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Abstract 

Periodontal disease (PD) is a multifactorial disease of the oral cavity affecting 

the majority of the population. Although not a direct cause of mortality, PD is a 

health concern because it affects the majority of the population and has a negative 

impact on oral health, ability to chew, appearance, quality of life, dental care costs 

and can lead to tooth loss. Dental plaque is a microbial biofilm, which is necessary 

but not sufficient for the development of periodontitis. The interactions between 

the biofilm and the host cells, both local tissue and immune cells, can lead to 

tissue destruction and ultimately tooth loss. Clinical management of 

periodontitis involves mechanical removal of plaque from the tooth surface. 

Treatment is time consuming, in some patients only partially successful and 

recurrence is common. Therefore, understanding how the host interacts with 

microbial biofilms in both health and PD will help improve treatments and 

identify novel targets for therapeutic and preventative strategies.  

The hypothesis of this thesis is that the bacterial composition of oral biofilms 

may modulate host cell responses which contribute to the pathogenicity of PD. 

The overarching aim of this research was to develop an in vitro co-culture model 

system to study how biofilm composition can influence the host immune 

response.  

The studies document the development of health-associated, intermediate and 

disease-associated biofilms with host tissue and immune cells, and the use of 

these models to test antimicrobial and anti-inflammatory compounds as 

potential treatments for PD.  

The biofilms developed were assessed for survival in cell culture conditions and 

batch reproducibility by PCR and morphology visualised using SEM. The health-

associated biofilm included Streptococcus mitis, S. intermedius and S. oralis (3-

species); the intermediate biofilm additionally included Veillonella dispar, 

Actinomyces naeslundii, Fusobacterium nucleatum and F. nucleatum spp. 

Vincentii (7-species); and the disease-associated biofilm included further 

addition of Porphyromonas gingivalis, Prevotella intermedia, and 

Aggregatibacter actinomycetemcomitans (10-species). These biofilms were co-

cultured with an oral epithelial cell line and primary gingival epithelial cells, as 
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well as neutrophils and a myeloid cell line. Host cell viability was assessed by 

AlamarBlue®/LDH and changes in mRNA and protein expression of chemokines 

and cytokines were assessed by quantitative PCR and ELISA/Luminex®, 

respectively. Cellular responses were further evaluated by microscopy and flow 

cytometry.   

 

Generally, co-culture of health associated biofilms with host cells resulted in 

minimal impact on cell viability and generally low inflammatory gene expression 

and protein release, with some genes including CXCL5 and CCL1 being 

downregulated compared to the cells only control. Intermediate biofilms caused 

some cell death and a marked upregulation of inflammatory genes and protein 

release, including a 302.7 fold increase of epithelial cell IL-8 gene expression 

compared to the cells only control (p<0.001). These intermediate biofilms 

elicited significant upregulation of CD40 (p<0.001) and CD69 (p<0.01) expression 

on the monocyte cell line compared with untreated controls. Co-culture of the 

10 species disease associated biofilms with host cells resulted in significant host 

cell death of both epithelial cells (p<0.001) and monocytes (p<0.05). The 10 

species biofilm caused significantly increased pro-inflammatory gene expression, 

but only low levels of protein could be detected in the supernatants. Similar 

trends in upregulation of inflammatory gene expression but low levels of protein 

release was observed in co-culture with differentiated pro-monocytes, whereas 

upregulation of inflammatory gene expression and protein release in neutrophil 

co-cultures was observed.  

The effect of antimicrobial and anti-inflammatory compounds, resveratrol and 

chlorhexidine, was evaluated using this model system. Prior treatment of 

epithelial cells with resveratrol and biofilm with chlorhexidine significantly 

reduced IL-8 release from epithelial cells in co-culture with biofilms for 4 

(p<0.001) and 24 hours (p<0.001).  

In conclusion, this research has developed and validated 3 complex multi-species 

biofilms to study host: biofilm interactions in vitro. Furthermore, using these 

models in co-culture with multiple host cell types, clear differences in the host 

response to different biofilms were observed. The variations in inflammatory 

response of host cells and oral biofilms observed in this study help further 

understanding of the complex host: biofilm interactions within the oral cavity 
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which contribute to PD. This model demonstrated its potential as a platform to 

test novel actives, highlighting its use a tool to study how actives can influence 

host: biofilm interactions within the oral cavity. Future use of this model will aid 

in greater understanding of host: biofilm interactions. Such findings are 

applicable to oral health and beyond, and may help to identify novel therapeutic 

targets for the treatment of PD and other biofilm associated diseases.
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1.1 Periodontal Disease 

Periodontal diseases (PDs) are multifactorial diseases of the oral cavity. 

Microorganisms, which grow as a biofilm (plaque) on the surface of teeth, and 

microbial products initiate an inflammatory response lead to local tissue 

destruction and ultimately tooth loss. However, plaque is necessary but not 

sufficient to cause PD and many other local and systemic factors can contribute 

to the dysregulated inflammatory immune response seen in PD. This introduction 

shall provide a brief overview of the microbiological aspects of PD, the host 

immune response in PD, the models used to study PD, and finally the novel 

therapeutics used in an attempt to treat the disease.  

    

 Clinical classification of PD 

PD includes highly prevalent conditions encompassing a range of inflammatory 

diseases involving the gingivae and supporting structures of the teeth (Williams, 

1990). The two most common forms are plaque-induced gingivitis and 

periodontitis (Figure 1.1). Gingivitis is predominantly caused by the 

accumulation of bacterial biofilms on the teeth adjacent to the gingivae, but the 

host response to the biofilm can also be modified by a variety of factors 

including pregnancy, malnutrition and local and systemic diseases such as 

diabetes and leukaemia (Pihlstrom et al., 2005). This can cause increased 

bleeding upon probing at the site of infection due to erythema and swelling of 

the surrounding tissues; however, gingivitis does not affect the supporting 

structures of the tooth and is a reversible condition if dental plaque is removed 

(Theilade et al., 1966, Mariotti, 1999). 
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Figure 1.1: Progression from periodontal health to gingivitis or periodontitis 

In periodontal health biofilms accumulate on the tooth at the gum line with no 

inflammation and are in a state of homeostasis with the host. In gingivitis a 

build up of bacteria within the biofilm causes localised inflammation, with an 

increase of immune cells at the site and swelling of the gum forming a small 

gingival crevice. In periodontitis bacteria form a dysbiotic sub-gingival biofilm 

on the tooth which causes further inflammation, destruction of the alveolar 

bone and tooth loss. Image by Emma Millhouse. 

 

Unlike gingivitis, periodontitis causes the destruction of tooth supporting 

structures, including the gingivae, periodontal ligament and the alveolar bone, 

ultimately resulting in tooth loss. Periodontitis also increases patients’ risk of 

systemic diseases, including rheumatoid arthritis (RA), cardiovascular disease 

(CVD) and cancer (Casanova et al., 2014, Dietrich et al., 2013, Kaur et al., 

2013). Periodontitis can be further divided into two subclasses; chronic and 

aggressive, and either form can be found localised to fewer than 30% of the 

teeth or generalised affecting the majority of the teeth in the oral cavity 

(Armitage, 1999). Chronic periodontitis is the most common form of the disease 

and ranges from mild to severe, presenting with deposits of plaque and calculus, 

inflammation at the site and a slow rate of disease progression (Armitage and 

Cullinan, 2010). In contrast, aggressive periodontitis is characterised by rapid 

loss of attachment and bone destruction and is typically observed in patients 

younger than those who present with chronic periodontitis (Armitage, 1999). 

Furthermore, noticeable differences in plaque accumulation have been observed 

between chronic and aggressive periodontitis, with generally relatively minimal 

Health Gingivitis Periodontitis 

  Biofilm: Immune system 

 interactions 
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amounts of plaque and calculus present in aggressive periodontitis and some 

differences in the microbiology, namely a greater chance of harbouring 

Aggregatibacter actinomycetemcomitans in aggressive periodontitis than chronic 

periodontitis (Armitage, 2010, Douglass et al., 1990, Liljenberg and Lindhe, 

1980, Fine et al., 2007). 

PD is common throughout the UK. A survey in 2009 found only 17% of adults in 

the UK had healthy periodontal tissues, with 45% of adults having PD, and 9% of 

adults having severe periodontitis at one site or more (White et al., 2012). It is 

well established that dental plaque plays an essential role in the initiation of PD 

(Socransky, 1977). However, there are a variety of risk factors associated with 

susceptibility to PD and rate of disease progression including smoking, lifestyle, 

genetics and local and systemic diseases (Michalowicz et al., 1991, Ismail et al., 

1983, Bawadi et al., 2011). The key role of individual susceptibility was 

described by Loe et al (1986) who observed three distinct patterns of loss of 

attachment; none, moderate and rapid in a population of Sri Lankan labourers 

exposed to the same environmental factors. Interestingly, there was no 

significant difference in oral hygiene status and gingivitis prevalence between 

these groups throughout the duration of the study, although there were some 

associations between these factors and those in the rapid attachment loss group 

(Loe et al., 1986).  

For most patients’ plaque accumulation will develop into non-destructive 

gingivitis which may precede periodontitis. However, not all gingivitis shall 

develop into periodontitis, with gingivitis only having an approximate 30% 

predictive value for progression to periodontitis (Loe, 1983). This is due to the 

understanding that plaque is necessary, but not sufficient, to cause 

periodontitis, and that shifts in plaque composition and host immune response 

result in dysbiosis of the oral cavity and ultimately disease (Hajishengallis, 

2015). Therefore understanding both the microbiology of dental plaque and the 

host response to this is essential to understanding PD. 
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 Microbiology of PD 

1.1.2.1 Biofilms 

Dental plaque is a microbial biofilm that forms on the surface of teeth. Biofilms 

are defined as ‘a structured consortium of microbial cells surrounded by a self 

produced polymer matrix’ (Costerton, 1995). Mono-species and multi-species 

biofilms exist and are prevalent in both nature, within the human host and on 

man-made structures with over 95% of bacteria estimated to exist as biofilms 

(Saini et al., 2011). Historically, it was believed that bacteria predominantly 

existed within a planktonic state, however, contemporary studies have more 

recently shown bacteria can also exist in adherent biofilm states that have a 

defined role in the pathogenesis of diseases, such as cystic fibrosis and 

candidiasis (Harriott and Noverr, 2011, Bjarnsholt, 2013, Mulcahy et al., 2014). 

Biofilms confer advantages to bacteria over planktonic states, including 

protection from the environment, resistance to chemical and physical removal of 

bacteria, and mutualistic co-operation between species present within the 

community (Sedlacek and Walker, 2007, Schwering et al., 2013, Falsetta et al., 

2014). These characteristics play an important role in clinically relevant 

biofilms, with such communities being phenotypically different to their 

planktonic counterparts, allowing resistance to antimicrobials and evading host 

immunity (Donlan and Costerton, 2002, Thurlow et al., 2011). As a result these 

biofilms are clinically difficult to treat, and many studies now focus on 

understanding microbial biofilms in disease in an effort to find better ways to 

manage and eradicate them.  

1.1.2.2 Dental Plaque 

It is estimated that over 700 different bacterial species can reside within the 

human oral cavity, of which more than 400 reside within the periodontal pocket, 

with individuals reported to have approximately 100 different bacterial species 

present in dental plaque (Paster et al., 2006). These microbial biofilms have 

been shown to form by an ordered and sequential colonisation of bacterial 

species which, depending on the composition, can be linked to oral health or PD 

(Figure 1.2) (Kolenbrander et al., 2002, Kolenbrander et al., 2010a). Many of the 
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species present are difficult to culture and have only been found using 16S gene 

cloning and next-generation sequencing (Aas et al., 2005, Keijser et al., 2008). 

Distinct microbial profiles have been observed using these methods, illustrating 

differences in the microbial composition of different sites within the oral cavity, 

as well distinctions between health and disease (Huang et al., 2011b). In 

periodontitis, the microbial composition generally changes from a Gram-positive 

biofilm to a more complex Gram-negative anaerobic biofilm. Pioneering DNA 

hybridisation studies investigating the role of bacteria in periodontitis implicated 

a small number of bacterial species that are present in low amount that play an 

important role in the aetiology of the disease, with species such as 

Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia being 

strongly associated with chronic periodontitis (Socransky et al., 1998). 

  

Figure 1.2: Oral biofilm formation 

This diagram represents the steps of oral biofilm formation. (1) Attachment: 

Early colonising bacteria recognise salivary glycoproteins found within the 

acquired pellicle of the tooth surface and attach to them. (2) Colonisation: 

Early colonisers grow, co-aggregate with other oral species within the biofilm 

and facilitate the incorporation of late colonisers to the biofilm. (3) Biofilm 

development: As the biofilm matures, interactions between bacterial species 

occurs including quorum sensing and DNA transfer as well as competitive 

interactions such as bacteriocin production. Mature biofilms also provide a 

barrier function which protects bacteria from antibiotics and environmental 

changes. Bacteria can also disperse from the biofilm surface and spread to 

colonise a new site. Image adapted from (Hojo et al., 2009).  

1. Attachment 2. Colonization 3. Biofilm Formation 

Tooth Surface 

Acquired pellicle 
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1.1.2.3 Adhesion to tooth surfaces 

Biofilm formation begins with early colonising bacteria such as Streptococcus 

species, which constitute up to 60-90% of bacteria that re-colonise the tooth 

surface in the first 4 hours after professional cleaning (Nyvad and Kilian, 1987). 

These bacteria bind to the salivary pellicle found on the surface of enamel which 

is made up of a variety of components including enzymes, such as alpha-

amylase, proline rich proteins, phosphatase rich proteins such as statherin, 

mucins and agglutinins (Kolenbrander et al., 2002). 

1.1.2.4 Co-aggregation of plaque bacteria 

Not all bacteria can bind directly to the salivary pellicle present on the surface 

of the tooth. For planktonic bacteria present in the oral cavity other bacterial 

species that have adhered to the tooth surface can become a binding site. This 

process is known as co-aggregation and is defined as “specific cell-cell 

interactions between genetically distinct cells” and plays an essential role in 

oral biofilm formation (Kolenbrander et al., 2002). As a result many oral 

bacterial strains have been studied in vitro to test their ability to co-aggregate 

with other oral bacterial species and the mechanisms of adhesion by which this 

occurs (Maeda et al., 2013, Sato and Nakazawa, 2014, Guggenheim et al., 

2001b). Furthermore, co-aggregation of bacteria is species specific, with some 

species unable to adhere directly to others in biofilms without the presence of 

an intermediate bacterial species (Figure 1.3) (Ledder et al., 2008, Biyikoglu et 

al., 2012, Ammann et al., 2013a). The oral bacterium Fusobacterium nucleatum 

has been shown to co-aggregate with many bacterial species and therefore plays 

an essential role in ‘bridging the gap’ between early and late colonisers of oral 

biofilms (Bradshaw et al., 1998, Biyikoglu et al., 2012). 
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Figure 1.3: Bacterial colonisation of a tooth surface 

This image shows the species specific colonisation of oral bacteria on the tooth 

surface. Early colonisers (predominantly Streptococcus species) are able to bind 

to the proteins found within the salivary pellicle. These species allow the 

incorporation of other species such as Veillonella species to the biofilm, which 

are unable to directly bind to the salivary pellicle themselves. Intermediate 

colonisers such as F. nucleatum show the ability to adhere with a large number 

of early colonisers of the biofilms while also facilitating the adhesion of late 

colonisers, typically associated with disease, such as Porphyromonas gingivalis to 

the biofilm (Kolenbrander et al., 2010a). 

 

1.1.2.5 Microbial communication between plaque bacteria 

Oral microbial biofilms are a dynamic, complex community. Their reliance on 

nutrients available from saliva, gingival crevicular (GCF) fluid and food debris 

ensures interspecies communication is essential and plays an important part of 

biofilm development (Kolenbrander, 2011). Mutualistic relationships are found 

within biofilms where metabolites produced by one species are used as a 

nutrient for another and often results in co-localisation of species that are 
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metabolically compatible. An example of this is the metabolic synergy between 

P. gingivalis and T. denticola which when grown together produce a significantly 

larger biomass than when grown as mono-species biofilms or with other bacterial 

species (Cogoni et al., 2012). P. gingivalis produces isobutyric acid which 

enhances T. denticola growth, whereas T. denticola  produces succinic acid 

which enhances P. gingivalis growth (Grenier, 1992). Bacteria can also compete 

for nutrients, which in turn can shape the composition of oral biofilms. Studies 

have shown that some oral bacteria antagonise disease-associated bacteria 

within the oral cavity, such as inhibition of colonisation by the cariogenic 

bacteria S. mutans through the production of hydrogen peroxide by 

Streptococcus sanguinis and Streptococcus gordonii (Kreth et al., 2008, van 

Essche et al., 2013).  

In microbial biofilms, bacterial distance and density also play an important role 

in communication. Quorum sensing is defined as the regulation of genes in 

response to cell density, influencing functions including virulence, antibiotic 

susceptibility and biofilm formation (Ahmed et al., 2007, Merritt et al., 2003, 

Novak et al., 2010). It is believed to play an important role in communication 

between Gram-positive and Gram-negative bacteria due to the highly conserved 

signalling molecules used. The most well known signalling molecule involved in 

quorum sensing is auto-inducer 2 (AI-2), which is encoded by the luxS gene and 

is conserved among many bacterial species, including Streptococcus oralis, S. 

gordonii, A. actinomycetemcomitans and P. gingivalis (Huang et al., 2011a). In 

oral biofilms, AI-2 plays an important role in promoting biofilm formation and 

studies have shown mutations in the luxS gene of S. oralis species results in 

failed biofilm formation with Actinomyces naeslundii (Rickard et al., 2006). 

Other studies have shown luxS deficient P. gingivalis was unable to form multi-

species biofilms with other oral bacteria, produced low levels of protease and 

haemagglutinin and caused a reduced inflammatory response in culture with 

periodontal fibroblasts (Scheres et al., 2014, Burgess et al., 2002, McNab et al., 

2003).  

Biofilms also allow bacteria to exchange DNA due to the proximity of cells and 

the ability of DNA to be trapped in the extracellular matrix. A variety of oral 

bacteria have been reported to have transposons which allow for DNA transfer 
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and horizontal gene transfer and this has been reported between streptococcal 

species including S. gordonii, S. oralis and S. sanguinis in oral biofilms (Roberts 

et al., 2001, Warburton et al., 2007). This has been proposed to be beneficial to 

the communities within biofilms due to the ability of DNA release to stabilise the 

structural integrity of the biofilm and pass on beneficial traits such as antibiotic 

resistance (Kolenbrander et al., 2010a).  

1.1.2.6 Dental plaque composition 

Biofilms are dynamic environments and can form in a variety of locations in the 

oral cavity such as the tooth and root surfaces (both supra- and sub-gingival), 

dental implants, dentures, the tongue and other mucosal sites (Dewhirst et al., 

2010, Aas et al., 2005). Studies investigating oral biofilms have observed distinct 

microbial biofilm profiles present at different hard and soft tissue sites within 

the oral cavity, with significant differences in the microbial composition of 

supra- and sub-gingival biofilms compared with the tongue, hard palate and 

saliva (Mager et al., 2003). This study also concluded that while many species 

can colonise multiple surfaces, composition overall at each site is different, with 

Actinomyces species colonising teeth in far greater numbers than at other sites. 

Furthermore, at the same sites distinct microbial profiles were observed when 

comparing health and disease states with increased levels of Streptococcus and 

Veillonella species in health and increased levels of P. gingivalis in disease 

(Jorth et al., 2014, Colombo et al., 2009). The role of dental plaque in PD has 

been extensively studied and hypothesis devised for the aetiology of disease. 

The ‘non-specific hypothesis’ states that if biofilms are allowed to grow 

uncontrollably this will inevitably lead to disease. Alternatively, the ‘specific 

plaque hypothesis’ states that there are single or limited numbers of specific 

pathogens within biofilms and specific forms of PDs will have specific bacterial 

aetiologies. For example, P. gingivalis is the most studied bacteria in PD due to 

its strong associations with periodontitis. P. gingivalis is present in 79% of 

patients with periodontitis patients compared with 25% of patients with good 

oral health and is proposed to be a keystone bacterial pathogen in periodontitis 

(Loesche, 1976, Loesche, 1979, Griffen et al., 1998). The ‘ecological plaque’ 

hypothesis states that there is a qualitatively distinct bacterial composition 

between healthy and diseased sites and a pathogenic shift is a result of 
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disrupted equilibrium. This disrupted equilibrium can occur due to lifestyle 

changes, including diet and smoking, and result in a change in the microbes that 

are found in the plaque. This change in environment can allow colonisation by 

virulent bacteria. Several key studies by Socransky’s team characterized the 

composition of plaque from which bacteria were grouped into ‘complexes’ based 

on associations between bacterial species and prevalence in health and disease, 

observing differing microbial compositions at supragingival and subgingival sites 

(Figure 1.4-1.5) (Socransky et al., 1998, Haffajee et al., 2008). 

1.1.2.7 Supragingival biofilms 

As aforementioned, gingivitis precedes periodontitis, but not all gingivitis 

progresses to become periodontitis. Biofilm accumulation begins above the gum 

line as early as 4 hours after professional cleaning with significantly increased 

levels of streptococci such as S. mitis and S. oralis, and other early colonisers 

such as Neisseria mucosa and Veillonella parvula observed at this time (Teles et 

al., 2012). The most common species present in supragingival plaque were those 

of the orange, yellow and blue complexes, as described by Socransky (Figure 

1.4) (Haffajee et al., 2008). Increased levels of Actinomyces species in supra-

gingival biofilms were observed over time and attributed to the replacement of 

yellow complex Streptococcus species as the biofilm matures (Ritz, 1967). 

Furthermore, bacteria of the ‘red complex’, which is typically associated with 

PD and subgingival plaque, were strongly associated with increased levels of 

gingival redness, bleeding on probing, and could be found present in 

supragingival plaque from sites where sub-gingival samples were negative for the 

same species (Ximenez-Fyvie et al., 2000b).  



  Chapter 1: Introduction 
 

 

 12 

 

Figure 1.4: Supra-gingival biofilm complexes 

Representation of the relationships of species in supragingival plaque (Haffajee 
et al., 2008). 

 

1.1.2.8 Sub-gingival biofilms 

Sub-gingival biofilms are found attached to the root surface, below the gum line 

in the periodontal pocket, surrounded by GCF. At this site species diversity is 

higher than that of supra-gingival biofilms, with an increase of Gram-negative, 

anaerobic bacterial species (Paster et al., 2006). Subgingival plaque is most 

likely formed by the spread of supragingival plaque down into the gingival 

sulcus, with studies showing re-colonisation of pristine pockets occurring with 

the same species involved in supra-gingival biofilm formation (Quirynen et al., 

2005). These early colonisers are typically aerobic or facultative anaerobic 

bacteria. However, as the biofilm matures an oxygen gradient forms, which 

allows obligate anaerobes to be incorporated. As a result, over time biofilm 

composition shifts from a Gram-positive aerobic population to a Gram-negative 

anaerobic one. As with supragingival biofilm, Socransky et al (1998) described 

complexes of bacterial associations and observed evidence to link the ‘red 

complex’ bacteria (P. gingivalis, Prevotella intermedia and T. denticola) with 
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symptoms of disease, particularly pocket depth and bleeding on probing (Figure 

1.5).  

 

Figure 1.5: Sub-gingival biofilm complexes 

Representation of the relationships of species in sub-gingival plaque (Socransky 

et al., 1998) 

1.1.2.9 Microbial Dysbiosis 

In the oral cavity the transition of health to disease is associated with a shift 

from the facultative bacteria in homeostasis with the host to a dysbiotic biofilm 

containing an increased number of species, in particular anaerobic bacteria. 

Dysbiosis is defined as a shift or imbalance of the relative abundance or 

influence of species within a microbiome that is associated with disease such as 

inflammatory bowel disease or periodontitis. This shift, combined with a 

dysregulated immune response, either due to immune subversion or host 

immunoregulatory defects, results in biofilm overgrowth and uncontrolled 

inflammation at the site. P. gingivalis has been extensively studied and shown to 

use a variety of virulence factors to modulate both the host immune response 

and the oral biofilm dynamics such as gingipains which can degrade 

inflammatory cytokines such as IL-8 produced by host cells (Palm et al., 2015, 

Tada et al., 2003). P. gingivalis is typically present in low numbers in microbial 
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plaque; however, a study by Hajishengallis et al (2011) observed that inclusion 

of small numbers of P. gingivalis in a biofilm altered the amount and 

composition of commensal bacteria present in plaque, and increased alveolar 

bone loss in specific pathogen-free mice (Hajishengallis et al., 2011). 

Furthermore, this study showed P. gingivalis alone was unable to cause bone loss 

when inoculated in germ-free mice. However, transmission of commensal 

bacteria to these germ-free mice resulted in bone loss. This suggests that P. 

gingivalis promotes periodontitis by altering commensal bacterial biofilms, 

resulting in inflammation and bone loss. Hence, P. gingivalis has been termed a 

‘keystone pathogen’ involved in the microbial shift from periodontal health to 

disease (Darveau et al., 2012, Duran-Pinedo et al., 2014). Furthermore, P. 

gingivalis may also alter the commensal bacterial biofilm to its advantage, with 

studies reporting P. gingivalis directly causes S. mitis death and DNA 

fragmentation in a multi-species biofilm (Duran-Pinedo et al., 2014). While P. 

gingivalis has been the most extensively studied of these species, which in part 

was due to its relative ease of culture, both T. forsythia, T. denticola of the 

‘red complex’ and other periodontal bacteria also cause a shift in the 

composition of oral plaque resulting in microbial dysbiosis.   

  Immunology of PD 

Microbial plaque is considered necessary, but not sufficient, for the progression 

of PD, and that dental plaque accumulation does not necessarily progress to 

periodontitis. Many studies both in vitro and in vivo have demonstrated the role 

of pathogenic ‘red complex’ oral bacteria and PD. However, these species have 

also been found in periodontally healthy patients, albeit at lower frequencies 

than patients with PD (Yang et al., 2004, Ximenez-Fyvie et al., 2000a). It can 

therefore be assumed that while these species may initiate host inflammatory 

responses, other mediators must be involved which determine the progression of 

PD. These mediators may play a key role in determining the host’s outcome, 

providing either a protective and preventative response or an ineffective 

inflammatory one, which results in host induced tissue destruction. The 

development of gingivitis and periodontitis can be divided into four stages based 

on histological examination of gingival tissues, which will be described below 

(Page and Schroeder, 1976).   
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1.1.3.1 Initial lesion 

The initial inflammatory lesion develops within 2 - 4 days of plaque 

accumulation, at which time the early inflammatory response can be observed 

histologically. This stage is characterised by oedema, vasodilation, increased 

gingival fluid flow, loss of perivascular collagen and migration of 

polymorphonucelar leukocytes, such as neutrophils and monocytes, into the 

periodontal tissues and junctional epithelium in experimental gingivitis (Payne 

et al., 1975). At this stage the gingival crevice has a lower redox potential than 

other sites in the oral cavity, encouraging the growth of Actinomyces ssp. and 

other carbon dioxide requiring species (Moore et al., 1982). The lesion that 

develops is an acute inflammatory response by the gingival tissues to bacterial 

enzymes and metabolic products produced by the capnophilic species, which in 

turn increases the permeability of the junctional epithelium allowing increased 

GCF fluid flow containing PMNs, complement and antimicrobial compounds 

(Ohlrich et al., 2009). 

1.1.3.2 Early lesion/ stable lesion 

Approximately 4 - 7 days after the initial plaque accumulation, the developing 

lesion is clinically detectable as gingivitis. At this stage the lesion shows further 

histological changes including more pronounced vascular changes, increased GCF 

flow and widening of junctional epithelium (Page and Schroeder, 1976). The 

inflammatory infiltrate also begins to shift from one containing mainly 

neutrophils and monocytes to more macrophages and lymphocytes as well as 

some plasma cells at the periphery of the lesion. The extent of leukocyte 

infiltration is only marginally greater than that seen in the early lesion, with 

leukocytes comprising approximately 15% of the cell population. However, 

collagen degradation is more extensive, affecting 60-70% of the matrix (Page and 

Schroeder, 1976). There are clinical signs of gingival inflammation and bleeding 

on gentle probing around 12-21 days, at which point lymphocytes will make up 

approximately 70% of the cell infiltrate and PMNs consisting of approximately 

10% (Seymour et al., 1983). The persistence of the plaque biofilm prevents the 

immune system from resolving the inflammation and fully eradicating the 

microbial challenge, which left untreated, develops into chronic gingivitis. 

Mechanical cleaning to remove the plaque at this stage allows for gingival tissue 



  Chapter 1: Introduction 
 

 

 16 

repair and no permanent damage to the tissue. This early lesion may remain 

stable or progress to periodontitis. 

1.1.3.3 Established lesion 

In some cases, either due to host specific susceptibility or environmental 

factors, the lesion becomes dominated by an adaptive T cell/B cell/plasma cell 

immune response (Seymour et al., 1979b). Unlike the stable gingival lesions 

where the immune response is in balance with the disease, in the progressive 

lesion pro-inflammatory activity is dominant. Many of the Gram-negative 

bacteria associated with the progressive lesion such as P. gingivalis have been 

cited as polyclonal B cell activators and the growth of these could be responsible 

for the increased Th2 cells response observed, with Th2 cells also being involved 

in the destruction of extracellular microorganisms in both human and animal 

studies (Tew et al., 1989, Han et al., 2009). This stage is associated with high 

levels of inflammatory mediators including IL-1, IL-6, TNFα, PGE2, further 

connective tissue breakdown, migration of the junctional epithelium in an apical 

direction and periodontal pocked formation (Honda et al., 2006). 

1.1.3.4 Advanced lesion 

The advanced lesion has similar cellular composition as the established lesion as 

it is dominated by lymphocytes (Thorbert-Mros et al., 2014). The lesion extends 

down the periodontal ligament and alveolar bone and shows clinical loss of 

attachment at the site. This connective tissue destruction is believed to be due 

to the effects of the immune response, notably fibroblasts and macrophages, 

and is mediated through matrix metalloproteinases (MMPs) and enhanced 

osteolytic activity, although direct damage can also occur via the cytotoxic 

effects of bacteria products such as proteinases and collagenases (Ohlrich et al., 

2009, Haffajee and Socransky, 1994). This dysregulation of host derived factors 

results in damage to the connective tissue attachment. 

 

It has been shown that PD has both states of activation and states of remission, 

characterised by active and inactive lesions and much of the loss of attachment 

is believed to be due to the repeated episodes of inflammation at lesion sites.  

The result of the progressive lesion is the major destruction of hard and soft 
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tissues by the host, due to inflammatory mediators as well as the activation of 

osteoclasts to initiate bone resorption.  

 

1.1.3.5 Innate immune response to periodontal biofilms 

Innate immunity is a consistent feature of both gingivitis and periodontitis and 

may be considered as comprised of mechanical, chemical and cellular elements. 

The mechanical element is the physical barrier function of epithelial cells, the 

chemical element comprises of soluble and cell associated proteins including 

patter-recognition receptors, cytokines and chemokines and the cellular element 

is made up of the cells of the gingival epithelium and underlying connective 

tissue which comprises of multiple cell types such as epithelial cells, tissue 

macrophages, neutrophils, dendritic cells, NK cells, γδ T cells and Langerhans 

cells. Their main role in the oral cavity is the defence against pathogens and 

maintenance of tissue integrity and homeostasis.  

Recognition of microbial components such as bacterial lipopolysaccharide (LPS), 

DNA and peptidoglycan occurs primarily through toll-like receptors (TLRs) 

expressed on these cell types. Activation of TLRs results in an intracellular 

signalling cascade which can lead to activation of innate immune responses, 

activation and modulation of adaptive immune responses and production of 

antimicrobial mediators including antimicrobial peptides (AMPs), defensins, 

histatins and cathelicidins (Akira and Takeda, 2004). Gingival epithelial cells of 

the junctional epithelium are the front line between the host and oral bacteria. 

As such, these cells are well equipped to recognise pathogens and express TLR2, 

3, 4, 5, 6 and 9 (Kusumoto et al., 2004). Langerhans cells and resident dendritic 

cells are also present in the gingival epithelium and express TLR1-8 and 10 

(Agrawal et al., 2003). Furthermore TLR activation of these cells has been shown 

to play a critical role in downstream adaptive responses including the activation 

and differentiation of T cells (Iwasaki and Medzhitov, 2004). Unsurprisingly, in 

the oral cavity TLR expression has been shown to be increased in the gingivae of 

subjects with PD compared with healthy subjects, and is associated with the 

influx of both innate and adaptive immune cells into the site (Muthukuru et al., 

2005). 
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Most Gram-negative bacteria that are associated with PD elicit a strong TLR2 and 

4 response via TLR binding to bacterial peptidoglycans and LPS, respectively 

(Tietze et al., 2006). However, studies have shown P. gingivalis stimulates TLR1, 

TLR2, TLR4, TLR7 and CD14 in vitro (Scheres et al., 2011, Sun et al., 2010). A 

study by Maekawa et al (2014) also showed the ability of P. gingivalis to 

modulate the host response by degrading the protective TLR2-MyD88 response 

and activates the TLR2-Mal-P13K pathway which blocks phagocytosis and 

promotes inflammation (Maekawa et al., 2014b). Studies investigating the TLR 

expression in gingival tissue from chronic periodontitis patients observed 

increased levels of TLR2 and TLR9 expression compared with healthy individuals 

(Wara-aswapati et al., 2013). TLR9 recognises bacterial CpG DNA and stimulates 

inflammatory cytokine responses through NF-κB signalling. Studies showing 

differential cytokine responses to bacterial DNA, observed low inflammatory 

responses to commensal species such as S. sanguinis DNA and increased 

responses to pathogenic bacteria such as P. gingivalis (Sahingur et al., 2012). 

Evidently, the innate immune system in periodontal tissues is under constant 

challenge by oral bacteria in both health and PD. 

1.1.3.6 Adaptive immune response to periodontal biofilm 

In the oral cavity both T and B cells are present in health and in PD and are 

believed to play a critical role in disease pathogenesis. In general, antigen-

presenting cells (APC), such as DCs and macrophages, capture and present 

antigen to T and B cells at which point activated CD4+ T cells produce subset 

specific cytokines that will define the adaptive immune response. Th1 and Th2 

cells are associated with cellular and humoral responses, respectively, while T 

regulatory cells (Treg) have more suppressive functions (Murphy and Reiner, 

2002). B cells are activated by Th2 cells and differentiate into plasma cells, 

which are able to produce high affinity antibodies against specific bacterial 

antigens. The inflammation due to the activation of the adaptive immune 

response is a key driver of connective tissue destruction and alveolar bone loss 

in periodontitis, with studies using T and/or B cell deficient mice observing 

decreased alveolar bone loss following oral infection with bacteria such as P. 

gingivalis (Baker et al., 1994, Baker et al., 2002).   
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Lindhe et al (1980) assessed the cellular composition of gingival tissue from 

patients with advanced periodontitis and reported plasma cells occupied 31% 

and lymphocytes occupied 5-10% of the lesion (Lindhe et al., 1980). Many studies 

have shown that in health and gingivitis, T cells dominate the tissue where as B 

cell numbers increase in periodontitis lesions under the influence of T cells, with 

active sites containing increased levels of lymphocytes compared with healthy or 

stable sites in the same patient (Amunulla et al., 2008, Seymour et al., 1979a, 

Berglundh and Donati, 2005). Furthermore, the development of gingivitis 

appears to be dominated by Th1 cells, while in periodontitis there is a shift 

towards the Th2 phenotype (Berglundh and Donati, 2005). PD mouse models 

have shown that IFNγ deficient mice are more resistant to alveolar bone loss 

following oral infection with A. actinomycetemcomitans, although a higher total 

bacterial load and the subsequent death of mice was observed (Garlet et al., 

2008). This data suggests that the Th1 derived IFNγ is involved in protection 

from bacterial infection but also plays a role in tissue destruction and alveolar 

bone loss. Furthermore, other studies have investigated the role of bacteria in 

the Th1/Th2 balance, observing the ‘red complex’ bacteria T. forsythia causes a 

Th2 bias through TLR2 signalling on APCs which induced alveolar bone loss in 

mice (Myneni et al., 2011). More recently, focus has shifted towards Th17 cells 

and their role in PD due to studies reporting increased numbers of Th17 cells in 

gingival tissues of periodontitis patients compared with healthy controls (Adibrad 

et al., 2012, Cardoso et al., 2009). These cells are typically associated with 

inflammation, and in the gingival tissue of periodontitis patients have been 

found at sites of most inflammation, with increased numbers observed in at 

apical region compared with the coronal region and in active lesions compared 

with inactive lesions (Ohyama et al., 2009, Allam et al., 2011). 

It is evident that B cells and plasma cells are the main cell type present in 

periodontitis lesions (Berglundh and Donati, 2005). Early studies investigating 

the role of B cells in PD measured significantly increased levels of IgG and IgM 

plasma cells in periodontitis patients compared with healthy controls (Mackler et 

al., 1977, Seymour and Greenspan, 1979). B cells have been shown to produce 

specific antibodies to periodontal bacteria but have also been shown to present 

antigen to T cells in periodontitis lesions (Orima et al., 1999). Studies have 

shown B cells stimulated with oral bacteria such as P. gingivalis and P. 
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intermedia up regulated CD83 and CD86 and in mixed leukocyte cultures B cells 

stimulated T cells to differentiate into Th1 cells and produce high levels of IFNγ 

(Mahanonda et al., 2002). This finding was further confirmed in a study by 

Gemmell et al (2002) using gingival tissues from periodontitis patients where it 

was reported that B cells were the main antigen presenting cells in active lesions 

(Gemmell et al., 2002). B cells also contribute to the destruction of alveolar 

bone where the deletion of IgD has been shown to reduce alveolar bone loss in 

mice following oral infection with P. gingivalis (Baker et al., 2009, Oliver-Bell et 

al., 2015). 

1.1.3.7 Alveolar bone loss 

The alveolar bone is the supporting structure of the tooth and is destroyed by 

the inflammatory lesion in periodontitis resulting in tooth loss. Bone resorption 

is a well-regulated process throughout the body, and in health bone formation 

and bone resorption occur continuously. However, in disease, this balance shifts 

and increased bone resorption occurs though osteoblast inhibition and increased 

osteoclast activation. Inflammatory mediators reported to stimulate osteoclast 

activation include IL-1β, IL-6, TNFα, IL-17 and PGE2 and the TNF family cytokine 

RANKL (Schett, 2011). RANKL is expressed by osteoblasts and other cell types 

including fibroblasts, T cells and B cells and induces the differentiation of 

osteoclasts from monocytes/macrophages as well as osteoclast activation 

(Bartold et al., 2010). RANKL is regulated in response to pro-inflammatory 

cytokines such as IL-1β and TNFα; however, effects of RANKL can be blocked by 

its decoy receptor osteoprotegerin (OPG). In periodontitis patients, elevated 

levels of RANKL and low levels of OPG have been reported in the GCF fluid and 

periodontal tissues of periodontitis patients compared with healthy controls 

(Wara-aswapati et al., 2007, Baltacioglu et al., 2014). Studies have shown that 

the 90% of B cells and 50% of T cells within a periodontal lesion are RANKL 

positive and B cells produce RANKL in response to periodontal pathogens such as 

A. actinomycetemcomitans (Han et al., 2009, Kawai et al., 2006). In vitro co-

cultures of gingival fibroblasts or human periodontal ligament and P. gingivalis 

also observed up regulation of RANKL and suppression of OPG highlighting the 

impact periodontal pathogens on alveolar bone loss (Belibasakis et al., 2007).  
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1.1.3.8 Soluble immune mediators in PD 

Microbial biofilms activate and initiate the host inflammatory and immune 

response. In periodontitis the loss of periodontal tissue is widely accepted to be 

as a result of the host immune response to microbial biofilms. As a result of 

activation, chemical mediators are released by host cells, which in PD are 

generally believed to perpetuate inflammation at the site and contribute to 

local tissue destruction and alveolar bone loss. Some of the key mediators 

involved in this process are described below.  

Complement 

The complement system is a fundamental component of innate immunity and 

therefore plays an important role in maintaining oral health (Krauss et al., 

2010). It is triggered through a variety of pathways, namely classical, alternative 

and lectin, and involves sequential activation of serum proteins, the result of 

which is the recruitment and activation of inflammatory cells, phagocytosis, 

microbial opsonisation and direct lysis of pathogens (Sarma and Ward, 2011). 

Complement is present in high concentrations in GCF, comprising of up to 70% of 

the serum (Schenkein and Genco, 1977a). Activated complement fragments are 

also present at higher concentrations in the GCF and gingival connective tissue 

of individuals with PD and are absent or in lower concentrations in healthy 

subjects (Schenkein and Genco, 1977b, Attstrom et al., 1975, Courts et al., 

1977). This correlates with human experimental gingivitis models, where 

increases in complement were associated with clinical inflammation, plaque 

association and bleeding on probing (Patters et al., 1989). This suggests that 

excessive activation of complement is associated with periodontal inflammation. 

Recent in vivo studies using mice deficient in complement C5aR or use of a C5aR 

antagonist in WT mice observed resistance to PD with reduction of inflammatory 

cytokines including TNF, IL-1β, IL-6 and IL-17A and reduced alveolar bone loss 

compared to controls (Abe et al., 2012, Liang et al., 2011). The ability of P. 

gingivalis to modulate the complement pathway has also been shown, with C3a 

and C5a receptor deficient mice resisting alveolar bone loss following P. 

gingivalis infection compared to WT controls (Hajishengallis et al., 2011).  
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Cytokines and chemokines 

Cytokines are a large family of soluble mediators that bind to specific receptors 

on target cells to initiate cell signalling and subsequently phenotypic changes by 

regulating gene expression. Cytokines play a multitude of roles in the host, 

regulating homeostasis, cell proliferation, activation, differentiation and repair. 

Chemokines are a subset of cytokines that induce chemotaxis and are 

characterised by the spacing of the first two cysteine residues found in the 

protein into four families; C, CC, CXC, CX3C where X is an amino acid. Both 

cytokines and chemokines play a critical role in inflammation, orchestrating both 

innate and adaptive responses in the host.  

Within the oral cavity, innate immunity is predominantly activated through 

recognition of bacterial components via TLRs. Studies have suggested that 

commensal bacteria in the oral cavity stimulate a low level cytokine response in 

innate immune cells such as neutrophils, tissue macrophages and dendritic cells 

and host tissues including epithelial cells which may prime the host and maintain 

tissue integrity (Hasegawa et al., 2007). Furthermore, changes in microbial 

composition of plaque has also been reported to amplify the immune response 

leading to increased cytokine and chemokine production which may lead to 

chronic inflammation and destruction at the site (Handfield et al., 2005). The 

adaptive immune responses are dependant on the combinations of cytokines 

produced by dendritic cells and other APCs, which determines the 

differentiation of T cell subsets, each of which has a unique cytokine profile, 

and subsequently influences B cell development and function.  

Many studies have investigated the role of cytokines and chemokines in PD, 

focusing on the response to specific bacteria, the role of single proteins in 

disease and more recently cytokine profiles associated with host cell responses 

to bacteria (Hasegawa et al., 2007, Taylor, 2010). Oral bacteria have been 

reported to cause secretion of a range of pro-inflammatory cytokines by host 

cells including IL-1α, IL-1β, IL-6, IL-8, IL-10, IL-12, TNFα and IFNγ, which are 

involved in both innate and adaptive pathways (Preshaw and Taylor, 2011). The 

complexity of the interactions between cytokines and the innate and adaptive 
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immune responses in PD is described in Figure 1.6 and some key cytokine and 

chemokines studied in PD discussed further. 

IL-1α and IL-1β belong to the IL-1 super family of cytokines and play many roles 

in immunity, inflammation, connective tissue turnover and homeostasis. 

Produced by various cells including lymphocytes, fibroblasts, epithelial cells, 

macrophages and monocytes, studies have shown increased levels of IL-1β 

present in GCF of periodontitis patients compared with healthy controls (Toyman 

et al., 2015). Increased levels of IL-1 have been associated with the increased 

production of tissue degrading enzymes such as prostaglandin E2 and MMPs which 

can cause tissue destruction and attachment loss (Murayama et al., 2011). Both 

IL-1α and IL-1β have also been shown to stimulate bone resorption and inhibit 

bone formation (Kayal, 2013). 

The cytokine IL-6 plays a critical role in regulation and differentiation of B cell 

responses through T cell differentiation and also promote bone resorption (Baker 

et al., 1999). Studies have shown increased expression of IL-6 by gingival 

mononuclear cells in response to oral bacteria compared with mononuclear cells 

extracted from peripheral blood (Gemmell and Seymour, 1993). In the oral 

cavity, IL-6 is expressed by gingival fibroblasts and osteoblasts and increased 

levels have been reported in the GCF of periodontitis patients compared with 

healthy controls (Reinhardt et al., 1993). Furthermore, T cells in periodontitis 

patients also produce more IL-6 compared with T cells from healthy controls 

(Takeichi et al., 2000). 

TNFα is a pro-inflammatory cytokine produced by monocytes and macrophages, 

which is able to cause vascular changes by up regulation of ICAM-1, VCAM-1 and 

E-selectin to recruit immune cells. This cytokine also promotes bone resorption, 

inhibits bone formation and increases collagenase secretion by fibroblasts 

resulting in destruction of periodontal tissue (Graves and Cochran, 2003). Studies 

have shown increased levels of TNFα present in both GCF and gingival tissues in 

periodontitis patients (Takeichi et al., 2000, Stashenko et al., 1991). TNFα also 

upregulates other pro-inflammatory cytokines such as IL-1β and IL-6 which are 

associated with bone resorption. TNFα receptor deficient mice have reduced P. 
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gingivalis induced osteoclastogenesis compared with wild type controls (Graves 

et al., 2001, Papadopoulos et al., 2013). 

IL-8 (CXCL8) is a pro-inflammatory chemokine that has been extensively used to 

measure inflammation in PD both in vitro and in vivo (Fukui et al., 2013, 

Dommisch et al., 2015). Produced by host tissues including gingival fibroblasts, 

gingival epithelial cells and innate immune cells, IL-8 levels are significantly 

increased in GCF and gingival tissues correlating with the severity of PD (Ertugrul 

et al., 2013, Teles et al., 2009, Noh et al., 2013). IL-8 expression is typically 

associated with migration of phagocytic cells to the site of infection however IL-

8 has also been shown to have a direct effect on osteoclast differentiation and 

activity (Bendre et al., 2003). It should also be noted that IL-8 release occurs 

constitutively in the gingivae of healthy individuals and in germ-free mice, albeit 

at a lower level than in PD, which is believed to allow for chemotaxis of 

leukocytes into the gingivae during homeostasis (Darveau, 2009, Tonetti et al., 

1994, Dixon et al., 2004).  
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Figure 1.6: Cytokine networks in PD. 

