
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Aljabri, Malak Saleh (2015) GUMSMP: a scalable parallel Haskell
implementation. PhD thesis.

http://theses.gla.ac.uk/6822/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/6822/

GUMSMP: A SCALABLE PARALLEL HASKELL

IMPLEMENTATION

by

Malak Saleh Aljabri

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Glasgow

College of Science and Engineering

School of Computing Science

November 2015

The copyright in this thesis is owned by the author. Any quotation from the thesis or

use of any of the information contained in it must acknowledge this thesis as the source

of the quotation or information.

Abstract

The most widely available high performance platforms today are hierarchical,
with shared memory leaves, e.g. clusters of multi-cores, or NUMA with multiple
regions. The Glasgow Haskell Compiler (GHC) provides a number of parallel
Haskell implementations targeting different parallel architectures. In particular,
GHC-SMP supports shared memory architectures, and GHC-GUM supports
distributed memory machines. Both implementations use different, but related,
runtime system (RTS) mechanisms and achieve good performance. A specialised
RTS for the ubiquitous hierarchical architectures is lacking.

This thesis presents the design, implementation, and evaluation of a new
parallel Haskell RTS, GUMSMP, that combines shared and distributed memory
mechanisms to exploit hierarchical architectures more effectively. The design
evaluates a variety of design choices and aims to efficiently combine scalable
distributed memory parallelism, using a virtual shared heap over a hierarchical
architecture, with low-overhead shared memory parallelism on shared memory
nodes. Key design objectives in realising this system are to prefer local work,
and to exploit mostly passive load distribution with pre-fetching.

Systematic performance evaluation shows that the automatic hierarchical load
distribution policies must be carefully tuned to obtain good performance. We
investigate the impact of several policies including work pre-fetching, favouring
inter-node work distribution, and spark segregation with different export and
select policies. We present the performance results for GUMSMP, demonstrating
good scalability for a set of benchmarks on up to 300 cores. Moreover, our policies
provide performance improvements of up to a factor of 1.5 compared to GHC-
GUM.

The thesis provides a performance evaluation of distributed and shared heap
implementations of parallel Haskell on a state-of-the-art physical shared memory
NUMA machine. The evaluation exposes bottlenecks in memory management,
which limit scalability beyond 25 cores. We demonstrate that GUMSMP, that
combines both distributed and shared heap abstractions, consistently outper-
forms the shared memory GHC-SMP on seven benchmarks by a factor of 3.3
on average. Specifically, we show that the best results are obtained when shar-
ing memory only within a single NUMA region, and using distributed memory
system abstractions across the regions.

2

In The Name Of Allah, The Most Gracious, The Most Merciful.

“Allah brought you forth from the wombs of your mothers when you knew

nothing, and He gave you hearing, sight and intelligence so that you may give

thanks to Him.”(Quran, 16:78)

3

Acknowledgements

First and foremost, all praises and thanks be to Allah, the Almighty, for giving

me the health, strength and ability to complete this research.

The work presented in this thesis would not have been possible without the en-

couragement and support of numerous people, who I would like to thank from

the bottom of my heart.

Professionally, I would like to offer my unreserved appreciation and gratitude

to my supervisor, Prof. Phil Trinder, for his brilliance and amazing insight, re-

inforcement throughout the course of the research, and his great efficiency when

checking and correcting my thesis. I am truly grateful to him for always believing

in me and encouraging me to do my best. His willingness to listen, and constant

support helped me greatly in overcoming the difficulties I faced during the re-

search, both academically and personally. Without his reassurance and support,

this work would not have been completed. One simply could not wish for a bet-

ter, more supportive supervisor.

I also owe my eternal gratitude to my supervisor Dr.Hans-Wolfgang Loidl,

who taught me much during the course of this thesis. He provided me with tech-

nical support, invaluable guidance, and a wealth of knowledge. What I learned

from him is immeasurable. I have highly profited from our weekly hacking ses-

sions, regular meetings, stimulating discussions, and productive ideas sharing,

which added considerably to the positivity of my experience and made this work

possible.

Special thanks go to Prof. Greg Michaelson for his willingness to always help,

listen, and give thoughtful suggestions and advice, which assisted me greatly. I

am deeply grateful to him for his time, support, and encouragement.

I would also like to thank the people in the computer science department at

Heriot-Watt University, and at the University of Glasgow, for their support and

4

assistance.

Special thanks are also due to the embassy of Saudi Arabia, and Umm-Alqura

university (which I am very keen to work at on my return) for giving me this op-

portunity, believing in my ability, and providing me with the financial support

to complete my PhD.

Thanks also goes to all my relatives and friends here in the UK, and in Saudi

Arabia, for their reassurance and backing.

Personally, I wish to extend special thanks and love to my parents, and my

brothers and sisters, for their steadfast support during my stay in the UK. The

continual positivity and prayers of my parents have been extremely instrumental

in motivating me to pursue the research that led to this achievement.

Words cannot begin to express the debt of gratitude, love, and admiration I

feel for my husband Naif, and my son Abdulaziz, and my little daughter Danah,

for their care and sacrifice during my studies. I doubt that I will ever be able to

convey my appreciation to them fully, but I owe them my sincere thanks. Their

impact on me has been greater than I could say. I am truly grateful. This thesis

is, therefore, dedicated to them.

5

Declaration

I declare that, except where explicit reference is made to the contribution of oth-

ers, that this dissertation is the result of my own work and has not been submitted

for any other degree at the University of Glasgow or any other institution.

Malak Saleh Aljabri

6

Contents

1 Introduction 16

1.1 Thesis Statement . 17

1.2 Contributions . 18

1.3 Publications . 19

2 Literature Survey 21

2.1 Introduction . 21

2.2 Parallel Architectures . 23

2.2.1 Shared Memory . 24

2.2.1.1 NUMA . 26

2.2.2 Distributed Memory . 27

2.2.2.1 Heterogeneity . 28

2.3 Parallel Programming . 29

2.3.1 Approaches . 31

2.3.2 Levels of Abstractions . 31

2.3.3 Patterns . 33

2.3.4 Mechanisms . 35

2.3.5 Skeletons . 36

2.4 Parallel Languages . 37

2.4.1 Imperative Languages . 37

2.4.1.1 Message Passing 38

2.4.1.2 Shared Memory 39

2.4.2 Parallel Object Oriented Programming 40

2.4.3 Hybrid Parallel Programming Model 41

2.4.4 Parallel Systems . 42

7

2.4.4.1 Manticore . 43

2.4.4.2 Filaments . 43

2.4.4.3 Task Parallel Library 45

2.4.5 Functional Languages . 45

2.4.5.1 Semi-explicit Parallelism 48

2.4.5.2 Explicit Parallelism 54

2.5 Parallel Haskell Implementations (RTS) 56

2.5.1 Distributed Memory Implementation 56

2.5.2 Shared Memory Implementation 60

2.5.3 Parallel Haskell Implementations Comparison 61

2.6 Load Balancing . 63

3 GUMSMP Design and Implementation 67

3.1 Introduction . 67

3.2 Design Objectives . 68

3.3 Main Components for Parallel Haskell Implementations 70

3.4 Thread Management . 71

3.4.1 Data Structures . 72

3.4.2 Synchronisation . 74

3.4.3 Main Scheduling Loop . 76

3.5 Work Distribution Mechanism 78

3.5.1 GHC-GUM . 78

3.5.2 GHC-SMP . 79

3.5.3 GUMSMP . 81

3.5.3.1 The Role of the Gateway HEC 83

3.5.3.2 Exporting Sparks 83

3.5.3.3 Sparks Placement 84

3.5.4 Hierarchy-aware Load Balancing 85

3.5.4.1 Watermarks . 85

3.5.4.2 Spark Segregation 86

3.6 Memory Management . 88

3.6.1 GHC-GUM . 88

3.6.2 GHC-SMP . 89

8

3.6.3 GUMSMP . 93

3.7 Communication . 93

3.8 Communication vs. Evaluation 96

3.9 Summary . 101

4 GUMSMP Tuning 102

4.1 Introduction . 102

4.2 GUMSMP Performance . 103

4.2.1 Setup and Programs . 103

4.2.2 Baseline Performance . 106

4.2.2.1 Cross-System Performance 106

4.2.2.2 Single Multi-core Performance 107

4.3 Performance Tuning . 108

4.3.1 Low-Watermarks for Pre-Fetching 109

4.3.2 Asymmetric Load Distribution Policy 117

4.3.3 Distinguishing Local and Global Work 119

4.3.3.1 Future Spark Segregation Work 123

4.3.4 Dedicated Gateways . 124

4.3.5 Optimising the Number of Cores Per PE 126

4.3.6 Optimising the Setting of the Allocation Area 126

4.3.7 More Active Load Management 126

4.4 Summary . 127

5 GUMSMP Evaluation 129

5.1 Introduction . 129

5.2 Balancing Shared and Distributed Heaps on NUMA Architectures 130

5.2.1 Scalability Limits . 132

5.2.2 Benefits of Distributed Heaps 133

5.2.3 Summary and Discussion 141

5.3 Cluster of Multi-cores Results . 144

5.3.1 Evaluation of GUMSMP and GHC-GUM 144

5.3.1.1 Generated Parallelism 146

5.3.1.2 Communication and Threads 147

9

5.3.2 The Performance of GUMSMP and GHC-GUM 148

5.3.3 Optimising the Number of Cores Per PE 149

5.3.4 Optimising the Setting of the Allocation Area 150

5.3.4.1 Data Parallel Programs 150

5.3.4.2 Divide and Conquer Programs 152

5.3.5 Summary . 153

5.3.6 More Active Load Management 154

5.4 Scalability Results . 156

6 Conclusion 160

6.1 Contributions and Achievements 160

6.1.1 Contribution 1: GUMSMP Design and Implementation . 161

6.1.2 Contribution 2: GUMSMP Performance Tuning 161

6.1.3 Contribution 3: A Systematic Performance Evaluation of

GUMSMP . 162

6.2 Limitations and Future Research Directions 162

6.2.1 Future Research Directions 163

6.2.1.1 NUMA-aware System 163

6.2.1.2 Auto Tuning . 163

6.2.1.3 Dynamic Tuning 164

6.2.1.4 Spark Tagging 165

6.2.1.5 Inter-cluster Performance Study 165

A Optimisation 166

B Benchmarks 171

Bibliography 198

Glossary 213

10

List of Tables

2.1 Parallel Haskell implementations comparison (+:property is supported,

−:property is not supported, ++:property is improved) 62

3.1 Different activities for packing and evaluation of a thunk 97

3.2 Race between packing and evaluation. 99

4.1 Programs characteristics . 104

4.2 Sequential performance . 105

4.3 Runtimes of GHC 6.12.3 vs. GHC 7.10.2 105

4.4 Runtimes for sumEuler for parallel Haskell compared with se-

quential C version . 106

4.5 Summary of the improvement of low-watermark mechanism on 100

cores . 114

4.6 Policies for exporting and selecting sparks when using the import-

spark-pool. 120

4.7 Different cases for the Export:prefer global, Select:prefer local policy124

4.8 The effect of using dedicated gateways 125

5.1 Memory access times between different NUMA regions (10 is the

basic unit for local memory access) 131

5.2 Runtimes for GHC-SMP and GHC-GUM 133

5.3 GUMSMP runtimes on 40 NUMA cores configurations 136

5.4 A useful set of tunable RTS parameters 146

5.5 GHC-GUM and GUMSMP amount of parallelism on 96 Beowulf

cores . 147

5.6 GHC-GUM and GUMSMP messages volume on 40 Beowulf cores148

11

5.7 GHC-GUM and GUMSMP number of threads created on 40

Beowulf cores . 148

5.8 GC overheads for GUMSMP and GHC-GUM for data-parallel

programs on 128 cores . 152

5.9 GC overheads for GUMSMP and GHC-GUM for divide-and-

conquer programs on 96 cores . 153

5.10 Approximate latency between nodes in Beowulf cluster and the

Linux machines in µs . 157

5.11 Characteristics of the levels of architectures 157

12

List of Figures

2.1 Multiple Instruction Multiple Data architecture [121] 23

2.2 Generic shared memory architecture [121] 25

2.3 A typical NUMA architecture with 2 NUMA regions [47] 26

2.4 Generic distributed memory architecture [121] 27

2.5 A typical heterogeneous architecture core(HOST) + GPU(Device)[18]

. 28

2.6 GpH coordination primitives . 49

2.7 Evaluation strategies . 50

2.8 Evaluation degree strategies . 50

2.9 New evaluation strategies . 52

2.10 Basic coordination constructs in Eden 53

2.11 Shared and distributed memory primitives for HdpH 54

2.12 Some of the interface functions of Cloud Haskell 55

2.13 Primitive operations for Eden . 57

2.14 Layer structure of the Eden system [109] 58

3.1 Matching parallel Haskell implementations and architectures . . . 69

3.2 GUMSMP system components 70

3.3 Levels of abstractions over the HW supported by GUMSMP . . 73

3.4 Main scheduling loop for GUMSMP, combining GHC-SMP and

GHC-GUM functionality . 77

3.5 Work distribution in GHC-GUM 78

3.6 Work distribution in GHC-SMP 79

3.7 Work distribution in GUMSMP 81

3.8 ScheduleFindWork function in GUMSMP, combining GHC-SMP

and GHC-GUM functionality 82

13

3.9 ExportSpark function in GUMSMP 84

3.10 Low- and High-watermark mechanisms for load distribution in

GUMSMP . 86

3.11 Work distribution in GUMSMP with import-spark-pool 86

3.12 Distributed shared heap in GHC-GUM 89

3.13 Distributed shared heap in GUMSMP 93

3.14 Transfer of graph structure [163, 164] 95

3.15 Packing vs. Evaluation . 100

4.1 Speedup of three representative benchmarks using GHC-GUM,

GUMSMP, and GHC-SMP on a single multi-core 108

4.2 Speedup of GUMSMP on up to 100 cores with the basic config-

uration . 109

4.3 Mandelbrot load distribution without low-watermark on GUMSMP

. 111

4.4 Mandelbrot load distribution with low-watermark on GUMSMP 111

4.5 Speedup of smaller benchmarks with(out) low-watermarks 113

4.6 Speedup of larger benchmarks with(out) low-watermarks 113

4.7 The number of messages communicated on 100 cores 116

4.8 The total data communicated on 100 cores 116

4.9 Speedup of using an asymmetric load distribution policy, enabling

inter-node sparks . 118

4.10 Average GA residency for different policies. 122

4.11 Parfib speedup for different policies. 122

5.1 NUMA topology of a 48-core server 132

5.2 GUMSMP (20 PEs, 2 cores each) and (2 PEs, 20 cores each)

configurations . 134

5.3 GUMSMP (8 PEs, 5 cores each) and (5 PEs, 8 cores each) con-

figurations . 134

5.4 GUMSMP (10 PEs, 4 cores each) and (4 PEs, 10 cores each)

configurations . 135

5.5 GHC-GUM and GHC-SMP configurations 135

14

5.6 Normalised GUMSMP runtimes on 40 NUMA cores 136

5.7 Normalised GUMSMP GC percentage on 40 NUMA cores 137

5.8 Normalised GUMSMP GC synchronisation points on 40 NUMA

cores . 138

5.9 Sketch of the GC overheads due to a large live heap in a multi-

threaded execution . 138

5.10 Normalised GUMSMP maximum memory residency on 40 NUMA

cores . 139

5.11 Normalised GUMSMP average allocation rate on 40 NUMA cores 140

5.12 GUMSMP speedup on 84 Beowulf cores 149

5.13 Speedup of GHC-GUM vs. GUMSMP on up to 128 cores for

data-parallel programs . 151

5.14 Speedup of GHC-GUM vs. GUMSMP on up to 96 cores for

divide-and-conquer programs . 153

5.15 Speedup of GUMSMP (different load distribution policies) for maze 155

5.16 Speedup of GUMSMP (different load distribution policies) for parfib

. 156

5.17 Levels of architectures used for scalable results 157

5.18 Speedup of GUMSMP on up to 300 cores for 3 benchmarks . . . 158

15

Chapter 1

Introduction

Multi and many-core architectures have become the dominant general purpose

hardware. Moreover, the current trend in parallel architectures has shifted to-

wards hierarchical architectures, in which several shared memory units (i.e. multi-

cores, or NUMA regions) are connected via a network. In high-performance com-

puting, a hybrid parallel programming model is frequently used to best exploit

such architectures. This combination requires multi-level parallel programming

in both a shared memory model and a distributed memory model. For example,

a directive-based parallelism through OpenMP [36] on a physical shared mem-

ory multi-core node1, combined with message passing coordination, through MPI

[125] across the cluster is often used on large scale clusters. While such a model

can effectively exploit both shared and distributed memory compute resources,

managing two abstractions is a burden for the programmer and increases the cost

of porting to a new platform.

In contrast, our new runtime system (RTS) for parallel Haskell, GUMSMP,

provides a uniform, semi-explicit, high-level parallel programming model , with

adaptive, automatic policies at both levels of the hierarchy. The model relieves

the programmer from the burden of explicitly controlling coordination in a multi-

level hierarchy, delegating control almost entirely to the RTS.

Glasgow Parallel Haskell (GpH) [162] is a widely-used parallel extension of

Haskell, a lazy functional language. GpH was developed to facilitate parallel

programming by limiting the programmer’s work to specifying a few key aspects

1The terms: node, core, PE, and HEC are defined in the Glossary

16

Chapter 1. Introduction

of coordination. The remaining low-level coordination aspects, such as com-

munication, synchronisation, distributed garbage collection are managed by a

sophisticated language implementation.

There are two different implementations of the same semi-explicit program-

ming model GpH, namely: GHC-SMP [119]: a low-overhead physical shared

memory implementation integrated in GHC, and GHC-GUM [163, 164]: a vir-

tual shared memory implementation on clusters built on top of explicit message

passing. A major difference between these two implementations lies in the work

distribution models that are supported. Work distribution in GHC-GUM is

achieved by message passing. In contrast, in GHC-SMP tasks can exploit shared

memory to directly access a shared work pool.

In this thesis, we present the design, implementation, and performance eval-

uation of GUMSMP, a multi-level GpH implementation. GUMSMP smoothly

integrates the work distribution policies of GHC-SMP and GHC-GUM, thereby

providing a platform for scalable parallelism not bounded by the limitations of

physical shared memory. GUMSMP combines the work distribution of GHC-

SMP, using a shared memory model within a single multi-core, and the work

distribution of GHC-GUM, using a distributed memory model across a hierar-

chy of multi-cores. GUMSMP is mainly designed to target cluster of multi-cores

hierarchical architectures, but the trends of the modern architectures are driving

more and more architectures into this space such as large NUMA.

The heterogeneity that the thesis deals with is that GUMSMP is designed

for systems with hierarchical memory, e.g. clusters of multi-cores or NUMA ar-

chitectures. It does not, however, deal with accelerators like GPUs or FPGAs.

1.1 Thesis Statement

The most widely available high performance platforms today are hierarchical,

with shared memory leaves, e.g. clusters of multi-cores, or NUMA with multi-

ple regions. These are often programmed using a hybrid parallel programming

model e.g. combining a message-passing and a shared-memory model. This thesis

investigates whether a multi-level parallel implementation can effectively exploit

17

Chapter 1. Introduction

hierarchical architectures and achieve scalability, while still using a single, high-

level programming model. Moreover, can a hierarchical implementation balance

the use of NUMA shared memory without additional operating system support?

We investigate the hypothesis by providing a new parallel Haskell implementa-

tion GUMSMP that combines the load balancing mechanisms of the distributed

memory implementation GHC-GUM, and the shared memory implementation

GHC-SMP. The performance of GUMSMP is evaluated on clusters of multi-

cores, and on NUMA machines using an established set of parallel Haskell bench-

marks.

1.2 Contributions

We have designed, implemented, and experimented with a new implementation

for the parallel Haskell dialect GpH, targeting hierarchical parallel architectures

e.g. clusters of multi-cores. Our implementation GUMSMP smoothly integrates

the work distribution policies of GHC-SMP (for shared memory) and GHC-

GUM (for distributed memory), thereby providing a hierarchy-aware platform

for scalable parallelism not bounded by the limitations of a physical shared mem-

ory. In particular, the GUMSMP implementation provides scalability by using

distributed memory techniques to exploit multiple shared memory nodes, while

still providing a single programming model. The thesis makes the following con-

tributions:

• The design and implementation of a new and sophisticated shared and dis-

tributed memory parallel runtime system for a production functional lan-

guage (GUMSMP based on GHC 6.12.3). Accounting for the hierarchical

nature of modern architectures like clusters of multi-cores, we provide a de-

sign for an improved load distribution mechanism [6] (Sections 3.5.3, 3.5.4).

• The development and the evaluation of the effectiveness of different policies

to improve the automatic hierarchical load distribution. In particular, the

low-watermark mechanism for work pre-fetching, showing improvements of

up to a factor of 3 comparing GUMSMP with and without low-watermark

18

Chapter 1. Introduction

(Section 4.3.1), and favouring inter-node work distribution, showing a fur-

ther improvement of up to 19% over the low-watermark (Section 4.3.2).

Moreover, a novel spark segregation mechanism is studied to separate local

and global sparks, identifying different policies to export sparks remotely

and select sparks for local evaluation (Section 4.3.3). As well as the effect

of using dedicated gateways, thus restricting one core for communication

work (Section 4.3.4). In terms of reducing the bottlenecks of memory man-

agement overhead, we discuss further tuning by optimising the number of

cores per PE (Sections 4.3.5, 5.3.3), as well as adjusting the heap settings

by providing larger allocation area which consistently improve performance

by a factor of up to 1.4 over the default heap setting (Sections 4.3.6, 5.3.4).

Furthermore, we show that combining active and passive load distribution

for sparks at the intra-node level delivers improvement of up to 22% over

passive load distribution for sparks (Sections 4.3.7, 5.3.6).

• The thesis reports a systematic performance evaluation of GUMSMP in

comparison to GHC-SMP and GHC-GUM using a set of benchmarks

on both cluster and NUMA architectures. Compared with GHC-SMP,

GUMSMP delivers performance improvement of a factor of 3.3 on average

on a NUMA machine with 40 cores by balancing the shared and distributed

heaps. Investigation of the scalability limits of GHC-SMP reveals that the

garbage collection represents a main source of overhead [8] (Section 5.2).

Compared with GHC-GUM, GUMSMP provides an improvement of up

to a factor of 1.5 on average on a cluster of multi-core architecture with up

to 128 cores by exploiting the specifics of shared memory (Section 5.3). We

show that GUMSMP scales to deliver a speedup of up to 175 on a cluster

with 100 nodes, comprised of 300 cores (Section 5.4).

1.3 Publications

This thesis is closely based on the work reported in the following papers:

19

Chapter 1. Introduction

Refereed Papers: The author is the primary author of all papers (the Saudi

Students Conference papers received light-weight refereeing).

• M. Aljabri, H.-W. Loidl, and P. Trinder, “The Design and Implementation

of GUMSMP: A Multilevel Parallel Haskell Implementation”, in Proceed-

ings of the 25th Symposium on Implementation and Application of Func-

tional Languages, ser. IFL ’13. New York, NY, USA: ACM, 2014, pp. 37–

48. Available: http://doi.acm.org/10.1145/2620678.2620682

[6].

• M. Aljabri, H-W. Loidl, and P.W. Trinder. “Balancing Shared and Dis-

tributed Heaps on NUMA Architectures”, in Trends in Functional Program-

ming, ser. Lecture Notes in Computer Science, J. Hage and J. McCarthy,

Eds. Springer International Publishing, 2015, vol. 8843, pp. 1–17. Avail-

able: http://dx.doi.org/10.1007/978-3-319-14675-1 [8].

• M. Aljabri, P. Trinder, and H-W.Loidl, Overview of the Design of GUMSMP:

a Multilevel Parallel Haskell Implementation. In: Proceedings of the Saudi

Scientific International Conference 2012, London, UK, 11-14 Oct 2012.

Saudi Scientific International Conference, London, UK, p. 25 [5].

• M. Aljabri, H-W. Loidl, and P.W. Trinder. “Assessing the Scalability Is-

sues on Many-Core NUMA machines”. In: Proceedings of the Saudi Stu-

dent Conference 2015, London, UK, 1 Feb 2015. The 8th Saudi Students

Conference, London, UK, 1037 [7].

Technical Reports: Additionally, the author contribute to the following tech-

nical report.

• E. Belikov, P. Deligiannis, P. Totoo, M. Aljabri, and H-W Loidl. A Survey of

High-Level Parallel Programming Models. Technical Report HW-MACS-

TR-0103, Heriot-Watt University, 16.12.2013. Available: http://www.

macs.hw.ac.uk/cs/techreps/doc0103.html [18].

20

http://doi.acm.org/10.1145/2620678.2620682
http://dx.doi.org/10.1007/978-3-319-14675-1
http://www.macs.hw.ac.uk/cs/techreps/doc0103.html
http://www.macs.hw.ac.uk/cs/techreps/doc0103.html

Chapter 2

Literature Survey

2.1 Introduction

A fundamental change in processor architecture means that the number of cores

(processors) is increasing, with heterogeneous and hierarchical parallel architec-

tures becoming the dominant general purpose hardware platforms. Such archi-

tectures drastically increase the computing resources and enable multiple parallel

tasks to be computed faster than they could be on single-core machines. One of

the major challenges facing the computing world today is how to get the most

benefit from these architectures and use them efficiently. While traditional imper-

ative programming languages are used for parallel programming e.g. C or Fortran

with MPI on High Performance Computing (HPC) platforms, these approaches

require additional programmer effort as the coordination specification is low level.

This chapter surveys the different parallel architectures, and discusses the

challenges that have arisen from the recent trends toward hierarchical machines

with different organisations of cores and memory. Moreover, we review parallel

programming technologies, and demonstrate their advantages and disadvantages

on parallel architectures. In particular, we discuss different parallel programming

approaches, languages, and implementations with a greater focus on the high-

level parallelism supported by parallel functional languages, which are related

closely to our work on GUMSMP.

We separate the content of this survey into a discussion of parallel architec-

21

Chapter 2. Literature Survey

tures in Section 2.2, and the different parallel programming models, approaches,

and patterns in Section 2.3. We then cover parallel languages in Section 2.4 of-

fering an overview of parallel imperative languages, as well as parallel functional

languages. We also discuss hybrid parallel programming models and different par-

allel systems. In Section 2.5 we focus on parallel Haskell implementations, and

conclude by comparing different shared and distributed memory parallel Haskell

implementations. Finally, in Section 2.6 we discuss load balancing as a central

mechanism affecting the performance of parallel applications.

22

Chapter 2. Literature Survey

2.2 Parallel Architectures

Most parallel computers comprise three main building blocks: the cores, the

memory modules, and the interconnection network. Over recent decades, there

has been a gradual development in the degree of sophistication of each of these

building blocks, but what makes one parallel computer different from another is

the manner in which they are arranged. Parallel computing cores themselves are

now essentially similar to those used in single-core systems with new technologies

increasingly embedded with the cores for the parallel architectures with the aim

to add more improvement or new functionalities of different parallel architectures,

such as Graphics Processing Units (GPUs), and Field Programmable Gate Arrays

(FPGAs) [152].

Parallel computers have been classified in different ways, but in all probability

the earliest and the most widely used classification is Flynn’s Taxonomy [61].

Flynn classified computing architectures into four categories, based on the number

of instruction streams and data streams available: Single Instruction Single Data

(SISD), Single Instruction Multiple Data (SIMD), Multiple Instruction Single

Data (MISD), and Multiple Instruction Multiple Data (MIMD), as demonstrated

in Figure 2.1.

Instruction

Processor

Control

Unit

Input Data

Output Data

Instruction

Processor

Control

Unit

Input Data

Output Data

Instruction

Processor

Control

Unit

Input Data

Output Data

Instruction

Processor

Control

Unit

Input Data

Output Data

Figure 2.1: Multiple Instruction Multiple Data architecture [121]

This classification of parallel architectures represents a coarse model, as most

parallel cores are hybrids from different categories [81]. Flynn taxonomy is

broadly employed as initial classification of computer architectures. Nonethe-

23

Chapter 2. Literature Survey

less, it has various obvious disadvantages, the clearest of which is the fact that

the MIMD class is overcrowded. The majority of multi-processing systems and

multiple computer systems fall within this classification, including modern per-

sonal machines characterised by x-86 based multi-core processors [169]. A more

recent classification of parallel architectures is based on the type of parallelism

supported, i.e. function-parallel or data-parallel architectures [86, 65].

The MIMD category represents most contemporary parallel architectures,

which are increasingly hierarchical and heterogeneous. Computers in this cat-

egory consist of multiple cores; that is, they have different cores that perform

different instruction streams on different data streams. Each core is able to work

independently, as it represents an independent hardware unit for computation.

A number of related factors promote the development of MIMD architectures.

Importantly, computers in this category offer a support for wider range of parallel

patterns compared with other parallel architectures. Therefore, they are applica-

ble to a wider range of parallel applications. Moreover, MIMD is extremely cost

effective and this has undoubtedly been a great incentive for its promotion [52, 81].

Computers with MIMD architecture are further sub-divided into two main

categories, based on the organisation of memory as Shared Memory and Dis-

tributed Memory. The main difference between the two is the organisation of the

memory. In the case of shared memory MIMD, all cores share access to the same

memory. In the second category, distributed memory MIMD, each core has its

own local memory, and accesses values in other memories using the network. This

means that different parts, or sub-tasks, of a computational task are distributed

to multiple cores, each with its own memory space; and then, the results from

each core are reassembled into one solution.

2.2.1 Shared Memory

In shared memory architectures, there is a single shared memory, which is avail-

able for all cores to access via a direct interconnected network. Communica-

tion among these cores can be achieved through a reading and writing to the

shared memory, and occurs implicitly as a result of conventional memory ac-

cess instructions. Shared memory systems [100] can be classified as: Symmetric

24

Chapter 2. Literature Survey

Multi-Processor systems (SMP), which, as this name implies, means all proces-

sors (cores) share memory and Input/Output (IO) equally, and can access the

same memory location at the same speed, thus providing Uniform Memory Ac-

cess (UMA) [37]. The second category is Non-Uniform Memory Access (NUMA)

machines, which have recently gained popularity, and are shared memory ma-

chines, wherein the memory is closer to some cores, and therefore can access

some memory locations faster than others [97].

Interconnection Networks

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

Figure 2.2: Generic shared memory architecture [121]

The current trend is towards many-core, shared memory machines; two or

four cores are commonly utilised in devices used daily, including laptops and

mobile phones. Moreover, by using hundreds or thousands of cores, it is now pos-

sible to deliver far greater computing performance than was previously possible,

with affordable expenditure of energy, such as Intel’s TeraScale [122] and Tilera’s

TILE-Gx100 [74], which use 80 and 100 cores respectively, whereas NVIDIA’s

GT300 GPUs uses 512 scalar cores [29].

Parallel applications on homogeneous many-core architectures are generally

easier to implement than those on heterogeneous (e.g. a multi-core and GPUs)

or distributed memory architectures, which require more low level coordination.

However, the scalability of current shared memory machines is limited due to the

increasing overheads resulting from maintaining cache coherency and providing

efficient data access synchronisation [57].

25

Chapter 2. Literature Survey

2.2.1.1 NUMA

The use of a NUMA model for physical shared memory machines is one of the key

trends in hardware design [97]. NUMA designs are now utilised by many multi-

core servers, and it is anticipated that new and emerging many-core servers will

adopt a NUMA design. The main aim of this design is to provide performance

scalability for many-core machines with a large main memory.

In this model, the main memory is partitioned into several NUMA regions,

each of which is associated with several cores. Access to the memory within the

local region is fast; whereas, remote non-local access must pass through an on-

chip network to access a different memory bank, and is, therefore, much slower.

Moreover, this performance asymmetry intensifies as the number of cores in a sin-

gle region increases, thus negatively affecting uniformity, especially for languages

with automatic memory management [160].

NUMA node 3

4 1

5 2

6 3

4 1

5 2

6 3

M
EM

O
RY

M
EM

O
RY

1 4

2 5

3 6

1 4

2 5

3 6

M
EM

O
RY

M
EM

O
RY

Interconnects

NUMA node 0 NUMA node 2

NUMA region 2 NUMA region 1

NUMA node 1

Figure 2.3: A typical NUMA architecture with 2 NUMA regions [47]

In the case of many-core, the NUMA design of the memory sub-system re-

quires awareness of the differences in latency by the system or the algorithm, in

order to avoid scaling issues. Furthermore, both effective memory bandwidth and

latency to different regions can be negatively impacted by hardware problems [19].

Traditionally, the term NUMA is mainly used to characterise the structure of the

memory sub-system. However, other resources, such as IO, are also generally

26

Chapter 2. Literature Survey

impacted by the asymmetry of the NUMA architectures, which can result in

a substantial fluctuation in IO performance relative to latency and bandwidth,

where remote IO access generates a higher latency and usually a lower band-

width for data transfer [160]. The GUMSMP system we have designed allows us

to explore the performance implications of different combinations of shared and

distributed memory on NUMA architectures (Section 5.2).

2.2.2 Distributed Memory

In distributed memory MIMD machines, each core has its own private memory.

This means no core can access the memories of the other cores in the machine;

therefore, to be shared, data must be passed from one core to another as a

message.

Interconnection Networks

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

Figure 2.4: Generic distributed memory architecture [121]

There are two main classes of distributed memory architectures: Massively

Parallel Processors (MPP) and clusters. With MPP [139], the cores and the

network infrastructure are specifically designed to work closely in a single parallel

computer. These systems are extremely scalable and thousands of cores can be

supported by a single system that represents the principal architectures of super

computing [92]. Clusters [44] on the other hand, are comprised of state-of-the-art

computers connected by a network. Systems of this kind includes Grids [64],

and Clouds [12] are becoming more widespread and powerful. Drivers for these

changes are the improvements in network technology. These architectures are

27

Chapter 2. Literature Survey

suitable for large scale, complex, and HPC applications.

2.2.2.1 Heterogeneity

In the era of multi-cores, traditional parallel programming models based on ho-

mogeneous cores are often unable to meet the requirements of HPC applications.

Consequently, parallel architectures are moving toward heterogeneity at different

levels, including combining cores with different capabilities, as well as different

hierarchies of memories and networks [30, 40, 149, 13].

Examples of heterogeneity are the use of accelerators such as GPUs and FP-

GAs that are commonly integrated in architectures [103] as depicted in Figure 2.5.

GPUs excel at regular data-parallel applications using floating point operations;

these have become increasingly important as powerful computing resources, not

only for graphics, computer games, or films, but also in science, engineering and

financial modelling [131]. FPGAs on the other hand, are suitable for comput-

ing intensive part of the applications such as matrix multiplications, as well as

streaming applications using integer or logic operations [95].

This thesis deals with heterogeneity, in the sense that it is designed for clusters

of multi-cores, so some cores share memory, where others are elsewhere in the

cluster. It does not, however, deal with accelerators like GPUs or FPGAs.

….

Compute Unit 1

Local Shared Memory

Private

memory

PE

Private

memory

PE
….

Compute Unit n

Local Shared Memory

Private

memory

PE

Private

memory

PE
….

Device

Device Global Memory

HOST Core

HOST Memory

Figure 2.5: A typical heterogeneous architecture core(HOST) + GPU(Device)[18]

28

Chapter 2. Literature Survey

2.3 Parallel Programming

The aim of parallel computing is to increase an application’s performance by

executing the application on multiple cores, thereby increasing the speed of the

execution. Using a set of cores that work cooperatively means that we can con-

centrate our computational resources cores, memory, or IO bandwidth on a given

problem and achieve our aims at greater speed [173]. The other advantage of-

fered by parallel computing is that it deals with problems that are too large or

too complex to be handled by a single computer, especially computers with a

limited memory [152]. A single computer resource can only perform a single task

at a time, with the sequence of steps running in a specific order. With multiple

computing resources, on the other hand, different tasks can be divided among a

number of cores, which then makes it possible to execute the tasks simultane-

ously. In addition to this, non-local computer resources can be used on a wide

area network [16]. All this increases not only the speed, but also the scope of

what can be achieved.

However, the majority of current software was originally developed to work

on a single-core, and will not easily benefit from the rapid parallel architectural

evolution without a major redesign [82, 157]. The problem is even worse, as

the vast majority of mainstream programming languages were not created with

parallelism as a primary consideration, meaning that they are not particularly

appropriate for exploiting parallel architectures [18]. In particular, the main key

challenge facing the programmer is the creating of a parallel algorithm, which

requires a number of steps not required in a sequential program. These steps cor-

respond with coordinating parallelism across multiple processing elements (PEs).1

These work cooperatively to exploit the underlying parallel resources. In particu-

lar, handling task decomposition to partition computation among PEs, mapping

tasks to PEs, and handling communication and synchronisation issues [63], and

as yet there is limited support in the form of tools, or standardised language level

mechanisms to comprehensively deal with this need.

1PE is an abstraction of a core, see (Section 3.4.1, and Glossary). We use PE in the
programming language context, and core in hardware level discussions.

29

Chapter 2. Literature Survey

When PEs are cooperating to perform a computation, they might require a

method of communication; this can be achieved in various ways based on the

underlying parallel machine. In shared memory computers, only a single process

can be engaged in the shared memory at any given time [148]. To prevent, for

example, a PE trying to access shared data before another PE has completed

an updating task at the same data, low-level synchronisation mechanisms should

be used, e.g. locks, or barrier synchronisation. Another key problem with all

shared memory architectures, which permit the caching of shared variables, is

cache coherence. When a PE wants to access a shared variable in its cache, as

this variable has been accessible to other PEs, there is no way for the PE to

know whether the data it is accessing has been modified by another PE. These

issues have been exacerbated with the recent trend toward having multi-level

caches. Hardware, cache coherence protocols are often used to provide coherency,

by maintaining the invariant of a single writer, multiple readers for the shared

memory [120]. On the other hand, programming for distributed memory machines

involves different kinds of overheads to coordinate communications between the

PEs in the form of message passing, which involves serialisation/de-serialisation

of large data structures.

Coordination often results in extra overheads, and may lead to losing the poten-

tial performance gain completely if the coordination time (time spent in synchro-

nising access to shared memory, or communicating large data structure over the

network) exceeds the time spent doing useful independent computations. More-

over, care must be taken by the programmer in order to use synchronisation

mechanisms, to ensure correctness, as the misuse of such mechanisms often leads

to hard-to-detect and resolve problems, such as corrupted data, race conditions,

or deadlocks [98, 18]. Furthermore, another challenge is the need to strike a bal-

ance between the communication cost when balancing the load to best exploit

the underlying parallel architectures and preserving data locality by reducing

communication cost [18].

30

Chapter 2. Literature Survey

2.3.1 Approaches

There is a continuum of parallel programming approaches from: implicit paral-

lelism to explicit parallelism [142, 91, 83, 151]

1. Implicit parallelism: This approach, which is also called auto paralleli-

sation or parallel compiler maintains distance between programmers and

the coordination aspects of parallelism. Exploitation of parallelism is the

responsibility of a sophisticated compiler and runtime system (RTS); al-

though, completely implicit parallelism remains a difficult goal to achieve.

There are several high-level parallel functional programming languages like

Glasgow Parallel Haskell (GpH) [162] (Section 2.4.5.1), but with these the

programmer still has to carry out some work specifying the coordination

aspects; thus, this is considered semi-explicit parallelism. Our work of

GUMSMP represents one implementation of GpH.

2. Explicit parallelism: This approach requires the programmer to explic-

itly specify the majority of the details of parallelisation; the extent to which

this is the case depends on the level of the parallel programming languages

being used. Parallelisation involves several tasks, such as the decompo-

sition of tasks, mapping tasks to processing elements, and managing the

communication of data between processing elements.

In principle, any combination of implicit and explicit is possible. Modern parallel

languages tend to be implicit in terms of communication and synchronisation, and

explicit in terms of decomposition and mapping. The implicit approach is more

suitable for problems with a specific pattern or regular parallelism. In contrast,

the explicit approach reduces productivity by assigning parallelism management

to the programmer [18].

2.3.2 Levels of Abstractions

Parallel programming languages can be classified by the level of abstraction they

provide for parallel programming, and the level of explicit parallelism control

required by the programmer as low, mid, or high.

31

Chapter 2. Literature Survey

1. Low level: The low-level parallel programming languages require the pro-

grammer to specify all the details of parallel coordination such as task

decomposition, communication, and synchronisation. An example of this

is Java Socket, which is a very low-level interface for specifying the inter-

process communication details [159]. It has been widely used to provide ef-

ficient and flexible distributed applications; however, it involves the writing

of long and complex details [48]. Another example of a flexible, but low-level

model is the Portable Operating System Interface (POSIX) Threads, which

is used with shared memory and provides the programmer with explicit

parallelism control at the threads level [32, 49].

2. Mid level: The mid-level languages abstract over some of the parallel

coordination details, such as mapping work to PEs, but still require the

programmer to manage others explicitly. The goal of this level is to create

an equilibrium between programmer productivity, by increasing the level

of abstraction; thus facilitating the programming task, and the parallel

performance by increasing tuning approaches [18]. Primitives or libraries

can be used efficiently with several mid-level computation languages, i.e.

Fortran, C, and C++ [151]. An example of this approach is the Message

Passing Interface (MPI) [125, 77], Parallel Virtual Machine (PVM) [71] li-

braries (Section 2.4.1.1), and Open Multi-Processing (OpenMP) [36] (Sec-

tion 2.4.1.2), which are widely known and routinely used to support parallel

programming.

3. High level: The main purpose of high-level parallel libraries and languages

is to provide as much implicit parallelism as possible, by abstracting over

most of the parallel coordination details. In such a model, the programmer

will have a minimal level of parallelism control, often provided in the form

of advisory parallelism specification. Examples of this include GpH [162]

(Section 2.4.5.1), which is explicit about decomposition, represented by

the primitive par, and is implicit about mapping, communication, and

synchronisation. High-level parallelism is also supported by Partitioned

Global Address Space (PGAS) languages, such as Chapel [35], X10 [38],

and Fortress [9] (Section 2.4.3).

