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Abstract

Model averaging has been proposed as an alternative to model selection which is in-

tended to overcome the underestimation of standard errors that is a consequence of

model selection. Model selection and model averaging become more complicated in the

presence of missing data. Three different model selection approaches (RR, STACK and

M-STACK) and model averaging using three model-building strategies (non-overlapping

variable sets, inclusive and restrictive strategies) were explored to combine results from

multiply-imputed data sets using a Monte Carlo simulation study on some simple linear

and generalized linear models. Imputation was carried out using chained equations (via

the ”norm” method in the R package MICE). The simulation results showed that the

STACK method performs better than RR and M-STACK in terms of model selection

and prediction, whereas model averaging performs slightly better than STACK in terms

of prediction. The inclusive and restrictive strategies perform better in terms of predic-

tion, but non-overlapping variable sets performs better for model selection. STACK and

model averaging using all three model-building strategies were proposed to combine the

results from a multiply-imputed data set from the Gateshead Millennium Study (GMS).

The performance of STACK and model averaging was compared using mean square error

of prediction (MSE(P)) in a 10% cross-validation test. The results showed that STACK

using an inclusive strategy provided a better prediction than model averaging. This

coincides with the results obtained through a mimic simulation study of GMS data. In

addition, the inclusive strategy for building imputation and prediction models was better

than the non-overlapping variable sets and restrictive strategy. The presence of highly

correlated covariates and response is believed to have led to better prediction in this

particular context. Model averaging using non-overlapping variable sets performs better

only if an auxiliary variable is available. However, STACK using an inclusive strategy

performs well when there is no auxiliary variable available. Therefore, it is advisable to

use STACK with an inclusive model-building strategy and highly correlated covariates

(where available) to make predictions in the presence of missing data. Alternatively,

model averaging with non-overlapping variables sets can be used if an auxiliary variable

is available.
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Chapter 1

Introduction

Model-building is one of the key areas of interest in the development and application of

statistical modelling. One important issue in model-building is the need for researchers

to clearly identify the ultimate aim of their research in order to choose an appropriate

model-building approach. There are two crucial aims of a data analysis: (1) to determine

which factors/variables to include when making predictions and (2) prediction. The

relative importance of these aims will guide the researchers to choose a suitable model-

building approach for their research and will help in determining an appropriate structure

for the model of interest.

A statistical model is a simplified description of data and it is often based on some

mathematically defined relationship. A model is usually constructed in order to draw

conclusions and make predictions from the data. The model should be rich enough to

explain the relationships in the data. In some situations there will be a lot of factors

that might affect the response and therefore many possible models to consider. Model

selection provides formal support to guide the user in the search for the best model and

to determine which factors/variables to be included when making predictions. Model

selection is an important part of the model-building process and cannot be separated

from the rest of the analysis in choosing a best model [Claeskens and Hjort, 2008].

Model selection in practice requires the choice of a selection procedure, such as forward

selection or backward elimination, coupled with a selection criterion, such as AIC or

BIC, to select a small subset of variables to include in the model. Model selection

is well-known for introducing additional uncertainty into the model-building process.

The properties of standard parameter estimates obtained from the selected model do

not reflect the stochastic nature of the model selection process [Burham and Anderson,

2002]. In the literature, model averaging has been proposed as an alternative to model

selection which is intended to overcome the underestimation of standard errors that is

1
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a consequence of model selection. If the focus of model selection and model averaging

is good prediction, then differences in the standard errors of estimators is not directly

relevant to the comparison of these methods.

Model selection and model averaging become more complicated in the presence of missing

data. Missing data is a common problem in various settings, including surveys, clinical

trials and longitudinal studies. Values of both outcome/response and covariates might

be missing. Many researchers usually omit the variable or samples with missing data

from the analysis but this can lead to bias and loss of information. The cumulative effect

of a small amount of missing data in each of several variables can lead to exclude many of

the potential samples, which in turn will cause loss of precision. Exploiting relationships

between the variables in order to impute the missing values can be demonstrated to be

a better strategy [Little and Rubin, 2002].

Although researchers have developed many imputation methods to deal with missing

data, there are no agreed guidelines for model selection in the presence of missing data.

Model averaging is the most relevant method to account for both uncertainty related

to imputation and model selection. However, there are no proper guidelines for model

averaging in the presence of missing data. Besides that, there is no proper comparison

between model selection and model averaging in the presence of missing data in terms

of prediction.

1.1 Research Motivations

In the analysis of statistical models, the main issues are model-building, model selection

and prediction based on the best model. Model selection introduces additional uncer-

tainty into the model-building process, but the standard errors of parameter estimates

obtained from the selected model by standard statistical procedures will underestimate

the true variability. Model averaging aims to incorporate the uncertainty associated with

model selection into parameter estimation, by combining estimates over a set of possible

models. Model selection and model averaging in the linear and generalized linear models

become complicated in the presence of missing data. Model selection in the presence of

missing data has been widely explored over decade. Only in the past two years has some

research been carried out on how best to carry out model averaging in the presence of

missing data [Schomaker and Heumann, 2014]. There are outstanding issues, such as

how to combine model averaging estimators for multiply-imputed data sets, the num-

ber of multiple imputations needed and the relationship between the imputation and

prediction models, which remain unclear and need proper guidelines.
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Building a good imputation model is a key factor in dealing with missing data. Re-

searcher should build a robust imputation model with sufficient amount of complete

data in order to obtain good imputed values. The imputation model and the predic-

tion model should be compatible to provide good results [Sinharay et al., 2001]. Any

discrepancy between the imputation model and the prediction model will give rise to

unreliable estimates. Therefore, building robust imputation and prediction models is

crucial in model-building in the presence of missing data.

Another key issue is how the strength of correlation among available variables will affect

imputation and prediction. Highly correlated variables are ideal for imputation, as

stated for example by Hardt et al. [2012]. However, there can be negative effects of

highly correlated variables in the prediction model, such as low precision for estimating

parameters. This means that highly correlated variables should be handled carefully.

Moreover, the choice of model selection criterion will have an effect on both model selec-

tion and model averaging in the presence of missing data. Although AIC is widely used

as a criterion for model selection and for calculating model weights in model averaging,

AIC will not necessarily choose the most parsimonious model and there is a proba-

bility of over-fitting. A corrected version of AIC, known as AICc, has been shown to

have an advantage over AIC in small to medium-sized samples [Burham and Anderson,

2002]. BIC will choose a more parsimonious model than either AIC or AICc because of

the stronger penalty term which discourages choosing a model with many parameters.

There is no proper comparison between these model selection criteria in model selection

and model averaging in the presence of missing data.

Finally, although model averaging has been proposed as an alternative to model selection,

there is no proper comparison between the two in the presence of missing data, in terms

of prediction. Therefore, this research will involve comparing model selection and model

averaging in the presence of missing data using several model-building strategies and

different model selection criteria, with the specific research objectives listed in the next

section.

1.2 Research Objectives

The detailed research objectives of this research are as follows:

(i) To investigate the implications of multiple imputation for selecting and fitting ad-

ditive linear and generalized linear models, using common model selection criteria.

(ii) To investigate the implications of multiple imputation for model averaging.
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(iii) To investigate the effects of restrictive and inclusive strategies for imputation for

both model selection and model averaging.

(iv) To compare model selection and model averaging in terms of prediction in the

presence of missing values.

(v) To identify the effects of highly correlated covariates on model selection and model

averaging, in the absence and presence of missing values.

1.3 Thesis Outline

The structure of this thesis is explained in this sub-chapter.

Chapter 1 presents the introduction and motivations of the current study. It also

identifies the aims and objectives of this work and outlines the thesis structure.

Chapter 2 explains the methodology related to this research. It covers methods relevant

to this study such as statistical approaches to analyze missing data, software packages

for imputation, model selection criteria and non-Bayesian model averaging.

Chapter 3 reviews previous research on model selection and model averaging in the

presence of missing values. It also covers recent developments on model selection strate-

gies and criteria in the presence of missing data and strategies for building an imputation

model.

Chapter 4 presents the results of a small scale simulation study which was carried

out to investigate the effects of restrictive and inclusive strategies for single imputation

on both model selection and model averaging. Model selection and model averaging

using all three model-building strategies (non-overlapping variable sets, restrictive and

inclusive strategies) were compared to identify the best model-building strategy.

Chapter 5 extends the simulation study of Chapter 4 to multiple imputation. Three

model selection methods (RR, STACK, M-STACK) and model averaging are discussed

to combine results across multiply-imputed data sets and compared. These procedures

were compared using mean square error of prediction to identify the best model-building

approach.

Chapter 6 presents results obtained from applying the most successful model-building

approaches (STACK and model averaging) and strategies (non-overlapping variable sets,

restrictive and inclusive strategies) to the prediction of children’s weight at school entry

and weight at eight years of age based on their first year weights in the Gateshead
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Millennium Study. The model-building approaches and strategies were compared using

mean square error of prediction.

Chapter 7 summarizes all the conclusions that can be drawn from this thesis. Areas

of further work and a summary of the research completes this chapter.



Chapter 2

Methodology

2.1 Missing Data

Missing data is a common problem in various settings, including surveys, clinical trials

and longitudinal studies. Values of both outcome/response and covariates might be

missing. Researchers usually omit the variable or samples with missing data from the

analysis but this can lead to bias and loss of information. The cumulative effect of a

small amount of missing data in each of several variables will lead to exclude many of

the potential samples, which in turn will cause loss of precision.

In order to overcome the missing data issue more appropriately, researcher should under-

stand the missing data pattern or type. Little and Rubin [2002] classified missing data

into three types (also known as missing data mechanisms) which are missing completely

at random (MCAR), missing at random (MAR) and not missing at random (NMAR).

The details of these three types of missing data are as follows:

1. If the missingness of a variable X does not depend on, or is unrelated to, the value

of X itself or to any other variables in the dataset, these data are called missing

completely at random (MCAR). In other words, data are MCAR if the probability

of being missing is the same for all cases. There are then no systematic differences

between the missing values and the observed values of variable X. For example,

weight values were missing because an electric scale ran out of batteries, so some

of the data were missing simply because of bad luck [van Buuren, 2012].

2. If the missingness on X is related to another variable (Y ) in the analysis but not

to X itself, these data are called missing at random (MAR). In other words, data

are MAR if the probability of being missing is the same only within groups defined

by the observed data. Any systematic difference between the missing values and

6
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the observed values of variable X can be explained by patterns in the observed

data. For example, when scales are placed on a soft surface, they may produce

more missing values than when placed on a hard surface. Since the surface type

is known, if one assumes data are MCAR within the type of surface, then overall

the data are MAR [van Buuren, 2012].

3. If missingness is related to the value of X itself, and perhaps one or more other

variables in the prediction model, these data are called not missing at random

(NMAR). In other words, data are NMAR if the probability of being missing

varies for reasons that are not known to the researcher. Even after the observed

data are taken into account, systematic differences remain between the missing

values and the observed values of variable X. For example, the weighing scale

will wear out over time and produce more missing data. One may fail to note

this. If heavier objects are measured later in time, then a distorted distribution

of measurements will be obtained. NMAR includes the possibility that the scale

produces more missing values for heavier objects [van Buuren, 2012].

2.2 Statistical Approaches to Analyze Missing Data

Performing analysis for missing data problems raises several new statistical challenges,

underscoring the need for methodological development. In the literature, methods com-

monly proposed are complete case analysis (listwise deletion), mean imputation, regres-

sion imputation, stochastic regression imputation, hot deck imputation, EM algorithm

and multiple imputation.

2.2.1 Complete-case analysis

The traditional method of dealing with missing data is to delete any cases with miss-

ing values from the analysis. This is known as complete-case (CC) analysis (listwise

deletion). It is a default method of handling missing data in many statistical packages.

This procedure will eliminate all cases with one or more missing values on the analysis

variables [van Buuren, 2012]. The main advantages of this approach are simplicity and

comparability of the results with results from the analysis of dataset with no missing

values. Any standard statistical analysis can be applied without modification to com-

plete cases [Little and Rubin, 2002]. Under MCAR, CC analysis will produce unbiased

estimates of means, variance and regression coefficients. Disadvantages of this method

are loss of precision, and bias when the missing data is not MCAR and the complete
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cases are not a random sample of all the cases. Therefore, it is not advisable to use CC

analysis to deal with missing data.

A special case of CC analysis is available-case (AV) analysis (also known as pairwise

deletion). AV analysis uses all the cases with complete data on selected variables for

particular analysis. According to Osborne [2013], the sample included in AV analysis

can change depending on which variables are in the analysis. The estimates of means

and variances are not biased if data are MCAR but modifications are needed to estimate

measures of covariation. This also leads to mis-estimation and errors in data that are

MAR or NMAR.

2.2.2 Single imputation

Imputation is a common and flexible method to deal with missing data. According to

Little and Rubin [2002], imputations are means or draws from a predictive distribu-

tion of the missing values. Imputing one value for each missing value is called single

imputation. Single imputation is often utilized because it is intuitively attractive. In

single imputation, one will fill in missing values by some type of predicted values. There

are many single imputation methods including mean imputation, regression imputation,

stochastic regression imputation and hot deck imputation.

Mean imputation is replacing missing values with a measure of central tendency,

often the sample mean for continuous data and the mode for categorical data. Mean

imputation is a quick and simple fix for missing data. van Buuren [2012] states that this

method will underestimate the variance, disturb the relations between variables and bias

estimates of the mean, even when data are MCAR. Mean imputation should be avoided

in general but it can be used as a rapid fix when a handful of data are missing.

Regression imputation replaces missing values by predicted values from a regression

model for the missing variable. The first step in regression imputation is building a

model from observed data. Predictions for the incomplete cases are calculated from the

fitted model and used as replacements for the missing data. Under MCAR, regression

imputation will produce unbiased estimates of the means and regression coefficients of

the imputation model if the explanatory variables used in this model are complete [van

Buuren, 2012]. However, the variability of the data is systematically underestimated.

Little and Rubin [2002] stated that the degree of underestimation depends on the amount

of variance explained and on the proportion of missing data.
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Stochastic regression imputation is an improvement on regression imputation that

adds noise (or errors) to the predictions. This will have a depressing effect on correla-

tions. van Buuren [2012] and Little and Rubin [2002] described how this method first

estimates the intercept, slope and residual variance under the linear model. Then it

generates imputed values according to these parameter estimates. The noise added to

the predictions opens up the distribution of the imputed values. This method will pre-

serve both regression coefficients and correlation between variables. The main idea of

drawing from the distribution of residuals is very powerful and forms the basis for more

advanced imputation methods.

Both regression imputation and stochastic regression imputation will yield unbiased

estimates under MAR. The common problem in single imputation comes from replacing

an unknown missing value by a single value and then treating it as if it is a true value

[Rubin, 1987]. Single imputation ignores uncertainty so almost always underestimates

the variance. Multiple imputation can be used to overcome this problem by taking into

account both within-imputation and between-imputation uncertainty.

2.2.3 Hot deck imputation

Hot deck imputation is a single imputation method to deal with missing data which

involves replacing each missing value with an observed response from a similar unit.

Little and Rubin [2002] stated that this is a common method in survey practice and

very elaborate schemes have been developed for selecting units that are similar in order

to carry out the imputation. The result of hot deck imputation is a rectangular dataset

which can be used in secondary data analysis. There is a consequent gain in efficiency

respective to CC analysis since information present in incomplete cases will be retained.

This method does not depend on modelling the variable to be imputed, therefore it is

potentially less sensitive to model misspecification than imputation methods based on

a parametric model such as regression imputation [Andridge and Little, 2010].

Another important feature of this method is that it can also replace missing values with

observed responses from other units. There is a reduction in non-response bias where

there is an association between the variables defining imputation categories [Andridge

and Little, 2010]. However, according to Roth [1994], there are several disadvantages of

the hot deck imputation method. First, the number of cross-classifications of variables

may become unmanageable in large survey research. Researchers are encouraged to

include many variables in the identification of similar units because each one has some

effect on the variable to be imputed. Deleting a classification variable means that the

imputed variable will lose a fraction of its variance attributed to that classification
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variable. The correlations between the imputed variable and other variables will be

weaker. Second, the classification of variables required for identifying similar units

sacrifices information. The third disadvantage is that estimating the standard error of

parameters can be difficult.

2.2.4 EM algorithm

The Expectation Maximisation (EM) algorithm is an alternative computing strategy for

incomplete data. The EM algorithm is a very general algorithm for maximum likelihood

(ML) estimation for incomplete data [Little and Rubin, 2002]. It is an iterative approach

that involves two steps: the expectation step (E-step) and the maximisation step (M-

step). In any incomplete data problem, the distribution of the complete data X can be

factorised as

f(Y ,X;θ) = f(Y ,Xobs;θ)f(Xmis|Y ,Xobs;θ) (2.1)

Considering each term in Equation (2.1) as a function of θ, it follow that

`(Y ,X;θ) = `(Y ,Xobs;θ) + `(Xmis|Y ,Xobs;θ) + c (2.2)

where `(Y ,X;θ) denotes the complete data log-likelihood, `(Y ,Xobs;θ) denotes the

observed data log-likelihood and c is an arbitrary constant. The incomplete data log-

likelihood is often inconvenient to work directly and the maximisation can be difficult

to accomplish [Schafer, 1997]. The E-step takes the average of the complete data log-

likelihood with respect to the distribution f(Xmis|Xobs;θ
(τ)), where θ(τ) is the current

parameter estimate of θ. This log-likelihood yields∫
`(Y ,X;θ)f(Xmis|Y ,Xobs,θ

(τ))dXmis (2.3)

=

∫
`(Y ,Xobs;θ)f(Xmis|Y ,Xobs,θ

(τ))dXmis

+

∫
`(Xmis|Y ,Xobs,θ)f(Xmis|Y ,Xobs,θ

(τ))dXmis

Equation (2.3) can be written in the form of a Q-function and H-function as follows

Q(θ|θ(τ)) =

∫
`(Y ,Xobs;θ)f(Xmis|Y ,Xobs,θ

(τ))dXmis +H(θ|θ(τ))

= `(Y ,Xobs;θ)

∫
f(Xmis|Y ,Xobs,θ

(τ))dXmis +H(θ|θ(τ))

= `(Y ,Xobs;θ) +H(θ|θ(τ)) (2.4)
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where the H−function is

H(θ|θ(t)) =

∫
`(Xmis|Y ,Xobs,θ)f(Xmis|Y ,Xobs,θ

(τ))dXmis (2.5)

The E-step is based on the evaluation of the Q−function in Equation (2.4). The M-step

involves maximizing Q(θ|θ(τ)) with respect to θ to obtain θ(τ+1). The iteration between

the E-step and M-step will continue until convergence [Little and Rubin, 2002, Schafer,

1997].

Little and Rubin [2002] stated that there are two major drawbacks of EM algorithm.

First, it will converge very slowly in cases with large fractions of missing data. Second,

the M-step will be difficult in some cases and then the theoretical simplicity of EM

will not convert to simplicity in practice. Another problem with EM is that it leads

to biased parameter estimates and underestimates the standard errors. For this reason,

statisticians do not recommend EM as a final solution. Multiple imputation avoids two

of the difficulties associated with maximum likelihood methods using the EM algorithm.

With multiple imputation, a researcher may use standard methods of analysis once

imputations are computed, and can easily obtain standard errors of estimates [Pigott,

2001].

2.2.5 Multiple imputation and Rubin’s Rules

Multiple imputation (MI) is an extension of single imputation for the analysis of incom-

plete dataset, which has become increasingly popular because of its generality and recent

software developments that makes it easier to implement. It was first proposed by Rubin

in the early 1970’s [Little and Rubin, 2002]. MI is the procedure of substituting each

missing value by D ≥ 2 imputed values in order to create multiple completed dataset.

MI involves carrying out an analysis on each completed dataset, then combining the

results to reflect the variability within-imputation and between-imputation.

MI produces asymptotically unbiased estimates when it is implemented correctly and it

is also asymptotically efficient. According to White et al. [2011], there are three stages

in the MI process which are described below.

• Stage 1: Generating multiply-imputed dataset

The unknown missing data are replaced by D independent simulated sets of values

which are drawn from the distribution of the missing data conditional on the

observed data.
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• Stage 2: Analyzing multiply-imputed dataset

Once the multiple imputations have been generated, each imputed dataset is an-

alyzed separately as though it was a complete dataset. Parameters are estimated

from each imputed dataset. The results of these D analyses differ because the

missing values have been replaced by different imputations.

• Stage 3: Combining estimates from multiply-imputed dataset

The D estimates are combined into an overall estimate and variance-covariance

matrix using Rubin’s rules (RR). The combined variance-covariance matrix incor-

porates both within-imputation and between-imputation variability.

Rubin’s rules are as follows. The θ̂d is an estimate of a univariate or multivariate quantity

of interest obtained from the dth imputed dataset and W d is the estimated variance of

θ̂d. The combined estimate θ̄ is the average of the individual estimates [Rubin, 1987]:

θ̄ =
1

D

D∑
d=1

θ̂d (2.6)

The total variance of θ̄ is formed from the within-imputation variance W =
1

D

D∑
d=1

W d

and the between-imputation variance B =
1

D − 1

D∑
d=1

(θ̂d − θ̄)(θ̂d − θ̄)T :

cov(θ̄) = W +

(
D + 1

D

)
B (2.7)

An approximate confidence interval for θi is given by

θ̄i ± tv
√
var(θ̄i) (2.8)

or

θ̄i ± tv

√
W ii +

(
D + 1

D

)
Bii (2.9)

where the degrees of freedom v are estimated by

v = (D − 1)

{
1 +

DW ii

(1 +D)Bii

}2

(2.10)

and tv is the appropriate fraction of the central t-distribution on v degree of freedom.

Note that both v and cov(θ̄i) are estimated from the data and both depend on the

quantityB and v also depends onW . B itself is an estimated variance withD−1 degrees

of freedom. Schafer and Olsen [1998] stated that, with an infinite number of imputations
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(D =∞), the total variance reduces to the sum of the two variance components and the

confidence interval is based on a normal distribution (v =∞). Rubin’s Rules should be

applied to estimators which are normally distributed. For logistic regression, Rubin’s

Rules can be applied on the log-odds ratio scale but not on the odds-ratio scale. Rubin’s

Rules can be applied analogously for other generalized linear models.

According to Patrician [2002], there are advantages of using MI over single imputation.

MI incorporates random error because it requires random variation in the imputation

process. Since repeated estimations are used, MI gives more reasonable estimates of

standard error than single imputation methods. Moreover, MI increases the efficiency

of the estimates because it reduces the standard errors.

There are some disadvantages of MI compared to single imputation. MI needs more

effort to create the multiple imputations, needs more time to run the analysis and needs

more computer storage space for the imputation-created dataset [Patrician, 2002, Rubin,

1987]. Computer storage capacity is not an issue nowadays since more advanced hard

disk storage has been produced, and the other disadvantages are also being reduced as

time and technology advances.

2.2.6 Chained equations

Two general approaches for imputing multivariate data are joint modeling (JM) and

fully conditional specification (FCS). Various JM techniques were developed by Schafer

[1997] for imputation under the multivariate normal, the log-linear and the general

location model. JM specifies a multivariate distribution for the missing data and draws

imputations from their conditional distributions by using Markov Chain Monte Carlo

(MCMC) techniques [van Buuren and Groothuis-Oudshoorn, 2011].

FCS specifies the multivariate imputation model on a variable-by-variable basis by a

set of conditional densities. FCS draws imputations by iterating over the conditional

densities and it is started from an initial imputation. FCS requires a lower number of

iterations than JM. When no suitable multivariate distribution can be proposed, FCS

is an alternative method to JM. Although the basic idea of FCS is quite old, it has

been proposed using a variety of names which includes stochastic relaxation, variable-

by-variable imputation, regression switching, sequential regressions, ordered pseudo-

Gibbs sampler, partially incompatible MCMC, iterated univariate imputation, chained

equations and fully conditional specification. FCS is also known as chained equations

and sequential regressions. Imputations are created by drawing from iterated conditional

models.
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Let hypothetically complete data X be a partially observed random sample from the

p-variate multivariate distribution P (X|θ). Assume that the multivariate distribution of

X is completely specified by θ, a vector of unknown parameters. The chained equation

method proposes to obtain a posterior distribution of θ by iterative sampling from

conditional distributions of the form [van Buuren and Groothuis-Oudshoorn, 2011]

P (X1 | X−1, θ1)

P (X2 | X−2, θ2)
...

P (Xk | X−k, θk)

where X−i denotes the data vector X with Xi deleted. The parameters θ1, θ2, . . . , θk

are specific to the respective conditional densities and are not necessarily the product

of a factorization of the ”true” joint distribution P (X | θ). Starting from a simple draw

from observed marginal distributions, the τth iteration of the chained equations is a

Gibbs sampler that successively draws

θ
∗(τ)
1 ∼ P

(
θ1 | Xobs

1 , X
(τ−1)
2 , . . . , X

(τ−1)
k

)
X
∗(τ)
1 ∼ P

(
X1 | Xobs

1 , X
(τ−1)
2 , . . . , X

(τ−1)
k , θ

∗(τ)
1

)
...

θ
∗(τ)
k ∼ P

(
θk | Xobs

k , X
(τ)
1 , . . . , X

(τ)
k−1

)
X
∗(τ)
k ∼ P

(
Xk | Xobs

k , X
(τ)
1 , . . . , X

(τ)
k , θ

∗(τ)
k

)
where X

(τ)
k =

(
Xobs
k , X

∗(τ)
k

)
is the kth imputed variable at iteration τ . Observe that

previous imputations X
∗(τ−1)
k only enter X

∗(τ)
k through its relation with other variables

and not directly. Therefore, it will converge quite fast compared to other MCMC meth-

ods. The name chained equation refers to implementation of the Gibbs sampler as a

concatenation of univariate procedures to fill out the missing data. Royston and White

[2011] suggested that more than 10 cycles are needed for the convergence of the sampling

distribution of imputed values, whereas the entire procedure is repeated independently

D times, yielding D imputed dataset.

2.3 Software Packages for Imputation

Multiple imputation is now widely used to handle missing values by researchers. There

are several software packages including R, SAS and SPlus which can be used to simplify

the process for filling in missing values with multiple imputations. There are several
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multiple imputation packages in R. Two of the packages are described in the next two

sections:

• Multiple Imputation(mi) package by Yu et al. [2011]

• Multivariate Imputation by Chained Equations (MICE) package by van Buuren

and Groothuis-Oudshoorn [2011]

2.3.1 Multiple imputation (MI)

The mi package in R was created by Yu et al. [2011]. The mi package uses a chained

equation approach (see Section 2.2.6). The package has several features that allow the

researcher to use the imputation process and evaluate the reasonableness of the resulting

models and imputations. The features are:

1. flexible choice of predictors, model and transformations for chained imputation

models

2. binned residual plots for checking the fit of the conditional distributions used for

imputation

3. plots for comparing the distributions of observed and imputed data in one and two

dimensions

Although the implementation of the mi package is straightforward and uses the random

imputation method, it only implements the bootstrap method and the choice of impu-

tation model is fixed based on the variable types. According to Yu et al. [2011], the mi

package uses the predictive mean matching (pmm) method to impute positive-continuous

and non negative variable types and uses linear regression to impute continuous variables.

Besides that, the mi package uses Bayesian regression models and weakly informative

prior distributions to construct estimates of imputation models. The MICE package

(described in the next section) gives more options on choosing the imputation methods

for numeric variables. Since this research is generally looking at numeric variables, the

MICE package was chosen to use as an imputation package and it has been explored in

order to choose a best imputation method for linear and generalized linear models.

2.3.2 Multivariate imputation by chained equations (MICE)

Multivariate Imputation by Chained Equations (MICE) is a package in R for imputing

incomplete multivariate data by Fully Conditional Specification (FCS), developed by
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van Buuren and Groothuis-Oudshoorn [2011]. Their aim is to yield imputations that are

statistically correct as in Little and Rubin [2002]. It is important to observe convergence,

but in the MICE package the desired number of iterations is often a small number,

between 10 to 20.

The package MICE in R contains functions for three phases of multiple imputation

which includes generating multiple imputations, analyzing imputed data and pooling the

analysis results. The most challenging step in multiple imputation is the specification

of the imputation model. According to van Buuren and Groothuis-Oudshoorn [2011],

there are seven main steps in setting up multiple imputation by MICE package. These

are described below.

1. The researcher should decide whether the MAR assumption is plausible. Although

the MAR assumption is a suitable starting point in many practical cases, there

are also cases where the assumption is suspect. Multiple imputation for NMAR

data requires additional modeling assumptions which influence the generated im-

putations.

2. The form of the imputation model needs to be specified. The form encompasses

both the structural part and the assumed error distribution. It should be specified

for each incomplete column in the data.

3. The set of variables to include as predictors in the imputation model is the next

concern. The general advice is to include as many as possible relevant variables,

including their interactions.

4. The imputation of variables that are functions of the other (incomplete) variables

is the next step. Since many dataset contain transformed variables, sum scores,

interaction variables and ratios, it is useful to incorporate the transformed variables

into the multiple imputation algorithm. MICE has a special mechanism called

passive imputation. It maintains the consistency among different transformations

of the same data. It can be used to ensure that the transform always depends on

the most recently generated imputation in the original untransformed data.

5. The order in which variables should be imputed is important. The default MICE

algorithm imputes incomplete columns in the data in order from left to right.

6. The number of iterations and the starting imputation has to be setup. The con-

vergence of the Gibbs sampler can be monitored in many ways. One usual method

is to plot one or more parameters against the number of iterations. The functions

in MICE produce D parallel imputation streams. When convergence is achieved,
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the different streams should be freely intermingled with each other and should not

show any definite trends or patterns.

7. The number of multiply-imputed dataset, D , needs to be determined. If D is set

too low, it will lead to under coverage and low P -values, especially if the percentage

of missing data is high.

These choices are always needed but the default choices are not necessarily the best

choices for all types of data. The advantage of using MICE is its ability to handle dif-

ferent variable types (continuous, binary, unordered categorical and ordered categorical)

because each variable is imputed using its own imputation model. The MICE package

has options to modify the default settings according to researcher needs and convenience,

and supplies a number of built-in elementary imputation methods, listed in Table 2.1.

The package distinguishes between three types of variables which are numeric, binary

(factors with 2 levels) and categorical (factors with more than two levels). Table 2.1

shows the variable types and corresponding default imputation methods.

Table 2.1: Buit-in Imputation methods in MICE

Method Description Scale type Default

pmm Predictive mean matching numeric Y

norm Bayesian linear regression numeric

norm.nob Linear regression (non Bayesian) numeric

norm.boot Linear regression using bootstrap numeric

norm.predict Linear regression using predicted values numeric

mean Unconditional mean imputation numeric

2l.norm Two-level normal imputation numeric

2l.pan Two-level normal imputation using pan numeric

2lonly.norm Imputation at level-2 by Bayesian linear regression numeric

2lonly.pmm Imputation at level-2 by Predictive mean matching any

quadratic Imputation of quadratic terms numeric

logreg Logistic regression factor, 2 levels Y

logreg.boot Logistic regression using bootstrap factor, 2 levels

polyreg Polytomous (unordered) regression factor, >2 levels Y

polr Proportional odds model ordered, > 2 levels

lda Linear discriminant analysis factor, > 2 levels

sample Random sample from the observed data any

The predictive mean matching (pmm) method is a general semi-parametric imputation

method and it is a hot deck imputation method. When imputing a variable x1 using

variables x2, ..., xk as predictors, it imputes a value randomly from a set of observed
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values whose predicted values are closest to the predicted value for the missing value

from the simulated regression model. The observed value from this ”match” is used

as the imputed value. According to Yu et al. [2011], this method can fail when the

percentage of missing is high or when the missing values fall outside the range of the

observed data. Besides that, the imputed values are restricted to the observed values

and it can preserve non-linear relations even if the structural part of the imputation

model is wrong. The disadvantage of this method is that it may fail to produce enough

between-imputation variability if the number of predictors are small.

The methods ”norm” and ”norm.nob” are stochastic regression imputation methods

that impute according to a linear imputation model. The ”norm” method imputes

univariate missing data using Bayesian linear regression analysis with normal errors

whereas ”norm.nob” imputes univariate missing data using linear regression analysis.

Both methods are fast and efficient if the residuals are close to normal. The ”norm.nob”

method creates an imputation using the spread around the fitted linear regression line

[van Buuren and Groothuis-Oudshoorn, 2011] but does not incorporate the variability of

the regression coefficients. For small samples, there are variability in the estimation of

the imputed data, therefore underestimated. In an easy way, we might say that ”norm”

is a Bayesian method and ”norm.nob” is a non Bayesian method.

The ”norm.predict” method is a regression imputation method that imputes missing

data using the predicted value from a linear regression. It calculates regression coef-

ficients from the observed data and returns the predicted values as imputations. This

is different from the ”norm.nob” method. The ”norm.nob” imputes a value using the

spread around the fitted linear regression line not just the point predictor.

2.4 Model Selection Criteria

Model selection is the process of selecting a best model from a set of candidate models.

Model selection provides formal support to guide the user in their search for the best

model and to determine which factors/variables to be included when making predic-

tions. Model selection is an important part of the model-building process and cannot be

separated from the rest of the analysis in choosing a best model. There are a few gen-

eral issues involved in model selection and model averaging which are described below

[Claeskens and Hjort, 2008].

(i) Models are approximations: In dealing with the issues of model-building and model

selection, it needs to be understood that in most situations we will not be able to

guess the ’correct’ or ’true’ model. This true model, which generated the collected
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data, might be very complex and is always unknown. G.E.P Box expressed a view

that ’All models are wrong, but some are useful’ and most model selection methods

were derived from this perspective.

(ii) The bias-variance trade-off : In model fitting and model selection, the bias and

variance trade-off takes the form of balancing simplicity (fewer parameters to es-

timate, leads to lower variability but higher modelling bias) against complexity

(including more parameters which means a higher degree of variability but smaller

modelling bias). Statistical model selection must strike a proper balance between

over-fitting and under-fitting.

(iii) Parsimony : Only important parameters should be included in a selected model.

(iv) The context : All modelling is rooted in a suitable scientific context and is under-

taken for a certain purpose which differs from researcher to researcher. Different

researchers might have different preferences in aims and purposes when building a

model and analysing data. Therefore, there are different model selection methods

to choose a best model.

(v) The focus: It is important to focus model-building and model selection efforts on

criteria that favour a good performance precisely and efficiently. For the same data

and same list of possible models, a different aim will lead to a different selected

model.

(vi) Conflicting recommendations: Different model selection strategies might end up

offering different selected models. Therefore, it is important to learn how the

selection schemes are constructed and what are their aims and properties.

(vii) Model averaging : In general, model selection strategies work by assigning a certain

score to each candidate model. Often there is a clear best model but sometimes

there will be several selected models that do almost as well as the chosen best

model. In these cases, it is important to combine inference outputs across these

best models.

In general, most model selection methods are defined in terms of a suitable information

criterion, a mechanism that uses data to give each possible model a certain score. These

criteria are based on some optimal principle such as minimizing the error sum of squares

(SSE) or maximizing likelihood values. A common type of criterion takes the form of

the error sum of squares (SSE) multiplied by a penalty factor that depends on the model

complexity as measured by the number of parameters to be estimated. A more complex

model will reduce the SSE but increase the penalty. A model with a lower value of the

criterion is judged to be preferable. It is possible that combining two or more criteria
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might produce better results than using any single criterion. Rust et al. [1995] suggested

that a combination of model selection criteria can become ’more sure’ of which model is

correct.

2.4.1 Stepwise selection of variables

Variable selection is designed to select the best variables. The principle of Occam’s

Razor states that among several reasonable explanations for a phenomenon, the sim-

plest is best. This implies that the smallest model that fits the data adequately is best.

Unnecessary variables in the prediction model will add noise to the estimation of other

quantities that researchers are interested in and too many variables in the model can

cause multicollinearity [Davison, 2003]. In order to overcome these problems, researchers

usually use variable selection to choose variables from among a set of candidate vari-

ables. Typically, variable selection will be implemented through iterative procedures like

forward, backward and stepwise selection.

Forward selection is a procedure in which variables are sequentially entered into the

model. The procedure takes the null model as baseline with an intercept only. Each

candidate variable is added separately to this null model. The model carried forward to

the next stage where the null model augmented by the variable that most reduces the

SSE. Each of the remaining variables is added separately to the new base model and

the process is continued [Davison, 2003]. The process is stopped at any stage when the

F -statistic for the largest reduction in sum of squares is not significant.

Backward selection is a procedure which starts with all the variables entered into

the equation and consecutively remove the least significant variable at each stage. The

process will stop when no term can be deleted without increasing the SSE significantly

[Davison, 2003]. It is just the reverse of forward selection. The backward selection

method is preferable because its initial estimate of the error variance σ2 will be better

than the forward selection method. Both methods might choose different best models.

Stepwise selection is a combination of backward and forward selection. At each step,

a variable will be added, removed from the model, or swapped with a variable that was

not in the model or the process will be stopped [Davison, 2003]. Stepwise selection is

computationally easier, easy to explain and widely used by many researchers. There are

some drawbacks of using stepwise selection. Since variables are removed or added one

at a time, it is possible to miss the optimal model. Stepwise selection tends to choose

models that are smaller than desirable for prediction. The stepwise selection method

will yield a single final model although in practice there are often several equally good

models.
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Moreover, Harrell [2001] identified few crucial problems of using stepwise variable selec-

tion. This method yields standard errors of regression coefficient estimates that are bi-

ased low and confidence intervals for effects and predicted values that are falsely narrow.

The choice of the variables to be included depends on estimated regression coefficients

rather than their true values, so Xj is more likely to be included if its regression coef-

ficients is overestimated than if its regression coefficient is underestimated. Moreover,

stepwise variable selection is made arbitrary by collinearity. The problems of p−value

based variable selection are worsen when the analyst interprets the final model as if it

were pre-specified. All subset regression was introduced to overcome some of the issues

related to stepwise variable selection.

2.4.2 All subset regression

All subset model selection is designed to select the best subset of variables and it com-

pares all possible models using a specified pool of explanatory variables. All subset

regression is an alternative to the stepwise selection method. When using this approach,

a researcher first decides on the range of subset sizes that could be considered to be use-

ful. Consider p as number of parameters in a regression model. With p− 1 explanatory

variables, there are 2p−1 possible regression models to be fitted. For example, consider

two explanatory variables, X1 and X2 in a linear regression analysis. There are four

possible models including the null model.

There are several different criteria that can be used for ordering variable subsets or

possible models in terms of goodness of fit. The commonly used criteria are multiple

R2, adjusted R2, and Mallow’s Cp. Choosing a model to maximize the multiple R2 or

adjusted R2 was proposed in the earliest research on model-building. When all subset

regression is used in parallel with stepwise selection, the multiple R2 statistic allows

direct comparison of the best possible model identified using each approach [Chatterjee

and Simonoff, 2013].

Mallow’s Cp criterion was designed to estimate the expected squared prediction error

of a model, and in that sense a model that minimizes the Cp criterion will be chosen

as the best model. A disadvantage of using the Cp criterion is that its value depends

on the pool of all candidate variables, so adding variables that provide no predictive

power can change the choice of best model. According to Claeskens and Hjort [2008],

the adjusted R2 and Cp criteria are only suitable in model selection for linear models

with normal data. Therefore, many researchers developed other model selection criteria

such as Akaike’s information criterion (AIC) and Bayesian information criterion (BIC).

The details of these criteria will be discussed in the next sections.
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2.4.3 Kullback-Leibler distance

Kullback-Leibler distance is a way of measuring the statistical distance from one proba-

bility density to another [Claeskens and Hjort, 2008]. If data Y are realisations of inde-

pendent and identically distributed random variables, the likelihood and log-likelihood

functions can be written in terms of the density f(y,θ) for an individual observation as

Ln(θ) =
n∏
i=1

f(yi,θ) (2.11)

and

`n(θ) = logLn(θ) =
n∑
i=1

logf(yi,θ). (2.12)

Here θ is a vector of unknown parameters. It is important to make a distinction between

the model f(y,θ) that the researcher constructs for the data and the true density g(y) of

the data, which is nearly always unknown. The density g(·) is called the data-generating

density. Although there are several ways of measuring closeness of a parametric approx-

imation f(·,θ) to the true density g, the distance intimately linked to the maximum

likelihood method is Kullback-Leibler (KL) distance. It can be written as

KL(g, f(·,θ)) =

∫
g(y)log

g(y)

f(y,θ)
dy. (2.13)

Equation(2.13) can be written equivalently as

KL(g, f(·,θ)) =

∫
g(y)log (g(y))dy −

∫
g(y)log (f(y,θ))dy (2.14)

where each of the two terms on the right of the Equation(2.14) is a statistical expectation

with respect to g(·). Thus,

KL(g, f(·,θ)) = Eg[log (g(y))]− Eg[log (f(y,θ))] (2.15)

The first expectation Eg[log (g(y))] is a constant across all possible fitted models, thus,

KL(g, f(·,θ)) = constant− Eg[log (f(y,θ))].

The relative KL distance is

KL(g, f(·,θ))− constant = −Eg[log (f(y,θ))].

Akaike proposed Kullback-Leibler distance as a fundamental basis for model selection

procedures. However, KL distance cannot be calculated without full knowledge of both
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g (full reality) and the parameters θ in each of the candidate models f(y,θ). Akaike

found that the double expectation [Claeskens and Hjort, 2008]

E Eg[log (f(y,θ))]

can be estimated and there is a relationship between the relative KL distance and the

maximized log-likelihood.

2.4.4 Akaike’s information criterion (AIC) and AICc

Akaike’s information criterion (AIC) is among the most popular and versatile strategies

for model selection. An asymptotically unbiased estimator of the relative, expected KL

distance, log
(
L
(
θ̂ | y

))
− p was multiplied by 2 to become [Claeskens and Hjort, 2008]

AIC = 2log
(
L
(
θ̂ | y

))
− 2p.

where the expression log
(
L
(
θ̂ | y

))
is the numerical value of the log-likelihood at its

maximum point [Burham and Anderson, 2002]. AIC was designed to be an approxi-

mately unbiased estimator of the expected Kullback-Leibler distance of a fitted model.

In general, AIC for each possible model M is

AIC(M ) = 2logL(M )− 2p (2.16)

where L(M ) is the maximized value of the likelihood function of model M and p is

the number of parameters in model M . The model with the highest AIC score will be

selected. The direct comparison of obtained maximum log-likelihood values for different

models is not good for model selection. Including more parameters in a model always

increases the maximum likelihood value [Claeskens and Hjort, 2008]. AIC acts as a

penalised log-likelihood criterion, affording a balance between good fit (high value of

log-likelihood) and complexity (complex models are penalised more than simple ones).

The penalty term punishes the models for being too complex in the sense of containing

many parameters. Akaike’s method aims at finding models that have few parameters

but fit the data well.

An important special case is the normal linear model, defined by

yi = β1xi,1 + β2xi,2 + · · ·+ βpxi,p + εi = xtiβ + εi (2.17)
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for i = 1, 2, · · · , n with ε1, ε2, · · · , εn independently drawn from N(0, σ2) and β =

(β1, β2, · · · , βp)t a vector of regression coefficients. Here p is the number of parame-

ters in the β vector. Often, xi,1 = 1 for all i, making β1 an intercept parameter. The

log-likelihood function is

logL(M ) =`n(β, σ)

=
n∑
i=1

{
−log σ − 1

2

(yi − xtiβ)2

σ2
− 1

2
log(2π)

}

=− n log σ − n

2
log(2π)− 1

2σ2

n∑
i=1

(yi − xtiβ)2 (2.18)

In general, an estimator of σ2 might be found as [Claeskens and Hjort, 2008]

σ̂2 =
‖res‖2

n− a
=
RSS

n− a
(2.19)

with the cases a = 0 and a = p corresponding to maximum likelihood and unbiased

estimation respectively. RSS is the residual sum of squares. When a = 0, plugging σ̂

into Equation (2.18),

`n(β̂, σ̂) = −n log σ̂ − n

2
log(2π)− 1

2σ̂2
RSS

= −n log σ̂ − n

2
log(2π)− n

2
(2.20)

Therefore, for model (2.17)

AIC = 2
(
−n log σ̂ − n

2
log(2π)− n

2

)
− 2(p+ 1)

= −2n log σ̂ − n log(2π)− n− 2(p+ 1) (2.21)

since p+ 1 is the number of parameters in (β, σ).

AIC is intended to be an approximately unbiased estimator of the expected Kullback-

Leibler distance of a candidate model. However, AIC suffers from a potentially high

degree of negative bias when used with samples that are small in size relative to the

number of parameters in the fitted model. According to Hurvich and Tsai [1989], as the

number of parameters (p) increases in comparison to sample size (n), AIC becomes a

strongly negatively-biased estimator. This negative bias in AIC limits its effectiveness

as a model selection criterion and can lead to over-fitting (i.e. fitting a larger model

than required) especially when
p

n
is large for some candidate models. On the other

hand, when the sample size is large and the dimension of the candidate model is small,

AIC works better as an approximately unbiased estimator. Hurvich and Tsai [1989]

proposed the corrected Akaike information criterion, AICc, to get around the problem
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with small samples. AICc is an adjusted version of AIC that was originally proposed for

linear regression with normal errors. AICc in general is [Claeskens and Hjort, 2008]

AICc = 2logL(M )− 2p
n

n− p− 1

It can be written in maximised log-likelihood form for model (2.17) as

AICc = 2`n(β̂, σ̂)− 2(p+ 1)
n

n− p− 2
(2.22)

where β̂ and σ̂ are maximum likelihood estimates of β and σ. Plugging Equation (2.18)

into Equation (2.22), then

AICc = 2
(
−n log σ̂ − n

2
log(2π)− n

2

)
− 2(p+ 1)

n

n− p− 2

= −2n log σ̂ − n log(2π)− n− 2(p+ 1)
n

n− p− 2
(2.23)

It has been suggested that researchers should use AICc when the ratio
n

p
(< 40) is small.

If this ratio is sufficiently large, then AIC and AICc are similar and tend to choose the

same model [Burham and Anderson, 2002]. Alternatively, σ2 can be estimated from

Equation (2.19) with a = p+ 2,

(σ̂∗)2 =
‖res‖2

n− p− 2
(2.24)

Plugging σ̂∗ into Equation (2.18),

`n(β̂, σ̂∗) = −n log σ̂∗ − n

2
log(2π)− 1

2(σ̂∗)2
RSS

= −n log σ̂∗ − n

2
log(2π)− n− p− 2

2
(2.25)

Given AIC∗c in general is [Claeskens and Hjort, 2008]

AIC∗c = 2`n(β̂, σ̂∗)− 2(p+ 1) (2.26)

Plugging Equation (2.25) into Equation (2.26),

AIC∗c = 2

(
−n log σ̂∗ − n

2
log(2π)− n− p− 2

2

)
− 2(p+ 1)

= −2n log σ̂∗ − n log(2π)− (n− p− 2)− 2(p+ 1)

= −2n log σ̂∗ − n log(2π)− n− p (2.27)

For a constant p and sufficiently large sample size n, σ̂2 and (σ̂∗)2 will converge to the

same value (the maximum likelihood estimate). Therefore, for a sufficiently large n, all



Chapter 2. Methodology 26

three criteria (AIC, AICc and AIC∗c) will converge and tend to choose the same model.