Diagram to represent the multiple interactions between cytokines and innate 

and adaptive immunity in PD (Kinane et al., 2011). 
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Antimicrobial peptides 

Antimicrobial peptides (AMPs) are an essential component of the innate immune 

system. These mediators have strong antimicrobial activity against both Gram-

positive and Gram-negative bacteria through the disruption of cell membrane 

integrity. Over 45 AMPs have been identified in the oral cavity, found both in 

saliva and in GCF (Gorr and Abdolhosseini, 2011). Studies have shown that AMPs 

are differentially regulated in PD, with 13 AMPs up regulated and 11 AMPs down 

regulated either at gene level or in saliva or GCF, although it has been suggested 

that down regulation of AMPs in saliva and GCF may be due to proteolytic 

degradation by bacterial proteases (Gorr, 2012). AMPs have a variety of 

biological activities that are believed to play a role in the innate defence against 

oral bacteria including direct antibacterial activity, inactivation of bacterial 

proteases and binding bacterial toxins. Some of the most commonly investigated 

AMPs include cathelicidin (LL-37) and defensins.  

LL-37 is a multifunctional peptide expressed in saliva by epithelial cells and 

neutrophils. LL-37 has potent antibacterial activity and is able to kill both Gram-

negative and Gram-positive bacteria including S. gordonii, P. gingivalis and A. 

actinomycetemcomitans in minimum inhibitory concentration (MIC) studies (Ji et 

al., 2007). However, its primary function is believed to be an immune cell 

activator due to the ability of LL-37 to act as a chemoattractant for neutrophils, 

monocytes and T cells and modulate the host pro-inflammatory response. LL-37 

has been shown to directly bind heat killed P. gingivalis, P. gingivalis LPS and 

fimbriae subsequently inhibiting pro-inflammatory responses by human gingival 

fibroblasts, reducing IL-6, IL-8 and CXCL10 gene expression and protein release 

in vitro (Inomata et al., 2010). In the oral cavity, studies have also reported the 

presence of LL-37 in total GCF and shown its levels are increased in periodontitis 

patients compared with healthy controls (Puklo et al., 2008). Furthermore, in 

individual patients LL-37 levels are increased in GCF at inflamed sites compared 

with healthy sites and a lack of LL-37 production has been directly implicated in 

periodontitis development (Putsep et al., 2002, Dommisch et al., 2009). 

Defensins are a family of AMPs divided into α and β subgroups based on their 

cysteine spacing and connecting sulphide bonds. Human α-defensins (human 
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neutrophil peptides) are primarily expressed in neutrophils, while human β-

defensins are predominantly expressed in epithelial cells (Gorr, 2012). Defensin 

expression in human gingival epithelial cells from periodontitis patients has been 

shown in vitro to be differentially regulated by disease-associated bacteria 

(which increased hBD-1 and hBD-3) and health-associated bacteria (which 

increased hBD-2 and hBD-3) (Vankeerberghen et al., 2005). Recent studies 

investigating the expression of hBDs in gingival tissue reported increased levels 

of hBDs in periodontitis patients compared with health controls (Liu et al., 

2014). Human neutrophil peptides 1-3 have also been shown to be significantly 

increased in the GCF of both chronic and aggressive periodontitis patients 

compared with healthy controls (Puklo et al., 2008). Similarly to LL-37, 

defensins are antibacterial and are able to kill phagocytosed bacteria in 

neutrophils where defensins are stored in secretory granules. Defensins are also 

able to act as a chemoattractant and activator of antigen presenting cells such 

as dendritic cells and have been shown to produce hBD1-3 in response to oral 

bacteria such as F. nucleatum and P. gingivalis (Yin et al., 2010). Studies have 

also reported the ability of defensins to inhibit LPS stimulated host responses, 

observing inhibition of IL-1β, IL-8 protein release and ICAM-1 surface expression 

on human gingival fibroblasts which has been stimulated with P. intermedia LPS 

(Lee et al., 2010).  

1.1.3.9 Subversion of host immune responses by oral bacteria 

The transition from health to disease in the oral cavity is due to both a shift 

from a commensal microbial biofilm to a pathogenic one and the subsequent 

dysregulated host immune response to the biofilm. The dysregulation of the host 

immune system can be due to immunoregulatory defects such as leukocyte 

adhesion deficiency (LAD) but in ‘healthy’ individuals pathogenesis may be 

caused by subversion of the host immune responses by oral bacteria present 

within the biofilms. Most studies investigating immune subversion by bacteria 

have focused on the pathogen P. gingivalis, however, other species can also 

modulate the host immune response. Furthermore, it is believed that the 

bacteria associated with PD require inflammation as a source of nutrients such 

as collagen peptides and haem-containing compounds from the breakdown of 
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tissue therefore require subversion mechanisms to allow inflammation at the site 

while evading killing by the immune system (Hajishengallis, 2014). 

It is known that microbial pathogens are able to modulate or inhibit TLR-

mediated immune responses by either down regulating TLR expression or 

blocking TLR signalling pathways (Teng, 2006). P. gingivalis has been shown in 

vitro to block neutrophil phagocytosis and promote inflammation through 

crosstalk between complement receptor C5aR and TLR2 (Maekawa et al., 

2014b). This process not only protects P. gingivalis from neutrophil phagocytosis 

but also bystander bacteria such as F. nucleatum, which cannot modulate 

neutrophil responses alone.  Belibasakis et al (2013) observed P. gingivalis 

presence in a multi-species biofilm reduced nucleotide-binding oligomerisation 

domain-like receptor 3 (NLRP3), an inflammasome involved in innate immune 

responses of PD, when co-cultured with human gingival fibroblasts (Belibasakis 

et al., 2013a). Furthermore, the exclusion of P. gingivalis from this biofilm 

partly restored NLRP3 expression, with suggestions that the down regulation of 

NLRP3 by P. gingivalis modified host inflammatory responses to promote biofilm 

survival. 

Bacteria including P. gingivalis, P. intermedia and T. denticola have been shown 

to possess mechanisms that allow the inhibition and subversion of host 

complement activation independent of normal complement activating pathways. 

P. gingivalis uses gingipains to degrade complement molecules such as C3 which 

supresses the formation of the membrane attack complex or the binding of 

opsonins on the surface of the pathogen (Wingrove et al., 1992). Furthermore, P. 

gingivalis has been shown to be able to negatively regulate complement 

activation by binding the complement inhibitor C4b-binding protein using the 

arginine-specific gingipain RgpB resulting in inhibition of the complement 

cascade (Potempa et al., 2008). P. intermedia supresses complement activation 

by binding the complement inhibitor serine protease Factor I (Malm et al., 

2012). T. denticola appears to take a different approach to hijacking the 

complement system. Unlike P. gingivalis and P. intermedia which supress the 

complement pathway, T. denticola uses the protease dentilisin to generate 

active fragments of iC3b that is readily opsonized by (Yamazaki et al., 2006). 

While this may appear counterproductive iC3b mediated phagocytosis has been 
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suggested to be a weak killing mechanism and may facilitate safe intracellular 

passage into cells, a method that is used by pathogens such as Mycobacterium 

tuberculosis (Krauss et al., 2010, Ernst, 1998).  

Many oral bacteria also possess proteases that are able to degrade host 

chemokines to subsequently alter the local environment and modulate the host 

inflammatory response. Of these the most studied are the gingipains produced 

by P. gingivalis, which have been shown to degrade IL-6 and IL-8 produced by 

gingival epithelial cells in vitro (Stathopoulou et al., 2009, Palm et al., 2014). T. 

denticola has also been shown to be able to degrade IL-8 protein produced by 

gingival epithelial cells through the use of the protease dentilisin (Jo et al., 

2014). The ability of bacteria to degrade chemokines may have a downstream 

effect on both reducing the immune response to bacteria and promoting chronic 

inflammation. 

Oral bacteria are also thought to modulate the adaptive immune responses in 

PD. P. gingivalis has been shown to promote differentiation of Th17 cells at the 

expense of Th1 cells by suppression of Th1 promoting cytokines such as CXCL10 

(Jauregui et al., 2013, Moutsopoulos et al., 2012). Other studies have proposed 

the ability of P. gingivalis to subsequently modulate the host antibody response, 

with an IgG1 (Th2) response produced by P. gingivalis immunised mice, which 

shifted to an IgG2a (Th1) response when mice were first infected with F. 

nucleatum (Gemmell et al., 2004). 
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 PD models 

To enhance our understanding of PD, a variety of in vitro and in vivo models 

have been used. Some of the key models, their contribution to the field and 

advantages and disadvantages are described below.  

1.1.4.1 Human in vivo models 

Due to the complexity of PD the optimal model for use in studies would 

obviously be in humans. However, this is a highly expensive and regulated 

process with many ethical considerations. The first experimental gingivitis model 

in man was developed by Löe et al (1965) and demonstrated the casual role of 

bacteria in the induction of gingivitis. Dental students refrained from brushing 

for 21 days demonstrating that plaque accumulation over time directly 

correlated with increased gingival scores (Loe et al., 1965). Restoring oral 

hygiene and removing the plaque eliminated the inflammation. This simple 

model subsequently allowed various research groups to research many aspects of 

PD including histology of gingival lesions, cellular inflammatory responses and 

markers in both gingival tissue and GCF and also test the potential of 

antimicrobial and anti-inflammatory compounds in reducing the clinical markers 

of PD (Eberhard et al., 2013, Dommisch et al., 2015, Leishman et al., 2013, 

Heasman et al., 1993).  

As scientific technology advances this model has been utilised to study 

differences in the host gene expression and the biofilm development in 

experimental gingivitis beyond culture based methods and cellular histology. 

Offenbacher et al (2009) measured the changes in patterns of whole-

transcriptome gene expression during the induction and resolution of 

experimental gingivitis, observing the greatest differences of gene expression 

between health and disease to be found in genes encoding for inflammatory 

chemokines and cytokines (IL-1α, IL-1β, IL-8 RANTES, CSF-3), stress mediators 

(superoxide dismutase 2) and reduction in antimicrobial peptides (beta 4 

defensin) (Offenbacher et al., 2009). The composition and development of 

dental plaque in experimental gingivitis patients has also been examined using 

454-pyrosequencing over the course of two weeks, reporting significant increases 

in bacterial diversity, relative abundance and gingivitis associated bacteria, such 
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as F. nucleatum, over the time course and compared to healthy controls (Kistler 

et al., 2013). The use of the experimental gingivitis model has also be used to 

study supra- and sub- gingival plaque formation in smokers vs. non-smokers, 

finding lower levels of gingival inflammation and low plaque scores in smokers 

compared with non-smokers and observing lower species diversity of subgingival 

plaque of periodontitis in smokers compared with non-smokers, highlighting the 

role of environmental factors in PD (Branco et al., 2015, Camelo-Castillo et al., 

2015). The ability to study species diversity as plaque transitions from health to 

disease has also opened the field to allow for studies to find biomarkers to 

predict PD risk and progression. Huang et al (2014) using sequencing to profile 

the microbial changes of plaque from health to PD in an experimental gingivitis 

model and found eight microbial taxa which they propose can distinguish health 

from disease with 94% accuracy in this model (Huang et al., 2014). Another study 

sequenced the sub-gingival plaque of chronic periodontitis patients and found 80 

OTU biomarkers of disease and 17 biomarkers of health which they propose can 

diagnose periodontitis having shown an 88% success rate in their work (Szafranski 

et al., 2015).  

It should be noted there are limitations when interpreting results from 

experimental gingivitis models with relation to periodontitis. Experimental 

gingivitis models are a short-term method of assessing an acute inflammatory 

response initiated over a short period of time (1-2 weeks) in response to an 

increased level of bacteria in oral plaque that does not cause local destruction. 

Chronic periodontitis is typically a slow process involving a dysregulated immune 

response to the oral biofilm, which results in alveolar bone loss. A study 

comparing the composition of experimental gingivitis and chronic periodontitis 

plaque in humans also observed significant differences between the composition 

of these groups (Kistler et al., 2013).  

1.1.4.2 Animal in vivo models 

Animal models offer scope for investigations of mechanism and interventions in 

disease processes, the initial investigations of which would be unethical in 

humans. Various species have been used to investigate the pathogenesis of PD 

and test novel therapeutics. PD can occur naturally or be experimentally 
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induced in animals although care must be taken when considering results and 

their relationship to human PDs. Some of the most frequently used animal 

models are described below. 

Non-human primates such as rhesus monkeys and baboons are advantageous to 

use in PD models due to their anatomical, immunological and microbiological 

similarities with humans. Primates have oral structures and teeth that are 

similar to those in humans and are also susceptible to naturally occurring PD and 

have naturally occurring plaque containing bacterial species similar to those 

found in human plaque. Studies using non-human primates typically accelerate 

periodontitis by the use of ligatures to accelerate plaque accumulation. They 

have also been used to study periodontal healing, biomaterials and implant 

surgery (Branch-Mays et al., 2008, Smith et al., 1993). Periodontitis in primates 

arguably offers the closest resemblance to human disease; however due to the 

expense of the maintenance, ethical considerations and high susceptibility to 

infections such as tuberculosis of these animals they are not the most practical 

model and are only rarely used (Weinberg and Bral, 1999). 

Dogs have provided an alternative model to studying naturally occurring PD 

(Albuquerque et al., 2012). The anatomy, aetiology and physiological 

mechanisms of PD in canines are also well studied due to the historical use of 

dogs in periodontal research and in clinical research in veterinary medicine 

(Sorensen et al., 1980, Kortegaard et al., 2008). All domestic dogs have an 

increased natural susceptibility for PD with age and have been used to 

investigate both gingivitis and periodontitis in vivo (Struillou et al., 2010). 

Studies have also shown that the subgingival plaque in dogs is similar to that in 

humans, with P. gingivalis, F. nucleatum and T. forsythia present naturally in 

this species (Di Bello et al., 2014). There are however some limitations to the 

use of dogs as a model for PD, like non-human primates the costs of 

maintenance are high. Additionally, PD in dogs encompasses the complete width 

of the marginal gingivae in comparison to the tissue lateral to the gingival 

pocket in human PD, which may be considered a further limitation of the model 

(Haney et al., 1995). 



  Chapter 1: Introduction 
 

 

 33 

Mice and rats are commonly used to study PD due to the availability of 

experimental reagents and genetically modified animals, as well as their 

relatively low maintenance costs, small size, and prompt availability. Due to 

extensive research using both mice and rats the genetics and immune system of 

these species is very well understood and as a result several rodent models have 

been used to investigate the mechanisms involved in host and bacterial 

interactions of PD. The calvarial (scalp) model was developed by Boyce et al 

(1989) to investigate the effect of cytokines on osteoclastogenesis, showing 

repeated infusions of IL-1α caused increased calvarial bone resorption (Boyce et 

al., 1989). This model was subsequently adapted for PD to study the effect of 

oral bacteria on bone resorption and investigate the host-bacterial interactions 

(Kesavalu et al., 2002, Leone et al., 2006, Dunmyer et al., 2012). In particular 

the calvarial model was used to study the role of P. gingivalis in 

osteoclastogenesis of wild type and TNF receptor knockout mice observing that 

TNF activity plays a critical role in the bone resorption induced by P. gingivalis 

by modulating fibroblast apoptosis, neutrophil recruitment and osteoclast 

formation (Graves et al., 2001). The calvarial model requires stimulus to be 

injected directly into the connective tissue overlying the calvarial bone, which 

stimulates inflammatory pathways at the site; however, as a result this model 

has no interaction with epithelial cells and therefore any information regarding 

their role in downstream osteoclastogenesis is lost. 

Most of the periodontal pathogens that are present in the human oral microflora 

are not present in laboratory rodent strains, therefore the oral gavage models 

were introduced (Chang et al., 1988, Klausen et al., 1991). Mice or rats are 

treated with antibiotics prior to repeated oral administration of bacteria in a 

solution, which allows investigation of the impact of specific bacterial species on 

the periodontium. As a result mouse periodontitis models have been developed 

in which oral gavage of periodontal bacteria including P. gingivalis, A. 

actinomycetemcomitans and T. forsythia induces reproducible alveolar bone loss 

(Baker et al., 2000b, Garlet et al., 2006, Sharma et al., 2005). The oral gavage 

model has also been utilised to investigate the role of different aspects of the 

host response on PD. Studies have shown increased resistance to alveolar bone 

loss in mice deficient in MHC class II responsive CD4 T cells compared with 

normal mice after infection of P. gingivalis by oral gavage, additionally blocking 
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complement receptor 3 has also been shown to increase P. gingivalis clearance 

and reduce alveolar bone loss using this model (Baker et al., 1999, Hajishengallis 

et al., 2007). While the oral gavage model is useful for investigating host: 

pathogen interactions there are limitations. Notably, infections usually use one 

or two specific periodontal bacteria such as P. gingivalis or P. intermedia of the 

many species that are present in the human oral microflora at concentrations far 

higher than those found within the oral cavity and typically require multiple 

exposures to invoke a response. Additionally, antibiotic exposure prior to 

infection in an attempt to supress the murine oral flora does not necessarily 

result in the complete removal of oral bacteria in mice, therefore infection with 

P. gingivalis may modify the microflora present to become destructive and 

favour pathogen survival and development of PD. To combat this many groups 

use specific pathogen free mice, that is mice which are guaranteed to be free of 

particular pathogens, or germ free mice, which have no bacteria present at all, 

to study the host responses to a single bacterial species. 

The airpouch model was originally developed by the Willoughby group to study 

the function of the synovial membrane by producing a subcutaneous airpouch 

from which the exudate fluid and epithelial lining can be examined (Edwards et 

al., 1981). This model was extensively used in RA studies before it was adapted 

for periodontitis to investigate the acute inflammatory responses to P. 

gingivalis, observing that in situ P. gingivalis is a strong pro-inflammatory 

stimulus to innate immune cells causing high levels of leukocyte infiltration into 

the airpouch cavity following infection (Pouliot et al., 2000). This study reported 

that PGE2, which is an important marker for pathogenesis in PD, is produced not 

only from monocytes and macrophages, as originally believed, but also 

neutrophils in the inflammatory lesion. The main limiting factor of this model is 

the short duration of the airpouch only allows for investigation of the acute 

inflammatory response. Subsequently, the airpouch model was modified by 

Genco et al (1991) into the chamber model to allow chronic inflammation to be 

studied (Genco et al., 1991). The chamber model uses a coiled stainless-steel 

wire implanted subcutaneously which is allowed to heal and epithelialize for 10 

days before subsequent injection of bacteria into the chamber following which 

fluid can be aspirated from the chamber and analysis of immune cell infiltrate, 

soluble mediators and bacteria can be performed. This model has been used to 
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demonstrate acquired immune response to P. gingivalis following injection into 

the chamber as well as bacterial colonisation, growth, virulence of periodontal 

bacterial strains as well as local tissue damage by the host immune system in 

response to them (Genco et al., 1991, Wang et al., 2014, Polak et al., 2013).  

Many animal models ranging from mice to non-human primates induce PD by 

placing ligatures around the teeth. This process results in the accumulation of 

dental plaque, ulceration of the sulcular epithelium, facilitates the invasion of 

periodontal bacteria into the connective tissue, alveolar bone loss and loss of 

periodontal attachment. This model allows for the study of the role of both 

bacteria and the host response in PD as well as the effects of systemic disease 

on PD progression. Application of topical antiseptics or antibiotics has been 

shown to reduce loss of attachment and bone resorption and in this model Gram-

negative bacteria have also been shown to enhance osteoclastogenesis 

(Samejima et al., 1990, Luan et al., 2008, Kenworthy and Baverel, 1981). Studies 

investigating the role of the inflammatory response have reported reduced 

gingival inflammation, osteoclast formation and alveolar bone loss when 

prostaglandin inhibitors or doxycycline are applied and increased bone 

destruction when excess cytokines such as IL-1 or TNF are introduced (Bezerra et 

al., 2002, Koide et al., 1995, Bezerra et al., 2000). 

Each animal model for PD has advantages and disadvantages (Table 1.1). Non-

human primates are most similar to the human condition and dogs have naturally 

occurring periodontitis with a similar microflora; however, the cost of 

maintenance, ethical considerations and limited availability of reagents and 

genetic modifications of these animals can limit their use in studies of PD. Mice 

and rats are less expensive to maintain and much is known about their genetics 

which allows manipulation and subsequent genetically modified strains; however 

these species have anatomical differences and do not have the same microflora 

found in the human disease. There is no single animal model that represents all 

aspects of human PD but in vivo models are useful for investigating the immune 

response to oral bacteria and how downstream cellular interactions can 

influence the oral cavity (Graves et al., 2012). 
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Table 1.1: Animal models in PD studies 

Animal 
Model 

Advantages Disadvantages References 

 

Non-
human 

primates 

Similar oral cavity to 
humans             

Naturally occurring PD                    

Similar bacterial 
species present 

Expensive to 
maintain           

Ethical 
considerations      

High susceptibility 
to infections  

(Maekawa et al., 
2014a)           

(Ebersole et al., 
2000)  

(Roberts et al., 
2004) 

 

Dogs 

 

Naturally occurring PD 

 

Expensive to 
maintain 

Dentition differs to 
humans 

(Ji et al., 2015)  

(Albuquerque et al., 
2014)                 

(Shimizu et al., 
2009) 

 

 

Rodents 

Low maintenance costs                 

Defined models of PD  

Ease of handling      

Gene knock out 
technology available  

Large number of 
reagents available 

 

Naturally resistant 
to periodontitis  

Different microflora 
from humans          

Large numbers 
required for studies 

(Abe and 
Hajishengallis, 
2013)     

(Barros et al., 2011)  

(Hajishengallis et 
al., 2011)                    

(Polak et al., 2009) 

 

A variety of animal models are used in PD studies. This table summarises some of 

the advantages and disadvantages of using each model and studies of PD in each 

species.  
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1.1.4.3 In vitro biofilm models 

1.1.4.4 Multi-species biofilm models 

Many studies have shown the diversity of supra- and sub-gingival biofilms and the 

associations of certain species with health and disease from human dental 

plaque. To further understand the role of plaque and specific bacteria in PD, 

various oral biofilm models have been developed to study biofilm formation, 

biofilm structure and antimicrobial susceptibility. There are a wide range of 

options and variables to consider when developing a biofilm, such as inoculum, 

culture media and conditions, substrate and bacteria species (Ammann et al., 

2012).    

Biofilm models of supra- and sub-gingival plaque have been created from both 

defined species or from undefined bacteria from pooled saliva or plaque samples 

(Table 1.2). Biofilm models from undefined samples typically contain more 

bacterial species than defined samples due to the species diversity present in 

the oral cavity. These samples typically contain the composition and complexity 

of the original samples; however, it is difficult to reproduce these models and 

delineate the exact mechanisms used compared with the defined biofilm models 

in studies (Li et al., 2014a, Hope et al., 2012, Maske et al., 2014, Pratten et al., 

2000b). 

As a result many research groups have developed defined biofilm models of 

supra- and sub-gingival plaque to study biological components of biofilms such as 

pH, antimicrobial susceptibility, formation, structure, antibiotic resistance and 

species-specific interactions within biofilms (Table 1.2). A ten species biofilm 

was developed by Kinniment et al (1996), grown in a constant depth film 

fermenter (CDFF) in complex medium to study biofilm growth kinetics, spatial 

distribution, reproducibility and antimicrobial susceptibility (Kinniment et al., 

1996b, Kinniment et al., 1996a). This model was then adapted by Shu et al 

(2003) who replaced S. sanguinis with S. salivarius and A. viscosus with A. 

naeslundii to create a biofilm of nonureolytic bacteria to test the role of urease 

enzymes on the stability of the biofilm observing a requirement for these 

enzymes to ensure bacteria diversity following carbohydrate challenge (Shu et 

al., 2003). A five species caries biofilm model consisting of S. oralis, A. 
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naeslundii, S. mitis, S. downei and S. sanguinis was used to study biofilm 

formation in the presence of bovine milk osteopontin demonstrating reduction in 

overall biomass following treatment (Schlafer et al., 2012). Guggenheim and 

colleagues developed both supragingival and subgingival plaque models grown on 

pellicle coated hydroxyapatite (HA) disks with pooled human saliva for the study 

of biofilm structure and distribution, antimicrobial susceptibility and host-

pathogen interactions (Guggenheim et al., 2001a, Guggenheim et al., 2009, 

Guggenheim et al., 2001b, Hofer et al., 2011). More recently this model has 

been advanced to include new species including T. denticola to study growth 

kinetics and spatial composition studied (Ammann et al., 2012). These biofilms 

can also include fungi; the six species supra-gingival plaque model developed by 

Thurnheer et al (2003) containing A. naeslundii, F. nucleatum, S. oralis, S. 

sobrinus, V. dispar and Candida albicans was used to investigate the diffusion of 

macromolecules throughout the biofilm (Thurnheer et al., 2003). 

1.1.4.5 Host- pathogen interaction models 

Supragingival and subgingival biofilms have been used to study host-pathogen 

interactions in PDs. The subgingival model developed by Guggenheim et. al. 

(2009) was co-cultured with primary human gingival epithelial cells to measure 

apoptosis and the inflammatory mediator response to oral biofilms, 

demonstrating that the biofilm caused increased cell death and pro-

inflammatory mediator release over time (Guggenheim et al., 2009). The group 

then continued to investigate host-pathogen interactions using human gingival 

fibroblasts to compare the immune response to both supragingival and 

subgingival biofilms, observing increases in PGE2, IL-6 and RANKL expression in 

co-cultures with sub-gingival biofilms compared with supra-gingival (Belibasakis 

et al., 2011b, Belibasakis and Guggenheim, 2011). A notable study was 

performed by transcriptional profiling of gingival fibroblasts with sub-gingival 

biofilms and sub-gingival biofilms without the ‘red complex’ bacteria. Here, 

genes encoding pro-inflammatory responses including cytokines, chemokines, 

toll-like receptors and heat shock protein were up regulated in response to both 

biofilms compared to the cells only control, although no differences in gene 

expression between the biofilm co-cultures was observed (Belibasakis et al., 

2014).  
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The Ebersole group used biofilms in co-culture with the immortalised epithelial 

cell line OKF4 to understand host-pathogen interactions, investigating the 

inflammatory mediator response of epithelial cells to bacteria. Their studies 

showed that mono-species biofilms cause increased pro-inflammatory cytokine 

release compared with planktonic bacteria, with ‘health-associated’ bacteria 

causing lower cytokine release than ‘disease-associated’ bacteria (Peyyala et 

al., 2011, Peyyala et al., 2012). Further work by this group investigating the pro-

inflammatory protein release by OKF4 epithelial cells co-cultured with multi-

species biofilm models with differing bacterial compositions, reported 

differential protein release to each of the biofilms. IL-6, IL-8, Gro-1α and 

fracktalkine protein release by OKF4 cells was increased in S. gordonii/A. 

naeslundii/F. nucleatum biofilm co-cultures compared with S. gordonii/ S. oralis 

S. sanguinis biofilms and S. gordonii/F. nucleatum/P. gingivalis biofilms 

suggesting oral biofilm composition may play a role in the epithelial cell 

inflammatory response (Peyyala et al., 2013).  

Organotypic 3-dimensional tissue models are potentially more representative of 

the oral and gingival mucosa in vivo than the 2D monolayer models typically 

used. However, they are labour intensive, expensive and time-consuming 

methods. When comparing the responses of 3D and 2D gingivae models, mRNA 

expression of cytokeratin proteins in monolayers of gingival epithelial cells was 

shown to be significantly lower than in a 3D organotypic model which has similar 

levels of cytokeratin expression as gingival tissue samples (Bao et al., 2014a). 

Additional studies testing dental resins on both monolayers and 3D cultures of 

gingival epithelial cells observed significant increases in cell death and loss of 

cell function in monolayers following treatment compared with the 3D model 

(Tomakidi et al., 2000). A 3-dimensional organotypic model of the oral mucosa 

was developed by Dongari-Bagtzoglou et al (2006) using the human oral 

keratinocyte cell line OKF6-TERT2 to create a multi-layered tissue (Dongari-

Bagtzoglou and Kashleva, 2006). This model was used to study Candida biofilm 

formation and interaction with oral streptococci and the 3-dimensional tissue 

model (Diaz et al., 2012, Banerjee et al., 2013). Other 3-dimensional tissue 

models using primary gingival keratinocytes and fibroblasts have been used to 

study cell invasion and epithelial proliferation in culture with F. nucleatum 

biofilms, observing the ability of F. nucleatum to invade the superficial layers of 
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a 3D gingival tissues and cause increased MMP release (Dabija-Wolter et al., 

2012, Pollanen et al., 2012). A study by Dickinson et al (2011) investigated the 

ability of different periodontal bacteria to invade oral tissue by culturing P. 

gingivalis, F. nucleatum, A. actinomycetemcomitans or S. gordonii with primary 

gingival epithelial cells cultured as a 3-dimensional tissue. The study reported 

differential invasion into the tissue, with P. gingivalis invading epithelial cells 

intracellularly, F. nucleatum and A. actinomycetemcomitans entering the tissue 

but not invading cells and S. gordonii remaining on the surface of the tissue 

(Dickinson et al., 2011). 

One of the main limitations of in vitro 3-dimensional tissue models is that they 

are time consuming, with most models taking 2-3 weeks to form a suitable tissue 

(Dongari-Bagtzoglou and Kashleva, 2006). Commercially available organotypic 3-

dimensional tissue models have been developed including MatTek®’s EpiGingival 

3D tissue model which uses human derived epithelial cells grown on culture 

inserts. This model has been used to study antimicrobial activity and the host 

immune response to both oral multi-species oral biofilms and viruses (Hai et al., 

2006, Belibasakis et al., 2013b, Yang et al., 2011). Notably, differences in the 

tissue IL-8 protein release was reported in studies co-culturing the 3D gingival 

tissue with the 10 species Zurich model with or without the ‘red complex’ 

bacteria, suggesting ‘red complex’ species may differentially regulate IL-8 in 

gingival epithelia and show the potential of using the organotypic 3-dimensional 

tissue models for the study of host-pathogen interactions in PD (Belibasakis et 

al., 2013b). 

These examples show there are a large range of models that can be used to 

study host-pathogen interactions in PD and careful consideration must be taken 

to use an appropriate model for the scientific questions being asked in each 

study. 



  Chapter 1: Introduction 
 

 

 41 

Table 1.2: Summary of in vitro multi-species biofilm models. 

Biofilm 
model 

Media Substrate Inoculum                      
(Multi-species biofilm) 

Application Reference 

Marsh Porcine mucin           
Potassium chloride                   
Proteose peptone   
Yeast extract   
Typticase peptone 
Cysteine hydrochloride 
Haemin  

Polytetrafluor 
oethylene 

Streptococcus mutans  
Streptococcus oralis 
Streptococcus sanguinis 
Lactobacillus casei   
Actinomyces viscosus 
Neisseria subflava      
Veillonella dispar  
Porphyromonas gingivalis 
Prevotella nigrescens 
Fusobacterium nucleatum 

Growth kinetics 
Spatial distribution 
Antimicrobial 
susceptibility 

(Kinniment et al., 
1996b)         
(Kinniment et al., 
1996b) 

Zurich Human saliva       
Human serum 

Pellicle coated 
hydroxyapatite 
disk 

Streptococcus oralis 
Streptococcus intermedius 
Actinomyces naeslundii 
Veillonella dispar  Prevotella 
intermedia Porphyromonas 
gingivalis Fusobacterium 
nucleatum spp. vincentii 
Campylobacter recuts 
Tannerella forsythia 
Treponema lecithinolyticum 
Tremponema denticola 

Growth kinetics          
Spatial distribution 
Antimicrobial 
susceptibility 
Epithelial cell 
viability 
Inflammatory 
mediator response 

(Guggenheim et al., 
2001a) (Guggenheim 
et al., 2009) 
(Guggenheim et al., 
2001b) (Belibasakis et 
al., 2014) (Belibasakis 
and Guggenheim, 
2011) (Ammann et al., 
2012) 
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Kentucky Brain heart infusion 
broth                 
Hemin          
Menadione  

Rigid gas 
permeable 
hard contact 
lenses 

Streptococcus gordonii 
Streptococcus oralis 
Streptococcus sanguinis      
or                     
Streptococcus gordonii 
Actinomyces naeslundii 
Fusobacterium nucleatum   
or                     
Streptococcus gordonii 
Fusobacterium nucleatum 
Porphyromonas gingivalis  

Epithelial cell 
inflammatory 
protein release 

(Peyyala et al., 2011)        
(Peyyala et al., 2012)        
(Peyyala et al., 2013) 

Eastman Sodium chloride 
Potassium chloride 
Calcium chloride 
dihydrate        
Proteose peptone   
Lab Lemco powder 
Yeast extract    
Porcine stomach 
mucin 

Bovine enamel 
disks 

Undefined oral bacteria for 
pooled saliva 

Antimicrobial 
testing            
Biofilm structure 
Biofilm composition 

(Pratten et al., 1998)              
(Pratten and Wilson, 
1999)              
(Pratten et al., 2000b) 
(Pratten et al., 2000a) 
(Pratten et al., 2003)              
(Dalwai et al., 2006) 
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 Periodontal chemotherapeutics 

The main aim of treatment of PD, in particular periodontitis, is to halt the 

progression of the disease and prevent further alveolar bone loss. Ideally, lost 

periodontal tissue is regenerated, but in many cases this remains an 

unachievable goal. Currently, the mainstay of treatment for PD involves the 

removal of both supra- and sub-gingival plaque by mechanical debridement by 

dentists combined with oral hygiene instructions for patients. Many studies have 

shown clinical improvement when plaque is removed and regression when plaque 

reoccurs (Tonetti et al., 2015, Becker et al., 1984, Checchi et al., 2002).  

However, treatment is not always completely effective for all patients, some 

may find only limited improvement following treatment even with impeccable 

standards of oral hygiene, while others may regress over time after successful 

periodontal therapy. There are many factors that may influence the outcome of 

periodontal therapy. Smoking is a significant risk factor for periodontitis and 

subsequently many patients who do not respond well to PD treatment are 

smokers (Van der Velden et al., 2003). Additionally, systemic diseases such as 

diabetes mellitus can impact the response to treatment (Costa et al., 2013, 

Izuora et al., 2015). Poor patient compliance with oral hygiene regimes, and 

failure to return for maintenance treatments increases the likelihood of disease 

regression (Lee et al., 2015). Due to the fact that mechanical debridement alone 

may not effectively control infection, combined with limitations in the standards 

of plaque control that can be achieved by all patients, there have been many 

efforts to supplement mechanical therapy with other forms of 

chemotherapeutics in an attempt to maintain gingival health.  

The most common forms of chemotherapeutics used for the management of PD 

are antimicrobial agents designed to reduce plaque and microbial re-colonisation 

through bacteriostatic and bactericidal properties. Loe et. al. (1970) reported 

inhibition of plaque formation and gingival inflammation in test subjects when 

using a 0.2% chlorhexidine (CHX) solution and from the many subsequent studies 

conducted CHX has been shown to be an effective adjunctive for the treatment 

of gingivitis and in the short term reduction of plaque in periodontitis (Loe and 

Schiott, 1970, Calderini et al., 2013, Manthena et al., 2014). Other topical 
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antimicrobial agents including hydrogen peroxide, povidone iodine, as well as 

essential oils such as tee tree oil, have been shown to be effective at reducing 

overall plaque accumulation and improve gingivitis and short term periodontitis 

treatment outcomes when used as an adjunct to mechanical debridement 

(Hossainian et al., 2011, Sahrmann et al., 2012, Feng et al., 2011). More 

recently local drug delivery devices such as CHX chips have been used at disease 

sites that are difficult to treat due to pocket depth, or lack of access for 

mechanical debridement (John et al., 2015). However, outcomes of studies using 

these are conflicting, with some finding improvement and others finding no 

difference in gingival index, probing pocket depth and clinical attachment level 

scores of chronic periodontitis patients when used in conjunction with 

mechanical debridement (Cosyn and Wyn, 2006).  

Systemic antibiotics are used in treatment of some cases of periodontitis, in 

particular aggressive periodontitis, or in cases where patients have not 

responded to treatment as expected (Lang et al., 2015). Many studies have 

shown that systemically administered antimicrobials improve clinical scores in 

conjunction with mechanical debridement (Mombelli et al., 2015, Soares et al., 

2014, Casarin et al., 2012).  However, due to increased levels of antibiotic 

resistant bacteria found in the oral cavity combined with potential side effects 

for patients, the use of antimicrobials in the treatment of PD has become a 

controversial topic and novel methods of biofilm control remain desirable (Xie et 

al., 2014, Kuriyama et al., 2007). 

Novel antimicrobials for use in periodontal therapy have become an increasingly 

popular area of research. Polyphenols are a family of compounds naturally 

derived from fruits, vegetables, herbs and spices and include phenolic acids, 

proanthocyanidines and flavonoids (Palaska et al., 2013). Cranberry polyphenols 

have been shown to inhibit biofilm formation of F. nucleatum and P. gingivalis 

and attenuate P. gingivalis gingipains actives (Yamanaka et al., 2007). 

Polyphenols from other blackcurrant and lingonberry juices have also been 

shown to inhibit co-aggregation of S. mutans with F. nucleatum and A. 

naeslundii (Riihinen et al., 2011). In addition to their antibacterial properties, 

polyphenols also possess potent anti-inflammatory effects with studies showing 

inhibition of P. gingivalis adhesion and reduction of inflammatory IL-1β, IL-6, IL-
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8 and TNFα protein release by oral carcinoma cells following polyphenol 

treatment compared with untreated controls (Lohr et al., 2011). The 

combination of antimicrobial and anti-inflammatory properties of polyphenols 

makes them a potentially useful target for periodontal therapy research 

(Shahzad et al., 2015). 

It is well established that much of the local tissue destruction observed is a 

result of the inflammatory immune response of host in response to the bacterial 

challenge. Therefore, there are an increasing number of studies focusing on the 

potential of new chemotherapeutics that target the host response as an 

alternative to antimicrobials. 

Pro- and anti-inflammatory cytokines play an important role in the pathogenesis 

of PD and therefore may be a potential target for therapy by either neutralising 

cytokines, blocking cytokine receptors or activating immunosuppressive 

pathways. The use of anti-cytokine therapy has been studied extensively as a 

treatment of RA, with the use of the anti-TNFα antibody Infliximab (Remicade) 

reducing inflammation of experimental arthritis. Both Infliximab and the 

genetically engineered TNFαRII Etanercept (Enbrel) have both been used in 

successful trials for treatment of Crohn’s disease, psoriatic arthritis, RA, 

psoriasis and Ankylosing spondylitis (Waykole et al., 2009, Wooley et al., 1993). 

The IL-1R agonist Anakinra (Kineret) has also been used to reduce inflammation 

and cartilage destruction in RA (Mertens and Singh, 2009). Studies investigating 

potential of the IL-1 and TNFα antagonists as PD chemotherapeutics observed 

reduction of alveolar bone loss, reduced loss of tissue attachment and inhibition 

of inflammatory immune cells into the gingivae of non-human primates with 

experimental periodontitis following local treatment (Delima et al., 2001, 

Assuma et al., 1998). Use of recombinant human IL-11 in the twice-weekly 

treatment of ligature-induced periodontitis in dogs also found a significant 

reduction in clinical attachment and radiographic bone loss, suggesting that 

cytokine therapies may be a potential chemotherapeutic for the treatment of PD 

(Martuscelli et al., 2000). 

Modulation of cell signalling pathways has also been proposed as a target for PD 

therapy. Predominantly activated by cytokines the mitogen-activated protein 
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kinase (MAPK) pathway is involved in host inflammation and is made up of three 

groups; extracellular signal-regulated kinases (ERK1/2), c-jun N-terminal kinases 

(JNKs) and p38. The p38 MAPK signalling pathway is involved in LPS induced 

inflammatory cytokine production and a variety of inhibitors have been produced 

which inhibit this pathway (Gulati et al., 2014). Studies have shown periodontal 

bone loss is significantly reduced in rats with treatment of a p38α MAPK inhibitor 

twice per week compared with a sham control when each group was exposed to 

Gram-negative bacterial LPS by oral gavage and gingival injections three times 

per week (Kirkwood et al., 2007). As signalling pathways are shared by a variety 

of cytokines, they are believed to be more potent than current cytokine 

strategies; however, more studies are required to determine if there are any 

risks associated.  

Statins are a class of drugs that reduce cholesterol levels, particularly low-

density lipoprotein cholesterol, and are usually prescribed to prevent 

(cardiovascular disease CVD). However, these drugs also have potential anti-

inflammatory effects by blocking intermediate metabolites of the mevalonate 

pathway (Lazzerini et al., 2007). Recently, studies have suggested the use of 

statins to be beneficial as a chemotherapeutic of periodontitis. Statins have 

been shown to have an anti-inflammatory effect on periodontal ligament cell 

exposed to LPS with reductions of IL-1β, IL-6 and TNFα following treatment 

(Estanislau et al., 2015). Levels of pro-inflammatory cytokines IL-1β, IL-6 and 

TNFα have also been reported to be reduced in GCF of PD patients following 

systemic administration of statins (Suresh et al., 2013, Fentoglu et al., 2012). 

Statins can inhibit LPS induced osteoclastogenesis and subsequently reduce 

alveolar bone loss in experimental periodontitis models (Jin et al., 2014). 

Another study by Kim et. al. (2011) reported increased osteoblast differentiation 

of mouse periodontal ligament cell following statin treatment and suggested a 

role for statins in regenerating periodontal hard tissue (Kim et al., 2011). MMPs 

are considered critical in periodontium destruction, and secretion of MMP-1, 

MMP-2, MMP-8 and MMP-9 has been shown to be significantly decreased in 

macrophages following statin treatment (Luan et al., 2003). Taken together 

these studies indicate potential for statins as a chemotherapeutic for PD. 
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These studies show the potential for both antimicrobial and anti-inflammatory 

compounds to act as supplements to mechanical debridement to increase the 

success of periodontal therapy. However, at this point in time it is believed 

there is not enough direct evidence to recommend a specific protocol for the use 

of adjunctive compounds for periodontal therapy (Lang et al., 2015). Therefore, 

further studies are required to understand the potential benefits these 

compounds can have on treatment of PDs.   
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 Summary and aims 

The literature reviewed demonstrates that in the oral cavity both 

microbiological and immunological factors play an important role in the 

development and progression, or lack thereof, in PD. The microbial biofilm on 

the surface of the tooth develops at the gingival margin, in close proximity with 

host tissues and immune cells. Host: biofilm interactions are key and the 

composition of the biofilm is related to the host response, with keystone 

pathogens such as P. gingivalis able to subvert the immune response to maintain 

disease status. This immune response begins with the first line of defence, the 

epithelium and incorporates all the innate and adaptive immune cells. A variety 

of in vitro and in vivo models have been developed to investigate oral microbial 

biofilms and the interactions between oral biofilms and the host, advancing our 

understanding of the complex interactions which occur and gaining insight into 

how to treat them. In vitro models provide a defined and reproducible system to 

study the interactions between host cells and oral biofilms and the use of 

multiple models with varying compositions can allow the study of the host 

response to oral biofilms in both oral health and disease.  

To further the current understanding of these interactions, the aim of this study 

was to develop three different reproducible, well characterised multi-species 

biofilm models which contain bacteria that are ‘health-associated’, 

‘intermediate’ and ‘disease-associated’ to investigate host: pathogen 

interactions. The specific aims were as follows: 

1. Develop three multi-species biofilm models of differing microbial 
compositions 

2. Investigate how composition of in vitro biofilms impacts cellular responses 
in co-culture with:  

a. Epithelial cells 

b. Neutrophils 

c. Monocytes/macrophages  

3. Investigate the potential for the co-culture models use in testing novel 
anti-inflammatory and antimicrobial actives  
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2 Materials and Methods 

2.1 Bacterial based methods 

  Bacterial culture and standardization 

A selection of laboratory strains of commensal and pathogenic bacteria 

associated with oral biofilm disease were used in this study, including 

Streptococcus mitis NCTC 12261, Streptococcus intermedius ATCC 27335, 

Streptococcus oralis ATCC 35037 and Aggregatibacter actinomycetemcomitans 

OSM 1123, which were grown and maintained at 37oC on Colombia blood agar 

(CBA) [Oxoid, Hampshire, UK] in 5% CO2. Fusobacterium nucleatum ATCC 10593, 

Fusobacterium nucleatum ssp. vincentii ATCC 49256, Actinomyces naeslundii 

ATCC 19039, Veillonella dispar ATCC 27335, Prevotella intermedia ATCC 25611, 

Porphyromonas gingivalis ATCC 33277, Porphyromonas gingivalis W83 and 

Porphyromonas gingivalis W50 were maintained at 37oC on fastidious anaerobic 

agar (FAA) [Lab M, Lancashire, UK] under anaerobic conditions (85% N2, 10% CO2 

and 5% H2 [Don Whitley Scientific Limited, Shipley, UK]). All isolates were stored 

in Microbank® vials (Pro-Lab Diagnostics, Cheshire, UK) at -80oC until required. 

P. gingivalis strains, F. nucleatum, F. nucleatum ssp. vincentii were propagated 

in 10 mL Schaedler’s anaerobic broth [Oxoid, Hampshire, UK], V. dispar, A. 

naeslundii and P. intermedia were grown in 10 mL of brain heart infusion broth 

(BHI) [Sigma-Aldrich, Dorset, UK]. S. mitis, S. intermedius, S. oralis and A. 

actinomycetemcomitans were grown in 10 mL tryptic soy broth (TSB) [Sigma-

Aldrich, Dorset, UK] supplemented with 0.6% yeast extract [Formedium, 

Hunstanton, UK] and 0.8% glucose [Sigma-Aldrich, Dorset, UK]. Cultures were 

washed by centrifugation (3000 rpm) and resuspended in 10 mL phosphatase 

buffered saline (PBS) [Sigma-Aldrich, Dorset, UK]. All cultures were then 

standardised and adjusted to a final working concentration of 1 x 108 cells/mL 

for further studies. 
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  Artificial Saliva 

All biofilm cultures were grown using artificial saliva (AS) as previously described 

(Pratten et al., 1998). This was comprised of porcine stomach mucins (0.25% 

w/v) [Sigma-Aldrich, Dorset, UK], sodium chloride (0.35 w/v) [VWR, Leuven, 

Belgium] potassium chloride (0.02 w/v) [VWR, Leuven, Belgium], calcium 

chloride dihydrate (0.02 w/v) [VWR, Leuven, Belgium], yeast extract (0.2 w/v) 

[Formedium, Hunstanton, UK], lab lemco powder (0.1 w/v) [Oxoid, Hampshire, 

UK] and proteose peptone (0.5 w/v) [Sigma-Aldrich, Dorset, UK] in ddH2O 

[Thermo Scientific, DE, USA]. Urea [Sigma-Aldrich, Dorset, UK] was diluted in 

ddH2O (40% w/v) and added to a final concentration of 0.05% (v/v) in AS. 