32

Chapter 2. Literature Survey

2.3.3 Patterns

To exploit parallel architectures efficiently, computation needs to be partitioned

into smaller sub-tasks, which are mapped to PEs in a way that sets a suitable

balance between computational load in order to exploit the parallel cores, and

the preservation of data locality in order to reduce the overheads associated with

the communication [18]. A general trend in the parallel languages community

is to define the parallel programming paradigms in which applications can be

classified. These patterns are defined to manage the load balancing component

of parallelism.

The most popular parallel programming patterns used for most typical appli-

cations are presented in this section, and are summarised from [151, 121, 69, 154].

1. Master/Workers (Task Farming): The master/workers, or task farm-

ing, parallel programming paradigm is a problem decomposition model.

The program comprises two entities: the master, and multiple workers or

“slaves”. The master’s job is to decompose the problem into a number of

tasks, and distribute them amongst the workers. Subsequently, when the

computation has been completed, the master collects the partial results, so

that the final computation result can be produced. The second entity, the

“slaves” processes (or workers), execute tasks in a very simple cycle: they

receive a message with the task, then process the task before returning

the results to the master. The equal division of tasks among the workers,

known as load balancing, is essential to improve the performance of any

application. This can be done either statically or dynamically, as described

below:

• With static load-balancing, the task distribution is carried out at the

start of the computation process. This means, as soon as each worker

has been allocated their portion of the work, the master can participate

in the computation. Task allocation can then be performed either once

or cyclically.

• Dynamic load-balancing, is a more suitable option when the number

of tasks is greater than the number of PEs available, when the num-

33

Chapter 2. Literature Survey

ber of tasks is unknown at the beginning of an execution, or when

the problem is unbalanced. The inbuilt flexibility of dynamic load-

balancing enables the application to adapt to the changing conditions

of the system. This feature of the dynamic load balancing paradigm

allows it to respond if one or more PEs fail, thereby simplifying the

creation of applications that are sufficiently robust to survive the loss

of workers or even the master. High computational speed increases

and good scalability can be achieved with this paradigm. However,

with many PEs, the master PE becomes a bottleneck, compromising

the application’s scalability. This can be overcome by extending the

single master to a set of masters, each of which is then responsible for

controlling a different group of process workers, thereby improving the

scalability of the paradigm.

2. Data Parallelism: Is the most frequently used paradigm; where paral-

lelism is exploited by dividing a data structure into chunks which are as-

signed to PEs to perform specific task on those chunks. The approach taken

here is to seek fine-grained inner loops inside the code and parallelising those

inner loops, resulted in large number of chunks suitable to be worked on

by large number of parallel PEs [28]. On distributed memory architectures,

the chunks of the data structure exist in the local memory of the PE, and

on shared memory architectures, all PEs have access to the data structures

reside on the shared memory [16]. This type of parallelism is also referred

to as geometric parallelism, or domain decomposition. Since in this design

neighbouring PEs communicate with each other, the communication load

will be determined by the size of the boundary of the element; and the vol-

ume of the data will determine the computation load. Provided the data is

evenly distributed by the PEs, and the system is homogeneous, data parallel

applications are extremely efficient, and highly scalable [151]. Data paral-

lelism was initially first introduced to exploit parallelism in SIMD parallel

architectures in the 1980s. Today, data parallelism is widely used to exploit

parallelism in the recent massively parallel architectures such as General-

Purpose computing on Graphics Processing Units (GPGPUs) [132].

34

Chapter 2. Literature Survey

3. Data Pipelining: Is a type of parallelism based on functional decomposi-

tion, and is one of the simplest pattern that is most commonly applied. The

different tasks of the algorithm, which operate concurrently, are identified

and each PE then executes its small portion of the total algorithm. The pro-

cesses are arranged as different stages of the Pipeline, each one of which is

responsible for executing a particular task. This type of parallelism, which

is commonly used in applications for data reduction or image processing,

is sometimes called “data flow parallelism” because the data flows between

one stage of the pipeline and the next. The form of communication is very

simple, and may be totally asynchronous.

4. Divide and Conquer: Is a frequently used approach in the design and

development of sequential algorithms where a task is broken down recur-

sively into a number of smaller sub-tasks, which sometimes represent smaller

samples of the original task, each of which is computed independently. The

results are then combined to produce the final, overall result. In parallel

divide-and-conquer, the division of a task into smaller sub-tasks, and a com-

bination of results can be carried out in parallel. The divide-and-conquer

paradigm consists of three main phases: divide, compute, and combine.

These are designed in the form of a virtual tree, whereby some of the PEs

create sub-tasks, and the results then combined to produce an overall re-

sult. The computation of sub-tasks is carried out by the leaf nodes of the

virtual tree.

2.3.4 Mechanisms

Parallelism may be provided by a number of different language mechanisms as

follows.

1. Language Primitives: In this case, the entire language can be applied

to compose the parallel execution. In this case, parallelism is specified as

first-class primitive constructs, which are part of the language definition;

thereby, increasing flexibility. An example is the Occam programming lan-

guage [126].

35

Chapter 2. Literature Survey

2. Language Extension: In this case, an existing language is extended with

parallelism support. Therefore, parallelism is expressed as constructs in

the program. An example of this would be in GpH [162] (Section 2.4.5.1),

where parallelism is specified as a specific construct par judiciously added

by the programmer to the Haskell program to indicate those parts of the

program that could be evaluated in parallel, and leave the management of

parallelism to the underlying RTS.

3. Coordination Language: In this case, a new language is dedicated for

parallelism coordination; thereby, separating computational activities from

coordination. An example is Linda [72, 130], which serves as a framework

that can be applied to a computational language such as C, in order to

support parallelism coordination.

4. Libraries: In this case, parallelism is expressed in specific libraries such

as MPI [125, 77], or PVM [71] (Section 2.4.1.1). The functions of those

libraries can be called from a program written in computational languages

such as C, C++, or Fortran.

5. Compiler Directives (Pragmas, Annotations): In this case, paral-

lelism is expressed as comments for the compiler in the main program.

Semantically, the comments do not change any aspect of the meaning of

the main program, and can be ignored by the compiler. An example of this

approach would be OpenMP [36] (Section 2.4.1.2).

2.3.5 Skeletons

Algorithmic skeletons [41, 76, 141] are a model of structured parallel programming

that aim to simplify the task of developing parallel applications by abstracting

generic and recurring computations and communication patterns within paral-

lel programs as predefined application independent components, thus achieving

a trade-off between the performance of the application, its portability and the

programmer’s productivity [43]. There are several advantages to using algorith-

mic skeletons [58]: they facilitate the development of parallel programs by ab-

stracting over the low-level details of coordination aspects, and restricting the

36

Chapter 2. Literature Survey

programmer’s job to writing the sequential fragments of the program and in-

stantiate skeletons. Thus, it both provides efficient application and increases

programmer productivity. Skeletons can be nested; thus implementing complex

patterns [45, 123], taking another skeleton as an argument, or returning it as

a result. In terms of functional programming, skeletons are higher-order func-

tions, which can take other functions as argument. Algorithmic skeletons can be

classified according to the type of parallelism represented [94, 138], as:

• Data parallel skeletons: in which a function is applied to every element of

the data structure in parallel.

• Task parallel skeletons: such as pipelines or task farms in which a set of

functions are applied in parallel to different elements of the data stream.

Some skeletons were recently developed for certain kinds of application domains,

such as Google’s MapReduce [46], and Apache Hadoop [150] for distributed data

mining.

2.4 Parallel Languages

2.4.1 Imperative Languages

In imperative languages, variables represent memory locations with assignments

used to manipulate those memory locations. Unlike functional languages, im-

perative languages are characterised by concepts such as pointers, loops, control

statements, and side effects. Moreover, they establish specific steps to be taken by

the machine to perform a given algorithm; whereby, instructions are executed in

a low-level sequential manner closely matching the single-core architecture [110].

In fact, when supporting parallelism, there is a trade-off between the effi-

ciency of the parallel program and the simplicity of writing it. Writing a parallel

program in imperative languages such as C, C++, and Fortran with parallel li-

braries, can deliver an efficient program with high exploitation of parallelism.

However, the programmer must still manage the low-level details of coordina-

tion aspects, such as process management, and explicitly manage communication

and synchronisation. Consequently, the programmer’s productivity is reduced,

37

Chapter 2. Literature Survey

the resulting program is complex, long, and more prone to errors. On the other

hand, Functional languages (Section 2.4.5) provide higher level support for par-

allelism, better programmer productivity, and less code with the price of lower

performance compared with parallelism support in imperative languages.

This section outlines the most common parallel programming libraries, such as

MPI [125, 77], and PVM [71] as message passing models, which target distributed

memory architectures. It also discusses OpenMP [36] as a mainstream model

for shared memory architectures.

2.4.1.1 Message Passing

Message passing has emerged as a standard model for exploiting parallelism on

large-scale homogeneous distributed memory architectures. In particular, it pro-

vides scalable, portable, and efficient parallel applications. Moreover, it supports

different computational models; i.e. “Functional Parallelism”, in which the main

application is divided into different tasks, and can be parallelised by implementing

those tasks in parallel. Another form of supported parallelism is “Data Paral-

lelism”, in which the same computation can be carried out in parallel on different

data sets. The message passing model is supported by different languages, in-

cluding C, C++, and Fortran. The message passing model, as opposed to shared

memory model, can be used to program both shared and distributed memory

parallel machines.

In the 1990s, a committee of vendors, government laboratories and universities

worked together to produce a standard specification for developers and users of

message passing libraries. At that time, many different message passing libraries

often produced by computer vendors, existed. The result of their standardisation

efforts was MPI [125, 77]. Since it is a standard interface, code written for one

system can easily be ported to another system. MPI is the only message passing

library that can be considered standard, and which lends itself to virtually all

distributed memory programming models.

PVM [71] is an integrated set of software tools and libraries, which provides a

unified framework for the development of parallel programs. PVM was an earlier

38

Chapter 2. Literature Survey

version of a portable library for message passing than MPI. However, nowadays

MPI is more widely used, because it is supported by many computer vendors

and has similar functionality to PVM.

Message passing models using PVM or MPI have gained acceptance as they

represent mainstream parallel programming models and are likely to remain use-

ful and widely used in the future, regardless of their low-level, and requirement

for combinations of different parallel programming models to support heteroge-

neous or hierarchical parallel architectures. On the other hand, parallelising an

application using MPI or PVM is not easy. The programmer must be involved

in each aspect of the coordination, i.e. specifying how the work is to be divided

among the PEs, balancing the work to be done and managing the PEs commu-

nications. Moreover, there is no method in MPI or PVM that can be employed

to separate communication and computation elements of a code, as there is with

other high-level parallel programming languages, such as GpH.

2.4.1.2 Shared Memory

Parallelism approaches, that is based on threads, like pthreads [32] or JavaThreads

[128], represent the main model of parallel programming on shared memory ar-

chitectures. Nonetheless, the explicit thread-based model is low-level, as the pro-

grammer is required to manage synchronisation and communication in a manner

that sidesteps race conditions and ensures that deadlocks do not occur [98, 18].

Moreover, the use of fine-grained locking to manage synchronised access to shared

memory can lead to limited scalability.

By contrast, OpenMP is a de facto standard Application Programming In-

terface (API) used mainly with shared memory architectures to provide a higher-

level model that abstracts over the thread management details. OpenMP is not

a new programming language, rather, it is a specification that can be added to

some programming languages such as Fortran, C, and C++ to specify the coor-

dination aspects of a parallel program [36, 140]. It consists of a set of compiler

directives, supporting library routines, and environmental variables to specify

parallelism, and program runtime characteristics [140]. The compiler directives

inform the compiler which regions of the code require parallel implementation.

39

Chapter 2. Literature Survey

The main model of parallel programming supported by OpenMP is called the

“Fork/Join model”. The master thread will work sequentially until it encounters

parallel directives, then a team of new threads will be prompted to fork off. This

team then works in parallel until the end of the parallelised section, where it

joins together so that the master thread can continue working as before, until it

encounters another parallel directive, and so on.

OpenMP is very active community, with emerging standards for language in-

dependent shared memory computations. It has been successfully used to develop

high performance parallel applications, as a consequence of its several advantages.

First, it is simple to learn and use, requiring little programming effort. More-

over, it provides high performance applications that are able to run on different

shared memory platforms with a different numbers of threads. Furthermore, as

a result of its being a directive-based approach, the same code can be developed

on single-core, as well as multi-cores platforms; in the former, the directives are

simply considered to be comments and therefore ignored by the compiler and

successfully implemented sequentially [36, 37]. Another important advantage of

OpenMP is that it allows incremental parallelisation to be carried out. By

starting with a sequential program, the programmer needs to simply add those

directives which express parallelism [137, 37]. OpenMP is identified as a high-

level parallel programming model, although it is explicit about threads. The

parallelisation task is not always straightforward, as the programmer still needs

to consider carefully how to exploit parallelism efficiently.

2.4.2 Parallel Object Oriented Programming

Object-orientated programming facilitates encapsulation of low-level mechanisms,

and additionally clears a path for the programmer to manage the complexity of

parallelism. Further, it enables modularity and code reuse, the importance of

which is maximised for parallel programmes, as they have greater development

overheads [88].

The object-oriented class of parallel programming supports a high-level ap-

proach to parallelism with different communication models. In particular, the

Charm++ system [89] supports explicit parallelism with a message passing model,

40

Chapter 2. Literature Survey

and builds on top of C++ to provide an asynchronous message-driven orchestra-

tion, together with an adaptive runtime system. It has been used for numerous,

large-scale, portable applications; for example, biomolecular simulations from the

domain of molecular dynamics. In contrast, A Parallel Object-oriented Environ-

ment for Multi-computer Systems (POEMS) [88] provides implicit support for

parallelism, by hiding the coordination of parallelism management and assign it

to the underlying runtime execution model, which is based on object replication.

As an alternative to message passing, method invocation represents another

communication mechanism adopted by POEMS, as well as another set of parallel

object oriented programming libraries such as JavaParty [136], which extends

Java by providing locality support for non-uniform parallel machines such as

NUMA, as well as supporting the data-parallel pattern, ParoC++ [167], which

extends C++ with the support of parallel objects, and adaptive utilisation of

heterogeneous architectures resources, such as Grids.

2.4.3 Hybrid Parallel Programming Model

Current state-of-the-art practice in high-performance computing to exploit the

increasingly hierarchical architectures, is using different programming models at

different levels of the hierarchy, such as at the cluster and at the node (a multi-

core) levels of a cluster of multi-cores. A typical hybrid model might be MPI mes-

sage passing at the distributed memory (cluster) level, together with OpenMP

on each shared memory (multi-core) level [174]. A more complex model offers

support for massive data parallelism at the third level by using Compute Uni-

fied Device Architecture (CUDA) for example, to exploit GPUs cluster [175]. The

complexity associated with managing two or more different parallel programming

abstractions restricts this approach to parallel programming to areas of HPC.

An early attempt to unify programming models in this setting involved the im-

plementation of an early definition of OpenMP on clusters of workstations [85],

which was built on the TreadMarks distributed shared memory implementa-

tion [11]. More recently, ScaleMP [145] provided a commercial virtualisation

solution, in the form of the vSMP infrastructure. It provides a “virtual symmet-

ric multi-processing” over a cluster of multi-cores, through OpenMP or pthreads

41

Chapter 2. Literature Survey

as programming abstractions. Its focus is on memory intensive applications,

rather than classical high-performance applications, and it is aimed at businesses

rather than computing centres; reflecting the transition of parallel programming

towards the mainstream. Using an InfiniBand network, performance measure-

ments in [146] report a remote memory latency of 20 times local memory access.

However, through the aggregation of several remote memory accesses on the ap-

plication level, a bandwidth of 96GB/s was achieved, resulting in a good speedup

of up to 80 on 104 cores. From a programming model perspective, problems with

load balancing in OpenMP applications have been identified, underlining the

importance of load balancing policies in virtual shared memory implementations.

The OpenCL and OmpSs frameworks are driven towards providing a unified

model for multilevel parallel programming over a hierarchical architectures of

cores and GPUs [171, 53, 96]. Regrettably, such a model is still lower-level than

would be desired, which results in increasing the responsibility of the programmer

to manage parallelism.

PGAS languages take a data-centric view. They provide primitives for map-

ping distributed data structures across nodes, and expresses computation at

named locations as the main mechanism for controlling parallelism. PGAS lan-

guages provide a higher level of abstraction compared to OpenMP, in that they

hide the details of the coordination between parallel activities, as well as manag-

ing communications automatically inside the RTS.

Prominent examples of the PGAS languages are Chapel [35], X10 [38], and

Fortress [9]. PGAS concepts have been integrated into mainstream languages in

the form of Unified Parallel C (UPC) [54] and Co-Array Fortran [127]. A library-

based implementation of asynchronous PGAS, in the form of Global Futures [39]

provides implicit synchronisation based on future abstraction.

Our work in GUMSMP represents an implementation for GpH, targeting a

cluster of multi-cores architectures, where the model of parallelism is unified.

2.4.4 Parallel Systems

There are many parallel systems targeting different classes of parallel machines.

An early parallel Lisp implementation was MulT [93], which introduced the notion

42

Chapter 2. Literature Survey

of lazy task creation [124]. This concept was also employed in the design of

GHC-GUM. It allows threads to subsume the evaluation of the data, for which

the potential parallelism has been generated.

The work on Lazy Threads [75] explores different ways for encoding and dis-

tributing potential parallelism. The representation of parallelism in GHC-GUM

and GHC-SMP, in the form of sparks, represents one point in the spectrum,

with a focus on low overheads.

These most closely related languages to our work on GUMSMP are all di-

alects of Haskell, and discussed in more detail in Sections 2.4.5.1, 2.4.5.2, and

2.5. There are other parallel systems with a shared design or implementation

concerns to our work, and are discussed below.

2.4.4.1 Manticore

Manticore is a heterogeneous parallel implementation for ML and provides im-

plicitly threaded parallelism using nested data-parallel constructs, drawn from

NESL [25, 24] and Nepal [33, 34], which can be combined with concurrent and

coarse-grained parallelism support of ML’s [143] to provide explicit synchronisa-

tion and coordination, based on message passing on a large scale; thus supporting

parallelism at multiple levels [59, 60]. Different degrees of parallelism are sup-

ported ranging from implicit parallelism: where the compiler and runtime system

are responsible for managing parallelism to explicit threading, where the pro-

grammer has the entire control to manage parallelism. These mechanisms are

constructed on top of a sequential language that is based on the features of func-

tional programming. By supporting two levels of abstraction, the implementation

is sufficiently flexible to support hierarchical networks. Futures and data-parallel

constructs are key abstractions to manage local parallelism [59, 60].

2.4.4.2 Filaments

Filaments [111, 112] was an early system implemented as a portable package

with a focus on light-weight threads, potentially combined with distributed shared

memory, encouraging an approach to parallelisation that exposes massive amounts

of parallelism, determining at runtime whether or not to exploit specific paral-

43

Chapter 2. Literature Survey

lelism, rather than to restrict it at application level.

This approach benefits from the advantages of fine-grain parallelism, such as

its simplicity, efficient and dynamic load balancing, simplifying code generation,

and portability, as it depends on the application and the problem size rather than

on the executing cores. Filaments has been implemented as a package for shared

memory multi-cores and termed Shared Filaments (SF) and used as a system-call

library with performance within 10% of the equivalent hand-coded coarse-grained

programs for several parallel applications. SF was then applied to the modified

Sisal compiler as a back-end, to produce Filaments code and therefore achieve

efficient parallelism in the functional data flow language [67].

This was then extended to Distributed Filaments (DF) to target a cluster

of workstations by combining it with a distributed shared memory customised

for use with fine-grain threads. It achieves efficient performance by providing

automatic load balancing, overlapping communication with computation, and

implementing a reliable and fast datagram communication protocol. For a variety

of parallel applications, DF achieves good speedup on a cluster of workstations,

e.g. a speedup of up to 5.7 on 8 cores [68].

A filament is a lightweight thread with size ranges from small, as in the com-

putation of an average in a Jacobi iteration; medium size, as in the computation

of an inner product in a matrix multiplication, or large with one process per core

as in a coarse-grain program, with one to one correspondence between a process

and a core. Server threads are created on each core to execute filaments one at a

time. The Filaments system achieves its efficiency by employing a combination

of key important techniques: Stateless threads; so there is no private stack for

the threads, and threads are treated equally, so there is no pre-emption or con-

text switches, but only one stack per server thread (core). It also provides small

thread descriptors, therefore, allowing for more room for the program data in the

cache; thus enhancing data locality. Moreover, it provides less contention, due

to the use of local ready queues for all types of threads. More optimisations are

offered such as inlining, pruning, and pattern recognition to reduce the different

sources of overheads associated with creating and executing filaments [111, 112].

44

Chapter 2. Literature Survey

2.4.4.3 Task Parallel Library

Task Parallel Library (TPL) is a library for .NET framework that does not re-

quire language extension and provides efficient performance by taking advantage

of potential parallelism in the program, e.g. a speedup between 5 to 7.5 on 8

cores [99]. Parallelism is expressed in terms of tasks, which represent the units of

work, mapped to the worker threads. The key elements for defining custom con-

trol structures based on TPL, are parametric polymorphism (generic) and first

class anonymous functions (delegate). All types of parallelism can be built based

on those two elements, using just the two primitives provided by the library, i.e.

task, and replicable task [99].

Work-stealing queue is the main data structure used for load balancing, where

each thread has its own local task queue from which others can steal tasks. Since

the performance of the work-stealing queue is critical to overall performance,

an alternative duplicating queue has been implemented to trade memory with

performance, as work can sometimes be duplicated to avoid locking [99]. Even

though TPL provides automatic parallelism management in terms of mapping

the parallel tasks to worker threads, its patterns of parallelism are considered to

be a semi-explicit approach (Section 2.3.1) as the programmer is still required to

manage the task decomposition and synchronisation [18].

2.4.5 Functional Languages

The following paragraphs are closely based on [166]. Functional languages as com-

putation languages for parallelism have many attractive properties with regards to

parallelism, which has gained worldwide recognition over the past three decades.

They provide a high-level programming approach by trading some performance

for ease of programming, thus increasing the programmer’s productivity. They

offer sophisticated methods of abstraction, in particular they feature an absence

of side effects which simplifies parallel programming. The other primary bene-

fit of a pure computation language is the referential transparency which ensures

that the execution is afforded significant freedom of execution order without al-

tering the semantics of the program. Specifically, independent expressions can

be evaluated in any order and are guaranteed to deliver the same result. In the

45

Chapter 2. Literature Survey

case of parallel execution, this is also known as deterministic parallelism [116].

Therefore, the potential exists for the independent expressions to be evaluated in

parallel.

For these reasons, such high-level, purely functional languages represent a

good host for parallelism support in the form extended coordination (sub) lan-

guages, or standalone parallel functional languages. In line with the correspond-

ing high-level pure computation language, the parallel functional languages offer

high-level parallelism support in the form of automatic management of a number

of coordination aspects. Therefore, the programmer is freed from explicit low-

level management of parallelism. On the other hand, the high-level management

of parallelism often reduces performance as it is less effective than hand-crafted

coordination.

Examples of such languages include: Single Assignment C (SAC) [147], which

has syntax based on C, but uses single assignment semantics, making it refer-

entially transparent. It also utilises program transformations heavily to improve

the efficiency of the data parallelism generated. It mainly targets numerical

applications and achieves excellent speedups on the NAS benchmark suite. An-

other widely used parallel functional language is Erlang [172] which represents

a high-level distributed memory parallel language with explicit message passing

as a primary way of communication between the light-weight processes based

on the “Actor Model” [84, 1], which is a model for concurrency, based on the

usage of actors as lightweight processes, which differs from threads in its ability

to exchange messages as well as not maintaining shared states. Erlang has been

widely used to provide scalable industrial real-time systems. Other groups of

languages follow the multi-paradigm programming which combines some features

of functional languages with object oriented languages, such as the traditional

Ocaml [153], or the new generation languages such as F# [158], and Scala [129].

There are substantial surveys of parallel functional languages in [166, 165].

Haskell as a purely functional language has been put in to use as a host

computation language for a broad range of parallel languages. Beside the afore-

mentioned characteristics of functional languages, Haskell belongs to the lazy

(non-strict) sub-set of functional languages. The following discussion of lazy

46

Chapter 2. Literature Survey

evaluation is closely based on [166, 104]. Lazy evaluation aims to perform the

least possible amount of reduction. That is evaluating an expression only when

the computation needs its value. In contrast with the strict languages, in lazy

languages the evaluation is demand-driven as the consumer of the evaluation re-

sult is in charge of the evaluation amount and order. Lazy evaluation of non-strict

evaluation has both challenges and opportunities for parallel execution.

The main challenges are:

1. Laziness vs. eagerness required for parallelism: Lazy evaluation is

sequential and is based on achieving the least possible amount of reduction.

That is reducing the expression only when its value is needed. To the con-

trary, parallel programs perform computations on multiple PEs, meaning

that eager evaluation is preferable. A balance between lazy and eager eval-

uation is needed to provide sufficient parallelism. In the context of spec-

ulative parallelism, laziness limits the amount of speculative parallelism,

because the demand in the program determines the evaluation degree.

2. Must specify the degree of evaluation: In contrast to strict languages,

the consumer of the evaluation result is in charge of the evaluation amount

and order, which has to be specified by the programmer.

3. Hard to build cost models: In lazy languages, the behaviour of the

computation is demand-driven and depends on the amount and order of

evaluation required by the consumer which make it challenging to construct

cost models. This means that reasoning about computational costs is more

complicated than in a language with eager evaluation.

It could be considered as unusual to find a lazy language such as Haskell

as a widely used functional computation language with many coordination sub

languages e.g. par Monad, HdpH, GpH. Many characteristics making Haskell an

appropriate host computation language for parallelism do not differ from those

characteristics making it a good sequential language: referential transparency,

advanced type system and high-level abstraction in addition to a range of other

features. Moreover, the following opportunities provided by the lazy evaluation

highly support high-level parallelism.

47

Chapter 2. Literature Survey

1. On-demand reductions: In a parallel setting, on demand reduction as-

sures that only the required data items of a large data structure are com-

municated from the producer to the consumer. To tackle the piece-wise

communication, the consumer can explicitly specify the evaluation degree

of the required data structure.

2. Clean separation of computations and coordination: By detach-

ing the evaluation mechanism from the language semantics, the program-

mer can separate the specification of the result value from operational be-

haviours of the program. This represents an important feature for parallel

programming as evaluation can be separately specified without altering the

original computation code. For example, in the parallel Haskell extension,

GpH, this extra coordination is supported by evaluation strategies discussed

in the following Section 2.4.5.1.

There is a diversity of languages and implementations for parallel Haskell.

At the language level, diversity is based on the different abstractions supported.

These vary in terms of how explicitly they control parallelism, e.g. implicit, semi-

explicit, and fully explicit approaches. At the implementation level, diversity

is based on different classes of architectures with different characteristics, e.g.

clusters, multi-cores, etc. In the following sub-sections, we focus on parallel

Haskell dialects that are closely related to our work. In particular, we discuss

GpH, Eden, and HdpH as examples of parallel Haskell languages supporting semi-

explicit approach. We then discuss Cloud Haskell and Par Monad as examples

of parallel Haskell languages supporting explicit approach. The discussion of the

different implementations for parallel Haskell is provided in Section 2.5.

2.4.5.1 Semi-explicit Parallelism

Glasgow Parallel Haskell (GpH): The following description outlines the

main features of GpH and is summarised from [162, 119, 115, 164]. GpH is one

of the many extensions of Haskell lazy functional language, which was developed

to facilitate parallel programming, by supporting high-level parallelism. Since

GpH is mostly implicit, the majority of the coordination aspects of the parallel

program are managed by the RTS. These coordination aspects involve threads

48

Chapter 2. Literature Survey

and memory management, communications and synchronisation. In GpH, the

programmer specifies the part of the program to be evaluated in parallel, leaving

the decision to the RTS. In particular, the parallelism in GpH is achieved by

adding two primitives to Haskell: par and pseq .

• The intuition of x par e is: evaluate e and return it but, at the same

time, attempt to evaluate x (on a separate core). Therefore, par does not

enforce the evaluation of x in parallel with e, but it is rather a request for

parallelising e, if possible.

• The notation e1 pseq e2 is: evaluate e1 to the top level constructor of the

data structure: Weak Head Normal Form (WHNF), and then return e2.

For example, x ‘par‘ y ‘pseq‘ (x + y)

In this code, x is sparked for parallel evaluation and the current thread evaluates

y, and then adds the results of x and y. To complete the addition operation, both

arguments must be evaluated. Typically, x and y are local variables, bound to a

sizeable computations.

Depending only on using par and pseq can obscure the algorithm by engag-

ing a lot of program text to describe the dynamic behaviour code. In order to

separate the algorithm and the dynamic behaviour codes, Evaluation Strategies

have been developed [162].

par :: a -> b -> b -- parallel composition

pseq :: a -> b -> b -- sequential composition

Figure 2.6: GpH coordination primitives

Evaluation Strategies use lazy higher order functions to separate the com-

putations (algorithm) from the coordination (dynamic behaviour), and therefore

raise the abstraction level, to allow the parallel function to be developed in two

separate sections: the algorithm and the strategy. This is a great advantage of

GpH as compared to other low-level parallel libraries like MPI in which it is

much more difficult to differentiate between the computation and coordination

aspects of the program; since a huge amount of the program text is engaged in

code, specifying the coordination aspects.

49

Chapter 2. Literature Survey

A strategy is a function responsible for specifying the dynamic behaviour

needed by the algorithm to solve a problem in a parallel way, without modifying

the computation code. It returns a nullary value (), since it is executed purely

for effect. A strategy can be applied with “using” construct to apply a strategy

to a value. It takes a value of specified type and a strategy of the same type and

applies a strategy to the value, as illustrated in Figure 2.7.

type Strategy a = a -> () -- evaluation strategy

using :: a -> Strategy a -> a -- applying strategy to value

using x s = s x ‘seq‘ x

Figure 2.7: Evaluation strategies

Since strategies are functions, they can be combined together, passed as ar-

gument, or composed. A new strategy can be defined simply for specific applica-

tions. The evaluation degree strategies are presented in Figure 2.8, and defined

as follows:

• r0 : which involves on reduction at all, and can be used to exclude some

elements from a list from reduction.

• rwhnf : reduces to Weak Head Normal Form (WHNF), which is the default

in Haskell.

• rnf : fully evaluates its argument, which means reduces it to Normal Form

(NF).

r0 :: Strategy a

r0 _ = ()

rwhnf :: Strategy a

rwhnf x = x ‘seq‘ ()

class NFData a where
rnf :: Strategy a

rnf = rwhnf

Figure 2.8: Evaluation degree strategies

“Strategies specifying data oriented parallelism describe the dynamic be-

haviour in terms of data structure” [162]. For example, parList is a function

50

Chapter 2. Literature Survey

that applies a strategy to each element in a list in parallel. Another example is

parMap, which takes a function and a list of data, and maps the function over

the list in parallel. More information about these strategies can be found in [162].

New Strategies: Evaluation strategies have been redesigned as shown in Fig-

ure 2.9 to provide new benefits, while preserving the original strategies features

of modularity and compositionality [115]. The new benefits are:

1. Introducing evaluation-order monad to allow the specification and ordering

of a set of evaluations in a compositional way, thereby providing a clearer,

more efficient, and more generic specification of the parallel evaluation.

2. Resolving the space management issues for retaining heap unnecessarily

with the original strategies. With the new formulation, sparks representing

parallelism are preserved, while the heap associated with superfluous par-

allelism is reclaimed. Speculative parallelism is better supported with the

new formulation, as unnecessary speculation will be pruned by the garbage

collection.

3. The new formulation makes it possible to directly express the class of par-

allel coordination abstractions that cannot be expressed with the original

strategies. Those parallel coordination abstractions are embedded within

the lazy components of the data structure, and with the original strategies,

they were defined as functions rather than expressed as strategies. Thereby,

the new strategies produce more compositional strategies, and facilitate a

richer set of parallelism combinators.

Eden: The following description of Eden is summarised from [109, 21]. Eden

is a semi-explicit approach to functional parallel programming, which extends

Haskell. Processes are explicitly defined in Eden, and the communication sup-

ported combines explicit and implicit models [109, 107]. Distributed memory

parallelism is supported by Eden; thus, there are no shared values among the

processes, as it supports the message passing model for communication (Sec-

tion 2.4.1.1).

51

Chapter 2. Literature Survey

data Eval a = Done a

instance Monad Eval where
return x = Done x

Done x >>= k = k x

runEval :: Eval a -> a

runEval (Done a) = a

type Strategy a = a -> Eval a

using :: a -> Strategy a -> a

x ‘using‘ s = runEval (s x)

dot :: Strategy a -> Strategy a -> Strategy a

s2 ‘dot‘ s1 = s2 . runEval . s1

r0 :: Strategy a

r0 x = return x

rseq :: Strategy a

rseq x = x ‘pseq‘ return x

rdeepseq :: NFData a => Strategy a

rdeepseq x = rnf x ‘pseq‘ return x

rpar :: Strategy a

rpar x = x ‘par‘ return x

evalList :: Strategy a -> Strategy [a]

evalList s [] = return []

evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs

return (x’:xs’)

parList :: Strategy a -> Strategy [a]

parList s = evalList (rpar ‘dot‘ s)

Figure 2.9: New evaluation strategies

The programmer only has to specify the data on which the process depends,

and the underlying runtime system automatically manages the other control is-

sues, such as communication action and process placement [107]. The program-

mer is provided with some control over the load balancing, as well as the granular-

ity in order to specify expressions to be evaluated as parallel processes. This can

be achieved by using the high-level parallelism abstractions (libraries of skeletons)

provided by Eden to simplify the task of parallelising a program substantially.

52

Chapter 2. Literature Survey

For coordination, process abstractions and process instantiations are provided

in Eden as shown in Figure 2.10. The process abstraction: process (\x → e) of

a predefined polymorphic type Process a b defines the behaviour of a process

having the parameter x, with type a as input and the expression e with type

b as output. When processes are instantiated, they are executed in parallel if

resources are available.

-- process abstractions and instantiations

process :: (Trans a, Trans b) => (a -> b) -> Process a b

(#) :: (Trans a, Trans b) => Process a b -> a -> b

Figure 2.10: Basic coordination constructs in Eden

A predefined infix instantiation operator (#) is used to create processes. When

the expression: e1 # e2 is evaluated, a new process is created dynamically with

its interconnected communication channels, to evaluate the application of e1 to

e2. The evaluation of e2 is executed by the parent process (that owns the instan-

tiation expression), and the resulted full normal form data is sent via an implicitly

generated channel.

The child process evaluates the application of e1 to e2, and returns the result

via another implicitly generated channel. After creating the processes, the only

data objects communicated are fully evaluated, except for lists, which are trans-

mitted element by element as a stream. Values are communicated automatically

in Eden without a prior request from the receiver, until a notification is sent from

the receiver, indicating that input values are no longer needed.

Common parallel evaluation patterns are abstracted by algorithmic skeletons

into higher order functions, which simplify parallel program development, as well

as abstracting over the coordination details. Eden supports a range of skeletons,

such as the master-worker skeleton [21].

HdpH: The following description of HdpH is summarised from [113, 155]. A

High-level Distributed Memory parallel Haskell in Haskell (HdpH) is a high-level,

semi-explicit distributed memory parallel Haskell extension, influenced by Cloud

Haskell, but providing higher-level coordination and targeting hierarchical ar-

chitectures. Unlike Cloud Haskell, which is designed for distributed computing,

53

Chapter 2. Literature Survey

HdpH supports parallel computing and provides evaluation strategies and algo-

rithmic skeletons influenced by GpH and Eden. Furthermore, it supports par-

allelism at two levels, shared memory level and distributed memory level. For

shared memory parallelism support, it employs the primitives supported by Par

Monad [116]. In particular, it uses a fork primitive to generate a parallel thread,

and Ivar as a communication abstraction to communicate the computation results

of the parallel tasks. For distributed memory parallelism, the spark primitive is

used to generate parallel tasks that can be executed in a remote host, similar

to GpH. Serialisation is achieved by extending the Cloud Haskell closure serial-

isation to support polymorphic closure transformations; thus offering high-level

abstractions. Fault tolerance is implemented in HdpH as high-level skeletons-

based on the supervised work pool approach.

-- Shared Memory Primitives (same as Par Monad)

data Par a -- par comp yielding an a

fork :: Par () -> Par ()

data IVar a -- IVar expecting an a

new :: Par (IVar a)

get :: IVar a -> Par a

put :: NFData a => IVar a -> a -> Par ()

-- Distributed Memory Primitives

data Closure a -- closure yielding an a

spark :: Closure (Par ()) -> Par ()

data GIVar a -- global IVar expecting an a

glob :: (NFData a, Binary a) => IVar a -> Par (GIVar a)

rput :: (NFData a, Binary a) => GIVar a -> a -> Par ()

Figure 2.11: Shared and distributed memory primitives for HdpH

2.4.5.2 Explicit Parallelism

Cloud Haskell: The following description of Cloud Haskell is summarised

from [56, 55]. The term “Cloud” was used to indicate that the language targets a

large number of distributed memory machines. Cloud Haskell is a domain-specific

language for distributed memory systems, implemented entirely in Haskell. It

emulates the Erlang style of explicit message passing, as a primary means of

communication and a fault tolerance mechanism. Moreover, it provides a novel

approach for function closures serialisation, to allow higher order functions to be

54

Chapter 2. Literature Survey

communicated in a distributed computing environment. It also provides addi-

tional features inherited from the use of Haskell, e.g. purity, strong type system,

and monads. The programming model supported is the “Actor Model”, similar

to Erlang, where the inter-processes communication is achieved through explicit

message passing, with the support of all types of messages. Processes are cre-

ated on nodes which represent the machines. Within each process, the Haskell

thread-based model of concurrency is still supported. Thus, there are three levels

of abstraction: node, process, and thread.

To build an application with the Cloud Haskell, the programmer is provided

with a set of primitives for processes management and monitoring, serialisation,

and messages communication with hidden underlying implementation details.

Examples of such primitives are presented in Figure 2.12. However, efficiently

building an application with Cloud Haskell can sometimes involve a considerable

learning curve [17].

-- Basic messaging

instance Monad ProcessM

instance MonadIO ProcessM

send :: Serializable a => ProcessId -> a -> ProcessM ()

expect :: Serializable a => ProcessM a

-- Process management

spawn :: NodeId -> Closure (ProcessM ()) -> ProcessM ProcessId

call :: Serializable a => NodeId -> Closure (ProcessM a) ->

ProcessM a

terminate :: ProcessM a

getSelfPid :: ProcessM ProcessId

getSelfNode :: ProcessM NodeId

--Process monitoring

linkProcess :: ProcessId => ProcessM ()

monitorProcess :: ProcessId -> ProcessId -> MonitorAction ->

ProcessM ()

Figure 2.12: Some of the interface functions of Cloud Haskell

Par Monad: The following description of Par Monad is summarised from [116].

It is a parallel Haskell programming model for pure deterministic parallel compu-

tations, providing explicit monadic control of concurrency, and it targets a single

shared memory multi-core machine. As demonstrated in the shared memory

55

Chapter 2. Literature Survey

primitives for HdpH in Figure 2.11, Par is used to introduce parallelism based

on the use of a fork primitive to generate parallel tasks. Deterministic result

in the par Monad is produced by the runPar, a mechanism that is combined

later with Cloud Haskell in HdpH, to support distributed memory parallelism

(Section 2.4.5.1).

There are other parallel Haskell languages such as Data Parallel Haskell (DPH)

[135], which adopts key insights, and evolved out of earlier work on Nepal [33, 34],

which in itself was heavily influenced by the NESL [25, 24] system, to support

nested data parallelism. With the focus on data-parallel applications, hierarchi-

cal networks are less of a concern in its design, as it focuses on utilising a single

multi-core. In fact, an important aspect of the DPH implementation is flatten-

ing transformations, and distributing equal workload to processing units. This

aims to bring parallelism over nested data structures into a flat format, so that

manipulating only flat arrays, which can be more efficiently exploited by mas-

sively parallel hardware, opens up a wider range of applications including sparse

or irregular problems.

2.5 Parallel Haskell Implementations (RTS)

Parallel Haskell implementations are classified as distributed memory or shared

memory implementations.

2.5.1 Distributed Memory Implementation

GpH on GHC-GUM: A Graph Reduction for a Unified Machine Model

(GHC-GUM) [163, 164] is the virtual machine for the parallel Haskell functional

language, which has been released as an extension to the GHC [134, 118]. It is

based on the parallel reduction of the graph representing the program, the paral-

lelism being exploited by the reduction of independent sub-graphs being carried

out in parallel [133]. Some parallel/distributed Haskell extensions such as GpH,

and GdH, use GHC-GUM as the core of their implementation. GHC-GUM

is portable and available on different architectures (shared memory, distributed

memory, or network of workstations). It is a message-based system, implemented

56

Chapter 2. Literature Survey

by different generic communication libraries: PVM, MPI, and MPICH-G (an im-

plementation of MPI on top of the Globus grid middle ware) [66]. We provide a

detailed description of GHC-GUM, and its components in Section 3.3.

Eden: The details of the Eden implementation are summarised from [109]. The

main feature of Eden is its support for the distributed heap; it is strict regarding

transference of data to the core and the management of this transfer is organised

into three tables.

The Eden implementation extends GHC [134, 118] functionality by defin-

ing eight primitive operations, as shown in Figure 2.13, for explicit remote task

creation and channel-based communication mechanisms. The language level con-

structs are implemented as Eden Module over Eden-specific primitive operation.

