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Abstract 

Recently, especially within the last two decades, the demand for DSMs (Digital Surface 

Models) and 3D city models has increased dramatically. This has arisen due to the 

emergence of new applications beyond construction or analysis and consequently to a focus 

on accuracy and the cost.  

 

This thesis addresses two linked subjects: first improving the quality of the DSM by merging 

different source DSMs using a Bayesian approach; and second, extracting building 

footprints using approaches, including Bayesian approaches, and producing 3D models. 

 

Regarding the first topic, a probabilistic model has been generated based on the Bayesian 

approach in order to merge different source DSMs from different sensors. The Bayesian 

approach is specified to be ideal in the case when the data is limited and this can 

consequently be compensated by introducing the a priori. The implemented prior is based 

on the hypothesis that the building roof outlines are specified to be smooth, for that reason 

local entropy has been implemented in order to infer the a priori data. In addition to the a 

priori  estimation, the quality of the DSMs is obtained by using field checkpoints from 

differential GNSS. The validation results have shown that the model was successfully able to 

improve the quality of the DSMs and improving some characteristics such as the roof 

surfaces, which consequently led to better representations. In addition to that, the developed 

model has been compared with the Maximum Likelihood model which showed similar 

quantitative statistical results and better qualitative results. Perhaps it is worth mentioning 

that, although the DSMs used in the merging have been produced using satellite images, the 

model can be applied on any type of DSM. 

 

The second topic is building footprint extraction based on using satellite imagery. An 

efficient flow-line for automatic building footprint extraction and 3D model construction, 

from both stereo panchromatic and multispectral satellite imagery was developed. This 

flow-line has been applied in an area of different building types, with both hipped and sloped 

roofs. The flow line consisted of multi stages. First, data preparation, digital orthoimagery 

and DSMs are created from WorldView-1. Pleiades imagery is used to create a vegetation 

mask. The orthoimagery then undergoes binary classification into ‘foreground’ (including 

buildings, shadows, open-water, roads and trees) and ‘background’ (including grass, bare 

soil, and clay). From the foreground class, shadows and open water are removed after 

creating a shadow mask by thresholding the same orthoimagery. Likewise roads have been 
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removed, for the time being, after interactively creating a mask using the orthoimagery. 

NDVI processing of the Pleiades imagery has been used to create a mask for removing the 

trees. An ‘edge map’ is produced using Canny edge detection to define the exact building 

boundary outlines, from enhanced orthoimagery. A normalised digital surface model (nDSM) 

is produced from the original DSM using smoothing and subtracting techniques. Second, 

start Building Detection and Extraction. Buildings can be detected, in part, in the nDSM as 

isolated relatively elevated ‘blobs’. These nDSM ‘blobs’ are uniquely labelled to identify 

rudimentary buildings. Each ‘blob’ is paired with its corresponding ‘foreground’ area from 

the orthoimagery. Each ‘foreground’ area is used as an initial building boundary, which is 

then vectorised and simplified. Some unnecessary details in the ‘edge map’, particularly on 

the roofs of the buildings can be removed using mathematical morphology. Some building 

edges are not detected in the ‘edge map’ due to low contrast in some parts of the 

orthoimagery. The ‘edge map’ is subsequently further improved also using mathematical 

morphology, leading to the ‘modified edge map’. Finally, A Bayesian approach is used to 

find the most probable coordinates of the building footprints, based on the ‘modified edge 

map’. The proposal that is made for the footprint a priori data is based on the creating a PDF 

which assumes that the probable footprint angle at the corner is 90o and along the edge is 

180o, with a less probable value given to the other angles such as 45o and 135o. The 3D 

model is constructed by extracting the elevation of the buildings from the DSM and 

combining it with the regularized building boundary. Validation, both quantitatively and 

qualitatively has shown that the developed process and associated algorithms have 

successfully been able to extract building footprints and create 3D models.  
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Chapter 1 Introduction 

A Digital Surface Model (DSM, plural DSMs) represents the surface elevation of the 

ground including, most importantly, the features above it, such as roads, buildings, 

trees, and even smaller features such as parked cars and roadside bins. DSMs play a 

critical role in various applications including planning, 3D urban city maps, civilian 

emergencies, natural disaster management (e.g. flooding, earthquake, and landslides); 

military activities; airport management; and geographical analysis, such as in the 

geographies of health, crime and hazards (Saeedi and Zwick 2008). Moreover, rapid 

population increase, in developing countries such as Iraq and in particular Kurdistan, 

has led to a need to find the most cost-effective methods for modelling and mapping 

urban sites, among which building footprints have been shown to be extremely critical 

in planning and infrastructure development. DSMs can also be used to produce 3D 

models of an area.  

 

The increasing efficiency of computers has led to the automation of much of the work 

that was previously achieved manually (Smith and Wagner, 2005), thereby increasing 

output and reducing execution time. Increased output has been achieved in the 

surveying field, notably in the production of DSMs.  

 

The Bayesian approaches differ from the classical or frequentist methods in several 

important ways leading to their popularity (Berry, 1997; FDA, 2010; O’Hagan, 2004). 

The main reason for this greater popularity is that the Bayesian approaches accept prior 

information concerning the problem to hand. This feature has the following advantages: 

allows the use of smaller sample sizes; provides more informative results than 

frequentist method; and, determines the uncertainty of unknown parameters in addition 

to those parameters whose values are actively sought (FDA, 2010). 

 

This research addresses the twin problems of increasing the quality of a DSM resulting 

from the merging of several DSMs and increasing the quality of building footprints 

automatically extracted from such a DSM, with particular attention being paid to the 

Bayesian approaches. 

 

1.1 Motivation 

The applications of satellite images have been, and still are, expanding into different 

fields especially in remote surveillance, including those outlined in the following 
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paragraphs (Dial et al., 2003). 

 

Image analysis: this aids national or international intelligence, environmental 

observation, emergency response, etc. It is possible to use raw images with a low 

resolution at a low cost (Lillesand et al., 2015). Images can be provided as panchromatic 

or colour, for visual analysis (Olsen, 2007). It is also possible to obtain an infrared band, 

which is useful for vegetation based, and other, remote sensing applications (Dial et al., 

2003). 

 

Cartography: this involves designing map products. To implement this it is required to 

extract the information from the imagery related to particular maps such as 

topographical, hydrological, transportation and other different themes. It is assumed 

that the data gathered is three-dimensional, and for this purpose, a stereo image is 

required to obtain three-dimensional coordinates for the features of interest, which are 

needed for any 3-D geographic information systems (GISs), and contour maps(Poli et 

al., 2007). 

 

Orthorectified Images: this product is crucial input to orthoimage maps, cartographic 

feature extraction and GIS database construction(Eisenbeiss et al., 2004). In many ways 

orthoimage maps are interchangeable with traditional maps with their specified regular 

scale, marginalia, and grid, except that traditional map data have undergone some 

selection, are represented by icons (or symbols) and vectors which have been corrected 

planimetrically with respect to the terrain. From orthoimagery all necessary data can be 

digitized, as required for the application purpose. 

 

Digital Elevation Models (DEMs): although considered a significant product for 

assessing the danger of flooding, airport safety, planning and other applications it is also 

a vital component in orthorectifying imagery(Li et al., 2005). DEMs can be produced 

from stereo imagery; generally they are either edited to represent the ‘bare’ surface of 

the earth without buildings and trees, called DTMs, or left with building, trees, etc., and 

called DSMs. The first is useful for hydrological analysis and orthoimagemap 

production, while the second is useful for line-of-sight analysis such as applied at 

airports and by the military, and in planning and civil engineering in general(Li et al., 

2005). 
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The applications that have been used in this research were limited to DSM production 

and orthoimagery, which will be illustrated in more detail in the following chapters. 

Presently available automated methods for creating DSMs and building footprints are 

facing difficulties with respect to cost, accuracy, acceptable building shape and 

extracting small buildings. Established methods for producing accurate footprints are 

often very labour intensive, using architectural blueprints, skilled personnel and much 

time to achieve an outcome. Source data currently used to extract building footprints 

accurately and with some level of automation, such as LiDAR and aerial images, are 

expensive and difficult to get. Satellite imagery is increasingly free (e.g. GLOVIS, 2013 

URL: www.glovis.usgs.gov), and, assuming this trend continues then effective methods 

for its use must be developed.  

 

Examining high-resolution commercial satellite imaging services, to find an alternative 

for costly LiDAR or aerial image data is valuable. The developments in satellite images 

have led to an ‘anytime and anywhere’ provision for many applications, and for some 

applications, can be available for many years. In addition, they can be available at a 

lower price per unit area and with better access to remote or restricted regions than 

aerial photography can provide. Based on the assumption that images taken from 

different directions and at different times, but of the same scene, will produce DSMs of 

varying characteristics, the proposed method aims to merge DSMs, from different 

images in order to produce an improved DSM and hence footprint. Specifically it is 

hoped this will overcome problems of DSM production such as: absence of sufficient 

texture; distinct object discontinuities; local object patches not being planar; repetitive 

objects; occlusions; moving objects; and, radiometric artefacts including specular 

reflections (Zhang and Gruen, 2006). All these problems will be considered.  

 

The application of DSMs to the creation of topographic databases has become an 

important issue. A particular focus has been the use of DSMs for change detection, 

especially changes related to planning applications (Alobeid and Jacobsen, 2008) for 

which a requirement is the identification of accurate and well-defined building objects. 

When using remotely sensed imagery for the extraction of quantitative information, 

accuracy and clear definition is fundamental to the success of most applications.  

 

According to the literature, satellite images have been classified according to the 

resolution of the sensors, such as Low, Medium, High and Very High resolution see 
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Table  1-1. Although different researchers have used different terms for specific 

resolutions, the most widely used terms, suggested by Dowman et al. (2012) as follows:  

Table  1-1 Satellite image classification with respect to their 
resolution. 
Low Resolution ≥  30m   and  < 300m 

Medium Resolution ≥  5m    and  < 30m 

High Resolution ≥  1.0m  and   <5m 

Very High Resolution <  1.0 m 

 

Table  1-2 shows the high resolution satellite optical image sensors that are available for 

providing imagery of the Earth’s surface, based on sensing reflectance in the visible and 

near visible part of the electromagnetic spectrum and listing only Very High Resolution 

(see: Table 1-1) imagery. Only passive sensors are included. From the table it is clear 

that the maximum resolution (at the time of writing) of civilian use satellite imagery 

(‘Res’. In Table 1-2) now reaches 0.31m, as has been achieved by the recently launched 

WorldView-3 (launched in August 2014). Since Very High Resolution satellite images 

have been used in this research, for that reason the table below is focused only on that 

type, although higher resolution data from other sources such as Aerial imagery or 

LiDAR are available. 

Table  1-2 Characteristics of popular commercial optical very high resolution satellite 
image sensors. (Pan = panchromatic - a single band over the visible parts of the 
electromagnetic spectrum,; MS = multispectral - usually three or more bands in 
narrow wavelength ranges within the visible and near visible, including infra-red, 
parts of the electromagnetic spectrum) 

Satellite 
Organization 

Country 
Launch 

Date 
Bands 

Pan/MS 
Res. 

Pan/MS (m) 
Height 
(km) 

WorldView-1 
DigitalGlobe, USA 

(DigitalGlobe Inc., 1992) 
18 Sep, 2007 1/- 0.45/- 496 

WorldView-2 
DigitalGlobe, USA 

(DigitalGlobe Inc., 1992) 
8 Oct, 2009 1/8 0.46/1.8 770 

WorldView-3 
DigitalGlobe,USA (DigitalGlobe 

Inc., 1992) 
13 Aug, 2014 1/28 0.31/1.24 617 

GeoEye-1 
GeoEye Inc.,USA 

(DigitalGlobe Inc., 1992) 
6 Dec, 2008 1/4 0.41/1.65 684 

Quick Bird 
DigitalGlobe,USA (DigitalGlobe 

Inc., 1992) 
18 Oct, 2001 1/4 0.61/2.44 450 

IKONOS 
GeoEye Inc.,USA (DigitalGlobe 

Inc., 1992) 
24 Sep, 1999 

 
1/4 

0.82/3.2 681 

Pleiades-1A+ 
Pleiades-1B 

Airbus Defence and Space 
France(Astrium Services, 2013) 

16 Dec, 2011 
 

¼ 
0.7/2.8 694 

SkySat-1 Skybox Imaging-USA  21 Nov, 2013 
 

1/4 
0.9/2.0 572 

SkySat-2 Skybox Imaging- USA  8 Jul, 2014 
 

1/4 
0.9/2.0 625 

KOMPSAT 3 
Korea Aerospace Research 

Institute- South Korea 
 (SI Imaging Services, 2013) 

17 May, 2012 1/4 0.7/2.8 685 
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The most significant information that can be seen in Table  1-2 is pixel resolution and 

band numbers. The highest satellite image resolution is from WorldView-3, which is 

0.31m. All satellite images, except WorldView-1 images which are available in 

panchromatic only, provide infrared bands in addition to the colour (or visible) bands 

(blue, green, red). However, as shown in Table  1-2, satellite sensors Worldview-3 are 

providing even more bands than other sensors; for example, in addition to the 

panchromatic and visible bands, Worldview-3 provides eight short-wave infrared and 

12 atmospheric compensation bands. The short-wave infrared bands are considered to 

be useful for more remote sensing applications such as modelling surface composition 

and mineral mapping (Kruse and Perry, 2013). 

1.2 Problems Associated with Creating DSMs  

The quality of any contributing DSM plays an important role in both the quality of the 

merged DSM and the extracted building footprint. The fundamental step in DSM 

generation from stereo imagery is image matching. A list of problems associated with 

the automation of DSM generation has been produced by Gruen et al. (2000). The nine 

items on this list are provided below.  

 

Poor or no texture: Area Based Matching (ABM) mainly depends on image texture to 

support statistical pattern matching. Sometimes part of scene may have poor or no 

texture. The problem is mainly noticed in large-scale images of dense urban areas, 

consisting of extensive homogeneous areas, such as car-parks, flat warehouse roofs and 

sports fields. 

 

This problem is also compounded, for example, with some modern buildings, which 

have the same wall as roofing material, making the matching process even more 

difficult. This has led to incorrect results when the roofs edges are excessively unclear. 

According to research conducted by Zhang and Gruen (2006) sometimes there are what 

should be conjugate edges but they can only be seen in one image and not in the other; it 

is difficult to construct the building if the edges are missing or fragmented (Liu et al. 

2008). Aytekin et al. (2009) illustrated that building extraction is a challenging issue 

because buildings may appear similar to roads and pavements. Morgan et al. (2008) and 

Xiong and Zhang (2010) have mentioned that some inaccurate results appeared due to 

the lack of texture in specific topographically flat and featureless areas.  
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Occlusions: Alobeid and Jacobsen (2008) suggest the two main problems faced when 

producing a DSM are rapid change in elevation and occlusions, and both are serious in 

dense urban areas. Occlusions arise when the required detail in one image of a 

stereopair is hidden, such as by a deep roof eave, a high building or another building 

close by. They are a consequence of surface discontinuity. Occlusions can be considered 

a source of mismatching for almost all available matching methods. This is supported 

by a variety of researchers. For example, Tack et al. (2009) mentioned that sudden 

changes in height cause problems such as occlusions and shadow which lead to 

matching difficulties. Baltsavias et al. (2006) and Kraus et al. (2009) suggested that the 

main problems in creating DSMs are caused by matching long and deep shadows and 

occlusions, particularly in mountainous or snow-covered areas. Finally Aytekin et al. 

(2009) found that some objects may be difficult to extract due to occlusion by other 

structures or trees. 