The advantage of AICc over AIC is the application in small to medium-sized samples

[Burham and Anderson, 2002, Claeskens and Hjort, 2008]. Therefore, a researcher might

choose always to use the AICc as the model selection criterion.

2.4.5 Bayesian information criterion (BIC)

The Bayesian information criterion (BIC) takes the form of a penalised log-likelihood

function where the penalty is equal to the logarithm of the sample size times the number

of estimated parameters in the model. The general form of BIC is [Claeskens and Hjort,

2008]

BIC(M ) = 2logL(M )− (log n)p (2.28)

where L(M ) is the maximized value of the likelihood function of model M , p is the

number of parameters in model M and n is the sample size of the data. The model with

the largest BIC value will be chosen as the best model. The ’B’ in BIC is for ’Bayesian’

where the L(M ) is an approximation to marginal likelihood or marginal density for

model M under certain prior. The specification of priors for all models and for all

parameters in the model models are required for a practical approximation in Bayesian

model comparison [Burham and Anderson, 2002]. In Bayesian model comparison, a

Bayesian procedure will select a model which is a posteriori most likely when there are

different possible models. This model is identified by calculating the posterior probability

of each model and selecting the model with the biggest posterior probability.

Note that the BIC formula as in Equation (2.28) only uses the maximised log-likelihood

function. It was derived in this way so that no prior information is needed to obtain the

BIC values [Claeskens and Hjort, 2008]. Both criteria, AIC in Equation (2.16) and BIC

in Equation (2.28) are constructed as twice the maximized log-likelihood value minus a

penalty for the complexity of the model. The BIC’s penalty is larger than AIC for all

n at least 8. This shows that the BIC more strongly discourages choosing a model with

many parameters.

Both AIC and BIC can be written in a general for model M [Burham and Anderson,

2002]

IM = 2logL(M )− cn,p (2.29)

where L(M ) is the maximized value of the likelihood function of model M

cn,p is the penalty term for model M

p is the number of parameters in model M

n is the sample size of the data
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For example, cn,p for AIC will be 2p. Since the BIC penalty is stricter than the AIC,

bigger models (with larger numbers of parameters) will receive a heavier ’punishment’.

When the sample n gets larger, the heavier the penalty used in the BIC. Especially for

large sample size, a researcher can expect that there will be a difference in the ranks of

models when comparing model selection by AIC and BIC.

2.4.6 Model selection criteria for missing data

The challenge in missing data problems is to obtain a suitable and accurate approxima-

tion to the observed data likelihood, which does not involve intractable multiple inte-

gration, and directly maximize it and compute AIC or BIC. A version of AIC that can

deal with models with incomplete covariates was constructed based on EM algorithm.

Consider a design matrix of covariate values as X = (Xobs,Xmis), clearly separating

the set of fully observed covariates Xobs and those that contain at least one missing

observation. Assume that the response vector Y is completely observed. The model

selection criterion for missing data problems is based on the observed data likelihood

L(Xobs|θ). The model selection criterion based on the general EM algorithm [Ibrahim

et al., 2008] is

ICH,Q =2`(Y ,Xobs|θ̂)− ĉn(θ̂) (2.30)

=2Q(θ̂|θ̂)− 2H(θ̂|θ̂)− ĉn(θ̂)

(see Equation (2.4)) and the model selection criterion based on a Hermite approximation

is

ICH̃(k),Q = 2Q(θ̂|θ̂)− 2H̃(k|θ̂)− ĉn(θ̂) (2.31)

where ĉn(θ̂) is a penalty term that is a function of the data and the fitted model, and

k is a polynomial order of approximation using a truncated Hermite approximation.

The `(Y ,Xobs|θ̂) will be computed from the Q−function Q(θ̂|θ̂) and the H−function

H(θ̂|θ̂) at EM convergence from EM output as discussed in Section 2.2.4. The H̃(k|θ̂)

can be obtained from the Hermite approximation as discussed by Ibrahim et al. [2008].

Since H̃(k|θ̂) ≤ H(θ̂|θ̂) according to Jensen’s inequality, ICH̃(k),Q ≤ ICH,Q and H̃(k|θ̂)

converges to H(θ̂|θ̂) as k → ∞. However, it is computationally inefficient to choose a

large k. When ĉn(θ̂) = 2p, the model selection criteria AIC is obtained. The model

selection criterion BIC is obtained when ĉn(β̂) = plog(n).

Another version of this model selection criterion that does not involve the H-function,

whose components depend only on quantities obtained directly from EM output was

proposed by Claeskens and Consentino [2008]. This criterion was proposed to avoid

the need for an analytic approximation to the integrand of the H-function since its
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computation will be cumbersome for large k. The proposed model selection criterion is

AIC1 = 2Q(θ̂|θ̂)− 2p (2.32)

where p is the number of parameters in the model. The Q−function, Q(θ̂|θ̂) can be

obtained at EM convergence from EM output where

Q(θ|θ(τ)) =

∫
`(X;θ)f(Xmis|Xobs,θ

(τ))dXmis (2.33)

The corrected AICc for small sample size as in Equation (2.22) can be derived in terms

of the Q−function for missing data problem [Claeskens and Consentino, 2008] as

AIC1,c = 2Q(θ̂|θ̂)− 2p
n

n− p− 1
(2.34)

where p is the number of parameters in the model. The advantage of using these pro-

posed AIC statistics without the H-function is that they are computationally easier

than ICH̃(k),Q since they do not require an approximation to the integrand of the

H-function. However, a model selection criterion based on the Q-function alone can

overstate the amount of information in the missing data compared with the observed

data log-likelihood function. Omitting the H-function can lead to a criterion with poor

model selection properties in some cases, especially when the missing data fraction is

high [Ibrahim et al., 2008].

Chaurasia and Harel [2012] identified that the issue in model selection with imputed

data is how to combine model selection results from imputed data and also the impact

of the assumed imputation model on model selection in the analysis phase. Therefore,

two AIC variants were considered for multiply-imputed dataset which are based on the

Arithmetic Mean (AM) and Geometric Mean (GM) of the D point estimates. The AIC

variant based on AM is [Chaurasia and Harel, 2012]

AICAM = n ln

(
D−1

D∑
d=1

s2
d

)
− 2p (2.35)

and the AIC variant based on GM is

AICGM =
n

m

D∑
d=1

ln
(
s2
d

)
− 2p (2.36)

where s2
d represents the maximum likelihood estimate of σ2 from the dth imputed

dataset, d = 1, 2, ..., D.
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2.4.7 Comparison of model selection criteria

There are three key properties of model selection criteria which are consistency, effi-

ciency and parsimony. If there exists one true model that generated the data and this

model is one of the candidate models, then researcher would expect that the model se-

lection method would identify this true model. This is related to consistency. A model

selection method is weakly consistent if, with probability tends to one as the sample

size tends to infinity, the selection method is able to select the true model from the

possible models. Strong consistency is obtained when the selection of the true model

almost surely happens. Another property of an information criterion is that it behaves

’almost as well’ as the true model in terms of mean squared error or expected squared

prediction error. Such a model selection method is called efficient. Consistency and

efficiency of a criterion cannot occur together since a consistent criterion can never be

efficient [Claeskens and Hjort, 2008].

One underlying purpose of model selection is to use the information criterion to select

the model that is closest to the true model. According to Claeskens and Hjort [2008], the

Kullback-Leibler distance can be used to measure the distance from the true density to

the model density. If two or more models minimize the KL distance, then the researcher

will select the model with fewest parameters. This is called the most parsimonious

model.

Suppose there is a single model among the candidate models which reaches the minimum

KL distance, then weak consistency is achieved by any information criterion whose

penalty, cn,p divided by n, tends to zero as the sample size increases. Both BIC, with

cn,p = p(log n), and AIC, with cn,p = 2p, are weakly consistent.

If there are two or more candidate models which reach the minimum KL distance, then

parsimony means that the simplest model (the model with fewest parameters) should be

chosen from among these models. This parsimony property is sometimes called consis-

tency in the literature. Consistency is really the condition that, with probability tends to

one, the model selection criterion will select the smallest model in these circumstances.

In other words, a model selection criterion is consistent if it is able to determine the

order of the true model with enough data. The BIC penalty satisfies this condition, but

the AIC penalty fails. Note that any criterion with a penalty that does not depend on

sample size cannot satisfy the consistency property. Claeskens and Hjort [2008] stated

that AIC will not necessarily choose the most parsimonious model and there is a prob-

ability of overfitting. This means AIC will often choose a model with more parameters

than actually needed.
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According to Hurvich and Tsai [1990], although BIC is consistent, it has poor small

sample performance, whereas AIC has quite satisfactory small sample performance.

The convergence rate is the rate at which the number of covariates in the selected

model converges to its limiting value. AIC converges quickly to an over fitted model but

BIC converges at a very slow speed to the correct value.

In conclusion, both AIC and BIC have good properties, in that AIC is efficient and

BIC is consistent. Note that BIC will choose a parsimonious model because of the

penalty term. The BIC’s penalty is more strict than AIC and it strongly discourages

choosing a model with many parameters. Whereas AIC chooses a model with more

parameters, so there is a chance of over fitting. As discussed in the previous section,

for a sufficiently large n, both AIC and AICc will converge and tend to choose the same

model. The advantage of AICc over AIC is the application in small to medium-sized

samples [Burham and Anderson, 2002]. Therefore, a researcher might choose always to

use AICc and BIC as the model selection criterion. Further details on the performance

of AICc and BIC will be discussed in Chapter 4 based on simulation study.

2.5 Model Averaging

Model selection is well known for introducing additional uncertainty into the model-

building process. The properties of standard parameter estimates obtained from the

selected model do not reflect the stochastic nature of the model selection process. Model

averaging is an alternative to model selection intended to overcome the under-estimation

of standard errors that is a consequence of model selection. A model average estimator

weighs across all possible models rather than picking a single best model. Model aver-

aging will shrink the estimates of the weaker variables and will yield better predictions.

The ’better’ models will receive higher weights. Suppose that there are M candidate

models. In one approach, the weight wM for model is [Buckland et al., 1997]

wM =

exp

(
IM
2

)
M∑

M =1

exp

(
IM
2

) (2.37)

where IM is model selection criterion for model M as in Equation (2.29) and
M∑

M =1

wM =

1. The estimate of a parameter βp is

β̂p =

M∑
M =1

wM β̂(p,M ) (2.38)
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where β̂(p,M ) is the estimate of βp under model M for M = 1, 2, ...,M . Different re-

searchers have suggested weights based on AIC [Buckland et al., 1997], Mallows criterion

[Hansen, 2007] and the Focussed Information criterion [Hjort and Claeskens, 2003]. In

this research, the modified weights will be used based on model selection criteria AIC,

AICc and BIC. A modification was carried out for calculating the weights in order to

avoid numerical error. The weights wM were calculated as

wM =

exp

(
IM − ¯̀

2

)
M∑

M =1

exp

(
IM − ¯̀

2

) (2.39)

where ¯̀=
1

M

M∑
M =1

`M with `M is log-likelihood function of model M for M = 1, 2, ...,M .

A general model averaging estimator for linear models after multiple imputation is

[Schomaker and Heumann, 2014]

β̂(MI)
p =

1

D

D∑
d=1

β̂(d)
p (2.40)

with

β̂(d)
p =

M∑
M =1

w
(d)
M β̂

(d)
(p,M ) (2.41)

and a set of candidate models, M = 1, 2, ...,M . When carrying out model averaging

along with multiple imputation, the parameters of a linear model are estimated using

Equation (2.40) and Equation (2.41). The estimated variance of these estimators is

V̂ ar
(
β̂(MI)
p

)
=

1

D

D∑
d=1

(
M∑

M =1

w
(d)
M

√
V̂ arβ̂

(d)
(p,M ) + (β̂

(d)
(p,M ) − β̂

(d)
p )2

)2

+
D + 1

D(D − 1)

D∑
d=1

(
β̂(d)
p − β̂(MI)

p

)2

(2.42)

When carrying out model averaging along with multiple imputation in the context of

a logistic regression model, predicted probabilities must be estimated in a similar way.

Letting Pt denote the probability of success at a particular set of covariate values, then

Pt is estimated as follows [Schomaker and Heumann, 2014]

P̂
(MI)
t =

1

D

D∑
d=1

P̂
(d)
t (2.43)
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with

P̂
(d)
t =

M∑
M =1

w
(d)
M P̂

(d)
(t,M ) (2.44)

and a set of candidate models, M = 1, 2, ...,M .

2.6 Bias and Mean Squared Error of Prediction

An essential part of model-building is evaluation of the model and its estimators. Re-

searchers usually will use bias and mean squared error (MSE) to measure the perfor-

mance of estimators. An unbiased estimator and minimum value of MSE is desired for

a good estimator. When making predictions, the performance of the prediction model

should be measured. The performance of a model can be measured using mean squared

error of prediction (MSE(P)). The details of each of these measures will be discussed in

the following sections.

2.6.1 Bias

Bias is the difference between the expected value of an estimator and the true value

of the parameter being estimated. An estimator is called an unbiased estimator if its

expectation is equal to the true value, and the observed value from a particular sample is

referred to as an unbiased estimate. In other words, an estimator with the bias identically

equal to 0 is called an unbiased estimator and it satisfies E(β̂) = β [Everitt, 2006]. Mean

squared error (MSE) is the average squared difference between the estimator β̂ and the

parameter β. MSE is a measure of performance for an estimator. MSE of an estimator

in general is [Burham and Anderson, 2002]

MSE(β̂) = E

[(
β̂ − β

)2
]

(2.45)

MSE is also called the risk function of an estimator, with
(
β̂ − β

)2
called the quadratic

loss function. MSE has two components: one measures the variability of the estimator

(precision) and the other measures the bias (accuracy). An estimator that has good

MSE properties has small combined variance and bias. The MSE can be rewritten as

MSE(β̂) = E

[(
β̂ − β

)2
]

= V ar(β̂) + [bias(β̂)]2 (2.46)
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and the bias of an estimator is

bias(β̂) =

√
E

[(
β̂ − β

)2
]
− V ar(β̂) (2.47)

An estimator is unbiased if the MSE is equal to its variance, MSE(β̂) = E

[(
β̂ − β

)2
]

=

V ar(β̂). According to Claeskens and Hjort [2008], MSE of the estimators of possible

models can be used as measures of quality of possible models. Lower MSE is desirable

in considering a better estimator. A good estimator requires good precision as well as

good accuracy.

2.6.2 Mean squared error of prediction

An essential aspect of model evaluation is accuracy of prediction, so a reasonable measure

for evaluating a model is its mean squared error of prediction (MSE(P)). In general, the

MSE(P) is [Mevik and Cederkvist, 2004, Wallach and Goffinet, 1989]

MSE (P ) =
1

t

t∑
i=1

(ŷt − yt)2 (2.48)

where ŷt is estimated Y of test values and yt is the actual test values used for prediction.

MSE(P) is usually used to assess the performance of regressions. In Logistic regression,

the MSE(P) will be calculated based on predicted and actual probability values rather

than using the Y values which only take the value 0 or 1. The calculation of MSE(P)

based on binary values mislead the assessment of model performance, effects of simula-

tion parameters and missing data. In order to avoid misleading information about model

performance and numerical error, the MSE(P) for Logistic regression will be calculated

as

MSE (P ) =
1

t

t∑
i=1

(
P̂t − Pt

)2
(2.49)

where P is the probability of success in generalized linear models.

2.7 Multicollinearity

Collinearity or multicollinearity is described as a condition where two or more predictor

variables in a statistical model are linearly related. Dormann et al. [2013] stated that

perfect multicollinearity occurs if covariates are exact linear function of each other and

is simply a case of model misspecification. Multicollinearity increases the estimates of
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parameter variance, produces high R2 in the face of low parameter significance, and re-

sults in parameter estimates with incorrect signs and implausible magnitudes [Mela and

Kopalle, 2002]. Multicollinearity will cause unstable estimates and inaccurate variances

which affects confidence intervals and hypothesis tests. Multicollinearity is a common

problem where there are large numbers of covariates, especially for multiple linear re-

gression.

There are some rules of thumb or indicators that will provide some clues about the

existence of multicollinearity in concrete applications. A variance inflation factor (VIF)

measures multicollinearity by regressing one independent variable on all of the remaining

independent variables. The VIF is

V IF =
1

1−R2
(2.50)

where R2 is the coefficient of multiple determination. According to Studenmund [2006],

VIF is an index of how much multicollinearity has increased the variance of an estimated

coefficient. A high VIF indicates that multicollinearity has increased the estimated vari-

ance of the estimated coefficient and decreased the t-statistics. Hocking [2003] suggested

that useful indicators of multicollinearity are as following:

• Simple correlation | ρ |> 0.95

• Variance inflation factors, V IF > 10

In ordinary least squares, the VIF are the diagonals of the inverse of the XTX matrix

scaled to have unit variance. For models fitted with maximum likelihood estimation, the

information matrix is scaled to correlation form and VIF is the diagonal of the inverse

of this scaled matrix. This VIF are similar to those from a weighted correlation matrix

of the original columns in the design matrix [Harrell, 2001].

2.7.1 Consequences of multicollinearity

Studenmund [2006] stated that the consequences of multicollinearity are as following:

• Estimates will remain unbiased. The usual estimates of the β’s still will be centred

around the true population value if all the assumptions are met for a correctly

specified model, even if a model has significant multicollinearity.

• The variances and standard errors of the estimates will increase. It is difficult to

identify the separate effects of the multicollinearity where it lead to make larger



Chapter 2. Methodology 35

error in estimating the β’s. So as a result, the variance and standard errors will

be larger, although the estimated coefficients are still unbiased.

• The computed t-statistics will fall. Since the multicollinearity increases the stan-

dard error, then t-statistics of estimated coefficients will fall.

• Estimates will become very sensitive to changes in specification. When significant

multicollinearity exists, the addition or deletion of an independent variable or a

few observations will often cause dramatic changes in the values of the β̂’s.

• The overall fit of the equation and the estimation of the coefficients of non-multicollinear

variables will be largely unaffected. The overall level of significance of a model is

affected far less by multicollinearity than the level of significance of the individual

regression coefficients.

In stepwise variable selection and in all subset regression, multicollinearity will cause

predictors to compete and make the selection of significant variables arbitrary [Harrell,

2001]. The presence of multicollinearity can lead to drop an important variable from

the model because of its low t-statistic.

Multicollinearity will cause problem when attempting to use a fitted regression model

for prediction. Simple models tend to predict better than more complex models. If a

model with multicollinearity is used for future prediction, the relationships among the

independent variables and their relationship with the response variable will remain the

same in the future [Chatterjee and Simonoff, 2013]. The variances for general linear

models as in model (2.17) with p = 2 are

var(β̂1) = σ2

[
n∑
i=1

x2
1i(1− ρ2

12)

]−1

(2.51)

and

var(β̂2) = σ2

[
n∑
i=1

x2
2i(1− ρ2

12)

]−1

(2.52)

where ρ12 is the correlation between x1 and x2. As correlation increases (ρ12 → ±1),

both variances tends to ∞. Chatterjee and Simonoff [2013] stated that for ρ12 = 0.5,

variance inflation is 1.33 and for ρ12 = 0.999, variance inflation is 500. This shows

how much the variances of estimated slope coefficients are inflated due to observed

multicollinearity relative to when predictors are uncorrelated. It is clear that when the

correlation is high, the variability of the estimated slopes can increase dramatically.

Besides that, multicollinearity will cause problems when data are missing. Hardt et al.

[2012] suggested that inclusion of highly correlated auxiliary variables can improve the
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imputation model (used to impute missing data) but inclusion of auxiliary variables with

low correlation is not useful. When highly correlated auxiliary variables are used in both

imputation and prediction models, it will cause multicollinearity in the prediction model.

Multicollinearity will affect prediction when making prediction using a prediction model

with multicollinearity.



Chapter 3

Review of Model Selection and

Model Averaging in the Presence

of Missing Values

The aim of this chapter is to review model selection and model averaging methods in

the presence of missing values. Modelling in the presence of missing data raises several

new statistical challenges, underscoring the need for methodological development. In

the literature, various methods were proposed as discussed in Chapter 2. Therefore, in

this chapter we will describe and critique some recent developments in handling model

selection and model averaging in the presence of missing values.

3.1 Model Selection in the Presence of Missing Values

Model selection and assessment with incomplete data are a very challenging process

in model-building. Verbeke et al. [2008] stated two particular challenges. First, many

models describe characteristics of the complete data, in spite of the fact that only an

incomplete subset is observed. Direct comparison between model and data is less than

straightforward. Second, many commonly used models are more sensitive to assumptions

in the incomplete data situation and some of their attractive properties vanish when

they are fitted to incomplete, unbalanced data. Verbeke et al. [2008] argued that model

assessment should always proceed in two steps. In the first step, the fit of a model to the

observed data should be assessed carefully, while the second step is assessment of the

sensitivity of inferences to unverifiable assumptions, that is to how a model describes

the unobserved data given the observed ones.

37
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Model selection in practice requires the choice of a selection procedure, such as forward

selection or backward elimination, coupled with a selection criterion, such as AIC or

BIC, to select a small subset of variables to include in the model. Such procedures

can be complicated even in the absence of missing data, because of the large number of

possible models. Although researchers have developed many imputation methods to deal

with missing data, there are no agreed guidelines for model selection in the presence of

missing data. In the literature, researchers are still exploring model selection in imputed

data sets.

3.1.1 Model selection strategies

One of the classical methods for model selection with multiply-imputed dataset is re-

peated use of Rubin’s rules (RR approach or WALD test method) which was proposed

by Rubin [1987] and Little and Rubin [2002] (as discussed in Section 2.2.5). This method

uses simple backward stepwise selection. The Rubin inferential framework RR provides

WALD tests for average parameter estimates obtained at MI Stage 3. Each model se-

lection step involves fitting the model under consideration to all imputed data sets (MI

Stage 2) and combining estimates of all parameters and standard errors across imputed

data sets (MI Stage 3), eliminating the least significant of the non-significant parame-

ters. RR is a most popular and well established method for combining parameters and

standard errors. However, it is essentially a backward stepwise selection approach, so is

open to all the general criticisms of that method discussed in Section 2.4.1 (see Harrell

[2001]).

A naive approach for variable selection in multiply-imputed data sets is a ’majority

vote’ approach. If there are D imputed data sets, the model selection procedure will be

applied to each completed dataset separately, resulting in D sets of selected predictors.

The final model will comprise those predictors that are selected in 50% or more of the D

data sets. The ”majority vote” method fails to take into account the uncertainty caused

by the missing data. The ”majority vote” method gives much insight into the variability

between the completed data sets. This variability can be found in the predictors selected

and also in the selection of powers for one particular continuous predictor, which results

in different functional forms. More than 10 imputations is required to obtain stable

results if predictor and transformation selection is based on the ”majority vote” method

[Vergouwe et al., 2010].

Brand [1999] proposed a solution in two steps. The first step involves performing stepwise

model selection separately on each imputed dataset, then construct a new super-model

that contains all variables present in at least half of these models. In the second step, a
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special backward elimination procedure is applied to all variables present in the super-

model. Each variable is removed in turn and the pooled likelihood ratio p − value is

calculated. If the largest p − value is larger than 0.05, the corresponding variable will

be removed and the procedure repeated on the smaller model. The procedure stops if

all p ≤ 0.05. Step 1 of Brand [1999] is identical to the ”majority vote” method.

In line with Brand [1999], Yang et al. [2005] identified variable selection problems with

missing data in a Bayesian framework. Two alternative strategies to address the problem

of choosing linear regression models when there are missing covariates were proposed.

The first approach was ”impute, then select” (ITS) which involves initially performing

multiple imputation and then applying Bayesian variable selection to multiply-imputed

data sets. The second strategy was to conduct Bayesian variable selection and missing

data imputation simultaneously with one Gibbs sampling process, which was called

”simultaneously impute and select” (SIAS). The Bayesian procedure known as stochastic

search variable selection was used in implementing and evaluating both approaches.

The results showed that SIAS slightly outperforms ITS and provides smaller standard

errors. SIAS has higher signal-to-noise ratio than ITS and a lower number of incorrect

variables selected. However, ITS is easier to implement in current commercial software

packages and has the flexibility of allowing the imputation step and selection step to be

done by different analysts at different times. This is in agreement with Schafer [1997]

who envisaged distinct imputation and analysis phases which can be carried out by two

different group of researchers (imputer and analyst) [Yang et al., 2005].

Besides that, the study also showed that higher correlation among covariates leads to

more precise imputation of missing data. The collinearity among covariates has the

effect of blurring distinctions between predictors in the variable selection process. Yang

et al. [2005] also mentioned that implementing SIAS will take some effort in developing

sensible specification of priors. In addition, it was stated that current software packages

have added capabilities in the past decade to implement missing data procedures but

very few modules are specifically oriented toward variable selection for incomplete data

sets.

Wood et al. [2008] stated that there were no proper guidelines for variable selection

in multiply-imputed data sets. The common approach is to perform variable selection

amongst the complete cases, which is a simple but inefficient and potentially biased

procedure. They also stated that variable selection performed by repeated use RR is

computationally demanding. For large data sets and large D, this process may not be

computationally feasible. Therefore, Wood et al. [2008] proposed a sensible alternative

method to the RR approach (WALD test method) which use stacked imputed data sets

with weighted regression, called the STACK method. Variable selection will be carried
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out using backward stepwise selection approach in STACK method. Stacking the D

imputed data sets for the n individuals yields one large dataset of length Dn. Fitting

models to this single stacked dataset yields valid parameter estimates but standard errors

that are too small. A fixed weight was applied to all individuals to correct the standard

errors. The three possible sets of weights were as follows:

1. W1: wi = 1
D .

These weights scale the log likelihood for the stacked data to the equivalent of a

dataset of length n but ignore the proportion of missing information.

2. W2: wi = (1−f)
D

where f = total number of missing values across all variables
(p−1)n , the average fraction of miss-

ing data across all variables

3. W3: wi = (1−fi)
D

where fi = number of missing values for variablesXi

n , the fraction of missing data for

variable Xi

where p− 1 is number of explanatory variables. Backward stepwise regression was used

on the stacked dataset to choose a final model. This model was then fitted to each of

the D imputed datasets in turn, and final parameter estimates were obtained by use of

RR.

Proposed method was compared with complete cases, single stochastic imputation and

separate imputation. The single stochastic imputation method used a single imputed

dataset for variable selection. The separate imputation method is performing the model

selection separately in each imputed dataset. There are three proposed strategies for

this separate imputation method: select predictors that appear in any model (S1), select

predictors that appear in at least half of the model (S2) and select predictors that appear

in all models (S3). This approach typically leads to models with different selected

predictors [Wood et al., 2008].

The results showed that complete cases fail to detect important predictors due to a lack

of power. When missing data are not MCAR, it may select unimportant variables due

to biased regression estimates. When multiple outcomes are of interest or numerous

possible interaction terms are to be assessed, it may be impractical to use RR which is a

multi-stage iterative process. The STACK method is a more sensible alternative to RR

approach if repeated analyses are required at the model-building stage. Their study also

showed that the stacking approach for MI variable selection improves the power to detect

true predictors but has a slightly inflated type 1 error compared to RR approach (WALD

test method). They recommended to use weight W3 for stacked imputed data sets with
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weighted regression. A possible advantage of STACK method over RR approach is that

the likelihood ratio test statistics, which are usually preferred to WALD statistics for

non-linear regression and small samples, are easy to obtain. Besides that, the STACK

method is computationally easier compared to the RR approach [Wood et al., 2008].

In addition, Wood et al. [2008] focused on traditional non-Bayesian variable selection

for multiply-imputed data because this has the greatest practical relevance to most data

analysts. This is an alternative approach to the approach described by Yang et al.

[2005] which draws on the Bayesian framework of MI and variable selection. Their

results showed that the two-step method of imputing and then selecting variables using

RR by Wood et al. [2008] has a natural Bayesian extension and they compare it with

conducting Bayesian model selection and MI simultaneously within one Gibbs sampling

scheme. Their simulation results shows that such methods outperform the complete-case

analysis but their integrated strategy only slightly outperforms the two-step Rubin’s

approach. Besides that, Wood et al. [2008] proposed to develop diagnostic procedures

such as detecting influential points, making prediction, performing diagnostic tests and

graphical checks for model misspecification.

Following Brand [1999] and Yang et al. [2005], Heymans et al. [2007] addressed the con-

cern that the pooling of results across imputations in order to obtain final parameter

estimates introduces complexities if automatic variable selection strategies are applied.

The variable selection algorithm may easily produce different models for different im-

puted data sets. Therefore, they developed and tested a methodology combining MI

with bootstrapping techniques for studying prognostic variable selection using back-

ward selection. This method randomly draws multiple samples with replacement from

the observed samples, thus mimicking the sampling variation in the population from

which the sample was drawn. The imputation is carried out on each bootstrap sample

separately. Stepwise regression analyses are then performed on each bootstrap sample.

Variables were selected for a final model based on the inclusion frequency of each prog-

nostic variable, the proportion of times that the variable appeared in the model fitted

to the various imputed data sets. MICE was used to perform multiple imputations.

The usual MI and bootstrap method were presented separately to identify the amount

of variation generated by each method and compare them with proposed methodology

that combines MI with bootstrapping techniques. For MI method, backward selection

method was applied to 100 imputed data sets. Whereas for bootstrap method, backward

selection was applied by drawing 200 bootstrap samples from the first imputed data sets

only.

Heymans et al. [2007] found that 10 imputed data sets is adequate for analysis since use

of 100 imputed data sets showed similar results as 10. They also found that the effect of



Chapter 3. Review on Model Selection and Model Averaging in the Presence of Missing
Values 42

imputation variation on the inclusion frequency was larger than the effect of sampling

variation. The proposed method performs better than MI only and bootstrap only. The

results showed that it is possible to combine multiple imputation and bootstrapping,

thereby accounting for uncertainty in imputations and uncertainty in selecting models.

However, it may complicate the model-building process. Moreover, it was claimed that

this was the first study that addresses both multiple imputation and sampling variation

on the inclusion frequency of prognostic variables.

However, Harrell [2001] recognized that there are a number of potential drawbacks of

using bootstrapping for variable selection. First, the choice of an α cutoff for determin-

ing whether a variable is retained in a given bootstrap sample is arbitrary. Second, in

order to include that variable in the final model, the choice of a cutoff for the inclusion

frequency is arbitrary. Third, selection from among a set of correlated predictor vari-

able is arbitrary, so all highly correlated predictors may have a low bootstrap selection

frequency. It can be the case that none of them will be selected for the final model even

though when considered individually each of them may be highly significant. Lastly, the

researcher must use double bootstrapping to resample the entire modelling process in

order to validate the final model and to derive reliable confidence intervals. This can

be computationally prohibitive. Therefore, it is not advisable to use bootstrapping for

variable selection.

Vergouw et al. [2010] stated that researchers frequently use a regression analysis with a

backward and forward selection strategy in the development of clinical prediction mod-

els. But this strategy can result in over-optimistically estimated regression coefficients,

omission of important predictors and random selection of less important predictors which

means derived models can be unstable. Incorporating a bootstrap resampling procedure

in model development provides information on model stability. It is expected to produce

a model which represents better the underlying population, since bootstrapping mimics

the sampling variation in the population from which the sample was drawn. There-

fore, their research examined influence of bootstrap and MI on model composition and

stability in the presence of missing data.

Vergouw et al. [2010] examined the influence of bootstrap and MI on model composition

and stability in the presence of missing data. There are four methods used to compare

the effect of missing data and model stability on model composition: complete case

analysis, MI, bootstrapping and MI+bootstrapping. For MI, missing data was imputed

using the MICE package with ’pmm’ as imputation method and five imputed data sets

were generated. In each of the five imputed data sets, multiple regression was applied.

The predictors which appeared in at least 2 models (an inclusion fraction of ≥ 40%)

qualified for final model from these five models. A likelihood ratio test with a critical
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p−value=0.157 was used to test whether these predictors significantly contributed to

the final model. Predictors will be dropped from final model if p− value > 0.157. This

is similar to the ”majority vote” method as discussed earlier. For MI+bootstrapping

method, missing data was imputed using MICE and five imputed data sets were created.

In each of the five imputed data sets, the two step bootstrap model selection procedure

was applied. First step, 500 samples with replacement were taken from complete case

dataset. The predictors which appeared in ≥ 40% of these models qualified for the

second step. In second step, 500 new complete case samples were taken and in each of

which a multi-variable model was built using predictors from the first step. Information

on model stability was provided by studying which combination predictors occurred

most frequently in 2500 data sets [Vergouw et al., 2010].

Research by Vergouw et al. [2010] showed that accounting for missing data by MI and

providing information on model stability by bootstrapping are instructive methods when

deriving a prognostic model. Separating strong predictors from weak predictors by boot-

strapping was shown to perform well comparative to automated backward elimination

in identifying the true regression model. Moreover, the study also showed that applica-

tion of the two-step bootstrap model selection procedure provides valuable information

on model stability. It was suggested that MI using five imputed data sets is the most

optimal choice to reduce the uncertainty in model derivation caused by missing data

and it is a sufficient number in order to get stable results.

However, Vergouw et al. [2010] stated that how to optimally perform variable selection

in multiply-imputed data sets is still a subject of discussion. It was proposed to iden-

tify a superior methodology for model selection in multiply-imputed data sets using a

simulation study, in which true predictors and noise variables are assigned.

Vergouwe et al. [2010] demonstrated the development and validation of a prediction

model obtained with logistic regression in the presence of multiply-imputed data. The

analysis was performed by following three steps of model development in each of the

completed data sets: (1) backward elimination of predictors and fractional polynomial

(FP) transformations simultaneously, (2) estimation of regression coefficients and (3)

estimation of a heuristic shrinkage factor to apply to the estimates of parameters in the

final model. The FP was used to study the shape of the relationship between the contin-

uous predictors and the outcome variable. An advantage of the multi-variable fractional

polynomial (MFP) procedure is the selection of predictors and transformations can be

carried out simultaneously (a way to preserve the nominal type 1 error probability). A

heuristic shrinkage factor can be estimated using the model chi-square and the number

of degrees of freedom. Model chi-square is the difference in -2 log likelihood between a

model with only an intercept and a fitted model. The number of degrees of freedom is
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the total number of degrees of freedom that are considered in the process of selecting

from all candidate predictors plus all considered transformations.

Backward elimination of predictors and transformations was performed with MFP and

an AIC stopping rule. This rule corresponds to a p − value = 0.157 for predictors

with one degree of freedom. Whereas to select the predictors and transformations, the

WALD test method (RR), ”majority vote” method and STACK method of Wood et al.

[2008] were used. All three methods were applied to 10 imputed data sets. A model was

fitted for each of the 10 multiply-imputed data sets for the finally selected predictors

and transformations for each of the three selection methods. RR was used to combine

the estimated regression coefficients and variance from the 10 different imputed data

sets. Finally, a heuristic shrinkage factor was estimated for each of the 10 models and

the shrinkage factors were averaged [Vergouwe et al., 2010].

The results showed that the predictors and transformations selected with the three meth-

ods were very similar. Since it was a practical case study, generalization of the results

is not possible. Although the WALD method follows RR and is a well-established ap-

proach, it has recently been shown that the use of WALD statistics to select the power

in a FP model can result in biased estimates [Wood et al., 2008]. The important advan-

tage of the STACK method is that only one dataset needs to be analyzed. The analysis

will lead directly to a single set of selected predictors, with corresponding regression

coefficients and standard errors [Vergouwe et al., 2010]. It was suggested to formulate

general guidelines for prediction modelling in the presence of missing data for further

research.

White et al. [2011] discussed that perfect prediction is a potential problem in regression

models for categorical outcomes, including logistic, ordered logistic and multinomial

logistic regression models, and it can be a severe problem in the presence of missing data.

In logistic regression, perfect prediction occurs if there is a category of any predictor

variable for which the outcome is always 0 (or always 1). In other words, the two-way

table of predictor variable by outcome variable contains a zero cell. Perfect prediction

can lead to infinite parameter estimates (which are not in themselves a problem), but it

also will lead to difficulties in estimating the variance-covariance matrix of the parameter

estimates. The standard errors computed from the information matrix will be extremely

large.

van Buuren [2012] recommended the WALD test method since it is a well established

approach that follows RR whereas the ”majority vote” method and STACK method

proposed by Wood et al. [2008] fail to take into account uncertainty caused by missing

data. Indeed, as mentioned earlier, only the WALD test method preserved the type I

error. However, the WALD test method is computationally intensive. An advantage of
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the STACK method is that only one dataset needs to be analyzed. It was suggested

that it is useful to combine methods for variable selection.

Chen and Wang [2013] criticized Bayesian variable selection strategies. Bayesian variable

selection methods will perform inadequately if they are directly applied to multiply-

imputed data because the selection will not be consistent across the multiple dataset

generated by imputation. If a variable selection method is applied to each imputed

dataset separately, it will identify different important variables in each imputed data sets.

It will cause difficulties in producing the overall parameter estimates across all imputed

data sets and also make it difficult to interpret the model or draw scientific conclusions.

There are various leading-edge model selection methods such as MI-LASSO [Chen and

Wang, 2013], CART, Random Forest, LASSO and Elastic Net [Lu and Petkova, 2014]

and MI-based weighted elastic net (MI-WENet) [Wan et al., 2015] were proposed over

the years. Wan et al. [2015] suggested the computational cost is mainly affected by the

number of predictor variables not the sample size.

Maghsoudi et al. [2014] criticized the RR approach (WALD test method) for being time

demanding since it uses backward elimination variable selection. Therefore, alternative

easier variable selections were proposed. The variable selection was performed in each

dataset independently where, after fitting of separate regression models to each dataset,

candidate variables for a multifactorial model are finalized in a screening round. Then

the estimates of selected variables across 10 multiply-imputed data sets will be combined.

Maghsoudi et al. [2014] identified two limitations of the study by Wood et al. [2008]. First

limitation, only monotonic forms of association were studied. Second limitation, the

majority of scenarios were implemented for continuous outcomes and in binary outcome

cases, missing data were generated under a MCAR mechanism. It was recommended

to use easier variable selection methods such as S1, S2 and S3 that provide results

comparable with complicate methods.

Schomaker and Heumann [2014] critiqued model selection in general, since it introduces

additional uncertainty into the process of statistical modelling. There will be many

good models to describe the data, i.e. models with very similar prediction error, but in

some models a specific variable will be included and in others it will not. As a result,

model selection estimators are often unstable, biased and under-estimate the estimator’s

variance by neglecting the uncertainty associated with the model selection process. It is

often argued that model averaging is appropriate to overcome this problem. Therefore,

in Section 3.2, model averaging in the presence of missing values will be discussed.
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3.1.2 Model selection criteria

The model selection strategies discussed in Section 3.1.1 could be implemented using

various model selection criteria. Model selection criteria typically use the likelihood

function based on the observed data. It is very challenging to obtain a suitable and

accurate approximation to the observed full data likelihood in the presence of missing

data, as this involves intractable multiple integration. For this reason, the application of

classical model selection methods such as AIC becomes more problematic when observa-

tions are missing. Therefore, Ibrahim et al. [2008] considered a class of information-based

model selection criteria, called ICH,Q (as discussed in Section 2.4.6) for missing data

problems. ICH,Q includes AIC and BIC as special cases as well as other model selection

criteria that have been proposed in the literature. The novel feature of the proposed

model selection criteria is that they essentially depend only on output from the EM algo-

rithm for their computation. Their development is based on the fact that the observed

data log-likelihood in a missing data problem can be written as a difference between

two functions, the Q−function of the EM algorithm and another quantity called the

H−function as discussed in Section 2.2.4.

The study showed that the theory of ICH̃(k),Q is quite general and can be applied to

various types of missing data models for which the EM algorithm is applicable. The

results showed that the criteria are consistent. Although consistency is a desirable

and interesting property, it does not shed light on how to penalize the observed data

likelihood for model parsimony in finite samples. Ibrahim et al. [2008] recommended

further research to determine the best choice of penalty in missing data problems.

According to Garcia et al. [2010], there is no general and easy way to compute penalty

and variable selection procedure for missing data problems. In many missing data prob-

lems, the observed data log-likelihood does not have a closed form and is often compu-

tationally intractable because it requires evaluation of high dimensional integrals which

do not have a closed form. These integrals can be approximated but the accuracy of

the approximation is essentially impossible to assess in many situations. Therefore, it

can be infeasible to directly maximize the observed data log-likelihood function to select

important variables and calculate their estimates. Besides that, even in the absence of

missing data, model selection criterion such as AIC can become infeasible for variable

selection in linear regression with a large number of covariates.

Thus, a new penalty criterion and variable selection procedures were developed for a

class of statistical models for missing data problems. This extended the research of

Ibrahim et al. [2008]. The proposed model selection criterion, ICQ statistics (as in

Equation (2.30)), was used to select the penalty parameters. The developed procedure
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is a computationally attractive algorithm for simultaneously optimizing the penalized

likelihood function and estimating penalty parameters. The study showed that the pro-

posed variable selection procedure automatically and consistently selects the important

covariates and leads to efficient estimates.

One of the disadvantages of penalized likelihood methods is that they do not provide a

measure of model uncertainty (i.e. the probability of selecting each model in the model

space). In general, Bayesian methods provide estimates of posterior model probability,

but implementing Bayesian methods in full can be difficult in many situations. It re-

quires specifying priors for all parameters in the model, a covariate distribution which

encompasses all the models in the model space as well as calculating marginal likelihoods

and enumerating all the models in the model space [Garcia et al., 2010].

Besides that, Garcia et al. [2010] suggested to explore variable selection using ICQ under

different modelling situations such as generalized linear mixed models with non-ignorable

missing response and covariate data, semi-parametric survival models with missing co-

variate data, such as Cox model, frailty models, measurement error models and partially

linear models with missing response and covariates.

Moreover, Claeskens and Consentino [2008] also proposed a model selection criterion

based on the EM algorithm which is readily available for EM-based estimation methods,

without much additional computational effort. Their model selection method is appli-

cable to likelihood-based models including the class of generalized linear models. The

proposed AIC for missing covariates in regression modelling structure is AIC1 (Equa-

tion (2.32)) as discussed in Section 2.4.6.

The results have confirmed the good performance of the criterion, especially its effi-

ciency to deal with missingness. Ignoring the missing data does not work well for model

selection. Since Claeskens and Consentino [2008] focused on missing covariate data with

an ignorable missingness mechanism, they suggested to extend these results to include

missing response data and nonignorable missingness schemes. Besides that, it was also

stated that a corrected AIC based on the EM algorithm for missing covariates can be

derived as Equation (2.34). Therefore, they proposed to investigate the corrected AIC

(AIC1,c) for the case of missing covariates for further research.

Consentino and Claeskens [2011] discussed handling of general model selection data via

an EM algorithm based AIC and by means of a non-iterative method for specific setting

of logistic regression models with a monotone pattern of missingness. This version of

AIC was proposed by Claeskens and Consentino [2008] for missing covariates. The EM

algorithm provides an efficient way of estimation in incomplete data problems, because it
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relates maximum likelihood estimation of incomplete data to maximum likelihood esti-

mation based on the completed data. However, its main and not negligible disadvantage

is that the estimation of the Q-function is computationally intensive and can be quite

time consuming, especially in a bivariate or higher dimensional situation.

The simulation study showed that this non-iterative approach works well to identify an

error distribution for Xmiss. AIC was used to investigate which distribution is mod-

elling the data better and to decide on the best distribution of missing covariates. The

results showed that this method performs well for larger sample sizes and AIC is se-

lecting the model fitted with the true distribution with higher frequency. Besides that,

the model selection method is not inflating the variances. Moreover, as a distribution

selection method, the AIC based on the non-iterative method performs well and is able

to distinguish normal data from the low degree t−distributed data in the presence of co-

variates with missing data. This is valid for both small and large sample sizes. Besides

that, Consentino and Claeskens [2011] also suggested a criterion which will compute

AIC differences and this is applicable to use with the multiple imputation for likelihood

models.

It is well-known that deletion of incomplete data will result in reduced estimation pre-

cision (or reduced statistical power) and biased parameter estimates. According to

Nakagawa and Freckleton [2008] and Nagakawa and Freckleton [2011], model ranking

according to model selection criteria such as AIC and BIC will be biased as a conse-

quence of biased parameter estimates due to deletion of missing data which are not

MCAR. Most researchers are unaware of this issue. Nagakawa and Freckleton [2011]

suggested to incorporate imputation of incomplete dataset before or as a part of model

selection procedures. Symonds and Moussalli [2011] also stated that AIC cannot be

compared between models if there exists missing data for some covariates. Therefore,

proper guidelines for using model selection criteria in the presence of missing data is

required.

Chaurasia and Harel [2012] stated that the version of AIC proposed by Claeskens and

Consentino [2008] leads to models that tend to overfit, i.e. models that contain the cor-

rect model plus some additional variables. This is not surprising because it is well known

that AIC tends to select over-specified models (see discussion in Section 2.4.7). Chaura-

sia and Harel [2012] explored model selection with an incomplete response variable in

multiple linear regression, in line with Yang et al. [2005] and Wood et al. [2008].

Chaurasia and Harel [2012] proposed two AIC variants for multiply imputed data sets

which are based on the Arithmetic Mean (AM) and Geometric Mean (GM) as discussed

in Section 2.4.6. The study showed that the pattern of model selection by AICAM

and AICGM is very similar to that of AICfull. The results of AICAM and AICGM
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tend to over-fit which is a known natural tendency of AIC. The correlation between

variables showed a negative impact on model selection in the analysis phase. BIC also

was considered in this study and showed similar model selection rates as AIC.

3.1.3 Strategies for building an imputation model

In the model-building process with missing data, it is necessary to define both the impu-

tation and analysis models. According to Schafer [1997], the imputation and prediction

phases are distinct. Therefore, it is common to ask whether MI leads to valid infer-

ences when the imputer’s model and analyst’s model (prediction model) differ. Rules

for combining complete-data inferences were derived under some implicit assumptions

of agreement between the two models. It was stated that ”the validity of MI inferences

when the imputer’s and analyst’s models differ has been the subject of recent contro-

versy”. Schafer [1997] stated that the controversy is based on understanding the effects

on inference when the analyst assumes more than the imputer or vice versa. A possible

inconsistency will be that the analyst’s and imputer’s models differ, but the analyst’s

model can be considered as a special case of the imputer’s. Another type of inconsis-

tency arises when the analyst’s model is more general than the imputer’ model where

the imputer applies assumptions to the complete data that the analyst does not assume.

MI created under an erroneous model will lead to erroneous conclusions, therefore it is

important to specify a correct imputation model as well as prediction model.

According to Sinharay et al. [2001], the key feature of the MI approach is a separation

between the model used to obtain imputation and the final model used for analysis

of the dataset. The imputation model and the data analyses should be compatible to

provide good results. This coincides with Schafer [1997]’s discussion of the imputation

model and prediction model. Sinharay et al. [2001] recommended that in forming the

imputation model, one should include as much reasonable covariate information as is

available. Any discrepancy between the imputation model and the prediction model will

give rise to unreliable estimates.