1. createProcess# request process instantiation on another core
2. createDC# create communication channel
3. setChan# connect communication channel in the proper way
4. sendHead# send head element of a list on a communication channel
5. sendVal# send single value on a communication channel
6. noPE# determine number of processing elements in current setup
7. selfPE# determine own core identifier
8. merge# nondeterministic merge of a list of outputs into a single

input

Figure 2.13: Primitive operations for Eden

As a result of using primitive operations and Eden Module, no changes are

applied to the GHC’s front-end and major modifications concern alterations in

the RTS and the compiler’s back-end.

Greater flexibility and sustainability are achieved in Eden through its lay-

ered implementation, as shown in Figure 2.14; therefore, runtime system aspects

are lifted into the Eden Module, i.e. defining basic work-flows as a high-level of

abstraction.

Eden’s run time system is an implementation of the Distributed Eden Ab-

stract Machine (DREAM). It is an instance of the extended STG-machine, and

executes each Eden process, which has one or more concurrent thread indepen-

dently evaluating different output expressions. These concurrent threads share

the input to the process, as well as the information on the heap and the inport

table. Each thread is represented in the heap as a TSO (thread state object).

57

Chapter 2. Literature Survey

Figure 2.14: Layer structure of the Eden system [109]

Inport and outport represent the channels’ end on the receiver side and on the

sender side respectively. Any thread demanding unavailable data will be blocked

on a Queue-Me closure.

When data is sent, it is known to the receiving inport, the sending thread

(referred to by its outport) and the location of the incoming data, as specified

by the inport. The result of each thread’s computation is sent through its own

outport.

The inport table and the outport tables are used to maintain the necessary

information, such as mapping inport ids to Queue-Me closures addresses in the

heap, and mapping outport ids to the destination outports respectively.

Multiple Eden processes are evaluated in the same PE in an interleaved man-

ner and, in order to reduce a process creation overhead, each PE runs one instance

of DREAM, to execute several Eden processes concurrently.

One of the PEs is nominated as the Main PE and starts the execution by

evaluating the expression “main”. A scheduler and the runtime tables are shared

among all the Eden processes executing in the same PE (one inport table, one

outport table and one process table).

• Inport table is used to map the unique identifier of the inport to the heap

addresses of the corresponding Queue-Me closures, and to the global refer-

ences to the connected outports.

• Outport table is used to maintain the mapping of outports identifiers to

58

Chapter 2. Literature Survey

the corresponding address of the thread state object. It is used for garbage

collection and other system management purposes.

• Process table provides the number of inports and the number of threads for

each process, which is equal to the number of outports.

Cloud Haskell: The details of the Cloud Haskell implementation are sum-

marised from [56, 55]. Cloud Haskell was implemented entirely at the Haskell

level, and tested with a recent version of GHC. Processes represent the ba-

sic units of concurrency, and are implemented using the Concurrent Haskell’s

threads supported by the standard GHC system, which offers low creation and

termination overheads as a single node supports hundreds of processes, which may

start and end frequently. Any process can send and receive messages which are

asynchronous, reliable, and buffered. Each process maintains a process identifier,

comprising the host name, TCP port, and a unique process number.

To exchange a message, the sending process connects to the given port, iden-

tifies the target process, and sends the serialised message. At the other side,

when the message is received, it is placed into the message queue belonging to

the destination process. The implementation of message queues was based on

the Haskell’s Software Transactional Memory (STM) which offers a mechanism

to receive atomic transactions on individual message queues.

HdpH: The details of HdpH implementation are summarised from [113]. HdpH

is implemented entirely in concurrent Haskell as a library on top of the standard

GHC system. HdpH implementation is layered and moduler coded in Vanilla

GHC Concurrent Haskell with independent modules for different coordination

aspects, e.g. thread management, communication, scheduling, global references,

spark management etc.; thus it preserves maintainability and facilitates develop-

ment. The communication layer abstracts over the inter-process communication,

which is based on MPI. The management of sparks in HdpH follows a similar

work stealing approach of GHC-GUM, but at the Haskell level. In particular,

each PE maintains a single spark pool, where sparked computations that are

suitable for remote execution are placed. Within a PE, if there is no thread in

59

Chapter 2. Literature Survey

the runnable threads pool, then a spark will be turned to local threads. Sparks

are sent for remote executions upon receipt of a work request message. When

the spark pool is running low, a work request message is sent to a random PE,

which is forwarded if no spark is available. A No-work message is returned to the

originator PE if no sparks are available in the visited PEs, which delays for some-

times before sending another work request. The selection of a spark is age-based:

the youngest sparks are turned to threads and the oldest ones are exported for

remote executions. A Push message can also be sent which require an immediate

execution of the computation and is suitable for very short and urgent actions,

like writing to an IVar or forking a thread.

A global references mechanism is used in HdpH to access remotely hosted

objects, with a registry table maintained to keep a link between the global refer-

ences and the referred objects, much like the Global Indirection Table (GIT) in

GHC-GUM (Section 3.6.1).

2.5.2 Shared Memory Implementation

GpH on GHC-SMP: It is an optimised shared memory implementation for

GpH integrated in GHC [119]. It assumes a physical shared memory, and uses

mutexes for synchronisation between local threads. GHC-SMP excels at the

efficient handling of lightweight threads. Millions of lightweight threads are sup-

ported by the GHC-SMP runtime system. To achieve this, the threads are mul-

tiplexed onto a handful of operating system threads, approximately one for each

physical core. We provide a detailed description of GHC-SMP in Section 3.3.

Par Monad: The details of Par Monad implementation are summarised from

[116]. It provides implementation of the system-level functionality (work-stealing

scheduler) as a Haskell library. It also separates the implementation of Par

Monad, and the scheduler, thus, facilitates the modification of the implementa-

tion, such as implementing different scheduling policies. Work-stealing scheduling

is implemented, where one worker thread is created for each physical core. Each

Haskell Execution Context (HEC) has its own work pool, to keep the runnable

threads, and runs its own instance of the scheduler, which aims to run a thread

60

Chapter 2. Literature Survey

from its own work pool, if no thread is available, it steals threads from others

work pools. If no thread is available, then the worker thread becomes idle, and

will be woken by another worker thread whenever the latter has new runnable

threads available.

There are other parallel Haskell implementations, such as Meta-Par [62], which

is built on the Par Monad, takes Haskell-level programmability and abstractions

of RTS functionality further, especially for scheduling on heterogeneous architec-

tures (with a focus on CPU and GPUs interaction).

2.5.3 Parallel Haskell Implementations Comparison

Many of the parallel Haskell language implementations depend on sophisticated

runtime systems implemented in a low-level language, to automatically manage

parallelism, i.e. synchronisation, communications, work scheduling etc. Exam-

ples include GHC-GUM, GHC-SMP, and Dream/EDI. The implementation of

GUMSMP follows this approach.

Having a runtime system implemented in a low-level language gives high per-

formance, but maintenance is challenging and the RTS needs to be continuously

updated.

The main difference between Eden, GHC-GUM, and GHC-SMP are:

1. Heap Model: Completely independent sub-heaps are maintained in Eden,

whilst a virtual shared heap is maintained in GHC-GUM, and a shared

heap is maintained in GHC-SMP.

2. Granularity Control: Process creation is mandatory in Eden, whilst other

implementations support dynamic mechanisms, such as sparking, specula-

tive or optional thread creation and thread subsumption.

3. Work Distribution: Work distribution is Eager in Eden, as the process is

moved to other PEs; whilst in GHC-GUM and GHC-SMP, the work

distribution is lazy, in which case idle PEs steal work.

4. Eden and GHC-GUM implementations share the advantages of supporting

a distributed heap, such as reducing synchronisation overheads.

61

Chapter 2. Literature Survey

The current trend for parallel Haskells is to use a concurrent Haskell to imple-

ment all functionality, instead of modifying the GHC runtime system, thereby

trading performance for maintainability and ease of development. Examples in-

clude Cloud Haskell, Par Monad and HdpH.

Table 2.1: Parallel Haskell implementations comparison (+:property is supported,
−:property is not supported, ++:property is improved)

Distributed Memory Shared Memory

Property / Language GUMSMP GHC-GUM Eden Cloud Haskell HdpH GHC-SMP Par Monad

Scalable (distributed memory) + + + + + - -

Fault Tolerance (isolated heaps) - - + + +

Polymorphic Closures + + + - + + +

Pure, i.e. Non-Monadic API + + + - - + -

Determinism + + - - - + +

Implicit Task Placement ++ + + - + + +

Automatic Load Balancing ++ + + - + + +

Hierarchical Load Balancing + - - - + - -

Table 2.1 has been reproduced from [113] which compares the key features

provided by different parallel Haskells. Those features are as follows:

Scalability: is the ability to exploit the increasingly available hardware re-

sources, e.g. the number of cores.

Fault Tolerance: represents the implementation where heaps are isolated for

each PE, and provides a tolerance mechanism for individual PE failure.

Polymorphic Closures: is the ones that can have more than one type.

Pure: has no side effects.

Determinism: a model that guarantees that the same sequential execution re-

sult is produced by the parallel evaluation.

Implicit Task Placement: the mapping of the parallel tasks to the PE is achieved

implicitly by the language implementation.

Automatic Load Balancing: the balancing of parallel tasks among available

PEs.

62

Chapter 2. Literature Survey

Hierarchical Load Balancing: the implementation that provides different load

balancing mechanisms at different levels of the hierarchy e.g. shared mem-

ory load balancing mechanism within a shared memory machines, and dis-

tributed memory load balancing mechanism across the distributed memory

machines.

Shared memory implementations have limited scalability, as they only work on

a single shared memory machine, e.g. a multi-core or NUMA. On the other hand,

distributed memory implementations work on shared memory architectures, as

well as on distributed memory architectures. They can still deliver good perfor-

mance on multi-cores, as long as the tasks to be communicated are large and the

communication rate is low [14, 23, 22].

As we shall see in the following chapters, GUMSMP is also scalable, and

provides improvements for two aspects of the parallel implementations, namely

implicit task placement, and automatic load balancing. This is a result of inte-

grating GHC-SMP, which is designed for multi-core architectures and GHC-

GUM which is designed for clusters. Thus, GUMSMP is designed to provide

an architecture-aware system, tuned for a cluster of multi-cores architectures.

2.6 Load Balancing

To take advantage of parallel architectures, work must be decomposed into smaller

tasks to be carried out in parallel. The tasks must be assigned to PEs to ap-

proximately equalise computational load on PEs. To achieve good parallel per-

formance, it is crucial to efficiently exploit the resources accessible as well as

minimise the overhead of communication and preserve the data locality [18].

Load balancing (i.e. the distribution of tasks among the available PEs) has

previously been widely researched as it is a central mechanism affecting the perfor-

mance of parallel applications. Achieving scalable performance on large clusters

of multi-cores, especially for applications with irregular or dynamically generated

parallelism is challenging as they require dynamic load balancing techniques to ef-

ficiently exploit the underlying large numbers of cores [50]. It is relatively difficult

to map the tasks to the PEs in applications that dynamically produce irregular

63

Chapter 2. Literature Survey

parallelism. Therefore, heuristics or approximations mechanisms are frequently

employed to dynamically balance the load during the program execution. Infor-

mation in relation to the task dependencies and communication patterns may be

used to guarantee better data locality. Nonetheless, load imbalance could be the

consequence of retaining the data locally, subsequently leading to a trade-off [18].

Individual task pools are maintained by each PE to hold the locally generated

tasks. In some shared memory systems, PEs can access a single shared task

pool [87]. There are two primary categories of load balancing: work stealing and

work pushing.

1. Work-Pushing (active load distribution, load distribution commenced by

the sender) is a mechanism where PEs with a large number of tasks push

them to other PEs without receiving explicit work requests. Otherwise, if

there is a single shared task pool and new task joins it, it is distributed to

some PE.

2. Work-Stealing (passive load distribution, load distribution commenced

by the receiver) is a mechanism where idle PEs explicitly request work to

execute. If there is a shared task pool, idle PEs steal tasks from that pool.

Each of the categories has advantages and disadvantages. To be able to dis-

tribute a task between PEs, work-pushing simply necessitates that there is contact

from the first PE to the second PE, for example as a message with an attached

task. In contrast, the second (idle) PE in the work-stealing mechanism has to

actively contact the first PE, for example with a work-request message, and then

the first PE has to transfer a representation of the work to be executed to the

second PE. While work-pushing encourages even load balancing, it might nega-

tively affect the data locality as a PE which offloads work may not be aware of the

load on the receiver PEs, which might affect the data locality by the unnecessary

movement of tasks.

The primary benefit of work-stealing is that work is only transferred if it is

known to be needed, and the positive effect on data locality as it avoids over-

loading PEs with tasks. Nonetheless, work stealing can result in unbalanced load

64

Chapter 2. Literature Survey

distribution in situations where only a small number of PEs are generating large

quantities of parallel tasks.

In both categories it is perceived as better to retain load information pertinent

to other PEs. However, gathering this information could necessitate substantial

communication, meaning that all machines must strike some sort of balance be-

tween the conflicting objectives of an even load balance and a low degree of

communication. Consequently, lots of implementations employ random work al-

location.

The notion of work-stealing first introduced by Burton and Sleep [31], and

later by Halstead’s application of Multilisp as a prominent system using work-

stealing [78]. Following this, the randomised work stealing approach was inves-

tigated by Rudolph et al. [144] on shared memory parallel machines, and by

Karp et al. [90] on distributed memory parallel architectures. Today, many run-

time systems apply variants of the work stealing mechanism for the execution

of parallel application on both shared memory and distributed memory parallel

architectures. In OpenMP, load distribution is achieved at the level of loop by

assigning different iterations to PEs. The majority of research on OpenMP is

centred on shared memory machines, but more contemporary research concen-

trates on the issues of optimizing OpenMP programs for distributed memory

machines [50]. HPC languages, like X10 [38], Chapel [35], and Fortress [9], and

PGAS languages, like Titanium [177] and UPC [168] provide parallelism based

on extending the OpenMP’s parallel constructs which are centred on scaling to

large distributed memory machines [50].

Cilk [26, 70] is a parallel programming language based on extending C/C++

with parallelism support. Its runtime system adopts the widely studied load

balancing mechanism in the form of dynamic work-stealing for fully strict com-

putations and provides scalability on shared memory machines, on network of

work station as well as for wide area networks [27, 170].

A range of persistence-based load balancing algorithms are supported by

Charm++ [89]. The standard mechanism incorporates monitoring load imbal-

ance by collecting data for objects, calculating the degree of imbalance, and

performing suitable rebalancing algorithms in either a centralized or hierarchical

65

Chapter 2. Literature Survey

manner [178].

Using PGAS and Remote Direct Memory Access (RDMA), Dinan et al. [50]

achieved scalable work stealing mechanism to 8192 cores. In subsequent research,

a hierarchical method known as retentive work-stealing was utilised to scale work-

stealing to 150K+ cores by taking advantage of the principle of persistence-based

rebalancing to meliorate the imbalance issue in scheduling task-based applica-

tions [102].

In the context of GpH (Section: 2.4.5.1), the distributed and shared memory

runtime systems GHC-GUM (Section: 2.5.1) and GHC-SMP (Section: 2.5.2)

employ randomised work-stealing as a default load balancing mechanism where

the representation of work is based on graph structure with step-wise evaluation

to support laziness. A detailed discussion of load balancing for GpH is provided

in Section 3.5.

66

Chapter 3

GUMSMP Design and

Implementation

3.1 Introduction

This chapter focuses on the design of a sophisticated Runtime System (RTS) to

support the high level parallel coordination in GpH. In particular we develop a

new implementation, GUMSMP that combines distributed and shared memory

capabilities. This chapter explores the GUMSMP design space, and presents

the GUMSMP design and implementation [6].

The chapter is structured as follows. Section 3.2 presents the design objec-

tives. The main components of parallel Haskell runtime systems (GHC-GUM,

GHC-SMP, and GUMSMP) are outlined in Section 3.3. Section 3.4 presents

the thread management component, which is shared between the three imple-

mentations. Section 3.5 presents the new GUMSMP load distribution mecha-

nism, highlighting the differences between the different implementations in terms

of load balancing, as well as discussing our main contributions for improving

the GUMSMP load balancing mechanism to support hierarchical architectures.

Section 3.7 presents the GHC-GUM communication adopted by GUMSMP.

Section 3.6 discusses the memory management components, explaining how each

implementation performs garbage collection (GC).

67

Chapter 3. GUMSMP Design and Implementation

3.2 Design Objectives

The main design objectives for GUMSMP are:

• Asymmetric load distribution: While striving for an even load balance over-

all, we employ different load distribution policies at the inter-node (across

the cluster) and intra-node (within a multi-core node) levels, thus creat-

ing an asymmetric load balancing design. At the inter-node level (where

communication is expensive), we accept a significant imbalance. At the

intra-node level (where communication is cheap), we aim to optimise for

an even load balance, enabling the GHC-SMP’s work pushing mechanism.

Compared to GHC-GUM, which was designed for flat networks, the load

distribution mechanism in GUMSMP is more aggressive, accounting for

the availability of several cores in each multi-core node. We implement

the hierarchical, combined load balancing mechanism in GUMSMP (Sec-

tion 3.5.3).

• Gateway routing and distribution: In the design, one core acts as a gateway

to the remainder of the multi-core node. It is responsible for communi-

cation, and collects information concerning the load on the remote nodes.

The advantage of this design is that only one core is responsible for the

additional cost of maintaining a (partial) picture of the load across the net-

work. The disadvantage of this design is that this core may then become a

bottleneck for higher core numbers. We implement the concept of gateway

routing and distribution in GUMSMP (Section 3.5.3.1).

• Mostly passive load distribution: We refine the passive work distribution

policy between multi-core nodes, where work is only sent remotely when

requested (work-stealing), by developing a hierarchy-aware load distribution

achieved by enabling a node to pre-fetch work, utilising a low-watermark

mechanism on the spark pool (Section 3.5.4).

• Effective latency hiding: The system must be able to overlap the inter-node

communication with useful computation. Thus, remote data lookup is im-

plemented as a split-phase operation, with implicit synchronisation. We em-

68

Chapter 3. GUMSMP Design and Implementation

ploy this as a proven technology for large-scale, parallel systems [42]. More-

over, the combination of the previous implemented techniques in GUMSMP

contribute to the efficient latency hiding.

GUMSMP, like the two other parallel Haskell implementations (GHC-SMP

and GHC-GUM, presented in Sections 2.5.1, and 2.5.2 respectively), is based

on the parallel graph reduction model, whereby the program to be executed in

parallel is represented as a graph structure on physically distributed, but virtually

shared memory. Parallelism is exploited by reducing the independent program

graphs in parallel, where graph segments are communicated at two levels, using

different, tailored technologies on the small-scale, at the physical shared memory

level (multi-cores), and also on the large-scale, at the distributed memory level

(clusters).

The design is a progression of the successful GHC-GUM and GHC-SMP

technologies that already exist at both levels. In particular, our design employs

a mechanism of work-stealing for passive load distribution, combined with an

adaptive, dynamic mechanism for automatically distributing work and data on

a cluster (between the nodes of multi-cores), where communication is based on

the GHC-GUM communication model of explicit message passing. Within the

node (a multi-core), a combination of passive and active load distributions are

employed, whereby communication between cores is carried out as direct access

to the shared memory within the node. Technically, we achieve this design by

integrating the functionalities of existing implementations: GHC-SMP (within

the node) and GHC-GUM (across the nodes) of the RTS for GHC, as indicated

in Figure 3.1.

multicore multicore

network

GHC-SMP

GHC-SMP

GHC-GUM

GUMSMP

Figure 3.1: Matching parallel Haskell implementations and architectures

69

Chapter 3. GUMSMP Design and Implementation

3.3 Main Components for Parallel Haskell Im-

plementations

To describe the design and implementation of GUMSMP, we identify the main

components of GUMSMP shown in Figure 3.2. The structure of these compo-

nents is inherited from GHC-GUM. In the following sections we describe how

these components are implemented in each system. The main components are:

1. Thread Management: is responsible for deciding when to generate a new

thread and for determining how to schedule threads (Section 3.4).

2. Load Balancing: is responsible for distributing the load in parallel systems

so that the idle time for core is reduced (Section 3.5).

3. Memory Management: is responsible for controlling access to local and

remote data (Section 3.6).

4. Communication: is responsible for transferring data and work between the

nodes (Section 3.7).

In the following discussion of the details of these components, we present how

they are implemented in our new runtime system GUMSMP, as well as in the

existing runtime systems GHC-GUM, and GHC-SMP.

GUMSMP

Components

Thread Management

Communication

Memory Management

Load Management

Figure 3.2: GUMSMP system components

The implementation of GUMSMP shares the same thread management

mechanism with GHC-GUM and GHC-SMP. In particular, it manages lists of

70

Chapter 3. GUMSMP Design and Implementation

runnable tasks as FIFO queues. It combines the memory management, com-

munication, and load balancing components of both systems. In particular, it

implements a virtual shared heap across all nodes, using PVM communication,

and creates local worker threads for each node, which correspond to the num-

ber of cores within the node. Moreover, it provides hierarchical load balancing

mechanisms with different levels for inter-node and intra-node.

3.4 Thread Management

The thread management model used in all the three parallel Haskell implemen-

tations (GHC-SMP, GHC-GUM, and GUMSMP) is called the “evaluate and

die” thread management model, and was originally developed for the GRIP (Par-

allel Graph Reduction Machine) [133] in which potential parallelism is represented

as sparks (pointers to unevaluated graph structures called thunks). Spark gen-

eration is cheap, simply adding a pointer to a thunk. This is essential to reduce

the parallelism creation overhead, and the communication cost of sharing sparks

locally, or over the network.

A spark indicates that it might be useful to evaluate a thunk in parallel, but

this does not mean that it is necessary to do so, i.e. the parallelism is advisory

rather than mandatory. If sparks become too numerous, they may be discarded

by the RTS. Sparks are managed in the “spark pool” (a FIFO lock-free queue in

the RTS), and generated by the par primitive.

An important concept of the “evaluate and die” model is a form of auto

in-lining: if the sparked expression has not been evaluated by another thread

when its value is needed, then the current thread will evaluate it as part of

the computation. This behaviour is called “thread subsumption”, because the

potential parallel work is in-lined by the parent thread. As a result, the spark has

fizzled, making it useless and discarded by the garbage collector. This behaviour

helps increase the size of a thread; i.e. its “granularity” by delaying decisions

regarding whether it should be generated. This is similar to the independently

developed lazy task creation model [124].

In principle, there are three cases when the value of a spark is acquired:

71

Chapter 3. GUMSMP Design and Implementation

1. If the expression has been evaluated previously, its value is returned directly.

2. If the expression is under evaluation either by local, or remote thread, the

current thread will block (Section 3.4.2).

3. If another thread has not yet evaluated the expression, then the demanding

thread will execute the computation itself.

3.4.1 Data Structures

The main component of GUMSMP is the PE, where the collection of communi-

cating PEs implements the virtual machine. Within each PE, a set of operating

system (OS) threads (worker threads, one worker thread per core) execute the

Haskell threads. One Haskell Execution Context (HEC) is maintained for each

core. The HEC is the data structure, where the data required by an OS worker

thread in order to execute Haskell threads is contained. Figure 3.3 shows the

different levels of abstraction over the hardware, supported by GUMSMP as

follows:

HW Level: a core represents an independent hardware unit for computation,

and a node represents a single multi-core machine.

OS Level: a single OS thread is associated with each HW level core.

RTS Level: a HEC is executed by the OS thread, and runs Haskell threads. A

PE refers to a group of HECs within the multi-core.

As illustrated in the figure, different multi-cores are connected across the net-

work. Within each multi-core, there is 1:1 relationship between each core and the

OS thread, which in turn executes one HEC. Each HEC can then execute mul-

tiple Haskell threads, which are light-weight threads internal to and managed by

the GUMSMP RTS, and not to be confused with the heavy-weight OS threads.

72

Chapter 3. GUMSMP Design and Implementation

GHC-SMP

1: 1

Network

OS

thread

node (multi-core)

node (multi-core)

Haskell

threads

1: m

HEC

thread pool

spark pool

…

HEC

thread pool

spark pool

1: 1

…

Haskell

threads

…

… OS

thread

PE

Cluster

GUMSMP

Figure 3.3: Levels of abstractions over the HW supported by GUMSMP

Two main work pools are maintained for each HEC to manage parallelism:

1. A spark pool is a flat pool organised in a FIFO queue, where the RTS

maintains sparks, representing potential parallelism.

2. A pool of runnable threads is organised in a FIFO queue, representing

parallelism and are executed by a HEC.

In all three implementations, the thread is an internal representation of a compu-

tation, and represented by a heap allocated TSO (Thread State Object), which

encompasses the Haskell thread’s state, especially its logical registers, together

with its stack, where it runs, and points to the thread’s SO (Stack Object). The

73

Chapter 3. GUMSMP Design and Implementation

thread’s stack grows dynamically until it attains a tunable maximum stack size.

The HEC is considered idle when there are no threads remaining to be run in its

thread pool.

The overhead of managing the thread pool is significantly higher than that

for spark pool management. The reason for this is that additional information is

necessary for a thread, such as a live thread priority, which is essential if more

flexible scheduling is to be achieved.

When the HEC has no more work to do, it seeks out local work in the runnable

queue, then searches for a spark in its spark pool, and then in other local HECs

spark pools (as in GHC-SMP and GUMSMP). If a spark is found, this is

turned into a thread by creating a TSO and SO, and the HEC begins to evaluate

it. Otherwise, it searches for remote work looking for a spark in a remote PE

(as in GHC-GUM and GUMSMP), and hence an independent thread might

execute the sparked expression.

3.4.2 Synchronisation

Shared closures (nodes in the graph structure) can be either normal-form clo-

sures representing data, or thunks, representing work. In order to prevent two

Haskell threads from evaluating the same thunk simultaneously, thereby dupli-

cating work, the thunk has to be locked when the thread commences evaluation.

However, locking is costly, and in addition can increase run time by around 50%

as the measurements in [80] show. The mechanism implemented to achieve this

synchronisation is called “blackholing”. In reality, two main variants of the black-

holing mechanism are available, balancing the overhead reduction against the risk

of work duplication [80, 119]:

1. EagerBH: In this mechanism, when thread A enters a thunk in order to

evaluate it, it immediately overwrites it with a Black Hole (BH). If another

thread sees the BH, it will block until the previous thread finishes the eval-

uation. The possibility of a second thread initiating a duplicate evaluation

is only a matter of a few instructions away. The cost involved is the extra

memory stored in every thunk, as compared with sequential execution.

74

Chapter 3. GUMSMP Design and Implementation

2. LazyBH: This uses the scheme described in Harris et al. [80] which requires

a thread to walk its stack each time it returns to the scheduler, and then

claim each of the thunks evaluated using an atomic instruction. If a thread

is observed evaluating a thunk that has previously been claimed by another

thread, the current execution is suspended and the thread is put to sleep

until completion of the evaluation. Every thread returns to the scheduler at

regular intervals (for example, to carry out garbage collection). This means

that the same thunk cannot be evaluated continually in multiple threads

indefinitely. As most thunks are entered, evaluated, and updated during

a single scheduler time-slice, the locking overhead is considerably less than

that which would occur when locking every thunk.

In practice, the difference in performance between EagerBH and LazyBH is

minor, as LazyBH often catches all possible duplications except for thunks that

are very shortly lived.

With the blackholing mechanism, when another thread tries to evaluate a

thunk and finds a BH, it will block on the BH and attach its TSO to the BH pool

(a global pool consists of a set of threads that are blocked on BHs). When the

thunk evaluation has been completed, the thunk will be updated with its value,

and all the threads blocked on this closure will be awakened and moved to the

runnable pool, as part of the main scheduler loop (Figure 3.4).

For GHC-GUM, and GUMSMP, a thread might block on three closure

types:

1. BH: a closure that is under local evaluation (will be re-awakened when local

data becomes available).

2. FetchMe: global indirection to a closure under evaluation in a remote PE

(will be re-awakened when remote data arrives).

3. RBH (Revertible Black Hole): a closure sent remotely for evaluation, but for

which no location on the remote PE has been received (will be re-awakened

when in-transit data has arrived).

75

Chapter 3. GUMSMP Design and Implementation

3.4.3 Main Scheduling Loop

The management of threads and spark pools is achieved using FIFO queues. The

core of each PE’s execution is the following scheduling loop, which is executed

by each HEC within the PE, with communication work restricted to the gateway

HEC. The scheduling loop is executed until a FINISH message is received.

During the program execution, threads may take the form of any of the fol-

lowing states:

• Running: executed by a HEC.

• Runnable: waiting to be scheduled on a HEC.

• Blocked: waiting for data generated by another local or remote thread to

complete.

• Fetching: waiting for data to arrive from a remote PE.

• GC: performing garbage collection.

76

Chapter 3. GUMSMP Design and Implementation

1 while True do
2 switch sched state do
3 case SCHED RUNNING
4 break;
5 case SCHED INTERRUPTING
6 performGC ;
7 shut down;

8 case SCHED SHUTTING DOWN
9 Exit;

10 endsw
11 ScheduleCheckBlackHole(hec); //traverse the BH queue and

wake up any tso that has data available
12 ScheduleFindWork(hec);
13 if messageArrived then
14 processMessages(hec);
15 end
16 schedulePushWork(hec); //if we have extra work and there

are idle hecs, then push work to their pools
17 if emptyRunQueue(hec) then
18 continue ; //look again for work
19 end
20 tso = popRunQueue(hec);
21 result = stgRun(tso); //perform graph reduction on tso
22 switch result do
23 case out of heap
24 pushOnRunQueue(hec,tso); performGC;
25 case out of stack
26 enlargeStack(tso); pushOnRunQueue(hec,tso);
27 case time expired
28 pushOnRunQueue(hec,tso);
29 case finished
30 if bound then
31 return
32 else
33 continue;
34 end

35 endsw

36 end

Figure 3.4: Main scheduling loop for GUMSMP, combining GHC-SMP and
GHC-GUM functionality

77

Chapter 3. GUMSMP Design and Implementation

3.5 Work Distribution Mechanism

3.5.1 GHC-GUM

The following description is summarised from [163, 164]. In GHC-GUM, if there

are no more threads to run in the thread pool, the scheduler searches for sparks

in its spark pool. If a spark is found, it is activated by turning it into a thread

and generating a TSO to hold essential information about the thread and begin

evaluating it. If the running thread is blocked on an unevaluated value, it will

be put in a queue. When the required data arrives, the blocked thread will be

awakened and transferred to the runnable pool. The data becomes available

through concurrent evaluation by another thread, or when another PE sends its

value following evaluation.

PE1

Scheduler

PE2

Scheduler

PE3

Scheduler

FISH FISH

SCHEDULE

Network Network

Figure 3.5: Work distribution in GHC-GUM

If there is no spark in the PE’s spark pool, the scheduler requests work by

sending FISH (work-request) message, PE1, as illustrated in Figure 3.5. The

FISH message swims randomly from one PE to another searching for work. It

includes the originating PE’s id and age number which represents the maximum

number of PEs to visit. If the recipient PE has no spark in its spark pool (PE2

in the figure), it forwards the message to another PE, which is chosen at random

after increasing its age. If the recipient has a spark (PE3 in the figure), then it

sends this to the requesting PE as a SCHEDULE (reply with work) message 3.

If no spark is found and the message limit is reached, the unsuccessful FISH is

returned to the originating PE, which then waits before sending another FISH

3It is possible to send several pieces of work, if a FISH originates from a remote cluster [2]

78

Chapter 3. GUMSMP Design and Implementation

message. This avoids inundating the machine with FISH messages when there

are only a few busy PEs. For the same reason, each PE has a limited number of

outstanding FISH messages. This mechanism is called “work stealing”, or passive

work distribution, since work is only requested by the idle PE.

3.5.2 GHC-SMP

The following description is summarised from [119]. An HEC’s spark pool is im-

plemented as a bounded work-stealing queue; this makes spark distribution cheap

and asynchronous. A work-stealing queue is a lock-free data structure wherein

the owner can push and pop from one end of the queue without synchronisation.

Other threads can steal from the other end of the queue, meaning that only one

atomic instruction is required. To avoid a race between popping and stealing

threads from the queue when it is almost empty, popping incurs an atomic in-

struction. On the other hand, when the queue is full, the new spark that is to be

pushed is discarded. This means that potential parallelism might be lost.

Figure 3.6 demonstrates the work stealing mechanism for sparks in GHC-

SMP. In this example, HEC2 has no assigned work, it searches for a spark,

either in its spark pool or in any other local HEC’s spark pool (HEC1 in the

figure). If a spark is found, then HEC2 creates a “spark thread” to reduce the

thread creation overhead, which in turn steals the spark and begins evaluating

it. Once this process has finished, it steals another spark.

Thread 2

HEC2

Thread 3

HEC3

Thread 1

HEC1

Figure 3.6: Work distribution in GHC-SMP

The “spark thread” is an ordinary thread, with the exception that it executes

79

Chapter 3. GUMSMP Design and Implementation

the following steps in a loop:

1. If the local run queue is not empty, it exits.

2. It removes a spark from the local spark pool, or if that is empty, steals a

spark from another HEC’s pool.

3. If there are no sparks to steal, it exits.

4. It evaluates the spark to Weak Head Normal Form (WHNF).

Thus, the “spark thread” will evaluate sparks to WHNF sequentially, until no

more sparks are found; at which point it exits, allowing the TSO to be collected by

the GC. It is necessary to create a “spark thread” to avoid creating a new thread

and fresh TSO for every spark and to discard it after completing the evaluation for

recovery by the GC. In this way there will be only one thread executing multiple

sparks. This also fixes the problem of latency between creating parallel tasks and

being able to execute them in another core.

Strategically speaking this is a simple and effective method, whereby the cost

of creating the “spark thread” is spread over multiple sparks, and the “spark

thread” removes itself immediately when other work arrives. As the “spark

thread” is an ordinary thread, it will be blocked in the normal way; if it blocks

on a black hole; the scheduler will then create another “spark thread” to main-

tain the running of the available sparks. Having too many “spark threads” is

not a problem, as a “spark thread” will always exit when there are other threads

around. However, if sparks are too large and become blocked, this could lead to

the creation of an excessive number of running “spark threads”.

In GHC-SMP, the work stealing mechanism is used for sparks, and work-

pushing for threads, implementing cheap migration on a physically shared memory

machine. This is achieved as follows: in between running threads, the HEC with

more runnable threads available checks to determine if there are idle HECs. If

this is the case it will push runnable threads to the idle HECs thread pools by

temporarily acquiring ownership of the idle HEC.

80

Chapter 3. GUMSMP Design and Implementation

3.5.3 GUMSMP

The main objective of the new GUMSMP work distribution mechanism is to

balance the load between the multi-cores. Naturally, the aim is to achieve even

load balancing to ensure the best utilisation of all computing resources. However,

a combination of multi-cores at the lower level (where several local cores can

execute tasks that may in turn generate new parallelism), and a high-latency

network connecting nodes, at the higher level (which makes the transfer of work

and data expensive), demands the use of different policies to attain a balance

between even load distribution and communication costs.

The GUMSMP work distribution mechanism is summarised in Figure 3.7.

Within a multi-core, the exchange of work is considerably cheaper, and therefore,

can be undertaken far more aggressively: an idle HEC (HEC2 from PE1 in the

figure) will directly access the spark pools of other HECs within the same physical

shared memory machine (HEC1 from PE1 in the figure), and collect work from

there following the work-stealing approach, if it has no sparks of its own. If a spark

is found, then the “spark thread” will be created to evaluate the sparks to WHNF,

until there is no spark to steal, at which point it will exit as demonstrated in

details in Section 3.5.2. Additionally, an HEC with a filled runnable threads pool

may actively push threads to idle HECs, following the work-pushing approach of

GHC-SMP, with the aim of more rapidly distributing work among all the HECs.

Network

FISH

SCHEDULE

PE1 PE2

Thread 2

HEC 2

Thread 3

HEC 3

Thread 1

HEC 1

Multi-core

Thread 2

HEC 2

Thread 3

HEC 3

Thread 1

HEC 1

Multi-core

Figure 3.7: Work distribution in GUMSMP

At the cluster level, we use explicit FISH messages (as in GHC-GUM), with

81

Chapter 3. GUMSMP Design and Implementation

a delay to acquire sparks from remote PEs (HEC1 from PE2 sends the fish to

HEC1 from PE1 in the figure). The delay needs to reflect the communication

costs on the network, in order to avoid flooding the system with FISH messages,

while also being able to react sufficiently quickly when becoming idle.

We combine active and passive load distribution at the intra-node level, and

passive load distribution (including work pre-fetch) at the inter-node level. No-

tably, the GUMSMP design for load distribution is hierarchy-aware. When

looking for work, each HEC prefers local sparks from its own spark pool, or di-

rectly steals sparks from the pools belonging to other HECs running on the same

PE. Only if no local spark is available will a FISH message be sent to another

PE in the system. The concrete work balancing algorithm for GUMSMP is pre-

sented in Function 3.8, distinguishing the components related to the intra-node

(GHC-SMP) and the inter-node (GHC-GUM) interaction.

1 void ScheduleFindWork(Hec *hec , Task *task)
2 if emptyRunQueue(hec) then
3 // get local work; GHC-SMP-style
4 if anySpark(hec) then
5 for i← 1 to num hecs do
6 if emptySparkPool(hec[i]) then
7 continue;
8 end
9 spark = tryStealSpark(hec[i]);

10 if spark != NULL then
11 break;
12 end

13 end
14 if spark != NULL then
15 tso = createSparkThread(hec,spark);
16 pushOnRunQueue(hec,tso);

17 end

18 else
19 // get remote work; GHC-GUM-style ;
20 pe = choosePE();
21 sendFISH(hec,pe);

22 end

23 end

Figure 3.8: ScheduleFindWork function in GUMSMP, combining GHC-SMP
and GHC-GUM functionality

82

Chapter 3. GUMSMP Design and Implementation

3.5.3.1 The Role of the Gateway HEC

In GUMSMP, one HEC is nominated as a gateway, and communication is re-

stricted to this HEC. Other designs are possible, such as every HEC may commu-

nicate, which would then require synchronisation to send and receive messages.

Our design restricts the communication to the gateway HEC and hence offers

simplicity and avoids the need for synchronisation mechanisms to send messages

and packing graph structures. Such synchronisation would involve unacceptably

large overheads, increasing with high core numbers, and with an increase in the

packet size to be communicated, thus hampering scalability. The advantage of

restricting communication to a gateway HEC is that the gateway can incorporate

the most accurate picture of the current system’s information; e.g. the load on

different machines. Currently, GUMSMP does not maintain the system load

information but it represents potential improvement. Furthermore, as a gateway

to other nodes, it can prefer to accumulate those sparks in its spark pool that

would be the most profitable to export, thus creating a finer distinction between

the sparks available. We investigate the implications of making this distinction

in Section 4.3.3.

On the other hand, this gateway HEC might become a bottleneck for high core

numbers, where faster communication is important for getting remote work, and

for responding to remote requests. An alternative design option we consider is

preventing the gateway HEC from performing any computation, thus responding

faster to messages from remote PEs. However, with such a design, each node

in the system loses one computation engine, which might degrade performance,

especially if the computation-to-communication ratio is large.

We have fully implemented the two alternatives with the analysis of the per-

formance results in Section 4.3.4.

3.5.3.2 Exporting Sparks

In GUMSMP, when a FISH arrives from another PE, the HEC first searches

the spark pool of the gateway HEC, then the spark pools of the other HECs, to

serve the FISH message as presented in Figure 3.9. This reflects our design using

a single dedicated gateway to other cores in charge of communication, but also

83

Chapter 3. GUMSMP Design and Implementation

identifies work to export.

A further option would be to select a spark from the HEC with the largest

spark pool, and send it as a response to the message. However, this would require

traversing all the HECs to identify the one with the largest spark pool, thereby

imposing additional overheads, something that we wish to avoid.

1 void ExportSpark(HEC *hec , Int requestingPE)
2 if sparkAvailable then
3 spark = tryStealSpark(gateWayHec);
4 // first search the spark pool of the gateway HEC
5 if spark != NULL then
6 PackAndExport(spark,requestingPE);
7 else
8 // then search the spark pool of other HECs
9 for i← 1 to num hecs do

10 if emptySparkPool(hec[i]) then
11 continue;
12 end
13 spark = tryStealSpark(hec[i]);
14 if spark != NULL then
15 break;
16 end

17 end
18 if spark != NULL then
19 PackAndExport(spark,requestingPE);
20 end

21 end

22 end

Figure 3.9: ExportSpark function in GUMSMP

3.5.3.3 Sparks Placement

Once a stolen spark arrives at a node, the system should decide on a spark

pool to place it in. For GUMSMP, the default choice is to assign it to the

spark pool of the gateway HEC. Since HECs can exchange work cheaply in their

spark pools, this indirect way of retrieving work should not incur any significant

delay. However, a general problem with work distribution in a virtual shared

heap model is the danger arising from heap fragmentation i.e. logically related

data structures reside on different PEs. This can occur when the related data

is spread over several nodes, mainly due to work-stealing or a FETCH request.

84

Chapter 3. GUMSMP Design and Implementation

One RTS parameter indicative of high heap fragmentation is the size of Global

Indirection Table (GIT). We explore this issue in detail in Section 4.3.3.

3.5.4 Hierarchy-aware Load Balancing

In contrast to a flat network of single-cores, an idle multi-core represents several

unused computation engines. To account for the hierarchical nature of clusters

of multi-cores, we therefore provide a refinement to this pure model, in the form

of pre-fetching work , which is controlled by a low-watermark associated with the

spark pool. Moreover, we also provide a spark segregation mechanism in the

form of an “import-spark-pool”, in an attempt to improve heap fragmentation in

hierarchical architectures.

