2 A3 A4 A5 A6 A7 A8 →

34
2

O
T

U
s

B1 10 750 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 0
B3 0 10 0 0 500 0 0 0
B4 500 0 0 0 0 0 0 0
B5 20 0 0 10 20 0 1000 0
B6 0 10 0 0 0 0 0 0
B7 0 0 0 0 0 20 0 0
B8 10 0 0 0 0 15 0 10
↓

(a) To begin with the OTUs from each sample were arranged
into a matrix of abundances. The abundances are the number
of reads which were sequenced for each OTU. All Sanger se-
quences were then compared to the OTU sequences by form-
ing a phylogenetic tree of the alignment and those differing
from each other by less than 1% were identified. In this exam-
ple, the Sanger sequences relating to samples A4 and A5 were
found to be the same.

56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

26
8

O
T

U
s

B1 10 750 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 15
B3 0 10 0 500 0 0 0 0
B4 500 0 0 0 0 0 0 0
B5 20 0 0 30 0 1000 0 0
B6 0 10 0 0 0 0 0 0
B7 0 0 0 0 0 20 0 0
B8 10 0 0 0 0 15 0 10
↓

(b) OTU and Sanger sequences were merged together by com-
bining matching columns and rows and summing the abun-
dances in the merged cells. The result was a smaller matrix of
268×56 - note that sample A5 has now been combined with
sample A4. Sanger sequences that matched an OTU sequence
are highlighted in this matrix, in all cases each OTU had a high
relative abundance in the sample which verified that it did in-
deed represent the main nematode that was sequenced.

56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

56
M

at
ch

in
g

O
T

U
s

A1 500 0 0 0 0 0 0 0
A2 10 750 0 0 0 0 0 0
A3 0 0 600 0 10 0 0 25
A4 0 10 0 500 0 0 0 0
A6 0 0 0 0 750 0 0 0
A7 20 0 0 30 0 1000 0 0
A8 0 0 0 0 0 0 500 0
A9 0 0 0 0 0 0 0 800
↓

(c) The OTUs that matched the Sanger sequences were re-
labeled to the relevant matching sample label and the non-
matching OTUs were removed. The rows were reordered so
that their labels were in the same order as the column labels.
The rows of the matrix now show the abundances of the nema-
tode species which were present in each main nematode sam-
ple - these represent the prey of the main nematode.

56 Predator Nematodes
A1 A2 A3 A4 A6 A7 A8 A9 →

56
Pr

ey
N

em
at

od
es

A1 0 0 0 0 0 0 0 0
A2 1 0 0 0 0 0 0 0
A3 0 0 0 0 1 0 0 1
A4 0 1 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 1 0 0 1 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0
↓

(d) To produce a food web, the diagonal cells of the matrix
were replaced with zeros because it is assumed that the nema-
todes have no feeding interactions within their own species.
All other non-zero cells were converted to a value of one to
signify a feeding interaction. In the example above it can be
seen that nematode A1 preys on nematode A2 which, in turn,
preys upon nematode A4.

Figure 5.1: This figure shows how data from the separate sequencing of individual nematodes can be used
to generate a food web. Additional information was obtained from the Sanger sequencing of each individ-
ual nematode which provided a known sequence for each experiment. The above example is intended to be
illustrative and does not portray identical data to those used for the analysis in this chapter.
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The resulting matrix consisted of the 56 known nematodes and an additional 268 unknown
species containing OTU abundance data where the abundances were taken to be the num-
ber of reads sequenced for each OTU. This matrix could easily be converted into a Food
Web by adding a link anywhere that a non-zero read was present, ignoring interactions be-
tween a species and itself. It was, of course, not possible to identify feeding relationships
between the unknown organisms, only which of the 56 known nematodes they were eaten by.

A 56×56 subset of this food web, consisting only of the feeding relationships between the
known nematode species, was derived by filtering out OTUs that did not match with any
one of the Sanger sequences. The methods used to generated a food web in this way are
illustrated in Figure 5.1.

5.3.2 Direct and Indirect Effort Matrices

56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

56
M

at
ch

in
g

O
T

U
s

A1 0 0 0 0 0 0 0 0
A2 10 0 0 0 0 0 0 0
A3 0 0 0 0 10 0 0 25
A4 0 10 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 20 0 0 30 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0
↓ . . . . . . . . . . . . . . . . . . . . . . . .

Total 100 120 75 80 100 150 50 100

(a) The abundances (read numbers) of prey nematodes present
in each predator nematode sample were found using the meth-
ods presented in Figure 5.1 and the total abundance in each
experiment was recorded.

56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

56
M

at
ch

in
g

O
T

U
s

A1 0 0 0 0 0 0 0 0
A2 0.1 0 0 0 0 0 0 0
A3 0 0 0 0 0.1 0 0 0.25
A4 0 0.083 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 0.2 0 0 0.375 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0
↓

(b) The proportion of each prey nematode found in each nema-
tode sample was found by dividing each column by the column
total to give the effort matrix, f .

Figure 5.2: Generation of an effort matrix using OTU abundance data. The above example is intended to be
illustrative and does not portray identical data to those used for the analysis in this chapter.

A matrix, f , of “efforts” has been described (115). The efforts are defined as the proportion
of each predator’s diet that is made up of each prey species. The f matrix was estimated
from the food web by using the OTU abundance for each prey species j of predator species
i to calculate the proportion fij as shown in Figure 5.2. The abundance is taken to be the
number of reads sequenced for each OTU.

The corresponding matrix of all direct and indirect predator-prey relationships, F , was cal-
culated using the formula F = (1 − f)−1f . This was used to find the matrix of indirect
interactions only, I , where:

Iij =

{
Fij if fij = 0,

0 if fij > 0.
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5.3.3 Competition Matrix

Species that consume the same resources will be in competition with each other. A mea-
sure of the level of competition between two predator species, i and j, for a particular prey
species, k, can be calculated by taking the product of their (direct and indirect) predator-prey
interactions for that species, FikFjk using data from the F matrix described in Section 5.3.2.
Thus, the greater the contribution from k to the diet of either species, the greater the com-
petition between them. The total competition between species i and species j can then be
found by summing over all species k to give the formula,

cij =
∑
k

FikFjk.

5.3.4 OTU classification and Inferring the Diet of Nematodes

Every OTU in the individual nematode dataset was taxonomically classified. A Megablast
alignment was carried out with the fasta file containing the OTU sequences aligned against
the Silvamod reference database (116). The output was analysed using LCA Classifier (117)
to taxonomically classify the OTUs as accurately as possible based on their sequences.

Using this classification data, the lists of all OTUs present in each individual experiment
could be grouped at a specified taxonomic level (e.g. phyla). These lists correspond to the
diet of the main nematode species in each individual experiment. New datasets showing this
information were created by normalising or rarefying the data. The steps used for inferring
the diets of the nematodes are illustrated in Figure 5.3

5.3.5 Assigning Feeding Types to Nematodes

Video data (archived at Bangor University) exists for each single nematode that was se-
quenced but, unfortunately, there is no footage of the nematodes actually eating each other.
However, through expert analysis of the worms’ morphology, conducted by a group led
by Tom Moens at Ghent University, it has been possible to determine the feeding types
of a selection of the nematodes. A total of 25 nematodes were classified by their feeding
types according to Wieser (118) and according to Moens and Vincx (119). Information
was also included regarding their presumed main food sources and potential secondary food
sources.The Wieser feeding types are expanded upon below.

• 1A - Selective deposit feeder. Minute mouth, hence probably bacteria as main food.
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56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

26
8

O
T

U
s

B1 10 750 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 15
B3 0 10 0 500 0 0 0 0
B4 500 0 0 0 0 0 0 0
B5 20 0 0 30 0 1000 0 0
B6 0 10 0 0 0 0 0 0
B7 0 0 0 0 20 0 10 0
B8 10 0 0 0 15 0 0 0
↓

(a) OTUs from each sample were arranged into a matrix of
abundances. The abundances are the number of reads which
were sequenced for each OTU. All Sanger sequences were
then compared to the OTU sequences by forming a phylo-
genetic tree of the alignment and those differing from each
other by less than 1% were identified. Sanger sequences that
matched an OTU sequence are highlighted in this matrix.

56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

26
8

O
T

U
s

B1 10 0 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 15
B3 0 10 0 0 0 0 0 0
B4 0 0 0 0 0 0 0 0
B5 20 0 0 30 0 0 0 0
B6 0 10 0 0 0 0 0 0
B7 0 0 0 0 20 0 10 0
B8 10 0 0 0 15 0 0 0
↓

(b) Cells of the matrix marking the intersection of each sam-
ple and its matching OTU were replaced with zeros because
it is assumed that the nematodes have no feeding interactions
within their own species.

56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

26
8

O
T

U
s

P1 10 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 15
P1 0 10 0 0 0 0 0 0
P1 0 0 0 0 0 0 0 0
P1 20 0 0 30 0 0 0 0
P3 0 10 0 0 0 0 0 0
P4 0 0 0 0 20 0 10 0
P3 10 0 0 0 15 0 0 0
↓

(c) Each OTU was classified using LCA classifier and the
OTUs were labelled with their respective phyla. Here, differ-
ent colours represent different phyla.

56 Individual Nematode Samples
A1 A2 A3 A4 A6 A7 A8 A9 →

33
U

ni
qu

e
Ph

yl
a

(D
ie

t) P1 110 75 0 90 10 0 20 0
P2 0 0 0 0 0 0 10 45
P3 20 10 0 0 25 0 0 0
P4 0 0 0 0 50 0 10 0
P5 0 0 0 0 0 100 40 0
P6 0 20 30 0 0 0 0 0
P7 0 0 20 0 0 0 15 0
P8 0 0 35 0 10 0 0 0
↓

(d) Rows corresponding to each of the 33 different phyla were
combined and the abundances were summed together. This
gives a representation of the diet of each nematode. The abun-
dances can be divided by the total abundance in each column
to give the proportion of each nematode’s diet that is composed
of each phylum.