Moons et al. [2006] advised to use all covariates and response/outcome in the imputation

model. Ignoring the relationship between covariates with missing values and outcome

will introduce a bias into the estimation of parameters in the prediction model. This

is true whether the missingness mechanism is MCAR or MAR. This is supported by

White and Royston [2009] where it was stated that when there exist missing values in

the covariates of an analysis model, the outcome of analysis model must be used in the

imputation model to impute the missing covariate value. If the imputed data will be
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used to fit several different analysis models, then every variable included in any of the

analysis models should be included in the imputation model White et al. [2011].

Collins et al. [2001] assessed the inclusion of auxiliary variables, comparing inclusive

strategies (including numerous auxiliary variables) and restrictive strategies (including

few or no auxiliary variables). Auxiliary variables are defined as variables that are

included in an analysis solely to improve the performance of imputation procedures.

Auxiliary variables may be included for two reasons. First, researchers may want to in-

troduce variables that are potential causes or correlates of the missingness itself. Second,

researchers may want to include variables that are simply correlated with the variables

that have missing values, whether or not they are related to the mechanism of miss-

ingness. Collins et al. [2001] showed that the inclusive strategy is greatly preferred.

The inclusive strategy reduces the chance of inadvertently omitting an important cause

of missingness and also brings the possibility of noticeable gains in terms of increased

efficiency and reduced bias. It was recommended to use MI for the inclusive strategy

and it is more straightforward.

Harrell [2001] suggested that, if the main interest of a researcher is prediction and not

interpretation or inference about individual effects, it is worth trying a simple imputation

to see if the resulting model predicts the response almost as well as one developed after

using customized imputation. In developing the model for prediction, it was suggested to

use multiple imputation to impute missing data since MI is more effective in improving

the precision of β̂.

Clark and Altman [2003] developed a prognostic model for ovarian cancer, in the pres-

ence of missing data, using Rubin’s Rules as discussed earlier. Auxiliary variables were

included in the imputation model. The study showed that the inclusion of auxiliary vari-

ables and using all available information will produce multiple imputations that have

minimal bias and maximal certainty.

Over the years, researchers were focusing on applying various imputation methods and

investigating the performance of corresponding methods. But Ambler et al. [2007] stud-

ied performance of multivariate imputation by chained equation (MICE) for clinical

outcomes as well as the reliability of the predictions after imputation. Other imputa-

tion methods such as mode imputation, mean imputation, conditional mean imputation

and hot decking were compared with MICE. The results showed that MICE performs

better than other imputation methods, producing the lowest biases in the regression

coefficients and producing confidence intervals with coverage values close to the nominal

level. No variable selection strategy was used and the study only focused on a full model

approach with pre-specified predictors. Therefore, it was suggested to asses how well the

methods perform when p-values are used to select predictors for the model. Based on
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this research, it is clear that no proper model selection or variable selection was carried

out on imputed dataset since the suggestion was to use p-value for variable selection.

In addition, Ambler et al. [2007] expected MICE to perform better in the presence of

stronger associations between the covariates. Since the correlations in their research

were moderate, with only 4 of the 120 possible pairwise correlations exceeding 0.5, it

was proposed to investigate the performance of the imputation methods in the presence

of a stronger MAR mechanism.

The imputation model plays an important role in the analysis of missing data so it

is essential to choose a good imputation model. In the analysis carried out by Wood

et al. [2008], the imputation model and prediction model were considered separately. The

imputation model and prediction model can be built simultaneously when the outcome of

interest is incomplete. Omitting variables from the imputation model causes downward

biases in estimates of parameters in the prediction model. Therefore the safest rule

is that the imputation model include a minimum of all candidate predictors for the

prediction model.

Standard software adopts one of two approaches to deal with perfect prediction. First, it

might drop terms from the imputation model to avoid perfect prediction where standard

imputation procedure will end up imputing using the wrong model. A second approach,

might be to retain terms and estimate a singular variance-covariance matrix which will

lead either to very large standard errors or an unsuccessful attempt to correct standard

errors. In these cases, the Normal approximation to the log-likelihood fails and leads

to very poor draws of estimates. Although the ’ice’ package is ’augmenting’ the data

by adding a few extra observation to the dataset to avoid perfect prediction, perfect

prediction still causes problems in other software in year 2011 [White et al., 2011].

White et al. [2011] argued that a rich imputation structure is desirable in principle, but

in practice fitting such complex sets of imputation models can defeat the software or lead

to model instability. Since it is hard to propose universal solutions, careful exploration

of the data can suggest smaller imputation models that are unlikely to cause substantial

bias. In practice, researchers should try to simplify the imputation structure without

damaging it. For example, omit variables that seem on exploratory investigation unlikely

to be required in a ’reasonable’ prediction model but avoid omitting variables that are

in the prediction model or variables that clearly contribute towards satisfying the MAR

assumptions. This contradicts previous studies where most of the researchers include all

the available variables (both response and predictor variables) in the imputation models,

except some of the researchers include auxiliary variables in the imputation model. To

implement this approach, further research is need to develop useful rules of thumb.
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Chaurasia and Harel [2012] identified that the issues in model selection with imputed

data are how to combine model selection results from imputed data and also the impact of

the assumed imputation model on model selection in the analysis phase. The importance

of additional variables in the imputation model is exaggerated in the analysis phase

when performing model selection and it increases with the percentage of missingness.

This complexity cannot be resolved by increasing the number of imputations, therefore

the researcher should not assume that MI will be forgiving when interest lies in model

selection in the analysis phase. For further research, it was suggested to explore the issue

about generalizing model selection procedures to account for the impact of imputation

model on model selection in the analysis phase.

3.2 Model Averaging in the Presence of Missing Values

Various model selection or variable selection methods in the presence of missing data

were discussed in the previous section. The majority of the variable selection methods

incorporate multiple imputation to overcome the variable selection problem in the pres-

ence of missing data. Researchers are proposing new methods to deal with the model

selection issue in the presence of missing data in terms of frequentist and Bayesian per-

spective. The proposed methods sound attractive, some have proven easy to implement

and are fast. However, researchers should remember that model selection introduces

additional uncertainty into the process of statistical modelling, which can be more se-

vere in the presence of missing data. In the literature, model averaging was proposed

as an alternative to model selection which intended to overcome the under-estimation

of standard errors that is a consequence of model selection.

Model averaging techniques from a Bayesian point of view have been developed since the

late 1970s, but were not widely used until recent advances in computing power facilitated

their practical usage. Contributions from a frequentist perspective have been fewer but

recent studies by Buckland et al. [1997], Hjort and Claeskens [2003] and Claeskens and

Hjort [2008] have made some important progress. The details of frequentist model

averaging methods were discussed in Section 2.5.

In addition, many researchers explored Bayesian model averaging in the presence of miss-

ing data over the years but very limited research was conducted using frequentist model

averaging in the presence of missing data. Therefore, there are no agreed guidelines for

model averaging in the presence of missing data and researchers are still exploring model

averaging in multiply-imputed data sets.
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For Bayesian model averaging, the prior probabilities for the potential models have to

be specified and computer intensive methods such as Markov Chain Monte Carlo are

required for computing the posterior distribution. But Frequentist Model Averaging

(FMA) can be implemented without much difficulty or protracted computation.

Schomaker et al. [2010] proposed frequentist model averaging when there exists missing

data based on two distinct approaches. The first approach combines estimates from a

set of appropriate models which are weighted by scores of the missing data adjusted

AIC criterion (AICW ) derived by Hens et al. [2006]. The second approach averages over

estimates of a set of models with weights based on the conventional model selection

criterion (AIC) derived in Buckland et al. [1997] but with the missing data replaced by

imputed values prior to estimating the models. Four types of imputation methods were

compared: Generalized additive model based recursive imputation (GAMRI), Gener-

alized linear model based recursive imputation (GLMRI), k-nearest neighbours (kNN)

procedure and bootstrap based version of EM algorithm. This analysis was carried out

using the R package Amelia II, which allows multiple imputation. Amelia II implements

a bootstrapping-based algorithm that gives essentially the same answers as the standard

EM based approaches and can handle many more variables. Amelia II provides users

with a simple way to create and implement an imputation model, generate imputed data

sets and check its fit using diagnostics.

The results showed that the imputation based FMA method produces closer estimates

to maximum likelihood estimates than do the corresponding complete case analysis and

AICW . The imputation based method produces accuracy by combining models whereas

the complete case analysis and AICW are better off in selecting a single model. Model

averaging based on AICW estimators yields more accurate estimators than the corre-

sponding complete case estimators. The GAMRI and GLMRI based model averaging

estimators performs well relative to the corresponding estimators that adopt the criterion

AICW . Whereas the performance of estimators based on kNN and Amelia II imputa-

tion methods can vary considerably across the experimental settings and performance

criteria. In addition, model averaging estimators often provide better estimates than

those resulting from any single model. It was recommend to use model averaging by

implementing AICW for multiple imputation or perform model averaging on single im-

puted dataset. Schomaker et al. [2010] suggested to extend the research by investigating

model averaging using more sophisticated imputation techniques and model averaging

based on the EM-based AIC developed by Claeskens and Consentino [2008].

Nagakawa and Freckleton [2011] stated that model averaging offers more reliable and

robust point and uncertainty estimation of parameters. Such robustness is even true

in complex cases as well as when there is collinearity among predictors. A study was
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conducted to explore model averaging using information theoretic measures based on

AIC (IT-AIC) in the presence of missing data. The model averaging method as derived

in Burham and Anderson [2002] was used to average the estimators and the missing

data were imputed using multiple imputation (mi package in R). The model averaging

procedure was run for each imputed dataset. The parameters were pooled using model

averaged estimates where by final parameter estimates is a pooled estimate combining all

model-averaged estimates and their unconditional standard errors using RR. The results

showed that Akaike weight were incorrectly estimated in incomplete data sets. MI was

efficient in recovering Akaike weights for data sets with MCAR and MAR missingness.

Nagakawa and Freckleton [2011] suggested that use of a larger number of imputations

will help for the incomplete MNAR dataset but increasing D will not lead dramatic

improvements. However, there is no clearly illustrated guidelines for model averaging in

multiply-imputed dataset.

Schomaker and Heumann [2011] explored model averaging in factor analysis to account

for model selection uncertainty associated with determination of the number of latent

factors. A model averaging method using AIC, as derived in Buckland et al. [1997]

was used to compromise between different models that contain different numbers of

factors. Since there exist missing values, the missing values were imputed based on a

k-nearest-neighbour methodology [Little and Rubin, 2002]. This imputation method

was used due to the small sample size. The results showed that the model averaging

method performs well in determining the latent factors. However, this study is more

general application of model averaging and missing data issue was not consider a serious

problem in determining the latent factor.

Model averaging estimators are often call ’unconditional’ in the literature since inference

does not rely on a single selected model, but they are still conditional on the set of

candidate models under consideration. Although model averaging aims to incorporate

the uncertainty associated with the model selection process by combining estimates

over a set of models, there is still some argument over appropriate interpretation and

confidence interval construction. Schomaker et al. [2010] and Schomaker and Heumann

[2014] recognized these problems in the presence of missing data and there is no clear

guidance how to proceed up to now. Therefore, model selection and model averaging

after imputation were explored using multiple imputation strategy to deal with missing

data.

It is straightforward to integrate model averaging estimates into the standard MI com-

bining rule (RR), but it is important to discuss the consequences of this. Standard errors

will become large due to combination of both selection and imputation uncertainty when
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point estimates shrink towards zero if a variable is not supported throughout the imputa-

tion and candidate models. Model averaging and multiple imputation can be combined

by first calculating model averaging in each dataset and then combining them by RR.

Schomaker and Heumann [2014] proposed a general model averaging estimator after

multiple imputation as discussed in Section 2.5.

Schomaker and Heumann [2014] investigated model averaging after multiple imputa-

tion using bootstrapping. The algorithm for combining model averaging and multiple

imputation using bootstrapping is as following:

1. Create B bootstrap samples of the original data (including missing observations)

2. Generate D imputed data sets for each bootstrap sample

3. Calculate model averaging estimator for each imputed set of data in each bootstrap

sample

4. Create a model averaging estimators after imputation using Equation (2.40) for

each bootstrap sample

5. Use the average of the B estimates calculated in step 4 as the final point estimate

6. Construct confidence intervals based on the percentiles of the empirical distribution

produced by the B estimates of step 4.

Results showed that combining model averaging and multiple imputation outperforms

complete case analysis. Combining model averaging with bootstrapping helped to cal-

culate good estimates when dealing with model selection uncertainty. Model averaging

induces more stable estimates than model selection, due to its inherent shrinkage prop-

erties and therefore smaller variance in exchange for some bias. It was found that model

averaging estimators produced accurate standard errors after multiple imputation for all

situations under consideration. To account for both uncertainty related to imputation

and model selection, the incorporation of model averaging is most relevant method in

the present of missing data [Schomaker and Heumann, 2014].

Since this study was restricted to certain imputation and model averaging procedures,

i.e. AIC based choices and multiple imputation was solely utilized with Amelia II.

Schomaker and Heumann [2014] suggested to explore other model averaging techniques

and imputation methods to provide more evidence about the generalization of their

finding. Another issue that deserves more in-depth research is the implementation of

proper multiple imputation and the consequences of specifying wrong imputation model.
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The use of an incorrect imputation model can cause improper imputation, biased model

estimates and inappropriate post model averaging estimates.

Schomaker and Heumann [2014] stated that the choice of the imputation model can

affect final results even if data are missing at random. If a fully conditional imputa-

tion approach is utilized (such as imputation by chained equations), convergence to the

theoretical joint distribution is not always guaranteed. Whereas, if a joint modelling

approach is taken (i.e. via Amelia II), the treatment of categorical variables via the

multivariate normal distribution will yield reasonable results but imputation uncertainty

increases and quite large standard errors will be observed. Besides that, imputing longi-

tudinal data is complex and it is not entirely clear how misspecification of a longitudinal

imputation model will affect regression modelling. These demonstrate the complexity

and sensitivity of analyses dealing with missing data and it can be more complicated

using model averaging, model selection and multiple imputation. Therefore, further re-

search has to be carried out to reveal the whole complexity of modelling uncertainty in

the presence of missing data.

3.3 Summary

Various researches have been carried out on model selection in the presence of missing

data, and numerous methods/strategies have been proposed and examined. The pro-

posed strategies are the ”majority vote” method, backward stepwise regression using

RR (WALD test method), STACK method, single stochastic imputation, separate im-

putation, ITS, SIAS, MI with bootstrapping and various leading-edge model selection

methods. As discussed in previous sections, these methods showed some significant con-

tributions to the development of model selection methods in the presence of missing

data. However, there are well-established disadvantages of using the RR approach, sin-

gle stochastic imputation, separate imputation and the MI with bootstrapping method.

It is not advisable to use these methods for model selection in the presence of missing

data.

Among the proposed methods, the STACK method [Wood et al., 2008] appears to be

a more attractive model selection method in the presence of missing data. The big

advantage of the STACK method is that only one dataset needs to be analyzed. The data

analysis will directly lead to a single set of selected predictors, corresponding regression

coefficients and standard errors. This method is computationally easier compared to the

RR approach and also a sensible alternative to it.
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Model averaging methods were proposed and examined as an alternative to model selec-

tion, intended to overcome the under-estimation of standard errors that is a consequence

of model selection. Limited researches were carried out on model averaging in the pres-

ence of missing data. Model averaging is the most relevant method to account for both

uncertainty related to model selection. There are no proper guidelines for model aver-

aging in the presence of missing data. Although model averaging was proposed as an

alternative to model selection, there is no proper comparison between model selection

and model averaging in the presence of missing data in terms of prediction. If the aim of

both model selection and model averaging is prediction, the comparison between them

should be carried out in terms of prediction using a measure such as mean square error

of prediction (MSE(P)).

There are a few possible suggestions from researchers to explore in model selection and

model averaging in the presence of missing data. Some of the suggestions were not fully

explored and can be used as guidance for other researchers to explore them. Wood

et al. [2008] proposed to develop diagnostic procedures such as detecting influential

points, making prediction, performing diagnostic tests and graphical checks for model

misspecification. The comparison between model selection and model averaging can be

explored in terms of predictions. Vergouwe et al. [2010] also suggested to formulate

general guidelines for prediction modelling in the presence of missing data. In addition,

proper guidelines for using model selection criteria in the presence of missing data is

required [Symonds and Moussalli, 2011]. Chaurasia and Harel [2012] suggested to explore

the issue about generalizing model selection procedures to account for the impact of the

imputation model on model selection in the analysis phase.

White et al. [2011] suggested to develop useful rules of thumb for building a proper

imputation model. The inclusive strategies [Collins et al., 2001] can be explored using

MI for building an imputation model since it is more straightforward. A suitable model

selection/variable selection strategy on imputed dataset is required and the performance

of that method should be explored [Ambler et al., 2007].

Nakagawa and Freckleton [2008] suggested that clearly illustrated guidelines for model

averaging in multiply-imputed dataset required. Since the use of an incorrect imputation

model can cause improper imputation, biased model estimates and inappropriate post

model averaging estimates, it was suggested to develop rules of thumbs for building a

proper imputation model when using imputed dataset for model averaging. Schomaker

et al. [2010] suggested to investigate model averaging using more sophisticated imputa-

tion techniques and model averaging based on the EM-based AIC developed by Claeskens

and Consentino [2008]. Schomaker and Heumann [2014] suggested to carried out research

to reveal the whole complexity of modelling uncertainty in the presence of missing data
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since it can be more complicated to use model selection, model averaging and multiple

imputation in the presence of missing data.

Table 3.1 and Table 3.2 show a summary of researches carried out on model selection and

model averaging in the presence of missing data respectively. In conclusion, comparison

between model selection and model averaging in the presence of missing data is worth

exploring and development of a proper model-building approach is required in both

model selection and model averaging.
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Table 3.1: Review of Model Selection in the Presence of Missing Data

Study Objectives Methods Outcomes Advantages/disadvantages Recommendations

Rubin [1987], Little

and Rubin [2002]

To combine parameters and

standard error across multiple

imputed data sets using Ru-

bin’s rules

backward stepwise

selection/ multiple

imputation (WALD

test method/ RR

approach)

- Disadvantage: computation-

ally intensive

-

Brand [1999] To treat variable selection

problem when there exists

missing data

two step solutions

(majority method and

WALD method)

more considerable improve-

ment over complete case anal-

ysis

- -

Collins et al. [2001] To asses the inclusion of aux-

iliary variables, comparing in-

clusive strategies and restric-

tive strategies

Use ML and MI for im-

putation

The inclusive strategy is

greatly preferred

Advantage:The inclusive strat-

egy reduces the chance of in-

advertently omitting an impor-

tant cause of missingness and

also brings the possibility of

noticeable gains in terms of in-

creased efficiency and reduced

bias

It was proposed to ex-

plore missing data is-

sues with small sample

size, various amount

amount of missingness

and types of missing

data mechanisms

Clark and Altman

[2003]

To develop a prognostic model

in the presence of missing data

RR approach Inclusion of auxiliary variables

and using all available infor-

mation were generated MI that

have minimal bias and maxi-

mal certainty

Disadvantage: backward elimi-

nation method is computation-

ally intensive

-

Yang et al. [2005] To identify the variable se-

lection problems with missing

data in Bayesian framework

ITS and SIAS SIAS slightly outperforms ITS,

but ITS is easier to implement

and flexible.

Higher correlation among co-

variates leads to precise impu-

tation

Disadvantage: SIAS will take

some effort in developing sen-

sible prior to specification

-

Continued on Next Page. . .
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Table 3.1 – Continued

Study Objectives Methods Outcomes Advantages/disadvantages Recommendations

Ambler et al. [2007] To investigate performance of

MICE and reliability of the

predictions after imputation

mean/mode imputa-

tion, mean imputation,

conditional imputa-

tion, hot decking and

MICE (no variable

selection)

MICE performs better (pro-

duced lowest biases and CI cov-

erage values close to nominal

level)

Disadvantage: no proper vari-

able selection

Recommended to use

p-value for variable

selection in assessing

MICE performance

Heymans et al. [2007] To develop methodology for

combining MI with bootstrap-

ping

bootstrapping/stepwise

backward elimination

(MICE)

Combined MI and bootstrap-

ping method accounts the un-

certainty in imputation and

uncertainty in selecting models

Disadvantage: combining MI

and bootstrapping will compli-

cate the model building pro-

cess

-

Wood et al. [2008] To develop STACK method,

alternative methods to RR ap-

proach

STACK method with

weighted regression/

multiple imputation

Sensible alternative to RR ap-

proach and has more power

compromising slightly type 1

error.

Advantage: computationally

easy

Recommended to use

W3 weights, consider

imputation and predic-

tion models separately,

proposed to develop

diagnostic procedure

such as detecting

influential points,

making prediction,

performing diagnostic

test and graphical

checks for model

mis-specification.

Vergouw et al. [2010] To examine influence of boot-

strap and MI on model compo-

sition and stability in the pres-

ence of missing data

two-step bootstrap and

MI

Model selection provides more

valuable information on model

stability and five imputed data

sets is the most optimal choice

to reduce the uncertainty in

model derivation

- It was proposed to

identify a superior

methodology for model

selection in multiply

imputed dataset

Continued on Next Page. . .
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Table 3.1 – Continued

Study Objectives Methods Outcomes Advantages/disadvantages Recommendations

Vergouwe et al. [2010] To develop and validate a pre-

diction model obtained with lo-

gistic regression in the multiply

imputed data.

MFP with AIC stop-

ping rule, STACK,

WALD test

all three method showed sim-

ilar results in selected predic-

tors and transformations and

Advantage: The selection of

predictors and transformations

can be carried out simultane-

ously using MFP

It was suggested to

formulate general

guidelines for predic-

tion modelling in the

presence of missing

data

Maghsoudi et al. [2014] To explore model selection in

incomplete dataset

RR approach, STACK,

separate imputation

STACK method and seper-

ate imputation method showed

similar results as RR approach.

- Recommended to use

easier variable selection

methods
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Table 3.2: Review of Model Averaging in the Presence of Missing Data

Study Objectives Methods Outcomes Recommendations

Schomaker

et al. [2010]

To explore frequentist model

averaging (FMA) in the pres-

ence of missing data

model averaging based

on AIC [Buckland

et al., 1997] and based

on AICW derived by

Hens et al. [2006]

Model averaging based on AICW yield more

accurate estimators than the complete case es-

timators

Suggested to investigate model aver-

aging using more sophisticated impu-

tation techniques and model averaging

based on the EM-based AIC developed

by Claeskens and Consentino [2008].

Nagakawa and

Freckleton

[2011]

To explore model averaging

based on AIC in the presence

of missing data

model averaging based

on AIC [Burham and

Anderson, 2002]

The results showed that Akaike weight were

incorrectly estimated in incomplete data sets.

MI was efficient in recovering Akaike weights

for data sets with MCAR and MAR missing-

ness

suggested that use of a larger number

of imputations will help for the incom-

plete MNAR dataset but increasing D

will not lead dramatic improvements

Schomaker

and Heumann

[2011]

To explore model averaging in

factor analysis in the presence

of missing data

model averaging based

on AIC [Buckland

et al., 1997]

The results showed that the model averaging

method performs well in determining the la-

tent factors.

Schomaker

and Heumann

[2014]

To investigate incorporation of

model selection and model av-

eraging after multiple imputa-

tion

bootstrapping for

MI, RR for combin-

ing model averaging

estimators

Combining model averaging and multiple im-

putation outperforms complete case analysis

and Combining model averaging with boot-

strapping helped to calculate good estimates

when dealing with model selection uncertainty.

Model averaging induces more stable esti-

mates than model selection, due to its inher-

ent shrinkage properties and therefore smaller

variance in exchange for some bias

Suggested to explore other model av-

eraging techniques and imputation

methods to provide more evidence

about the generalization of findings

and carried out research to reveal the

whole complexity of modelling uncer-

tainty in the presence of missing data



Chapter 4

Comparison between Model

Selection and Model Averaging

The aims of this chapter are: (i) to compare model selection and model averaging in

terms of imputation and prediction; (ii) to investigate the effects of restrictive and

inclusive strategies for imputation for both model selection and model averaging. The

restrictive strategy (where minimal use is made of auxiliary variables in both prediction

and imputation models), inclusive strategy (where numerous auxiliary variables and

overlapping variable sets in both imputation and prediction models) and a strategy

using non-overlapping variable sets (where the auxiliary variable is only used in the

imputation model) were investigated. The effects of the imputation and simulation

parameters were observed and discussed in both linear model and Logistic regression.

The general simulation design and the simulation parameters used in the simulation

studies are discussed in this chapter. A simple simulation scenarios with three covariates

(some values are missing in one of the covariate) were considered in order to identify the

effects of other simulation parameters. More than three covariates and missing values

in more than one covariate become more complicated and overshadow the effects of

simulation parameters. This basic simulation design will be used for other simulation

studies in later chapters but the parameters will be modified according to the aim of the

simulation study.

4.1 Design of Simulation

Sets of simulation studies will be carried out in both linear model and Logistic regression

in this research. Generally, X1 and X2 are covariates in a prediction model for the

response Y , and some values of X2 (but not X1) are missing. X3 is an auxiliary variable,

63



Chapter 4. Comparison between Model Selection and Model Averaging 64

primarily intended to use in the imputation model for X2 and might or might not also be

used in the prediction model for Y . The general covariance matrix for X = (X1, X2, X3)

is therefore

Σ =


1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

 (4.1)

where ρij = ρji denotes the correlation between Xi and Xj . In the simulations in this

chapter, ρ12 = ρ13 = 0 so

Σ =


1 0 0

0 1 ρ23

0 ρ23 1

 (4.2)

where ρ23 = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75. The number of observations was n =

50, 100, 200, 400. The percentage of missing values was m = 0, 25 and 50, m = 0 was

chosen to investigate the effects of correlation and sample size without any imputation.

The value m = 25 was chosen to identify the effects of a moderate amount of imputation.

An extreme value of missing percentage, m = 50, was chosen to identify the effect of

imputation when half of the data are imputed. The additional effects of imputation

will be investigated by comparing results with m = 0 and with m = 25 and m = 50.

Simulations were carried out for every combination of n,m, and covariance matrix.

4.1.1 Linear model and Logistic regression

The general multiple linear regression model considered (true model) was

Yi = β0 + β1X1i + β2X2i + εi , i = 1, 2, ..., n (4.3)

where

Y = the response variable

X’s = explanatory variables

β′s = coefficients/parameters of the model

ε = error term

n= number of observations

X (X1, X2 and X3) values were simulated from a multivariate normal distribution

with fixed zero means and a specified covariance matrix. The Y values were created

based on Equation (4.3), simulated X1 and X2 values and error terms simulated from

N
(
0, σ2

ε

)
where σ2

ε = 1
16 , 1, 16. A small value of σε = 1

4 and a large value σε = 4 were

chosen to identify the effects of noise. In all simulations, β0 = β1 = β2 = 1. Based

on Equation (4.3), one can interpret the coefficients as ”if X2 is fixed, then for each

change of 1 unit in X1, Y changes 1 unit”. The β’s were chosen to be 1 to investigate
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the effects of σε on prediction. The coefficient-to-variance ratio
(
β
σε

)
will be equal to 1

when σε = 1. Rather than changing the β values, the σε values were changed to identify

the effects of simulation parameters. The simulation study was carried out with 1000

simulations.

The logistic regression model considered (true model) was:

Pi = P (Yi = 1) =
exp(β0+β1X1i+β2X2i)

1 + exp(β0+β1X1i+β2X2i)
, i = 1, 2, ..., n (4.4)

Equation (4.4) can be re-written as:

logit Pi = β0 + β1X1i + β2X2i (4.5)

Here:

Y = binary response variable, which can only take the value either 0 or 1

logit Pi = ln

(
Pi

1− Pi

)
Pi = probability of success (in the range 0 to 1)

X’s = explanatory variables

β′s = coefficients/ parameters of the model

n= number of observations

X (X1, X2 and X3) values were simulated from a multivariate normal distribution with

fixed zero means and a specified covariance matrix. Y values were created based on

Equation (4.4), and the simulated X1 and X2. In all simulations, β0 = β1 = β2 = 1.

The simulation study was carried out for number of simulations equal to 1000.

4.1.2 Imputation and prediction models

Three model-building strategies were considered to build the imputation and prediction

models. The strategies are restrictive strategy, inclusive strategy and non-overlapping

variable sets. Collins et al. [2001] defined a restrictive strategy as including few or no

auxiliary variables in both imputation and prediction models. An inclusive strategy

is including numerous auxiliary variables and overlapping variable sets in both impu-

tation and prediction models. A strategy of using non-overlapping variable sets (an

extremely restrictive strategy) is defined as not including auxiliary variables in the pre-

diction model, only in the imputation model, so that non-overlapping variable sets are

considered for the imputation and prediction models. Auxiliary variables are variables

within the original data that are not included in the main analysis, but are correlated

to the covariates of interest and may be used in the imputation model [Hardt et al.,

2012]. Auxiliary variables are also known as ancillary or exogenous variables. Auxiliary
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variables are defined as variables that are included in an analysis solely to improve the

performance of missing data procedures.

Missing observations were created completely at random on variable X2 with percentages

of missing observations as m = 25 and m = 50. The ”norm” imputation method (see

Section 2.3.2) was used to impute any missing observations of X2 using the auxiliary

variableX3. The imputation model used in both restrictive strategy and non-overlapping

variable sets was

X2i = ϕ̂0 + ϕ̂3X3i + ϕ̂4Y + hi (4.6)

and the imputation model for the inclusive strategy was

X2i = ϕ̂0 + ϕ̂1X1i + ϕ̂3X3i + ϕ̂4Y + hi (4.7)

Table 4.1: All possible prediction models

Name Fitted Linear Models Fitted Logistic regression Non-overlapping Restrictive Inclusive

M000 Y = β0 + ε logit Pi = β0 X X X

M100 Y = β0 + β1x1 + ε logit Pi = β0 + β1x1 X X X

M010 Y = β0 + β2x2 + ε logit Pi = β0 + β2x2 X X X

M001 Y = β0 + β3x3 + ε logit pi = β0 + β3x3 + ε X X

M110 Y = β0 + β1x1 + β2x2 + ε logit Pi = β0 + β1x1 + β2x2 X X X

M101 Y = β0 + β1x1 + β3x3 + ε logit pi = β0 + β1x1 + β3x3 + ε X X

M011 Y = β0 + β2x2 + β3x3 + ε logit pi = β0 + β2x2 + β3x3 + ε X X

M111 Y = β0 + β1x1 + β2x2 + β3x3 + ε logit pi = β0 + β1x1 + β2x2 + β3x3 + ε X X

There are two parts to the analysis: model selection and model averaging. In each

simulation, after imputation if required, each model selection criterion (AIC, AICc and

BIC) was allowed to choose an additive model based on any combination of X1 and

X2. There were four possible models for Linear regression and Logistic regression for

non-overlapping variable sets as listed in Table 4.1. Eight possible prediction models

based on all possible subsets of variables X1, X2 and X3 (includes one auxiliary variable)

were considered for Linear regression and Logistic regression for restrictive and inclusive

strategies as listed in Table 4.1. With this terminology, the true model was M110 for

all three model-building strategies. The number of times each model was selected by

each criterion was recorded. For model averaging, the weights for all possible models

were calculated using modified weights as in Equation (2.39) and also as described in

Buckland et al. [1997] using each of AIC, AICc and BIC. These were then applied to

the estimated parameters from all possible models in order to obtain final ’weighted’

parameter estimates.
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4.1.3 Test values

In this research, the performance of model selection and model averaging were com-

pared in terms of imputation and prediction. An approach is needed to compare model

selection and model averaging. The only overlapping calculation step in both model

selection and model averaging is prediction. Therefore, the mean square error of predic-

tion, MSE(P), will be calculated to compare both model selection and model averaging.

A modelling strategy with minimum MSE(P) is preferred. A fixed set of test values will

be created and used for all the simulation studies in this research.

X test values (X1 and X2) were calculated based on the probability quantile function

of the standard normal distribution. The test set values consisted of 100 points in a

10 × 10 lattice with each of X1 and X2 taking values equi-spaced in probability at the

5, 15, ..., 95 percentiles of the standard normal distribution. The Y test values were

created based on Equation (4.3) for the linear model and the P test values based on

Equation (4.5) for the Logistic regression, with the X1 and X2 test values and zero error.

There were 100 sets of test values. These test values were used to calculate the mean

square error of prediction of the best model or all fitted models. The performance of

the model selection and averaging procedures were compared using mean square error

of prediction, MSE(P).

The MSE(P) for each test values in the linear model will be calculated using Equa-

tion (4.8) where

MSE (P )t =
1

1000

1000∑
s=1

(yts − yt)2 (4.8)

The average MSE(P) across test values in the linear model is

MSE (P ) =
1

100

100∑
t=1

[
1

1000

1000∑
s=1

(yts − yt)2

]
(4.9)

where s indexes the simulations (s = 1, 2, ..., 1000) and t = 1, 2, ..., 100 for the test values.

As discussed in Section 2.6.2, the MSE(P) for each test values in the Logistic regression

will be calculated using Equation (4.10) where

MSE (P )t =
1

1000

1000∑
s=1

(Pts − Pt)2 (4.10)

The average MSE(P) across test values in Logistic regression is

MSE (P ) =
1

100

100∑
t=1

[
1

1000

1000∑
s=1

(Pts − Pt)2

]
(4.11)
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where P is the probability of success as in Equation (4.4) for Logistic regression. The

distribution of MSE(P) for each of m = 0, m = 25 and m = 50 was plotted to identify

the effects of simulation parameters in both model selection and model averaging.

4.1.4 Choice of imputation package and method

The MICE package [van Buuren and Groothuis-Oudshoorn, 2011] was chosen to use for

imputation in this research. The main advantage of MICE over the mi package by Yu

et al. [2011] is the flexibility it offers for choosing an imputation method (as discussed in

Section 2.3.2). There are various imputation methods in MICE, therefore a small scale

simulation study was conducted in order to compare them. A few trials were carried

out for both linear model and Logistic regression. The main objective of this trials is to

obtain a suitable imputation method and also to understand the corresponding chosen

method.

The analysis of linear model and Logistic regression showed that the best imputation

methods are ”norm.nob” and ”norm”. These methods give smaller bias and MSE values

than the other methods. In Figure 4.1, the bias value for β2 generally falls below the

equality line, meaning that β1 is less biased than β2 for both imputation methods. The

bias values are much higher for β2 (which is estimated with imputed values) than β1.

The bias and MSE values increase as missing percentages increases for both imputation

methods. In general, there are no clear differences between the two imputation methods

in terms of bias and MSE values for linear regression.

There is no systematic difference between the two methods for bias in Logistic regression

(see Figure 4.2) but the MSE values are slightly higher for the ”norm” method. When

the percentages of missing increases from 10% to 50%, the MSE values for ”norm”

method also increase. Therefore, there are no clear differences between the two impu-

tation methods in terms of bias and MSE values for Logistic regression as well as linear

regression.

Imputed values are affecting the estimation of β2 where the bias and MSE values are

larger for β2 compared to β1, see Figure 4.1 and Figure 4.2. Figure 4.1 shows that for

both methods, bias and MSE values are larger for β2. These results show that there is an

effect of imputation on the parameter estimation. The imputation is not only affecting

the estimation of β2 but also affects β1. There is a trade-off between the estimation of

both coefficients in order to produce lower MSE. Therefore when β2 is overestimated,

then β1 will be underestimated to minimize the error.



Chapter 4. Comparison between Model Selection and Model Averaging 69

●●
●●●

●
●
●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●●●

●

●

●

●●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●
●●

●

●

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

beta2

be
ta

1

Bias for norm.nob

●

●

●

●

m0
m10
m25
m50

(a) Absolute bias for norm.nob method

●●●●●●●●●●
●

●●●●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●●●
●

●

●●●
●

●

●●●●
●

●●

●

●

●

●●
●

●

●

●●●
●

●

●●●
●

●

●●●●
●●

●

●

●

●

●●
●

●

●

●●●
●

●

●●●
●

●

●●●●
●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

beta2

be
ta

1

MSE for norm.nob

●

●

●

●

m0
m10
m25
m50

(b) MSE for norm.nob method

●●
●●●

●
●
●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●● ●

●

●
●
●●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●●●
●●

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

beta2

be
ta

1

Bias for norm

●

●

●

●

m0
m10
m25
m50

(c) Absolute bias for norm method

●●●●●●●●●●
●

●●●●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●●●
●

●

●●●
●

●

●●●●
●

●●

●

●

●

●●
●

●

●

●●●
●

●

●●●
●

●

●●●●
●●

●

●

●

●

●●
●

●

●

●●
●

●

●

●●●
●

●

●●●●
●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

beta2

be
ta

1

MSE for norm

●

●

●

●

m0
m10
m25
m50

(d) MSE for norm method

Figure 4.1: Bias and MSE for norm.nob and norm methods in package MICE for linear
regression

According to Donner [1982], the linear prediction is most effective for estimating the

coefficients and it has a lower MSE value compared to complete-case method, mean

substitution method and piece-wise method. This is coincides with the results of this

study where the ”norm.nob” and ”norm” methods, both regression methods, were cho-

sen as best method. These methods were less biased and had a lower MSE. However, the

β2 in this study more biased than the β2 in Donner [1982] since Donner [1982] did not

included outcome in the imputation model. Besides that, our study showed that these

two methods are better than the classical linear prediction (known as ”norm.predict”

in MICE package) discussed in Donner [1982]’s research. Therefore, ”norm.nob” and
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”norm” methods are best imputation methods for linear model and Logistic regression.

Donner [1982] also suggested that the linear prediction method is less biased for esti-

mating β2 than for estimating β1, especially when correlation coefficient is small. This

coincides with the results of this study where weaker correlation produced less bias and

reduced the error in the estimation of parameters.
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Figure 4.2: Bias and MSE for norm.nob and norm methods in package MICE for logistic
regression

Schafer [1997] stated that ”norm” is a proper and ”norm.nob” is an improper method for

multiple imputation. In conclusion, from a Bayesian perspective, the ”norm” method

is a proper method for multiple imputation.Therefore, in this research, the imputation
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method ”norm” will be used for imputing missing data in both linear regression and

Logistic regression analyses.

4.2 Results

In this section, we will discuss the results for linear model and logistic regression based

on the simulation design in the previous section. All three strategies of building im-

putation and prediction models will be compared on both linear model and logistic

regression models beginning with non-overlapping variable sets. Since AICc converges

to AIC with increases in the ratio
n

k
, only AICc and BIC results will be shown. The ad-

vantage of AICc over AIC is the application in small samples where it is less biased than

AIC [Claeskens and Hjort, 2008]. However, all the three model selection criteria were

used for simulation studies in both model selection and model averaging. The negative

and positive correlations of the same magnitude showed similar results, therefore only

positive correlation results will be discussed for model selection and model averaging.

The performance of model selection and model averaging were compared in both linear

model and logistic regression using mean square error of prediction.

4.2.1 Linear regression with non-overlapping variable sets

Model selection using non-overlapping variable sets showed similar results for negative

and positive correlations of the same magnitude. When σε = 0.25 (the smallest value

used in these simulations), the true model M110 was chosen in each of the 1000 sim-

ulations for all combinations of ρ23 and for m = 0, 25 and 50. When σε = 1, with a

solitary exception, the true model M110 was chosen 100% compared to other possible

models in each of 1000 simulations for m = 0 and all values of ρ23. Also when σε = 1,

for n = 100, 200 and 400, the true model M110 was selected 100% compared to other

possible models for for m = 25 and all values of ρ23. However, for n = 50, the number

of times the true model M110 was selected via AICc and BIC increased as ρ23 increased,

the true model M110 was selected 100% for ρ23 = 0.75.

Table 4.2a and Table 4.2b show the equivalent results when σε = 1 and m = 50. The

true model M110 was selected 100% as sample size increased for all values of ρ23. For

n = 50 and n = 100, the number of times model M100 was selected via AICc and BIC

decreased as the ρ23 increased from zero to 0.75. As n increased, the number of times

model M100 was selected via AICc and BIC decreased for any ρ23.
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Table 4.2: Number of times all possible models are selected via AICc and BIC in each
of 1000 simulations for all the combinations of ρ23 when σε = 1 and m = 50 for linear

regression

(a) Number of times all possible models are selected by AICc

σε = 1 and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 0 29 1 970 0 17 0 983 0 9 0 991 0 2 0 998

n = 100 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

n = 200 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

n = 400 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

(b) Number of times all possible models are selected by BIC

σε = 1 and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 0 50 5 945 0 34 5 961 0 25 5 970 0 8 0 992

n = 100 0 2 0 998 0 1 0 999 0 0 0 1000 0 0 0 1000

n = 200 0 0 0 1000 0 20 0 1000 0 0 0 1000 0 0 0 1000

n = 400 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

Table 4.3: Number of times all possible models are selected via AICc and BIC in each
of 1000 simulations for all the combinations of ρ23 when σε = 4 and m = 0 for linear

regression

(a) Number of times all possible models are selected by AICc

σε = 4 and m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 143 248 213 396 133 216 231 420 149 212 242 397 140 254 236 370

n = 100 27 117 120 736 27 116 135 722 16 120 125 739 18 110 135 737

n = 200 0 15 20 965 1 20 21 958 0 15 23 962 0 19 23 958

n = 400 0 2 0 998 0 0 0 1000 0 0 0 1000 0 0 0 1000

(b) Number of times all possible models are selected by BIC

σε = 4 and m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 366 241 222 171 327 246 245 182 370 217 234 179 357 257 225 161

n = 100 173 218 196 413 145 212 241 402 126 205 258 411 157 207 233 403

n = 200 16 105 99 780 16 94 92 798 21 85 102 792 21 114 105 760

n = 400 0 10 3 985 0 5 10 985 0 4 2 994 0 9 7 984

When σε = 4, Table 4.3a and Table 4.3b show the number of times all possible models

are selected via AICc and BIC for all the combinations of n and ρ23 without any missing

data in variable X2. For a small sample size and this larger error variance, model

M100 was selected more frequently compared to the true model M110. As sample

size increased, the tendency to choose model M100 decreased. On the other hand, as

sample size increased, the true model M110 was selected more frequently by both model

selection criteria. AICc chose the true model M110 more often than BIC as the sample

size increased. BIC tends to select a smaller model.
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Table 4.4: Number of times all possible models are selected via AICc and BIC in each
of 1000 simulations for all the combinations of ρ23 when σε = 4 and m = 25 for linear

regression

(a) Number of times all possible models are selected by AICc

σε = 4 and m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 154 248 211 387 145 243 232 380 144 252 210 394 140 233 231 396

n = 100 29 184 122 665 29 187 112 672 44 179 138 639 17 136 133 714

n = 200 0 56 22 922 0 63 18 919 0 54 15 931 1 33 23 943

n = 400 0 0 0 1000 0 4 0 996 0 1 1 998 0 0 1 999

(b) Number of times all possible models are selected by BIC

σε = 4 and m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 346 231 247 176 339 246 246 169 344 229 260 167 372 226 228 174

n = 100 173 254 219 354 152 257 231 360 185 247 234 334 160 225 235 380

n = 200 23 163 103 711 20 149 104 727 20 143 102 735 22 124 117 737

n = 400 0 26 6 968 0 30 5 965 0 24 6 970 0 8 9 983

Table 4.4a and Table 4.4b show the number of times all possible models are selected via

AICc and BIC when σε = 4 for all the combinations of n and ρ23 with 25% of imputed

values in variable X2. For a small sample size and this larger variance, model M100 was

selected via both criteria more frequently compared to true model M110. As sample size

increases, the tendency to choose model M100 decreases. Whereas true model M110 was

chosen via AICc almost 100% as sample size increases for all the combinations. On the

other hand, the chances of BIC choosing the true model M110 is almost 97% as sample

size increases. For larger sample size, the chances of BIC choosing the true model M110

increases as ρ23 increases.

Table 4.5a and Table 4.5b show the number of times all possible models are selected via

AICc and BIC for all the combinations of ρ23 and σε = 4 with 50% of imputed values in

variable X2. The true model M110 was chosen almost 100% as sample size increases for

all the combinations of ρ23 and σε = 4. The chances of AICc and BIC choosing the true

model M110 is above 90% as sample size increases. AICc tends to choose true model

M110 more often compared to BIC for 50% imputed data.
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Table 4.5: Number of times all possible models are selected via AICc and BIC in each
of 1000 simulations for all the combinations of ρ23 when σε = 4 and m = 50 for linear

regression

(a) Number of times all possible models are selected by AICc

σε = 4 and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 141 256 226 377 147 246 243 364 162 255 239 344 144 245 225 386

n = 100 50 200 130 620 44 221 137 598 47 230 98 625 26 184 125 665

n = 200 4 104 29 863 2 117 22 859 2 82 24 892 2 65 16 917

n = 400 0 23 0 977 0 25 0 975 0 16 0 984 0 8 1 991

(b) Number of times all possible models are selected by BIC

σε = 4 and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 330 222 282 166 301 226 299 174 340 228 288 144 346 209 262 183

n = 100 169 256 226 349 161 277 254 308 178 268 202 352 168 248 215 369

n = 200 36 212 118 634 36 231 118 615 26 207 104 663 34 187 91 688

n = 400 0 85 9 906 0 69 8 923 0 72 7 919 0 40 7 953

Table 4.6a and Table 4.6b show the MSE(P) for the best model selected via AICc and

BIC for all combinations of the other parameters when m = 0. The MSE(P) decreases

as sample size increases and the decrease is proportional to sample size. As σε increases,

MSE(P) increases and the increase is proportional to σ2
ε . With m = 0, there is no

imputation so ρ23 should make no difference. The decreases in MSE(P) values as ρ23

increases is just a sampling error. Both model selection criteria show similar results.