 

Habib et al. (2004) found matching becomes more difficult due to the different 

directions of view onto the objects, which need to be matched; one outcome is that, due 

to perspective projection, some edges will not have the same shape as their conjugate 

edge and another outcome of this is occlusion. The solution proposed by Habib et al. 

(2004) was to group building extraction into two tasks initially: low level and high level. 

The low level task was to identify the area for extraction after which the high level task 

(feature extraction and classification) could be performed. A multi-image matching 

approach may, also, address the problem of occlusions (as well, at the same time, as 

addressing other problems such as repetitive structures, multiple solutions and shadows 

(Zhang and Gruen, 2006)). 

 

Distinct object discontinuities: Object discontinuities occur in large-scale images of 

built-up areas. As indicated in the previous section, these can cause occlusions. In 

general the required image segments are fragmented around the discontinuities. For 

example a small tree can fragment the depiction of a required roof-line in all images. 

This causes difficulty in getting an accurate result when building roof-lines according to 

Liu et al. (2008), especially in densely built-up areas (Alobeid and Jacobsen 2008). 

According to Tack et al. (2009) most difficulties in DSM generation are due to sudden 

discontinuities produced by buildings and other urban features, excessive variation in 

heights and the difference between the smooth ground surfaces and emerging buildings, 
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or other artificial features.  

To overcome this problem Zhang and Gruen (2006) have suggested using multi image 

matching consequent on multiple-views of the object, leading to a decreased 

discontinuity effect. 

 

A local object patch is not a planar surface: Some matching techniques, such as 

Cross-correlation and Least Squares Matching (LSM) are dependent on the assumption 

that it is possible to represent localised objects as inclined planar surfaces. Violations of 

this assumption cause low values for similarity measures when Area Based Match 

(ABM) methods are used, and thus result in mismatching. 

 

Repetitive structure: A repetitive structure manifests itself as a periodic texture style in 

images. An example might be marked parking bays in a car park, or plough furrows in a 

farmer’s field. These usually confuse the matcher because the matcher mixes up a 

feature in one image with a feature from a neighbouring part of the structure in the other 

image, especially if the image characteristics produced by these structures are similar 

compared with the discrepancies of the feature. Zhang and Gruen (2006) mentioned that 

there would be confusion due to repetition of objects that leads to confusion during 

searching for an edge.  

 

Shadows: Shadows in images show little texture information and a lower 

signal-to-noise ratio. Both may result in numerous mismatches. According to Tack et al. 

(2009) the main source of error in edge detection is building shadows; when shadows 

show a high contrast with their surroundings pixels, edges will be detected at the 

shadow border. In addition to that, rooftops may reflect fragmented characteristics 

produced by shade (Aytekin et al., 2009). 

 

Zhang and Gruen (2006) illustrate that if high resolution images have more than 8-bit 

pixel values, then this leads to improved image matching by reducing the number of 

“homogeneous” dark, or light, (shadowed) areas.  

 

Moving objects: Moving objects usually disturb the image matching method.  

 

Multi-layered and transparent objects: This phenomenon leads to occlusion 

problems and spatial ordering changes in different images. Generally this problem is 



 Chapter 1 
 

8 
 

very difficult to handle in image matching, but is more related to the objects considered 

in close range photogrammetry (small glass objects, plastic bottles, etc.) than those 

addressed in creating topographic databases (Eren et al., 2009).  

 

Radiometric artefacts: Examples of these are affects such as specular reflections and 

variations in reflected light. As perspective changes, radiometric artefacts are 

introduced. This problem can be solved by using high resolution satellite images, which 

have the ability to provide more data for specific items and, thus, provide more 

opportunity to achieve automatic matching. Such images offer better radiometric 

performance (i.e. higher dynamic range and signal-to-noise ratio). Using along-track 

stereo images from the same orbit has led to a reduction in radiometric differences and 

consequently better chances for achieving correlations (Zhang and Gruen 2006). 

 

1.3 Scope of the Research 

This research focuses on merging DSMs and 3D city modelling. The aim of merging the 

DSMs is to get qualitatively better DSMs that consequently can be applied city-wide, 

generally considered an appropriate application of satellite imagery (Partovi et al., 

2014). So, this research is intended to supply, at city scale, three-dimensional products, 

in a less labour intensive and quicker manner than using aerial imagery. The products 

are limited to LoD0 and LoD1, as referred to in section  1.7 (‘Objectives of the 

Research’). LoD1 (and LoD0, to an extent) can be used for applications such as 

planning and disaster management (Gröger and Plümer, 2012). The reason for the 

limitation to these two levels, and no higher, such as LoD2, is due to the satellite image 

resolution being about 50cm. Objects in this type of imagery have limited detail, 

therefore the products, such as DSMs and the building edges on the orthoimagery show 

fewer details than aerial imagery (Güdücü, 2008). Due to the relatively low resolution 

of satellite imagery compared to aerial imagery, generally, the extracted objects, based 

on VHR satellite imagery, are limited to buildings which are typically occupied, 

excluding those such as outhouses, garages, etc. (Dahiya et al., 2012; Kim et al., 2005; 

Mayunga et al., 2007), which are typically small and unoccupied. As a guideline, the 

Ordnance Survey of Great Britain regards buildings less than 0.1 ha, equivalent to10m x 

10m (Ordnance Survey, 2015), to be small and these have a low priority in revision; 

buildings less than 8m2 are not mapped. In this research the smallest mapped building 

was 4.2m x 6.2m as shown in Figure  7.4 (b), implementing the proposed algorithm and 

based on 0.5m resolution data.  
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1.4 Further Merging Considerations 

In this thesis three aspects of merging have not been taken into consideration, but their 

consideration has been recommended in the conclusions Chapter 9. These are: the 

multitemporal effect; the multiresolution effect and co-registration. Generally, prior to 

implementing merging, the above three factors should be considered 

(Papasaika-Hanusch, 2012). 

 

The multitemporal effect is the difference or the change that has occurred in the DSMs 

due to change over time between the data sets. It is very common for the data that are 

used in merging to be multitemporal since they are from different sensors (i.e. sources), 

consequently leading to the data (i.e. the features) being affected by changes, especially 

when the gap between the data capture reaches many years. Therefore this point should 

be addressed during merging the DSMs (Bruzzone et al., 1999). However, in this 

research, the aim was focussing on examining the result of the merging only, therefore 

the multitemporal factor has not been taken been taken into consideration and it is 

assumed, for the purposes of this research, that no change has occurred. In fact in the 

small study areas used this assumption can be made following the validations in the area 

which showed no temporal changes had arisen.  

 

The multitemporal effect has been addressed by researchers, as further discussed in 

section  2.3.2, and further recommendations have been introduced in section  9.2.1. 

Although a DSM merging application would in practice be applied over a large area and 

using data captured at different times, this effect has been ignored by testing and 

validating only in areas where no changes have occurred during image capturing. 

 

Different DSMs are produced with different grid size elements, causing a 

multiresolution effect on merging; also, frequently, the DSM data are generated from 

different sources which do not have the same resolution, therefore the multiresolution 

effect should be taken into the consideration (Ranchln and Wald, 2000). Nevertheless, 

in this research it is assumed that the multiresolution effect is not pertinent, and there is 

no need for resampling or otherwise addressing this issue, because the used data in the 

merging are generated using the same software, and generated to the same resolution. 

The effect has been further considered in section  2.3.3.  

 

Finally, the last issue considered is co-registration. The process of correctly aligning 



 Chapter 1 
 

10 
 

both of the DSMs to each other is called co-registration. This step is important, in 

merging, as reviewed in  2.3.4. In the co-registration process, the 3D separation between 

the DSMs is minimized (Akca, 2007). The DSMs that has better quality is specified as 

the “master”, this DSM is specified to be the base, and the other DSM specified as a 

search DSM and is called as “slave” DSM (Akca, 2007). The co-registration shifts the 

slave DSM horizontally and vertically and then any resampling is aligned to the master 

DSM (Li, 2007). 

 

The used data in this research are assumed to be fully able to undergo co-registration, as 

suggested by the suppliers (United States Geological Survey, 2009). In this research 

co-registration was not carried out, and the native georegistration values were used. 

This decision may be questioned, but was taken to simplify the proposed merging 

process, which may be particularly suitable for situations where evidence may not exist 

to identify which data set is the most appropriate to act as “master”. As mentioned in the 

above paragraph, the co-registration process consists of resampling one of the DSMs to 

be aligned to the other DSM that is called the reference or “master” DSM. The latter is 

selected based on the quality. For example, in the event that the quality was unknown, 

selecting the wrong DSMs as a reference could add more error to the DSMs.  The issue 

or co-registration is revisited in section 2.3.4. 

 

1.5 Aim of the Research 

The aim of this research is to contribute to the development of the efficient 

production of an improved DSM by merging existing surface models, each produced 

from different high resolution satellite image sensors, for the purpose of (automatically) 

generating reliable building footprints and 3D modelling, particularly investigating 

using Bayesian approaches. 

 

1.6 Objectives of the Research 

There are seven specific objectives, namely, to: 

1. evaluate existing approaches to DSM merging and building extraction, 

essentially through a critical literature review; 

2. generate DSMs using a technique, from among the techniques that are listed in 

Table  2-1, that can produce high resolution DSMs from high resolution images 

produced from different sensors, and is efficient; 

3. develop an optimal procedure to merge the high resolution DSMs derived from 
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high resolution satellite imagery, particularly examining methods based on 

Bayesian theory (subsequently referred to as Bayesian merging), resulting in 

equal or better quality than the original DSMs;  

4. validate the resultant DSMs arising from the proposed merging model using 

Bayesian approaches; 

5. upgrade procedures to extract building footprints from high resolution satellite 

imagery; 

6. apply the developed building extraction approach to the merged DSM to 

facilitate automated 3D model generation at LoD1; and, 

7. validate the performance and quality of the developed approach with respect to 

building footprint extraction and 3D modelling at a selected test site. 

1.7 3D Building Modelling 

The application of the 3D building modelling has increased rapidly, either through the 

survey achieved by national government (e.g. municipality incorporation) or by 

commercial organization. In addition to the geometrical and graphical issues, it can be 

used for the semantic study for the objects. For instance, mapping and noise simulation 

propagation, planning for telecommunications, disaster management such as flood 

study and investigation (Gröger and Plümer, 2012). According to the literature five 

different levels have been defined, based on the amount of the details as shown in 

Figure  1. In this research the devoted levels is focused only on LoD0 which represents 

the building footprint which is represented by planimetric coordinates without height, 

and LoD1 which is represented by taking the building footprint “LoD0” and assigning 

maximum height within this area which leads to produce building prismatic shape. 

 

Figure  1.1 Definition given by CityGML for different types of level of detail (LoD) for 3D 

model (Gröger and Plümer, 2012). 

 

The other levels such as LoD2 are difficult to construct because they need more accurate 
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and precise data such as that derived from LiDAR or even high resolution aerial 

imagery. However, the higher models LoD3 are composed of more intensive buildings 

measurements while LoD4 is based on interior building measurements.  

1.8 Implemented Software 

As well as using some scripts written by the author (see appendices A,B, C and D)) 

many software packages have been implemented in this research, either for processing 

the images for DSM generation and building footprint construction, or for the merging 

stage. In this section the main software that has been used will be discussed. 

 

SOCET-GXP 4.1 has been used for processing the satellite images for the DSM and 

orthoimage generation. It is considered to be very powerful commercial software 

supporting the processing of acquired sensor images to generate geo spatial data, since it 

has robust techniques for DSM generation (Electronics & Integrated Solutions, 2008).  

 

C++ has been used as programming language in order to develop the required code for 

merging DSMs and for building footprint extraction. Although this programming 

language is referred to as a naïve (or low level) language, because the programmer has 

to write many of the functions, rather than have them supplied from libraries, in order 

for them to be embedded in scripts, it has proved to be robust in implementing code 

rapidly and providing the result quickly. 

 

ImageJ software: The author is most grateful that this software could be downloaded, 

free, from the web http://imagej.nih.gov/ij. This software is open source software 

written in Java, designed for image processing purposes and has been used at several 

different stages in the work, as well as for visualising outcomes. It is specified to be user 

friendly software since implementing an author’s algorithm does not need much 

experience. Since the product of C++ (above) was a text file it was necessary to see the 

graphic result by using ImageJ. In addition, ImageJ has been used to enhance the 

orthoimage and to apply both convolution and mean-shift algorithms. Also, ImageJ 

software provides an edge detection tool based on the Canny edge algorithm, in order to 

find edges in the orthoimagery. The software was developed, in 1987, by the National 

Institutes of Health, for medical image processing, and is still undergoing continuous 

development (Schneider et al., 2012). 
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ArcGIS package: this is the final software package implemented in the research. It has 

been used as a complete system for the results’ visualisation and for the analysis, for 

validation purposes. In addition it has been used for any necessary coordinate 

transformation of the products that have resulted from satellite images, and it has been 

used to create the final report of the results.  

1.9 Thesis Structure 

The dissertation is structured hierarchically, in chapter 2 the background and the 

methods that are used to generate DSMs from satellite images and that are used in 

merging DSMs are briefly introduced. Also there is a focus on applying Bayesian 

approaches to image fusion and building footprint extraction. Pertinent 

photogrammetric principles and techniques for DSM generation are illustrated in 

chapter 3. The data that has been used and the techniques of DSM generation will be 

clarified. Also there will be some consideration of the principles of acquiring satellite 

imagery. The theory behind the implemented probabilistic methods used in merging 

the DSMs, including both Bayesian and classical methods, are discussed in chapter 4. 

Also the methods are compared. Chapter 5 will show the methodology used in 

merging DSMs using probability, in two different ways (Bayesian and Maximum 

Likelihood approaches) in order to minimize the uncertainty of the merged DSMs. 

Also the a priori data, that is compulsory in the Bayesian approach, has been stated. 

Chapter 6 is devoted to an explanation of the results and the validation of the original 

and merged DSMs. The data used in the experiment and the reference data used for the 

validation are introduced in this chapter. The building footprint extraction and 3D 

modelling are presented in chapter 7, the methodology for building footprint 

detection and the extraction which was later used for 3D model construction are 

shown in detail. For the developed process, all the techniques that have been 

implemented (successful or otherwise) have been illustrated. In addition to that it has 

been shown that 3D buildings have been created by introducing heights from the 

DSM. The results and validation of the extracted buildings and 3D models have been 

presented in Chapter 8. The conclusion, to which Chapter 9 is devoted, summarises 

the proposed technology and how it can be used for further improvement of currently 

implemented methodologies, either with respect to merging the DSMs or for building 

footprint extraction. Furthermore, it presents the expected benefits from this research 

and highlights gaps where further research is needed. 
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Chapter 2 Research Background 

The processing method that is proposed for this study comprises three main stages, DSM 

generation, DSM merging and building footprint extraction. The novelty of this research 

arises from merging the DSMs using Bayesian theory and regularizing building 

boundaries for 3D city modelling by also applying a Bayesian approach. The literature 

has been reviewed in a manner directed by these three stages. First a brief literature 

review focuses on the methods followed for DSM generation. This is followed by a 

critical review of the literature on the merging of DSMs (and DTMs) from different 

sources and an explanation of a probabilistic method implementing a Bayesian approach 

to merging different data. The last stage focuses on the literature related to building 

extraction from satellite imagery (including gaps) while also launching the approach that 

is subsequently implemented for extracting buildings using, simultaneously, different 

sources of data as input. 