Figure 5.3: This figure shows how data from the separate sequencing of individual nematodes can be used
to infer the diet, in terms of the different phyla ingested, for each nematode. Additional information was
obtained from the Sanger sequencing of each individual nematode which provided a known sequence for each
experiment. The above example is intended to be illustrative and does not portray identical data to those used
for the analysis in this chapter.
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• 1B - Non-selective deposit feeder. May feed predominantly on microalgae or on
bacteria; role of protists as food poorly known.

• 2A - Epistratum feeder. Many of these appear to feed on diatoms and other microal-
gae, but this may not be their only food.

• 2B - Predator/Omnivore.

To test its accuracy, these feeding types could be compared with the trophic levels from
the food web. It is also possible that there could be a relationship between the diversity of a
nematode’s diet and its feeding type - a deposit feeder, for example, may appear to have eaten
a wide variety of “prey” because of the range of dead organic matter that it has consumed.
The Shannon diversity index was therefore used to calculate the diversity of phyla in each
nematode’s diet and also the nucleotide diversity of the OTU sequences in each diet. More
evidence that the data from the individual nematode experiment are food web data would be
obtained if the differences between inferred diets of nematode species with the same feeding
type were smaller than those of species with different feeding types.

5.3.6 NMDS Analysis

Nonmetric multidimensional scaling (NMDS) is a technique used in community analysis to
help visualise differences between various sites in terms of their taxonomic composition.
As the taxa richness increases in the sites it becomes increasingly difficult to compare them
graphically due to the high dimensionality, NMDS attempts to rectify this issue by reducing
the data to two or three dimensions which still retain the same information.

NMDS is initiated using a distance or dissimilarity matrix such as a matrix of Bray-Curtis
dissimilarities. An iterative procedure is then applied which uses the ranking of taxa abun-
dances at each site.

• An initial two dimensional plot is formed and regressions of the distances on this and
the measured distances are carried out.

• The difference (or “stress”) between the predicted values from the regression and the
2D configuration is determined. If the 2D configuration kept the ranked abundances
in the original order then a plot of one against the other would be monotonically in-
creasing. The level of stress is determined by how much the 2D points differ from this
relationship.

• The 2D points are positioned in a configuration which reduces the stress.
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• The procedure is repeated for a set number of iterations or until the stress is below
a certain threshold. Any value below 0.2 is usually taken as indication that the two
dimensional plot gives a very good representation of the data.

NDMS was applied to the individual members that had been assigned by feeding type using
the metaMDS function in the Vegan package in R. The abundance data for each phyla present
in the samples were used for the community data with each individual nematode analogous
to a “site”. Thus, the differences in the nematode’s diets could be analysed using this method.

5.3.7 Permutation ANOVA

A test was required to see if there were significant differences in the composition of nema-
todes of each feeding type. The adonis function in the Vegan package in R was used to
perform a permutation analysis of variance on the inferred diets of the nematodes that had
been categorised by feeding type. This was repeated when only two feeding types were de-
fined (combining 1A with 1B and 2A with 2B). It was also repeated when the nematode diets
were rarefied to the same abundance of the sample with the lowest OTU abundance.

The adonis function performs a partition multivariate analysis of variance which partitions
distance matrices among sources of variation and performs permutation tests to determine
the significance of the partitions. In this case Bray-Curtis distances were calculated against
only one partition, the feeding type. The permutation tests work by generating 999 random
permutations of the observed data and performing ANOVA on each of these. The F-statistics
returned from these tests are compared with the F-statistics returned from an ANOVA test
on the true data to calculate the p-values which determine the significance levels.

5.3.8 Multinomial Logistic Regression

Multinomial logistic regression is an extension of standard logistic regression in which the
response variable is categorical but can take more than two values. This method can be
used to determine the feeding type (1A, 1B, 2A or 2B) of a newly observed organism based
solely on its inferred diet. Multinomial logistic regression can be carried out in R using the
multinom and predict functions to return the probabilities of new observations belonging to
each feeding type.
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5.4 Methods - Analysis of Community Dataset

5.4.1 Pre-processing and Post-processing the Data

Before interactions could be inferred from the co-occurrence data in the community dataset
(Section 5.2.2) it was necessary for the following pre-processing to take place:

• The abundance data were normalised so that the abundances at each site summed to
the same total.

• All OTUs with fewer than three reads were filtered out.

• Only OTUs with an abundance greater than the median abundance were included.

• Very dominant OTUs (for example those with greater than 60% relative abundance)
that showed little change across samples were to be removed, however no such OTUs
were found to exist.

• A Hellinger transformation was applied to the data to counteract any additional dom-
inance effect in the sample. No transformation of the data was used in conjunction
with the SparCC analysis because the SparCC software uses a Bayesian approach to
transform the data (40).

After the interaction networks were inferred, Benjamini-Hochberg corrections were applied
to the data to account for false positives using the p.adjust function in R and significant p-
values (p < 0.05) were used to determine interactions between OTUs as per the methods
used by Berry and Widder (120).

5.4.2 SparCC

The SparCC (40) approach for inferring interactions between species involves the estimation
of linear Pearson correlations between the log-transformed ratios,

yij = ln
xi
xj

where xi is the proportion of OTU i and xj is the proportion of OTU j. The use of these ra-
tios is the defining feature of SparCC because yij is equal to the ratio of the true abundances
of OTUs i and j and, critically, because yij is independent of the abundances of all other
OTUs in the dataset. It is assumed that the number of OTUs is large and that the resultant
matrix will be sparse, meaning that the majority of OTU pairings will have no significant
interaction.
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Variances of yij ,
tij = Var(yij),

can be calculated across all sites to give an indication of relationships between OTUs. Per-
fectly correlated OTU pairs will yield constant values for yij and, therefore, have zero vari-
ance. Conversely, uncorrelated OTU pairs will produce high values for tij . Following on
from this, a set of equations can be formulated to relate tij to the correlation, ρij , between
the true abundance of the OTUs:

tij = ω2
i + ω2

j − 2ρijωiωj

where ω2
i and ω2

j are the variances of the log-transformed true abundances of OTUs i and j
respectively. It is apparent that if tij is less than the sum of the two variances then the corre-
lation is positive and if tij is greater than the sum of the two variances then the correlation is
negative. These equation are not solvable analytically but the values for ρij can be estimated
using an iterative procedure.

First, estimates for the variances of the true abundances, ωi for all i, are calculated using
the assumption that all OTUs are uncorrelated. These values can then be used in conjunc-
tion with the values for tij to give estimates for ρij . Accuracy is improved by repeating this
step, with the OTU pair showing the strongest correlation at each step omitted from the true
variance calculations in subsequent steps, until all OTUs have been removed.

5.4.3 L1 Penalised Sparse Regression Model

This section discusses a method of inferring interactions from co-occurrence data involving
the calculation of a precision matrix, which is simply the inverse of the covariance matrix.
If it can be assumed that the majority of species have negligible relationships between each
other then a sparse precision matrix is a sensible option to use to attempt to model the interac-
tions. This is a matrix where most of the parameters are estimated as zero and the remaining
non-zero parameters indicate positive or negative interactions, depending on their sign.

Banerjee et al (121) describe algorithms to estimate the precision parameters of a Gaus-
sian distribution given the constraint that the precision matrix is sparse, the approach used
is to solve a maximum likelihood problem with an added l1-norm penalty term. In order
to apply the algorithm to the meiofauna community dataset (nematode data only) the data
were transformed so that a Gaussian distribution would be an appropriate model - the natural
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logarithms of the relative abundance data were calculated,

yij = log

 xij + 1∑
i

xij + s

 ,

where xij is the abundance of OTU i at site j and s is the total number of OTUs. The pre-
cision matrix was estimated from these transformed data using the block coordinate descent
algorithm presented by (121).

5.4.4 Correlation and Dissimilarity Matrices

Four methods of calculating relationships directly from the nematode community data are
the Pearson (37) and Spearman (38) correlation coefficients, the Kullback-Leibler diver-
gence (39) and the Bray-Curtis dissimilarity (34). These were the four measures used to
produce the ensemble score based network in (36) and their formulae are shown below in the
context of analysing co-occurrence data.

It should be noted that often in ecology these measures are used to find similarities and
differences between sites/samples in terms of their OTU composition. For the analysis in
this chapter, however, they are used to find similarities and differences between OTUs de-
pending on their distribution across different samples. The following definitions reflect their
use in this context.

Pearson Correlation Coefficient

The Pearson correlation coefficient is

rXY =
1

n− 1

n∑
i=1

(
Xi − X̄
sX

)(
Yi − Ȳ
sY

)

where n is the overall number of samples in the dataset, Xi and Yi are the respective abun-
dances of OTUsX and Y in sample i, X̄ and Ȳ are the respective mean abundances of OTUs
X and Y in sample i and sX and sY are the standard deviations of the abundances of X and
Y across all samples.

Pearson’s coefficient is the most commonly used measure of correlation between sets of
data. It can also be rewritten as the covariance of the two OTUs divided by the product of
the OTU standard deviations. This gives a value of 0 if the two OTUs are uncorrelated, a
value of +1 if there is total positive correlation and a value of -1 if there is total negative
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correlation.