Table 4.6: MSE(P) for best model selected via AICc and BIC when m = 0 for linear
regression

(a) MSE(P) for best model selected via AICc

AICc and m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0038 0.0586 1.3368 0.0038 0.0612 1.3306 0.0039 0.0588 1.3284 0.0036 0.0609 1.3192

n = 100 0.0018 0.0278 0.6152 0.0018 0.0292 0.6248 0.0017 0.0284 0.5802 0.0017 0.0288 0.5946

n = 200 0.0009 0.0139 0.2378 0.0009 0.0138 0.2512 0.0009 0.0143 0.2475 0.0009 0.0139 0.2418

n = 400 0.0004 0.0071 0.1148 0.0005 0.0067 0.1141 0.0004 0.0073 0.1043 0.0004 0.0068 0.1127

(b) MSE(P) for best model selected via BIC

BIC and m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0038 0.0591 1.7258 0.0038 0.0612 1.7072 0.0039 0.0588 1.7072 0.0036 0.0609 1.6791

n = 100 0.0018 0.0278 1.0031 0.0018 0.0292 0.9845 0.0017 0.0284 0.9417 0.0017 0.0288 0.9857

n = 200 0.0009 0.0139 0.3812 0.0009 0.0138 0.3770 0.0009 0.0143 0.3860 0.0009 0.0139 0.3995

n = 400 0.0004 0.0071 0.1227 0.0005 0.0067 0.1232 0.0004 0.0073 0.1082 0.0004 0.0068 0.1225
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Table 4.7: MSE(P) for best model selected via AICc and BIC when m = 25 for linear
regression

(a) MSE(P) for best model selected via AICc

AICc and m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0451 0.0999 1.4358 0.0403 0.0986 1.4339 0.0372 0.0889 1.3641 0.0242 0.0818 1.3572

n = 100 0.0328 0.0533 0.6758 0.0304 0.0518 0.6895 0.0255 0.0482 0.7030 0.0168 0.0386 0.6488

n = 200 0.0263 0.0313 0.2965 0.0249 0.0312 0.2971 0.0206 0.0268 0.2782 0.0120 0.0203 0.2784

n = 400 0.0232 0.0204 0.1304 0.0222 0.0196 0.1295 0.0181 0.0168 0.1304 0.0102 0.0123 0.1165

(b) MSE(P) for best model selected via BIC

BIC and m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0451 0.1004 1.7643 0.0403 0.1003 1.7677 0.0372 0.0894 1.7214 0.0242 0.0818 1.7547

n = 100 0.0328 0.0533 1.0497 0.0304 0.0518 1.0459 0.0255 0.0482 1.0719 0.0168 0.0386 1.0406

n = 200 0.0263 0.0313 0.4615 0.0249 0.0312 0.4490 0.0206 0.0268 0.4335 0.0120 0.0203 0.4406

n = 400 0.0232 0.0204 0.1491 0.0222 0.0196 0.1485 0.0181 0.0168 0.1466 0.0102 0.0123 0.1255

Table 4.7a and Table 4.7b show the MSE(P) for the best model selected via AICc and

BIC for all combinations when m = 25. The MSE(P) decreases as sample size increases

but the decrease is not proportional to sample size. As σε increases, MSE(P) increases

but the increase is not proportional to σ2
ε . The MSE(P) values were much higher after

imputation. The MSE(P) values decrease as ρ23 increases but there are no clear effects

of ρ23 in the variation of MSE(P) values. The decreases and increases in MSE(P) values

as ρ23 increases is just a sampling error. For larger variance, MSE(P) for best model

selected via BIC is larger compared to AICc.

Table 4.8a and Table 4.8b show equivalent results for m = 50 in terms of sample size

and σε. The MSE(P) values were increased as percentages of missingness increased. For

larger variance, MSE(P) for best model selected via BIC is larger compared to AICc.

For larger error variance, the MSE(P) values decrease as ρ23 increases and there is a

very substantial decrease for small sample size.
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Table 4.8: MSE(P) for best model selected via AICc and BIC when m = 50 for linear
regression

(a) MSE(P) for best model selected via AICc

AICc and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.1324 0.2027 1.7660 0.1244 0.1821 1.7155 0.1126 0.1637 1.7072 0.0694 0.1242 1.5155

n = 100 0.0973 0.1088 0.8552 0.0915 0.1046 0.9066 0.0801 0.0856 0.8156 0.0482 0.0635 0.7580

n = 200 0.0832 0.0700 0.3946 0.0788 0.0653 0.4045 0.0647 0.0570 0.3573 0.0381 0.0370 0.3205

n = 400 0.0751 0.0535 0.1842 0.0714 0.049 0.1843 0.0586 0.0404 0.1693 0.0330 0.0245 0.1564

(b) MSE(P) for best model selected via BIC

BIC and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.1327 0.2150 2.0593 0.1257 0.1937 1.9548 0.1130 0.1743 1.9731 0.0694 0.1275 1.8357

n = 100 0.0973 0.1096 1.1377 0.0915 0.1050 1.2008 0.0801 0.0856 1.1351 0.0482 0.0635 1.1079

n = 200 0.0832 0.0700 0.5787 0.0788 0.0653 0.5952 0.0647 0.0570 0.5340 0.0381 0.0370 0.5043

n = 400 0.0751 0.0535 0.2251 0.0714 0.0490 0.2122 0.0586 0.0404 0.2088 0.0330 0.0245 0.1787

Figure 4.3a shows the MSE(P) for best model selected via AICc and BIC for each ρ23, σε,

missing percentages and sample size, n = 50. The MSE(P) for best model selected via

AICc is lower than the MSE(P) for best model selected via BIC especially for larger error

variance. There is no clear difference between MSE(P) for best model selected via AICc

and BIC for σε = 0.25 and σε = 1. Figure 4.3b, Figure 4.3c and Figure 4.3d show the

MSE(P) for best model selected via AICc and BIC for each ρ23, σε, missing percentages

and sample size, n = 100, n = 200 and n = 400 respectively. As sample size increases,

the MSE(P) for best model selected via AICc and BIC decreases. However, the MSE(P)

for best model selected via AICc is lower than the MSE(P) for best model selected via

BIC for larger error variance. The MSE(P) for for best model selected via AICc and

BIC is much higher for σε = 4 and smaller sample size, however it decreases as sample

size increases. Therefore, there is no clear effect of σε for large sample size. In addition,

there are no effects of ρ23 where the results showed a flat line for all combinations of σε

and sample size. For all combinations of σε and sample size, the negative and positive

correlations of the same magnitude showed similar results, with some variation for larger

error variance.
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Figure 4.3: MSE(P) for best model selected via AICc and BIC for different sample sizes
and linear regression

Table 4.9a and Table 4.9b show the MSE(P) achieved using model averaging via AICc

and BIC for all combinations when m = 0. The MSE(P) decreases as sample size

increases and it increases as σε increases. Both model selection criteria show similar

results. In general, the MSE(P) values for model averaging are lower than for the model

selection procedures, especially for smaller sample sizes and higher error variances.
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Table 4.9: MSE(P) for model averaging via AICc and BIC when m = 0 for linear
regression

(a) MSE(P) for model averaging via AICc

AICc and m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0037 0.0568 0.9665 0.0036 0.0614 0.9751 0.0036 0.0586 0.9314 0.0037 0.0607 0.9927

n = 100 0.0018 0.0302 0.4622 0.0018 0.0286 0.4426 0.0018 0.0287 0.4513 0.0018 0.0275 0.4721

n = 200 0.0009 0.0140 0.2327 0.0009 0.0138 0.2198 0.0009 0.0144 0.2304 0.0008 0.0140 0.2257

n = 400 0.0004 0.0068 0.1124 0.0004 0.0069 0.1096 0.0004 0.0072 0.1102 0.0004 0.0069 0.1040

(b) MSE(P) for model averaging via BIC

BIC and m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0037 0.0568 0.9717 0.0036 0.0614 0.9788 0.0036 0.0586 0.9384 0.0037 0.0607 0.9988

n = 100 0.0018 0.0302 0.4647 0.0018 0.0286 0.4464 0.0018 0.0287 0.4530 0.0018 0.0275 0.4764

n = 200 0.0009 0.0140 0.2337 0.0009 0.0138 0.2211 0.0009 0.0144 0.2312 0.0008 0.0140 0.2266

n = 400 0.0004 0.0068 0.1124 0.0004 0.0069 0.1097 0.0004 0.0072 0.1103 0.0004 0.0069 0.1041

Table 4.10: MSE(P) for model averaging via AICc and BIC when m = 25 for linear
regression

(a) MSE(P) for model averaging via AICc

AICc and m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0444 0.0976 1.1429 0.0423 0.0975 1.0856 0.0365 0.0891 1.1720 0.0247 0.0751 1.0469

n = 100 0.0331 0.0512 0.5623 0.0316 0.0514 0.5568 0.0267 0.0464 0.5372 0.0154 0.0391 0.5052

n = 200 0.0259 0.0303 0.2696 0.0257 0.0305 0.2560 0.0206 0.0270 0.2644 0.0121 0.0209 0.2436

n = 400 0.0234 0.0205 0.1353 0.0220 0.0195 0.1288 0.0177 0.0175 0.1251 0.0101 0.0120 0.1195

(b) MSE(P) for model averaging via BIC

BIC and m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.0444 0.0977 1.1466 0.0423 0.0976 1.0906 0.0365 0.0891 1.1760 0.0247 0.0752 1.0505

n = 100 0.0331 0.0512 0.5660 0.0316 0.0514 0.5613 0.0267 0.0464 0.5417 0.0154 0.0391 0.5096

n = 200 0.0259 0.0303 0.2706 0.0257 0.0305 0.2573 0.0206 0.0270 0.2650 0.0121 0.0209 0.2451

n = 400 0.0234 0.0205 0.1353 0.0220 0.0195 0.1289 0.0177 0.0175 0.1252 0.0101 0.0120 0.1195

Table 4.10a and Table 4.10b show the MSE(P) for model averaging via AICc and BIC

for all combinations when m = 25. The MSE(P) decreases as sample size increases and

it increases as σε increases. The MSE(P) values were higher after imputation. MSE(P)

decreases as sample size increase. The MSE(P) values decrease as ρ23 increases but

there are no clear effects of ρ23 in the variation of MSE(P) values. Both model selection
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criteria show similar results. The MSE(P) values for model averaging are lower than for

the model selection procedures after imputation.

Table 4.11: MSE(P) for model averaging via AICc and BIC when m = 50 for linear
regression

(a) MSE(P) for model averaging via AICc

AICc and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.1325 0.1845 1.4787 0.1245 0.1816 1.4938 0.1127 0.1629 1.4012 0.0695 0.1223 1.2278

n = 100 0.0974 0.1054 0.7041 0.0927 0.1008 0.7294 0.0781 0.0931 0.6471 0.0481 0.0626 0.5839

n = 200 0.0820 0.0707 0.3680 0.0780 0.0643 0.3545 0.0648 0.0559 0.3336 0.0382 0.0363 0.2863

n = 400 0.0745 0.0504 0.1836 0.0707 0.0499 0.1830 0.0592 0.0393 0.1563 0.0325 0.0240 0.1374

(b) MSE(P) for model averaging via BIC

BIC and m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

σε 0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

n = 50 0.1325 0.1845 1.4826 0.1245 0.1819 1.4978 0.1126 0.1630 1.4060 0.0695 0.1223 1.2346

n = 100 0.0974 0.1054 0.7098 0.0927 0.1008 0.7327 0.0781 0.0931 0.6523 0.0481 0.0626 0.5883

n = 200 0.0820 0.0707 0.3704 0.0780 0.0643 0.3564 0.0648 0.0559 0.3345 0.0382 0.0363 0.2871

n = 400 0.0745 0.0504 0.1837 0.0707 0.0499 0.1831 0.0592 0.0393 0.1565 0.0325 0.0240 0.1375

Table 4.11a and Table 4.11b show equivalent results as m = 25 in terms of sample

size and σε. The MSE(P) values were increases as percentages of missingness increases.

MSE(P) decreases as ρ23 increases but there is no substantial decrease in the MSE(P)

values. Both model selection criteria show similar results. The MSE(P) values for model

averaging are lower than for the model selection procedures after imputation.

Figure 4.4a, Figure 4.4b, Figure 4.4c and Figure 4.4d show the MSE(P) for model

averaging via AICc and BIC for each ρ23, σε, missing percentages and sample sizes,

n = 50, n = 100, n = 200 and n = 400 respectively. There is no clear difference

between MSE(P) for model averaging via AICc and BIC for all σε and sample sizes.

As sample size increases, the MSE(P) for model averaging via AICc and BIC decreases.

The MSE(P) for model averaging via AICc and BIC is much higher for σε = 4 and

smaller sample size, however it decreases as sample size increases. Therefore, there is

no clearer effect of σε for large sample size. Moreover, there is no difference between

MSE(P) for model averaging via AICc and BIC for all σε in larger sample size. There are

no effects of ρ23 where the results showed a flat line for all combinations of σε and large

sample size. Whereas for smaller sample size and larger error variance, MSE(P) values

decreases as ρ23 increases. For all combinations of σε and sample size, the negative and

positive correlations of the same magnitude showed similar results, with some variation

for larger error variance.
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Figure 4.4: MSE(P) for model averaging via AICc and BIC for each ρ23, σε, missing
percentages and all sample sizes for linear regression

Figure 4.5a, Figure 4.5b and Figure 4.5c show comparison between model averaging and

model selection for non-overlapping via AICc for each ρ23, σε, missing percentages and

sample sizes, n = 50 and n = 400. The MSE(P) for model averaging via AICc is lower

than the MSE(P) for best model selection via AICc for larger error variance and small

sample size for each ρ23. As sample size increases, the MSE(P) for model averaging and

model selection via AICc decreases. Moreover, there is no difference between MSE(P)

for model averaging and model selection via AICc for different values of σε for larger

sample size.



Chapter 4. Comparison between Model Selection and Model Averaging 81

● ● ● ● ● ● ●

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

Model Selection and Averaging for Non−overlapping

rho23

M
S

E
P

● ● ● ● ● ● ●
● ● ● ● ● ● ●● ● ● ● ● ● ●

● m0
m25
m50

MA n=50
MS n=50
MA n=400
MS n=400

(a) σε = 0.25

● ●
●

●
●

● ●

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Model Selection and Averaging for Non−overlapping

rho23

M
S

E
P

●
● ● ● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ● ●

● m0
m25
m50

MA n=50
MS n=50
MA n=400
MS n=400

(b) σε = 1

● ● ●
● ●

●

●

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Model Selection and Averaging for Non−overlapping

rho23

M
S

E
P

●
● ●

● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ● ●

● m0
m25
m50

MA n=50
MS n=50
MA n=400
MS n=400

(c) σε = 4

Figure 4.5: Comparison between model averaging and model selection for non-
overlapping variable sets via AICc for each ρ23, σε, missing percentages and sample

sizes, n = 50 and n = 400 for linear regression

4.2.2 Linear regression with restrictive and inclusive strategies

The MSE(P) for model averaging with a restrictive strategy is lower than the MSE(P) for

best model selected via AICc for larger error variance and small sample size for each ρ23.

There is no difference between model averaging and model selection via AICc for smaller

error variance and larger sample size for each ρ23. As sample size increases, the MSE(P)

for model averaging and model selection via AICc decreases. Figure 4.6a, Figure 4.6b
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and Figure 4.6c show the comparison between model averaging and model selection for

restrictive strategy via AICc for each ρ23, σε, missing percentages and sample sizes,

n = 50 and n = 400. For restrictive strategy, the MSE(P) for model averaging and

model selection decreases as |ρ23| increases for σε = 0.25 and σε = 1 for all sample size.

For σε = 4, there are no effects of |ρ23|.
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Figure 4.6: Comparison between model averaging and model selection for restrictive
strategy via AICc for each ρ23, σε, missing percentages and sample sizes, n = 50 and

n = 400 for linear regression

Figure 4.7a, Figure 4.7b and Figure 4.7c show comparison between model averaging and

model selection for inclusive strategy via AICc for each ρ23, σε, missing percentages and

sample sizes, n = 50 and n = 400. The MSE(P) for model averaging with inclusive

strategy is lower than the MSE(P) for best model selected via AICc for larger error

variance and small sample size for each ρ23. The MSE(P) for model averaging and
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model selection decreases as |ρ23| increases for for σε = 0.25 and σε = 1 for all sample

size. For σε = 4, there are no effects of |ρ23|.
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Figure 4.7: Comparison between model averaging and model selection for inclusive
strategy via AICc for each ρ23, σε, missing percentages and sample sizes, n = 50 and

n = 400 for linear regression

Figure 4.8 shows the comparison between all three model-building strategies (non-

overlapping variable sets, restrictive and inclusive strategies) for model averaging and

model selection via AICc for each ρ23, σε, missing percentages and sample sizes, n = 50

and n = 400. For σε = 1, the MSE(P) for model averaging with an inclusive strategy

is lower than the MSE(P) for non-overlapping variable sets and restrictive strategy for

small sample size and m = 50. Whereas for σε = 4, the MSE(P) for model averaging

with non-overlapping variable sets is lower than the MSE(P) for restrictive and inclu-

sive strategies for all sample size. There are no clear difference between the MSE(P) of

all three model-building strategies for different values of ρ23 for all combinations of σε,
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missing percentages and sample sizes. There is no effect of the negative and positive

correlations of same magnitude for model averaging and model selection for all three

model-building strategies.
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(a) Model Averaging n = 50

● ● ● ● ● ● ●

−1.0 −0.5 0.0 0.5 1.0
0.

0
0.

5
1.

0
1.

5
2.

0

Model Selection for n=50

rho23

M
S

E
P ●

● ●
● ● ● ●

● ● ● ● ● ● ●

●

● ●

●

● ● ●

● ● ● ● ● ● ●

●

● ●

●

● ● ●

● m0
m25
m50

N−overlap−sig=1
Res−sig=1
Inc−sig=1

N−overlap−sig=4
Res−sig=4
Inc−sig=4

(b) Model Selection n = 50

● ● ● ● ● ● ●

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Model Averaging for n=400

rho23

M
S

E
P

● ●
● ●

● ●
●

● ● ● ● ● ● ●

●

● ●
●

●
●

●

● ● ● ● ● ● ●

●

● ●
●

●
●

●

● m0
m25
m50

N−overlap−sig=1
Res−sig=1
Inc−sig=1

N−overlap−sig=4
Res−sig=4
Inc−sig=4

(c) Model Averaging n = 400
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(d) Model Selection n = 400

Figure 4.8: Comparison between all three model-building strategies for model averaging
and model selection for each ρ23, σε, missing percentages and sample size (n = 50 and

n = 400) for linear regression
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4.2.3 Logistic regression with non-overlapping variable sets

This simulation study was conducted based on the simulation design discussed in Sec-

tion 4.1 with a Logistic regression as in Equation (4.4). X (X1, X2 and X3) values

were simulated based on a multivariate normal distribution with fixed zero means, all

variances equal to 1 and zero correlations except (generally) for ρ23 (the correlation

between X2 and X3). The analysis was carried out for every combination of n,m and

correlation ρ23 = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75. Table 4.12a and Table 4.12b show

the number of times all possible models were selected via AICc and BIC in each of 1000

simulations for all the combinations of ρ23 and n without any missing data in variable

X2.

Table 4.12: Number of times all possible models are selected by AICc and BIC in each
of 1000 simulations for all the combinations of ρ23 when m = 0 for logistic regression

(a) Number of times all possible models are selected by AICc

m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 9 82 85 824 6 96 76 822 7 79 65 849 11 99 67 823

n = 100 0 9 8 983 0 9 6 985 0 8 7 985 0 1 6 993

n = 200 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

n = 400 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

(b) Number of times all possible models are selected by BIC

m = 0

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 42 168 174 616 50 174 172 604 54 162 160 624 48 182 146 624

n = 100 2 37 32 929 3 43 27 927 2 46 37 915 3 32 32 933

n = 200 0 1 0 999 0 1 2 997 0 1 2 997 0 1 1 998

n = 400 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

Table 4.13a and Table 4.13b show the number of times all possible models were selected

via AICc and BIC in each 1000 simulations for all the combinations of ρ23 and n with

imputed values of 25% in variable X2. Both table show that, the true model M110 was

selected 100% as sample size increases for all the combinations of ρ23. AICc choose the

true model M110 more frequently than BIC as the sample size increases. BIC tends to

select a smaller model. BIC tends to choose model M100 more frequently for smaller

sample size. For smaller sample size, the number of times the true model M110 are

selected increases as correlation values increases.
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Table 4.13: Number of times all possible models are selected by AICc and BIC in each
of 1000 simulations for all the combinations of ρ23 when m = 25 for logistic regression

(a) Number of times all possible models are selected by AICc

m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 11 155 105 729 13 135 79 773 11 139 83 767 13 105 77 805

n = 100 0 27 5 968 0 24 12 964 0 20 8 972 0 16 6 978

n = 200 0 1 0 999 0 0 0 1000 0 0 0 1000 0 0 0 1000

n = 400 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

(b) Number of times all possible models are selected by BIC

m = 25

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 71 231 185 513 67 200 144 589 57 219 161 563 59 185 150 606

n = 100 3 96 42 859 2 79 35 884 3 67 39 891 1 56 43 900

n = 200 0 4 1 996 0 2 0 998 0 5 2 993 0 2 1 997

n = 400 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

Table 4.14: Number of times all possible models are selected by AICc and BIC in each
of 1000 simulations for all the combinations of ρ23 when m = 50 for logistic regression

(a) Number of times all possible models are selected by AICc

m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 32 176 97 695 10 193 118 679 25 179 96 700 14 173 88 725

n = 100 1 86 14 899 0 68 9 923 0 67 12 921 0 49 11 940

n = 200 0 10 0 990 0 9 0 991 0 3 0 997 0 1 0 999

n = 400 0 0 0 1000 0 0 0 1000 0 0 0 1000 0 0 0 1000

(b) Number of times all possible models are selected by BIC

m = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

Selected model M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110 M000 M100 M010 M110

n = 50 88 219 150 543 78 242 175 505 91 225 158 526 67 234 160 539

n = 100 8 150 57 785 6 130 46 818 2 151 45 802 10 110 54 826

n = 200 0 34 0 966 0 35 2 963 0 27 2 971 0 13 1 986

n = 400 0 0 0 1000 0 0 0 1000 0 3 0 997 0 0 0 1000

Table 4.14a and Table 4.14b show the number of times all possible models were selected

via AICc and BIC in each of 1000 simulations for all the combinations of ρ23 and n

with imputed values of 50% in variable X2. AICc choose the true model M110 more

frequently compared to BIC as the sample size increases. BIC tends to choose model

M100 more often compared to model M110 for smaller sample size. There are no effects

of ρ23 in the frequency of selecting true model M110 for all missing percentages.

Table 4.15a and Table 4.15b show the MSE(P) for the best model selected via AICc

and BIC for all combinations. The MSE(P) decreases as the sample size increases and

it increases as missing percentages increases. AICc and BIC show similar results as
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sample size increases. There are no effects of ρ23 in the variation of MSE(P) values.

The MSE(P) values are proportional to sample sizes when there are no missing data

observed in variable X2.

Table 4.15: MSE(P) for best model selected via AICc and BIC for logistic regression

(a) MSE(P) for best model selected via AICc

AICc

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

m m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0139 0.0195 0.0246 0.0146 0.0178 0.0234 0.0139 0.0177 0.0240 0.0148 0.0162 0.0246

n = 100 0.0058 0.0072 0.0106 0.0056 0.0074 0.0101 0.0058 0.0068 0.0098 0.0055 0.0062 0.0086

n = 200 0.0027 0.0034 0.0050 0.0028 0.0032 0.0049 0.0028 0.0031 0.0044 0.0027 0.0030 0.0041

n = 400 0.0013 0.0017 0.0023 0.0013 0.0017 0.0022 0.0014 0.0016 0.0022 0.0013 0.0016 0.0019

(b) MSE(P) for best model selected via BIC

BIC

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

m m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0198 0.0260 0.0293 0.0209 0.0237 0.0286 0.0205 0.0237 0.0251 0.0206 0.0221 0.0249

n = 100 0.0070 0.0095 0.0130 0.0068 0.0091 0.0123 0.0073 0.0085 0.0122 0.0068 0.0079 0.0111

n = 200 0.0027 0.0034 0.0054 0.0028 0.0032 0.0053 0.0028 0.0032 0.0048 0.0028 0.0031 0.0043

n = 400 0.0013 0.0017 0.0023 0.0013 0.0017 0.0022 0.0014 0.0016 0.0022 0.0013 0.0016 0.0019

Table 4.16: MSE(P) for model averaging via AICc and BIC for logistic regression

(a) MSE(P) for model averaging via AICc

AICc

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

m m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0162 0.0193 0.0254 0.0157 0.0189 0.0238 0.0161 0.0187 0.0228 0.0156 0.0179 0.0201

n = 100 0.0062 0.0080 0.0113 0.0062 0.0081 0.0112 0.0065 0.0077 0.0107 0.0062 0.0077 0.0092

n = 200 0.0027 0.0036 0.0054 0.0028 0.0034 0.0052 0.0027 0.0032 0.0046 0.0028 0.0031 0.0037

n = 400 0.0013 0.0018 0.0027 0.0013 0.0017 0.0023 0.0013 0.0016 0.0022 0.0013 0.0015 0.0019

(b) MSE(P) for model averaging via BIC

BIC

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

m m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0190 0.0221 0.0280 0.0186 0.0217 0.0262 0.0189 0.0215 0.0253 0.0185 0.0208 0.0227

n = 100 0.0073 0.0097 0.0135 0.0075 0.0098 0.0133 0.0078 0.0092 0.0127 0.0074 0.0092 0.0110

n = 200 0.0028 0.0038 0.0060 0.0029 0.0036 0.0058 0.0028 0.0033 0.0051 0.0028 0.0032 0.0039

n = 400 0.0013 0.0018 0.0027 0.0013 0.0017 0.0023 0.0013 0.0016 0.0023 0.0013 0.0015 0.0019

Table 4.16a and Table 4.16b show the MSE(P) for model averaging via AICc and BIC for

all combinations. The MSE(P) decreases as the sample size increases and it increases
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as missing percentages increases. AICc and BIC show similar results as sample size

increases. The variation in MSE(P) values are not significant.
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Figure 4.9: MSE(P) for best model selected and model averaging via AICc and BIC for
each ρ23, missing percentages and sample sizes (n=50 and n=400) for logistic regression

Figure 4.9a shows the MSE(P) for best model selected via AICc and BIC for each ρ23,

missing percentages and sample size, n = 50 and n = 400. It shows that there is

no significant difference between MSE(P) value for negative and positive ρ23 values.

For small sample size, there is a clear difference between the MSE(P) values for model

selected via AICc and BIC but there is no difference as sample size increases. AICc

performs better in terms of prediction for small sample size.

Figure 4.9b shows the MSE(P) for model averaging via AICc and BIC for each ρ23,

missing percentages and sample sizes. It shows that there is no difference between

MSE(P) values for negative and positive ρ23 values. There is no difference between

MSE(P) for model averaging via AICc and BIC for large sample size. It is clear that

MSE(P) for model averaging via AICc and BIC decreases as sample size increases. There

are no effects of ρ23 in the variation of MSE(P) values where the lines in the Figure 4.9a

and Figure 4.9b are stationary as ρ23 increases for large sample size.

Figure 4.10 shows comparison between model averaging and model selection for non-

overlapping variable sets via AICc for each ρ23, missing percentages and sample sizes,

n = 50 and n = 400. The results shows that MSE(P) for model selection are lower

than model averaging for small sample sizes and m = 50. For large sample sizes, there
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are no differences between MSE(P) values for model averaging and model selection via

AICc for all combinations. There are no differences between MSE(P) values of model

selection and model averaging via AICc for negative and positive ρ23 values of the same

magnitude.
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Figure 4.10: Comparison between model averaging and model selection for non-
overlapping variable sets via AICc for each ρ23, missing percentages and sample sizes

(n=50 and n=400)for logistic regression

4.2.4 Logistic regression with restrictive and inclusive Strategies

The MSE(P) for model selection with restrictive strategy is lower than model averaging

for all sample size. There are no differences between MSE(P) values of model averaging

and model selection with restrictive strategy for negative and positive ρ23 values of the

same magnitude. Figure 4.11a shows comparison between model averaging and model

selection for restrictive strategy via AICc for each ρ23, missing percentages and sample

sizes, n = 50 and n = 400. Figure 4.11b shows comparison between model averaging

and model selection for inclusive strategy via AICc for each ρ23, missing percentages

and sample sizes, n = 50 and n = 400. The MSE(P) for model selection with inclusive

strategy is lower than model averaging for small sample size. There are no differences

between MSE(P) values for model averaging and model selection for all combinations of

|ρ23| and large sample size. There are no effects of |ρ23| in the variation of MSE(P) values

for all sample size for both restrictive and inclusive strategies. There is no difference
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between restrictive and inclusive strategies of MSE(P) values for model averaging and

model selection in terms of predictions.
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(a) Restrictive strategy
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(b) Inclusive strategy

Figure 4.11: Comparison between model averaging and model selection for restrictive
and inclusive strategies via AICc for each ρ23, missing percentages and sample sizes

(n=50 and n=400) for logistic regression
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Figure 4.12: Comparison between all three model-building strategies for model averag-
ing and model se4lection for each ρ23, missing percentages and sample size (n=50 and

n=400)for logistic regression
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Figure 4.12 shows the all three model-building strategies (non-overlapping variable sets,

restrictive and inclusive strategies) for model averaging and model selection via AICc for

each ρ23, missing percentages and sample sizes, n = 50 and n = 400. The MSE(P) values

for model averaging using non-overlapping variable sets is lower than MSE(P) values for

model averaging with restrictive and inclusive strategies for small sample sizes. There

are no differences between the MSE(P) values for model averaging and model selection

with all three model-building strategies for negative and positive correlations of same

magnitude. The MSE(P) values of model selection using non-overlapping variable sets is

lower than the MSE(P) values of model selection using restrictive and inclusive strategies

for small sample size. There are no difference between all three strategies for large sample

size.

4.3 Discussion and Conclusions

The performance of AICc and BIC for model selection and model averaging in linear

model and Logistic regression was observed. The effects of simulation parameters (sam-

ple size (n), missing percentages (m), the correlation between X2 and X3 (ρ23) and error

variance (σ2
ε)) on model selection and averaging also were observed.

In both linear model and Logistic regression, there are important effects of all the other

simulation parameters even for complete dataset (m = 0). As the sample size increases,

the tendency to choose true model M110 is increased in both linear model and Logistic

regression. AICc chooses the true model more often than BIC as sample size increases.

The MSE(P) for the selected best model and for model averaging decrease as sample

size increases in both linear model and Logistic regression.

The error variance (σ2
ε) has a significant effect on model selection and model averaging

in complete case analysis in linear models. For larger error variance in linear models,

models that are smaller than the true model (especially model M100) are selected more

often. The MSE(P) for the selected best model and model averaging are increased as

σε increased.

Besides that, AICc performs better than BIC in linear models when the error variance

is larger. AICc chooses the true model more often whereas BIC is more likely to select

smaller models in both linear model and generalized models. As stated by Claeskens

and Hjort [2008], the BIC penalty is stricter than the AIC so bigger models (with

larger numbers of parameters) will receive a heavier ’punishment’. There are differences

between the model selection criteria in terms of prediction in Logistic regression. BIC

seems a bit worse than AICc for complete-cases when n ≤ 100. Claeskens and Hjort
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[2008] stated that there is no established theoretical reason for using AICc for Logistic

regression, so researchers should use it with care. Our simulation studies suggest that

AICc performs well, therefore researchers can use AICc for model selection and model

averaging in Logistic regression.

Imputation had a substantial effect on model selection and model averaging. As sample

size increases, the tendency to choose true model M110 increases in both linear model

and generalized models for any missing percentages. The model M100 was chosen more

often compared to true model M110 as missing percentages increased in both linear

model and Logistic regression, but this happened less often as sample size increased.

The MSE(P) for selected best model and model averaging decreases as sample size

increases in both linear model and Logistic regression. The MSE(P) for selected best

model and model averaging increases as missing percentages increases in both linear

model and Logistic regression. This shows that there are joint effects of sample size and

missing percentages on model selection and model averaging in both linear model and

Logistic regression.

Besides that, there are no effects of |ρ23| in the frequency of selecting true model M110

and also in the variation of MSE(P) values in both linear model and generalized models

after imputation. The variation in the MSE(P) values as |ρ23| increases is just a sampling

error. Negative and positive correlations of the same magnitude have the same effects

on prediction for model averaging and model selection.

For larger error variance, BIC selects smaller models more often compared to AICc

for any missing percentages. The MSE(P) for selected best model and model averaging

increases as σε increases for linear models. The increases in MSE(P) are not proportional

to σ2
ε . In addition, AICc performs better than BIC in linear models when variance is

large. Schomaker and Heumann [2014] showed implementation of AIC based model

selection and averaging with multiple imputation is very straightforward, and those

estimators perform well. Our research showed that AICc performs better than BIC for

larger error variance. It is advisable to use AICc rather than using BIC or AIC (as used

by [Schomaker and Heumann, 2014]) in model selection and model averaging.

Moreover, MSE(P) for model averaging is lower than for model selection in both in-

complete data sets and after imputation of missing values for linear models. In Logistic

regression, model selection performs better than model averaging for small sample size.

There are no clear difference between model selection and model averaging for larger

sample size in Logistic regression. Therefore, model averaging seem to be a better gen-

eral strategy than model selection if the researcher’s aim is prediction. If the researcher

is interested in which variables should be included in the model-building, then model

selection is preferable. Model selection and model averaging can be combined where
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model selection is used to identify the variables for prediction and then predictions are

made using model averaging.

MSE(P) was lowest when non-overlapping variable sets was used with model averaging

and model selection for larger error variance in linear model. Whereas inclusive strategy

is better for lower error variance with model averaging and model selection for linear

model in terms of prediction. The non-overlapping variable sets performs significantly

better than restrictive and inclusive strategies with model averaging and also for model

selection with small sample size in Logistic regression. This is in agreement with Hardt

et al. [2012] who stated that inclusion of auxiliary variables can improve the imputation

model. Schomaker and Heumann [2014] stated that use of an incorrect imputation

model can cause improper imputation, a biased model and inappropriate post model

selection and model averaging estimates. Negative and positive correlations of the same

magnitude have the same effect on prediction for model averaging and model selection

using all three model-building strategies. There is not much difference between the

restrictive and inclusive strategies in terms of prediction for model averaging and model

selection in linear models.

A similar simulation study was carried out using ”norm.nob” imputation method for

imputing missing data and also without response variable in the imputation models for

both linear models and logistic regression. The effects of simulation parameters were

similar for using both ”norm” and ”norm.nob” methods. Moreover, the MSE(P) using

”norm” and with response variable in the imputation models is slightly lower than using

”norm.nob” imputation method and without response variable in the imputation model.

This shows that inclusion of response variable in the imputation models improves the

prediction.

In conclusion, there are important effects of all the simulation parameters on model se-

lection and averaging in both the linear model and Logistic regression. Researchers can

use model selection to identify which variables to be included when making predictions

or make predictions using model averaging. Since AICc performs better than BIC for

larger error variance and in making predictions (and is known theoretically to be less

biased than AIC for small samples), AICc should be used as the model selection criterion

of choice. Either AICc or BIC could be used for model averaging. Moreover, imputing

missing data using a correct imputation model is essential. Since the inclusion of auxil-

iary variables can improve the imputation model, researchers should auxiliary variables

in imputation models whenever appropriate variables are available. If the interest of the

research with missing data is to identify which variables to be included when making

predictions and also for making prediction in Logistic regression, researchers should use

model selection with non-overlapping variable sets (use the auxiliary variable only in the
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imputation model). It is advisable to use model averaging with inclusive strategies (use

the auxiliary variable in both the imputation and prediction models) to make predictions

in the model-building process when there exist missing data in linear models for smaller

error variance. In the extreme cases, researchers can use non-overlapping variables set

for model selection and model averaging.

In this chapter, we were interested in comparing the effects of simulation parameters on

imputation for model selection and model averaging. All three model-building strategies

(non-overlapping variable sets, inclusive and restrictive strategies) were investigated for

both model selection and model averaging. In the next simulation study, we will explore

three different model selection methods and model averaging. The effects of multiple

imputation and simulation parameters will be observed in both linear model and Logistic

regression. A best model selection method will be chosen.



Chapter 5

The Implementation of Model

Selection and Model Averaging

using Multiple Imputation

The aim of this chapter is to compare multiple imputation (MI) with single imputation in

terms of model selection and prediction. As discussed in Section 2.2.2, single imputation

does not fully account for the uncertainty at the imputation step, so almost always

underestimates the variance in estimation and prediction. MI can be used to overcome

this problem by taking into account both within-imputation and between-imputation

uncertainty. Therefore, in this chapter, model-building approaches and model-building

strategies were explored and compared for the multiply-imputed data sets.

The basic simulation design used in Chapter 4 will be used in this chapter too. Three

different model selection methods (RR, STACK, M-STACK) will be investigated for com-

bining results from multiply-imputed data sets. Model averaging using non-overlapping

variable sets will be explored and compared with the best model selection method in

terms of prediction. In addition, the inclusive and restrictive strategies will be compared

using the best model selection method and model averaging in order to identify which

model-building strategy is most suitable for multiply-imputed data sets.

As we discussed and concluded in Chapter 4, AICc performs better than BIC in both lin-

ear model and Logistic regression in terms of model selection and prediction. Therefore,

only AICc will be used as a model selection criterion and weights will be based only on

AICc for model averaging in this chapter. The results using BIC are qualitatively similar

to those presented for AICc in this chapter. Furthermore, as concluded in Chapter 4, the

non-overlapping variable set performs better for model selection, therefore it will be used

95
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initially to investigate and compare the performance of three model selection methods

(RR, STACK, M-STACK) and model averaging using mean square error of prediction

in both linear model and Logistic regression. The results for the restrictive and inclusive

strategies will be presented briefly. The effects of imputation and simulation parameters

will be discussed for both linear model and Logistic regression.

5.1 Model Selection and Model Averaging for Multiple

Imputation

The simulation design described in Section 4.1 will be used to explore three approaches

to model selection based on multiple imputation methods. The three approaches are

backward stepwise regression using Rubin’s rules (RR), the stacked imputed dataset

method (STACK) of Wood et al. [2008] and a modified stacked imputed dataset method

(M-STACK). As discussed by Wood et al. [2008], the RR method is considered as gold

standard approach but it is more computationally demanding when repeated analyses are

required. Therefore, Wood et al. [2008] proposed the STACK method as a sensible alter-

native to RR method for repeated analyses. The STACK method use backward stepwise

selection approach for variable selection. The backward stepwise selection approach is

often criticised and its disadvantages were discussed in Section 2.4.1. A modified version

of the stacked imputed data sets method (M-STACK) is proposed as an alternative to

STACK and RR.

5.1.1 Rubin’s rules (RR)

The first method is backward stepwise regression using repeated use of Rubin’s rules

(RR). The simple backward stepwise regression using Rubin’s rules for four models

(M000, M100, M010, M110) was carried out as follows:

Step 1: Run model M110 for each imputation, store β̂ and ˆcov(β̂) calculated in the way

described in Section 2.2.5 using Equation (2.6) and Equation (2.7).

Step 2: Check
|β̄1|

e.s.e(β̄1)
> 1.96 and

|β̄2|
e.s.e(β̄2)

> 1.96.

Step 3: If both parameters are significant, record count of 1 for fitting model M110 and

calculate MSE(P) using β̄.

Step 4: If β2 is not significant, run model M100 for each imputation. Store β̂ and

ˆcov(β̂).
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Step 5: Check
|β̄1|

e.s.e(β̄1)
> 1.96. If β1 is significant, record count of 1 for fitting model

M100 and calculate MSE(P) using β̄.

Step 6: If β1 is not significant, run model M010 for each imputation. Store β̂ and

ˆcov(β̂).

Step 7: Check
|β̄2|

e.s.e(β̄2)
> 1.96. If β2 is significant, record count of 1 for fitting model

M010 and calculate MSE(P) using β̄.

Step 8: If β2 is not significant, run model M000 for each imputation. Store β̂ and

ˆcov(β̂). Record count of 1 for fitting model M000 and calculate MSE(P) using β̄.

5.1.2 STACK

The second method uses the stacked imputed data sets with weighted regression (STACK)

[Wood et al., 2008]. In this method, D imputed data sets will be stacked for the n in-

dividuals which yields one large dataset of length Dn. A fixed weight will be applied

to all individuals to correct the standard errors. Although Wood et al. [2008] proposed

three possible weights, but they claimed W3 was the best. Therefore, weight W3 will

be used in this research. The considered weight W3 is

wi =
(1− fi)
D

(5.1)

where fi is the fraction of missing data for variable Xi and it is calculated as

fi =
number of missing data for variableXi

n
(5.2)

The largest fi will be used across all the variables in the context of more variables with

missing data in a model. Weighted regression analysis will be carried out using stacked

imputed data.

The essential assumption of the STACK method is that fraction of missing data equals

fraction of missing information. This assumption yields the weight W3 in MCAR mech-

anism. Wood et al. [2008] pointed out that the W3 give solutions comparable to RR in

case of MCAR. This pattern of missing data favour the STACK method and also enables

a comparison between RR, STACK and M-STACK methods. The simulation settings

in this research follows MCAR mechanism, therefore this is favouring the assumption of

STACK method [Wood et al., 2008]. In addition, the predictors in the prediction model

are uncorrelated in the setting of non-overlapping variable sets.



Chapter 5. The Implementation of Model Selection and Model Averaging using
Multiple Imputation 98

In this research, the model selection is carried out on stacked data using model selection

criteria (AICc and BIC) rather than the backward stepwise selection approach. Although

the original version of STACK method proposed by Wood et al. [2008] is using backward

stepwise selection approach for variable selection, this research is interested in using

model selection criteria for model selection. All possible models are fitted to the single

stacked dataset and a best model is selected using model selection criteria. Then, the

selected best model will be fitted for each imputed dataset separately and the parameter

estimates will be combined using RR as in Equation (2.6). The number of times each

possible model is selected via each selection criterion was calculated. The MSE(P) was

calculated for the combined parameter estimates using RR.

5.1.3 M-STACK

The third method is a modified version of the stacked imputed data sets method with

weighted regression (M-STACK). All possible models are fitted to the single stacked

dataset and a best model is selected using model selection criteria (same as STACK). In

this method, however, the final estimates of the parameters are taken to be the ones given

by the analysis on the stacked dataset; this avoids the final, potentially computationally-

expensive, step of STACK that involves refitting the models in each imputed dataset.

This approach is justified by Appendix A of Wood et al. [2008], where it is shown that

this estimator has reasonable large-sample properties. The MSE(P) was calculated using

the final estimates of the parameters of the stacked dataset.

5.1.4 Model Averaging for Multiple Imputation

The model averaging estimators weigh across all possible models after imputation with

any imputation method. Final model averaging parameter estimates for linear regression

were obtained in two steps. First, the method outlined in Section 2.5 was used in each

imputed dataset to obtain averaged parameter estimates (using either AICc or BIC

weights). Second, the parameter estimates from the D imputed datasets were combined

using RR to give the final estimates. These parameter estimates were used to predict

the response for each test value. For logistic regression, the same method was applied

but the estimated probabilities for each test value were calculated at each stage, as in

Equation (2.43). The MSE(P) was then obtained by comparing these estimated values

with the true model values.
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5.2 Design of Simulation and Results

In this section, we will discuss the results for Linear regression and Logistic regression

based on the simulation design in the previous chapter. The simulation study was

conducted with linear model (Task LM) and Logistic regression (Task GLM) for all

three model selection methods and model averaging. The error terms for Task LM were

simulated from a normal distribution, ε ∼ N
(
0, σ2

ε

)
where σε = 0.25, 1 and 4. The

number of observations are n = 50, 100, 200, 400. The missing observations were created

on variable X2 with percentage of missing observations as m = 0, 25, 50. As discussed

in Chapter 4, the negative and positive correlations of same magnitude showed similar

results, therefore only positive correlation results will be discussed. The covariance

matrix as in Equation (4.2) was used with ρ23 = 0, 0.25, 0.5, 0.75. Multiple imputation

was carried out with D = 10. The analysis was carried out for every combination of

n,m, σ2
ε and covariance matrix. The performance of the three model selection methods

(RR, STACK, M-STACK) using non-overlapping variable sets were compared in both

Linear regression and Logistic regression using mean square error of prediction.

5.2.1 Linear regression

A simulation study was conducted based on simulation design as discussed earlier for

linear model (Task LM). The analysis was carried out for every combination of n,m, σ2
ε

and covariance matrix. The performance of three model selection methods and model

averaging were compared using mean square error of prediction and all three model-

building strategies.

5.2.1.1 Rubin’s Rules (RR) using non-overlapping variable sets for Linear

regression

A simulation study was conducted for simple backward stepwise regression using RR

using non-overlapping variable sets. As discussed in Chapter 4, there is not much dif-

ference in the results of model selection using σε = 0.25 and σε = 1. When σε = 0.25,

the true model M110 was chosen 100% for all combinations of ρ23, sample sizes and

missing percentages. Therefore, there is no discussion of model selection results when

σε = 0.25. However, there are effects of smaller error variance in prediction (as discussed

in Chapter 4).

When σε = 1, Table 5.1 shows the number of times all possible models are selected in

each of 1000 simulations for all the combinations of ρ23 with n = 50. The true model
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M110 was chosen 100% compared to other possible models in each of 1000 simulations

for all the combinations of ρ23 and σε = 1 without any missing data in variable X2.

The chances of choosing true model M110 decreases as missing percentages increases.

However, when σε = 1 with n = 100, n = 200 and n = 400, the true model M110 was

chosen 100% compared to other possible models in each of the 1000 simulations for all

combinations of ρ23 and for m = 0, 25 and 50.

Table 5.1: Number of times all possible models are selected in each of 1000 simulations
for all the combinations of ρ23 when n = 50 and σε = 1 using RR for linear regression

n = 50 and σε = 1

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 0 0 0 0 0 0 0 0 0 0 0 0

M100 0 2 7 0 0 5 0 0 2 0 0 0

M010 0 0 0 0 0 0 0 0 0 0 0 0

M110 1000 998 993 1000 1000 995 1000 1000 998 1000 1000 1000

Table 5.2a and Table 5.2b show the number of times all possible models are selected in

each of 1000 simulations for all the combinations of ρ23, σε = 4 and sample sizes, n = 50

and n = 100 respectively. For both n = 50 and n = 100, the chances of choosing true

model M110 decreases as missing percentages increases. For a small sample size and this

larger error variance, model M100 was selected more frequently compared to the true

model M110. There are no effects of ρ23 in the frequency of selecting true model M110.

Table 5.2: Number of times all possible models are selected in each of 1000 simulations
for all the combinations of ρ23, σε = 4 and sample size (n = 50 and n = 100) using RR

for linear regression

(a) Number of times all possible models are selected when n = 50

n = 50 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 309 20 13 332 21 22 344 17 22 325 15 21

M100 233 593 594 258 583 582 235 575 578 249 615 578

M010 12 1 1 15 0 0 10 0 1 10 0 0

M110 446 386 392 395 396 396 411 408 399 416 370 401

(b) Number of times all possible models are selected when n = 100

n = 100 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 104 2 1 91 2 2 86 7 3 92 1 2

M100 231 333 416 216 310 368 178 334 363 189 322 350

M010 1 0 0 5 0 0 4 0 0 6 0 0

M110 664 665 583 688 688 630 732 659 634 713 677 648
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Table 5.3a and Table 5.3b show the number of times all possible models are selected

in each of 1000 simulations for all the combinations of ρ23, σε = 4 and sample sizes,

n = 200 and n = 400 respectively. For both n = 200 and n = 400, the chances of

choosing true model M110 decreases as missing percentages increases. As sample size

increases, the tendency to choose model M100 decreases. Whereas true model M110 was

chosen almost 100% as sample size increases for all values ρ23. For large sample size,

the choice of selecting model M110 decrease as missing percentages increases.