3.5.4.1 Watermarks

One simple (but flexible) mechanism that gives better control of spark distribution

is to use low- and high-watermarks for the spark pool. When using this approach,

work offloading decisions can be based on the size of each spark pool, as shown

in Figure 3.10. The low-watermark specifies a minimum number of sparks to be

held in the local spark pool. If the number of sparks falls below this watermark,

no further sparks will be exported, and the PE will attempt to obtain additional

sparks from other PEs. This mechanism is designed for high latency systems,

and aims to conduct pre-fetching work; thus, supporting effective latency hiding,

which is one of our main design principles.

The high-watermark indicates the maximum number of sparks that should

be held in the spark pool. If the number of sparks exceeds this limit, then the

PE will attempt to off-load sparks actively to other PEs, without receiving work

requests. It uses SCHEDULE messages, in the same manner in which a PE serves

FISH messages. Thus, the PE will temporarily and locally switch from a lazy

load distribution to an eager load distribution, until the spark pool size again

falls below the high-watermark . Where all PEs have a large number of sparks, a

back-off mechanism will be used to introduce delays between each SCHEDULE

message (as described earlier for FISH messages).

85

Chapter 3. GUMSMP Design and Implementation

Low Watermark

Spark Pool

High Watermark

Figure 3.10: Low- and High-watermark mechanisms for load distribution in
GUMSMP

3.5.4.2 Spark Segregation

A possible means of addressing heap fragmentation would be to separate locally

generated sparks from imported sparks. We propose two main alternatives to

implement this mechanism as follows:

Import Spark Pool: The import spark pool is the mechanism implemented

in GUMSMP; there is a separate spark pool dedicated to imported sparks, as

demonstrated in Figure 3.11. This will ensure related pieces of work are kept

together in one pool, but it does require additional stealing steps, to acquire

external work.

PE1 PE2

Multi-core

Import
Spark
Pool

Thread 1

HEC 1

Thread 2

HEC 2

Thread 3

HEC 3

Thread 1

HEC 1

Multi-core

Thread 2

HEC 2

Thread 3

HEC 3

Import
Spark
Pool

FISH

SCHEDULE

Network

Figure 3.11: Work distribution in GUMSMP with import-spark-pool

An additional spark pool of this type would also be useful in situations in

86

Chapter 3. GUMSMP Design and Implementation

which no HECs are idle at the time the new spark arrives. This can arise if a

thread, which has previously been blocked on remote data, has been awoken in

the meantime and then generated fresh sparks. Placing the imported sparks into

a dedicated spark pool would defer the placement decision to a later time, when

idle HECs would be available. Committing too early would not be an ideal use of

the dynamic information of the system. Related to the separation of sparks into

local and imported is a decision regarding whether to duplicate work when sending

sparks to other PEs. The current design aims never to duplicate work, because

there is an obvious danger that performance could be degraded. However, in view

of the more aggressive load distribution policy required for GUMSMP, it might

be acceptable to duplicate some work, if that work remains separate from the

main pool of sparks and is activated only when other methods of obtaining work

fail. The current implementation already provides a means by which to control

potential work duplication, by defining a globalisation policy, and determining

which kinds of closures to generate a (unique) global address when packing a

graph structure (Section 3.7).

According to the separation of sparks as local or global, different policies have

been identified for:

• Selecting spark for local evaluation, or

• Exporting a spark to remote PE, in response to work-request messages.

Concrete settings for these policies are:

1. Prefer local: local sparks are preferred; if they are not available then global

sparks can be selected from the import-spark-pool.

2. Prefer global: global sparks are preferred, so first select global sparks from

the import-spark-pool, if there are no global sparks, then local ones are

sought out.

3. Local only: only select local sparks.

4. Global only: only select global sparks.

Detailed measurements to evaluate the effectiveness of the different policies

are provided in Section 4.3.3.

87

Chapter 3. GUMSMP Design and Implementation

Spark Tagging: An alternative mechanism can be achieved by tagging an im-

ported spark to indicate that the spark is global. Then the tagged spark can be

handled according to the policies discussed with the import-spark-pool; e.g. pre-

fer (tagged or global) spark, or prefer (un-tagged or local) sparks, either for local

evaluation or for remote exporting. Spark tagging would be a useful mechanism as

the tag can be used for different purposes, such as grouping sparks together that

derive from the same source, to improve data locality, or to separate imported

sparks from locally generated ones. The difficulties involved in implementing this

approach concern how to reach the tagged spark cheaply, as it will be placed in

the spark pool of the gateway HEC, and there might be several locally generated

un-tagged sparks. In which case, a traversal of the spark pool is required to find

the global spark, which will then be an unavoidable overhead. Moreover, further

complexity is involved, as care must be taken to handle tagged sparks, because

they should be un-tagged prior to their evaluation.

3.6 Memory Management

3.6.1 GHC-GUM

The following description is summarised from [163, 164, 106]. Every PE has a

local memory integrated into the global distributed heap, as indicated in Fig-

ure 3.12; and a two level addressing scheme, one for Local Addresses (LAs), and

one for Global Addresses (GAs). This is used to reference values in the shared

heap. GAs enable each PE to garbage collect locally, without the need to syn-

chronise with other PEs. A GA is a globally unique identifier for a closure, which

is created as a result of sending work from one PE to another in response to a

work-request message. After a thunk, representing work, is sent to the requesting

PE, the original thunk is overwritten with a FetchMe closure, a global indirection,

containing the GA of the new copy of the thunk at the destination.

The aim of overwriting a thunk with FetchMe is to indicate that it is being

evaluated by another PE, and to indicate its new location, should the result be

needed subsequently by the original PE. The GA consists of a locally unique

identifier, the PE identifier of the destination, and a weight, as discussed below.

88

Chapter 3. GUMSMP Design and Implementation

A Global Indirection Table (GIT) is maintained within each PE to map the

global identifiers to the local address of the corresponding heap closure. The GIT

acts as a source of roots for local GC. This design enables each PE to garbage

collect independently, provided that the GIT is adjusted after each GC to reflect

the new location of the local heap closures.

GAs are garbage collected using the standard distributed weighted reference

counting algorithm [101]. When a GA is created, it has an initial weight that

is split whenever the reference is shared. This mechanism aims to minimise

the synchronisation required among referrers to a single closure. When a global

object is locally garbage collected, the associated reference weight is returned to

the owning PE. The mapping of global to local addresses is required to ascertain

whether a copy of a newly imported graph structure already exists on that PE,

in addition, to avoid duplication of data and work. If a newly imported graph

structure exists, the version of the graph, that has been evaluated less, will be

subsumed by the more evaluated version.

Memory 1

CPU

...
CPU

Memory 2

CPU

Memory n

Distributed Shared Heap

Network

Figure 3.12: Distributed shared heap in GHC-GUM

3.6.2 GHC-SMP

The following description is summarised from [114, 119, 176]. In short, GHC-

SMP uses a generational, parallel (but not concurrent), stop-the-world GC. Par-

allel GC requires all threads to stop the computation and performs GC at the

same time, whereas concurrent GC can take place with one GC thread while other

threads are doing computation work [117]. This section discusses details that are

89

Chapter 3. GUMSMP Design and Implementation

important for assessing GHC-SMP vs. GUMSMP performance on NUMA ar-

chitectures (in Section 5.2). GHC-SMP’s memory management is based on the

concept of a blocked-structured heap, where the shared heap is divided into non-

contiguous, fixed-sized blocks. A block allocator manages the blocks, which can

be singly allocated, or linked together into lists to form an allocation area, that

can then be provided to each HEC to allocate fresh objects. They can also be

linked in contiguous groups to allocate large objects with sizes larger than a block

size. The operating system provides the block allocator with memory initially and

when it runs out of it.

The main benefits of the block-structured are:

1. Flexibility: Blocks are not contiguous, so they can be linked together in

order to provide the required size for individual regions of memory, including

heap, generations, steps, and allocation areas for mutators to allocate fresh

objects.

2. Easy Management of Large Objects: During the GC, there is no need to

copy large objects, but rather, a linked list is maintained for each step of

each generation, so large objects are moved by re-linking their blocks to the

linked list of the destination step and generation.

3. Reducing heap fragmentation, by quickly recycling free memory for re-use

in other contexts.

4. In the situation where more memory is required at a time when GC cannot

be performed, such as a C procedure deep inside the RTS, additional blocks

can be allocated on demand, thus delaying GC until a more convenient time.

All objects in the heap consist of two main components: an info-pointer, which

points to an info-table providing more layout information to guide the GC such

as the object type, and associated entry code.

The garbage collector implemented in GHC-SMP is a generational copying

garbage collector, based on dividing the shared heap into generations of fixed-size

blocks. Generations are numbered from 0 to n, with 0 being the youngest. The

youngest generation, in which the objects are allocated are frequently garbage

90

Chapter 3. GUMSMP Design and Implementation

collected whenever memory is exhausted. Objects are promoted from the younger

generation n to the older generation n+1, which is collected less frequently when

they survived specific number of collections. A remembered set is maintained to

keep track of all pointers referenced from mutable objects in the older generation

to the younger ones. Whenever a mutable object creates a pointer into a younger

generation, an entry for that object must be added to the remembered set and

considered a root for GC.

With the “weak general hypothesis”, objects allocated recently are the most

likely to die young and become unreachable. As a considerable portion of mem-

ory is allocated by functional programs, it is desirable to avoid the immediate

promotion of young objects as they are likely to die by the time of the first GC.

Therefore, each generation n is further subdivided into kn steps; so reachable

objects from generation n are only promoted to generation n+ 1 when it is from

step k. Objects from younger steps remain in generation n, but with an increased

step count.

In copying collection, promotion takes place by evacuating objects, this means

copying them into the to-space. Then, each object is scavenged in the to-space; by

evacuating each pointer in the object, and replacing the pointer with the address

of the evacuated object. The GC completes, when all the objects in the to-space

have been scavenged.

This GC is parallel (but not concurrent) and stop-the-world; thus it is initiated

by a HEC with an exhausted allocation area; this takes place when all the HECs

have been synchronised to start the GC. The initiating HEC is responsible for

pre-GC initialisations, it then releases the other GC threads to perform the GC.

After completing GC, all other GC threads wait in the GC exit barrier, and are

released by the initiating HEC after performance of any post-GC tasks.

For parallel copying GC, it is important to evacuate or scavenge each object

using different threads. Each GC thread synchronises to acquire a private to-

space allocation block. Local per-HEC remembered sets are maintained to avoid

synchronisation costs and to improve data locality, as TSOs that have been exe-

cuted on a given core, with the data they refer to, are likely to be present in the

core cache, and therefore traversed by the garbage collector on the same core. GC

91

Chapter 3. GUMSMP Design and Implementation

starts by evacuating roots from the from-space to the to-space, and then in a loop

traverse the to-space to scavenge each object. A block in the to-space represents

a unit of work because the heap is blocked-structured.

Work stealing queues are used to achieve load balancing of the GC. When the

GC begins, each HEC already has a considerable data in its cache. Therefore, the

GC thread takes blocks to scavenge from its own queue in preference to stealing,

beginning with blocks from the oldest generations. If no work is available in its

own queue, then the HEC will try to steal work from the queues of other HECs.

This design improves locality and reduces the contention of a single, global work

queue, which was originally implemented in GHC-SMP. In fact, stealing work

from the queues of other HECs in order to balance the load is to be avoided with

minor collections as it has a detrimental effect on locality [119].

Lock Contentions: during parallel GC, synchronisation is required for the

following parts:

1. There is one global lock in the block allocator to obtain a new block for a

GC thread: Each GC thread needs to allocate a block into which objects can

be copied when they are evacuated. Contentions to this lock are reduced

by allocating multiple blocks simultaneously, and by keeping the spare ones

on a private partly-free-list associated with the thread. When a GC thread

requires a fresh allocation block, it first searches in its partly-free-list to

reduce synchronisation overhead.

2. One lock per step in the large-object lists: Large objects with sizes greater

than a block size are allocated in a block group of contiguous blocks. A

linked list of large objects is maintained for each step of each generation.

During the GC, those large objects are treated differently from other objects

as they are not copied, but instead are moved by re-linking them from one

linked list to another; and therefore a lock is required.

3. The per-object evacuation lock: To prevent multiple GC threads from copy-

ing the same object, an atomic instruction is required for synchronisation.

This synchronisation represents the major source of overheads for the par-

allel copying GC with up to 30% of the GC time [114]. In improvements to

92

Chapter 3. GUMSMP Design and Implementation

the original design, this contention was reduced by relaxing the lock when

copying immutable objects, resulting in a 7% improvement. Since the rate

of actual collisions is very low, the space wasted by duplicate copying is

negligible [119].

3.6.3 GUMSMP

The GC component of GUMSMP integrates the garbage collections of GHC-

GUM and GHC-SMP, and therefore the entire discussion in the previous sub-

sections apply here as well. Figure 3.13 represents the distributed shared heap

implementation in GUMSMP. The PE in GUMSMP represents an instance of

GHC-GUM, which includes a number of GHC-SMP HECs. Therefore, for a

PE to perform a GC, there is no necessity for synchronisation with other PEs;

however, within each PE, all HECs are synchronised to perform GC following the

same mechanism of GHC-SMP GC.

Network

CPU …. CPU

Memory n

PE

CPU …. CPU

Memory 1

PE

CPU …. CPU

Memory 2

PE

Distributed Shared Heap

….

Figure 3.13: Distributed shared heap in GUMSMP

3.7 Communication

This section describes the communication mechanism of GHC-GUM (summarised

from [106, 51, 2, 163, 164]), which was adopted in GUMSMP. When a thread

enters a FetchMe closure for the purpose of evaluation, that thread is put on a

global blocking queue. Any subsequent thread trying to enter the FetchMe will

also join the queue. A FETCH message is then sent to the PE that owns the

93

Chapter 3. GUMSMP Design and Implementation

GA (Global Address) referred to by the FetchMe closure. The sending PE over-

laps the time of communication with the execution of other local threads, or the

generation of new threads. Upon receiving the FETCH request, the target PE

packages up the required closures as well as a (part of) its sub-graph, and sends

it in a RESUME message. If the required closure is under evaluation at the time

of receiving the FETCH, then a BlockedFetch closure will be created and put in

a global BlockedFetch queue, for a RESUME message to be sent later whenever

the evaluation is completed. On receiving the RESUME message, the graph is

unpacked and the FetchMe is overwritten with a (local) indirection to the root of

the received graph. All the other threads blocked by the global closures are then

awoken. Finally, an ACK message is sent to the PE, which sent the RESUME

message, to confirm the new location of the received closure.

Packing and Communication Scheme: For a closure to be communicated,

the graph representing it must be packed, or serialised; i.e. it must be converted

into a self-contained array of bytes to be communicated. GHC-GUM uses asyn-

chronous, bulk communication, which has the effect of reducing the total amount

of communication, and also permits latency hiding, where communication is over-

lapped with computation.

In high-latency networks, packing only a single closure into messages may be

too expensive. GHC-GUM is designed for full sub-graph packing; that is limited

by the fixed packet size, as default. When a closure is packed, the reachable

graphs are added to the packet, which reduces the number of FETCH messages

that need to be sent. In other words, the graph is packed breadth first, up to

a fixed limit. In rare cases, this might result in the sending of over-abundance

data. The maximum number of thunks per packet can be specified as a tunable

parameter to the RTS.

During the packing of a graph, the addresses of the closures are stored in a

temporary table, in order to enable the detection of sharing and cycles. If the

packet is at full capacity, FetchMe closures and GAs are then used to refer to the

graph remaining. The reminder of the graph is sent lazily, i.e. on demand, rather

than immediately (as the related RTS for Eden).

94

Chapter 3. GUMSMP Design and Implementation

Although each closure packed is made global, there are a few specially packed

closures:

1. Values that are already in normal-form are not globalised. Since they are

already evaluated, they can be copied freely between machines.

2. Black Holes, i.e. closures that are being evaluated, are packed as FetchMe’s

to the black hole. The unpacking algorithm first reads the packet and then

reconstructs the graph breadth first.

GA1.6
GA1.3

GA1.4

GA1.5

GA1.1

GA1.2

GA1.3

GA1.4

GA1.5

GA2.1

GA2.2

GA1.6

GA1.3

PE 1 PE 2GIT GIT

Packet

Packed closureNormal Form (data)Fetchme (global indirection)Thunk (computation)

Heap Heap

Figure 3.14: Transfer of graph structure [163, 164]

Figure 3.14 details the allocation of GAs and the transfer of graph structures on

two PEs. This picture depicts the heaps on two PEs after the transfer of the

five closure graph with root GA2.1 on PE2 (originally GA1.1 on PE1) has been

completed. The graph is traversed breadth first by the packing algorithm. A new

GA is allocated for each closure that does not already have one; in this example,

GA1.1 to GA1.5. Thunks must be treated differently from normal-forms when

packing the closure.

In order to prevent work from being duplicated, thunks are never copied,

rather they are moved between processors. As a result, an original thunk is

replaced with an RBH closure. If other threads request the value before the

transfer has been completed, they will be blocked. In contrast, normal-forms can

be copied freely. The graph is unpacked by the receiver, check is made for the

95

Chapter 3. GUMSMP Design and Implementation

possible presence of any other copies of the imported closures, to maintain sharing.

New GAs are allocated for thunks, determining where the closure is located. In

this example, GA2.1 and GA2.2 are newly allocated. Their original GAs, GA1.1

and GA1.2, are no longer needed, and so can be garbage collected. When the

entire graph has been unpacked, a mapping of old to new GAs is emitted to the

sender; whereby, all RBHs are subsequently replaced with FetchMes, representing

global indirections to the new GAs, GA2.1 and GA2.2; whilst the old GAs become

garbage.

Figure 3.14 also depicts the ongoing transfer of a two closure graph, which

shares one closure with the first graph. Note that in the packet, GA1.3 refers to

the same (shared) closure as that now available on PE2, so that when unpacking,

the second graph sharing of the closure is maintained on PE2.

3.8 Communication vs. Evaluation

In the implementations of parallel Haskell, duplicate evaluation of thunks is

avoided by blackholing (Section 3.4.2), which makes a duplicate evaluation of

the same thunk highly unlikely. A potential race exists in GUMSMP between

a thread that is evaluating a thunk, and another thread that tries to pack it for

communication. In this section we discuss how the lock-free mechanism imple-

mented tackles this potential race. It is necessary to distinguish between different

reasons for packing and type of the closure being packed. We might pack a clo-

sure to send to remote PEs in response to a work-request message (FISH) or

return back a result of previously imported work (FETCH). Since the window for

packing a closure is wide (a large sub-graph may need to be traversed), another

thread might claim the thunk being packed and evaluate it locally. Therefore, to

avoid a race between the packing and evaluating thread, we implement a lock-free

mechanism, based on checking the closure type at three different points during

the packing, and recording changes to the closure resulting from the evaluation.

We check the closure type before we start packing, and during the packing, and

finally after packing, just before sending the packet. We distinguish between

those different closure types as follows:

96

Chapter 3. GUMSMP Design and Implementation

1. Thunk represents a closure with work that has not yet been evaluated.

2. BH represents a closure that has been claimed locally for evaluation. There-

fore, it is under evaluation by another local thread at the time we start the

packing.

3. IND represents a fully evaluated closure with indirection to its result.

We also need to make a distinction between whether the closure to be packed

is a root of the graph or part of the graph structure. Since IND points to fully

evaluated data, it can be packed safely. A BH closure on the other hand is treated

differently based on whether it is a root or part of the graph structure. If it is not

the root, then we pack it as FetchMe, no matter whether the evaluation has been

completed after the packing immediately prior to sending off the packet. This is

safe because if we pack a FetchMe, then on arrival, the remote PE will send a

FETCH message asking for that closure. Therefore, the main overhead in this

case is the additional communication involved.

The main case to consider is a thunk, as it represents work, and we would

like to avoid duplicating the evaluation of the thunk. We split the “packing” and

“evaluation” operations into phases. Table 3.1 shows the phases involved for the

packing and local evaluation of a thunk.

Table 3.1: Different activities for packing and evaluation of a thunk

Packing Evaluation
1. Get local copy of the closure type. 1. Enter thunk code.
2. Enter the packing code. 2. Write BH.
3. Compare local copy with the closure type. 3. Evaluate thunk.
4. Write RBH. 4. Update thunk with its result.
5. Pack the thunk.
6. Check the closure type.
7. Send the packet.

Any interleaving of the two sequences in these phases is possible. In order to

manage this complexity, we use a transition diagram in Figure 3.15 to present

details of how the implementation handles different cases of interleaving. The

right and left sides represent the different states from the evaluating thread,

and the packing thread points of view respectively. As shown in the legend for

97

Chapter 3. GUMSMP Design and Implementation

Figure 3.15 (top left), each state shows 5 main components reflecting the state

of the closure in the heap (global), as well as the state of the closure from the

packing and evaluating threads point of view (local). Moreover, it shows the state

of the thread entering the closure for packing (left) or evaluation (right). It also

reflects the transition that takes place for each thread, and illustrates how the

packing thread responds to the interleaving that is triggered by the local thread,

claiming the thunk under packing. Note that the red boxes represent problematic

interleavings, and the discussion below focuses on those cases.

If the packing thread starts packing a thunk, it will maintain a local copy

of the header of the closure, which is a thunk. Then, just before the thunk is

packed, another thread might claim the thunk and write BH (the red box on the

LHS of Figure 3.15). We detect this problematic case by comparing the header

of the closure to be packed, which is now the BH with the local copy thunk.

Having detected the thunk is now under evaluation, there are three main cases

to consider in order to recover:

1. The closure is the root of the graph and the purpose of packing is to send a

SCHEDULE message with work to respond to the work-request FISH mes-

sage. In this case, the packing process can be safely aborted, because any

reply of work is sufficient to serve the FISH. Thus, we have two possibilities

when responding to the work-request. Either trying to steal another spark

locally, or forwarding the FISH message to another PE. Our implementation

forwards the FISH message.

2. The closure is the root of the graph and the packing purpose is to send a

RESUME message to respond to the data-request FETCH message. In this

case, we abort the packing and create BlockedFetch closure and add it to the

BlockedFetch queue, because the data represented by this thunk is required

on another processor. If the thunk is evaluated fully in the meantime, then

the packing thread will re-pack the IND instead of creating a BlockedFetch.

3. The closure is in the body of the graph. In this case, we pack a FetchMe for

this closure, regardless of the purpose of the packing. When the FetchMe

is entered on the other PE, a FETCH message is then sent, asking for the

98

Chapter 3. GUMSMP Design and Implementation

data of this closure.

On the other hand, if the packing thread claims the thunk faster (the red box

on the RHS of Figure 3.15), then the thunk will be overwritten with the RBH,

at which point the evaluating thread will be blocked on the RBH and placed

in the Black Hole queue. By checking different aspects several times during the

packing, the packing thread can identify closure changes. However, the window

of duplication is not entirely closed, as with the highly unlikely case of possible

duplication for a very short-lived thunks, as shown in Table 3.2, leading to work

duplication (the red box on the bottom of Figure 3.15). This represents a very rare

Table 3.2: Race between packing and evaluation.

Packing Evaluation
1. Get local copy of the closure type. 1. Enter thunk code.
2. Enter the packing code.
3. Compare local copy with the closure type.
4. Write RBH 2. Write BH.
5. Pack the thunk. 3. Evaluate a thunk
6. Check the closure type. 4. Update thunk with its result.
7. Send the packet.

case, as duplication would only occur if the two threads were actually updating

the header at the same time, and the evaluating thread wrote a BH, just after

the packing thread compared the local type with the type in the heap. In this

case, the packing thread might proceed with packing, but if the evaluating thread

completes the evaluation and updates the thunk with its result, then the third

check just before sending off the packet will catch the update, and abort the

packing accordingly.

99

Chapter 3. GUMSMP Design and Implementation

Figure 3.15: Packing vs. Evaluation

100

Chapter 3. GUMSMP Design and Implementation

3.9 Summary

In this chapter we have presented the design of GUMSMP, discussing its main

objectives. We have also demonstrated the main components of GUMSMP,

highlighting features shared among the three parallel Haskell implementations;

such as thread management, as well as new GUMSMP features to support hierar-

chical load distribution. We illustrated how GUMSMP combines GHC-GUM,

and GHC-SMP, as well as discussing a set of design alternatives specific to

GUMSMP, and the motivations for the decisions made. Our design focuses

on flexible work distribution policies in hierarchical architectures. In particular,

we have performed asymmetric load balancing, using different load distribution

policies at different levels of the hierarchy. At the cluster level we used a less

aggressive policy, which may produce some load imbalance but reduces the total

amount of communication. Within a multicore node we used a more aggres-

sive load distribution policy, which exploits the low communications overhead

provided by physical shared memory. In the next chapter we show how those

alternatives affect the performance of GUMSMP.

101

Chapter 4

GUMSMP Tuning

4.1 Introduction

A core design principle of GUMSMP is to perform adaptive, dynamic manage-

ment of work and data. Thus a crucial step in the implementation of GUMSMP

is the development of load balancing policies tailored for hierarchical architec-

tures like clusters of multi-cores, or large NUMAs. This chapter focuses on these

policies, and assesses their impact on performance. It documents the process and

assesses the results of GUMSMP performance tuning, investigating different ap-

proaches to improving the performance on a cluster of multi-core. The majority

of the results in this chapter are published in [6]. The results in Sections 4.3.3

and 4.3.4 are as yet unpublished.

This chapter is structured as follows. The baseline performance is presented

in Section 4.2.2. We consider the following seven performance tuning mecha-

nisms: the low-watermark for work pre-fetching in Section 4.3.1; Asymmetric

load distribution policies in Section 4.3.2; Distinguishing Local and Global work

in Section 4.3.3; The use of dedicated gateways in Section 4.3.4; Optimising the

number of cores Per PE in Section 4.3.5; Optimising the setting of the allocation

area in Section 4.3.6; A more active load management is discussed in Section 4.3.7.

102

Chapter 4. GUMSMP Tuning

4.2 GUMSMP Performance

4.2.1 Setup and Programs

Throughout the thesis, we used the following benchmarks that exhibit a range

of parallel patterns, with characteristics specified in Table 4.1, and sequential

performance specified in Table 4.2.

• parfib is a divide-and-conquer program, which computes for a given value,

the well-known Fibonacci number fib x using a depth threshold of y

• parmap-of-parfib is a data-parallel program, with nested divide-and-

conquer parallelism, computing y instances of parallel fib x computation.

• coins is a divide-and-conquer program, which computes the number of

ways to pay a given value y, from a fixed set of coins [55, 88, 88,

99, 122, 177] (parameter x specifies the program’s version and z the

depth threshold)1.

• sumEuler is a data-parallel program, which computes the sum of the Euler

totient function on the list interval [1..x], using a cluster size of y.

• worpitzky is a divide-and-conquer program, which checks the Worpitzky

property over the Stirling numbers x y using a depth threshold of z.

Additionally, we have measured the performance of the following larger bench-

marks.

• minimax is a divide-and-conquer AI application that performs an alpha-

beta search in a 2-player game on a x×x board, up to a depth of y;

• maze is a nested data-parallel AI application for finding the path through

a fixed maze.

• mandelbrot is a data-parallel application for computing a mandelbrot

set over a given window size, and number of iterations.

1The input for coins used in Section 5.2 is (7 5200 3)

103

Chapter 4. GUMSMP Tuning

Table 4.1: Programs characteristics

Program Application Area Paradigm Regularity Input Parameters
[x,y,z]

parfib Numeric Analysis D&C Regular 52 23
parmap-of-parfib Numeric Analysis Data par

with nested
D&C

Regular 43 20

coins Search Application D&C Irregular 7 4000 3
sumEuler Numeric Analysis Data par Irregular 100000 180
worpitzky Symbolic Compu-

tation
D&C Regular 2 27 20

minimax AI Search Applica-
tion

D&C Irregular 4 9

mandelbrot Graphics Data par Irregular -2.0 -2.0 2.0 2.0 4096
4096 3024

maze AI Search Applica-
tion

Nested
Data par

Irregular

blackscholes Financial Applica-
tion

Data par Irregular 1000000000 500000

• blackscholes is a data-parallel application, which represents the imple-

mentation of the Black-Scholes algorithm for modelling financial contracts,

by providing a number of options x, and the granularity y.

The starting point for the selection of benchmarks is the established nofib/

parallel suite, and other parallel benchmarks used in previous papers [115].

We select a subset of these benchmarks covering regular and irregular parallelism,

different parallel paradigms e.g. data parallel, nested data parallel, or divide

and conquer, as well as different application domains as indicated in Table 4.1.

The focus is on computation bound programs in order to test the computation

component of the RTS. We do not explore other issues such as concurrent IO,

foreign function calls, etc.

Our measurements in this chapter are made on a Beowulf cluster of multicores,

where each node is an 8-core CPU (Intel Xeon E5504 running at 2.00GHz, and

12GB RAM). All 32 nodes are connected via a non-specialised Gigabit ethernet

connection. All machines are running Linux CentOS 6.6. The implementation of

the GHC-SMP RTS is based on GHC 6.12.3, using GCC 4.4.7 for compilation,

and PVM3.4.5 for message passing. Each point in the measurement represents

the median of three executions. The programs are compiled as follows:

ghc -parpvm -threaded -cpp --make -o prog_pp_thr prog.hs

104

Chapter 4. GUMSMP Tuning

Table 4.2: Sequential performance

Program Runtimes(s) Total memory(Gb) Maximum Residency(Kb)
parfib 6907.9 9836.5 38,0
parmap-of-parfib 4670.6 4772.9 39.7
coins 2632.5 5620.5 92.7
sumEuler 2431.7 2969.8 166.3
worpitzky 2100.6 2350.4 35.5
minimax 792.15 1008.4 48.2
mandelbrot 4955.7 5940.7 503.5
maze 2871.1 6450.5 40.6
blackscholes 6132.5 4863.8 2,04 Gb

Note that we have not explored the de facto standard optimisation settings

(-O2). Appendix A gives evidence that while this omission changes the absolute

runtimes, the relative performance remains unchanged.

Table 4.3: Runtimes of GHC 6.12.3 vs. GHC 7.10.2

coins sumEuler

No. cores 6.12 7.10 diff(%) 6.12 7.10 diff(%)

1 2779.6 2801.7 -0.7 2561.7 2253.9 13.6

2 1513.7 1515.8 -0.1 1348.3 1175.0 14.7

3 1033.2 1016.4 1.6 904.8 785.3 15.2

4 804.3 778.6 3.3 693.7 597.7 16.0

5 651.5 628.1 3.7 561.3 476.4 17.8

6 560.9 533.6 5.1 481.5 403.3 19.3

7 494.5 466.9 5.9 414.3 345.7 19.8

Geom Mean. 2.6 16.5

Our measurements are based on GHC 6.12.3, and Table 4.3 compares the

performance of this version with the most recent version 7.10.2 for sumEuler

and coins on up to 7 cores. GHC 7.10.2 shows predominantly lower runtimes

in both cases. For coins, the difference in runtimes is fairly small with average

difference of 2.6%, and for sumEuler, the average difference is 16.5%. In terms

of the speedup on 7 cores, GHC 7.10.2 achieves slightly higher speedup (6.5 for

sumEuler and 6.0 for coins) compared with GHC 6.12.3 where the speedup is

(6.2 for sumEuler and 5.6 for coins). This variation between different versions

is expected, as more recent versions aim to improve performance and have more

105

Chapter 4. GUMSMP Tuning

performance optimisations enabled. However, such differences are small, and

mean that our measurements could have achieved up to 16.5% improvement if

the most recent version of GHC was used.

4.2.2 Baseline Performance

4.2.2.1 Cross-System Performance

Historically, the sequential performance of functional languages trailed that of

sequential imperative languages; their higher-level of abstraction means they still

do to some degree [79]. However, advanced compiler optimisations have signif-

icantly narrowed this gap. This section quantifies the difference in sequential

performance.

It provides a comparative performance evaluation of the sequential C, and the

parallel Haskell for the sumEuler program. As demonstrated in Table 4.4, for

the sumEuler of 60000, the sequential runtime of GUMSMP parallel Haskell

is 41% greater than C. Moreover, the cut-off point of the parallel Haskell ver-

sion, where it beats the sequential C version is with 2 cores. The scalability of

sumEuler is discussed in more detail in Section 5.3.4.1

A comparison between C and an earlier version of GHC-GUM (GHC 4.06)

for matrix multiplication showed a factor of 5 difference (5.8s vs. 30.3s) [108].

Table 4.4: Runtimes for sumEuler for parallel Haskell compared with sequential
C version

Language Runtimes(s)

sequential C 287.32

parallel Haskell 1 core 405.9

parallel Haskell 2 cores 205.9

Parallelising imperative languages is a challenging task for several reasons.

Importantly, imperative languages are not designed with parallelism in mind,

and so impose a need for the sequential ordering of commands. Moreover, they

lack the high-level structuring constructs offered by functional languages, in par-

ticular high-order functions [79]. Therefore, they deliver lower productivity, as

106

Chapter 4. GUMSMP Tuning

the programmer is involved in the coordination of the low-level parallelism (Sec-

tion 2.4.1).

4.2.2.2 Single Multi-core Performance

This section compares the performance of the three implementations: GHC-

SMP, GHC-GUM, and GUMSMP on a single multi-core node of the Beowulf

cluster specified in Section 4.2.1. The goal of this comparison, is to assess the

potential for improvement when moving from a flat cluster design, as used in

GHC-GUM, to a hierarchical design, as used in GUMSMP. Furthermore, by

comparing the performance with the existing shared memory implementation,

GHC-SMP, we can also quantify the additional overheads of the GUMSMP

design on a single multi-core.

Figure 4.1 shows the performance results from three representative bench-

marks for all three systems. They are measured on up to 7 of the 8 cores, because

Marlow and others [119] report and discuss performance degradation when using

all n cores, on a n-core multi-cores. We observe that, as expected for all the pro-

grams, GHC-SMP yields the best performance. GUMSMP is typically within

8% of GHC-SMP performance representing moderate overhead due to the hi-

erarchical design. While the performance of GHC-GUM is usually close to the

GUMSMP results, in the case of minimax its performance is significantly lower.

Further analysis of this result reveals that this is due to the overheads associated

with virtual shared heap management, which have to be paid in the distributed

memory GHC-GUM but not in GUMSMP, which in this setup uses one PE of

up to 7 HECs. We observe that on a single multi-core GUMSMP outperforms

GHC-GUM in all cases, with the exception of parfib, where the difference is

less than 4%.

107

Chapter 4. GUMSMP Tuning

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
p

e
e
d

u
p

No. Cores

Speedup for GUM Vs GUMSMP Vs SMP

parfib-SMP
parfib-GUMSMP

parfib-GUM
sE-SMP

sE-GUMSMP
sE-GUM

minimax-SMP
minimax-GUMSMP

minimax-GUM

Figure 4.1: Speedup of three representative benchmarks using GHC-GUM,
GUMSMP, and GHC-SMP on a single multi-core

4.3 Performance Tuning

This section focuses on studying the effect of different load balancing policies on

the performance of GUMSMP.

Load distribution on hierarchical architectures, such as clusters of multicores,

is necessary to account for the multiple cores in each cluster node and the large

differences in latencies. For example, the latencies between cluster nodes are far

greater than those within the node. This requires adaptation of basic policies de-

veloped in GHC-GUM, and designed for flat clusters. In particular, we examine

the mechanisms to pre-fetch work, and to enable the multiple cores on a node to

receive work as quickly as possible, thereby improving the load balance.

We start the performance tuning process by presenting the speedup of our

GUMSMP in Figure 4.2, which shows the basic configuration of GUMSMP, as

discussed in Section 3.5.3, before illustrating the effect of the hierarchy-aware load

balancing mechanisms. Throughout the discussion in this chapter, the number

of cores per PE is fixed at 5. In Section 5.3.3, we show how to optimise ideal

settings for the number of cores per PE.

108

Chapter 4. GUMSMP Tuning

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

S
p

e
e
d

u
p

No. Cores

The Performance of GUMSMP with Basic Configuration

parfib
parmapfib
sumEuler

coins
worpitzky
Minimax
Mandel

Maze

Figure 4.2: Speedup of GUMSMP on up to 100 cores with the basic configuration

The figure shows that for many programs GUMSMP speedup is acceptable

without further tuning. Unsurprisingly the simplest micro-benchmark, parfib,

exhibits the best overall speedup of 77 on 100 cores. All other benchmarks still

scale up to 100 cores, which significantly exceeds that of a single multi-core ma-

chine. Other programs show low speedup; i.e. the large programs which have more

complex data dependency, and more synchronisation result in greater overheads

to switch between different threads. Nevertheless, they show greater improvement

as we show in the following sections discussing different load balancing policies

and their effect on performance.

4.3.1 Low-Watermarks for Pre-Fetching

Our low-watermark mechanism was designed to improve the load distribution on

hierarchical networks, over the default load distribution policy (Section 3.5.4.1).

The original version was designed for flat, single-core networks [105]. In a flat

network, passive load distribution, i.e. sending a FISH message when a PE be-

comes idle (Section 3.5.1) is effective for distributing work. The danger of sending

work (pro-)actively is the potential for a drastic increase in the total amount of

109

Chapter 4. GUMSMP Tuning

communication, because of unnecessary movement of work away from its input

data. However, in a hierarchical system, comprised of multi-core nodes, the de-

fault mechanism acquires the amount of work necessary to feed all the cores only

very slowly, as shown by the data below.

To visualise the load balance throughout the execution, Figures 4.3 and 4.4

show the per-PE profiles of activities in terms of the number of running threads

in the mandelbrot program, with and without the low-watermark (note the

different x-scales in both graphs). To clarify, dark green is good utilisation,

light green is low utilisation, and red is idle time. The utilisation numbers show

percentages of time, not including the time spent on garbage collection over

the total runtime; therefore, they do not approach the maximum of 500% for

executions running on 5 cores. A per-PE profile shows PEs on the y-axis and,

time on the x-axis. This configuration shows 16 bars, representing the 16 PEs

used in the run. For each PE, a total of 5 HECs is used, comprising 80 cores in

total. The darkness of the green value at each point in time shows the utilisation

(i.e. the number of running HECs), as an average over a fixed time window. A

utilisation lower than 6% is shown as a red area, representing idle time.

The last line in the profile summarises the range of average utilisation across

the PEs. In the concrete per-PE activity profile in Figure 4.3, we observe that

PE1 has considerably more work (dark green) and higher utilisation than the

other PEs, which only have sufficient work to keep one HEC busy (light green).

The average utilisation on PEs 2-16 confirms this behaviour, as it ranges between

40% and 49%. Moreover, Figure 4.3 shows several periods of idle (red) time. The

main reason for this behaviour is that mandelbrot is data-parallel, whereas

the gateway HEC of PE1 is the only one generating sparks when the execution

starts. Other PEs send FISH messages, asking for work from PE 1. Using a pure

work-stealing load distribution policy in Figure 4.3 will only lead to the receipt of

one spark each time a work-requesting message is sent. Therefore, the imported

spark is executed by the gateway HEC, but the other HECs mostly remain idle,

resulting in a delay picking up sufficient work to keep all 5 HECs on each PE

busy. Thus, the average utilisation of PEs 2–16 remains below 50% of the 500%

possible in this execution of 5 HECs.

110

Chapter 4. GUMSMP Tuning

Mandelbrot with input -2.0 -2.0 2.0 2.0 4096 4096 3024 on 16 PEs, 5 cores each, and noLWM policy GUMSMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

Average Utilisation between 40% and 49%

Figure 4.3: Mandelbrot load distribution without low-watermark on GUMSMP

Mandelbrot with input -2.0 -2.0 2.0 2.0 4096 4096 3024 on 16 PEs, 5 cores each, and LWM policy GUMSMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

Average Utilisation between 84% and 146%

Figure 4.4: Mandelbrot load distribution with low-watermark on GUMSMP

111

Chapter 4. GUMSMP Tuning

In contrast, Figure 4.4 illustrates the behaviour when the low-watermark is

enabled, which is set at 5 to match the number of HECs; whereby, the other PEs

continue sending messages requesting work until the number of sparks in all the

local spark pools reaches the low-watermark . Thus, the average utilisation for

the other PEs is significantly higher, typically between 84% and 146%, shown as

darker green. Although some PEs are unused toward the end of the computation,

the high utilisation over most of the execution results in halving the runtime, from

496s to 238s (a drop of 52%).

Mandelbrot is a larger benchmark with a large GC time of approximately 13%

of the total execution time compared with programs such as sumEuler, where

the average GC time is about 5% of the total execution time as we later show in

Section 5.3.4.1. The sumEuler program, which performs less GC shows a higher

average utilisation when enabling the use of the low-watermark , where utilisation

ranges between 260% to 315% out of the 500% possible for 5 HECs.

In summary, the low-watermark policy enables pre-fetching of work, so that

the spark pools reach the level of the specified low-watermark , which is typically

set to the number of HECs available on a single PE, and therefore only depends

on the architecture’s static parameter. This results in a swifter distribution of

the available parallelism throughout the computation, and, in turn, leads to a

higher utilisation of the PEs, as summarised at the bottom of the per-PE graphs.

The low-watermark policy applies to all the PEs with the exception of the

main PE, because it is less likely to require pre-fetching in order to remain busy.

Conversely, in the shut-down phase of the execution, parallelism is scarce, and

so the withholding of sparks starves the other PEs of work. More desirable than

entirely disabling the low-watermark mechanism on the main PE would be ad-

justing its value dynamically, depending on the current system’s load. Ideally, we

want to decrease the value when the load drops. The current implementation does

not provide the necessary information for this kind of monitoring yet. However,

we discuss potential improvements in this regard in future work (Section 6.2.1.3).