Spearman Correlation Coefficient

The Spearman correlation coefficient is the Pearson correlation coefficient between the ranked
variables. The samples for each OTU are ranked in order of abundance, the least abundant
sample is assigned the rank 1, and so on. Samples with the same abundance are assigned the
mean of what their collective ranks would be if ties were broken randomly. The coefficient
is

ρXY = 1− 6
∑n

i=1(xi − yi)2

n(n2 − 1)

where n is the overall number of samples in the dataset and xi and yi are the ranks of sample
i for OTUs X and Y respectively.

Clearly, Spearman’s coefficient is useful when differences in values between variables in
a dataset are deemed to be of lesser importance than their rank order. For the analysis of co-
occurrence data, different information can be gained from the two correlation coefficients.
The Spearman correlation will show whether the distribution of two OTUs is similar, whereas
the the Pearson correlation will be more sensitive to OTU abundance counts.

Kullback-Leibler Divergence

The Kullback-Leibler divergence of Q from P is

DKL(P ||Q) =
n∑
i=1

P (i)ln
P (i)

Q(i)

where P andQ are discrete probability distributions. In the case of OTU co-occurrence data,
P (i) is the proportion of the abundance of OTU P that is found in sample i and similarly for
Q.

The Kullback-Leibler divergence attempts to quantify the inefficiency of using one distri-
bution in place of another. Note that this measure is a divergence rather than a distance or a
metric. This means that the Kullback-Leibler divergence is asymmetric, i.e. the divergence
of Q from P is different to the divergence of P from Q.
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Bray-Curtis Dissimilarity Index

As has been stated in earlier chapters, the Bray-Curtis dissimilarity index is

Bij = 1− 2Cij
Si + Sj

where, for use in this chapter, Cij is taken to be the sum of the lowest of the two abundances
for samples in which both OTUs i and j occur. Si and Sj are the total abundances of OTU i

and OTU j.

Unlike the Kullback-Leibler divergence, the Bray-Curtis dissimilarity index is symmetric.
However, it is not a distance or a metric because it does not satisfy the triangle inequality.
That is, Bij +Bik is not always greater than Bjk.

The Bray-Curtis index is used extensively in ecology for analysing community data. While
the Pearson and Spearman correlation coefficients may be heavily influenced by big differ-
ences in the abundances of a small number of OTUs between sites, the Bray-Curtis index is
more robust and allows for some variance which may be expected to occur in data of this
type.

5.4.5 Evolutionary Distance Matrix

It could be supposed that interactions between species depend on how closely or distantly
related they are to each other. Closely related species are perhaps more likely to share habi-
tats suited to their similar characteristics, suggesting a positive relationship between the two
species. That is, if one is present in a community then the other is more likely to also be
present. However, similar species are also more likely to be competing for the same re-
sources, suggesting a negative relationship.

These potential interactions can be explored by examining a phylogenetic tree and the sim-
plest approach to begin this analysis would be to look at the evolutionary distances on the
tree. This method was implemented using the nematode OTUs from the community dataset
described in Section 5.2.2. A phylogenetic tree was produced, again using FastTree (122),
from a multiway alignment of all of the OTUs. This tree, in Newick format, was analysed
using the evol.distinct function in the picante package in R and a matrix of pairwise phylo-
genetic distances was found.
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5.5 Methods - Analysis of Results from Both Datasets

5.5.1 Matching OTUs Occurring in Both Datasets

To compare the different methods of inferring interaction networks, it was necessary to iden-
tify the OTUs that occurred in both datasets. To do this, the same method as described in
Section 5.3.1 was used. The OTUs from both datasets were combined and aligned, and a
tree was produced from this alignment using FastTree. OTUs from opposing datasets were
matched with one another if they differed by less than 1%. From this information, the OTUs
occurring in both the 56 species Food Web described in Section 5.3.1 and the various ma-
trices used to analyse the community data described in Section 5.2.2 could be identified, 36
OTUs in total. The food web, f matrix, and other matrices found using either dataset were
filtered to remove the unwanted OTUs, transforming each into a 36 × 36 matrix.

5.5.2 ROC Analysis

The analysis of ROC curves here differs slightly to the methods used in Section 4.2.11 be-
cause of differences in the data. In the previous chapter, the true values were known so the
false positives in the data could be identified with perfect accuracy. For the data in this sec-
tion there are several interaction matrices that are attempting to predict the same things and
it is necessary to choose one of these matrices to be the “gold standard” which is assumed
to have predicted every interaction perfectly. Thus, if analysis yields high AUROC (area
under ROC curve) values for a method which predicts interactions using a different dataset
to that used by the gold standard method then this will provide evidence that both methods
are successful at predicting interactions.

The f predator-prey matrix was first used to produce the gold standard with a non-zero
value of fij or fji corresponding to an interaction between species i and species j and a zero
value corresponding to no interaction. This was repeated using the matrix of indirect efforts,
I , to produce the gold standard and again, using the L1 precision matrix and SparCC matrix.
To test the data against these gold standards, the threshold that indicated an interaction was
gradually incremented and was compared with the strength of the correlation, dissimilarity
or divergence value in the matrix being analysed. If the value exceeded the threshold then
an interaction was predicted and these predicted interactions were compared against the gold
standard to determine the percentage of false positives at each threshold level.
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5.5.3 Jaccard Distance

The Jaccard distance (123) is used in this chapter to compare interaction networks generated
by different methods. A simple formula is used to show the ratio of matching edges in two
graphs to the number of mismatching edges. The Jaccard distance, dJ , is given by

dJ =
M01 +M10

M01 +M10 +M11

where M01 is the number of instances for which an edge is absent from the first graph but
present in the second graph, M10 is the number of instances for which an edge is present
in the first graph but absent from the second graph and M11 is the number of instances for
which an edge is present in both graphs. Note that the quantity M00, the number of instances
for which an edge is absent from both graphs, is not required for the calculation of dJ .

5.5.4 Structure of Graphs

Another way to compare two different interaction network graphs is to observe the properties
at corresponding nodes in each graph. Such properties investigated in this chapter are the
degree of a node, a graph’s clustering coefficient, the betweenness centrality of a node and
the closeness centrality of a node. These properties were all calculated using the igraph (124)
package in R.

Degree of a Node

The degree of a node is the number of edges connecting it to other nodes in the graph.

The Clustering Coefficient

The clustering coefficient of a graph, sometimes called the transitivity, demonstrates the
level to which the nodes of a graph group together. It is calculated by dividing the number of
closed triplets (groups of three nodes which are all connected by three edges) in a graph by
the total number of connected triplets (groups of three nodes which are connected by either
two or three edges).

Betweenness Centrality

Betweenness centrality is a measure of how frequently a node appears in the shortest path be-
tween two other nodes in a graph. The betweenness centrality of a node, therefore, highlights
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the importance of a node in terms of its contribution to indirect interactions in an interaction
network. Betweenness centrality for node v, CB(v) is calculated using the formula,

CB(v) =
∑
x,y

σxy(v)

σxy
;x, y 6= v

where σxy is the number of shortest paths between nodes x and y and σxy(v) is the number
of these paths which visit node v.

Closeness Centrality

The closeness centrality of a node is a measure of how close the node is to all other nodes in
the graph. The closeness centrality of node v, CC(v), is the reciprocal of the sum of all of the
shortest distances between the node in question and all other nodes in the graph, as shown:

CC(v) =
∑
x

1

d(x, v)
;x 6= v

where d(x, v) is the length of the shortest path between nodes x and v.

5.6 Results - Taxonomic Classification Statistics

All of the 342 OTUs in the individual dataset were classified and the statistics are shown in
Tables 5.1 and 5.2. It was possible to classify over 90% of the OTUs by phylum, almost 50%
were classified by family and 12% were completely classified, with their species identifiable.
Around one third of the OTUs in the dataset were nematodes and a further 17.5% were fungi.
The remaining OTUs were shared between various meiofauna, protist and some plant and
vertebrate groups, possibly originating from dead seaweed and fish.

Level of Classification Count (342 Total) Share (%)
Domain 332 97.08
Phylum 318 92.98
Class 300 87.72
Order 257 75.15
Family 165 48.25
Genus 99 28.95
Species 42 12.28

Table 5.1: OTUs in the individual dataset which were successfully classified at each level. LCA Classifier was
used for classification analysis.

Statistics relating to the classification of only the main nematode, identified by its Sanger
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Kingdom:Phylum Count (342 Total) Share (%)
Metazoa:Nematoda 113 33.04

Metazoa:Platyhelminthes 15 4.39
Metazoa:Arthropoda 12 3.51
Metazoa:Other Phyla 25 7.31

Fungi 60 17.54
Stramenopiles 27 7.89

Alveolata 18 5.26
Viridiplantae 30 8.77

Other Kingdoms 18 5.26
Unclassified 24 7.02

Table 5.2: Kingdoms and phyla of classified OTUs in the individual dataset. LCA Classifier was used for
classification analysis.

sequence, in each individual experiment are shown in Table 5.3. 73 of the 74 individuals
were classified because one was removed due to a corrupt sequence. Of the 73 remaining,
all but one were successfully classified as nematodes, the other returning an unclassified
result. The nematodes were generally well classified (more than 50%) up to family level and
8 of the 73 (11%) were completely classified. The full classifications of all 73 nematodes,
cross-referenced with their unique IDs, can be seen in Appendix A.

Level of Classification Count (73 Total) Share (%)
Domain 73 100.00
Phylum 72 98.63
Class 72 98.63
Order 69 94.52
Family 41 56.16
Genus 24 32.88

Species 8 10.96

Table 5.3: Sanger sequences corresponding to the main nematodes in the individual dataset which were suc-
cessfully classified at each level. LCA Classifier was used for classification analysis.