 

2.1 Overview of Satellite Images  

Since 1972 satellite images have been available for general use by the public. This was 

started with the launch of Landsat-1, previously called ERTS-1, into orbit (Dowman et 

al., 2012). Since then different sensors have appeared; of these SPOT-1 HRV, launched in 

1986, is the most important of the optical sensors, from the survey and mapping 

perspective, as it provided stereo-coverage and was designed to support topographic 

mapping and 3D map construction (Dowman et al., 2012). Later in 1999 IKONOS was 

launched. Since then different imaging satellites providing images with better resolutions 

have continued to be launched into orbit. Recently, in August 2014, a state-of–the-art 

satellite named WorldView-3 was launched into orbit, which can provide images with a 

resolution of up to 0.31meters. All these improvements have led to satellite imagery 

being widely available and used by many, for example for planning purposes, mapping 

and 3D city modelling. Moreover, the increased availability of images has encouraged 

competition among the providers to make the images available to the user at lower cost.  

 

2.2 DSM Generation Algorithms 

Different investigations have been carried out to examine the automatic production of 

accurate DSMs using images, and these have revealed many difficulties in producing 

reliable algorithms that recognize (especially complex) buildings formed from the 

geometric components of planes, curves, etc., and which deal with some of the problems 
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mentioned by Zhang and Gruen (2006), referred to in Section  1.2. The most crucial step 

in producing a DSM is image matching which, if achieved to a high standard, leads to a 

high quality DSM. Even the most robust approaches to image matching still face 

difficulties in achieving correct matching (Bertin et al., 2015; DeVenecia et al., 2007). 

Image matching when using satellite imagery to produce a DSM has been an important 

focus of research, due to the increased application of such imagery in different fields 

such as flood studies, change detection and planning. Table  2-1 summarises different 

methods, presented in the literature, which have been implemented for DSM generation; 

these are compared by indicating the published validation outcome for each approach. 

 

Table  2-1 shows different algorithms which can be used to produce DSMs; from this 

table it can be inferred that all the techniques fail to construct small buildings and that the 

accuracies of the methods vary. The RMSE value for the DSM produced using 

BAE-System’s NGATE approach is 0.98m using IKONOS 1m resolution imagery while 

the accuracy is 0.35 m using WorldView-1 0.5m resolution imagery, as explained in 

section  5.2, and this is the best compared to all other methods. The NGATE method is 

based on measuring the coordinates of each pixel, using area based matching and edge 

based matching, with each of them supporting the other. That is the matched pixels 

produced from area based matching will be used to support matching edge pixels, and 

additionally the results of edge matching will be used to support pixel matching, as will 

be described in more detail in section  3.6.1. Due to the high reported accuracy of the 

NGATE method, it was decided to use it in this research for producing the initial DSMs 

used in merging and also later as a primary component in building footprint extraction 

and 3D modelling.  
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Table  2-1 Comparison of Different DSM generation techniques.  

Algorithms Incorporated 
Techniques 

Validation: 
Best (i.e. 
smallest) cited 
height quality 
statistic 

Advantages Disadvantages 

1-Least Squares 
Matching (LSM)  
(Alobeid, 2011) 

Area based 
matching 

RMSE: 0.6m 
(using satellite 
image of 0.5m 
resolution) 

Getting High accuracy of 
building height 
 

Building shapes are 
blurred. 
Searching in 2D, no 
need for epipolar 
images Require extra 
tie points. 
Small buildings are 
merged into one group 

2-Dynamic 
Programming 
Matching Median 
Filtering 
(Alobeid, 2011) 

. Measuring pixel 
disparity along the 
epipolar line with 
defined threshold 
 

RMSE: 0.5m 
(using satellite 
image of 0.5m 
resolution) 

Obtain sharp edge of the 
building outlines 
Getting High accuracy 
building height. 
Occlusion areas are identified 

The produced 
disparity map 
contained striping. 
Small buildings are 
merged into one group 

3-Semi-Global 
Matching 
(Alobeid, 2011) 

Epipolar geometry. 
Implementing 
mutual information 
which depends on 
entropy and joint 
entropy. 

RMSE: 0.4m 
(using satellite 
image of 0.5m 
resolution) 

Obtain sharp edge of the 
building outlines  
Occlusion areas are identified. 
Getting High accuracy of 
building height 

Small buildings are 
merged into one group 

4-Semi-automatic 
DSM with triplets 
(Tack et al., 2009) 

Epipolar geometry 
Feature matching 
Least squares 
method (MPGC) to 
detect mismatches  

RMSE: 2.61 m 
stereoscopic 
2.47 m tri-scopic, 
using satellite 
image of 1m 
resolution, tested 
against 
Checkpoints 

Using more than two images 
Occlusions are treated 

Low accuracy 
Small buildings are 
merged into one group 

5-Dense stereo 
methods based on 
dynamic line 
warping and 
semiglobal 
matching.  
(Kraus et al., 2009) 

Epipolar geometry, 
implementing the 
correlation between 
the lines and Mutual 
information  

STD: 7.6m (using 
IKONS 
imagery of 2.5m 
resolution) tested 
against LiDAR of 
1m resolution 

Using more than two images 
Occlusion are treated 

Very low accuracy 
Small buildings are 
merged into one group 

6-Multiple Primitive 
Multi Image 
Matching (MPM) 
and Multiphoto 
Geometrically 
Constrained 
Matching (MPGC) 
(Zhang and Gruen 
2006) 

Area based 
matching 
Feature based 
matching 
least square method 
(MPGC) to detect 
mismatches 

RMSE:2.83-3.34
m tested on 
IKONOS satellite 
image-GSD=1m, 
tested against 
airborne laser 
scanning 

Using more than two images 
Occlusion are treated 

Low accuracy 
Small buildings are 
merged into one group 

7-NGATE (NEXT 
Generation 
Automatic Terrain 
Generation)  
(DeVenecia et al., 
2007) 

Epipolar geometry 
Area based 
matching 
Edge base matching 

RMSE:0.98m 
using IKONOS 
satellite 
image-GSD=1m  
tested against 
Checkpoints. 
 
 
 
 

Getting High accuracy 
building height. 
More robust because the result 
of area matching support edge 
matching and vice versa 
Different strategies can be used 
in different areas, consequently 
leads better results. 
More than two images can be 
used in matching process, so 
the occlusion can be detected. 

Small buildings are 
merged into group 
The building facades 
are not vertical. 
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2.3 Data Merging  

Merging data has become an important issue in different fields. It has been applied in the 

image fusion field to increase image detail by integrating the details from different 

sensors, to produce a single scene that contains more detail than any of the original 

separate images. Also it has helped to reduce the number of scenes stored for a specific 

area saving memory space. In the Survey and Mapping field, due to an increase in the 

number of techniques for data acquisition, which consequently has led to an increase in 

the sources for DSMs, there has been a motivation to combine these data sets into a 

single data set that thus contains more detail and of better quality – a productive synergy 

of the DSMs. The following sections will focus on the background to merging DSMs 

(and DTMs), which in turn will be followed by an explanation of the application of the 

Bayesian approach in merging different types of data.  

 

2.3.1 DSM Merging  

As indicated in the previous section, data merging has becoming increasingly important 

in different fields due to increasing amounts of data. Generally, when there were few 

DSM sources, little research was done into their merging. However, now this has 

changed and DSM merging has become an important topic as the range of sources of 

DSMs has increased and the need for better quality DSMs has emerged. 

 

Data merging is complex if optimum results are to be obtained from the available data 

(Smith and Goldberg 1987). It can be used potentially to identify the highest quality data 

for the area, as well as to address problems of data volume. Data merging is also 

important as it fills the gaps and voids produced during constructing the original DEMs. 

The obvious solution for merging DEMs is to average tiles or strips from DEMs of the 

same area (Reuter et al., 2011), but this will not reflect the original data quality, because 

it gives the same weight to all data.  

 

Dowman (2004) stressed the importance of data merging for improving the quality of the 

DSM prior to feature extraction. Moreover, he extolled the advantages of combining 

different DSMs such as: eliminating error and dealing with outliers; treating atmospheric 

corrections; and dealing with a lack of control points. 

 

Reuter et al. (2011) conducted research to align DSM tiles horizontally and vertically, 
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and then, after that, merge them to produce a seamless DSM. They tried to solve the 

problems that appear in existing DSMs that have led, for instance, to the bias found in the 

30m resolution ASTER GDEM v1 and striping in the 90m resolution SRTM datasets. 

These problems appear due to the horizontal and vertical misregistration of the data used 

and these researchers focussed their attention on this. The method Reuter et al. (2011) 

used comprises three stages. Firstly, horizontal alignment is achieved, by selecting a 

reference surface. Then the correlation between the reference surface and the DSM for 

different horizontal offsets is determined, prior to aligning the DSM to the location 

where the maximum correlation is found. Secondly, repeating the process but performing 

vertical alignment, using a vertical offset, which is calculated by sampling the rectified 

dataset with respect to the elevation of the reference surface. Following this process 

Reuter et al. (2011) achieved a mean displacement between the two data sets of less than 

a centimetre, whereas prior to their adjustment it was of the order -300m. Thirdly, they 

applied the LOESS filter (also known as local regression) to merge and mosaic each tile 

(or strip) into a single final DSM. The LOESS filter attributes each final individual pixel 

with the number of pixels employed in its estimation process and also provides an error 

estimation, using the minimum, average and maximum elevations for each individual 

pixel.  

 

Wegmüller et al. (2010), focussed on the value of DSM merging to fill gaps, and 

developed a method for merging the ERS-2 ENVISAT Tandem (EET) CInSAR DSM 

with another existing DSM, such as the SRTM DSM. The methodology was used to fill 

in the gaps existing in the CInSAR DSM, due to deficiencies of EET CInSAR in 

mountainous areas or those of considerable slope, thus rendering the DSM more accurate 

and efficient. The methodology was based on using a weighting function, with the 

original CInSAR DSM used in the areas away from the gaps, whereas a smoothed 

weighted transition is applied at and near the gaps. The purpose of this weighted merging 

is to prevent elevation ‘steps’; this method was applied successfully, on an area in 

California, USA, which comprises flat and hilly areas; no ‘steps’ were detected near the 

flat areas in the merged DSM, but in the steeper areas some interactive editing was 

required to avoid ‘steps’. 

 

Karkee et al. (2006) also carried out research into merging DSMs produced from InSAR 

techniques, i.e. the SRTM DSM, and an optical system, i.e. the ‘relative’ ASTER DSM. 
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The purpose of this research was to increase DSM accuracy, particularly filling DSM 

voids. The flowline of the algorithm initially involved registering the ASTER DSM to 

the SRTM DSM. The slope and aspect values from the surrounding pixels’ elevations 

were used to fill the gaps by interpolation, as well as data from an additional DSM. 

During the merging, the incorrect elevations in both DSMs were removed by applying a 

Fast Fourier transform in the frequency domain (Karkee et al., 2006). The errors in the 

optical DSM showed high levels of variation, while errors in the SRTM DSM were 

limited to low levels of variation. The result has been evaluated by using a reference 

DTM derived from a contour map with scale 1:25000; the topographical (i.e. contour) 

map used had been generated by the Survey Department of Nepal with teamwork by the 

Finish International Development Agency. The results showed that the approach 

successfully increased the accuracy (i.e. reduced the RMSE) and filled the voids; it 

increased the accuracy by 44%. (The term ‘relative’ ASTER DSM has been used to refer 

to a DSM obtained from using image matching techniques without using GCPs 

(Tokunaga et al., 1996), and when using GCPs it has been called an ‘absolute’ ASTER 

DSM). Both data sets were registered using the same ground control points, resulting in 

RMSE values of several pixels in each set. The authors concluded that it would be more 

efficient to use image based correlation co-registration, with the expectation of less 

interactivity and greater sub-pixel accuracy. 

 

Hosford et al. (2003) showed an approach for enhancing DSMs through a merging 

operation based on a geostatistical approach (i.e. capable of estimating an σ value). They 

used DSMs from stereo-radargrammetric SAR satellite and airborne laser altimeter data. 

The merged DSM has been evaluated against a DTM produced from a 1:25,000 scale 

topographic map and a helicopter-borne laser altimeter. The validation showed that the: 

i) estimated standard deviation; and, ii) RMSE with reference to the map of the fused 

DSM decreased from 21.2m to 14.0m and 27.2m to 23.2, respectively. For the 

helicopter-borne data error statistics decreased from 25.3m to 11.0m and 44.0 to 36.5 for 

the estimated σ and RMSE, respectively.  

 

A study carried out by Papasaika et al. (2009), improved the details and accuracy of 

DSMs arising from poor image matching, by merging using extra data sources. The extra 

data was a DSM acquired from IKONOS and airborne LiDAR. The approach used 

addressed the merging based on each DSM’s quality generating a DSM with blunders 
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and errors eliminated. Initially the DSMs are aligned to each other by using least squares 

3D matching for the co-registration. Then, error of the DSMs was estimated through 

their geo-morphological characteristics such as slope and aspect without using measured 

ground truth. These characteristics later guided a fusion process based on an active 

contour model (Kass and Witkin, 1988) also called a ‘snake’. An active contour tries to 

find the lines or edges in the image. A spline is defined in the image and the operation 

tries to shift the location of the spline onto the line or edge features. This operation 

involves two constraints - internal and external. The internal constraint is specified by the 

user to control the smoothness of the defined ‘snake’, while the external constraint is 

obtained from pixel intensity values (also referred to as ‘energy’). The active contour 

method is trying to minimize the discrepancies between the spline and the pixels of the 

initial edges and lines. The results showed that the approach was able to merge DSMs 

successfully and also dealt with blunders, successfully removing artefacts in the LiDAR 

data.  

 

Papasaiki and colleagues (Papasaika and Kokiopoulou, 2011; Papasaika-Hanusch, 2012) 

also conducted further research into mitigating the errors that were generated in DSMs 

during their construction, through developing a robust model based on sparse 

representation. The sparse representation model is capable of dealing with more than two 

DSMs, using “dictionaries”. The components of such a dictionary, entitled atoms, are 

local terrain forms, constructed from training data. The DSM so produced from merging 

optical imagery and InSAR has been evaluated against a LiDAR DSM. Promising results 

were obtained and the sparse representation method gave good results compared to the 

weighted average method, in less steep areas. For the slopes that are greater than 30% the 

weighted average was better than sparse method while the result was the opposite when 

slope was less than 30%. 

 

Costantini et al. (2006) conducted research into merging using different data sources 

(SRTM SAR-X, ERS SAR tandem data) for the purpose of image mosaicking. The focus 

was to manipulate discontinuities at the edge of the overlap area, arising from either 

horizontal or vertical systematic error. In their approach, first, they addressed the 

problem of systematic horizontal error, through co-registration. Later they addressed 

vertical systematic error. After the systematic error had been removed, the next stage was 

combining the DSMs, by weighted averaging based on the DSM’s accuracy. The 
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subsequent interpolation filled any existing DSM voids. The validation result was RMSE 

values of 8.7m when compared to a higher accuracy source (having a 1.3m RMSE) 

suggesting the approach is capable of reducing the error inherent in the sources (for 

example the ERS SAR tandem data RMSE was 13.8m). 

 

A study conducted by Schultz et al. (1999) generated DSMs from aerial imagery and 

fused them for mosaicking purposes. At the fusing stage, self-consistency was 

implemented to detect elevations that were unreliable in order to remove them. They 

claimed that their merging approach improved the merged DSMs by taking advantage of 

redundant elevations, removing outliers and handling geospatial uncertainty. A downside 

was the significant computational overload. 

 

Lee et al. (2005) merged two different DSMs, from different sources, different dates and 

different resolutions (e.g. airborne and InSAR derived DSMs). They followed a neural 

network approach to merging in order to improve quality. The data that were used in this 

merging were specified to be multi-sensor, multi-resolution and multi-temporal. The 

outcome was successful to the extent that gaps were filled. However, the accuracy of the 

resulting DSM arising from fusing the two SAR derived DSMs using weights based on 

height error maps, derived from the interferometric coherence of the SAR data, could be 

considered low. 