Table 5.3: Number of times all possible models are selected in each of 1000 simulations
for all the combinations of ρ23, σε = 4 and sample size (n = 200 and n = 400) using

RR for linear regression

(a) Number of times all possible models are selected when n = 200

n = 200 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 4 0 0 4 0 0 6 0 0 8 0 0

M100 63 73 133 76 72 136 57 87 128 55 55 94

M010 0 0 0 0 0 0 1 0 0 0 0 0

M110 933 927 867 920 928 864 936 913 872 937 945 906

(b) Number of times all possible models are selected when n = 400

n = 400 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 0 0 0 0 0 0 0 0 0 0 0 0

M100 1 0 15 4 0 15 0 0 14 1 1 4

M010 0 0 0 0 0 0 0 0 0 0 0 0

M110 999 1000 985 996 1000 985 1000 1000 986 999 999 996

Table 5.4: MSE(P) for selected best model for all the combinations of ρ23, missing
percentages, sample size and error variances (σε = 1 and σε = 4) using RR for linear

regression

(a) MSE(P) for selected best model for σε = 1

σε = 1

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0612 0.0869 0.1229 0.0586 0.0844 0.1225 0.0589 0.0872 0.1098 0.0600 0.0815 0.0961

n = 100 0.0289 0.0480 0.0679 0.0289 0.0491 0.0628 0.0279 0.0490 0.0576 0.0275 0.0520 0.0519

n = 200 0.0134 0.0292 0.0409 0.0141 0.0304 0.0373 0.0140 0.0315 0.0356 0.0137 0.0346 0.0326

n = 400 0.0067 0.0226 0.0293 0.0073 0.0223 0.0272 0.0071 0.0232 0.0235 0.0070 0.0268 0.0227

(b) MSE(P) for selected best model for σε = 4

σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 1.5030 1.4111 1.5020 1.5531 1.4375 1.4844 1.4936 1.4622 1.4682 1.5021 1.4197 1.4733

n = 100 0.7577 0.7749 0.8568 0.7427 0.7139 0.8208 0.6990 0.7739 0.8088 0.7002 0.7095 0.7711

n = 200 0.2733 0.3194 0.3874 0.2750 0.3151 0.3888 0.2643 0.3322 0.3751 0.2754 0.3092 0.3467

n = 400 0.1119 0.1432 0.1735 0.1117 0.1452 0.1733 0.1180 0.1554 0.1742 0.1157 0.1438 0.1679
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Table 5.4a and Table 5.4b show the MSE(P) for selected best model for all combinations

of ρ23, missing percentages, sample size and error variances σε = 1 and σε = 4 respec-

tively. With m = 0, the MSE(P) decreases as sample size increases and the decrease

is proportional to sample size. As σε increases, MSE(P) increases and the increase is

proportional to σ2
ε for m = 0. With m = 0, there is no imputation so ρ23 should make no

difference. The decreases in MSE(P) values as ρ23 increases is just a sampling error. The

MSE(P) values were increased as percentages of missingness increased for larger error

variance. With m = 25 and m = 50, the MSE(P) decreases as sample size increases and

the decrease is proportional to sample size. As σε increases, MSE(P) increases but the

increase is not proportional to σ2
ε for m = 25 and m = 50. There are no effects of ρ23 in

terms of prediction.
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Figure 5.1: MSE(P) for selected best model using RR for each ρ23, σε, missing percent-
ages and sample sizes for linear regression
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Figure 5.1a, Figure 5.1b, Figure 5.1c and Figure 5.1d show the MSE(P) for the selected

best model using RR for each ρ23, σε, missing percentages and sample sizes, n = 50,

n = 100, n = 200 and n = 400 respectively. As sample size increases, the MSE(P) for

best model selected using RR decreases. For larger variance, MSE(P) for best model

selected using RR decreases as sample size increases. The effects of error variance reduce

as sample size increases. There are no effects of ρ23 in terms of prediction where the

lines in the Figure 5.1 are stationary for all ρ23 values.

5.2.1.2 STACK using non-overlapping variable sets for Linear regression

A simulation study was conducted for stacked imputed data sets with weighted regression

(STACK) using non-overlapping variable sets. When σε = 1 with n = 50, 100, 200 and

n = 400, the true model M110 was chosen 100% compared to other possible models in

each of the 1000 simulations for all combinations of ρ23 and for m = 0, 25 and 50.

Table 5.5: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23, σε = 4 and sample size (n = 50 and n = 100)

using STACK for linear regression

(a) Number of times all possible models are selected when n = 50

AICc n = 50 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 139 14 8 140 12 11 141 14 12 153 11 17

M100 218 85 129 234 83 106 225 92 117 218 84 80

M010 245 67 80 222 82 81 249 86 85 242 81 85

M110 398 834 783 404 823 802 385 808 786 387 824 818

(b) Number of times all possible models are selected when n = 100

AICc n = 100 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 17 0 3 24 1 2 22 0 3 22 0 2

M100 136 39 68 122 47 58 136 42 54 132 25 41

M010 109 20 22 119 28 27 118 21 25 135 17 17

M110 738 941 907 735 923 913 724 937 918 711 958 940

Table 5.5a and Table 5.5b show the number of times all possible models are selected via

AICc in each of 1000 simulations for all the combinations of ρ23, missing percentages,

σε = 4 and sample size, n = 50 and n = 100 respectively. For a small sample size and

this larger error variance, the chance of choosing the true model M110 increased after

imputation but it decreases as missing percentages increases. The chance of choosing

the true model M110 increases as ρ23 increases and also after imputation for n = 100.
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For smaller sample size, model M100 was selected more frequently compared to the true

model M110. There are no effects of ρ23 in the frequency of selecting true model M110.

Table 5.6 shows number of times all possible models are selected via AICc in each of 1000

simulations for all the combinations of ρ23, missing percentages and σε = 4 for sample

size n = 200. The choice of selecting true model M110 increases as missing percentages

increases. The chance of selecting the true model M110 is much more better after

imputation compared to without any missing data in variable X2. For a larger variance

and n = 400, AICc selects true model M110 almost 100% after imputation. As missing

percentages and sample size increases, the chances of choosing the true model M110

increases. Imputation improves the choice of true model M110 as sample size increases.

Table 5.6: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23 when n = 200 and σε = 4 using STACK for

linear regression

AICc n = 200 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 0 0 0 0 0 0 1 0 0 0 0 0

M100 9 3 23 18 3 21 22 5 11 18 3 11

M010 24 3 1 17 0 2 22 1 6 18 0 5

M110 967 994 976 965 997 977 955 994 983 964 997 984

Table 5.7: MSE(P) for selected best model via AICc for all the combinations of ρ23,
missing percentages, sample size and error variances (σε = 1 and σε = 4) using STACK

for linear regression

(a) MSE(P) for selected best model for σε = 1

AICc σε = 1

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0586 0.0874 0.1250 0.0612 0.0839 0.1229 0.0588 0.0875 0.1116 0.0609 0.0832 0.0971

n = 100 0.0278 0.0503 0.0665 0.0292 0.0481 0.0638 0.0284 0.0489 0.0599 0.0288 0.0495 0.0536

n = 200 0.0139 0.0307 0.0411 0.0138 0.0309 0.0391 0.0143 0.0310 0.0356 0.0139 0.0346 0.0330

n = 400 0.0071 0.0221 0.0290 0.0067 0.0223 0.0260 0.0073 0.0226 0.0249 0.0068 0.0274 0.0234

(b) MSE(P) for selected best model for σε = 4

AICc σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 1.3368 1.0426 1.2249 1.3306 1.0598 1.2777 1.3284 1.0694 1.1736 1.3192 1.0736 1.1288

n = 100 0.6152 0.5365 0.6188 0.6248 0.5572 0.5956 0.5802 0.5623 0.5809 0.5946 0.4820 0.5507

n = 200 0.2378 0.2721 0.3209 0.2512 0.2802 0.3147 0.2475 0.2792 0.3040 0.2418 0.2710 0.2909

n = 400 0.1148 0.1576 0.1712 0.1141 0.1478 0.1691 0.1043 0.1461 0.1610 0.1127 0.1464 0.1586

Table 5.7a shows the MSE(P) for the best model selected via AICc all the combinations

of ρ23, n and σε = 1. Table 5.7b shows the MSE(P) for the best model selected via AICc
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for all the combinations of ρ23, n and σε = 4. With m = 0, the MSE(P) decreases as

sample size increases and the decrease is proportional to sample size. As σε increases,

MSE(P) increases and the increase is proportional to σ2
ε for m = 0. The MSE(P) values

increases as percentages of missingness increases. The MSE(P) values were much higher

after imputation. There are no effects of ρ23 in terms of prediction.
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Figure 5.2: MSE(P) for best model selected via AICc using STACK and non-overlapping
variable sets for each ρ23, σε, missing percentages and sample sizes for linear regression

Figure 5.2a, Figure 5.2b, Figure 5.2c and Figure 5.2d show the MSE(P) for best model

selected via AICc using STACK for each ρ23, σε, missing percentages and sample sizes,

n = 50, n = 100, n = 200 and n = 400 respectively. With m = 0, the MSE(P) decreases

as sample size increases and the decrease is proportional to sample size. As σε increases,

MSE(P) increases and the increase is proportional to σ2
ε for m = 0. The MSE(P) values
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increases as percentages of missingness increases. The MSE(P) values were much higher

after imputation. As σε increases, MSE(P) increases and the increase is proportional to

σ2
ε for m = 25 and m = 50.

5.2.1.3 M-STACK using non-overlapping variable sets for Linear regression

A simulation study was conducted for modified version of stacked imputed data sets with

weighted regression method (M-STACK) using non-overlapping variable sets. When

σε = 1 with n = 50, 100, 200 and 400, the true model M110 was chosen 100% compared

to other possible models in each of the 1000 simulations for all combinations of ρ23 and

for m = 0, 25 and 50.

Table 5.8: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23, σε = 4 and sample size (n = 50 and n = 100)

using M-STACK for linear regression

(a) Number of times all possible models are selected when n = 50

AICc n = 50 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 139 9 9 140 9 13 141 7 8 153 7 7

M100 218 104 1119 234 99 131 225 81 121 218 98 102

M010 245 78 93 222 79 77 249 73 73 242 84 93

M110 398 809 779 404 813 779 385 839 798 387 811 798

(b) Number of times all possible models are selected when n = 100

AICc n = 100 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 17 0 1 24 2 1 22 1 2 22 0 1

M100 136 32 70 122 45 66 136 31 46 132 34 39

M010 109 25 16 119 17 17 118 18 24 135 22 23

M110 738 943 913 735 936 916 724 950 928 711 944 937

Table 5.8a and Table 5.8b show number of times all possible models are selected via

AICc in each of 1000 simulations for all the combinations of ρ23, missing percentages,

σε = 4 and sample size, n = 50 and n = 100 respectively. For a small sample size

and this larger error variance, the chances of choosing true model M110 increases after

imputation but it decreases as missing percentages increases. There are no effects of ρ23

in the frequency of selecting true model M110.

Table 5.9 shows the number of times all possible models are selected via AICc in each of

1000 simulations for all the combinations of ρ23, missing percentages, σε = 4 and sample

size, n = 200. The choice of selecting true model M110 increases after imputation but it

decreases as missing percentage increases. The chance of selecting the true model M110
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is much more better after imputation compared to without any missing data in variable

X2. For a larger error variance and n = 400, AICc selects true model M110 almost 100%

after imputation. Imputation improves the choice of true model M110 as sample size

increases.

Table 5.9: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23 when n = 200 and σε = 4 using M-STACK

for linear regression

AICc n = 200 and σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 0 0 0 0 0 0 1 0 0 0 0 0

M100 9 6 21 18 5 15 22 0 10 18 1 5

M010 24 1 3 17 2 0 22 4 0 18 1 2

M110 967 993 976 965 993 985 955 996 990 964 998 993

Table 5.10: MSE(P) for selected best model via AICc for all the combinations of ρ23,
missing percentages, sample size and error variances (σε = 1 and σε = 4) using M-

STACK for linear regression

(a) MSE(P) for selected best model for σε = 1

AICc σε = 1

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0591 0.0887 0.1594 0.0599 0.0855 0.1567 0.0577 0.0803 0.1363 0.0624 0.0692 0.1052

n = 100 0.0281 0.0472 0.0987 0.0278 0.0457 0.0898 0.0283 0.0423 0.0755 0.0284 0.061 0.0570

n = 200 0.0141 0.0289 0.0639 0.0141 0.0276 0.0609 0.0142 0.0240 0.0522 0.0140 0.0193 0.0334

n = 400 0.0071 0.0195 0.0496 0.0070 0.0182 0.0462 0.0072 0.0158 0.0374 0.0070 0.0113 0.0223

(b) MSE(P) for selected best model for σε = 4

AICc σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 1.3741 1.0441 1.2379 1.3611 1.0402 1.1920 1.3109 1.0105 1.1542 1.3553 0.9938 1.1538

n = 100 0.5974 0.4989 0.5837 0.5984 0.5004 0.5958 0.6145 0.4913 0.5858 0.6178 0.5027 0.5374

n = 200 0.2458 0.2458 0.2976 0.2432 0.2561 0.2973 0.2529 0.2326 0.2792 0.2366 0.2430 0.2704

n = 400 0.1128 0.1262 0.1370 0.1105 0.1260 0.1449 0.1118 0.1152 0.1414 0.1156 0.1145 0.1213

Table 5.10a shows the MSE(P) for the best model selected via AICc all the combinations

of ρ23, n and σε = 1. Table 5.10b shows the MSE(P) for the best model selected via

AICc all the combinations of ρ23, n and σε = 4. With m = 0, the MSE(P) decreases as

sample size increases and the decrease is proportional to sample size. As σε increases,

MSE(P) increases and the increase is proportional to σ2
ε for m = 0. With m = 0,

there is no imputation so ρ23 should make no difference. The decreases in MSE(P)

values as ρ23 increases is just a sampling error. The MSE(P) values were increased as

percentages of missingness increased. With m = 25 and m = 50, the MSE(P) decreases
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as sample size increases and the decrease is proportional to sample size. The MSE(P)

values were higher after imputation. As σε increases, MSE(P) increases and the increase

is proportional to σ2
ε for m = 25 and m = 50.

Figure 5.3a, Figure 5.3b, Figure 5.3c and Figure 5.3d show the MSE(P) for best model

selected via AICc using M-STACK for each ρ23, σε, missing percentages and sample

sizes, n = 50, n = 100, n = 200 and n = 400 respectively. As sample size increases, the

MSE(P) for best model selected using M-STACK decreases. For larger error variance,

MSE(P) for best model selected using M-STACK decreases as sample size increases.

The effects of error variance reduce as sample size increases. There are no effects of ρ23

in terms of prediction where the lines in the figures are stationary.
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Figure 5.3: MSE(P) for best model selected via AICc using M-STACK for each ρ23, σε,
missing percentages and sample for linear regression



Chapter 5. The Implementation of Model Selection and Model Averaging using
Multiple Imputation 109

Figure 5.4 shows the comparison between all three model selection methods (RR, M-

STACK and STACK) for each ρ23, σε, missing percentages and n = 100. For larger

error variance, MSE(P) for best model selected using M-STACK and STACK are lower

than RR. Whereas the MSE(P) for best model selected using RR and STACK are lower

than M-STACK for σε = 1. STACK performs better than RR and M-STACK for all

error variance, σε and sample size in general. Therefore, STACK can be chosen as best

model selection method.
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Figure 5.4: Comparison between model selection methods for each ρ23, σε, missing
percentages and n = 100 for linear regression

5.2.1.4 Model averaging using non-overlapping variable sets for Linear re-

gression

A simulation study was conducted based on simulation design as discussed earlier for

linear regression using model averaging via AICc and BIC. The analysis was carried

out for every combination of sample size, σε, missing percentages and covariance matrix

using non-overlapping variable sets. Table 5.11a shows the MSE(P) for model averaging

via AICc for all the combinations of ρ23, n and σε = 1. Table 5.11b shows the MSE(P)

for model averaging via AICc for all the combinations of ρ23, n and σε = 4. With m = 0

for model averaging via AICc, the MSE(P) decreases as sample size increases and the

decrease is proportional to sample size. The MSE(P) values increases as percentages

of missingness increases. With m = 25 and m = 50, the MSE(P) decreases as sample

size increases and the decrease is proportional to sample size. As σε increases, MSE(P)

increases and the increase is proportional to σ2
ε for m = 25 and m = 50.
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Table 5.11: MSE(P) for model averaging via AICc for all the combinations of ρ23,
missing percentages, sample size and error variances (σε = 1 and σε = 4) for linear

regression

(a) MSE(P) for model averaging for σε = 1

AICc σε = 1

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0568 0.0831 0.1553 0.0614 0.0825 0.1463 0.0586 0.0767 0.1300 0.0607 0.0670 0.1011

n = 100 0.0302 0.0461 0.0904 0.0286 0.0452 0.0863 0.0287 0.0436 0.0747 0.0275 0.0371 0.0535

n = 200 0.0140 0.0291 0.0619 0.0138 0.0267 0.0584 0.0144 0.0247 0.0498 0.0140 0.0185 0.0322

n = 400 0.0068 0.0191 0.0500 0.0069 0.0186 0.0459 0.0072 0.0160 0.0383 0.0069 0.0112 0.0217

(b) MSE(P) for model averaging for σε = 4

AICc σε = 4

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.9717 1.0573 1.1116 0.9788 1.0201 1.0766 0.9384 1.0138 1.0989 0.9988 0.9546 1.0680

n = 100 0.4647 0.5321 0.5744 0.4464 0.5104 0.5881 0.4530 0.5182 0.5977 0.4764 0.5121 0.5550

n = 200 0.2337 0.2573 0.2990 0.2211 0.2489 0.2879 0.2312 0.2397 0.2836 0.2266 0.2438 0.2668

n = 400 0.1124 0.1226 0.1471 0.1097 0.1214 0.1483 0.1103 0.1178 0.1345 0.1041 0.1173 0.1282

Figure 5.5a, Figure 5.5b, Figure 5.5c and Figure 5.5d show the MSE(P) for model

averaging via AICc for each ρ23, σε, missing percentages and sample sizes, n = 50,

n = 100, n = 200 and n = 400 respectively. As sample size increases, the MSE(P)

for model averaging decreases. For larger error variance, MSE(P) for model averaging

decreases as sample size increases. The effects of error variance reduce as sample size

increases. There are no effects of ρ23 in terms of prediction where the lines in the figures

are stationary.
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Figure 5.5: MSE(P) for model averaging via AICc for each ρ23, σε, missing percentages
and sample sizes for linear regression

Figure 5.6a and Figure 5.6b show comparison between model averaging and model selec-

tion (STACK) via AICc for each ρ23, σε, missing percentages and sample sizes, n = 50

and n = 400 respectively. The results showed that for larger error variance and small

sample size, model averaging is better than model selection using STACK. There are no

difference between MSE(P) of model averaging and model selection using STACK for

large sample size and smaller error variance.
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Figure 5.6: Comparison between model averaging and model selection (STACK) via
AICc for each ρ23, σε, missing percentages and sample sizes (n = 50 and n = 400) for

linear regression
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Figure 5.7: Comparison between single imputation and multiple imputation for model
averaging and model selection via AICc for each ρ23, σε = 1, missing percentages and

sample sizes for linear regression

Figure 5.7a shows comparison between model averaging using single imputation and

multiple imputation for each ρ23, σε = 1, missing percentages and sample sizes (n = 50
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and n = 400). It shows that MSE(P) of model averaging using multiple imputation

is lower than MSE(P) of model averaging using single imputation for σε = 1, missing

percentages and all sample sizes. Figure 5.7b shows comparison between model selection

using single imputation and multiple imputation (STACK) for each ρ23, σε = 1, missing

percentages and sample sizes (n = 50 and n = 400). It shows that MSE(P) of model

selection (STACK) using multiple imputation is lower than MSE(P) of model selection

using single imputation for σε = 1, missing percentages and all sample sizes.

5.2.1.5 Model selection (STACK) and model averaging using restrictive and

inclusive strategies for Linear regression

Figure 5.8 and Figure 5.9 show the MSE(P) for best model selected (STACK) via AICc

using the restrictive and inclusive strategies for each ρ23, σε, missing percentages and

sample sizes, n = 50 and n = 400 respectively. There is no effect of ρ23 values on model

selected using STACK for the restrictive and inclusive strategies for all σε. The MSE(P)

for model selected (STACK) using the restrictive and inclusive strategies for the negative

and positive correlations of same magnitude showed similar results.
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Figure 5.8: MSE(P) for best model selected via AICc using STACK and the restrictive
strategy for each ρ23, σε, missing percentages and sample sizes (n = 50 and n = 400)

for linear regression
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Figure 5.9: MSE(P) for best model selected via AICc using STACK and the inclusive
strategy for each ρ23, σε, missing percentages and sample sizes (n = 50 and n = 400)

for linear regression
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Figure 5.10: MSE(P) for model averaging via AICc using the restrictive strategy for
each ρ23, σε, missing percentages and sample sizes (n = 50 and n = 400) for linear

regression

Figure 5.10 and Figure 5.11 show the MSE(P) for model averaging using the restrictive

and inclusive strategies for each ρ23, σε, missing percentages and sample sizes, n = 50

and n = 400 respectively. There is no effect of ρ23 values on model averaging for the

restrictive and inclusive strategies with σε = 0.25 and σε = 1. The MSE(P) for model
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averaging using the restrictive and inclusive strategies for the negative and positive

correlations of same magnitude showed similar results. For σε = 4 and small sample

size, there is an effect of negative ρ23 values on model averaging for the restrictive and

inclusive strategies. The MSE(P) for model averaging using the restrictive and inclusive

strategies increases as the negative ρ23 increases.
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Figure 5.11: MSE(P) for model averaging via AICc using the inclusive strategy for each
ρ23, σε, missing percentages and sample sizes (n = 50 and n = 400) for linear regression

Figure 5.12 shows the comparison between all three model-building strategies (non-

overlapping variable set, restrictive and inclusive strategies) for model averaging and

model selection (STACK) via AICc for multiply-imputed data sets for each ρ23, σε,

missing percentages and sample sizes, n = 50 and n = 400. For σε = 1 and all sample

sizes, there is no difference between the model-building strategies for both model selec-

tion (STACK) and model averaging. Whereas for σε = 4 and large sample size, there is

no difference between the MSE(P) for model averaging and model selection (STACK)

using all three model-building strategies. There is no effect of the negative and positive

correlations of same magnitude for model averaging and model selection (STACK) with

all three model-building strategies. The MSE(P) for model averaging using all three

model-building strategies increases as negative ρ23 increases for small sample size and

σε = 4.
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(b) Model Selection (STACK) n = 50
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Figure 5.12: Comparison between all three model-building strategies for model averag-
ing and model selection (STACK) for multiply-imputed data sets for linear regression

Figure 5.13 shows comparison between single imputation and multiple imputation for

model averaging and model selection (STACK) using all three model-building strategies

(non-overlapping variable sets, restrictive and inclusive strategies) for each ρ23, missing

percentages, n = 100 and error variances, σε = 1 and σε = 4 respectively. The results

show that the MSE(P) of model averaging using the restrictive and inclusive strategies

for multiply-imputed data sets are lower than MSE(P) of model averaging using all

three model-building strategies strategies for single imputation, for all error variance and

missing percentages. Moreover, MSE(P) of model averaging using the restrictive and
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inclusive strategies are lower than the MSE(P) of model averaging using non-overlapping

variable sets. Whereas, the MSE(P) of model selection using the restrictive and inclusive

strategies for multiply-imputed data sets are lower than MSE(P) of model selection for

single imputation using all three model-building strategies for all error variances and

missing percentages. Moreover, the MSE(P) of model selection using the restrictive and

inclusive strategies are lower than MSE(P) of model selection using non-overlapping

variable sets for large error variance.
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Figure 5.13: Comparison between single imputation and multiple imputation for model
averaging and model selection for each ρ23, missing percentages, n = 100 and error

variances, σε = 1 and σε = 4 for linear regression
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5.2.2 Logistic regression

A simulation study was conducted based on simulation design as discussed earlier for lo-

gistic regression (Task LG). The analysis was carried out for every combination of sample

size, missing percentages and covariance matrix. The performance of three model selec-

tion methods and model averaging were compared using mean square error of prediction

and all three model-building strategies.

5.2.2.1 Rubin’s Rules (RR) using non-overlapping variable sets for Logistic

regression

A simulation study was conducted for logistic regression using simple backward stepwise

regression using Rubin’s rule (RR) using non-overlapping variable sets. Table 5.12 shows

the number of times all possible models are selected in each of 1000 simulations for all

the combinations ρ23 and m with n = 50. The chances of choosing the true model M110

decreases as missing percentages increases whereas the chances of choosing model M100

increases.

Table 5.12: Number of times all possible models are selected in each of 1000 simulations
for all the combinations of ρ23 when n = 50 using RR for logistic regression

n = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 64 0 7 59 2 4 72 0 6 62 2 1

M100 188 270 379 190 275 367 187 287 357 199 286 300

M010 7 0 3 1 0 18 5 0 4 2 3 0

M110 741 730 611 750 723 611 736 713 633 737 709 679

Table 5.13: Number of times all possible models are selected in each of 1000 simulations
for all the combinations of ρ23 when n = 100

n = 100

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 3 0 0 2 0 0 0 0 0 0 0 0

M100 31 47 111 27 43 101 24 34 88 31 30 52

M010 0 0 0 0 0 0 0 0 0 0 0 0

M110 966 953 889 971 957 899 976 966 912 969 970 948
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Table 5.13 shows the number of times all possible models are selected in each of 1000

simulations for all the combinations ρ23 and missing percentages with n = 100. The

chances of choosing the true model M110 decreases as missing percentages increases. As

missing percentages increases, the chances of choosing model M100 increases.

Table 5.14: Number of times all possible models are selected in each of 1000 simulations
for all the combinations of ρ23 when n = 200 using RR for logistic regression

n = 200

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 0 0 0 0 0 0 0 0 0 0 0 0

M100 0 0 5 0 0 5 0 0 2 0 0 0

M010 0 0 0 0 0 0 0 0 0 0 0 0

M110 1000 1000 995 1000 1000 995 1000 1000 998 1000 1000 1000

Table 5.14 shows the number of times all possible models are selected in each of 1000

simulations for all the combinations ρ23 and missing percentages with n = 200. With

m = 0, the true model M110 was selected 100% for all ρ23 values. The chances of choos-

ing the true model M110 decreases as missing percentages increases whereas chances of

choosing model M100 increases. For n = 400, the true model M110 was chosen 100%

compared to other possible models in each of the 1000 simulations for all combinations

of ρ23 and for m = 0, 25 and 50. There are no effects of ρ23 in the frequency of selecting

true model M110 for all sample sizes.

Table 5.15: MSE(P) for best model selected for all the combinations of ρ23, missing
percentages and sample size using RR for logistic regression

Mean Square Error of Prediction

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0187 0.0193 0.0256 0.0182 0.0189 0.0246 0.0198 0.0194 0.0239 0.0187 0.0190 0.0214

n = 100 0.0062 0.0078 0.0109 0.0060 0.0073 0.0110 0.0059 0.0072 0.0102 0.0062 0.0068 0.0085

n = 200 0.0027 0.0032 0.0051 0.0027 0.0034 0.0046 0.0027 0.0033 0.0044 0.0027 0.0029 0.0036

n = 400 0.0013 0.0017 0.0025 0.0013 0.0017 0.0024 0.0014 0.0016 0.0023 0.0014 0.0015 0.0019

Table 5.15 shows MSE(P) for best model selected for all the combinations of ρ23, m

and sample size. The MSE(P) decreases as sample size and ρ23 increases. As missing

percentages increases, the MSE(P) values increases. For larger ρ23 values, there is no

difference in MSE(P) values between m = 0, m = 25 and m = 50.
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Figure 5.14: MSE(P) for best model selected using RR for each ρ23, missing percentages
and sample sizes for logistic regression

Figure 5.14 shows the MSE(P) for best model selected using RR for each ρ23, missing

percentages and sample sizes. As sample size increases, the MSE(P) for best model

selected using RR decreases. The effects of missing percentages on MSE(P) for best

model selected using RR reduces as sample size increases. There are no effects of ρ23 in

term of prediction for all sample sizes using RR.

5.2.2.2 STACK using non-overlapping variable sets for Logistic regression

A simulation study was conducted for stacked imputed data sets with weighted logistic

regression method (STACK) using non-overlapping variable sets. Table 5.16 shows the

number of times all possible models are selected via AICc in each of 1000 simulations

for all the combinations ρ23 and missing percentage with n = 50. For m = 0, the true

model M110 was chosen above 80% for all ρ23 values and it increases as ρ23 increases.

After imputation with m = 25, true model M110 was selected more often compared

to without missing percentage but it decreases as missing percentages increases. After

imputation, the true model M110 and model M010 are selected more often compared to

without missing data, where all the model selected in different counts for m = 0. The

chances of selecting model M010 via AICc increases as missing percentages increases.



Chapter 5. The Implementation of Model Selection and Model Averaging using
Multiple Imputation 121

Table 5.16: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23 and missing percentages when n = 50 using

STACK for logistic regression

AICc n = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 5 0 0 6 0 0 10 0 0 9 0 0

M100 76 0 0 79 0 0 100 0 0 81 0 0

M010 72 169 266 81 143 274 79 155 274 76 115 244

M110 847 831 734 834 857 726 811 845 726 834 885 756

Table 5.17: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23 and missing percentages when n = 100 using

STACK for logistic regression

AICc n = 100

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 0 0 0 0 0 0 0 0 0 0 0 0

M100 3 0 0 8 0 0 3 0 0 5 0 0

M010 4 13 46 9 8 34 4 9 43 6 12 34

M110 993 987 954 983 992 966 993 991 957 989 988 966

Table 5.17 shows the number of times all possible models are selected via AICc in each

of 1000 simulations for all the combinations ρ23 and missing percentages with n = 100.

The number of times true model M110 selected reduces as missing percentages increases

and it increases as value of ρ23 increases. The chance of selecting the true model M110

was above 95% for all ρ23 values and missing percentages. The chances of selecting

model M010 increases as missing percentages increases. For n = 200 and n = 400, the

true model M110 was chosen 100% via AICc compared to other possible models in each

of the 1000 simulations for all combinations of ρ23 and for m = 0, m = 25 and m = 50.

There are no effects of ρ23 in the frequency of selecting true model M110 for all sample

sizes.

Table 5.18 shows the MSE(P) for the best model selected via AICc all the combinations

of ρ23, sample size and missing percentages respectively. The MSE(P) decreases as

sample size increases. As missing percentages increases, the MSE(P) values increases.

There are some difference on MSE(P) values as n and missing percentages increases.
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Table 5.18: MSE(P) for best model selected via AICc for all the combinations of ρ23,
missing percentages and sample sizes using STACK for logistic regression

AICc

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0141 0.0145 0.0207 0.0138 0.0147 0.0227 0.0155 0.0148 0.0202 0.0145 0.0131 0.0180

n = 100 0.0055 0.0063 0.0077 0.0057 0.0059 0.0076 0.0054 0.0060 0.0074 0.0056 0.0058 0.0068

n = 200 0.0027 0.0027 0.0036 0.0027 0.0029 0.0036 0.0027 0.0028 0.0035 0.0026 0.0029 0.0031

n = 400 0.0013 0.0016 0.0018 0.0013 0.0015 0.0019 0.0013 0.0016 0.0017 0.0013 0.0015 0.0016
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Figure 5.15: MSE(P) for for best model selected (STACK) and non-overlapping variable
sets for each ρ23, missing percentages and sample sizes for logistic regression

Figure 5.15 shows the MSE(P) for best model selected (STACK) using non-overlapping

variable sets for each ρ23, missing percentages and sample sizes. As sample size increases,

the MSE(P) for best model selected using STACK decreases. The effects of missing

percentages on MSE(P) for best model selected using STACK reduces as sample size

increases. There are no effects of ρ23 in term of prediction for all sample sizes using

STACK.
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5.2.2.3 M-STACK using non-overlapping variable sets for Logistic regres-

sion

A simulation study was conducted for logistic regression using modified version of stacked

imputed data sets with weighted logistic regression (M-STACK) using non-overlapping

variable sets. Table 5.19 shows the number of times all possible models are selected via

AICc in each of 1000 simulations for all the combinations ρ23 and missing percentages

with n = 50. For m = 0, the true model M110 was chosen above 80% for all ρ23 values.

After imputation with m = 25, true model M110 was selected more often compared

to without missing percentages but it decreases as missing percentage increases. After

imputation, the true model M110 and model M010 are selected more often compared to

without missing data, where all the model selected in different counts for m = 0.

Table 5.19: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23 and missing percentage when n = 50 using

M-STACK for logistic regression

AICc n = 50

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 5 0 0 6 0 0 10 0 0 9 0 0

M100 76 0 0 79 0 0 100 0 0 81 0 0

M010 72 140 301 81 140 286 79 142 276 76 139 251

M110 847 860 699 834 860 714 811 858 724 834 861 749

Table 5.20: Number of times all possible models are selected via AICc in each of 1000
simulations for all the combinations of ρ23 and missing percentage when n = 100 using

M-STACK for logistic regression

AICc n = 100

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

M000 0 0 0 0 0 0 0 0 0 0 0 0

M100 3 0 0 8 0 0 3 0 0 5 0 0

M010 4 12 46 9 11 45 4 72 42 6 9 38

M110 993 988 954 983 989 955 993 988 958 989 991 962

Table 5.20 shows the number of times all possible models are selected via AICc in each of

1000 simulations for all the combinations ρ23 and missing percentage with n = 100. The

number of times true model M110 selected reduces as missing percentages increases. The

chance of selecting the true model M110 was above 95% for all ρ23 values and missing

percentages. The chances of selecting model M010 increases as missing percentages
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increases. For n = 200 and n = 400, the true model M110 was chosen 100% via AICc

compared to other possible models in each of the 1000 simulations for all combinations

of ρ23 and for m = 0, 25 and 50. There are no effects of ρ23 in the frequency of selecting

true model M110 for all sample size using M-STACK.

Table 5.21: MSE(P) for best model selected via AICc for all the combinations of ρ23,
missing percentages and sample sizes using M-STACK for logistic regression

AICc

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0141 0.0152 0.0226 0.0138 0.0157 0.0222 0.0155 0.0151 0.0207 0.0145 0.0142 0.0186

n = 100 0.0055 0.0061 0.0085 0.0057 0.0062 0.0082 0.0054 0.0061 0.0080 0.0056 0.0060 0.0071

n = 200 0.0027 0.0031 0.0040 0.0027 0.0030 0.0039 0.0027 0.0030 0.0035 0.0026 0.0028 0.0032

n = 400 0.0013 0.0016 0.0021 0.0013 0.0015 0.0020 0.0013 0.0015 0.0019 0.0013 0.0014 0.0017

Table 5.21 shows the MSE(P) for the best model selected via AICc for all the combina-

tions of ρ23, sample size and missing percentages respectively. The MSE(P) decreases as

sample size increases. As missing percentages increases, the MSE(P) values increases.

For larger sample size, there is no difference in MSE(P) values between m = 0 and

m = 25. There are some difference on MSE(P) values as ρ23, n and missing percentages

increases.
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Figure 5.16: MSE(P) for for best model selected using M-STACK for each ρ23, missing
percentages and sample sizes for logistic regression
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Figure 5.16 shows the MSE(P) for best model selected using M-STACK for each ρ23,

missing percentages and sample sizes. As sample size increases, the MSE(P) for best

model selected using M-STACK decreases. The effects of missing percentages on MSE(P)

for best model selected using M-STACK reduces as sample size increases. There are no

effects of ρ23 in term of prediction for all sample sizes using M-STACK.

Figure 5.17 shows comparison between all three model selection methods (RR, M-

STACK and STACK) via AICc for each ρ23, missing percentages and n = 100. It

shows that the MSE(P) for best model selected using STACK is lower than RR and

M-STACK for all ρ23, missing percentages and sample size.
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Figure 5.17: Comparison between all three model selection methods (RR, M-STACK
and STACK) for each ρ23, missing percentages and n = 100 for logistic regression

5.2.2.4 Model averaging using non-overlapping variable sets for Logistic

regression

A simulation study was conducted based on simulation design as discussed earlier for

logistic regression using model averaging via AICc and BIC. The analysis was carried out

for every combination of sample size, ρ23 and missing percentages using non-overlapping

variable sets. Table 5.22 shows the MSE(P) for model averaging via AICc for all the

combinations of ρ23, sample size and missing percentages respectively. The MSE(P)

decreases as sample size and ρ23 increases. As missing percentages increases, the MSE(P)

values increases. Withm = 0, there is no clearer difference as ρ23 increases. With missing
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percentages m = 25 and m = 50, the MSE(P) decreases as ρ23 increases. There are some

difference on MSE(P) values as ρ23, sample size and missing percentages increases. There

are no significant increases or decreases in MSE(P) values as ρ23 increases.

Table 5.22: MSE(P) for model averaging via AICc for logistic regression

AICc

ρ23 ρ23 = 0 ρ23 = 0.25 ρ23 = 0.5 ρ23 = 0.75

missing percentage m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50 m=0 m=25 m=50

n = 50 0.0162 0.0206 0.0256 0.0157 0.0186 0.0248 0.0161 0.0168 0.0213 0.0156 0.0171 0.0192

n = 100 0.0062 0.0075 0.0093 0.0062 0.0073 0.0092 0.0065 0.0070 0.0084 0.0062 0.0065 0.0076

n = 200 0.0027 0.0030 0.0041 0.0028 0.0031 0.0038 0.0027 0.0029 0.0038 0.0028 0.0029 0.0032

n = 400 0.0013 0.0015 0.0020 0.0013 0.0015 0.0019 0.0013 0.0014 0.0019 0.0013 0.0014 0.0017
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Figure 5.18: MSE(P) for model averaging via AICc using non-overlapping variable sets
for each ρ23, missing percentages and sample size for logistic regression

Figure 5.18 shows the MSE(P) for model averaging via AICc using non-overlapping

variable sets for each ρ23, missing percentages and sample sizes. As sample size increases,

the MSE(P) for model averaging decreases. The effect of missing percentages on MSE(P)

for model averaging reduces as sample size increases. Figure 5.19a shows comparison

between model averaging and model selection (STACK) via AICc for each ρ23, missing

percentages and n = 50. Figure 5.19b shows comparison between model averaging and

model selection (STACK) via AICc for each ρ23, missing percentages and n = 400.

The MSE(P) for model selection using STACK is lower than model averaging for small
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sample sizes. It shows that model selection using STACK performs better than model

averaging in terms of prediction for all sample sizes in Logistic regression.
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Figure 5.19: Comparison between model averaging and model selection (STACK) via
AICc for each ρ23, missing percentages and sample sizes (n = 50 and n = 400) for

logistic regression
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Figure 5.20: Comparison between single imputation and multiple imputation for model
averaging and model selection via AICc for each ρ23, σε = 1, missing percentages and

sample sizes for logistic regression
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Figure 5.20a shows comparison between model averaging using single imputation and

multiple imputation for each ρ23, missing percentages and sample sizes (n = 50 and

n = 400). It shows that MSE(P) of model averaging using multiple imputation is lower

than MSE(P) of model averaging using single imputation for all missing percentages and

sample sizes. Figure 5.20b shows comparison between model selection using single impu-

tation and multiple imputation (STACK) for each ρ23, missing percentages and sample

sizes (n = 50 and n = 400). It shows that MSE(P) of model selection (STACK) using

multiple imputation is lower than MSE(P) of model selection using single imputation

for all missing percentages and sample sizes.

5.2.2.5 Model selection (STACK) and model averaging using restrictive and

inclusive strategies for Logistic regression

Figure 5.21a and Figure 5.21b show the MSE(P) for best model selected (STACK) using

the restrictive and inclusive strategies for each ρ23, missing percentages and sample sizes

respectively. The results shows that there are no effects of |ρ23| values on model selection

(STACK) for logistic regression using restrictive and inclusive strategies for larger sample

sizes.
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Figure 5.21: MSE(P) for for best model selected using STACK and the restrictive
and inclusive strategies for each ρ23, missing percentages and sample sizes for logistic

regression

Figure 5.22a and Figure 5.22b show the MSE(P) for model averaging via AICc using

the restrictive and inclusive strategies for each ρ23, missing percentages and sample

sizes respectively. The results shows that there are no effects of |ρ23| values on model
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averaging for logistic regression using restrictive and inclusive strategies for all sample

sizes.

●
●

● ● ● ●

●

−1.0 −0.5 0.0 0.5 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Model Averaging using Restrictive Strategy

rho23

M
S

E
P

● ●
● ● ● ● ●

● ● ● ● ● ● ●

● m0
m25
m50

n=50
n=100
n=400

(a) Restrictive strategy

●
●

● ● ● ●

●

−1.0 −0.5 0.0 0.5 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Model Averaging using Inclusive Strategy

rho23
M

S
E

P

● ●
● ● ● ● ●

● ● ● ● ● ● ●

● m0
m25
m50

n=50
n=100
n=400

(b) Inclusive strategy

Figure 5.22: MSE(P) for model averaging via AICc using the restrictive and inclusive
strategies for each ρ23, missing percentages and sample sizes for logistic regression
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Figure 5.23: Comparison between all three model-building strategies for model averag-
ing and model selection (STACK) for multiply-imputed data sets for logistic regression

Figure 5.23 shows the comparison between all three model-building strategies (non-

overlapping variable sets, restrictive and inclusive strategies) for model averaging and

model selection (STACK) via AICc for multiply-imputed data sets for each ρ23, missing
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percentages and sample sizes, n = 50 and n = 400. The MSE(P) values for model

averaging with an inclusive strategy is lower than MSE(P) values for model averaging

with non-overlapping variable sets and restrictive strategy for small sample sizes. There

are no differences between the MSE(P) values for model averaging and model selection

(STACK) using all three model-building strategies for |ρ23|. The MSE(P) values of

model selection (STACK) using inclusive strategy is lower than the MSE(P) values of

model selection (STACK) using non-overlapping variable sets and restrictive strategy

for small sample size. However, there are no differences between the MSE(P) values for

model averaging and model selection (STACK) using all three model-building strategies

for large sample size.

Figure 5.24 shows comparison between single imputation and multiple imputation for

model averaging and model selection using all three model-building strategies for each

ρ23, missing percentages and sample size, n = 100. The results show that the MSE(P)

of model averaging using inclusive strategy for multiply-imputed data sets is better than

using non-overlapping variable sets and restrictive strategy. Whereas, the MSE(P) of

model selection using the inclusive strategy for multiply-imputed data sets is lower than

MSE(P) of model selection for single imputation using all three model-building strategies

for all missing percentages.

● ●

●

● ●
●

●

−1.0 −0.5 0.0 0.5 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Single Imputation vs MI for Model Averaging

rho23

M
S

E
P

●
●

● ●
● ●

●●
●

● ●
● ●

●● ●

●

● ●
●

●●
●

●
●

● ●
●●

●

●
●

● ●
●

● m0
m25
m50

Single Imp Non−overlap
Single Imp Res
Single Imp Inc

MI non−overlap
MI Res
MI Inc

(a) Model Averaging

● ● ●
●

●
●

●

−1.0 −0.5 0.0 0.5 1.0

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Single Imputation vs MI for Model Selection

rho23

M
S

E
P

●
●

●

● ● ● ●

●
●

●

● ● ● ●

● ● ● ●
●

●
●●

●

●

● ● ● ●

●
●

●

● ● ● ●

● m0
m25
m50

Single Imp Non−overlap
Single Imp Res
Single Imp Inc

MI non−overlap
MI Res
MI Inc

(b) Model Selection

Figure 5.24: Comparison between single imputation and multiple imputation for model
averaging and model selection for each ρ23, missing percentages and sample size, n =

100 for logistic regression
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5.3 Discussion and Conclusions

The performance and effectiveness of three methods for model selection in linear model

and Logistic regression were observed and compared. The effects of simulation parame-

ters (sample size (n), missing percentages (m), the correlation between X2 and X3 (ρ23)

and error variance (σ2
ε)) on model selection were observed. As discussed in Section 4.3,

there are important effects of simulation parameters for complete data sets (m = 0) and

imputed data sets (m = 25 and m = 50).

In linear models, σε has a significant effect on model selection and prediction, both

become poorer as σε increases. However, STACK performs better than RR and M-

STACK in terms of prediction for all values of σε and sample sizes. M-STACK and

STACK perform better than RR in terms of selecting the true model M110 more often.

There is no difference between M-STACK and STACK in terms of selecting the true

model M110. Since M-STACK and STACK perform better than RR, stacked imputed

data with weighted linear regression is better than RR applied to linear regression. The

performance of the three methods can be arranged in the order STACK > M-STACK

> RR for linear models.

There is no difference between single imputation and multiple imputation in terms of

model selection for all three methods (RR, STACK and STACK) when σε = 0.25 for all

sample sizes. For σε = 1, even RR performs better than single imputation (as discussed

in Section 4.2.1) in terms of selecting the true model M110 more frequently and giving

a lower value of MSE(P), even for high missing percentage (m = 50). For σε = 4, RR

performs poorer than model selection using single imputation in model selection and

prediction. However, RR performs better in terms of prediction than single imputation,

for large sample size and high ρ23 values. This shows that model selection using single

imputation is better than RR in extreme cases such as small samples and large error

variances.

In addition, M-STACK performs better than model selection using single imputation

for all σε values in terms of model selection and prediction for linear models. This

means that M-STACK is better than model selection using single imputation in all

circumstances. Moreover, STACK performs better than model selection using single

imputation for both σε = 1 and σε = 4 in terms of selecting the true model M110 more

frequently and giving a lower value of MSE(P) compared to model selection using single

imputation for linear models. Again, this shows that STACK is much better than model

selection using single imputation in all circumstances.

Model averaging using multiple imputation for imputing missing data performs better in

terms of prediction than model selection by STACK, for large error variance and small
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sample size. There is no difference between model averaging and STACK in terms of

prediction for small error variance and large sample size. Model averaging using multiple

imputation performs better than model averaging using single imputation for all sample

sizes, error variances and ρ23 in terms of prediction.

In the Logistic regression, model selection STACK performs better than RR and M-

STACK for all sample sizes and ρ23 values. Model selection using single imputation

is better than RR in terms of selecting the true model M110 more frequently. There

is no difference in using single imputation and RR for large sample size with missing

percentage m = 25. RR performs better than model selection using single imputation

for all missing percentage, sample sizes and ρ23 values in terms prediction. RR showed

significantly smaller MSE(P) values than model selection using single imputation. This

shows that RR is better than single imputation in terms of prediction.

M-STACK performs better than model selection using single imputation for all sample

sizes and ρ23 values in terms of selecting the true model M110 in Logistic regression

after imputation. In terms of prediction, M-STACK performs better than model selec-

tion using single imputation for all sample sizes and ρ23 values. There are significant

differences in terms of MSE(P) values between model selection using single imputation

and M-STACK. Furthermore, STACK performs better than model selection using single

imputation for all combinations of simulation parameters in terms of selecting the true

model M110 more often after imputation. STACK performs better than model selec-

tion using single imputation for all sample sizes and ρ23 values in terms of prediction.

STACK showed significantly smaller MSE(P) values than model selection using single

imputation.

Besides that, all three model selection methods (RR, M-STACK and STACK) using

multiple imputation for imputing missing data perform better than model selection using

single imputation in terms of model selection and prediction for logistic regression. M-

STACK and STACK perform better than RR in terms of selecting true model M110

more frequently and also in terms of prediction. This shows that model selection using

model selection criteria is better for model selection and prediction. The performance

of the three methods can be arranged in the order STACK > M-STACK > RR in terms

of model selection and prediction for logistic regression.