5.7 Results - Visualisation of Networks

Figure 5.4 shows the food web predicted from the individual nematode data after the number
of nematodes was filtered down to 56. Out of the 56 nematodes, 12 predators (non-prey), 25
intermediate feeders (both predator and prey), 12 prey species (non-predator) and 7 species
that had no interactions were predicted. The food web is not a full clique - that is, there is
not an edge between all pairs of nodes on the graph.
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Figure 5.4: Food web of 56 nematode species. Of the OTUs generated from the 74 experiments on individual
nematodes, 56 of these OTUs were found to correspond to the original Sanger sequenced nematodes. A feeding
relationship between two nematodes was inferred when one of these OTUs (prey) was present in the experiment
corresponding to the known Sanger sequenced nematode (predator).
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5.8 Results - Comparing Feeding Types With Experi-

mental Data

The feeding types for the 25 nematodes that were successfully categorised from the video
data are shown in Table 5.4 along with their trophic levels, calculated from the food web
shown in Figure 5.4. Table 5.4 also includes the Shannon diversity of the predicted prey of
each nematode (prey has been categorised both by phyla and by OTU) and the nucleotide
diversity of the predicted prey, also found using the Shannon index.

ID Wieser Moens and Vincx Trophic Level Diversity (Phyla) Diversity (OTUs) Nucleotide Diversity
P2 1B deposit feeder 4.002 1.269 1.733 0.180
P4 2A epistrate feeder 3.297 0.098 0.360 0.197
P7 2A epistrate feeder 1.000 0.639 0.689 0.177
P8 2A epistrate feeder 1.000 1.330 1.550 0.155
P9 2A epistrate feeder 4.076 0.846 1.397 0.095

P12 2A epistrate feeder 4.297 1.149 1.303 0.058
P13 1B deposit feeder 4.929 1.456 1.992 0.036
P17 1B deposit feeder 1.000 1.040 1.332 0.129
P22 2B predator/scavenger 1.000 0.000 0.000 NA
P23 2B predator 4.000 1.747 2.340 0.148
P26 1B deposit feeder 1.000 1.362 2.658 0.155
P30 2A epistrate feeder 3.597 1.182 2.211 0.133
P31 2B predator/scavenger 3.420 1.103 2.316 0.126
P37 2A epistrate feeder 1.000 0.315 0.703 0.041
P39 2A epistrate feeder 1.000 0.562 1.040 0.172
P40 2A epistrate feeder 1.000 0.637 1.099 0.000
P43 1A microvore 3.148 0.435 0.834 0.117
P44 2A epistrate feeder 2.000 0.566 0.645 0.093
P45 1B deposit feeder 4.099 0.918 1.098 0.143
P47 2B predator/scavenger 3.297 1.321 1.560 0.155
P48 2A epistrate feeder 3.000 0.693 1.099 0.000
P51 2B facultative predator 1.000 0.000 0.693 0.000
P62 2A epistrate feeder 3.593 1.457 2.221 0.124
P71 2A epistrate feeder 1.000 0.000 0.000 NA
P72 1B deposit feeder 3.000 1.213 1.733 0.138

Table 5.4: Feeding types of nematodes compared with results from experimental data. Diversity is measured
using the Shannon index.

Of the 25 categorised Nematodes, 13 of them have Wieser feeding type 2A, 6 have type 1B,
5 have type 2B and 1 has type 1A. ANOVA analyses using trophic level, phyla diversity,
OTU diversity, nucleotide diversity and all combinations thereof as explanatory variables to
predict feeding type were carried out, however none of these returned a significant p-value.

Figure 5.5 shows the inferred diet of the nematode species, Chromadorita tentabundum (ID
P9) which appears to predominantly consume platyhelminthes and other nematodes, with a
small fraction of the diet being comprised of fungi. Analysis of the morphology of the ne-
matode suggested that Chromadorita tentabundum has feeding type 2A (epistratum feeder).
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Similar diagrams can be formed for all nematodes in the individual dataset but only those for
the 25 nematodes that were categorised by feeding type can be verified for accuracy.

Nematoda:
Desmodorida family

11.76%

Nematoda:
Chromadorita tentabundum

Nematoda:
Desmodorinae

5.88%

Nematoda:
Desmodorida family

5.88%

Nematoda:
Desmodorida family

5.88%

Fungi:
Exobasidium
5.88%

Platyhelminthes:
Vannuccia
58.82%

Nematoda:
Tripyloidoidea family

5.88%

Figure 5.5: Organisms consumed by Nematoda:Chromadorita tentabundum. The predator was identified by
classifying the OTU corresponding to the original Sanger sequenced nematode in one of the 74 experiments
and prey was found by classifying all other OTUs generated from this experiment. LCA Classifier was used
for classification analysis.

The bar charts in Figures 5.6 to 5.9 show the composition of the inferred diets for each
Wieser feeding type based on normalised data with the OTUs grouped by phyla. The four
feeding types differ in composition with the type 1A nematodes predominantly consuming
Streptophyta, type 1B nematodes mainly consuming Dikarya and Platyhelminthes, type 2A
nematodes consuming a wider variety of organisms with Nematoda the major dietary com-
ponent and type 2B nematodes primarily consuming other nematodes.
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Figure 5.6: Inferred diet of Wieser feeding type 1A nematodes based on normalised data. Nematodes were
categorised from videos based on their morphology and their diet was found by classifying all OTUs generated
from the corresponding experiment. LCA Classifier was used for classification analysis.

The NMDS plot in Figure 5.10 returned a stress factor of 0.137 suggesting that it gives a very
good representation of the multidimensional data. The plot shows how closely related the
individual nematodes are to each other based on the Bray-Curtis dissimilarities calculated
from their inferred diets after the data had been normalised. There appears to be a degree of
grouping between the type 1B nematodes and between the type 2B nematodes. The type 2A
nematodes are more spread out while the solitary type 1A nematode is isolated as distinct
from the rest. Figure 5.11 shows the same plot but with ellipses drawn to depict the spread
of each feeding type. It can be seen that nematodes with feeding types 1B and 2B seem to
have more specific diets and have a small intersection with each other whereas nematodes of
type 2A have a much more varied diet from individual to individual.

The fungal phyla Dikarya is known to contain nematophagous fungi of the order Basid-
iomycetes (125) which are parasitic fungi that are known to specifically attack nematodes.
Because of the limitations of classifying the OTUs in the individual nematode dataset (due to
their sequence lengths and composition), it was not possible to verify which of the Dikarya
OTUs were nematophagous. However, many were classified as such up to the order level,
thus it was reasonable to believe that they were parasites and, therefore, not part of the ne-
matodes’ diets.
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Figure 5.7: Inferred diet of Wieser feeding type 1B nematodes based on normalised data. Nematodes were
categorised from videos based on their morphology and their diet was found by classifying all OTUs generated
from the corresponding experiment. LCA Classifier was used for classification analysis.
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Figure 5.8: Inferred diet of Wieser feeding type 2A nematodes based on normalised data. Nematodes were
categorised from videos based on their morphology and their diet was found by classifying all OTUs generated
from the corresponding experiment. LCA Classifier was used for classification analysis.
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Figure 5.9: Inferred diet of Wieser feeding type 2B nematodes based on normalised data. Nematodes were
categorised from videos based on their morphology and their diet was found by classifying all OTUs generated
from the corresponding experiment. LCA Classifier was used for classification analysis.
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Figure 5.10: NMDS plot for individual nematodes based on Bray-Curtis distance calculated using their nor-
malised inferred diets. Points representing nematodes are plotted close to points representing their diet.
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Figure 5.11: NMDS plot for individual nematodes showing the spread of nematodes of each Wieser feeding
type. The analysis is based on Bray-Curtis distance calculated using the nematodes’ normalised inferred diets.
If an organism is consumed by a particular type of nematode then it is plotted in the vicinity of the region
representing that nematode type.

The NMDS analysis was repeated with the Dikarya phyla removed from the dataset and
Figures 5.12 and 5.13 show the results. The procedure returned a stress factor of 0.123
which again signifies that the figures are very good representations of the multidimensional
data. With the potential nematophages removed, the main NMDS plot (Figure 5.12) appears
different. The type 2B nematodes are more closely grouped with one outlier and there now
seems to be more of a distinction between nematodes of type 1B and 2A with the 1B nema-
todes closer to the upper right portion of the plot and the 2A nematodes further down and to
the left. The only type 1A nematode is, again, isolated from the rest.

Table 5.5 shows the results of eight permutation ANOVA tests for significance on normalised
and rarefied datasets, some with/without Dikarya OTUs included and with either 2 or 4 feed-
ing types defined. In all but one instance a significant p-value (p < 0.05) was returned while
the rarefied dataset without Dikarya and with 2 feeding types defined gave a somewhat sig-
nificant p-value of 0.059. The high residual R2 values suggest that a lot of the variation is
unexplained by the data.
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Figure 5.12: NMDS plot for individual nematodes based on Bray-Curtis distance calculated using their nor-
malised inferred diets with Dikarya OTUs removed. Points representing nematodes are plotted close to points
representing their diet.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

NMDS1

N
M
D
S
2

Chlorophyta

Apicomplexa

Streptophyta

Chordata

Ciliophora

Cryptomonadales

Cercozoa

Annelida

Rotifera

Ichthyophonida

Florideophyceae

Nematoda

Chytridiomycota

Chrysophyceae

Arthropoda

Platyhelminthes

Bacillariophyta
Porifera

Type 1A
Type 1B
Type 2A
Type 2B

Figure 5.13: NMDS plot for individual nematodes showing the spread of nematodes of each Wieser feeding
type. The analysis is based on Bray-Curtis distance calculated using the nematodes’ normalised inferred diets
with Dikarya OTUs removed. If an organism is consumed by a particular type of nematode then it is plotted in
the vicinity of the region representing that nematode type.
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Normalised/Rarefied Dikarya Included? No. Feeding Types Residual R2 p-value
Normalised Yes 4 0.775 0.024*
Normalised Yes 2 0.897 0.022*
Normalised No 4 0.803 0.047*
Normalised No 2 0.904 0.045*

Rarefied Yes 4 0.789 0.045*
Rarefied Yes 2 0.898 0.037*
Rarefied No 4 0.799 0.059.
Rarefied No 2 0.906 0.046*

Table 5.5: Results of permutation ANOVA to test whether feeding type can be inferred by diet. For the rarefied
data, random subsamples of 20 were taken - the analysis was repeated 10 times and mean values were used. For
the data with two feeding types, nematodes of Wieser feeding type 1A were combined with those of type 1B
and type 2A nematodes were combined with type 2B nematodes. An asterisk (*) denotes a significant p-value
(p < 0.05) and a full stop (.) denotes a somewhat significant p-value (p < 0.1).