  Single species P. gingivalis biofilms culture 

Single species biofilms of P. gingivalis were prepared in 24 well plates [Corning, 

NY, USA] containing Thermanox™ coverslips (13mm diameter, [Fisher Scientific, 

Loughborough, UK]).  Standardised suspensions of 1 x 107 CFU/mL, at 0.2 OD550, 

were prepared in 500 μL of AS for each P. gingivalis strain. Biofilms were grown 

for 4 days at 37oC in the anaerobic chamber with supernatants removed and 

fresh AS added each day. 

  Multi-species biofilms culture (4 species) 

A simple 4 species multi-species periodontal biofilm model consisting of S. mitis, 

F. nucleatum, A. actinomycetemcomitans and P. gingivalis was previously 

developed (Jose, 2013). Biofilms were prepared in 24 well plates [Corning, NY, 

USA] containing Thermanox™ coverslips (13mm diameter, [Fisher Scientific, 

Loughborough, UK]). For the addition of each bacterial species to the biofilm a 

standardised suspension of 1 x 107 CFU/mL was prepared in 500 μL of AS. S. 

mitis biofilms were grown for 24 hours at 37oC, 5% CO2, supernatant was then 

removed and standardised F. nucleatum in AS was added and the biofilms 

incubated anaerobically for a further 24 hours. The supernatant was removed 

and finally the standardised P. gingivalis and A. actinomycetemcomitans in AS 

added to the biofilm and incubated at 37oC in the anaerobic chamber for a 

further 4 days. Each day supernatants were removed and fresh AS added. 
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 Generation of multi-species biofilms (3, 7 &10 species) 

Three in vitro biofilm models were developed to represent and recapitulate the 

stages from health to disease in periodontitis. Biofilms were prepared in 24 well 

plates [Corning, NY, USA] containing Thermanox™ coverslips (13mm diameter, 

[Fisher Scientific, Loughborough, UK]). For the addition of each bacterial species 

to the biofilm a standardized suspension of 1 x 107 CFU/mL was prepared in 500 

μL of AS. 

 

A three species biofilm model containing S. mitis, S. intermedius and S. oralis 

was developed to model ‘health-associated’ biofilms in the oral cavity. All 

species were added together and incubated at 37oC in 5% CO2 for 4 days with 

spent supernatants being removed and replaced with fresh AS daily. 

 

A seven species biofilm model containing S. mitis, S. intermedius and S. oralis, 

as well as F. nucleatum, F. nucleatum ssp. vincentii, A. naeslundii and V. dispar 

was developed to model an ‘intermediate’ biofilms, transitioning from health to 

a diseased state. Briefly, S. mitis, S. intermedius and S. oralis were grown for 24 

hours and incubated at 37oC in 5% CO2. Next, supernatant was removed and 

standardized F. nucleatum, F. nucleatum ssp. vincentii, A. naeslundii and V. 

dispar were added to the biofilms and incubated at 37oC in the anaerobic 

cabinet for 4 days, with spent supernatants being removed and replaced with 

fresh AS daily. 

 

A ten species biofilm model was formed as described in the 7 species, but with 

the addition of P. gingivalis, P. intermedia and A. actinomycetemcomitans 

which was standardized and added on the third day. Biofilms were incubated at 

37oC in the anaerobic cabinet for 4 days, with spent supernatants being removed 

and replaced with fresh AS daily. 

 

Biofilms were used directly after culture or AS removed and stored at -80oC until 

required. Frozen biofilms were revived by the addition of 500 μL of AS, 

incubating for 24 hours in the anaerobic cabinet before experimental use. 
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  Growth kinetics of P. gingivalis 

The growth kinetics of P. gingivalis was assessed. Each strain was standardised 

to 1 x 104 CFU/mL in Schaedler’s anaerobic broth with 200 μL added to each well 

of a 96 well round bottomed plate. The plate was incubated at 37oC in the 

anaerobic chamber and the absorbance was measured at 650 nm every 3 hours 

following shaking at 100 rpm for 30 seconds prior to reading. Each strain was 

tested with 8 replicate cultures and repeated on three independent occasions. 

Negative controls containing Schaedler’s anaerobic broth only were included for 

background correction. 

  Bacterial quantification: Miles and Misra 

Live P. gingivalis bacteria were quantified using the Miles and Misra method 

(Miles et al., 1938). Briefly, biofilms were removed from Thermanox™ coverslips 

in a sonic bath at 35 kHz for 10 minutes in 1 mL of PBS. The inoculum was 

serially ten-fold diluted from neat supernatant to 10-8 in PBS. For each dilution, 

20 μL was dropped-plated in triplicate on FAA plates and left to dry on the 

bench for 30 minutes before being cultured at 37oC in the anaerobic cabinet for 

48 hours. Following incubation, colonies were then counted at each dilution 

where the number of colonies ranged between 30 – 300 and the CFU calculated 

as follows: CFU = mean no. of colonies in dilution x 50 x dilution factor. The 

experiment was performed on three samples per group and repeated on three 

separate occasions. 

  Biomass quantification (crystal violet) 

To quantify biomass, biofilms were washed with PBS and allowed to air dry for 1 

hour at 37oC. 100 μL of 0.05 (w/v) of crystal violet (CV) solution was added to 

each biofilm and incubated at room temperature for 30 minutes to allow for the 

uptake of the dye. Following incubation the CV solution was removed and 

biofilms were washed using ddH2O to remove any excess dye. Next, 100 μL of 

100% ethanol was added to samples to de-stain each biofilm and mixed 

thoroughly to ensure complete removal. Contents of each well were then 

transferred to a fresh 96 well flat-bottom micro titre plate for measurement. 

The biomass was quantified spectrophotometrically by reading absorbance at 
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570 nm in a microtitre plate reader [FLUOStar Omega, BMG Labtech, VA, USA]. 

All absorbance values were blank corrected based upon the negative control 

where no biofilms were formed. 

  Impact of freezing on biofilm viability 

To assess the effects of freezing on the biofilm, as a means of creating biofilm 

stocks, AS was removed from the biofilms, which were then sealed within 24 

well plates and stored at -80oC. They were latterly revived by adding 500 μL of 

AS and incubating in at 37oC in the anaerobic chamber for 24 hours. Total cell 

counts were then performed by qPCR as described in section 2.1.14. The 

experiment was performed in triplicate on three separate occasions. 

 Survival of biofilms in cell culture media 

Frozen biofilms were revived in AS overnight at 37oC in the anaerobic cabinet. 

The biofilms were maintained in defined-KSFM (d-KSFM) [Invitrogen, Paisley, UK] 

for 4 and 24 hours at 37oC in 5% CO2. After incubation biofilms were washed with 

sterile PBS to remove non-adherent bacteria and total cell counts performed as 

described previously section 2.1.14. 

 Exogenous IL-8 degradation assay 

Single strain P. gingivalis biofilms were cultured as described section 2.1.3 in a 

24 well plate. At maturation AS was removed and replaced with 500 μL of 

Schaedler’s anaerobic broth containing 300 pg/mL exogenous IL-8 [PeproTech, 

London, UK] then incubated at 37oC in the anaerobic chamber for 0, 1, 4 and 24 

hours. A bacteria-free control containing 300 pg/mL of exogenous IL-8 without 

biofilm was used to measure natural degradation of IL-8 over time. At each time 

point supernatants were removed from the culture and stored at -20oC until 

required, at which time the remaining IL-8 in each sample was measured by 

ELISA (section 2.3.8) Each strain was tested in triplicate on three independent 

occasions. 
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 Live, dead, filtered and unfiltered conditions for P. 
gingivalis co-culture 

A variety of conditions were measured in the co-culture of P. gingivalis strains 

with OKF6-TERT2 oral epithelial cells. For co-culture of epithelial cells with live 

planktonic P. gingivalis, strains were cultured in broth and standardized as 

described in section 2.1.1. Standardised bacteria were resuspended in d-KSFM 

with growth-promoting additives of which 500 μL was added to co-culture. For 

co-culture with methanol fixed (dead) planktonic P. gingivalis, bacteria were 

cultured and standardized as described for live planktonic P. gingivalis co-

culture, then resuspended in 100% methanol for 30 minutes on a shaking 

platform 200 rpm at 37oC in the anaerobic cabinet. Next, bacteria were washed 

in triplicate using PBS to remove excess methanol and resuspended in d-KSFM for 

use in co-culture. For co-culture with biofilms supernatants, biofilms were 

cultured for 24 hours in d-KSFM at 37oC in the anaerobic cabinet. Following 

incubation, supernatants were removed and passed through a 0.22 μm Ministart® 

hydrophobic filter [Sartorius, Surrey, UK] before use in co-culture. Finally, for 

co-culture with unfiltered P. gingivalis biofilm supernatants biofilms were 

cultured for 24 hours in d-KSFM at 37oC in the anaerobic cabinet. Following 

incubation, supernatants were removed and 500 μL used for co-cultures. 

 Extraction of DNA from bacteria 

DNA extraction of bacteria was performed using the MasterPure® Gram Positive 

DNA purification kit [Epicentre®, Cambridge, UK]. Biofilm samples were 

sonicated in 1 mL of PBS for 10 minutes and the supernatant transferred to a 1.5 

mL microfuge tube and centrifuged at 13000 rpm for 10 minutes to pellet the 

sample. For planktonic samples 1 mL of supernatant was transferred to a 1.5 mL 

microfuge tube and centrifuged at 13000 rpm for 10 minutes to pellet the 

sample. The supernatants were then discarded and 150 μL of TE buffer (10 mM 

Tris-HCl, 1mM EDTA) [Epicentre®, Cambridge, UK] was added to each sample to 

resuspend the pellet and 1 μL of Ready-lyse™ lysozyme solution [Epicentre®, 

Cambridge, UK] added to break down the bacterial cells. Samples were 

incubated at 37oC for 2.5 hours. Following this a solution containing 1 μL 

proteinase K (50 μg/mL) and 150 μL of Gram positive cell lysis solution from the 

MasterPure® Gram Positive DNA purification kit was added to each sample and 
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incubated at 65oC for 15 minutes. Samples were cooled to 37oC and stored on ice 

for 5 minutes before DNA precipitation. Next, to each lysed sample 175 μL of 

MPC protein precipitation reagent [Epicentre®, Cambridge, UK] was added and 

vortexed for 10 seconds. Samples were then centrifuged at 13000 rpm for 10 

minutes at 4oC with the resultant supernatant transferred to a clean microfuge 

tube and 1 μL of RNase A (5 μg/mL) added and incubated for a further 30 

minutes at 37oC. 500 μL of isopropanol was then added to each sample which 

was mixed by inverting each tube 40 times before centrifugation at 13000 rpm 

for 10 minutes at 4oC. Finally, the DNA pellet was washed with 70% ethanol and 

resuspended in 35 μL of TE buffer. 

 Quantification of bacteria (PCR) 

To quantify bacteria by PCR, one microliter of extracted DNA, as outlined in the 

previous section, was added to a master mix containing 12.5 μL SYBR® 

GreenERTM [Life technologies, Paisley, UK]. 9.5 μL of UV-treated RNase-free 

water [Life technologies, Paisley, UK]. and 1 μL of 10 μM forward/reverse 

primers for each bacteria (Table 2.1). For each experiment three independent 

replicates were analysed in triplicate using the MxProP Quantitative PCR 

machine and MxProP 3000 software [Stratagene, Amsterdam, Netherlands]. The 

thermal profile was 95oC for 10 minutes to allow for DNA polymerase activation 

and 40 amplification cycles of 95oC denaturation for 30 seconds, 55oC annealing 

for 60 seconds and 72oC extension for 60 seconds. A dissociation curve was 

performed following the final amplification cycle for confirmation of only one 

product. This cycle consisted of 95oC for 60 seconds, 55oC for 30 seconds and 

92oC for 30 seconds. A non-template control replacing DNA with sterile water 

was included in each experiment to rule out the presence of contamination. The 

cycle threshold (Ct) was set automatically and Ct values for all samples of 

interest. 
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Table 2.1: Primer sequences used for bacterial PCR 

Target Primer Sequence  (5’-3’) Reference 

Streptococcus species 
(S. mitis, S. intermedius 

and S. oralis) 

F-GATACATAGCCGACCTGAG                                    
R- CCATTGCCGAAGATTCC 

(Periasamy et al., 
2009) 

F. nucleatum and F. 
nucleatum ssp. vincentii 

F-GGATTTATTGGGCGTAAAGC                                   
R- GGCATTCCTACAAATATCTACGAA 

(Sanchez et al., 
2014) 

A. naeslundii 
F-GGCTGCGATACCGTGAGG                                           
R- TCTGCGATTACTAGCGACTCC 

(Periasamy et al., 
2009) 

V. dispar 
F-CCGTGATGGGATGGAAACTGC                                  
R- CCTTCGCCACTGGTGTTCTTC 

(Periasamy and 
Kolenbrander, 

2009) 

P. gingivalis 
F-GCGCTCAACGTTCAGCC                                           
R-CACGAATTCGCCTGC 

(Boutaga et al., 
2003) 

P. intermedia 
F-CGGTCTGTTAAGCGTGTTGTG                                  
R- CACCATGAATTCCGCATACG 

(Loozen et al., 
2011) 

A. 
actinomycetemcomitans 

F-GAACCTTACCTACTCTTGACATCCGAA                         
R- TGCAGCACCTGTCTCAAAGC 

(van der Reijden 
et al., 2010) 

 

 Generating standard curves for bacteria 

Quantification of each bacterial species was carried out by standardising each 

bacterial species to 1 x 108 CFU/mL. DNA was extracted from bacteria as 

described in section 2.1.13 using ten-fold serial dilutions of bacteria ranging 

from 1 x 103 to 1 x 108 CFU/mL, and qPCR performed as described in the 

previous section. Standard curves were constructed by plotting the Ct values 

against the known diluted quantities of DNA. These were calculated by log 

transforming the known concentrations of DNA then using non-linear regression 

analysis (Sigmoidal-dose response – variable slope) to interpolate the Ct values 

from these known concentrations as numbers of bacteria as a standard curve for 

each bacterial species. The R2 value was used to determine the fit of the line 

calculated as follows; R2 = 1- SSresiduals / SStotal. R2 values ranging between 0.95-

1.0 were considered to show a good fit of the line and validate the use of PCR to 

determine bacterial quantities. Each dilution of DNA was assessed in triplicate 

for each primer set. 
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 Live dead PCR 

To quantify the number of live and dead bacteria in a biofilm a live/dead qPCR 

method was used as described in (Alvarez et al., 2013). This method uses 

propidium monoazide which is able to penetrate dead cells due to loss of cell 

membrane structure. Once inside the cell propidium monoazide binds to double 

stranded DNA (ds-DNA), which when exposed to bright light results in a 

permanent modification of the ds-DNA. This modification makes it unable to be 

used as a qPCR template and allows the discrimination by live and dead cells by 

qPCR. 

Briefly, biofilms grown on Thermanox™ coverslips were sonicated at 35 kHz in a 

sonic bath for 10 minutes and the sonicate transferred to a RNase-free microfuge 

tube. 5 μL of 10 mM of propidium monoazide [Sigma-Aldrich, Dorset, UK] was 

added to each sample with additional samples containing no propidium 

monoazide included as a control. All samples were then incubated in the dark at 

room temperature for 10 minutes to allow for uptake of propidium monoazide 

into the cells. Samples were then placed on ice on a rocking platform and 

exposed to a 650W halogen light positioned 20 cm away for 5 minutes. Following 

exposure, DNA could then be extracted from samples as described in section 

2.2.13 or stored at -20oC until required. Following DNA extraction, biofilm 

composition could then be quantified by qPCR as described in section 2.1.14. 

Samples containing propidium monoazide only amplify live cells and control 

samples without propidium monoazide amplify all cells. Thus, the number of 

dead cells can also be quantified by subtracting the number of live cells by the 

number of total cells in each sample group. Each experiment was conducted in 

triplicate and repeated on three separate occasions.  

 Scanning electron microscopy 

Scanning electron microscopy (SEM) was performed on mature biofilms. 

Following maturation, biofilms were carefully washed using PBS before fixation 

in 2% paraformaldehyde, 2% gluteraldehyde, 0.15 M sodium cacodylate and 0.15% 

(w/v) alcian blue, pH 7.4 overnight. The fixative was discarded and replaced 

with 0.15 M sodium cacodylate buffer and stored at 4oC until processing. 

Samples were then prepared for SEM as previously described (Erlandsen et al., 
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2004). Briefly, samples were washed three times for 5 minutes with 0.15 M 

cacodylate to ensure all gluteraldehyde had been removed. Following this, 

samples were then treated with 1% osmium tetroxide solution containing 0.15 M 

sodium cacodylate (1:1) and incubated in the fume hood for 1 hour. After 

incubation samples were then washed three times for 10 minutes in distilled 

water before treatment with 0.5% uranyl acetate and incubated for a further 

hour in the dark. Uranyl acetate was then removed from the samples and 

washed with water before a series of dehydration steps were carried out where 

2 x 5 minute washes of 30, 50, 70 and 90% alcohol followed by 4 x 10 minute 

washes of absolute and dried absolute alcohol were used. Hexamethyldisilazane 

(HMDS) was used to dry the samples by soaking for 5 minutes before transferring 

to a fresh plate containing HMDS. All samples were then placed in a desiccator 

overnight to allow evaporation of any residual drying agent. The specimens were 

then mounted and sputter-coated with gold in an argon filled chamber and 

viewed under a JEOL JSM-6400 scanning electron microscope. Images were 

assembled using Photoshop software [Adobe, San Jose, CA, USA]. 
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2.2  Cell based methods 

  Growth and maintenance of OKF6-TERT2 

OKF6-TERT2 cells [Rheinwald Laboratory, Brigham and Woman’s Hospital, 

Boston, USA] are an immortalised human oral keratinocyte cell line developed 

through the forced expression of telomerase (Dickson et al., 2000, Dongari-

Bagtzoglou and Kashleva, 2006). These cells were maintained in keratinocyte 

serum-free medium (KSFM) [37010-022 Invitrogen, Paisley, UK] supplemented 

with 100 U/mL penicillin, 100 μg/mL streptomycin, 25 μg/mL bovine pituitary 

extract (BPE), 0.2 ng/mL epidermal growth factor (EGF) and 0.4 mM CaCl2. Cells 

were seeded at 5 x 104 cells/mL in a 75cm2 cell culture flask [Corning, NY, USA] 

and passaged at 90% confluence. To do this the adherent monolayer of cells was 

detached using 0.05% trypsin EDTA which was then neutralised with 15 mL of 

Dulbecco’s modified Eagle’s media (DMEM) [Sigma-Aldrich, Dorset, UK]. 

Following this cells were washed in Hanks balanced salt solution [Sigma-Aldrich, 

Dorset, UK] containing 10% foetal calf serum (FCS) [Sigma-Aldrich, Dorset, UK] to 

inactivate the trypsin and resuspend in 5 mL of KSFM before counting using a 

haemocytometer with 20 μL of cells mixed with 10 μL of trypan blue [Sigma-

Aldrich, Dorset, UK] to give a dilution factor of 1.5. Cells were viewed under a 

light microscope and round, healthy clear cells counted using the appropriate 

grid. Trypan blue stains dead cells blue through the loss of cell wall integrity and 

these cells were therefore omitted during the counting process. Cells were re-

seeded at 1 x 105 cells/flask in KSFM. 

Frozen stocks of OKF6-TERT2 oral epithelial cells were prepared for long term 

storage in liquid nitrogen. Cell suspensions were standardised to 2 x 106 cells/mL 

in DMEM supplemented with 20% FCS. Equal volumes of 20% dimethyl sulfoxide 

(DMSO) and the OKF6-TERT2 cells were transferred to a cryotube and stored at 

minus 80oC in an insulated box overnight to ensure the cells were cooled slowly 

before final storage in liquid nitrogen. To retrieve cells from frozen stocks, 

cryovials were thawed at 37oC before transferring into a cell culture flask 

containing KSFM. For experiments, OKF6-TERT2 cells were seeded at 1x 105 

cells/mL in d-KSFM where BPE is replaced with defined keratinocyte-SFM Growth 

supplement. 
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  Primary cell culture 

Primary human oral keratinocytes [Tebu-bio, Peterborough, UK] cultured from 

the oral mucosa of 58 year old male were used as a comparator with the OKF6-

TERT2 cell line. Briefly, cells were seeded at 2.5 x 105 cells/flask in KSFM 

supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin, 25 μg/mL 

bovine pituitary extract (BPE), 0.2 ng/mL epidermal growth factor (EGF) and 0.4 

mM CaCl2 and maintained until 80% confluence. To passage cells, KSFM was 

removed and 5 mL of Acutase® [Sigma-Aldrich, Dorset, UK]  added to 

disaggregate the cells from the surface before washing with DMEM to remove the 

Acutase®. Cells were resuspended in 5 mL of KSFM before counting using a 

haemocytometer with 20 μL of cells mixed with 10 μL of trypan blue [Sigma-

Aldrich, Dorset, UK] to give a dilution factor of 1.5. Cells were viewed under a 

light microscope and viable cells counted using the appropriate grid. Cells were 

re-seeded at 1 x 105 cells/flask in KSFM. 

Frozen stocks of primary oral keratinocytes were prepared as described for 

OKF6-TERT2 cells in the previous section. For experiments, primary oral 

keratinocytes were seeded at 1x 105 cells/mL in d-KSFM where BPE is replaced 

with growth-promoting additives and not used beyond passage 4 as per 

manufacturer’s instructions. 

 Co-culture of epithelial cells and biofilms 

OKF6-TERT2 cells were seeded at 1 x 105 cells/mL in 24 well plates in d-KSFM 

and incubated overnight at 37oC 5% CO2. Following incubation cells were washed 

with PBS and 500 μL of fresh d-KSFM added to each well. Biofilms were attached 

to the underside of a hanging cell culture insert [Millipore, Massachusetts, USA] 

using Vaseline®, then placed adjacent to the OKF6-TERT2 cell monolayer. Figure 

2.1 shows a schematic of the co-culture system. Epithelial cells were incubated 

with the biofilm for 4 and 24 hours at 37oC in 5% CO2. Following stimulation, 

supernatants and cell lysates were retained to assess changes in gene and 

protein expression of a variety of pro-inflammatory mediators. 
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Figure 2.1: Host cell: biofilm co-culture model system 

Hanging baskets with Thermanox™ coverslips containing multi-species biofilms 

were introduced into each well of a 24 well plate. Inverted coverslips were 

secured to the hanging basket using sterile Vaseline® with a 0.5 mm space 

between the biofilm and cell monolayer. 

 

  Inverted biofilm co-culture 

To investigate any gravitational effect of biofilm co-culture with epithelial cells 

an inverted biofilm co-culture experiment was performed. Briefly, the co-

culture model described in section 2.2.3 was inverted to allow biofilms to grow 

on the 24 well plate surface and OKF6-TERT2 cells to be hanging over. This was 

achieved by seeding OKF6-TERT2 oral epithelial cells at 1 x 105 cells/mL, using 

500 μL on Thermanox™ coverslips and incubated overnight in KSFM at 37oC 5% 

CO2. Following incubation, cells were washed in PBS and attached to the 

underside of a hanging cell culture insert [Millipore, Massachusetts, USA] using 

Vaseline®. This would be inserted into 24 well plates containing multi-species 

biofilms on the plate surface. Cells were incubated in d-KSFM for 4 and 24 hours 

in 37oC 5% CO2 before removal of supernatants for further analysis. Figure 2.2 

shows a schematic of the inverted co-culture system. 

Millipore® Cell Culture insert 

Coverslip with biofilm 

0.5mm 

Monolayer of host cells  
(e.g. OKF6-TERT2) 
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Figure 2.2: Inverted co-culture model system 

Biofilms were grown on the surface of 24 well plates. Hanging baskets with 

Thermanox™ coverslips containing host cells were introduced into each well of a 

24 well plate. Inverted coverslips were secured to the hanging basket using 

sterile Vaseline® with a 0.5 mm space between the biofilm and cell monolayer. 

 

  THP-1 cell culture 

THP-1 cells [Invitrogen, Paisley, UK] are a leukemic pro-monocytic cell line 

acquired from a 1 year old male with acute monocytic leukaemia (Tsuchiya et 

al., 1980). These cells were maintained in RPMI-1640 medium supplemented 

with 10% (v/v) foetal bovine serum (FBS) [Sigma-Aldrich, Dorset, UK] 

supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin. Cells were 

cultured at 37oC at 5% CO2 until 80% confluence at which point cells were 

washed and resuspended in 5 mL of RPMI-1640 before counting using a 

haemocytometer with 20 μL of cells mixed with 10 μL of trypan blue [Sigma-

Aldrich, Dorset, UK] to give a dilution factor of 1.5. Cells were viewed under a 

light microscope and live counted using the appropriate grid. Cells were re-

seeded at 2 x 105 cells/flask in RPMI-1640. Frozen stocks were generated as 

described in section 2.2.1. For experimental use, cells were counted and seeded 

into wells at 5 x 105 cells/mL in 24 well plates. 

 

Millipore® Cell Culture insert 

Coverslip with host cells 

0.5mm 

Biofilm 
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  THP-1 differentiation 

THP-1 cells were differentiated into monocyte/macrophage like cells using two 

different methods; 1α,25-Dihydroxyvitamin D3 (vitamin D3) [Enzo Life Sciences, 

Farmingdale, NY, USA] and phorbol 12-myristate 13-acetate (PMA) [Sigma-

Aldrich, Dorset, UK] as it has been shown these methods induce differential 

signalling pathways which may result in different differentiation states 

(Schwende et al., 1996). Briefly, for differentiation using vitamin D3 , cells were 

resuspended in RPMI-1640 containing 10% FBS only and seeded at 5 x 105 

cells/mL containing 100 nM of vitamin D3 and incubated for 3 days at 37oC 5% 

CO2 to allow differentiation. Once differentiated, supernatants containing 

unadhered THP-1 cells were removed, washed with PBS and 500 μL fresh RPMI-

1640 containing 10% FBS (v/v) added to the cells 30 minutes prior to 

experiments. For differentiation using PMA the method described by Daigneault 

and colleagues (2010) was followed (Daigneault et al., 2010). Cells were 

resuspended in RPMI-1640 containing 10% FBS only and seeded at 5 x 105 

cells/mL and 200 nM of PMA added and cultured for 3 days at 37oC 5% CO2 to 

allow differentiation. Differentiation was then enhanced by removing 

supernatant containing excess cells and washing with PBS before adding fresh 

RPMI-1640 containing 10% FBS (v/v) for a further 5 days. Prior to experimental 

use cells were washed again with PBS and 500 μL fresh RPMI-1640 containing 10% 

FBS (v/v) added to the cells. THP-1 differentiation was measured by flow 

cytometry as described in section 2.2.10. 

  THP-1 co-culture 

THP-1 cells were co-cultured with multi-species biofilms as described in 

epithelial cell co-culture in section 2.2.3. Briefly, cells were seeded at 5 x 106 

cells/mL, 500 μL of which was added to each well of a 24 well plate and 

differentiated if required as described in section 2.2.6. Cell were co-cultured 

with biofilms for 4 and 24 hours at 37oC 5% CO2, after which time supernatants 

and cell lysates were removed and stored at -20oC for further analysis. 
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  Co-culture with conditioned media 

THP-1 cells were seeded at 5 x 106 cells/mL in a 500 μL a 24 well plate and 

differentiated using either PMA or vitamin D3 as described in section 2.2.6. 

Following differentiation, cells were washed with PBS and 250 μL of 

supernatants from epithelial cells and biofilm co-culture experiments was 

added. The supernatants from the co-culture were centrifuged at 10,000 g for 10 

minutes to pellet and remove any bacteria prior to culture with THP-1 cells. 

Additionally, as OKF6-TERT2 oral epithelial cells were co-cultured in d-KSFM a 

further 250 μL of RPMI-1640 medium supplemented with 10% (v/v) foetal bovine 

serum (FBS) [Sigma-Aldrich, Dorset, UK] supplemented with 100 U/mL penicillin, 

100 μg/mL streptomycin was added to the THP-1 cell culture to total 500 μL. 

THP-1 cells were cultured with 1:1 ratio of conditioned media from epithelial 

cell co-cultures: fresh RPMI for 4 and 24 hours at 37oC 5% CO2 at which time 

supernatants and cell lysates were removed and stored at -20oC for further 

analysis. 

  THP-1 adhesion assay 

To quantify the adherence of naïve THP-1 cells to the surface of a 24 well plate 

following stimulation, cells were stained with 2 μL /mL of the green fluorescent 

dye carboxyfluorescein succinimidyl ester (CFSE) [Sigma-Aldrich, Dorset, UK] and 

incubated at 37oC 5% CO2 for 30 minutes. Next, cells centrifuged at 1000 g for 5 

minutes and washed in PBS to remove any excess dye before seeding at 5 x 106 

cells/mL in 24 well plates containing Thermanox™ coverslips. At this time THP-1 

cells were incubated for 4 and 24 hours with either 3, 7 or 10 species biofilms 

using hanging baskets as described in section 2.2.3 or by adding 200 nM of PMA 

or 100 nM of vitamin D3. Following incubation coverslips were removed and dip 

washed in PBS then fluorescence was measured on a plate reader [FLUOStar 

Omega, BMG Labtech, VA, USA] using 485nm excitation and 520nm emission. All 

absorbance values were blank corrected based upon the negative control where 

no cells were present. Additionally, adhesion of cells was visualised using a 

fluorescent microscope [Motic®, Model BA400, Hong Kong, China]. Briefly, 

Thermanox™ coverslips were inversely mounted on glass slides [BDH Laboratory 

Supplies, Poole, UK] using Vector mount [Vector Labs, Peterborough, UK] and 

visualised on the FITC filter channel at multiple magnifications. 
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 Flow cytometric analysis 

For flow cytometric analysis, stimulated THP-1 cells were removed from co-

culture using a cell scraper and washed three times in sterile PBS by 

centrifugation at 400 g for 5 minutes to remove and bacteria present. Cells were 

then transferred to a 96-well round bottomed Costar® microtitre plate [Sigma-

Aldrich, Dorset, UK] and washed with 250 μL of FACS buffer (PBS with 2% v/v FCS 

and 0.01% NaN3). Following this, cells were centrifuged at 400 g for 5 minutes at 

4oC, supernatants discarded and cells resuspended in 50 μL FcR blocking buffer 

[Affymetrix, Santa Clara, CA, USA] and incubated for 15 minutes at 4oC. All 

eBioscience® antibodies [Affymetrix, Santa Clara, CA, USA] for extracellular 

staining and concentrations per test are described in table 2.2. Antibodies (with 

the exception of the viability dye) were added to each sample and incubated for 

a further 20 minutes on ice. Next, 100 μL of PBS was added and samples were 

centrifuged at 400 g for 5 minutes at 4oC after which supernatants were 

discarded and samples were washed in PBS a further 3 times by centrifugation at 

400 g for 5 minutes at 4oC. For samples which required viability dye at this stage 

100 μL of viability dye at 1 μg/mL made up in PBS was added to samples and 

incubated for 20 minutes at 4oC before washing three times in PBS by 

centrifugation at 400 g for 5 minutes at 4oC. Untreated cells, single stains 

controls and isotype controls were used for calibration and to ensure specific 

binding, respectively. Samples were then resuspended in 200 mL PBS and 200mL 

FACS buffer in FACS tubes ready for analysis. Data were acquired on a 

MACSQuant® [Miltenyi Biotech, Surrey, UK] and analysed using FlowJo software 

[Treestar, USA]. 

 Table 2.2 Antibodies used in flow cytometric analysis 
 

 

 

 

Antibody 

 

Concentration 

(μg/test) 

Anti-Human CD69 PE 0.015 

Anti-Human CD40 FITC 0.5 

Anti-Human CD14 APC 0.25 

Fixable Viability Dye eFlour® 450 n/a 
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 Neutrophil culture 

Neutrophils were provided by Ana Adrados Planell from the Institute of Infection, 

Immunity and Inflammation, University of Glasgow for use in co-culture 

experiments. 

Neutrophils were counted using a haemocytometer and non-viable cells excluded 

on the basis of trypan blue staining and resuspended at 2 x 105 cells /500 μL or 5 

x 105 cells /500 μL depending on the downstream analysis in complete RPMI 

containing 2% FCS on glass coverslips and incubated for 1 hour at 37oC 5% CO2 

prior to experimental use. 

 Neutrophil co-culture with biofilms 

Neutrophils were co-cultured with multi-species biofilms as described in 

epithelial and THP-1 cell co-culture in section 2.2.3. Briefly, neutrophils were 

seeded at 5 x 105 cells/500 μL of which 500 μL was added to each well of a 24 

well plate. Cell were co-cultured with biofilms for 4 and 16 hours at 37oC 5% CO2 

after which time supernatants and cell lysates were removed and stored at -20oC 

for further analysis. 

 Neutrophil extracellular traps (NETs) formation 

To visualise NETS following co-culture with multi-species biofilms, neutrophils 

were seeded at 2 x 105 cells/500 μL. Next, 500 μL was added to each well of a 24 

well plate containing glass coverslips and cells were co-cultured with biofilms for 

4 and 16 hours at 37oC 5% CO2. Following incubation, coverslips were removed 

and fixed with 500 μL of 2% paraformaldehyde (PFA) overnight at 4oC or 2-4 

hours at room temperature. Coverslips were then washed with PBS for 5 minutes 

in triplicate and then incubated for 1 minute with 0.5% Triton X-100 to 

permeabilize the cells before three further washes in PBS for 1 minute each. 

Following washing, 100 μL of blocking buffer (PBS plus 5% horse serum) was 

added to each coverslip and incubated for 30 minutes at 37oC in a humid 

chamber. Next 100 μL of primary antibodies diluted in blocking buffer (Table 

2.4) were added and incubated for 1 hour at 37oC before washing for 5 minutes 

in PBS in triplicate. Secondary antibodies (Table 2.3) diluted in blocking buffer 
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were then added at 100 μL per coverslip and incubated for 1 hour at 37oC before 

washing a further 3 times in PBS for 5 minutes. DNA was then stained using 

1mg/mL Hoechst 33342 [Life technologies, Paisley, UK] for 5 minutes and then 

washing in PBS. Finally, coverslips were mounted and dried at room temperature 

overnight before storage at 4oC until microscopy. NETS were visualised using a 

Zeiss LSM 510 Meta confocal microscope using DAPI, Cy3 and Cy5 filters. 

Table 2.3 Primary and Secondary antibodies for NET staining 

Primary Antibody Concentration Secondary Antibody Concentration 

Neutrophil elastase 

antibody (M-18)(goat)  

[Santa Cruz 

Biotechnology, 

Heidelberg, Germany] 

1:200 Alexa 647  donkey 

(anti-goat) 

[Life technologies, 

Paisley, UK] 

1:300 

Anti-histone H3 

(citrulline R2 + R8 

+R17) α-H3cit (rabbit)  

[Abcan®, Cambridge, 

UK] 

1:1000 Cy3 mouse anti-rabbit 

(anti-rabbit) 

[Life technologies, 

Paisley, UK]. 

1:300 
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2.3  Molecular Methods 

  RNA extraction 

Following stimulation of host cells with biofilms, RNA was extracted using the 

RNeasy Mini kit [Qiagen Ltd, Crawley, UK] in accordance with the 

manufacturer’s instructions. Host cells were lysed with the addition of 350 μL of 

buffer RLT to each well. The resultant lysate was transferred to an RNase free 

microfuge tube and mixed with 350 μL of 70% ethanol. Each 700 μL sample was 

then transferred to an RNeasy spin column placed within a 2 mL collection tube 

and centrifuged at 13000 rpm for 15 seconds, with the flow-through discarded. 

DNA contamination of isolated total RNA was addressed using a DNase kit 

[Qiagen Ltd, Crawley, UK], as per manufacturer’s instructions. For DNase 

digestions DNase I stock solution [Qiagen, Crawley, UK] was prepared by 

injection 500 μL of RNase free water into the DNase vial using a needle and 

syringe and gently mixed. Aliquots of the stock solution were made and stored a 

-20oC. For use in RNA extractions, 350 μL of buffer RW1 was added to the spin 

column and centrifuged at 13000 rpm for 15 seconds and flow-through 

discarded. A solution containing 10 μL of DNase I stock and 70 μL buffer RDD was 

added directly onto the RNeasy column membrane and incubated at room 

temperature for 20 minutes. Next, buffer RW1 was added to the column and 

centrifuged to 13000 rpm for 15 seconds where again flow-though was discarded. 

Following DNase digestion, 700 μL of buffer RW1 was added to the spin column, 

centrifuged at 13000 rpm for 15 seconds and flow-though discarded. Following 

this, two wash stages using 500 μL of buffer RPE and centrifugation at 13000 rpm 

for 15 seconds occurred before removal of the spin column into a fresh 2 mL 

collection tube for an additional centrifugation at 13000 rpm for 1 minute to dry 

the membrane. The column was then placed in a 1.5 mL microfuge tube and 30 

μL of RNase free water added directly to the membrane before centrifugation at 

13000 rpm for 1 minute to elute the RNA. Finally the resultant RNA was placed 

back upon the membrane and centrifuged again to ensure the maximum release 

of RNA from the column. RNA was then collected and quantified using a 

spectrophotometer or stored at -20oC until required. 
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  RNA Quantification 

To assess the concentration and quality of the RNA extracted from host cells, a 

NanoDrop 1000 spectrophotometer [Thermo Scientific, DE, USA] was used. 

Before RNA was measured the pedestal was wiped clean and background 

corrected with 1.5 μL of RNase free water. Each RNA sample was then measured 

and the RNA concentration recorded as ng/μL. The purity of the RNA was also 

determined using the ratio of the absorbance at 260 and 280 nm, where RNA 

with a 260/280 ratio greater than 1.8 was deemed to be of high enough quality 

for gene expression studies. Samples were either used immediately for cDNA 

synthesis or stored at -20oC until required. 

  cDNA synthesis 

Complementary DNA (cDNA) was synthesised using the high-capacity cDNA 

reverse transcription kit [Life technologies, Paisley, UK]. For each samples a 2 x 

RT master mix was made using 2.0 μL 10 x RT buffer, 0.8 μL 25 x dNTP mix (100 

mM), 2.0 μL of 10 x RT random primers, 1 μL of Multiscribe reverse 

transcriptase, 1 μL of RNase inhibitor and 3.2 μL of RNase-free water. 10 μL of 2 

x RT master mix was added to 10 μL of RNA sample and centrifuged at 1000 rpm 

for 2 minutes to remove air bubbles. Samples were then loaded on to the “T 

professional basic gradient thermocycler” [Biometra, Gooettingen, Germany] 

using the following thermal cycling conditions: 10 minutes at 25oC followed by 

120 minutes at 37oC and finally 5 minutes at 85oC. Samples were then placed on 

ice to be used immediately for qPCR or stored at -20oC until required. 

  qPCR of genes using SYBR® GreenER™ 

Gene expression was analysed using SYBR® Green [Invitrogen, Paisley, UK] based 

qPCR using GAPDH as a housekeeping gene (Barber et al., 2005). The primers 

used are shown in the table below (Table 2.4). Briefly, 1 μL of cDNA was added 

to a master mix containing 12.5 μL of SYBR® GreenER™, 10 μL of RNase-free 

water and 1 μL of forward/reverse primers. The thermal profile was as follows: 2 

minutes at 50oC, 10 minutes at 95oC, followed by 40 cycles of 15 seconds at 95oC 

and 60 seconds at 60oC. For each primer set a dissociation curve was performed 

to confirm the presence of only one product. For this the thermal cycle was as 
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follows: 60 seconds at 95oC, 30 seconds at 55oC and 30 seconds at 95oC. Three 

independent replicates for each parameter were analysed in duplicate using the 

MxProP Quantative PCR machine and MxProP 3000 software [Stratagene, 

Amsterdam, Netherlands]. 

Gene expression was normalised to the housekeeping gene GAPDH according to 

the 2-ΔCt method, and then quantified using the 2-ΔΔCt method to calculate the 

expression of gene transcripts relative to the media control (Livak and 

Schmittgen, 2001). Using GAPDH  as an endogenous control, the ΔCt value was 

calculated (ΔCt = Ct (gene of interest) – Ct (GAPDH)). This was performed for 

each gene tested. The relative gene expression of each gene was the calculated 

using the formula ΔΔCt = ΔCt (test sample) – ΔCt (control samples). This was also 

able to be expressed as fold change relative to the control samples with the 

formula (fold change = 2-ΔΔCt). 

Table 2.4 Primer sequences used in cell qPCR 

 
Target 

 
Primer Sequence  (5’-3’) Reference 

IL-8 F- CAGAGACAGCAGAGCACACAA 
R- TTAGCACTCCTTGGCAAAAC 

(Ramage et al., 2012) 

IL-1β F- TCCCCAGCCCTTTTGTTGA 
R- TTAGAACCAAATGTGGCCGTG 

(Locati et al., 2002) 

TNFα F- CCCCAGGGACCTCTCTCTAATC 
R- GGTTTGCTACAACATGGGCTACA 

(Boeuf et al., 2005) 

CXCL5 F- CCCTGGGTTCAGAGACCTCCA 
R- CCAGAAAATTTTGGACGGTGGAAACA 

(Awang et al., 2014) 

GAPDH F- CAAGGCTGAGAACGGGAAG 
R- GGTGGTGAAGACGCCAGT 

(McKimmie et al., 
2008) 

 

  Real time PCR analysis using RT2 Profiler Array 

Following initial gene expression analysis using single primer set to measure gene 

expression. Analysis was carried out using real time PCR (qPCR) with a custom 

designed RT2 Profiler PCR Array [Qiagen, Crawley, UK]. These arrays use SYBR® 

GreenER™ based real-time PCR but allow for the detection of multiple genes of 

interest simultaneously. 
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  Reverse transcription by RT2 First Strand kit 

cDNA for use in the multiplex assays ‘RT2’ was generated using the RT2 first 

strand kit  [Qiagen, Crawley, UK]. An initial mixture containing 2 μL of 5 x gDNA 

elimination buffer and 10 μL of RNA was incubated at 42oC for 5 minutes before 

chilling on ice for 3 minutes. Following this a reverse transcription mix 

containing 4 μL of 5 x RT buffer, 1 μL of primer and external control mix, 2 μL of 

reverse transcriptase enzyme mix and 3 μL of RNase-free water was added to the 

10 μL of gDNA elimination mixture and incubated for a further 15 minutes at 

42oC. The reaction was stopped by heating the samples to 95oC for 5 minutes 

following which 91 μL of RNAse-free water was added to each reaction tube. 

cDNA was then either used immediately with the RT2 Profiler or stored at -20oC 

until required. 

  Gene expression analysis using the RT2 Profiler 

A master mix prepared with SYBR® GreenER™, cDNA and RNase-free water and 

24 μL was added to each well of the custom RT2 Profiler plate which already 

contained the forward and reverse primers of the genes of interest. In the case 

of our studies the genes of interest were IL-1, IL-1β, IL-6, TNFα, CSF2, CSF3, IL-

8, CXCL1, CXCL3, CXCL5, CCL1 and GAPDH. Thermal cycler conditions were as 

follows: 10 minutes at 95oC followed by 40 cycles of 15 seconds at 95oC and 60 

seconds at 60oC. Two replicates of each condition were used in the RT2 profiler 

and the experiment was performed on two separate occasions. 

  ELISA 

Supernatant from co-cultures were retained to assess the release of pro-

inflammatory protein by ELISA. ELISA kits for TNFα [Invitrogen, Paisley, UK], 

CCL5 [Peprotech, London, UK], IL-8 [Invitrogen, Paisley, UK], IL-6 [Invitrogen, 

Paisley, UK] and IL-1β  [Invitrogen, Paisley, UK] were used according to 

manufacturer’s instructions. Capture antibody (1 μg/mL) was prepared in 

NA2HCO3 and 100 μL added to each well of a Nunc™ Maxisorp® flat bottomed 

microtitre plate [Fisher, Loughborough, UK]. Plates were sealed and incubated 

overnight at 4oC. Contents were then discarded and washed with 300 μL of wash 

buffer of PBS containing 500 μL Tween 20 /L. Plates were then blocked with 300 
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μL of assay buffer containing 0.5% bovine serum albumin (BSA) for 1 hour at 

room temperature to block non-specific binding.  After incubation, contents 

were discarded and 100 μL of each sample loaded in duplicate as well as 

standards of known concentrations ranging from 2000 – 31.25 pg/mL. At this 

time detection antibody was diluted to 0.04 μg/mL in assay buffer and added to 

each well containing sample or standard. Plates were then sealed and incubated 

for 2 hours at room temperature on a shaking platform at 700 rpm. Following 

incubation the contents of the plate were discarded and 100 μL of detection 

antibody diluted to 0.04 μg/mL in assay buffer added to each well before a 

further incubation of 2 hours at room temperature at 700 rpm. Next, the plate 

was washed and 50 μL of a 1/2500 dilution of streptavidin-HRP in assay buffer 

was added to each well for a further 30 minute incubation shaking at 700 rpm. 

Finally, the supernatants were discarded and 100 μL of 3,3’,5,5’-tetra-

methylbenzide (TMB) [R&D Systems, Abingdon, UK] was added to each well and 

incubated in the dark for 30 minutes before addition of 100 μL 1 mM HCL to stop 

the reaction. Absorbance was read using a plate reader [FLUOstar Omega BMG 

Labtech, VA, USA] at 405 nm with a 650 nm wavelength correction. A standard 

curve was constructed by plotting the mean absorbance for each standard 

against the appropriate protein concentration and the R-squared calculated 

using a computer program [Omega analysis software, VA, USA]. Results were 

calculated using a 4-parameter curve fit to determine the concentration of 

protein release in samples tested. All samples were tested in triplicate on three 

individual occasions. 

