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Abstract 

Compound semiconductor (III-V) devices are crucially important in a range of RF/microwave 

applications. High Electron Mobility Transistors (HEMTs), as the best low noise high 

frequency compound semiconductor devices, have been utilised in various applications at 

microwave and mm-wave frequencies such as communications, imaging, sensing and power. 

However, silicon based manufacturing will always be the heart of the semiconductor industry. 

III-V devices are conventionally fabricated using gold-based metallisation and lift off 

processes, which are incompatible with silicon manufacturing processes based on blanket 

metal or dielectric deposition and subtractive patterning by dry etching techniques. Therefore, 

the challenge is to develop silicon compatible processes for the realisation of compound 

semiconductor devices, whilst not compromising the device performance. 

In this work, silicon compatible processes for HEMT realisation have been developed, 

including the demonstration of a copper-based T-gate with the normalised  DC resistance of 

42 Ω/mm, and the presentation of a gate-first process flow which can incorporate the copper-

based T-gate. The copper electroplating process for fabricating T-gate head with the 

maximum width of 2.5 µm, low damage inductively coupled plasma molybdenum etching 

process for realising T-gate foot with the minimum footprint of 30 nm, and the full gate-first 

process flow with non-annealed ohmic contact are described in detail. In addition, this thesis 

also describes the fabrication and characterisation of a 60 nm footprint gold-based T-gate 

HEMT realised by conventional III-V processes, yielding a cutoff frequency fT of 183GHz 

and maximum oscillation frequency fmax of 156GHz. In the comparison between these two 

types of HEMT, it is anticipated that a HEMT with the copper-based T-gate would not only 

have a larger maximum frequency of oscillation fmax, but also an easier incorporation into a 

silicon based manufacturing fab in terms of process technologies, than a HEMT with the 

gold-based T-gate.  
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Compound semiconductor transistors offer significant performance gains over silicon based 

devices, due to the superior intrinsic properties of III-V materials such as higher electron 

mobility and velocity resulting from the low electron effective mass [1.1]. For instance, high 

electron mobility transistors (HEMTs) are the best low noise high frequency devices [1.2-1.3] 

for communications, imaging, sensing and power applications at microwave and mm-wave 

frequencies [1.4-1.9]. However, silicon-based manufacturing is still the mainstream of the 

semiconductor industry.  

Recently, a number of activities have begun to emerge where there is a need to combine the 

economies of scale and volume manufacture offered by silicon-based approaches with the 

performance enhancements offered by compound semiconductor materials and devices [1.10-

1.11]. These solutions require that compound semiconductor devices can be manufactured 

using contemporary silicon approaches in a silicon fabrication facility, without compromising 

either the fabrication line due to the use of incompatible materials, or the device performance 

due to the process flows being used. This requires a step change in the way compound 

semiconductor devices are produced. Typically, gold-based metallisations are used in III-V 

device realisation, which is incompatible with silicon manufacturing as gold is an unwanted 

impurity in silicon [1.12]. In addition, III-V device process flows are traditionally based 

around “lift off” approaches, which also are not compatible with mass production silicon fabs.  

Silicon manufacturing is based around blanket metal or dielectric deposition and subtractive 

patterning usually by dry etching techniques, which can introduce damage into the underlying 

semiconductor materials and reduce device performance. The challenge therefore, is to 

develop silicon compatible processes for the realisation of III-V compound semiconductor 

devices, whilst not compromising the transistor performance. 

In this work, a key outcome is the demonstration of a silicon compatible process to realise a 

copper T-gate for a HEMT, and which can be integrated into a gate-first process flow for 

HEMT fabrication. In comparison with a conventional gold-based T-gate, the copper T-gate 
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developed in this work is predicted to increase the maximum frequency of oscillation fmax of 

the HEMT due to reduced gate resistance. 

Following this brief introduction, Chapter 2 describes the basic device theory, which lays out 

the fundamental theoretical aspects of this work. The fabrication techniques utilised in the 

project are introduced in Chapter 3, which provides knowledge on the practical 

implementation of a HEMT. The characterisation techniques and methods for both 

semiconductor materials and transistors are included in Chapter 4, providing insight into the 

evaluation of device performance. A brief review of HEMT technology evolution and current 

state of the art are given in Chapter 5. Chapter 6 and Chapter 7 present experimental details 

and relevant results in this research work. Finally, a conclusion of the research work and a 

discussion of possible future work are given in Chapter 8. 
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2.1 Introduction 

The High Electron Mobility Transistor (HEMT) is a field effect device, whose operation 

relies on modulating the current flowing through the channel between the source and drain by 

applying a voltage to the gate contact which is placed between them. 

The advantage of the HEMT over other field effect transistors is the large concentration of 

high mobility electrons in the channel which can be located in close proximity to the gate. 

The former results in high carrier velocity and reduced access resistance, whilst the latter 

facilitates good electrostatic control to short channel lengths. These factors in combination, 

are key to the realisation of an optimised energy efficient, high frequency transistor. The high 

electron mobility in the device channel results from the heterojunction formed at the interface 

between two layers of semiconductor material with different bandgaps, which creates a two 

dimensional electron gas (2DEG) and which can be used to spatially separate the channel 

carriers from the donor atoms that produced them. 

A HEMT consist of epitaxial material layers and metallic contacts fabricated on the material 

by particular processes, as shown in Figure 2.1.1.  

 

 
Figure 2.1.1 – A generic layout of the HEMT structure 
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The material layers include substrate, buffer, channel, spacer, barrier and cap layer from 

bottom to the top, which are formed during wafer growth. The cap layer is highly doped and 

enables the formation of source and drain contacts of the device with low contact resistance. 

The channel is a narrow bandgap and undoped high mobility material. Doping is introduced 

in the barrier layer, which is a large bandgap material. Generally, there is a spacer layer of the 

same material as the barrier layer, between the barrier and the channel. It spatially separates 

the electrons in the channel from the ionised donors in the barrier layer. 

The metallic contacts of the HEMT are the ohmic source and drain and the Schottky gate, 

which are defined on the cap layer and barrier layer respectively. The ohmic contact, facilitate 

low resistance access to the underlying semiconductor, whilst the Schottky contact is 

rectifying and can be used to modulate the channel current. A T-gate strategy is normally 

utilised for the gate contact, for reasons which will be discussed in Section 2.5. 

In this chapter, the relevant aspects underlying the operation of a HEMT are described, 

including heterostructure formation, metal-semiconductor contacts, and device operation at 

both DC and RF frequencies. 
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2.2 Heterostructure formation 

When two dissimilar semiconductor materials are brought into contact, a heterostructure is 

formed. The heterojunction at the interface between the materials is extremely important to 

create the high electron mobility channel in a HEMT. To understand the heterojunction 

formation, the example of an In0.52Al0.48As/ In0.53Ga0.47As heterostructure is introduced. In this 

configuration, the key layers of the HEMT are shown in Figure 2.1.1. InGaAs is the layer in 

which the channel is formed and is undoped, while the InAlAs is the barrier layer and n-

doped. 

The energy band diagrams of n-doped In0.52Al0.48As and undoped In0.53Ga0.47As material 

respectively are presented in Figure 2.2.1.  

 

 

 

Ec and Ev are the lower conduction band edge and upper valance band edge of the materials 

respectively, which are separated by the bandgap energy Eg. The InAlAs is the wider bandgap 

material and InGaAs is narrower bandgap material (Eg1 > Eg2). The electron affinity qχ is 

defined as the energy required to move a free electron at the conduction band edge Ec to the 

vacuum level. From the Fermi-Dirac distribution function, which describes the probability of 

a state being filled, the Fermi level Ef is defined as the energy at which the probability of a 

state being filled is one half [2.1]. In undoped semiconductors, the Fermi level Ef can be 

Figure 2.2.1 – Energy band diagrams of n-doped In0.52Al0.48As and undoped In0.53Ga0.47As 

separately 
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related to the conduction and valence band energies, the density of states in each band and the 

material temperature [2.1]:  

 

where kB is the Boltzmann constant, T is the material temperature, NV and NC are the effective 

densities of states in the valence and conduction bands respectively. 

If a semiconductor is doped n-type, such as in the system under consideration in Figure 2.2.1, 

the energy of the Fermi level is related to the conduction band energy by [2.1]:  

 

 

where ND is the donor concentration. 

From Eqn 2.2.2, the energy difference between the Fermi level and the conduction band edge 

is reduced with increasing donor concentration ND, which means the Fermi level Ef is located 

close to the conduction band edge Ec. 

Therefore, for the materials in Figure 2.2.1, the Fermi level is close to the conduction band 

edge Ec1 in n-doped InAlAs and close to the middle of bandgap Eg2 in nominally undoped 

InGaAs. 

When n-doped InAlAs and undoped InGaAs material are brought into contact, the 

heterojunction is formed and the Fermi level Ef is continuous across the interface between n
+
 

InAlAs and InGaAs. The vacuum level is continuous and must bend to keep the values of qχ1 

and qχ2 constant throughout the structure. Higher energy electrons diffuse from the highly 

doped InAlAs into the undoped InGaAs, which depletes the n
+
 InAlAs layer over a region of 

thickness D and leaves ionised donors in it. The electrons accumulate at the interface within 

the InGaAs layer, which generates an electric field across the interface between the ionised 

donors in n
+
 InAlAs and the accumulated electrons in InGaAs layer. An equilibrium state will 

be reached finally when the electric field is large enough to prevent electrons diffusing from 

Eqn 2.2.1 

Eqn 2.2.2 

𝐸𝑓 =
𝐸𝑐 + 𝐸𝑣

2
+
𝑘𝐵𝑇

2
ln
𝑁𝑣
𝑁𝑐

 

𝐸𝑓 = 𝐸𝑐 − 𝑘𝐵𝑇 ln
𝑁𝑐
𝑁𝐷
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n
+
 InAlAs to InGaAs. The n-doped InAlAs and undoped InGaAs heterostructure formation is 

illustrated in Figure 2.2.2. 

 

 

 

In Figure 2.2.2, the conduction band offset ΔEc is the magnitude of the discontinuity between 

two conduction band edges of two semiconductor materials at the interface. The discontinuity 

ΔEc is independent of doping and can be expressed by the difference of electron affinities of 

two material (ΔEc = qχ2 – qχ1), since both InAlAs and InGaAs are non-degenerate 

semiconductors [2.2]. The electric field generated between the ionised donors in the InAlAs 

layer and accumulated electrons in the InGaAs layer across the heterojunction is governed by 

the built-in voltage Vbi, which causes the conduction band and valence band bending near the 

interface. The electric field across the heterojunction causes the diffused electrons in the 

InGaAs layer to be confined into a quasi-triangular potential well in the conduction band 

close to the interface, which is described by the Poisson equation and Gauss’s Law [2.3]. 

The width of the triangular potential well formed in the InGaAs is similar to the wavelength 

of the electrons, resulting in the formation of discrete quantised energy levels, as shown in 

Figure 2.2.3. 

Figure 2.2.2 – Heterostructure formation between n-doped In0.52Al0.48As and undoped 

In0.53Ga0.47As 
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In these discrete energy levels, electrons are free to move in only two dimensions and in the 

direction parallel to the interface (between source and drain of HEMT), which is known as a 

two dimensional electron gas (2DEG). As a result of the spatial separation between the 

electrons in 2DEG in InGaAs (channel layer of HEMT in Figure 2.1.1) and ionised donors in 

InAlAs (barrier layer of HEMT in Figure 2.1.1), the electron mobility of a 2DEG is increased 

as a consequence of a reduction in ionised impurity scattering, which results from the 

coulombic interactions of electrons with the electric field of ionised dopants. This concept is 

known as modulation doping, and was first presented by Dingle, et al. [2.4].  

Various representative charge concentration and mobility in modulation-doped 

heterostructures are presented in Table 2.2.1 [2.5]. 

Heterojunction Two-Dimensional Charge (cm
-2

) Mobility (cm
2
/Vs) 

Al0.3Ga0.7As/GaAs 1×10
12 

7000 

Al0.3Ga0.7As/ In0.2Ga0.8As 2.5×10
12

 7000 

In0.52Al0.48As/ In0.53Ga0.47As 3.0×10
12

 10000 

AlGaSb/InAs 2×10
12

 20000 

 

Figure 2.2.3 – Formation of two dimensional electron gas (2DEG)  

Table 2.2.1 – Electron concentration and mobility of 2DEG in various heterostructures  
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By self-consistently solving the Poisson and Schrödinger equations [2.6], the conduction band 

profile and charge distribution in the quantum well can be determined. 

The Poisson equation is [2.7]:  

 

The Schrödinger equation is [2.7]: 

 

 

Where k(z) is the dielectric constant at a given position z, ϕ(z) is electrostatic potential, Nd(z) 

and Na(z) are donor and acceptor densities respectively, n(z) and p(z) are electron and hole 

concentrations respectively, ћ is Planck’s constant, me is the electron effective mass, Vxc(z) is 

the local exchange-correlation potential, which accounts for the effects of electron-electron 

interaction, ϵi is the eigen energy for the ith (i=1, 2…) subband (solution to the wave function 

ξi(z) at a given position). 

Therefore, the electron concentration of the 2DEG can be expressed as [2.7]:  

 

 

Figure 2.2.4 shows the n
+
 InAlAs/ InGaAs heterojunction conduction band profile with 1D 

co-ordinate system z perpendicular to the interface of two semiconductors. The origin of the 

system is at the interface. 

𝛻 𝑘 𝑧 𝛻𝜙 𝑧  = −𝑞 𝑁𝑑 𝑧 − 𝑁𝑎 𝑧 + 𝑝 𝑧 − 𝑛 𝑧   Eqn 2.2.3 

 −
ћ2

2𝑚𝑒
∆ + 𝐸𝑐 𝑧 + 𝑉𝑥𝑐 𝑧  𝜉𝑖 𝑧 = 𝜖𝑖𝜉𝑖 𝑧  Eqn 2.2.4 

𝑛 𝑧 =  
𝑚𝑒𝑘𝐵𝑇

𝜋ћ2
ln  1 + 𝑒𝑥𝑝

𝐸𝑓 − 𝜖𝑖

𝑘𝐵𝑇
  𝜉𝑖 𝑧  

𝑖

 Eqn 2.2.5 
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According to Gauss’s law, the electric field Einterface at the interface z=0 in the InGaAs can be 

related to the electron concentration of the 2DEG Ns, and the permittivity of the InGaAs 

ɛInGaAs [2.8]:  

 

 

The electric field in the depletion region in n
+
 InAlAs will decrease from the maximum value 

at the interface z=0 to zero at z=D. According to Poisson’s equation:  

 

 

Where Nd is the doping concentration of InAlAs and ɛInAlAs is the permittivity of InAlAs. 

As a consequence,  

 

 

𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 =
−𝑞𝑁𝑠
𝜀𝐼𝑛𝐺𝑎𝐴𝑠

 Eqn 2.2.6 

𝑑𝐸

𝑑𝑧
=

𝑞𝑁𝑑
𝜀𝐼𝑛𝐴𝑙𝐴𝑠

 Eqn 2.2.7 

𝐸 𝑧 =
𝑞𝑁𝑑𝑧

𝜀𝐼𝑛𝐴𝑙𝐴𝑠
+ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Eqn 2.2.8 

Figure 2.2.4 – Conduction band profile of n
+
 InAlAs/ InGaAs heterojunction  
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Considering Eqn 2.2.6 and as a result, 

 

 

If the permittivities of two semiconductors are assumed to be equal, i.e. ɛInAlAs = ɛInGaAs =ɛ, 

then Eqn 2.2.8 becomes: 

 

At z=D, the electric field is zero. Therefore,  

 

From Eqn 2.2.11, the depletion width is related to the ratio of the electron concentration of 

the 2DEG in InGaAs and the doping concentration of InAlAs. 

 

  

𝐸𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐸 0 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
−𝑞𝑁𝑠
𝜀𝐼𝑛𝐺𝑎𝐴𝑠

 Eqn 2.2.9 

𝐸 𝑧 =
𝑞

𝜀
 𝑁𝑑𝑧 − 𝑁𝑠  Eqn 2.2.10 

𝑁𝑑𝐷 = 𝑁𝑠 Eqn 2.2.11 
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2.3 Metal – semiconductor contacts 

Following the achievement of the high mobility 2DEG channel of the device by forming a 

heterojunction between the wide bandgap highly doped semiconductor and narrow bandgap 

intrinsic semiconductor, it is important to build the metallic contacts of the device to drive 

and modulate the channel current. 

The formation of a metal-semiconductor junction is, in some ways similar to the situation of 

heterojunction formation between two dissimilar semiconductors. The energy band diagram 

of a metal and an n-doped semiconductor is shown in Figure 2.3.1.  

 

 

The Fermi level Ef, electron affinity of the semiconductor qχs (defined as the energy required 

to move a free electron in the conduction band edge Ec to the vacuum level) and work 

function of the metal qϕm (defined as the energy required to move a free electron at the Fermi 

level Ef to the vacuum level) are illustrated in Figure 2.3.1. When the metal and n-doped 

semiconductor are brought into contact, the Fermi levels align, and electrons diffuse from 

semiconductor layer to metal layer, which generates a built-in electric field Vbi across the 

interface between the accumulated electrons in the metal and the ionised donors in the 

semiconductor. The resulting band bending in the semiconductor forms an energy barrier at 

the interface, which is known as a Schottky barrier, as presented in Figure 2.3.2. The 

Schottky barrier is with a barrier height of qϕb above the Fermi level, and a barrier width of D 

Figure 2.3.1 – Energy band diagrams of metal and n-doped semiconductor  
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into the semiconductor, which is also the width (depth) of the depletion region in the 

semiconductor. 

 

 

The Schottky barrier height qϕb is defined as the energy required for an electron at the Fermi 

level in the metal to transfer to the conduction band of the semiconductor. In the ideal 

situation, the Schottky barrier height ϕB can be described by the Schottky model [2.9] and 

expressed as: 

 

In the Schottky model, the Schottky barrier height is simply the difference between work 

function of metal and electron affinity of the semiconductor. This is not, however reflected in 

experimental observation. 

The Bardeen model, which considers the surface states at the interface between the metal and 

semiconductor, describes the Schottky barrier between metal-semiconductor contacts better in 

reality [2.10]. There are surface states existing in a thin region at the interface between the 

metal and semiconductor, since the periodicity of the crystal lattice of a semiconductor and 

metal is interrupted at the contact interface. The surface states density is determined by 

𝑞𝜙𝐵 = 𝑞 𝜙𝑚 − 𝜒𝑠  Eqn 2.3.1 

Figure 2.3.2 – Schottky barrier formation 
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various factors including the crystal orientation of the two materials, the quality of the 

interface between them, and the semiconductor doping situation [2.11]. 

 

 

Figure 2.3.3 shows the band diagram metal-semiconductor contact in the Bardeen model. The 

interface layer between the metal and semiconductor has thickness δ, which is defined by the 

surface state density supporting a potential difference of Δ. qϕ0 is the energy required to fill in 

the surface states and make them charge neutral. qϕn is the energy offset between the Fermi 

level and conduction band edge in the semiconductor. 

When the surface states density is large enough that the difference between the work function 

of the metal and the electron affinity of the semiconductor q(ϕm-χs) can be completely 

compensated by the surface states, there will be no electron diffusion from the semiconductor 

to the metal. As illustrated in Figure 2.3.3, the Schottky barrier height can be expressed as:  

 

 

Therefore, the Schottky barrier height is independent of metal work function and related to 

bandgap of the semiconductor and surface state density. The Fermi level will be pinned at a 

particular energy level below the conduction band edge, which has been experimentally 

verified in III-V semiconductor materials [2.12-2.13]. 

Figure 2.3.3 – The band diagram of metal-semiconductor contact in the Bardeen model 

𝑞𝜙𝑏 = 𝐸𝑔 − 𝑞𝜙0 − 𝑞𝜙𝑛 Eqn 2.3.2 
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The width of the Schottky barrier D can be derived from Poisson equation:  

 

 

Where Nd is the donor concentration, ϵs is the dielectric constant of the semiconductor, and V 

is the voltage applied to the contact. 

From Eqn 2.3.3, D will be reduced as Nd increases, which means that higher doped 

semiconductor material will have a Schottky barrier with shallower depletion depth. 

 

There are three main mechanisms existing for current flowing across the energy barrier 

between the metallic contacts of the device and the semiconductor material: thermionic 

emission, field emission and thermionic field emission [2.14]. The dominant mechanism of 

electron transport through metal-semiconductor contacts is determined by the height of the 

Schottky barrier and the width of its associated depletion region, as shown in Eqn 2.3.2 and 

Eqn 2.3.3, which are dependent on the doping level and the properties of the semiconductor 

material. 

In thermionic emission, electrons are excited by thermal energy to cross the energy barrier. 

The current density JTE in thermionic emission is exponentially dependent on the magnitude 

of the energy barrier EB and on the material temperature T.  