5.8.1 Discussion

It is difficult to explain the apparent lack of a relationship between the assigned feeding types
and the inferred interactions from both datasets. Table 5.4 summarises several statistics that
could possibly be influenced by the feeding type of the species. Trophic levels, calculated
from the inferred food web, should obviously be higher for predators and, additionally, the
diversity of an organisms diet may be expected to be wider for deposit feeders than for preda-
tors. None of the statistics in Table 5.4 show any clear correlation with their assigned feeding
types.

From Figures 5.6 to 5.13, it can be seen that the inferred diets are different for each feeding
type and the results seem to follow what would be expected - for example, nematodes make
up a large amount of the diet of predators (type 2B). The NMDS analyses suggest that nema-
todes of feeding types 1B and 2B are specialised feeders with a wider range of diet for those
with feeding type 2A. It is harder to assess the results from type 1A nematodes because there
was only one sample available to analyse.

The high residual R2 values from the permutation ANOVA tests also indicate that much
of the variation in the results are not explained by the feeding type data. This hidden vari-
ance is probably attributable to differences in the nematode’s environment and community
composition as, clearly, the nematode can only eat what food is available to it. Some nema-
todes of the same species may also vary in size which will have an impact on what they are
able to consume. It is additionally important to consider that, just because part of a nema-
tode’s potential diet wasn’t sequenced, it doesn’t mean that the nematode doesn’t eat it. The
organism concerned may have not been picked up by sequencing, or may simply not have
been present at the time of sequencing.

A narrower range of diet makes sense for predators (2B) and a wider range for type 2A
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also agrees with its feeding type description. However, it is difficult to ascertain whether
a nematode’s diet would necessarily be identifiable by its phyla. Because of the variable
nature in size of the majority of meiofauna species, it is conceivable that some nematodes
will consume whatever organic matter is of a manageable size and also present in their habi-
tat. Indeed, the results seem to suggest that this is the case with type 2A nematodes. A
further problem is that even the most widely used feeding type definitions (118) (119) are
necessarily vague reflecting the difficulty of classifying feeding types in such small, diverse
and abundant organisms and the uncertainty over the nematodes’ adaptability to different
sources of food. In addition to this, it is unfortunate that it was only possible to classify 8
of the nematodes to species level using LCA classifier, otherwise this information could also
have been used to assign feeding types to known species. However, the variability in size
and behaviour of different nematodes species that share higher level taxonomic levels meant
that the LCA classifications could not be used for this purpose.

Figures 5.6 to 5.13 along with the results from the permutation ANOVA tests provide ev-
idence that feeding type can be inferred from data such as those from the experiment on
individual nematodes but, because of the the variation of diet within feeding types, there will
always be some uncertainty about which feeding types new data should be assigned. One
quick and imprecise method of doing this would be to plot a new data point on the NMDS
plot and examine which feeding type(s) it appears to best align with. A more mathematically
thorough method is to perform a multinomial logistic regression using the multinom and pre-

dict functions in R to return the probabilities of new observations belonging to each feeding
type. This approach was used on data for the 46 nematodes for which it was not possible to
assign a feeding type and, of these, 5 were predicted to be type 1A, 12 were predicted to be
1B, 13 were predicted to be type 2A and 14 were predicted to be type 2B. The remaining 2
were not classified because they had no inferred diet belonging to the phyla that were present
in the original 23 nematodes’ collective inferred diets.

Despite the reported difficulties, the results are promising and there is evidence that ne-
matodes of different feeding types have significantly different diets to each other. However,
rather than concluding that it is possible to assign feeding types to nematodes based on their
diet, a better interpretation of the results may be that although there is much variation in
the diets of nematodes, even those of the same feeding type, it is possible to infer what a
nematode has eaten by sequencing the nematode. This data may depend on other factors
than a nematode’s species, such as its size, its habitat and the community composition of
this habitat. Thus, any future studies into predator-prey relationships within communities of
small organisms may wish to consider this method of inferring these relationships.
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In the future, it would be interesting to combine the 18S sequencing of nematodes with
16S sequencing because many of the nematodes with tiny mouths, such as those of type 1A,
are known, or assumed, to be microvores. Bacteria will make up a large part of the diets of
these nematodes and this data is missing from a study that only uses 18S sequencing. In this
study only one individual nematode of each species was sequenced, further studies may ben-
efit from the sequencing of multiple individuals of the same species - from the same/different
location(s) - to investigate the variation in the diets of worms of the same species.

5.9 Results - Comparing the Community and Individ-

ual Datasets

To test the validity of the food web shown in Figure 5.4 it is required to compare it with
other matrices generated from the community dataset. Various matrices were constructed,
as described in Sections 5.3 and 5.4, to form interaction networks. After some OTUs were
removed due to the pre-processing criteria outlined in Section 5.4.1 and all OTUs which did
not belong to both datasets were filtered out, 17 OTUs remained. The various matrices of
interaction networks were reduced in size accordingly and were ready for comparison. No
similarities between these matrices were immediately apparent.

Four different ROC analyses were carried out, each using a different interaction network
as the gold standard. Two used feeding interaction networks generated from the experiments
on individual nematodes, the f and I interaction matrices, and two used interaction networks
generated from the co-occurrence data, the L1 Precision and SparCC matrices. The reason
for this was to investigate different scenarios because it is not possible to be sure of the true
interactions using the available data.

Figures 5.14, 5.15, 5.16 and 5.17 show some of the results obtained using the direct ef-
fort matrix (f ), the indirect effort matrix (I), the L1 precision matrix and the SparCC matrix,
respectively as the gold standard. The areas under these ROC curves (AUROC) are shown
in Figures 5.18, 5.19, 5.20 and 5.21. When the f and I matrices were used as the gold
standard, the AUROC values for the L1 Precision, Pearson correlation and Spearman corre-
lation matrices were the highest at around 0.65. When the L1 precision matrix was used, the
Bray-Curtis dissimilarity and Kulback-Leibler divergence matrices returned higher AUROC
values but the values for the f and I matrices were both around 0.5. For the final choice
of gold standard, the SparCC matrix, only the Bray-Curtis dissimilarity matrix produced an
AUROC value of higher than 0.6. The f and I matrices both produced values of less than
0.5 in this instance.
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Figure 5.14: ROC analysis to assess the effectiveness of various similarity measures, using f matrix as gold
standard. The f matrix is taken to be the true matrix of interactions - true positives (sensitivity) and false
positives (specificity) from the other data are found by comparing with this gold standard.

Method Direct Efforts Indirect Efforts SparCC L1 Prec. Pearson Spearman Bray-Curtis Kulback-Leibler
Indirect Efforts 1.000 - - - - - - -
SparCC 0.974 0.974 - - - - - -
L1 Precision 0.958 0.913 0.949 - - - - -
Pearson Correlation 0.968 1.000 0.909 0.935 - - - -
Spearman Correlation 0.941 0.941 0.870 0.912 0.429 - - -
Bray-Curtis Dissimilarity 0.929 0.966 0.905 0.893 0.417 0.385 - -
Kulback-Leibler Divergence 1.000 1.000 0.956 1.000 1.000 1.000 1.000 -
Evolutionary Distance 0.933 1.000 1.000 1.000 0.947 0.952 0.944 0.946

Table 5.6: Jaccard distances between interaction network graphs generated from different matrices.

Pairwise Jaccard distances between all nine interaction networks are shown in Table 5.6. The
numbers are predominantly high and reveal that few of the edges, representing interactions,
were shared between graphs and that the majority of inferred interaction networks differed
widely from each other. The exceptions to this were the graphs generated from the Bray-
Curtis, Pearson and Spearman matrices which shared more than half of their interactions.
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Figure 5.15: ROC analysis to assess the effectiveness of various similarity measures, using I matrix as gold
standard. The I matrix is taken to be the true matrix of interactions - true positives (sensitivity) and false
positives (specificity) from the other data are found by comparing with this gold standard.
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Figure 5.16: ROC analysis to assess the effectiveness of various similarity measures, using L1 precision matrix
as gold standard. The L1 precision matrix is taken to be the true matrix of interactions - true positives (sensi-
tivity) and false positives (specificity) from the other data are found by comparing with this gold standard.
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Figure 5.17: ROC analysis to assess the effectiveness of various similarity measures, using SparCC matrix as
gold standard. The SparCC matrix is taken to be the true matrix of interactions - true positives (sensitivity) and
false positives (specificity) from the other data are found by comparing with this gold standard.
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Figure 5.18: AUROC for various similarity measures when using the direct effort matrix (f ) as gold standard.
The f matrix is taken to be the true matrix of interactions - true positives (sensitivity) and false positives
(specificity) from the other data are found by comparing with this gold standard.