 

Podobnikar (2007) conducted research into merging DSMs from different sources for the 

purpose of mapping. The aim of the merging was to obtain higher quality DSMs through 

removing potential gross errors without using auxiliary data. The fusion was based on 

weighted averaging. Although the aim of the research was to address the enhancement of 

geomorphic characteristics leading to superior perception and thus more effective 

mapping, considerable consideration was given to the quality of the outcome, and he 

concentrated very much on the visualisation of the resulting DSMs, in order that blunders 

could be detected. 

 

Fuss (2013) explained how DSM merging could reduce errors such as systematic errors 

and outliers, in addition to the offset that exists due to land use. In her thesis, she 

generated different DSMs from RADARSAT-2 imagery, a stereo-radargrammetric 

method being implemented for this purpose. In the fusion, elevation estimation based on 
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slope and elevation thresholding was later followed by k-means clustering. Finally, the 

merged DSM was filtered and smoothed. Although the accuracy increased globally, the 

precision decreased, and land cover was found to be particularly influential. The study 

indicated, strongly, that different fusion methods should be applied in areas of different 

land cover. 

 

Tupin (2004) conducted research into merging SAR and optical imagery for the purpose 

of 3D building representation using a Region Adjacency Graph implementing a Markov 

Random Field by segmenting the optical images. This was based on using segmentation 

over the optical imagery for obtaining regions and then assigning the heights from the 

SAR data. The consequence of applying this method showed successful results with 

respect to large buildings, but failed with small or low height buildings. 

 

A study was carried out by Reinartz et al. (2005) in order to generate and fuse DSMs 

from different sources (i.e. Spot-5 optical satellite imagery, SRTM C-band and X-band 

radar data) and also to model forest trees. To the extent that this study both looked at 

fusion of DSMs and extracting objects (trees) its aims were not unlike those of the 

building based study reported in this dissertation. In the merging process, they 

determined a height error from each DSM, based on the production process, which was 

used in order to provide a local estimation of the DSM’s accuracy. The result has been 

evaluated using more accurate data sourced through laser scanning and aerial 

photography. The result showed that accuracy improved by merging these DSMs. 

Turning to the trees the difference between the surface model (DSM) and the bare earth 

model gives the tree heights. The SRTM derived DSMs consistently gave more accurate 

tree heights than SPOT-5 derived DSMs. 

 

From the literature, DTMs generally and DSMs in particular have become an important 

issue in different applications especially in 3D modelling, therefore getting an accurate 

and detailed DSM has become a necessary and important issue. To obtain the highest 

quality DSM is still a challenge due to deficiencies in the applied algorithms and the 

resolution of satellite images (and not discounting the presence of random error); 

however, one approach to obtaining a good DSM is by merging different sources. The 

studies reviewed in this section do indicate the advantages of merging DSMs that can 

arise as follows: filling holes; improving the qualitative attributes; and, raising accuracy 
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by integrating the details from different DSMs and consequently removing potential 

gross errors (or blunders). But these accounts of research into DSM fusion do also 

indicate high computational overheads; some remaining interactive editing 

requirements; problems of registration even with a good supply of GCPs; slope and land 

cover having a differential affect on the quality of output; a desire to move away from an 

overall accuracy figure (e.g. for weighting) to pixel specific figures but an 

acknowledgement that these can be difficult to achieve; and, finally, that small objects 

can get lost in a DSM. 

 

2.3.2 Multitemporal Effect 

Usually the data used in merging are from different epochs, which means there is a high 

possibility of changes within the data sets’ area. Thus, merging data, using an effective 

approach, from different sources at different times is an important challenge that faces 

researchers, due to the increasing number of different data sources such as optical 

satellite imagery, DSMs, LiDAR and InSAR available (Zhang, 2010a). 

 

Different researchers have followed different procedures to address this problem. For 

instance Papasaika et al. (2008) introduced the following procedure: prior to fusion using 

weighted averaging, they produced a residuals map for each DSM, using a DSM of 

identical extent and resolution as shown in Figure  2.1. Then if the heights at each grid 

point were contradictory, they assigned the most recent DSM’s height to the outcome.  

 

Figure  2.1 3D residuals map showing the effect of multitemporal data on the different 
DSMs (Papasaika et al., 2008). 
 

Ghannam et al. (2014) introduced an approach for merging multitemporal data. Their 

approach was called the Wavelet-based Spatiotemporal Adaptive Data Fusion Model 

(WSAD-FM), based on wavelet transformation to merge MODIS low-resolution 

imagery with Landsat scenes, implementing a linear model. The aim of this approach is 

to increase the spatioresolution of satellite imagery captured at different periods of time. 
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The fusion (or merging) of multitemporal data has also been utilized to enhance image 

classification. Bruzzone et al. (1999) utilized data merging for the compound 

classification of remote-sensing data that was specified to be multisource and 

multitemporal. The merging approach was achieved implementing a Bayes approach.   

 

Data merging, in the context of this research, aims to put heights together from different 

DSMs in order to get a better DSM, however it is very rare to have DSMs that are 

produced from data captured at exactly the same time; either the time gap is small, or 

large, perhaps reaching several years. Thus it is important to address the changes that 

have occurred during the time gap between different data sets. 

 

2.3.3 Multiresolution Data 

Since the merging operation is using data from different sensors, the data that are used in 

merging do not necessarily have the same resolution. For that reason, it is important to 

know how to deal with the effect of multi-resolution data. 

 

According to the literature, it is preferred to resample the data to the higher resolution; in 

that case the feature on the ground will not be lost. This action is followed by Damron 

(1999) to merge 10m resolution DSMS from IFSAR DEM (Interferometric Synthetic 

Aperture Radar) which has been up-sampled to be the same as the LiDAR resolution, 

2m. Ranchln and Wald (2000) also followed the same principle to up-sample the lower 

resolution data in order to merge SPOT multi-spectral data that has resolution 20m with 

higher resolution imagery that has a resolution of 10m. Kumar et al. (2009) also followed 

the same principle for merging panchromatic and multispectral images to obtain 

pansharpened image. They resampled low resolution multispectral data with 4m 

resolution into higher resolution data at 1m resolution. 

 

The other sampling method, which is leads to reducing the resolution, is called 

downsampling. This type of resampling is not preferred and the disadvantage of using it 

as referred by Frajka and Zeger (2004) is causing to loss information in the data 

consequently is lead to reduce the quality of the data.  
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2.3.4 Data Co-registration 

Prior to merging the data they should be georeferenced to the same reference plane, and 

co-registered (Costantini et al., 1997). Karkee et al. (2008) emphasize the importance of 

removing the shift that may exist between data sets prior to the merging. For the purpose 

of improving the accuracy of the DSMs by removing the voids in the data, Karkee et al. 

merged two public DSMs: SRTM and ASTER DEM. The ASTER DEM has been 

co-registered to the SRTM. In the co-registration process the ASTER data has been 

shifted to the mean elevation of SRTM as shown in Figure  2.2. The reference data for 

assessing the original and merged datasets has been obtained from contour maps at scale 

1:25000. 

 

Figure  2.2 Effect of co-registration of SRTM and ASTER DEM profiles, respect to the 
reference data (a) the ASTER DEM and SRTM profiles before the co-registration (b) the 
final profiles situation after co-registration operation. 
 
For co-registration, Papasaika-Hanusch (2012) implemented the LS3D algorithm of 

Gruen and Akca (2005). The co-registration was applied prior to the merging the DSMs. 

It aimed to remove the shifts, both horizontally or vertically and less probably the 

rotation and scale variances, between the DSMs. In the LS3D algorithm, the sum of the 

squares of the Euclidean distances between the DSMs points have minimized.  

 



 Chapter 2 
 

26 
 

2.3.5 Probabilistic Method in Merging including maximising Entropy  

One merging method to be investigated in this study will be based on a probabilistic 

method applying Bayesian theory. This aids decision by making use of new evidence, 

but taking into account previously existing evidence.  

 

Within the surveying and mapping disciplines, merging or fusion has long been applied 

in the production of pansharpened images (Fasbender et al., 2008) and in the reduction of 

satellite image scene dimensionality through Principal Components Analysis (Kumar 

and Dass, 2009). More recently, as the literature cited in later paragraphs will show, 

Bayesian approaches are used, to some advantage, in both these areas. As a regular DSM 

is very similar to a single band from a multispectral image, except that every grid value 

represents elevation rather than reflectance, so, perhaps, Bayesian approaches could be 

applicable to DSM merging? 

 

A considerable body of literature exists which shows how researchers have attempted to 

use Bayesian approaches to improve the results of data merging or fusion. Not all of 

these researchers have been working in the field of surveying and mapping, or Earth 

Observation. For example a dissertation by Punska (1999) shows merging data 

incorporating a Bayesian approach and Markov Chain Monte Carlo methods applied to 

different sources of data from different sensors, and particularly addressing problems 

arising from discontinuities, using an algorithm originally developed for speech 

recognition.  

 

Rather than image bands or DSMs, Christensen (2005), looked at a small simulated data 

set, to compare the Fisherian, Neyman-Pearson (NP) and Bayesian approaches to 

hypothesis testing. Christensen (2005) showed that Bayesian approaches are influenced 

by a priori information, and the user can exploit different a priori information to reach a 

decision with respect to hypotheses that are mutually exclusive. The Fisher and 

Neyman-Pearson approaches to testing hypotheses are based on starting with a null 

hypothesis. In the Fisherian approach the distribution is selected and the data are 

evaluated as to whether the data suits the proposed model, or not. In the Neyman-Pearson 

approach two hypotheses are tested, a null and an alternative hypothesis, with the test 

based on rejecting the null hypothesis. Hypothesis testing is not a large component of the 

research being reported on in this dissertation, but, as well as considering the value of the 
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null-hypothesis, which for many is counter-intuitive, Christensen (2005) emphasises that 

the Bayesian approach to assigning confidence to an outcome is very intuitive, as it 

directly links confidence and probability. Christensen (2005) further, stresses the 

importance of good a priori information to achieve an appropriate result when using 

Bayesian approaches.  

 

In a real, non-simulated, application, Jalobeanu et al. (2008) conducted research into 

merging multi-source data from astronomical images for the purpose of mosaicking, 

co-registration, improved resolution and, above all, to reduce the large number of 

redundant astronomic images, through fusion. Geometry, blur and noise statistics were 

taken into account, uncertainty was also addressed; and, then, a probabilistic method 

based on Bayesian inference to achieve the fusion, was tested, along with two other 

frequentist, purely image based solutions methods. The RMSE value after Bayesian 

fusion was half, or less, that of the other tested fusion methods. However, despite the 

higher accuracy, some noise in the final fused image was probably due to less than 

optimal a priori values. 

 

Sharma et al. (2001) implemented a probabilistic model, based on the Bayesian 

approach, to fuse images from a variety of different noisy sensors, for aircraft landing 

guidance, rather than Earth Observation. For the parameter estimation least squares 

factor analysis was used; the merging implemented a locally weighted linear operation. 

For weighting, characteristics such as signal, noise and polarity change (necessary in the 

case that images have reverse contrast) were taken into consideration. As a result, the 

fused image, had improved features and contrast, and also the noise was reduced, 

however high computational overheads prevented its early practical implementation.  

 

Mohammad-Djafari (2003) also published research details on using a Bayesian approach 

for merging data and images. He demonstrated different applications for applying 

Bayesian approaches such as merging images which are registered, and registering and 

merging images using 2D images to construct 3D views which have been linked with a 

DSM. He showed how to fuse different types of images such as ultrasound echo-graph 

data or X-ray radiograph data. He also implemented a Bayesian approach later with 

Feron (Féron and Mohammad-Djafari,2005) for the purpose of automatic image fusion 

followed by segmentation, again not for Earth observation, but to fuse and interpret 
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X-ray security images; different images from different sensors or different bands were 

exploited in this research. Féron and Mohammad-Djafari (2005) obtained the final 

segmentation result following the merging of these different images. Results were 

satisfactory, with regard to the Bayesian approach, but the authors admitted to not having 

addressed the issue of automatic image co-registration in their otherwise automatic 

image fusion procedure. Turning to the segmentation aspect of this 2003 study, at 

more-or-less the same time Jones et al. (2003) fused images from high resolution visual 

and low-resolution thermal data incorporating a Bayesian approach, for surveillance 

purposes; the fused images giving better results during segmentation than any of the 

un-fused images. 

 

A literature search has been conducted which has found at least thirteen applications of 

Bayesian approaches in the surveying and mapping field, related to the fusion of Earth 

Observation imagery. These will be considered in subsequent paragraphs. 

 

The outcome of the supervised classification of a Bayesian fused image and the 

supervised multispectral classification of the contributing images reported by Shi and 

Manduchi (2003) showed disappointing results. It was shown that merging the output 

from various classifiers, using a Bayesian approach, gave a rather high misclassification 

result, when it was applied in a situation when more than one image characteristic is 

available (e.g. colour and texture). The misclassification rate for the Bayesian fused 

image was 38% while for the multispectral classification it was 27%. The advantage of 

working with only data set could be set against the poorer classification outcome, but Shi 

and Manduchi (2003) predicted improved results following further development.  

 

Fasbender et al. (2008) implemented a Bayesian framework for fusing panchromatic and 

multispectral images prior to subsequent land cover classification. In this fusion process, 

Fasbender et al. (2008) depended on the statistical interaction between different bands, 

whether multispectral or panchromatic. The benefit of this method is that there is no 

requirement for hypothesis modelling, and it exploits visual or quantitative criteria to 

give weights to multispectral or panchromatic data. Consequently, this provides a result 

based on the study area and the user’s requirements. The suggested algorithm proved to 

be successful; at 250,000 check pixels the correlation, with the classification under a 

Bayesian framework for four land-cover classes, was better than 0.9. In addition to the 
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multispectral images, it is also possible to fuse images from SAR and hyperspectral 

sources, using this algorithm. Fasbender et al. (2008) did not also include a priori values 

for the land cover classes, but recommended that they could in the future, despite the 

already very good results for the method tested. 

 

Although unlikely to help in addressing this research’s objectives, because the large 

number of bands involved is not an issue in the work reported in this thesis, a Bayesian 

approach implemented for segmenting hyperspectral images has been considered. 

Mohammadpour et al. (2004) carried out research in order to achieve segmentation by 

exploiting information from the heterogeneous bands that construct hyperspectral 

images. Their proposed algorithm was based on applying a Bayesian approach to the 

problem of joint segmentation of hyperspectral images. They tested their algorithm on a 

simulated image and found it to reduce by 80% the number of misclassified pixels. 

 

Murthy et al. (2005) implemented a Monte Carlo Technique incorporated into a Bayesian 

framework for the purposes of image restoration while some parts of the images under 

consideration are left unchanged. They worked with simulated images, and much of their 

effort focussed on the issues of establishing both the a priori and likelihood values 

needed for the Bayes approach. Clear guidelines did not emerge from this article, as work 

was continuing, but the problem, particularly, of getting good a priori values was clearly 

stated. Kumar and Dass (2009), also concerned with getting a good a priori value to 

merge images that were obtained from different sources, implemented the total variation 

(TV) approach to give a value they used as a prior in pixelwise merging. They used the 

TV approach together with Principle Component Analysis to obtain an optimum image 

from source images. The benefit is that smoothing the image and while maintaining the 

image’s discontinuities consequently led to sharp edges. This is essentially a Bayesian 

approach with a focus on smooth surfaces and sharp edges – again a value when 

considering the urban environment. 