 

 

The thermionic emission current density will be enhanced when material temperature is 

increased and the magnitude of the energy barrier is reduced. 

The field emission mechanism relies on the quantum mechanical tunnelling of electrons 

through the energy barrier for current to flow [2.15]. The tunnelling current density JFE in 

𝐷 =  
2𝜖𝑠
𝑞𝑁𝑑

 𝑞𝜙𝑏 − 𝑉  Eqn 2.3.3 

𝐽𝑇𝐸 ∝ 𝑒𝑥𝑝  −
𝐸𝐵
𝑘𝐵𝑇

  Eqn 2.3.4 
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field emission is determined by the probability of electrons tunnelling through the energy 

barrier, which is dependent on the magnitude and width of the energy barrier.  

 

 

Where E00 is the tunnelling parameter:  

 

 

From Eqn 2.3.5 and Eqn 2.3.6, the tunnelling current increases as the magnitude of energy 

barrier decreasing and dopant density increasing, which means that it is easier for electrons to 

tunnel when the barrier width is thinner. 

Thermionic field emission is a combination of thermal excitation and tunnelling transport. In 

thermionic field emission, electrons have insufficient energy to cross the barrier by thermal 

excitation entirely, and the width of energy barrier is too wide for electrons to directly tunnel 

through. However, electrons with a degree of thermal excitation energy might be able to 

tunnel through the barrier, since the width of the barrier decreases with its height. This results 

in the thermionic field emission current flowing through the energy barrier, which can be 

expressed as [2.16]:  

 

 

 

Three mechanisms of electrons transporting across the energy barrier are illustrated in Figure 

2.3.4. 

𝐽𝐹𝐸 ∝ 𝑒𝑥𝑝  −
𝐸𝐵
𝐸00

  Eqn 2.3.5 

𝐸00 ≡
𝑞ћ

2
 

𝑁𝑑
𝜖𝑠𝑚𝑒

 Eqn 2.3.6 

𝐽𝑇𝐹𝐸 ∝ 𝑒𝑥𝑝 
𝐸𝐵

𝐸00 coth
𝐸00
𝑘𝐵𝑇

  Eqn 2.3.7 
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As mentioned above, there is a Schottky barrier formed at the interface when a metal and 

semiconductor are brought into contact, and there are two types of metal-semiconductor 

contacts: Schottky contact and ohmic contact. 

When the electron transport across the energy barrier is dominated by thermionic emission, a 

Schottky contact is formed. 

 

 

As illustrated in Figure 2.3.5, when forward bias Vf is applied on the metal-semiconductor 

contact, the barrier height impeding electron transport from the semiconductor to the metal is 

decreased to q(Vbi-Vf), which increases the probability of electrons in semiconductor with 

sufficient thermal energy to cross the barrier into the metal to create a current flow. The 

current will increase when the forward bias Vf is as large as the built in voltage Vbi, since the 

energy barrier impeding electrons transport from the semiconductor to the metal is eliminated. 

When the metal-semiconductor contact is reverse biased, the barrier height between 

semiconductor and metal is increased to q(Vbi+Vr). It is unlikely for electrons in the 

semiconductor to acquire enough thermal energy to cross the barrier and get into metal. If the 

Figure 2.3.5 – Energy band diagram of Schottky contact under various biases 

Figure 2.3.4 – Illustration of thermionic emission, thermionic field emission and field 

emission mechanisms of electron transporting across the energy barrier 
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Schottky barrier height qϕB between metal and semiconductor is large, caused by using wide 

bandgap semiconductor material, it is also difficult for electron in the metal to cross the 

barrier into the semiconductor by thermionic emission. Therefore, a metal-semiconductor 

contact with rectifying characteristics is formed. The current-voltage (I-V) characteristics of 

Schottky contact is shown in Figure 2.3.6.  

 

 

 

There will be small leakage current flow in reverse bias resulting from the electron transport 

by field emission. The breakdown current occurs finally when the reverse bias is increased 

beyond a certain value, since the electron transport is dominated by field emission. 

When the electron transport across the energy barrier is dominated by field emission, in which 

the barrier width is very thin resulting from very high doping concentration in semiconductor, 

the metal-semiconductor contact is ohmic. In ohmic contacts, the current-voltage response is 

linear for both forward and reverse bias. 

 

In HEMT design and fabrication, different strategies are chosen to form ohmic contacts for 

source and drain of the device and Schottky contacts for gate of the device. As shown in Eqn 

Figure 2.3.6 – Rectifying characteristics of Schottky contact’s I-V 
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2.3.3 and Eqn 2.3.2, the width of the Schottky barrier will be reduced when doping density of 

the semiconductor is high, and the height of the Schottky barrier will be decreased when the 

bandgap of the semiconductor is small. As a consequence, ohmic contacts are usually built on 

a highly doped cap layer (as shown in Figure 2.1.1) with narrow bandgap such as n-doped 

In0.53Ga0.47As, minimising both height and width of the Schottky barrier to enable large 

current flowing through the barrier by field emission, and obtaining low contact resistance for 

source and drain driving the current in the channel of the device. On the contrary, the 

Schottky contact is usually formed on an undoped barrier layer (as shown in Figure 2.1.1) 

with relatively wide bandgap such as In0.52Al0.48As, to achieve rectifying characteristics as 

discussed above for gate modulating the channel current in the device, which will be 

described in Section 2.4.1. 
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2.4 HEMT DC characteristics 

2.4.1 2DEG concentration modulation 

Similar to the operation of other field effect transistors, current flowing through the channel 

from the source to the drain in a HEMT is modulated by gate voltage. For increasingly 

negative applied gate voltages, the magnitude of the Schottky barrier between the gate metal 

and the barrier layer is increased as shown in Figure 2.3.5, depleting the electron 

concentration in the 2DEG. This continues until at a particular threshold voltage, Vth, applied 

to the gate, the electron concentration in the region below gate is reduced to zero. There is no 

current flowing through the channel between source and drain, and the channel becomes 

completely depleted. In this condition, the channel is said to be “pinched-off”. 

This process can be compared to the charging and discharging process of a parallel plate 

capacitor, with the metal gate as one plate and the channel as the other, between which the 

gate voltage applied. The dielectric of the semiconductors between gate and channel can be 

regarded as the dielectric in the capacitor. As a result, the current flowing through the channel 

from source to drain will be decreased due to the reduction of the electron concentration in 

the gate region. 

When the threshold voltage is negative, a HEMT is said to work in “depletion mode”, at 

which the transistor is normally in an “ON” state at zero gate voltage. This device type is 

considered in the subsequent discussion. To the contrary, a HEMT is said to work in 

“enhancement mode” when the threshold voltage is positive. And the transistor is normally in 

an “OFF” state at zero gate voltage. 

Although the majority of the electron population is confined in the channel layer, it is possible 

that electron accumulation occurs outside the channel and contributes to the current flow 

between source and drain. In this case, a parallel conduction channel is formed, which is 

undesirable. The parallel conduction channel underneath the gate will degrade the device 
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performance, since the advantages of high mobility 2DEG channel are diluted by electron 

transport in the parallel conduction path with much lower electron mobility. This effect can be 

minimised by designing the appropriate layer structure to ensure that the layers above the 

channel are completely depleted under zero gate bias, whilst the electron concentration in the 

channel is still large. 

To better understand the 2DEG concentration modulation process, conduction band profiles 

and carriers concentration distributions through the HEMT structure under various gate 

voltages were simulated by a Poisson/ Schrödinger solver [2.6] and are presented in Table 

2.4.1. 

 

Conduction band profiles & carrier concentration distributions 

Gate 

voltage 

Vg (V) 

 

 

The channel is completely depleted. 

 

 

 

-1.8 V 
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Charge starts to accumulate in the channel. 

 

 

 

-1 V 

 

 

More charge accumulates in the channel. 

 

 

 

 

0 V 
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The parallel conduction channel forms in the barrier. 

 

 

 

 

0.5 V 

 

 

The parallel conduction channel concentration increases. 

 

 

 

 

0.6 V 

 

 

 

Table 2.4.1 – The change of conduction band profiles and carrier concentration 

distributions through the HEMT structure when various gate voltages 

are applied 
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From Table 2.4.1, the carrier concentration of the channel is reduced to zero when gate 

voltage is -1.8 V, which means that the channel is completely depleted at the threshold 

voltage of -1.8 V. When the gate voltage moves towards positive, more and more charge 

accumulates in the channel. However, as the gate voltage increasingly positive till 0.5 V, 

electron accumulation occurs outside the channel and the parallel conduction channel is 

formed. When gate voltage is getting more positive, the carrier concentration of the parallel 

conduction channel increases and the carrier concentration of the real channel will be 

saturated eventually.  

 

2.4.2 Source-Drain current voltage response 

When a voltage is applied between the source and drain of a HEMT, a current will flow 

between them through the device channel via the ohmic contacts. In HEMT operation, the 

source contact is usually grounded and a positive voltage is applied to the drain. 

When the drain voltage is small, and hence at low electric field, the relationship between 

channel current Id and drain voltage Vds is linear. As the drain voltage Vds is increased and 

hence at high electric field, the channel current saturates, since the electron velocity is 

saturated at high electric field [2.17]. When drain voltage is increased to a critical value, 

which is referred to as breakdown voltage, the electric field will be large enough to incur 

impact ionisation [2.18] in the channel. In this process, an electron with enough energy can 

knock an electron out of its bound state in the valance band and promote it into the 

conduction band, generating an electron hole pair. The increase in carrier concentration in the 

channel causes an increase of channel current, which is referred to as “breakdown”. In Figure 

2.4.1, three regions of Id – Vds response curve at zero gate bias are presented for a normally 

“ON” HEMT. 
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2.4.3 Source-Drain current modulation 

By the application of a negative voltage on the Schottky gate contact, the electron 

concentration of the channel can be reduced as a result of channel depletion. Therefore, the 

current flow from source to drain can be modulated by depleting the channel in the gate 

region. 

For increasingly negative gate voltages, the channel will be increasingly depleted and there 

will be less current flowing through the channel between source and drain, as presented in 

Figure 2.4.2. 

 

 

Figure 2.4.1 – Typical normally “ON” HEMT Id –Vds response with zero gate voltage 

Figure 2.4.2 – Typical HEMT Id –Vds response with varied gate voltage 
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It can be seen from Figure 2.4.2 that channel current Ids saturation occurs at lower drain 

voltage when gate bias is more negative. It results from a high electric field region formed on 

the drain side of the gate due to the larger potential difference between the gate and the drain. 

It will also cause earlier breakdown at more negative gate voltage due to the same reason. The 

increased potential difference between gate and drain enlarges the effective depletion region 

of the gate on the drain side, as illustrated in Figure 2.4.3, which results in a non-uniform 

electron concentration through the channel between source and drain. 

 

 

 

2.4.4 Intrinsic and extrinsic models 

In reality, the complete device performance relies on both intrinsic and extrinsic properties, 

which includes behaviour in gate region and also in access regions. In the following 

discussions, the intrinsic properties of the device are extracted from a model, in which only 

the gate region is considered. Whilst, the extrinsic properties of the device are extracted from 

a model, in which the overall device region including source and drain access regions are 

Figure 2.4.3 – Extended depletion region on the drain side of the gate 
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considered which represents the completed device more accurately. This is illustrated in 

Figure 2.4.4. 

 

 

 

2.4.5 DC figures of merit 

Some important figures of merit in the DC characteristics of a HEMT can be extracted. The 

drain current flowing through the channel from source to drain can be presented as: 

 

Where q is the electron charge, n is the 2DEG carrier sheet density in the channel, v is the 

effective electron velocity in the channel, and W is the width of the device, as shown in 

Figure 2.1.1. 

As discussed in Section 2.4.1, in a HEMT, the carrier density in the channel and the metal 

gate can be regarded as a parallel plate capacitor. If the relative permittivity of the material 

between gate and channel is constant and the layers between gate and channel are completely 

depleted, the gate voltage can then be expressed as: 

 

Where h is the separation between gate and channel, ɛ is the relative permittivity of the 

semiconductor material layers between gate and channel. 

𝐼𝑑 = 𝑞𝑛𝑣𝑊 Eqn 2.4.1 

𝑉𝑔𝑠 =
𝑛𝑞ℎ

𝜀
 Eqn 2.4.2 

Figure 2.4.4 – Illustration of intrinsic region and access regions 
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The transconductance gm of the device is defined as the rate of change of drain current with 

the voltage applied on gate at a constant drain voltage [2.19]: 

 

Therefore, transconductance gm can be extracted by calculating the derivative of the drain 

current Id with respect to the gate voltage Vgs: 

 

As a consequence, the transconductance will be increased when the electron velocity is high 

in the channel or by reducing the gate-channel separation. 

The transconductance given in Eqn 2.4.4 is based on the assumption that all the gate voltage 

is applied across the channel in the gate region. In reality, however, the gate voltage also 

drops across the source resistance Rs [2.20]. Therefore, the actual gate voltage between the 

gate and channel Vgs0 is: 

 

And hence the extrinsic transconductance gm can be expressed as: 

 

Where gm0 is the intrinsic transconductance. 

From Eqn 2.4.6, the extrinsic transconductance and intrinsic transconductance will be equal 

when source resistance is zero, and considerably different when source resistance is large. 

In addition to the transconductance, the output conductance of the device, gds, is defined as 

[2.21]:  

 

which is the inverse of the output resistance defined between source and drain, i.e. 1/Rds, at a 

fixed gate voltage.  

𝑔𝑚 =  
𝜕𝐼𝑑
𝜕𝑉𝑔𝑠

 
𝑉𝑑𝑠

 Eqn 2.4.3 

𝑔𝑚 =
𝜀𝑣𝑊

ℎ
 Eqn 2.4.4 

𝑉𝑔𝑠0 = 𝑉𝑔𝑠 − 𝐼𝑑𝑅𝑠 Eqn 2.4.5 

𝑔𝑚 =
𝑔𝑚0

1 + 𝑔𝑚0𝑅𝑠
 Eqn 2.4.6 

𝑔𝑑𝑠 =  
𝜕𝐼𝑑
𝜕𝑉𝑑𝑠

 
𝑉𝑔𝑠

 Eqn 2.4.7 
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2.5 HEMT frequency response and equivalent circuit 

The HEMT is usually in common-source configuration, and the source terminal is grounded. 

The input port of a HEMT is between gate and source, whilst the output port is between drain 

and source. When a HEMT is operated at high frequencies, the small signal equivalent circuit 

model can be constructed, which allows the operation of the device to be characterised in 

terms of lumped circuit elements. The intrinsic device model, which represents the equivalent 

circuit elements in the region below the gate, is shown in Figure 2.5.1 [2.22-2.23].  

 

 

The modulation of the current in the channel between source and drain is represented by a 

current generator, generating the current equal to the intrinsic transconductance multiplied by 

the voltage across gate capacitance, i.e. gm0Vgs, which is in parallel with the resistor Rds 

representing the effective output resistance of the device. The gate capacitance represents the 

capacitive coupling of the gate to the channel, comprises two elements: Cgs and Cgd, which 

represent the capacitances across the depletion region of the gate to the source side or the 

wider depletion region to the drain side respectively, and depend on the exact depletion region 

geometries. The resistor Ri in series with Cgs represent the resistance of the intrinsic section of 

the channel. There is also a capacitance, Cds, between the source and drain side of the intrinsic 

Figure 2.5.1 – Equivalent circuit of the intrinsic device model 
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region, resulting from their different electron densities. These elements representing the 

intrinsic device model are listed in Table 2.5.1. 

Element Symbol Description 

Current source gm0Vgs Channel current modulation 

Output resistance Rds Inverse of output conductance 

Source-end gate 

capacitance 
Cgs 

Capacitance across the gate depletion 

region to the source side 

Drain-end gate capacitance Cgd 
Capacitance across the gate depletion 

region to the drain side 

Intrinsic channel resistance Ri 
Models the finite conductance of the 

channel 

Source-drain capacitance Cds 
Across depletion region from drain to 

source 

 

 

There are additional parasitic elements in the extrinsic region of the device, which can be 

collected together in the full equivalent circuit model of the HEMT presented in Figure 2.5.2. 

 

 
Figure 2.5.2 – Complete equivalent circuit model of HEMT including intrinsic (dotted box) 

and extrinsic elements (outside dotted box) 

Table 2.5.1 – Intrinsic equivalent circuit elements 
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The parasitic source and drain resistances Rs and Rd (also shown in Figure 2.4.4) include the 

contact resistances: Rsc and Rdc, which represent the resistance of the contact through the 

ohmic region to the channel, and the parallel access resistances: Rsp and Rdp, representing the 

resistance from the ohmic contact region to the gate region through the channel. The parasitic 

capacitances Cgsp and Cgdp result from the electric field distribution between metallic contacts. 

The gate, source and drain parasitic inductances Lg, Ls, Ld arise from feed pads of the 

electrodes. The resistor Rg represents the resistance of the gate metal. 

The HEMT device can be regarded as a two-port network in RF characterisation, with the 

gate at port 1 as input and drain at port 2 as output. The source of the device is grounded. 

An important figure of merit in RF performance of HEMT is cutoff frequency fT [2.24], which 

is defined as the frequency at which short circuit current gain falls into unity, i.e. the current 

flowing into gate equals to the current flowing from drain when the output is short circuited.  

 

 

 

From the circuit in Figure 2.5.3, the input current ig and output current id can be expressed 

respectively as: 

 

 

𝑖𝑔 =
𝑉𝑔𝑠

 
1

𝑗𝑤 𝐶𝑔𝑠 + 𝐶𝑔𝑑 
 

= 𝑗𝑤 𝐶𝑔𝑠 + 𝐶𝑔𝑑 𝑉𝑔𝑠 Eqn 2.5.1 

Figure 2.5.3 – Intrinsic gate-channel model for extracting fT  
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The short circuit current gain is: 

 

 

 

The intrinsic cutoff frequency fT can be extracted when     = 1:  

 

 

As a consequence, the intrinsic fT can be increased by reducing the total gate capacitance and 

enlarging the transconductance. 

The gate-channel capacitance Cg can be regarded as a parallel plate capacitor, and can be 

expressed as: 

 

 

Where Lg is the gate length as shown in Figure 2.1.1, W is the device width and h is the gate-

channel separation. 

Considering Eqn 2.4.4 for the transconductance and Eqn 2.5.6 for total gate capacitance, the 

intrinsic cutoff frequency fT can be expressed as: 

 

 

Therefore, the intrinsic cutoff frequency can be maximised by increasing the carrier velocity 

in the channel to enlarge the transconductance and reducing the gate length to decrease the 

gate capacitance. 

𝑖𝑑 = 𝑔𝑚𝑉𝑔𝑠 Eqn 2.5.2 

𝐴𝑖 =
𝑖𝑑
𝑖𝑔

=
𝑔𝑚

𝑗𝑤 𝐶𝑔𝑠 + 𝐶𝑔𝑑 
 Eqn 2.5.3 

 𝐴𝑖 =
𝑔𝑚

2𝜋𝑓 𝐶𝑔𝑠 + 𝐶𝑔𝑑 
 Eqn 2.5.4 

𝑓𝑇 =
𝑔𝑚

2𝜋 𝐶𝑔𝑠 + 𝐶𝑔𝑑 
 Eqn 2.5.5 

𝐶𝑔 =
𝜀𝐿𝑔𝑊

ℎ
 Eqn 2.5.6 

𝑓𝑇 =
𝑣

2𝜋𝐿𝑔
 Eqn 2.5.7 
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When extrinsic parasitic resistances Rs, Rd and Rds are considered into the analysis, the output 

current will not be the current generated by the current generator gmVgs, and the extrinsic 

cutoff frequency is [2.25]: 

 

 

Another important figure of merit in RF operation of HEMT is the maximum frequency of 

oscillation fmax [2.24], which is defined as the frequency at which the device has unity power 

gain, i.e. when the product of the voltage and current gains of the device equal one. The 

equivalent circuit of HEMT with a load resistance at output is presented in Figure 2.5.4. 

 

 

According to the circuit shown in Figure 2.5.4, the maximum power gain across the load 

resistance will be achieved when the load resistance is equal to the output resistance of the 

device, i.e. Rds=RL. 

The voltage gain of the circuit is [2.26]: 

 

 

Where Ro is the output resistance of the circuit, which is the total resistance of the parallel Rds 

and RL.  

𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑓𝑇 =
𝑔𝑚

2𝜋 𝐶𝑔𝑠 + 𝐶𝑔𝑑  1 +
𝑅𝑠 + 𝑅𝑑
𝑅𝑑𝑠

 + 𝐶𝑔𝑑𝑔𝑚 𝑅𝑠 + 𝑅𝑑 
 Eqn 2.5.8 

Figure 2.5.4 – Intrinsic Power amplification HEMT model with output load 

 𝐴𝑣 =  
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

 =
𝑔𝑚𝑅𝑜

 1 + 4𝜋2𝑓2𝐶𝑔
2 𝑅𝑔 + 𝑅𝑖 

2
≈

𝑔𝑚𝑅𝑜

2𝜋𝑓𝐶𝑔 𝑅𝑔 + 𝑅𝑖 
 Eqn 2.5.9 
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Since the load resistance is equal to the output resistance of the device, i.e. Rds=RL, hence 

  =
 

2
   ,     =

 

2
  . Therefore, 

 

 

Similar to the previous discussion about Eqn 2.5.4, and considering the total output resistance 

of the circuit is half of Rds, the current gain of the circuit is: 

 

 

The power gain can then be expressed as: 

 

 

Therefore, the intrinsic maximum frequency of oscillation can be extracted by applying Gp=1: 

 

 

Therefore, the intrinsic maximum frequency of oscillation can be increased by maximising 

the cutoff frequency and output resistance, reducing the intrinsic resistance and gate 

resistance. 

Similarly, if extrinsic parasitic elements are considered, the extrinsic maximum frequency of 

oscillation can be expressed as [2.27]: 

 

 

 

 𝐴𝑣 =
𝑔𝑚𝑅𝑑𝑠

4𝜋𝑓𝐶𝑔 𝑅𝑔 + 𝑅𝑖 
=

𝑓𝑇𝑅𝑑𝑠

2𝑓 𝑅𝑔 + 𝑅𝑖 
 Eqn 2.5.10 

 𝐴𝑖 =
𝑖𝑜𝑢𝑡
𝑖𝑖𝑛

=
𝑔𝑚

4𝜋𝑓𝐶𝑔
=
𝑓𝑇
2𝑓

 Eqn 2.5.11 

𝐺𝑝 =  𝐴𝑖  𝐴𝑣 =  
𝑓𝑇
𝑓

 
2 𝑅𝑑𝑠

4 𝑅𝑔 + 𝑅𝑖 
 Eqn 2.5.12 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑓𝑚𝑎𝑥 =
𝑓𝑇
2

 
𝑅𝑑𝑠

𝑅𝑔 + 𝑅𝑖
 Eqn 2.5.13 

𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑓𝑚𝑎𝑥 =
𝑓𝑇

2 
𝑅𝑔 + 𝑅𝑖 + 𝑅𝑠

𝑅𝑑𝑠
+ 2𝜋𝑓𝑇𝑅𝑔𝐶𝑔𝑑

 Eqn 2.5.14 
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According to Eqn 2.5.8 and Eqn 2.5.14, decreased gate length and hence the reduced gate 

capacitance results in the increased fT and fmax. However, gate resistance will increase linearly 

as gate length decreasing, as Eqn 2.5.15 shows, which leads to a low fmax.  

 

 

where W is the device width, Lg is the gate length, T is the height of the gate. 

To satisfy the requirements of both small gate length and low gate resistance, a T-gate 

structure of a short gate foot topped by a large gate head is utilised in gate formation of 

HEMT, as shown in Figure 2.5.5. 

 

 

 

 

 

  

𝑅𝑔 = 𝜌
𝑊

𝐿𝑔𝑇
 Eqn 2.5.15 

Figure 2.5.5 – HEMT layout of normal gate and T-gate 
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2.6 Summary 

To better understand HEMT operation, several aspects are introduced in this chapter, 

including: 

 2DEG formation relies on the heterostructure formation between two semiconductors 

with different bandgaps, which is the key advantage of high mobility of HEMT. 

 Schottky and ohmic contacts for gate and source/drain of the device, which are the 

basis of controlling the device by applying external voltages. 

 The working theory of the HEMT at both DC and high frequencies. Important figures 

of merit are derived for the evaluation of device performance. The properties of 

semiconductor material and structure of the device, which influence the figure of 

merit of the device performance, are also included. 

With the understanding of the operation theory of a HEMT, the practical fabrication process 

of the HEMT will be discussed in the next chapter. 

 

 

 

Reference 

 

[2.1] S. M. Sze, Physics of Semiconductor Devices. 1981, John Wiley and Sons Inc.  Chap. 1.4. 

[2.2] S. Tiwari, Compound Semiconductor Device Physics. 1992, Academic Press Inc. pp. 92 - 94. 

[2.3] S. Sze, Physics of Semiconductor Devices. 1981, John Wiley & Sons Inc. 

[2.4] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in 

modulation-doped semiconductor heterojunction superlattices”, Applied Physics Letters, vol. 

33, pp. 665-667, 1978. 



Chapter 2 The High Electron Mobility Transistor 56 

[2.5]  K. Brennan, A. Brown, Theory of modern electronic semiconductor devices. 2002, John Wiley 

& Sons Inc. pp. 123-124. 

[2.6]    I. Tan, G. Snider, L. Chang and E. Hu, “A selfconsistent solution of Schrödinger–Poisson 

equations using a nonuniform mesh,” Journal of Applied Physics, vol. 68, pp.4071-4076, 1990. 

[2.7]  Y. Ando and T. Itoh, “Analysis of charge control in pseudomorphic two dimensional electron 

gas field-effect transistors,” IEEE Transactions on Electron Devices, vol. 35, pp.2295-2301, 

1988. 

[2.8]  S. Tiwari, Compound Semiconductor Device Physics. 1992, Academic Press Inc. pp. 417. 

[2.9]     W. Schottky, “Vereinfachte und erweiterte Theorie der Randschichtgleichrichter,” Zeitschrift 

fur Physik A: Hadrons und Nuclei, pp. 539–592, 1942. 

[2.10]     J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Physical 

Review, vol. 71, pp. 717–727, 1947. 

[2.11] S. M. Sze, Physics of Semiconductor Devices, 1981, John Wiley and Sons Inc. pp. 273 - 276. 

[2.12] E. Skuras and C. Stanley, “Fermi energy pinning at the surface of high mobility In0.53Ga0.47As 

In0.52Al0.48As modulation doped field effect transistor structures,” Applied Physics Letter, vol. 

90, pp.133506-1-3, 2007. 

[2.13] E. Skuras, G. Pennelli, A. Long and C. Stanley, “Molecular-beam epitaxy growth of InGaAs–

InAlAs high electron mobility transistors with enhanced electron densities and measurement 

of InAlAs surface potential,” Journal of Vacuum Science and Technology B, vol. 19, pp. 

1524-1528, 2001. 

[2.14] S. Sze, Physics of Semiconductor Devices. 1981, John Wiley and Sons Inc. 

[2.15] S. Tiwari, Compound Semiconductor Device Physics. 1992, Academic Press Inc. pp. 214-219. 

[2.16] S. Tiwari, Compound Semiconductor Device Physics. 1992, Academic Press Inc. pp. 216. 

[2.17] R. Dorf, The Electrical Engineering Handbook, 1997, CRC Press, pp. 991.  

[2.18] J. Singh, “The tailoring of impact ionization phenomenon using pseudomorphic structures-

applications to InGaAlAs on GaAs and InP substrates”, Semiconductor Science and 

Technology, vol. 7, pp. 509-11, 1992. 

[2.19]    S. Tiwari, Compound Semiconductor Device Physics. 1992, Academic Press Inc. pp. 506. 

[2.20] P. H. Ladbrooke, MMIC Design GaAs FETs and HEMTs. 1989, Artech House Inc. pp. 139-

142. 



Chapter 2 The High Electron Mobility Transistor 57 

[2.21] P. H. Ladbrooke, MMIC Design GaAs FETs and HEMTs. 1989, Artech House Inc. pp. 138-155. 

[2.22] P. H. Ladbrooke, MMIC Design GaAs FETs and HEMTs. 1989, Artech House Inc. pp. 91-

124. 

[2.23] P. Wolf, “Microwave properties of Schottky-barrier Field-effect Transistors,” IBM Journal of 

Research and Development, vol. 14, pp. 125-141, 1970. 

[2.24] P. H. Ladbrooke, MMIC Design GaAs FETs and HEMTs, 1989, Artech House Inc. pp. 138 - 

155. 

[2.25]  P. Tasker and B. Hughes, “Importance of source and drain resistance to the maximum fT of 

millimeter-wave MODFETs,” Electron Device Letters, vol. 10, pp. 291-293, 1989. 

[2.26] P.H. Ladbrooke, MMIC Design GaAs FETs and HEMTs. 1989, Artech House Inc. pp. 223-

224. 

[2.27] S. M. Sze, Physics of Semiconductor Devices. 1981, John Wiley and Sons Inc. pp. 342-343. 

 

 

 

 

  



Chapter 3  

 

 

Fabrication techniques 

 

 

 

 

In this chapter, various fabrication techniques for semiconductor device realisation in 

particular HEMT fabrication are described, including lithography, metallisation, lift off and 

etching processes. A standard HEMT fabrication process flow based on these generic 

fabrication techniques is then presented. All of these fabrication techniques were used 

extensively in the work presented in Chapter 6 & Chapter 7. 
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3.1 Electron beam lithography 

In HEMT fabrication, electron beam lithography is the essential process technology to form 

key functional parts of the device, in particular nanoscale gates and source/drain contacts. 

Although highly advanced photolithography technology is successfully used in industry due 

to the shorter writing time for mass production compared to electron beam lithography, 

electron beam lithography is widely used in research labs for nanoscale pattern realisation due 

to the flexibility offered by software masks. 

The approach to defining structures on semiconductor materials by electron beam lithography 

and photolithography is similar. The patterns are transferred onto the semiconductor material 

using a layer or layers of resist, which are spin coated and subsequently baked to remove the 

casting solvent prior to exposure. After the lithography step, the resist is developed to define 

the required structure. In the development step, the sample is immersed in a developer 

solution and the exposed (unexposed) area of resist will be removed for positive (negative) 

resists.  The sample is then ready for subsequent processing, which typically is either an 

etching or metal deposition step. 

The exposure process for electron beam lithography and photolithography is very different. In 

photolithography, the source is UV light; a mask plate is placed between this and the substrate, 

which allows the transmission of light through the transparent pattern on the mask onto the 

corresponding area of the resist. In electron beam lithography, the exposure of the resist is 

from the bombardment of a focussed electron beam and the desirable patterns are written 

directly onto the resist with no need for a hard mask plate as in photolithography. The patterns 

to be written on the resist are designed in software and transferred to a computer controlled 

electron beam lithography system which generates a focussed electron beam which is scanned 

across the sample to form the desired patterns. 
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3.1.1 Electron beam lithography tool 

The electron beam lithography tool utilised in this work was a Vistec VB6 UHR EWF housed 

in a Class 10 cleanroom in the James Watt Nanofabrication Centre at University of Glasgow. 

A schematic of Vistec VB6 electron beam lithography tool is shown in Figure 3.1.1 [3.1]. 

 

 

 

Figure 3.1.1 – Basic layout of Vistec VB6 electron beam lithography system [3.1] 
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As presented in Figure 3.1.1, there are a series of magnetic and electrostatic lenses in the 

electron beam lithography system to generate and confine the electron beam. The electrostatic 

lens C1 is at the source in the system. The electron beam is sourced from a Schottky field 

emission gun using a zirconium oxide coated tungsten cathode, which is heated up to 1800 K. 

The cathode is usually biased up to accelerating voltage of 100 kV by the column high 

voltage (HT) source. The “Suppressor” electrode ensures that electrons are only emitted from 

the cathode tip. The “Extractor” electrode creates a high electric field between it and the 

cathode, which controls the thermal field emission from the source and the electron 

acceleration to the “Extractor” electrode. The “Focus” electrode focuses the electron beam 

before electrons reach the “Anode”. The “Gun alignment coils” are used to align the electron 

beam to the optical axis of the column. Several apertures are used in the system at various 

positions in the column to reduce the divergence of the electron beam for generating a given 

spot size of the electron beam. A further condenser magnetic lens C2 allows adjustment of the 

spot size without changing the focus and beam current. The final magnetic lens C3 focuses 

the electron beam onto the substrate at a given working distance. The electron beam can be 

electrostatic deflected into an aperture by using the beam blanker. There are a series of 

magnetic coils in the system above the final lens C3, which deflect the beam to scan in the x 

and y axes. There are two types of deflectors in the deflection unit, located between the lenses 

C2 and C3. The main deflectors are for large scale movements of the beam and the subfield 

deflectors are for fine controlling of the beam. The stage holding the substrate is moved 

during exposure when the pattern area of the substrate is greater than 1.3 mm in either x or y, 

which is the maximum area covered by the deflectors unit. The apertures in the system can be 

used to adjust the beam size and current in the pattern writing process. The largest current and 

spot size are 131 nA and 45 nm respectively, which can be used to write large pattern areas in 

short time. The smallest current and spot size are 1 nA and 4 nm respectively, which can be 

used to precisely form nanoscale features.  
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3.1.2 Pattern design and definition 

The desired patterns to be written on the substrate by electron beam lithography are designed 

in a CAD package. In this work, the Tanner EDA tool L-Edit was used. The designed patterns 

are exported in the GDSII file format which is then fractured by Layout Beamer software 

from GenISYS Gmbh, which generates vep files. Several parameters of the vep file of each 

layer of the desired pattern can be set up in the “Belle” software, which was created by Dr. 

Stephen Thoms of the University of Glasgow. The parameters set up in Belle software include 

exposure dose value, spot size, beam current, the relative position of the pattern to the 

substrate, and even the detailed information of alignment markers if needed. The output file 

from Belle is subsequently read by a computer which controls the electron beam lithography 

system. This processes all the necessary information of the patterns needs to be written on the 

substrate.  

 

3.1.3 Resists 

Resists used in electron beam lithography play an important role in the formation of the final 

desired pattern. They are usually chosen to be written depends on different applications. The 

molecular weight of the resist determines the resist sensitivity [3.2], which will be reduced 

when molecular weight of the resist is increased. The resist sensitivity needs to be considered 

as a key factor impacting the formed pattern in electron beam lithography, since more 

sensitive resist requires lower exposure dose or shorter development time for a given pattern. 

In addition, several layers of resists with different sensitivities can be combined to be used in 

various fabrication processing such as lift off and T-gate formation, which will be described 

in Section 3.2 and Section 3.4.4 respectively. 

Various types of resist were used for the fabrication in this work, which are outlined in Table 

3.1.1. 
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Resist Type Application 

PMMA Positive General Electron beam lithography 

LOR Positive Undercutting for T-gates (Better lift off) 

UVIII Positive T-gates 

HSQ Negative Dry etch mask 

 

 

Poly-methyl methacrylate (PMMA) is a positive tone electron beam resist of various 

molecular weights and can be used in a wide range of fabrication processing [3.3]. There are 

two types PMMA with different molecular weights available in James Watt Nanofabrication 

Centre of the University of Glasgow: PMMA 2010 and PMMA 2041, which were used in this 

work. PMMA 2010 is more sensitive than PMMA 2041 due to the smaller molecular weight. 

PMMA are usually dissolved in solvents typically ethyl lactate, with different concentrations.  

PMMA resists are generally developed in methyl isobutyl ketone (MIBK) diluted with 

isopropyl alcohol (IPA). 

Lift off resist (LOR) is based on polydimethyglutarimide (PGMI) and can provide undercut 

profile for lift off processes, without intermixing with other resists. In this work, LOR is 

utilised in lift off process, together with PMMA and UVIII, for T-gate formation. 

The Shipley Ultra Violet III (UVIII) is a positive tone chemically amplified resist. The 

incident electrons result in the formation of acids in the chemically amplified resist, which 

can catalyse reactions in the exposed areas during the development process [3.4]. UVIII is a 

copolymer of styrene and t-butyl acrylate, and was originally designed for deep ultra violet 

(DUV) optical lithography but has also been used in electron beam lithography [3.5]. UVIII is 

generally developed in MICROPOSIT MF CD-26 developer. 

Hydrogen silsesquioxane (HSQ) is a negative tone electron beam resist, and is based on 

silicon dioxide with available Si-H bonds. Electron beam exposure can break Si-H bonds and 

Table 3.1.1 – Resists used in this work for various applications 
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cause crosslinking [3.6]. HSQ is generally developed in diluted tetramethylammonium 

hydroxide (TMAH). 
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3.2 Metallisation and lift off 

After the desired patterns have been defined in the resist on the semiconductor material by 

electron beam lithography, one of the following process steps is metallisation to form metal 

contacts of the device including source/drain, gate and bondpads, or alignment markers to 

facilitate layer to layer registration. 

All metallisation throughout this work was performed on electron beam evaporation tools: 

Plassys MEB 450 and Plassys MEB 550. Electron beam evaporation uses an electron beam to 

locally heat up the surface of a metal target until a temperature at which the metal vaporises is 

reached. The metal atoms move to the sample, hit the surface, cool down and finally adhere to 

the sample surface. The evaporation processes occur in a vacuum chamber with pressure in 

the order of 10
-6

 – 10
-7

 Torr. A non-conformal metal layer with little or no sidewall coverage 

is produced by the electron beam evaporation metallisation, which will be beneficial for the 

following lift off processes. 

In the metallisation process step, the desired metal is deposited onto the whole sample surface 

but only the metal deposited in the exposed area of the resist forms the metallic contacts to the 

semiconductor material. The rest of the metal film deposited on the resist coated sample can 

be “lifted off” when removing the resist by rinsing the sample in a solvent such as acetone. 

Therefore, the original pattern defined on the resists layers is now transferred onto the metal 

deposition layer on the substrate by the process of metallisation and lift off, as illustrated in 

Figure 3.2.1.  
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One thing of note is that a bi-layer of resists with different sensitivities is usually utilised in 

the lift off process. In the electron beam lithography process, as discussed in Section 3.1.3, 

the top resist layer with lower sensitivity is less exposed than the bottom resist layer with 

higher sensitivity when same exposure dose applied on both resist layers, which produces an 

undercut in the resist profile, as shown in Figure 3.2.1. It reduces the metal deposited on the 

sidewall of the resist profile, generates a discontinuity between the metal deposited on the 

surface of resist and in the exposed area on the substrate, and provides a route for the acetone 

solvent to access the resist; all of which facilitate the lift-off process.  

There are two essential steps after electron beam lithography and development and before 

metallisation in metal contacts formation; i) ashing and ii) de-oxidation treatment. The ashing 

step is preformed after the resist development and is a low power oxygen plasma etching 

process to remove any organic resist residues remaining the exposed area on the substrate. 

The de-oxidation treatment is subsequently performed immediately before the metallisation 

process to remove any native oxide formed on the surface of exposed semiconductor material 

by rinsing the sample in a dilute acid solution for a very short while and then in the de-ionised 

water. 

 

 

  

Figure 3.2.1 – Metallisation and lift off process 
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3.3 Etching 

After electron beam lithography definition of the desired resist pattern, wet chemical, plasma 

or reactive ion etching processes can be used to selectively remove material on the substrate 

using resist as a mask.  

The wet etching process relies on a chemical reaction between the material to be etched and 

the chemicals in the etchant solution, and the process is influenced by several factors 

including solution composition, concentration, pH value, temperature of the etchant solution, 

and duration of the process. The choice of etching solution can enable selective remove of 

material due to the particular chemical reaction occurring in process. For instance, in InAlAs/ 

InGaAs HEMT structure, the succinic or citric acid and hydrogen peroxide mixture etchant 

reacts with gallium-contained layers not aluminium-contained layers. This can be used in a 

recess etch step prior to the gate metallisation in HEMT fabrication to selectively remove the 

InGaAs cap layer stopping at the InAlAs barrier layer [3.7]. An orthophosphoric acid and 

hydrogen peroxide mixture etchant reacts with both gallium-contained and aluminium-

contained layers, which therefore can be used in a mesa isolation step of HEMT fabrication to 

etch down to the buffer layer and remove all the active layers. The gate recess etch and mesa 

isolation approaches will be described in detail in Section 3.4. The concentration, pH value 

and the temperature of the etchant solution influence the etching rate and hence the roughness 

of the etched surface, since the higher etching rate may cause rapid gas evolution leading to a 

rougher etched surface [3.8]. The final etching depth is mainly controlled by the duration of 

etching. The advantages of wet etching are that it is a simple process, it is low cost and 

damage free. However, it is difficult to control the wet etching process precisely and the 

uniformity of the wet etching processes is also an issue.  

Dry etching processes are usually used in the definition of high aspect ratio features and/or 

when precise etching depth is required. In the dry etching system, chemical etching, chemical 

passivation and physical bombardment are used to make anisotropic etching possible and 
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produce high aspect ratio etching profiles, whilst the etching depth can be monitored by laser 

interferometric techniques [3.9]. In a dry etch process, many parameters can affect the final 

etching profile including etching gas composition, gas ratio, chamber pressure, power levels 

and also temperature of the sample to be etched. The main disadvantage of dry etching 

processes is that the etching process may introduce damage which has the potential to 

significantly decrease the carrier mobility of the active layer and therefore compromise the 

device performance, particularly in III-V compound semiconductor devices [3.10-3.12]. Some 

low damage dry etching processes achieved by adjusting various parameters in particular 

power levels, have been reported for III-V device fabrication [3.13- 3.16]. 
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3.4 Standard HEMT fabrication process flow 

The generic process flow of HEMT realisation using the process techniques introduced above 

includes the following five fabrication steps: 

1. Alignment markers 

2. Mesa Isolation 

3. Ohmic Contacts 

4. Gates 

5. Bondpads 

The sequence of these five fabrication steps is usually as listed above, although it may change 

depending on a specific device configuration. For instance, in a self-aligned gate process, 

gates are defined prior to ohmic contacts formation, in order to minimise the separation of 

source and drain and hence to reduce source and drain parasitic resistances. 