5.9. Results - Comparing the Community and Individual Datasets 205

AUROC

In
te

ra
ct

io
n 

M
at

rix
 U

se
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

SparCC

L1 Precision

Evolutionary Distance

Pearson Correlation

Spearman Correlation

Kulback-Leibler Divergence

Bray-Curtis Dissimilarity

Figure 5.19: AUROC for various similarity measures when using the indirect effort matrix (I) as gold standard.
The I matrix is taken to be the true matrix of interactions - true positives (sensitivity) and false positives
(specificity) from the other data are found by comparing with this gold standard.
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Figure 5.20: AUROC for various similarity measures when using the L1 precision matrix as gold standard. The
L1 precision matrix is taken to be the true matrix of interactions - true positives (sensitivity) and false positives
(specificity) from the other data are found by comparing with this gold standard.
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Figure 5.21: AUROC for various similarity measures when using the SparCC matrix as gold standard. The
SparCC matrix is taken to be the true matrix of interactions - true positives (sensitivity) and false positives
(specificity) from the other data are found by comparing with this gold standard.
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Figure 5.22: Food web graph generated from the matrix of direct efforts (f ) between the 17 OTUs occurring in
both the f graph and interaction network graphs generated from co-occurrence data.
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Edge P7→ P11 P22→ P31 P30→ P3 P30→ P31 P30→ P34 P31→ P35
Degree of Prey OTU 1 1 4 4 4 5
Degree of Predator OTU 1 5 3 5 2 2
Betweenness Centrality of Prey OTU 0.0 0.0 18.0 18.0 18.0 22.5
Betweenness Centrality of Predator OTU 0.0 22.5 9.5 22.5 0.0 4.0
Closeness Centrality of Prey OTU 3.906×10−3 7.092×10−3 7.519×10−3 7.519×10−3 7.519×10−3 7.519×10−3

Closeness Centrality of Predator OTU 3.906×10−3 7.519×10−3 7.299×10−3 7.519×10−3 7.143×10−3 7.299×10−3

Presence in Co-occurrence Graphs 3/6 0/6 3/6 0/6 0/6 0/6
Edge P35→ P3 P39→ P31 P64→ P30 P64→ P34 P67→ P31 P69→ P3
Degree of Prey OTU 2 1 2 2 1 1
Degree of Predator OTU 3 5 4 2 5 3
Betweenness Centrality of Prey OTU 4.0 0.0 0.0 0.0 0.0 0.0
Betweenness Centrality of Predator OTU 9.5 22.5 18.0 0.0 22.5 9.5
Closeness Centrality of Prey OTU 7.299×10−3 7.092×10−3 7.143×10−3 7.143×10−3 7.092×10−3 6.897×10−3

Closeness Centrality of Predator OTU 7.299×10−3 7.519×10−3 7.519×10−3 7.143×10−3 7.519×10−3 7.299×10−3

Presence in Co-occurrence Graphs 0/6 0/6 1/6 1/6 0/6 0/6

Table 5.7: Analysis of edges representing feeding interactions in the food web graph that was generated from
the matrix of direct efforts (f ) between OTUs occurring in both the f graph and interaction network graphs
generated from co-occurrence data. The final row shows the number of different co-occurrence generated
graphs, out of 6, in which a particular edge is present.

Figure 5.22 shows a subset of the causal food web graph (the food web generated from the
f matrix) which contains only the OTUs which were also present in the other interaction
network graphs investigated in this section (those generated using co-occurrence data). Be-
cause many of the edges present in this graph were not present in the interaction networks
that were generated from co-occurrence data, it was decided to examine certain properties
of the nodes which these edges joined together. The properties chosen were the degree, be-
tweenness centrality and closeness centrality of each node. The results of this investigation
are presented in Table 5.7 and it can be seen that two of the edges appeared in half of the
co-occurrence graphs but the properties of these edges were not similar to each other. There
was no obvious distinction between these edges and those that were not present in any of the
co-occurrence graphs.

The values for the degree at each of the shared 17 OTU nodes in each of the nine inter-
action network graphs are displayed in Figure 5.23 and the number of corresponding nodes
sharing the same degree for each pair of graphs is shown in Table 5.8 (e.g. OTU P3 has a
degree of five in both the indirect interaction graph and the SparCC graph). These results
again show a reasonably high similarity between the Pearson correlation, Spearman correla-
tion and Bray-Curtis dissimilarity graphs with nine or ten out of the seventeen nodes sharing
the same degree. All other graphs have fewer than half of their nodes sharing the same de-
gree with another graph’s corresponding nodes, although there is some similarity between
the Spearman correlation graph and the evolutionary distance graph and also between the
indirect effort matrix and the L1 Precision matrix for which eight corresponding nodes share
the same degree in each case.
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Figure 5.23: Degree at each OTU node on interaction network graphs generated from different matrices.

Method Direct Efforts Indirect Efforts SparCC L1 Prec. Pearson Spearman Bray-Curtis Kulback-Leibler
Indirect Efforts 5 - - - - - - -
SparCC 3 4 - - - - - -
L1 Precision 2 8 5 - - - - -
Pearson Correlation 5 3 7 3 - - - -
Spearman Correlation 4 3 6 2 9 - - -
Bray-Curtis Dissimilarity 5 3 6 4 10 10 - -
Kulback-Leibler Divergence 4 2 0 2 6 7 3 -
Evolutionary Distance 3 7 4 5 4 8 5 5

Table 5.8: Number of corresponding OTU nodes with the same degree on interaction network graphs generated
form different matrices.

Direct Efforts Indirect Efforts SparCC L1 Prec. Pearson Spearman Bray-Curtis Kulback-Leibler Evol. Distance
Betweenness Centrality 3.176 0.941 5.118 8.294 0.118 1.882 1.706 4.471 0.059
Closeness Centrality 5.782×10−3 4.816×10−3 6.399×10−3 7.010×10−3 4.025×10−3 4.829×10−3 4.479×10−3 9.216×10−3 4.000×10−3

Table 5.9: Mean values for the betweenness centrality and closeness centrality of nine interaction network
graphs generated using different interaction matrices.
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Figure 5.24: Clustering coefficients for interaction network graphs generated from different matrices.
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Figure 5.25: Betweenness centrality at each OTU node on interaction network graphs generated from different
matrices.
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Figure 5.26: Closeness centrality at each OTU node on interaction network graphs generated from different
matrices.
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Figure 5.24 shows the clustering coefficient for each of the interaction network graphs. The
evolutionary distance graph and the Pearson correlation graph showed the highest level of
clustering whereas the Bray-Curtis dissimilarity graph and the Kulback Leibler divergence
graph both had a clustering coefficient of zero, indicating that these graphs contained no
closed triplets.

The betweenness centrality for nodes in all interaction network graphs are shown in Fig-
ure 5.25. It can be seen that some OTUs are important, in this respect, in a number of
different graphs, most notably OTU P3 which has a relatively high betweenness centrality in
six out of the nine graphs (all apart from the Pearson correlation graph, the Kulback-Leibler
divergence graph and the Evolutionary distance graph). Some nodes, such as P11, P16, P41
and P69 have low values in all of the graphs, suggesting that these OTUs are often inactive.
There is much variation in the mean values of betweenness centrality, as presented in Ta-
ble 5.9, with the L1 Precision graph showing a high value, suggesting that many of its nodes
are often active. Conversely, the Evolutionary distance graph has a low mean betweenness
centrality which suggests a low level of interaction between most of its nodes.

In contrast to the betweenness centrality values, the values for closeness centrality (Fig-
ure 5.26) appear fairly uniform within each graph and across each node. The figure, in
conjunction with the mean values shown in Table 5.9, shows that the OTU nodes in the
Kulback-Leibler divergence graph have consistently higher closeness centrality values than
the nodes in other graphs. Corresponding nodes in the SparCC graph and the L1 Precision
graph tend to have similar values, and those in the remaining graphs tend to have lower
values that are similarly distributed.

5.9.1 Discussion

The ROC analysis indicates a poor level of prediction regardless of which interaction net-
work was used as the gold standard, although a large majority of the AUROC values are
greater than 0.5 which does suggest that the values in the various interaction matrices are
slightly better than completely random data in each case.

When f and I were used as the gold standard, the ROC curves for the Pearson correlation,
Spearman correlation and L1 Precision data returned higher values, suggesting that these
measures are better for detecting feeding interactions. The AUROC results were marginally
higher when f was used as the gold standard, suggesting that that these methods are slightly
better at detecting direct predator-prey interactions than indirect ones. The evolutionary tree
based approach shows a slightly better consensus with both f and I matrices. There are
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more likely to be feeding relationships between distantly related species than closely related
species. This agrees with the expectation that closely related species are more likely to be
competing for the same resources.

When interaction networks generated from co-occurrence data (L1 Precision and SparCC)
were used as the gold standard, AUROC values generated from the f and I matrices in-
dicated that, if the gold standards were accurate, the f and I matrices did not predict the
presence of interactions.

These results present a dilemma. If the causal food web generated from the f matrix is a
good representation of true interactions then methods which use co-occurrence data to in-
fer interactions are ineffective, at least on this kind of data. The reverse also holds; if the
co-occurrence generated interaction networks are a realistic gold standard then analysis us-
ing the f and I matrices is ineffective. However, the findings in Section 5.8 have provided
evidence that the individual dataset (Section 5.2.1) can be used to determine a nematode’s
diet and this, consequently, provides evidence that a food web generated from these data is
legitimate. Following on from this, it can be concluded that the f food web is a reasonable
choice for gold standard and that the co-occurrence data is not useful for inferring feeding
interactions for data of this type.