 

A Bayesian approach was used by Diebel et al., (2006) in 3D surface reconstruction and 

also subsequent decimation, from point cloud data or surface meshes of small real world 

objects, usually obtained from stereophotogrammetric procedures. Although the 

application area was computer animation, it was thought that the focus on real world 

objects might have some bearing on this research’s intention to extract building models 
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from DSMs. The Diebel et al., (2006) approach was successfully applied on noisy data 

that had been combined with an a priori probabilistic model resulting in improved 

features through smoothing and establishing good corners. Results were not good where 

highly curved smooth surfaces were being re-constructed, but although the urban 

landscape has many smooth surfaces, these tend to be planar with pronounced corners. A 

useful point made by these authors was that a future research could focus on the noise 

systematically generated by each sensor. 

 

Confirmation of the value of the Bayes approach to merging was provided by Ge et al. 

(2007) who used a probabilistic linear estimation method based on a Bayesian approach 

in order to merge multispectral Landsat ETM+ and panchromatic images for enhancing 

the multispectral image. According to Ge et al. (2007), the proposed method gives better 

results than the traditional methods (i.e. principle Component Analysis (PCA) and 

wavelets). 

 

Providing further background, Bayesian approaches have also been used by Zhang 

(2011), and Zhang et al.(2008) to fuse hyperspectral and multispectral images; by Kotwal 

and Chaudhuri(2013) when fusing for improved visualisation; and, by Mascarenhas et al. 

(1992) who used a Bayesian framework to fuse SPOT satellite imagery after selecting the 

best characteristics from multispectral and panchromatic bands to obtain an ideal 

synthesised image. Finally, Sommer et al., (2009) evaluated the uncertainty in a data set 

after data fusion claiming that uncertainty can be robustly evaluated through using a 

Bayesian approach.  

From the foregoing, it can be noted that Bayesian approaches have been able to solve the 

problems of merging images by including a proper prior. Identifying the proper prior is a 

challenge.  

 

In the work reported on in this dissertation, it will be seen that the a priori probability 

that has been used is based on, and benefits from, the morphological characteristics of the 

ground and buildings particularly roughness, as suggested by Papasaika-Hanusch 

(2012). The index which is tested, in this research, to identify the proper prior is based on 

a roughness index using the entropy concept. 

 

Several decades ago a clear relationship between maximum entropy and prior probability 
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was established (Jaynes, 1968) with the recommendation that despite the apparent 

subjectivity of a priori values, computing the maximum entropy could provide such a 

value, objectively. 

 

The entropy concept was developed by the German physicist Rudolf Clausius ((Clausius, 

1850) cited via (Downarowicz, 2011)) and means “turns into”. The word is used to 

express the ineffective heat that is released when heat is being produced from an energy 

system (Downarowicz, 2011). Shannon (1948) used entropy in probability and 

information theory, and later Downarowicz (2011) referred to him as the “Father of 

information theory”. Downarowicz (2011) advocated the use of the term entropy in other 

fields of science, not only physics or mathematics. For example, it is now being used in 

sociology. Generally the expression of entropy, can represent many conditions as 

indicated by (Downarowicz, 2011) such as:  

 

“disorder”; “chaos”; …….. or, “tendency toward uniform distribution of kinds”. 

 

In information theory, concepts such as uncertainty, information and choice are 

influenced by entropy. Shannon (1948) mentioned that entropy, ��, can be quantified, 

for a group of independent probabilities (n), using equation  2-1: 

 

 �� = ������ �1���
�

���
= −��������

�

���
  2-1 

where: 

��: local entropy value; and, 

��: probability density for (n) values. 

Cover and Thomas (1991 cited in Gill (1994)) maintain that, in information theory, 

entropy expresses the distribution of a specific random variable, based on the average 

information quantity. The value of entropy is limited to between 0 and log	(�) and the 

measurement unit is referred to as either the ‘bit’ or the ‘Shannon’ (Downarowicz, 2011). 

When the state is dense, the value will be 0 or very close to 0, and when the state is 

diffuse, the value will be close to	log(�), shows the entropy for pairs of probability 

values: p, and, (1-p). 
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Figure  2.3 Graph shows the value of the entropy for pairs of probabilities (Shannon, 1948). 
 

According to the graph, it can be noted that the value of entropy, represented by H, is a 

vital requirement regarding the choice of information. H achieves the minimum, or H=0, 

when there are certain choices or information about the situation, and one of the 

probabilities is zero, or while the other is unity. However H=1 when the values of both 

probabilities are equal, which in the case of information theory represents the situation 

when the information is not certain, and there is equality with regard to certain and 

uncertain probabilities. The value of entropy will be equal to log	��  when all probilities 

are equal (i.e. having the same value). It should be noted that in the case of trying to 

increase the similarity or trying to minimize the difference between the probabilities, the 

value of the H will be increased, as implied by Shannon (1948).  

 

As mentioned, entropy is linked to disorder. Gill (1994) illustrates that uncertainty in the 

probabilities can be evaluated using entropy, and, according to Shannon the entropy 

value H reaches a maximum when the values of the probabilities (p1, p2, …., pn) are 

uniformly distributed, and its value increases monotonically with the value of n. 

 

From the considerations of the reported work of others, provided in this section, it can be 

seen that Bayesian approaches have been widely and successfully applied in fusing 

greyscale or hyperspectral images for better visualization, segmentation or restoration. 

Some success has been achieved in smoothing planar surfaces and sharpening edges at 

discontinuities. However, the degree of success varies considerably amongst reported 

projects. Bayesian approaches can be used to minimize uncertainty in the data with a 
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proper model construction. Computational overheads are frequently reported as high, but 

these will tend to reduce over time. 

 

Unfortunately, there have been no specific examples found of Bayesian approaches to 

merging DSMs, although the similarity between a DSM and a multispectral band is clear. 

The work of Diebel et al. (2006) with point clouds (or dense meshes) of small real world 

objects, and using Bayesian approaches to improve the modelling, is closely related. 

Thus, even if using Bayesian approaches for merging DSMs, an objective of this 

research, is considered novel it is likely that many of the findings with regard to merging 

images will be relevant. 

 

2.4 Building Extraction Literature 

Various research projects have been developed for detecting buildings, either 

automatically or semi-automatically, instead of using manual methods. Different sources 

of data are utilized for this purpose such as: aerial images; satellite images; LiDAR data; 

unmanned aerial vehicle (UAV) or unmanned aerial system (UAS) data; or, DSMs.  

 

Extracting building footprints from satellite images has been a challenge for a long time, 

due to the low resolution of satellite images compared to aerial imagery. But, many 

researchers have focused on using satellite imagery for extracting building footprints 

possibly since its cost is very competitive compared to LiDAR and aerial imagery 

(Suárez et al., 2005), which are already commonly used for the purpose.  

 

The following sections illustrate building footprint extraction for Survey and Mapping 

purposes. The sections are organised according to the type of input data implemented in 

the processing. 

 

2.4.1 Building Extraction from Satellite Imagery 

Kim et al. (2005) conducted research into extracting buildings using a ‘voting’ process 

rather than a ‘grouping’ strategy. A grouping strategy requires detecting all boundaries of 

the building in order to be able to extract the building. However, this method will fail 

when applied to high resolution images such as IKONOS; often, the long side of the 

building will be detected as disconnected pieces of lines and the short side of the building 

would not be detected. To overcome this difficulty Kim et al. (2005) introduced their 
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voting strategy algorithm. The algorithm concentrates on a building’s ‘lines’ rather than 

the whole building. Kim at al. (2005) investigated images with 1m resolution of 

buildings of rectangular shape and relatively large size. The algorithm works by taking a 

point on the roof of the building to be considered as the starting point. After that, a small 

area is defined centred on the starting point. A line extraction algorithm by Burns et al. 

(1986) is used to extract lines near the starting point, after that their location and 

orientation is ‘voted’ based on an analysis of the orientation of neighbouring extracted 

lines. The line extraction algorithm was able to extract only the lines in the long side of 

the building Figure  2.4. The Building Extraction rate was 83%. 

 

 

  

Figure  2.4 The building extraction process from satellite imagery by the voting algorithm 
(Kim et al., 2005). Top row: the fragmented detected edge using the Burns et al. (1986) 
method. Bottom row: the constructed edges of the long side of the building. 

 

 

Research conducted by Theng (2006) to extract buildings from high resolution satellite 

imagery used the Circular Casting Algorithm. The implemented algorithm was 

developed as an alternative to the Radial Casting algorithm (Mayunga et al., 2005, 2007). 

Circular Casting has the ability to overcome the problems of complex buildings, by 

initializing an active contour. The initialization point can be at any point of the building, 

and it is not compulsory to select this point inside the building. Hence this leads to 

automation and the point can be picked by comparing pixels using corner detectors 

(Harris and Stephens 1988). Corner point detectors assume that corners are related to 

local maxima at each pixel of the image. If the local maximum is higher than a certain 

threshold, the pixel is declared as a corner. As a result, Circular Casting can start from 

any of the first corner pixels found. Figure  2.5 illustrates the steps for applying Circular 
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Casting to a building. As shown, the casting will start gradually from first detected point 

and will stop when the extracted building is closed.  

 

Figure  2.5 Process of the Circular Cast Algorithm as it draws contour for extracting a 
building from satellite imagery (Theng, 2006). 

 

Liu et al. (2008) conducting research into building generation semi-automatically by 

selecting a building location manually, developed a novel method, based on feature 

extraction and region segmentation for extracting rooftops. They assumed that a building 

would be seen in high resolution satellite images as an individual building object. They 

also assumed that orthogonal corners of the buildings are connected with each other by 

straight outer lines. Generally, their hypothesis was based on the fact that a building has 

two parallel lines, which are connected to each other at orthogonal corners, and which 

can be classified as the dominant line set. Accordingly, the buildings can be depicted if 

the corners and lines are correctly selected, see Figure  2.6(a) and 2.3(b). For the 

extraction to be achieved, they merged the two ideas: first, effective segmentation of the 

building region has been used to extract components of a building roof’s outline from its 

background; second, using pose clustering to adjust the direction of roof outline 

components and building corner locations. Pose clustering is based on a voting process in 

which the majority position of components in an edge are used to determine the position 

and location of that edge (Olson, 1997). 

 
(a) 

 
(b) 

Figure  2.6 Result of extracted buildings from high resolution satellite images (Liu et al. 
2008). 

 

In order to achieve buildings’ roof boundary extraction precisely, Liu et al. (2008) used 

Building 
boundary 

Detected 
boundary 
pixel 

Circular cast 
boundary 
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seeded region growth segmentation and multi scale object oriented segmentation 

methods, applied to Quickbird imagery. Based on image segmentation, by combining 

clustering and model matching techniques, they proposed a new method for building 

locating. This method finds building objects by considering spectral, geometric and 

textural characteristics. In order to attach the extracted building to a suitable shape, they 

created a template library with a collection of different types of buildings. Generally they 

depended on locating or extracting, or both, the attributes of the building using two 

different methods: first, region based building extraction or RBBE (combining seeded 

region growth where the user needs to calculate the limit of a building and manually 

define the threshold used in the growing process); and, second, localized multi-scale 

object oriented segmentation. The latter is efficient when applied to small and simple 

buildings, where the edge contrast is low, using high resolution images based on edge 

confidence and mean shift. Localized multi-scale object oriented segmentation also uses 

seeded region growth to gather pixels inside regions and approximate the shape of the 

building. 

 

After developing RBBE, Liu et al. (2008), commenced feature based building extraction 

or FBBE. The output of this stage can be used in vector displays. Typically FBBE 

consists of feature extraction, which includes edge detection, corner detection, line 

detection and orthogonal corner detection. Several different algorithms are used; for 

example to locate the building, they used the ‘Voting Algorithm’ – discussed earlier. 

After locating the building Liu et al. (2008) employed the Hough Transform to extract 

the dominant line sets. This was followed by edge buffer analysis which was used to 

filter out (some) false edges. The building can be accurately constructed by using search 

algorithms for building corners based on the intersection of line sets. The result of the 

proposed method was successful when applied to rectangular shaped buildings’ roof 

scans, achieving a 75% building extraction rate (BE). 

 

A study was conducted by Shaker et al., (2011) for 3D building extraction from IKONOS 

stereo satellite imagery after creating a DSM and orthoimagery. For the building 

extraction, the multispectral data underwent supervised classification. A Maximum 

Likelihood classifier was applied to classify the buildings based on the supplied training 

data, which was provided as four classes (bare soil, buildings, roads and vegetation). 

Finally, the classes were reclassified into two classes, buildings and other objects, based 
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on a majority filter. The planimetric buildings’ data was obtained from detected edges 

from the images’ building class; the imagery subsequently also stored the elevation from 

the DSM. The validation of the result has shown a good RMSE value for the height 

validation, which is 1.33m, and based on the number of buildings extracted correctly and 

incorrectly, the generated indices such as the Building Extraction (BE) rate reached 82.6% 

and the missing factor (MF) was 16%. BE, expressed as a percentage, is obtained from 

TP/(TP+FP) and likewise MF from FN/TP: where TP (true positive) is a building that 

was a building and is marked as a building, in other words, there is no error in the 

extracted buildings; and, FN (false negative) records the buildings that exist but have not 

been extracted.  

 

An approach to building footprint extraction developed by San and Turker (2010) is 

based on applying the Hough transform on a satellite image to automatically extract 

buildings. The approach aimed to extract circular and rectangular buildings from 

IKONOS satellite images Figure  2.7. The Support Vector Machine (SVM) (San and 

Turker, 2010) algorithm is based on building detection and delineation from the building 

patches defined in the nDSM. For the first stage, i.e. building detection, orthoimagery is 

used to detect the buildings based on the NDVI index. The nDSM and the NDVI index of 

the SVM algorithm implemented in ENVI software is used to classify the buildings. The 

SVM algorithm includes statistical learning for classifying the complex and noisy image 

data and supervised classification. Eventually manmade objects are converted into vector 

map data after distinguishing and then eliminating non-buildings areas. For that purpose 

the edges are detected, first, using Canny edge detection, and then converted into a vector 

map, based on the Hough transform that is specified to detect lines and curves. These 

lines and curves are eventually grouped together to construct building boundaries. The 

results in the study area have been classified into three types and shapes of buildings. The 

quantitative validation was based on BDP (Buildings Detected Percentage) which is 

obtained by TP/(TP+FP+FN)%; and CM (Completeness) which is obtained by 

TP/(TP+FN)%; where TP (true positive) is buildings that are originally buildings and 

marked as buildings, in other words, there is no error in the extracted buildings; FP (false 

positive) are the buildings that have incorrectly been extracted; FN (false negative) the 

buildings that exist but have not been extracted. The results were as follows: for the 

industrial rectangular shaped buildings the CM was 93.5% and the BDP was 79.5%; for 
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the residential rectangular buildings CM was 95.3% with a BDP of 79.1; and, for the 

residential circular buildings it was the lower CM was 78.7% with a BDP of 66.8%. 

 
Figure  2.7 Different sites showing extracted buildings, as reported by San and Turker 
(2010) from satellite imagery using the Hough transform, in which 80% of buildings were 
detected.  

Aytekin et al. (2009) used satellite images for the purpose of automatic building footprint 

extraction. The CM reached 80.8% and the percentage of BDP reached 84.5%. Their 

approach is based on classifying the satellite images into manmade and natural objects. 

For the natural object classification, which consisted of vegetation and shadow, they 

implemented the NDVI index and the shadows were detected based on converting the 

colour image’s RGB space into YIQ (luminance (Y), hue (I), and saturation (Q)) colour 

space; shadow is specified by its high Q/I ratio. Finally the manmade structures were 

detected using the Otsu threshold, that is finding a threshold value in the grey intensity 

histogram after minimizing the intraclass variance, and maximizing the interclass 
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variance (Deserno, 2011). After eliminating the natural objects, the mean shift algorithm 

was applied to segment the rest of the objects, which consisted of man-made objects. The 

resulting objects suffered in that some parts were not related to buildings and 

consequently needed to be removed through a mathematical morphology operation. 