These five main components of HEMT fabrication will be discussed in the following sections. 

 

3.4.1 Alignment markers 

The first step is usually to define registration markers on a blank substrate to enable alignment 

of the multiple levels required to realise a completed device. For example, the gate has to be 

accurately placed between the source and drain contacts. In this work, the alignment markers 

consist of “global” markers and “cell” markers. The choice of which will be determined by 

the level of registration accuracy required between various levels. The use of “penrose” 

patterns as cell markers can facilitate alignment accuracy of better than 5 nm, although it does 

increase the complexity of the alignment process [3.17-3.18]. The basic layout of markers is 

illustrated in Figure 3.4.1. 
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The markers are fabricated by electron beam lithography, metallisation and lift off process as 

introduced above. Two layers of resists with different sensitivities containing 4% PMMA 

2010 and 2.5% PMMA 2041, as discussed in Section 3.1.3, are used for electron beam 

lithography and 10nm Ti/70nm Au are electron beam evaporated and then lifted off to form 

markers. The thickness and the composition of metals of markers are chosen to generate 

enough contrast to make them distinguishable by the electron beam lithography tool in 

subsequent lithography step. The contrast is related to the thickness of markers and atomic 

number difference between the substrate material and the metal of marker. 

 

3.4.2 Mesa isolation 

The mesa isolation step is to isolate individual devices from each other by removing the 

active layers (cap, barrier, and channel layers in Figure 2.1.1) completely and down to buffer 

Figure 3.4.1 – The schematic layout of markers (global & cell) on the substrate 
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layer which is underneath the channel, as shown in Figure 3.4.2. This step is aligned to the 

alignment markers defined in the previous processing step. 

 

 

In this work, a wet etching process is used to remove all active layers including the InGaAs 

cap layer, InAlAs barrier layer, InGaAs channel, and part of the InAlAs buffer layer. A non-

selective orthophosphoric acid/hydrogen peroxide etchant with a concentration ratio of 

1:1:100 H3PO4 : H2O2 : H2O was used to remove these III-V material layers, since both 

gallium and aluminium are contained in these layers. This produces a controllable and 

repeatable etch rate of 0.7 nm/s. 

The etched depth was measured by Atomic Force Microscopy (AFM) to confirm that all the 

active layers and part of buffer layer below the channel are removed. The minimum possible 

etch depth is targeted sufficient to achieve electrical isolation, to minimise the chance of 

having discontinuity of gate metal which will ultimately have to cross the height step between 

the active “mesa” and isolated material in subsequent processing steps. The target etch depth 

is dependent on the thickness of the material layers as well as the height of the metal gate of 

the device. 

 

3.4.3 Ohmic contacts 

The ohmic contacts are aligned to the device mesa by registering to the alignment marks 

defined previously. As discussed in Section 2.3, ohmic contacts are generally defined on a 

Figure 3.4.2 – Mesa Isolation process 
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highly doped cap layer to obtain low contact resistance in a HEMT. In the InAlAs/ InGaAs 

material system, the cap is a heavily n-doped layer of InGaAs. Most ohmic contacts are 

formed by metallisation and a following annealing process to produce an alloyed metal 

contact, which reduces the magnitude of the Schottky barrier. A gold/germanium based 

metallisation is commonly used in annealed ohmic contact formation for III-V HEMTs [3.19], 

as annealing causes germanium to diffuse into the InGaAs cap layer to form a highly doped 

region which promotes electron tunnelling between the contact metal and the semiconductor 

with a low resistance. Gold is included to provide high conductivity. Non-annealed ohmic 

contacts can also be achieved by introducing additional doping plane in the barrier layer close 

to the cap layer [3.20]. 

Figure 3.4.3 shows a Scanning Electron Microscope (SEM) top view of typical ohmic 

contacts. It can be seen from Figure 3.4.3 that source and drain are aligned to the device mesa. 

 

 

 

 

Figure 3.4.3 – Top view of typical ohmic contacts 
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3.4.4 Gates 

As will be discussed in Chapter 5, there are a number of processes to fabricate T-gates [3.21-

3.22]. In this work, the general method is to use three layers of resists consist of UVIII, 

PMMA and a very thin layer of LOR between them which enable a single step electron beam 

lithography strategy for T-gate fabrication, as shown in Figure 3.4.4.  

 

 

There is an essential recess etch process following the T-gate resist profile formation by 

electron beam lithography and prior to the gate metallisation. A selective wet etching process 

is used to remove the highly doped cap layer of HEMT. The gate therefore is deposited on the 

undoped, large bandgap InAlAs barrier layer. This minimises the gate leakage current. In this 

work, a succinic acid/ hydrogen peroxide based etch with pH of 5.5 was used to selectively 

remove the InGaAs cap layer, stopping on the InAlAs barrier layer.  

Following the recess etch step, gates are formed by a metallisation and lift off process. An 

electron beam evaporated 15nm Ti/15nm Pt/160nm Au metal stack was used as titanium 

provides good adhesion to the semiconductor, high conductivity gold forms the bulk of the 

gate to minimise resistance and platinum acts as a barrier layer to prevent gold diffusion into 

the InAlAs layer, which would result in a poor Schottky contact. 

 

 

Figure 3.4.4 – T-gate formation using three layers of resists: UVIII, LOR, PMMA 
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3.4.5 Bondpads 

Bondpads are required to connect the source, drain and gate of a HEMT to the outside world 

to enable the measurements of the device from DC to RF frequencies. The bondpads are 

designed as ground-signal-ground coplanar waveguide topology. The geometry of the 

bondpads is determined to make the impedance of the bondpads match with that of the 

measurement system. The bondpad generally consists of a 50 nm NiCr as the adhesion layer 

and a 1.2 µm Au metal layer to minimise the access resistances to the three terminals of the 

device. The realisation of bondpads requires lithography, metallisation and lift off processes. 

A bi-layer resist stack of 15% PMMA 2010 and 4% PMMA 2041 is used to generate 1.5 µm 

resist profile, which is thick enough to lift off the 1.2 µm NiCr/Au metal layer which 

deposited by electron beam evaporation. 

The complete HEMT device geometry is shown in Figure 3.4.5. 

 

 

 

  

Figure 3.4.5 – Complete HEMT device geometry 
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3.5 Summary 

This chapter describes a standard HEMT fabrication process flow including five steps: 

alignment markers definition, ohmic contact formation, gate fabrication and bondpad 

realisation. Fabrication process techniques are also introduced in this chapter, including 

lithography, metallisation, lift off and etching, which can be used to realise the five steps 

mentioned above. In the following chapters, the application of these process technologies in 

device fabrication will be presented. 
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Chapter 4  

 

Characterisation and 

Metrology 

 

 

In Chapter 3, various process techniques to fabricate HEMTs have been introduced. It is 

important to evaluate whether the desired device realised by those fabrication techniques is 

achieved. Therefore, it is crucial to characterise the performance not only of the final realised 

transistors, but also of various test structures during the device process flow which provide 

information on individual process steps.  

In this chapter, various characterisation methods are presented, including the Van der Pauw 

method for evaluating the properties of material structure, the Transmission Line Method for 

understanding the resistance behaviour of metal-semiconductor contacts after the source/drain 

ohmic contacts formation, and also the method of measuring the final device at both DC and 

RF frequencies.  
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4.1 Material characterisation and the Van der Pauw method 

The quality and structure of the epitaxial material for HEMT fabrication determines the 

performance of the final device to a great extent. The carrier concentration and carrier 

mobility of the active layers affect the drain current of the device. The effective scaling of the 

material layer structure is beneficial for achieving a large transconductance device. Therefore, 

it is crucial to characterise the properties of material grown for HEMT fabrication and hence 

understand the possible performance that the device can achieve. 

The Van der Pauw method [4.1] can be used to measure the carrier concentration, carrier 

mobility and sheet resistance of the material. It relies on the Hall Effect as applied to a 

symmetric four point structure, as shown in Figure 4.1.1. 

 

 

The Van der Pauw structure includes an isolated square of the active material to be 

characterised, which is contacted by four large metallic ohmic pads at the corners by narrow 

lines of active material. The four metallic pads are fabricated by metal evaporation of an 

AuGe metallisation and then annealed to form low resistance ohmic contacts to the square of 

active material at the centre of the test structure. The difference between structure (a) and 

structure (b) in Figure 4.1.1 is that an additional recess etch step to remove the doped cap 

layer of the material in the centre area is applied on the sample (b) by selective etching. 

Figure 4.1.1 – Van der Pauw structures with and without cap layer 
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Therefore, the material properties extracted by Van der Pauw method in structure (b) are of 

the channel layer alone.  

When currents are applied between various pairs of the contact pads of the Van der Pauw 

structure, eg IDA is a current driven between contacts D and A, the potential difference 

between adjacent pads can be measured, eg VAB, where VAB is the voltage difference 

measured between pads A and B. The following relation is demonstrated in [4.1]:  

 

Where   is the thickness of material sample,   is the resistivity of the material, and RAB,CD = 

VAB/ ICD, RBC,DA = VBC/ IDA, i.e. ratio of the voltage between one pair of adjacent probes to the 

current between another pair of adjacent probes. Because the Van der Pauw structure is 

symmetric, RAB,CD = RBC,DA, and Eqn 4.1.1 simplifies to: 

 

Where RAB,CD = RBC,DA=R, and therefore: 

      

 

Then the sheet resistance Rsh of the material defined as: 

 

 

 

can be extracted from Eqn 4.1.3: 

 

 

 

The mobility and density of carriers in the material can be characterised by applying a 

magnetic field onto the sample. 

If a magnetic field is introduced into the measurement environment, which is perpendicular to 

the surface plane of the material sample as labelled as Bz in Figure 4.1.1, and a voltage VAC is 
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applied between contacts A and C, there will be a Lorentz force on carriers flowing in the 

material perpendicular to both the magnetic field and the electric field EAC, according to the 

Hall Effect. Therefore, the direction of carriers movement is between contacts B and D. In the 

case where the majority carriers are electrons, these are moved by the Lorentz force along the 

direction between contacts B and D, which generates an electric field EBD between contacts B 

and D with the electric field force direction opposite to that of Lorentz force. When the 

magnitude of the electric force increases to be same as the Lorentz force, an equilibrium state 

is reached. According to the equilibrium conditions: 

 

where vAC is the velocity of carriers flowing between contacts A and C. 

Hence the velocity of the carriers flowing between contacts A and C can be presented as the 

ratio of the magnitude of electric field between contacts B and D to the magnitude of 

magnetic field: 

 

 

Therefore, the low-field carrier mobility µ can be expressed as: 

 

 

Besides, the current density JAC between contacts A and C is related to the conductivity of the 

material σ (which is the reciprocal of resistivity ρ) and the electric field EAC between contacts 

A and C, and can be expressed as an equation including carrier concentration n: 

 

 

As a consequence, the carrier concentration of the material can be determined. 

𝑣𝐴𝐶 =
𝐸𝐵𝐷
𝐵𝑧

 Eqn 4.1.7 

𝜇 =
𝑣𝐴𝐶
𝐸𝐴𝐶

=
𝐸𝐵𝐷
𝐸𝐴𝐶𝐵𝑧

 Eqn 4.1.8 

𝐽𝐴𝐶 = 𝜍𝐸𝐴𝐶 =
𝐸𝐴𝐶
𝜌

= 𝑛𝑞𝑣𝐴𝐶 Eqn 4.1.9 

𝑞𝐸𝐵𝐷 = 𝑞𝑣𝐴𝐶𝐵𝑧 Eqn 4.1.6 
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4.2 Contact resistance and the Transmission Line Method 

The performance of a HEMT is influenced by not only the quality and structure of the 

epitaxial material, but also the quality of contacts of the device to the material layers. The 

quality of ohmic contacts formed between source/drain of the device and the channel affects 

the overall parasitic resistances of the device, which will degrade its performance, according 

to Eqn 2.5.8 discussed in Section 2.5. Therefore, it is crucial to evaluate the quality of the 

ohmic contacts to ensure low contact resistances between source/drain and the channel for 

optimal device performance. 

The Transmission Line Method (TLM) is usually utilised to characterise the contact 

resistances [4.2]. In the standard TLM structure, several ohmic contacts are deposited on the 

material with various separations. Figure 4.2.1 shows a typical TLM structure with 

separations of 1.5, 2.5, 3.5, and 4.5 µm. 

 

 

 

The contact resistance can be extracted by measuring the total resistance between two 

adjacent contacts and generating a plot of resistance versus contacts separation. The resistance 

extracted from two adjacent contacts with a specified separation, d, comprises the resistance 

of the metal/semiconductor contact for each pad together with the resistance due to the 

Figure 4.2.1 – Typical Transmission Line Method (TLM) structure with separations of 

1.5, 2.5, 3.5, and 4.5 µm. The blue squares are metal contacts with the 

width of 150 µm, and the grey area underneath the blue squares is active 

material 
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semiconductor material between the contacts which is related to the sheet resistance, scaled 

by the contact separation and the width of the contacts, as presented in Figure 4.2.2. 

 

 

The sheet resistance of the material Rsh can be determined from the gradient of the line and 

the contact resistance Rc from the Y-axis intercept.  

The four-probe measurements technique is used in the Transmission Line Method. Currents 

are driven through two separate contacts, whilst the voltage between two separate contacts is 

measured by another two probes, which eliminates the effect of resistance of probes and 

cables on the measurements.  

 

 

 

  

Figure 4.2.2 – Contact resistance extraction from Transmission Line Method (TLM) 
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4.3 Device characterisation 

Electrical characterisation of a HEMT includes measurements at both DC and RF frequencies. 

A general measurement system set up includes a probe station for conducting device 

measurements, a Semiconductor Parameter Analyser (SPA) and a Vector Network Analyser 

(VNA).  

As described in Section 3.4.5, the fabricated HEMT is in a coplanar waveguide layout. 

Therefore, the three-signal probes in a ground-signal-ground configuration are used in both 

DC and RF measurements to match with the device layout, as presented in Figure 4.3.1.  

 

 

The probes are mounted on precision manipulator arms, which allows their movement in 

three-dimensions and hence to be placed in the desired positions on the wafer during the 

measurement. The manipulators are mounted on a Cascade Microtech Summit 12000 semi-

automatic probe station, which is controlled by Cascade Microtech Nucleus software. The 

SPA an Agilent B1500 is required to provide DC bias in RF measurements and the specified 

voltage conditions in DC measurements. This is controlled by Agilent EasyExpert software to 

set up appropriate DC bias conditions. The VNA an Agilent E8361A is required to measure 

frequency dependent S-parameters of the HEMTs. This is controlled by Cascade Microtech 

WinCal software. The complete measurement system set up is presented in Figure 4.3.2. 

Figure 4.3.1 – Cascade ACP65 probe 
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4.3.1 DC measurements 

The DC characterisation of a HEMT is determined by the application of a range of variable 

biases to the drain and gate terminals of the device, with the source contact grounded. 

The SPA provides a method of characterising the current under the condition of sweeping 

voltage applied on one terminal of the device whilst the bias of another terminal varies step by 

step. By utilising this method, the drain source current flowing through the channel and the 

gate current in the Schottky contact between gate and the barrier layer can be measured. The 

transconductance of the device can be extracted by calculating the derivative of the drain 

current with respect to the gate voltage. 

Figure 4.3.2 – DC and RF measurement set up 



Chapter 4 Characterisation and Metrology 86 

Figure 4.3.3 shows typical characteristics plots of the drain current of a HEMT with the gate 

voltage varied from -1.7V to 0.1 V, and the transconductance of a HEMT with the drain 

voltage varied from 0 V to 1.0 V. 

      

 

4.3.2 RF measurements 

In RF measurements, the HEMT can be regarded as a two-port network, with the drain and 

gate of the device as output and input ports respectively, and the source of the device as 

ground, as illustrated in Figure 4.3.4. 

 

 

The measurements are performed in a range of specified frequencies and under various bias 

conditions applied to the terminals of the device. The small signal behaviour of the device is 

Figure 4.3.3 – Typical characterisation of a HEMT: Ids-Vds & gm-Vgs 

Figure 4.3.4 – A layout of HEMT with coplanar waveguide (CPW) (two-port network) 
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usually characterised by Scattering parameters (S-parameters), which can also be transformed 

to other parameters (Z-, Y-, H-parameters) for particular figures of merit extraction. 

 

 

 

As shown in Figure 4.3.5, the four signals at the two ports of the network are related to the 

corresponding S-parameters, which can be expressed as following [4.3]: 

 

 

Four S-parameters can be extracted by applying a matched load of 50 Ω at each port of the 

network to eliminate reflection signal in a particular direction, which means a1 is zero when 

50 Ω load is applied at port 2 and a2 is zero when 50 Ω load is applied at port 1. Hence, 

 

 

 

 

 

Figure 4.3.5 – A schematic of a two-port network with four transmission/ reflection 

signals 

𝑏 = 𝑆  𝑎 + 𝑆 2𝑎2 Eqn 4.3.1 

𝑏2 = 𝑆2 𝑎 + 𝑆22𝑎2 Eqn 4.3.2 

𝑆  =
𝑏 
𝑎 

               𝑎2 = 0  Eqn 4.3.3 

𝑆2 =
𝑏2

𝑎 
               𝑎2 = 0  Eqn 4.3.4 

𝑆 2 =
𝑏 
𝑎2

               𝑎 = 0  Eqn 4.3.5 

𝑆22 =
𝑏2

𝑎2
               𝑎 = 0  Eqn 4.3.6 
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The RF performance of the device across a range of frequencies at a given bias condition can 

then be characterised by measuring both the magnitude and phase of each of these four S-

parameters.  

In order to achieve accurate device S-parameters, it is required to conduct a calibration of the 

measurement system before its use. The “Impedance Standard Substrate” (ISS) is used in the 

calibration to determine the influence of the measurement system by characterising structures 

of known S-parameters. 

Several methods can be used for calibration, including SOLT (Short, Open, Load, Thru), 

LRM (Line, Reflect, Match), LRRM (Line, Reflect, Reflect, Match) [4.4-4.5]. In SOLT 

method, which is used in this work, four structures short, open, load, thru are used, as shown 

in Figure 4.3.6. 

 

 

The “short” structure is a metal line to short the three tips (ground-signal-ground) of each 

probe. The “open” circuit is provided simply by lifting the probe in the air above the substrate. 

There is a 50 Ω matched load at each port in the “load” structure. In “thru” structure, the three 

tips of one probe are connected to those of another probe by three metal lines of a known 

length. The device can then be measured at RF frequencies after the successful calibration on 

ISS. 

 

Figure 4.3.6 – Standard structures in SOLT calibration method include Short, Load, Thru 
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The  measured S-parameters of a HEMT contain not only the response of the extrinsic device 

including gate and source/ drain ohmic contacts, but also the unwanted contribution of the 

coplanar waveguide bondpads for probing in measurements, as shown in Figure 4.3.4. 

The de-embedding process is used to remove the contribution of bondpads in the 

characterisation of S-parameters. The basic idea of de-embedding is to evaluate the 

performance of bondpads by either direct measurement or modelling in software, and then the 

bondpads performance can be subtracted from the total measured S-parameters. 

There is an issue in direct measurement of bondpads S-parameters, which is that it is difficult 

to control the precise location when placing the probe on the bondpads of each device with 

good contact for measurements, although alignment markers can be added onto the bondpads 

in fabrication.  

A more useful method is to simulate the S-parameters of the coplanar waveguide bondpads in 

software, the Agilent Advanced Design System (ADS) was used in this work. A model of the 

extrinsic device together with the bondpads can be built in the software by constructing an 

equivalent circuit of the extrinsic device and placing two transmission line (coplanar 

waveguide) modules at the input and output ports to simulate the real measurement situation. 

In the transmission line module, various parameters can be set up such as the width, gap, 

length of the coplanar waveguide, and the physical properties of the substrate. The real 

performance of the device can then be extracted by removing two waveguide modules and the 

parasitic elements caused from bondpads, but keeping all parasitic elements caused from the 

device itself. 

 

The figures of merit of the device can be extracted after the de-embedded S-parameters are 

obtained. As shown previously in Section 2.5, the cutoff frequency fT, a significant figure of 

merit of device RF performance, is defined as the frequency when the short circuit current 
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gain falls to unity. The short circuit current gain H21 can be determined by converting the de-

embedded S-parameters to H-parameters [4.3]: 

 

 

As a consequence, the cutoff frequency of the device can be extracted by extrapolating the 

H21 plot, which decays at a rate of 20 dB/decade of frequency, to its intercept with the 

frequency axis. 