The lack of matching edges between the causal food web graph and other interaction net-
works shown in Table 5.7 further demonstrates that the co-occurrence approach failed to
define the same interactions as those present in the f matrix. There also seems to be no
pattern involving the properties of the nodes that surround the edges that do appear in co-
occurrence generated graphs and those that don’t. Again, this shows that the causal food web
differs greatly from the interaction networks generated from co-occurrence data and supplies
evidence that these methods are not detecting feeding interactions.

Overall, there is little evidence of any agreement between the relationships inferred from
the two datasets considered in this report and there are a number of reasons why this could
be. It could be the case that some or all of the extra OTUs found in the single nematode
experiments were not in fact ingested by the nematodes in question and have ended up in
the samples by some other means. Foreign organic material could, perhaps, have been trans-
ferred onto the exterior of the worms as a result of contact between two organisms. However,
as stated, this is unlikely because of the results in Section 5.8.

Another reason for this lack of consensus may be due to the difficulty of defining the nature of
predator-prey relationships when using a matrix of correlations derived from co-occurrence
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data. For a relationship between two species there will be either a positive or a negative
value for their correlation, however, a predator-prey interaction is more complex. There are
actually two directed interactions representing the negative effect of the presence of predator
on the abundance of the prey and the positive effect of the presence of the prey on the abun-
dance of the predator. Note that correlation matrices are symmetric and therefore can only
show a single, undirected, interaction between two species. As argued, this is insufficient to
describe predator-prey relationships.

A third explanation is that, maybe, both methods are correctly detecting predator-prey inter-
actions but the results derived from the co-occurrence data are overwhelmed by the detection
of many other different types of interaction in such a way that the presence of the predator-
prey interactions is obscured.

Among the findings in Chapter 2 is evidence that meiofauna diversity is mainly driven by
niche overlap. For such communities, the use of co-occurrence data may not be the best ap-
proach for inferring interactions, particularly feeding relationships, because the abundances
of species that share a niche will be strongly correlated regardless of the presence of inter-
actions. The results in Chapter 2 also show that, for the more dominant meiofauna phyla
(Nematodes and Platyhelminthes), community composition is similar in samples with simi-
lar environmental and geographical characteristics, specifically sediment grain size, seawater
surface temperature, distance between samples and latitude. The fact that this impacts the
distribution of these phyla will also limit the effectiveness of co-occurrence data when used
to determine interactions. It is probable that for studies where co-occurrence is less depen-
dent on so many factors, the use of such data will work better.

In summary, the analysis of the individual nematode data yielded good evidence that feed-
ing relationships can be inferred using these data which casts doubt upon the validity of
other methods. The lack of corroboration between the results from the two datasets suggests
that it is possible that the methods currently being used on co-occurrence data are inap-
propriate in some cases, particularly when applied to the inference of feeding relationships
within communities where the composition is dependent on a range of environmental fac-
tors. This is clearly of importance because it could lead to invalid conclusions in studies that
choose to apply these methods. However, it should be emphasised that these conclusions can
only be applied to data of the type investigated in this chapter and that co-occurrence data
has been shown to be capable of detecting interactions between species in more favourable
datasets (120).
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Chapter 6

Discussion

The work presented in this thesis shows that DNA sequencing data obtained from a small
number of experiments can be used for a wide range of analyses, some of them directly
related to investigating the structure and nature of the source of the sample (Chapters 2
and 5) and others focusing on improving the methods used for processing the resultant data
(Chapters 3 and 4). See Figure 6.1.

Experiment 1:
Meiofauna data
from 23 sites.

Experiment 2:
Data from pooled

and individual
nematodes.
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(Chapter 3).
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two types of

data (Chapter 5).

Figure 6.1: Analysis carried out using sequencing data from two experiments.

6.1 Summary of Analysis and Results

Chapter 2 is split into two parts, each of which describes a different experiment. The first
experiment (45) is a survey of meiofaunal communities at sites around Europe and one in
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Africa. This reveals greater diversity than previously expected, increased correlation in com-
munity between geographically closer sites, and suggests that meiofauna are controlled by
niche effects whereas protozoa are more consistent with the neutral model. It was also shown,
using rarefaction, that sampling effort was generally insufficient and sequencing methods
which can generate higher number of reads than 454 pyrosequencing, such as Illumina se-
quencing by synthesis, would be desirable for similar studies. Although more numerous
reads would improve the understanding of sample richness, some uncertainty would still re-
main. It is inevitable that, regardless of the number of reads, some OTUs will still be missed.
Additionally, the presence of noisy reads and the possibility of sample contamination will
artificially inflate the estimated richness of a sample (126) (127), reinforcing the need for
good noise removal software and good experimental practice.

The second part of Chapter 2 describes an experiment on pooled nematodes (46) which were
divided into samples of phylogenetically close and distant species. The results from these
experiments show that richer, more distantly related samples tended to produce a greater
number of chimeras and that the chimera break points were more likely to occur at areas of
lower nucleotide diversity.

It is noted in Chapter 3 that existing PCR simulation software is inadequate, particularly
in relation to the simulated chimeras. This provided motivation for the development of the
Simera and Simera 2 PCR simulation algorithms which were shown to produce realistic
chimeric sequences. The Simera 2 algorithm was used as part of the analysis of in silico

datasets in Chapter 4 which highlighted problems with chimera removal software that were,
until now, largely unnoticed. Of particular concern was the observation that substantially
fewer chimeras were being detected than had been previously believed. Conclusions drawn
from the results of in silico microbial community analysis were somewhat worrying due to
the levels of uncertainty that were revealed in these results and that were caused, in part, by
the presence of unwanted chimeras.

Chapter 5 concludes that a nematode’s diet, and hence its feeding type, can be inferred from
sequencing the DNA of the individual nematode in question, suggesting that this method is
an appropriate way of determining feeding interactions. Other methods of predicting inter-
actions between nematodes, using co-occurrence data, were shown to yield networks with
little or no similarity to those found using the individual nematode data. From this it could
be concluded that these methods are unreliable when used to infer feeding relationships from
similar data.
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6.2 DNA Sequencing and the Future

NGS platforms already allow a seemingly endless amount of research possibilities. A few of
these, which have been covered in this thesis, include microbial community analysis, devel-
opment of simulation software and the inference of interaction networks. Other areas include
medical applications, the analysis of drinking water and sewage treatment facilities and the
development of personal cleaning products.

As DNA sequencing technology becomes cheaper and increases in performance and acces-
sibility, and with the impending introduction of new third generation sequencing platforms,
research potential can only increase in scope. However, it is important that the development
of associated bioinformatic tools does not lag too far behind. As rapid advancements in
technology occur, a wide variety of different data must be analysed and, because of this, the
software used to process and analyse sequencing data will quickly become suboptimal and
eventually obsolete. New software, designed to work in conjunction with new technology
and its associated data must constantly be developed if meaningful conclusions are desired
from future research.

Further computational challenges will also arise with the inevitable increase in the size of
datasets possible from sequencing with new technologies. For example, the Illumina HiSeq
2000 machine, released in 2010, can reportedly yield 1000 times as many reads as the 454
FLX Titanium with 1 billion reads possible for the former versus 1 million reads for the latter
which was released two years earlier. Comparing the HiSeq 2000 with its predecessor, the
GAIIx, shows that the potential number of reads has increased more than threefold, from 320
million to 1 billion (5).

Good data processing and noise removal strategies are clearly important, then, but these
can only be effective if they are partnered with experimental methods which minimise the
amount of errors. An increase in errors is sometimes acceptable because of a huge increase
in throughput, as was the case with the introduction of NGS technologies, but it is important
not to compound these errors by using poor experimental protocols.

Differing methods of PCR amplification have been shown to affect the quality of results.
For example, it has been shown that an increased number of PCR rounds will increase the
quantity of chimeric sequences in the output (46) (76) (78) (74). It is important to avoid sam-
ple contamination so that unwanted DNA is not amplified. Products generated from previous
PCR amplifications are a common source of contamination and one way to combat this is the
segmentation of laboratories in such a way as to avoid this happening. PCR preparation and
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post-reaction processing can be carried out in separate areas (128). Determining the optimal
concentration of Magnesium to be used as a co-factor for the DNA polymerase is also of
importance (129). If the concentration is too low then the activity of the polymerase will be
reduced (130). If the concentration is too high then this can lead to the stabilisation of double
stranded DNA which can inhibit denaturation of DNA during the reaction (129) (130).

Roux (131) outlines a strategy which suggests a trial and error approach to PCR optimi-
sation. Initially starting with primer pairs with similar melting temperatures, using a range
of Mg++ concentrations and 104−105 copies of the template, various alterations in the PCR
conditions are suggested based on the quality of the output.

An interesting development contributing to the increasing levels of accessibility and af-
fordability of DNA sequencing is the imminent introduction of the portable MinION se-
quencer (132) from Nanopore Technologies. The MinION will cost around £600 (133) and
can be plugged directly into a computer via USB, making DNA sequencing available to
a large number of individual users for the first time. Reported error rates are high (133),
meaning that the practical uses of this technology are currently limited. Nevertheless, if im-
provements can be made, the implications for the future are very interesting. On the spot
sequencing will be possible and this will, for example, be very useful in the field of medicine
because samples will be available for sequencing immediately, thus saving time and reducing
the risk of contamination. The technology will also prove useful for the analysis of samples
from remote areas and other locations where access to sequencing technology would other-
wise be difficult, such as sites in developing countries.