Other objects related to roads were removed based on using a shape ratio system, which 

is based on the road geometrical shape being different from building shape, in that roads 

have a longer shape and smaller width. Moreover, principle component analysis (PCA) 

was also implemented to remove the small irrelevant shapes or artefacts. Aytekin et al. 

(2009) implemented PCA in order to distinguish real artefacts from the road segments 

that are considered to be thin and long and not successfully detected earlier as road 

segments, based on their shape ratio. 

 

Dahiya et al., (2013) extracted buildings automatically as vector shapes by using 

IKONOS high resolution satellite imagery. Their method was based on segmenting the 

image using a ‘split and merge’ segmentation method. Before converting the image into a 

vector map, numerous filters were applied which led to the removal of objects that were 

not specified to be buildings. The filters that were applied at this stage were probability, 

size and clump size. Eventually the vector map contained candidate buildings, but to 

further improve the accuracy, another group of operations were applied which comprised 

a probability and island filter, a smoothing operation, and enforcement of orthogonality. 

These operations were implemented in the ERDAS environment. The result showed that 

among the 122 known buildings, 24 buildings were not identified which means the 

extraction rate is 80%, but there was a further problem in that 18 building were identified 

incorrectly as buildings, see Figure  2.8. 

 

Figure  2.8 Building footprint extraction result using satellite imagery proposed by Dahiya 
et al. (2013), extracted buildings (purple) obtained from the applied algorithm compared 
with manually extracted buildings (black line).  
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Another study was also carried out by Dahiya and colleagues (Dahiya et al., 2012) for 

extracting buildings automatically from high resolution satellite imagery using an object 

oriented approach. First, they classified the satellite imagery using a pixel-based 

approach. The training data was used to compute the probability of the pixel being a 

building. Several samples of training data were carefully used for the tree study area, and 

not including any background. Later the produced image was segmented using the split 

and merge segmentation method, which led to an image with all pixels with similar 

characteristics being connected. After that a group of filters was applied (e.g. 

morphological operator, probability filter, size filter, reclump, dilate, erode, and clump 

size filter) in order to clean up the image from all unnecessary pixels and noise, remove 

small objects and smooth remaining objects. The resulting raster map was then converted 

to a vector map, which was filtered to achieve a cleanup. The result of the method 

suffered some errors that required further filtering; also, the method did not work on any 

image that had similarities between buildings and other objects. The quantitative 

validation indicated a good result. The approach was applied in three different areas that 

contained different numbers of buildings: 66, 94 and 102 with the overall accuracy BDF, 

based on the manually extracted buildings, for each group being 85.4%, 73.8% and 70.6% 

respectively.  

 

Another study for building footprint extraction from satellite images was conducted by 

Krauss et al. (2007). IKONOS stereo satellite images were used for that. Prior to the 

production of the DSM and the DTM, the images were pre-processed. Later on, Krauss et 

al. (2007) classified the images using the nDSM that is obtained from subtracting the 

DTM from DSM. Then the remaining objects were divided into manmade and vegetation 

objects by using the NDVI index, since the imagery was multispectral. From the 

classified image, it was possible to model height objects as buildings or trees, see 

Figure  2.9 (where low height objects have been treated as the ground surface). All 

buildings in the small test area were extracted. 
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Figure  2.9 Constructed 3D site using satellite imagery as shown in the research by Krauss 
et al. (2007). 

 

In addition to automatic building footprint extraction, some research was also conducted 

using satellite images for building footprint extraction but with some interactive input to 

the algorithm. Mayunga et al., (2007) developed a semi-automated algorithm for 

building extraction from the satellite imagery. The algorithm has been applied to an area 

that was specified to be a rapidly growing area in Dar es Salam city, Tanzania. The 

buildings and their distribution were irregular. The algorithm that was used was the 

‘snake and radial casting’ algorithm. The suggested method depended on an initial point 

being located on a building then the boundary would be detected automatically. The 

results were validated using regional truth data, which was measured manually. Since the 

initial points were located manually for the building the efficiency of the building 

detection was high and it reached 90.5%, the measured RMSE accuracy reached 0.68m 

(well-defined features). The author advocated the method since it depended only on 

orthoimagery, did not need any auxiliary technology to be implemented, such as stereo 

viewing, and unskilled operators could implement it. 

 

A study was conducted by Sohn and Dowman (2001) to exploit Ikonos high resolution 

satellite images and extract buildings that have rectilinear edges. It was implemented by 

picking a seed point inside the building, which is iteratively expanded until it reaches the 

edge of the building. The expansion is based on neighbour pixel values within a 

threshold limit. To infer an initial building shape quickly, a local Fourier analysis was 

implemented; this was assisted by analysing the principle direction angle in the building 

cluster. For the threshold limit, this expanded at each iterative stage until meeting the 

limit of a maximum number of iterations and the constraint of a fixed area as shown in 

Figure  2.10. The algorithm has the ability to overcome problems appearing during 
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building extraction using traditional area-based segmentation and consequently has led 

to successful building extraction. The achieved building extraction rate was 73%. 

 

Figure  2.10 Buildings extraction using the BUS (Building Unit Shape) algorithm 
implementing IKONOS imagery. The top row represents the satellite image, and bottom 
row represents the extracted building superimposed on the satellite image (Sohn and 
Dowman, 2001). 

 

Lari and Ebadi (2007) exploited high resolution satellite images in partnership with 

artificial neural networks for building extraction purposes. Their aim was to exploit 

selective information from both spectral and structural features. The proposed approach 

consisted of three stages: image processing and segmentation; feature extraction; and 

finally, applying an artificial neural network to decide whether the extracted edge 

belonged to the building or not. For the segmentation, they implemented a seeded region 

growing algorithm, based on using seed points assumed to be evenly distributed over the 

image. It is implemented by comparing the seed with it is neighbour pixel intensities, if it 

is within the assumed threshold then it will be considered as the same region. Later on, a 

closing and opening operation was implemented to enhance the segmented image. The 

implemented artificial neural network is based on two main phases; the first phase is 

called the learning phase, uses training data that is saved manually, and is exploited to 

train for great accuracy; the second phase is called the application phase, where the data 

will be used to test new datasets. The input data of a neural network is based on extracted 

features consisting of mean colour and intensity, roundness, area, perimeter, 

compactness and the structural features of each segment. The algorithm when applied, 

gave a reasonable result, the detection percentage reached around 81% for urban areas, 

see: Figure  2.11. 
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(a) (b) 
Figure  2.11 Applying artificial neural network for building foo tprint extraction (a) the 
data set used in experiment (b) the result of applying the algorithm (Lari and Ebadi, 2007). 

 

Jin and Davis (2005) carried out research in order to extract buildings automatically from 

high resolution satellite imagery (e.g. IKONOS imagery, 1 meter resolution) using 

information based on structural, contextual and spectral specifications. Initially a 

differential morphological profile (DMP) operation was carried out to supply image 

structural information. Information related to the building’s assumed size and position is 

inferred from the DMP. The DMP is also used to detect the building’s shadow, which is 

consequently used to provide appropriate data about the proposed size and position of the 

related building. At the final segmentation stage, building rectangles used as a seed are 

evaluated and expanded. The third stage is extracting the building that have a high 

intensity value based on spectral information. Eventually, the buildings extracted from 

the three operations are combined to represent the final result. The result of the 

implemented algorithm gave a 72.7% CM rate over a complex urban area, with a BDP of 

58.8%. 

 

Güdücü (2008) utilized both shadow and multispectral information for detecting 

buildings from the IKONOS satellite imagery, by exploiting these to detect buildings in 

dense urban regions. The assumption that was the basis of the algorithm is that building 

boundaries consist of rectilinear sides. Therefore, first, the building edges were detected 

using edge detection algorithms. Then, the lines were extracted using the Hough 

Transform algorithm and the edges that fell in a common straight line were selected as a 

building boundary. Shadows and HSV (hue, saturation, value) colour was also an aid. 

The validation has been based on a BDP and a Branch Factor (BF). Branch Factor is 

obtained from: BF=FP/ (TP+FP) %. The algorithm has been applied in nine different 

areas that contained different types of buildings and the results, based on number of 
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extracted building and not on calculated area have varied from 82%-100% with respect 

to the BDP and 0%-8.6% with respect to the Branch Factor (BF). 

 

The research so far outlined in this section has specifically used satellite imagery only as 

data input, however some researchers have implemented algorithms that were applied on 

both satellite and aerial imagery. Satellite and aerial images have been integrated for the 

purpose of building extraction by Saeedi and Zwick (2008) who described an approach 

to automatically extracting building edges using either aerial or satellite images. Other 

research has been implemented using the Level Set function based on the active contour 

model, which detects buildings from mono-view aerial or satellite imagery (Karantzalos 

et al., 2007), using prior shapes. 

 

The findings of this section are summarised in the Table  2-2, below. 

Table  2-2 List of the summarised Building Extraction rate (BE) based on the data source.  

REFERENCE DATA SOURCE BE  

Kim et al. (2005) IKONOS 83% 

Theng (2006) QUICKBIRD 100% 

Liu et al. (2008) - RBBE QUICKBIRD 75% 

Shaker et al., (2011) IKONOS 83% 

San &Turker (2010) IKONOS 66 - 79% 

Aytekin et al. (2009) QUICKBIRD 84% 

Dahiya et al. (2013) IKONOS 80% 

Dahiya et al. (2012) IKONOS 71-85% 

Krauss et al. (2007). IKONOS 100% 

Mayunga et al., (2007) QUICKBIRD 91% 

Sohn&Dowman (2001) IKONOS 73% 

Lari & Ebadi (2007) IKONOS 81% 

Jin and Davis (2005) IKONOS 72% 

Güdücü (2008) IKONOS 82-100% 

Saeedi & Zwick (2008) QUICKBIRD 80-100% 

Karantzalos et al. (2007) IKONOS NA 

 

2.4.2 Building Extraction from Aerial Imagery 

Some of the research has used exclusively aerial imagery. For instance Ahmadi et al. 

(2010) implemented an algorithm which is based on an active contour model for 

detecting and extracting building boundaries automatically using only aerial imagery (i.e. 
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no other data such as a DTM). The extraction method was able to overcome deficiencies 

that existed in classical active contouring for building extraction, which primarily arose 

because of sensitivity to the point of initialization and image noise. The results were 

acceptable, the validation has been conducted based on the true buildings in the region. 

The completeness factor (CM) was about 80%. Among 347 buildings, only 281 could be 

detected, while the others failed to be extracted due to the low radiometric discrimination 

between the building roof and the object background. 96% among the 281 building were 

extracted correctly (i.e. the extracted buildings were considered sufficiently identical to 

the real building shape).  

 

2.4.3 Building Extraction from UAVs 

In the last few years, data acquisition from UAV/UAS (Unmanned Aerial Vehicle or 

Unmanned Aerial System) has increased tremendously since it has been identified as low 

cost and high resolution. It has become an important source of data for rural areas but 

only sometimes (due to insurance restrictions), in urban areas. UAV images can reach a 

very high resolution, for example 1cm/pixel if flown at low altitude (Turner et al., 2012). 

Some research has addressed using images acquired from UAVs for building extraction 

purposes. Jizhou et al. (2004) utilized single UAV scenes for 3D model construction 

including building texture, and implemented qualitative validation of the algorithm 

based on the constructed models, Figure  2.12(a). Also other research carried out by Küng 

et al., (2011) created prismatic building shapes based on the building footprint and a 

constant height (e.g. LoD1, see section  7.7) from processing UAV stereo images, so it 

can be used for more detailed building construction incorporating, e.g., Google Sketchup 

software to create a more detailed building (i.e. LoD2), Figure  2.12(b). 

 

 
(a) 

 
(b) 

Figure  2.12 Building construction implementing UAV images (a) 3D building model based 
on single UAV image (Jizhou et al., 2004) (b) LoD2 building using Google Sketchup 
software based on model created from UAV images. 
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2.4.4 Building Extraction from LiDAR 

For more than two decades Aerial LiDAR has been very important to researchers, and 

has been implemented to extract buildings with very high accuracy, since the point cloud 

provided by LiDAR is very dense and accurate, and so it offered great potential 

regarding building footprints (Meng et al., 2007). 

 

Wang et al. (2006) introduced a footprint extraction algorithm based on Bayesian 

techniques for the automatic construction of a building footprint from pre-classified 

LiDAR data. The algorithm consists of three steps. The first step finds a point on the 

approximate boundary. The second step establishes the approximate building footprint 

based on the found boundary point. The third step uses a Bayesian maximum a posteriori 

(MAP) estimation method, to find the most probable building footprint. A Bayesian 

method is used to enhance the footprint by integrating the goodness of fit to the data with 

a priori footprint shapes, see Figure  2.13, using the most probable angles for buildings, 

such as 180o for straight lines, and 90o for corners. A problem remains in that trees are 

often extracted as buildings in the areas when the buildings overhung with trees.  

 

Figure  2.13 Recommended algorithm by Wang et al.(2006) to extract buildings from 
LiDAR data using the Bayesian approach. 

 

Shen et al. (2011) developed an algorithm called ‘Alpha Shape’ to extract building 

boundaries from LiDAR Data. Their algorithm had the ability successfully to delineate 

the ‘inner’ and ‘outer’ boundaries of ‘welled’ buildings from point cloud data with 
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convex and concave polygon shapes. In addition to that, it was possible to retain the fine 

features of buildings, adaptively, and to distinguish the footprints of non-buildings. 

Alpha shapes can be used to delineate a building’s shape using a randomly distributed set 

of data points and is characterised by high processing speeds. Moreover, it is possible to 

extract different shapes and sizes, selectively. Furthermore, the alpha shapes algorithm 

can remove noise and some trees by deciding the polygon’s size and number of sides, and 

the number of points used to delineate the boundary. A downside of this work is that 

small irregular buildings were not successfully extracted. 

 

Haithcoat et al. (2001) conducted research into automatic building footprint extraction 

and 3D reconstruction from LiDAR data. Their algorithm is based on detecting the 

objects that are higher than the ground surface, and general knowledge of building 

geometric characteristics, such as size, height and shape. The building extraction 

algorithm is based on the notion that buildings have geometric descriptions such as size, 

height and shape, for example, a height threshold will remove entities with lower height 

such as cars and grass; in addition, roads and empty land will be identified and removed 

also. By using size thresholds, it is possible to remove smaller entities such as single 

trees. Regarding the other objects such as vegetation areas and vegetation mixed with 

buildings, it is not possible to use height or size criteria to remove them. In this case, 

differential geometric criteria, based on using differential calculus or shape descriptors 

through derivatives, are used to distinguish between the objects. This is based on the 

roughness of measured surfaces, because buildings are polyhedrons consisting of flat 

planes while trees are irregularly shaped, lacking plane surfaces. Buildings with complex 

shapes were not always extracted correctly. 

 

In addition to the above research, LiDAR has become an interesting and active research 

field for different researchers, briefly summarised here. Awrangjeb et al. (2013) 

extracted 3D building roofs automatically by integrating LiDAR data and multispectral 

imagery. Elhifnawy et al. (2011) utilized LiDAR data to extract the buildings by 

implementing a wavelet method. Kabolizade et al. (2012) used an algorithm composed 

of three models: firstly extracting the initial building boundary; secondly, improving the 

accuracy of the extracted boundary; and finally, the contour of the initial building was 

generalized and the building extracted, the data used in this research being limited to 

LiDAR. Sampath and Shan (2007) developed a set of rules to trace and optimize building 
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boundaries from LiDAR data. It has been possible to use LiDAR data to make a 

successful 3D city model for an area, for instance Dorninger and Pfeifer (2008) were able 

to construct 3D building accurately even where the roof of the building is sloped, which 

was successfully used in 3D city modelling see Figure  2.14. 