The maximum frequency of oscillation fmax, is defined as the frequency when the Maximum 

Available Gain (MAG) falls to unity, which can be expressed as [4.6]: 

 

 

where K is the stability factor and defined as [4.7]: 

 

 

When K<1, the device is conditionally stable and could potentially oscillate when certain load 

impedances applied. Then the Maximum Stable Gain (MSG) is defined as: 

 

 

When K>1, the device is unconditionally stable. Therefore, the MSG/MAG-frequency 

response can be divided into two parts of conditionally stable (MSG) and unconditionally 

stable (MAG). 

𝐻2 =
−2𝑆2 

 1 − 𝑆    1 + 𝑆22 + 𝑆 2𝑆2 
 Eqn 4.3.7 

𝑀𝐴𝐺 =
𝑆2 

𝑆 2
 𝐾 +  𝐾2 − 1  Eqn 4.3.8 

𝐾 =
1 +  𝑆  𝑆22 − 𝑆 2𝑆2  

2 −  𝑆   
2 −  𝑆22 

2

2 𝑆2 𝑆 2 
 Eqn 4.3.9 

𝑀𝑆𝐺 =
 𝑆2  

 𝑆 2 
 Eqn 4.3.10 
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The maximum frequency of oscillation can be extracted in a similar way by extrapolating the 

MAG plot, which also decays at a rate of 20 dB/decade of frequency, to its intercept with 

frequency axis. An example is given in Figure 4.3.7 to show the extraction of fmax of a HEMT. 

Figure 4.3.8 shows the plot of the stability factor K as a function of frequency. K=1 at 97 

GHz. 

 

 

Figure 4.3.7 – An example of fmax extraction. The device is conditionally stable when 

working at frequency less than 97 GHz and unconditionally stable when 

the frequency larger than 97 GHz 

Figure 4.3.8 – Stability factor K=1 at 97 GHz 
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4.4 Summary 

This chapter outlines several characterisation techniques, which can be used for measuring 

both the epitaxial material structure and evaluating both key elements of the HEMT and the 

overall device performance, at DC and RF frequencies.  

 The Van der Pauw method, which is based on the Hall Effect, can be utilised to 

characterise carrier mobility, carrier concentration, and sheet resistance of the 

material. 

 The Transmission Line Method can be used to measure the contact resistance of 

source/drain ohmic contacts. 

 The measurement system set up and methods of measurements for device 

characterisation are described. In particular, calibration and de-embedding process for 

more accurate RF measurements of the device are introduced. The methods of 

extracting figures of merit of the device in DC and RF measurements are also 

presented, including drain current, gate leakage current, transconductance, cutoff 

frequency and the maximum frequency of oscillation. 
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Chapter 5  

 

 

Current technology review 

 

 

 

 

In this chapter, a brief overview of HEMT technology development is described, including 

device performance improvement over the years along with the current state of the art. As the 

crucial part in the HEMT device, T-gate fabrication process technologies are also reviewed in 

this chapter. 
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The High Electron Mobility Transistor (HEMT), an important device for high frequency 

circuit applications, was first demonstrated by Mimura et al. at Fujitsu Labs in 1980 [5.1]. 

The HEMT device structure is based on the concept of modulation doping, which was first 

demonstrated by Dingle et al. at Bell Labs in 1978 [5.2]. The modulation doped structure in 

the HEMT device was first demonstrated in the AlGaAs/GaAs material system, which creates 

a two dimensional electron gas (2DEG) in an undoped GaAs layer at the interface between 

this layer and a doped AlGaAs layer [5.1]. 

After the first successful demonstration of the HEMT, the material system has evolved to an 

InAlAs/InGaAs platform. Higher indium concentration materials are preferred due to their 

lower effective mass as well as the increased Γ and L valley energy separation which 

enhances the opportunity for exploiting velocity overshoot effects [5.3]. 

 

 

GaAs was the first to be used as the substrate in the development of HEMT. However, as the 

indium content increases in the channel of the InAlAs/InGaAs material system, the bandgap 

decreases whilst lattice constant increases, as shown in Figure 5.1, leading to a large lattice 

mismatch between the channel material and the GaAs substrate.  

Figure 5.1 – Bandgap and lattice constant for III-V materials 
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To overcome the lattice mismatch between the high indium channel and underlying layers, 

InP was then included into the substrate material of HEMT, due to its larger lattice constant. 

Three solutions have been developed: lattice matched HEMT [5.4], pseudomorphic HEMT 

(pHEMT) [5.5], and metamorphic HEMT (mHEMT) [5.6]. 

As presented in Figure 5.1, InP substrate has a larger lattice constant than that of GaAs and 

hence has been utilised in high indium channel HEMT realisation to reduce the lattice 

mismatch between the channel and the substrate. In0.53Ga0.47As, In0.52Al0.48As, and InP have 

the same lattice constant, though with different bandgaps, and therefore can be used in the 

material system for lattice matched HEMT realisation. The pHEMT utilises a strained channel 

slightly lattice-mismatched to the underlying buffer layer and InP substrate. InGaAs material 

with indium concentration higher than 53% is usually used in the channel. The mHEMT 

utilises a graded buffer which gradually varies in lattice constant to accommodate the strain 

induced by growing a channel layer with larger lattice constant (such as high indium 

concentration InGaAs) on a substrate with smaller lattice constant (such as GaAs). Although 

InP has a closer lattice constant to the InGaAs, it is more expensive and brittle compared to 

GaAs, resulting in a reduced yield. In addition, GaAs material growth and processing 

technology is more mature. Both of which make GaAs still preferred to be as the substrate 

material for HEMT realisation [5.7]. 

The material evolution in the HEMT fabrication technologies is illustrated in Figure 5.2. 

In0.7Ga0.3As and In0.75Ga0.25As are taken as examples for channel material in pHEMT and 

mHEMT respectively. 
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The InAlAs/ InGaAs HEMT has presented record device performance both on GaAs and InP 

substrates. The current record cutoff frequency fT is 644 GHz and 688 GHz respectively for 

InAlAs/ InGaAs PHEMT on InP and InAlAs/ InGaAs Metamorphic HEMT (MHEMT) on 

GaAs [5.8-5.9]. The record maximum frequency of oscillation fmax of an InAlAs/ InGaAs 

HEMT is above 1 THz both on GaAs [5.10] and InP substrates [5.11], which led to the first 

demonstration of amplification in a transistor based circuit at 1 THz [5.12] 

 

As well as the progress made in AlGaAs/GaAs and InAlAs/InGaAs HEMT technology 

development, HEMTs and modulation doping were also demonstrated in the AlGaN/GaN 

material system. Modulation doping in the AlGaN/GaN material system was first 

demonstrated in 1992 [5.13] and the first AlGaN/GaN HEMT was then presented in 1993 

[5.14]. There has been increasing research interest in AlGaN/GaN HEMTs in particular for 

power amplification at millimetre-wave frequencies [5.15-5.16], due to the high voltage 

operation of the device resulting from the wide bandgap of GaN.  

Figure 5.2 – The evolution of HEMT material system from AlGaAs/GaAs to 

InAlAs/InGaAs 
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To simultaneously satisfy the requirements of short gate length and reduced gate resistance of 

a HEMT, the T-gate was introduced in the 1980s. T-gates were initially fabricated by various 

approaches, including angled evaporation [5.17], X-ray lithography [5.18], optical lithography 

[5.19], and electron beam lithography [5.20]. T-gates fabricated by hybrid processes 

combining photolithography for head exposure and electron beam lithography for foot 

formation were also reported [5.21-5.23].  

To decrease the complexity of the fabrication process, approaches to realising T-gates using a 

one-step electron beam lithography utilising multilayer resists with different sensitivities were 

developed. A tri-layer resist system of a copolymer (PMMA–MAA) layer between bilayers of 

polymethylmethacrylate (PMMA) had been commonly utilised in one-step electron beam 

lithography T-gate fabrication due to the simple and reproducible process, since there was no 

mixing of resist layers during preparation and hence no barrier layer was needed between 

resist layers [5.24].  

To improve the sensitivity contrast between PMMA and PMMA-MAA resist layers, higher 

sensitivity chemically-amplified resists such as UVIII were then applied to T-gate fabrication 

for the head formation to replace the copolymer resist [5.25-5.26]. To further reduce the gate 

length, two-step lithography approaches were developed to decouple the writing of the gate 

foot and the head. Record device performance demonstrated at the time was the result of these 

approaches [5.27-5.29]. The smallest footprint T-gate with a gate length of 10 nm, was 

produced by S. Bentley et al. at University of Glasgow in 2009 [5.30]. 

 

Copper has been considered as a gate metal of choice in III-V compound semiconductor 

devices particularly GaN HEMT [5.31-5.33], because of its advantages in low gate leakage 

current, thermal stability, low resistivity and low cost. A copper T-gate fabricated by 

electroplating process, compatible with silicon based manufacturing was reported by R. 

Oxland et al [5.34]. Based on this work, a novel fabrication process has been developed for 
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copper T-gate formation, which is silicon compatible and can be integrated into a full HEMT 

realisation process flow. This work will be described in detail in Chapter 6. 
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6.1 Introduction 

This chapter reports the main work of this project, the development of a silicon compatible 

process flow for HEMT fabrication.  

The details including nanoscale copper electroplating and low damage inductively coupled 

plasma etching of nanoscale molybdenum gate lines are described. A viable route to 

integrating these two technologies into the final copper-based T-gate fabrication process flow 

is demonstrated. Additionally, a gate-first HEMT process flow which can incorporate the 

copper-based T-gate is introduced. 
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6.2 Silicon compatible Cu-based T-gates 

Finding routes to the introduction of copper as part of the backend of line in Ultra Large Scale 

Integration (ULSI) interconnect applications, due to its reduced resistance and improved 

electromigration properties compared to aluminium [6.1], opened the way to considering 

copper as a gate metal choice in III-V compound semiconductor devices, because of the 

merits of low cost, thermal stability, low resistivity and low gate leakage current [6.2-6.5]. In 

addition, more effort has been invested in recent times on growing III-V compound 

semiconductors on silicon wafers to benefit from the technological advantages and cost 

reduction [6.6]. However, the conventional processes of III-V compound semiconductor 

device realisation are heavily dependent on gold based metallisation and lift off approaches 

which are not compatible with mass production in silicon fabs. Therefore, it is essential to 

develop silicon compatible processes to fully exploit III-V devices on a silicon platform for 

applications where III-V materials have considerable performance advantages over silicon.  

In this section, a copper electroplating process for T-gate head formation and low damage 

inductively coupled plasma dry etching of nanoscale molybdenum for T-gate foot realisation 

are introduced.  

 

6.2.1 Copper electroplating process 

The copper electroplating process has been utilised in high volume manufacturing of 

interconnects in ULSI since the late 1990s, using the Damascene Process invented by IBM 

[6.1]. The advantages of electroplated deposition of copper over other approaches including 

Physical Vapour Deposition (PVD) and Chemical Vapour Deposition (CVD), are void-free 

and seamless filling of trenches and in particular vias of high aspect ratio [6.1].   

In this section, the influence of additives in the electrolyte to electroplated copper morphology 

both on planar samples and in nanoscale features has been investigated.  
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6.2.1.1 Copper electroplating on planar samples 

An electroplating cell consists of a cathode (working electrode), an anode (counter electrode), 

and usually a reference electrode, which has a stable and standard potential against which the 

potential of the working electrode is determined. The basic set up of the electroplating cell 

used in this work is shown in Figure 6.2.1. The working electrode is the sample to be 

electroplated, and the counter electrode is a copper plate. The reference electrode is a 

silver/silver chloride (Ag/AgCl) reference electrode manufactured by Koslow scientific 

testing instruments. It consists of an Ag metal wire coated with AgCl immersed in a saturated 

chloride ion solution such as potassium chloride (KCl), all of which is enclosed in a glass tube.  

 

 

The power supply to drive the electroplating process is a Princeton Applied Research 

Potentiostat/Galvanostat Model 273A. The reference electrode is used as a fixed reference for 

the potentiostat. When the potential of the working electrode is higher than the reduction 

potential of the metal ions (Cu
2+

) in the copper sulphate based electrolyte, the following 

reactions occur at the cathode and anode respectively: 

Reaction occurring at the cathode (sample to be electroplated): 

Reduction: Cu
2+

 + 2e
-
 → Cu  

Figure 6.2.1 – Electroplating cell used in this work 
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Reaction occurring at the anode (copper plate): 

Oxidation: Cu - 2e
-
 → Cu

2+ 

To establish baseline copper electroplating conditions, a planar glass substrate was first 

coated with 15nm Ti/15nm Pt by electron beam evaporation, which acts as a seed layer during 

the electroplating process. The sample was then patterned by photo-lithography to expose a 1 

cm
2
 (1 cm×1 cm) electroplating area. During the electroplating procedure, an external 

constant potential of +0.25V was applied to the working electrode with respect to the 

reference electrode as illustrated in Figure 6.2.2, and the electrolyte was stirred at 100 rpm. 

The reduction potential of copper ions (Cu
2+

) is +0.34V with respect to the standard hydrogen 

electrode (electrode potential is zero), and is +0.143V with respect to the Ag/AgCl reference 

electrode (electrode potential is +0.197V). Therefore, the applied potential of +0.25V on the 

working electrode is higher than the reduction potential of copper ions (+0.143V), both with 

respect to the Ag/AgCl reference electrode, which makes the reduction reaction occur at the 

cathode and hence copper deposition on the sample. 

 

 

 

Figure 6.2.2 – Illustration of electroplating potential conditions. WE stands for working 

electrode; RE stands for reference electrode; CE stands for counter 

electrode. Copper reduction occurs at working electrode, when 0.25V is 

applied to working electrode with respect to the reference electrode 
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Initially, copper sulphate, sulphuric acid and sodium chloride were included in the electrolyte, 

with relative concentrations shown in Table 6.2.1. For an electroplating time of 120 seconds, 

the root mean square (rms) roughness of the copper surface electroplated in this electrolyte 

was 24.5nm as shown in Figure 6.2.3. 

Solute Conc.  

(g/l) 

Sulphuric Acid 150 

Copper Sulphate 30 

Sodium Chloride 0.1 

 

 

 

 

 

To reduce the surface roughness of the electrodeposited copper film, Thiourea was added to 

the electrolyte, which acts as a brightener to reduce the metal grain size and therefore surface 

roughness [6.7]. Polyethylene glycol (PEG) was also added, which acts as a suppressor, 

which, as will be shown shortly, is the key element to electroplating copper into nanoscale 

features [6.8]. Finally, 3-mercapto-1-propanesulphoic acid (MPS) was included as it is an 

accelerator and catalyst [6.9]. It adheres to copper surfaces and can locally accelerate current 

flow during electroplating. These additives were included in the relative concentrations shown 

in Table 6.2.2 [6.10]. 

Table 6.2.1 – Composition of the initial electrolyte 

Figure 6.2.3 – The rms roughness of copper film electroplated in the electrolyte shown in 

Table 6.2.1 is 24.5nm as determined by a Vecco DI 3600 atomic force 

microscope (AFM). Scan area is 10µm×10µm  
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Solute Conc.  

(g/l) 

Sulphuric Acid 150 

Copper Sulphate 30 

Polyethylene Glycol (PEG) 0.5 

Sodium Chloride 0.1 

Thiourea 0.01 

3-mercapto-1-propanesulphoic acid 

(MPS) 
0.01 

 

 

With the sample electroplating conditions as above, the root mean square (rms) roughness of 

the copper surface electroplated in the electrolyte with additives was reduced to 15.3 nm as 

shown in Figure 6.2.4.  

 

 

 

The influence of the concentration of copper sulphate (CuSO4) and sulphuric acid (H2SO4), 

two of the fundamental chemicals in the electrolyte, on the roughness and sheet resistance of 

the electroplated copper film, which were characterised by AFM and Van der Pauw method 

respectively, were also investigated, as presented in Table 6.2.3. The concentrations of other 

chemicals in the electrolyte were identical to those shown in Table 6.2.2. The potential 

applied on the working electrode was constant at +0.25V. 

Table 6.2.2 – Composition of the electrolyte with additives 

Figure 6.2.4 – The rms roughness of copper film electroplated in the electrolyte with 

additives is 15.3nm as determined by a Vecco DI 3600 atomic force 

microscope (AFM). Scan area is 10µm×10µm  
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H2SO4 

Conc.(g/l) 

CuSO4 

Conc.(g/l) 

3D image of copper film 
Sheet resistance 

of copper film 

(Ω/□) 

150 30 

 

The rms roughness is 22.1nm. 

0.397 

250 30 

 

The rms roughness is 10.7nm. 

0.37 

200 38.66 

 

The rms roughness is 16.5nm. 

0.266 
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50 30 

 

The rms roughness is 111nm. 

0.584 

100 21.34 

 

The rms roughness is 96.7nm. 

0.452 

200 21.34 

 

The rms roughness is 7.41nm. 

0.574 
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100 38.66 

 

The rms roughness is 99.4nm. 

0.282 

 

 

 

As shown in Table 6.2.3, the higher concentration of sulphuric acid contributes to the smaller 

rms roughness of copper film, and the lower sheet resistance of copper film is mainly 

resulting from the higher concentration of copper sulphate, therefore there is a trade-off in 

terms of surface roughness and sheet resistance of the electroplated films. 

 

6.2.1.2 Copper electroplating in nanoscale features 

The copper electroplating techniques described above were applied to a sample with patterned 

nanoscale features, using electrolytes without and with additives in the same concentrations as 

those shown in Tables 6.2.1 and 6.2.2 respectively.  

15nm Ti/15nm Pt was first evaporated on a GaAs substrate to act as the seed layer of 

electroplating process. The sample was then coated in 300 nm thick PMMA and patterned by 

electron beam lithography to form features of 150nm, 250nm and 350nm. Figure 6.2.5 shows 

the PMMA resist profile with the feature size of 150nm.  

Table 6.2.3 – The rms roughness and sheet resistance of copper film electroplated in the 

electrolyte with different concentrations of CuSO4 and H2SO4. The rms 

roughness was determined by a Vecco DI 3600 atomic force microscope 

(AFM). Scan area is 10µm×10µm. The sheet resistance was measured by 

Van der Pauw technique 
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Copper cannot be electroplated into the nanoscale features unless Polyethylene glycol (PEG), 

Thiourea, and 3-mercapto-1-propanesulphonic acid (MPS) were added into the electrolyte, as 

shown in Figure 6.2.6a and Figure 6.2.6b. 

     

 

 

Figure 6.2.7a and Figure 6.2.7b present 150nm and 500nm copper lines respectively, which 

were formed by removing the PMMA resist after electroplating copper into 150nm and 

500nm resist patterns using the electrolyte shown in Table 6.2.2 and with a working electrode 

potential of +0.25V. 

Figure 6.2.5 – PMMA resist profile with the feature size of 150nm ready for copper 

electroplating  

Figure 6.2.6a – Cu electroplating using 

the electrolyte with the additives (PEG, 

Thiourea, MPS) as shown in Table 6.2.2   

Figure 6.2.6b – Cu electroplating using 

the electrolyte with no additives as 

shown in Table 6.2.1 



Chapter 6 Development of silicon compatible HEMT process flow 114 

     

 

 

These experiments show that the additives in the electrolyte play a very important role in 

reducing the roughness of copper film and enabling copper to be electroplated into nanoscale 

features.  

 

6.2.1.3 Discussion 

There are some detailed issues in the experiments and electroplating process worthy of 

discussion: 

Some improvements resulted in the copper electroplating process being more stable and 

repeatable. 

 The electrolyte was used repeatedly in the copper electroplating experiments initially, 

which led, on certain occasions, to no metal film being electrodeposited. This is 

because the pH value of the electrolyte increases after several runs since the hydrogen 

ions are reduced to hydrogen during the copper electroplating procedure. If the 

electrolyte is not acidic, it prevents dissolution of surface oxides on the seed layer, 

which further prevents copper electroplating on the sample. Using fresh electrolyte in 

every copper electroplating run mitigated this effect. 

Figure 6.2.7a – 150nm copper line after 

the removal of PMMA resist  
Figure 6.2.7b – 500nm copper line after 

the removal of PMMA resist  
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 The Ag/AgCl reference electrode was a handmade one initially, which was coarse 

and not stored correctly in a saturated potassium chloride solution. The inner filling 

solution of the Ag/AgCl reference electrode diffused outside the electrode into the 

copper electroplating electrolyte, resulting in the potential of the reference electrode 

not being fixed. As a consequence, the potential of the working electrode was not 

well controlled, which caused unrepeatable results and large grains at the copper 

surface. The original handmade reference electrode was replaced by a commercial 

Ag/AgCl reference electrode manufactured by Koslow scientific testing instruments. 

In addition, the decision was made to stop stirring the electrolyte solution during the 

electroplating procedure to decrease the reaction rate and reduce the grain size of the 

copper film. Figure 6.2.8a and Figure 6.2.8b clearly show that the roughness of the 

electroplated copper film improved significantly after the changes of process details 

described above were implemented.   