  Luminex 

Supernatants harvested from cells after co-culture were tested for the presence 

of IL-1β, TNFα, IL-8, IL-6 and CSF2 using Luminex® multiplex beads [Invitrogen, 

Paisley, UK] according to the manufacturer’s instructions. 25 μL of 1x beads (2.5 

x 106 beads/mL/cytokine) stock solution with defined spectral properties 

covalently conjugated to specific monoclonal antibodies, diluted in working 

wash solution was added to a 96 well filtered bottom plate provided in the kit 

and incubated for 30 seconds before washing by vacuum manifold. Next, 50 μL of 

cell culture supernatant and standards were added to the appropriate wells and 

incubated on an orbital shaker (500 rpm) for 2 hours at room temperature in the 
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dark. Known concentration of standards provided by the manufacturer were as 

follows; IL-1β (11000 pg/mL), TNFα (4000 pg/mL), IL-8 (5200 pg/mL), IL-6 (4700 

pg/mL) and CSF2 (10000 pg/mL). After a further three washes using the vacuum 

manifold to remove unbound protein, 100 μL of biotinylated detection antibodies 

were added to each well and incubated for a further 1 hour at room 

temperature on an orbital shaker (500 rpm). After incubation two washes were 

performed using the vacuum manifold to remove any excess antibody and 100 μL 

of Streptavidin-R Phycoerythrin (Streptavidin-RPE) added incubated for 30 

minutes on the orbital shaker (500 rpm) at room temperature. Finally, the plate 

was washed a final three times using the vacuum manifold before addition of 

100 μL working wash solution to allow the reaction to be analysed using 

Luminex® 100 hardware [Luminex, USA]. The standard curves were obtained 

using a five-parameter algorithm and samples measured were from three 

independent experiments. 

 Caspase-3 ELISA 

OKF6-TERT2 epithelial cells were challenged with bacterial biofilms for 4 and 24 

hours and apoptosis measured by determining the presence of caspase-3 using 

the Caspase-3 (active) human ELISA kit [Invitrogen, Paisley, UK] according to the 

manufacturer’s instructions. Epithelial cells were collected in PBS by using a cell 

scraper to remove them from the bottom of 24 well plates. Cells were then 

washed in PBS three times before being centrifuged for 10000 rpm to obtain a 

cell pellet. Supernatants were discarded and cells were lysed for 30 minutes at 

room temperature with 1 mL of cell extraction buffer [FNN0011, Invitrogen, 

Paisley, UK] supplemented with 1 mM phenylmethanesulfonyl fluoride [Sigma-

Aldrich, Dorset, UK] and 500 μL protease inhibitor cocktail [Sigma-Aldrich, 

Dorset, UK] per 5 mL cell extraction buffer. Lysates were then centrifuged at 

13000 rpm for 10 minutes at 4oC and the clear lysates used immediately or 

stored at -80oC until required. 

Caspase-3 (active) Human ELISA kit is a solid phase sandwich ELISA. Cell lysates, 

diluted 1:10 in standard diluent buffer and diluted standards (ranging from 2.5-

0.39 pg/mL) were added to the appropriate microtitre wells of the plate 

provided and incubated for 2 hours at room temperature. The plate provided 
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had been pre-coated with a monoclonal antibody specific for human caspase-3. 

Following incubation wells were washed using the wash buffer provided and 

complete drying ensured before the addition of caspase-3 detection antibody 

and further incubation for 1 hour at room temperature. After incubation wells 

were washed again with wash buffer and anti-Rabbit HRP added to the wells for 

30 minutes at room temperature. Wells were then washed for a final time before 

the addition of stabilized chromogen added and colour change observed for 30 

minutes at which point stop solution was added and plate read at 450nm. The 

plate reader was banked using a chromogen blank composed of stabilized 

chromogen and stop solution. A standard curve from which the unknown samples 

could be quantified was generated using a four-parameter algorithm to calculate 

the concentration of caspase-3 in the samples. 

 LDH assay 

To measure cell viability after co-culture an LDH-cytotoxicity colorimetric assay 

kit II [Promega, Wisconsin, USA] was used according to manufacturer’s 

instructions. Lactate dehydrogenase (LDH) is a stable enzyme in all cell types 

released into supernatant after damage to cell membrane. Briefly, cells 

supernatants from co-cultures were plated in a 96-well round bottomed Costar® 

microtitre plate [Sigma-Aldrich, Dorset, UK] with blank media controls and a LDH 

standards ranging from 1000 – 3.9 ng/mL. 100 μL of LDH reaction mix was added 

to each well and incubated for 30 minutes at room temperature. After 

incubation, the reaction was stopped by adding 10 μL of stop solution provided 

and absorbance read at 450 nm with a reference wavelength of 650 nm. 

Percentage cytotoxicity was measured as per manufacturer’s instructions. The 

calculation is as follows: Cytotoxicity (%) = (Test sample – untreated 

control)/(Positive control – untreated sample) 

 AlamarBlue® viability assay 

AlamarBlue®  [Invitrogen, Paisley, UK] was used to measure both bacterial and 

cell viability following stimulation. Biofilms and cell supernatants were removed 

and then biofilms and cells were carefully washed with PBS before addition of 

AlamarBlue® at 1:10 dilution in appropriate media and incubated for 4 hours at 

37oC in 5% CO2. Following incubation, the absorbance was read at 570 nm and 
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the reference wavelength at 600 nm. The percentage reduction in viability was 

calculated according to the manufacturer’s instructions. To calculate the 

percentage viability the following calculation was used; 

[(ε0X)λ2Aλ1 – (ε0X)λ1Aλ2 / (εRED)λ1A’λ2 – (εRED)λ2A’λ1] x 100 

λ1 = 570 nm  λ2 = 600 mn 

(ε0X)λ2 = 117,216, (ε0X)λ1 = 80,586, (εRED)λ1 = 155,677, (εRED)λ2 = 14,652 

Aλ1 = OD reading for test well,  Aλ2 = OD reading for test well 

A’λ1 = OD reading for negative control, A’λ2 = OD reading for negative control 

For each experiment this was performed in triplicate of three separate 

occasions. 

 Use of active compounds in periodontal co-culture 

Chlorhexidine (CHX) [Sigma-Aldrich, Dorset, UK] and resveratrol (RSV) [Sigma-

Aldrich, Dorset, UK] were used to test the potential of the co-culture model as a 

novel compound testing platform. CHX solution was prepared at 0.01, 0.05 and 

0.2% (v/v) in d-KSFM for antimicrobial testing. Biofilms were treated for 30 

minutes with each concentration before washing with PBS to remove any excess 

compound before co-culture with oral epithelial cells. RSV powder was 

solubilised in ddH2O prior to preparation in d-KSFM at 0.01, 0.05 and 0.5% v/v for 

use in subsequent cell stimulation studies. Oral epithelial cells were treated for 

30 minutes with each concentration prior to washing with PBS to remove and 

excess compound before co-culture with multi-species biofilms. Co-culture with 

OKF6-TERT2 oral epithelial cells was followed as described in section 2.2.3. 
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 Statistical analysis 

Graph production, data distribution and statistical analysis were performed using 

GraphPad Prism (version 4; La Jolla, CA, USA). Data was assessed to confirm it 

conformed to a normal distribution before and after data transformations using a 

D’Agostino and Pearson omnibus normality test. When the mean of two groups 

were compared Student t-tests was used if data was normally distributed. If the 

mean of more than two groups was compared a one-way analysis of variance 

(ANOVA) was used to investigate significant differences between independent 

groups of data that approximated to a Gaussian distribution. When the mean of 

two or more groups at multiple time points was compared a two-way ANOVA was 

used. A Bonferroni correction (2-way ANOVA) or Tukey’s post test (1-way ANOVA) 

was applied to the p value to account for multiple comparisons of the data. The 

number of comparisons was determined by the number of groups which were 

compared each analysis. Non-parametric data was analysed using the Mann-

Whitney U-test to assess differences between two independent sample groups. 

Student t-tests were used to measure the statistical differences between the ΔCt 

values of the two independent groups assessed in gene expression studies, 

although the data may be represented as percentage or fold change in the 

figures. Statistical significance was achieved at p <0.05 for all analysis.
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3 The role of Porphyromonas gingivalis strain 

variation in oral biofilms and influencing 

epithelial host responses in vitro 
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3.1 Introduction 

The obligate anaerobe Porphyromonas gingivalis is a Gram-negative 

coccobacillus that is implicated in the pathogenesis of PD (Schmidt et al., 2014, 

Alpagot et al., 1996). Part of Socransky’s ‘red complex’, P. gingivalis is found in 

healthy and diseased oral biofilms with prevalence ranging from 10-25% in health 

and 70-90% in disease (Griffen et al., 1998, Klein and Goncalves, 2003, Alpagot 

et al., 1996). An opportunistic pathogen, P. gingivalis is considered a ‘keystone’ 

species in PD with the ability to alter the quantity and composition of oral 

commensal microflora, which can disrupt the host-microbial balance and cause 

inflammation (Hajishengallis et al., 2011). 

P. gingivalis has been classified into virulent and avirulent strains using animal 

models (Grenier and Mayrand, 1987, Laine and van Winkelhoff, 1998). Strain 

diversity has been shown to play a role in soft-tissue abscess formation (Neiders 

et al., 1989, Ebersole et al., 1995), periodontal bone loss (Baker et al., 2000a), 

serum antibody response (Katz et al., 1996), systemic immune response 

(Marchesan et al., 2012, Vernal et al., 2009), cell invasion (Eick et al., 2002) and 

death in a Drosophila melanogaster model (Igboin et al., 2011). Strain specific 

variation of P. gingivalis has also been associated with disease severity in 

humans (Griffen et al., 1999, Amano et al., 2000, Igboin et al., 2009). 

Many of the known virulence factors of P. gingivalis are found to vary between 

strains, which may attribute to pathogenicity observed in animal models and 

humans (Imai et al., 2005, Yoshino et al., 2007). Molecular studies suggest that 

the genetic diversity of strains may also correlate with pathogenicity (Igboin et 

al., 2009, Amano et al., 2000, Asai et al., 2005). Capsular strains of P. gingivalis 

have been shown to be more virulent that their non-encapsulated counterparts 

(Brunner et al., 2010, Kunnen et al., 2012). Although the precise reason for this 

virulence is unknown, a variety of capsular components have been shown to 

differ between P. gingivalis strains, which may contribute to varying virulence. 

These include lipopolysaccharides (LPS) (Shapira et al., 1998), proteases 

including gingipains (Bodet et al., 2005, Grenier et al., 2003, Jayaprakash et al., 

2014), peptidylkarginine deiminase (Moelants et al., 2014), haemagglutinins (Liu 
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et al., 2011), fimbriae (Nakagawa et al., 2002, Miura et al., 2005) and outer 

membrane proteins (Imai et al., 2005). 

P. gingivalis is considered a ‘keystone’ species in PD, however, it has been 

shown that approximately 25% of healthy individuals can have this bacteria 

present in oral plaque without consequence (Griffen et al., 1998). Additionally, 

studies have observed that some genotypes of P. gingivalis, such as W83, are 

more associated with chronic periodontitis and periodontal abscesses (Yoshino et 

al., 2007). It is therefore important to study the role strain variation plays in 

biofilm formation and epithelial immune cell responses to understand the role 

strain variation plays in PD susceptibility and progression. 
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3.2 Aims 

It is hypothesized that P. gingivalis strain variation may influence PD severity in 

humans. Therefore, the aim of this chapter was to examine the role of strain 

variation of P. gingivalis ATCC 33277, W83 and W50 in relation to virulence in 

single- and multi-species biofilm formation, and assess the ability of these to 

influence host epithelial cell responses. Additionally, the results would allow an 

appropriate strain to be chosen for further multi-species biofilm studies in this 

thesis. 
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3.3 Results 

 Strain variation does not affect planktonic growth of P. 

gingivalis 

The growth kinetics of P. gingivalis ATCC 33277, W83 and W50 were initially 

assessed to determine if strain variation played a role in growth rate during 

planktonic culture. Each strain was standardized to 1 x 104 bacteria/mL in 

Schaedler’s anaerobic broth and automatically quantified at designated time 

points using a spectrophotometer (OD 650nm). Time points were selected based 

on the current literature citing planktonic growth of P. gingivalis taking 

approximately 48 hours to reach stationary growth phase (Christopher et al., 

2010). No significant difference was observed between strains at each time point 

(Figure 3.1). From these data it was concluded that the log phase of growth for 

experimental use was between 18 and 39 hours, which was in agreement with 

previous findings (Grenier et al., 2001). However P. gingivalis does not typically 

reside planktonically in vivo, therefore the next stage was to determine if P. 

gingivalis strain variation played a role in biofilm formation. 
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Figure 3.1: Planktonic growth of P. gingivalis strains over time 

P. gingivalis ATCC 33277, W83 and W50 were standardized at 1x104 bacteria/ mL 

and grown for 48 hours in Schaedler’s anaerobe broth under anaerobic conditions 

(85% N2, 10% CO2 and 5% H2). Absorbance was measured every three hours where 

possible using the FLUOstar plate reader at 650nm. Data shown are mean ±SD of 

three independent experiments each performed with eight cultures. Statistical 

analysis was performed using a one-way ANOVA to compare each strain at each 

time point. 

 

  Strain variation impacts biofilm formation of P. gingivalis in 

vitro 

To determine if strain variation played a role in biofilm formation each strain 

was grown as described in section 2.1.3. Biofilm formation was assessed by a 

variety of methods, including evaluating the total biomass, enumeration of cell 

numbers by agar plate counts and qPCR, and visual inspection by SEM. 

Collectively, these data showed that significant differences were observed 

between strains when comparing biofilm formation. 
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When measuring the biomass of each P. gingivalis strain, i.e. the total cellular 

and ECM composition, the total biomass measured by crystal violet showed 

significant differences between strains (Figure 3.2). The biomass of P. gingivalis 

W83 single-species biofilms was 0.43 OD, which was significantly higher than 

0.095 OD of ATCC 33277 (p<0.05) and 0.095 OD of W50 (p<0.05) biofilms. 

 

Figure 3.2: Biomass of mature single species P. gingivalis biofilms.  

P. gingivalis ATCC 33277, W83 and W50 were standardized at 1x107 bacteria/ mL 

and grown for four days in AS under anaerobic conditions. Growth was measured 

by crystal violet staining of the biofilms and measured using FLUOstar plate 

reader at 570nm. Data shown are mean ±SD of four independent experiments 

each with triplicate cultures normalized to the AS control. Statistical analysis 

was performed using a one-way ANOVA to compare each strain (* p<0.05). 

 

As previously stated, biofilms are made up of both the bacteria and ECM which 

the bacteria produce. Although significant differences in the total biomass 

between each P. gingivalis strain was observed, this does not determine the 

total number of bacteria found in each biofilm. Therefore, to further elucidate if 

strain variation played a role in biofilm formation, quantification P. gingivalis in 

biofilms was then measured by plate counting and qPCR. 
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First, the Miles and Misra counting method (Miles et al., 1938) was used on 

sonicated biofilms to measure the number of live CFUs recoverable from each 

biofilm (Figure 3.3). Differences were shown between the number of recoverable 

bacteria in each biofilm, with significant differences between W83 (P<0.01) and 

both the ATCC 33277 and W50 strains, which contained 1.89 and 1.85 times less 

cells, respectively. 

 

Figure 3.3: Viable cell recovery from single species P. gingivalis biofilms 

P. gingivalis strain ATCC 33277, W83 and W50 were grown as single species 

biofilms for 4 days in the anaerobic chamber. Bacteria were sonicated in PBS for 

10 minutes in a sonic bath and viable bacteria enumerated by using Miles and 

Misra plate counting method on FAA plates supplemented with 5% horse blood. 

Data shown are mean ±SD of nine independent biofilms enumerated in triplicate. 

Statistical analysis was performed using a one-way ANOVA to compare each 

strain (** p<0.01). 

 

To supplement the quantification data using the Miles and Misra method, P. 

gingivalis was also quantified using qPCR with which the total number of 

bacteria present in each biofilm was measured. Combined, these two methods 

provided a live and total number of P. gingivalis in each biofilm to give a better 

indication as to whether strain variation influences biofilm formation.  
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Before biofilms could be quantified by qPCR methodologies, DNA from known 

concentrations of each P. gingivalis strain was used to prepare a standard curve 

that could be extrapolated to determine known bacterial counts (Figure 3.4) 

 

Figure 3.4: Standard curves of P. gingivalis strains  

Ten-fold dilutions of DNA from known concentrations of P. gingivalis ATCC 33277 

(i), W83 (ii) and W50 (iii) were used for qPCR and their equivalent Ct used for 

the preparation of a standard curve. Unknown bacterial counts could then be 

quantified by extrapolating from the standard curve. Each DNA dilution was 

assessed in triplicate. 

 

This method allowed the quantification of the total number of bacteria present 

in each P. gingivalis biofilm to be enumerated (Figure 3.5). Significant 

differences in the total number of bacteria were present in each biofilm. P. 

gingivalis W83 single species biofilms contained 8.6 x 106 total bacteria, while 

both P. gingivalis ATCC 33277 and W50 single species biofilms contained 

significantly less bacteria, with a total bacteria count of 1.49 x 104 (p<0.01) and 

6.23 x 103 (p<0.01) respectively. 
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Figure 3.5: Total number of P. gingivalis in single species biofilms 

P. gingivalis strain ATCC 33277, W83 and W50 were grown as single species 

biofilms. Bacteria were sonicated in PBS for 10 minutes and DNA was extracted 

using a Masterpure® Gram Positive DNA extraction kit. Each strain quantified 

using SYBR GreenER based qPCR. All samples were assayed in triplicate on the 

separate occasions. Data represents mean ±SD. Statistical analysis was 

performed using a one-way ANOVA to compare each strain (** p<0.01). 

 

SEM analysis of each P. gingivalis strain as a single species biofilm was 

performed to evaluate and role of strain variation on biofilm architecture 

(Figure 3.6). At low magnification (1500x) the P. gingivalis W83 biofilm appears 

to be the most complex biofilm compared with ATCC 33277 and W50. At higher 

magnifications (5000x and 10000x) ECM can be observed on the biofilms of all 

three P. gingivalis strains; however, it is more prevalent in the biofilms of P. 

gingivalis W83 and in some part of the W50 biofilms.  
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Figure 3.6: SEM of mature P. gingivalis single species biofilms 

P. gingivalis biofilms were grown for 4 days then analysed by SEM at 1500x (i, iv, 

vii), 5000x (ii, v, viii) and 10000x (iii, vii, ix). Biofilms were processed and 

viewed on a JEOL JSM-6400 scanning electron microscope. Single species 

biofilms of P. gingivalis ATCC 33277 (i, ii, iii), W83 (iv, v, vi) and W50 (vii, viii, 

ix) were compared to assess biofilm formation and architecture. At highest 

magnification more ECM (highlighted by arrows) was visible in W83 (vi) and W50 

(ix) biofilms compared with ATCC (iii). 
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  Strain variation impacts exogenous IL-8 degradation in vitro 

The ability of P. gingivalis to degrade inflammatory chemokines such as IL-8 is 

considered to be one of the main virulence factors of the species (Moelants et 

al., 2014). To assess whether strain variation plays a role in the ability of P. 

gingivalis to degrade IL-8, P. gingivalis biofilms were cultured with 300pg/mL 

exogenous IL-8 and degradation of the chemokine measured at 0, 1, 4, and 24 

hours by ELISA (Figure 3.7). Exogenous IL-8 in bacteria free media was used as a 

control to measure any natural degradation of IL-8 over time. All three strains of 

P. gingivalis strains caused significant degradation of IL-8 in vitro compared with 

the bacteria free control at 1, 4 and 24 hours. P. gingivalis W50 reduced 

exogenous IL-8 by 42.33%  (p<0.01), 47.03% (p<0.001) and 44.1 % (p<0.01) at 1, 4 

and 24 hours, respectively. P. gingivalis ATCC 33277 significantly decreased 

exogenous IL-8 by 46.73% (p<0.001), 46.2% (p<0.001) and 89.87% (p<0.001) 

compared with the bacteria free control at 1, 4 and 24 hours, respectively. P. 

gingivalis W83 significantly decreased the levels of exogenous IL-8 in culture by 

83.37% (p<0.001) and 97.23% (p<0.001) at 1 and 4 hours. At 24 hours the levels 

of IL-8 in the W83 culture were undetectable. IL-8 degradation in  culture with 

P. gingivalis W83 was significantly higher than both ATCC 33277 and W50 at 1 

(p<0.01), 4 (p<0.001) and 24 (p<0.001) hours. 
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Figure 3.7: Exogenous IL-8 degradation by P. gingivalis biofilms over time 

P. gingivalis ATCC33277, W83 and W50 biofilms were cultured with 300pg/mL of 

exogenous IL-8 and remaining IL-8 measured at 1, 4 and 24 hours. Exogenous IL-8 

without bacteria present was used as a control. IL-8 was quantified at each time 

point by ELISA. All samples were assayed in triplicate on three independent 

occasions. Data represents mean ±SD (** p<0.01, *** p<0.001, §§ p<0.01, §§§ 

p<0.001). Statistical analysis was performed using a two-way ANOVA. 

 

  Strain variation does not influence epithelial cell IL-8 

protein response in co-culture 

As significant differences in IL-8 degradation were observed between P. 

gingivalis strains, it was then important to determine if strain variation played a 

role in the epithelial cell response to P. gingivalis. Using the hanging basket co-

culture model as described in method 2.2.3, P. gingivalis biofilms were co-

cultured with the orally relevant epithelial cell line OKF6-TERT2 for 4 and 24 

hours and IL-8 protein release measured by ELISA (Figure 3.8 i). P. gingivalis was 

also co-cultured with oral epithelial cells and live planktonic bacteria (ii) as well 

as methanol fixed planktonic bacteria (iii). Filtered (iv) and unfiltered (v) 

supernatants from biofilm culture were also used. S. mitis was used as a 
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negative control for each of the experiments. At 24 hours, co-culture of S. mitis 

biofilms resulted in a 4.55 fold change in IL-8 protein release, which was 

significantly increased compared to a fold change of 0.17 for ATCC 33277 

biofilms (p<0.001), 0.10 for W83 biofilms (p<0.001) and 0.25 for W50 biofilms 

(p<0.001). Fold change was relative to a cells only control containing cells and 

media only. At 4 hours and between each P. gingivalis strain at each time point 

there was no significant difference. Additionally, no significant differences were 

observed in the IL-8 levels measured between strains or the control after co-

culture with live planktonic bacteria or filtered supernatants from bacterial 

biofilms at either time point. In co-cultures using unfiltered biofilm supernatants 

an increase in the IL-8 levels produced by epithelial cells was observed at 4 

hours, with P. gingivalis W50 being significantly (p<0.05) higher than that of the 

S. mitis control. However, no significance was observed between P. gingivalis 

strains at either time point. Using methanol fixed bacteria in co-culture a 

significantly lower level of IL-8 was observed in P. gingivalis ATCC 33277 

(p<0.001) (p<0.01), W83 (p<0.001)(p<0.001) and W50 (p<0.001)(p<0.01) at both 

4 and 24 hours, compared with the S. mitis control. Additionally, significant 

differences were observed between P. gingivalis W83 (p<0.01) and W50 in 

methanol fixed co-cultures. 
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Figure 3.8: Epithelial cell IL-8 response to P. gingivalis  

P. gingivalis ATCC 33277, W83 and W50 were co-cultured with oral epithelial 

cells (OKF6-TERT2) to measure IL-8 production at 4 and 24 hours. P. gingivalis 

was co-cultured as (i) biofilms, (ii) live planktonic cells, (iii) methanol fixed 

planktonic cells, (iv) filtered biofilm supernatants and (v) unfiltered biofilm 

supernatants. S. mitis was used as a control in each condition. IL-8 protein 

release was measured by ELISA. All samples were assayed in triplicate on three 

independent occasions. Data represents mean ±SD (* p<0.05 ** p<0.01, *** 

p<0.001 compared with S. mitis control) (§§ p<0.01 compared with P. gingivalis 

ATCC 33277 and W50). Statistical analysis was performed using a two-way 

ANOVA. 
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  Strain variation does not influence multi-species biofilm 

formation or composition 

While it is essential to understand strain variation in P. gingivalis species by 

investigating each as a single species biofilm, in the oral cavity P. gingivalis is 

found in biofilms with other oral bacterial species (Bao et al., 2014b, Socransky 

et al., 1998). To investigate if P. gingivalis strain variation plays a role in biofilm 

formation, a simple and reproducible multi-species biofilm model representative 

of sub-gingival plaque was developed containing S. mitis, F. nucleatum, A. 

actinomycetemcomitans, as well as each P. gingivalis strain (Section 2.1.4). 

During the growth of these biofilms biomass was measured by the crystal violet 

method described in section 2.1.8 (Figure 3.9), biofilm composition of mature 

biofilm quantified by qPCR (Figure 3.11), and architecture investigated by SEM 

(Figure 3.12).  

 

Figure 3.9: Biomass of multi-species biofilm containing P. gingivalis strains 

Multi- species periodontal biofilms containing P. gingivalis ATCC 33277, W83 and 

W50 were grown on Thermanox™ coverslips. From day 3 P. gingivalis strain were 

added and biomass measured by crystal violet. All samples were assayed in 

triplicate on three independent occasions. Data represents mean ±SD (*** 

p<0.001). Statistical analysis was performed using a one-way ANOVA at each 

time point. 
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During the growth of multi-species biofilms significant differences were observed 

after the addition of P. gingivalis on day 3. On day 5, multi-species biofilms 

containing P. gingivalis W50 have a significantly lower biomass of 0.7 OD 

(p<0.001) compared to both ATCC 33277 and W83 with an OD of 0.9. On day 6 

the biomass of multi-species biofilms containing P. gingivalis ATCC 33277 was 

significantly higher at a 1.19 OD (p<0.001) compared to those containing W83 

and W50, which had an OD of 0.99 and 0.88, respectively. Mature biofilms did 

not show any significant difference in biomass in relation to varying P. gingivalis 

strains.  

To further investigate if P. gingivalis strain variation played a role in mature 

biofilms composition biofilms were quantified further by qPCR. As previously, 

DNA from known concentrations of S. mitis (i), F. nucleatum (ii) and A. 

actinomycetemcomitans (iii) were used to prepare a standard curve that could 

be extrapolated to determine unknown bacterial counts (Figure 3.10). 
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Figure 3.10: Standard curves of each species within multi-species biofilms  

Ten-fold dilutions of DNA from known concentrations of S. mitis (i), F. 

nucleatum (ii) and A. actinomycetemcomitans (iii) were used for qPCR and their 

equivalent Ct used for the preparation of a standard curve. Unknown bacterial 

counts could then be quantified by extrapolating from the standard curve. Each 

DNA dilution was assessed in triplicate. 

 

Biofilm were grown on Thermanox™ coverslips as previously described containing 

P. gingivalis ATCC 33277, W83 or W50. Mature biofilms were sonicated and DNA 

extracted using a Masterpure® Gram Positive DNA extraction kit and composition 

assessed using qPCR (Figure 3.11). Although no statistically significant 

differences were observed in the total number of P. gingivalis in each biofilm, 

biofilms containing P. gingivalis W83 contained 6x more P. gingivalis bacteria 

than those containing ATCC 33277 and W50. A significant difference in F. 

nucleatum was observed in biofilms containing P. gingivalis W83, with 3.99 x 107 

total F. nucleatum compared to 2.2 x 107 (p<0.05) and 7.5 x 106 (p<0.001) total 

F. nucleatum in biofilms containing ATCC 33277 and W50, respectively.  
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Figure 3.11: Total number of each species within multi-species biofilms 

P. gingivalis strain ATCC 33277, W83 and W50 were grown in multi-species 

biofilms. Bacteria were sonicated and DNA was extracted using a Masterpure® 

Gram Positive DNA extraction kit. Each strain quantified using SYBR GreenER 

based qPCR. All samples were assayed in triplicate on the separate occasions. 

Data represents mean ±SD (* p<0.05 *** p<0.001). Statistical analysis was 

performed using a one-way ANOVA for each species within the biofilm. 

 

The architecture of multi-species biofilms containing P. gingivalis ATCC 33277, 

W83 and W50 was analysed by SEM (Figure 3.12). At both low (1500x) and high 

(5000x) magnification no apparent P. gingivalis strain specific differences in 

overall composition of the biofilm were observed. 
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Figure 3.12: SEM of P. gingivalis strains within multi-species biofilms 

Multi-species biofilms were analysed by SEM at 1500x (i, iii, v) and 5000x (ii, iv, 

vii). Biofilms were processed and viewed on a JEOL JSM-6400 scanning electron 

microscope. Multi-species biofilms containing P. gingivalis ATCC 33277 (i, ii), 

W83 (iii, iv) and W50 (vi vii) were compared to assess biofilm formation and 

architecture.  
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  Strain variation influences epithelial cell IL-8 response in 

multi-species biofilms 

To investigate if the P. gingivalis strain variation plays a role in the IL-8 response 

to multi-species biofilms by oral epithelial cells, multi-species biofilms 

containing P. gingivalis ATCC 33277, W83 and W50 were co-cultured with OKF6-

TERT2 cells as previously described section 2.2.3 for 4 and 24 hours and IL-8 

protein release measured by ELISA (Figure 3.13). A co-culture containing no 

biofilm was used as a control. At 4 hours no significant differences in IL-8 release 

by the epithelial cells in response to the biofilms was observed. At 24 hours in 

multi-species biofilms containing P. gingivalis W50 349 pg/mL IL-8 was observed, 

significantly higher than biofilms containing ATCC 33277 or W83, where 111.1 

pg/mL (p<0.001) and 58.7 pg/mL (p<0.001) of IL-8 was observed, respectively.  

 

Figure 3.13: Epithelial cell IL-8 protein response to multi-species biofilms in 

co-culture 

Multi- species periodontal biofilms containing P. gingivalis ATCC 33277, W83 and 

W50 were grown on Thermanox™ coverslips. Biofilms were co-cultured with oral 

epithelial cells as described previously for 4 and 24 h. IL-8 protein release was 

measured by ELISA. All samples were assayed in triplicate on the separate 
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occasions. Data represents mean ±SD (*** p<0.001). Statistical analysis was 

performed using a one-way ANOVA for each time point.  

 

3.4 Discussion 

P. gingivalis is a keystone pathogen which has been shown to influence the oral 

microflora, which in turn may contribute to disease (Hajishengallis et al., 2011). 

Furthermore P. gingivalis strains are classed as virulent or avirulent due to the 

association of certain strains with disease (Griffen et al., 1999). It is therefore 

important when investigating within the field of PD, both in vitro and in vivo, to 

consider the strain of P. gingivalis being used and its relevance to the study. For 

the future work outlined in this thesis creating a complex multi-species biofilm 

model it was imperative a pathogenic strain was chosen for use in the disease-

associated biofilm, therefore three P. gingivalis strains were investigated. 

Strains ATCC 33277, W83 and W50 were selected based on their frequency of use 

for in vitro biofilm modelling (Bao et al., 2014b, Biyikoglu et al., 2012, Bercy 

and Lasserre, 2007). P. gingivalis W83 and W50 are considered virulent strains, 

while ATCC 33277 is considered avirulent (Chen et al., 2004). The data 

presented in this chapter show subtle differences between strains when both 

cultured as single-species and multi-species biofilms, which may be important 

considerations when modelling host-pathogen interactions. 

In the single-species biofilm cultures an increase in the total number of W83 

bacteria by CFU/mL and qPCR was reported when compared to both W50 and 

ATCC 33277. There was  also a trend towards this with respect to overall 

biomass. Many previous studies report finding little or no biofilm formation when 

P. gingivalis is grown as a single species (Periasamy and Kolenbrander, 2009). A 

study by Biyikoğlu et. al. (2012) reported biofilm formation occurred only in less 

virulent strains such as ATCC 33277 when compared to W83 and W50, which are 

classed as more virulent strains in single species biofilm formation (Biyikoglu et 

al., 2012). A caveat to this is that in these studies bacteria are cultured for less 

that 20 hours compared to our own studies were bacteria are cultured for 4 

days. Other studies have shown all three strains tested herein are able to grow 
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as single-species biofilms when cultured for more than 24 hours; however, strain 

variation was not compared (Aruni et al., 2012, Capestany et al., 2006, Lo et al., 

2009). Additionally, Kuboniwa et al (2009) observed variations in biofilm 

formation based on fimbriae length and type of proteinase release when using 

mutant strains (Kuboniwa et al., 2009). This study showed that  long fimbriae 

(FimA) promoted early biofilm formation while short fimbriae and lysine-specific 

proteases had a more suppressive function and strain specific variations within 

fimbriae and proteases may relate to the differential biofilm formation observed 

in these studies. 

The ability of P. gingivalis single-species biofilms to degrade IL-8 was also 

observed, with W83 being most proficient compared to ATCC 33277 and W50. P. 

gingivalis produce arginine-specific-gingipains and lysine-specific-gingipains, 

known to degrade cytokines, the genes of which are highly conserved between 

strains (Stathopoulou et al., 2009). However, it has been reported that the 

amounts and forms of gingipains produced and secreted is strain dependant 

(Potempa et al., 1995). This may explain the strain dependant differences 

observed in this work, and correlates with studies by others where more virulent 

strains are more effective at cleaving cytokines such as IL-8 compared to their 

avirulent counterparts (Jayaprakash et al., 2014, Fletcher et al., 1998).  

Significant degradation of IL-8 observed in co-culture of OKF6-TERT2 oral 

epithelial cells with P. gingivalis biofilms compared to S. mitis biofilms confirms 

our previous finding of the specific ability of P. gingivalis to degrade IL-8. 

Interestingly significant reductions in IL-8 protein release by OKF6-TERT2 cells 

were observed in co-culture with methanol fixed planktonic P. gingivalis 

compared to methanol fixed S. mitis. This may be due to a lack of response by 

the OKF6-TERT2 cells to the P. gingivalis as the methanol fixation prevents P. 

gingivalis from releasing virulence factors or shedding LPS which is known to 

stimulate pro-inflammatory cytokines from resident immune and tissue cells 

(Dias et al., 2008). Alternatively, the low IL-8 protein release observed when 

using single species P. gingivalis biofilms may be due to the fact that host cells 

do not respond highly to P. gingivalis. A study by Palm et al (2014) found no 

significant increase in CXCL8 protein release when human gingival fibroblasts 
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(HGF) were cultured with planktonic or heat killed P. gingivalis W50 and ATCC 

33277 which may suggest OKF6-TERT2 epithelial cells may not respond to P. 

gingivalis in planktonic states (Palm et al., 2014), a finding correlating with the 

data produced by Peyyala et al who found a significantly lower IL-8 response by 

oral epithelial cells to planktonic cells when compared to single species 

bacterial biofilms (Peyyala et al., 2011). Live planktonic P. gingivalis and 

supernatants from biofilms and live bacteria elicit no significantly different 

response compared with their S. mitis controls. A study co-culturing P. gingivalis 

with human gingival epithelial cells observed IL-8 protein release of less than 50 

pg/mL for both live and heat killed P. gingivalis at MOI 10:1 (Stathopoulou et 

al., 2010). This suggests that IL-8 degradation plays a minor role in host 

responses to P. gingivalis alone and correlates with our own findings of a low IL-

8 response to P. gingivalis biofilms, planktonic cells, methanol fixed cells and 

supernatants. Alternatively, although gingipains are able to be secreted it is 

possible that there are not enough present in the supernatants of our 

experiments to cause an effect on the IL-8 response by OFK6-TERT2 cells. 

As previously discussed, P. gingivalis is not found alone in the oral cavity and 

studies have shown many mutualistic relationships between it and other species 

of the oral microbiome (Periasamy and Kolenbrander, 2009). To investigate P. 

gingivalis strain heterogeneity in multi-species biofilms we used the simple four 

species biofilm model developed in our lab (Sherry et al., 2013). In a multi-

species biofilm the strain of P. gingivalis did not affect the final biomass, 

however, there was significantly more F. nucleatum bacteria when biofilm 

composition was quantified by qPCR. F. nucleatum has been shown to facilitate 

P. gingivalis adhesion to multi-species biofilms due to its ability to co aggregate 

with both aerobic and anaerobic bacteria (Diaz et al., 2002, Bradshaw et al., 

1998). Other studies investigating the role of P. gingivalis on biofilm formation 

observed no change in biofilm composition (with the exception of Tannerella 

forsythia) using a variety of strains, including  both arginine-gingipain and lysine-

gingipain mutants (Bao et al., 2014b). 

When our multi-species biofilms containing the P. gingivalis strains were co-

cultured with OKF6-TERT2 oral epithelial cells no significant differences where 
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found between strains at 4 hours, however, at 24 hours significantly more IL-8 

was present in cultures using biofilms containing P. gingivalis W50 compared 

with W83 or ATCC 33277. As previously discussed, gingipains and other proteases 

produced by P. gingivalis play an important role in the virulence of the species 

and its ability to degrade pro-inflammatory cytokines. Additionally, strain 

specific variation of the quantity and forms of gingipains may further segregate 

P. gingivalis at a species specific level. Multi-species biofilms containing P. 

gingivalis ATCC 33277 have also been shown to significantly reduce IL-8 protein 

levels over time in co-culture with gingival epithelial cells, whereas biofilms 

without this species were unable to do so (Belibasakis et al., 2013b). Studies 

have observed that P. gingivalis W50 sheds significantly higher amounts of 

bacterial LPS and low levels of secreted gingipains compared to P. gingivalis 

ATCC 33277 (Jayaprakash et al., 2014), either one of which may contribute to 

the results observed in our study. 

One of the main limitations of this study was the ability to grow P. gingivalis as 

single species biofilms. As can be seen in the SEM images of each of the strains 

grown as single species P. gingivalis forms scant biofilms with little coverage 

across the surface of the coverslip. Studies of P. gingivalis biofilm formation 

show that species differ in their ability to form biofilms, with one study showing 

P. gingivalis W83 and W50 unable to form single species biofilms, ATCC 33277 

able to adhere to the surface to form a biofilm but not increase biomass over 

time, and P. gingivalis 381 able to form a biofilm and grow on the surface when 

cultured for 4-16 hours (Biyikoglu et al., 2012). Both W83 and W50 have been 

reported to form biofilms in a 40 day culture by Lo et. al. (2009) and Ang et al 

(2008) who analysed the transcriptome and proteome, respectively. These 

studies observed up regulation of C-terminal domain family surface adhesins and 

proteinases including arginine-specific proteases, hemagglutinin protein A and 

zinc carboxypeptidase as well as metabolic enzymes and transport related genes 

in P. gingivalis biofilms compared with planktonic cells (Lo et al., 2009) (Ang et 

al., 2008). Time may play a role in the ability of P. gingivalis to form a single 

species biofilm as the cultures described herein are for 96 hours as opposed to 4-

16 hours where no biofilm formation was observed and 40 days where biofilm 

formation was. The time allowed for biofilms to develop may also play a role in 
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how epithelial cells respond to P. gingivalis, as little response was seen in co-

culture in our work. Future studies investigating the role of P. gingivalis strain 

variation may benefit from leaving P. gingivalis single species biofilms to 

develop longer into more robust biofilms. 

From this work P. gingivalis W83 was selected for further studies of complex 

multi-species biofilms. This was due to its potent ability to degrade IL-8 

observed co-culture with both single and multi-species biofilms and confirmation 

by others of its virulent status and association with PD (Griffen et al., 1998). 

 

CHAPTER FINDINGS 

Biofilms of P. gingivalis W83 have an increased composition compared to 

W50 and ATCC 33277. 

Biofilms of P. gingivalis W83 degrade exogenous IL-8 better than W50 and 

ATCC 33277. 
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4 Development and validation of three multi-

species oral biofilm models representing the 

phases of plaque development 
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4.1 Introduction 

The oral cavity is home to a large number of complex multi-species microbial 

communities that play an important role in both the health and disease of teeth 

and oral tissue. Over 700 bacterial species are associated with the oral cavity, 

identified using both culture based and genomic techniques, with between 100 

and 200 species present in healthy mouth of any individual (Wade, 2011, Paster 

et al., 2006).  

Oral bacterial communities form complex, highly organized, biofilms (plaque) on 

hard surfaces such as teeth and soft surfaces including the oral tissue (Zijnge et 

al., 2010). Biofilm structures are generated by microbial succession, a non-

random process influenced by interactions between bacterial species, as well as 

between bacteria and the local physical and chemical environment 

(Kolenbrander et al., 2010b). The ability of microbial communities to alter the 

local environment can enable disease-associated succession of pathogenic 

bacteria into biofilms, which in turn can result in diseases such as periodontitis 

and caries (Colombo et al., 2009). Due to the large number of bacteria 

associated with both supra- and sub-gingival plaque, studying the roles of 

bacteria in oral biofilms is difficult. Therefore, multiple in vitro models have 

been devised to study oral biofilms and their interactions, both within the 

biofilm itself and within the local environment. 

Many groups have developed multi-species biofilm models for investigating 

biofilm formation, architecture, and interactions with host cells using a variety 

of methods (Guggenheim et al., 2009, Peyyala et al., 2013, Belibasakis et al., 

2011a, Shapiro et al., 2002, Blanc et al., 2014, Foster and Kolenbrander, 2004). 

These models use defined bacterial consortia to provide well-controlled 

conditions, using both static and flow systems. Within these systems there are 

variables such as inoculum, including bacterial culture media, human saliva and 

different bacterial densities, and substrates such as rigid gas permeable lenses 

or hydroxyapatite disks, each confer unique advantages depending on the 

research questions being investigated (Ammann et al., 2012). Static models 

contain limited nutrients and aeration, but enable rapid quantification of 
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biomass, species-specific roles in biofilm formation, and allow orally relevant 

antimicrobial compounds to be evaluated (Belibasakis and Thurnheer, 2014, 

Kinniment et al., 1996b, Ammann et al., 2013a). Flow cell models are more 

labour intensive and typically require specialized equipment; however, they 

allow studies of physical and chemical resistance of biofilms as well as 

preferential examination of bacterial species in systems where replenishing 

nutrients and shear forces play a role (Periasamy and Kolenbrander, 2009, 

Corbin et al., 2011, Saunders and Greenman, 2000). Collectively, these studies 

show the wide range of options and variables to consider when developing oral 

biofilms, each which have advantages and disadvantages depending on 

downstream applications. 

Most studies focus on a single multi-species biofilm model when examining 

research questions, and currently little is known about differing biofilm 

characteristics when biofilms contain health-associated bacteria compared with 

disease-associated bacteria. While it is known that different bacterial species 

present in plaque are associated with either health or disease, few studies 

model the differences in biofilm development and composition when shifting 

between the two states (Teles et al., 2012). Previous studies modelling microbial 

population shifts have focused on the effect of antimicrobials on disease biofilm 

models, finding shifts in the biofilm composition following treatment (Ready et 

al., 2002, McBain et al., 2003). Dalwai et. al (2006) observed shifts in the 

microbial composition of both dual species and complex microcosm models when 

removed from aerobic conditions and exposed to a microaerophilic atmosphere 

more associated with gingivitis (Dalwai et al., 2006). Using confocal laser 

scanning microscopy this study also found the distribution of dead bacteria in 

the biofilm was dynamic, moving from being predominantly at the attachment 

site to more widely observed throughout the biofilm as conditions shifted from 

health to disease. More recently, Peyyala et. al. (2013) used three different 

multi-species biofilm models to show that biofilm composition can also influence 

epithelial cell protein response in co-culture (Peyyala et al., 2013). These 

findings emphasise the need to further understand the unique characteristics of 

multi-species biofilms due to microbial composition and how this may influence 

the host response in different states.  



Chapter 4: Development and validation of three multi-species oral biofilm models representing 

the phases of plaque development 

 106 

4.2 Aims 

It is believed that the composition of oral biofilms may play a role in the 

modulation of the host immune response and subsequent disease progression in 

the oral cavity.   

Therefore, the aim of this study was to create and validate three reproducible 

defined multi-species biofilm models in vitro to mimic health-associated, 

intermediate and disease-associated plaque, containing orally relevant bacteria 

which could be used in further downstream analyses. 
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4.3 Results 

 Quantification of bacteria for developing biofilm models 

Based on the current literature the bacteria selected for the three multi-species 

biofilm models were are follows; S. mitis, S. intermedius, S. oralis, F. 

nucleatum, F. nucleatum ssp. vincentii, A. naeslundii, V. dispar, P. gingivalis, P. 

intermedia and A. actinomycetemcomitans (Guggenheim et al., 2009, Socransky 

et al., 1998). An initial step was taken to ensure optimum growth of these 

bacteria in the laboratory and determine the optical density to standardize them 

to 1 x 108 CFU/mL for use in the models, a concentration which other groups use 

when developing models of their own (Guggenheim et al., 2001a, Park et al., 

2014).  

S. mitis, S. intermedius, S. oralis and A. actinomycetemcomitans were grown in 

TSB in 5% CO2 for 24 hours. V. dispar, A. naeslundii and P. intermedia were 

grown in BHI for 48 hours in the anaerobic cabinet and F. nucleatum, F. 

nucleatum ssp. vincentii and P. gingivalis were grown in Schaedlers anaerobic 

broth in the anaerobic cabinet for 48 hours. Following incubation all bacteria 

were standardized at a range of different OD’s and counted using the Miles and 

Misra plate counting method. From this we observed that an 0.5 OD550 for SM, SI, 

SO and VD and an 0.2 OD550 for FN, FNV, AN, PI, PG and AA gave ~1 x 108 CFU 

/mL for each species (Figure 4.1). 
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Figure 4.1: Enumeration of standardized bacteria 

Bacterial species S. mitis (SM), S. intermedius (SI), S. oralis (SO), F. nucleatum 

(FN), F. nucleatum ssp. vincentii (FNV), A. naeslundii (AN), V. dispar (VD), P. 

gingivalis (PG), P. intermedia (PI) and A. actinomycetemcomitans (AA) were 

cultured in broth in either anaerobic conditions or 5% CO2. Following culture, 

bacteria were standardized to 1x108 CFU/mL at 0.5 OD550 for SM, SI, SO and VD, 

and 0.2 OD550 for FN, FNV, AN, PG, PI, and AA. Viable bacteria were enumerated 

using Miles and Misra plate counting method on appropriate agar plates. Data 

shown are mean ±SD of three independent cultures enumerated in triplicate.  