112

Chapter 4. GUMSMP Tuning

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. of Cores

GUMSMP Speedup for the Micro-Benchmarks (LWM Vs No LWM)

parfib-LWM
parfib-noLWM

Parmapfib-LWM
Parmapfib-LWM
sumEuler-LWM

sumEuler-noLWM
coins-LWM

coins-noLWM
worpitzky-LWM

worpitzky-noLWM

Figure 4.5: Speedup of smaller benchmarks with(out) low-watermarks

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. of Cores

GUMSMP Speedup for the Benchmarks (LWM vs no-LWM)

Minimax-LWM
Minimax-noLWM

Mandel-LWM
Mandel-noLWM

Maze-LWM
Maze-noLWM

Figure 4.6: Speedup of larger benchmarks with(out) low-watermarks

113

Chapter 4. GUMSMP Tuning

To assess the impact of the low-watermark mechanism on all programs; Fig-

ure 4.5 compares the speedups for the programs using a low-watermark tailored to

the number of cores (ticked plots), with the speedups in a setting without the low-

watermark , and using the default passive load distribution mechanism (unticked

plots). This comparison shows that the low-watermark mechanism consistently

improves performance, by a factor of up to 3 in the case of sumEuler, as Ta-

ble 4.5 demonstrates.

This behaviour is underlined by the results from the larger benchmarks, as

shown in Figure 4.6. All three benchmarks exhibit a consistently improving

speedup when using the low-watermark , with improvements between a factor of

1.1 and 1.3 on 100 cores. This reflects that, across a range of core numbers,

the improved load balance and the lower number of idle periods throughout the

computation, as shown in the per-PE profile in Figure 4.4.

Table 4.5: Summary of the improvement of low-watermark mechanism on 100
cores

Runtimes (seconds) Speedup LWM
NoLWM

Programs No LWM LWM No LWM LWM

parmap-of-parfib 76.4 70.0 61.2 66.7 1.1

parfib 90.0 85.4 76.7 80.9 1.1

sumEuler 115.4 38.8 21.0 62.6 3.0

coins 52.5 37.6 50.1 70.0 1.4

worpitzky 58.7 51.2 35.8 41.0 1.1

minimax 36.2 29.7 21.9 26.7 1.2

mandelbrot 317.6 230.0 15.6 21.5 1.3

maze 95.6 84.0 30.0 34.2 1.1

Min. 1.1

Max. 3.0

Geom Mean. 1.4

In terms of scalability, all the micro-benchmarks scale well up to 100 cores,

significantly exceeds that of a single multi-core machine. The simplest micro-

benchmark, parfib, exhibits excellent overall speedup of 81 on 100 cores.

For the data-parallel sumEuler program, the speedup shows variations over

114

Chapter 4. GUMSMP Tuning

an increasing number of cores. This is mostly because of the amount of par-

allelism being fixed (i.e. the number of blocks of data items being processed),

which means that for higher core numbers there is a greater risk of load imbal-

ance occurring towards the end of the execution. In general, the RTS is designed

to handle parallelism dynamically and adaptively; therefore, divide-and-conquer

programs that generate a significant amount of parallelism throughout their ex-

ecution show better scalability than data-parallel programs. Furthermore, in the

case of sumEuler, it is crucial to use a low-watermark mechanism to achieve a

speedup of 63 on 100 cores, as shown in Figure 4.5. The the worpitzky pro-

gram delivers lower speedup. This divide-and-conquer program generates lower

and more irregular parallelism, compared with parfib.

As anticipated, the speedups for the larger benchmarks are lower than those

for the micro-benchmarks, ranging between 21 for mandelbrot and 34 for maze.

The larger benchmarks involve significantly greater data transfer in terms of the

size of the total data communicated, resulting in higher communication overheads

(i.e. up to 48MB for mandelbrot as opposed to 0.01MB for sumEuler). Evi-

dence of this higher overhead is illustrated in Figures 4.7 and 4.8 which demon-

strate the communication in terms of the number of messages and the size of

data communicated. Even though, smaller benchmarks such as parfib and

parmap-of-parfib communicate large number of messages (as demonstrated

in Figure 4.7), those messages are smaller in size. On the other hand, the large

benchmarks which use larger data structures, the amount of graph communicated

is between 1.2Mb for maze and up to 48Mb for mandelbrot (as demonstrated

in Figure 4.8).

115

Chapter 4. GUMSMP Tuning

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

N
u
m

b
e
r

o
f

M
e
ss

a
g

e
s

(K
)

Runtime

Parfib

parmapfib

coins

sumEuler

worpitzky
minimax

mandelbrot

maze

Figure 4.7: The number of messages communicated on 100 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250

Runtimes

Parfibparmapfib
coins

sumEulerworpitzky

minimax

maze

 47.8

 48

To
ta

l
D

a
ta

 C
o
m

m
u
n
ic

a
te

d
 (

M
B

)

mandelbrot

Figure 4.8: The total data communicated on 100 cores

Of the larger benchmarks (minimax, maze, mandelbrot), maze shows the

best scalability, with a speedup of up to 34 on 100 cores. In addition, it can further

improve with the use of active work distribution (Section 5.3.6). Moreover, in

116

Chapter 4. GUMSMP Tuning

terms of scalability, it can scale well, beyond a single cluster (Section 5.4).

The performance of minimax delivers a speedup of 27 (the speedup increases

further to 31 when enabling inter-node sparks in Section 4.3.2). However, With

this program, the speedup tails off with high core numbers, due to the aforemen-

tioned overhead. This is not an inherent limitation of the system, however; as

the mandelbrot benchmark shows; it still scales, but instead has a flatter slope

than the micro-benchmarks.

These results show that even without any specific tuning for a large-scale

hierarchical architecture, it is possible to deliver speedups on up to 100 cores,

well beyond what has previously been reported for GpH benchmarks, which can

be seen as a contribution to the GpH performance evaluation in itself. The

amount of data exchange required for these programs is substantially higher,

and this factor limits the speedup. The implementations of these benchmarks

themselves were originally developed for flat moderate size clusters, and tested

on up to 32 nodes; however, they have not been further tuned to the hierarchical

configurations used in this thesis.

4.3.2 Asymmetric Load Distribution Policy

Using the same load distribution policy, both on the inter- and intra-node level,

carries the danger that local HECs may steal large-grained parallelism, which

would be more productively executed on another PE in the network. Therefore,

we choose different policies at different levels, which we term asymmetric load

distribution.

The parmap-of-parfib and the minimax benchmarks profit most from

this behaviour. In both cases, there is a poor saturation with parallelism across

PEs with other PEs only picking up the small (nested) computations generated

by large computations. In order to address this issue, we use an asymmetric load

balancing policy to block intra-node spark exchange in the start-up phase of the

parallel execution. This prevents other HECs from picking up work on the main

PE, which would then monopolise the parallelism on the main PE. Specifically,

we ensure that we send out at least n sparks to other PEs, before the other HECs

on the main PE are permitted to pick up work. This refinement of the default

117

Chapter 4. GUMSMP Tuning

load distribution policy accounts for the multilevel structure of the architecture,

initially favouring inter-node spark exchanges; making it possible to achieve the

large-scale distribution of large work, causing significant improvements to the

performance of programs with nested parallelism.

To quantify the impact of this policy, Figure 4.9 presents the speedups for

the parmap-of-parfib and minimax using the low-watermark , and a combi-

nation of low-watermark and favouring inter-node spark distribution. The inter-

node sparks consistently delivers better results. For the parmap-of-parfib

micro-benchmark and for the minimax benchmark, we observe an improvement

of up to 19%, all these are on a 100 core configuration. We expect this policy

to be generally beneficial for programs with nested parallelism, where the outer

parallelism should be off-loaded to another node.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. Cores

Speedup for GUMSMP

Parmapfib-LWM
Parmapfib-LWM + inter-node sparks

Minimax-LWM
Minimax-LWM + inter-node sparks

Figure 4.9: Speedup of using an asymmetric load distribution policy, enabling
inter-node sparks

For parmap-of-parfib, we observe a large variability in the runtimes of

up to 26% for the setting where no low-watermark is used, compared with the

use of the asymmetric policy combined with the low-watermark (i.e. runtimes

118

Chapter 4. GUMSMP Tuning

between 66.3 seconds and 90.5 seconds on 90 cores). This behaviour represents

a time issue in terms of selecting a spark for sending remotely compared with

local stealing. If the gateway HEC is faster in responding to the work request

messages and sends the large spark before it is picked up by local HEC, then

a faster execution is observed. In contrast, asymmetric load distribution policy

guarantees that the larger sparks are sent remotely, and hence provides both good

and more predictable performance.

For non-nested parallelism, however, it is not necessary to provide the intra-

node load distribution; this then risks increased idle time during the start-up

phase of the parallel execution. Indeed, no improvement is observed for sumEuler

in excess of the low-watermark mechanism previously discussed.

4.3.3 Distinguishing Local and Global Work

A general problem with virtual shared heap is the fragmentation of the heap,

where related data structures reside on different nodes. This increases the com-

munication required to obtain the remote data structures; thereby affecting the

data locality and degrading the overall performance. With GUMSMP, imported

sparks are added to the spark pool of the gateway HEC (Section 3.5.3.3). Since

the distribution of work between the HECs on one multi-core is fairly cheap, this

does not cause problems from a load balancing perspective. However, mixing

local and imported sparks in the same pool can prove problematic in terms of

heap fragmentation, leading to more inter-node pointers, and thus more com-

munication. Moreover, the low-watermark mechanism we introduce to improve

the performance of GUMSMP leads to an increase in communication as a side

effect in order to improve the average utilisation, but at the same time it may

contribute to the heap fragmentation.

As a metric for heap fragmentation, the size of the GIT table is used (GA

residency). GA is a concept inherited from GHC-GUM, and used to refer to the

remote graph structure sent to a remote PE as discussed in detail in Section 3.6.1.

In this section we present a case study, focusing on parfib as an example of

large average GA residency: on execution of input 52 with threshold value of 23,

on 120 cores, exhibits an average GA residency of 7000.

119

Chapter 4. GUMSMP Tuning

Spark segregation is a new concept we introduce in GUMSMP as an attempt

to preserve the data locality, and hence improve overall performance, by reducing

heap fragmentation. It is based on the implementation of a separate spark pool,

dedicated to imported sparks, to ensure related pieces of work are kept together

in one pool.

With spark segregation (unlike with default settings), sparks are not treated

equally; a distinction is made between sparks that are imported from a remote

PE in response to work request messages (global), and sparks that are locally

generated by threads in the same PE (local). Based on this distinction, the

concept of an import-spark-pool is implemented as a separate spark pool for each

PE. In this implementation, whenever a spark is received from a remote PE, that

spark is retained in the import-spark-pool. The other local spark pools, for the

local HECs within a PE, maintain the local sparks; i.e. sparks generated locally.

We then introduce different mechanisms for local evaluation of sparks, as well as

for sending sparks remotely, as Table 4.6 demonstrates.

Table 4.6: Policies for exporting and selecting sparks when using the import-
spark-pool.

Spark Select Policy (for lo-

cal evaluation)

Spark Export Policy(for

exporting sparks)

local only select local spark only, do not

search in the import-spark-

pool.

export local spark only, do

not search in the import-spark-

pool.

prefer local prefer local sparks to select,

then look for global sparks in

the import-spark-pool.

prefer local sparks to export,

then look for global sparks in

the import-spark-pool.

prefer

global

prefer global sparks to select

from the import-spark-pool,

then look for local sparks.

prefer global sparks to export

from the import-spark-pool,

then look for local sparks.

global only select global spark only, do not

search in any local spark pool.

export global spark only, do

not search in any local spark

pool.

120

Chapter 4. GUMSMP Tuning

The combination of those 2 policies, each with 4 possible values for exporting

and local evaluation resulted in 16 different combinations. It is evident that,

some policies are not practical such as export global only for divide-and-conquer

programs, or export local only for data-parallel programs, as those might lead

to a heavily imbalanced load and thus, poor performance. Therefore, we restrict

our study to the following combinations of policies which are compared with the

default setting, when the import-spark-pool is not in use:

1. Export: prefer local, Select: prefer global. Rationale: improve response

time, by preferring global work for local evaluation, so that the result is

ready when asked for.

2. Export: prefer global, Select: prefer local. Rationale: improve data locality,

and avoid sending away local work.

3. Export: prefer local, Select: prefer local. Rationale: study the effect where

neither data locality, nor response time is considered.

4. Export: local only, Select: prefer global. Rationale: as (1) but more ag-

gressive, i.e. never send away global work.

5. Export: local only, Select: prefer local. Rationale: as (3) but more aggres-

sive, i.e. never send away global work.

We study the effect of these different policies on average GA residency (as

a measure of heap fragmentation), and overall performance (as a bottom line

metric). We expect some mechanisms to work better with a different parallelism

paradigm, e.g. with divide-and-conquer we expect to find more dynamically gen-

erated, local sparks. In this case, when remote sparks arrive at a time when more

local sparks are being generated, then with the default mechanism, the global

spark might be re-exported to another remote PE, thus increasing the danger of

heap fragmentation as a consequence of forwarding the work, and thereby affect-

ing the response time. With spark segregation, by keeping the import spark in

the import-spark-pool, we expect to improve heap fragmentation by using the

prefer global policy for local evaluation, and the prefer local policy for exporting

sparks remotely.

121

Chapter 4. GUMSMP Tuning

 0

 2000

 4000

 6000

 8000

 10000

 12000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

A
v
g

 G
A

 R
e
s
e
d

e
n

c
y

number of cores

Avg GA Residency for GUMSMP with different spark select and export policies for parfib

Export:PreferLocal, Select:PreferGlobal
Default:No separation between sparks
Export:PreferGlobal, Select:PreferLocal
Export:PreferLocal, Select:PreferLocal
Export:Local only, Select:PreferGlobal
Export:Local only, Select:PreferLocal

Figure 4.10: Average GA residency for different policies.

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP with different spark select and export policies for Parfib

Export:PreferLocal, Select:PreferGlobal
Default:No separation between sparks
Export:PreferGlobal, Select:PreferLocal
Export:PreferLocal, Select:PreferLocal
Export:Local only, Select:PreferGlobal
Export:Local only, Select:PreferLocal

Figure 4.11: Parfib speedup for different policies.

122

Chapter 4. GUMSMP Tuning

Unfortunately, the import-spark-pool mechanism is not effective at reducing

heap fragmentation or improving the overall performance. As demonstrated in

Figure 4.10 for average GA residency for parfib, it is apparent that there is

large variation in terms of average GA residency (i.e. the highest difference be-

tween the lowest and the highest average GA residency on 130 cores is 295%).

However, policies based on preferring local sparks for local evaluation exhibit a

larger average GA residency in general, and therefore a lower performance, as

illustrated in Figure 4.11. Specifically, the three policies that are based on select-

ing local sparks for local evaluations (Export: prefer global, Select: prefer local,

and Export: prefer local, Select: prefer local, and Export: local only, Select:

prefer local) show the highest average GA residency in all cases (Figure 4.10),

and lowest performance (Figure 4.11).

On the other hand, policies based on preferring global sparks for local evalua-

tion exhibit lower GA residency, and therefore deliver a competitive performance

to the default mechanism. Specifically, the two policies that are based on se-

lecting global sparks for local evaluations (Export: prefer local, Select: prefer

global, and Export: local only, Select: prefer global) show the lowest average GA

residency in all cases (Figure 4.10), and competitive performance (Figure 4.11).

In fact, different factors affect overall performance, such as data locality, re-

sponse time, and heap fragmentation; therefore, improving one factor (such as

lower heap fragmentation) might not directly deliver an improvement to overall

performance.

4.3.3.1 Future Spark Segregation Work

We plan in future work to take spark segregation mechanism further, and to

investigate different ways to gain concrete improvements in this direction. As

part of our plan for auto-tuning the RTS (Section 6.2.1.2), we could investigate

the possibility of auto-tuning different policies for exporting or selecting sparks,

e.g. during the system start-up phase preferring a global spark for evaluation

to distribute work quickly when the execution starts, but to then later during

the main execution switch to preferring local, to attempt to improve locality.

Different factors require further investigation, such as the suitability of a specific

123

Chapter 4. GUMSMP Tuning

policy for the parallel paradigm of the application, as well as considering the

fact that the success rate of policies differs, therefore specific policies designed to

improve specific aspects might not be effective, because of a lower success rate;

e.g. for the Export: prefer global, Select: prefer local, we demonstrate the success

rate for export and select as in the Table 4.7.

Table 4.7: Different cases for the Export:prefer global, Select:prefer local policy

Export: prefer global Selection: prefer local

Success exporting global spark. selecting local spark.

Failure nothing exported, forward

work request.

no local or global spark

found.

Fall-back exporting local sparks. selecting global sparks.

Moreover, we could also consider combining the spark-tagging approach with

the use of the import-spark-pool. Therefore, sparks in this pool might then

be further annotated, according to their originating PE, or level in hierarchical

architectures, thereby providing a topology-aware mechanism, or possibly by the

user providing encapsulating information on a desirable co-location. In such cases,

once imported sparks have been turned into threads, the scheduler may prefer

other imported sparks that have some affinity with the previous one, e.g. those

coming from the same PE.

The RTS infrastructure i.e. the import-spark-pool can be a basis for further

work exploring a concrete combination of spark selection and exporting policies.

4.3.4 Dedicated Gateways

In the design of GUMSMP, one HEC in each node serves as a gateway to the

remaining HECs, which means communication is restricted to this HEC, which

also performs a computation task (Section 3.5.3.1). In this section, we investigate

an alternative design, where the gateway HEC is restricted to performing com-

munication tasks only, with no computation, and where the system relies solely

on other HECs for computation, aiming to speed up the communication, despite

sacrificing some computational capacity. The evaluation of such a design on the

124

Chapter 4. GUMSMP Tuning

multi-core reveals a drop in performance as a direct effect of losing one computa-

tion engine in each node, i.e. up to 20 HECs in a configuration of 20 nodes. This

is obviously a large sacrifice, but as the trend for parallel machines is moving

towards many-core, with up to 64 core, such a configuration might be useful for

reducing response time to messages from a remote PE, as well as for making work

available to keep local HECs busy with computations. Thus, it could aid scala-

bility. However, as we discuss later in the NUMA evaluation, such configurations

suffer from memory management overheads. Table 4.8 demonstrates the effect of

using dedicated gateways, which shows an average 18% performance degradation

as a result of losing 20 HECs. However, we observe an improvement of 11% for

mandelbrot as a communication bound program which does a significant large

data transfer as shown in the prior Figure 4.8. While maze also communicates

large data, the granularity of mandelbrot computations is significantly lower

(i.e. about 4K sparks compared to 33K), which results in large communication-

to-computation ratio for mandelbrot, and hence it benefits from the dedicated

gateway providing faster communication.

We speculate that in general for communication bound programs, dedicated

gateway HEC can lead to an improvement.

Table 4.8: The effect of using dedicated gateways

100 cores

Program Runtime

(dedicated

gateways)

Runtime (no

dedicated

gateways)

Time increase

(%)

parfib 112.5 94.7 18.9

sumEuler 41.5 36.6 13.3

coins 44.4 34.3 29.4

worpitzky 54.8 47.6 15.1

maze 100.7 70.3 43.2

mandelbrot 209.5 234.1 -11.7

Geom Mean. 18.0

125

Chapter 4. GUMSMP Tuning

4.3.5 Optimising the Number of Cores Per PE

GUMSMP is designed for hierarchical architectures like clusters of multi-cores,

or large NUMAs; where the system can use a shared heap on each node and

distributed heaps across nodes. But how many cores in each node should be

used? Section 5.3.3 investigate how to optimise the number of cores for each PE.

4.3.6 Optimising the Setting of the Allocation Area

We shall see that in Section 5.2.2, memory management represents the main

bottleneck affecting the performance of GUMSMP as a component inherited

from GHC-SMP. In particular, the main issue identified in that study is having

several cores per PE sharing the same available heap, and producing large live

data sets, which leads to an increase in the GC time. By providing a larger

allocation area for each PE, reflecting multiple executions trying to access data,

we aim to reduce the GC time and improve performance. Section 5.3.4, reports

an investigation of the effect of increasing the allocation area on performance.

4.3.7 More Active Load Management

While GUMSMP mostly provides passive load management, this could be com-

bined with some active load management at both inter- and intra-node levels. In

such a setting, each idle HEC will steal sparks from the pools of other local HECs,

following the passive load distribution approach, but additionally a HEC with a

full spark pool will actively push sparks to the spark pools of other HECs, thus

combining the passive and active load distribution at the intra-node level. For

inter-node level, this is equivalent to the use of low- and high-watermark mech-

anisms (Section 3.5.4.1) to actively push sparks to remote PEs. The rationale

for this combined policy is to improve the load balance on architectures with low

communication costs, and to be pro-active in sending work to idle HECs at the

intra-node level, and to remote PE at the inter-node level. Section 5.3.6 provides

an investigation of such a combined policy at the intra-node level and discusses

its effect on the performance of programs with a large degree of parallelism.

126

Chapter 4. GUMSMP Tuning

4.4 Summary

We presented the performance results for our GUMSMP system. We assessed

the performance of several tuning policies and explored the performance of some

of alternative design choices, as discussed in the previous chapter. We concluded

that large, hierarchical architectures require a more aggressive work distribution

policy than flat networks. A primary optimisation is a refined work-stealing pol-

icy, which applies the concept of a low-watermark tailored to the number of cores

per-node, allowing the system to pre-fetch work at the node level. This proved

to be crucial for the performance of some of the test programs: for the micro-

benchmarks, speedup improved by a factor of up to 3, and for the larger bench-

marks by a factor of up to 1.3. As an additional refinement, we favoured inter-

node load distribution in the start-up phase of the parallel execution; thereby

ensuring that early work, which tends to be large, is picked up by other PEs,

rather than by other cores on the same machine. This policy significantly im-

proved the load balance of the programs with nested parallelism: on 100 cores,

the speedup improved by up to 19%.

The performance results for five micro-benchmarks, and three more communi-

cation intensive benchmarks demonstrate the scalability of our multilevel design

up to 100 cores, well beyond the size of the individual multi-cores, with abso-

lute speedups of up to 81. We report on scalability results on up to 300 cores

in Section 5.4. Our implementation enables the execution of GpH programs on

networks of multi-cores, thereby extending previous work on GHC-GUM, and

these results represent the first systematic study of GpH performance on the 100

core scale.

The speedups for the three larger benchmarks are relatively low, e.g. between

21 and 34 on a 100 core architecture. This is partly due to the increased amount

of communication inherent in the applications, which in turn also increases the

overheads for managing the virtual shared heap. However, it is also partly due to

having more complex data dependencies, and greater overheads to switch between

different threads.

Moreover, we explored alternative designs by demonstrating the effect on per-

formance when restricting the gateway HEC to perform communication only,

127

Chapter 4. GUMSMP Tuning

which negatively affects overall performance, because of the loss of one computa-

tion engine from each node, which cannot offset the gain in communication speed

on the core numbers tested. We discussed our implementation of the import-

spark-pool as an attempt to reduce heap fragmentation, and to therefore improve

overall performance. Our results illustrated that separating sparks into local and

global requires further tuning of the policies using more information such as using

a spark tagging mechanism in order to be effective.

128

Chapter 5

GUMSMP Evaluation

5.1 Introduction

This chapter presents a performance evaluation of GUMSMP in comparison

to GHC-SMP on a state-of-the-art physical shared memory NUMA machine

(published in [8]). Additionally, it provides an evaluation of GUMSMP imple-

mentation on a cluster of multi-cores, comparing GUMSMP performance with

the performance of GHC-GUM.

This chapter is structured as follows. Section 5.2 discusses the scalability

issues associated with the NUMA machines. Section 5.2.1 demonstrates the scal-

ability limit of GHC-SMP on NUMA architectures. Section 5.2.2 demonstrates

that a hybrid system, GUMSMP, which combines both distributed and shared

heap abstractions, consistently outperforms the shared memory GHC-SMP im-

plementation. Section 5.3 evaluates GUMSMP on a cluster of multi-core ma-

chines, comparing its performance with GHC-GUM. It compares the two sys-

tems in terms of the amount of parallelism exploited, the threads created, and

the communication volume. Sections 5.3.3 and 5.3.4 discuss further tuning for

the memory management component of GUMSMP. We then show the perfor-

mance of GUMSMP and GHC-GUM for data-parallel and divide-and-conquer

programs on up to 128 cores. Section 5.4 provides scalability results for a range

of benchmarks on up to 300 cores, by combining multiple clusters, with relatively

low latency.

129

Chapter 5. GUMSMP Evaluation

5.2 Balancing Shared and Distributed Heaps on

NUMA Architectures

Current high-end servers offer 48 or 64 cores with a NUMA architecture that

supports shared memory access across the entire address space. On such ar-

chitectures, reduced synchronisation costs are bought at the price of memory

latencies, which vary by a factor of up to 2.2, depending on in which NUMA

region the memory bank is located (Section 2.2.1.1).

The measurements for this section are made on a 48-core NUMA machine,

with four AMD Opteron-based processors, one per socket as depicted in Fig-

ure 5.1. Each processor contains two NUMA regions, and each region has six

2.8 GHz cores. The total RAM is 512 GB, which is evenly distributed as 64 GB

for each region. A 2 MB L2 cache is shared by 2 cores in each region, and a 6

MB L3 cache is shared between all 6 cores within the same region. The machine

runs x86 64 Linux CentOS 6.5. Memory latencies on this NUMA architecture

vary by a factor of 2.2, as demonstrated in Table 5.1. The set of benchmarks

used are the same as those specified in Section 4.2.1. The RTS of the parallel

Haskell implementations is based on GHC 6.12.3, using GCC 4.4.7, and PVM

3.4.5 for message passing. For GHC-SMP, the performance of GHC 7.6.3 was

tested, delivering similar results.

In our experiments, we choose 40 cores to evenly partition the machine into 2,

4, 5, and 8 regions. Table 5.1 demonstrates the variation in access time between

nodes located in different NUMA regions, with 10 being the unit of local access

time (measured using the Linux command numactl -H). In this example, the total

number of cores is 48, located in 8 NUMA regions. If the node to be accessed

is located in the same NUMA region, the access time is 10, but if it is located

in a different region, the access time increases significantly up to 22, depending

on how distant the region is. Even more problematic, for those applications that

require frequent memory access, the memory bus can become a major bottleneck,

degrading access times far below the values measured on an idle machine. These

architectures pose a challenge to parallel languages, especially in cases where they

make very dynamic use of memory, as many parallel functional applications do.

130

Chapter 5. GUMSMP Evaluation

Table 5.1: Memory access times between different NUMA regions (10 is the basic
unit for local memory access)

node 0: 1: 2: 3: 4: 5: 6: 7:

0: 10 16 16 22 16 22 16 22

1: 16 10 22 16 22 16 22 16

2: 16 22 10 16 16 22 16 22

3: 22 16 16 10 22 16 22 16

4: 16 22 16 22 10 16 16 22

5: 22 16 22 16 16 10 22 16

6: 16 22 16 22 16 22 10 16

7: 22 16 22 16 22 16 16 10

This section studies the impact of state-of-the-art NUMA architectures on

the parallel performance of languages with automated memory management, in

particular on GpH. We explore a range of systems, from purely shared memory,

hybrid shared/distributed memory, to purely distributed memory. The under-

lying compiled parallel graph reduction execution model induces both frequent

and highly random memory access, thereby aggravating the impact of the NUMA

memory architecture. Hence, GpH programs are excellent test cases for explor-

ing the impact of NUMA memory management. Our results, however, are not

restricted to Haskell, nor to other parallel functional languages: the issues we

explore affect all languages with automated memory management on NUMA ar-

chitectures.

Moreover, we demonstrate that the scalability of the shared memory GpH

implementation (GHC-SMP) is limited by heap contention, due to the synchro-

nisation and locking overheads of the stop-the-world parallel garbage collector,

discussed in Section 3.6.2. This limits the number of cores that can be usefully

exploited to well below the 48 physical cores available on our AMD Opteron

measurement platform. In contrast, our hybrid shared/distributed implementa-

tion (GUMSMP) can effectively exploit several distributed heaps on a physical

shared memory machine, to reduce both memory contention and heap locking.

We also quantify the impact of heap contention on NUMA servers for the

131

Chapter 5. GUMSMP Evaluation

memory intensive language GpH, and hence identify how parallel Haskell appli-

cations can best exploit emerging massively parallel shared memory hardware

architectures.
Machine (512GB)

Socket P#0 (128GB)

NUMANode P#0 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#0

L1d (16KB)

Core P#1

PU P#1

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#2

L1d (16KB)

Core P#3

PU P#3

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#4

L1d (16KB)

Core P#5

PU P#5

NUMANode P#1 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#6

L1d (16KB)

Core P#1

PU P#7

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#8

L1d (16KB)

Core P#3

PU P#9

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#10

L1d (16KB)

Core P#5

PU P#11

Socket P#1 (128GB)

NUMANode P#2 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#12

L1d (16KB)

Core P#1

PU P#13

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#14

L1d (16KB)

Core P#3

PU P#15

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#16

L1d (16KB)

Core P#5

PU P#17

NUMANode P#3 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#18

L1d (16KB)

Core P#1

PU P#19

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#20

L1d (16KB)

Core P#3

PU P#21

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#22

L1d (16KB)

Core P#5

PU P#23

Socket P#2 (128GB)

NUMANode P#4 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#24

L1d (16KB)

Core P#1

PU P#25

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#26

L1d (16KB)

Core P#3

PU P#27

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#28

L1d (16KB)

Core P#5

PU P#29

NUMANode P#5 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#30

L1d (16KB)

Core P#1

PU P#31

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#32

L1d (16KB)

Core P#3

PU P#33

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#34

L1d (16KB)

Core P#5

PU P#35

Socket P#3 (128GB)

NUMANode P#6 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#36

L1d (16KB)

Core P#1

PU P#37

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#38

L1d (16KB)

Core P#3

PU P#39

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#40

L1d (16KB)

Core P#5

PU P#41

NUMANode P#7 (64GB)

L3 (6144KB)

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#0

PU P#42

L1d (16KB)

Core P#1

PU P#43

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#2

PU P#44

L1d (16KB)

Core P#3

PU P#45

L2 (2048KB)

L1i (64KB)

L1d (16KB)

Core P#4

PU P#46

L1d (16KB)

Core P#5

PU P#47

Host: cantor

Indexes: physical

Date: Wed 12 Jun 2013 12:48:31 BST Figure 5.1: NUMA topology of a 48-core server

5.2.1 Scalability Limits

We start the evaluation by comparing the runtimes of GHC-SMP shared mem-

ory, and GHC-GUM distributed memory system. Table 5.2 compares runtimes

132

Chapter 5. GUMSMP Evaluation

using the GHC-SMP, with those when using GHC-GUM; with the lowest run-

times per program given in boldface. These numbers reveal a significant degra-

dation in performance for the shared memory GHC-SMP system beyond 15 to

25 cores, while the distributed memory GHC-GUM implementation continues

to scale.

Table 5.2: Runtimes for GHC-SMP and GHC-GUM

Runtimes (seconds)

Cores 1 15 20 25 30 35 40

system SMP GUM SMP GUM SMP GUM SMP GUM SMP GUM SMP GUM SMP GUM

parfib 6004.2 6644.7 741.8 573.4 746.7 406.1 666.7 350.4 740.9 296.3 711.9 307.7 752.6 276.3

coins 5155.7 5690.7 829.2 485.0 857.5 432.9 834.8 384.3 940.4 340.4 1137.5 340.7 1095.1 318.3

sEuler 1507.9 1552.0 199.9 102.8 197.9 94.2 182.3 77.9 194.3 81.9 226.1 81.5 222.0 79.0

worpit 1842.3 1818.3 217.3 173.1 204.9 135.9 187.0 116.5 185.2 111.5 169.9 105.4 178.6 108.8

maze 3181.9 3289.4 1472.5 675.8 1424.4 505.5 1404.3 467.9 1553.9 419.3 1650.9 403.2 1527.9 348.7

mandel 4226.9 3772.6 1163.1 420.0 631.5 327.9 801.2 294.9 779.8 303.5 821.6 313.9 882.4 315.4

b-scholes 5133.1 5996.3 542.5 396.3 463.32 326.3 431.8 265.1 406.9 245.4 491.6 235.4 596.9 200.4

The program with a low heap allocation rate, worpitzky, scales best; i.e.

achieving the lowest runtime in a GHC-SMP setting at 35 cores; however, even

this program has a lower performance on 40 cores (on an 48-core machine). Mean-

while, coins which has a high allocation rate; represents the one with the lowest

scalability, as performance starts to drop after 15 cores.

While GHC-GUM starts with higher execution times on 1 PE, it typically

outperforms GHC-SMP from ca. 10–15 cores onwards. In consideration of this

trend, the remainder of the section is based on a study that assumes there is an

intermediate point in the range of the extremes of shared heap GHC-SMP, and

distributed heap GHC-GUM with even higher performance.

5.2.2 Benefits of Distributed Heaps

The GUMSMP implementation of parallel Haskell combines the heap models

for both GHC-SMP and GHC-GUM. It provides parameters for selecting the

number of cores to be used, inherited from GHC-SMP, and for selecting the

number of PEs (independent instances of the runtime system), inherited from

GHC-GUM (Section 3.4.1).

133

Chapter 5. GUMSMP Evaluation

The figures and tables in this section explore a range of configurations, from

a purely shared heap to purely distributed heaps, using the GUMSMP imple-

mentation and a total of 40 cores. The columns in Table 5.3 show configurations

in the form PE/N, indicating the PE instances of the runtime system, each with

its own heap, are spawned, with N cores used in each instance, all accessing the

same shared heap. Our goal is to establish a balance between PE instances and

per PE core numbers that achieve the best results for this set of test programs.

Figures (5.2,5.3, and 5.4) demonstrate the different configurations of cores per

PE used in GUMSMP, and Figure 5.5 shows the configuration of GHC-GUM

and GHC-SMP.

Cores = 20 Cores = 20

GUMSMP: 2 PEs, 20 cores each = 40 cores GUMSMP: 20 PEs, 2 cores each = 40 cores

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Cores = 2

Figure 5.2: GUMSMP (20 PEs, 2 cores each) and (2 PEs, 20 cores each) con-
figurations

Cores = 5

Cores = 5

Cores = 5

Cores = 5

Cores = 5

Cores = 5

Cores = 5

Cores = 5

GUMSMP: 8 PEs, 5 cores each = 40 cores GUMSMP: 5 PEs, 8 cores each = 40 cores

Cores = 8

Cores = 8

Cores = 8

Cores = 8

Cores = 8

Figure 5.3: GUMSMP (8 PEs, 5 cores each) and (5 PEs, 8 cores each) configu-
rations

134

Chapter 5. GUMSMP Evaluation

GUMSMP: 10 PEs, 4 cores each = 40 cores

Cores = 4

Cores = 4

Cores = 4

Cores = 4

Cores = 4

Cores = 4

Cores = 4

Cores = 4

Cores = 4

Cores = 4

Cores = 10 Cores = 10

Cores = 10 Cores = 10

GUMSMP: 4 PEs, 10 cores each = 40 cores

Figure 5.4: GUMSMP (10 PEs, 4 cores each) and (4 PEs, 10 cores each) con-
figurations

GHC-GUM: 40 PEs, 1 cores each = 40 cores

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

Core = 1

GHC-SMP: 1 PE, 40 cores = 40 cores

Cores = 40

Figure 5.5: GHC-GUM and GHC-SMP configurations

Our main results, the runtimes presented in Figure 5.6, and Table 5.3 (lowest

runtimes highlighted), show that for all programs a hybrid of distributed and

shared heaps results in the best performance. We conclude that it is best to use

up to 5 of the 40 physical cores, resulting in at least 8 separate PEs running

simultaneously, one on each of the NUMA regions. With the communication

bound mandelbrot application, we observe a further small improvement when

using 8 cores. Notably, the improvement relative to the pure shared memory

execution (GHC-SMP) is most pronounced for maze (a data intensive program)

and coins (a divide-and-conquer program), with runtime improvements up to

a factor of 4.5; whereas, improvements for other programs are between 2.2 and

3.3, which are still remarkable.

135

Chapter 5. GUMSMP Evaluation

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 5 8 10 20 40

%
 M

a
x
im

u
m

 V
a
lu

e
s

number of cores per PE

Runtimes

Parfib
Coins
SumEuler
Worpitzky
Maze
Mandel
Blackscholes

Figure 5.6: Normalised GUMSMP runtimes on 40 NUMA cores

Table 5.3: GUMSMP runtimes on 40 NUMA cores configurations

Configuration GUM GUMSMP SMP SMP RT
GUMSMP RT

PE/Cores PE 40 20/2 10/4 8/5 5/8 4/10 2/20 N 40

parfib 276.3 258.5 306.6 310.6 460.2 485.7 635.3 752.6 2.9

coins 318.3 240.9 356.8 364.5 388.7 455.3 702.9 1095.1 4.5

sumEuler 79.0 66.9 67.8 69.1 82.9 85.06 135.9 222.0 3.3

worpitzky 108.8 79.6 88.5 91.9 104.2 111.6 145.7 178.6 2.2

maze 348.7 375.6 338.3 344.0 378.3 728.36 810.7 1527.9 4.5

mandelbrot 315.4 372.5 303.3 289.4 288.0 297.9 485.1 882.4 3.0

blackscholes 200.4 179.2 203.6 209.5 273.7 326.8 435.4 596.9 3.3

Min. 2.2

Max. 4.5

Geom Mean. 3.3

To quantify the GC overhead, we present the percentage of GC time relative

to the total execution time in Figure 5.7, and the number of synchronisation

points that represents the number of locks required to get a new block for al-

location during the current parallel stop-the-world GC, in Figure 5.8. There is

a strong correlation between this GC percentage, and the runtime, indicating a

136

Chapter 5. GUMSMP Evaluation

loss in performance for high core numbers, mainly due to memory management

overheads. Part of this overhead is inherent to the parallel nature of the execu-

tion. All the programs typically generate a large number of threads; especially

in the case of the shared heap implementation. Each thread defines a set of live

heap cells, which need to be retained following garbage collection, as visualised

in Figure 5.9, by the larger live heap referred to by the thread pool.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 5 8 10 20 40

%
 M

a
x
im

u
m

 V
a
lu

e
s

number of cores per PE

Percentage of GC Time

Parfib: 66.1%
Coins: 76.6%

SumEuler: 72.6%
Worpitzky: 60.5%

Maze: 67.3%
Blackscholes: 63.8%

Figure 5.7: Normalised GUMSMP GC percentage on 40 NUMA cores

137

Chapter 5. GUMSMP Evaluation

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 5 8 10 20 40

%
 M

a
x
im

u
m

 V
a
lu

e
s

number of cores per PE

GC Synchronization Points (M)

Parfib: 43
Coins: 1173

SumEuler: 89
Worpitzky: 9.7

Maze: 524
Blackscholes: 455.7

Figure 5.8: Normalised GUMSMP GC synchronisation points on 40 NUMA
cores

Threads

Pool

Threads

Pool

vs.

Live heap

Live heap

Figure 5.9: Sketch of the GC overheads due to a large live heap in a multi-threaded
execution

The large amount of live data, which shows up as significantly higher values

of memory residency in Figure 5.10, translates into the need for a (currently

NUMA-agnostic) garbage collection to perform more work, which represents a

major source of overhead. The other major sources of overhead, which are harder

to quantify, are the synchronisation to perform the stop-the-world GC, and the

138

Chapter 5. GUMSMP Evaluation

per-object locking required to prevent multiple threads from duplicating mutable

objects when copying, as discussed in details in Section 3.6.2.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 5 8 10 20 40

%
 M

a
x
im

u
m

 V
a
lu

e
s

number of cores per PE

Maximum Memeory Residency (Kb)

Parfib: 542
Coins: 1763
SumEuler: 1371.7

Worpitzky: 354
Maze: 407.0
Blackscholes: 4000385.8

Figure 5.10: Normalised GUMSMP maximum memory residency on 40 NUMA
cores

Crucially, in these experiments we always use the default minimum heap size of

0 for each PE; thus, there is no gain in the size of the initial heap when increasing

the number of PEs. When increasing the minimum heap size, we observe a drop

in runtime for GHC-SMP; this is as expected, because the garbage collections

are less frequent. However, the GHC-SMP runtimes are still substantially higher

than the GUMSMP runtimes.

An important metric for the performance of the memory management system

is the allocation rate of the program. Figure 5.11 measures the amount of allo-

cation per second, with increasing core numbers per PE. We explain the serious

degradation in allocation rate, as an indirect consequence of the locking during

GC, as discussed above. While the synchronisation overhead for stop-the-world

parallel GC is largely independent from the live data set, the per-object locking

overhead increases with both higher core numbers and larger live data set. As

a combination of both overheads, the garbage collection phase becomes the con-

139

Chapter 5. GUMSMP Evaluation

straining factor in the allocation performance. This behaviour is indicated by the

consistent drop in the allocation rate beyond ca. 8–10 cores per PE.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 5 8 10 20 40

%
 M

a
x
im

u
m

 V
a
lu

e
s

number of cores per PE

Average Allocation Rate (Gb/s)

Parfib: 2.73
Coins: 4.3

SumEuler: 3.85
Worpitzky: 2.49

Maze: 5.06
Blackscholes: 1.77

Figure 5.11: Normalised GUMSMP average allocation rate on 40 NUMA cores

The memory residency depicted in Figure 5.10 matches the profile of the GC

percentage shown in Figure 5.7. This underlines the fact that the majority of

the additional work done during GC for high core numbers is due to the size of

the live data set in these configurations. We observe that the blackscholes

program is one of the largest programs representing a stress test for the memory

management system as it uses a large data structure (array of doubles), and

therefore exhibiting the highest memory residency value.