In the Logistic regression, STACK performs better than model averaging using multiple

imputation for all sample size in terms of prediction. Model averaging using multiple

imputation for imputing missing data performs better than model averaging using single

imputation for small sample sizes, missing percentages and ρ23 in terms of prediction.

There are no difference between model averaging using single imputation and multiple

imputation for large sample size. MSE(P) was lowest when inclusive strategy was used
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with model averaging and model selection using single and multiple imputation. Nega-

tive and positive correlations of the same magnitude have the same effect on prediction

for model averaging and model selection (STACK) using all three model-building strate-

gies. There are no significant effects of ρ23 in terms of prediction in logistic regression.

Finally, the RR method is a gold standard approach but it is more computationally in-

tensive when repeated analyses are required. The proposed method, STACK is a sensible

alternative to RR and M-STACK method. RR and STACK provides similar parame-

ter estimates if there is no model selection is required. STACK incorporate suitable

model selection process and parameter estimation. STACK is computationally easier

compared to RR method when numerous covariates are included in model-building.

Moreover, Wood et al. [2008] stated that their stacked dataset method using backward

stepwise selection approach is an alternative method RR but it is not a substitute for

RR method. However, the STACK method used in this research can be an alternative

to RR since the STACK method described in this research used all subset regression.

Although there are no difference between the M-STACK and STACK method using

model selection criteria for prediction, STACK provides better prediction and parame-

ter estimation than M-STACK if there is no model selection is required. As stated in

Appendix A by Wood et al. [2008], the parameter estimates of STACK method is ap-

proximately similar as M-STACK method. M-STACK method is computationally easier

compared to STACK. Therefore, researchers can use M-STACK for analysing data with

missing values and also if numerous covariates are available. This will allow researchers

to obtain results faster compared to STACK method.

In conclusion, all three methods (RR, M-STACK and STACK) using multiple imputation

perform better than model selection using a single imputation method (as discussed in

Section 4.2) for both linear model and logistic regression. Since M-STACK and STACK

perform better than RR in terms of model selection and prediction for both models, the

researcher should use stacked imputed data using weighted regression for analysing data

sets with missing values. Generally, STACK performs better than M-STACK in terms

of model selection and prediction in most of the circumstances investigated here. Model

averaging performs slightly better than STACK in terms of prediction for linear mod-

els. Therefore, researchers should use STACK for analysing data with missing values

for model selection but use model averaging for prediction in linear models. Whereas

researchers should use STACK for model selection and prediction for logistic regression.

In addition, researchers should use an inclusive imputation strategy for prediction in lin-

ear models and logistic regression. In line with the discussion in Section 4.3, researchers

should carry out analysis using STACK with AICc as a model selection criterion and

model averaging using AICc based weights for both linear model and Logistic regression,
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and also use highly correlated auxiliary variables where they are available in imputation

models.

In this chapter, we were interested in comparing all three model selection methods and

model averaging for multiply-imputed data sets. All three model-building strategies

(non-overlapping variable sets, inclusive and restrictive strategies) were investigated for

both best model selection method (STACK) and model averaging. In the next chapter,

we will explore the STACK (model selection) and model averaging in a real life dataset

to investigate the performance of the proposed model-building strategies and methods

for model selection and prediction.



Chapter 6

Application of Model Selection

and Model Averaging to the

Gateshead Millennium Study

In this chapter, some of the methods discussed earlier in the thesis are applied to the

analysis of data from the Gateshead Millennium Study (GMS), a longitudinal study of

child growth which suffers from a moderate amount of missing data. The purpose of

the modelling is to predict children’s weight or weight standard deviation score (SDS)

later in childhood from weights (or weight SDS) recorded in the first year of life. It

was concluded in Chapter 4 and Chapter 5 that model averaging and model selection

(STACK) perform best for prediction and also to determine the factors to be included

when making predictions. Therefore, both these model-building approaches will be ap-

plied to combine results from multiply-imputed data sets using all three model-building

strategies (non-overlapping variable sets, inclusive and restrictive). The dataset will be

explored in the first section and formal modelling of children’s weight at school entry

and at eight years will be carried out in the following section.

6.1 Data Description of Gateshead Millennium Study

Various studies have found significant associations between rapid infancy weight gain and

later overweight, leading to the suggestion that prevention and treatment of childhood

obesity should begin as early as the first year of life. The Gateshead Millennium Study

(GMS) is a prospective cohort study of feeding and growth in infancy. This study was

set up primarily to explore the relationship between child development and feeding in the

first year of life, but was later extended to continue to follow up the children throughout

135
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childhood. Babies born between 1 June 1999 and 31 May 2000 in the Gateshead area

of northeast England were recruited to the study shortly after birth. There is a total

of 1029 babies of 1011 mothers, 524 boys and 505 girls, representing 83% of all births

in the region that year. The children were studied prospectively using parent report

questionnaire shortly after birth, at 6 weeks and at 4, 8 and 12 months. The cohort

has since been re-traced at school entry, parent report questionnaires completed at 5-8

years, and a range of anthropometric and body composition measures collected at age

7-8 years [Wright et al., 2011].

Table 6.1: Description of Variables for GMS

Variables Descriptions Unit

X1 Birth weight kilograms (kg)

X2 Weight at 6 weeks kilograms (kg)

X3 Weight at 4 months kilograms (kg)

X4 Weight at 8 months kilograms (kg)

X5 Weight at 12 months kilograms (kg)

X6 Gestational age weeks

Y1 Weight at school entry kilograms (kg)

Y2 Weight at 8 years kilograms (kg)

Table 6.1 shows a description of the variables that are used in the analysis reported

here. The dependent variables are the weight at school entry (Y1) and weight at 8 years

(Y2). The independent variables are birth weight (X1) , weight at 6 weeks (X2), weight

at 4 months (X3), weight at 8 months (X4), weight at 12 months (X5) and gestational

age (X6). All these variables are quantitative and continuous except for gestational age

which was rounded to the nearest whole number of weeks.

Table 6.2 shows the descriptive statistics for boys and girls separately. There are no

missing data for baby’s birth weights and gestational ages for boys or girls. The weight

at school entry was missing for 29.6% of children and weight at eight years was missing

for 42%. On average 17% of weights from the first year of life were missing.

Figure 6.1a shows the weights at school entry for male and female children, which are very

similar on average. There are a number of exceptionally overweight children, especially

female children. The female child whose weight at school entry was more than 50kg will

be removed from the modelling, as it is an extreme outlier. Figure 6.1b shows the weight

at eight years for male and female children. Again, these are very similar distributions.

There are outliers in the weight at eight years for both male and female children who

are exceptionally overweight.
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Table 6.2: Descriptive statistics

(a) Boys

Statistics
Variables

X6 X1 X2 X3 X4 X5 Y1 Y2

Mean 39.31 3.38 4.91 6.89 9.13 10.53 19.77 26.48

Standard deviation 1.88 0.58 0.65 0.86 1.00 1.19 2.85 5.45

Median 40.00 3.42 4.89 6.86 9.12 10.48 19.40 25.60

Minimum 29.00 1.36 3.18 4.42 6.62 7.54 14.00 17.50

Maximum 43.00 4.96 6.80 9.75 13.28 14.30 34.60 50.30

complete cases (n) 524 524 437 445 327 435 357 297

missing observation (nmis) 0 0 87 79 197 89 167 227

percentage of missing(m) 0 0 16.8% 15.1% 37.6% 17.0% 31.9% 43.3%

(b) Girls

Statistics
Variables

X6 X1 X2 X3 X4 X5 Y1 Y2

Mean 39.41 3.27 4.53 6.31 8.36 9.81 19.82 26.75

Standard deviation 1.80 0.59 0.58 0.82 0.98 1.21 4.10 5.88

Median 40.00 3.30 4.52 6.26 8.32 9.67 19.00 25.50

Minimum 27.00 0.84 2.76 4.09 5.27 6.24 13.00 16.55

Maximum 43.00 5.37 6.51 8.85 11.66 15.70 56.00 52.10

complete cases (n) 505 505 415 430 323 423 367 300

missing observation (nmis) 0 0 90 75 182 82 138 205

percentage of missing(m) 0 0 17.8% 14.9% 36.0% 16.2% 27.3% 40.6%
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Figure 6.1: Weight at school entry and weight at eight years for boys and girls separately
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Figure 6.2a and Figure 6.2b show the relationship between the birth weight and gesta-

tional age for male and female babies respectively. Gestational age gives an idea about

the baby’s growth and development during pregnancy and whether a baby can be ex-

pected to live outside the uterus. Generally, the median of birth weight increases as

gestational age increases. The apparent decrease after 42 weeks gestational age is likely

to be a result of very small numbers and mis-reporting of dates of conception. Premature

babies (born before 37 weeks gestational age) have low birth weight compared to babies

born after 37 weeks gestational age, so premature babies might have to be removed from

the analysis.
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Figure 6.2: The relationship between birth weight and gestational age for both male
and female babies

Table 6.3: Correlations of Weights

Variables gestational age birth weight weight at 6 weeks weight at 4 months weight at 8 months weight at 12 months weight at school entry weight at 8 years

gestational age 1 0.4099 0.1604 0.1691 0.0873 0.0787 0.0509 -0.0652

birth weight 0.4099 1 0.6642 0.5065 0.5071 0.4557 0.1926 0.2540

weight at 6 weeks 0.1604 0.6642 1 0.7847 0.6848 0.6223 0.1731 0.4377

weight at 4 months 0.1691 0.5065 0.7847 1 0.8609 0.7493 0.2135 0.3966

weight at 8 months 0.0873 0.5071 0.6848 0.8609 1 0.9046 0.2307 0.4786

weight at 12 months 0.0787 0.4557 0.6223 0.7493 0.9046 1 0.2206 0.4976

weight at school entry 0.0509 0.1926 0.1731 0.2135 0.2307 0.2206 1 0.3254

weight at 8 years -0.0652 0.2540 0.4377 0.3966 0.4786 0.4976 0.3254 1

Table 6.3 shows the Pearson correlations between all pairs of these variables. There

is a moderate correlation (ρ = 0.4099) between gestational age and birth weight of a

baby but the correlations between the gestational age and other weights are low and

decreasing with age. There are stronger positive relationships between the weight at
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8 years and first year baby weights compared to weight at school entry and first year

baby weights. Moreover, the first year baby weights are highly correlated with their

neighbouring weights. These relationships are more clearly shown in the scatter plots of

Figure 6.3. Neighbouring weights appear to be good candidate variables for imputation

purposes.

Gestational.Age..wks.
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Figure 6.3: Relationship between the weight at school entry, weight at eight years and
the first year baby weights

The raw weights (except those at school entry) were converted to Standard Deviation

Scores (SDS) compared to the British 1990 growth reference [Freeman et al., 1995] using

a Box-Cox transformation. The SDS or Z-scores represent the difference between the

actual weight and the population mean weight in units of the standard deviation. Con-

verting raw weights to standard deviation scores is intended to result in the transformed

data at any given age, having an approximate standard Normal distribution with mean

0 and variance 1 in the reference population.

Table 6.4 shows the descriptive statistics based on weight Z-scores for boys and girls

separately. Figure 6.4 shows the weight Z-score at eight years for both male and female

children. The median weight Z-scores at eight years for male children (median=1.09)

is higher than for female children (median=0.88), but both are much higher than the
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reference value of 0. There are outliers in the weight Z-scores at eight years for both

male and female children, male children have weight Z-scores that are as low as -2.60

and as high as 4.56 whereas some female children have weight Z-scores that are as low

as -2.80 and as high as 5.22.

Table 6.4: Descriptive statistics - weight SDS

(a) Boys

Statistics
Variables

X1 X2 X3 X4 X5 Y2

Mean -0.20 0.00 0.06 0.24 0.10 1.14

Standard deviation 1.07 1.00 0.98 1.02 1.03 1.26

Median -0.14 -0.01 0.13 0.26 0.15 1.09

Minimum -3.87 -3.13 -3.04 -2.62 -2.87 -2.60

Maximum 2.78 2.89 3.40 3.86 3.41 4.56

complete cases (n) 524 438 443 327 435 264

missing observation (nmis) 0 86 81 197 89 260

percentage of missing(m) 0 18.30% 17.20% 41.80% 18.90% 55.20%

(b) Girls

Statistics
Variables

X1 X2 X3 X4 X5 Y2

Mean -0.19 -0.14 -0.09 0.06 0.02 1.00

Standard deviation 1.13 1.01 1.07 1.10 1.11 1.39

Median -0.18 -0.13 -0.10 0.02 -0.06 0.88

Minimum -3.89 -3.58 -3.66 -4.05 -4.05 -2.80

Maximum 3.96 2.72 2.92 3.21 3.52 5.22

complete cases (n) 505 420 430 323 423 249

missing observation (nmis) 0 85 75 182 81 255

percentage of missing(m) 0 18.70% 16.50% 40.10% 17.80% 56.20%
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Figure 6.4: Weight Z-scores at eight years for both male and female children
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Table 6.5: Correlations of weight Z-scores

Variables gestational age bwtz wtz6w wtz4m wtz8m wtz12m wtz8y

gestational age 1 0.2212 0.2359 0.1786 0.0887 0.0681 -0.0594

bwtz 0.2212 1 0.7394 0.5227 0.4497 0.3966 0.2291

wtz6w 0.2359 0.7394 1 0.8514 0.6977 0.6077 0.2386

wtz4m 0.1786 0.5227 0.8514 1 0.9008 0.7798 0.1700

wtz8m 0.0887 0.4497 0.6977 0.9008 1 0.9255 0.2038

wtz12m 0.0681 0.3966 0.6077 0.7798 0.9255 1 0.1517

wtz8y -0.0594 0.2291 0.2386 0.1700 0.2038 0.1517 1

wtz8y
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Figure 6.5: Relationship between the weight Z-scores at eight years and the first year
baby weights

Table 6.5 shows the Pearson correlations between the weight Z-scores and gestational

age and Figure 6.5 shows the corresponding scatter plots. The correlations between ges-

tational age and weight Z-scores are generally low. There are weak positive relationships

between the weight Z-scores at eight years and at earlier ages. Besides that, the first

year weight Z-scores are highly correlated with their neighbouring weight Z-scores and
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these correlations are higher than those for raw first year weights. Therefore, using the

neighbouring weight Z-scores appears to be a good strategy for imputation purposes.

6.2 Model-building and Results

In this section, we will discuss the results on prediction of children’s weight at school

entry based on first year weights, prediction of children’s weight at eight years based on

first year weights and prediction of children’s weight Z-scores at eight years based on

first year weights Z-scores. The most commonly used technique for dealing with missing

data is the method of complete case analysis, where the analysis is carried out using

only babies that have no missing values for any of the variables used in the model.

The complete case analysis was carried out using model selection and model averaging

as discussed in Chapter 4. For model selection in complete case analysis, model selection

criterion AICc and BIC were allowed to choose a model based on any combinations of

covariates. AICc and BIC based weights were used for model averaging. The incomplete

data analysis was carried out using model averaging and STACK with all three model-

building strategies (non-overlapping variable sets, the inclusive and restrictive strategies)

as discussed in Chapter 5. The gestational age was used as an auxiliary variable for non-

overlapping variable sets and the restrictive strategy whereas, for the inclusive strategy,

the first year weights and the gestational age were used for both the imputation and

prediction models. Note that there are strong correlation between the covariates but

they are weakly correlated with the response variables. This favour the assumptions of

STACK method and model averaging for prediction in the context of GMS analysis.

As discussed in Section 6.1, there are some outliers (premature babies and heavy weight

children) which will affect the prediction and imputation. The complete cases analysis

and incomplete case analysis were carried out initially with the outliers. The results

showed that the MSE(P) values are much higher for analysis with outliers compared

to without outliers. Therefore, the outliers, the premature baby (gestational age < 30

weeks) and heavy weight children (weight at school entry > 50kg) were removed. The

complete cases for prediction of children’s weight at school entry were 209 male babies

and 238 female babies, whereas the complete cases for prediction of children’s weight at

8 years were 207 male babies and 220 female babies. The complete cases for prediction

of children’s weight Z-scores at 8 years were 189 male babies and 194 female babies.

In addition, in the GMS data, there are missing data in the response variables as well as

the covariates. This is different than the setting of simulation studies in Chapter 4 and

Chapter 5 where there were no missing data in the response variables. All missing data



Chapter 6. Application of Model Selection and Model Averaging to the Gateshead
Millennium Study 143

were imputed using the ”norm” method in the R package MICE. The non-overlapping

variable sets, inclusive and restrictive strategies were used for imputation and prediction

models. For non-overlapping variable sets and restrictive strategy, the missing values

were imputed using gestational age whereas for inclusive strategy, the missing values

were imputed using first year baby weights and gestational age. The imputation model

for non-overlapping and restrictive strategy is the same but the full prediction model for

restrictive and inclusive strategies is the same.

The average MSE(P) for complete cases (MSE(P)-CC) was calculated based on estimates

of multiply-imputed data. The cross validation was carried out to assess whether the

predicted values from the chosen model are accurately predict responses. The cross

validation test was carried out with 10% of complete case data and the estimation was

carried out based 90% incomplete dataset. Here 10% of observations is omitted from

the analysis and the response for that observation is predicted using the model derived

from the remaining 90% of observations. The average MSE(P) for 10% of complete case

data (MSE(P)-CV) was calculated based on estimates of 90% multiply-imputed data.

6.2.1 Complete case analysis

The complete case analysis was carried out using both non-overlapping variable sets

and inclusive/restrictive strategies for prediction models since there are no imputations

involved. Model selection criteria AICc and BIC were allowed to choose a model based

on any combination of variables for non-overlapping variable sets (without gestational

age in prediction model) and also for incusive/restrictive strategy (with gestational age

in prediction model).

Table 6.6: Estimates and MSE(P) for prediction of weight at school entry for male
children in complete case analysis

Approaches Model averaging Model selection

Strategies Non-over Restrictive/Inclusive Non-over Restrictive/Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC

Constant 1.9437 2.4843 5.8758 3.4876 1.5769 2.4092 8.4534 2.4092

Birth weight 0.5737 0.6068 0.8054 0.7141 0.5539 - 0.8902 -

Weight at 6 weeks 0.2488 0.3977 0.1945 0.3901 - - - -

Weight at 4 months -0.1975 0.0174 -0.1706 0.0177 - - - -

Weight at 8 months 0.6572 0.6539 0.6413 0.6484 0.5899 0.6780 0.5815 0.6780

Weight at 12 months 1.1271 1.2776 1.1182 1.2753 1.0265 1.0519 1.0116 1.0519

Gestational Age - - -0.1856 -0.1655 - - -0.1981 -

Average MSE(P) 7.9714 45.1143 5.0988 5.6785 4.2418 4.3187 4.1658 4.3187

Error variance (σ2
ε) 4.2716 4.5616 4.1910 4.4476 4.2622 4.3395 4.1858 4.3395
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Table 6.6 shows the estimates and mean squared error prediction (MSE(P)) for predic-

tion of weight at school entry for complete case analysis of male children. The results

showed that MSE(P) values for model selection using restrictive/inclusive strategy is the

lowest. The factors that contribute to predict weight at school entry for male children

are birth weight, weight at 8 months, weight at 12 months and gestational age. If weight

at 12 months increase by 1 kg, the weight at school entry will increase by 1.0116kg.

Table 6.7: Estimates and MSE(P) for prediction of weight at school entry for female
children in complete case analysis

Approaches Model averaging Model selection

Strategies Non-over Restrictive/Inclusive Non-over Restrictive/Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC

Constant -0.2717 -0.3371 8.0352 2.6164 -0.3780 -0.3780 9.7372 -0.3780

Birth weight 0.0911 0.0981 0.4995 0.3161 - - - -

Weight at 6 weeks 0.2007 0.1556 0.3389 0.2414 - - - -

Weight at 4 months 0.3720 0.2200 0.3945 0.2429 - - - -

Weight at 8 months -0.6542 -0.5336 -0.6523 -0.5249 - - - -

Weight at 12 months 2.1906 2.0859 2.1643 2.0868 2.0537 2.0537 2.0852 2.0537

Gestational Age - - -0.3075 -0.2761 - - -0.2626 -

Average MSE(P) 10.1900 12.8232 15.6472 79.0300 10.1108 10.1108 9.9661 10.1108

Error variance (σ2
ε) 10.0519 10.0980 9.8507 9.8804 10.1533 10.1533 10.0080 10.1533

Table 6.7 shows the estimates and MSE(P) for prediction of weight at school entry

for complete case analysis of female children. The results showed that MSE(P) values

for model selection using restrictive/inclusive strategy is the lowest. The factors that

contribute to predict weight at school entry for female children are weight at 12 months

and gestational age. If weight at 12 months increase by 1 kg, the weight at school entry

will increase by 2.0852kg. There is a negative relationship between weight at school

entry and gestational age in predicting weight at school entry for both male and female

children.

Table 6.8: Estimates and MSE(P) for prediction of weight at eight years for male
children in complete case analysis

Approaches Model averaging Model selection

Strategies Non-over Restrictive/Inclusive Non-over Restrictive/Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC

Constant -1.1712 -0.6485 6.4679 1.5049 -1.2973 -1.2973 9.9483 -1.2973

Birth weight 0.3085 0.5589 0.8775 0.8300 - - - -

Weight at 6 weeks 1.8432 1.9145 1.8958 1.9518 1.9763 1.9763 2.2149 1.9763

Weight at 4 months 0.2025 0.5933 0.2518 0.5897 - - - -

Weight at 8 months 1.0008 1.6132 0.9911 1.6080 - - - -

Weight at 12 months 1.5305 1.6760 1.5156 1.6715 1.7110 1.7110 1.6950 1.7110

Gestational Age - - -0.3710 -0.3308 - - -0.3114 -

Average MSE(P) 105.5651 455.2460 41.9434 142.9630 20.9590 20.9590 20.7242 20.9590

Error variance (σ2
ε) 21.7621 25.2349 21.5658 25.1836 21.0608 21.0608 20.8248 21.0608
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Table 6.8 shows the estimates and MSE(P) for prediction of weight at eight years for

complete case analysis of male children. The results showed that MSE(P) values for

model selection using restrictive/inclusive strategy is the lowest. The factors that con-

tribute to predict weight at eight years for male children are weight at 6 weeks, weight

at 12 months and gestational age. If weight at 6 weeks increase by 1 kg, the weight at

eight years will increase by 2.2149kg.

Table 6.9: Estimates and MSE(P) for prediction of weight at eight years for female
children in complete case analysis

Approaches Model averaging Model selection

Strategies Non-over Restrictive/Inclusive Non-over Restrictive/Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC

Constant -1.5930 -1.6752 12.3727 2.0006 -1.7077 -1.7077 17.8742 -1.7077

Birth weight 0.5972 0.5685 1.4627 1.1120 - - 1.4878 -

Weight at 6 weeks 0.3738 0.3440 0.2540 0.3778 - - - -

Weight at 4 months -0.1886 -0.2156 -0.2238 -0.2195 - - - -

Weight at 8 months -0.7920 -0.7212 -0.8252 -0.7291 - - - -

Weight at 12 months 3.0444 2.9223 2.9982 2.9168 2.8817 2.8817 2.6809 2.8817

Gestational Age - - -0.5120 -0.4096 - - -0.5705 -

Average MSE(P) 26.9278 33.5009 74.4343 223.16000 21.0932 21.0932 20.4596 21.0932

Error variance (σ2
ε) 21.0664 21.1452 20.5372 20.6062 21.1895 21.1895 21.1895 20.5530

Table 6.9 shows the estimates and MSE(P) for prediction of weight at eight years for

complete case analysis of female children. The results showed that MSE(P) values

for model selection using restrictive/inclusive strategy is the lowest. The factors that

contribute to predict weight at eight years for female children are birth weight, weight

at 12 months and gestational age. If weight at 12 months increase by 1 kg, the weight

at eight years will increase by 2.6809kg. There is a negative relationship between weight

at eight years and gestational age in predicting weight at eight years for both male and

female children.

Table 6.10: Estimates and MSE(P) for prediction of weight at eight years Z-scores for
male children in complete case analysis

Approaches Model averaging Model selection

Strategies Non-over Restrictive/Inclusive Non-over Restrictive/Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC

Constant 1.1671 1.1755 3.8446 2.3854 1.1838 1.1838 4.9337 1.1838

Birth weight Z-score 0.3242 0.3428 0.3508 0.3569 0.3579 0.3579 0.4050 0.3579

Weight at 6 weeks Z-score 0.0252 0.1051 0.0530 0.1116 - - - -

Weight at 4 months Z-score 0.0030 0.0816 0.0312 0.0880 - - - -

Weight at 8 months Z-score 0.2216 0.1562 0.2117 0.1516 - - - -

Weight at 12 months Z-score -0.0745 0.0213 -0.0787 0.0194 - - - -

Gestational Age - - -0.0971 -0.0960 - - -0.0953 -

Average MSE(P) 1.3442 1.4084 2.6039 7.8115 1.3561 1.3561 1.3298 1.3561

Error variance (σ2
ε) 1.3513 1.4152 1.3266 1.3746 1.3633 1.3633 1.3369 1.3633
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Table 6.10 shows the estimates and MSE(P) for prediction of weight at eight years Z-

scores for complete case analysis of male children. The results showed that MSE(P)

values for model selection using restrictive/inclusive strategy is the lowest. The factors

that contribute to predict weight at eight years Z-scores for male children are birth

weight Z-scores and gestational age. If birth weight Z-scores increase by 1, the weight

at eight years Z-scores will increase by 0.4050. There is a negative relationship between

weight at eight years Z-scores and gestational age in predicting weight at eight years

Z-scores for both male children.

Table 6.11: Estimates and MSE(P) for prediction of weight at eight years Z-scores for
female children in complete case analysis

Approaches Model averaging Model selection

Strategies Non-over Restrictive/Inclusive Non-over Restrictive/Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC

Constant 1.0312 1.0362 1.7230 1.1833 1.0306 1.0678 1.0306 1.0678

Birth weight Z-score 0.1603 0.2211 0.1634 0.2227 - - - -

Weight at 6 weeks Z-score 0.4929 0.4336 0.5103 0.4379 0.5673 0.4609 0.5673 0.4609

Weight at 4 months Z-score -0.4902 -0.3949 -0.4997 -0.3984 -0.4406 - -0.4406 -

Weight at 8 months Z-score 0.3716 0.3458 0.3740 0.3383 - - - -

Weight at 12 months Z-score 0.3275 0.3307 0.3254 0.3302 0.4107 - 0.4107 -

Gestational Age - - -0.0531 -0.0431 - - - -

Average MSE(P) 1.7818 1.8257 3.7717 4.2667 1.7050 1.7801 1.7050 1.7801

Error variance (σ2
ε) 1.7910 1.8351 1.7772 1.8128 1.7138 1.7893 1.7138 1.7893

Table 6.11 shows the estimates and MSE(P) for prediction of weight at eight years Z-

scores for complete case analysis of female children. The results showed that MSE(P)

values for model selection using restrictive/inclusive strategy and non-overlapping vari-

able sets are the lowest. The factors that contribute to predict weight at eight years

Z-scores for female children are weight at 6 weeks Z-scores, weight at 4 months Z-scores

and weight at 12 months Z-scores. If weight at 6 weeks increase by 1, the weight at eight

years Z-scores will increase by 0.5673.

Generally, in all three predictions of weight at school entry, weight at eight years and

weight Z-scores at eight years, BIC performs poorly for predictions using model aver-

aging. The MSE(P) values for model averaging based on BIC weights is much higher

compared to those based on AICc weights. This is due to the effects of BIC’s penalty

term (more strict than AICc), where smaller models are given more weight in model

averaging based on BIC weights. The AICc performs better than BIC in selecting the

best model for predicting weight at school entry, weight at eight years and weight at

eight years Z-scores for both male and female children. Table 6.12 shows the comparison

between parameter values used in the simulation studies and those for the GMS data

analysis. The effects of these parameters will be observed in the prediction analysis of
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GMS data to compare the effects of these parameters in simulation setting and real-data

application.

Table 6.12: Comparison between parameters used in simulation studies and GMS data

Parameters Simulation studies GMS data

m 0,25,50 0 ≤ m ≤ 55

n 50, 100, 200, 400 524 (boys) and 505 (girls)

σ2
ε

1
16 , 1, 16 1.5, 4, 10, 21

Number of parameters (β′s) up to 4 up to 7

correlations between auxiliary variable and covariates −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75 -0.06 to 0.41

correlations between covariates 0 0 to 0.93

number of covariates 2 5

number of auxiliary variable 1 1

number of models for non-overlapping 4 32

number of models for restrictive/inclusive 8 64

6.2.2 Prediction of weight at school entry using multiple imputation

The incomplete data were imputed using all three model-building strategies (non-overlapping

variable sets, restrictive and inclusive strategies) for both the STACK method and model

averaging. Figure 6.6 shows the distribution of imputed values for weight at school entry

for male children using non-overlapping variable sets, restrictive and inclusive strategies.

The distribution of imputed values for weight at school entry for male children using

inclusive strategy are closer to observed values compared to those for non-overlapping

variable sets and restrictive strategy. Therefore, imputation using inclusive strategy are

better than using non-overlapping variable sets and restrictive strategy for weight at

school entry for male children.
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Figure 6.6: Distribution of imputed values for weight at school entry for male children
using non-overlapping, restrictive and inclusive strategies using multiple imputation
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Figure 6.7 shows the distribution of imputed values for first year baby’s weights for male

babies using non-overlapping variable sets and restrictive strategy where both strategies

use the same imputation model. The weight at 6 weeks, weight at 4 months, weight 8

months and weight 12 months are imputed using gestational age. The distribution of

imputed values for weight at 6 weeks, weight at 4 months, weight 8 months and weight

12 months using using non-overlapping variable sets and restrictive strategy are closed

to observed values.
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Figure 6.7: Distribution of imputed values for first year baby’s weights for male babies
using non-overlapping and restrictive strategy using multiple imputation

Figure 6.8 shows the distribution of imputed values for first year baby’s weights for

male babies using inclusive strategy. Each first year baby’s weight is imputed using

the rest of first year baby’s weights and gestational age. The distribution of imputed

values for weight at 6 weeks, weight at 4 months, weight 8 months and weight 12 months
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using inclusive strategy are closer to observed values. Although the imputed values of

weight at 6 weeks, weight at 4 months, weight 8 months and weight 12 months using

non-overlapping variable sets and restrictive strategy are closed to observed values, but

the distribution of imputed values using inclusive strategy are better and more centered

to observed values.
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Birth weight and Weight at 6 weeks for Male babies
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(a) Weight at 6 weeks
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Birth weight and weight at 4 months for Male babies
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(b) Weight at 4 months
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Birth weight and weight at 8 months for Male babies
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(c) Weight at 8 months
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Birth weight and weight at 12 months for Male babies
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Figure 6.8: Distribution of imputed values for first year baby’s weights for male babies
using inclusive strategy using multiple imputation

Table 6.13 shows the parameter estimates and MSE(P) for prediction of weight at school

entry for male children. The average MSE(P)-CC is the lowest for STACK using inclusive

strategy for prediction model. Two different sets of 10% cross-validation test (CV1 and

CV2) were used to calculate MSE(P). Since there are not many outliers for weight

at school entry for male children, there is not much difference between MSE(P) for

both cross validation sets. The results showed that MSE(P) values for STACK using
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inclusive strategy for prediction model and model chosen by AICc is the lowest. The

MSE(P) values for cross-validation test are higher than the MSE(P)-CC. The factors

that contribute to predict weight at school entry for male children are birth weight,

weight at 6 weeks, weight at 4 month, weight at 8 months and weight at 12 months. If

birth weight increase by 1 kg, the weight at school entry will increase by 0.7239kg. There

is a negative relationship of weight at 4 month in predicting weight at school entry for

male children.

Table 6.13: Estimates and MSE(P) for prediction of weight at school entry for male
children using multiple imputation

Approaches Model averaging STACK

Strategies Non-over Restrictive Inclusive Non-over Restrictive Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC

Constant 5.5490 5.8413 4.0514 4.7168 3.3628 3.2413 5.0202 4.8955 4.0173 5.2030 2.5159 2.5159

Birth weight 0.6356 0.7073 0.5304 0.6005 0.9377 0.9413 0.6477 0.6225 0.4496 0.5067 0.7239 0.7239

Weight at 6 weeks 0.3518 0.4256 0.2263 0.2699 0.1872 0.1725 0.3228 0.2690 0.3956 0.3446 0.3167 0.3167

Weight at 4 months 0.0155 0.0708 -0.1094 -0.0690 -0.5542 -0.4895 -0.1347 0 -0.1055 0 -0.6070 -0.6070

Weight at 8 months 0.5101 0.5305 0.6710 0.6851 0.7491 0.7009 0.6105 0.5860 0.5449 0.5291 0.9294 0.9294

Weight at 12 months 0.6267 0.6519 0.5645 0.5707 0.9984 1.0556 0.6107 0.5892 0.6397 0.6205 0.8736 0.8736

Gestational Age - - 0.0983 0.1263 -0.0106 -0.0079 - - 0.0383 0 0 0

Average MSE(P)-CC 4.7656 6.9862 4.5459 9.9704 5.5908 8.8505 4.4322 4.4322 4.4583 4.4583 4.2361 4.2361

Average MSE(P)-CV1 7.9665 17.0231 14.5525 38.5906 6.6376 8.4025 5.5643 5.6220 5.8316 5.7821 5.4056 5.4056

Average MSE(P)-CV2 7.5230 14.1765 9.4636 23.3386 5.3800 6.6351 5.6279 5.6279 5.7187 5.6186 5.3996 5.3996
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Figure 6.9: Residuals for male children using inclusive strategy and model selection
criterion AICc using multiple imputation for prediction of weight at school entry

Figure 6.9 shows the residuals based on CV1 for male children using inclusive strategy

and model selection criterion AICc. It indicates that the the spread of the residuals

is increasing as the fitted values changes, which is called heteroskedasticity. Since the
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deviation deviations from the straight line in normal Q-Q are minimal, this indicates

that residuals are approximately normally distributed.

Table 6.14: Estimates and MSE(P) for prediction of weight at school entry for female
children using multiple imputation

Approaches Model averaging STACK

Strategies Non-over Restrictive Inclusive Non-over Restrictive Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC

Constant 4.9262 5.6559 9.8042 7.0530 8.7603 5.6214 4.4595 4.5531 12.5232 12.5232 10.1894 10.1894

Birth weight -0.1382 -0.0192 0.3554 0.3372 0.7818 0.6952 -0.2378 0 0.2924 0.2924 0.6978 0.6978

Weight at 6 weeks 0.5273 0.5704 0.6552 0.7119 -0.1895 -0.0286 0.4714 0.4281 0.3956 0.3956 0 0

Weight at 4 months 0.2604 0.3337 0.2178 0.3232 0.7278 0.7235 0.1539 0 0.2417 0.2417 0.5626 0.5626

Weight at 8 months 0.2826 0.3222 0.4215 0.4455 -1.0221 -1.0027 0.3656 0.3931 0.3836 0.3836 -1.0410 -1.0410

Weight at 12 months 1.1017 1.1812 1.0237 1.1074 2.3109 2.2893 1.0145 1.0211 0.9814 0.9814 2.3237 2.3237

Gestational Age - - -0.2030 -0.1707 -0.2500 -0.2241 - - -0.2496 -0.2496 -0.2635 -0.2635

Average MSE(P)-CC 12.0432 33.7168 8.3389 12.4550 7.1680 10.8208 8.0525 8.0525 7.7610 7.7609 6.8760 6.8760

Average MSE(P)-CV1 13.9910 40.1831 9.8000 12.1061 5.9506 6.9151 6.4515 6.4321 6.2137 6.2137 6.4343 6.4343

Average MSE(P)-CV2 25.5326 45.6606 23.1714 27.2795 20.9613 21.8894 19.8003 19.8219 19.6686 19.6550 20.8172 20.7851

Table 6.14 shows the estimates and MSE(P) for prediction of weight at school entry for

female children. Two different sets of 10% complete cases (CV1 and CV2) were used to

calculate MSE(P). Since there is an outlier (heavy weight child) in CV2, the MSE(P) for

dataset CV2 is much higher than CV1. This shows that heavy weight child (there is a

overweight child in CV2 compared to to other child in that dataset) affect the prediction

of weight at school entry for female children. For CC, the results showed that MSE(P)

values for STACK using inclusive strategy for prediction model and the model chosen

by AICc is the lowest. Whereas for CV1, the results showed that MSE(P) values for

model averaging using inclusive strategy for prediction model is the lowest. For CV2,

the MSE(P) values for STACK using restrictive strategy for prediction model is the

lowest. The MSE(P) values for cross-validation test, CV2 is higher than the MSE(P) for

CC. The factors that contribute to predict weight at school entry for male children are

birth weight, weight at 6 weeks, weight at 4 month, weight at 8 months, weight at 12

months and gestational age. There is a strong relationship between weight at 12 months

and weight at school entry for female children. If weight at 12 months increase by 1 kg,

the weight at school entry will increase by 2.3109kg. There is a negative relationship of

weight at 8 month and gestational age in predicting weight at school entry for female

children.

Figure 6.10a shows the residuals based on CV1 for female children using inclusive strat-

egy and model selection criterion AICc. It indicates that the the spread of the residuals

is increasing as the fitted values changes, which is called as heteroskedasticity. Since the

deviations from the straight line in normal Q-Q are minimal, this indicates that residuals

for prediction on weight at school entry for female children are normally distributed. Fig-

ure 6.10b shows the residuals based on CV2 for female children using inclusive strategy
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and model selection criterion AICc. It indicates that there is effect of heteroskedasticity

for residuals based on CV2. The normal Q-Q shows that the residuals based on CV2 are

heavy-tailed and not normal. This is due to the effects of outlier (heavy weight children)

in the CV2 dataset.

12 14 16 18 20 22 24 26

−
4

−
2

0
2

4
6

8

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

Residuals vs Fitted

19

46

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

19

4
6

12 14 16 18 20 22 24 26

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

Scale−Location
19

4
6

0.0 0.1 0.2 0.3 0.4

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

Cook's distance 0.5

0.5

1

Residuals vs Leverage

4

25

19

(a) residuals based on CV1

14 16 18 20 22 24

−
5

0
5

10
20

Fitted values

R
es

id
ua

ls

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●

● ●
●

●

●

●
●

●

● ●
●

●

● ●

●● ●
●●

●●

●

●
●

●

●

●
●

●

Residuals vs Fitted

21

196

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●

●
●

●
●●

●
●

●●

●

●
●

●

●

●
●

●

−2 −1 0 1 2

−
1

0
1

2
3

4
5

6
Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

21

194

14 16 18 20 22 24

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

Scale−Location
21

19 4

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●

●
●

●
●●

●●
●●

●

●
●

●

●

●
●

●

Cook's distance

0.5

1

Residuals vs Leverage

21

4

34

(b) residuals based on CV2

Figure 6.10: Residuals for female children using inclusive strategy and model selection
criterion AICc using multiple imputation for prediction of weight at school entry

6.2.3 Prediction of weight at eight years using multiple imputation

Since the imputed values for first year baby’s weights (6 weeks, weight at 4 months,

weight 8 months and weight 12 months) for both male and female babies using non-

overlapping variable sets, restrictive and inclusive strategies are similar as discussed

in Section 6.2.2, the distribution of imputed values for first year baby’s weights are

not discussed in this section. Figure 6.11 shows the distribution of imputed values for

weight at eight years for male children using non-overlapping variable sets, restrictive

and inclusive strategies. It is clearly showed that the distribution of imputed values

for weight at eight years using inclusive strategy are better than using non-overlapping

variable sets and restrictive strategy. The distribution of imputed values for weight at

eight years for male children using inclusive strategy are centered, overlapping and closer

to observed values compared to non-overlapping variable sets and restrictive strategy.
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Figure 6.11: Distribution of imputed values for weight at eight years for male children
using non-overlapping, restrictive and inclusive strategies using multiple imputation

Table 6.15: Estimates and MSE(P) for prediction of weight at eight years for male
children using multiple imputation

Approaches Model averaging STACK

Strategies Non-over Restrictive Inclusive Non-over Restrictive Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC

Constant 6.8881 7.7402 5.9286 6.7875 -1.2950 -1.0733 6.7906 6.7906 5.9562 5.9562 1.7115 -1.8052

Birth weight 0.4186 0.4999 0.4971 0.5829 0.6952 0.7340 0.5797 0.5797 0.3976 0.3976 0.8671 0.6456

Weight at 6 weeks 0.5879 0.6600 0.5570 0.6609 0.8028 0.8062 0.3424 0.3424 0.6539 0.6539 1.0448 1.0984

Weight at 4 months -0.0997 0.0260 -0.0874 0.0264 -0.9263 -0.7977 0 0 0 0 -0.7376 -0.7327

Weight at 8 months 1.0100 1.1118 0.9866 1.0402 1.4481 1.3813 0.9702 0.9702 0.9284 0.9284 1.1052 1.0885

Weight at 12 months 0.7919 0.8361 0.8496 0.8999 1.4112 1.4876 0.6475 0.6475 0.6832 0.6832 1.4660 1.4754

Gestational Age - - 0.0199 0.0617 0.0220 0.0501 - - 0 0 -0.1024 0

Average MSE(P)-CC 30.8166 116.2432 22.0900 45.2881 23.2989 25.2626 21.4420 21.4435 21.1440 21.1440 20.7578 20.7578

Average MSE(P)-CV 27.2317 40.2609 27.3428 56.9328 27.3811 29.6481 31.8134 31.8134 30.9464 30.9464 30.4445 30.7693

Table 6.15 shows the estimates and MSE(P) for prediction of weight at eight years

for male children. The results showed that MSE(P) values for model averaging using

non-overlapping variable sets for prediction model and model chosen by AICc is the

lowest. The factors that contribute to predict weight at eight years for male babies are

birth weight, weight at 6 weeks, weight at 4 month, weight at 8 months and weight at

12 months. There are positive effects of birth weight, weight at 6 weeks, weight at 8

months and weight at 12 months on prediction of weight at eight years. If weight at 12

months increase by 1 kg, the weight at eight years will increase by 0.7919kg. There is a

negative relationship of weight at 4 month and gestational age in predicting weight at

eight years for male children. Figure 6.12 shows the residuals for male children using

non-overlapping variable sets and model selection criterion, AICc. It indicates that the

the spread of the residuals are symmetrically distributed and tending to cluster towards
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the middle of the plot. The normal Q-Q shows that the residuals are heavy-tailed and

not normal.
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Figure 6.12: Residuals for male children using non-overlapping variable sets and model
selection criterion, AICc using multiple imputation for prediction of weight at eight

years
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Figure 6.13: Distribution of imputed values for weight at eight years for female children
using non-overlapping, restrictive and inclusive strategy using multiple imputation

Figure 6.13 shows the distribution of imputed values for weight at eight years for fe-

male children using non-overlapping variable sets, restrictive and inclusive strategies.

It is clearly showed that the distribution of imputed values for weight at eight years

using inclusive strategy are better than using non-overlapping variable sets and restric-

tive strategy. The distribution of imputed values for weight at eight years for female
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children using inclusive strategy are centered, overlapping and closer to observed values

compared to non-overlapping variable sets and restrictive strategy. Therefore, the inclu-

sive strategy (includes all four first year baby’s weights and gestational age) is the best

strategy for imputing missing values.

Table 6.16 shows the estimates and MSE(P) for prediction of weight at eight years for

female children. The results showed that MSE(P) values for STACK using restrictive

strategy for prediction model and model chosen by BIC is the lowest. The factors

that contribute to predict weight at eight years for female children are birth weight,

weight at 6 weeks, weight at 4 months, weight at 8 months, weight at 12 months and

gestational age. There are positive relationship of birth weight, weight at 6 weeks, weight

at 8 months and weight at 12 months on prediction of weight at eight years for female

children. If weight at 12 months increase by 1 kg, the weight at eight years will increase

by 1.2479kg. There is a negative relationship of weight at 4 month and gestational age

in predicting weight at eight years for female children.

Table 6.16: Estimates and MSE(P) for prediction of weight at eight years for female
children using multiple imputation

Approaches Model averaging STACK

Strategies Non-over Restrictive Inclusive Non-over Restrictive Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC

Constant 8.5121 9.6738 19.1958 17.5806 12.2690 9.6155 8.0925 8.0925 17.1399 16.9978 11.5053 11.5053

Birth weight -0.2853 -0.1351 0.3096 0.1646 0.1315 0.1923 -0.6437 -0.6437 0 0 0 0

Weight at 6 weeks 0.7520 0.7882 0.6412 0.6573 1.0926 0.9761 1.0156 1.0156 0.8161 0.7133 1.5645 1.5645

Weight at 4 months 0.2091 0.3088 -0.3119 -0.1707 -0.2827 -0.1727 0 0 -0.2169 0 -0.4572 -0.4572

Weight at 8 months 0.6405 0.7021 0.6651 0.6896 -1.3961 -1.3904 0.5712 0.5712 0.6097 0.5743 -1.4758 -1.4758

Weight at 12 months 1.2326 1.3334 1.1826 1.2479 3.4942 3.4505 1.1504 1.1504 1.2447 1.2040 3.8219 3.8219

Gestational Age - - -0.3110 -0.2648 -0.3485 -0.3247 - - -0.2543 -0.2559 -0.3628 -0.3628

Average MSE(P)-CC 28.1563 55.5994 22.4580 23.8397 21.9140 39.6080 22.9084 22.9084 22.4732 22.6426 20.5759 20.5759

Average MSE(P)-CV 23.7122 61.7798 17.3017 16.0643 23.5641 35.4340 16.6506 16.6506 16.2176 16.1085 17.2490 17.2490

Figure 6.14 shows the residuals for female children using restrictive strategy and model

selection criterion, BIC. It indicates that the the spread of the residuals are symmetri-

cally distributed and tending to cluster towards the middle of the plot. However, there

are some outliers. Since the deviations from the straight line in normal Q-Q are minimal,

this indicates that residuals are approximately normally distributed.
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Figure 6.14: Residuals for female children using restrictive strategy and model selection
criterion, BIC using multiple imputation for prediction of weight at eight years

6.2.4 Prediction of weight Z-scores at eight years using multiple im-

putation

A similar analysis on prediction of weight at eight years as discussed in Section 6.2.3 was

carried out using Z-scores for all weights. Figure 6.15 shows the distribution of imputed

values for weight Z-scores at eight years for male children using non-overlapping variable

sets, restrictive and inclusive strategies. It is clearly showed that the distribution of

imputed values for weight Z-scores at eight years using inclusive strategy are better

than using non-overlapping variable sets and restrictive strategy. The distribution of

imputed values for weight Z-scores at eight years using inclusive strategy are centered

and closer to observed values compared to non-overlapping variable sets and restrictive

strategy.
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Figure 6.15: Distribution of imputed values for weight Z-scores at eight years for male
children using non-overlapping, restrictive and inclusive strategies using multiple im-

putation
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(b) Weight at 4 months Z-scores
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(c) Weight at 8 months Z-scores
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(d) Weight at 12 months Z-scores

Figure 6.16: Distribution of imputed values for first year baby’s weight Z-scores for
male babies using non-overlapping and restrictive strategy using multiple imputation
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Figure 6.16 shows the distribution of imputed values for first year baby’s weight Z-

scores for male children using non-overlapping variable sets and restrictive strategy.