                

 

 

 

 

6.2.2 Simple electroplated copper-based T-gate 

The conventional gold-based T-gate fabrication process based on electron beam lithography 

of multiple resist layers followed by Ti/Pt/Au metallisation and lift off has been described in 

Chapter 3. To be silicon compatible, a significant modification to T-gate manufacture is 

Figure 6.2.8a – Before changes of 

process details described above 

were implemented: The diameter of 

an individual grain is up to 245nm  

Figure 6.2.8b – After changes of 

process details described above were 

implemented: The rms roughness of 

the copper film is 4.47nm  
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required. As copper can be electroplated into nanoscale features as shown in Figure 6.2.7, an 

experiment was performed to see if it is possible to fabricate a copper T-gate using a single-

step copper electroplating process.  

The process flow developed in this experiment is shown in Figure 6.2.9. First, a 15 nm Ti/15 

nm Pt seed layer was uniformly deposited on a GaAs substrate by electron beam evaporation. 

The sample was then spin coated with an 80 nm PMMA bilayer (2.5% 2041/2.5% 2010). A 

range of feature sizes from 40 nm to 500 nm were then defined by electron beam lithography. 

Following development in 2:1 IPA: MIBK developer for 30 seconds at 23 °C, the sample was 

electroplated in the electrolyte with additives described in Section 6.2.1.1 and shown in 

Table 6.2.2 for 10 minutes at a constant working electrode potential of +0.25V. Thereafter, 

the sample was placed in warm acetone (50 ℃) to remove unwanted resist.  

 

 

When the electrodeposition initially starts, the gap in the PMMA will be gradually filled with 

copper. After a sufficiently long electroplating time, the thickness of the copper will be 

greater than that of the resist. The copper then starts to grow in three dimensions and forms 

the T-gate head. As shown in Figure 6.2.10a-c, obtained from a single sample electroplated 

using the conditions described above, the specific T-gate “head” geometry depends on the 

starting gate foot as for a given electroplating time, a constant volume of copper will be 

electrodeposited.  

Deposit 
30 nm Ti/Pt plating base 

Spin 
80 nm PMMA bilayer 

 

 

 
E-beam lithography & 

Resist development 

 
10 minutes 

Copper plating 

 Remove resist 

Figure 6.2.9 – Simple electroplated copper T-gate process flow 
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As shown in the image of Figure 6.2.11a and Figure 6.2.11b, the smallest footprint copper 

T-gate structure fabricated using this simple and silicon compatible process is 40 nm.  

     

 

However, the challenge here is how to remove the unwanted seed layer of Ti/Pt underneath 

the copper T-gate head. A dry etch process is not an effective strategy since the copper T-gate 

head would be a mask to protect the unwanted seed layer underneath it. An isotropic wet etch 

process is also an impossible method, since Pt can only be dissolved in aqua regia. The very 

strong acid will remove all the metal including copper. Electrochemical dissolution of Pt was 

considered, but the experiment showed that Cu dissolved prior to Pt, when both Cu and Pt 

were on the anode of the electroplating cell. This is because of the relative reactivity of 

platinum and copper. As a consequence, the copper on the anode is oxidised and dissolved 

into the solution prior to the platinum oxidisation. Figure 6.2.12 shows that the copper film 

had dissolved into the solution with little change to the platinum film, when the sample (with 

Figure 6.2.10a – 500nm 

foot copper T-gate on 

Ti/Pt seed layer 

Figure 6.2.10b – 400nm 

foot copper T-gate on 

Ti/Pt seed layer 

Figure 6.2.10c – 100nm 

foot copper T-gate on 

Ti/Pt seed layer 

Figure 6.2.11a – 40nm resist profile Figure 6.2.11b – 40nm foot copper T-gate 



Chapter 6 Development of silicon compatible HEMT process flow 118 

both Cu film and Pt film on it) was used as the anode during the electrochemical dissolution 

procedure.  

Therefore, it is essential to develop some other process techniques to make this simple 

electroplated copper T-gate integrable into a full HEMT process flow. 

 

 

 

6.2.3 Low damage inductively coupled plasma etching molybdenum 

To mitigate the issue of having a plating base seed layer below the T-gate head as described 

above, the use of a patterned seed layer for selectively copper electroplating has been 

explored.  

To be silicon compatible, the seed layer should be blanket deposited on the whole sample, 

then patterned by dry etching. The nanoscale patterned seed layer would form the T-gate foot, 

which would also be suitable for selectively copper electroplating to form the T-gate head. 

Molybdenum (Mo) was selected as the seed layer metal of choice, due to its high thermal 

stability, good electrical conductivity, high work function and ease of dry etching. In addition, 

molybdenum is also a good metal of choice as a diffusion barrier between copper and 

semiconductors [6.11]. 

Figure 6.2.12 – Cu film dissolved a lot while Pt film unchanged 
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Molybdenum has been used as a gate metal of choice in planar and FinFET CMOS 

fabrication [6.12-6.13], and also in MEMS device realisation [6.14]. In these areas, numerous 

dry etch processes to pattern molybdenum based on a range of gas chemistries including NF3 

[6.15], Cl2 [6.16], Cl2/O2 [6.13], SF6/BCl3/Ar [6.14], and O2/Cl2/Ar [6.17] have been 

described. In III-V MOSFETs, nanoscale gates have been defined by evaporation of 

molybdenum through a gap etched in a SiO2 film [6.18]. To date however, there has been no 

report of dry etching molybdenum with low damage to directly form gates suitable for the 

realisation of III-V compound semiconductor transistors, where etch process induced damage 

can significantly compromise device performance [6.19-6.21] in particular in the access 

regions between the source/drain and gate of the device.  

In this section, a low damage inductively coupled plasma dry etching process for nanoscale 

molybdenum gate lines is described, which is a crucial step in the establishment of a silicon 

compatible copper-based T-gate process.  

To optimise the etching conditions, a 100 nm molybdenum film was deposited by electron 

beam evaporation on a GaAs substrate, which was then spin coated with 250 nm HSQ resist 

and subsequently baked for 2 minutes at 90°C on a hotplate. The substrate was then exposed 

to define gate line patterns in the range 30 to 50 nm, written by 100 keV electron beam 

lithography. Following development and a further 90°C hotplate bake for 2 minutes, HSQ 

features with critical dimensions to 30 nm as shown in Figure 6.2.13, suitable to act as a 

mask to the SF6/C4F8 etch chemistry used in this study, were obtained. The optimisation of the 

SF6/C4F8 ICP etch process was performed in a dual RF source etch system where the coil and 

platen powers can be independently controlled. The sample temperature was maintained at 

20°C by using helium backside cooling [6.22].  
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The parametric investigation consisted of studying the impact of gas ratio, etch chamber 

pressure, coil power and platen power on the etch rate and profile of molybdenum etched 

using the HSQ mask. The HSQ mask should be thick enough to protect the molybdenum 

underneath it, since HSQ is also etched in SF6 chemistries. It is also very important to make 

sure that the HSQ mask will adhere to the molybdenum during the etch process. As will be 

shown below, the profile of the etched molybdenum lines is vital to ensuring that the HSQ 

mask adheres well. An interferometer was used for monitoring the end point of the 

molybdenum etch process. Based on the time taken to fully remove the molybdenum, a 20% 

over-etch time was included for each experiment. 

A SF6 and C4F8 gas mixture was utilised in the ICP etching system. Chemically active fluorine 

species mainly from SF6 etches molybdenum by generating volatile molybdenum fluorides, 

whilst carbon species from C4F8 passivate the etched metal sidewalls to enable high resolution, 

anisotropic etching at low power and DC bias, which is important to minimise any process 

induced damage [6.23-6.24]. The optimisation procedure commenced with a study of the 

impact of gas ratio on both vertical etch rate and etched molybdenum profile. 

Figure 6.2.13 – HSQ feature with critical dimension of 30 nm and thickness of 250 nm 
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As shown in Figure 6.2.14, increasing the concentration of SF6 in the etch gas mixture results 

in an increase in etch rate. At low SF6 concentrations, there is excessive polymer deposition 

on the etched molybdenum, as shown in the micrograph to the left side of Figure 6.2.14 

(SF6/[SF6+C4F8]=0.2). For high SF6 concentrations, the micrograph to the right side of Figure 

6.2.14 (SF6/[SF6+C4F8]=0.625) shows that there is insufficient polymeric deposition to protect 

the etched molybdenum, resulting in a 73° etch profile. The remaining feature height of 68 

nm shows that the HSQ mask has been dislodged prior to completion of the etch process as 

determined by end point detection. From the micrograph in the middle of Figure 6.2.14, a gas 

ratio of SF6/ [SF6+ C4F8] =0.375 produces a near vertical (85°) molybdenum etch profile of 

100 nm height and with 100 nm thick HSQ etch mask in place.  

Figure 6.2.14 – Influence of gas ratio on vertical etching rate of molybdenum with 

chamber pressure 5 mTorr, platen power 2 W, coil power 200 W 
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Having established a suitable gas ratio, an investigation of the impact of chamber pressure on 

molybdenum etch rate was undertaken. As shown in Figure 6.2.15, increasing the chamber 

pressure for the fixed, and previously optimised gas ratio of SF6/C4F8=15 sccm/25 sccm 

increases vertical etch rate for pressures to 10 mTorr, and saturates beyond. This suggests that 

up to 10 mTorr, increasing the chamber pressure results in a longer residence time for etching 

species, while for pressures greater than this, the etch products are not being removed quickly 

enough. Besides, increased pressure results in a reduction of mean free path of active species 

and higher probability of collision among ions in the plasma, which further leads to a lower 

probability of reaction between active fluorides and molybdenum. From the insets of Figure 

6.2.15, for chamber pressures of 5 mTorr and 7.5 mTorr, it is clear that only at the lowest 

chamber pressure is the etch rate and resulting profile such that the HSQ etch mask adheres 

for the time required to fully remove the molybdenum. For 7.5 mTorr chamber pressure, the 

remaining feature with non- vertical profile is 73 nm tall. For 10 mTorr chamber pressure, 

only 48 nm of the originally masked molybdenum film remained. 

Figure 6.2.15 – Influence of chamber pressure on vertical etching rate of molybdenum 

with platen power 2 W, coil power 200 W, SF6/C4F8= 15 sccm/25 sccm 
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The influence of coil power on vertical etch rate and DC bias in the etch chamber is shown in 

Figure 6.2.16. Higher coil power dissociates more of the etch gases and therefore increases 

the density of etching species while the higher ion density and conductivity of the plasma 

reduce the DC bias, which can influence the damage introduced into the semiconductor 

substrate from the etch process. The platen power controls the bias voltage between the 

electrode and the plasma, and thus bombardment energy of the ions. It can be seen from 

Figure 6.2.17 that the vertical etch rate is enhanced as the platen power increases as the 

molybdenum etch mechanism becomes more physical. Figure 6.2.17 also shows a vertical 

etch rate of 4 nm/ min at zero platen power, which indicates the contribution of the purely 

chemical mechanism to the overall etch process. 

 

 

 

Figure 6.2.16 – Influence of coil power on vertical etching rate of molybdenum with platen 

power 2 W, chamber pressure 5 mTorr, SF6/C4F8= 15 sccm/25 sccm 
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A key requirement of any metal gate etch process for high mobility III-V transistor realisation 

is that it does not introduce damage into the underlying semiconductor material. The source of 

damage is from bombardment by high energy ions and the presence of reactive species in the 

plasma [6.19]. To determine the degree of plasma etch induced damage, Van der Pauw 

structures formed from the HEMT structure shown in Figure 6.2.18 where the In0.53Ga0.47As 

cap layer has been removed by selective wet etching [6.25] were exposed for 60 seconds to 

the etch process with SF6:C4F8=15 sccm:25 sccm, coil power of 200 W, chamber pressure of 

5 mTorr and platen powers in the range 0 - 8 W. 60 seconds was chosen as this was the 

typical 20% over-etch time determined from the vertical etch rate studies, and therefore 

representative of the duration of plasma exposure that the semiconductor would experience. 

Before plasma exposure, the room temperature sheet resistance, channel mobility and electron 

concentration of the 2DEG InP HEMT structure were 330 Ω/□, 10,000 cm
2
/ V·s and 

1.87 10
12

 cm
-2

 respectively. 

Figure 6.2.17 – Influence of platen power on vertical etching rate of molybdenum with 

chamber pressure 5 mTorr, coil power 200 W, SF6/C4F8= 15 sccm/25 sccm 
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Figure 6.2.19 shows the dependence of sheet resistance, channel electron concentration and 

mobility as a function of exposure of the Van der Pauw structures to the etching processes. 

For platen power of up to 2 W, there is an 8% increase in sheet resistance, primarily arising 

from a reduction in channel electron concentration, which may be due to a modification of the 

surface potential of the In0.52Al0.48As barrier layer as a consequence of the surface exposure to 

Figure 6.2.18 – 2DEG InP based HEMT layer structure 

Figure 6.2.19 – Dependence of sheet resistance, channel electron concentration and 

mobility as a function of exposure of the Van der Pauw structures to 

the etching processes before and after ICP etching 
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the plasma etch. However, there is no observable mobility degradation. The impact of plasma 

dry etch process on electron mobility and concentration in the channel may extend into the 

gate region, however as this is protected by molybdenum gate line, it is unlikely to be a 

significant issue. 

After considering all factors including a practical vertical etch rate for efficient tool utilisation, 

the optimised conditions for low damage inductively coupled plasma etching of molybdenum 

with nanoscale critical dimensions are shown in Table 6.2.4. The etch rate selectivity of 

molybdenum and HSQ mask is 1:1.5.  

Minimum Mo linewidth 30 nm 

Vertical etch rate 13.7 nm/ min 

Average bias voltage 25.5 V 

Gas ratio SF6:C4F8=15 sccm:25 sccm 

Platen power 2 W 

Coil power 200 W 

Chamber pressure 5 mTorr 

Selective ratio Mo: HSQ 1:1.5 

 

 

The HSQ etch mask was then removed by 1.82% diluted HF solution treatment. Figure 

6.2.20a-f show the molybdenum gate lines of vertical profile with nanoscale feature sizes of 

50nm, 40nm and 30nm before and after HSQ removal.  

Table 6.2.4 – Optimised conditions of ICP etch process to define molybdenum nanoscale 

lines  
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Figure 6.2.20a – 50nm Mo gate 

line before HSQ removal 

Figure 6.2.20b – 50nm Mo gate 

line after HSQ removal 

Figure 6.2.20c – 40nm Mo gate 

line before HSQ removal 

Figure 6.2.20d – 40nm Mo gate 

line after HSQ removal 
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The molybdenum gate lines patterned by the low damage inductively coupled plasma 

SF6/C4F8 etching, with the highest resolution of 30nm critical dimension, are suitable for 

copper-based T-gate fabrication, which will be introduced in the Section 6.2.4. 

 

6.2.4 Silicon compatible copper-based T-gate 

In Section 6.2.2, the copper T-gate including T-gate foot and T-gate head fabricated by a 

single step copper electroplating process was presented. Whilst an encouraging development, 

the process described in Section 6.2.2 cannot be obviously integrated in a full HEMT process 

flow due to having a metal seed layer covering the whole wafer which would be challenging 

to fully remove particularly in the region underneath the T-gate head. To overcome this 

limitation, a low damage inductively coupled plasma etching process to define molybdenum 

features with critical dimensions of 30 nm has been developed, which is described in Section 

6.2.3. The patterned molybdenum lines would be the seed layer for the subsequent selective 

copper electroplating to form the T-gate head, with the molybdenum lines act as the T-gate 

foot. The main challenge at this stage is how to combine these two separate processes to 

Figure 6.2.20f – 30nm Mo gate line 

after HSQ removal 
Figure 6.2.20e – 30nm Mo gate line 

before HSQ removal 
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fabricate a copper-based T-gate, and in a way that the combined process can be incorporated 

into a full process flow for HEMT realisation.  

In this section, the fabrication of copper-based T-gates using inductively coupled plasma 

etching of molybdenum and copper electroplating is introduced. The full process details are 

summarised in Figure 6.2.21.  

 

 

 

Firstly 100 nm molybdenum was blanket deposited on the whole sample by electron beam 

evaporation. The sample was then spin coated with 250 nm HSQ and patterned as illustrated 

in Figure 6.2.22 by 100 keV electron beam lithography and subsequently developed to define 

the molybdenum etch mask.  

Figure 6.2.21 – Complete process flow of T-gate fabrication, including low damage 

inductively coupled plasma etched molybdenum gate foot & copper 

electroplated gate head 
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The optimised low damage inductively coupled plasma etch process described in Section 

6.2.3 was then implemented to transfer the pattern from the HSQ to the molybdenum. As 

shown in Figure 6.2.22, the molybdenum pattern includes the 50 nm gate foot lines (grey 

area in the pattern) and micron-scale “interconnect” structures (blue area in the pattern) 

joining each of the gate foot features. This can be thought of as a uniform plating base with 

areas removed, but because the molybdenum pattern is electrically continuous, all exposed 

areas of molybdenum will plate with copper. To enable selective electroplating of only the 

gate foot features, the interconnect structures have to be masked in some way.  Then 

following copper electroplating, the interconnect structures can be selectively removed using 

the low damage etch process described in Section 6.2.3, leaving the electrically isolated 

electroplated copper T-gate features.  The process flow is shown schematically in Figure 

6.2.23. 

Figure 6.2.22 – Illustration of the pattern of molybdenum gate foot lines and 

molybdenum micron-scale interconnections 
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A PMMA etch back process was used to enable the selective electroplating [6.26]. 600 nm 12% 

PMMA 2010 resist was spun on the sample covering the molybdenum patterns. The thickness 

of PMMA is different when it spun on nanoscale metal lines and metal pads with micron-

scale features, as illustrated in Figure 6.2.24. As a result, the thickness of PMMA on the top 

of micron-scale molybdenum interconnections is larger than that on the 50 nm molybdenum 

gate foot lines.  

 

 

 

Figure 6.2.23 – The cross sectional view of the formation of a copper-based T-gate with 

a molybdenum “foot” and an electroplated copper “head” 

Figure 6.2.24 – Illustration of the situation of 600 nm PMMA spinning on molybdenum 

gate foot lines and molybdenum micron-scale interconnections, both of 

which are 100 nm high 
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When appropriate etch-back conditions are applied to remove PMMA on the sample, the 

situation can be achieved that the top of 50 nm molybdenum gate foot lines are exposed 

whilst the top of micron-scale molybdenum interconnections are still covered by PMMA, 

which acts as a mask in the subsequent copper electroplating process to prevent the micron-

scale molybdenum interconnections from being electroplated. The PMMA etch-back is an 

oxygen-based reactive ion etching (RIE) process [6.26]. The etching time is determined by 

the thickness of PMMA resist left on the sample, which is monitored by an interferometer 

during the RIE process.  

When the thickness of PMMA resist left on the sample is 70nm, in other words 530nm of 

PMMA resist has been etched off during the RIE etch back process, the top of the 50 nm 

molybdenum gate foot lines will be exposed whilst the top of the micron-scale molybdenum 

interconnections will not be exposed, as shown schematically in Figure 6.2.25 and in a 

sample in Figure 6.2.26. 

 

 

 

 

 

Figure 6.2.25 – Illustration of the PMMA etch-back process. 530 nm PMMA is etched 

off during the process and 70 nm PMMA is left on the sample, which 

exposes the top of molybdenum gate lines whilst the top of molybdenum 

interconnects are still covered by PMMA 
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Figure 6.2.27 presents a top view of a selective electroplated sample after the copper 

electroplating process, which clearly shows that the molybdenum gate foot lines were 

electroplated whilst the molybdenum interconnects were covered by the PMMA resist and not 

electroplated. 

 

 

 

Figure 6.2.26 – 50 nm molybdenum gate foot lines exposed after PMMA resist etch-back 

process under appropriate conditions 

Figure 6.2.27 – Optical microscopy image of an electroplated sample. The molybdenum 

gate foot lines were electroplated by copper whilst the molybdenum 

interconnects were covered by PMMA 
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In the copper electroplating process step, the composition of the electrolyte is shown in Table 

6.2.5.  

Solute Conc.  

(g/l) 

Sulphuric Acid 200 

Copper Sulphate 38.66 

Polyethylene Glycol (PEG) 0.5 

Sodium Chloride 0.1 

Thiourea 0.01 

3-mercapto-1-propanesulphoic acid 

(MPS) 
0.01 

 

 

The concentration of copper sulphate (38.66 g/L) and sulphuric acid (200 g/L) chosen 

balances the small roughness and low sheet resistance of the copper film, based on the 

experimental results presented in Table 6.2.3 mentioned in Section 6.2.1.1.  

For an electroplating time of 600 seconds, a T-gate with 50 nm molybdenum gate foot and 2.5 

µm copper gate head using the process described above was achieved, as presented in Figure 

6.2.28. The approach is fully silicon compatible, and most importantly, can be integrated with 

a full HEMT process flow.  