In summary, the combination of global synchronisation for GC, and the lock-

ing overheads of allocation-triggered per-block locks, and promotion-triggered

per-object locks, with the synchronisation to perform the stop-the-world parallel

GC, account for a significant bottleneck in heavily allocating programs. This

overhead, which becomes dominant with larger live data sets, is the main rea-

son for the drop in performance observed in Table 5.3 and Figure 5.6. Notably,

programs with a low allocation rate, such as worpitzky, exhibit the smallest

140

Chapter 5. GUMSMP Evaluation

runtime improvement, over pure shared memory versions.

5.2.3 Summary and Discussion

Summary: We have investigated the impact of a NUMA memory model on

the parallel performance of GpH, as a language with automated memory man-

agement, using 7 benchmarks on a state-of-the-art platform. We demonstrated

that it is beneficial to use distributed heaps on NUMA, and specifically up to one

heap per NUMA region. Hence, better performance is obtained for the bench-

mark programs with the hybrid shared/distributed memory models provided by

our GUMSMP implementation. We observe best performance when using a sin-

gle shared heap per NUMA region, which means in our measurements using up

to 5 cores per PE in a configuration of 8 PEs, running on a hardware with 40

cores.

The main findings of this study are:

• GUMSMP’s performance, with a maximum of 5 cores per PE is consis-

tently better than the pure GHC-SMP execution, by a factor of up to 4.5.

This configuration amounts to using a single shared heap for each NUMA

region.

• For large core numbers, the GC overheads in the shared memory GHC-

SMP increase drastically, primarily because of the larger live heap set.

• The allocation rate of GHC-SMP is typically much smaller than that of

GUMSMP. We conjecture that this is a combination of the synchronisa-

tion overheads in the stop-the-world parallel GC, and the locking overheads

incurred to prevent multiple GC threads from accidentally duplicating mu-

table objects, during parallel copying.

These improvements occurred, despite the fact that the RTS is not NUMA-

aware, by simply structuring the heap into several distributed heaps and relying

on the operating system for the concrete mapping. Further improvements should

be possible with tighter integration of the RTS into the underlying operating

system. Importantly, graph reduction based execution models, such as those

141

Chapter 5. GUMSMP Evaluation

employed in modern systems, incur frequent and unstructured memory access.

Therefore, the relative impact of different memory latencies is likely to be higher

in our systems; thus, the core findings of this study can be seen as a stress test for

modern runtime systems in the presence of NUMA architectures, contributing to

studies of NUMA performance in languages with highly dynamic memory usage.

Discussion: The impact of non-uniform memory latencies on parallel perfor-

mance has been studied recently in several contexts. A comparative empirical

study by Bergstrom [20], involving running low-level benchmarks in the modified

C language STREAM, summarises that 32-core Intel Xeon architectures provide

larger cross-processor bandwidths, and suffer less from NUMA penalties com-

pared to the widely used 48-core AMD Opteron architecture. This underlines the

importance of NUMA in our measurements, using the latter architecture.

The baseline for our work is Marlow et al.’s [114] implementation of parallel,

generational GC in GHC-SMP, which is the technology used in the main branch

of the GHC runtime system (Section 3.6.2). This parallel generational GC was

extended to concurrent GC in [117]: in this concurrent GC implementation a GC

thread runs concurrently with mutator threads, avoiding the need for a stop-the-

world GC. The implementation features local heaps, and parallel GC where each

core has its own private heap collected independently. There is also a shared

heap, which is collected less frequently, using the parallel stop-the-world GC;

thereby, leading to less synchronisation. While this design is desirable and the

new parallel concurrent GC achieves good performance improvements on up to 24

cores, scalability is lower than expected, and the implementation is significantly

more complex than the current GC, which is of the parallel stop-the-world vari-

ety. Therefore, these modifications have not been merged into the mainline GHC.

Efficient automatic memory management on NUMA architectures is a chal-

lenge for aggressively allocating languages, such as declarative ones. One notable

system that tackles these challenges is the Manticore system for parallel ML (Sec-

tion 2.4.4.1), with the garbage collector implemented by Auhagen et al. [15]. It

142

Chapter 5. GUMSMP Evaluation

combines a split heap design with a three phase, semi-generational GC that max-

imises locality and minimises global synchronisation. This was demonstrated to

scale effectively with good utilisation, and steadily improved performance over

all the available cores for both 48-core AMD Opteron, and 32-core Intel Xeon

machines.

Modern Java implementations exhibit a similar trend. The measurements

by Gidra et al. [73] of several DaCapo benchmark programs implemented in

OpenJDK7, mirror our observations made for shared memory parallel Haskell

programs: scalability is poor on a 48-core NUMA architecture, with a stop-the-

world collector representing the main bottleneck. They provided more detailed

measurements on the sources of overhead than we did, and identified the scanning

and copying phases of remote objects, i.e. objects in remote NUMA regions, as

the main overhead during GC, linking this to specific NUMA features. Moreover,

they also demonstrated the effect of the pause time required for the stop-the-world

parallel GC, which monotonically increases over time, resulting in unscalable GC,

as the number of cores increases.

With a similar interest to that in our study, Alnowaiser [10] studied locality

characteristics in two Java benchmarks. The study evaluated and analysed the

locality characteristics of a rooted sub-graph for NUMA GC, using two DaCapo

and SPECjbb2005 benchmarks. While data locality is generally high, on average

more than 80% of objects are co-located with the root, and large, distributed

graphs suffer from being exposed to load balancing techniques that diminish data

locality. The author suggests modifications to the GC heuristic, using the root

location as a locality heuristic for GC, and ensuring that GC is structured to

process the roots on the same memory node in one phase.

While the work outlined above mainly presents observations on performance

and scalability, several authors have developed concrete improvements at the ap-

plication level, as well as inside the RTS. In particular, Terboven et al. [161]

offers concrete recipes for the parallel programmer to enhance the performance

143

Chapter 5. GUMSMP Evaluation

of OpenMP programs with task-level parallelism. These recipes are designed

to improve data locality under several different workloads, and are based on ex-

tensive measurements of different task-level OpenMP implementations, using a

range of benchmark programs.

While the above paper achieves performance improvements through changes

at the program level, Yi Su et al. [156] developed NUMA-aware, thread place-

ment algorithms inside the RTS for OpenMP considering the critical path when

addressing NUMA latencies. They used on-line profiling of information obtained

from hardware counters, to direct thread placement; thereby, improving perfor-

mance by minimising the critical path of the OpenMP parallel regions. These

algorithms have been evaluated using four NPB OpenMP applications, achieving

between an 8% and 26% improvement over the default Linux thread placement

algorithm.

5.3 Cluster of Multi-cores Results

In this section, we provide an evaluation of the performance of GUMSMP on a

cluster of multi-cores, comparing the performance with the performance of GHC-

GUM. The measurements in this section are made on the homogeneous Beowulf

cluster of multi-cores, as specified in Section 4.2.1.

5.3.1 Evaluation of GUMSMP and GHC-GUM

GHC-GUM can be configured to use a hierarchical network as a flat network; in

essence running one instance of the RTS for each available core. While this setup

cannot make use of the physical shared memory, it does provide a useful reference

point for the GUMSMP performance results. Crucially, the same GpH programs

are used with no changes, as both systems represent RTS implementation for the

GpH dialect of parallel Haskell.

Our study of the performance on NUMA in the previous section provide

us with an insight into further possible improvement into the performance of

144

Chapter 5. GUMSMP Evaluation

GUMSMP. In particular, the main factor affecting the performance of GUMSMP

is the memory management inherited from the GHC-SMP. Therefore, in the

evaluation conducted in this section we consider a new setting of GUMSMP,

where the heap configuration is further tuned to tackle the memory manage-

ment overhead. We demonstrate how further tuning of the allocation area set-

tings for GUMSMP improves the overall performance, as a result of the lower

memory management overhead, measured in terms of the percentage GC time

(Section 5.3.4).

In our evaluation, the low-watermark mechanism is used for all the programs

tested, configured to be equal to the number of local HECs. In the same way, the

low-watermark is set to be 1 for GHC-GUM, to match the single PE instance.

Another important, tunable parameter for the RTS is the delay between re-

ceiving the unsuccessful FISH message, and sending another FISH message. A

setting for the FISH delay is required to strike a balance between obtaining work

as quickly as possible, and avoiding swamping the machine with FISH messages,

as this endangers the scalability of the system. Similarly, the low-watermark

mechanism is advantageous in GUMSMP in order to send FISHes more quickly,

to obtain sufficient parallelism to feed all the local cores on a multi-core. In

GUMSMP, the role of the FISH delay value (inherited from GHC-GUM) is

more aggravated, due to the role of the gateway HEC in mediating any commu-

nication to other PEs. Thus, if the gateway HEC is in a delay period, it will

not immediately send a FISH, despite the request is originating from a different

HEC. This is reflected by longer idle times with moderate FISH delay values,

compared to GHC-GUM executions. In all of the results presented, we approx-

imate the setting for the FISH delay, that was established with GHC-GUM on

flat networks, by dividing the GHC-GUM setting by the number of local HECs;

e.g. with 3 and 4 HECs, we use the FISH delay values of 66 and 50 milliseconds

respectively, as opposed to 200 milliseconds established for GHC-GUM.

In general, there is a useful set of tunable parameters to tune different aspects

of the runtime system summarised in Table 5.4

145

Chapter 5. GUMSMP Evaluation

Table 5.4: A useful set of tunable RTS parameters

Component Parameter Set Effect

Load Balancing low-watermark -ql<n> set the minimum number of sparks to

keep locally to n sparks

sparks to export

initially

-qsx<n> set the number of sparks to export re-

motely before local stealing to n sparks

Communication fish delay -qF<n> set the delay time between unsuccessful

fish and sending a new fish message to

n milliseconds

thunks per packet -qT<n> set the maximum number of thunks to

pack in one packet to n thunks

globalisation policy -qG<n> generate global address for these clo-

sures: 0=nothing, 1=thunks, 9=all

packet size -qQ<n> set the size of the packet to communi-

cate to n bytes

Memory Man-

agement

allocation area -A<n>K set the minimum allocation area size to

n KB.

Heap size -H<n>M set the minimum heap size to n MB.

5.3.1.1 Generated Parallelism

In this section, we study the behaviours of both systems in terms of generating

and exploiting parallelism. The same level of potential parallelism, in the form of

sparks, is generated by GHC-GUM, and GUMSMP for all programs. However,

GUMSMP exploits more parallelism, as each HEC can quickly create threads,

whereas in GHC-GUM, each PE must communicate to get work. This behaviour

is more pronounced for divide-and-conquer programs or programs with nested

parallelism, such as maze. For these programs, more parallelism is generated

and exploited locally. As demonstrated in Table 5.5, GUMSMP exploits up

to 2.9 times as many sparks as GHC-GUM. GHC-GUM on the other hand

benefits more from thread subsumption, discussed in Section 3.4.

146

Chapter 5. GUMSMP Evaluation

Table 5.5: GHC-GUM and GUMSMP amount of parallelism on 96 Beowulf
cores

Generated Sparks Converted Sparks on 96 cores

Programs GHC-GUM GUMSMP GUMSMP
GUM

parfib 1346K 9956 28554 2.9

coins 17.7K 2949 3490 1.2

sumEuler 0.55K 553 553 1.0

worpitzky 7K 3751 5864 1.6

mandelbrot 4K 4093 4095 1.0

maze 33.3K 16534 20483 1.2

Min. 1.0

Max. 2.9

Geom Mean. 1.5

5.3.1.2 Communication and Threads

To study the behaviour of GUMSMP, in terms of the amount of threads gen-

erated, as well as the amount of communication, we use two divide-and-conquer

and two data-parallel programs. In particular, we use data generated from the

evaluation on 40 Beowulf cores to predict the trends for these aspects as the

number of cores per PE increases. Table 5.6 demonstrates the number of data

messages (excluding the number of work request FISH messages), showing that as

expected, the communication rate falls as the number of cores per PE increases.

This demonstrates the benefits of the GUMSMP design in providing one gate-

way HEC representing the communication engine for the set of local HECs within

the same multi-core, as opposed to GHC-GUM, where each individual PE per-

forms communication explicitly. However, this trend is different in the case of

parfib, as a program that generates massive amounts of regular parallelism,

1346K sparks that are more aggressively exploited by local HECs. We correlate

this trend with the large increase of the number of local threads generated for

parfib which is up by a factor of 144 (i.e. 49919/346) for 8 cores per PE setting,

as demonstrated in Table 5.7. In such case, we observe that the amount of com-

munication does not have a direct effect on the overall performance, since there

147

Chapter 5. GUMSMP Evaluation

is large computation-to-communication ratio compared with other programs that

generate a lower amount of parallelism, and only small data items need to be

communicated.

Table 5.6: GHC-GUM and GUMSMP messages volume on 40 Beowulf cores

Configuration GUM GUMSMP

PE/Cores PE 40 20/2 10/4 8/5 5/8

parfib 10.9K 5.4K 18.7K 18.8K 26.8K

sumEuler 4.4K 4.2K 4.0K 3.9K 3.6K

worpitzky 25.9K 25.4K 19.3K 16.0K 12.1K

mandelbrot 22.6K 21.2K 17.8K 15.1K 12.2K

In terms of the number of threads created, GUMSMP creates more threads

in general than GHC-GUM, resulting from its being aggressive to exploit paral-

lelism locally. This number of threads increases with the increase in the number

of cores per PE. We conclude that for GUMSMP, the communication volume de-

creases, with the increase in the number of threads locally created, as the number

of cores per PE increases.

Table 5.7: GHC-GUM and GUMSMP number of threads created on 40 Beowulf
cores

Configuration GUM GUMSMP

PE/Cores PE 40 20/2 10/4 8/5 5/8

parfib 346 4085 16288 18722 49919

sumEuler 87 61 67 77 78

worpitzky 2099 3571 3238 3194 3237

mandelbrot 1814 3393 3260 3556 6949

5.3.2 The Performance of GUMSMP and GHC-GUM

The previous section reveals that GUMSMP offers an advantage over GHC-

GUM, by exploiting larger amounts of parallelism and restricting the commu-

nication component to a single HEC for each PE. However, as discussed in the

NUMA evaluation, another important factor affecting performance is memory

148

Chapter 5. GUMSMP Evaluation

management (Section 5.2.2). In this section, we investigate different tuning for

GUMSMP, motivated by the bottlenecks identified on NUMA. The first optimi-

sation we investigate is how to tune the number of cores per PE (Section 5.3.3).

Then we investigate how to reduce the memory management bottlenecks, and

the resulting improvement in the performance of GUMSMP (Section 5.3.4).

5.3.3 Optimising the Number of Cores Per PE

As outlined in Section 4.3.5, we systematically investigate in this section how

to optimise the number of cores per PE in a distributed memory cluster . In

this experiment, we fix the total number of Beowulf cores to be 84 and test all

possible combinations of cores per PE and their effect on performance for two

data-parallel and two divide-and-conquer programs. This serves as guidance for

our work to optimise the performance of GUMSMP on clusters of multicores.

 10

 20

 30

 40

 50

 60

 70

 80

3 4 6 7

S
p

ee
d
u
p

number of cores per PE

Speedup

Parfib
SumEuler
Worpitzky
Mandel

Figure 5.12: GUMSMP speedup on 84 Beowulf cores

Figure 5.12 shows that using GUMSMP with 3 cores per PE instance con-

sistently results in better performance with divide-and-conquer programs, with a

speedup of up to 74 on 84 cores for parfib. Data-parallel programs still perform

better using GUMSMP with a larger numbers of cores per PE, and achieve the

best performance using 4 cores per PE for sumEuler and 6 cores per PE for

mandelbrot, with a speedup of 59 and 21 respectively on 84 cores. However,

149

Chapter 5. GUMSMP Evaluation

with the increasing numbers of cores per PE instances, the performance degrades,

as a consequence of the shared memory management discussed in the previous

section. We therefore fix the number of core per PE to 3 for divide-and-conquer

programs, and 4 for data-parallel-programs.

5.3.4 Optimising the Setting of the Allocation Area

As outlined in Section 4.3.6, we investigate in this section the effect of optimising

the heap setting for GUMSMP by increasing the allocation area available for

each PE on the performance of GUMSMP. In particular, we show the perfor-

mance of GUMSMP with the standard allocation area setting, and with a larger

allocation area. The larger allocation area is set by multiplying the default allo-

cation area size, with the number of cores: 512K ∗N to reduce contention on this

shared area. Then we compare the performance with GHC-GUM for programs

exhibiting different parallel paradigms: data-parallel, and divide-and-conquer.

5.3.4.1 Data Parallel Programs

For data-parallel programs, we fix the number of cores per PE to 4 and measure

the performance on the cluster of up to 32 PEs, resulting in up to 128 cores. Fig-

ure 5.13 shows the speedups for all the data-parallel programs under GUMSMP

and GHC-GUM. Notably, GUMSMP delivers better speedups for sumEuler

and mandelbrot with the standard heap settings showing improvements of 23%

and 11% respectively.

In general, GUMSMP performs better with data-parallel programs, as for

such programs with a single source of parallelism, it is beneficial to send off

a large computation early, with other HECs collect parallelism locally. This

structure of parallelism is a natural match for the hierarchically structured RTS.

Consequently, we observe a significant reduction in communication, compared

to the GHC-GUM instance; the number of messages dropped by up to 21% for

mandelbrot as demonstrated in Table 5.6, for the setting of 4 cores per PE. The

effect of communication is more pronounced for mandelbrot, as this program

uses large data structures. This program also communicates the largest number

of graphs. In particular, for mandelbrot, on 40 cores, GUMSMP communi-

150

Chapter 5. GUMSMP Evaluation

cates up to a factor of 1.35 fewer graph structures than GHC-GUM (i.e. 71.7MB

for GHC-GUM, and 53MB for GUMSMP).

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 16 32 48 64 80 96 112 128

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP Vs GUM for Data Parallel Programs

Gumsmp-sumEuler
Gumsmp-sumEuler-opt-heap

Gum-sumEuler
Gumsmp-mandel

Gumsmp-mandel-opt-heap
Gum-mandel

Gumsmp-maze
Gumsmp-maze-opt-heap

Gum-maze

Figure 5.13: Speedup of GHC-GUM vs. GUMSMP on up to 128 cores for
data-parallel programs

For all three data-parallel programs, the optimised heap setting (denoted op-

timised in Table 5.8) improves the performance by up to a factor of 1.4. This

contributes to the better scalability of mandelbrot as the number of cores per

PE increases up to 6 cores per PE, as demonstrated in Figure 5.12, at a point

where memory management overhead prevents further improvement.

Maze exhibits speculative parallelism, and the program terminates based on

when the solution is found, so there is more variation in the runtimes compared

with other data-parallel programs (i.e. on 128 cores the runtimes of three exe-

cutions are: 76.7s,88.4s,88.6s). It also represents one that suffers more from the

memory management overhead, with the largest percentage GC time. For maze,

the optimised heap setting is important to get better performance compared with

GHC-GUM.

151

Chapter 5. GUMSMP Evaluation

Table 5.8: GC overheads for GUMSMP and GHC-GUM for data-parallel pro-
grams on 128 cores

% GC time Absolute Speedup optimised
standard

optimised
GUM

Programs GUM G-SMP
Standard

Heap

G-SMP
Optimised

Heap

GUM G-SMP
Standard

Heap

G-SMP
Optimised

Heap

maze 7.2 23.0 10.3 36.1 32.5 40.3 1.2 1.1

mandelbrot 3.5 13.1 6.6 18.8 20.9 28.9 1.4 1.5

sumEuler 1.4 5.4 3.9 54.7 67.3 75.2 1.1 1.4

Min. 1.1 1.1

Max. 1.4 1.5

Geom Mean. 1.2 1.3

5.3.4.2 Divide and Conquer Programs

For the divide-and-conquer programs, we fix the number of cores per PE to 3,

and measure the performance on the cluster of up to 32 PEs, resulting in up to

96 cores. Figure 5.14 shows the speedups for all the divide-and-conquer programs

under GUMSMP and GHC-GUM. Crucially, parfib is a very simple program

that generates massive amounts of regular parallelism. It also generates the

largest number of threads as discussed in Section 5.3.1.2. As a result, it delivers

the largest speedup of up to 85 on 96 cores.

It is clear that the optimised heap setting (denoted optimised in Table 5.9)

improves the performance for GUMSMP; however, GHC-GUM performs better

with a difference of 1.3%. Moreover, for coins, the optimised heap setting is

also required to get better performance, as it represents the program that uses

larger data structures, resulting in large percentage GC time compared with

the other divide-and-conquer programs. worpitzky represents the divide-and-

conquer program that generates the lowest amount of parallelism, and percentage

GC time; therefore, GUMSMP provides better performance than GHC-GUM.

This performance is further improved with the optimised heap setting.

152

Chapter 5. GUMSMP Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 12 24 36 48 60 72 84 96

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP Vs GUM for Divide and Conquer Programs

Gumsmp-parfib
Gumsmp-parfib-opt-heap

Gum-parfib
Gumsmp-coins

Gumsmp-coins-opt-heap
GUM-coins

Gumsmp-worpitzky
Gumsmp-worpitzky-opt-heap

GUM-worpitzky

Figure 5.14: Speedup of GHC-GUM vs. GUMSMP on up to 96 cores for
divide-and-conquer programs

Table 5.9: GC overheads for GUMSMP and GHC-GUM for divide-and-conquer
programs on 96 cores

% GC time Absolute Speedup optimised
standard

optimised
GUM

Programs GUM G-SMP
Standard

Heap

G-SMP
Optimised

Heap

GUM G-SMP
Standard

Heap

G-SMP
Optimised

Heap

parfib 3.5 9.1 5.5 90.0 84.6 88.8 1.0 0.9

worpitzky 2.6 4.7 1.4 38.6 45.2 47.9 1.0 1.2

coins 8.8 16.9 7.9 71.5 69.6 78.3 1.1 1.0

Min. 1.0 0.9

Max. 1.1 1.2

Geom Mean. 1.0 1.0

5.3.5 Summary

This section evaluated GUMSMP on a cluster of multi-cores, comparing its

performance with GHC-GUM on up to 128 cores. The key findings are:

• GUMSMP aggressively exploits more parallelism compared to GHC-GUM

by a factor of 1.5 on average (Table 5.5).

153

Chapter 5. GUMSMP Evaluation

• GUMSMP tends to communicate fewer messages as the number of cores

per PE increases, with an exception of parfib which produce and exploit

massive amount of regular parallelism (Table 5.6).

• For maze, and coins, the two programs that exhibit the largest percentage

GC, selecting the right heap configuration was important to exceed the

performance of GHC-GUM.

• With the optimised heap setting, the performance of GUMSMP is up to

a factor of 1.5 higher than GHC-GUM.

• With the optimised heap setting for GUMSMP, the percentage GC time

is reduced, and the performance is improved for all programs tested by a

factor of up to 1.4 compared with the standard heap setting (Tables 5.8

and 5.9).

5.3.6 More Active Load Management

This section investigates different load distribution policies for GUMSMP. In

particular, the default setting of GUMSMP involves passive load distribution

in terms of sparks, but active load distribution to share the threads. Section 4.3

has shown that the aggressive load balancing policy improves the performance

of GUMSMP. Therefore, it is natural to consider active load distribution as

another means to increase the performance (Section 4.3.7). In this section, we

investigate an active load distribution policy for sharing sparks. In such setting,

a combination of active and passive spark distribution is implemented, whereby

each HEC can steal sparks from any other HECs local pool. Moreover, each

HEC checks to see if it has extra sparks, and if any HEC is idle. Then, it

will actively push sparks, onto the spark pools of the idle HECs. This process

represents performing active load distribution of sparks at the intra-node level.

We have tested and compared the new resource policy, for the two programs that

generate the largest amount of parallelism, maze, and parfib, as presented in

the speedup Figures 5.15 and 5.16. Moreover, we add the optimised heap setting

from Section 5.3.4 to our comparison. Figure 5.15 shows that the combination of

active and passive work distribution improved the performance of maze, by up

154

Chapter 5. GUMSMP Evaluation

to 22% on 128 cores. However, parfib slows down by up to 11% on 96 cores,

as demonstrated in Figure 5.16. In all settings, the optimised heap setting shows

the best performance.

The spark pushing we discuss in this section represents the addition of ac-

tive load distribution to the default of the passive load distribution mechanism

at the intra-node level. This is equivalent to the use of the high-watermark

mechanism discussed to add the active spark distribution in the inter-node level

(Section 3.5.4.1). While a high-watermark mechanism is fully implemented in

GUMSMP, we observe that the runtime is sensitive to the concrete setting of

the watermark. If it is too high, excessive communication is incurred, if it is too

low it is ineffective. Further work is necessary to determine effective settings,

possibly based on previous monitoring of the parallel execution. This mechanism

requires more evaluation, and we plan to analyse the impact of the combining the

active and passive spark distribution in future work. In particular, for GUMSMP

we have discussed around seven different policies to be tuned in order to improve

the performance. The settings for all those mechanisms are statically tuned. We

see in the future research directions (Section 6.2.1), that we plan to investigate

the application of machine learning approaches, to adjust the settings for the

different mechanisms in order to get the best possible performance.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 16 32 48 64 80 96 112 128

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP with Different Load Distribution Policies for Maze

passive-spark-dist
passive-spark-dist-optimised-heap

passive+active-spark-dist
passive+active-spark-dist-optimised-heap

Figure 5.15: Speedup of GUMSMP (different load distribution policies) for maze

155

Chapter 5. GUMSMP Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 12 24 36 48 60 72 84 96

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP with Different Load Distribution Policies for Parfib

passive-spark-dist
passive-spark-dist-optimised-heap

passive+active-spark-dist
passive+active-spark-dist-optimised-heap

Figure 5.16: Speedup of GUMSMP (different load distribution policies) for parfib

5.4 Scalability Results

GUMSMP is designed for hierarchical architectures with homogeneous nodes,

i.e. each PE is the same. Section 5.3.3 reports scaling on a homogeneous cluster

architectures of up to 32 nodes with 128 cores. While there is no specific support

for heterogeneity, in the form of different machines like multi-cores with GPUs,

the design is flexible and distributes work such that the more powerful machine

will complete its work faster, and therefore receive more work than other less

powerful ones. This automatic adaptation is a consequence of the work-stealing

load distribution with the low-watermark .

This section presents the scalability results when combining our 32 nodes of

the Beowulf cluster with up to 36 Linux machines with different characteristics,

all within Heriot-Watt university and connected with a relatively slow Ethernet

connection (100 Mb/second), which represents an instance of hierarchical clusters.

Table 5.10 shows the approximate network latency between the nodes in the same

cluster, as well as between nodes in different clusters (measured using the bwtest

program from PVM3.4.5 benchmarks). It is clear from the table that the latency

is very small, and nearly the same, as both clusters share the same network and

are located in the same building.

156

Chapter 5. GUMSMP Evaluation

Beowulf node Linux Machine

Beowulf node 236 331

Linux Machine 348 370

Table 5.10: Approximate latency between nodes in Beowulf cluster and the Linux
machines in µs

The correspondence of PE to the underlying physical host is intended to be

compatible with the number of cores available on each machine. In particular, we

use a setting of 3 HECs per PE, which are mapped as 2 PEs on all Beowulf ma-

chines, where each node has 8 cores. For each Linux machine, one PE is assigned

to each machine, which has only 4 physical cores. Figure 5.17 demonstrates the

mapping of the PEs to the underlying physical machines, and Table 5.11 presents

the computation power of the machines.

HEC HEC HEC

PE

HEC HEC HEC

PE

bwlf01

HEC HEC HEC

PE

HEC HEC HEC

PE

bwlf32

….

HEC HEC HEC

PE

linux01

HEC HEC HEC

PE

linux36

….

Figure 5.17: Levels of architectures used for scalable results

Machine CPU Speed

(GHz)

Cache

(Kb)

Memory

(Gb)

Nodes

used

Cores

used

Beowulf Cluster 2.00 4096 12 64 192

Linux Machines 2.80 8192 16 36 108

Table 5.11: Characteristics of the levels of architectures

157

Chapter 5. GUMSMP Evaluation

The key results in this section demonstrate that GUMSMP scales well to

hundreds of cores. Moreover, GUMSMP can adapt to a deeper hierarchy of

machines, not only to a single flat cluster. In particular, we present in Figure 5.18

the scalability of 3 benchmarks with different parallelism paradigms, on up to 300

cores.

 20

 40

 60

 80

 100

 120

 140

 160

 24 48 72 96 120 144 168 192 216 240 264 288

S
p

e
e
d

u
p

No. Cores

GUMSMP Scalable Speedup for 3 benchmarks

Maze
Coins

sumEuler 555 sparks
sumEuler 880 sparks

Figure 5.18: Speedup of GUMSMP on up to 300 cores for 3 benchmarks

It is clear that due to the symmetric latency between nodes on different clus-

ters, the latency effect on the overall performance is negligible, as all programs

continue to scale well beyond the single cluster, as shown in Figure 5.18 from

192 cores onwards. The divide-and-conquer program coins exhibits irregular

parallelism, with a moderate amount of parallelism; overall around 17K of sparks

are generated. Nevertheless, it still shows very good scalability on up to 300 cores

with a speedup of 175. In terms of the nested-data-parallel program, maze; with

the use of a combination of active and passive load distribution, as discussed in

the previous section, continues to scale and achieve a speedup of 100 on up to

300 cores, representing an excellent scalability for this large program. sumEuler

on the other hand shows lower scalability as a result of having limited amount

of parallelism, with 555 sparks generated in total. As a result it shows tail-off

after around 120 cores where the communication-to-computation ratio increase

158

Chapter 5. GUMSMP Evaluation

as a result of having low amount of parallelism to keep all the 300 cores busy

with computation. When increasing the amount of parallelism for sumEuler,

so that the total amount of spark generated is 880, it scales further beyond 200

cores with a speedup of 140. This scalability results represent the first systematic

scalability results of GpH up to 300 cores.

159

Chapter 6

Conclusion

This thesis investigated whether a multi-level parallel implementation can effec-

tively exploit the increasingly important hierarchical architectures. The aim is to

achieve scalability while still using a single high-level programming model. We

have designed and developed a novel runtime system implementation, GUMSMP,

which manages parallelism on different levels of hierarchical architectures, em-

ploying different load distribution policies on the different levels of the hierarchy.

The design combines the advantages of the shared and the distributed runtime

system implementations. The novel combination of policies enhances the flexi-

bility of the system, and the evaluation of our new runtime system demonstrates

runtime and scalability improvements over the existing runtime systems for par-

allel Haskell on several hierarchical architectures.

6.1 Contributions and Achievements

The thesis presents the design, implementation, and evaluation of GUMSMP, a

novel multi-level parallel Haskell RTS implementation. GUMSMP targets hier-

archical parallel architectures like clusters of multi-cores, or large NUMAs, where

the system can use a shared heap on each node, and distributed heaps across

nodes. It achieves scalability as it efficiently exploits the specifics of such hier-

archical platforms by combining distributed memory parallelism, using a virtual

shared heap at the distributed memory level (e.g. clusters), with low-overhead

shared memory parallelism on the small scale, physical shared memory level (e.g.

160

Chapter 6. Conclusion

multi-cores). Moreover, unlike many other multi-level parallel paradigms like

MPI+OpenMP, it provides a single programming paradigm, GpH. The thesis

provided the following contributions.

6.1.1 Contribution 1: GUMSMP Design and Implemen-

tation

The design and implementation of a new and sophisticated shared and distributed

memory parallel runtime system for a production functional language is presented.

Accounting for the hierarchical nature of the modern architectures, like clusters of

multi-cores, it provides a design for an improved load distribution mechanism [6]

(Sections 3.5.3, 3.5.4).

The thesis presented the design and implementation details for the hierarchy-

aware parallel Haskell RTS implementation GUMSMP. The GUMSMP design

is based on the successful GHC-GUM and GHC-SMP technologies that already

exist at inter-node (across the cluster) and intra-node (within a multi-core) levels.

In particular, it combines a mechanism of work stealing for passive load distribu-

tion, with an adaptive, dynamic mechanism for automatically distributing work

and data on a cluster (between the nodes of multi-cores), where communication is

based on explicit message passing. Within the node (a multi-core), a combination

of passive and active load distributions are employed, whereby communication be-

tween cores is carried out as direct access to the shared memory within the node.

It also discussed a list of different design alternatives and motivated the decisions

made (Section 3.5.4).

6.1.2 Contribution 2: GUMSMP Performance Tuning

The development and evaluation of the effectiveness of seven different policies to

improve automatic hierarchical load distribution [6] (Section 4.3).

The thesis developed and assessed the effect of the following load performance

tuning policies: the low-watermark mechanism for work pre-fetching, showing im-

provements of up to a factor of 3 (Section 4.3.1), and favouring inter-node work

distribution, showing an improvement of up to 19% (Section 4.3.2). Addition-

161

Chapter 6. Conclusion

ally, a novel spark segregation mechanism is studied to separate local and global

sparks, identifying different policies to export sparks remotely and select sparks

for local evaluation (Section 4.3.3). Moreover, the effect of using dedicated gate-

ways, reserving one core for communication work is studied in (Section 4.3.4). In

terms of reducing the bottlenecks of memory management overhead, we discuss

further tuning by optimising the number of cores per PE (Sections 4.3.5, 5.3.3), as

well as adjusting the heap settings by providing larger allocation area which con-

sistently improve performance by a factor of up to 1.4 (Sections 4.3.6, 5.3.4). Fur-

thermore, we show that combining active and passive load distribution for sparks

at the intra-node level delivers improvement of up to 22% (Sections 4.3.7, 5.3.6).

6.1.3 Contribution 3: A Systematic Performance Evalua-

tion of GUMSMP

Undertake a systematic performance evaluation of GUMSMP in comparison

to GHC-SMP and GHC-GUM using a set of benchmarks on both cluster and

NUMA architectures. The thesis showed that compared with GHC-SMP, our

GUMSMP delivers performance improvement of a factor of 3.3 on average on a

NUMA machine with 40 cores by balancing the shared and distributed heaps. In-

vestigation of the scalability limits of GHC-SMP revealed that garbage collection

is a primary source of overhead [8] (Section 5.2). Compared with GHC-GUM,

GUMSMP provides an improvement of up to a factor of 1.5 on average on a

cluster of multi-core architecture with up to 128 cores by exploiting the specifics

of shared memory (Section 5.3). The thesis also showed that GUMSMP scales

to deliver a speedup of up to 175 on a cluster with 100 nodes, comprised of 300

cores (Section 5.4).

6.2 Limitations and Future Research Directions

This thesis has the following limitations:

• System Stability: The work presented in this thesis is based on our im-

plementation of GUMSMP, which is not fully stable. It occasionally fails

during the execution especially with programs with large data structures.

162

Chapter 6. Conclusion

More debugging work would be essential to debug the complex distributed

RTS. Moreover, there is no fault tolerance mechanism implemented which

resulted in a system failure if any PE failed during the computations. Fur-

ther work would be needed to stablise the system, possibly adding a fault

tolerance mechanism as an additional feature, and test large parallel Haskell

applications.

• Compiler Optimisation: In the GUMSMP benchmarking we have not

applied compiler optimisation (i.e. the GHC -02 compilation flag) which

would be good practice, but because for a long time, both development and

measurements did not use optimisation, we completed our measurements

without it. We investigate the implications of the decision by comparing

the performance of two programs; the small worpitzky, and the large

maze with and without compiler optimisation on, and we report the results

in Appendix A. The key observation for both programs is that while the

runtimes for the programs are different with and without optimisation, the

speedups are very similar, as these are ratios of runtimes, thus confirming

the validity of our results.

6.2.1 Future Research Directions

6.2.1.1 NUMA-aware System

In future work, we plan to study ways to make the RTS NUMA-aware, initially

by directly mapping an RTS heap to a particular NUMA region.

6.2.1.2 Auto Tuning

The development of GUMSMP discussed around seven different performance

tuning policies with different combinations. We have made an extensive system-

atic study and evaluation of the effectiveness of those policies to improve the

performance. However, the policies define a multi-dimensional space with a di-

mension for each policy. Some have a range of integer values, i.e. the setting of

the low-watermark , and others have a smaller fixed space, like the binary selec-

tions when turning the policy on or off such as the use of passive load distribution

163

Chapter 6. Conclusion

within a single multi-core. It would be a useful research direction to explore the

application of the machine learning mechanism to adjust the settings of different

policies for specific architectures automatically.

6.2.1.3 Dynamic Tuning

An interesting research direction would be to investigate dynamic tuning for the

RTS, where it tunes itself during the execution. For example, the aim of the low-

watermark is to distribute work eagerly, which might lead to starvation at the

end of the execution where the amount of available work is low compared with

the larger number of idle PEs. We could aim for further improvements to the

system to adjust the settings of the low-watermark dynamically by extending the

structure of FISH and SCHEDULE messages, in order to carry information about

the size of spark pools for the PEs visited. This could be achieved by computing

the average of the spark pool sizes for all the visited PEs, then including this in-

formation with the forwarded FISH, unsuccessful FISH, or with the SCHEDULE

messages. The average spark pool size seen by a FISH(sp) can be computed as

an integer based on the number of PEs visited so far (visitedPE), and the size of

the spark pool on the current PE (sp thispe):sp =
sp∗visitedPE+spthispe

visitedPE+1

The average spark pool size can be used to adjust the low-watermark setting for

the PE that received the message. Different heuristics mechanisms can be ap-

plied to adjust the value of the low-watermark , depending on which message the

information arrives with. If it comes with an unsuccessful FISH, then this might

trigger disabling of the low-watermark completely. On the other hand, if it was

part of the SCHEDULE, then it would be possible to adjust the setting of the low-

watermark , according to the average sparks received with the message. Similar

ideas were implemented by Al-Zain [4] for the Grid-level [3] on heterogeneous ar-

chitectures, where there is large latency between different clusters of multi-cores,

and the communication is very expensive. These ideas include recalling where

the PE most recently found work, and then alternating between trying the PE,

that had work with a random selection of the destination PE, or maintaining a

table detailing the number of the visited PE, load, and the time-stamp. Then

targeting the work request to the PE with the largest spark pool.

164

Chapter 6. Conclusion

6.2.1.4 Spark Tagging

A further interesting research direction would be to apply and evaluate the use

of pointer tagging for sparks in order to distinguish between local and global

sparks, or the originating PE id number for the sparks. We expect such a policy

to improve locality by grouping those sparks coming from the same source PE

together. This might be combined with the our implementation of the import-

spark-pool from Section 4.3.3.

6.2.1.5 Inter-cluster Performance Study

Our evaluation of the performance of GUMSMP covered hierarchical architec-

tures with a two level hierarchy, shared-memory (multi-cores or NUMA regions)

connected by distributed memory network. Current architecture trends are mov-

ing towards architectures with deeper communication/memory hierarchies, and

it would be interesting to explore how our techniques work on such architec-

tures. For example, by evaluating GUMSMP on inter-cluster architectures (i.e.

by connecting the Heriot-Watt University cluster with the University of Glasgow

cluster) and studying the scalability of the system, as well as the effect of the high

latency of such a configuration on the performance. Such an integration of dif-

ferent clusters would be facilitated using a communication layer like MPICH-G2

(instead of PVM), which provides authentication to permit the communication

between the two clusters.

165

Appendix A

Optimisation

This section compares the performance of 2 programs; the small worpitzky,

and the large maze. We use two different settings: with and without compiler

optimisation on. The key observation for both programs is that while the runtimes

for the programs are different with and without optimisation, the speedups are

very similar.