The distribution of imputed values for first year baby’s weight Z-scores using using non-

overlapping variable sets and restrictive strategy are closer to observed values but a bit

scattered.

Figure 6.17 shows the distribution of imputed values for first year baby’s weight Z-scores

for male babies using inclusive strategy. The distribution of imputed values for first year

baby’s weight Z-scores using using inclusive strategy are closer to observed values and

centered. The distribution of imputed values using inclusive strategy are better than

the distribution of imputed values using non-overlapping variable sets and restrictive

strategy.
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(a) Weight Z-scores at 6 weeks
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(b) Weight Z-scores at 4 months
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(c) Weight Z-scores at 8 months
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(d) Weight Z-scores at 12 months

Figure 6.17: Distribution of imputed values for first year baby’s weight Z-scores for
male babies using inclusive strategy using multiple imputation
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Table 6.17: Estimates and MSE(P) for prediction of weight Z-scores at eight years for
male children using multiple imputation

Approaches Model averaging STACK

Strategies Non-over Restrictive Inclusive Non-over Restrictive Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC

Constant 1.1505 1.1554 1.8182 1.4598 2.0185 1.4554 1.1445 1.1503 2.0192 1.1503 2.9200 2.9200

Birth weight 0.1521 0.1724 0.1554 0.1647 0.3198 0.3462 0.1573 0.1570 0.1568 0.1478 0.2937 0.2937

Weight at 6 weeks 0.0602 0.1123 0.0321 0.0700 0.1580 0.1403 0 0 0 0 0.1898 0.1898

Weight at 4 months 0.0831 0.1218 0.0274 0.0574 -0.0958 -0.0046 0.0825 0.0809 0.0582 0.0554 -0.2012 -0.2012

Weight at 8 months 0.1405 0.1842 0.0943 0.0989 0.1598 0.1031 0.0379 0 0.0550 0.0538 0.2999 0.2999

Weight at 12 months -0.0028 0.0257 -0.0136 0.0071 -0.0589 0.0115 -0.0373 0 0 0 -0.1445 -0.1445

Gestational Age - - -0.0215 -0.0167 -0.0387 -0.0383 - - -0.0221 0 -0.0434 -0.0434

Average MSE(P)-CC 1.3717 1.4014 1.6703 2.6733 1.4297 2.6842 1.4124 1.4124 1.4211 1.4058 1.4814 1.5383

Average MSE(P)-CV 1.7148 1.7908 1.6737 1.7384 2.0937 3.0264 1.7656 1.7451 1.7358 1.7542 1.8441 1.8441

Table 6.17 shows the estimates and MSE(P) for prediction of weight Z-scores at eight

years for male children. The results showed that MSE(P) values for model averaging

using non-overlapping variable sets for prediction model and model chosen by AICc is

the lowest. The factors that contribute to predict weight Z-scores at eight years for

male children are birth weight Z-scores, weight Z-scores at 6 weeks, weight Z-scores at 4

months, weight Z-scores at 8 months and weight Z-scores at 12 months. If birth weight

Z-scores increase by 1 unit, the weight Z-scores at eight years will increase by 0.1521

unit. There is a negative relationship between weight Z-scores at 12 months and weight

Z-scores at eight years for male children.
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Figure 6.18: Residuals for male children using non-overlapping variables sets and model
selection criterion, AICc using multiple imputation for prediction of weight Z-scores at

eight years
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Figure 6.18 shows the residuals for male children using non-overlapping variable sets

and model selection criterion, AICc. It indicates that the the spread of the residuals are

symmetrically distributed and tending to cluster towards the middle of the plot. Since

the deviation deviations from the straight line in normal Q-Q are minimal, this indicates

that residuals are approximately normally distributed.

Table 6.18: Estimates and MSE(P) for prediction of weight Z-scores at eight years for
female children using multiple imputation

Approaches Model averaging STACK

Strategies Non-over Restrictive Inclusive Non-over Restrictive Inclusive

Model selection Criterion AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC AICc BIC

Constant 1.0186 1.0177 0.7262 0.8601 2.4371 1.5751 1.0540 1.0643 0.9545 0.9630 3.3093 3.3093

Birth weight 0.0348 0.0655 0.0575 0.0815 -0.0625 -0.0447 0.0963 0.0965 0 0 -0.0833 -0.0833

Weight at 6 weeks 0.1606 0.1770 0.1949 0.2160 0.7180 0.6100 0.1365 0.1265 0.2083 0.1856 0.8482 0.8482

Weight at 4 months -0.0121 0.0431 0.0142 0.0643 -0.5694 -0.5184 -0.0571 0 -0.0755 0 -0.6462 -0.6462

Weight at 8 months 0.1271 0.1591 0.0738 0.0909 0.3252 0.3400 0.0853 0.0915 0.0832 0.0780 0.4048 0.4048

Weight at 12 months 0.0696 0.0972 0.0383 0.0581 0.1940 0.2337 0.0647 0 0.0514 0 0 0

Gestational Age - - 0.0140 0.0202 -0.0536 -0.0514 - - 0 0 -0.0578 -0.0578

Average MSE(P)-CC 1.7609 1.7522 1.8097 2.3136 2.0447 2.5465 1.8205 1.8549 1.8122 1.8551 1.8992 1.8629

Average MSE(P)-CV 2.1742 2.2320 2.2083 2.5337 2.9279 4.7631 2.1569 2.1683 2.1799 2.1747 2.5328 2.5328

Table 6.18 shows the estimates and MSE(P) for prediction of weight Z-scores at eight

years for female children. The results showed that MSE(P) values for STACK using

non-overlapping variable sets for prediction model and model chosen by AICc is the

lowest. The factors that contribute to predict weight Z-scores at eight years for female

children are birth weight Z-scores, weight Z-scores at 6 weeks, weight Z-scores at 4

months, weight Z-scores at 8 months and weight Z-scores at 12 months. There are

positive effects of birth weight Z-scores, weight Z-scores at 6 weeks, weight Z-scores at

8 months and weight Z-scores at 12 months on prediction of weight Z-scores at eight

years for female children. There is a negative relationship between weight Z-scores at 4

months and weight Z-scores at eight years for female children. If weight Z-scores at 6

weeks increase by 1 unit, the weight Z-scores at eight years will increase by 0.1365 unit.

Figure 6.19 shows the residuals for female children using non-overlapping variable set

and model selection criterion, AICc. It indicates that the the spread of the residuals are

symmetrically distributed and tending to cluster towards the middle of the plot. How-

ever, there is a outlier. Since the deviation deviations from the straight line in normal

Q-Q are minimal, this indicates that residuals are approximately normally distributed.
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Figure 6.19: Residuals for female children using non-overlapping variable set and model
selection criterion, AICc using multiple imputation for prediction of weight Z-scores at

eight years

6.3 Gateshead Millennium Study Simulation Results

The results from the real-data analysis suggest that, in this study, the best approach was

STACK with an inclusive model-building strategy. The conclusions from the simulation

studies in Chapter 4 and Chapter 5 were different, indicating that model averaging with

an inclusive strategy was best, or possibly STACK with non-overlapping variable sets.

Hence, in this section, a simulation study was carried out to identify the reasons for

these contradictory results. This simulation study was based on the simulation design

discussed in Chapter 4. The aim was to mimic the conditions for predicting weight at

school entry using the parameter values in Table 6.12. The analysis was carried out

for a sample size n = 500, error variance σ2
ε = 16 and various missing percentages

(m = 0, 10, 25, 26, 28, 30 and 40). There were five covariates (X1, X2, X3, X4 and X5)

and one auxiliary variable (X6). The covariance matrix of X = (X1, X2, X3, X4, X5, X6)

in the simulation study was

Σ =



1 ρ12 (ρ12)2 (ρ12)3 (ρ12)4 ρ16

ρ12 1 ρ12 (ρ12)2 (ρ12)3 ρ26

(ρ12)2 ρ12 1 ρ12 (ρ12)2 ρ36

(ρ12)3 (ρ12)2 ρ12 1 ρ12 ρ46

(ρ12)4 (ρ12)3 (ρ12)2 ρ12 1 ρ56

ρ16 ρ26 ρ36 ρ46 ρ56 1


(6.1)
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where ρij = ρji denotes the correlation between Xi and Xj . The correlations in simula-

tion study 1 are ρ12 = 0.75 and ρi6 = 0.1 for all i = 1, 2, 3, 4, 5. Whereas the correlations

in simulation study 2 are ρ12 = 0.75 and ρi6 = 0.5. All the model-building strategies

discussed previously were investigated in this study. It was decided to use AICc as

the criterion because AICc performs better than BIC in terms of model selection and

prediction as concluded in Chapter 4 and Chapter 5.

Table 6.19: MSE(P) for prediction of weight at school entry (GMS simulation) for
σε = 4 and n = 500 using multiple imputation

correlation Simulation Study 1 - ρi6 = 0.1 Simulation Study 2 - ρi6 = 0.5

Strategies Non-over Restrictive Inclusive Non-over Restrictive Inclusive

Approaches MA STACK MA STACK MA STACK MA STACK MA STACK MA STACK

m=0 0.6315 0.6432 1.8686 2.1842 1.8686 2.1842 0.6235 0.6494 1.8819 2.1486 1.8819 2.1486

m=10 0.4882 1.0217 1.7513 1.0518 1.9726 1.0761 0.5362 1.0230 1.8090 1.0276 1.9198 1.0962

m=15 0.4397 1.0756 1.6964 1.0832 1.9702 1.1799 0.4928 1.0748 1.7159 1.0423 1.9725 1.1721

m=20 0.4044 1.1238 1.6145 1.1105 2.0058 1.1879 0.4730 1.0772 1.6314 1.0824 2.0581 1.2191

m=25 0.4061 1.1628 1.5419 1.1831 2.0397 1.2710 0.4504 1.1114 1.5895 1.1097 2.0138 1.2360

m=30 0.4381 1.2400 1.4778 1.2588 2.0374 1.2524 0.4688 1.1595 1.5077 1.1534 2.0207 1.2487

m=35 0.4789 1.3114 1.3834 1.3195 2.1147 1.3417 0.4927 1.2041 1.4348 1.2160 2.0945 1.3861

m=40 0.4839 1.4417 1.3206 1.4329 2.1742 1.3265 0.4853 1.2841 1.3264 1.2801 2.1523 1.3728

m=50 0.6106 1.6722 1.1494 1.6681 2.2064 1.4693 0.5433 1.3833 1.1505 1.1248 2.2347 1.4432

m=60 0.7852 2.0353 1.0315 2.0103 2.3601 1.6608 0.6766 1.5817 1.0585 1.6495 2.3218 1.6143

Table 6.19 shows the MSE(P) for prediction of weight at school entry (GMS simula-

tion)for σε = 4 and n = 500. Figure ?? and Figure ?? show the MSE(P) for model

averaging and STACK via AICc using non-overlapping variable sets, restrictive and in-

clusive strategies for each ρi6 (ρi6 = 0.1 and ρi6 = 0.5). The results suggest that model

averaging with the non-overlapping strategy is the best method when an auxiliary vari-

able is available. Model averaging using non-overlapping variable sets performs better

than STACK using all three model-building strategies where the MSE(P) for model aver-

aging using non-overlapping variable sets is the lowest. The MSE(P) for model averaging

using restrictive strategy decreases as missing percentage increases, in contrast to the

MSE(P) for model averaging and STACK using inclusive strategy which are increases

as missing percentage increases.

In the simulation settings of Chapter 5, there is no correlation between the covariates

but there is a correlation with the auxiliary variable. Whereas in the real-data analysis,

there are moderate to high correlations between covariates and low correlations with the

auxiliary variable. This appears to go some way towards explaining the contradictory

results between Chapter 5 and real-data analysis (GMS). In real-data analysis, the best

method is STACK using an inclusive strategy. This coincides reasonably well with the

results of the simulation study discussed in this section given that the correlations with

the auxiliary variable (gestational age) were low and the percentages of missing data
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moderately high for some of the covariates in the real-life dataset. These results indicate

that the correlation with covariates and missing percentages all play an important role

in determining the best method and the best model-building strategy for prediction.

There are no effects of correlation between auxiliary variable in terms of prediction as

missing percentage increases and also between the three model-building strategies.
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Figure 6.20: MSEP for model averaging and STACK via AICc using non-overlapping,
restrictive and inclusive strategies for GMS simulation using multiple imputation

6.4 Discussion and Conclusions

The real-data analysis using GMS dataset was carried out to investigate the performance

of the proposed methods and model-building strategies. Only the AICc criterion has

been discussed in this chapter. As discussed and concluded in Chapter 4 and Chapter 5,

AICc performs better than BIC in both model averaging and STACK. BIC performs

very poorly for model averaging where the MSE(P) values for model averaging based on

BIC weights are very much higher compared to those based on AICc weights. This is

due to the effect of BIC’s penalty term and also the effect of highly correlated covariates.

In addition, BIC tends to give higher weights for smaller models to reduce the effects of

highly correlated covariates. On the other hand, AICc tends to incorporate the effects

of highly correlated covariates by choosing a larger model.

On the basis of the simulation results from Chapter 5, using highly correlated covariates

in the imputation model can be expected to improve the imputation step and hence

the overall analysis of a dataset with missing values. This coincides with the results
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obtained in Chapter 6 by using an inclusive strategy with highly correlated covariates.

However, the choice of model-building strategy in Chapter 4 and Chapter 5 was either

non-overlapping variable sets or the inclusive strategy for prediction. This is because

the correlation between the auxiliary variable and the variable to be imputed is high in

Chapter 4 and Chapter 5, and there are no correlations between the covariates in the

simulation settings there.

The inclusive strategy performs better in choosing the best model for prediction of

weight at school entry and weight at eight years. This shows that both imputation and

prediction models are interrelated. If the imputation model is misspecified, then the

prediction analysis will be poorer. The inclusive strategy performs better for imputing

the missing responses (weight at school entry and weight at eight years) and covariates

(weight at 6 weeks, weight at 4 months, weight at 8 months and weight at 12 months).

Since the covariates are highly correlated, the inclusion of all variables in the imputation

model yields better imputed values. The non-overlapping variable sets and restrictive

strategies perform poorer since the correlation between gestational age (an auxiliary

variable) and the covariates are very low. This is in agreement with Collins et al. [2001]

who stated that the inclusive strategy reduces the chance of inadvertently omitting an

important cause of missingness and also brings the possibility of noticeable gains in

terms of increased efficiency and reduced bias.

The real-data analysis (GMS dataset) suggests that, in this study, the best approach was

STACK with an inclusive model-building strategy. The conclusion from the simulation

study in Chapter 5 was different, indicating that model averaging with an inclusive strat-

egy was the best method. A simulation study for predicting weight at school entry was

carried out to identify the reasons for these contradictory results. It revealed that the

MSE(P) for model averaging using restrictive strategy decreases as missing percentage

increases, in contrast to the MSE(P) for model averaging and STACK using inclusive

strategy which are increases as missing percentage increases. As a result, model aver-

aging with non-overlapping strategy is the best method when an auxiliary variable is

available. This helps to explain the contradictory results between Chapter 5 and real-

data analysis, where it indicates the effects of highly correlated covariates and auxiliary

variable. The use of highly correlated covariates and auxiliary variable as well as the

percentages of missing values play an important role in determining the best method of

prediction in the presence of missing data.

Moreover, the effects of outliers on the imputation and prediction steps are highlighted by

the analysis of the real-life dataset. Although the observations with premature babies

and extremely heavy weight child were removed from the prediction and imputation

analysis, there are still deleterious effects of a heavy weight child for prediction of weight
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at school entry for female children (since one of the children is heavier compared to

others in that group). As discussed in Section 6.2.2, the MSE(P) value is higher for

the cross-validation test with the heavy weight female child compared to those obtained

without the heavy weight child. This is clearly shown by residuals where the residuals

are not normally distributed for cross-validation test with the heavy weight female child.

Another important issue is there are more heavy weight female children in this GMS

dataset compared to male children, and the prediction of their weights at any time

point should be considered separately in order to avoid any mis-interpretation of results

in further research.

In conclusion, the proposed method, STACK with an inclusive strategy, performs bet-

ter than other approaches in terms of prediction and variable selection when missing

percentage is high and the correlations with the auxiliary variable is low. The inclusive

strategy performs better in imputing missing values if the covariates are highly corre-

lated. If an auxiliary variable is available, the researcher could use the non-overlapping

strategy to improve the imputation. Researchers should use model averaging with non-

overlapping variable sets for analysing data. Alternatively, researchers can use STACK

with an inclusive strategy for prediction if auxiliary variable is not available.



Chapter 7

Conclusion

This chapter summarizes the main achievements of the work presented in this thesis, its

contribution and novel aspects, as well as suggestions and recommendations for future

work.

7.1 Review of Objectives and Guidelines

Model selection and model averaging in linear model and Logistic regression become

complicated in the presence of missing data. The main aim of this research is to provide

a comparison between model selection and model averaging so that guidelines can be

drawn up for how to apply them in the presence of missing data. Five primary objectives

were outlined in Section 1.2 and these will now be reviewed and discussed in the context

of four guidelines for researchers who intend to use model selection or model averaging

in the presence of missing data.

1. Which imputation method is best for selecting and fitting additive linear model and

Logistic regression? Single imputation or Multiple Imputation?

Model selection and model averaging using multiple imputation perform better

than single imputation for selecting and fitting additive linear model and Logistic

regression. Simulation studies showed that model selection and model averaging

using multiple imputation is better than using single imputation for all missing

percentages, sample sizes and ρ23 in terms of prediction for both linear model and

Logistic regression. Therefore, multiple imputation is better for imputing missing

data in the context of model-building.

166
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2. Which model-building strategy is better for imputation and prediction? Inclusive,

Restrictive or Non-overlapping variable sets?

Imputing missing data using a correct imputation model is essential. When cor-

relations among the covariates are low, one should generally use model selection

with non-overlapping variable sets (use highly correlated auxiliary variables only

in the imputation model) if the interest of the research in the presence of missing

data is to identify which variables to be included when making predictions. The

choice of auxiliary variables is usually based on personal judgements. There are

no best guidelines for choosing the auxiliary variables. It is advisable to use non-

overlapping variable sets if there is highly correlated auxiliary variable is available.

Alternatively, researchers can use an inclusive strategy since the inclusive strat-

egy performs better than the non-overlapping variable sets if the covariates are

highly correlated and there is a higher missing percentage. The inclusive strategy

also generally performs better than the restrictive strategy and non-overlapping

variable sets in terms of prediction for extreme circumstances. Therefore, the re-

searcher should use the inclusive strategy for imputation and prediction models.

This approach has the added advantage of reducing the distinction between co-

variates and auxiliary variables, since all variables are available for use in both the

imputation and prediction models.

3. Which model selection criterion is better for model selection and model averaging?

AIC, AICc or BIC?

Based on our simulation studies, model selection criterion, AICc performs better

than AIC and BIC for larger error variance and in making predictions. AICc is

known theoretically to be less biased than AIC for small sample size and this is

proven through simulation studies. There is not much difference between the model

chosen by AICc and BIC in terms of prediction for M-STACK method in the real

data analysis. BIC performs very poorly for model averaging, where the MSE(P)

values based on BIC weights were very much higher compared to those based on

AICc weights. This is due to the effect of BIC’s penalty term. BIC’s penalty is

more strict than AICc and it strongly discourages choosing a model with many

parameters, so the smaller models are given more weight in model averaging using

BIC compared to AICc. Therefore, researchers should carry out model selection

and model averaging using model selection criterion, AICc.
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4. Which model-building approach is better for prediction? M-STACK or model av-

eraging?

STACK performs better than the other model selection methods in terms of vari-

able selection and prediction in most circumstances. In the restricted simulation

studies, model averaging performs slightly better than STACK in terms of pre-

diction. However, STACK performs better in the real data analysis on the GMS

data. This is due to highly correlated covariates in the GMS study. There is a

strong effect of highly correlated covariates and higher missing percentages in the

poor performance of model averaging. On the other hand, the highly correlated

covariates improve the performance of STACK in the GMS study. Model averaging

using non-overlapping variable sets performs better only if an auxiliary variable is

available. However, STACK using an inclusive strategy performs well in general for

most circumstances. Therefore, researchers should use STACK using an inclusive

strategy for model-building in the presence of missing data for making predictions

and also for variable selection when there is no auxiliary variable is available.

7.2 Research Contributions

The major contributions to science of the work described in this thesis are listed below.

1. Compared model selection and model averaging in the presence of missing data,

in terms of prediction.

2. Proposed a novel model selection method, a modified version of the STACK

method (M-STACK), for model selection with multiply-imputed data sets.

3. Proposed STACK and M-STACK methods using all subset regression for model

selection.

4. Proposed model averaging procedures for logistic regression based on averaging

the estimated probability.

5. Compared inclusive and restrictive strategies for building appropriate imputation

and prediction models for model averaging with multiply-imputed data sets, and

compared the outcomes with model selection methods.

6. Diagnosed the effects of using highly correlated variables on building the imputa-

tion and prediction models.
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7. Compared the performance of model selection criteria AICc and BIC as the weights

in model averaging for linear model and Logistic regression in the presence of

missing data.

8. Provided guidelines for model selection and model averaging in the presence of

missing data using multiple imputation.

7.3 Limitations and Recommendations for Further Work

Although the research has achieved its original aims, there were some unavoidable limi-

tations. First, due to time constraints, this research was focussed on simple simulation

settings with three variables and no correlation between the covariates. Second, this re-

search was focused on MCAR mechanism. There are no explorations of model averaging

and model selection under MAR or MNAR mechanisms for either linear models or lo-

gistic regression. Finally, this research is restricted to continuous data. Model selection

and model averaging of categorical data will introduce additional challenges. Therefore,

a list of recommendations for future work are proposed. There are a number of areas

that warrant further investigation.

1. Model averaging using the EM-based AIC developed by Ibrahim et al. [2008] needs

to be explored in terms of prediction and parameter estimation. Ibrahim et al.

[2008] and Claeskens and Consentino [2008] proposed an EM-based AIC for data

with missing values, and claimed that model averaging using EM-based AIC can

improve the predictions and can be a better choice of model-building approach

since model selection method will introduce additional uncertainty into the model-

building process.

2. Model averaging and STACK was solely tested on a real dataset when fitting a lin-

ear model. Model averaging for Logistic regression performs slightly better than

STACK using multiply-imputed data sets in simulation studies, but the perfor-

mance might be different in the real data analysis for fitting Logistic regression.

Therefore, model averaging and STACK method need to be tested using real data

on Logistic regression.

3. STACK using highly correlated covariates performs better than model averaging

in the real data analysis when fitting a linear model. Highly correlated covariates

might have strong effects on imputation and prediction in the real data analysis for

fitting Logistic regression. Therefore, the effects of highly correlated covariates on

model selection and model averaging for both linear model and Logistic regression
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needs to be investigated using an extended Monte Carlo study along the lines of

those discussed in Chapter 5 and Section 6.3.

4. The effects and use of binary covariates in both imputation and prediction models

need to be further explored for both linear model and Logistic regression.

5. Compare model selection and model averaging under MAR or MNAR mechanisms

for linear models and logistic regression.



Appendix A

R-script for Model averaging

using Multiple Imputation for

Linear Regression

n<-100

sigma<-1

rho23<-0

rho12<-0

rho13<-0

beta0<-1

beta1<-1

beta2<-1

beta3<-0

k0<-1 #k is number of parameters#

k1<-2

k2<-3

mu<-c(0,0,0)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3)#covariance matrix#

nsim<-1000

coef.AIC<-matrix(c(0,0,0),nrow=1, ncol=3)

coef.AICc<-matrix(c(0,0,0),nrow=1, ncol=3)

coef.BIC<-matrix(c(0,0,0),nrow=1, ncol=3)

LL.mat<-matrix(nrow=nsim, ncol=4)

AIC.best<-matrix(0, nrow=100, ncol=1)

AICc.best<-matrix(0, nrow=100, ncol=1)

171
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BIC.best<-matrix(0, nrow=100, ncol=1)

#to create test values

prob.test<-seq(0.05,1, by=0.1)

z1.test <-qnorm(prob.test)

z2.test <-z1.test

x.test <- matrix(0,nrow=100, ncol=2)

for (ii in 1:10){

for (jj in 1:10){

x.test[(ii-1)*10+jj, ]<- c(z1.test[ii],z2.test[jj]) } }

#To find y.test

beta0<-1

beta1<-1

beta2<-1

x1.test<-x.test[,1]

x2.test<-x.test[,2]

y.test<-beta0 + beta1*(x1.test)+ beta2*(x2.test)

#To find X3

x3<-matrix(0, nr=100, nc=1)

for (iii in 1:100){

x1<-matrix(c(x.test[iii,1],x.test[iii,2]),nr=2, nc=1)

mu1<-matrix(c(0,0),nr=2, nc=1)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

sigmax11<-matrix(c(1,rho12,rho12,1),nr=2, nc=2)

sigmax22<-matrix(c(1),nr=1, nc=1)

sigmax12<-matrix(c(rho13,rho23),nr=2, nc=1)

t.sigmax12<-t(sigmax12) #to find transpose#

inv.sigmax11<-solve(sigmax11) #to find inverse#

mu2<-(t.sigmax12%*%inv.sigmax11)%*%(x1-mu1) #to find mean x3#

sigmax2<-sigmax22-(t.sigmax12%*%inv.sigmax11%*%sigmax12) #to find variance x3#

x3[iii]<-mu2

}

x3.test<-x3

test.values<-data.frame(y.test, x1.test, x2.test, x3.test)

for(i in 1:nsim){

x<-mvrnorm(n,mu,sigmax)
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m<-25 #m is percentage of missing#

nmiss<-n*(m/100)

nmiss<-round(nmiss)

e<-rnorm(n,0,sigma) #e is error term#

X1<-x[,1]

x2<-x[,2]

X3<-x[,3]

y<-beta0 + beta1*(X1)+ beta2*(x2)+ e

x2miss<-rep(NA, times=nmiss)

x2nmiss<-x2[seq(n-nmiss)]

X2<-cbind(c(x2nmiss,x2miss))

#dataset/model for imputation-non-overlapping variable sets#

dat.x<-data.frame(X2,y,X3)

#define number of multiple imputation, D=10#

imp<-mice(dat.x, method="norm", m=10)

mat<-complete(imp,"long")

imp1<-complete(imp,1) #to retrieve the imputation data set 1#

imp2<-complete(imp,2)

imp3<-complete(imp,3)

imp4<-complete(imp,4)

imp5<-complete(imp,5)

imp6<-complete(imp,6)

imp7<-complete(imp,7)

imp8<-complete(imp,8)

imp9<-complete(imp,9)

imp10<-complete(imp,10)

comp.imp<-list(imp1, imp2, imp3, imp4, imp5, imp6, imp7, imp8, imp9, imp10)

for (k in 1:length(comp.imp)){

dat.xy<-data.frame(y, X1, comp.imp[k]) #non-overlapping variable sets#

M000<-lm(y~1, dat.xy)

M100<-lm(y~X1, dat.xy)

M010<-lm(y~X2, dat.xy)

M110<-lm(y~X1+X2, dat.xy)

model.list<-list(M000, M100, M010, M110)

M000LL<-logLik(M000) #to obtain log-likelihood value from the output for each model#

M100LL<-logLik(M100)

M010LL<-logLik(M010)
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M110LL<-logLik(M110)

LL<-matrix(c(M000LL,M100LL,M010LL,M110LL),nrow=1,ncol=4)

a.LL<-(LL[1]+LL[2]+LL[3]+LL[4])/4

M000AIC<-(2*(LL[1]))-(2*(k0+1)) #calculating AIC, AICc and BIC #

M000BIC<-(2*(LL[1]))-((k0+1)*log(n))

M000AICc<-(2*(LL[1]))-(2*(k0+1)*(n/(n-k0-2)))

M100AIC<-(2*(LL[2]))-(2*(k1+1))

M100BIC<-(2*(LL[2]))-((k1+1)*log(n))

M100AICc<-(2*(LL[2]))-(2*(k1+1)*(n/(n-k1-2)))

M010AIC<-(2*(LL[3]))-(2*(k1+1))

M010BIC<-(2*(LL[3]))-((k1+1)*log(n))

M010AICc<-(2*(LL[3]))-(2*(k1+1)*(n/(n-k1-2)))

M110AIC<-(2*(LL[4]))-(2*(k2+1))

M110BIC<-(2*(LL[4]))-((k2+1)*log(n))

M110AICc<-(2*(LL[4]))-(2*(k2+1)*(n/(n-k2-2)))

M000LLW.AIC<-exp((M000AIC-a.LL)/2)

M100LLW.AIC<-exp((M100AIC-a.LL)/2)

M010LLW.AIC<-exp((M010AIC-a.LL)/2)

M110LLW.AIC<-exp((M110AIC-a.LL)/2)

M000LLW.AICc<-exp((M000AICc-a.LL)/2)

M100LLW.AICc<-exp((M100AICc-a.LL)/2)

M010LLW.AICc<-exp((M010AICc-a.LL)/2)

M110LLW.AICc<-exp((M110AICc-a.LL)/2)

M000LLW.BIC<-exp((M000BIC-a.LL)/2)

M100LLW.BIC<-exp((M100BIC-a.LL)/2)

M010LLW.BIC<-exp((M010BIC-a.LL)/2)

M110LLW.BIC<-exp((M110BIC-a.LL)/2)

#to obtain weights for model from AIC for each model#

W.M000LLAIC<-M000LLW.AIC / (M000LLW.AIC+M100LLW.AIC+M010LLW.AIC+M110LLW.AIC)

W.M100LLAIC<-M100LLW.AIC / (M000LLW.AIC+M100LLW.AIC+M010LLW.AIC+M110LLW.AIC)

W.M010LLAIC<-M010LLW.AIC / (M000LLW.AIC+M100LLW.AIC+M010LLW.AIC+M110LLW.AIC)

W.M110LLAIC<-M110LLW.AIC / (M000LLW.AIC+M100LLW.AIC+M010LLW.AIC+M110LLW.AIC)

#to obtain weights for model from AICc for each model#

W.M000LLAICc<-M000LLW.AICc / (M000LLW.AICc+M100LLW.AICc+M010LLW.AICc+M110LLW.AICc)

W.M100LLAICc<-M100LLW.AICc / (M000LLW.AICc+M100LLW.AICc+M010LLW.AICc+M110LLW.AICc)

W.M010LLAICc<-M010LLW.AICc / (M000LLW.AICc+M100LLW.AICc+M010LLW.AICc+M110LLW.AICc)

W.M110LLAICc<-M110LLW.AICc / (M000LLW.AICc+M100LLW.AICc+M010LLW.AICc+M110LLW.AICc)
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#to obtain weights for model from BIC for each model#

W.M000LLBIC<-M000LLW.BIC / (M000LLW.BIC+M100LLW.BIC+M010LLW.BIC+M110LLW.BIC)

W.M100LLBIC<-M100LLW.BIC / (M000LLW.BIC+M100LLW.BIC+M010LLW.BIC+M110LLW.BIC)

W.M010LLBIC<-M010LLW.BIC / (M000LLW.BIC+M100LLW.BIC+M010LLW.BIC+M110LLW.BIC)

W.M110LLBIC<-M110LLW.BIC / (M000LLW.BIC+M100LLW.BIC+M010LLW.BIC+M110LLW.BIC)

SUM.W.AIC<-W.M000LLAIC+W.M100LLAIC+W.M010LLAIC+W.M110LLAIC

SUM.W.AICc<-W.M000LLAICc+W.M100LLAICc+W.M010LLAICc+W.M110LLAICc

SUM.W.BIC<-W.M000LLBIC+W.M100LLBIC+W.M010LLBIC+W.M110LLBIC

coef.M000.0<-coef(M000)[1]

coef.M000.0<-ifelse(is.na(coef.M000.0), 0, coef.M000.0)

coef.M100.0<-coef(M100)[1]

coef.M100.1<-coef(M100)[2]

coef.M100.0<-ifelse(is.na(coef.M100.0), 0, coef.M100.0)

coef.M100.1<-ifelse(is.na(coef.M100.1), 0, coef.M100.1)

coef.M010.0<-coef(M010)[1]

coef.M010.2<-coef(M010)[2]

coef.M010.0<-ifelse(is.na(coef.M010.0), 0, coef.M010.0)

coef.M010.2<-ifelse(is.na(coef.M010.2), 0, coef.M010.2)

coef.M110.0<-coef(M110)[1]

coef.M110.1<-coef(M110)[2]

coef.M110.2<-coef(M110)[3]

coef.M110.0<-ifelse(is.na(coef.M110.0), 0, coef.M110.0)

coef.M110.1<-ifelse(is.na(coef.M110.1), 0, coef.M110.1)

coef.M110.2<-ifelse(is.na(coef.M110.2), 0, coef.M110.2)

#to find averaged model using AIC weights

coef.AM.AIC.0<-(W.M000LLAIC*coef.M000.0)+(W.M100LLAIC*coef.M100.0)

+(W.M010LLAIC*coef.M010.0)+(W.M110LLAIC*coef.M110.0)

coef.AM.AIC.1<-((W.M100LLAIC*coef.M100.1)+(W.M110LLAIC*coef.M110.1))

/(W.M100LLAIC+W.M110LLAIC)

coef.AM.AIC.2<-((W.M010LLAIC*coef.M010.2)+(W.M110LLAIC*coef.M110.2))

/(W.M010LLAIC+W.M110LLAIC)
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#to find averaged model using AICc weights

coef.AM.AICc.0<-(W.M000LLAICc*coef.M000.0)+(W.M100LLAICc*coef.M100.0)

+(W.M010LLAICc*coef.M010.0)+(W.M110LLAICc*coef.M110.0)

coef.AM.AICc.1<-((W.M100LLAICc*coef.M100.1)+(W.M110LLAICc*coef.M110.1))

/(W.M100LLAICc+W.M110LLAICc)

coef.AM.AICc.2<-((W.M010LLAICc*coef.M010.2)+(W.M110LLAICc*coef.M110.2))

/(W.M010LLAICc+W.M110LLAICc)

#to find averaged model using BIC weights

coef.AM.BIC.0<-(W.M000LLBIC*coef.M000.0)+(W.M100LLBIC*coef.M100.0)

+(W.M010LLBIC*coef.M010.0)+(W.M110LLBIC*coef.M110.0)

coef.AM.BIC.1<-((W.M100LLBIC*coef.M100.1)+(W.M110LLBIC*coef.M110.1))

/(W.M100LLBIC+W.M110LLBIC)

coef.AM.BIC.2<-((W.M010LLBIC*coef.M010.2)+(W.M110LLBIC*coef.M110.2))

/(W.M010LLBIC+W.M110LLBIC)

#to find averaged model coefficient using AIC weights after MI#

coef.AIC[1]<-coef.AIC[1] + coef.AM.AIC.0

coef.AIC[2]<-coef.AIC[2]+ coef.AM.AIC.1

coef.AIC[3]<-coef.AIC[3] + coef.AM.AIC.2

#to find averaged model coefficient using AICc weights after MI#

coef.AICc[1]<-coef.AICc[1] + coef.AM.AICc.0

coef.AICc[2]<-coef.AICc[2] + coef.AM.AICc.1

coef.AICc[3]<-coef.AICc[3] + coef.AM.AICc.2

#to find averaged model coefficient using BIC weights after MI#

coef.BIC[1]<-coef.BIC[1] + coef.AM.BIC.0

coef.BIC[2]<-coef.BIC[2] + coef.AM.BIC.1

coef.BIC[3]<-coef.BIC[3] + coef.AM.BIC.2

} #end of imputation loop#

#to find averaged model coefficient using AIC weights after MI#

coef.AIC[1]<-coef.AIC[1]/length(comp.imp)

coef.AIC[2]<-coef.AIC[2]/length(comp.imp)

coef.AIC[3]<-coef.AIC[3]/length(comp.imp)

#to find averaged model coefficient using AICc weights after MI#

coef.AICc[1]<-coef.AICc[1]/length(comp.imp)

coef.AICc[2]<-coef.AICc[2]/length(comp.imp)

coef.AICc[3]<-coef.AICc[3]/length(comp.imp)
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#to find averaged model coefficient using BIC weights after MI#

coef.BIC[1]<-coef.BIC[1]/length(comp.imp)

coef.BIC[2]<-coef.BIC[2]/length(comp.imp)

coef.BIC[3]<-coef.BIC[3]/length(comp.imp)

#to find y.test for model selected via AIC#

AIC.y.est<- coef.AIC[1] + coef.AIC[2]*(x1.test)

+ coef.AIC[3]*(x2.test)

#to find y.test for model selected via AICc#

AICc.y.est<- coef.AICc[1] + coef.AICc[2]*(x1.test)

+ coef.AICc[3]*(x2.test)

#to find y.test for model selected viaBIC#

BIC.y.est<- coef.BIC[1] + coef.BIC[2]*(x1.test)

+ coef.BIC[3]*(x2.test)

#to find MSE(p) using y.est for for model selected via AIC#

AIC.best<-AIC.best+(AIC.y.est-y.test)^2

AICc.best<-AICc.best+(AICc.y.est-y.test)^2

BIC.best<-BIC.best+(BIC.y.est-y.test)^2

} #end of simulation loop#

AIC.best<-AIC.best/nsim

AICc.best<-AICc.best/nsim

BIC.best<-BIC.best/nsim
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R-script for Model Selection

(RR) using Multiple Imputation

for Linear Regression

n<-100

sigma<-1

rho23<-0

rho12<-0

rho13<-0

beta0<-1

beta1<-1

beta2<-1

beta3<-0

mu<-c(0,0,0)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

nsim<-1000

coef.est<-matrix(c(0,0,0),nrow=1, ncol=3)

MSEP.best<-matrix(0, nrow=100, ncol=1)

t.model.M000<-0

t.model.M100<-0

t.model.M010<-0

t.model.M110<-0

coef.M000.MI.0<-0

coef.M100.MI.0<-0

coef.M100.MI.1<-0

coef.M010.MI.0<-0

178
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coef.M010.MI.2<-0

coef.M110.MI.0<-0

coef.M110.MI.1<-0

coef.M110.MI.2<-0

std.err.M000.MI.0<-0

std.err.M100.MI.0<-0

std.err.M100.MI.1<-0

std.err.M010.MI.0<-0

std.err.M010.MI.2<-0

std.err.M110.MI.0<-0

std.err.M110.MI.1<-0

std.err.M110.MI.2<-0

#to create test values

prob.test<-seq(0.05,1, by=0.1)

z1.test <-qnorm(prob.test)

z2.test <-z1.test

x.test <- matrix(0,nrow=100, ncol=2)

for (ii in 1:10){

for (jj in 1:10){

x.test[(ii-1)*10+jj, ]<- c(z1.test[ii],z2.test[jj]) } }

#To find y.test#

beta0<-1

beta1<-1

beta2<-1

x1.test<-x.test[,1]

x2.test<-x.test[,2]

y.test<-beta0 + beta1*(x1.test)+ beta2*(x2.test)

#To find X3#

x3<-matrix(0, nr=100, nc=1)

for (iii in 1:100){

x1<-matrix(c(x.test[iii,1],x.test[iii,2]),nr=2, nc=1)

mu1<-matrix(c(0,0),nr=2, nc=1)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

sigmax11<-matrix(c(1,rho12,rho12,1),nr=2, nc=2)

sigmax22<-matrix(c(1),nr=1, nc=1)

sigmax12<-matrix(c(rho13,rho23),nr=2, nc=1)
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t.sigmax12<-t(sigmax12) #to find transpose#

inv.sigmax11<-solve(sigmax11) #to find inverse#

mu2<-(t.sigmax12%*%inv.sigmax11)%*%(x1-mu1) #to find mean x3#

sigmax2<-sigmax22-(t.sigmax12%*%inv.sigmax11%*%sigmax12) #to find variance x3#

x3[iii]<-mu2

}

x3.test<-x3

test.values<-data.frame(y.test, x1.test, x2.test, x3.test)

#to run 1000 simulations#

for(i in 1:nsim){ #simulation loop starts#

x<-mvrnorm(n,mu,sigmax)

m<-50 #m is percentage of missing#

nmiss<-n*(m/100)

nmiss<-round(nmiss)

e<-rnorm(n,0,sigma) #e is error term#

X1<-x[,1]

x2<-x[,2]

X3<-x[,3]

y<-beta0 + beta1*(X1)+ beta2*(x2)+ e

x2miss<-rep(NA, times=nmiss)

x2nmiss<-x2[seq(n-nmiss)]

X2<-cbind(c(x2nmiss,x2miss))

#dataset/model for imputation-non-overlapping variable sets#

dat.x<-data.frame(X2,y,X3)

#define number of MI, D=10#

imp<-mice(dat.x, method="norm", m=10)

mat<-complete(imp,"long")

imp1<-complete(imp,1) #to retrieve the imputation data set 1#

imp2<-complete(imp,2)

imp3<-complete(imp,3)

imp4<-complete(imp,4)

imp5<-complete(imp,5)

imp6<-complete(imp,6)

imp7<-complete(imp,7)

imp8<-complete(imp,8)

imp9<-complete(imp,9)

imp10<-complete(imp,10)
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comp.imp<-list(imp1, imp2, imp3, imp4, imp5, imp6, imp7, imp8, imp9, imp10)

{ #run M110#

for (k in 1:length(comp.imp)) #start imp loop M110{

dat.xy<-data.frame(y, X1, comp.imp[k])

M110<-lm(y~X1+X2, dat.xy)

#to retrieve covariance matrix#

covmat.M110<-vcov(M110)

#to retrieve coefficients#

coef.M110.0<-coef(M110)[1]

coef.M110.1<-coef(M110)[2]

coef.M110.2<-coef(M110)[3]

#to retrieve standard error#

std.err.M110.0<-coef(summary(M110))[, "Std. Error"][1]

std.err.M110.1<-coef(summary(M110))[, "Std. Error"][2]

std.err.M110.2<-coef(summary(M110))[, "Std. Error"][3]

coef.M110.0<-ifelse(is.na(coef.M110.0), 0, coef.M110.0)

coef.M110.1<-ifelse(is.na(coef.M110.1), 0, coef.M110.1)

coef.M110.2<-ifelse(is.na(coef.M110.2), 0, coef.M110.2)

#to find total coefficient after MI#

coef.M110.MI.0<-coef.M110.MI.0 + coef.M110.0

coef.M110.MI.1<-coef.M110.MI.1 + coef.M110.1

coef.M110.MI.2<-coef.M110.MI.2 + coef.M110.2

#to find total std.error after MI#

std.err.M110.MI.0<-std.err.M110.MI.0 + std.err.M110.0

std.err.M110.MI.1<-std.err.M110.MI.1 + std.err.M110.1

std.err.M110.MI.2<-std.err.M110.MI.2 + std.err.M110.2

} #end of imputation loop M110#

#to find averaged coefficient after MI#

coef.M110.MI.0<-coef.M110.MI.0/length(comp.imp)

coef.M110.MI.1<-coef.M110.MI.1/length(comp.imp)

coef.M110.MI.2<-coef.M110.MI.2/length(comp.imp)

#to find averaged std.error after MI#

std.err.M110.MI.0<-std.err.M110.MI.0/length(comp.imp)

std.err.M110.MI.1<-std.err.M110.MI.1/length(comp.imp)

std.err.M110.MI.2<-std.err.M110.MI.2/length(comp.imp)
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#To omit coefficients based on RR#

coef.M110.model.2<-ifelse((coef.M110.MI.2/std.err.M110.MI.2)<(-1.96)

| (coef.M110.MI.2/std.err.M110.MI.2)>1.96, coef.M110.MI.2, 0)

if(coef.M110.model.2==0){ #test beta2 of M110#

{ #run M100#

for (k in 1:length(comp.imp)) { # starts imputation loop for M100#

dat.xy<-data.frame(y, X1, comp.imp[k])

M100<-lm(y~X1, dat.xy)

covmat.M100<-vcov(M100)

coef.M100.0<-coef(M100)[1]

coef.M100.1<-coef(M100)[2]

std.err.M100.0<-coef(summary(M100))[, "Std. Error"][1]

std.err.M100.1<-coef(summary(M100))[, "Std. Error"][2]

coef.M100.0<-ifelse(is.na(coef.M100.0), 0, coef.M100.0)

coef.M100.1<-ifelse(is.na(coef.M100.1), 0, coef.M100.1)

#to find total coefficient after MI#

coef.M100.MI.0<-coef.M100.MI.0 + coef.M100.0

coef.M100.MI.1<-coef.M100.MI.1 + coef.M100.1

#to find total std.error after multiple imputation#

std.err.M100.MI.0<-std.err.M100.MI.0 + std.err.M100.0

std.err.M100.MI.1<-std.err.M100.MI.1 + std.err.M100.1

} #end imputation loop M100#

#to find averaged coefficient after MI#

coef.M100.MI.0<-coef.M100.MI.0/length(comp.imp)

coef.M100.MI.1<-coef.M100.MI.1/length(comp.imp)

#to find averaged std.error after MI#

std.err.M100.MI.0<-std.err.M110.MI.0/length(comp.imp)

std.err.M100.MI.1<-std.err.M110.MI.1/length(comp.imp)

coef.M100.MI.0<-ifelse(is.na(coef.M100.MI.0), 0, coef.M100.MI.0)

coef.M100.MI.1<-ifelse(is.na(coef.M100.MI.1), 0, coef.M100.MI.1)

#To omit coefficients based on RR#

coef.M100.model.1<-ifelse((coef.M100.MI.1/std.err.M100.MI.1)<(-1.96)

|(coef.M100.MI.1/std.err.M100.MI.1)>1.96, coef.M100.MI.1, 0)

if(coef.M100.model.1==0){ #test beta1 of M100#

{ #run M010#
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for (k in 1:length(comp.imp)) { #starts imputation loop M010#

dat.xy<-data.frame(y, X1, comp.imp[k])

M010<-lm(y~X2, dat.xy)

covmat.M010<-vcov(M010)

coef.M010.0<-coef(M010)[1]

coef.M010.2<-coef(M010)[2]

std.err.M010.0<-coef(summary(M010))[, "Std. Error"][1]

std.err.M010.2<-coef(summary(M010))[, "Std. Error"][2]

coef.M010.0<-ifelse(is.na(coef.M010.0), 0, coef.M010.0)

coef.M010.2<-ifelse(is.na(coef.M010.2), 0, coef.M010.2)

#to find total coefficients after MI#

coef.M010.MI.0<-coef.M010.MI.0 + coef.M010.0

coef.M010.MI.2<-coef.M010.MI.2 + coef.M010.2

#to find total std.error after multiple imputation#

std.err.M010.MI.0<-std.err.M010.MI.0 + std.err.M010.0

std.err.M010.MI.2<-std.err.M010.MI.2 + std.err.M010.2

} #end imputation loop M010#

#to find averaged coefficient after MI#

coef.M010.MI.0<-coef.M010.MI.0/length(comp.imp)

coef.M010.MI.2<-coef.M010.MI.2/length(comp.imp)

#to find averaged std.error after MI#

std.err.M010.MI.0<-std.err.M010.MI.0/length(comp.imp)

std.err.M010.MI.2<-std.err.M010.MI.2/length(comp.imp)

coef.M010.MI.0<-ifelse(is.na(coef.M010.MI.0), 0, coef.M010.MI.0)

coef.M010.MI.2<-ifelse(is.na(coef.M010.MI.2), 0, coef.M010.MI.2)