 

In order to quantify species within multi-species biofilms a sensitive and specific 

method was required. One method available is quantitative PCR, which uses 

species specific primers to determine species present in both clinical plaque 

samples and the total composition of multi-species biofilm models (Ammann et 

al., 2013b, Fernandes et al., 2014). For each species used in the multi-species 

biofilms known concentrations of DNA (1 x 103-108 CFU /mL) were used to 

prepare a standard curve to determine unknown bacterial counts from both 

planktonic bacteria and biofilms (Figure 4.2). The R2 value was used to 

determine the fit of the line. Each bacterial species R2 values ranged between  

0.95-0.99 suggesting that the extraction method used at each concentration 

gave reliable recovery rates for qPCR quantification. 
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Figure 4.2: Generation of standard curves by qPCR 

Planktonic bacterial species S. mitis (SM) [i], S. intermedius (SI) [ii], S. oralis 

(SO) [iii], F. nucleatum (FN) [iv], F. nucleatum ssp. vincentii (FNV) [v], A. 

naeslundii (AN) [vi], V. dispar (VD) [vii], P. gingivalis (PG) [viii], P. intermedia 

(PI) [ix] and A. actinomycetemcomitans (AA) [x] were cultured in broth and 

standardized to 1x108 bacteria/mL. Ten-fold dilutions of DNA from known 

concentrations were extracted using the MasterPure™ gram positive DNA 

purification kit and quantified using SYBR® GreenER based qPCR. The equivalent 

Ct and each concentration were used for the preparation of a standard curve. 

Unknown bacterial counts could then be quantified by extrapolating from the 

appropriate curve. Using linear regression analysis R2 was determined. Data 

shown are mean ±SD of three independent cultures enumerated in triplicate for 

each primer set. 
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Each species was then tested for its ability to grow in artificial saliva (AS), the 

medium used to grow the multi-species biofilm models. This was validated using 

both qPCR to measure total bacteria and Miles and Misra to measure viable 

bacteria and evaluate any differences (Figure 4.3). Each bacterial species was 

standardized to 1 x 108 CFU /mL and diluted to 1 x 107 CFU/mL in AS, where it 

was grown for 72 hours in either 5% CO2 or anaerobically as appropriate for each 

species. The results show all bacteria were able to survive in AS, as shown by the 

viable CFU counts (Figure 4.3 i), and there was no statistical significant 

differences between enumeration by Miles and Misra plate counting method and 

the quantification of each species by qPCR when statistical analysis was 

performed using a two-tailed unpaired t-test. (Figure 4.3 ii). 
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Figure 4.3: Enumeration of bacteria grown in AS by Miles and Misra and qPCR 

Planktonic bacterial species S. mitis (SM), S. intermedius (SI), S. oralis (SO), F. 

nucleatum (FN), F. nucleatum ssp. vincentii (FNV), A. naeslundii (AN), V. dispar 

(VD), P. gingivalis (PG), P. intermedia (PI) and A. actinomycetemcomitans (AA) 

were cultured in broth and standardized and diluted to 1 x 107 bacteria/mL. 

Bacteria were then added to AS and cultured for 72 hours in either 5% CO2 or 

anaerobic conditions. Viable bacteria were enumerated using Miles and Misra 

plate counting method on appropriate agar plates [i]. Total bacteria were 

quantified using SYBR® GreenER based qPCR [ii]. Data shown are mean ±SD of 3 

cultures per bacteria performed in triplicate. Statistical analysis was performed 

using a two-tailed unpaired t-test. 
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 Analysis of multi-species biofilm maturation and composition 

Once each bacterial species was known to survive in AS, multi-species biofilms 

were developed. The three plaque phases selected were: a health-associated 3 

species biofilm containing S. mitis, S. intermedius and S. oralis; an intermediate 

7 species biofilm (biofilms progressing from health to disease) containing S. 

mitis, S. intermedius, S. oralis, F. nucleatum, F. nucleatum ssp. vincentii, A. 

naeslundii and V. dispar; and a 10 species disease-associated biofilm containing 

S. mitis, S. intermedius, S. oralis, F. nucleatum, F. nucleatum ssp. vincentii, A. 

naeslundii, V. dispar, P. gingivalis, P. intermedia and A. 

actinomycetemcomitans. The architecture of each mature biofilm was then 

assessed by SEM, where noticeable physical differences were observed between 

each model (Figure 4.4). The 3 species biofilms produced a flattened but evenly 

distributed biofilm across the surface (Figure 4.4 i-iii), whereas the 7 species 

biofilms showed formation of heterogeneous micro-colonies on the surface, 

which were distributed unevenly across the surface (Figure 4.4 iv-vi). Finally, 10 

species biofilms were the most complex in terms of biomass and composition, 

with a topographically heterogeneous 3D structure covering the entire surface 

(Figure 4.4 vii-ix).  

To further investigate the development of multi-species biofilms over time, SEM 

analysis of the 10 species biofilm was assessed each day during culture (Figure 

4.5). These photomicrographs show the initial broad covering of the surface by 

Streptococcus species, similar to the 3 species biofilm, after which time bacteria 

co-aggregate in various micro-colonies, which were observed in the mature 7 

species biofilms. These micro-colonies then appear to expand and merge across 

the entire surface over time resulting in the complex 3D architecture associated 

with the 10 species biofilms. 
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Figure 4.4: SEM analysis of 3, 7 and 10 species biofilms 

Three [i-iii], 7 [iv-vi] and 10 [vii- ix] species biofilms grown on Thermanox® 

coverslips were analysed by SEM at 200x [i, iv, vii], 1500x [ii, v, viii] and 5000x 

[iii, vi ix]. These were processed and viewed on a JEOL JSM-6400 scanning 

electron microscope and images assembled using Photoshop software.  
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Figure 4.5: Maturation of multi-species biofilms 

Ten species biofilms were grown on Thermanox® coverslips and biofilm 

formation was assessed by SEM during development at 24 [i-iii], 48 [iv-vi], 72 

[vii-ix] and 168 [x-xii] hours at 200x [i, iv, vii, x], 1500x [ii, v, viii, xi] and 5000x 

[iii, vi, ix, xii]. Biofilms were processed and viewed on a JEOL JSM-6400 scanning 

electron microscope and images assembled using Photoshop software. 
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species biofilms contained 1.6 x 107 (4.2%) total Streptococcus species; 1.4 x 107 

(63.3%) total F. nucleatum species; 1.2 x 107 (32.34%) A. naeslundii and 2.1 x 106 

(0.04%) V. dispar (Figure 4.6 ii). The mature 10 species contained 1.0 x 107 (11%) 

total Streptococcus species; 1.4 x 107 (17%) F. nucleatum species; 2.4 x 107 

(59.9%) A. naeslundii; 3.2 x 106 (0.12%) V. dispar; 1.6 x 104 (3.72%) P. gingivalis; 

2.9 x 106 (5.5%) P. intermedia and 1.7 x 106 (2.6%) A. actinomycetemcomitans 

(Figure 4.6 iii).  

 

Figure 4.6: Quantification of Biofilms in AS 

Three [i, ii], 7 [iii, iv] and 10 [v, vi] species biofilms were grown on Thermanox® 

coverslips and sonicated for 10 minutes to detach the biofilm from the coverslip. 

Total bacterial DNA was extracted from each biofilm using Masterpure® Gram 

positive DNA extraction kit. The total number of each species [i, iii, v] and 

composition of each biofilm [ii, iv, vi] was quantified using SYBR® GreenER 

based qPCR for the 3, 7 and 10 species biofilms from previously calculated 

standards of each bacterial species. Data shown are mean ±SD for total number 

of bacteria and mean only for biofilm composition of 3 independent experiments 

performed in triplicate. 
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To further understand the composition of the biofilms, a novel SYBR® GreenER 

based qPCR technique as described in section 2.1.14 was used to determine the 

proportion of live bacteria in the total number of each bacterial species present 

(Figure 4.7). In the mature 3 species biofilms 1.9 x 105 live Streptococcus 

bacteria were present, significantly lower than the 5.6 x 107 total number of 

Streptococcus species (p<0.01)(Figure 4.7 i). The mature 7 species biofilms 

showed no significant differences between the number of live bacteria and the 

total bacteria (Figure 4.7 ii). Finally, in the mature 10 species biofilms 

significant differences between the live and total number of bacteria present 

were observed in the Streptococcus species and A. naeslundii, with a log 

difference of 3.31 (p<0.05) and 3.13 (p<0.01) respectively (Figure 4.7 iii). 
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Figure 4.7: Quantification live and total bacteria in multi-species biofilms 

Three [i], 7 [ii] and 10 [iii] species biofilms were sonicated to detach the biofilm 

from the coverslip and half the samples treated with 5 μL of 10 mM of propidium 

monoazide, incubated for 10 minutes in the dark before a 5 minute exposure to 

a 650W halogen light to determine the proportion of live bacteria. Control 

biofilms were not treated with propidium monoazide. Bacterial DNA from 

biofilms was then extracted using the Masterpure Gram-positive DNA extraction 

kit and each species quantified using SYBR® GreenER based qPCR. Data shown 

are mean ±SD of 3 independent experiments performed in triplicate. Statistical 

analysis was performed using a two-tailed unpaired t test (*p<0.05, ** p<0.01). 
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 Quantitative analysis of fresh and frozen multi-species 
biofilms  

Due to the lengthy and labour intensive nature of growing multi-species biofilms 

the effects of freezing biofilms as a means of creating biofilm stocks was 

investigated to maximise efficiency and ensure quality control. The composition 

of fresh mature 3, 7 and 10 species biofilms were compared with biofilms which 

had been stored in -80oC and recovered by culture at 37oC in anaerobic 

conditions in AS for 24 hours prior to DNA extraction and bacterial quantification 

(Figure 4.8). The data show no significant differences between bacterial species 

in fresh and frozen 3, 7 and 10 species biofilms.  

Three species biofilms were not significantly different between fresh and frozen, 

with total Streptococcus species quantified at 4.5 x 106 total bacteria in fresh 

biofilms and 1.3 x 107 bacteria in frozen biofilms (Figure 4.8 i). Additionally, 7 

species biofilms showed no significant differences between fresh and frozen, 

with total Streptococcus species quantified at 1.7 x 106 and 2.0 x 107; F. 

nucleatum at 4.0 x 106 and 3.9 x 107; A. naeslundii at 2.7 x 107 and 8.3 x 107 and 

V. dispar at 1.5 x 104 and 3.5 x 104 for fresh and frozen biofilm, respectively 

(Figure 4.8 ii). Finally,10 species biofilms also showed no significant differences 

between fresh and frozen with total Streptococcus species quantified at 1.3 x 

106 and 1.9 x 106; F. nucleatum at 2.1 x 106 and 7.9 x 106; A. naeslundii at 8.0 x 

106 and 1.6 x 107; V. dispar at 1.4 x 104 and 1.8 x 103; P. gingivalis at 4.1 x 105 

and 9.7 x 103; P. intermedia at 6.5 x 105 and 1.7 x 106 and A. 

actinomycetemcomitans at 3.0 x 105 and 4.9 x 104  for fresh and frozen biofilms, 

respectively (Figure 4. 8 iii). 
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Figure 4.8: Quantification of Fresh and Frozen Biofilms 

Fresh () and frozen () 3 [i], 7 [ii] and 10 [iii] species biofilms were sonicated 

to detach the biofilm from the coverslip. Bacterial DNA from the 3, 7 and 10 

species biofilms was extracted using the Masterpure Gram positive DNA 

extraction kit and each species quantified using SYBR® GreenER based qPCR. 

Data shown are mean ±SD of 3 independent experiments performed in triplicate. 

Statistical analysis was performed using a two-tailed unpaired t-test. 

 

 Quantification of biofilm in culture conditions 

The process of growing multi-species biofilms and then experimentally using in 

co-culture requires biofilms to be exposed to a variety of growth conditions, so 

the composition of biofilms following culture in these conditions was 

investigated. Mature biofilms, some of which contain obligate anaerobes, are co-

cultured with human cells in 5% CO2 therefore 3, 7 and 10 species biofilms were 

i	 ii	

iii	

Strep  FN AN VD PG PI AA
1.0×1000

1.0×1002

1.0×1004

1.0×1006

1.0×1008

1.0×1010

T
o

ta
l n

u
m

b
e
r 

o
f 
b

a
c
te

ri
a

Strep  FN AN VD
1.0×1000

1.0×1002

1.0×1004

1.0×1006

1.0×1008

1.0×1010

Fresh biofilms

Frozen biofilms

1.0×1000

1.0×1002

1.0×1004

1.0×1006

1.0×1008

1.0×1010

Strep

T
o
ta

l n
u

m
b
e
r 

o
f 
b

a
c
te

ri
a



Chapter 4: Development and validation of three multi-species oral biofilm models representing 

the phases of plaque development 

 120 

cultured in AS for 4 and 24 hours at 37oC in 5% CO2 and compared with biofilms 

cultured in anaerobic conditions in AS (Figure 4.9). No significant differences 

were observed in the total number of each bacterial species in either 3, 7 or 10 

species biofilms. 

Three species biofilms were not significantly different between 5% CO2 and 

anaerobic culture, with total Streptococcus species quantified at 7.7 x 107 total 

bacteria in 5% CO2 and 5.1 x 107 bacteria in anaerobic cultures (Figure 4.9 i). 

Additionally, 7 species biofilms showed no significant differences between 5% 

CO2 and anaerobic cultures, with total Streptococcus species quantified at 3.5 x 

107 and 1.6 x 107; F. nucleatum at 9.9 x 105 and 1.4 x 107; A. naeslundii at 2.0 x 

107 and 1.2 x 107 and V. dispar at 8.6 x 104 and 2.5 x 106 for 5% CO2 and 

anaerobic cultures respectively (Figure 4.9 ii). Finally, 10 species biofilms also 

showed no significant differences between 5% CO2 and anaerobic cultures with 

total Streptococcus species quantified at 4.3 x 106 and 1.0 x 107; F. nucleatum at 

1.2 x 106 and 1.4 x 107; A. naeslundii at 1.2 x 107 and 2.4 x 107; V. dispar at 7.0 

x 106 and 3.2 x 106; P. gingivalis at 1.6 x 104 and 2.6 x 104; P. intermedia at 3.9 

x 106 and 2.9 x 106 and A. actinomycetemcomitans at 4.9 x 104 and 1.7 x 106 for 

fresh and frozen biofilms, respectively (Figure 4.9 iii). 
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Figure 4.9: Quantification of Biofilms in AS (CO2) 

Three [i], 7 [ii] and 10 [iii] species biofilms were incubated for 24 hours in AS at 

37oC in either anaerobic () or 5% CO2 () before sonication to detach the 

biofilm from the coverslip. Total bacteria DNA was extracted from each biofilm 

using Masterpure Gram positive DNA extraction kit. The total number of each 

species was quantified using SYBR® GreenER based qPCR from previously 

calculated standards of each bacterial species. Data shown are mean ±SD of 3 

experiments performed in triplicate. Statistical analysis was performed using a 

two-tailed unpaired t-test. 

 

The previous data showed that biofilm composition was not affected by culture 

in 5% CO2 compared with anaerobic conditions. Next the composition of biofilms 
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difference in composition compared to freshly grown biofilms and no significant 

difference in biofilm composition between each time point. 

Three species biofilms were not significantly different when cultured in d-KSFM 

between 4 and 24 hours, with total Streptococcus species quantified at 1.1 x 106 

total bacteria at 4 hours and 3.7 x 106 bacteria at 24 hours (Figure 4.10 i). 

Additionally, 7 species biofilms showed no significant differences each time 

point, with total Streptococcus species quantified at 1.0 x 108 and 2.8 x 107; F. 

nucleatum at 7.2 x 107 and 2.6 x 106; A. naeslundii at 1.3 x 107 and 1.5 x 107 and 

V. dispar at 6.0 x 107 and 5.2 x 107 at 4 and 24 hours respectively (Figure 4.10 

ii). Finally,10 species biofilms also showed no significant differences between 

time points with total Streptococcus species quantified at 2.3 x 107 and 7.2 x 

107; F. nucleatum at 7.2 x 106 and 8.2 x 107; A. naeslundii at 2.4 x 107 and 1.3 x 

107; V. dispar at 4.5 x 107 and 3.1 x 107; P. gingivalis at 7.7 x 104 and 1.6 x 104; 

P. intermedia at 3.6 x 106 and 3.7 x 105 and A. actinomycetemcomitans at 3.5 x 

105 and 1.6 x 105  for fresh and frozen biofilms, respectively (Figure 4.10 iii). 
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Figure 4.10: Quantification of biofilms grown in d-KSFM 

Three [i], 7 [ii] and 10 [iii] species biofilms were cultured for 4 () and 24 () 

hours in d-KSFM in 5% CO2 before biofilms were removed and sonicated. 

Bacterial DNA was then extracted from each biofilm using the Masterpure gram 

positive DNA kit. The total number of each species was quantified using SYBR® 

GreenER based qPCR from previously calculated standards of each bacterial 

species. Data shown are mean ±SD of 3 independent experiments performed in 

triplicate Statistical analysis was performed using a two-tailed unpaired t-test. 

 

Next, the composition of the biofilms following experimental use was 

investigated. Biofilms were co-cultured with oral epithelial cells in d-KSFM at 

37oC in 5% CO2 for 4 and 24 hours before DNA extraction and bacterial 

composition quantified (Figure 4.11). As with the previous conditions no 

significant difference between any of the biofilms compared with freshly grown 

biofilms was observed. Additionally no significant differences were observed 

when comparing each bacterial species at 4 and 24 hours. 
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Three species biofilms were not significantly different when co-cultured with 

oral epithelial cells between 4 and 24 hours, with total Streptococcus species 

quantified at 1.6 x 106 total bacteria at 4 hours and 3.9 x 106 bacteria at 24 

hours (Figure 4.11 i). Additionally, 7 species biofilms showed no significant 

differences each time point, with total Streptococcus species quantified at 6.2 x 

107 and 3.5 x 107; F. nucleatum at 1.3 x 107 and 9.9 x 106; A. naeslundii at 3.7 x 

107 and 2.3 x 107 and V. dispar at 2.2 x 107 and 8.6 x 106 at 4 and 24 hours 

respectively (Figure 4.11 ii). Finally,10 species biofilms also showed no 

significant differences between time points with total Streptococcus species 

quantified at 4.0 x 107 and 4.3 x 106; F. nucleatum at 1.9 x 107 and 1.2 x 106; A. 

naeslundii at 6.9 x 107 and 1.2 x 107; V. dispar at 4.1 x 107 and 7.0 x 106; P. 

gingivalis at 6.8 x 104 and 2.6 x 104; P. intermedia at 4.6 x 106 and 3.9 x 105 and 

A. actinomycetemcomitans at 1.3 x 105 and 4.9 x 104  for fresh and frozen 

biofilms, respectively (Figure 4.11 iii). 
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Figure 4.11: Quantification of biofilms grown in co-culture 

OKF6-TERT2 oral epithelial cells were grown to confluence and seeded at 1 x 105 

cells /mL in 24 well plates. Three [i], 7 [ii] and 10 [iii] species biofilms were co-

cultured with OKF6-TERT2 cells for both 4 () and 24 () hours in d-KSFM in 5% 

CO2. Following co-culture biofilms were removed and sonicated. Bacterial DNA 

was then extracted from each biofilm using the Masterpure Gram positive DNA 

kit. The total number of each species was quantified using SYBR® GreenER based 

qPCR from previously calculated standards of each bacterial species. Data shown 

are mean ±SD of 3 independent experiments performed in triplicate. Statistical 

analysis was performed using a two-tailed unpaired t-test. 
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Finally, the number of live bacteria from biofilms co-cultured with oral 

epithelial cells at 4 and 24 hours was quantified using the live SYBR® GreenER 

based qPCR method (Figure 4.12). No significant differences were observed in 

the number of live bacteria compared with the total number of bacteria in 3 

species biofilms at either time point (Figure 4.12 i-ii). Co-culture of 7 species 

biofilms with oral epithelial cells resulted in significant differences at 4 hours in 

live and total numbers of bacteria, with a 1.86 (p<0.05) log difference of A. 

naeslundii and 1.55 (p<0.05) log difference of V. dispar (Figure 4.12 iii). At 24 

hours a 2.04 (p<0.001) log difference between the live and total number of 

Streptococcus species was observed in 7 species biofilm co-cultures (Figure 4.12 

iv). In the 10 species co-cultures with oral epithelial cells A. naeslundii showed 

significant differences between the live and total number of bacteria, with 2.17 

(p<0.05) and 1.69 (p<0.05) log difference at 4 and 24 hours respectively (Figure 

4.12 v-vi). Additionally, no significant differences were observed when 

comparing the number of live bacteria present in fresh biofilms with those which 

had been co-cultured in d-KSFM 5% CO2 for 24 hours (Table 4.1). 
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Figure 4.12: Live and total bacteria quantification of biofilms grown in co-

culture 

Three [I, ii], 7 [iii, iv] and 10 [v, vi] species biofilms were co-cultured with OKF6-

TERT2 cells for both 4 [i, iii, v] and 24 [ii, iv, vi] hours in d-KSFM in 5% CO2. 

Following co-culture biofilms were removed and sonicated. Half the samples 

were treated with 5 μL of 10 mM of propidium monoazide, incubated for 10 

minutes in the dark before a 5 minute exposure to a 650W halogen light to 

determine the proportion of live bacteria (). Control biofilms (total ) were 

not treated with propidium monoazide. The total number of each species was 

quantified using SYBR® GreenER based qPCR from previously calculated 

standards of each bacterial species. Data shown are mean ±SD of 3 independent 

experiments performed in triplicate Statistical analysis was performed using a 

two-tailed unpaired t test (*p<0.05, ** p<0.01, *** p<0.001). 
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Table 4.1: Comparison of live bacterial species from fresh biofilms or 
following 24 hour co-culture with oral epithelial cells 

  Fresh ±SD 
24 h co-
culture ±SD 

3 species 
biofilm         

SM 1.9 x 105 1.2 x 105 9.6 x 104 2.9 x 104 

7 species 
biofilm         

SM 9.5 x 105 1.2 x 105 3.8 x 106 2.7 x 105 

FN 5.1 x 103 2.4 x 103 4.3 x 103 5.2 x 103 

AN 4.5 x 104 2.7 x 104 4.0 x 105 6.1 x 105 

VD 3.0 x 105 1.1 x 105 4.0 x 105 4.8 x 105 

10 species 
biofilm         

SM 9.6 x 105 5.8 x 105 2.7 x 105 1.0 x 105 

FN 7.2 x 103 5.4 x 103 5.3 x 103 4.9 x 103 

AN 5.2 x 104 3.1 x 104 8.1 x 106 1.1 x 106 

VD 3.6 x 105 1.8 x 105 6.5 x 105 5.8 x 105 

PG 8.7 x 102 6.1 x 102 2.8 x 104 2.5 x 105 

PI 4.6 x 102 1.4 x 102 4.6 x 102 1.9 x 102 

AA 5.0 x 106 3.1 x 106 1.1 x 105 5.0 x 104 
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4.4 Discussion 

Bacteria exist in the oral cavity as multi-species biofilms, where compositional 

changes of specific bacteria can alter the dynamics of the micro-community, 

classifying biofilms as health-associated or disease-associated. In this chapter 

three multi-species biofilm models have been developed and validated for 

further downstream analyses.   

In this study, each of the biofilm models differed both in composition and 

architecture when analysed by SEM. The three species biofilm containing S. 

mitis, S. intermedius and S. oralis biofilms, while less complex than the other 

models due to less bacterial species, successfully formed biofilms that were 

evenly distributed over the surface. This correlated with other studies using 

Streptococcus species, where biofilms were analysed by SEM showing these 

species forming a confluent biofilm across the entire surface of the various 

substrates used (Loo et al., 2000, Lonn-Stensrud et al., 2007). Oral streptococci 

make up 80% of early biofilm species and play an important role in facilitating 

the addition of other bacterial species to the biofilm (Kreth et al., 2009). 

Streptococcal species also compete with each other for binding sites on the 

surface, which in turn can shape the spatial and temporal composition of 

developing oral biofilms (Nobbs et al., 2007).  

The 7 species biofilm model builds on this to allow for the inclusion of F. 

nucleatum, F. nucleatum ssp. vincentii, A naeslundii and V. dispar to create a 

more complex biofilm, which while itself is not considered pathogenic per se, 

contains bacterial species which facilitate the addition of anaerobes typically 

associated with periodontitis. In particular, F. nucleatum species are important 

colonizers and bridging organisms, supporting the inclusion of disease-associated 

anaerobes to the biofilms. F. nucleatum can be present in low numbers in 

periodontal health; however, are found to increase and are considered a risk 

factor of PD(Alpagot et al., 1996, Stingu et al., 2012). Due to their ability to co-

aggregate with a large number of both aerobes and anaerobes and alter the local 

environment, F. nucleatum are considered to play a key role in the transition of 

health to disease in oral biofilms (Diaz et al., 2002, Zilm and Rogers, 2007, 
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Kolenbrander et al., 2002). Additionally, when viewed by SEM the 7 species 

biofilms showed visible co-aggregation of bacterial species that formed micro-

colonies across the surface of the biofilm. This increase in complexity and 

distribution of bacteria is typically associated with complex biofilm models 

(Inaba et al., 2013, Blanc et al., 2014). 

The final 10 species biofilm model builds on the previous 7 species model, with 

the addition of the disease-associated bacteria P. gingivalis, P. intermedia and 

A. actinomycetemcomitans (Feng et al., 2014). Part of Sokransky’s ‘red 

complex’, these species were chosen due to their strong association with PD 

(Socransky et al., 1998). Furthermore, these species have been shown to alter 

the host immune response, which in turn can disrupt homeostasis and contribute 

to immune deregulation and disease (Palm et al., 2013, Garlet et al., 2006). The 

SEM analysis of this model showed a far more complex biofilm compared to that 

of the 7 species biofilm, with the micro colonies of bacteria merging across the 

entire surface to form a topographically heterogeneous biofilm. This increase in 

biomass may relate to finding by Hajishengallis et al (2011), where the addition 

of P. gingivalis in mice resulted in a significant increase in total bacterial load 

(Hajishengallis et al., 2011). Additionally, 454-sequencing studies have reported 

an increase in biomass of periodontal plaque compared to healthy plaque in 

human subjects and implicated PD-associated bacteria in this process (Abusleme 

et al., 2013).  

Investigating the development of the 10 species biofilm also supported the 

findings that biofilm attachment of bacterial species occurs in a defined 

sequential manner (Marsh, 2004). The formation of these biofilms requires initial 

adherence to oral tissues and teeth, species specific co-aggregation and local 

environmental changes to allow the biofilm to develop (Kolenbrander et al., 

2010a). Previous studies have reported in the absence of early colonizers such as 

S. oralis and S. anginosus overall biofilm structure was looser and more 

dispersed, combined with a significant shift in the relative loads of each bacteria 

species, with significant decreases in P. intermedia and P. gingivalis (Ammann et 

al., 2013a). A study by Periasamy et. al. (2009) reported the inability of F. 

nucleatum to form a biofilm with S. oralis in the absence of A. naeslundii, 
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highlighting the importance species-specific interactions for biofilm formation 

(Periasamy et al., 2009). 

In this study biofilms were quantified using CFU counts, quantitative PCR, 

including live vs. dead analysis and SEM. Enumeration of bacteria by CFU is a 

relatively cheap and quick method which allows for viable cell quantification on 

species specific agar plates. However, chains or aggregates of bacteria can be 

viewed as a single colony and species-specific plates can also cause lower counts 

of the selected bacteria due to the suppressive growth of unwanted species. As a 

result more recent studies focus on molecular methods to quantify biofilm 

composition. Quantitative PCR allows for the total DNA of each species to be 

quantified and enumerated on a standard curve and has been found to correlate 

well with CFU counts when comparing freshly grown biofilms (Boutaga et al., 

2005). However, as the number of dead cells in a biofilm increases, studies have 

shown results from each method become increasingly different, as qPCR 

quantifies both live and dead cells and CFU counts viable cells only (Ammann et 

al., 2013b). To discriminate between live and dead cells by qPCR a recent 

method using propidium monoazide has been proposed. This method involves the 

pre-treatment of samples with propidium monoazide which penetrates the 

membrane of dead cells and binds to double stranded DNA. When photo 

activated using a bright light the bound propidium monoazide forms a stable 

covalent bond which prevents DNA amplification of dead cells. This technique 

has been used to successfully quantify the relative viability of each species in 

both planktonic cultures and oral biofilms (Alvarez et al., 2013, Loozen et al., 

2011). The use of live/dead qPCR is especially useful for studying viability in 

multi-species biofilms which are cultured for long periods of time and therefore 

species survival is hard to determine. Studies have also shown that host cells 

respond differently to live bacteria compared with dead bacteria in co-culture 

therefore it was important to ensure the biofilms developed in this chapter were 

alive for co-culture studies and antimicrobial susceptibility testing (Jose, 2013).  

These methods are frequently being employed alongside microscopy to gain a 

further understanding of biofilm formation and bacterial co-aggregation. In this 

study biofilms were analysed visually by SEM, a method frequently employed to 
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visualise biofilm architecture. However, there are limitations to using this 

method for biofilm studies including alteration in biofilm morphology due to the 

post-processing dehydration of samples and difficulty distinguishing specific 

bacterial species or viability state based on morphology alone. An alternative to 

this would be confocal laser scanning microscopy (CLSM), a non-invasive method 

which has been used successfully to visualise the distribution of live and dead 

bacteria in oral multi-species biofilm models (Sanchez et al., 2011, Guggenheim 

et al., 2001a). Furthermore, CLSM can be combined with multiplex fluorescent 

in situ hybridization (M-FISH) to evaluate the spatial distribution of specific 

bacterial species within the biofilm without disruption of the biofilm structure 

(Thurnheer et al., 2004, Karygianni et al., 2014).  

Overall, a number of groups have developed in vitro multi-species oral biofilms 

to study spatial distribution, biofilm architecture and potential antimicrobial 

compounds (Shapiro et al., 2002, Foster and Kolenbrander, 2004, Ammann et al., 

2012, Guggenheim et al., 2001a). However, the explicit purpose of this study 

was to investigate host-pathogen interactions using three different biofilm 

models. Therefore it was important to evaluate how each biofilm responded to 

cell culture conditions including 5% CO2 and cell culture media over a 24 hour 

period. Interestingly, none of the biofilms showed any significant changes in 

composition in any of the cell culture variables tested when compared with 

freshly grown biofilms. This was the same for the total number of live cells 

following 24 hour co-culture in 5% CO2 in d-KSFM with oral epithelial cells 

compared with fresh biofilms. It has been shown that oral biofilms provide 

microenvironments for bacteria, which allow them to survive and make them 

less susceptible to antimicrobial compounds and environmental changes 

(Periasamy and Kolenbrander, 2009, Park et al., 2014). In particular Diaz et. al. 

(2002) reported the ability of P. gingivalis, a strict anaerobe, to survive aerobic 

conditions when in a biofilm containing F. nucleatum (Diaz et al., 2002). 

Additionally, the multi-species biofilms in this study survive freeze-thawing with 

no apparent effect on the composition, allowing biofilms to be grown in batches, 

improving the process of culturing and reducing variation between single 

biofilms. Guggenheim et. al. (2009) also froze their 9 species subgingival biofilm 

model at -80o C following culture; however, it was not reported if this method 
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significantly alters the biofilm composition (Guggenheim et al., 2001a). Many 

groups have investigated host-pathogen interactions using multi-species oral 

biofilms; however none have reported previous testing validating the model for 

use in co-culture with host cells (Belibasakis et al., 2011a, Peyyala et al., 2013). 

Guggenheim et. al. (2009) investigated the composition of multi-species biofilms 

during growth and reported qualitative differences compared to biofilms grown 

in saliva and serum (Guggenheim et al., 2009). The group also studied biofilm 

composition following culture in KSFM in an oxygen containing atmosphere and 

reported that although variations were observed in the biofilm the number of 

anaerobic bacteria which survived in this environment was comparable to pre 

exposure levels, which is similar to the data found in this chapter.  

In conclusion, this component of the thesis has developed three in vitro multi-

species biofilm models representing the transition from health to disease in the 

oral cavity, and investigated the composition of these mature biofilms in culture 

conditions for further use in co-culture studies with different host cell types. 

 

CHAPTER FINDINGS 

Three multi-species biofilm models have been developed to reflect health, 

the transition from health to disease, and disease plaque in the oral cavity. 

Each biofilm can be frozen for later use and thawed without significantly 

affecting the composition. 

Biofilm composition is not affected by changes to culture conditions, 

including 5% CO2, d-KSFM and co-culture with oral epithelial cells over time. 
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5 The inflammatory response of oral epithelial 
cells to multi-species biofilms in vitro 
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5.1 Introduction 

The gingival sulcus is lined by a non-keratinized, stratified squamous epithelium 

which includes both the sulcular epithelium and junctional epithelium and 

surrounds the tooth structure in the oral cavity (Figure 5.1). At this site 

epithelial cells are in constant contact with bacteria and their products and are 

integral to maintaining oral health and immune homeostasis (Dale, 2002). These 

cells provide the first line of defence against invasion of oral microorganisms. 

The epithelium provides a physical barrier, as well as playing an active role in 

innate host defence by releasing soluble mediators such as cytokines and 

antimicrobial peptides (Hans and Madaan Hans, 2014). In the absence of 

meticulous oral hygiene, bacterial biofilms accumulate at the gingival margin 

and cause gingivitis; however, only in a proportion of individuals does this 

reversible inflammation progress to PD (Loe et al., 1986). This implicates not 

only the bacteria within the biofilm, but also the host immune response in 

disease pathogenesis. Therefore, investigating the interactions between oral 

bacteria and the host immune system is paramount to understanding the 

aetiology of PD.   

Until recently, many in vitro studies investigating the host-pathogen relationship 

in the oral cavity focused on using bacteria derived soluble or secreted 

molecules, such as LPS or proteases, or planktonic single species co-cultured 

with human primary cells or cell lines. These reports identified the specific role 

of molecules, receptors and ligands as well as response patterns to specific 

bacteria (Madianos et al., 2005). Studies investigating human gingival epithelial 

cells (HGEC) challenged with live or heat killed planktonic bacteria, 

demonstrated minimal release of cytokines, such as IL-6, IL-8 and IL-1β, in 

response to early colonizers such as S. gordonii. However, cytokine release was 

significantly elevated in response to disease-associated species, such as F. 

nucleatum (Hasegawa et al., 2007, Stathopoulou et al., 2010). Co-culture studies 

using planktonic P. gingivalis and epithelial cells report the ability of P. 

gingivalis to degrade cytokines and invade host cells (Kinane et al., 2012, 

Stathopoulou et al., 2009). While useful for preliminary studies, the use of 

planktonic bacteria or bacterial components is far removed from the conditions 
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in vivo where bacteria exist as complex multi-species biofilms (Costerton et al., 

1987). 

 

Figure 5.1: Anatomy of the gingival sulcus and surrounding tissues  

Gingival epithelium surrounds the teeth in the oral cavity and is made up of 

three distinct sections. The oral epithelium is a keratinised, squamous 

epithelium, which forms the external surface of the oral mucosa and extends 

from the mucogingival junction to the gingival margin. The oral sulcular 

epithelium is a non-keratinised, squamous epithelium that lines the surface of 

the gingival sulcus. The junctional epithelium forms at the end of the gingival 

sulcus and attaches to the tooth enamel of the tooth and connective tissue of 

the periodontal ligament. Illustrated by Emma Millhouse. 

 

There are few studies investigating the epithelial cell response to multi-species 

oral biofilms in vitro. Guggenheim et al. (2009) developed a nine species 

subgingival biofilm model, the ‘Zurich biofilm model,’ which was co-cultured 

with primary HGECs from periodontally healthy patients (Guggenheim et al., 

2009). In co-culture with the biofilm, HGECs produced significantly increased 

levels of IL-8 and IL-6 protein and significant apoptosis was observed, with up to 

85% cells showing signs of apoptosis at 24 hours compared with 0% in the 

unchallenged cell only control. Studies by Peyyala et al in 2012 and 2013 

investigated the response of the immortalized epithelial cell line OKF4 to single 

species planktonic or biofilm cultures of 6 orally relevant bacteria, and three 

multi-species biofilms mimicking health and disease (Peyyala et al., 2013, 
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Peyyala et al., 2012). These studies demonstrated a clear hierarchy in the 

bacterial induction of inflammatory cytokines, with multispecies biofilms 

stimulating the greatest cytokine release, followed by mono-species biofilms, 

followed by planktonic bacteria. However, P. gingivalis abrogated inflammatory 

cytokine concentrations, even within multi-species biofilm containing species 

such as F. nucleatum. 

These studies suggest that the epithelial cell response to oral bacteria is 

influenced by the state and composition of bacteria present in co-culture. The 

main question which remains to be answered is the extent to which multi-

species biofilm composition can modulate host cell responses which may in turn 

contribute to PD pathology. The studies by Peyyala et al in 2013 and 2014 are 

the only reported work to investigate the role biofilm composition has on 

epithelial cell inflammatory protein release in co-culture at the time of writing. 

However, these studies only use 3 species within each of their biofilms and only 

investigate protein release. To further explore the role of biofilm composition on 

epithelial cells inflammatory responses, this chapter investigates changes in oral 

epithelial cell inflammatory gene and protein expression in response to the three 

compositionally different multi-species biofilm models developed in the previous 

chapter. 
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5.2 Aims 

The aim of this study was to investigate the inflammatory response of oral 

epithelial cells (OKF6-TERT2 epithelial cells and primary epithelial cells) co-

cultured with the ‘health-associated’ 3 species, ‘intermediate’ 7 species and 

‘disease-associated’ 10 species biofilms.  

The study sought to define the inflammatory response of the epithelial cells by 

assessing cytokine mRNA gene expression and protein release after 4 and 24 

hours of co-culture with biofilms, and to determine differences between the 

responses to each biofilm co-culture; and the response to the biofilms cultures 

compared with cells cultured with media only (‘cells only control’).  
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5.3 Results 

To investigate the effect of multi-species biofilms on epithelial cells the 

immortalized oral epithelial cell line OKF6-TERT2, derived from human oral 

mucosal keratinocytes was chosen. This cell line was selected as it resembles 

primary oral keratinocytes in studies of cytokine expression and cytotoxicity 

(Dongari-Bagtzoglou and Kashleva, 2003). Furthermore, this particular cell line 

has been used extensively in oral biology studies (Dickson et al., 2000, Wang et 

al., 2013, Volk et al., 2012).   

 Epithelial cell protein release is not influenced by 
orientation of the biofilms in the co-culture model 

The epithelial cell: multi-species biofilm co-culture model used in this study 

involves hanging the biofilm over the monolayer of cells using a Millicell® cell 

culture insert as described in section 2.2.3. In the oral cavity biofilms grow on 

the surface of the tooth parallel to the gingivae and while some bacteria may 

detach from the biofilm surface in vivo, and they are under some small pressure 

from the flow of GCF, they are presumably not exposed to the same constant 

gravitational forces as the in vitro model. Studies have shown the presence of 

both supragingival and subgingival bacterial species in GCF, which correlates 

with the bacterial diversity of the biofilm and probability of disease at the 

sampling site (Asikainen et al., 2010). Therefore, it was important to investigate 

to what extent the epithelial cells were responding to bacteria that simply 

dropped off the biofilm in the inverted model system.  

To test this, the model was inverted and OKF6-TERT2 cells were grown on 

Thermanox® coverslips, attached to the Millicell® cell culture inserts, added to 

24 well plates where the multi-species biofilms were grown on Thermanox® 

coverslips on the bottom and cultured in 5% CO2 as usual as described in section 

2.2.4. The release of IL-8 protein following co-culture for 4 and 24 hours was 

compared to the original model (Figure 5.2). There were no significant 

differences between the inverted and normal models when measuring the 

epithelial cell IL-8 protein released following co-culture with each biofilm, 

suggesting that the responses observed in this chapter in co-culture models are 

not due simply to bacteria dropping off the biofilms.  
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Figure 5.2: Epithelial cell IL-8 protein release in biofilm co-culture 

Three, 7 and 10 species biofilms were co-cultured with epithelial cells for 4 (i) 

and 24 (ii) hours in 5% CO2. For inverted co-culture culture, OKF6-TERT2 oral 

epithelial cells were grown on Thermanox® coverslips, inverted on Millicell® 

inserts and co-cultured with 3, 7 and 10 species biofilms which were grown 

directly in 24 well plates. Epithelial cells incubated for 4 and 24 hours without a 

biofilm were used as a cells only control. Following co-culture, supernatants 

were removed and IL-8 protein measured by ELISA. All groups were assayed in 

triplicate on three separate occasions. Data represents mean ± SD. Statistical 

analysis was performed using a paired Students t-test to compare inverted vs. 

normal co-cultures each at each time point. No statistical significance was 

observed.   
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 Multi-species biofilms are increasingly cytotoxic to epithelial 
cells over time 

Prior to investigating the responses of oral epithelial cells to biofilms, the 

viability of the host cells following co-culture was determined (Figure 5.3). 

Epithelial cells were co-cultured with 3, 7 and 10 species biofilms for 4 and 24 

hours and cell viability quantified using AlamarBlue®. The percentage reduction 

of the AlamarBlue® compound was calculated according the manufacturers 

instructions using media only, without any cells, as a 0% baseline. Cells cultured 

in media only were used as a cells only control and used to compare cell viability 

in co-culture with biofilms at each time point. At 4 hours, the viability of the 

cells only control was 77.6%. Co-culture with the 10 species biofilm resulted in a 

significant decrease in epithelial cell viability to 53.2% (p<0.05). No significant 

differences in cell viability were observed compared to the cells only control in 

co-cultures containing 3 or 7 species biofilms at 4 hours, with observed viability 

of 78.1% and 62.2%,  respectively. Following 24 hour culture the viability of the 

cells only control was 60%. At this time point co-cultures with any of the multi-

species biofilms resulted in significant decreases in cell viability compared to 

the control, with cell viability observed at 29.4% (p<0.05), 25.1% (p<0.01) and 

18.7% (p<0.001) when cultured with 3, 7 and 10 species biofilms, respectively. 
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Figure 5.3: Epithelial cell viability following co-culture  

Three, 7 and 10 species biofilms were co-cultured with OKF6-TERT2 epithelial 

cells for 4 (white bars) or 24 hours (black bars), and cell viability measured by 

addition of AlamarBlue® for the final 4 hours of culture. Epithelial cells 

incubated for 4 and 24 hours without a biofilm were used as a cells only control. 

All groups were assayed in triplicate on three separate occasions. Data represent 

mean ± SD. Statistical analysis was performed using a one-way ANOVA with 

Tukey’s multiple comparison post test to compare all groups with the cells only 

control at each time point (4 hours - * p<0.05) (24 hours - § p<0.05, §§ p<0.01, 

§§§ p<0.001). 

 

To further investigate the nature of the observed reduction in epithelial cell 

viability, apoptosis was assessed by caspase-3 ELISA (Figure 5.4). Caspase-3 is 

part of the cysteine-dependent aspartate-specific protease family, which plays a 

central role in the apoptotic signalling network of cells and is activated during 

cell apoptosis. The active caspase-3 ELISA is an antibody based detection assay 

that detects the active heterodimer form of caspase-3, which is cleaved at 

Asp175/Ser176 during apoptosis. Oral epithelial cells were cultured with 3, 7 and 

10 species biofilms for 4 and 24 hours. Cells cultured in media only (cells only) or 

cells treated for 30 minutes with 0.2% v/v chlorhexidine (CHX), a compound 

highly toxic to cell lines, were used as controls. Following 4 hour culture, the 

cells only control contained 0.02 ng/mL active caspase-3, compared with cells 

treated with CHX which contained 0.29 ng/mL (p<0.001). Cells co-cultured with 
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10 species biofilms contained 0.26 ng/mL (p<0.01) active caspase-3. Co-cultures 

containing 3 and 7 species biofilms showed no significant difference compared to 

the cells only control. After 4 hours, only the 10 species biofilm caused 

significant release of caspase-3. At 24 hours the cells only control contained 0.02 

ng/mL caspase-3 compared with the CHX treated cells, which released 0.87 

ng/mL (p<0.001). Co-cultures with 7 and 10 species biofilms showed elevated 

caspase concentrations in the supernatant compared with the cells only control, 

releasing 0.15 ng/mL (p<0.05) and 0.86 ng/mL (p<0.001) respectively. Caspase 3 

release in co-culture with 3 species biofilms remained similar to the cells only 

control. This data shows that biofilms cause significant cell death over time; 

however, the composition of the biofilm appears to be an indicator of the time it 

will take for significant cell death to be reached, with disease-associated 

biofilms causing significant decreases in cell viability earlier than other multi-

species biofilms.  

 

Figure 5.4: Active caspase-3 release from epithelial cells following co-culture 

Three, 7 and 10 species biofilms were co-cultured with OKF6-TERT2 epithelial 

cells for 4 (white bars) and 24 (black bars) hours in 5% CO2. Epithelial cells 

incubated without a biofilm were used as a cells only control and cells pre-

treated with 0.2% v/v CHX for 30 minutes used as a positive control. Apoptosis 

was measured using an active caspase-3 ELISA. All groups were assayed in 

triplicate on three separate occasions. Data represent mean ± SD. Statistical 

analysis was performed using a one-way ANOVA with Tukey’s multiple 

comparison post test to compare all groups with the cells only control at each 

time point (4 hours - * p<0.05) (24 hours - § p<0.05, §§ p<0.01, §§§ p<0.001). 
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 Multi-species biofilms differentially modulate the 
inflammatory gene and protein response of oral epithelial 
cells in co-culture 

To assess the response of the epithelial cells to the biofilms, gene expression 

was measured in oral epithelial cells co-cultured with the oral biofilms. First, 

epithelial cell IL-8 mRNA expression, normalised to the housekeeping gene 

GAPDH, was measured. Cells cultured in media only were used as a cells only 

control and compared with cells in co-culture with biofilms at each time point. 

Co-cultures with biofilms were compared against each other at each time point. 