 

 

 

Figure 6.2.28 – Completed T-gate with 50 nm molybdenum gate foot and 

2.5 µm copper gate head  

Table 6.2.5 – Composition of the electrolyte for copper electroplating process for silicon 

compatible copper T-gate fabrication  
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The electrical performance of the T-gate fabricated using the process described above was 

then investigated.  

The DC resistance of the copper-based T-gate was measured by using four-point probe 

method and the test structure is shown in Figure 6.2.29. The current applied on the T-gate 

was swept from 10 mA to 30 mA and two Kelvin probes were placed on the two terminals of 

the T-gate test structure to monitor the resulting voltage drop. 

 

 

Figure 6.2.30 shows the normalised DC resistance of a T-gate comprising 60 nm 

molybdenum gate foot and 1.2 µm copper gate head produced by reducing the electroplating 

time to 300 seconds.  

Figure 6.2.29 – The test structure of T-gate DC resistance measurement 
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At lower current levels, the normalised DC resistance of the T-gate is 42 Ω/mm. Higher 

resistance can be seen at the larger currents due to current crowding effects [6.27].  

To validate the resistance of the Cu T-gate, consider a 1 mm wide structure with 60 nm 

molybdenum gate foot and 1.2 µm copper gate head. This can be regarded as two resistors 

one representing the molybdenum gate foot and the other the copper gate head, in parallel. 

The resistances of the molybdenum foot and copper head can be calculated based on the 

respective textbook resistivities of these materials. As a result, the theoretical value of the 

resistance of the T-gate with the geometry described above is 30 Ω. The reason that the 

experimentally obtained value is higher than that determined theoretically may be due to the 

fact that the copper head formed by the electroplating process is not uniform and has a porous 

structure, which increases its resistance. The porous structure may result from a non-

optimised rate of growth of the electroplated copper, which can be addressed in future by 

adjusting the composition of the electrolyte and electroplating conditions. 

 

 

  

Figure 6.2.30 – Normalised I-V curve from a T-gate comprising 60 nm molybdenum 

gate foot and 1.2 µm copper gate head  
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6.3 Non-annealed ohmic contacts and material design 

To incorporate the silicon compatible copper-based T-gate described in Section 6.2 into a full 

HEMT fabrication flow, a “gate-first” approach is required to allow the array of 

interconnected molybdenum gate foot structures to be realised on a planar substrate, thereby 

overcoming any issues with unwanted connections to previously defined source and drain 

contacts. This constrains the overall process flow as a Schottky gate will not withstand the 

anneal step usually required for low resistance ohmic contact formation, and therefore a 

method to form low resistance, non-annealed source and drain contacts such as that described 

in [6.28] is required. 

As described in Section 2.1.1, a typical HEMT layer structure consists of a highly doped cap 

layer for low resistance ohmic contacts formation, and a barrier layer which contains a single 

layer of delta doping, followed by a thin spacer layer to separate donors from the channel. In 

standard ohmic contact fabrication, an annealing process is implemented after the 

metallisation to diffuse the contact metal into the semiconductor material, which minimises 

the height of the potential barriers formed at the interfaces between the various materials in 

the overall heterostructure. If there is no annealing process, there will be no metal diffusion 

and therefore the magnitude of the potential barriers will be determined by the electron 

affinities of the various materials.  

To reduce the magnitude of the potential barriers from the source/drain to the channel, an 

additional delta doping is introduced into the layers structure [6.28]. 

The key issue here is to ensure that the double delta doping in the barrier layer are of suitable 

concentrations and at the appropriate positions, which provides low potential barriers from the 

ohmic contacts to the channel whilst there is no parallel conduction channel in the recessed 

region underneath the gate.  

To find suitable concentrations and positions of the delta doping planes, a 

Poisson/Schroedinger solver [6.29] was utilised to simulate conduction band profiles and 
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carrier concentration distributions for various doping plane concentrations and positions 

within the overall device layer structure. An optimal double delta doping layer structure for an 

InP-based HEMT was finally achieved, as shown in Figure 6.3.1. 

 

 

In this optimal layer structure, there is no significant potential barrier to carrier transport from 

ohmic contacts to the channel, and at the same time no parallel conduction channel occurring 

in the recessed region where the cap layer is removed, as shown in Figure 6.3.2 and Figure 

6.3.3, which demonstrate the conduction band profile (blue) and carrier concentration 

distribution (red) through the cap/barrier/spacer/channel layers in the cases of capped and cap 

removed situations respectively.  

Figure 6.3.1 – Double delta doping layers structure of InP HEMT 
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Figure 6.3.2 – Conduction band profile (blue) and carrier concentration distribution 

(red) in capped double delta doped InP HEMT  

Figure 6.3.3 – Conduction band profile (blue) and carrier concentration distribution (red) 

in double delta doped InP HEMT without cap layer 
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The material with layer structure shown in Figure 6.3.1 was grown by molecular beam 

epitaxy (MBE) in Glasgow. To establish the properties of the non-annealed ohmic contacts 

and determine the channel transport properties, TLM and Van der Pauw test structures were 

realised on the material. The ohmic contacts were formed from 100 nm electron beam 

evaporated Au which without an annealing process, yielded a contact resistance of 0.211 

Ω.mm. The contact resistance might be further reduced by using Au/Ge/Ni metallisation as 

the ohmic metal [6.30]. 

In addition, Van der Pauw characterisation of this structure yielded the sheet resistance, 

mobility and carrier concentration with and without the cap layer as shown in Table 6.3.1. 

 Capped Cap removed 

Sheet Resistance (/) 98 148 

Mobility (cm
2
 / Vs) 4674 6007 

Carrier Concentration (cm
-2

) 1.356 x 10
13

 7.021 x 10
12

 

 

 

The value of carrier mobility is lower than that of typical single delta doped InP HEMT 

material which commonly has a carrier mobility around 10000 cm
2
/Vs when cap layer 

removed [6.31]. It may be due to the thinner spacer layer of 3 nm in the designed structure 

mentioned above than a typical value, as well as the peak carrier concentration occurring very 

close to the channel-spacer interface as shown in Figure 6.3.3. Therefore, the carriers in the 

channel may suffer greater ionised impurity scattering and hence lower mobility.  

 

 

  

Table 6.3.1 – VDP measurements of double delta doped InP HEMT structure shown in 

Figure 6.3.1  
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6.4 Gate-first process flow for HEMT realisation 

The gate-first process flow for HEMT realisation including silicon compatible copper-based 

T-gate process and non-annealing ohmic contact formation is presented in Figure 6.4.1. 

 

 

The process starts with markers definition and mesa isolation, which are similar to the 

standard HEMT fabrication process described in Section 3.4. However, the subsequent 

process steps are different.  

A recess etch step prior to the gate formation is required in this process flow, since the gate 

formation is different from the standard T-gate fabrication approach. In standard T-gate 

fabrication, a T-gate resist profile is defined first for the subsequent metallisation and lift off. 

The recess etch step is performed prior to the metallisation and after the T-gate resist profile 

Figure 6.4.1 – Gate first process flow for HEMT fabrication 
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definition, since the gate length has been defined in the T-gate profile formation step. In 

silicon compatible copper-based T-gate formation, as described in Section 6.2, the gate foot is 

defined by dry etching molybdenum using patterned HSQ as a mask, instead of lifting off 

gold-based metallisation. Therefore, in the gate-first process, the recess etch step needs to be 

implemented before the gate formation. In addition, a double recess etch is required to remove 

the cap layer and also part of the barrier layer, since there is an additional delta doping plane 

in the barrier and close to the cap layer. As a result, both succinic acid etch and 

orthophosphoric acid etch are used in the double recess etch, as illustrated in Figure 6.4.2.  

 

 

As shown in Figure 6.4.2, a layer of PMMA resist is spun on the sample and patterned by 

electron beam lithography to form the gate foot trench, in which the double recess etch will be 

implemented subsequently. A succinic acid etch is firstly used to remove the cap layer and 

followed by a non-selective orthophosphoric acid etch to remove the additional doping layer 

in the barrier to minimise the gate leakage current, finally a second succinic acid etch is used 

to enlarge the cap layer etch ensuring gate metal not contacting with the conductive cap layer 

[6.28]. 

Figure 6.4.2 – Illustration of double recess etch 
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After the double recess etch, the copper-based T-gate can be fabricated using the silicon 

compatible process presented in Figure 6.2.21 described in Section 6.2, as illustrated in 

Figure 6.4.3. 

 

 

 

An alignment is required between these two steps to ensure gate foot locating in the middle of 

the recess region. This approach, using the Penrose marker strategy [6.32] has previously 

been successfully implemented in HEMT realisation. 

In non-annealed ohmic contact formation, electron beam lithography and metallisation are 

needed similar to the standard process, but without annealing. Bondpad fabrication is similar 

to the standard approach. The complete gate-first process flow for HEMT realisation is 

detailed in Appendix I. Due to time constraints, the fabrication of this final device was not 

completed. However, this proposed solution for the realisation of a silicon compatible Cu-

based T-gate HEMT device is promising for future work mentioned in Chapter 8. 

 

  

Figure 6.4.3 – Illustration of molybdenum gate foot and copper gate head formation in 

recess region formed by double recess etch 
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6.5 Summary 

In this chapter, a copper electroplating process and the development of low damage 

inductively coupled plasma etching nanoscale molybdenum with the smallest feature of 30 

nm are described, which are fundamental to the realisation of a silicon compatible copper-

based T-gate comprising a 50 nm molybdenum gate foot and a 2.5 µm copper gate head, 

which is also described. In addition, the design of a double delta doped InP HEMT layer 

structure for non-annealing ohmic contact formation as required for the copper-based T-gate 

process integration was presented, and shown to produce ohmic contacts with acceptable 

levels of performance. Further, a gate-first process flow for HEMT realisation incorporating 

the copper-based T-gate is presented. 

In summary, in this chapter, a viable route to the realisation of III-V HEMTs using a silicon 

compatible T-gate module has been proposed and all key enabling modules validated. 
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7.1 Introduction 

Following the achievement of the copper-based T-gate fabricated by silicon compatible 

processes described in Chapter 6, a sample of gold-based T-gate HEMTs was realised by the 

conventional fabrication process flow to establish a baseline to compare the conventional 

gold-based T-gates with those fabricated by a copper-based silicon compatible process. 

This chapter mainly describes utilising the standard fabrication process outlined in Chapter 3 

to realise functional gold-based T-gate HEMT with gate length of 60 nm. In addition, the 

comparison between the gold-based T-gate and the copper-based T-gate, specifically in 

relation to process technologies and electrical performance, is also presented in this chapter. 
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7.2 Fabrication of 60 nm Au-based T-gate HEMT 

The complete process flow for fabricating 60nm Au-based T-gate HEMTs includes mesa 

isolation, ohmic contact fabrication, T-gate realisation in a gate recess and bondpad formation. 

In the devices described in this chapter, mesa and ohmic contacts were realised by the 

University of Manchester by photolithography as part of a collaboration to evaluate the 

performance of their micron-scale critical dimension device flow with sub-100 nm T-gates 

produced in Glasgow, so there was a requirement to establish registration strategies to allow 

successful alignment of the electron beam written T-gates to previously photolithographically 

defined source and drain contacts. Manchester also provided the epitaxial material from 

which the HEMTs were realised, a schematic of which is shown in Figure 7.2.1. The cap 

layer is 20nm In0.53Ga0.47As silicon doped at 2×10
19

 cm
-3

; the undoped barrier layer is 15nm 

In0.52Al0.48As; below which is placed a silicon delta-doping layer. A 10 nm spacer layer of 

undoped In0.52Al0.48As separates the delta doping layer from the 14nm undoped In0.7Ga0.3As 

channel. An additional delta-doping plane is introduced into the In0.52Al0.48As back barrier 10 

nm below the device channel.  

 

 

 

The mesa was etched by orthophosphoric acid/hydrogen peroxide mixture with a 

concentration ratio of 3:1:50 H3PO4 : H2O2 : H2O, and a mesa height of 150 nm was achieved. 

Figure 7.2.1 - HEMT structure material 
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The source-drain contacts were separated by 2 µm. A 150 nm thick AuGe/Au metallisation 

was used, and using TLM test structures, yielded a contact resistance of 0.053 Ω.mm, as 

characterised by the University of Manchester, with the cap layer in place between the ohmic 

contacts.m×m registration markers were defined at the same time as the ohmic 

contacts. 

The standard fabrication method of T-gate realisation in HEMTs includes the formation of a 

suitable resist profile using a combination of resists of different sensitivities and an 

appropriate electron beam writing strategy, a wet chemical gate recess etch in which both the 

etch depth and the length of the recess compared to the gate foot is controlled, and gate 

metallisation by a lift off process.  

The first step in this process flow is to define a T-gate profile of appropriate dimensions in 

resist. Electron beam lithography is used to define T-gates with nanoscale critical dimensions. 

The standard process technology involves using several layers of resists with different 

sensitivities in a single step electron beam lithography, as discussed in Chapter 3. As the sub-

100 nm single step electron beam lithography process had not been run in Glasgow for a 

number of years, there was a need to re-establish it on the Vistec VB6 electron beam tool, and 

to determine the resolution limits of the process on this machine. A previously developed T-

gate process based on UVIII and PMMA resists separated by a thin layer of LOR was 

explored [7.1]. In this process, a 70 nm 2.5% PMMA 2041 is first spun on the sample at 3500 

rpm for 60 seconds, and subsequently baked at 180℃ in an oven for 120 minutes.  It is in this 

layer of resist that the gate foot will ultimately be defined.  A 40 nm layer of LOR is then 

spun at 5000 rpm for 60 seconds, and the sample baked at 180℃ in an oven for 15 minutes. 

This layer prevents the subsequent UVIII layer from intermixing with the PMMA. Finally, a 

300 nm UVIII layer is spun on the sample at 3500 rpm for 60 seconds and baked at 120℃ on 

a hotplate for 60 seconds. This resist stack was chosen as it had previously enabled the lift off 

of 200 nm thick T-gates with footprint size of 50 nm in a Leica Cambridge EPBG5 electron 
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beam tool [7.1].  The challenge was to transfer this process to the Vistec VB6 electron beam 

lithography tool.   

The writing strategy for T-gate definition involves writing a high dose “central” line which 

exposes each of the resist layers – this ultimately defines the gate foot.  To increase the size of 

the gate head, two features are defined either side of the central line with a dose which is 

sufficient to expose the higher sensitivity UVIII, but not the PMMA. Identifying the 

appropriate doses and feature sizes for the gate foot and head exposures was the first aspect to 

be performed in establishing the T-gate process.  

The pattern designed for writing T-gates by electron beam lithography is shown in Figure 

7.2.2, including a narrow central line for gate foot definition and a large area for gate head 

exposure. The feature size of the gate foot is usually designed smaller than the desired gate 

length, since this central line is written by a high dose electron beam through a thick resist 

stack, and so the transferred pattern will be larger than designed.     

 

 

A dose-test experiment was implemented to determine the best values of exposure for both 

foot and head layers. This experiment was conducted on an unpatterned, planar GaAs 

substrate with the first layer resist of PMMA spinning at the speed of 3500 rpm. Dose values 

of the foot ranged from 750 µC/cm
2
 to 4000 µC/cm

2
 with dose values of the head from 67 

µC/cm
2
 to 250 µC/cm

2
. The test results are summarised in Table 7.2.1. 

Figure 7.2.2 – Design pattern for T-gate exposure 
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SEM 

Foot 

dose 

(µC/cm
2) 

Head 

dose 

(µC/cm
2) 

Foot 

feature 

(nm) 

Head 

feature 

(nm) 

 

 

787 70 
Not 

exposed 

Not 

completely 

exposed 

 

 

866 75 
Not 

exposed 

Not 

completely 

exposed 

 

 

1270 101 
Not 

completely 

exposed 

Not 

completely 

exposed 



Chapter 7 60 nm Au-based T-gate HEMT 154 

 

1397 109 
Not 

completely 

exposed 

270 

 

 

1465 113 
Not 

completely 

exposed 

290 

 

 

1691 127 60 365 

 

 

3303 215 118 383 
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4000 250 140 408 

 

 

From Table 7.2.1, it can be seen that a suitable T-gate resist profile is obtained for the dose 

values of 1691 µC/cm
2
 and 127 µC/cm

2
 for the foot and head layers respectively, which are 

the dose values applied into the electron beam lithography writing strategy in this work. 

When dose values are smaller than that, the gate foot is not completely exposed. When larger 

dose values are used, the feature size of the gate foot increases resulting from over exposing 

the resist.  

This optimised writing strategy was then applied to HEMT devices with 150nm thick ohmic 

contacts as mentioned above. The topography introduced by the ohmic contacts results in an 

increase in resist thickness in the 2 µm gap between the source and drain contacts. To mitigate 

this, the spin speed when coating the sample with PMMA was modified. An experiment was 

conducted with various spin speeds of PMMA on samples with 150 nm ohmic contacts and 

using the optimal exposure conditions established on the planar substrate as mentioned above. 

At a PMMA spin speed of 3700 rpm, the foot was underexposed as showed in Figure 7.2.3 

(a). However, increasing the PMMA spin speed to 3900 rpm, resulted in correct exposure, as 

showed in Figure 7.2.3 (b).  

Table 7.2.1 – T-gate dose-test results 
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As highlighted in Chapter 3, after gate lithography, and prior to gate metallisation, a recess 

etch step is used to remove the cap layer in the gate region. In the case of the InP based 

HEMT material utilised in this work, a succinic acid/hydrogen peroxide chemistry with 

controlled pH was used as it selectively etches the InGaAs cap layer, while terminating on the 

InAlAs barrier layer [7.2]. Therefore, the vertical etch reaction will terminate on removal of 

the 20nm InGaAs cap layer, though the etching reaction will still continue laterally. It is 

critically important to control the lateral etching size, as it impacts the access resistance and 

thereby the transconductance of the device.  

Following the recess etching and prior to the gate metallisation, a 30s rinse in dilute 

hydrochloric acid with a concentration of 1:4 HCl: H2O followed by another 30s DI water 

rinse de-oxidation treatment was used to remove any surface oxide layers that may have 

formed on the InAlAs barrier layer following the gate recess etch process. This de-oxidation 

step was included to improve the performance of the Schottky gate contacts. The gate metal 

was a stack of 15 nm Ti, 15 nm Pt and 160 nm Au, deposited by electron beam evaporation, 

and lifted off in warm acetone. As shown in Figure 7.2.4, a 60nm footprint Au-based T-gate 

with a 130nm laterally etched recess was realised, in source-drain gaps, as required for device 

realisation.  

         a) – 3700 rpm PMMA    b) – 3900 rpm PMMA 

Figure 7.2.3 – T-gate resist profiles in a 2 µm source-drain gap for PMMA spinning 

speeds of 3700 rpm and 3900 rpm 
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In the full HEMT device flow, after the optimised 60 nm T-gate had been formed, coplanar 

waveguide (CPW) bondpads in a ground-signal-ground configuration with signal width of 54 

µm and signal to ground separation of 29.25 µm designed by the University of Manchester, 

were defined by e-beam lithography. Simulation predicts that these geometries will result in a 

characteristic impedance of 47.26 Ω, which is somewhat mismatched to the RF measurement 

system used for the device evaluation. The bondpad metallisation, defined by electron beam 

evaporation and lift off, comprised 50nm NiCr for good adhesion and 1200nm Au to reduce 

RF losses.  

A top view of a completed 60 nm Au-based T-gate InP HEMT and detail of the gate-gate feed 

region are shown in Figure 7.2.5. Full details of the device process flow are presented in 

Appendix II. 

Figure 7.2.4 – SEM cross-sectional view of a 60nm T-gate with gate recess of 130nm 

lateral width and 20nm vertical depth 
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Figure 7.2.5 – SEM top view of a 60nm Au-based T-gate InP HEMT and detail of gate-gate 

feed region 
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7.3 DC and RF characterisation of the device 

The normalised DC output characteristics for a 2×15µm device, which has two gate fingers 

with the device width of 15 µm, is shown in Figure 7.3.1.  

 

 

In this figure, the drain voltage is swept from 0 to 1 V in steps of 200 mV, and the gate 

voltage from -1.7V to  +0.1V in steps of 0.2V. Beyond 1 V drain bias, the device began to 

breakdown. The drain current achieved is around 800 mA/mm.  

The transfer characteristics are presented in Figure 7.3.2. The voltage applied on the gate is 

swept from -2.1V to 0V, while the drain voltage is varied from 0V to 1.0V in steps of 0.2V.  