166

Appendix A. Optimisation

Worpitzky

 0

 500

 1000

 1500

 2000

 2500

 12 24 36 48 60 72 84 96

R
u
n
ti

m
e
s

No. Cores

Runtimes for GUMSMP Vs GUM for worpitzky N = 3

Sequential RT
Gumsmp-worpitzky

Gumsmp-worpitzky-A512n
Gum-worpitzky

Figure A.1: Runtimes of GHC-GUM vs. GUMSMP with no optimisation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 12 24 36 48 60 72 84 96

R
u
n
ti

m
e
s

No. Cores

Runtimes for GUMSMP Vs GUM for worpitzky N = 3

Sequential RT
Gumsmp-worpitzky

Gumsmp-worpitzky-A512n
Gum-worpitzky

Figure A.2: Runtimes of GHC-GUM vs. GUMSMP with optimisation

167

Appendix A. Optimisation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 12 24 36 48 60 72 84 96

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP Vs GUM for worpitzky N = 3

Gumsmp-worpitzky
Gumsmp-worpitzky-A512n

Gum-worpitzky

Figure A.3: Speedup of GHC-GUM vs. GUMSMP with no optimisation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 12 24 36 48 60 72 84 96

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP Vs GUM for worpitzky N = 3

Gumsmp-worpitzky
Gumsmp-worpitzky-A512n

GUM-worpitzky

Figure A.4: Speedup of GHC-GUM vs. GUMSMP with optimisation

168

Appendix A. Optimisation

Maze

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 16 32 48 64 80 96 112 128

R
u
n
ti

m
e
s

No. Cores

Runtimes for GUMSMP Vs GUM for Maze N = 4

Sequential RT
Gumsmp

GumsmpA512n
Gum

Figure A.5: Runtimes of GHC-GUM vs. GUMSMP with no optimisation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 16 32 48 64 80 96 112 128

R
u
n
ti

m
e
s

No. Cores

Runtimes for GUMSMP Vs GUM for Maze N = 4

Sequential RT
Gumsmp

GumsmpA512n
Gum

Figure A.6: Runtimes of GHC-GUM vs. GUMSMP with optimisation

169

Appendix A. Optimisation

 0

 10

 20

 30

 40

1 16 32 48 64 80 96 112 128

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP Vs GUM for Maze N = 4

Gumsmp-maze
Gumsmp-maze-A512n

Gum-maze

Figure A.7: Speedup of GHC-GUM vs. GUMSMP with no optimisation

 0

 10

 20

 30

 40

1 16 32 48 64 80 96 112 128

S
p

e
e
d

u
p

No. Cores

Speedup for GUMSMP Vs GUM for Maze N = 4

Gumsmp-maze
Gumsmp-maze-A512n

Gum-maze

Figure A.8: Speedup of GHC-GUM vs. GUMSMP with optimisation

170

Appendix B

Benchmarks

These are the set of benchmarks used, which are available with the RTS in:

http://www.macs.hw.ac.uk/˜hwloidl/hackspace/GUMSMP

Parfib

module Main(main) where

import System.Environment (getArgs)
import Control.Parallel

import System.Time
import Text.Printf

main = do [arg1,arg2] <- getArgs

let
n = read arg1 :: Int -- input for parfib

t = read arg2 :: Int -- threshold

t1 <- getClockTime

let res = parfib n t

putStrLn ("parfib " ++ show n ++ " = " ++ show res)

t2 <- getClockTime

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

-- parallel version of the code with thresholding

parfib :: Int -> Int -> Int
parfib n t | n <= t = nfib n

| otherwise = n1 ‘par‘ (n2 ‘pseq‘ n1 + n2 + 1)

where n1 = parfib (n-1) t

n2 = parfib (n-2) t

-- sequential version of the code

nfib :: Int -> Int
nfib 0 = 1

nfib 1 = 1

171

http://www.macs.hw.ac.uk/~hwloidl/hackspace/GUMSMP

Appendix B. Benchmarks

nfib x = nfib (x-2) + nfib (x-1) + 1

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

Parmap-of-parfib

import System (getArgs)
import Control.Monad
import Control.Parallel

import System.Time
import Text.Printf

main = do
args <- getArgs
unless (length args == 2) $

error (unlines ["Usage: parfib <m> <n>"," generate <n>

parallel task computing parfib <m> each"])

putStrLn ("n = "++ args!!0)

t1 <- getClockTime

let m = (read (args!!0))::Integer -- input for parfib

n = (read (args!!1))::Integer -- number of parfib

computations

res = spawnN m n

putStrLn ("Result: "++(show res))

t2 <- getClockTime

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

-- spawn n instances of parfib m

spawnN :: Integer -> Integer -> Integer
spawnN m 0 = 0

spawnN m n = this ‘par‘ (rest ‘pseq‘ (rest+this))

where this = parfib m 23

rest = spawnN m (n-1)

-- parallel implementation of fibonacci

parfib :: Integer -> Integer -> Integer
parfib n t | n <= t = nfib n

| otherwise = n1 ‘par‘ (n2 ‘pseq‘ n1 + n2 + 1)

where n1 = parfib (n-1) t

n2 = parfib (n-2) t

nfib :: Integer -> Integer
nfib 0 = 1

nfib 1 = 1

nfib n = nfib (n-1) + nfib (n-2)

172

Appendix B. Benchmarks

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

Worpitzky

{-# OPTIONS -cpp -fglasgow-exts #-}

module Main(main) where

import System(getArgs)
import Debug.Trace(trace)

import Control.Monad
import GHC.Base(par#, parGlobal#, Int#)
import GHC.Conc(par,pseq)

import System.Time
import Text.Printf

main = do args <- getArgs
unless (length args == 3) $

error "Usage: worpitzky <x> <n> <t> ... testing

Worpitzky identity for xˆn, using t as a threshold"

let
x :: Integer
x = read (args!!0) -- input for worpitzky

n :: Integer
n = read (args!!1) -- input for worpitzky

t :: Integer
t = read (args!!2) -- threshold

t1 <- getClockTime

let res = worpitzky x n t

putStrLn ("Testing Worpitzky’s identity for xˆn ..." ++ (

show x) ++ " " ++ (show n) ++ " " ++ (show t) ++ " = "

++ (show res))

t2 <- getClockTime

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

worpitzky :: Integer -> Integer -> Integer -> Bool
worpitzky x n t = xˆn == sum [(par_euler n k t) * (bin (x+k) n) | k

<- [0,1..n]]

-- euler numbers (Concrete Maths, p254)

euler :: Integer -> Integer -> Integer
euler 0 k = if k==0 then 1 else 0

euler n k = (k+1) * (euler (n-1) k) + (n-k)*(euler (n-1) (k-1))

-- binomials

bin :: Integer -> Integer -> Integer
bin n k = fact n ‘div‘ ((fact k) * (fact (n-k)))

173

Appendix B. Benchmarks

fact :: Integer -> Integer
fact 0 = 1

fact n = product [1..n]

par_euler :: Integer -> Integer -> Integer -> Integer
par_euler 0 k t = if k==0 then 1 else 0

par_euler n k t | n<t = euler n k

par_euler n k t = e2 ‘par‘ (e1 ‘pseq‘ ((k+1) * e1 + (n-k)*e2))

where e1 = par_euler (n-1) k t

e2 = par_euler (n-1) (k-1) t

stir1 :: Integer -> Integer -> Integer
stir1 _ 0 = 1

stir1 0 _ = 1

stir1 n k = (n-1)*(stir1 (n-1) k)+(stir1 (n-1) (k-1))

par_stir1 :: Integer -> Integer -> Integer -> Integer
par_stir1 n k t | n<t || k<t = stir1 n k

| otherwise = s1 ‘par‘ (s2 ‘par‘ (n-1)*s1+s2)

where s1 = stir1 (n-1) k

s2 = stir1 (n-1) (k-1)

stir2 :: Integer -> Integer -> Integer
stir2 _ 1 = 1

stir2 0 _ = 1

stir2 n k = (stir2 (n-1) (k-1)) + k*(stir2 (n-1) k)

par_stir2 :: Integer -> Integer -> Integer -> Integer
par_stir2 n k t | n<t || k<t = stir2 n k

| otherwise = s1 ‘par‘ (s2 ‘pseq‘ s1+k*s2)

where s1 = par_stir2 (n-1) (k-1) t

s2 = k*(par_stir2 (n-1) k t)

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

SumEuler

{-# OPTIONS -fglasgow-exts #-}

module Main(main) where

import Data.List(transpose)
import System(getArgs)
import GHC.Base(par#, parGlobal#, Int#)
import GHC.Conc(par,pseq)

import Control.Monad
import System.Time
import Text.Printf

174

Appendix B. Benchmarks

main = do args <- getArgs
let

n = read (args!!0) :: Int -- size of the interval

c = read (args!!1) :: Int -- chunk size

t1 <- getClockTime

let res = sumEuler 1 n c

putStrLn ("sumEuler over an interval from 1 to " ++ (show
n) ++ " with chunk size " ++ (show c) ++ " = " ++ (show
res))

t2 <- getClockTime

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

-- sumEuler over an interval from m to n (with chunk size c)

sumEuler :: Int -> Int -> Int -> Int
sumEuler m n c | m>n = 0

| otherwise = let
this = sum (map euler [m..m+c-1])

rest = sumEuler (min (m+c) (n+1)) n c

in
this ‘par‘ (rest ‘pseq‘ this+rest)

sumEuler_seq :: Int -> Int
sumEuler_seq = sum . map euler . enumFromTo 1

euler :: Int -> Int
euler n = let

relPrimes = let
numbers = [1..(n-1)]

in
{- numbers ‘par‘ -} (filter (relprime n)

numbers)

in
{- (spine relPrimes) ‘par‘-} (length relPrimes)

-- aux fcts

hcf :: Int -> Int -> Int
hcf x 0 = x

hcf x y = hcf y (rem x y)

relprime :: Int -> Int -> Bool
relprime x y = hcf x y == 1

-- strategic functions (could uses Strategies module instead)

parList :: [Int] -> ()

parList = foldr par ()

spine :: [Int] -> ()

spine [] = ()

175

Appendix B. Benchmarks

spine (_:xs) = spine xs

chunk :: Int -> [a] -> [[a]]

chunk _n [] = []

chunk n xs = ys:chunk n zs where (ys,zs) = splitAt n xs

slice :: Int -> [a] -> [[a]]

slice n = transpose . chunk n

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

Coins

{-# LANGUAGE BangPatterns #-}

#define STRATEGIES 1

import Data.List
import System.Environment
#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

import Control.Parallel.Strategies

import Control.Applicative (Applicative, pure, (<*>))

elif defined(SM_STRATEGIES)

import Control.Parallel

import Control.DeepSeq

import Control.Parallel.Strategies

else
import GHC.Conc(par,pseq)

endif

#endif

import System.Time
import Text.Printf

-- Version 1: returns results as a list of list of coins

payL :: Int -> [(Int,Int)] -> [Int] -> [[Int]]
payL 0 coins acc = [acc]

payL _ [] acc = []

payL val ((c,q):coins) acc

| c > val = payL val coins acc

| otherwise = left ++ right

where
left = payL (val - c) coins’ (c:acc)

right = payL val coins acc

coins’ | q == 1 = coins

176

Appendix B. Benchmarks

| otherwise = (c,q-1) : coins

-- Version 2: uses a custom AList type to avoid repeated appends

-- The idea here is that by avoiding the append we might be able to

-- parallelise this more easily by just forcing evaluation to WHNF

at

-- each level. I haven’t parallelised this version yet, though (V5

-- below is much easier) --SDM

data AList a = ANil | ASing a | Append (AList a) (AList a)

lenA :: AList a -> Int
lenA ANil = 0

lenA (ASing _) = 1

lenA (Append l r) = lenA l + lenA r

append ANil r = r

append l ANil = l -- **
append l r = Append l r

-- making append less strict (omit ** above) can make the

algorithm

-- faster in sequential mode, because it runs in constant space.

-- However, ** helps parallelism.

payA :: Int -> [(Int,Int)] -> [Int] -> AList [Int]
payA 0 coins acc = ASing acc

payA _ [] acc = ANil

payA val ((c,q):coins) acc

| c > val = payA val coins acc

| otherwise = append left right -- strict in l, maybe strict in r

where
left = payA (val - c) coins’ (c:acc)

right = payA val coins acc

coins’ | q == 1 = coins

| otherwise = (c,q-1) : coins

-- Version 3: parallel version of V2

payA_par :: Int -> Int -> [(Int,Int)] -> [Int] -> AList [Int]
payA_par 0 val coins acc = payA val coins acc

payA_par _ 0 coins acc = ASing acc

payA_par _ _ [] acc = ANil

payA_par depth val ((c,q):coins) acc

| c > val = payA_par depth val coins acc

| otherwise = res

where
#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

177

Appendix B. Benchmarks

-- res = right ‘par‘ left ‘pseq‘ append left right

res = runEval $ pure append <*> rpar left <*> rseq right

-- res = unEval $ do l <- rpar left; r <- rseq right; return (

append l r)

elif defined(SM_STRATEGIES)

res = right ‘par‘ left ‘pseq‘ append left right

else
res = right ‘par‘ left ‘pseq‘ append left right

endif

#else
res = append left right

#endif

left = payA_par (if q == 1 then (depth-1) else depth) (val - c)

coins’ (c:acc)

right = payA_par (depth-1) val coins acc

coins’ | q == 1 = coins

| otherwise = (c,q-1) : coins

-- Version 4: original list-of-list version (very slow)

pay :: Int -> Int -> [Int] -> [Int] -> [[Int]]
pay _ 0 coins accum = [accum]
pay _ val [] _ = []

pay pri val coins accum =

res

where --

coins’ = dropWhile (>val) coins

coin_vals = nub coins’

res = concat (map
(\ c -> let

new_coins =

((dropWhile (>c) coins’)

\\[c])

in
pay (pri-1)

(val-c)

new_coins

(c:accum)
)

coin_vals)

-- Version 5: assoc-list version (by HWL)

-- assoc-list-based version; still multiple list traversals

pay1 :: Int -> Int -> [(Int,Int)] -> [(Int,Int)] -> [[(Int,Int)]]
pay1 _ 0 coins accum = [accum]
pay1 _ val [] _ = []

pay1 pri val coins accum = res

178

Appendix B. Benchmarks

where --

coins’ = dropWhile ((>val) . fst) coins

res = concat (

map
(\ (c,q) -> let

-- several traversals

new_coins =

filter (not . (==0) .

snd) $

map (\ x’@(c’,q’) -> if
c==c’ then (c’,q

’-1) else x’) $

dropWhile ((>c) . fst)
$

coins’

new_accum =

map (\ x’@(c’,q’) -> if
c==c’ then (c’,q’+1)

else x’) accum
in
pay1 (pri-1)

(val-c)

new_coins

new_accum

)

coins’)

-- Version 6: just return the number of results, not the results

themselves

payN :: Int -> [(Int,Int)] -> Int
payN 0 coins = 1

payN _ [] = 0

payN val ((c,q):coins)

| c > val = payN val coins

| otherwise = left + right

where
left = payN (val - c) coins’

right = payN val coins

coins’ | q == 1 = coins

| otherwise = (c,q-1) : coins

-- Version 7: parallel version of payN

payN_par :: Int -> Int -> [(Int,Int)] -> Int
payN_par 0 val coins = payN val coins

payN_par _ 0 coins = 1

payN_par _ _ [] = 0

payN_par depth val ((c,q):coins)

| c > val = payN_par depth val coins

179

Appendix B. Benchmarks

| otherwise = res

where
#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

-- res = right ‘par‘ left ‘pseq‘ left + right

res = runEval $ do
r <- rpar right

l <- rseq left

return (l+r)

elif defined(SM_STRATEGIES)

res = right ‘par‘ left ‘pseq‘ left + right

else
res = right ‘par‘ left ‘pseq‘ left + right

endif

#else
res = left + right

#endif

left = payN_par (if q == 1 then (depth-1) else depth) (val - c)

coins’

right = payN_par (depth-1) val coins

coins’ | q == 1 = coins

| otherwise = (c,q-1) : coins

-- driver

main = do
let vals = [250, 100, 25, 10, 5, 1]

let quants = [55, 88, 88, 99, 122, 177] -- large setup

let coins = concat (zipWith replicate quants vals)

coins1 = zip vals quants

-- n is the version, arg is the value

[n, arg, dep] <- fmap (fmap read) getArgs
t1 <- getClockTime

case n of
-- sequential, list of results

1 -> print $ length $ payL arg coins1 []

-- sequential, append-list of results

2 -> print $ lenA $ payA arg coins1 []

-- parallel, append-list of results

3 -> print $ lenA $ payA_par 4 arg coins1 []

4 -> print $ length (pay 0 arg coins [])

5 -> print $ length (pay1 0 arg coins1 (map (\(c,q) -> (c

,0)) coins1))

6 -> print $ payN arg coins1

7 -> print $ payN_par dep arg coins1

t2 <- getClockTime

180

Appendix B. Benchmarks

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

Minimax

module Main where

import System.Environment
import Prog

import Board

import System.Random
import System.Time
import Text.Printf

main = do
[n, depth] <- fmap (map read) getArgs -- n is the bord size

t1 <- getClockTime

setStdGen (mkStdGen 99999)

b <- randomBoard n

putStrLn $ showBoard b

putStrLn $ solve depth b

t2 <- getClockTime

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

module Prog(prog,randomBoard,solve) where

import Board

import Wins

import Game

import Tree

import System.Random
import Data.List

-- First arg decaffinates game

prog :: Int -> String
prog decaf = showMove (head game)

where
game = if decaf == 0

then error "Decaffination error\n"

else alternate decaf X maxE minE testBoard

-- X to play: find the best move

181

Appendix B. Benchmarks

solve :: Int -> Board -> String
solve depth board

= unlines
. map showMove

. take 1

. alternate depth X maxE minE $ board

testBoard = [[Empty,O,Empty,Empty],[Empty,X,Empty,Empty],[Empty,

Empty,Empty,Empty],[Empty,Empty,Empty,Empty]]

randomBoard :: Int -> IO Board

randomBoard moves = do
g <- newStdGen
let (g1,g2) = split g

xs = randomRs (1,boardDim) g1

ys = randomRs (1,boardDim) g2

let
play 0 _ _ board = board

play n (pos:poss) (p:ps) board

| not (empty pos board) = play n poss (p:ps) board

| otherwise = play (n-1) poss ps (placePiece p

board pos)

return $ play moves (zip xs ys) (cycle [X,O]) initialBoard

module Wins where

type Win = [[Int]]

wins :: [Win]

wins = [win1,win2,win3,win4,win5,win6,win7,win8]

win1,win2,win3,win4,win5,win6,win7,win8 :: Win

win1 = [[1,1,1],

[0,0,0],

[0,0,0]]

win2 = [[0,0,0],

[1,1,1],

[0,0,0]]

win3 = [[0,0,0],

[0,0,0],

[1,1,1]]

win4 = [[1,0,0],

[1,0,0],

[1,0,0]]

win5 = [[0,1,0],

[0,1,0],

[0,1,0]]

182

Appendix B. Benchmarks

win6 = [[0,0,1],

[0,0,1],

[0,0,1]]

win7 = [[1,0,0],

[0,1,0],

[0,0,1]]

win8 = [[0,0,1],

[0,1,0],

[1,0,0]]

{-# LANGUAGE CPP #-}

module Tree where

#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

import Strategies

elif defined(SM_STRATEGIES)

import Control.Parallel

import Control.DeepSeq

import Control.Parallel.Strategies

else
import Control.Parallel

import Control.Parallel.Strategies

endif

#else
import GHC.Conc -- hiding (pseq,par)

#endif

data Tree a = Branch a [Tree a] deriving Show

repTree :: (a->[a]) -> (a->[a])-> a -> (Tree a)

repTree f g a = Branch a (map (repTree g f) (f a))

#define SEQ

#ifndef SEQ

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Branch a l)

= fa ‘par‘ Branch fa (map (mapTree f) l ‘using‘ myParList)

where fa = f a

#else {- SEQ -}

mapTree :: (a -> b) -> (Tree a) -> (Tree b)

mapTree f (Branch a l) = Branch (f a) (map (mapTree f) l)

#endif

#ifndef SEQ

183

Appendix B. Benchmarks

myParList [] = ()

myParList (x:xs) = x ‘par‘ myParList xs

mySeqList [] = ()

mySeqList (x:xs) = x ‘seq‘ mySeqList xs

parTree :: Int -> Tree a -> ()

parTree 0 (Branch a xs) = ()

parTree n (Branch a xs) = a ‘par‘ mySeqList (map (parTree (n-1)) xs)

#endif

prune :: Int -> (Tree a) -> (Tree a)

prune 0 (Branch a l) = Branch a []

prune (n+1) (Branch a l) = Branch a (map (prune n) l)

{-# LANGUAGE BangPatterns #-}

module Board where

import Wins

import Data.List
#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

import Strategies

elif defined(SM_STRATEGIES)

import Control.Parallel

import Control.DeepSeq

import Control.Parallel.Strategies

else
import Control.Parallel

import Control.Parallel.Strategies

endif

#else
import GHC.Conc

#endif

boardDim = 4

type Board = [Row]

type Row = [Piece]

data Piece = X | O | Empty deriving (Eq,Show)

isEmpty Empty = True
isEmpty _ = False

showBoard :: Board -> String
showBoard board = intercalate "\n--------\n" (map showRow board) ++

"\n"

where showRow r = intercalate "|" (map showPiece r)

showPiece :: Piece -> String
showPiece X = "X"

showPiece O = "O"

184

Appendix B. Benchmarks

showPiece Empty = " "

placePiece :: Piece -> Board -> (Int,Int) -> Board

placePiece new board pos

= [[if (x,y) == pos then new else old

| (x,old) <- zip [1..] row]

| (y,row) <- zip [1..] board]

empty :: (Int,Int) -> Board -> Bool
empty (x,y) board = isEmpty ((board !! (y-1)) !! (x-1))

fullBoard b = all (not.isEmpty) (concat b)

newPositions :: Piece -> Board -> [Board]

newPositions piece board =

goRows piece id board

goRows p rowsL [] = []

goRows p rowsL (row:rowsR)

= goRow p rowsL id row rowsR ++ goRows p (rowsL . (row:)) rowsR

goRow p rowsL psL [] rowsR = []

goRow p rowsL psL (Empty:psR) rowsR

= (rowsL $ (psL $ (p:psR)) : rowsR) : goRow p rowsL (psL . (

Empty:)) psR rowsR

goRow p rowsL psL (p’:psR) rowsR = goRow p rowsL (psL . (p’:)) psR

rowsR

empties board = [(x,y) | (y,row) <- zip [1..] board,

(x,Empty) <- zip [1..] row]

initialBoard :: Board

initialBoard = replicate boardDim (replicate boardDim Empty)

data Evaluation = OWin | Score {-# UNPACK #-}!Int | XWin

-- higher scores denote a board in X’s favour

deriving (Show,Eq)

maxE :: Evaluation -> Evaluation -> Evaluation

maxE XWin _ = XWin

maxE _ XWin = XWin

maxE b OWin = b

maxE OWin b = b

maxE a@(Score x) b@(Score y) | x>y = a

| otherwise = b

minE :: Evaluation -> Evaluation -> Evaluation

minE OWin _ = OWin

minE _ OWin = OWin

minE b XWin = b

minE XWin b = b

minE a@(Score x) b@(Score y) | x<y = a

185

Appendix B. Benchmarks

| otherwise = b

eval n | n == boardDim = XWin

| -n == boardDim = OWin

| otherwise = Score n

static :: Board -> Evaluation

static board = interpret 0 (score board)

interpret :: Int -> [Evaluation] -> Evaluation

interpret x [] = (Score x)

interpret x (Score y:l) = interpret (x+y) l

interpret x (XWin:l) = XWin

interpret x (OWin:l) = OWin

scorePiece X = 1

scorePiece O = -1

scorePiece Empty = 0

scoreString !n [] = n

scoreString !n (X:ps) = scoreString (n+1) ps

scoreString !n (O:ps) = scoreString (n-1) ps

scoreString !n (Empty:ps) = scoreString n ps

score :: Board -> [Evaluation]

score board =

[eval (scoreString 0 row) | row <- board] ++

[eval (scoreString 0 col) | col <- transpose board] ++

[eval (scoreString 0 (zipWith (!!) board [0..])),

eval (scoreString 0 (zipWith (!!) board [boardDim-1,boardDim-2

..]))]

module Game where

import Board

import Tree

#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

import Strategies

elif defined(SM_STRATEGIES)

import Control.Parallel

import Control.DeepSeq

import Control.Parallel.Strategies

else
import Control.Parallel

import Control.Parallel.Strategies

endif

#else
import GHC.Conc

#endif

type Player = Evaluation -> Evaluation -> Evaluation

186

Appendix B. Benchmarks

type Move = (Board,Evaluation)

alternate :: Int -> Piece -> Player -> Player -> Board -> [Move]

alternate _ _ _ _ b | fullBoard b = []

alternate _ _ _ _ b | static b == XWin = []

alternate _ _ _ _ b | static b == OWin = []

alternate depth player f g board = move : alternate depth opponent g

f board’

where
move@(board’,eval) = best f possibles scores

do_scores ps’ = case ps’ of
[] -> []

(p:ps) -> (bestMove depth opponent g f p):

do_scores ps

scores = do_scores possibles

#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

‘using‘ parList

rseq

elif defined(SM_STRATEGIES)

‘using‘ parList

rwhnf

else
‘using‘ parList

rwhnf

endif

#endif

possibles = newPositions player board

opponent = opposite player

opposite :: Piece -> Piece

opposite X = O

opposite O = X

best :: Player -> [Board] -> [Evaluation] -> Move

best f (b:bs) (s:ss) = best’ b s bs ss

where
best’ b s [] [] = (b,s)

best’ b s (b’:bs) (s’:ss) | s==(f s s’) = best’ b s bs ss

| otherwise = best’ b’ s’ bs ss

showMove :: Move -> String
showMove (b,e) = show e ++ "\n" ++ showBoard b

bestMove :: Int -> Piece -> Player -> Player -> Board -> Evaluation

bestMove depth p f g

= parMise 2 f g

. cropTree

. mapTree static

. prune depth

. searchTree p

187

Appendix B. Benchmarks

cropTree :: (Tree Evaluation) -> (Tree Evaluation)

cropTree (Branch a []) = (Branch a [])

cropTree (Branch (Score x) l) = Branch (Score x) (map cropTree l)

cropTree (Branch x l) = Branch x []

searchTree :: Piece -> Board -> (Tree Board)

searchTree p board = repTree (newPositions p) (newPositions (

opposite p)) board

mise :: Player -> Player -> (Tree Evaluation) -> Evaluation

mise f g (Branch a []) = a

mise f g (Branch _ l) = foldr f (g OWin XWin) (map (mise g f) l)

parMise :: Int -> Player -> Player -> (Tree Evaluation) ->

Evaluation

parMise 0 f g t = mise f g t

parMise n f g (Branch a []) = a

parMise n f g (Branch _ l) = foldr f (g OWin XWin) (map (parMise (n

-1) g f) l

#if defined(STRATEGIES)

if defined(EVAL_STRATEGIES)

‘using‘ parList

rseq

elif defined(SM_STRATEGIES)

‘using‘ parList

rwhnf

else
‘using‘ parList

rwhnf

endif

#endif

)

Maze

module Main where

import Maze

import System.Time
import Text.Printf

#if defined(STRATEGIES)

#if defined(EVAL_STRATEGIES)

--import Control.Parallel

import Control.Parallel.Strategies

import Control.DeepSeq

#elif defined(SM_STRATEGIES)

import Control.Parallel.Strategies

import Control.Parallel

#else
import Control.Parallel.Strategies

import Control.Parallel

188

Appendix B. Benchmarks

#endif

#else
import Control.DeepSeq

#endif

main = do
t1 <- getClockTime

print (searchp 5 isExit continue sucessors [] node1)

t2 <- getClockTime

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

#if defined(STRATEGIES)

#if defined(EVAL_STRATEGIES)

parmap f list = map f list ‘using‘ parList rdeepseq

#elif defined(SM_STRATEGIES)

parmap f list = map f list ‘using‘ parList rdeepseq

#else
parmap f list = map f list ‘using‘ parList rnf

#endif

#else
parmap f list = map f list

#endif

node1 :: Node

node1 = (True,1000,1000)

sucessors (True,1000,1000)=[(False,7,10),(False,6,10),(True,5,9),(
False,4,10),(False,3,10),(False,2,10),(False,1,10)]

sucessors x = rsucessors 10 x

searchp :: (NFData a)=> Int -> (a -> Bool) -> (a->Bool) -> (a -> [a

]) -> [a] -> a -> [a]

searchp 0 isExit continue successors solutions node = search isExit

continue successors solutions node

searchp t isExit continue successors solutions node

| isExit node = node:solutions

| continue node = let list = parmap (searchp (t-1) isExit continue

successors (node:solutions)) (successors node)

in list ‘seq‘ firstSolution list

| otherwise = []

search :: (NFData a)=> (a -> Bool) -> (a->Bool) -> (a -> [a]) -> [a]

-> a -> [a]

search isExit continue successors solutions node

| isExit node = node:solutions

| continue node = firstSolution (map (search isExit continue

successors (node:solutions)) (successors node))

| otherwise = []

189

Appendix B. Benchmarks

firstSolution :: [[a]] -> [a]

firstSolution [] = []

firstSolution ([]:xs) = firstSolution xs

firstSolution (x:xs) = x

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

module Maze where

type Node = (Bool, Int, Int)

rsucessors :: Int -> Node -> [Node]

rsucessors degree (boolv,e,0)= [(boolv,e,0)]

rsucessors degree (True, number ,v) = listofnodes degree (v-1) True
rsucessors degree (False, number,v) = listofnodes degree (v-1) False

listofnodes 1 v vb = [(vb,1,v)]

listofnodes n v vb = (False,n,v) : listofnodes (n-1) v vb

isExit :: Node -> Bool
isExit (True,e,0) = True
isExit _ = False

continue :: Node -> Bool
continue (False,e,0) = False
continue _ = True

Mandel

module Main where

import Mandel

import PortablePixmap

import System.IO
import System.Environment
import System.Time
import Text.Printf

main = do
(minx_: miny_: maxx_: maxy_: screenX_ : screenY_ : limit_ : _) <-

getArgs -- set window size and number of iterations

t1 <- getClockTime

let [minx,miny,maxx,maxy] = map read [minx_,miny_,maxx_,maxy_]

190

Appendix B. Benchmarks

[screenX,screenY] = map read [screenX_,screenY_]

limit = read limit_

hSetBinaryMode stdout True
putStr (show (mandelset minx miny maxx maxy screenX screenY limit)

)

t2 <- getClockTime

writeFile "time.txt" (printf "time taken: %.2fs" $ secDiff t1 t2)

readNum::(Num a, Read a) => String -> [String] -> (a->[String]->IO
()) -> IO ()

readNum prompt inputLines succ
= hPutStr stderr prompt >>

case inputLines of
(x:xs) -> case (reads x) of

[(y,"")] -> succ y xs

_ -> hPutStr stderr "Error - retype the number\n" >>

readNum prompt xs succ
_ -> hPutStr stderr "Early EOF"

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

{-# LANGUAGE BangPatterns #-}

module Mandel where
import Complex -- 1.3

import PortablePixmap

import Control.Parallel

import Control.Parallel.Strategies (using)

default ()

mandel::(Num a) => a -> [a]

mandel c = infiniteMandel

where
infiniteMandel = c : (map (\z -> z*z +c) infiniteMandel)

whenDiverge:: Int -> Double -> Complex Double -> Int
whenDiverge limit radius c

= walkIt (take limit (mandel c))

where
walkIt [] = 0 -- Converged

walkIt (x:xs) | diverge x radius = 0 -- Diverged

| otherwise = 1 + walkIt xs -- Keep walking

-- VERY IMPORTANT FUNCTION: sits in inner loop

diverge::Complex Double -> Double -> Bool
diverge cmplx radius = magnitude cmplx > radius

191

Appendix B. Benchmarks

parallelMandel:: [[Complex Double]] -> Int -> Double -> [Int]
parallelMandel mat limit radius

= concat $

parBuffer 70

[let l = map (whenDiverge limit radius

) xs

in seqList l ‘pseq‘ l

| xs <- mat]

parBuffer :: Int -> [a] -> [a]

parBuffer n xs = return xs (start n xs)

where
return (x:xs) (y:ys) = y ‘par‘ (x : return xs ys)

return xs [] = xs

start !n [] = []

start 0 ys = ys

start !n (y:ys) = y ‘par‘ start (n-1) ys

lazyParList :: Int -> [a] -> [a]

lazyParList !n xs = go xs (parListN n xs)

where
go [] _ys = []

go (x:xs) [] = x : xs

go (x:xs) (y:ys) = y ‘par‘ (x : go xs ys)

lazyParList1 :: Int -> [a] -> [a]

lazyParList1 !n xs = go xs (parListN1 n xs [])

where
go [] _ys = []

go (x:xs) [] = x : xs

go (x:xs) (y:ys) = y ‘par‘ (x : go xs ys)

parList :: [a] -> ()

parList [] = ()

parList (x:xs) = x ‘par‘ parList xs

parListN :: Int -> [a] -> [a]

parListN 0 xs = xs

parListN !n [] = []

parListN !n (x:xs) = x ‘par‘ parListN (n-1) xs

parListN1 :: Int -> [a] -> [a] -> [a]

parListN1 0 xs ys = parList ys ‘pseq‘ xs

parListN1 !n [] ys = parList ys ‘pseq‘ []

192

Appendix B. Benchmarks

parListN1 !n (x:xs) ys = parListN1 (n-1) xs (x:ys)

seqList :: [a] -> ()

seqList [] = ()

seqList (x:xs) = x ‘pseq‘ seqList xs

mandelset::Double -> -- Minimum X viewport

Double -> -- Minimum Y viewport

Double -> -- Maximum X viewport

Double -> -- maximum Y viewport

Integer -> -- Window width

Integer -> -- Window height

Int -> -- Window depth

PixMap -- result pixmap

mandelset x y x’ y’ screenX screenY lIMIT

= createPixmap screenX screenY lIMIT (map prettyRGB result)

where

windowToViewport s t

= ((x + (((coerce s) * (x’ - x)) / (fromInteger screenX))

) :+

(y + (((coerce t) * (y’ - y)) / (fromInteger screenY))))

coerce::Integer -> Double
coerce s = encodeFloat (toInteger s) 0

result = parallelMandel

[[windowToViewport s t | s<-[1..screenX]]

| t <- [1..screenY]]

lIMIT

((max (x’-x) (y’-y)) / 2.0)

prettyRGB::Int -> (Int,Int,Int)
prettyRGB s = let t = (lIMIT - s) in (s,t,t)

module PortablePixmap where

data PixMap = Pixmap Integer Integer Int [(Int,Int,Int)]

createPixmap::Integer -> Integer -> Int -> [(Int,Int,Int)] -> PixMap

createPixmap width height max colours = Pixmap width height max
colours

instance Show PixMap where
showsPrec prec (Pixmap x y z rgbs) = showHeader x y z . showRGB

rgbs

showHeader::Integer -> Integer -> Int -> ShowS
showHeader x y z = showString "P6\n" . showBanner .

shows x . showReturn .

193

Appendix B. Benchmarks

shows y . showReturn .

shows z . showReturn

showRGB::[(Int,Int,Int)] -> ShowS
showRGB [] = id
showRGB ((r,g,b):rest) = showChar (toEnum r) .

showChar (toEnum g) .

showChar (toEnum b) .

showRGB rest

showSpace = showChar ’ ’

showReturn = showChar ’\n’

showBanner = showString "# Portable pixmap created by Haskell

Program :\n" .

showString "#\tPortablePixmap.lhs (Jon.Hill 28/5/92)\n"

Blackscholes

import Control.Monad hiding (join)
import Data.Array.Unboxed
import System.Environment

import Control.Parallel.Strategies

import Control.DeepSeq

import Future

import System.Time
import Text.Printf

type FpType = Float

data ParameterSet = ParameterSet {

sptprice :: FpType,

strike :: FpType,

rate :: FpType,

volatility :: FpType ,

otime :: FpType,

otype :: Bool
} deriving Show

data_init :: Array Int ParameterSet

-- This defines some hard coded data as a big constant array:

#include "blackscholes_data.hs"

size_init = let (s,e) = bounds data_init in e - s + 1

inv_sqrt_2xPI = 0.39894228040143270286

194

Appendix B. Benchmarks

cndf :: FpType -> FpType

cndf inputX = if sign then 1.0 - xLocal else xLocal

where
sign = inputX < 0.0

inputX’ = if sign then -inputX else inputX

-- Compute NPrimeX term common to both four & six decimal

accuracy calcs

xNPrimeofX = inv_sqrt_2xPI * exp(-0.5 * inputX * inputX);

xK2 = 1.0 / (0.2316419 * inputX + 1.0);

xK2_2 = xK2 * xK2; -- Need all powers of xK2 from ˆ1 to ˆ5:

xK2_3 = xK2_2 * xK2;

xK2_4 = xK2_3 * xK2;

xK2_5 = xK2_4 * xK2;

xLocal = 1.0 - xLocal_1 * xNPrimeofX;

xLocal_1 = xK2 * 0.319381530 + xLocal_2;

xLocal_2 = xK2_2 * (-0.356563782) + xLocal_3 + xLocal_3’ +

xLocal_3’’;

xLocal_3 = xK2_3 * 1.781477937;

xLocal_3’ = xK2_4 * (-1.821255978);

xLocal_3’’ = xK2_5 * 1.330274429;

blkSchlsEqEuroNoDiv :: FpType -> FpType -> FpType -> FpType ->

FpType -> Bool -> Float -> FpType

blkSchlsEqEuroNoDiv sptprice strike rate volatility time otype timet

=

if not otype

then (sptprice * nofXd1) - (futureValueX * nofXd2)

else let negNofXd1 = 1.0 - nofXd1

negNofXd2 = 1.0 - nofXd2

in (futureValueX * negNofXd2) - (sptprice * negNofXd1)

where
logValues = log(sptprice / strike)

xPowerTerm = 0.5 * volatility * volatility

xDen = volatility * sqrt(time)
xD1 = (((rate + xPowerTerm) * time) + logValues) / xDen

xD2 = xD1 - xDen

nofXd1 = cndf xD1

nofXd2 = cndf xD1

futureValueX = strike * exp (-(rate) * (time))

executeStep :: Int -> Int -> UArray Int FpType

executeStep t granularity =

listArray (0, granularity-1) $

Prelude.map (\i ->

let ParameterSet { .. } = data_init !

((t+i) ‘mod‘ size_init)

in blkSchlsEqEuroNoDiv sptprice strike rate

volatility otime otype 0)

195

Appendix B. Benchmarks

[0 .. granularity-1]

blackscholes :: Int -> Int -> Eval Float
blackscholes numOptions granularity =

do
fs <- forM [0, granularity .. numOptions-1] $ \t ->

fork (return (executeStep t granularity))

foldM (\ acc f ->

do x <- join f

return (acc + (x ! 0)))

0 fs

main = do args <- getArgs
let (numOptions, granularity) =

case args of
[] -> (10000, 1000)

[b] -> (10, read b)

[b,n] -> (read n, read b) -- number of options and

granularity

if granularity > numOptions

then error "Granularity must be bigger than numOptions!!"

else return ()

t1 <- getClockTime

putStrLn$ "Running blackscholes, numOptions "++ show numOptions

++ " and block size " ++ show granularity

let result = runEval $ blackscholes numOptions granularity

putStrLn$ "Final result: "++ show result

return result

t2 <- getClockTime

putStrLn $ printf "time taken: %.2fs" $ secDiff t1 t2

-- func to calc time taken between t0 and t1 in sec

secDiff::ClockTime -> ClockTime -> Float
secDiff (TOD secs1 psecs1) (TOD secs2 psecs2) = fromInteger (psecs2

- psecs1) / 1e12 + fromInteger (secs2 - secs1)

module Future (Eval(..), Future, runEval, rseq, fork, join, deep)

where

import Control.DeepSeq

import Control.Parallel

import Control.Parallel.Strategies

data Future a = Future a

fork :: Eval a -> Eval (Future a)

fork a = do a’ <- rpar (runEval a); return (Future a’)

join :: Future a -> Eval a

196

Appendix B. Benchmarks

join (Future a) = a ‘pseq‘ return a

deep :: NFData a => Eval a -> Eval a

deep m = do a <- m; rnf a ‘pseq‘ return a

197

Bibliography

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, USA, 1986.

[2] A. Al Zain. Implementing High-Level Parallelism on Computational GRIDs. PhD thesis,

School of Mathematical and Computer Sciences, 2006.

[3] A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michaelson. Managing heterogeneity in a

grid parallel haskell. In V. Sunderam, G. van Albada, P. Sloot, and J. Dongarra, editors,

Computational Science ICCS 2005, volume 3515 of Lecture Notes in Computer Science,

pages 746–754. Springer Berlin Heidelberg, 2005.

[4] A. Al Zain, P. Trinder, G. Michaelson, and H.-W. Loidl. Evaluating a high-level parallel

language (gph) for computational grids. IEEE Transactions on Parallel and Distributed

Systems, 19(2):219–233, 2008.

[5] M. Aljabri, H.-W. Loidl, and P. Trinder. Overview of the Design of GUMSMP: a Mul-

tilevel Parallel Haskell Implementation. In Proceedings of the 5th Saudi Scientific Inter-

national Conference 2012, SIC ’12, page 25. Saudi Scientific International Conference,

2012.

[6] M. Aljabri, H.-W. Loidl, and P. Trinder. The Design and Implementation of GUMSMP:

A Multilevel Parallel Haskell Implementation. In Proceedings of the 25th Symposium on

Implementation and Application of Functional Languages, IFL ’13, pages 37–48, New

York, NY, USA, 2014. ACM.

[7] M. Aljabri, H.-W. Loidl, and P. Trinder. Assessing the Scalability Issues on Many-Core

NUMA machines. In the Proceedings of the 8th Saudi Students Conference., SCC ’15.

Saudi Scientific International Conference, 2015.

[8] M. Aljabri, H.-W. Loidl, and P. Trinder. Balancing Shared and Distributed Heaps on

NUMA Architectures. In J. Hage and J. McCarthy, editors, Trends in Functional Pro-

gramming, volume 8843 of Lecture Notes in Computer Science, pages 1–17. Springer

International Publishing, 2015.

[9] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. Steele, and

S. Tobin-Hochstadt. The Fortress language specification, version 1.0. Technical report,

Sun Microsystems, mar 2008.

198

BIBLIOGRAPHY

[10] K. Alnowaiser. A study of connected object locality in numa heaps. In Proceedings of

the 2014 ACM SIGPLAN Workshop on Memory Systems Performance and Correctness,

MSPC ’14, pages 1:1–1:9, New York, NY, USA, 2014. ACM.

[11] C. Amza, A. Cox, H. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and

W. Zwaenepoel. Treadmarks: Shared Memory Computing on Networks of Workstations.

Computer, 29(2):18–28, 1996.

[12] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud Computing. Commun. ACM,

53(4):50–58, Apr. 2010.

[13] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,

D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A View of the Parallel

Computing Landscape. Commun. ACM, 52(10):56–67, Oct. 2009.

[14] M. Aswad, P. Trinder, A. Al Zain, G. Michaelson, and J. Berthold. Low pain vs no

pain multi-core Haskells. In TFP’09 — Symp. on Trends in Functional Programming,

volume 10 of Trends in Functional Programming, pages 49–64, Komarno, Slovakia, June

2009. Intellect.

[15] S. Auhagen, L. Bergstrom, M. Fluet, and J. Reppy. Garbage Collection for Multicore

NUMA Machines. In Proceedings of the 2011 ACM SIGPLAN Workshop on Memory

Systems Performance and Correctness, MSPC ’11, pages 51–57, New York, NY, USA,

2011. ACM.

[16] B. Barney. Introduction to Parallel Computing, 2010. https://computing.llnl.

gov/tutorials/parallel_comp/#ModelsData.