The data are expressed as percentage IL-8 expression relative to the 

housekeeping gene GAPDH to allow for comparisons between the cells only 

controls and multi-species biofilms at both time points. At 4 hours IL-8 gene 

expression was 0.2% in the cells only control; 11.1% in the 3 species co-culture; 

118.4% in the 7 species co-culture and 59.7% in the 10 species co-culture. Thus, 

4 hours after exposure to each of the biofilms, there was significant increases in 

IL-8 gene expression in 7 species co-cultures compared with the cells only 

control (p<0.001) and 3 species biofilm (p<0.01)  (Figure 5.5).  At 24 hours IL-8 

gene expression was 0.91% in the cells only control; 16.1% in the 3 species co-

culture; 47.1% in the 7 species co-culture, and 28.5% in the 10 species co-

culture. IL-8 gene expression from 7 species biofilm co-cultures was significantly 

higher than both the cells only control (p<0.001) and 3 species co-culture 

(p<0.01). Co-cultures with 10 species biofilm also demonstrated significantly 

increased levels of IL-8 gene expression compared with the cells only control 

(p<0.05) (Figure 5.5).  
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Figure 5.5: Epithelial cell IL-8 gene expression in multi-species biofilm co-

culture 

Three, 7 and 10 species biofilms were co-cultured with OKF6-TERT2 epithelial 

cells for 4 (white bars) and 24 (black bars) hours in 5% CO2. Epithelial cells 

incubated without a biofilm were used as a cells only control. Following co-

culture IL-8 mRNA expression was measured by qPCR. Experiments were carried 

out with each condition in triplicate, on three separate occasions. Data 

represent mean ± SD. Statistical analysis was performed using a one-way ANOVA 

with Tukey’s multiple comparison post test to compare all groups at each time 

point (Comparison with cells only control * p<0.05, *** p<0.001; comparison with 

3 species biofilm §§ p<0.01). 

 

To investigate whether other genes associated with the inflammatory response 

of oral epithelial cells were modulated by co-culture with multi-species oral 

biofilms, a multiplex qPCR platform was used to evaluate 11 different pro-

inflammatory genes simultaneously, and the data used to determine gene 

expression relative to the housekeeping gene GAPDH, which was then expressed 

relative to the cells only control, which contained no biofilm (Figure 5.6). The 

genes selected for use in the multiplex assay were based on previous work 
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conducted on epithelial cell responses to 4 species oral biofilms in the Glasgow 

Dental School. 

At 4 hours, co-culture with 3, 7 and 10 species biofilm induced increased gene 

expression of all genes measured relative to the cells only control (Figure 5.6 i). 

Notably, there was a 37.4 fold increase in IL-8 gene expression by epithelial cells 

co-cultured with 3 species biofilms; 302.7 (p<0.05) fold increase in IL-8 gene 

expression in 7 species co-culture and 167.3 (p<0.05) fold increase in IL-8 gene 

expression in 10 species co-culture. Hence, the 7 and 10 species biofilms induced 

significantly more IL-8 gene expression than the 3 species biofilm. Additionally, 

co-culture of epithelial cells with 7 species biofilms resulted in significantly 

higher levels of CXCL1 (p<0.05) and CSF2 (p<0.01) epithelial gene expression 

compared with 3 species co-cultures. At 24 hours, co-culture with 3, 7 an 10 

species biofilms caused an increase in gene expression of all genes measured 

relative to the cells only control with the exception of CXCL5. In co-culture with 

3 species biofilms there was an apparent down regulation of CXCL5 gene 

expression relative to the cells only control. At this time point no significant 

differences in gene expression were observed between 3, 7 and 10 species 

biofilm co-cultures (Figure 5.6 ii). 
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Figure 5.6: Epithelial cell pro-inflammatory gene expression in biofilm co-

culture 

Three, 7 and 10 species biofilms were co-cultured with epithelial cells for 4 (i) 

and 24 (ii) hours in 5% CO2. Epithelial cells incubated without a biofilm were 

used as a cells only control. Gene expression was assessed my multiplex qPCR. 

All groups were assayed in duplicate on three separate occasions. Data 

presented are normalised to the housekeeping gene GAPDH and relative to the 

cells only control. Data represents mean ± SD fold change, relative to the cells 

only control. Statistical analysis was performed using a one-way ANOVA with 

Tukey’s multiple comparison post-test to compare all groups at each time point 

(Comparison 3 species biofilm * p<0.05, ** p<0.01). 
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The previous data showed that co-cultures of epithelial cells with biofilms 

differentially altered gene expression. For this reason protein release was 

examined. Initially, IL-8 protein in culture supernatants following co-culture was 

measured (Figure 5.7). Epithelial cells incubated without a biofilm were used as 

a cells only control.  At 4 hours, 104.1 pg/mL of IL-8 was present in the cells 

only control supernatant with significant increases in IL-8 protein release from 

epithelial cells co-cultured with 7 and 10 species biofilms, containing 875.7 

pg/mL (p<0.05) and 1052 pg/mL (p<0.001), respectively. At 24 hours, 145.1 

pg/mL IL-8 protein was present in the cells only control supernatants and IL-8 

protein release in co-cultures was similar to the cells only control at this time 

point.  

Due to the apparent differences between IL-8 protein release at 4 and 24 hours a 

Bonferroni post-test was used to compared each co-culture over time. Notably, 

there was significantly less IL-8 in the supernatant of co-cultures with 10 species 

biofilms at 24 hours compared with 4 hours (p<0.001).   

 

Figure 5.7: Epithelial cell IL-8 protein release in biofilm co-culture 

Three, 7 and 10 species biofilms were co-cultured with epithelial cells for 4 and 

24 hours in 5% CO2. Epithelial cells incubated without a biofilm were used as a 

cells only control. IL-8 protein in co-culture supernatants was measured by 

ELISA. All groups were assayed in triplicate on three separate occasions. Data 

represent mean ± SD. Statistical analysis was performed using a two-way ANOVA 

with Bonferroni’s multiple comparison post-test to compare all groups 

(Comparison to cells only * p<0.05, ** p<0.01)(4 hours vs. 24 hours §§§ p<0.001). 
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As with gene expression, protein expression was further examined by analysing a 

panel of cytokines following co-culture at both 4 and 24 hours (Figure 5.8). 

Epithelial cells incubated without a biofilm were used as a cells only control and 

data are presented as fold change relative to this control. There were 

unexpected variations in the standards used, and this variation was subsequently 

attributed to the results of machine error. Hence, comparisons of the protein 

release from epithelial cells in response to multi-species biofilms at each time 

point were carried out using fluorescent units.  

Co-culture of 3, 7 and 10 species biofilms with epithelial cells resulted in 

increased levels of pro-inflammatory cytokines present in the supernatant at 4 

hours compared with the cells only control. At 4 hours, there was a 3.7 fold 

increase in TNFα protein in supernatants from the 3 species biofilm co-culture; 

7.92 fold increase in the 7 species co-culture and 4.3 fold increase in the 10 

species co-culture relative to the cells only control. TNFα protein release was 

significantly higher in 7 species co-culture than both 3 species (p<0.01) and 10 

species (p<0.05) co-cultures. At this time point there was also a 1.7 fold increase 

in IL-8 protein in supernatants from the 3 species biofilm co-culture; 5.1 fold 

increase from 7 species co-culture and 3.09 fold increase from 10 species co-

culture relative to the cells only control. IL-8 protein release was significantly 

higher in the 7 species co-culture compared to the 3 species co-culture (p<0.05). 

The protein release from the IL-8 ELISA also showed significant increases in the 7 

species co-culture at 4 hours; however, co-culture with 10 species biofilms also 

caused significant increases in IL-8 protein release. Luminex assays are believed 

to be more sensitive than traditional ELISAs and this may account for the 

variation observed. At 24 hours, co-culture of 3, 7 and 10 species biofilms with 

epithelial cells resulted in increased levels of IL-1β, IL-6, CSF-2 and IL-8 present 

in the supernatant at 4 hours compared with the cells only control with the 

exception of TNFα which was not detectable at 24 hours under any condition. At 

24 hours, there was a 7.5 fold increase in CSF-2 protein in supernatants from the 

3 species co-culture; 10.4 fold increase from the 7 species co-culture and 2.1 

fold increase from the 10 species co-culture compared with the cells only 

control. Hence, co-cultures with 10 species biofilms contained significantly less 

CSF-2 protein than 3 species co-cultures (p<0.001) and 7 species co-cultures 

(p<0.001). 
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Figure 5.8: Epithelial cell pro-inflammatory protein release in biofilm co-

culture 

Three, 7 and 10 species biofilms were co-cultured with epithelial cells for 4 (i) 

and 24 (ii) hours. Epithelial cells incubated without a biofilm were used as a 

cells only control. Following co-culture biofilms supernatants were removed and 

cytokines measured by Luminex®. All groups were assayed in triplicate on three 

separate occasions. Data represent mean ± SD fold change relative to the cells 

only control. Statistical analysis was performed using a one-way ANOVA with 

Tukey’s multiple comparison post test to compare all groups (Comparison to 3 

species co-culture * p<0.05, ** p<0.01 *** p<0.001)(Comparison to 7 species co-

culture § p<0.05, §§§ p<0.001). 
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The data using the immortalized oral epithelial cell line OKF6-TERT2 suggests 

that the composition of biofilms is able to differentially modulate epithelial cell 

inflammatory gene and protein responses in co-culture. However, these data 

were obtained using an immortalized cell line. Therefore it was important to 

investigate if these findings were replicated using a primary oral epithelial cells. 

This would allow comparisons between co-cultures using OKF6-TERT2 cells or 

primary epithelial cells and determine the validity of the findings observed using 

the OKF6-TERT2 cell line. Primary oral epithelial cells derived from human 

gingivae were used for the remainder of this study unless specified. 

 

 Multi-species oral biofilms show similar trends in cell death 
in co-culture with immortalised epithelial cells and primary 
epithelial cells 

Primary epithelial cells were co-cultured with 3, 7 and 10 species biofilms for 4 

and 24 hours to assess cell viability following co-culture (Figure 5.9 i) and 

compared with viability of the OKF6-TERT2 cells following co-culture (Figure 5.9 

ii). Due to the limited lifespan and limited cell number of primary cells a 

viability assay was selected to allow use of the minimum possible volume of cell 

culture supernatant to maximise availability for other experiments. An LDH 

cytotoxicity assay was therefore used to measure the cytotoxicity by quantifying 

the lactate dehydrogenase, which is effective in very small volumes of culture 

medium. As this is a different viability assay than used in previous work the 

viability of both the primary cells and the OKF6-TERT2 cells was assessed and 

compared. Percentage cytotoxicity of co-cultures and cells only controls was 

quantified relative to a positive control containing 100% dead cells generated by 

exposing either OKF6-TERT2 or primary epithelial cells to 0.2% chlorhexidine for 

1 hour. 

At 4 hours, the 10 species biofilms caused primary cell cytotoxicity, with 21.67% 

cytotoxicity, which was significantly higher than the cells only control (p<0.05). 

At 24 hours, primary cells co-cultured with 7 and 10 species biofilms showed an 

increase in cell cytotoxicity with 53.7% (p<0.001) and 30.63% (p<0.01) 

respectively compared with the cells only control. In co-cultures using the OKF6-
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TERT2 cell line, all co-cultures at 4 hours showed no significant increases in cell 

cytotoxicity compared with the cells only control. Co-cultures at 24 hours 

showed a significant increase in cytotoxicity compared with the cells only 

control with both 7 and 10 species biofilm co-cultures containing 15.63% 

(p<0.05) and 14.55% (p<0.05) cytotoxicity, respectively.  

Comparing the cytotoxicity at 4 hours in primary epithelial cell co-cultures to 

the OKF6-TERT2 epithelial cell line co-cultures, the primary cell line co-cultured 

with 10 species biofilms showed significantly more cell death than the epithelial 

cell line co-culture (p<0.001). At 24 hours, primary cells showed significant 

increases in percentage cytotoxicity than the epithelial cell line when co-

cultured with 7 species biofilms (p<0.001). Overall, the primary cells appeared 

more susceptible to the cytotoxic effects of the biofilms.  
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Figure 5.9: Primary cell and OKF6-TERT2 cell viability following co-culture 

assessed by lactate dehydrogenase release  

Primary human oral epithelial cells (i) and OKF6-TERT2 epithelial cell line (ii) 

were co-cultured with 3, 7 and 10 species biofilms for both 4 and 24 hours. Cells 

incubated without a biofilm were used as a cells only control. Percentage 

cytotoxicity was measured by LDH cytotoxicity assay. Data represent mean ± SD. 

Statistical analysis was performed using a one-way ANOVA with Tukey’s multiple 

comparison post test to compare all groups with the cells only control at each 

time point (* p<0.05, ** p<0.01, *** p<0.001)(Primary cells vs. OKF6-TERT2 cells 

§§ p<0.01, §§§ p<0.001). 
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 Multi-species biofilms differentially modulate the 
inflammatory gene and protein response of primary 
epithelial cells in co-culture 

The IL-8 gene expression from primary epithelial cells following co-culture was 

measured (Figure 5.10). At 4 hours, IL-8 gene expression was 0.05% in the cells 

only control; 0.01% in 3 species co-culture; 0.66% in the 7 species co-culture and 

1.06% in the 10 species co-culture. Hence, primary cells co-cultured with 10 

species biofilms had significantly more IL-8 gene expression than the cells only 

control (p<0.05) and 3 species biofilm co-cultures (p<0.01). At 24 hours, IL-8 

gene expression was 0.017% in the cells only control; 0.019% in the 3 species co-

culture; 0.11% in the 7 species co-culture and 0.17% in the 10 species co-culture. 

At this time point, cells co-cultured with 10 species biofilms demonstrated 

significantly more IL-8 gene expression than the cells only control (p<0.05) and 3 

species co-cultures (p<0.05). Due to the apparent differences between IL-8 gene 

expression at 4 and 24 hours a Bonferroni post-test was used to compare each 

co-culture over time. This demonstrated a significant decrease in IL-8 gene 

expression between 4 and 24 hours when primary epithelial cells were co-

cultured with 10 species biofilms (p<0.01). 
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Figure 5.10: Primary epithelial cell IL-8 gene expression in multi-species 

biofilm co-culture 

Primary human oral epithelial cells were co-cultured with 3, 7 and 10 species 

biofilms for 4 and 24 hours. Primary epithelial cells incubated without a biofilm 

were used as a cells only control. IL-8 gene expression was assessed by qPCR and 

gene expression calculated relative to the housekeeping gene GAPDH. All groups 

were assayed in triplicate on three separate occasions. Data represent mean ± 

SD. Statistical analysis was performed using a two-way ANOVA with Bonferroni’s 

multiple comparison post-test to compare all groups (Comparison with cells only 

control * p<0.05) (Comparison with 3 species biofilm § p<0.05, §§ p<0.01) 

(Comparison between 4 and 24 hours ## p<0.01). 
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assessed following co-culture of primary oral epithelial cells with multi-species 

biofilms (Figure 5.11). In this experiment gene expression was calculated 
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(p<0.01) and 219 fold (p<0.01), respectively, compared to cultures with the 3 

species biofilm. In co-cultures containing 10 species biofilms, expression of IL-6 

was 206.1 fold higher (p<0.01) and CSF2 was 134.2 fold higher (p<0.05) than co-

cultures with 3 species biofilms (Figure 5.11 i). At 24 hours, there was a trend to 

enhanced primary cell pro-inflammatory gene expression as the complexity of 

biofilms in the co-culture increased, although this did not reach statistical 

significance (Figure 5.11 ii). Additionally, although there appeared to be 

reduced gene expression of some of the cytokines following co-culture with 3 

species biofilms, none of these reached statistical significance. 
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Figure 5.11: Primary epithelial cell pro-inflammatory gene expression in 

biofilm co-culture 

Primary human oral epithelial cells were co-cultured with 3, 7 and 10 species for 

both 4 (i) and 24 (ii) hours. Primary epithelial cells incubated without a biofilm 

were used as a cells only control. Gene expression was assessed my multiplex 

qPCR. All groups were assayed in duplicate on three separate occasions. Gene 

expression was normalised to the housekeeping gene GAPDH. Data presented are 

gene expression relative to the cells only control. Data represent mean ± SD. 

Statistical analysis was performed using a one-way ANOVA with Tukey’s multiple 

comparison post-test to compare all groups at each time point (Comparison with 

3 species biofilm * p<0.05, ** p<0.01, § p<0.05, §§ p<0.01). 
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IL-8 protein release from primary epithelial cells following co-culture was 

measured (Figure 5.12). At 4 hours, there was 127.1 pg/mL IL-8 protein in 

supernatants from cells only control; 87.42 pg/mL in supernatants from 3 species 

co-culture; 262 pg/mL in supernatants from 7 species co-culture; and 309.6 

pg/mL in supernatants from 10 species biofilm co-culture. Hence, the 7 and 10 

species biofilms induced significantly more IL-8 release than both the cells only 

control and 3 species biofilm. At 24 hours there was 244.6 pg/mL of IL-8 protein 

in the cells only control; 432.9 pg/mL in the 3 species co-cultures; 1565.6 pg/mL 

in the 7 species co-culture and was below the level of detection in 10 species co-

cultures. At this time point 7 species biofilms caused significant increase in IL-8 

protein release in co-culture compared with the cells only control (p<0.001) an 3 

species biofilm co-cultures (p<0.01). Unfortunately, due to the limited volume of 

samples and financial restrictions, Luminex® was unable to be performed on co-

cultures with primary epithelial cells. 
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Figure 5.12: Primary cell IL-8 protein in biofilm co-culture supernatants 

Primary human oral epithelial cells were co-cultured with 3, 7 and 10 species 

biofilms for 4 and 24 hours in 5% CO2. Primary cells incubated without a biofilm 

were used as a cells only control. IL-8 protein release in cell culture 

supernatants was measured by ELISA. All groups were assayed in triplicate on 

three separate occasions. Data represent mean ± SD. Statistical analysis was 

performed using a one-way ANOVA with Tukey’s multiple comparison post test to 

compare all groups at each time point (Comparison to cells only * p<0.05, ** 

p<0.01)(Comparison to 3 species co-culture §§ p<0.01). 
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5.4 Discussion 

The main finding in this chapter was that both primary epithelial cells and an 

epithelial cell line produced a distinct cytokine gene and protein expression 

signatures in response to each of the multi-species biofilms. This result 

demonstrated immune function consequences of differing biofilm composition, 

which apparently relates to whether the species present are associated with 

health, transitioning from health to disease, or disease. Furthermore, these 

inflammatory profiles arguably mirror the inflammatory profiles found in the oral 

cavity, where mild controlled inflammation is seen in health and elevated 

chronic and dysregulated inflammation observed PDs. 

In both primary cell and OKF6-TERT2 cell co-cultures, biofilms were shown to 

affect cell viability. The variety of assays used, including AlamarBlue®, active-

caspase 3 ELISA and LDH cytotoxicity assays, evaluated different aspects of 

viability; AlamarBlue® measures viability through metabolic activity; caspase-3 

ELISA measures cell death through apoptosis pathways and the LDH assay 

measures cell death through the rupturing of the cell membrane and release of 

LDH into the surrounding media. Similar patterns of cell death were observed 

using each method. Taken together, these assays suggest that epithelial cell 

death when exposed to multi-species biofilms is the result of a combination of 

apoptosis and necrosis. The data suggest that the more complex biofilms cause 

significant epithelial cell death more rapidly. Guggenheim et al (2009) observed 

that HGEC co-cultured with their ‘subgingival’ ‘Zurich’ 9 species biofilm model 

underwent apoptosis in a time dependant manner at 4 and 24 hours 

(Guggenheim et al., 2009). This study found ~85% apoptotic cells after 24 hour 

co-culture, which was similar to the 82% reduction in OKF6-TERT2 cell viability 

observed following 24 hour co-culture with 10 species biofilms reported in this 

chapter. Eberhard et al (2009) co-cultured HGECs for 2 hours with biofilms from 

patients with no discernable PD and observed no differences in viability between 

untreated and treated cells, a result which may be due to the short co-culture 

time tested (Eberhard et al., 2009). Studies by Peyyala et. al. investigated co-

culture of multi-species oral biofilms and OKF4 cells but do not report cell 

viability (Peyyala et al., 2012, Peyyala et al., 2013). The model used by this 

group is co-cultured anaerobically to mimic the conditions of the gingival pocket 
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and although the decrease in the metabolic activity of the epithelial cells was 

found to be negligible in anaerobic conditions when measured using the WST-1 

cell viability reagent, the additional cytotoxic effect of biofilms was not 

considered (Peyyala et al., 2011).  

In host-pathogen co-culture models understanding the relationship between 

biofilms and cell viability is key due to the implications on further cellular 

analysis, in particular gene and protein data. Interestingly, primary epithelial 

cells appeared to show minimal cell death or inflammatory gene or protein 

response to 3 species biofilms, suggesting primary epithelial cells are less 

susceptible to 3 species biofilms than the OKF6-TERT2 cell line. It is important 

to note the difference in nature of these cell types, immortalized cell lines, 

characteristics can be altered such as the loss of TLRs due to repeated passage, 

whereas primary cells have a very limited lifespan for use in vitro. Importantly 

for this work, these primary cells have previously been exposed to oral bacterial 

biofilms in vitro, unlike the epithelial cell line. This could imply primary 

epithelial cells have acquired tolerance to commensal species and may account 

for the lack of response seen in primary cell co-culture with 3 species biofilms 

and the enhanced response in co-culture with 7 and 10 species biofilms when 

comparing the primary cell to OKF6-TERT2 cell response. In the gut it is believed 

that intestinal epithelial cells show tolerance to commensal bacteria after birth, 

with studies showing a lack of bacterial LPS responsiveness by intestinal 

epithelial cells, which has been associated with post-translational down 

regulation of IL-1 receptor associated kinase, which is required for TLR4 

signalling and increase of cytokines that protect the gut including IL-6 and TNF 

(Lotz et al., 2006, Rakoff-Nahoum et al., 2004). Furthermore the interactions of 

commensal bacteria with TLRs have been suggested to be essential in 

maintaining tolerance and host homeostasis, with TLR4 deficient mice showing 

increased epithelial cell injury, bleeding and Gram-negative bacterial 

translocation in a mouse colitis model (Fukata et al., 2005). While these studies 

do not appear to have been replicated in the oral cavity the interactions 

between commensal bacteria and epithelial cells at these sites may occur in a 

similar manner to ensure host homeostasis. For example, the oral bacteria S. 

salivarius has been shown to modulate innate inflammatory gene expression of 
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bronchial epithelial cells following co-culture through the down-regulation of the 

NF-κB pathway (Cosseau et al., 2008).   

The work in this chapter was performed in vitro, with no in vivo validation, using 

a monolayer of epithelial cells that is different from gingivae in the oral cavity. 

This consists of multiple layers of epithelial cells in close relation to the 

underlying connective tissue. The differences in cell viability have been 

highlighted in studies using skin models, which demonstrated that monolayers 

were more susceptible to cytotoxic agents than 3D culture models (Sun et al., 

2006). Furthermore, studies using gingival tissue biopsies have shown increased 

levels of apoptosis in periodontitis samples compared with healthy controls 

suggesting that tissue destruction by apoptosis plays a role in the pathogenesis 

of periodontitis (Gamonal et al., 2001).   

The innate immune response of the epithelial cells appears to be dependent on 

the type of bacterial challenge. These data document that the composition of 

multi-species biofilms plays a key role in dictating the epithelial cell immune 

response. Studies using bacteria in planktonic culture or a single species biofilms 

studies using commensal species such as S. oralis, intermediate species such as 

F. nucleatum or pathogenic species such as A. actinomycetemcomitans cause 

species specific responses in oral epithelial cells. Intermediate and pathogenic 

planktonic bacteria stimulated increased protein levels of pro-inflammatory 

cytokines such as IL-6 and IL-8 and IL-1β (Stathopoulou et al., 2010, Peyyala et 

al., 2012). The maturation state of oral cavity derived biofilms has been shown 

to result in differential expression of IL-8 and antimicrobial peptides by 

epithelial cells, with mature biofilms being more pro-inflammatory than less 

complex biofilms (Eberhard et al., 2008). The inflammatory gene expression and 

protein release following co-culture using 3 species biofilms was 

indistinguishable from the media control cultures, suggesting a lack of response 

by host cells to this biofilm. This is in agreement with reports using planktonic, 

mono-species Streptococcus biofilms or multi-species biofilms containing 

bacteria classed as ‘early colonizers’ (Peyyala et al., 2013, Peyyala et al., 2012, 

Stathopoulou et al., 2010). The greatest increases in gene expression and 

cytokine detection were elicited by 7 species co-cultures. This biofilm contains 

F. nucleatum, which acts as an intermediate between early and late colonizer 
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species, and has been shown to cause a significant pro-inflammatory profile in 

epithelial cells during planktonic and mono-species biofilm co-culture 

(Stathopoulou et al., 2010, Peyyala et al., 2012). OKF6-TERT2 and primary 

epithelial cells demonstrated elevated gene expression of pro-inflammatory 

cytokines such as IL-6, IL-8, CSF-2, CXCL1 following co-culture with 7 and 10 

species biofilms. Previous similar studies have reported increased Gro1α, IL-1α, 

IL-6, IL-8 TNFα, fractalkine, MIP-1α and IP-10 in epithelial cell co-cultures 

following exposure to oral biofilms, including the 9 species ‘Zurich’ model and 

multi-species biofilm models containing S. gordonii, S. oralis, S. sanguinis, F. 

nucleatum, A. naeslundii and P. gingivalis (Peyyala et al., 2013, Guggenheim et 

al., 2009). Gene expression by epithelial cells was comparable between 7 and 10 

species co-cultures; however, protein expression was different, with a time 

dependent reduction in the concentrations of cytokines detectable following co-

culture with 10 species biofilms. This suggests that the epithelial cells are 

responding to these biofilms in a similar manner but there is post-translational 

host modification by the 10 species biofilm. The data in this chapter 

demonstrated reduced cytokine protein in the supernatant was reduced at 24 

hours compared with 4 hours in co-cultures of 10 species biofilms with epithelial 

cells. Studies using multi-species oral biofilm models have reported similar 

findings when investigating protein expression and attributed this to cytokine 

degradation by P. gingivalis, observing reduction of host cell IL-8 in supernatant 

following co-culture only when P. gingivalis was present in the biofilm 

(Guggenheim et al., 2009, Peyyala et al., 2013, Stathopoulou et al., 2009). 

Therefore, P. gingivalis is suspected to play a vital role in modulating host 

defences by degrading pro-inflammatory cytokines (Hajishengallis et al., 2011, 

Bao et al., 2014b). One method to test this would have been to methanol fix the 

P. gingivalis before addition to the multi-species biofilms, which would make it 

unable to degrade the cytokines. However, once the bacteria are fixed they are 

dead and most likely unable to integrate into the biofilm and in the same way. 

Alternatively, gingipains deficient mutants could be used, where differences in 

the pro-inflammatory cytokine profile have been shown in planktonic co-culture 

with epithelial cells compared to wild type strains (Stathopoulou et al., 2009). 

This method also has limitations as P. gingivalis gingipains mutants have been 

shown to qualitatively and quantitatively affect multi-species biofilms including 
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increasing biofilm thickness and affecting other ‘red complex’ species induction 

into the biofilm (Bao et al., 2014b, Takasaki et al., 2013). 

In summary, the work in this chapter shows the ability of biofilms to 

differentially modulate the epithelial cell immune response based on their 

composition. Both the oral epithelial cell line OKF6-TERT2 and primary human 

epithelial cells from gingivae showed similar trends in pro-inflammatory gene 

and protein response. This work has established an in vitro co-culture model 

using three multi-species biofilms which each induce three distinct inflammatory 

profiles in epithelial cells. The hope for the future for this model is for use with 

a variety of host tissues in co-culture with biofilms and potential for use in 

identifying potential novel therapeutic targets for PD.  

 

CHAPTER FINDINGS 

Biofilms induce increased epithelial cell death in a biofilm-composition 

dependant and time dependant manner 

There is increased expression of pro-inflammatory cytokines in epithelial 

cells in response to 7 and 10 species biofilms 

Disease-associated 10 species biofilms associate with a time dependent 

reduction in cytokine protein present in supernatant following co-culture  

Both primary epithelial cells and epithelial cell lines demonstrated similar 

trends in gene and protein expression following co-culture with multi-species 

biofilms 
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6 The innate immune response to oral biofilms in 
vitro 
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6.1 Introduction 

In the oral cavity microbial biofilms are necessary but not sufficient to cause PD 

and the host plays a pivotal role in disease pathogenesis through the 

dysregulated immune response to oral biofilms. In health, the gingival tissues are 

policed by neutrophils and a small number of other phagocytes capable of 

antigen presentation, as well as T cells, B cells and mast cells. Histological 

studies have observed that the inflammation associated with increased plaque in 

gingivitis is associated with increased numbers of both lymphocytes and other 

mononuclear cells in the early lesion and plasma cells in the established lesion 

(Page and Schroeder, 1976). Therefore, potentially the bacteria themselves and 

also the products released by the gingival epithelium can mediate this response, 

and if the host response malfunctions then periodontitis is believed to ensue 

(Younes et al., 2009). 

Neutrophils are a first line of defence during infection and represent up to 95% 

of the leukocytes recruited into the gingival crevice in response to oral biofilms 

(Delima and Van Dyke, 2003). These cells play an essential role in clearing 

pathogens by phagocytosis, degranulation, the release of neutrophil 

extracellular traps (NETs), and recruit and activate other immune cells through 

the production of pro-inflammatory cytokines including TNFα, IL-6, IL-8 and 

IFNγ. Animal studies comparing the histology of germ-free and wild type mice 

observed similar neutrophil infiltration in the junctional epithelium in both 

groups suggesting genetic programming of cells to this site regardless of 

microbial challenge (Heymann et al., 2001). Furthermore, patients with 

leukocyte adhesion deficiency (LAD), who have deficient neutrophil adhesion 

and migration into tissues, typically have aggressive periodontitis at a young 

age, which suggests a role for neutrophils in maintaining oral health 

(Moutsopoulos et al., 2015). 

Neutrophils have been implicated as a critical link between the innate and 

adaptive immune response in chronic inflammation by producing chemokines, 

such as CCL2, which promote chemotaxis of Th1 and Th17 cells to the site of 

infection (Pelletier et al., 2010). Some oral bacteria, notably Sokransky’s ‘red 

complex’ species, possess immune evasion mechanisms that can directly and 
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indirectly impair neutrophil functions. The keystone pathogen P. gingivalis has 

been shown to impair neutrophil recruitment by altering expression of pro-

inflammatory cytokines, such as IL-8 and TNFα (Darveau, 2010). In patients with 

chronic periodontitis, leukocytes show changes in mRNA expression to increase 

survival and decrease apoptosis (Gamonal et al., 2003, Lucas et al., 2010, 

Lakschevitz et al., 2013). Some neutrophils recovered from the GCF of patients 

with PD also show histone citrullination and advanced stages of NET formation 

(Vitkov et al., 2010). 

In PD monocytes and macrophages have been shown to comprise of 5-30% of 

inflammatory cells in periodontal lesions (Berglundh et al., 2011). These cells 

clear pathogens and dying cells by phagocytosis, release inflammatory mediators 

such as IL-1, TNFα, IL-6 and PGE2 to enhance immune cell activity and can 

present antigen to T cells (Dennison and Van Dyke, 1997). Macrophages are 

considered a flexible cell type, with ability to polarize to specific subsets in 

response to local mediators (Mosser, 2003). RANKL and TNFα can stimulate 

macrophage differentiation into osteoclasts. Macrophages from periodontitis 

patients are primed and particularly susceptible to osteoclastogenic stimuli, 

therefore potentially playing a critical role in alveolar bone resorption (Lam et 

al., 2000, Herrera et al., 2014). In patients with periodontitis, increases in the 

numbers of monocytes and macrophages has been associated with greater levels 

of MMPs and increased collagen breakdown compared with healthy controls 

(Seguier et al., 2001). Periodontal pathogens can modulate monocyte and 

macrophage activity by decreasing phagocytic and bactericidal functions 

(Carneiro et al., 2012). P. gingivalis impairs iNOS dependant killing of 

intracellular bacteria in macrophages by altering C5a-TLR2 signalling (Wang et 

al., 2010). 

Numerous studies have implied that host immune systems ability to mount an 

appropriate inflammatory response is critical to maintaining tissue homeostasis 

and host-microbial symbiosis. However, there are still many gaps in the 

knowledge of the interactions between innate immune cells and oral biofilms, 

which is critical to understanding the dysbiosis observed in PD. The work in this 

chapter will attempt to expand on current knowledge by investigating how the 

composition of microbial biofilms may modulate innate immune inflammatory 
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responses at a gene and protein level, which may play a role in the chronic 

inflammation observed in PD. 
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6.2 Aims  

The aim of this chapter was to investigate if the three multi-species biofilms, 

developed in chapter 5, differentially modulated the innate immune response. 

The following key questions were investigated: 

 Does biofilm composition differentially modulate neutrophil inflammatory 

gene expression, protein release and NET formation? 

 Does biofilm composition differentially modulate pro-monocyte 

activation, differentiation, inflammatory gene expression and protein 

release? 

 Do differentiated monocytes differentially respond to direct co-culture 

with biofilms or with biofilm or epithelial cell conditioned media? 
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6.3 Results 

 Multi-species biofilms differentially modulate neutrophil 
gene expression, protein release and NET formation 

Neutrophils were co-cultured with 3, 7 and 10 species biofilms for 4 and 16 hours 

at which time inflammatory gene and protein expression was assessed. At 4 

hours, TNFα gene expression was 0.03% in the cells only control; 0.21% in the 

PMA positive control; 0.07% in the 3 species; 1.05% in the 7 species and 2.21% in 

the 10 species; hence, co-culture with 10 species biofilm resulted in significant 

increases in TNFα gene expression compared with the 3 species co-culture 

(p<0.05) and cells only control (p<0.05). IL-1β gene expression was 0.003% in the 

cells only control; 0.09% in the PMA positive control; 0.07% in the 3 species; 

0.06% in the 7 species and 1.08% in the 10 species. Therefore, IL-1β was 

significantly increased in 10 species co-cultures compared with all other 

conditions (p<0.05). At 16 hours the RNA quality following co-culture was 

insufficient for gene expression studies (data not shown).  
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Figure 6.1: Neutrophil pro-inflammatory gene expression following co-culture 

Bone marrow derived neutrophils co-cultured with 3, 7 and 10 species biofilms 

for 4 hours. IL-6 [i], TNFα [ii], IFNγ [iii] and IL-1β [iv] gene expression was 

assessed by qPCR. Cell stimulated with 600 nM of PMA or media only were used 

as controls. Data presented are normalised to the housekeeping gene GAPDH. All 

groups were assayed in duplicate on three separate occasions. Data represent 

mean ± SD (compared to cell only * p<0.05; compared to 3 species co-culture § 

p<0.05). Statistical analysis was performed using a one-way ANOVA with Tukey’s 

post-test to compare gene expression under each condition. 

 

Next the inflammatory protein release by neutrophils following 4 and 16 hour co-

culture was examined (Figure 6.2). At 4 hours, neutrophils in the cells only 

control released 81.6 pg/mL of TNFα; 3 species co-cultures released 55.3 pg/mL; 
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control released 248.4 pg/mL. Thus, at both 4 and 24 hours, 7 and 10 species 

biofilms caused significantly increased release of TNFα compared with media 

control (p<0.05, Figure 6.2i). KC, the murine homolog of human IL-8, was also 

measured in these co-cultures. Low concentrations of KC were detected in 

media and PMA controls. KC was undetectable following 16 hour co-culture with 

7 and 10 species biofilms (Figure 6.2 ii). 

 

Figure 6.2: Neutrophil pro-inflammatory protein expression following co-

culture  

Bone marrow derived neutrophils co-cultured for 4 and 16 hours with 3, 7 and 10 

species biofilms. Cell stimulated with 600 nM of PMA or media only were used as 

controls. Protein release was measured by ELISA for TNFα [i] and Luminex® for 

KC [ii]. All groups were assayed in duplicate on three separate occasions. Data 

represents mean ± SD (compared to cell only * p<0.05, ** p<0.01)(compared to 3 

species co-culture § p<0.05, §§ p<0.01)(compared to PMA # p<0.05). Statistical 

analysis was performed using a one-way ANOVA with Tukey’s post test. 
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Neutrophil extracellular trap (NET) formation was investigated following 16 

hours co-culture with multi-species biofilms. NETs are defined as extracellular 

networks primarily composed of DNA, elastase and citrullinated histones that 

bind and kill microorganisms (Brinkmann et al., 2004). To detect NETs following 

co-culture, neutrophils were stained to highlight neutrophil elastase (shown in 

red), anti-histone H3 (shown in green) and DNA (shown in blue) and visualised by 

confocal microscopy. Neutrophils cultured for 16 hours in complete RPMI without 

stimulus showed intracellular DNA staining and minimal elastase staining inside 

the cell with no apparent NET formation (Figure 6.3 i). The positive control of 

neutrophils stimulated with 600 nM of PMA showed increased levels of neutrophil 

elastase at the cell surface and release of DNA shown as long branching strands 

of DNA (Figure 6.2 ii). In the co-culture of neutrophils with 3 species biofilms, 

clustered neutrophils show increased levels of neutrophil elastase being released 

and visible DNA release is observed where cells are spread further apart, 

although this appears as diffuse staining rather than the clear strands in 6.3 ii 

(Figure 6.3 iii). Co-culture of neutrophils with 7 species biofilms appears to show 

clustering of neutrophils, there is some staining of elastase and release of DNA 

into a matrix which encapsulates the neutrophils and neutrophil elastase 

underneath (Figure 6.3 iv). Neutrophils co-cultured with 10 species biofilms show 

large amounts of DNA present. Interestingly, in this co-culture there are large 

quantities of neutrophil elastase present; however the majority of this appear to 

still be inside the neutrophils. Some elastase appears extracellular, although as 

this does not clearly associate with defined strands of DNA; necrotic cell death 

seems a more likely source of this released elastase (Figure 6.3v). Anti-histone 

H3 was not observed in any of the cultures. 
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Figure 6.3: Neutrophil NET formation following co-culture with multi-species 

biofilms 

Bone marrow derived neutrophils co-cultured for 16 hours with 3 [iii], 7 [iv] and 

10 [v] species biofilms. Cell stimulated with 600 nM of PMA [ii] or media only [i] 

were used as controls. Neutrophils were removed and stained for neutrophil 

elastase (red), anti-histone H3 (green) and DNA (blue) and imaged on a confocal 

microscope. The images are representative of three independent experiments 

using duplicate samples. Scale bar represents 50 μm. 
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 Biofilms modulate differentiation and inflammatory protein 
response of undifferentiated THP-1 cells in co-culture 

Monocytes and macrophages can comprise up to 30% of the cells in the 

periodontal lesion. Monocytes and macrophages respond and interact with their 

local surroundings responding to mediators produced by both local tissue and 

immune cells. This includes both host immune mediators such as inflammatory 

markers produced by gingival epithelial cell at the gingival margin and bacterial 

components produced by biofilms, such as bacterial LPS or gingipains produced 

by P. gingivalis, which can alter the local environment. To further understand 

the role the local environment plays on monocyte and macrophage cytokine 

profiles, PMA and vitamin D3 treated THP-1 cells were co-cultured with either 

conditioned media from biofilm: epithelial cell co-cultures or conditioned media 

from mature biofilms. THP-1 cells are a human pro-monocytic cell line derived 

from a myeloid leukaemia patient and has been widely used to study immune 

responses and cell function while cells are in the monocyte, differentiated 

macrophage-like and dendritic-like states (Tsuchiya et al., 1980, Schwende et 

al., 1996). This cell line was selected as it has been shown to closely resemble 

peripheral mononuclear blood monocytes when comparing cell functions, 

markers and immune responses (Gao et al., 2000, Chanput et al., 2014). The 

THP-1 cells line has also been extensively used to investigate the function of 

cells of the monocytic lineage in oral biology studies (Nahid et al., 2011, Gokyu 

et al., 2014).  

The ability of multi-species biofilms to differentiate THP-1 cells from pro-

monocytes into monocytes or macrophages was investigated by quantifying cell 

adherence after co-culture with biofilms. Positive controls of naïve THP-1 cells 

stimulated with PMA or vitamin D3 were used as these stimuli have been shown 

to differentiate the cells towards a monocytic and macrophage-like phenotype 

respectively (Rovera et al., 1979, Collins, 1987). Following co-culture, THP-1 

cells were stained with CFSE and adherence measured using fluorescent intensity 

and visualised by microscopy (Figure 6.4). At 4 hours no significant difference in 

THP-1 cell adherence between co-cultures with biofilms and controls was 

observed; however, following 24 hour co-culture, THP-1 cells stimulated with 

vitamin D3 and PMA showed significantly increased adherence compared to all 
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other biofilm stimulated cells or media controls (Figure 6.4i). Notably, THP-1 

cells co-cultured with 10 species biofilms also showed increased cell adhesion 

compared with the cells only (p<0.05) control and 3 species biofilms (p<0.05) at 

this time point. These finding were confirmed visually using fluorescence 

microscopy (Figure 6.4 ii-xiii). At both time points the fluorescent microscopy 

showed the number of THP-1 cells adhering to the coverslip increasing as biofilm 

complexity increased. The cells only control showed few adherent cells and both 

the PMA and vitamin D3 showed the largest number of adherent cells. The 

number of adherent cells in all conditions increased between 4 and 24 hours. 
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Figure 6.4: Pro-monocyte differentiation in response to biofilm co-culture 

THP-1 cells were stained with CFSE prior to co-culture with 3, 7 and 10 species 

biofilms for 4 and 24 hours. Cells cultured with media only (cells only) or 

stimulated with 100 nM vitamin D3 or 200 nM PMA were used as controls. Cell 

adhesion was quantified by fluorescence intensity using a plate reader [i]. 

Adhesion of THP-1 cultured with cells only [ii, viii], 3 species [iii, ix], 7 species 

[iv, x] and 10 species biofilms [v, xi], PMA [vi, xii] and vitamin D3 [vii, xiii] was 

also visualized by fluorescence microscopy (40x magnification) at 4 and 24 hours. 

All groups were assayed in duplicate on three separate occasions. (i) Data 

represents mean ± SD (compared to cells only * p<0.05, *** p<0.001; compared to 

3 species co-culture § p<0.05, §§§ p<0.001; compared to 7 species # p<0.05 ### 

p<0.001; compared to 10 species ∞ p<0.05 ∞∞∞ p<0.001). Statistical analysis was 

performed using a one-way ANOVA with Tukey’s post-test to compare all groups 

at each time point. 
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THP-1 cells showed differential adhesion patterns following co-culture with 

biofilm and controls therefore the morphology of THP-1 cells following 24 hour 

co-culture was also investigated using light microscopy (Figure 6.5). Notably, 

similarities between the 7 species co-culture and vitamin D3 stimulation were 

observed with adherent cells maintaining a round morphology (Figure 6.5 vii-

viii). Furthermore, THP-1 cells cultured with 10 species biofilms or stimulated 

with PMA showed greatest cell adherence with most cells attached to the 

coverslip and cells spreading on the surface (Figure 6.5 ix-x). 

 

Figure 6.5: Morphology of undifferentiated THP-1 cells following co-culture 

(Below) Undifferentiated THP-1 cells co-cultured with 3 [ii], 7 [iii, viii] and 10 

[iv, x] species biofilms for 24 hours. Cells cultured with media only (cells only)(i) 

or stimulated with 100 nM vitamin D3 [v, vii] or 200 nM PMA [vi, ix] were used as 

controls. Cell adhesion and morphology were visualized by light microscopy at 

40x [i-vi] and 100x [vii-x] magnification. THP-1 cell spreading following 10 

species co-culture and PMA stimulation highlighted by arrows. 
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Co-culture with multi-species biofilms caused increased THP-1 cells adherence 

and altered morphology. Next, the release of IL-8 in response to the biofilms was 

investigated (Figure 6.6). At 4 hours THP-1 cells released 9.9 pg/mL IL-8 in the 

cells only control; 413.6 pg/mL in 3 species co-culture; 1345.6 pg/mL in 7 

species co-culture and 1145.7 pg/mL in 10 species co-culture.  Following 24 

hours co-culture THP-1 cells released 7.8 pg/mL IL-8 in the cells only control, 

320.7 pg/mL in the 3 species co-cultures; 1076.1 pg/mL in 7 species co-cultures 

and 919.0 pg/mL in 10 species co-cultures. Overall, at both 4 and 24 hours, IL-8 

release was significantly higher in 7 and 10 species co-cultures than both the 

cells only control (p<0.05) and 3 species co-cultures (p<0.05). There was 

significant, albeit relatively modest, IL-8 release from 3 species co-cultures 

(p<0.05). These data shows biofilms co-cultured with undifferentiated THP-1 

cells cause differential IL-8 release.  

 

Figure 6.6: IL-8 protein response by undifferentiated THP-1 cells following 

co-culture 

THP-1 cells were co-cultured with 3, 7 and 10 species biofilms for 4 and 24 

hours. Cells cultured with media only were used as a cells only control. IL-8 

protein release was measured by ELISA. All groups were assayed in triplicate on 

three separate occasions. Data represent mean ± SD of three independent 

experiments performed in triplicate (compared with cells only * p<0.05, ** 

p<0.01; compared with 3 species biofilm § p<0.05). Statistical analysis was 

performed using a one-way ANOVA with Tukey’s post-test to compare all groups 

at each time point. 
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 THP-1 cells up-regulate differentiation markers following co-
culture with multi-species biofilms 

The previous data show co-culture with multi-species biofilms causes differential 

adherence, changes to cell morphology and inflammatory protein release in 

undifferentiated pro-monocytes. However, pro-monocytes are typically found in 

the bone marrow and the cells of that lineage present in the oral cavity are 

usually monocytes, macrophages and dendritic cells. Therefore it was important 

to investigate if co-culture with multi-species biofilms induced differential 

differentiation of THP-1 cells. Studies also frequently use PMA and vitamin D3 to 

differentiate the THP-1 cells into macrophages and monocytes respectively.  