  
Figure  2.14 Automatically extracted buildings from LiDAR data as proposed by 
Dorninger and Pfeifer (2008). 
 

2.4.5 Building Extraction from DSMs 

Brunn and Weidner (1997) conducted early research into using DSM and input data for 

identifying and extracting buildings but their developments quickly ran up against the 

need for significant interactivity and trees and buildings were difficult to distinguish. 

 

More recently, a DSM has also been utilized in an attempt to extract building footprints, 

Lafarge et al. (2008) used DSMs in order to extract buildings for 3D city modelling, see 

Figure  2.15. Parameters required are chosen by trial and error; each DSM requiring 

different ones. It is hoped that in the future, the estimation of these parameters will be a 

fully-automatic process.  

 
Figure  2.15 Exploiting DSM for 3D city modelling based on object approach (Lafarge et 
al., 2008). 
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Other research has been conducted by Tournaire et al. (2010) in order to extract building 

footprints from a DSM using an ‘energy’ model; the method has utilized ‘energy’ by 

minimizing it. The total ‘energy’ is the weighted sum of the ‘internal energy’ and the 

‘external energy’: the ‘internal energy’ quantifies the objects’ collection and the ‘external 

energy’ is used to represent the suitability of the object with respect to the DTM. The 

input data was an urban DSM with resolution around 1m. The objective of the research 

was to use a group of rectangular building footprints to obtain authentic object 

configuration. This process has been achieved through using stochastic geometry in the 

operation. The process has been achieved through designing an energy function that has 

been divided into two terms. The first term is based on assessing the object’s fit to the 

available data, while the second term is based on a priori information such as 

overlapping parts or aligned objects in order to penalize or support a particular footprint 

composition. The Reversible Jump Monte Carlo Markov Chain (RJMCMC) joint with a 

simulated annealing algorithm has been used in the minimization process to find the 

optimal object composition. The validation has shown that the CM is 86.1% and BDP is 

63.8%, this percentage could be increased by excluding the trees from the data using an 

NDVI mask in order to reach 83.8% and 73.3% for the CM and BDP respectively.  

 

 
Figure  2.16 Building footprint extraction fr om satellite DSM using ‘energy’ modelling 
(Tournaire et al., 2010). 
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2.4.6 Building Extraction from Satellite and LiDAR 

In addition to using satellite images as the only source for building extraction, many 

researchers used them in synthesis with other sources of data in order to get an optimal 

result for the building extraction. 

 

LiDAR data with satellite imagery is a good example. Sohn and Dowman (2007) 

implemented an algorithm for automatically extracting buildings for the purpose of 3D 

city modelling. Their approach is based on using LiDAR data to identify building 

location with the support of NDVI index from multispectral bands of IKONOS. The 

building location that has been identified as the initial location has been validated using 

the edges obtained from the IKONOS satellite imagery. The building extraction rate for 

this project was ~94%, but building shapes were considered poor. 

 

2.4.7 Building Extraction from Satellite and Maps 

Another study for 3D building modelling, incorporating heights from processing the 

Ikonos satellite imagery and the building boundary from 2D planimetric maps, has been 

carried out by Tack et al. (2012). First, the location of the boundary has been identified 

using the cadastre map that is later matched to the refined DSM for the height extraction. 

The remaining DSM, after extracting each building boundary from it, has been used for 

constructing the DTM to represent the bare ground surface, which has been processed 

further to smooth it and remove the artefacts such as cars, local relief and vegetation. 

Since the building roofs were hipped (i.e. pitched with four slopes and a roof ridge), one 

elevation has been assigned to the building that is the maximum height. The results, 

which are seen in Figure  2.17, show that the algorithm has been successfully used for the 

modelling the city. Furthermore, the quantitative validation has shown that the accuracy 

of the method used with respect to the height for zone1 is 3.57m (which included houses 

and historical buildings covering an area 5.8km2 ), and for zone2 is 3.62m (which 

included industrial buildings covering an area 9.4km2). It seems the authors were slightly 

disappointed in these results, but expect that as DSMs get more and more dense, or 

converge with data clouds, the methodology developed will better support building 

extraction from DSMs. 
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Figure  2.17 Urban 3D modelling using 3D satellite images’ data and maps (Tack et al., 
2012). 
 

2.4.8 Building Extraction from LiDAR and Aerial Ima gery 

Some of the research has exploited different sources for data in order to extract buildings. 

Awrangjeb et al. (2013) utilized Orthorectified satellite imagery based on existing DTMs 

in addition to LiDAR for creating 3D models automatically, based on detecting the roofs 

of the building. The approach was based on using the building edges obtained from 

orthoimagery as a boundary to define the region of the LiDAR points of the roof. For the 

edge generation using Canny edge detection and entropy edge detection, from 

orthoimagery, the corners are detected also using the fast corner detector algorithm. The 

group of the points that is bounded by the extracted edge are expanded iteratively to 

construct the whole roof surface Figure  2.18. Some of the surfaces that represent the top 

of the trees have been removed, based on the characteristics of a geometric plane such as 

the size and the absence of spikes. For the validation, two different methods have been 

used: object based and pixel based, and for each of these two indices have been 

implemented, namely, detection rate or completeness (CM) (where CM=TP/ (TP+FN) 

and FP. For the object base the CM and FP were more than 98% while with respect to the 

pixel based approach the CM was 91% while FP was 95%.  
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Many researchers have focused on using LiDAR and aerial imagery since the first gives 

the best accuracy and the second can be used for mapping texture. These two sources are 

considered as the most important two sources for city modelling (Kokkas, 2008; Li et al., 

2013a; Li et al., 2013c; Mao et al., 2009; Wang et al., 2006). 

 

2.4.9 Building Extraction from DSM and Aerial Imagery 

Kim and Nevatia (2004) conducted a study to find and describe complex buildings (with 

respect to their shape and roofs) by employing multiple, overlapping images of the site. 

They used the DSM as optional auxiliary data to find the location of the building in order 

to reduce the time for its complete matching; it was possible to locate the building 

without using the DSM, but it took longer. Therefore the DSM used need not be accurate 

(i.e. it is not necessary for the detailed shape of the building with it is edges to be 

identified), a rough DSM, showing at least the presence of buildings, is acceptable. In 

addition they used numerous photos for the area in the extraction process. The operations 

started by extracting line features from the images, then the lines were associated with 

junctions or parallel relationships. After that, 3D features were generated from groups of 

matched image features to generate rooftops. Expandable Bayesian networks (EBN) are 

used to combine evidence from numerous images. The EBN method is specified, and is 

based on the structure of the input data at runtime, to instantiate the structure of the 

evidence (Kim and Nevatia, 2003)). Finally, overlap and rooftop analysis is completed to 

create the final building models, which, even on complicated buildings has been 

 
Figure  2.18 Perspective view for the constructed model from LiDAR covered with texture 
from aerial imagery (Kokkas, 2008). 
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successfully applied (Kim and Nevatia, 2004), although flat roofed buildings do present 

problems. 

 

As well, Baltsavias et al. (1995) conducted research in order to use DSM and aerial 

image for building extraction. The algorithm follows the sequences described; first a 

DSM has been constructed from the images, and this is later used to specify a building’s 

rudimentary location. Consequently, this provides information for matching building 

location with the extracted building feature from the image. These data provide 

information to make a rough assumption about buildings, which can then be exploited to 

assemble both features in 2D and 3D and construct the 3D roof. It is clear that these 

algorithms require a detailed DSM. However, the automatic extraction quality is 

dependent on the amount of human intervention.  

 

This review of building footprint extraction and 3D modelling algorithms processing 

different sources such as LiDAR, aerial or UAV photography shows adequate results but 

they presented cost challenges or restrictions to commission. The literature shows that 

there is still no robust method for building footprint extraction or 3D construction using 

solely data based on satellite images. 

 

2.5 Summary 

This chapter has reviewed the literature related to the merging of DSMs and building 

footprint extraction and associated problems. Since the DSM has become an important 

product that can be used in different engineering fields, it is clear that there is an 

increasing amount of research regarding merging DSMs using different strategies. It can 

be inferred that none of the researchers have investigated Bayesian approaches for the 

merging, although the literature indicates that Bayesian approaches have a positive effect 

in minimizing uncertainty; merging data sets is inherently uncertain thus approaches, 

such as Bayesian approaches, which minimize uncertainty are worthy of investigation.  

 

Regarding building footprint extraction and 3D city modelling, it can be noticed from the 

literature that the buildings extracted from satellite imagery usually included errors 

which may be too large (such as edge irregularities) for some 3D modelling applications. 

However, the other sources of data, excluding Satellite imagery, have been 

predominately successful for building extraction and 3D modelling. For that reason the 
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gap that existed due to irregular building extraction will be treated, in this work, by 

amending the algorithms that have been used where they were successfully applied for 

extracting building footprint such as that of Wang et al.( 2006). 
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Chapter 3 Digital Surface Model (DSM) 

A DSM is the elevation representation of both the terrain and the objects close to it (such 

as buildings, pylons and trees) represented digitally (numerically). The DSM concept 

emerged from the 1950’s innovation by Miller and Laflamme of the Digital Terrain 

Model (Miller and Laflamme,1958) cited via (Li et al., 2005)), which they proposed be 

implemented in civil engineering and to monitor the surface of the Earth. But, Miller and 

Laflamme (Doyle, 1978) used the term DTM to represent the ground surface using 

horizontal geospatial coordinates X,Y and vertical characteristics represented by the 

height, Z.  

 

Doyle (1978) demonstrated that more characteristics than only height can be used in a 

DTM, such as soil texture, the value of the land, land use and others, but height has been 

most widely implemented. Li et al., (2005) support the view that DTMs were in use 

earlier, suggesting that in ancient times in order to manifest the real 3D surface of the 

terrain, semi-symbolic and semi-pictorial depictions were used.  

 

It is obvious from the literature that the term to be used was not constrained to DTM; 

different terms evolved, in different countries, such as Digital Elevation Model (DEM), 

Digital Height Model (DHM), Digital Ground Model (DGM) and Digital Terrain 

Elevation Model (DTEM). All these names have been introduced to represent the spatial 

ground elevation (Petrie and Kennie, 1990). For instance, DEM is used in the USA, 

DHM in Germany, DGM in the UK, and DTED was invented and implemented in the 

USA by USGS and DMA (Defence Mapping Agency). There is some contradiction in the 

use of the term DEM: according to some references (Li et al., 2005) it records the 

greatest height in the measured area such as the buildings’ roof and top of the tree, while 

for others (Peckham and Jordan, 2007) it is an alternative to DTM. A DSM can now be 

clearly distinguished from other products because it includes the objects above the 

ground such as houses, trees, poles, etc. as shown in Figure  3.1. 
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Figure  3.1 The comparison between DSM and DTM/DEM/DGM/DHM/DTEM. 
 

This chapter will outline the sources of DSMs: the types of satellite images used; 

techniques used to acquire a DSM; processing the implemented data in the research; and 

measuring the uncertainty in the DSM. 

 

3.1 DSM Format  

The DSM may be said to be represented in an image format (i.e. graphically) or by a 

mathematical model (see Figure  3.2). However, numerous data structures have been 

implemented to store the data. The most common structures, and both depend on the 

point model to form the representation, are: rectangular grid representing the DSM in 

matrix form; or, as a TIN (Triangular Irregular Network) structure (Li et al., 2005). From 

these two methods, the grid data structure is considered the most common. The 

advantage of this structure is that the elevation can be allocated to a row or column. 

However, the advantage of the TIN structure, in which data are recorded as a triangular 

network, by connecting the points (of known X, Y and Z) by lines to form triangles, is 

that it can provide better information for an area that is multifaceted.  

  

DSM 

DTM/DEM/DGM
/DHM/DTEM  
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Figure  3.2 Digital terrain model format categories (Li et al., 2005). 
 

Agouris et al. (2004) argue that the TIN method can be used to represent the ground more 

efficiently and realistically than the grid approach, because it provides elevation for 

critical points, as in the case of hilltops, and breaklines at elevation discontinuities, as in 

the case of building rooflines, valleys or ridges. In the grid method, it is difficult to 

sample the highest elevations as they rarely fall on the grid point, unless they coincide 

with the sample distance. The specific data structures that are used in this research’s case 

studies are represented by a DSM with a grid spacing of 0.5m and 1.0 m. Although it is 

likely to be a more accurate model if the TIN is used, a grid is more convenient in data 

processing and it is assumed that the highest (and lowest) points are on the grid 

intersections. 

 

3.2 Techniques for DSM Creation 

Different systems can be used to acquire data for the DSMs. For instance a passive 

system, such as using aerial or satellite images records the reflected electromagnetic 

radiation from the object on the terrain surface or from the terrain surface itself, using 

sensors. Alternatively, an active system, such as LiDAR uses a device to transmit and 

receive the reflected electromagnetic waves of the object or terrain. LiDAR is suitable 

for areas of only small-to-medium size, due to its high cost. Images gathered from a 

passive system are suitable for all scales but are considered to have lower accuracy than 

LiDAR.  
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Technologies can be ranked by the accuracy of the data gathered which is subsequently 

reflected in the accuracy of the DSM produced. However, the accuracy of the produced 

DSM is also affected by external factors such as the project requirements and the 

allocated budget. 

 

3.2.1 Geodetic Survey 

A geodetic survey involves acquiring data from field measurements using traditional 

topographic survey instruments. Earlier, this method involved gridding the area and 

taking a measurement at each grid intersection point using a level or theodolite. The 

accuracy of the produced DSM, in this method, is considered to be very high, since it 

depends on precise instruments. Recently, accuracy and survey simplicity have been 

increased due to the application of computerized total stations for measuring the ground 

points and other objects. Moreover, the points can be referenced to the coordinate 

reference system using a GNSS station. The use of geodetic survey DSMs is limited to 

small projects or to evaluating other types of DSM, because of cost and time constraints. 

It is also possible to use RTK-GNSS to get direct measurements for the area of interest to 

a very high accuracy; consequently, this is currently considered the very best among all 

methods with respect to the accuracy. Furthermore, it is possible to use RTK GNSS 

points as a reference for evaluating DSMs produced from LiDAR sources (Chang et al., 

2004). 

 

3.2.2 LiDAR Survey 

LiDAR (light detection and ranging), is considered to be cost effective with height 

accuracy RMSE values reaching at least 0.12m (Bilskie and Hagen, 2013) and even to 

better accuracy when the density of the laser pulses are increased either due to lower 

flight altitude, increasing the flight overlap over the specific area, decreasing aircraft 

speed or by increasing the pulse frequency (Jakubowski et al., 2013). The resulting DSM 

is considered to be the most accurate for topographical data acquisition (Polat and Uysal, 

2015). This method is categorized as an active method; it depends on transmitting and 

receiving signals, and therefore it can be used at nighttime also. The acquisition of 

LiDAR data includes the incorporation of three different technologies (ASPRS, 2015): a 

laser scanning system; an inertial motion unit, IMU, (also known as an inertial mapping 

system - IMS, inertial mapping unit - IMU or inertial navigation system - INS); and, 

GNSS receivers, all of which are carried on an aircraft, see Figure  3.3. 
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The principle of measuring the position of a point using this technique is based on 

measuring the required time for the laser pulse, emitted from the sensor, to hit the object 

and return. The measured time for the laser pulse to travel, can be used to determine the 

distance. Meanwhile the angle that the laser is emitted can also be recorded. From these 

data, and using the position of the sensor, from the onboard IMU and GNSS, the 3D 

coordinates of the reflecting object can be determined (Carter et al., 2012). 