[17] O. Batchelor and R. Green. Cloud Haskell: First impressions and applications to pro-

cessing large image datasets. In Image and Vision Computing New Zealand (IVCNZ),

2013 28th International Conference of, pages 412–417, Nov 2013.

[18] E. Belikov, P. Deligiannis, P. Totoo, M. Aljabri, and H.-W. Loidl. A survey of high-level

parallel programming models. Technical Report HW-MACS-TR-0103, Department of

Computer Science, Heriot-Watt University, December 2013.

[19] R. Benner, V. Echeverria, U. Onunkwo, J. Patel, and D. Zage. Harnessing Manycore

Processors for Scalable, Highly Efficient, and Adaptable Firewall Solutions. In 2013

International Conference on Computing, Networking and Communications (ICNC), pages

637–641, Jan 2013.

[20] L. Bergstrom. Measuring numa effects with the stream benchmark. CoRR, abs/1103.3225,

2011.

199

https://computing.llnl.gov/tutorials/parallel_comp/#ModelsData
https://computing.llnl.gov/tutorials/parallel_comp/#ModelsData

BIBLIOGRAPHY

[21] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical Master-Worker Skeletons.

In P. Hudak and D. S. Warren, editors, PADL, volume 4902 of Lecture Notes in Computer

Science, pages 248–264. Springer, 2008.

[22] J. Berthold, H.-W. Loidl, and K. Hammond. PAEAN: Portable Runtime Support for

Physically-Shared-Nothing Architectures in Parallel Haskell Dialects. Journal of Func-

tional Programming, 2015. To appear.

[23] J. Berthold, S. Marlow, K. Hammond, and A. Al Zain. Comparing and Optimising

Parallel Haskell Implementations for Multicore Machines. In Proceedings of the 2009

International Conference on Parallel Processing Workshops, ICPPW ’09, pages 386–393,

Washington, DC, USA, 2009. IEEE Computer Society.

[24] G. Blelloch. Programming Parallel Algorithms. Commun. ACM, 39(3):85–97, Mar. 1996.

[25] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M. Zagha. Implementation of a

Portable Nested Data-Parallel Language. Journal of Parallel and Distributed Computing,

21(1):4–14, 1994.

[26] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.

Cilk: An efficient multithreaded runtime system. In Proceedings of the Fifth ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, PPOPP ’95,

pages 207–216, New York, NY, USA, 1995. ACM.

[27] R. D. Blumofe and P. A. Lisiecki. Adaptive and reliable parallel computing on networks

of workstations. In Proceedings of the Annual Conference on USENIX Annual Technical

Conference, ATEC ’97, pages 10–10, Berkeley, CA, USA, 1997. USENIX Association.

[28] C. Boyd. Data-parallel computing. Queue, 6(2):30–39, Mar. 2008.

[29] A. Brodtkorb, C. Dyken, T. Hagen, J. Hjelmervik, and O. Storaasli. State-of-the-art in

Heterogeneous Computing. Sci. Program., 18(1):1–33, Jan. 2010.

[30] R. Buchty, V. Heuveline, W. Karl, and J.-P. Weiss. A survey on hardware-aware and

heterogeneous computing on multicore processors and accelerators. Concurrency and

Computation: Practice and Experience, 24(7):663–675, 2012.

[31] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree of

processors. In Proceedings of the 1981 Conference on Functional Programming Languages

and Computer Architecture, FPCA ’81, pages 187–194, New York, NY, USA, 1981. ACM.

[32] D. Butenhof. Programming with POSIX Threads. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1997.

[33] M. Chakravarty and G. Keller. More Types for Nested Data Parallel Programming. In

In Proceedings ICFP 2000: International Conference on Functional Programming, pages

94–105. ACM Press, 2000.

200

BIBLIOGRAPHY

[34] M. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal - Nested Data

Parallelism in Haskell. In Proceedings of the 7th International Euro-Par Conference

Manchester on Parallel Processing, Euro-Par ’01, pages 524–534, London, UK, UK, 2001.

Springer-Verlag.

[35] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and the Chapel

Language. Intl. J. High Perform. Comput. Appl., 21:291–312, Aug 2007.

[36] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel

Programming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2001.

[37] B. Chapman, G. Jost, and R. Pas. Using OpenMP: Portable Shared Memory Parallel

Programming (Scientific and Engineering Computation). The MIT Press, 2007.

[38] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,

and V. Sarkar. X10: An Object-oriented Approach to Non-uniform Cluster Computing.

SIGPLAN Not., 40(10):519–538, Oct. 2005.

[39] D. Chavarria-Miranda, S. Krishnamoorthy, and A. Vishnu. Global Futures: A Mul-

tithreaded Execution Model for Global Arrays-based Applications. In 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),

pages 393–401, 2012.

[40] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell Broadband Engine Architecture and

Its First Implementation: A Performance View. IBM J. Res. Dev., 51(5):559–572, Sept.

2007.

[41] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT

Press, Cambridge, MA, USA, 1991.

[42] D. Culler, S. Goldstein, K. Schauser, and T. von Eicken. TAM — A Compiler Controlled

Threaded Abstract Machine. Journal of Parallel and Distributed Computing, 18:347–370,

June 1993.

[43] M. Danelutto and M. Vanneschi. Parallel Programming Issues, Achievements and Trends

in High-Performance and Adaptive Computing. In 1st Internal Conference on What is

Going on and What is Next?, number 2 in WiGoWiN, pages 16–18, Pisa, Italy, May 2010.

[44] R. Daniel, B. Donald, M. Phillip, and S. Thomas. Beowulf: Harnessing the Power of

Parallelism in a Pile-of-PCs. In IEEE Aerospace Proceedings, pages 79–91, 1997.

[45] J. Darlington, Y. Guo, H. To, and J. Yang. Parallel Skeletons for Structured Composition.

In J. Ferrante, D. A. Padua, and R. L. Wexelblat, editors, PPOPP, pages 19–28. ACM,

1995.

[46] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

Commun. ACM, 51(1):107–113, Jan 2008.

201

BIBLIOGRAPHY

[47] F. Denneman. AMD Magny-Cours and ESX, 2011. http://frankdenneman.nl/

2011/01/05/amd-magny-cours-and-esx/.

[48] F. Desprez, E. Fleury, A. Kalinov, and A. Lastovetsky. Algorithms and Tools for Parallel

Computing on Heterogeneous Clusters. Nova Science Publishers, 2007.

[49] J. Diaz, C. Munoz-Caro, and A. Nino. A Survey of Parallel Programming Models and

Tools in the Multi and Many-Core Era. IEEE Transactions on Parallel and Distributed

Systems, 23(8):1369–1386, 2012.

[50] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha. Scal-

able work stealing. In Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, SC ’09, pages 53:1–53:11, New York, NY, USA, 2009.

ACM.

[51] A. Du Bois, H.-W. Loidl, and P. Trinder. Thread migration in a parallel graph reducer.

In Proceedings of the 14th International Conference on Implementation of Functional

Languages, IFL’02, pages 199–214, Berlin, Heidelberg, 2003. Springer-Verlag.

[52] R. Duncan. A Survey of Parallel Computer Architectures. IEEE Computer, 23(2):5–16,

Feb. 1990.

[53] A. Duran, E. Ayguad, R. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas.

Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel

Processing Letters, 21(2):173–193, 2011.

[54] T. El-Ghazawi and L. Smith. UPC: Unified Parallel C. In Proceedings of the 2006

ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[55] J. Epstein. Functional programming for the data centre. Master’s thesis, University of

Cambridge, 2011.

[56] J. Epstein, A. P. Black, and S. Peyton Jones. Towards Haskell in the Cloud. In Proceedings

of the 4th ACM symposium on Haskell, Haskell ’11, pages 118–129, New York, NY, USA,

2011. ACM.

[57] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark

Silicon and the End of Multicore Scaling. In Proceedings of the 38th Annual International

Symposium on Computer Architecture, ISCA ’11, pages 365–376, New York, NY, USA,

2011. ACM.

[58] J. Falcou. Parallel Programming with Skeletons. Computing in Science and Engineering,

11(3):58–63, 2009.

[59] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly threaded parallelism in Manticore.

Journal of Functional Programming, 20:537–576, 11 2010.

202

http://frankdenneman.nl/2011/01/05/amd-magny-cours-and-esx/
http://frankdenneman.nl/2011/01/05/amd-magny-cours-and-esx/

BIBLIOGRAPHY

[60] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore: a Heterogeneous

Parallel Language. In Proceedings of the 2007 workshop on Declarative aspects of multicore

programming, DAMP ’07, pages 37–44, New York, NY, USA, 2007. ACM.

[61] M. Flynn. Some computer organizations and their effectiveness. IEEE Trans. Comput.,

21(9):948–960, Sept. 1972.

[62] A. Foltzer, A. Kulkarni, R. Swords, S. Sasidharan, E. Jiang, and R. Newton. A Meta-

scheduler for the Par-monad: Composable Scheduling for the Heterogeneous Cloud. In

Proceedings of the 17th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP ’12, pages 235–246, New York, NY, USA, 2012. ACM.

[63] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel

Software Engineering. Addison-Wesley Longman, Boston, MA, USA, 1995.

[64] I. Foster and C. Kesselman. The Grid2 : Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[65] T. Fountain and P. Kacsuk. Advanced Computer Architectures: A Design Space Approach.

Pearson Education, 1997.

[66] R. Fowler and C. Greenough. Experiences with Globus and MPICH-G. Technical report,

Rutherford Appleton Laboratory, 2001.

[67] V. Freeh. A Comparison of Implicit and Explicit Parallel Programming. Journal of

Parallel and Distributed Computing, 34(1):50 – 65, 1996.

[68] V. Freeh, D. Lowenthal, and G. Andrews. Distributed filaments: Efficient fine-grain

parallelism on a cluster of workstations. In Proceedings of the 1st USENIX Conference

on Operating Systems Design and Implementation, OSDI ’94, Berkeley, CA, USA, 1994.

USENIX Association.

[69] B. Freisleben and T. Kielmann. Approaches to support parallel programming on work-

station clusters: A survey. A Survey, Informatik Berichte, Fachgruppe Informatik,

Universitat-GH Siegen, 95, 1995.

[70] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5 Multi-

threaded Language. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-

ming Language Design and Implementation, PLDI ’98, pages 212–223, New York, NY,

USA, 1998. ACM.

[71] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Par-

allel Virtual Machine - A Users’ Guide and Tutorial for Networked Parallel Computing.

MIT Press, Cambridge, Mass., 1994.

[72] D. Gelernter and N. Carriero. Coordination Languages and Their Significance. Commun.

ACM, 35(2):97–107, Feb. 1992.

203

BIBLIOGRAPHY

[73] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the Scalability of Garbage

Collectors on Many Cores. In Proceedings of the 6th Workshop on Programming Lan-

guages and Operating Systems, PLOS ’11, pages 7:1–7:5, New York, NY, USA, 2011.

ACM.

[74] P. Glaskowsky. Tilera’s Balancing Act: 100 Cores Vs.

Market Realities, 2009. http://www.cnet.com/uk/news/

tileras-balancing-act-100-cores-vs-market-realities.

[75] S. Goldstein, K. Schauser, and D. Culler. Lazy Threads: Implementing a Fast Parallel

Call. Journal of Parallel and Distributed Computing, 37(1):5–20, 1996.

[76] H. González-Vélez and M. Leyton. A Survey of Algorithmic Skeleton Frameworks: High-

level Structured Parallel Programming Enablers. Softw. Pract. Exper., 40(12):1135–1160,

Nov. 2010.

[77] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implemen-

tation of the MPI Message Passing Interface Standard. Parallel Comput., 22(6):789–828,

Sep 1996.

[78] R. H. Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor. In Proceedings

of the 1984 ACM Symposium on LISP and Functional Programming, LFP ’84, pages 9–17,

New York, NY, USA, 1984. ACM.

[79] K. Hammond. Why parallel functional programming matters: Panel statement. In A. Ro-

manovsky and T. Vardanega, editors, Reliable Software Technologies - Ada-Europe 2011,

volume 6652 of Lecture Notes in Computer Science, pages 201–205. Springer Berlin Hei-

delberg, 2011.

[80] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a shared-memory multiprocessor.

In Haskell ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pages

49–61. ACM Press, September 2005.

[81] J. Hennessy and D. Patterson. Computer Architecture, Fifth Edition: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition,

2011.

[82] S. Herb. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software.

Dr. Dobb’s Journal, 30(3), March 2005.

[83] L. Hertzberger. Trends in Parallel and Distributed Computing. Future Generation Com-

puter Systems, 7(1):31–40, Oct 1991.

[84] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artificial

intelligence. In Proceedings of the 3rd International Joint Conference on Artificial In-

telligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann

Publishers Inc.

204

http://www.cnet.com/uk/news/tileras-balancing-act-100-cores-vs-market-realities
http://www.cnet.com/uk/news/tileras-balancing-act-100-cores-vs-market-realities

BIBLIOGRAPHY

[85] Y. Hua, H. Lub, A. Coxc, and W. Zwaenepoel. OpenMP for Networks of SMPs. Journal

of Parallel and Distributed Computing, 60(12):1512–1530, 2000.

[86] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programmability.

McGraw-Hill Higher Education, 1st edition, 1992.

[87] V. Janjic. Load balancing of irregular parallel applications on heterogeneous computing

environments. PhD thesis, Department of Computing Science, University of St Andrews,

2012.

[88] W. Jie, W. Cai, and S. Turner. Poems: A parallel object-oriented environment for multi-

computer systems. Comput. J., 45(5):540–560, 2002.

[89] L. Kale and S. Krishnan. CHARM++: a Portable Concurrent Object-oriented System

Based on C++. In Proceedings of the Eighth Annual Conference on Object-oriented

Programming Systems, Languages, and Applications, OOPSLA ’93, pages 91–108, New

York, NY, USA, 1993. ACM.

[90] R. Karp and Y. Zhang. A randomized parallel branchandbound procedure. In Proceedings

of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages

290–300, New York, NY, USA, 1988. ACM.

[91] H. Kasim, V. March, R. Zhang, and S. See. Survey on Parallel Programming Model. In

Proceedings of the IFIP International Conference on Network and Parallel Computing,

NPC ’08, pages 266–275, Berlin, Heidelberg, 2008. Springer-Verlag.

[92] R. Khan and M. Ali. Current Trends in Parallel Computing. International Journal of

Computer Applications, 59(2):19–25, December 2012.

[93] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: a High-Performance Parallel Lisp.

SIGPLAN Not., 24(7):81–90, July 1989.

[94] H. Kuchen and M. Cole. The integration of task and data parallel skeletons. Parallel

Processing Letters, 12(2):141–155, 2002.

[95] I. Kuon, R. Tessier, and J. Rose. FPGA Architecture: Survey and Challenges. Found.

Trends Electron. Des. Autom., 2(2):135–253, Feb. 2008.

[96] J. Labarta. Starss: a programming model for the multicore era - prace, 2010. http:

//www.prace-ri.eu/IMG/pdf/08_starss_jl.pdf.

[97] C. Lameter. NUMA (Non-Uniform Memory Access): An Overview. Queue, 11(7):40:40–

40:51, Jul 2013.

[98] E. Lee. The Problem with Threads. Computer, 39(5):33–42, May 2006.

[99] D. Leijen, W. Schulte, and S. Burckhardt. The Design of a Task Parallel Library. In

Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming

205

http://www.prace-ri.eu/IMG/pdf/08_starss_jl.pdf
http://www.prace-ri.eu/IMG/pdf/08_starss_jl.pdf

BIBLIOGRAPHY

Systems Languages and Applications, OOPSLA ’09, pages 227–242, New York, NY, USA,

2009. ACM.

[100] D. Lenoski and W. Weber. Scalable Shared-Memory Multiprocessing. Elsevier Science,

2014.

[101] D. Lester. An efficient distributed garbage collection algorithm. In E. Odijk, M. Rem,

and J.-C. Syre, editors, PARLE ’89 Parallel Architectures and Languages Europe, volume

365 of Lecture Notes in Computer Science, pages 207–223. Springer Berlin Heidelberg,

1989.

[102] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. Work stealing and persistence-based

load balancers for iterative overdecomposed applications. In Proceedings of the 21st In-

ternational Symposium on High-Performance Parallel and Distributed Computing, HPDC

’12, pages 137–148, New York, NY, USA, 2012. ACM.

[103] B. Liu, D. Zydek, H. Selvaraj, and L. Gewali. Accelerating High Performance Computing

Applications: Using CPUs, GPUs, Hybrid CPU/GPU, and FPGAs. In 13th Interna-

tional Conference on Parallel and Distributed Computing, Applications and Technologies

(PDCAT), pages 337–342, Dec 2012.

[104] H.-W. Loidl. Granularity in Large-Scale Parallel Functional Programming. PhD thesis,

Department of Computing Science, University of Glasgow, mar 1998.

[105] H.-W. Loidl. Load Balancing in a Parallel Graph Reducer. In K. Hammond and S. Curtis,

editors, SFP’01 — Scottish Functional Programming Workshop, volume 3 of Trends in

Functional Programming, pages 63–74, Bristol, UK, 2001. Intellect.

[106] H.-W. Loidl. The Virtual Shared Memory Performance of a Parallel Graph Reducer.

In International Symposium on Cluster Computing and the Grid, CCGrid 2002, pages

311–318, Berlin, Germany, May 2002. IEEE Computer Society.

[107] H.-W. Loidl, U. Klusik, K. Hammond, R. Loogen, and P. Trinder. GpH and Eden:

Comparing two parallel functional languages on a beowulf cluster. In SFP’00 — Scot-

tish Functional Programming Workshop, volume 2 of Trends in Functional Programming,

pages 39–52, St Andrews, Scotland, July 2000. Intellect.

[108] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen,

G. J. Michaelson, R. Peña, S. Priebe, A. J. Rebón, and P. Trinder. Comparing parallel

functional languages: Programming and performance. Higher Order Symbol. Comput.,

16(3):203–251, Sept. 2003.

[109] R. Loogen, Y. Ortega-mallén, and R. Peña maŕı. Parallel Functional Programming in

Eden. J. Funct. Program., 15:431–475, May 2005.

[110] K. Louden. Programming Languages: Principles and Practices. Advanced Topics Series.

Cengage Learning, 2011.

206

BIBLIOGRAPHY

[111] D. Lowenthal, V. Freeh, and G. Andrews. Using Fine-grain Threads and Run-time De-

cision Making in Parallel Computing. Journal of Parallel and Distributed Computing,

37(1), 1996.

[112] D. Lowenthal, V. Freeh, and G. Andrews. Efficient support for fine-grain parallelism on

shared-memory machines. Concurrency - Practice and Experience, 10(3):157–173, 1998.

[113] P. Maier and P. Trinder. Implementing a High-Level Distributed-Memory Parallel Haskell

in Haskell. In A. Gill and J. Hage, editors, 23rd International Symposium on Implemen-

tation and Application of Functional Languages, IFL, volume 7257 of Lecture Notes in

Computer Science, pages 35–50. Springer, 2011.

[114] S. Marlow, T. Harris, R. P. James, and S. Peyton Jones. Parallel Generational-copying

Garbage Collection with a Block-structured Heap. In Proceedings of the 7th International

Symposium on Memory Management, ISMM ’08, pages 11–20, New York, NY, USA, 2008.

ACM.

[115] S. Marlow, P. Maier, H.-W. Loidl, M. Aswad, and P. Trinder. Seq no more: Better

Strategies for Parallel Haskell. In Proceedings of the third ACM Haskell symposium on

Haskell, Haskell ’10, pages 91–102, New York, NY, USA, 2010. ACM.

[116] S. Marlow, R. Newton, and S. Peyton Jones. A monad for deterministic parallelism. In

Proceedings of the 4th ACM symposium on Haskell, Haskell ’11, pages 71–82, New York,

NY, USA, 2011. ACM.

[117] S. Marlow and S. Peyton Jones. Multicore Garbage Collection with Local Heaps. In

Proceedings of the International Symposium on Memory Management, ISMM ’11, pages

21–32, New York, NY, USA, 2011. ACM.

[118] S. Marlow and S. Peyton Jones. The Architecture of Open Source Applications, Vol 2,

chapter The Glasgow Haskell Compiler. lulu.com, 2012.

[119] S. Marlow, S. Peyton Jones, and S. Singh. Runtime Support for Multicore Haskell. In

Proceedings of the 14th ACM SIGPLAN international conference on Functional program-

ming, ICFP ’09, pages 65–78, New York, NY, USA, 2009. ACM.

[120] M. Martin, M. Hill, and D. Sorin. Why On-chip Cache Coherence is Here to Stay.

Commun. ACM, 55(7):78–89, July 2012.

[121] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison-

Wesley Professional, first edition, 2004.

[122] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the Intel 80-core

Network-on-a-chip Terascale Processor. In Proceedings of the 2008 ACM/IEEE Confer-

ence on Supercomputing, SC ’08, pages 38:1–38:11, Piscataway, NJ, USA, 2008. IEEE

Press.

207

BIBLIOGRAPHY

[123] G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested algorithmic skeletons from

higher order functions. Parallel Algorithms and Applications special issue on High Level

Models and Languages for Parallel Processing, 16(2-3):181–206, Aug 2001.

[124] E. Mohr, D. Kranz, and R. Halstead, Jr. Lazy Task Creation: A Technique for Increasing

the Granularity of Parallel Programs. IEEE Trans. Parallel Distrib. Syst., 2:264–280, July

1991.

[125] MPI Forum. MPI: A Message-Passing Interface Standard version: 3.0, sep 2012. http:

//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[126] M. Nosrati and R. Karimi. Occam: A Primary Parallel Programming Language. General

Scientific Researches, 1(1):1–3, 2013.

[127] R. Numrich and J. Reid. Co-array Fortran for Parallel Programming. SIGPLAN Fortran

Forum, 17(2):1–31, Aug. 1998.

[128] S. Oaks and H. Wong. Java Threads. O’Reilly, Sebastopol, CA, 3 edition, 2004.

[129] M. Odersky and al. An overview of the scala programming language. Technical Report

IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[130] A. Omicini and M. Viroli. Review: Coordination Models and Languages: From Parallel

Computing to Self-organisation. Knowl. Eng. Rev., 26(1):53–59, Feb. 2011.

[131] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn, and T. Purcell.

A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics

Forum, 26(1):80–113, 2007.

[132] G.-R. Perrin and A. Darte, editors. The Data Parallel Programming Model: Foundations,

HPF Realization, and Scientific Applications, volume 1132 of Lecture Notes in Computer

Science. Springer, 1996.

[133] S. Peyton Jones. Parallel Implementations of Functional Programming Languages. Com-

put. J., 32:175–186, April 1989.

[134] S. Peyton Jones, C. Hall, K. Hammond, J. Cordy, W. Partain, and P. Wadler. The

Glasgow Haskell Compiler: a Technical Overview, 1992.

[135] S. Peyton Jones, R. Leschinsky, G. Gabriele Keller, and M. Chakravarty. Harnessing the

Multicores: Nested Data Parallelism in Haskell. In FSTTCS’08: Foundations of Software

Technology and Theoretical Computer Science, pages 383–414, Bangalore, India, 2008.

[136] M. Philippsen. JavaParty. In D. Padua, editor, Encyclopedia of Parallel Computing,

pages 992–997. Springer US, 2011.

[137] K. Pingali. Parallel Programming Languages. Technical report, Cornell University, 1998.

208

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

BIBLIOGRAPHY

[138] M. Poldner and H. Kuchen. Skeletons for Divide and Conquer Algorithms. In Proceedings

of the IASTED International Conference on Parallel and Distributed Computing and

Networks (PDCN 2008), Innsbruck,Austria, 2008.

[139] J. Potter. The Massively Parallel Processor. The MIT Press,Cambridge, MA, United

States, Jan 1985.

[140] C. Quammen. Introduction to Programming Shared-Memory and Distributed-Memory

Parallel Computers. Crossroads, 12(1):2–2, Oct. 2005.

[141] F. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Distributed

Computing. Springer-Verlag, London, UK, 2003.

[142] T. Rauber and G. Rnger. Parallel Programming - for Multicore and Cluster Systems.

Springer, 2010.

[143] J. H. Reppy. Concurrent ML: Design, application and semantics. In P. Lauer, ed-

itor, Functional Programming, Concurrency, Simulation and Automated Reasoning,

LNCS 693, pages 165–198. Springer-Verlag, 1993.

[144] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme for task

allocation in parallel machines. In Proceedings of the Third Annual ACM Symposium on

Parallel Algorithms and Architectures, SPAA ’91, pages 237–245, New York, NY, USA,

1991. ACM.

[145] ScaleMP, Inc. http://www.scalemp.com.

[146] D. Schmidl, C. Terboven, A. Wolf, D. a. Mey, and C. Bischof. How to Scale Nested

OpenMP Applications on the ScaleMP vSMP Architecture. In Proceedings of the 2010

IEEE International Conference on Cluster Computing, CLUSTER ’10, pages 29–37,

Washington, DC, USA, 2010. IEEE Computer Society.

[147] S.-B. Scholz. Single Assignment C – Efficient Support for High-level Array Operations in

a Functional Setting. Journal of Functional Programming, 13(6):1005–1059, 2003.

[148] M. Scott. Shared-Memory Synchronization. Synthesis Lectures on Computer Architec-

ture. Morgan & Claypool Publishers, 2013.

[149] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,

J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee:

A Many-core x86 Architecture for Visual Computing. In ACM SIGGRAPH 2008 Papers,

SIGGRAPH ’08, pages 18:1–18:15, New York, NY, USA, 2008. ACM.

[150] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System.

In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-

nologies, MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

209

http://www.scalemp.com

BIBLIOGRAPHY

[151] L. Silva and R. Buyya. Parallel Programming Models and Paradigms, volume 2, chapter 1,

pages 4–27. Prentice Hall PTR, NJ, USA, 1999.

[152] D. Skillicorn and D. Talia. Models and Languages for Parallel Computation. ACM

Comput. Surv., 30(2):123–169, June 1998.

[153] J. B. Smith. Practical OCaml (Practical). Apress, Berkely, CA, USA, 2006.

[154] M. Sottile, T. G. Mattson, and C. E. Rasmussen. Introduction to Concurrency in Pro-

gramming Languages. Chapman & Hall/CRC, 1st edition, 2009.

[155] R. Stewart, P. Trinder, and P. Maier. Supervised Workpools for Reliable Massively

Parallel Computing. In H.-W. Loidl and R. Pea, editors, 13th International Symposium

on Trends in Functional Programming, TFP, volume 7829 of Lecture Notes in Computer

Science, pages 247–262. Springer Berlin Heidelberg, 2013.

[156] C. Su, D. Li, D. S. Nikolopoulos, M. Grove, K. Cameron, and B. R. de Supinski. Critical

Path-based Thread Placement for NUMA Systems. SIGMETRICS Perform. Eval. Rev.,

40(2):106–112, Oct. 2012.

[157] H. Sutter and J. Larus. Software and the Concurrency Revolution. Queue, 3(7):54–62,

Sept. 2005.

[158] D. Syme, A. Granicz, and A. Cisternino. Expert F# 3.0. Expert’s voice in F#. Apress,

2012.

[159] G. Taboada, J. Tourio, and R. Doallo. High Performance Java Sockets for Parallel Com-

puting on Clusters. In IEEE International Symposium in Parallel and Distributed Pro-

cessing, IPDPS 2007, pages 1–8, March 2007.

[160] L. Tan, R. Yufei, Y. Dantong, J. Shudong, and T. Robertazzi. Characterization of In-

put/Output Bandwidth Performance Models in NUMA Architecture for Data Intensive

Applications. In 42nd International Conference on Parallel Processing (ICPP), pages

369–378, Oct 2013.

[161] C. Terboven, D. Schmidl, T. Cramer, and D. an Mey. Assessing openmp tasking imple-

mentations on numa architectures. In Proceedings of the 8th International Conference

on OpenMP in a Heterogeneous World, IWOMP’12, pages 182–195, Berlin, Heidelberg,

2012. Springer-Verlag.

[162] P. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm + Strategy =

Parallelism. Journal of Functional Programming, 8(1):23–60, Jan 1998.

[163] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones. GUM: a

portable implementation of Haskell. In IFL’95 —International Workshop on the Imple-

mentation of Functional Languages, Bastad, Sweden, Sep 1995.

210

BIBLIOGRAPHY

[164] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones. GUM:

a Portable Parallel Implementation of Haskell. In PLDI’96 — Programming Languages

Design and Implementation, pages 79–88, Philadelphia, PA, USA, May 1996.

[165] P. Trinder, H.-W. Loidl, and K. Hammond. Parallel functional languages. In D. Padua,

editor, Encyclopedia of Parallel Computing, Springer Reference. Springer, New York, NY,

USA, 2011.

[166] P. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and distributed haskells. J. Funct.

Program., 12(5):469–510, July 2002.

[167] N. Tuan-Anh and K. Pierre. ParoC++: A Requirement-Driven Parallel Object-Oriented

Programming Language. The 8th International Workshop on High-Level Parallel Pro-

gramming Models and Supportive Environments (HIPS), 2003.

[168] UPC Consortium. UPC Language Specifications, v1.2. Tech Report LBNL-59208,

Lawrence Berkeley National Lab, 2005.

[169] P. Vabishchevich. Computational Technologies: Advanced Topics. De Gruyter Textbook.

De Gruyter, 2015.

[170] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient load balancing for wide-area

divide-and-conquer applications. In Proceedings of the Eighth ACM SIGPLAN Sympo-

sium on Principles and Practices of Parallel Programming, PPoPP ’01, pages 34–43, New

York, NY, USA, 2001. ACM.

[171] A. Varbanescu, P. Hijma, R. van Nieuwpoort, and H. Bal. Towards an effective unified

programming model for many-cores. In IPDPS Workshops, pages 681–692. IEEE, 2011.

[172] R. Virding, C. Wikström, and M. Williams. Concurrent Programming in ERLANG (2Nd

Ed.). Prentice Hall International (UK) Ltd., Hertfordshire, UK, 1996.

[173] B. Wilson. Introduction to Parallel Programming Using Message-Passing. J. Comput.

Sci. Coll., 21(1):207–211, Oct 2005.

[174] X. Wu and V. Taylor. Using Processor Partitioning to Evaluate the Performance of MPI,

OpenMP and Hybrid Parallel Applications on Dual- and Quad-core Cray XT4 Systems.

In Proceedings of the 2009 Cray Users’ Group Meeting, Atlanta, GA, May 2009.

[175] C. Yang, C. Huang, and C. Lin. Hybrid CUDA, OpenMP, and MPI Parallel Programming

on Multicore GPU Clusters. Computer Physics Communications, 182(1):266 – 269, 2011.

[176] E. Z. Yang. The GHC Runtime System. http://ezyang.com/

jfp-ghc-rts-draft.pdf, July 2013.

[177] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,

S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance java dialect.

In In ACM, pages 10–11, 1998.

211

http://ezyang.com/jfp-ghc-rts-draft.pdf
http://ezyang.com/jfp-ghc-rts-draft.pdf

[178] G. Zheng, A. Bhatelé, E. Meneses, and L. V. Kalé. Periodic hierarchical load balancing

for large supercomputers. Int. J. High Perform. Comput. Appl., 25(4):371–385, Nov.

2011.

212

Glossary

ACK An acknowledgement message. 95

API Application Programming Interface. 38, 61

BH BlackHole, a closure that is under evaluation. 74, 76, 99–101 73, 74, 98.

BlockedFetch A closure that is under evaluation when fetch message received.
95, 100

closure A node in the graph structure. 73–75, 86, 88, 95–101

core An independent hardware unit for computation, closely related to the soft-
ware defined notion of HEC. 2, 9, 11, 13–18, 20, 22–28, 32, 36, 39–41, 43,
44, 47, 48, 54–56, 59, 61, 62, 65, 67–72, 79, 80, 82, 84, 91, 104, 106–112,
116–121, 125, 127–135, 138–140, 142–148, 150–158, 160–165, 167, 168

CUDA Compute Unified Device Architecture. 40

DPH Data Parallel Haskell. 55

FETCH A data request message. 83, 95, 98–100

FetchMe A global indirections to remote closure. 74, 88, 95, 96, 98–100

FIFO First In First Out. 70–73, 75

FISH A work request message. 77, 78, 80–82, 84, 98, 100, 111, 112, 148, 150,
167

FPGA Field Programmable Gate Array. 16, 22, 27

GA Global Address, a globally unique identifier. 88, 95–98, 121, 123, 125

GC Garbage Collection. 11, 66, 79, 88–93, 114, 128, 139, 142–146, 148, 155–157

GHC Glasgow Haskell Compiler. 2, 16, 55, 56, 58–60, 68, 106–108, 132, 145

GHC-GUM Parallel Haskell implementation for Distributed Memory. 2, 8–13,
16–18, 42, 55, 56, 58–62, 65–70, 73, 74, 76, 77, 80, 81, 88, 89, 92, 93, 95, 103,
108–110, 121, 129, 131, 134, 135, 138, 147–151, 153–157, 164, 165, 170–173

GHC-SMP Parallel Haskell implementation for Shared Memory. 2, 8, 11–13,
16–18, 42, 59–62, 65–68, 70, 73, 76, 78–81, 89, 90, 92, 93, 103, 106, 109,
110, 128, 131–135, 138, 142, 144, 145, 148, 164, 165

213

GIT Global Indirection Table, a mapping of the GAs to LAs and vice versa. 59,
84, 88, 121

GpH Glasgow Parallel Haskell. 12, 15–17, 30, 31, 35, 38, 41, 46–48, 53, 55, 59,
65, 66, 119, 129, 133, 134, 144, 148, 162, 164

GPU Graphics Processing Unit. 16, 22, 24, 27, 40, 41, 60

GRIP Graph Reduction In Parallel, a dedicated graph reduction hardware. 71

GUMSMP Our parallel Haskell implementation that combines the shared and
distributed memory implementations. 2, 8–18, 20, 26, 30, 41, 42, 60–62,
66–74, 76, 80–83, 85, 86, 89, 92–95, 98, 103–105, 108–111, 113, 121, 122,
126, 128, 129, 131, 133, 135–140, 142–144, 147–166, 168, 170–173

HdpH High-level Distributed Memory parallel Haskell in Haskell. 12, 46, 47,
52, 53, 55, 58, 59, 61

HEC Haskell Execution Context, An independent software unit for computation,
closely related to the hardware defined notion of core. 8, 59, 72, 73, 75, 78–
83, 86, 87, 89, 91–93, 109, 112, 114, 119, 121, 122, 126–129, 148–151, 154,
158, 160

HPC High Performance Computing. 20, 27, 40, 64

HW Hardware. 72

IND An indirection closure to result. 99, 100

IO Input/Output. 24–26, 28

LA Local Address, a locally unique identifier. 88

MIMD Multiple Instruction Multiple Data. 22, 23, 26

MISD Multiple Instruction Single Data. 22

MPI Message Passing Interface. 15, 20, 31, 35, 37, 38, 40, 48, 56

MPP Massively Parallel Processors. 26

node A multi-core machine, closely related to the software defined notion of PE.
2, 11, 13, 15, 17, 18, 34, 40, 41, 54, 58, 67, 68, 70, 72, 80, 82, 83, 103, 106,
109, 110, 112, 119–121, 126–130, 160, 161, 163–165

NUMA Non-Uniform Memory Access. 2, 7, 9, 11–13, 15–18, 24–26, 40, 62, 89,
104, 127, 128, 131–133, 138–140, 142–148, 151, 152, 163, 165, 166, 168

OpenMP Open Multiprocessing. 15, 31, 35, 37–41, 64, 147

OS Operating System. 71, 72

214

PE Processing Element, a computation engine with executor(s) (cores), memory,
and other resources, e.g. file handlers etc., closely related to the hardware
defined notion of node. 18, 28, 29, 31–34, 38, 46, 57–64, 71–75, 77, 78, 80–
84, 86–88, 93, 95, 97–100, 104, 109–112, 114, 116, 119, 121–123, 126–129,
134, 135, 138, 142, 144, 148–155, 157, 160, 165–168

PGAS Partitioned Global Address Space. 31, 41, 64

PVM Parallel Virtual Machine. 31, 35, 37, 38, 56, 70, 106, 160

RBH Revertible BlackHole, a closure that has been exported to remote PE, but
for which no location on the remote PE has been received. 75, 97–99, 101

RESUME A data delivery message. 95, 100

RTS Runtime System, used interchangeably with RTE(Runtime Environment).
2, 15, 30, 35, 41, 47, 48, 56, 60, 66, 68, 71, 72, 84, 90, 96, 106, 117, 125,
126, 132, 145, 147, 148, 154, 163, 164, 166, 167

SAC Single Assignment C. 45

SCHEDULE A reply to Fish message with work. 77, 84, 100, 167

SIMD Single Instruction Multiple Data. 22

SISD Single Instruction Single Data. 22

SMP Symmetric Multi-Processor systems. 24

SO Stack Object. 73

spark A potential parallelism as a pointer to un-evaluated graph structure ”thunk”.
2, 13, 18, 42, 50, 53, 58–60, 67, 71–73, 75, 77–87, 100, 112, 114, 119–123,
125–128, 130, 149, 150, 158, 161, 165, 167, 168

thunk An un-evaluated graph structure. 11, 71, 73, 74, 88, 96–101, 149

TSO Thread State Object, a representation of task in the RTS. 73, 74, 77, 79,
91

UMA Uniform Memory Access. 24

UPC Unified Parallel C. 41

WHNF Weak Head Normal Form. 48, 49, 79, 80

215

	1 Introduction
	1.1 Thesis Statement
	1.2 Contributions
	1.3 Publications

	2 Literature Survey
	2.1 Introduction
	2.2 Parallel Architectures
	2.2.1 Shared Memory
	2.2.1.1 NUMA

	2.2.2 Distributed Memory
	2.2.2.1 Heterogeneity

	2.3 Parallel Programming
	2.3.1 Approaches
	2.3.2 Levels of Abstractions
	2.3.3 Patterns
	2.3.4 Mechanisms
	2.3.5 Skeletons

	2.4 Parallel Languages
	2.4.1 Imperative Languages
	2.4.1.1 Message Passing
	2.4.1.2 Shared Memory

	2.4.2 Parallel Object Oriented Programming
	2.4.3 Hybrid Parallel Programming Model
	2.4.4 Parallel Systems
	2.4.4.1 Manticore
	2.4.4.2 Filaments
	2.4.4.3 Task Parallel Library

	2.4.5 Functional Languages
	2.4.5.1 Semi-explicit Parallelism
	2.4.5.2 Explicit Parallelism

	2.5 Parallel Haskell Implementations (RTS)
	2.5.1 Distributed Memory Implementation
	2.5.2 Shared Memory Implementation
	2.5.3 Parallel Haskell Implementations Comparison

	2.6 Load Balancing

	3 GUMSMP Design and Implementation
	3.1 Introduction
	3.2 Design Objectives
	3.3 Main Components for Parallel Haskell Implementations
	3.4 Thread Management
	3.4.1 Data Structures
	3.4.2 Synchronisation
	3.4.3 Main Scheduling Loop

	3.5 Work Distribution Mechanism
	3.5.1 GHC-GUM
	3.5.2 GHC-SMP
	3.5.3 GUMSMP
	3.5.3.1 The Role of the Gateway HEC
	3.5.3.2 Exporting Sparks
	3.5.3.3 Sparks Placement

	3.5.4 Hierarchy-aware Load Balancing
	3.5.4.1 Watermarks
	3.5.4.2 Spark Segregation

	3.6 Memory Management
	3.6.1 GHC-GUM
	3.6.2 GHC-SMP
	3.6.3 GUMSMP

	3.7 Communication
	3.8 Communication vs. Evaluation
	3.9 Summary

	4 GUMSMP Tuning
	4.1 Introduction
	4.2 GUMSMP Performance
	4.2.1 Setup and Programs
	4.2.2 Baseline Performance
	4.2.2.1 Cross-System Performance
	4.2.2.2 Single Multi-core Performance

	4.3 Performance Tuning
	4.3.1 Low-Watermarks for Pre-Fetching
	4.3.2 Asymmetric Load Distribution Policy
	4.3.3 Distinguishing Local and Global Work
	4.3.3.1 Future Spark Segregation Work

	4.3.4 Dedicated Gateways
	4.3.5 Optimising the Number of Cores Per PE
	4.3.6 Optimising the Setting of the Allocation Area
	4.3.7 More Active Load Management

	4.4 Summary

	5 GUMSMP Evaluation
	5.1 Introduction
	5.2 Balancing Shared and Distributed Heaps on NUMA Architectures
	5.2.1 Scalability Limits
	5.2.2 Benefits of Distributed Heaps
	5.2.3 Summary and Discussion

	5.3 Cluster of Multi-cores Results
	5.3.1 Evaluation of GUMSMP and GHC-GUM
	5.3.1.1 Generated Parallelism
	5.3.1.2 Communication and Threads

	5.3.2 The Performance of GUMSMP and GHC-GUM
	5.3.3 Optimising the Number of Cores Per PE
	5.3.4 Optimising the Setting of the Allocation Area
	5.3.4.1 Data Parallel Programs
	5.3.4.2 Divide and Conquer Programs

	5.3.5 Summary
	5.3.6 More Active Load Management

	5.4 Scalability Results

	6 Conclusion
	6.1 Contributions and Achievements
	6.1.1 Contribution 1: GUMSMP Design and Implementation
	6.1.2 Contribution 2: GUMSMP Performance Tuning
	6.1.3 Contribution 3: A Systematic Performance Evaluation of GUMSMP

	6.2 Limitations and Future Research Directions
	6.2.1 Future Research Directions
	6.2.1.1 NUMA-aware System
	6.2.1.2 Auto Tuning
	6.2.1.3 Dynamic Tuning
	6.2.1.4 Spark Tagging
	6.2.1.5 Inter-cluster Performance Study

	A Optimisation
	B Benchmarks
	Bibliography
	Glossary