Flow cytometry was used as a sensitive method to quantify the phenotype of live 

cells to determine if co-culture with biofilms, PMA or vitamin D3 differentiated 

THP-1 cells into monocytes or macrophages (Figure 6.7a and b). To quantify 

THP-1 cell differentiation CD14, a marker on both monocytes and macrophages; 

CD40, a macrophage maker; and CD69, a monocyte marker, were used. Viability 

was measured using eFluor450® which binds to dead cells to allow live cells to 

be gated.  
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Figure 6.7a: Example flow cytometry plots and gating strategy of THP-1 cells 

following culture 

THP-1 cells were co-cultured with 3, 7 and 10 species biofilms for 4 and 24 hours 

or stimulated with 100 nM vitamin D3 or 200 nM PMA. Cells cultured in media 

alone were used as a cells only control. Following culture, cells were analysed 

by flow cytometry to investigate changes cell surface expression of CD14, CD40 

and CD69. Cells were gated based on their forward and side scatter [i] and from 

this viable cells were then gated [ii]. Viable cells were quantified using an e450 

viability dye, which labels dead cells allowing, hence a ‘live cell gate’ was 

placed on the e450 negative cells. The proportion of gated viable THP-1 cells 

that were CD14+ (monocytes and macrophages)[iii-iv], CD40+ (macrophages)[v-

vi] and CD69+ (monocytes)[vii-viii] was analysed. Data represent examples of 

staining on undifferentiated ‘media’ cells [i, iii, v, vii]) and staining on cells 

differentiated with PMA or vitamin D3 ‘stimulated’ [ii, iv, vi, viii]) for CD69, CD40 

and CD14.  
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Figure 6.7b: Example MFI THP-1 cells following culture 

THP-1 cells were co-cultured with 3, 7 and 10 species biofilms for 4 and 24 hours 

or stimulated with 100 nM vitamin D3 or 200 nM PMA. Cells cultured in media 

alone were used as a cells only control. Following culture, cells were analysed 

by flow cytometry to investigate changes cell surface expression of CD14, CD40 

and CD69. Cells were gated based on their forward and side scatter and from 

this viable cells were then gated. Examples of mean fluorescent intensity (MFI) 

of CD14 positive, CD40 positive and CD69 positive gates are included to show 

differences between each species. 

 

To understand if biofilm composition can alter innate cell responses the ability 

of multi-species biofilms to differentiate THP-1 cells in co-culture for 4 and 24 

hours was assessed (Figure 6.8). Undifferentiated THP-1 cells were also 

stimulated with either PMA or vitamin D3 for 3 and 8 days, respectively, and 

viability and differentiation markers assessed to confirm if cells had 

differentiated as expected from the literature (Figure 6.9). 
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Viability of THP-1 cells was similar between PMA and vitamin D3 stimulated 

groups, with 53.3% and 63.9% (Figure 6.9 i). THP-1 cell viability in the cells only 

control was 80% and 70.35% at 4 and 24 hours respectively. After 4 hours co-

culture with 7 species biofilms, THP-1 cell viability was 24.55%, significantly 

lower than the cells only control (p<0.05). At 24 hours, co-culture with 10 

species biofilms reduced cell viability to 3.87%, which was significantly reduced 

compared to the cells only control (Figure 6.8 i).  

CD14+ expression following co-culture was measured on THP-1 cells following co-

culture with biofilms (Figure 6.8 ii) and on PMA and vitamin D3 differentiated 

cells (Figure 6.9 ii). Of the viable cells, 65.3% of PMA stimulated and 50.5% of 

vitamin D3 stimulated THP-1 cells were positive for CD14 (Figure 6.9 ii). At 4 

hours the proportion of CD14+ was 15.88% in the cells only control; 15.75% in 3 

species co-culture; 18.25% in 7 species co-culture and 21.55% in 10 species co-

culture. At 24 hours, the proportion of CD14+ THP-1 cells was 34.7% in the cells 

only control; 23.8% in 3 species co-culture; 7.0% in 7 species co-culture and 

29.3% in 10 species co-culture. At 24 hours the proportion of CD14+ cell in 7 

species biofilm co-culture was significantly lower than the cells only control 

(p<0.01), 3 species biofilm (p<0.05) and 10 species biofilm (p<0.05).  

The macrophage marker CD40 was measured on THP-1 cells following co-culture 

with biofilms (Figure 6.8 iii) and on PMA and vitamin D3 differentiated cells 

(Figure 6.9 iii). CD40 was present on 2.62% of PMA stimulated cells and 2.67% of 

vitamin D3 simulated cells. At 4 hours the proportion of CD40+ THP-1 was 6.5% in 

the cells only control; 3.03% in the 3 species co-culture; 8.8% in the 7 species co-

culture and 34.3% in the 10 species co-culture. Hence, co-culture with 10 

species biofilm significantly increases the CD40+ population of THP-1 cells 

compared with the cells only control (p<0.05). At 24 hours the proportion of 

CD40+ THP-1 cells was 1.28% in the cells only control; 61.3% in 3 species co-

culture; 80.85% in 7 species co-culture and 87.89% in 10 species co-culture. At 

this time point there was significant increases in the CD40+ populations in 3 

(p<0.01), 7 (p<0.001) and 10 (p<0.001) species co-culture compared with the 

cells only control. Additionally, the CD40+ population in 10 species co-culture 

was significantly increased compared to 3 species co-culture at 24 hours 

(p<0.05). 
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The monocyte marker CD69 was measured following THP-1 cell co-culture with 

biofilms (Figure 6.8 iv) and on PMA and vitamin D3 differentiated cells (Figure 

6.9 iv). CD69 was present on 2.18% of PMA stimulated cells and 0.85% vitamin D3 

stimulated cells. At 4 hours the proportion of CD69+ THP-1 cells was 0.8% in the 

cells only control; 5.0% in 3 species co-culture; 3.17% in 7 species co-culture and 

21.2% in 10 species co-culture. At 24 hours the proportion of CD69+ THP-1 cells 

was 0.3% in the cells only control; 10.6% in 3 species co-culture; 30.9% in 7 

species co-culture and 26.5% in 10 species co-culture. At 24 hours, the CD69+ 

population was significantly increased in 3 (p<0.05), 7 (p<0.01) and 10 (p<0.01) 

species co-cultures compared with the cells only control. Additionally, the 

CD69+ population in 7 (p<0.01) and 10 (p<0.01) species co-cultures was 

significantly increased compared with 3 species co-cultures.  

Collectively these data suggests that the co-culture with biofilms reduces 

undifferentiated THP-1 cell viability and up-regulates differentiation markers 

compared with the cells only control. Furthermore the mean fluorescent 

intensity (MFI) was also measured but so significant differences were observed. 

Additionally, data from the PMA and vitamin D3 stimulated THP-1 cells suggest 

the THP-1 cells have differentiated from pro-monocytes following PMA or 

vitamin D3 stimulation due to the CD14+ positive population; however, the lack 

of clear CD40 or CD69 positive populations within these groups does not allow 

definitive answers if PMA and vitamin D3 promote a macrophage vs. monocyte 

phenotype. 
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Figure 6.8: Cell viability and differentiation marker expression in THP-1 cells 

following culture 

THP-1 cells were co-cultured with 3, 7 and 10 species biofilms for 4 and 24 

hours. Cells cultured in media alone were used as a cells only control. Following 

culture cells were analysed by flow cytometry to investigate changes in cell 

viability [i], and cell differentiation using CD14 [ii], CD40 [iii] and CD69 [iv]. 

Data represent mean ± SD of two independent experiments performed in 

duplicate (compared with cells only * p<0.05, ** p<0.01 *** p<0.001; compared 

with 3 species biofilm § p<0.05; compared with 7 species biofilm # p<0.05). 

Statistical analysis was performed using a one-way ANOVA with Tukey’s post-test 

to compare all groups at each time point. 
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Figure 6.9: Cell viability and differentiation marker expression in THP-1 cells 

following PMA and Vitamin D3 stimulation 

THP-1 cells were stimulated with 100 nM vitamin D3 or 200 nM PMA. Following 

culture cells were analysed by flow cytometry to investigate changes is cell 

viability [i], and cell differentiation using CD14 [ii], CD40 [iii] and CD69 [iv]. 

Data represent mean ± SD of two independent experiments performed in 

duplicate. 
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THP-1 cells were differentiated with either PMA or vitamin D3 before co-culture 

for 4 and 24 hours with 3, 7 and 10 species biofilms or in media alone as a cells 

only control. Following this, gene expression and protein release of IL-8, IL-1β, 

CXCL5 and TNFα was measured (Figure 6.10). The results show biofilms 

differentially modulate THP-1 cell gene and protein response with significant 

differences occurring at both gene and protein level (Figure 6.11). However, the 

inflammatory gene and protein profiles of THP-1 cells stimulated with either 

PMA or vitamin D3 were quite different.  

At 4 hours, PMA differentiated THP-1 cell IL-8 protein release was 3.2 pg/mL in 

the cells only control; 542.1 pg/mL in the 3 species co-culture; 2132.7 pg/mL in 

7 species co-culture and 838.01 pg/mL in the 10 species co-culture. Thus, after 

4 hour exposure to biofilms there was significant increases in IL-8 protein 

expression following 7 (p<0.001) and 10 species (p<0.05) co-culture compared 

with the cells only control. At this time point IL-1β protein release was 9.4 

pg/mL in the cells only control; 22.8 pg/mL in 3 species co-culture, 94.1 in 7 

species co-culture and 134.8 pg/mL in 10 species co-culture. IL-1β protein 

release was significantly increased in 10 species co-culture compared with the 

cells only control (p<0.05) and 3 species co-culture (p<0.05).  

At 24 hours, PMA differentiated THP-1 cell IL-8 protein release was 29.9 pg/mL 

in the cells only control; 736.45 pg/mL in 3 species co-culture; 3544.59 pg/mL in 

7 species co-culture and 983.11 pg/mL in 10 species co-culture. At this time 

point only co-culture with 7 species biofilm caused significant IL-8 protein 

release compared with the cells only control (p<0.001). IL-1β protein release 

was 6.8 pg/mL in the cells only control; 6.1 pg/mL in 3 species co-culture; 

240.83 pg/mL in 7 species co-culture and 33.42 in 10 species co-culture. IL-1β 

protein release was significantly increased in 7 species co-culture compared with 

the cells only control (p<0.01) and 3 species co-culture (p<0.01). At this time 

point IL-8 gene expression was 0.23% in the cell only control; 274.2% in 3 species 

co-culture; 862.2% in 7 species co-culture and 704.2% in 10 species co-culture. 

Thus, IL-8 gene expression was significantly increased in 7 species co-cultures 

compared with the cells only control (p<0.05). 
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At 4 hours, vitamin D3 differentiated THP-1 cell IL-8 protein release was 21.7 

pg/mL in the cells only control; 1148.8 pg/mL in 3 species co-culture; 1243.9 

pg/mL in 7 species co-culture and 750.6 pg/mL in 10 species co-culture. Thus, 

the IL-8 protein release in 3 species (p<0.001), 7 species (p<0.001) and 10 

species (p<0.05) co-cultures was significantly higher than the cells only control. 

At this time point IL-1β protein release was 1.1 pg/mL in the cells only control; 

129.8 pg/mL in 3 species co-culture, 1094.6 in 7 species co-culture and 376.5 

pg/mL in 10 species co-culture. IL-1β protein release was significantly increased 

in both 7 and 10 species co-cultures compared with the cells only control 

(p<0.001) and 3 species co-culture (p<0.001). IL-1β protein release was also 

significantly increased in 7 species co-cultures compared with 10 species co-

cultures (p<0.001). TNFα protein release was 12.9 pg/mL in the cells only 

control; 336.6 pg/mL in 3 species co-culture; 723.3 pg/mL in 7 species co-

culture and 224.7 pg/mL in 10 species co-culture. CXCL5 protein release was 

significantly increased in 7 species co-cultures compared with the cells only 

control (p<0.05).  

At 24 hours, vitamin D3 differentiated THP-1 cell IL-8 protein release was 20.7 

pg/mL in the cells only control; 1160.6 pg/mL in 3 species co-culture; 991.6 

pg/mL in 7 species co-culture and 218.7 pg/mL in 10 species co-culture. Thus, 

the IL-8 protein release in 3 species (p<0.001) and 7 species (p<0.001) co-

cultures was significantly higher than the cells only control. At this time point IL-

1β protein release was 1.0 pg/mL in the cells only control; 226.2 pg/mL in 3 

species co-culture, 1165.8 in 7 species co-culture and 280.9 pg/mL in 10 species 

co-culture. IL-1β protein release was significantly increased in both 7 and 10 

species co-cultures compared with the cells only control (p<0.001) and 3 species 

co-culture (p<0.001). IL-1β protein release was also significantly increased in 7 

species co-cultures compared with 10 species co-cultures (p<0.001). CXCL5 

protein release following co-culture at this time point was 1.88 pg/mL in the 

cells only control; 21.2 pg/ml in 3 species co-culture; 1.29 pg/mL in 7 species 

co-culture  and 3.1 pg/mL in 10 species co-culture. Thus, CXCL5 protein release 

was significantly increased in co-culture with 3 species biofilms compared to all 

other conditions (p<0.05). TNFα protein release was 13.6 pg/mL in the cells only 

control; 211.9 pg/mL in 3 species co-culture; 130.5 pg/mL in 7 species co-

culture and 83.3 pg/mL in 10 species co-culture. TNFα protein release was 
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significantly increased in 3 species co-cultures compared with the cells only 

control (p<0.05).  

When measuring inflammatory gene expression of vitamin D3 differentiated THP-

1 cells, at 4 hours TNFα gene expression was 0.29% in the cells only control; 

53.6% in 3 species; 174.6% in 7 species and 102.7% in 10 species co-culture. TNFα 

gene expression was significantly increased in 7 species co-cultures compared 

with the cells only control (p<0.05).   

When measuring inflammatory gene expression of vitamin D3 differentiated THP-

1 cells, at 24 hours IL-8  gene expression was 1.19% in the cells only control; 

619.2% in the 3 species; 1219.4 in 7 species and 3376.6% in 10 species co-

culture. IL-8 gene expression was significantly increased in the 10 species co-

culture compared with the cells only control (p<0.001). At 24 hours, IL-1β gene 

expression was 1.9% in the cells only control; 237.5% in the 3 species co-culture; 

566.7% in 7 species co-culture and 1036.7% in 10 species co-culture. IL-1β gene 

expression was significantly increased in the 10 species co-culture compared 

with the cells only control (p<0.01) and 3 species co-culture (p<0.01). At this 

time point, CXCL5 gene expression was 1.32% in the cells only control; 1.88 

pg/mL in 3 species; 14.4 pg/mL in 7 species and 13.2 in 10 species co-cultures. 

Thus significant increases in CXCL5 gene expression were observed in 7 (p<0.05) 

and 10 (p<0.05) species co-cultures compared with the cells only control. 

Additionally CXCL5 gene expression was significantly increases in 7 species co-

cultures compared to 3 species co-cultures (p<0.05). 

In an attempt to provide some overall context to the inflammatory gene 

expression and protein release of differentiated THP-1 cells following co-culture 

with biofilms the data at 4 and 24 hours have been presented as spider diagrams 

(Figure 6.11). These profiles show that the responses observed following 3, 7 and 

10 species co-cultures are different, with a visible shift from the profile of the 

cells only controls. This representation shows the differences in inflammatory 

profiles between time points, with levels of inflammation typically increasing 

over time. Finally, these data shows different inflammatory profiles between 

PMA differentiated and vitamin D3 differentiated THP-1 cells, highlighting that 
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the cells in different states of differentiation may respond differently to each 

biofilm.  

Collectively these data shows the biofilms differentially modulate THP-1 

inflammatory gene and protein responses. Furthermore, the differentiation of 

THP-1 cells with either PMA or vitamin D3 also plays a role in the inflammatory 

response observed following co-culture. 

 

 

Figure 6.10: Inflammatory gene and protein expression of differentiated THP-

1 cells following biofilm co-culture 

THP-1 cells were differentiated using either PMA or vitamin D3 and co-cultured 

for 4 and 24 hours with 3, 7 or 10 species biofilms. Cells cultured media only 

were used as cells only controls. IL-8, IL-1β, CXCL5 and TNFα gene expression 

measured using SYBR® GreenER™ based qPCR relative to the housekeeping gene 

GAPDH (left panel). Protein release was measured by ELISA (right panel). Data 

represents mean ± SD of three independent experiments performed in duplicate 

(compared with cells only * p<0.05, ** p<0.01 *** p<0.001)(compared with 3 

species biofilm § p<0.05, §§ p<0.01, §§§ p<0.001)(compared with 7 species # 

p<0.05, ## p<0.01, ### p<0.001). Statistical analysis was performed using a one-

way ANOVA with Tukey’s post test to compare all groups at each time point. 

 

Figure 6.11: Spider diagram representation of the inflammatory profile of 

differentiated THP-1 cells co-cultured with multi-species biofilms 

THP-1 cells were differentiated as in figure 6.10 using either PMA [i-iv] or 

vitamin D3[v-viii] as then co-cultured for 4 [i, iii, iv, vii] and 24 [ii, iv, vi, viii] 

hours with 3, 7 or 10 species biofilms. Cells cultured in media only were used as 

cells only controls. IL-8, IL-1β, CXCL5 and TNFα gene expression measured using 

SYBR® GreenER™ based qPCR relative to the housekeeping gene GAPDH [i, ii, v, 

vi]. Supernatants were also removed and protein release measured by ELISA [iii, 

iv, vii, viii]. Data represent mean of three independent experiments performed 

in duplicate. 
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6.4 Discussion 

PD results from the dysbiosis of interactions between oral microbial biofilms and 

the host immune system. In this chapter the interactions between multi-species 

biofilms and innate immune cells have been investigated in an attempt to 

further understand the response to biofilms and how biofilm composition may 

alter the immune response. 

The main finding in this chapter is that biofilm composition can differentially 

influence a variety of activation and pro-inflammatory factors of neutrophils and 

cells of the monocytic lineage. Overall, the changes in pro-inflammatory gene 

and protein expression followed similar patterns to those observed in the 

previous chapter using epithelial cells. As biofilm complexity increases so too 

does inflammatory gene expression in neutrophils and monocytes in addition to 

monocyte cell adhesion, neutrophil NET formation and monocyte differentiation. 

The inflammatory profiles observed in response to each biofilm may have local 

and downstream affects on the immune system, particularly the adaptive 

immune response, which may ultimately dictate the overall inflammatory state 

observed in gingival health and PD.  

The data in this chapter showed differential inflammatory gene and protein 

profiles by neutrophils in response to 3, 7 and 10 species biofilm in co-culture. 

Neutrophil IL-1β and TNFα gene expression was significantly increased in co-

culture with 10 species biofilms and significantly increased levels of TNFα 

protein were present in co-cultures with 7 and 10 species biofilms. TNFα has 

been shown to have conflicting effects on neutrophil viability by promoting 

survival or enhancing apoptosis and it has been suggested TNFα related 

neutrophil survival is promoted through presence of inflammatory cytokines such 

as IL-8 (Walmsley et al., 2004, Cross et al., 2008). This may relate to the 

increased pro-survival phenotype of neutrophils found in periodontitis tissues 

(Lakschevitz et al., 2013). Furthermore, TNFα production triggers superoxide 

production from neutrophils which plays an important role in local tissue 

destruction a feature observed in the loss of gingival tissue in periodontitis 

patients (Kantarci et al., 2003). It would be of interest in future studies to 

investigate the impact of biofilms and their products on neutrophil superoxide 
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production. The cytokine IL-1β has shown to be present at higher levels in the 

gingivae and GCF of patients with PD than healthy controls (Engebretson et al., 

2002). IL-1β has been shown to be an important factor in neutrophil recruitment 

into periodontal tissues and osteoclast bone resorption, a hallmark of 

periodontitis (Graves et al., 1998, Miller et al., 2007).  Like TNFα, increases in 

IL-1β expression have also been proposed to promote neutrophil survival in PD 

which again may relate to the increased IL-1β gene expression observed when 

neutrophils were co-cultured with 10 species biofilms (Lakschevitz et al., 2013). 

The observations of neutrophils producing mediators such as IL-1β and TNFα in 

response to 7 and 10 species co-culture correlates with clinical studies which 

find numerous activated neutrophils in the gingivae in periodontitis, and the 

neutrophils appear to be associated with attachment loss and advanced 

periodontal destruction and have been postulated to directly contributed to the 

severity of tissue destruction and inflammation (Liu et al., 2001). 

NETs are a recently discovered addition to the defensive capabilities of 

neutrophils (Brinkmann et al., 2004). The production of NETs occurs through a 

controlled apoptosis mechanism called NETosis and this has been observed in the 

periodontal pockets of patients with chronic periodontitis (Vitkov et al., 2009). 

Neutrophils co-cultured with multi-species biofilms appeared to cause 

differential formation of NET-like structures, with increasing levels of DNA 

release from the neutrophils as biofilm complexity increases. No histones were 

observed in any of the neutrophil cultures in this study. This may be due to 

inadequate staining or there may be a lack of true NETs in response to co-

culture. Time limitations prevented extensive further optimisation of staining 

and sample preparation methods, which would be  required to confirm the 

findings. Interestingly, increasing levels of neutrophil elastase was observed 

outside the cells in 3 and 7 species co-cultures with 10 species biofilms showed 

high levels on neutrophil elastase within the cells and some visible release in 

what appears to be neutrophil necrosis. This finding may be due to the time 

point at which the images were taken and to fully understand NET formation in 

response to biofilm co-cultures time-course imaging, and imaging specifically for 

different types of cell death, may be beneficial. It has been speculated that 

DNAse producing bacteria including F. nucleatum, P. gingivalis and P. 

intermedia are able to degrade the chromatin NET backbone and thus evade 
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killing neutrophil killing (Palmer et al., 2012). Additionally, the inability to 

distinguish bacterial DNA from neutrophil DNA is problematic, as oral biofilms 

are known to contain large amounts of extracellular DNA, which is visualised 

along with NETs during microscopy. Repeating the studies herein would allow 

further understanding of the interactions between oral biofilms and NET 

formation. Importantly, quantifying the viability of neutrophils following co-

culture would allow us to determine if some of the DNA release observed during 

microscopy was due to necrosis. Differential inflammatory gene and protein 

responses were also observed following co-culture of neutrophils with biofilms. 

Cytokines including TNFα and IL-1β have been shown to increase NET formation 

in neutrophils (Keshari et al., 2012). It would therefore be useful in future 

studies to investigate how cytokine release following co-culture with different 

biofilms can affect NET formation and if biofilm modulation can alter this 

response. 

The main limitation of this work investigating the differential responses of 

neutrophils to oral biofilms is that the neutrophils used for this study are mouse 

bone marrow derived cells. These cells were readily available to our studies, and 

are frequently used for studies investigating neutrophil responses to oral 

pathogens due to the limited number of cells recovered from circulation 

(approximately 10-25% compared with 65-75% in human circulation); however 

the bone marrow contains neutrophils at different stages of maturation and 

hence may respond differently compared with mature, in vivo activated and 

differentiated neutrophils. For example, mouse bone marrow derived 

neutrophils require approximately 16 hours stimulation for 30% of the total cells 

to form shorter and more compact NETs, compared with human peripheral blood 

neutrophils that require 3-4 hours of stimulation for 80% of total cells to form 

NETS (Ermert et al., 2009).  

The work in this chapter co-culturing THP-1 derived monocytes and macrophages 

with multi-species biofilms show differential gene and protein response when 

looking at each cell type with each biofilm. THP-1 cells are a pro-monocytic cell 

line derived from an acute myeloid leukaemia patient and therefore have been 

used extensively for studies of both monocyte and macrophage function in vivo 

due to the ease of acquisition compared to use of primary tissue macrophages 
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which do not easily expand in culture. Furthermore, there are numerous studies 

documenting differentiation of these cells down either macrophage or monocyte 

lineages studies use PMA and vitamin D3 respectively (Schwende et al., 1996, 

Daigneault et al., 2010). During differentiation THP-1 cells become adherent to 

cell surfaces and increase their cytoplasmic cell ratio. In this chapter THP-1 cell 

adherence following stimulation following co-culture with biofilms was observed, 

with cell adhesion increasing as the complexity of the biofilm increased. Both 

PMA and vitamin D3 were strong promoters of cell adhesion, with significant 

increases in cell adhesion at 24 hours, and the cells showed different 

morphological characteristics, with PMA promoted cell spreading on the surface 

while vitamin D3 cells were still round in morphology when visualised by 

microscopy. Notably, THP-1 cells co-cultured with 10 species biofilms showed 

similar morphology to PMA treated cells and 7 species biofilms with cell 

stimulated with vitamin D3. Studies have shown similar findings in the 

differences in THP-1 cell adhesion following exposure to vitamin D3 or PMA which 

is associated with greater cell differentiation (Daigneault et al., 2010). Although 

at the time of writing no studies investigating THP-1 differentiation to oral 

biofilms have been undertaken it has been shown that stimulation of naïve THP-1 

cells with P. gingivalis and F. nucleatum LPS causes up regulation of activation 

marker CD11b, CD11c and the MHC class II cell surface receptor HLA-DR over 

time compared with the cells only control (Baqui et al., 1999).  

To further explore the impact of biofilm co-culture, THP-1 cells were examined 

by flow cytometry using makers for the monocyte (CD69/CD14) and macrophage 

(CD40/CD14) lineage. The proportion of THP-1 cells expressing CD14+ was 

reduced in 7 species co-cultures at 24 hours. CD14 is found on both monocytes 

and macrophages and is important for the detection of PAMPS such as bacterial 

LPS via TLR2/4 (Wright, 1995). In periodontitis patients decreased levels of 

membrane bound CD14 in periodontal pocket tissues and increased levels of 

soluble CD14 have been observed compared with healthy controls (Nicu et al., 

2009, Jin et al., 2004). The reduction of CD14 observed in oral biofilm co-culture 

may be due to species such as P. intermedia and P. gingivalis degrading CD14 on 

the surface of monocytes (Sugawara et al., 2000, Duncan et al., 2004). 

Alternatively, CD14 may be lost due to the differentiation of these cells to a 

dendritic cell phenotype (Bullwinkel et al., 2011). To further understand this 
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finding soluble CD14 could be measured from the supernatants following co-

culture.  

THP-1 expression of both CD40 and CD69 was increased following co-culture with 

all biofilms at 24 hours. CD40 is a co-stimulatory molecule found on the surface 

of antigen presenting cells such as macrophages and dendritic cells and suggests 

that in oral biofilm co-culture THP-1 cells may be able to present antigen which 

in future studies could be tested by quantifying MCH class II on the surface of 

these cells. CD69 is an early activation marker which is predominantly associated 

with T cell activation, but has also been associated with monocyte and 

macrophage activation (Marzio et al., 1997, Wobke et al., 2013, Teixeira and 

Rumjanek, 2014). Collectively, the data suggest that THP-1 cells become 

activated. However, due to the limited surface markers used for this study no 

definitive conclusions can be given on the phenotype of THP-1 cells following co-

culture, and the exact nature of their differentiation status remains to be 

determined. THP-1 cells have been shown to differentiate into monocyte-like, 

macrophage-like and dendritic cell-like states using vitamin D3, PMA and 

ionophores respectively (Daigneault et al., 2010, Santegoets et al., 2008). 

Therefore, future work to examine the phenotype would benefit from additional 

markers such as MCH Class II (antigen presentation), CD11b (Macrophage 

phenotype), CD11c (DC phenotype), CD206 (M2 subtype), CD16/32 (M1 subtype) 

to differentiate monocytes, macrophages and dendritic cell linages and markers 

to differentiate M1 and M2 macrophages. 

Cells of the monocyte lineage also produce inflammatory cytokines which play 

an essential role in immune cell activation and cell recruitment (Skovbjerg et 

al., 2010). Co-culture of THP-1 cells differentiated with either PMA or Vitamin 

with oral biofilms showed differing inflammatory gene and protein profiles in 

response to 3, 7 and 10 species biofilm co culture when investigating IL-8, IL-1β, 

CXCL5 and TNFα. The data in this chapter show that PMA differentiated THP-1 

cells increased IL-8 gene and protein expression and IL-1β gene expression when 

exposed to 7 species biofilms. Vitamin D3 stimulated THP-1 cells were much 

more sensitive to co-culture and showed increased gene expression of all 

cytokines when co-cultured with 7 and 10 species biofilms as well as increases in 

protein expression of IL-8, IL-1β and TNFα. Studies have shown monocytes 
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produce more IL-1β following LPS stimulation due to the constitutive activation 

of caspase-1 where as macrophages require a secondary signal for activation 

(Netea et al., 2009). Additionally, studies using LPS to stimulate monocytes and 

macrophages and measure subsequent TNFα production observed greater levels 

of TNFα protein release in monocytes than macrophages, although other studies 

have observed the opposite effect (Burchett et al., 1988, Gessani et al., 1993). 

In this study both PMA and vitamin D3 stimulated cells showed greatest increase 

in cytokine gene expression when cultured with 10 species biofilm and a greatest 

increase in protein expression when cultured with 7 species biofilm; which 

suggests biofilm composition may play a role in the cytokine response to THP-1 

cells. Studies have shown human monocytes and tissue macrophages cultured 

with Gram-positive bacteria produced a more pro-inflammatory profile, high in 

IL-12, IFNγ and TNFα compared with Gram-negative bacteria which promoted IL-

10, IL-6 and IL-8 and PGE2 (Hessle et al., 2000, Hessle et al., 2003, Skovbjerg et 

al., 2010). By expanding the investigation monocyte/macrophage cytokines 

investigated in this chapter a greater understanding of the unique response to 

each oral biofilm following co-culture would be available. Additionally this work 

would be a prelude to using THP-1 cells as APCs which could be used for T cell 

stimulation studies following co-culture. This would allow further understanding 

of the functional relevance of how biofilm composition differentially activated 

such cells and the downstream inflammatory profiles produced. 

The protocol used in this chapter to differentiate monocytes using PMA was 

adapted from Daigneault et. al. (2010) and their work showed using this 

differentiation protocol all PMA differentiated cells were classically activated 

and following stimulation with bacterial LPS produced significantly higher levels 

of IL-1β and TNFα protein than vitamin D3 differentiated cells which is in line 

with the findings in figure 6.10 (Daigneault et al., 2010). Futures studies would 

seek to further explore the functional relevance of the biofilm impact on THP1 

differentiation. The release of a broader range of cytokines would be of interest, 

for example IL-10 and IL-12. Cytokine regulation may contribute to the failure of 

macrophages to mount an M1 pro-inflammatory response to oral bacteria such as 

P. gingivalis and A. actinomycetemcomitans (Muthukuru et al., 2005, Tanabe 

and Grenier, 2008).     
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The work in this chapter is a preliminary study into immune cell and oral biofilm 

interactions, with a focus on how biofilm composition may differentially 

modulate the host immune response. The few existing studies which investigate 

the role of oral biofilm composition on the host inflammatory response, have 

generally focused on gingival epithelial cells (Peyyala et al., 2013). However, 

there is great potential for these models to be used to study numerous immune 

cell types to understand their role in PD. Furthermore, this model allows the 

generation of conditioned media from cells in co-culture which can be used to 

stimulate other cell types. It would be interesting to further develop the model 

into a system which incorporates multiple cells types to investigate the response 

of both neutrophils and monocytes/macrophages singly and in combinations with 

different oral biofilms to enhance our understanding or the ability of oral 

biofilms to modulate the host immune response.  

 

CHAPTER FINDINGS 

There is increased expression of pro-inflammatory cytokines by neutrophils 

in response to 7 and 10 species biofilms 

Biofilm composition differentially affects neutrophil NET formation in co-

culture  

Pro-monocytes increase cell adhesion and IL-8 protein release as biofilm 

complexity increases in co-culture 

There is increased expression of pro-inflammatory cytokines by PMA and 

vitamin D3 differentiated pro-monocytes in response to 7 and 10 species 

biofilms 
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7 Assessing in vitro oral biofilm models for testing 

potential actives 
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7.1 Introduction  

Due to the complex nature of PD, treatment is difficult. Dentists perform 

mechanical debridement on teeth to remove both living and calcified bacterial 

biofilms from the tooth surface in an attempt to lessen the bacterial load to halt 

the progression of the disease. However, while plaque is necessary, it is not 

sufficient to cause disease, host: biofilm dysregulation can persist with biofilm 

re-development beginning within hours of professional cleaning (Teles et al., 

2012). 

Limiting the accumulation of dental plaque by brushing the teeth daily is the 

optimal strategy for preventing PD through disruption of the oral biofilm 

(Lamster, 2006). However, clinical reports and population studies report a large 

number of the population do not comply sufficiently with this process (Villa et 

al., 2012, Ciancio, 2003). Additionally, due to illness, having recently undergone 

surgery, or having fixed orthodontics means some patients are unable to 

effectively brush their teeth and require supplementary methods to maintain 

oral health (Pithon et al., 2015, Shi et al., 2013, Burtner et al., 1991). 

Antimicrobial mouthwashes can supplement oral hygiene and provide an 

alternative to brushing for those who are unable to (Barnett, 2003). 

Chlorhexidine (CHX) is widely considered the ‘gold standard’ due to its superior 

bactericidal and bacteriostatic properties (Herrera, 2013). Additionally, CHX 

boasts broad spectrum antimicrobial effects against bacteria, fungi and viruses, 

and exhibits prolonged substantivity due to its high protein binding onto the 

pellicle on the surface of teeth (Baqui et al., 2001, Salim et al., 2013, Hannig et 

al., 2013). Studies have also shown combining scaling and root planning (SRP), 

the typical treatment for PD, combined with CHX rinsing results in significant 

improved scores of plaque index, bleeding on probing, probing depth and clinical 

attachment level compared with SRP alone (Faveri et al., 2006, Feres et al., 

2009, Stratul et al., 2010). However, reports have observed that prolonged use 

of CHX may also be detrimental due to associations with staining of the tooth 

surface, taste alterations, tongue discolouration and pain of the oral mucosa 

(Flotra et al., 1971, Najafi et al., 2012, Frank et al., 2001). Additionally various 

cases of allergic responses including anaphylaxis to CHX have been reported both 

after single exposure and repeated use (Dyer et al., 2013, Nakonechna et al., 
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2014). Due to these adverse reactions many new compounds are tested as 

alternatives in an attempt to find a compound which has the antimicrobial 

potency of CHX, but with minimal side effects.  

Host modulatory therapy has also been proposed as a treatment for PD due to 

the role of inflammation in the progression of the disease (Van Dyke, 2008). A 

variety of compounds have been proposed and tested in experimental 

periodontal models (Deore et al., 2014, Abe et al., 2012). One such group are 

polyphenols, which naturally occur in plants such as grapes, have become a 

focus for oral therapies due to reports of anti-bacterial and anti-inflammatory 

properties (Palaska et al., 2013). Recent studies have investigated the 

antimicrobial properties of a range of polyphenols against periodontal bacteria, 

observing inhibition of planktonic growth and biofilm formation following 

treatment (Shahzad et al., 2015). Resveratrol (RSV) is a naturally derived 

polyphenol which has been reported to be anti-inflammatory in periodontitis rat 

models. Other studies have found RSV to be antimicrobial and able to inhibit 

microbial and fungal biofilm formation (Casati et al., 2013, Tamaki et al., 2014, 

Lee et al., 2014). These studies highlight the potential of polyphenols, in 

particular RSV due to its anti-microbial and anti-inflammatory activities, 

therefore further work into how such compounds can alter host: biofilm 

interactions in the oral cavity is worth further investigation. 
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7.2 Aims 

The aims of this chapter were to investigate the potential of the co-culture 

models for evaluating actives. The following key questions were investigated: 

 Can a 4 species co-culture model be used to evaluate both antimicrobial 

and anti-inflammatory actives? 

 Are 3, 7 and 10 species biofilm models differentially affected by 

antimicrobial agents (CHX)?   

 Does treatment of 3, 7, and 10 species biofilm with antimicrobial agents 

(CHX) subsequently affect oral epithelial pro-inflammatory responses in 

co-culture? 

 

The data represented in this chapter has been published in: 

Millhouse, E., Jose, A., Sherry, L., Lappin, D., Patel, N., Middleton, A., Pratten, 

J., Culshaw, S. and Ramage, G., 2014. Development of an in vitro periodontal 

biofilm model for assessing antimicrobial and host modulatory effects of 

bioactive molecules. BMC Oral Health, 14:80 

 

The work in this chapter using the 4 species biofilm model was completed with 

the help of Leighann Sherry. 
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7.3 Results 

 RSV is toxic to oral epithelial cells at high concentrations   

When investigating the role of actives as potential therapeutic agents in co-

culture it is important to examine the toxicity of these compounds on host cells 

as well as the oral biofilms themselves to understand their impact on the host 

inflammatory response measured. To optimise the concentrations of RSV and 

CHX and treatment times, cytotoxicity tests were undertaken on both oral 

epithelial cells and biofilms. First, OKF6-TERT2 oral epithelial cells were treated 

for 0, 2, 10 and 30 minutes with three concentrations of CHX (0.01, 0.05 and 

0.2% v/v) and RSV (0.01, 0.05, 0.5% w/v) before washing with PBS and incubating 

for 4 and 24 hours, after which time cell viability was assessed using the cell 

viability dye AlamarBlue® as described in section 2.3.12.   

The data showed that all treatments (0 - 30 minutes using 0 – 0.2% CHX) with 

CHX resulted in a significant decrease in epithelial cell viability, with a decrease 

from 96% in the untreated controls to less than 3% (p<0.001) for all treatment 

times and concentrations at 4 hours. After 24 hours in culture 76% viability in 

untreated epithelial cells was reduced to 0% (p<0.001) following all treatment 

times and concentrations (Figure 7.1 i-iii). Treatments of 0 – 30 minutes with 

0.01% RSV showed no significant decrease at either 4 or 24 hours (Figure 7.1 iv). 

Treatment with 0.05% RSV caused a significant decrease in cell viability after 4 

hours, with cell viability reduced to 56% (p<0.01), 58% (p<0.01) and 51% (p<0.01) 

at 2, 10 and 30 minute treatment times, respectively (Figure 7.1v). After 24 hour 

culture, treatment with 0.05% RSV cell viability again significantly reduced to 

24% (p<0.01), 35% (p<0.01) and 41% (p<0.01) following 2, 10 and 30 minute 

treatment times. Finally, treatment of cells with 0.5% RSV resulted in significant 

decreases in cell viability at all time points (p<0.001) (Figure 7.1vi), with 

viability ranging from 40-33% at 4 hours and 9-12 % at 24 hours. From these data 

the treatment time taken forward for the reminder of the study was 30 minutes. 
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Figure 7.1: Cytotoxicity of CHX and RSV treatment on oral epithelial cells 

The oral epithelial cell line OKF6-TERT2 was seeded at 1 x 105 cells/mL in 24 

well plates for toxicity studies. Cells were treated with concentrations of CHX 

(0.01 [i], 0.05 [ii] and 0.2% [iii] v/v) and RSV (0.01 [iv], 0.05 [v], 0.5% [vi] w/v) 

for a range of times (0 - 30 minutes) before washing with PBS. Cells were then 

returned cultured for a further 4 hours in 5% CO2 in d-KSFM containing 10% 

AlamarBlue® before removal of media to be used to measure viability. Cell 

viability was assessed using the AlamarBlue® assay with absorbance of media 

read at 570 nm and 600 nm. All groups were assayed in triplicate on three 

separate occasions. Data represents mean ± SD (** p<0.01, *** p<0.001) 

Statistical analysis was performed using a one-way ANOVA with Tukey’s multiple 

comparison post test to compare all groups with the 0 minute treatment time-

point. 
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 RSV treatment does not affect biofilm viability  

To measure the antimicrobial properties of the actives, multi-species biofilms 

containing S. mitis, F. nucleatum, P. gingivalis and A. actinomycetemcomitans 

were then treated for 30 minutes with each concentration of CHX and RSV  

before washing with PBS and viability measured using the metabolic dye 

AlamarBlue®. RSV caused no significant decrease in biofilm viability at any 

concentrations (Figure 7.2 i); however, treatment with 0.05 and 0.2% v/v CHX 

showed significant decreases in biofilm viability compared to the untreated 

control. Biofilm viability was decreased to 5% and 6% with 0.05% (p<0.001) and 

0.2% (p<0.001) CHX treatment, respectively (Figure 7.2 ii). Based on these data 

the concentrations taken forward for the remainder of the study were 0.2% v/v 

CHX and 0.01% RSV. 

 

Figure 7.2: Cytotoxicity of CHX and RSV on biofilms 

Multi-species biofilms were grown on Thermanox™ coverslips and treated with 

RSV (0, 0.01, 0.05% w/v) (i) or CHX (0, 0.01, 0.05, 0.2% v/v) (ii) and biofilm 

viability measured using AlamarBlue®. All groups were assayed in triplicate on 

three separate occasions. Data represents mean ± SD (*** p<0.001). Statistical 

analysis was performed using a one-way ANOVA with Tukey’s multiple 

comparison post-test to compare all groups to the 0% concentration treatment. 
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 RSV does not affect biofilm composition 

To determine if treatment with these actives altered the species composition of 

the biofilm, they were again treated for 30 minutes with either CHX (0.2% v/v) 

or RSV (0.01% w/v). Following this biofilms were washed in PBS, DNA was 

extracted and quantification of each species performed by qPCR (Figure 7.3). 

The data showed no significant change in the composition of the biofilm directly 

following treatment compared to the untreated biofilm. To further investigate 

this effect, SEM analysis was performed to examine the impact of each 

treatment on the architecture of the biofilm (Figure 7.4 i-vi). At both 

magnifications CHX appeared to destabilise the biofilm, as the complexity of the 

biofilm was visually reduced (Figure 7.4 ii, v). However, RSV appeared to have 

no visual effect on the physical architecture (Figure 7.4 iii, vi).  

 

Figure 7.3: Biofilm composition following CHX and RSV treatment 

Multi-species biofilms were grown on Thermanox™ coverslips and treated with 

RSV (0, 0.01, 0.05% w/v) or CHX (0, 0.01, 0.05, 0.2% v/v). Biofilms were washed 

with PBS and DNA was extracted for quantification of each species using SYBR® 

GreenER™ based qPCR. All groups were assayed in triplicate on three separate 

occasions. Data represents mean ± SD. Statistical analysis was performed using a 

one-way ANOVA with Tukey’s multiple comparison post-test to compare all 

treatments to the untreated biofilm. 
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Figure 7.4: SEM analysis of biofilms following CHX and RSV treatment 

Biofilms were analysed by SEM at 2000 x (i, ii, iii) and 5000 x (iv, v, vi). Biofilms 

were treated with either CHX 0.2% v/v (ii, v), RSV 0.01% w/v (iii, vi) and 

compared to an untreated control (i, iv). S. mitis (SM), F. nucleatum (FN), 

P.gingivalis (PG) and A. actinomycetemcomitans (AA) are annotated on the 

untreated control. Biofilms were processed and viewed on a JEOL JSM-6400 

scanning electron microscope.  
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  RSV alters the expression of pro-inflammatory mediators 

To determine whether the actives had additional effects these compounds were 

tested for their ability to modulate a biological response from the OKF6-TERT2 

oral epithelial cell line. This was investigated by measuring changes in pro-

inflammatory mediators at the gene and protein level. To quantify this the co-

culture model described in section 2.2.3 was used with the simple 4 species 

biofilm model containing S. mitis, F. nucleatum, P. gingivalis and A. 

actinomycetemcomitans (Sherry et al., 2013). Treatments of either biofilms with 

0.2% v/v CHX for 30 minutes or OKF6-TERT2 oral epithelial cells with 0.01% w/v 

RSV was performed prior to co-culture for 4 or 24 hours.  

Initially, IL-8 gene expression was measured by SYBR® GreenER™ based qPCR 

(Figure 7.5). No significant differences were observed in the IL-8 gene expression 

of RSV treated OKF6-TERT2 oral epithelial cells when co-cultured for 4 and 24 

hours compared with the untreated biofilm control (Figure 7 i). Treatment of the 

biofilm with CHX prior to co-culture did not affect the subsequent epithelial cell 

expression of IL-8 expression after 4 hour co-culture, however, significant 

decreases in the IL-8 measured after 24 hours was observed (Figure 7.5 ii). At 24 

hours IL-8 gene percentage expression was significantly reduced from 20% in 

untreated biofilm co-cultures to 3.6% (p<0.001) in co-cultures where biofilms 

were pre-treated with 0.2 v/v CHX.  
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Figure 7.5: IL-8 gene response by OKF6-TERT2 cells in co-culture following 

treatment with actives  

OKF6-TERT2 cells were pre-treated with (i) 0.01% w/v RSV or (ii) multi-species 

biofilms were pre-treated with 0.2% v/v CHX for 30 minutes before washing with 

PBS and then co-cultured for 4 and 24 hours with untreated biofilms or cells, 

respectively. Controls included cells in media only (cells only) and untreated 

cells in co-culture with an untreated biofilm (untreated biofilm). RNA was 

extracted from cells at each time point, cDNA was synthesized and IL-8 gene 

expression measured using SYBR® GreenER™ based qPCR relative to the 

housekeeping gene GAPDH. All groups were assayed in triplicate on three 

separate occasions. Data represents mean ± SD (*** p<0.001). Statistical analysis 

was performed using a two-way ANOVA with Bonferroni post-test to compare all 

groups to each other. 
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The simultaneous gene expression of multiple pro-inflammatory cytokines 

produced by OKF6-TERT2 oral epithelial cells was investigated further using the 

RT2 Profiler assay (Figure 7.6). After 30 minute pre-treatment of biofilms with 

either 0.2% v/v CHX or 30 minute pre-treatment of epithelial cells with 0.01% 

w/v RSV differences in gene expression we measured after 4 hour co-culture. 

Following treatment of biofilms with CHX a 140.8 (p<0.05) fold decrease in 

epithelial cell IL-8 gene expression was observed in co-culture compared to the 

untreated controls (Figure 7.6i). No significant differences were observed in any 

genes following RSV treatment of epithelial cells. (Figure 7.6 ii). 