#To omit coefficients based on RR#

coef.M010.model.2<-ifelse((coef.M010.MI.2/std.err.M010.MI.2)<(-1.96)

| (coef.M010.MI.2/std.err.M010.MI.2)>1.96, coef.M010.MI.2, 0)

if(coef.M010.model.2==0){ #beta2 of M010#

{ #run M000#

for (k in 1:length(comp.imp)) { #starts imputation loop M000#

dat.xy<-data.frame(y, X1, comp.imp[k])

M000<-lm(y~1, dat.xy)

covmat.M000<-vcov(M000)

coef.M000.0<-coef(M000)[1]
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std.err.M000.0<-coef(summary(M000))[, "Std. Error"][1]

coef.M000.0<-ifelse(is.na(coef.M000.0), 0, coef.M000.0)

#to find total coefficient after MI#

coef.M000.MI.0<-coef.M000.MI.0 + coef.M000.0

#to find total std.error after multiple imputation#

std.err.M000.MI.0<-std.err.M000.MI.0 + std.err.M000.0

} #end imputation loop M000#

#to find averaged coefficient after MI#

coef.M000.MI.0<-coef.M000.MI.0/length(comp.imp)

#to find averaged std.error after MI#

std.err.M000.MI.0<-std.err.M000.MI.0/length(comp.imp)

coef.M000.MI.0<-ifelse(is.na(coef.M000.MI.0), 0, coef.M000.MI.0)

model.M000<-1

y.est.M000<- coef.M000.MI.0 #to find y.test for model M000#

MSEP.best<-MSEP.best+(y.est.M000-y.test)^2 #to find mse.p#

coef.est[1]<-coef.est[1] + coef.M000.MI.0

t.model.M000<-t.model.M000 + model.M000 #to find total number of M000#

} #end M000#

#for model M010# } else {

model.M010<-1

#to find y.test for model M010#

y.est.M010<- coef.M010.MI.0+ coef.M010.MI.2*(x2.test)

MSEP.best<-MSEP.best+(y.est.M010-y.test)^2 #to find mse.p#

coef.est[1]<-coef.est[1] + coef.M010.MI.0

coef.est[3]<-coef.est[3] + coef.M010.MI.2

t.model.M010<-t.model.M010 + model.M010 #to find total number of M010#

} #end else loop M010# } #end M010#

#for model M100# } else {

model.M100<-1

#to find y.test for model M100#

y.est.M100<- coef.M100.MI.0+ coef.M100.MI.1*(x1.test)

MSEP.best<-MSEP.best+(y.est.M100-y.test)^2 #to find mse.p#

coef.est[1]<-coef.est[1] + coef.M100.MI.0

coef.est[2]<-coef.est[2] + coef.M100.MI.1
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t.model.M100<-t.model.M100 + model.M100 #to find total number of M100#

} #end else loop M100# } #end M100#

#for model M110# } else {

model.M110<-1

#to find y.test for model M110#

y.est.M110<- coef.M110.MI.0+ coef.M110.MI.1*(x1.test)+ coef.M110.MI.2*(x2.test)

MSEP.best<-MSEP.best+(y.est.M110-y.test)^2 #to find mse.p#

coef.est[1]<-coef.est[1] + coef.M110.MI.0

coef.est[2]<-coef.est[2] + coef.M110.MI.1

coef.est[3]<-coef.est[3] + coef.M110.MI.2

t.model.M110<-t.model.M110 + model.M110 #to find total number of M110#

} #end else loop M110# } #end M110#

} #end of simulation loop#

coef.est<-coef.est/nsim

MSEP.best<-MSEP.best/nsim

t.no.model<-matrix(c(t.model.M000, t.model.M100, t.model.M010,

t.model.M110),nrow=1,ncol=4)
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R-script for Model Selection

(M-STACK) using Multiple

Imputation for Linear Regression

n<-100

sigma<-1

rho23<-0

rho12<-0

rho13<-0

beta0<-1

beta1<-1

beta2<-1

beta3<-0

k0<-1 #k is number of parameters#

k1<-2

k2<-3

mu<-c(0,0,0)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

nsim<-1000

coef.AIC<-matrix(c(0,0,0), nrow=1, ncol=3)

coef.AICc<-matrix(c(0,0,0), nrow=1, ncol=3)

coef.BIC<-matrix(c(0,0,0), nrow=1, ncol=3)

LL.mat<-matrix(nrow=nsim, ncol=4)

AIC.mat<-matrix(nrow=nsim, ncol=4)

AICc.mat<-matrix(nrow=nsim, ncol=4)

BIC.mat<-matrix(nrow=nsim, ncol=4)
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AIC.best<-matrix(0, nrow=100, ncol=1)

AICc.best<-matrix(0, nrow=100, ncol=1)

BIC.best<-matrix(0, nrow=100, ncol=1)

n.AIC.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

n.AICc.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

n.BIC.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

#to create test values

prob.test<-seq(0.05,1, by=0.1)

z1.test <-qnorm(prob.test)

z2.test <-z1.test

x.test <- matrix(0,nrow=100, ncol=2)

for (ii in 1:10) {

for (jj in 1:10) {

x.test[(ii-1)*10+jj, ]<- c(z1.test[ii],z2.test[jj]) } }

#To find y.test#

beta0<-1

beta1<-1

beta2<-1

x1.test<-x.test[,1]

x2.test<-x.test[,2]

y.test<-beta0 + beta1*(x1.test)+ beta2*(x2.test)

#To find X3#

x3<-matrix(0, nr=100, nc=1)

for (iii in 1:100) {

x1<-matrix(c(x.test[iii,1],x.test[iii,2]),nr=2, nc=1)

mu1<-matrix(c(0,0),nr=2, nc=1)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

sigmax11<-matrix(c(1,rho12,rho12,1),nr=2, nc=2)

sigmax22<-matrix(c(1),nr=1, nc=1)

sigmax12<-matrix(c(rho13,rho23),nr=2, nc=1)

t.sigmax12<-t(sigmax12) #to find transpose#

inv.sigmax11<-solve(sigmax11) #to find inverse#

mu2<-(t.sigmax12%*%inv.sigmax11)%*%(x1-mu1) #to find mean x3#

sigmax2<-sigmax22-(t.sigmax12%*%inv.sigmax11%*%sigmax12) #to find variance x3#

x3[iii]<-mu2

}
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x3.test<-x3

test.values<-data.frame(y.test, x1.test, x2.test, x3.test)

#to run 1000 simulations#

for(i in 1:nsim) { #simulation loop starts#

x<-mvrnorm(n,mu,sigmax)

m<-50

nmiss<-n*(m/100)

nmiss<-round(nmiss) #m is percentage of missing#

w1<-1/10 #weight for X1#

w2<-(1-(nmiss/n))/10 #weight for X2#

W1big<-rep(w1, times=(n*10))

W2big<-rep(w2, times=(n*10))

e<-rnorm(n,0,sigma) #e is error term#

X1<-x[,1]

x2<-x[,2]

X3<-x[,3]

y<-beta0 + beta1*(X1)+ beta2*(x2)+ e

x2miss<-rep(NA, times=nmiss)

x2nmiss<-x2[seq(n-nmiss)]

X2<-cbind(c(x2nmiss,x2miss))

#dataset/model for imputation-non-overlapping variable sets#

dat.x<-data.frame(X2,y,X3)

#define number of multiple imputation, D=10#

imp<-mice(dat.x, method="norm", m=10)

imp1<-complete(imp,1) #to retrieve the imputation data set 1#

mat<-complete(imp,"long")

#to obtain get stacked data after imputation#

ybig<-rep(y, times=10)

x1big<-rep(X1, times=10)

data.xy<-data.frame(ybig, x1big, mat)

M000<-lm(ybig~1, data.xy)

M100<-lm(ybig~x1big, data.xy, weights=(W1big))

M010<-lm(ybig~X2, data.xy, weights=(W2big))

M110<-lm(ybig~x1big+X2, data.xy, weights=(W2big))

model.list<-list(M000, M100, M010, M110)
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#to obtain log-likelihood value from the output for each model#

M000LL<-logLik(M000)

M100LL<-logLik(M100)

M010LL<-logLik(M010)

M110LL<-logLik(M110)

LL<-matrix(c(M000LL,M100LL,M010LL,M110LL),nrow=1,ncol=4)

M000AIC<-(2*(LL[1]))-(2*(k0+1)) #calculating AIC, AICc and BIC#

M000BIC<-(2*(LL[1]))-((k0+1)*log(n))

M000AICc<-(2*(LL[1]))-(2*(k0+1)*(n/(n-k0-2)))

M100AIC<-(2*(LL[2]))-(2*(k1+1))

M100BIC<-(2*(LL[2]))-((k1+1)*log(n))

M100AICc<-(2*(LL[2]))-(2*(k1+1)*(n/(n-k1-2)))

M010AIC<-(2*(LL[3]))-(2*(k1+1))

M010BIC<-(2*(LL[3]))-((k1+1)*log(n))

M010AICc<-(2*(LL[3]))-(2*(k1+1)*(n/(n-k1-2)))

M110AIC<-(2*(LL[4]))-(2*(k2+1))

M110BIC<-(2*(LL[4]))-((k2+1)*log(n))

M110AICc<-(2*(LL[4]))-(2*(k2+1)*(n/(n-k2-2)))

#to form a matrix of LL for all the models#

LL<-matrix(c(M000LL,M100LL,M010LL,M110LL),nrow=1,ncol=4)

#to form a matrix of AIC for all the models#

AIC<-matrix(c(M000AIC,M100AIC,M010AIC,M110AIC),nrow=1,ncol=4)

#to form a matrix of AICc for all the models#

AICc<-matrix(c(M000AIC,M100AIC,M010AIC,M110AIC),nrow=1,ncol=4)

#to form a matrix of BIC for all the models#

BIC<-matrix(c(M000BIC,M100BIC,M010BIC,M110BIC),nrow=1,ncol=4)

AIC.mat[i,]<-AIC

AICc.mat[i,]<-AICc

BIC.mat[i,]<-BIC

LL.mat[i,]<-LL

max.AIC<- max.col(AIC) #find the maximum column in AIC matrix#

max.AICc<- max.col(AICc) #find the maximum column in AICc matrix#

max.BIC<- max.col(BIC) #find the maximum column in BIC matrix#
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#find the frequency of selected models#

model<-list("M000", "M100", "M010", "M110")

AIC.model<-model[[max.AIC]]

n.AIC.M000<-ifelse(AIC.model=="M000", 1, 0)

n.AIC.M100<-ifelse(AIC.model=="M100", 1, 0)

n.AIC.M010<-ifelse(AIC.model=="M010", 1, 0)

n.AIC.M110<-ifelse(AIC.model=="M110", 1, 0)

AICc.model<-model[[max.AICc]]

n.AICc.M000<-ifelse(AICc.model=="M000", 1, 0)

n.AICc.M100<-ifelse(AICc.model=="M100", 1, 0)

n.AICc.M010<-ifelse(AICc.model=="M010", 1, 0)

n.AICc.M110<-ifelse(AICc.model=="M110", 1, 0)

BIC.model<-model[[max.BIC]]

n.BIC.M000<-ifelse(BIC.model=="M000", 1, 0)

n.BIC.M100<-ifelse(BIC.model=="M100", 1, 0)

n.BIC.M010<-ifelse(BIC.model=="M010", 1, 0)

n.BIC.M110<-ifelse(BIC.model=="M110", 1, 0)

AIC.model<-model.list[[max.AIC]]

AICc.model<-model.list[[max.AICc]]

BIC.model<-model.list[[max.BIC]]

coef.AIC.model.0<-coef(AIC.model)[1]

coef.AIC.model.1<-coef(AIC.model)[2]

coef.AIC.model.2<-coef(AIC.model)[3]

coef.AICc.model.0<-coef(AICc.model)[1]

coef.AICc.model.1<-coef(AICc.model)[2]

coef.AICc.model.2<-coef(AICc.model)[3]

coef.BIC.model.0<-coef(BIC.model)[1]

coef.BIC.model.1<-coef(BIC.model)[2]

coef.BIC.model.2<-coef(BIC.model)[3]

coef.AIC.model.0<-ifelse(is.na(coef.AIC.model.0), 0, coef.AIC.model.0)

coef.AIC.model.1<-ifelse(is.na(coef.AIC.model.1), 0, coef.AIC.model.1)

coef.AIC.model.2<-ifelse(is.na(coef.AIC.model.2), 0, coef.AIC.model.2)

coef.AICc.model.0<-ifelse(is.na(coef.AICc.model.0), 0, coef.AICc.model.0)

coef.AICc.model.1<-ifelse(is.na(coef.AICc.model.1), 0, coef.AICc.model.1)
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coef.AICc.model.2<-ifelse(is.na(coef.AICc.model.2), 0, coef.AICc.model.2)

coef.BIC.model.0<-ifelse(is.na(coef.BIC.model.0), 0, coef.BIC.model.0)

coef.BIC.model.1<-ifelse(is.na(coef.BIC.model.1), 0, coef.BIC.model.1)

coef.BIC.model.2<-ifelse(is.na(coef.BIC.model.2), 0, coef.BIC.model.2)

#to find y.test using model selected via AIC#

AIC.y.est<- coef.AIC.model.0 + coef.AIC.model.1*(x1.test)

+ coef.AIC.model.2*(x2.test)

#to find y.test using model selected via AICc#

AICc.y.est<- coef.AICc.model.0 + coef.AICc.model.1*(x1.test)

+ coef.AICc.model.2*(x2.test)

#to find y.test using model selected via BIC#

BIC.y.est<- coef.BIC.model.0 + coef.BIC.model.1*(x1.test)

+ coef.BIC.model.2*(x2.test)

#to find MSE(p) using y.est for model selected via AIC#

AIC.best<-AIC.best+(AIC.y.est-y.test)^2

AICc.best<-AICc.best+(AICc.y.est-y.test)^2

BIC.best<-BIC.best+(BIC.y.est-y.test)^2

#to find total coefficient over simulation loop#

coef.AIC[1]<-coef.AIC[1] + coef.AIC.model.0

coef.AIC[2]<-coef.AIC[2] + coef.AIC.model.1

coef.AIC[3]<-coef.AIC[3] + coef.AIC.model.2

coef.AICc[1]<-coef.AICc[1] + coef.AICc.model.0

coef.AICc[2]<-coef.AICc[2] + coef.AICc.model.1

coef.AICc[3]<-coef.AICc[3] + coef.AICc.model.2

coef.BIC[1]<-coef.BIC[1] + coef.BIC.model.0

coef.BIC[2]<-coef.BIC[2] + coef.BIC.model.1

coef.BIC[3]<-coef.BIC[3] + coef.BIC.model.2

#to find total frequency of each model selected over simulation loop#

n.AIC.model[1]<-n.AIC.model[1] + n.AIC.M000

n.AIC.model[2]<-n.AIC.model[2] + n.AIC.M100

n.AIC.model[3]<-n.AIC.model[3] + n.AIC.M010

n.AIC.model[4]<-n.AIC.model[4] + n.AIC.M110

n.AICc.model[1]<-n.AICc.model[1] + n.AICc.M000

n.AICc.model[2]<-n.AICc.model[2] + n.AICc.M100

n.AICc.model[3]<-n.AICc.model[3] + n.AICc.M010
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n.AICc.model[4]<-n.AICc.model[4] + n.AICc.M110

n.BIC.model[1]<-n.BIC.model[1] + n.BIC.M000

n.BIC.model[2]<-n.BIC.model[2] + n.BIC.M100

n.BIC.model[3]<-n.BIC.model[3] + n.BIC.M010

n.BIC.model[4]<-n.BIC.model[4] + n.BIC.M110

} #end of simulation loop#

#To find averaged MSE(P)#

AIC.best<-AIC.best/nsim

AICc.best<-AICc.best/nsim

BIC.best<-BIC.best/nsim

#To find averaged coefficients#

coef.AIC<-coef.AIC/nsim

coef.AICc<-coef.AICc/nsim

coef.BIC<-coef.BIC/nsim
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R-script for Model Selection

(STACK) using Multiple

Imputation for Linear Regression

n<-100

sigma<-1

rho23<-0

rho12<-0

rho13<-0

beta0<-1

beta1<-1

beta2<-1

beta3<-0

k0<-1 #k is number of parameters#

k1<-2

k2<-3

mu<-c(0,0,0)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

nsim<-1000

coef.AIC<-matrix(c(0,0,0), nrow=1, ncol=3)

coef.AICc<-matrix(c(0,0,0), nrow=1, ncol=3)

coef.BIC<-matrix(c(0,0,0), nrow=1, ncol=3)

LL.mat<-matrix(nrow=nsim, ncol=4)

AIC.mat<-matrix(nrow=nsim, ncol=4)

AICc.mat<-matrix(nrow=nsim, ncol=4)

BIC.mat<-matrix(nrow=nsim, ncol=4)
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n.AIC.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

n.AICc.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

n.BIC.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

AIC.best<-matrix(0, nrow=100, ncol=1)

AICc.best<-matrix(0, nrow=100, ncol=1)

BIC.best<-matrix(0, nrow=100, ncol=1)

coef.AIC.MI.0<-0

coef.AIC.MI.1<-0

coef.AIC.MI.2<-0

coef.AICc.MI.0<-0

coef.AICc.MI.1<-0

coef.AICc.MI.2<-0

coef.BIC.MI.0<-0

coef.BIC.MI.1<-0

coef.BIC.MI.2<-0

#to create test values#

prob.test<-seq(0.05,1, by=0.1)

z1.test <-qnorm(prob.test)

z2.test <-z1.test

x.test <- matrix(0,nrow=100, ncol=2)

for (ii in 1:10) {

for (jj in 1:10) {

x.test[(ii-1)*10+jj, ]<- c(z1.test[ii],z2.test[jj]) } }

#To find y.test#

beta0<-1

beta1<-1

beta2<-1

x1.test<-x.test[,1]

x2.test<-x.test[,2]

y.test<-beta0 + beta1*(x1.test)+ beta2*(x2.test)

#To find X3#

x3<-matrix(0, nr=100, nc=1)

for (iii in 1:100) {

x1<-matrix(c(x.test[iii,1],x.test[iii,2]),nr=2, nc=1)

mu1<-matrix(c(0,0),nr=2, nc=1)
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sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

sigmax11<-matrix(c(1,rho12,rho12,1),nr=2, nc=2)

sigmax22<-matrix(c(1),nr=1, nc=1)

sigmax12<-matrix(c(rho13,rho23),nr=2, nc=1)

t.sigmax12<-t(sigmax12) #to find transpose#

inv.sigmax11<-solve(sigmax11) #to find inverse#

mu2<-(t.sigmax12%*%inv.sigmax11)%*%(x1-mu1) #to find mean x3#

sigmax2<-sigmax22-(t.sigmax12%*%inv.sigmax11%*%sigmax12) #to find variance x3#

x3[iii]<-mu2

}

x3.test<-x3

test.values<-data.frame(y.test, x1.test, x2.test, x3.test)

#to run 1000 simulations#

for(i in 1:nsim) { #simulation loop starts#

x<-mvrnorm(n,mu,sigmax)

m<-50

nmiss<-n*(m/100)

nmiss<-round(nmiss) #m is percentage of missing#

w1<-1/10 #weight for X1

w2<-(1-(nmiss/n))/10 #weight for X2

W1big<-rep(w1, times=(n*10))

W2big<-rep(w2, times=(n*10))

e<-rnorm(n,0,sigma) #e is error term#

X1<-x[,1]

x2<-x[,2]

X3<-x[,3]

y<-beta0 + beta1*(X1)+ beta2*(x2)+ e

x2miss<-rep(NA, times=nmiss)

x2nmiss<-x2[seq(n-nmiss)]

X2<-cbind(c(x2nmiss,x2miss))

#dataset/model for imputation-non-overlapping variable sets#

dat.x<-data.frame(X2,y,X3)

imp<-mice(dat.x, method="norm", m=10) #define number of MI, D=10#

imp1<-complete(imp,1) #to retrieve the imputation data set 1#

mat<-complete(imp,"long")

imp1<-complete(imp,1) #to retrieve the imputation data set 1#
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imp2<-complete(imp,2)

imp3<-complete(imp,3)

imp4<-complete(imp,4)

imp5<-complete(imp,5)

imp6<-complete(imp,6)

imp7<-complete(imp,7)

imp8<-complete(imp,8)

imp9<-complete(imp,9)

imp10<-complete(imp,10)

comp.imp<-list(imp1, imp2, imp3, imp4, imp5, imp6, imp7, imp8, imp9, imp10)

#to obtain get stacked data after imputation#

ybig<-rep(y, times=10)

x1big<-rep(X1, times=10)

data.xy<-data.frame(ybig, x1big, mat)

M000<-lm(ybig~1, data.xy)

M100<-lm(ybig~x1big, data.xy, weights=(W1big))

M010<-lm(ybig~X2, data.xy, weights=(W2big))

M110<-lm(ybig~x1big+X2, data.xy, weights=(W2big))

model.list<-list(M000, M100, M010, M110)

#to obtain log-likelihood value from the output for each model#

M000LL<-logLik(M000)

M100LL<-logLik(M100)

M010LL<-logLik(M010)

M110LL<-logLik(M110)

LL<-matrix(c(M000LL,M100LL,M010LL,M110LL),nrow=1,ncol=4)

M000AIC<-(2*(LL[1]))-(2*(k0+1)) #calculating AIC, AICc and BIC#

M000BIC<-(2*(LL[1]))-((k0+1)*log(n))

M000AICc<-(2*(LL[1]))-(2*(k0+1)*(n/(n-k0-2)))

M100AIC<-(2*(LL[2]))-(2*(k1+1))

M100BIC<-(2*(LL[2]))-((k1+1)*log(n))

M100AICc<-(2*(LL[2]))-(2*(k1+1)*(n/(n-k1-2)))

M010AIC<-(2*(LL[3]))-(2*(k1+1))

M010BIC<-(2*(LL[3]))-((k1+1)*log(n))

M010AICc<-(2*(LL[3]))-(2*(k1+1)*(n/(n-k1-2)))

M110AIC<-(2*(LL[4]))-(2*(k2+1))

M110BIC<-(2*(LL[4]))-((k2+1)*log(n))
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M110AICc<-(2*(LL[4]))-(2*(k2+1)*(n/(n-k2-2)))

#to form a matrix of LL for all the models#

LL<-matrix(c(M000LL,M100LL,M010LL,M110LL),nrow=1,ncol=4)

#to form a matrix of AIC for all the models#

AIC<-matrix(c(M000AIC,M100AIC,M010AIC,M110AIC),nrow=1,ncol=4)

#to form a matrix of AICc for all the models#

AICc<-matrix(c(M000AIC,M100AIC,M010AIC,M110AIC),nrow=1,ncol=4)

#to form a matrix of BIC for all the models#

BIC<-matrix(c(M000BIC,M100BIC,M010BIC,M110BIC),nrow=1,ncol=4)

AIC.mat[i,]<-AIC

AICc.mat[i,]<-AICc

BIC.mat[i,]<-BIC

LL.mat[i,]<-LL

max.AIC<- max.col(AIC) #find the maximum column in AIC matrix#

max.AICc<- max.col(AICc) #find the maximum column in AICc matrix#

max.BIC<- max.col(BIC) #find the maximum column in BIC matrix#

#find the frequency of selected model#

model<-list("M000", "M100", "M010", "M110")

AIC.model<-model[[max.AIC]]

n.AIC.M000<-ifelse(AIC.model=="M000", 1, 0)

n.AIC.M100<-ifelse(AIC.model=="M100", 1, 0)

n.AIC.M010<-ifelse(AIC.model=="M010", 1, 0)

n.AIC.M110<-ifelse(AIC.model=="M110", 1, 0)

AICc.model<-model[[max.AICc]]

n.AICc.M000<-ifelse(AICc.model=="M000", 1, 0)

n.AICc.M100<-ifelse(AICc.model=="M100", 1, 0)

n.AICc.M010<-ifelse(AICc.model=="M010", 1, 0)

n.AICc.M110<-ifelse(AICc.model=="M110", 1, 0)

BIC.model<-model[[max.BIC]]

n.BIC.M000<-ifelse(BIC.model=="M000", 1, 0)

n.BIC.M100<-ifelse(BIC.model=="M100", 1, 0)

n.BIC.M010<-ifelse(BIC.model=="M010", 1, 0)

n.BIC.M110<-ifelse(BIC.model=="M110", 1, 0)

for (k in 1:length(comp.imp)) {
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dat.xy<-data.frame(y, X1, comp.imp[k])

MM000<-lm(y~1, dat.xy)

MM100<-lm(y~X1, dat.xy)

MM010<-lm(y~X2, dat.xy)

MM110<-lm(y~X1+X2, dat.xy)

model.list2<-list(MM000, MM100, MM010, MM110)

best.model.AIC<-model.list2[[max.AIC]]

best.model.AICc<-model.list2[[max.AICc]]

best.model.BIC<-model.list2[[max.BIC]]

coef.AIC.0<-coef(best.model.AIC)[1]

coef.AIC.1<-coef(best.model.AIC)[2]

coef.AIC.2<-coef(best.model.AIC)[3]

coef.AICc.0<-coef(best.model.AICc)[1]

coef.AICc.1<-coef(best.model.AICc)[2]

coef.AICc.2<-coef(best.model.AICc)[3]

coef.BIC.0<-coef(best.model.BIC)[1]

coef.BIC.1<-coef(best.model.BIC)[2]

coef.BIC.2<-coef(best.model.BIC)[3]

coef.AIC.0<-ifelse(is.na(coef.AIC.0), 0, coef.AIC.0)

coef.AIC.1<-ifelse(is.na(coef.AIC.1), 0, coef.AIC.1)

coef.AIC.2<-ifelse(is.na(coef.AIC.2), 0, coef.AIC.2)

coef.AICc.0<-ifelse(is.na(coef.AICc.0), 0, coef.AICc.0)

coef.AICc.1<-ifelse(is.na(coef.AICc.1), 0, coef.AICc.1)

coef.AICc.2<-ifelse(is.na(coef.AICc.2), 0, coef.AICc.2)

coef.BIC.0<-ifelse(is.na(coef.BIC.0), 0, coef.BIC.0)

coef.BIC.1<-ifelse(is.na(coef.BIC.1), 0, coef.BIC.1)

coef.BIC.2<-ifelse(is.na(coef.BIC.2), 0, coef.BIC.2)

#to find total model coefficient for model selected via AIC after MI#

coef.AIC.MI.0<-coef.AIC.MI.0 + coef.AIC.0

coef.AIC.MI.1<-coef.AIC.MI.1 + coef.AIC.1

coef.AIC.MI.2<-coef.AIC.MI.2 + coef.AIC.2

#to find total model coefficient for model selected via AICc after MI#

coef.AICc.MI.0<-coef.AICc.MI.0 + coef.AICc.0

coef.AICc.MI.1<-coef.AICc.MI.1 + coef.AICc.1

coef.AICc.MI.2<-coef.AICc.MI.2 + coef.AICc.2

#to find total model coefficient for model selected via BIC after MI#
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coef.BIC.MI.0<-coef.BIC.MI.0 + coef.BIC.0

coef.BIC.MI.1<-coef.BIC.MI.1 + coef.BIC.1

coef.BIC.MI.2<-coef.BIC.MI.2 + coef.BIC.2

} #end of imputation loop#

#to find averaged model coefficient for model selected via AIC after MI#

coef.AIC.MI.0<-coef.AIC.MI.0/length(comp.imp)

coef.AIC.MI.1<-coef.AIC.MI.1/length(comp.imp)

coef.AIC.MI.2<-coef.AIC.MI.2/length(comp.imp)

#to find averaged model coefficient for model selected via AICc after MI#

coef.AICc.MI.0<-coef.AICc.MI.0/length(comp.imp)

coef.AICc.MI.1<-coef.AICc.MI.1/length(comp.imp)

coef.AICc.MI.2<-coef.AICc.MI.2/length(comp.imp)

#to find averaged model coefficient for model selected via BIC after MI#

coef.BIC.MI.0<-coef.BIC.MI.0/length(comp.imp)

coef.BIC.MI.1<-coef.BIC.MI.1/length(comp.imp)

coef.BIC.MI.2<-coef.BIC.MI.2/length(comp.imp)

#to find y.test for model selected via AIC#

AIC.y.est<- coef.AIC.MI.0 + coef.AIC.MI.1*(x1.test)

+ coef.AIC.MI.2*(x2.test)

#to find y.test for model selected via AICc#

AICc.y.est<- coef.AICc.MI.0 + coef.AICc.MI.1*(x1.test)

+ coef.AICc.MI.2*(x2.test)

#to find y.test for model selected via BIC#

BIC.y.est<- coef.BIC.MI.0 + coef.BIC.MI.1*(x1.test)

+ coef.BIC.MI.2*(x2.test)

#to find MSE(p) using y.est for model selected via AIC#

AIC.best<-AIC.best+(AIC.y.est-y.test)^2

AICc.best<-AICc.best+(AICc.y.est-y.test)^2

BIC.best<-BIC.best+(BIC.y.est-y.test)^2

#to find total coefficient over simulation loop#

coef.AIC[1]<-coef.AIC[1] + coef.AIC.MI.0

coef.AIC[2]<-coef.AIC[2] + coef.AIC.MI.1

coef.AIC[3]<-coef.AIC[3] + coef.AIC.MI.2

coef.AICc[1]<-coef.AICc[1] + coef.AICc.MI.0

coef.AICc[2]<-coef.AICc[2] + coef.AICc.MI.1
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coef.AICc[3]<-coef.AICc[3] + coef.AICc.MI.2

coef.BIC[1]<-coef.BIC[1] + coef.BIC.MI.0

coef.BIC[2]<-coef.BIC[2] + coef.BIC.MI.1

coef.BIC[3]<-coef.BIC[3] + coef.BIC.MI.2

#to find total frequency of each model selected over simulation loop#

n.AIC.model[1]<-n.AIC.model[1] + n.AIC.M000

n.AIC.model[2]<-n.AIC.model[2] + n.AIC.M100

n.AIC.model[3]<-n.AIC.model[3] + n.AIC.M010

n.AIC.model[4]<-n.AIC.model[4] + n.AIC.M110

n.AICc.model[1]<-n.AICc.model[1] + n.AICc.M000

n.AICc.model[2]<-n.AICc.model[2] + n.AICc.M100

n.AICc.model[3]<-n.AICc.model[3] + n.AICc.M010

n.AICc.model[4]<-n.AICc.model[4] + n.AICc.M110

n.BIC.model[1]<-n.BIC.model[1] + n.BIC.M000

n.BIC.model[2]<-n.BIC.model[2] + n.BIC.M100

n.BIC.model[3]<-n.BIC.model[3] + n.BIC.M010

n.BIC.model[4]<-n.BIC.model[4] + n.BIC.M110

} #end of simulation loop#

AIC.best<-AIC.best/nsim #To find averaged MSE(P)#

AICc.best<-AICc.best/nsim

BIC.best<-BIC.best/nsim

coef.AIC<-coef.AIC/nsim #To find averaged coefficients#

coef.AICc<-coef.AICc/nsim

coef.BIC<-coef.BIC/nsim
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R-script for Model Selection

(STACK) using Multiple

Imputation for Logistic

Regression

n<-100

rho23<-0

rho12<-0

rho13<-0

beta0<-1

beta1<-1

beta2<-1

beta3<-0

k0<-1 #k is number of parameters#

k1<-2

k2<-3

mu<-c(0,0,0)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

nsim<-1000

coef.AIC<-matrix(c(0,0,0), nrow=1, ncol=3)

coef.AICc<-matrix(c(0,0,0), nrow=1, ncol=3)

coef.BIC<-matrix(c(0,0,0), nrow=1, ncol=3)

LL.mat<-matrix(nrow=nsim, ncol=4)

AIC.mat<-matrix(nrow=nsim, ncol=4)

201
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AICc.mat<-matrix(nrow=nsim, ncol=4)

BIC.mat<-matrix(nrow=nsim, ncol=4)

n.AIC.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

n.AICc.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

n.BIC.model<-matrix(c(0,0,0,0), nrow=1, ncol=4)

AIC.best<-matrix(0, nrow=100, ncol=1)

AICc.best<-matrix(0, nrow=100, ncol=1)

BIC.best<-matrix(0, nrow=100, ncol=1)

coef.AIC.MI.0<-0

coef.AIC.MI.1<-0

coef.AIC.MI.2<-0

coef.AICc.MI.0<-0

coef.AICc.MI.1<-0

coef.AICc.MI.2<-0

coef.BIC.MI.0<-0

coef.BIC.MI.1<-0

coef.BIC.MI.2<-0

###to create test values

prob.test<-seq(0.05,1, by=0.1)

z1.test <-qnorm(prob.test)

z2.test <-z1.test

x.test <- matrix(0,nrow=100, ncol=2)

for (ii in 1:10) {

for (jj in 1:10) {

x.test[(ii-1)*10+jj, ]<- c(z1.test[ii],z2.test[jj]) } }

#To find y.test#

beta0<-1

beta1<-1

beta2<-1

x1.test<-x.test[,1]

x2.test<-x.test[,2]

LP.test<-beta0 + beta1*(x1.test)+ beta2*(x2.test)

p.test<-exp(LP.test)/(1+exp(LP.test))

y.test<-rbinom(100, 1, p.test)
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#To find X3#

x3<-matrix(0, nr=100, nc=1)

for (iii in 1:100) {

x1<-matrix(c(x.test[iii,1],x.test[iii,2]),nr=2, nc=1)

mu1<-matrix(c(0,0),nr=2, nc=1)

sigmax<-matrix(c(1,rho12,rho13,rho12,1,rho23,rho13,rho23,1),3,3) #covariance matrix#

sigmax11<-matrix(c(1,rho12,rho12,1),nr=2, nc=2)

sigmax22<-matrix(c(1),nr=1, nc=1)

sigmax12<-matrix(c(rho13,rho23),nr=2, nc=1)

t.sigmax12<-t(sigmax12) #to find transpose#

inv.sigmax11<-solve(sigmax11) #to find inverse#

mu2<-(t.sigmax12%*%inv.sigmax11)%*%(x1-mu1) #to find mean x3#

sigmax2<-sigmax22-(t.sigmax12%*%inv.sigmax11%*%sigmax12) #to find variance x3#

x3[iii]<-mu2

}

x3.test<-x3

test.values<-data.frame(y.test, x1.test, x2.test, x3.test)

###to run 1000 simulations

for(i in 1:nsim) { #simulation loop starts#

x<-mvrnorm(n,mu,sigmax)

m<-50

nmiss<-n*(m/100)

nmiss<-round(nmiss) #m is percentage of missing#

w1<-1/10 # weight for X1

w2<-(1-(nmiss/n))/10 # weight for X2

W1big<-rep(w1, times=(n*10))

W2big<-rep(w2, times=(n*10))

X1<-x[,1]

x2<-x[,2]

X3<-x[,3]

LP<-beta0 + beta1*(X1)+ beta2*(x2)

p<-exp(LP)/(1+exp(LP))

y<-rbinom(n, 1, p)

x2miss<-rep(NA, times=nmiss)

x2nmiss<-x2[seq(n-nmiss)]

X2<-cbind(c(x2nmiss,x2miss))

#dataset/model for imputation-non-overlapping variable sets#

dat.x<-data.frame(X2,y,X3)
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#define number of multiple imputation, D=10#

imp<-mice(dat.x, method="norm", m=10)

imp1<-complete(imp,1) # to retrieve the imputation data set 1#

mat<-complete(imp,"long")

imp1<-complete(imp,1) #to retrieve the imputation data set 1#

imp2<-complete(imp,2)

imp3<-complete(imp,3)

imp4<-complete(imp,4)

imp5<-complete(imp,5)

imp6<-complete(imp,6)

imp7<-complete(imp,7)

imp8<-complete(imp,8)

imp9<-complete(imp,9)

imp10<-complete(imp,10)

comp.imp<-list(imp1, imp2, imp3, imp4, imp5, imp6, imp7, imp8, imp9, imp10)

#to obtain get stacked data after imputation#

ybig<-rep(y, times=10)

x1big<-rep(X1, times=10)

data.xy<-data.frame(ybig, x1big, mat)

M000<-lrm(ybig~1, data.xy)

M100<-lrm(ybig~x1big, data.xy, weights=(W1big))

M010<-lrm(ybig~X2, data.xy, weights=(W2big))

M110<-lrm(ybig~x1big+X2, data.xy, weights=(W2big))

model.list<-list(M000, M100, M010, M110)

#to obtain log-likelihood value from the output for each model#

M000LL<-logLik(M000)

M100LL<-logLik(M100)

M010LL<-logLik(M010)

M110LL<-logLik(M110)

LL<-matrix(c(M000LL,M100LL,M010LL,M110LL),nrow=1,ncol=4)

M000AIC<-(2*(LL[1]))-(2*(k0+1)) #calculating AIC, AICc and BIC#

M000BIC<-(2*(LL[1]))-((k0+1)*log(n))

M000AICc<-(2*(LL[1]))-(2*(k0+1)*(n/(n-k0-2)))

M100AIC<-(2*(LL[2]))-(2*(k1+1))

M100BIC<-(2*(LL[2]))-((k1+1)*log(n))

M100AICc<-(2*(LL[2]))-(2*(k1+1)*(n/(n-k1-2)))
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M010AIC<-(2*(LL[3]))-(2*(k1+1))

M010BIC<-(2*(LL[3]))-((k1+1)*log(n))

M010AICc<-(2*(LL[3]))-(2*(k1+1)*(n/(n-k1-2)))

M110AIC<-(2*(LL[4]))-(2*(k2+1))

M110BIC<-(2*(LL[4]))-((k2+1)*log(n))

M110AICc<-(2*(LL[4]))-(2*(k2+1)*(n/(n-k2-2)))

#to form a matrix of LL for all the models#

LL<-matrix(c(M000LL,M100LL,M010LL,M110LL),nrow=1,ncol=4)

#to form a matrix of AIC for all the models#

AIC<-matrix(c(M000AIC,M100AIC,M010AIC,M110AIC),nrow=1,ncol=4)

#to form a matrix of AICc for all the models#

AICc<-matrix(c(M000AIC,M100AIC,M010AIC,M110AIC),nrow=1,ncol=4)

#to form a matrix of BIC for all the models#

BIC<-matrix(c(M000BIC,M100BIC,M010BIC,M110BIC),nrow=1,ncol=4)

AIC.mat[i,]<-AIC

AICc.mat[i,]<-AICc

BIC.mat[i,]<-BIC

LL.mat[i,]<-LL

max.AIC<- max.col(AIC) #find the maximum column in AIC matrix#

max.AICc<- max.col(AICc) #find the maximum column in AICc matrix#

max.BIC<- max.col(BIC) #find the maximum column in BIC matrix#

model<-list("M000", "M100", "M010", "M110") #find the frequency of selected model#

AIC.model<-model[[max.AIC]]

n.AIC.M000<-ifelse(AIC.model=="M000", 1, 0)

n.AIC.M100<-ifelse(AIC.model=="M100", 1, 0)

n.AIC.M010<-ifelse(AIC.model=="M010", 1, 0)

n.AIC.M110<-ifelse(AIC.model=="M110", 1, 0)

AICc.model<-model[[max.AICc]]

n.AICc.M000<-ifelse(AICc.model=="M000", 1, 0)

n.AICc.M100<-ifelse(AICc.model=="M100", 1, 0)

n.AICc.M010<-ifelse(AICc.model=="M010", 1, 0)

n.AICc.M110<-ifelse(AICc.model=="M110", 1, 0)

BIC.model<-model[[max.BIC]]

n.BIC.M000<-ifelse(BIC.model=="M000", 1, 0)

n.BIC.M100<-ifelse(BIC.model=="M100", 1, 0)
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n.BIC.M010<-ifelse(BIC.model=="M010", 1, 0)

n.BIC.M110<-ifelse(BIC.model=="M110", 1, 0)

for (k in 1:length(comp.imp)) {

dat.xy<-data.frame(y, X1, comp.imp[k])

MM000<-lrm(y~1, dat.xy)

MM100<-lrm(y~X1, dat.xy)

MM010<-lrm(y~X2, dat.xy)

MM110<-lrm(y~X1+X2, dat.xy)

model.list2<-list(MM000, MM100, MM010, MM110)

best.model.AIC<-model.list2[[max.AIC]]

best.model.AICc<-model.list2[[max.AICc]]

best.model.BIC<-model.list2[[max.BIC]]

coef.AIC.0<-coef(best.model.AIC)[1]

coef.AIC.1<-coef(best.model.AIC)[2]

coef.AIC.2<-coef(best.model.AIC)[3]

coef.AICc.0<-coef(best.model.AICc)[1]

coef.AICc.1<-coef(best.model.AICc)[2]

coef.AICc.2<-coef(best.model.AICc)[3]

coef.BIC.0<-coef(best.model.BIC)[1]

coef.BIC.1<-coef(best.model.BIC)[2]

coef.BIC.2<-coef(best.model.BIC)[3]

coef.AIC.0<-ifelse(is.na(coef.AIC.0), 0, coef.AIC.0)

coef.AIC.1<-ifelse(is.na(coef.AIC.1), 0, coef.AIC.1)

coef.AIC.2<-ifelse(is.na(coef.AIC.2), 0, coef.AIC.2)

coef.AICc.0<-ifelse(is.na(coef.AICc.0), 0, coef.AICc.0)

coef.AICc.1<-ifelse(is.na(coef.AICc.1), 0, coef.AICc.1)

coef.AICc.2<-ifelse(is.na(coef.AICc.2), 0, coef.AICc.2)

coef.BIC.0<-ifelse(is.na(coef.BIC.0), 0, coef.BIC.0)

coef.BIC.1<-ifelse(is.na(coef.BIC.1), 0, coef.BIC.1)

coef.BIC.2<-ifelse(is.na(coef.BIC.2), 0, coef.BIC.2)

#to find total model coefficient for model selected via AIC after MI#

coef.AIC.MI.0<-coef.AIC.MI.0 + coef.AIC.0

coef.AIC.MI.1<-coef.AIC.MI.1 + coef.AIC.1

coef.AIC.MI.2<-coef.AIC.MI.2 + coef.AIC.2
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#to find total model coefficient for model selected via AICc after MI#

coef.AICc.MI.0<-coef.AICc.MI.0 + coef.AICc.0

coef.AICc.MI.1<-coef.AICc.MI.1 + coef.AICc.1

coef.AICc.MI.2<-coef.AICc.MI.2 + coef.AICc.2

#to find total model coefficient for model selected via BIC after MI#

coef.BIC.MI.0<-coef.BIC.MI.0 + coef.BIC.0

coef.BIC.MI.1<-coef.BIC.MI.1 + coef.BIC.1

coef.BIC.MI.2<-coef.BIC.MI.2 + coef.BIC.2

} #end of imputation loop#

#to find averaged model coefficient for model selected via AIC after MI#

coef.AIC.MI.0<-coef.AIC.MI.0/length(comp.imp)

coef.AIC.MI.1<-coef.AIC.MI.1/length(comp.imp)

coef.AIC.MI.2<-coef.AIC.MI.2/length(comp.imp)

#to find averaged model coefficient for model selected via AICc after MI#

coef.AICc.MI.0<-coef.AICc.MI.0/length(comp.imp)

coef.AICc.MI.1<-coef.AICc.MI.1/length(comp.imp)

coef.AICc.MI.2<-coef.AICc.MI.2/length(comp.imp)

##to find averaged model coefficient for model selected via BIC after MI#

coef.BIC.MI.0<-coef.BIC.MI.0/length(comp.imp)

coef.BIC.MI.1<-coef.BIC.MI.1/length(comp.imp)

coef.BIC.MI.2<-coef.BIC.MI.2/length(comp.imp)

#to find y.test for model selected via AIC#

LP.AIC.y.est<- coef.AIC.MI.0 + coef.AIC.MI.1*(x1.test)

+ coef.AIC.MI.2*(x2.test)

#to find y.test for model selected via AICc#

LP.AICc.y.est<- coef.AICc.MI.0 + coef.AICc.MI.1*(x1.test)

+ coef.AICc.MI.2*(x2.test)

#to find y.test for model selected via BIC#

LP.BIC.y.est<- coef.BIC.MI.0 + coef.BIC.MI.1*(x1.test)

+ coef.BIC.MI.2*(x2.test)

p.AIC.y.est<-exp(LP.AIC.y.est)/(1+exp(LP.AIC.y.est))

AIC.y.est<-rbinom(100, 1, p.AIC.y.est)

p.AICc.y.est<-exp(LP.AICc.y.est)/(1+exp(LP.AICc.y.est))

AICc.y.est<-rbinom(100, 1, p.AICc.y.est)

p.BIC.y.est<-exp(LP.BIC.y.est)/(1+exp(LP.BIC.y.est))

BIC.y.est<-rbinom(100, 1, p.BIC.y.est)
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#to find MSE(p) using y.est for model selected via AIC#

AIC.best<-AIC.best+(p.AIC.y.est-p.test)^2

AICc.best<-AICc.best+(p.AICc.y.est-p.test)^2

BIC.best<-BIC.best+(p.BIC.y.est-p.test)^2

###to find total coefficient over simulation loop

coef.AIC[1]<-coef.AIC[1] + coef.AIC.MI.0

coef.AIC[2]<-coef.AIC[2] + coef.AIC.MI.1

coef.AIC[3]<-coef.AIC[3] + coef.AIC.MI.2

coef.AICc[1]<-coef.AICc[1] + coef.AICc.MI.0

coef.AICc[2]<-coef.AICc[2] + coef.AICc.MI.1

coef.AICc[3]<-coef.AICc[3] + coef.AICc.MI.2

coef.BIC[1]<-coef.BIC[1] + coef.BIC.MI.0

coef.BIC[2]<-coef.BIC[2] + coef.BIC.MI.1

coef.BIC[3]<-coef.BIC[3] + coef.BIC.MI.2

#to find total frequency of each model selected over simulation loop#

n.AIC.model[1]<-n.AIC.model[1] + n.AIC.M000

n.AIC.model[2]<-n.AIC.model[2] + n.AIC.M100

n.AIC.model[3]<-n.AIC.model[3] + n.AIC.M010

n.AIC.model[4]<-n.AIC.model[4] + n.AIC.M110

n.AICc.model[1]<-n.AICc.model[1] + n.AICc.M000

n.AICc.model[2]<-n.AICc.model[2] + n.AICc.M100

n.AICc.model[3]<-n.AICc.model[3] + n.AICc.M010

n.AICc.model[4]<-n.AICc.model[4] + n.AICc.M110

n.BIC.model[1]<-n.BIC.model[1] + n.BIC.M000

n.BIC.model[2]<-n.BIC.model[2] + n.BIC.M100

n.BIC.model[3]<-n.BIC.model[3] + n.BIC.M010

n.BIC.model[4]<-n.BIC.model[4] + n.BIC.M110

} #end of simulation loop#

AIC.best<-AIC.best/nsim #To find averaged MSE(P)#

AICc.best<-AICc.best/nsim

BIC.best<-BIC.best/nsim

coef.AIC<-coef.AIC/nsim #To find averaged coefficients#

coef.AICc<-coef.AICc/nsim

coef.BIC<-coef.BIC/nsim
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