Figure 7.3.1 – Normalised output Ids-Vds characterisation from a 60nm Au-based T-gate 

InP HEMT 
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The transconductance plots for a range of drain voltages are shown in Figure 7.3.3. The 

maximum transconductance is 650 mS/mm at gate and drain voltages of -1.0V and 1.0V 

Figure 7.3.2 – Normalised transfer Ids-Vgs characterisation from a 60nm 

Au-based T-gate InP HEMT 

Figure 7.3.3 – Normalised transconductance gm-Vgs characterisation from 

a 60nm Au-based T-gate InP HEMT 
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respectively. The transconductance could be increased by reducing the gate-2DEG separation, 

which around 30nm in the material utilised in this work (the 2DEG plane is usually formed 

around 5nm below the interface between the spacer layer and channel). 

Determining the bias conditions for peak transconductance is important as it is usually at 

around these that a HEMT will display the highest values of fT and fmax which are determined 

from on-wafer frequency dependent S-parameter measurement. As described in Chapter 4, 

the RF measurement system was calibrated using the SOLT technique to place the reference 

planes for the on-wafer measurement at the wafer probe tips.  S-parameters were obtained in 

the frequency range 10 MHz to 67 GHz at the bias condition for peak transconductance. 

The equivalent circuit model described in Chapter 2 was constructed in Agilent Advanced 

Design System (ADS) software to represent the HEMT, and by fitting the measured S-

parameters to those from the equivalent circuit model, the intrinsic and extrinsic circuit 

elements of the device can be established.   

In Figure 7.3.4, simulated and measured S-parameters are presented. S11 & S22 are displayed 

in Smith charts and S12 & S21 are displayed by magnitude and phase in linear plots separately. 

The measured S-parameters (blue) are compared with those generated by simulating the 

equivalent circuit model in ADS (red). Good agreement is found between the experimental 

and simulated S-parameters in S11, S22, S12 and the phase of S21. It was not possible to 

accurately fit the magnitude of S21, which might result from the mismatch between the 

characteristic impedance of the bondpad and that of the RF measurement system. However 

within range of the frequency below 10 GHz or above 60 GHz, the measured S21 matches 

with the modelled S21 in magnitude.  
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Figure 7.3.4a – Smith plot of S11 Figure 7.3.4b – Smith plot of S22 

Figure 7.3.4c – S12 magnitude Figure 7.3.4d – S12 phase 

Figure 7.3.4e – S21 magnitude Figure 7.3.4f – S21 phase 

Figure 7.3.4 – Measured (blue) and simulated (red) S-parameters 
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The de-embedded equivalent circuit elements determined from the simulation model are 

presented in Figure 7.3.5. 

 

 

The cutoff frequency, fT, defined as the frequency at which short circuit current gain falls to 

unity, was extracted by extrapolating the H21 parameter to its intercept with the frequency axis. 

The maximum frequency of oscillation, fmax, is defined as the frequency at which the 

maximum available gain falls into unity, and can be extracted in similar way. As shown in 

Figure 7.3.6 and Figure 7.3.7, 183GHz and 156GHz for fT and fmax respectively for 2×15µm 

device were extracted from H21 and maximum available gain, which were generated by the 

de-embedded equivalent circuit model. 

Figure 7.3.5 – Equivalent circuit elements for a 2×15µm device 



Chapter 7 60 nm Au-based T-gate HEMT 164 

 

 

 

 

 

 

  

Figure 7.3.6 – H21 plot for 2×15µm device 

Figure 7.3.7 –Maximum available gain (MAG) plot for 2×15µm device 
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7.4 Discussion 

From Figure 7.3.5, the total gate capacitance Cg combining Cgs and Cgd is 22.9 fF in total. 

According to Eqn 2.5.6, however, the calculated gate capacitance Cg is 6 fF. The increase 

gate capacitance might result from the fact that the effective gate length is larger than the 

physical gate length (60 nm footprint) used in the calculation using Eqn 2.5.6. As described 

previously, the gate is formed on the barrier layer in the recess region which is larger than the 

gate footprint. Therefore, the barrier layer is exposed on both sides of the gate and surface 

states will be present on this exposed surface. The surface states cause charge trapped in the 

regions adjacent to the gate, which can be modulated by the fringing fields of the gate and 

causes the extension of the gate region. The variable charge present at the surface will 

influence the channel carrier concentration, resulting in an increased effective gate length 

[7.3]. The increased gate capacitance may also result from the capacitance from the head of 

the T-gate to the channel. 

The intrinsic transconductance is 30.1 mS from Figure 7.3.5. According to Eqn 2.4.4, the 

electron velocity in the channel can be derived and is 3.1×10
7
 cm/s, which is the typical value 

for an In0.7Ga0.3As HEMT verified by [7.4]. This suggests velocity overshoot is occurring in 

the device channel. 

The extrinsic transconductance can be extracted based on Eqn 2.4.6 and 13.9 Ω source 

resistance from Figure 7.3.5. The calculated normalised extrinsic transconductance is 700 

mS/mm, which is larger than 650 mS/mm determined by DC evaluation as shown in Figure 

7.3.3. The carrier concentration of the channel is 2.4×10
12

 /cm
2
, information supplied by the 

University of Manchester. According to Eqn 2.4.1 and the electron velocity derived above, 

the channel current from source to drain is expected as 1190 mA/mm, and larger than the 

characterised Ids presented in Figure 7.3.1. The reason for the decrease of extrinsic 

transconductance and the source-drain current compared to the expected values might be 

related to the recess region. The ideal size of the recess region on each side of the gate is 



Chapter 7 60 nm Au-based T-gate HEMT 166 

usually half of the gate length, which is 30 nm in this case. However, the actual recess etch 

size is 130 nm in total, i.e. 35 nm on each side of the gate. The wider recess region will lead 

to a larger source resistance, which results in a reduction of the transconductance. In addition, 

it is more possible for larger exposed barrier surface to get damaged. The damage surface 

might impact the carriers in the channel and influence the surface potential, which might 

contribute to the decrease of the source-drain current. 

The source resistance comprises the ohmic contact resistance R1, the resistance in the cap 

region R2, and the resistance in the recess region R3, as shown in Figure 7.4.1.  

 

 

From the data provided by the University of Manchester, the ohmic contact resistance Rc is 

0.053 Ω.mm, and the sheet resistance Rsh is 80 Ω/□. As a consequence, R1 = 1.77 Ω, R2 = 

2.67 Ω. The source resistance is much larger than the sum of R1 and R2, considering the 

values extracted from the RF model. Therefore, the resistance in the recess region may 

contribute significantly to the total source resistance and likely play an important role in 

degrading the device performance. 

In addition, the gate-channel separation (30 nm) is rather large for a 60 nm gate device (1/5 Lg 

is ideal [7.5]) and there may be parallel conduction in the barrier layer, both of which might 

contribute to the degradation of the device performance. Although the fT of this 60 nm Au-

based T-gate HEMT could be improved, it still provides a reasonable benchmark for 

comparison to a silicon compatible Cu-based T-gate HEMT device.  

 

Figure 7.4.1 – Illustration of source resistance: R1, R2, R3 



Chapter 7 60 nm Au-based T-gate HEMT 167 

7.5 Comparison between conventional Au-based T-gate and silicon 

compatible Cu-based T-gate 

A comparison of the gold-based and copper-based T-gates presented above and in Chapter 6 

taking into consideration both process technologies and electrical performance, is presented in 

this section. 

Firstly in aspect of process technologies, as discussed previously, copper-based T-gate 

fabrication processes can be incorporated into silicon foundries using compatible materials 

and processing approaches. 

In addition, a copper-based T-gate should result in improved HEMT device performance as 

copper has a lower resistivity than gold and gate resistance strongly impacts the maximum 

frequency of oscillation fmax of HEMT. In Section 7.3, a de-embedded equivalent circuit 

model of a 2×15µm HEMT with 60 nm gold-based T-gate has been constructed and the de-

embedded equivalent circuit elements used in this simulation model were extracted. To 

compare with a copper-based T-gate, the gate resistance (Rg) of 8.6 Ω in the model shown in 

Figure 7.3.5 will be replaced by the gate resistance of the copper-based T-gate, which can be 

deduced from normalised DC resistance presented in Section 6.2.4, to observe the change of 

fmax. 

When a HEMT is operated at high frequencies, the gate resistance of the T-gate is one-third 

of the DC gate resistance due to the distributed R-C nature of the structure [7.6]. Therefore, 

the RF gate resistance of the copper T-gate described in Section 6.2.4 in a 2×15µm HEMT 

would be 0.11 Ω. The fmax extracted respectively from the de-embedded equivalent circuit 

models of gold-based T-gate HEMT and copper-based T-gate HEMT are presented in Figure 

7.5.1. 
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As shown in Figure 7.5.1, the fmax extracted from the de-embedded equivalent circuit model 

including the copper-based T-gate is predicted to be 220 GHz, compared to 156 GHz for the 

gold-based T-gate as expected and resulting from the lower resistivity of copper.  

The copper T-gate used in the comparison mentioned above is with the dimensions of 60 nm 

molybdenum foot and 1.2 µm copper head. The micron-scale T-gate head may lead to larger 

parasitic capacitance, which will degrade device performance. In HEMT fabrication, the 

dimensions of the T-gate head can be decreased by reducing the copper electroplating time.  

 

  

Figure 7.5.1 – fmax extracted from the de-embedded equivalent circuit models of gold T-

gate HEMT (blue) and copper T-gate HEMT (red) 
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7.6 Summary 

This chapter has described the optimised fabrication of a 60 nm Au-based T-gate InP HEMT, 

including: 

 Establish acceptable 60 nm T-gate resist profile on planar GaAs substrates using the 

Vistec VB6 electron beam lithography tool by choosing appropriate resist layers and 

running tests of dose values variation in electron beam lithography technology. 

 Transfer the optimised stable process of realising 60 nm T-gate profile from planar 

GaAs substrates to real HEMT material structure with ohmic contacts by modifying 

the spinning speed of the first resist layer. 

 

In addition, DC and RF characterisation of the devices are also included in this chapter. The 

output and transfer characteristics of the device were established from DC characterisation. 

Maximum drain current of 800 mA/mm and peak transconductance of 650 mS/mm are 

obtained. RF measurement of the device was conducted with bias of -1.0V on the gate 

terminal and 1.0V on the drain terminal, the condition of the maximum transconductance. 

Following RF characterisation, an equivalent circuit model was constructed and de-embedded 

equivalent circuit parameters were extracted, yielding a cutoff frequency of 183GHz and 

maximum oscillation frequency of 156GHz.  

Further, in the comparison between the silicon compatible copper-based T-gate introduced in 

Chapter 6 and the gold-based T-gate fabricated by the conventional process presented in this 

chapter, an increase in the fmax of the copper-based T-gate HEMT is predicted.  
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A suitably engineered III-V High Electron Mobility Transistor (HEMT) is the best low noise 

high frequency transistor available and as a result has been utilised in various applications 

such as imaging, sensing and wireless communication [8.1-8.4]. The typical fabrication 

processes for III-V compound semiconductor devices include gold based metallisation and lift 

off process, which are not compatible with mass production silicon based manufacturing, 

which will always be the mainstream approach to low cost, high volume semiconductor 

component production. Therefore, this research work aims to develop silicon compatible 

process for III-V HEMT realisation, without compromising device performance. 

In this thesis, progress towards this objective has been presented and is summarised as 

follows: 

 A silicon compatible process to fabricate Cu-based T-gate of HEMT has been 

developed, including copper electroplating process for T-gate head formation [8.5] 

and low damage inductively coupled plasma molybdenum etching process for T-gate 

foot realisation [8.6]. The normalised DC resistance of a T-gate with 60 nm 

molybdenum foot and 1.2 µm copper head is 42 Ω/mm. Based on an equivalent 

circuit model prediction, it is anticipated that the maximum frequency of oscillation 

fmax of a HEMT with the copper-based T-gate would outperform that of an identical 

device with a gold-based T-gate. In addition, this silicon compatible copper-based T-

gate fabrication process can be integrated into a full process flow for HEMT 

realisation. A gate-first approach utilising non-annealed ohmic contacts which have 

been demonstrated is described. 

 

 The fabrication and characterisation of a 60 nm Au-based T-gate InP HEMT realised 

by conventional III-V processes was achieved. This established a baseline in terms of 

fabrication techniques and device performance, which can be compared with those of 

a HEMT fabricated by silicon compatible processes. 
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Some potential work could be done in future including: 

 Further improvement of the properties of the copper head of the T-gate by 

adjusting electrolyte concentration and other electroplating parameters such as 

plating potential. 

 To realise a complete HEMT device with the silicon compatible copper T-gate 

using the gate-first HEMT fabrication process flow described in Chapter 6 and 

presented in Appendix I. 

 To compare the performance of a Cu-based T-gate HEMT fabricated by the 

silicon compatible process and Au-based T-gate HEMT realised by conventional 

process. 
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1. Markers 

Clean substrate –5min ultrasonic Acetone + 5min ultrasonic IPA 

Spin resist – 4% PMMA 2010 5k rpm 60s, 2 min 137℃ hotplate bake. 2.5% PMMA 2041 5k 

rpm 60s, 2 min 137℃ hotplate bake 

Exposure – VB6 e-beam lithography. Penrose cell marker: dose 800 µC/cm
2
, 1nA beam, 

VRU4; Global marker: dose 400 µC/cm
2
, 64nA beam, VRU20 

Develop – 30s 2.5:1 IPA: MIBK at 23℃, IPA rinse 

Ash – 40W O2 30s 

Metallise – 30s 4:1 H2O: HCl de-oxidise, 30s water rinse, 10nm Ti/70nm Au evaporation 

Lift off – 2hr 55℃ acetone, pipette clean, IPA rinse 

 

2. Mesa 

Clean substrate – 5min Acetone rinse + 5min IPA rinse 

Spin resist – 12% PMMA 2010 5k rpm 60s, 1hr 180℃ oven bake 

Exposure – VB6 e-beam lithography. Dose 300 µC/cm
2
, 64nA beam, VRU20 

Develop – 60s 2:1 IPA: MIBK at 23℃, IPA rinse 

Ash – 40W O2 60s 

Orthophosphoric etch – 30s 4:1 H2O:HCl de-oxidise, 30s water rinse, 1:1:100 H3PO4: H2O2: 

H2O 140s at room temperature, water rinse 

Resist removal - 2hr 55℃ acetone, IPA rinse 

 

3. Recess etch 

Clean substrate – 5min Acetone rinse + 5min IPA rinse 

Spin resist – 2.5% PMMA 2041 5000 rpm 60s, 2 min 137℃ hotplate bake.  

Exposure – VB6 e-beam lithography. Dose 320 µC/cm
2
, 1nA beam, VRU10 

Develop – 60s 2:1 IPA: MIBK at 23℃, IPA rinse 

Ash – 40W O2 60s 

Postbake – 2 min 90℃ oven bake 

Wet etch – 30s 4:1 H2O: HCl de-oxidise, 30s water rinse. Succinic etch (Succinic 

acid/hydrogen peroxide pH=5.5) 60s, Orthophosphoric etch (1:1:100 H3PO4: 

H2O2: H2O) 7s, Succinic etch (Succinic acid/hydrogen peroxide pH=5.5) 10s, 

water rinse 

Resist removal - 2hr 55℃ acetone, IPA rinse 

 

4. T-gate foot 

Clean substrate – 5min Acetone rinse + 5min IPA rinse 

Metallise – 100nm Mo/2nm Ti, water rinse 10s, 10min 140℃ hotplate bake 

Spin resist – 1:3 HSQ: MIBK 1k rpm 60s, 2 min 90℃ hotplate bake 
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Exposure – VB6 e-beam lithography. Gate foot: dose 4000 µC/cm
2
, 1nA beam, VRU2; 

Interconnections: dose 350 µC/cm
2
, 64nA beam, VRU20 

Develop – 60s 1:3 25% TMAH: H2O at 23℃, 30s DI water, 30s DI water, 15s IPA 

Postbake – 2min 90℃ hotplate bake 

Dry etch – STS-ICP etching: 15 sccm/25 sccm SF6/ C4F8, platen power 2W, coil power 

600W, 5 mTorr, 20% over-etch time 

Resist removal – 10s 50ml 1/10 HF: 200ml H2O 

 

 

5. T-gate head 

Spin resist – 12% PMMA 2010 5k rpm 60s, 1hr 180℃ oven bake 

Etch back – “T-gate” tool, oxygen RIE, 50 sccm O2, 25W, 100 mTorr, 70nm PMMA left 

Cu electroplating – 0.25V, 5min 

Interconnections removal – STS-ICP etching  

 

6. Ohmic Contacts 

Spin resist – 4% PMMA 2010 5k rpm 60s, 2 min 137℃ hotplate bake. 2.5% PMMA 2041 5k 

rpm 60s, 2 min 137℃ hotplate bake 

Exposure – VB6 e-beam lithography. Dose 400 µC/cm
2
, 64nA beam, VRU20 

Develop – 30s 2.5:1 IPA: MIBK at 23℃, IPA rinse 

Ash – 40W O2 30s 

Metallise – 30s 4:1 H2O: HCl de-oxidise, 30s water rinse, 100nm Au evaporation 

Lift off – 2hr 55℃ acetone, pipette clean, IPA rinse 

 

7. Bondpads 

Spin resist – 15% PMMA 2010 3k rpm 60s, 2 min 137℃ hotplate bake. 4% PMMA 2041 5k 

rpm 60s, 2 min 137℃ hotplate bake 

Exposure – VB6 e-beam lithography. Dose 305 µC/cm
2
, 64nA beam, VRU40 

Develop – 60s 1:1 IPA: MIBK at 23℃, IPA rinse 

Ash – 40W O2 60s 

Metallise – 30s 4:1 H2O:HCl de-oxidise, 30s water rinse, Ar etch 10s, 50nm NICr/1200nm 

Au evaporation 

Lift off – 2hr 55℃ acetone, pipette clean, IPA rinse 
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The “Mesa” and “Ohmic Contacts” were fabricated by the University of Manchester, the 

“Gate” and “Bondpads” were fabricated in this work at University of Glasgow. 
 

1. Mesa 

Clean substrate – 5min ultrasonic 1165 + 5min ultrasonic Acetone + 5min ultrasonic IPA 

Prebake – 1 min hotplate 115℃ bake 

Spin resist – Photoresist S1805 4k rpm 30s. 1 min hotplate 115℃ bake 

Exposure – MA4 photolithography expose 20s 

Develop – MIF319 60s. Water rinse 

Postbake – 30min oven 120℃ bake 

Orthophosphoric etch – 3:1:50 H3PO4: H2O2: H2O 60s at room temperature 

Sidewall etch – Succinic acid powder 10g, H2O 50ml, Ammonia (~10 ml to pH of 5.5), H2O2 

5 ml, 5 min at room temperature 

 

2. Ohmic Contacts 

Clean substrate – 5min ultrasonic Acetone + 5min ultrasonic IPA 

Prebake – 1 min hotplate 100℃ bake 

Spin resist – Photoresist AZnLOF2070 3k rpm 30s. 1 min hotplate 110℃ bake 

Exposure – MA4 photolithography expose 5.5s 

Post exposure bake – 1 min hotplate 110℃ bake 

Develop – MIF326 60s. Water rinse 

Metallise – O2 plasma etch 20s, 1:1 HCl:H2O de-oxidise 30s, 50nm AuGe/100nm Au 

evaporation 

Lift off – 30 min 85℃ 1165  

Anneal – 90s 280℃ 

 

3. Gates 

Clean substrate – 5min Acetone rinse + 5min IPA rinse 

Spin resist – 2.5% PMMA 2041 3900 rpm 60s, 2hr 180
o
C oven bake. 4:1 LOR 10A 5k rpm 

60s, 15 min 180℃ oven bake. 66% UVIII 3500 rpm 60s, 60s 120℃ hotplate 

bake 

Exposure – VB6 e-beam lithography. Gate foot: dose 1691 µC/cm
2
, 1nA beam, VRU5; Gate 

head: dose 127 µC/cm
2
, 4nA beam, VRU22. 

Develop – CD26 60s at room temperature, water rinse 180s; o-xylene 90s at 23℃, water rinse 

60s 

Ash – 40W O2 30s 

Recess etch – Succinic acid/hydrogen peroxide pH=5.5 45s 

Metallise – 30s 4:1 H2O:HCl de-oxidise, 30s water rinse, 15nm Ti/15nm Pt/160nm Au 

evaporation 
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Lift off – 2hr 55℃ acetone, pipette clean, IPA rinse 

 

4. Bondpads 

Clean substrate – 5min Acetone rinse + 5min IPA rinse 

Spin resist – 15% PMMA 2010 3k rpm 60s, 2 min 137℃ hotplate bake. 4% PMMA 2041 5k 

rpm 60s, 2 min 137℃ hotplate bake 

Exposure – VB6 e-beam lithography. Dose 305 µC/cm
2
, 64nA beam, VRU40 

Develop – 60s 1:1 IPA:MIBK at 23℃, IPA rinse 

Ash – 40W O2 60s 

Metallise – 30s 4:1 H2O:HCl de-oxidise, 30s water rinse, 50nm NICr/1200nm Au evaporation  

Lift off – 2hr 55℃ acetone, pipette clean, IPA rinse 

 

 

 