Finally, IL-8 protein expression by OKF6-TERT2 oral epithelial cells in co-culture 

was investigated (Figure 7.7). As previously described, OKF6-TERT2 cells were 

treated with 0.01% w/v RSV or biofilms were treated with 0.2% v/v for 30 

minutes prior to co-culture for 4 and 24 hours. Treatment of cells with RSV 

significantly reduced the IL-8 protein measured after co-culture from 534.87 

pg/mL in the untreated control to 20.88 pg/mL (p<0.001) with treatment at 4 

hours and 271.30 pg/mL in the untreated control to 65.59 pg/mL (p<0.01) with 

treatment at 24 hours (Figure 7.6 i). CHX treatment also significantly reduced 

the IL-8 present after co-culture with 54.26 pg/mL (p<0.001) and 20.01 pg/mL 

(p<0.001) measured and 4 and 24 hours, respectively (Figure 7.6 ii).  
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Figure 7.6: Pro-inflammatory gene response by OKF6-TERT2 cells in co-

culture following treatment with actives 

Multi-species biofilms were pre-treated with 0.2% v/v CHX (i) or OKF6-TERT2 

cells were pre-treated with 0.01% w/v RSV (ii) for 30 minutes before washing 

with PBS and then co-cultured for 4 hours with untreated biofilms or cells, 

respectively. Untreated controls were included. RNA was extracted from cells at 

each time point, cDNA was synthesized and pro-inflammatory cytokine gene 

expression measured using the RT2 Profiler. Samples are normalised to the 

housekeeping gene GAPDH and relative to the cells only control. All groups were 

assayed in triplicate on three separate occasions. Data represents mean ± SD (* 

p<0.05). Statistical analysis was performed using a two-tailed unpaired t test. 
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Figure 7.7: IL-8 protein response by OKF6-TERT2 cells in co-culture following 

treatment with actives  

OKF6-TERT2 cells were pre-treated with 0.01% w/v RSV (i) or multi-species 

biofilms were pre-treated with 0.2% v/v CHX (ii) for 30 minutes before washing 

with PBS and then co-cultured for 4 and 24 hours with untreated biofilms or cells 

respectively. Controls included cells in media only (cells only) and untreated 

cells in co-culture with an untreated biofilm (untreated biofilm). Protein release 

was measured by ELISA. All groups were assayed in triplicate on three separate 

occasions. Data represents mean ± SD (** p<0.01, *** p<0.001). Statistical analysis 

was performed using a two-way ANOVA with Bonferroni post-test to compare all 

groups to each other. 
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 CHX treatment affects viability and composition of biofilms 

Having confirmed the simple multi-species biofilm model was suitable for use 

evaluating the potential of actives in PD, the potential of the complex multi-

species biofilm models was evaluated. To investigate this 0.2% v/v CHX 

treatment for 30 minutes on biofilms as performed in the previous work was 

used for the remainder of this study. CHX toxicity to OKF6-TERT2 oral epithelial 

cell viability was previously investigated (Figure 7.1). Using 3, 7 and 10 species 

biofilm models described in section 2.1.5 the viability of each biofilm after 30 

minute treatment of 0.2% v/v CHX was investigated (Figure 7.8). The 

antimicrobial activity of CHX was shown to significantly reduce biofilm viability 

by 58% (p<0.001), 55% (p<0.001) and 59% (p<0.001) for 3, 7 and 10 species 

biofilms, respectively, compared to the untreated control biofilms. Additionally 

significant differences (p<0.01) were observed when comparing the viability 

between the CHX treated biofilms, with an average of 8.6%, 18.6% and 13.5% 

viability for 3, 7 and 10 species respectively.  

  



Chapter 7: Assessing in vitro oral biofilm models for testing potential actives 

 216 

 

 

Figure 7.8: Cytotoxicity of CHX on 3, 7 and 10 species biofilms 

Mature 3, 7 and 10 species biofilms were treated with 0.2% v/v CHX for 30 

minutes and biofilm viability measured using AlamarBlue®. All groups were 

assayed in triplicate on three separate occasions. Data represents mean ± SD (*** 

p<0.001). Statistical analysis was performed using a two-tailed unpaired t test. 
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compared to the untreated control (Figure 7.9 i). In the 7 species biofilm, 
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3.3 log reduction in total V. dispar and no significant difference in the total 
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Figure 7.9: Biofilm composition following CHX  

Mature 3, 7 and 10 species biofilms were grown on Thermanox™ coverslips and 

treated CHX (0.2% v/v) for 30 minutes. Biofilms were washed with PBS and DNA 

was extracted for quantification of each species using SYBR® GreenER™ based 

qPCR. All groups were assayed in triplicate on three separate occasions. Data 

represents mean ± SD (* p<0.05, ** p<0.01). Statistical analysis was performed 

using a two-tailed unpaired t test. 
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The architecture of each biofilm following treatment was also assessed by SEM 

(Figure 7.10). At both low and high magnifications significant loss of 

Streptococcus species can be seen following CHX treatment of the 3 species 

biofilm (Figure 7.10 i-ii) compared to the untreated control (Figure 7.10 iii-iv). 

Similar disaggregation following treatment can be observed in the 7 species 

biofilms (Figure 7.10 v-vi), where the complex microbial communities observed 

in the untreated controls (Figure 7.10 vii-viii) have been lost. Unlike the 3 and 7 

species biofilms, which lose their complexity following treatment, CHX 

treatment of 10 species biofilms appears to result in the fusion of the uppermost 

layer of bacteria (Figure 7.10 ix). At high magnification cracks within this 

uppermost layer show bacteria appear protected underneath (Figure 7.10 x) 

although are notably less abundant than the untreated controls (Figure 7.10 xi-

xii). 

 

Figure 7.10: SEM analysis of 3, 7 and 10 species biofilms follow CHX 

treatment 

Mature 3 (i, ii, iii, iv), 7 (v, vi, vii, viii), 10 (ix, x, xi, xii) species biofilms were 

analysed by SEM at both 2000 x (i, iii, v, vii, ix, xi) and 5000 x (ii, iv, vi, viii, x, 

xii). Biofilms were treated with CHX 0.2% v/v (i, ii, v, vi, ix, x) for 30 minutes 

and compared to an untreated control (iii, iv, vii, viii, xi, xii). CHX treated 

biofilms were first compared at low magnification to untreated controls where 

the architecture of the 3 and 7 species biofilms appears to be lost following 

treatment. At higher magnifications, 10 species biofilms treated with 0.2% v/v 

CHX resulted in fusion of the bacteria at the topmost layer of the biofilm 

however this appears to have protected bacteria underneath as denoted by the 

arrow. Biofilms were processed and viewed on a JEOL JSM-6400 scanning 

electron microscope.  
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  CHX treatment differentially alters the expression of pro-

inflammatory mediators 

Next, the pro-inflammatory gene and protein response to CHX treated 3, 7 and 

10 species biofilms in co-culture was investigated and any differential response 

to treated biofilms noted. After pre-treatment of biofilms with 0.2% v/v CHX for 

30 minutes, biofilms were co-cultured with OKF6-TERT2 oral epithelial cells, as 

previously described in section 2.2.3 for 4 and 24 hours. Following co-culture IL-

8 gene expression was quantified using SYBR® GreenER™ based qPCR (Figure 

7.11). No significant differences in gene expression were observed when 

comparing CHX treated biofilms to their untreated controls, nor were there any 

significant differences in the epithelial cell percentage expression of IL-8 when 

comparing the CHX treated biofilms to each other. 

Gene expression was further investigated by using the RT2 profiler to measure an 

array of pro-inflammatory cytokines (Figure 7.12). No significant differences 

were observed in the gene expression of pro-inflammatory cytokines when 

comparing co-cultures containing CHX treated 3 species biofilms (Figure 7.12 i) 

to the untreated control (Figure 7.12 iv). Significant differences were observed 

when comparing the co-cultures containing CHX treated 7 species biofilms to 

untreated controls. At 4 hours the CHX treated 7 species biofilm pro-

inflammatory gene response of TNFα was increased 10.74 fold (p<0.001), CSF3 

was increased 61.8 fold (p<0.001), CXCL1 was increased 30.7 fold (p<0.001) and 

CXCL3 was increased 19.6 fold (p<0.05) compared with the co-culture containing 

untreated controls (Figure 7.12 ii). At 24 hours IL-6 gene expression was 108.8 

fold (p<0.01) higher in CHX treated co-cultures than the control. Conversely, 

CSF2 was 86.1 fold (p<0.05) lower in CHX treated co-cultures compared to the 

untreated control (Figure 7.12 v). In co-cultures with 10 species biofilms at 4 

hours IL-6 was increased 199.2 fold (p<0.01) compared to the untreated control 

(Figure 7.12 iii). No significant differences were observed in cytokine gene 

expression at 24 hours; however, there was a notable trend to increased gene 

expression of all pro-inflammatory cytokines in CHX treated co-cultures 

compared with untreated controls (Figure 7.12 vi). Additionally, no significant 

differences were observed between the gene expression of each cytokine when 

comparing 3, 7 and 10 species CHX treated co-cultures. 
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Figure 7.11: IL-8 gene expression by OKF6-TERT2 cells in co-culture following 

biofilm treatment with CHX 

Mature 3, 7 and 10 species biofilms were pre-treated with 0.2% v/v CHX for 30 

minutes before washing with PBS and then co-cultured for 4 (i) and 24 (ii) hours 

with OKF6-TERT2 oral epithelial cells. Controls included untreated cells in media 

only (cells only) and untreated cells in co-culture with an untreated biofilm 

(untreated biofilm). RNA was extracted from cells at each time point, cDNA was 

synthesized and IL-8 gene expression measured using SYBR® GreenER™ based 

qPCR relative to the housekeeping gene GAPDH. All groups were assayed in 

triplicate on three separate occasions. Data represents mean ± SD. Statistical 

analysis was performed using a two-way ANOVA with Bonferroni post-test to 

compare all groups to each other. 
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Figure 7.12: Pro-inflammatory gene response by OKF6-TERT2 cells in co-

culture following biofilm treatment with CHX 

Mature 3 (i, iv), 7 (ii, v) and 10 (iii, vi) species biofilms were pre-treated with 

0.2% v/v CHX (ii) for 30 minutes before washing with PBS and then co-cultured 

for 4 (i, ii, iii) and 24 (iv, v, vi) hours with cells. Controls included untreated 

cells in media only (cells only) and untreated cells in co-culture with an 

untreated biofilm (untreated biofilm). RNA was extracted from cells at each 

time point, cDNA was synthesized and pro-inflammatory cytokine gene 

expression measured using the RT2 Profiler. Samples are normalised to the 

housekeeping gene GAPDH and relative to the cells only control. All groups were 

assayed in triplicate on three separate occasions. Data represents mean ± SD (* 

p<0.05, **p<0.01, ***p<0.001). Statistical analysis was performed using a two-

tailed unpaired t test. 
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Finally, IL-8 protein expression after 4 and 24 hour co-culture was measured by 

ELISA (Figure 7.13). At 4 hours, significantly less IL-8 protein was measured in 

the co-culture of CHX treated 7 and 10 species biofilms with a 4.6 fold (p<0.001) 

and 3.1 fold (p<0.001) reduction compared with the 7 species and 10 species 

untreated controls, respectively (Figure 7.13 i). At 24 hours, a 12.43 fold 

reduction (p<0.001) of IL-8 protein was measured when comparing the CHX 

treated 7 species with the untreated control (Figure 7.13 ii). There was no 

significant differences in the IL-8 protein response between the CHX treated 3 

species biofilms at either time point.  

 

 

 

 

 



Chapter 7: Assessing in vitro oral biofilm models for testing potential actives 

 224 

 

Figure 7.13: IL-8 protein response by OKF6-TERT2 cells in co-culture 

following biofilm treatment with CHX 

Mature 3, 7 and 10 species biofilms were pre-treated with 0.2% v/v CHX for 30 

minutes before washing with PBS and then co-cultured for 4 (i) and 24 (ii) hours 

with OKF6-TERT2 oral epithelial cells. Controls included untreated cells in media 

only (cells only) and untreated cells in co-culture with an untreated biofilm 

(untreated biofilm). Protein release was measured by ELISA. All groups were 

assayed in triplicate on three separate occasions. Data represents mean ± SD (*** 

p<0.001). Statistical analysis was performed using a two-tailed unpaired t test to 

compare untreated biofilms with CHX treated biofilms. 
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7.4 Discussion 

Daily mechanical disruption (tooth brushing) of oral biofilms is the most 

important method for prevention of PD. However, biofilms can form over time if 

patients are not compliant with this process or unable to clean the teeth 

properly due to illness, surgery, or having fixed orthodontic appliances (Ciancio, 

2003). For dentists the ‘gold standard’ of PD treatment is mechanical 

debridement of the biofilm. Anti-microbial or anti-inflammatory supplements 

are only prescribed to patients who are physically unable to clean their teeth 

(Matthews, 2014). However, many studies have shown benefits of adding 

antimicrobials in parallel with debridement to augment the outcome of 

treatment (Herrera et al., 2002, Matesanz-Perez et al., 2013). Recently, studies 

have also begun to focus on the role of inflammation in periodontitis and 

investigate anti-inflammatory compounds and their potential in management of 

the disease (Hasturk et al., 2012). Previous chapters have shown the use of in 

vitro biofilm models to understand the interplay between different microbial 

biofilms and the host immune system. Furthermore these models can be used to 

evaluate potential actives’ ability to influence the host response as well as 

understand their basic mode of action. The data presented here show the ability 

of the models to test anti-microbial and anti-inflammatory compounds as well as 

the ability to measure differential responses to compounds using a variety of 

multi-species biofilms within the model.  

Firstly, a comparative assessment of CHX and RSV against OKF6-TERT2 oral 

epithelial cells and a simple 4 species oral biofilm was undertaken. CHX was 

found to be cytotoxic to OKF6-TERT2 cells at all concentrations and all 

treatment times used, a finding correlating with other studies on different cell 

types (Lessa et al., 2010, Li et al., 2014b). When treated with CHX, biofilm 

viability decreased at concentrations higher than 0.05% v/v and many studies 

both in vivo and in vitro confirm the potent antimicrobial properties of this 

compound (Park et al., 2014, Pilloni et al., 2013). Additionally, microscopy 

studies of human plaque treated with CHX observed reduction in plaque 

thickness compared to other treatments and matrix degradation (Vitkov et al., 

2005, Jentsch et al., 2013).  
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RSV did not affect cell viability when used at 0.01% w/v, however, it was found 

to be cytotoxic to cells at 0.05% and 0.5% w/v regardless of treatment time. 

Many cancer studies have investigated the role of RSV on cancer cell lines 

observing dose dependant cytotoxic and anti-proliferative effects following 

treatment (Berardi et al., 2009, Matic et al., 2010). A recent study by Catania et 

al (2013) also observed IC50 of MCF7 breast cancer cells when cultured with 0.05 

- 0.13mM of RSV for 72 hours and a study by Joe et al (2002) observed 

cytotoxicity of a variety of human cancer cell lines treated with 0.1 – 0.3% RSV 

(Catania et al., 2013, Joe et al., 2002). Treatment of biofilms with RSV did not 

affect biofilm viability or cause any significant changes to the structure when 

observed by SEM. Thus far no other studies have investigated the effect of RSV 

on periodontal biofilms; however, RSV treatment has been shown to be inhibit 

biofilm formation of Pseudomonas aeruginosa, Escherichia coli and 

staphylococcal species (Lee et al., 2014, Moran et al., 2014). It should be noted 

that these studies did not investigate the ability of RSV to decrease viability of a 

mature biofilm, which may explain the differences in observations.   

The next step was to assess any additional biological characteristics of CHX and 

RSV when used in a multi-species co-culture model. Using CHX treated 4 species 

biofilm or RSV treated OKF6-TERT2 oral epithelial cells the inflammatory gene 

and protein expression were examined after co-culture. Following co-culture 

with CHX pre-treatment, IL-8 gene expression was significantly reduced with 

other pro-inflammatory genes being notably decreased, combined with a 

significant reduction of IL-8 protein expression. Previously it was observed CHX 

may have anti-inflammatory properties due to its ability to down regulate 

bacterially induced pro-inflammatory proteins such as TNFα and IFNγ in an in 

vivo mouse chamber model (Houri-Haddad et al., 2008). Additionally, a study by 

Montecucco et al (2009) observed anti-inflammatory effect of CHX when treating 

human primary neutrophils by destroying toxic compounds produced by these 

cells (Montecucco et al., 2009). Gingival inflammation scores of patients using 

CHX also observe reduction of inflammation following treatment as well as 

significant reductions in plaque scores (Van Strydonck et al., 2012). However, 

none of these studies assess the potential that the reduction of gene and protein 

expression may be due to the toxic properties of the compound, so further 

studies would be required to determine the role cytotoxicity of CHX plays in its 
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anti-inflammatory properties. Gene expression was not significantly different 

following RSV compared with co-culture, however, IL-8 protein expression was 

significantly decreased. A variety of studies investigating the role of RSV and 

inflammation have found that RSV modulates a variety of cell responses by 

modulating signal transduction pathways such as p38 MAPK or AMP pathway 

(Malemud, 2007, Park et al., 2012). With relation to this chapters finding RSV 

has also been shown to enhance mRNA degradation and modulate pro-

inflammatory transcription factors including nuclear factor-κB (NF-κB) and AP-1 

(Kundu et al., 2006, Jeong et al., 2011, Bollmann et al., 2014). 

The previous data show that a 4 species co-culture model can be used to test 

both antimicrobial and anti-inflammatory actives. This work was done prior to 

the development of the 3, 7 and 10 species biofilms used throughout this thesis, 

therefore it was important to see if these biofilms could also be used to test 

actives. Using CHX, the ‘gold standard’ for PD treatment, 3, 7 and 10 species 

biofilm were pre-treated to investigate if biofilm composition affected 

antimicrobial activity.  

Biofilms pre-treated with CHX showed significant decreases in viability compared 

with the untreated control which as previously discussed correlates with the 

known antimicrobial properties of CHX (Herrera, 2013). When quantifying the 

composition of the CHX treated biofilms, treatment reduced the overall total 

number of bacteria in all biofilms compared to the untreated controls, with 

significant reductions in Streptococcus species in the 3, 7 and 10 species CHX 

treated biofilms, and F. nucleatum species in the 7 and 10 species CHX treated 

biofilms. It has been reported that CHX reduces total streptococcal species on 

tooth-tissue-borne palatal expanders without reducing overall biomass (Maruo et 

al., 2008). Additionally, Oliveria et al (2014) reported differential viability of 

multi-species biofilm species following CHX treatment, suggesting variation in 

individual species susceptibility to CHX (Oliveira et al., 2014). 

When investigating biofilm architecture following CHX treatment by SEM both 3 

and 7 species biofilms had notable disrupted aggregates, appeared less complex 

and lost more ECM than their untreated controls. Interestingly, CHX treatment of 

the 10 species biofilms appeared to destroy and degrade the uppermost layer of 
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the biofilm with bacteria found underneath appearing unaffected. This may be 

due to the differences in the overall complexity of the 3, 7 and 10 species 

biofilm models as it is known bacteria in biofilms are more resistant to 

antimicrobials than those in a planktonic state (Bonez et al., 2013, Park et al., 

2014). Additionally, a study by Shen et al (2011) investigated the antimicrobial 

effects of CHX at different stages of biofilm development and found while all the 

biofilms tested reduced in thickness following CHX treatment, bacteria in 

mature biofilms were more resistant to CHX killing than less complex biofilms, 

which may relate to the observations in this chapter (Shen et al., 2011).  

As seen in previous chapters, biofilms can differentially modulate the host 

immune response in co-culture. Therefore, the effect of pre-treating 3, 7 and 10 

species biofilms with CHX prior to co-culture was investigated. 

The pro-inflammatory gene and protein modulation by 3, 7 and 10 species CHX 

treated biofilm was measured in co-culture with OKF6-TERT2 oral epithelial cells 

and compared with untreated co-cultures. No studies investigating the gene 

response of oral host cells when treated directly with CHX have been reported 

outwith our laboratory which may be in part due to the potent cytotoxic effects 

observed when cells are directly treated with CHX as shown in Figure 7.1. 

However, Breij et al (2012) reported a 3-dimensional human skin equivalent used 

to measure the antimicrobial ability of direct CHX treatment and found no 

cytotoxic effects and no inflammatory IL-8 and IL-1 mRNA activity. This may be 

due to the nature of a 3-dimensional skin equivalent containing a stratified top 

layer, which may protect cells below from the toxicity of CHX in comparison to 

the monolayer of epithelial cells used in the work in this chapter (de Breij et al., 

2012).     

The IL-8 protein response by OKF6-TERT2 oral epithelial cells was significantly 

reduced in CHX treated 7 and 10 species biofilms compared with their untreated 

controls at 4 hours, while no significant differences were observed between the 

3 species biofilms. At 24 hours only the CHX treated 7 species biofilm was 

significantly different to the untreated control. In vitro and in vivo studies have 

reported a reduction in pro-inflammatory protein expression following CHX 

treatment which may relate to the results observed in this chapter (Rohner et 
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al., 2014, Turkoglu et al., 2009). However, as previously mentioned the 

relationship between CHX’s potent cytotoxicity and any anti-inflammatory 

properties it has requires further study to fully understand the mode of action of 

this potential role of immunomodulation. 

Due to the complexity of oral biofilms, using simplified models containing key 

pathogens in co-culture with host cells in vitro provides an attractive starting 

point for testing potential actives. In this study the co-culture model 

successfully allows examination of the direct immune response of a given cell 

type, in this case oral epithelial cells, to a variety of multi-species oral biofilms. 

However, in the oral cavity the gingival tissue consists of multiple layers of 

epithelial cells and connective tissue and cells are influenced not only by 

biofilms directly but other tissue and immune cells. Additionally, host cells are 

more susceptible to highly cytotoxic compounds such as CHX when cultured in 

monolayers monolayers. An alternative method to make the host cells in co-

culture more similar to the oral cavity in vitro would be to use 3D models such 

as that de Breij et al (2012) where the exposed layer of epithelial cells were 

stratified and conferred protection upon the layers below (de Breij et al., 2012). 

Investigating the novel active RSV, this study reported anti-inflammatory activity 

from which a hypothesis of the mode of action could be delineated. In future the 

potential of this model to test anti-inflammatory compounds could be further 

validated by use of known anti-inflammatory compounds such as steroids in the 

co-culture model.  

 

In summary, the co-culture model presented in this study has shown ability to 

test both antimicrobial and anti-inflammatory compounds in co-culture and can 

be a valuable asset for pre clinical testing of potential actives. This model allows 

both studies of the treatment of biofilms and treatment of host cells to 

investigate interactions, which are observed in the oral cavity. 
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CHAPTER FINDINGS 

Co-culture models using multi-species biofilms can be used to test novel 

antimicrobial and anti-inflammatory actives  

CHX treatment differentially affects composition and cell viability of multi-

species biofilms 

CHX treatment of biofilms causes differential modulation of inflammatory 

gene expression and protein release in co-culture with 3, 7 and 10 species 

biofilms  
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8 Discussion 
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8.1 Introduction 

PD is a complex disease that involves a multitude of interactions between 

bacterial species present within complex biofilm consortia and cellular responses 

from both host tissue and immune cells in the oral cavity. The work described 

herein addresses the question of how the composition of oral microbial biofilms 

influences the host response. This has been facilitated through the successful 

development of three multi-species biofilms that modelled health-associated, 

intermediate and disease-associate plaque, for use in a co-culture model with 

appropriate host cells. This model system has demonstrated clear differences in 

the host response to each of the biofilms, and the utility of this model will allow 

continued use to ask key questions relating to host: biofilm interactions within 

the oral cavity and other sites within the body, and how the introduction of 

biologically active molecules influences these processes. 

 

8.2 Bacterial species variation in health and disease 

Prior to the development of the multi-species biofilm models described in this 

thesis it was important to ensure that bacteria appropriate for the oral disease 

were used, with particular focus on those associated with periodontitis. P. 

gingivalis has been shown to be strongly associated with periodontitis with 

approximately 79% of periodontitis patients harbouring the bacteria (Griffen et 

al., 1998). However, the same study observed that the dental plaque of 25% of 

periodontally healthy patients also contained P. gingivalis. The presence of low 

numbers of P. gingivalis has been shown to alter the commensal oral microflora 

to promote pathogenicity and alveolar bone loss in mice (Hajishengallis et al., 

2011). Therefore, it is imperative to understand why this species, considered the 

keystone pathogen in periodontitis, can be present with no apparent 

consequence in periodontally healthy subjects. One explanation proposed for the 

observations of seemingly non-pathogenic P. gingivalis within healthy subjects is 

that strain variation may play a role in pathogenicity. A key study by Griffen et 

al. (1999) compared P. gingivalis strain diversity in periodontitis patients and 

those who were periodontally healthy in an attempt to understand this 

phenomenon (Griffen et al., 1999). In the study 11 different strains of P. 
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gingivalis were detected, of which W83, 49417 and HG1691 were strongly 

associated with periodontitis, and 23A4, 381 and A7A1 were weakly associated. 

Healthy subjects were also more likely to harbour multiple strains of P. 

gingivalis leading to the suggestion that in periodontitis, less virulent strains 

were out competed by more virulent ones, thus helping to promote disease. 

Similarly, Jandik et al. (2008) observed that P. gingivalis strains isolated from 

diseases sites are more invasive when co-cultured with KB cells than P. gingivalis 

strains isolated from healthy sites (Jandik et al., 2008). In a mouse model of 

experimental periodontitis strain variation was also shown to alter bone 

resorption and host immune responses, where P. gingivalis W83 and W50 

inoculation induced significant alveolar bone loss and high levels of IL-4 protein 

release compared with no significant alveolar bone loss compared to the control 

mice and high levels of IL-10 protein release following inoculation with P. 

gingivalis A7A1 (Marchesan et al., 2012). The initial work reported in chapter 3 

investigated P. gingivalis strain variation as a means of determining the 

appropriate strain for the disease-associated biofilm, where differences in 

biofilm formation, cytokine degradation and inflammatory response by epithelial 

cells in co-culture were observed. These characteristics all have the potential to 

play a role in pathogenic potential of these strains. In particular, the W83 strain 

was overall more virulent than W50 and ATCC 33277 strains.  

The different strains of P. gingivalis demonstrate variable phenotypic expression 

of virulence factors or genetic variation. Studies characterizing variation of P. 

gingivalis have identified 6 serotypes (K1-6) related to differing antigenicity of 

the capsule (Laine et al., 1996). Structural variations in these serotypes have 

been shown to be directly involved in the virulence of P. gingivalis, with 

capsular strains such as W50 and W83 up-regulating IL-1β, IL-6 and IL-8 gene 

expression in fibroblasts in vitro compared with non-capsular mutants of these 

strains or naturally non-capsular strains such as ATCC 33277 and 381 (Brunner et 

al., 2010, Chen et al., 2004). Furthermore, two studies investigating the 

serotypes of P. gingivalis present in periodontitis patients observed prevalence 

of the K6 serotype in periodontitis patients from Sweden and the Netherlands 

(Yoshino et al., 2007, Laine et al., 1997). Notably, P. gingivalis W83, which is 

commonly cited as the most virulent of all strains, and frequently used in in 

vitro experimental periodontitis models, is a K1 serotype. This serotype was only 
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present in a small number of patients within the study, suggesting that there 

may be other factors that benefit other P. gingivalis strains in the oral cavity, 

such as interactions with other species, to promote pathogenicity. This may be 

the case as there is growing evidence that polymicrobial interactions synergise 

the pathogenic potential of one or other microorganism (Stacy et al., 2014). 

Moreover, this study also suggested that P. gingivalis serotype may be an 

important factor is periodontitis initiation and progression. 

While there is still much to be understood about the role of P. gingivalis in 

periodontitis, these studies and this work provide a strong argument that strain 

variation may play an important role in the virulence and disease associations of 

the species, so the interpretation of experimental data using characterised 

laboratory strains should take this into account. A notable example of strain 

variation playing a role in disease pathogenicity within the oral cavity is the 

association of the JP2 clone of A. actinomycetemcomitans in aggressive 

periodontitis. A. actinomycetemcomitans has been considered for over 30 years 

to be the most likely etiological agent in aggressive periodontitis, with the 70-

90% of patients harbouring the bacteria in subgingival plaque, most commonly 

Northwest African populations – a population with a higher than average 

prevalence of aggressive periodontitis (Kononen and Muller, 2014). The JP2 

clone belongs to the group b serotype and due to a deletion in the leukotoxin 

gene has enhanced leukotoxic activity (Brogan et al., 1994). Longitudinal studies 

to assess the associations of A. actinomycetemcomitans and aggressive 

periodontitis have shown that A. actinomycetemcomitans is a risk factor for the 

initiation of periodontal attachment loss in Moroccan adolescents (Haubek et al., 

2008). This study went further to find that adolescents who carried the JP2 

clone in plaque were significantly more at risk of periodontal attachment loss 

than those who carried a non-JP2 strain. Treatment of patients with the JP2 

strain of A. actinomycetemcomitans appears to be more difficult than those who 

have a non-JP2 strain. In a study by Cavalca Cortelli et al (2009) patients 

infected with JP2 or non-JP2 strains of A. actinomycetemcomitans were treated 

with mechanical debridement, systemic antibiotic therapy and periodontal 

surgery (Cortelli et al., 2009). One year later, probing depth, clinical 

attachment loss and gingival and plaque indexes were measured for each group 

and found that patients with non-JP2 strains had improved scores compared with 
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patients with JP2 strains who were more resistant to mechanical and 

antimicrobial therapies. Furthermore, this study observed that elimination of 

JP2 strains from patients significantly improved gingival inflammation and 

suggested that early identification of A. actinomycetemcomitans strain may help 

to predict disease outcome of patients with aggressive periodontitis.     

The ability of strain variation to influence disease pathogenicity is true of 

species within the oral cavity and those at other sites within the body. Studies 

investigating serotype variation in S. pneumoniae, a bacteria which causes 

invasive pneumococcal disease (IPD), septicaemia and meningitis, observed 

approximately 20 of the 94 serotypes of S. pneumoniae accounted for most of 

the IPD observed in the UK (Melegaro et al., 2006). While investigating the 

sequence types and serotypes of S. pneumoniae between patients with IPD and 

healthy nasopharyngeal carriers, significantly more serotype 14 clones in IPD 

patients and serotype 3 clones in nasopharyngeal carriers were observed, 

suggesting that serotype rather then genotype is the most successful way of 

predicting the ability of S. pneumoniae to cause disease (Brueggemann et al., 

2003). Like P. gingivalis, S. pneumoniae serotypes are classified based on the 

capsule composition and this knowledge has been successfully used to guide the 

development of a conjugate vaccine against the 7 most virulent serotypes of S. 

pneumoniae (Lamb et al., 2014). This has been adapted for immunization using a 

conjugate vaccine of P. gingivalis capsule, which prevented alveolar bone loss in 

a mouse periodontitis model, highlighting the potential of a carefully designed 

vaccination against P. gingivalis, in the prevention of periodontitis (Gonzalez et 

al., 2003).   

Studies investigating bacterial infections frequently identify a single species as a 

key player in disease, such as P. gingivalis in periodontitis. However, these 

studies must also consider interspecies variation, which can modulate disease 

severity. Collectively, the work discussed herein has shown that species can 

differ in virulence when investigating strain variation, and serotyping and future 

work investigating the role of P. gingivalis as a keystone pathogen in 

periodontitis may benefit from further characterization of the species. 

Additionally, care must be used when developing multi-species biofilm models 

containing P. gingivalis, as variation can play a major role in the pathogenicity 

of the species, and potentially the whole biofilm. Potentially, selection of the 
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species can affect downstream analysis. Typically avirulent strains such as ATCC 

33277 may differentially alter the biofilm composition compared with more 

virulent strains such as W83. Additionally, P. gingivalis W83 has been shown to 

be more effective at protein degradation than ATCC 33277 in both single and 

multi-species biofilms. This highlights the considerations required when choosing 

strains for study and the further applications of the biofilm must be taken into 

account when developing models.  

 

8.3 Pathogens, commensals, host homeostasis and 
dysbiosis  

During the course of this study, the composition of the multi-species biofilm was 

shown to affect host immune responses. Health-associated biofilms caused 

negligible changes in gene and protein response, intermediate biofilms caused a 

high inflammatory gene and protein response, and disease-associated biofilms 

caused a high inflammatory gene response, but low levels of pro-inflammatory 

proteins present in the supernatant following co-culture. This highlights the 

differential states in which the host interacts with bacterial biofilms; 

homeostasis with commensal species, and inflammation with pathogen species. 

Understanding these interactions is key to promoting health and preventing 

bacterial disease.  

Commensal bacteria are present throughout the body acting homeostatically 

with the host, though dysbiosis of this, through either inclusion of certain 

species or shift in the microbiome, can lead to diseases such as PD in the oral 

cavity and inflammatory bowel disease (IBD) in the gut. Many studies 

investigating the interactions between resident commensal bacteria and the host 

focus on the gut and have shown that the homeostasic balance is complex and 

orchestrated by epithelial cells and the innate and adaptive immune system. The 

default stance of the gut is a pro-inflammatory one, which is balanced through 

anti-inflammatory and immunosuppressive mechanisms by both immune cells 

and commensal bacteria. Species like Bacteroides fragilis induce T regulatory 

cell expansion via TLR2 on CD4+ T cells, which produce IL-10 during commensal 
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colonization and this immunosuppressive process has been shown to prevent and 

cure experimental colitis animal models (Round and Mazmanian, 2010).   

Tissues of the gingivae likely show some similarities to the gut, although it 

should be noted that tissues of the gingivae are keratinised in some places and 

lack any mucous layer analogous to that present in gut. Gingival tissues are 

constitutively inflamed, with studies showing that alveolar bone loss in mice 

with commensal microflora is a normal component of periodontal tissue 

homeostasis (Irie et al., 2014). In the oral cavity there are also commensal 

bacterial species which supress the pro-inflammatory response. Approximately 

30-40% of oral streptococci, an early colonizer and commensal species of oral 

plaque, have been shown to down-regulate cytokine expression by epithelial 

cells (Devine et al., 2015). The probiotic species S. salivarius down regulated IL-

8 in cell line and primary oral keratinocytes through NFκB inactivation (Cosseau 

et al., 2008). Additionally, S. cristatus was shown to inhibit IL-8 production by 

OKF6-TERT2 oral epithelial cells via NF-κB in co-culture (Zhang et al., 2011). 

Notably, this study documented the ability of S. cristatus to attenuate the IL-8 

response by epithelial cells to F. nucleatum when co-cultured together by 

degrading IκB-α and subsequently blockading NFκB translocation. While these 

studies used planktonic bacteria co-cultured with epithelial cells, the work 

described herein co-culturing the three species biofilm with epithelial cells 

observed low levels of pro-inflammatory gene expression and protein release, 

which is consistent with these findings.  

The pro-inflammatory response by the gut and oral cavity is regulated by 

commensal species; however, an excessive anti-inflammatory response is not 

beneficial to the host as it can facilitate an increase in bacterial load and 

inability to respond effectively to pathogens. Selective down-regulation of host 

inflammatory responses is one mechanism that is employed by P. gingivalis to 

promote PD, with gingipains degrading IL-8 thus reducing neutrophil migration 

into the gingivae. Studies have shown that commensal bacteria up-regulate 

CXCL2 to promote neutrophil migration into the tissues in SPF mice. 

Additionally, neutrophils migrate to gingival tissues even in the absence of 

bacteria, suggesting these cells play an essential role in periodontal health 

(Zenobia et al., 2013). 
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The shift from homeostasis between the oral bacteria and host to a destructive 

dysbiosis resulting is disease is strongly associated with the keystone species P. 

gingivalis. This species has been shown to alter the commensal microflora, even 

though it represents a very small proportion of the total population. P. gingivalis 

alone cannot induce PD in GF mice, highlighting its need for an established 

microflora to induce disease (Hajishengallis et al., 2011). In this respect P. 

gingivalis appears to be a bully in the oral cavity; unable to cause a host 

response alone but able to manipulate and disrupt the other species present to 

cause disease. The inability of P. gingivalis to cause disease alone is similar to 

the work described in chapter 3, with almost no inflammatory gene or protein 

response by epithelial cells to single species P. gingivalis biofilms in co-culture 

or as planktonic cells. Similarly, in the gut certain species have been shown to 

associate with disease, such as Klebsiella pneumoniae and Proteus mirabilis, 

which are both strongly associated with colitis in Tbx21-/-Rag2-/- ulcerative colitis 

(TRUC) mice, i.e. mice that lack an adaptive immune response due to loss of 

Tbet and RAG2, and SPF mice (Garrett et al., 2007, Garrett et al., 2010). Like P. 

gingivalis in the oral cavity, these studies found inoculation of GF mice with K. 

pneumoniae and P. mirabilis does not induce colitis, suggesting their pathogenic 

effects are dependant on the resident gut microflora. These findings indicate 

these species may act as keystone pathogens in the gut, as P. gingivalis does in 

the oral cavity. However, the details of how these species modulate normal gut 

microflora remain to be elucidated.  

These studies highlight the dynamic role of bacteria and their interactions with 

the host, in both health and disease within the oral cavity and beyond. 

Importantly, they highlight the ability of a few species to shift the commensal 

microflora from commensals in homeostasis with the host to potential 

pathogens, which can promote inflammation and disease. Understanding these 

interactions is difficult; hence the use of multi-species biofilms in co-culture 

with mammalian cells provides an attractive model to study this.  
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8.4 The use of in vitro models to study host: biofilm 
interactions in PD 

Many different groups have modelled oral biofilms, using both defined and 

undefined consortia of bacteria, in an attempt to understand biofilm formation, 

kinetics and bacterial interactions with relation to health and PD (Periasamy and 

Kolenbrander, 2009, Park et al., 2014, Guggenheim et al., 2001a). Recently 

these models have included local tissue and immune cells in an attempt to 

understand how these biofilms interact with the host (Guggenheim et al., 2009, 

Belibasakis et al., 2013b, Peyyala et al., 2011). These offer many advantages 

over in vivo animal models and human experimental gingivitis studies, most 

notably being ethical and cost considerations. These models also offer further 

advantage of being a controlled and reproducible environment, which allows for 

detailed studies of real time changes in both the biofilm and host responses, and 

how they interact. A prominent early study by Guggenheim et al (2009) used a 

10 species subgingival biofilm model co-cultured with epithelial cells, and this 

has been emulated by many groups, most recently by Peyyala et al (2012) who 

used similar biofilms to study how biofilm composition modulates epithelial cell 

responses (Peyyala et al., 2012, Peyyala et al., 2013, Guggenheim et al., 2009). 

Collectively, the studies performed by these groups independently show 

differences in pro-inflammatory cytokine and chemokine gene expression, and 

protein release to different biofilms and planktonic cells.  

It is reported that the oral cavity is host to over 700 different species, which 

does not account for multiple strains of the same species being present. 

Hypothetically, there can be 2.44 x 105 potential physical interactions alone 

between these species, and when including each potential chemical interaction 

produced by each bacteria, and metabolites produced by mammalian cells, this 

number increases exponentially. Furthermore, biofilm models which use pooled 

saliva or pooled plaque typically have problems with reproducibility and species 

specific analysis, although a potential stable plaque model for testing dental 

materials was developed (Rudney et al., 2012). Therefore, for this study a 

reductionist approach was used, growing defined bacterial species on 

Thermanox® coverslips in AS in a sequential manner. The main advantages of 

developing the multi-species biofilms in this manner were growth of biofilms in a 

similar manner to plaque within a biologically relevant media. One disadvantage 
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of this approach is also the limited number of species used in each model, 

although this method also allows insights into the role of specific bacteria in 

modulating inflammatory responses. A particular example of this is the differing 

inflammatory IL-8 gene expression between 7 and 10 species biofilms. IL-8 gene 

expression was not significantly different when co-cultured with these biofilms; 

however, in 10 species co-cultures IL-8 protein in the supernatants was 

significantly decreased. This finding was consistent with work by Peyyala et al 

(2013) who observed reduction of IL-8 protein in co-cultures of multi-species 

biofilms containing P. gingivalis with epithelial cells (Peyyala et al., 2013). The 

results from that study and our own validate the hypothesis that the composition 

of biofilms directly modulates the host immune response. Simultaneous 

comprehensive investigation of the three multi-species biofilms described herein 

offers an advance on the previous work published, which either focused on only 

pathogenic biofilms, or only investigated protein release and not gene 

expression, or failed to consider cell viability (Peyyala et al., 2013, Guggenheim 

et al., 2009). 

The use of biofilm models to study health, disease and chemotherapeutics is 

essential for the oral cavity and beyond. Few bacterial species are found 

naturally occurring as planktonic cells and many species that cause disease in 

humans, such as Pseudomonas aeruginosa within the lung, are found as biofilms. 

Growth as biofilms offers a number of advantages for bacterial species, in 

particular decreased susceptibility to stress factors and antimicrobials. The use 

of biofilm models for the study of antimicrobials and chemotherapeutics was 

highlighted when P. aeruginosa biofilms showed a 1000-fold reduction in 

susceptibility to the antibiotic tobramycin compared to planktonic cells (Nickel 

et al., 1985). This has been shown to be true with oral bacterial species S. 

gordonii, F. nucleatum, P. gingivalis and A. actinomycetemcomitans, where the 

MIC of planktonic cells treated with doxycycline or CHX were 100-10,000 time 

lower than single species biofilms (Park et al., 2014). This study also observed 

that the MIC of single species biofilms was 10-100 times lower than multi-species 

biofilms, highlighting that bacterial interactions within the biofilm can also 

affect antimicrobial susceptibility. The widespread use of antibiotics in food 

production, dentistry and medicine generally has resulted in a major increase in 

the number of antibiotic resistant organisms and highlights the need to find 
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alternative antimicrobial agents (Gillam and Turner, 2014). The multi-species 

biofilm models developed herein and within the literature provide an attractive 

platform for testing novel chemotherapeutics and determining antimicrobial 

susceptibility. In addition, the use of the co-culture model provides additional 

insights into the host response to these actives, either being treated directly 

prior to co-culture or in response to pre-treated biofilms. This was highlighted in 

our own studies in which epithelial cells treated with RSV showed reduced IL-8 

protein release in co-culture with biofilm compared to untreated cells in co-

culture with biofilms. The mode of action of RSV in this system remains to be 

determined. As it is known that the most effective treatment for periodontitis is 

mechanical debridement, with antibiotics only used occasionally as adjuncts to 

mechanical debridement, it is unlikely that any novel antimicrobials will entirely 

supersede this mechanical cleaning (Gillam and Turner, 2014). Nonetheless, 

further improvements in adjunctive treatment options could be highly beneficial 

to patients with marked susceptibility to periodontitis, who show limited 

response to conventional treatment. Moreover, the advantage of developing 

multi-species biofilm models is the ease with which bacteria can be ‘swapped’ 

within the biofilm to easily create biofilms more relevant to different diseases. 

This could allow testing of antimicrobial actives for use in other areas such as 

oral candidiasis, or diabetic foot ulcers and understanding how these can affect 

not only the biofilm but also the epithelial cells within the co-culture model.  

   

8.5 Future work 

This body of work has developed three multi-species biofilms, which model 

health and disease in the oral cavity. These have subsequently been used in co-

culture with both host tissue and immune cells to investigate if biofilm 

composition modulates the host response. This study has shown that the 

composition of the biofilm has implications for host cell viability, gene 

expression and protein release that may contribute to disease pathogenesis. The 

results observed herein show the outcome of interactions between multi-species 

biofilms and host immune cells. This system would also be useful to evaluate the 

mechanisms by which biofilms differentially modulate host immune responses 

with focus either on the biofilm or host cells. For example, the use of defined 
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mutant species such as gingipains deficient P. gingivalis would allow for the 

understanding of the role of virulence factors in the pathogenesis of 

periodontitis on a species level. The inclusion or removal of particular oral 

species in the biofilm to evaluate their contribution to the modulation of host 

immune responses through the studies described in this work would also be of 

benefit to understand the role of disease and health-associated bacteria in oral 

biofilms.  

The 3, 7 and 10 multi-species were developed with the intention of co-culture 

with host cells to investigate the response to different combination of bacteria 

species and the host. However, these models could also be used to study aspects 

of biofilm formation, development and interactions between particular bacterial 

species within the biofilm. It would also be particularly interesting to investigate 

the differences in the metabolomics of these biofilms as it is suggested that the 

metabolic outputs such as lipase, protease and glycosidase activity, rather than 

the bacterial species themselves, define the pathogenicity of oral diseases, due 

to the interactions between species within the biofilm (Barnes et al., 2011).  

In the co-culture model it was observed that biofilm composition influenced 

epithelial cell responses. Further studies on both epithelial cells and other 

immune cell types to understand the mechanisms by which these biofilms 

modulate immune responses would allow better understanding of disease 

pathogenesis and may provide therapeutic targets. In particular, focus on 

inflammatory signalling pathways and PAMP receptors would further the  

understanding of the mechanisms which immune responses are regulated by oral 

bacteria. This could be achieved using the co-culture model described herein; 

however, use of a multi-cell model or 3D culture system would enhance studies. 

This would allow more representative modelling of the in vivo situation within 

the oral cavity such as a multi-cell model using both fibroblasts and epithelial 

cells to investigate inflammatory biofilm responses. Alternatively, a 3D culture 

model using epithelial cells and immune cells in co-culture with biofilms could 

measure chemotaxis to determine if modulation of local host responses alters 

the ability of immune cells to migrate to the site of inflammation.   

In this study preliminary data was generated investigating the differential 

immunomodulation of cells of the monocyte lineage by multi-species biofilms, 
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observing differences in activation, gene expression and protein release. There 

were limitations in characterizing the phenotype of the pro-monocytes following 

differentiation with biofilms, PMA and vitamin D3. This work could be taken 

further with more in-depth analysis of cell phenotype using surface markers. In 

addition, this would be of particular importance to investigating activation of 

macrophages to M1 and M2 phenotypes, which can have pro- or anti-

inflammatory effects on other immune cell types, which may contribute to 

disease pathogenicity.  

Finally, the work in this thesis using the different biofilm models shows the 

ability to evaluate how anti-microbial or anti-inflammatory molecules interact 

with biofilms and host cells. These models could potentially be used in future to 

understand the mode of action of novel therapeutics.  

 

8.6 Summary 

The key findings of the research presented in this thesis are a follows: 

Biofilm composition directly affects inflammatory and immune          

responses by host cells (Figure 8.1) 

 Strain variation in P. gingivalis can influence epithelial cell responses 

even in a multi-species biofilm 

 Biofilm composition can influence epithelial cell viability, gene expression 

and protein release in co-culture 

 Biofilm composition can influence neutrophil gene expression, protein 

release and NET formation in co-culture 

 Biofilm composition can influence cells of the monocyte lineage gene 

expression and protein release both directly and indirectly through 

conditioned media 
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 Multi-species co-culture models using biofilms and epithelial cells are a 

useful tool for studying potential anti-microbial and anti-inflammatory 

therapeutics 

Overall, these findings have increased the understanding of the role of biofilm 

composition in the modulation of host: pathogen interactions within the oral 

cavity. The development of the co-culture model system used in this study can 

allow for future investigation of these interactions using a variety of cell types 

to allude the mechanisms, which contribute to disease pathogenesis and thereby 

identify more therapeutic targets for the treatment of PD.  

 

 

Figure 8.1: Biofilm composition differentially modulates host responses 

The three multi-species biofilms showed differences in biofilm architecture, and 

co-culture with host cells resulted in different host inflammatory gene 

expression and protein release, cell viability and cell differentiation. 

Collectively, these data show how biofilm composition can alter host responses 

providing a greater understanding of the potential mechanisms involved the 

host: biofilm interactions in oral homeostasis and the pathogenesis of PD. 

Illustrated by Emma Millhouse. 
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