To summarise, whilst the advancements and achievements made in recent decades are im-
pressive, research presented in this thesis and elsewhere has shown that NGS output is often
error-strewn and, therefore, the degree of confidence in the interpretation of results must be
reduced. It is of high importance that the bioinformatic tools available keep the accuracy of
sequencing output at at least the current level and it would be preferable that further improve-
ments are made. Any amount of sequencing data is of no use if it cannot be communicated
reliably.

6.3 Chimeras and Noise Removal

Since the beginning of the use of next generation sequencing there has been awareness of
chimeras as a problematic source of noise (126) (18). The findings in this thesis have sug-
gested that, nevertheless, their importance has been underestimated, mainly due to the inabil-
ity of chimera detection software to effectively eliminate chimeras from data. These results
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were found from analysis of realistically diverse in silico datasets and are contrary to what
was believed from testing software on less realistic mock community data (18) (20).

As mentioned in Chapter 4, less effective chimera removal from sequencing data will nat-
urally lead to a more pessimistic appraisal of the reliability of any analysis based on the
use of technology from which chimera formation is possible. In order to restore confidence
in the conclusions found from next generation sequencing analysis of microbial communi-
ties it will be necessary to improve chimera removal software. Fortunately, similar in silico

datasets to those which were used to discover the deficiencies may be of use in testing and
perfecting future chimera detection software. The development of the PCR simulation algo-
rithms presented in Chapter 3 was an integral step towards the subsequent generation of the
aforementioned in silico datasets.

The investigation into the drivers of chimera formation in Chapter 2 provided evidence that
chimera distributions are not random and can be predicted based on the collection of se-
quences representing the DNA from which they are formed (46). This information, and
the chimera abundances found from the same experiment, were used to develop the Simera
1 and Simera 2 algorithms which were shown to create more realistic chimeras than other
PCR simulators. There is incentive to further improve the performance of these algorithms
by using a range of different datasets to select the most appropriate parameters. This would
further improve the quality of simulated in silico datasets which would, in turn, allow better
testing of chimera detection software.

Future analysis into chimeras, their causes, their simulation and their detection is heavily
reliant on which technologies will be used for future DNA sequencing. Third generation se-
quencing methods eliminate the need for PCR amplification so chimera formation will not be
an issue if they are used. However, the widespread use of third generation sequencing plat-
forms is still a number of years away and chimera formation is still a very serious problem
associated with Illumina, the most common NGS platform. Therefore, improved chimera
detection in future studies is paramount. If this is not achievable then an awareness of the
limitations of the results obtained from NGS is necessary.

Whilst the research in this thesis has concentrated mainly on chimeras as a source of noise,
the analysis of in silico datasets in Chapter 4 showed that sequencing noise and PCR errors
also adversely affected the reliability of results when analysing community structure. There
are two possible ways of reducing noise from sequencing data in the future. The first, and
most desirable, is the development of low-noise or even noise-free sequencing platforms and
the second is to develop more effective noise removal software. No assumptions can be
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made about the former, so continued research on noise removal is necessary. Adequate noise
removal has been demonstrated for 454 pyrosequencing data using AmpliconNoise (18) and
Illumina data using QIIME (21) but, to reiterate, it is important that new software is devel-
oped in order to match any new technology that is used.

6.4 Community Analysis

The use of NGS data for the analysis of meiofaunal and microbial communities has been
incredibly useful in a huge number of studies, including the study of meiofauna at different
marine benthic locations around Europe and Africa presented in the first part of Chapter 2.
A large number of interesting results were gained from this experiment which demonstrate
the usefulness of DNA sequencing and metagenomics in the analysis of small organisms.

In addition to this, the analysis of in silico communities presented in Chapter 4 has shown
that the information yielded from similar analysis can be compared against the known com-
munity structure in order to determine how accurate the derived metrics are. The findings
from Chapter 4 suggest that the richness and diversity estimates for the communities inves-
tigated may be higher than the true values.

6.5 Interaction Prediction

The techniques employed in Chapter 5 to generate a food web from sequencing data showed
good results when compared to methods using co-occurrence data, and should provoke inter-
esting research using similar methods. As has already been noted in Section 5.9.1 this does
not mean that more widely used methods can, or should, be discredited.

The data that were used to generate interaction networks in this thesis came from meiofauna
communities in marine benthic regions, mainly around the coast of Europe. As discussed
in Chapter 2, the distribution and diversity of the organisms in these communities is driven
by niche overlap and environmental factors. The discussion in Section 5.9.1 explains that
if these effects are strong enough then they can override any correlation in co-occurrence
caused by species interactions and, consequently, it is not possible to use co-occurrence
based methods to detect feeding relationships in such datasets.

Co-occurrence based methods have been shown to be effective in previous studies where
the data have been more favourable (36) and the limitations have been noted (120). In the
future, it would be interesting to compare these different methods of interaction inference
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on communities where co-occurrence based methods have been shown to be successful. For
now, the method of diet inference from sequencing data offers an alternative approach, espe-
cially in cases for which other approaches struggle.

6.6 Publications and Future Work

The analysis of the two experiments presented in Chapter 2 has been published (46) (45) and
there are also plans to publish the PCR simulation and in silico dataset analysis and to make
the simulation software available.

Additional sequencing of nematode DNA from the 18S gene has taken place ahead of further
analysis of feeding interactions, this has been carried out in conjunction with sequencing of
the 16S gene from the same samples in order to identify the bacteria associated with each
nematode sample. If this analysis produces positive results then it will provide great encour-
agement to perform similar studies to infer feeding relationships using sequencing data.

There is also much potential to use the PCR simulation software to generate in silico datasets
for the testing of chimera detection software. Indeed, these methods have already been used
for the testing of the “UCHIME” option in the development of VSEARCH (134), an open
source tool that aims to emulate and, in some areas, improve USEARCH which is not open
source.



221

Appendix A

Appendix to Chapter 3: Probability
Distributions

This appendix describes the probability distributions that were used to generate the random
variables involved in the models developed in Chapter 3.

A.1 The Binomial Distribution

The binomial distribution is a discrete probability distribution that shows the probable num-
ber of successes out of n independent true or false trials with each trial having a fixed prob-
ability, p, of success. These independent yes/no experiments are known asBernoulli trials.

The probability of x successes is

Pr(X = x) =

(
n

x

)
px(1− p)n−x,

where n ∈ {1, 2, . . . }; x ∈ {0, 1, . . . , n}; 0 ≤ p ≤ 1. The binomial distribution has mean np
and variance np(1− p).

A.2 The Multinomial Distribution

The multinomial distribution is the multivariate generalisation of the binomial distribution.
Instead of n trials with two outcomes (true/false Bernoulli trials) there are now k possible
outcomes for each of the n trials, each with its own probability of success, p1, p2, . . . , pk
such that p1 + p2 + · · ·+ pk = 1.
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The distribution has the probability mass function

Pr(X1 = x1; . . . ;Xk = xk) =
n!

x1! . . . xk!
px11 . . . pxkk

where n, k ∈ {1, 2, . . . }; x1, . . . , xk ∈ {0, 1, . . . , n}; x1 + x2 + · · ·+ xk = n.

A.3 The Multivariate Hypergeometric Distribution

The multinomial distribution can be thought of as the probability distribution which de-
scribes drawing n differently coloured balls, with k different colours, from an urn with
replacement. The multivariate hypergeometric distribution, in contrast, is the probability
distribution which describes drawing n differently coloured balls from the same urn without
replacement.

For a hypergeometric distribution with k coloured balls there are N balls in total with N1

balls of colour 1, . . . andNk balls of colour k such thatN1 +N2 + · · ·+Nk = N . The param-
eter n ≤ N again represents the number of balls to be drawn from the urn. The multivariate
hypergeometric distribution has the probability mass function

Pr(X1 = x1; . . . ;Xk = xk) =

∏k
i=1

(
Ni
xi

)(
N
n

)
whereN, k ∈ {1, 2, . . . }; n ∈ {1, 2, . . . , N}; x1, . . . , xk ∈ {0, 1, . . . , n}; x1+x2+· · ·+xk =

n.

Note that the univariate hypergeometric distribution is simply a special case of the multi-
variate hypergeometric distribution where k = 2.

A.4 Wallenius’ Multivariate Non-central Hypergeomet-

ric Distribution

Continuing the analogy of drawing coloured balls from an urn, Wallenius’ multivariate non-
central hypergeometric distribution can be thought of as the probability distribution which
describes drawing n differently coloured balls, with k different colours, from an urn without
replacement, as with the multivariate hypergeometric distribution. However, in this case,
each different colour has a different weight associated with it. Balls with higher weights
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are more likely to be selected, meaning that the colour of the ball that is drawn depends not
only on its quantity but also on its weighting. Typically these weights are allowed to take
any positive real number value but, for convenience, may be normalised so that their sum is
equal to 1.

Therefore, in addition to the parameters included in the multivariate hypergeometric dis-
tribution, this distribution requires another vector of parameters, ω1, . . . , ωk, giving the k
different weights of each differently coloured ball. The probability mass function of Walle-
nius’ multivariate non-central hypergeometric distribution is given by

Pr(X1 = x1; . . . ;Xk = xk) =

(
k∏
i=1

(
Ni

xi

))∫ 1

0

k∏
i=1

(
1− tωi/D

)xidt
where

D =
k∑
i=1

ωi(Ni − xi)

andN, k ∈ {1, 2, . . . }; n ∈ {1, 2, . . . , N}; x1, . . . , xk ∈ {0, 1, . . . , n}; x1+x2+· · ·+xk = n;
ω1, . . . , ωk > 0.
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