 

The geolocation of the acquired LiDAR coordinates are calculated for the captured area, 

which is called a swath. LiDAR is considered suitable for large and small-scale projects, 

but the disadvantage is its high cost, and that it does not provide measurement 

specifically at the break lines, since it gives the coordinate of the transmitted laser point. 

In addition, it is affected by clouds (or their constituent water droplets) which reflect the 

pulses before they reach the ground surface. This technique can also be carried out from 

the ground using terrestrial laser scanning instruments, in order to construct a DSM for 

the area. 

 

Figure  3.3 The principle of acquiring the ground coordinates using LiDAR  system (ref: 
http://www.imagingnotes.com). 
 

3.2.3 Photogrammetry  

Photogrammetry yields quantitative and qualitative characteristics of specific objects 

from images. Its original use for mapping purposes was in 1849 (Wolf, 1983), and 

paralleled the introduction of photography, using elevated platforms or balloons, 

followed later by aerial photographs. By applying stereo-photogrammetric techniques, it 

is possible to produce 3D measurements. Different techniques and methods have been 
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used to generate the 3D data from the photography (or other imagery) starting from 

parallax bars and mirror stereoscopes through optical mechanical stereoplotters to digital 

photogrammetric workstations which exploit computerized algorithms (Leica 

Geosystems, 2013). In the 1970s, the introduction of civilian use satellite imagery, led to 

massive coverage. Miscellaneous satellite images can produce overlapping images for 

areas of interest, thus 3D measurements are generated. Images from such as SPOT, 

Ikonos, Geoeye, WorldView-1, -2 and -3, Pleiades, and others, have been continually 

improving.  

 

Photogrammetric techniques, using aerial or space images, are more suitable than direct 

measurements for low or limited access areas, such as forest or politically unstable areas 

such as war zones, but the main shortcoming is that these techniques are affected by 

cloud and shadow. 

 

3.2.4 InSAR  

Interferometric Synthetic Aperture Radar (InSAR) is considered the most widely used 

technique to generate terrain models, particularly because of its use over large areas 

(Toutin and Gray, 2000; Toutin, 2000). The final product is partly dependent on the radar 

wavelength. Longer wavelengths (e.g. L- and P-bands) can produce DTMs whereas the 

X- and C-bands are more likely to produce DSMs (Papasaika-Hanusch, 2012). The 

active nature of a spaceborne radar system means that SAR images can be acquired at 

nighttime and are not restricted by cloud cover. The most recent generation of SAR 

satellites can now acquire SAR images with up to 1m resolution, such as those in the 

TerraSAR-X ‘Spotlight’ imaging mode. The Shuttle Radar Topographic Mission 

(SRTM) was an InSAR campaign, which is still a widely used source for global elevation 

data of high quality. The principle of obtaining 3D measurement from InSAR is based on 

recording signals for an area through two different passes or one pass using two different 

sensors separated by a baseline Figure  3.4(a). Data can be acquired from one pass as 

shown in the Figure  3.4(b) implementing the equations below (Abdelfattah and Nicolas, 

2002): 

 
 

 3-1 

 

   3-2 



 Chapter 3 
 

61 
 

 

InSAR products are almost global, following the SRTM campaign, which was completed 

within just 11 days in the year 2000. Currently these data are available at no cost and can 

be downloaded for most parts of the earth with resolution up to 30 m and an accuracy of 

10-29m depending on the location (Li et al., 2013b). The TerraSAR-X satellite was 

launched in 2007, and later joined by its sister satellite, TanDEM-X, in 2010. The recent 

SAR accuracy has been raised to better than 10 m and 2 m regarding absolute and 

relative accuracy respectively (Dowman et al., 2012).  

 

Limitations of InSAR can include geometrical distortions in mountainous terrain, as well 

as problems relating to path delays in the radar returns due to atmospheric water vapour. 

Different land cover can also determine the success of InSAR-generated models, with 

bare rock often generating better results compared to the less favourable conditions of 

dense vegetation. 

 
 
 

 
(a) 

 
(b) 

Figure  3.4 InSAR technique for DSM generation: (a) SRTM showing the used waves in 
DSM Generation http://www2.jpl.nasa.gov/srtm/instrumentinterferometry.html; (b) the 
schematic diagram for a single spaceborne pass (SRTM). H is the sensor altitude, B is the 
baseline length, D is the slant range and δD is the slant range difference, θ is the look angle 
and z is the topographical point height (Abdelfattah and Nicolas, 2002) 

 
 

3.2.5 Digitizing Topographic Maps 

Contour maps are the last source considered for a DTM. Contour maps are the most 

recognizable product representing the terrain, used since at least the 18th century (Li et 

al., 2005). The data are acquired by digitizing the contour lines from the map. This 

method is time consuming and the accuracy can be low in terms of repeating or missing 

information from the map (Doyle, 1978).  
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This source is limited to DTM production and does not include the buildings’ cover, it 

can be modified to provide DSM production if the buildings’ heights have been recorded 

also, at some stage. This method can be applied using large-scale topographic maps. 

  

3.3 Study area and Acquired Images Specification 

Since the main aim of this study is merging DSMs and the feature extraction that is 

related to buildings, the acquired images were of an urban area with different 

architectural styles of building. The area that has been selected is in Glasgow’s 

‘West-end’. Further, the selected area was well within the city and it offered easy access 

for the processing and validation stages. It was originally specified that the area of 

interest be an urban area, include different types of structures such as small and large 

buildings, of simple and complex shape, and also contain some open areas such as roads, 

green areas and trees. 

 

Two sources of satellite images have been acquired with the specifications as shown in 

the Table  3-1, the first source was from the Worldview-1 (WV-1) sensor from 

DigitalGlobe organization, dated 24May, 2012 covering 100km2, while the other was 

from the Pleiades sensor from Astrium Geo-information services, dated 09July, 2013, 

covering 25km2. However, for the purpose of the study a common part has been selected 

for the DSM merging, building footprint extraction and 3D modelling. The study area 

that has been selected for DSM generation and orthoimage production was limited to an 

area of 10.25km2. The coordinates of the area bounded by the Pleiades and WorldView-1 

images are (417809 mE, 6191335 mN), (420528 mE, 6195105 mN) referenced to the 

UTM-Zone30 ‘North’. 

 

For the purpose of minimizing processing time, the area selected, for both examining 

merging and building footprint extraction, is a representative sample of the whole area. 

Although somewhat suburban, the selected area has similar characteristics to many 

others in the UK and beyond, in terms of the range of building (multi-storey, detached, 

semi-detached, terraced and commercial or institutional) and land cover types (trees, 

open grass, sports areas, gardens, car parks, roads). Therefore, the algorithms developed 

in this work can be applied in the future in any other area, with different extents. 
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Figure  3.5 The acquired satellite images for Glasgow WV-1 (background) and Pleiades 
satellite imagery (foreground), with the study area boundary superimposed in red. 
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Table  3-1 Characteristics of the satellite imageries used in the research 

Image ID Acquisition 
Date 

Max off 
Nadir(deg.) 

Sun 
Elevation(deg.) 

Image Type Band 
Pan/MS 

Res. GSD 
(m) 

WV-1 image1 24/05/2012 
11:42:49.42 

17.33 54.59 Panchromatic 1/- 0.5 

WV-1 image2 24/05/2012 
11:43:28.78 

21.01 54.63 Panchromatic 1/- 0.5 

Pleiades 
image1 

09/07/2013 
11:35:44.1 

11.91 55.46 Pansharpened 1/4 0.5 

Pleiades 
image2 

09/07/2013 
11:36:25.8 

14.03 55.51 Pansharpened 1/4 0.5 

 

 

3.3.1 Satellite Image Acquiring Geometry  

The data that have been employed in this research were sourced from satellite images. 

Two sources of satellite images have been used: WorldView-1 and Pleiades. Digital 

images can be classified into two main types. The first is static, the image that is acquired 

from aerial photography (either analogue or digital) which is also called frame imagery, 

and captures the whole scene at once. The other is dynamic, which is classified into three 

types (Mikhail et al., 2001). The first of these is the whisk-broom or point sensor type 

that acquires the image pixel by pixel, a solo pixel will be acquired continuously at a 

specific time, with the operational geometry working across the track pixel by pixel to 

the end of the track, then it starts again. The part of the sensor that is used to capture the 

image is called a framlet (Figure  3. (a)). This technique is used to acquire multispectral 

scans such as Landsat-1 and 3 satellite sensors; the technique is also followed in airborne 

LiDAR. 

 

Another type of sensor is called a push-broom sensor. The geometry of the push-broom is 

shown in Figure  3.(b). It consists of a group of sensors arranged as a strip, and sensing 

across the track on the ground. In this technique, a group of sensors moves along the 

track and continuously acquires images until it has covered the required scene. The 

push-broom line-sensor is similar to acquiring a frame image but is moving 

continuously.  
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A push broom image has a weak geometry, because each strip of the acquired image is 

independent from each other, although it is constructing the same scene, which, 

consequently, causes each strip to have it is own position and orientation. This 

inconvenience can be slightly reduced by using GNSS (Global Navigation satellite 

System) receivers or an INS (Inertial Navigation system). Some agencies such as 

MOMS-02, have tried to solve the situation by activating more than one sensor, for 

example triple sensors, this leads to the capture of each pixel from three different 

locations to create a rigorous geometry for the calculation of point positions (Mikhail et 

al., 2001). As a result, this will permit the correction of any one part of the image and not 

require the whole scene, which may be expensive. 

 

The last type uses a panoramic geometry Figure  3. (c). The sensor that is used is linear, 

but swings perpendicular to the along-track direction, which consequently causes it to 

image a larger area at the terminals of the swathe. Sometimes this imagery is specified to 

capture from horizon to horizon. This geometry was originally developed for 

reconnaissance purposes since it covers such a wide area (Mikhail et al., 2001).  

 

As already stated, and more details will be given in the next two sections, two pairs of 

satellite images were acquired – one panchromatic band pair from the WorldView-1 

satellite sensor of DigitalGlobe, and one Pansharpened pair (each made from four 

multispectral bands, i.e., three visible and one infra-red and one panchromatic band) 

from the Pleiades satellite sensor of Astrium, that cover a common area, with a set of 

auxiliary files that facilitated the processing job.  

 

(a) (b) (c) 

Figure  3.6 Types of satellite sensor image scanning explaining along track (a) whisk-broom 
acquisition principle, (b) using push-broom acquisition, (c) panoramic image acquisition. 
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3.3.2 WorldView-1Satellite Imagery 

The first satellite sensor used in this research was WordlView01, of Digital Globe. This 

sensor was an enhancement of Quickbird-2. This satellite was launched in 2007, 

providing panchromatic images only with a resolution GSD equal to 0.46cm at the nadir. 

It has an extremely high capability for image acquisition that reaches 750,000km2 per 

day, with a swath width of 17.6km. According to its US licence, the resolution for 

commercial use is limited to only 0.5m although the acquired resolution is better than 

that and reaching 0.46m at GSD at nadir (DigitalGlobe Inc., 2013). The image 

acquisition system is based on the push-broom principle that is 'a strip at a time'. 

 

According to DigitalGlobe Inc. (2013) there are five basic products of the WorldView-1 

imagery. All five of them are radiometrically and sensor distortion (i.e. geometrically) 

corrected by adjusting the pixels’ brightness values for errors due to the sensor used, 

solar radiation wavelength dependence and atmospheric consequences (Richards, 2013). 

The ephemeris data, internal calibration parameters and attitude measurements are 

employed to adjust the radiometric and sensor distortions in the imagery. The final 

products are as follows: 

 

• Basic (1B) imagery: suitable for complex photogrammetric operations and preferred 

by customers who have superior capabilities with respect to image processing. No 

map projections are implemented. 

 

• Basic (1B) Stereo Imagery: this type of product is suitable for organisations with 

considerable capability in image processing and powerful software; it is suitable for 

DSM and 3D feature extraction. This type is dedicated specifically for stereo 

imagery, the target area has been specified exactly and the data has been acquired on 

the same satellite orbit. 

  

• Standard (2A) imagery: this type of product is limited to projects that do not require 

high accuracy. It is projected based on a specific map projection and datum. It has 

also been normalized to the reference ellipsoid by applying a coarse DTM. In 

addition, the produced image is not Orthorectified since the amount of normalization 

is small. 
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• OrthoReady standard (2A) imagery: it has the same specification that is available in 

standard imagery (2A), but it has been projected into a constant elevation and not a 

reference ellipsoid, and is ready for orthorectification. The relief displacement is still 

present in the image. 

 

• OrthoReady (2A) Stereo Imagery: this type is exactly similar to the above product, 

the only difference is that the client is provided with the stereo-imagery to cover the 

Area Of Interest (AOI), and the data are thus ready for the orthorectification of a 

small area. The Basic Stereo imagery is thus more suitable a large sized area and 

needs more user expertise because it has not been orthorectified. 

 

With most imagery types, a set of support files has been provided to facilitate the further 

image processing. The type of acquired image for this research is OrthoReady (2A) 

stereo imagery, which is limited to one band image considered to be a panchromatic 

image, see Figure  3.5. 

 

3.3.3 Pleiades satellite imagery 

The other source of imagery is the Pleiades satellite; it is a more recent source than 

WorldView-1 since it was launched on 16 Dec., 2011 while the latter was launched on 18 

Sept., 2007. This constellation of satellites consists of twin satellites 1A and 1B. It was 

launched into orbit in 2011; the satellites (1A and 1B) are offset by 180o from each other 

on the same orbit. The altitude of the satellite is 694km and has the capability to cover 1 

million square kilometres per day, with a coverage swathe of 20km. Pleiades sensors 

have the ability to provide panchromatic and multispectral images with delivery 

resolutions of 0.5m and 2.0m, respectively. The original resolutions were 0.7m for the 

panchromatic and for the multispectral 2.8m. An algorithm, implemented by the Centre 

National d’Etudes Spatiales (CNES) resampled the products to the 0.5m and 2.0m 

(Astrium Services, 2012). The products are panchromatic, multispectral and 

Pansharpened imagery. The wavelengths are as follows: 

 

The panchromatic wavelength range is 0.47-0.83 μm.  

The multispectral wavelength ranges are:  

Blue: 0.43-0.55 μm,  

Green : 0.50-0.62 μm,  
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Red: 0.59-0.71 μm,  

Near Infrared:0.74-0.94 μm (Astrium Services, 2012).  

 

The images are acquired based on the principle of push-broom systems. The ephemeris, 

altitude measurements and internal calibration parameters have been used in 

radiometrically and sensor distortion corrections applied on all of the products. The 

products that Pleiades can deliver are, according to Astrium Services (2012), Primary 

and Standard Ortho, only: 

 

• Primary: this is the ‘raw’ satellite image, using ‘push-broom’ scanning 

technology. This product is ideal for advanced operations such as the 

orthorectification and DSM generation used in this study. This product has been 

delivered with RPC files and a Sensor model in order to guarantee fully 

automated operations. The primary product is supplied in the WGS84 geodetic 

coordinate reference system. 

 

• Standard Ortho: is the other product of the orthoimagery. It has been 

geo-referenced, and, in addition to that, relief displacement has been removed. It 

has been made ready for direct use in engineering and mapping projects. For the 

rectification, the worldwide reference 3D dataset Astrium is implemented, if 

available, otherwise SRTM has been used. The reference 3D dataset used is part 

of Astrium’s “Elevation 20” suite (Astrium Services, 2012). 

 

3.3.4 RPC file  

The Rational Polynomial Coefficient (RPC) file contains information about the interior 

and exterior orientations. It is very useful because it minimizes the time for image 

processing due to not having to embark on the interior and exterior orientation processes. 

All the required information is saved in the files that are provided with the image. The 

only limitation is that the specific sensor must be supported by the software otherwise it 

will not be possible to process the satellite image. 

 

An RPC file was defined first by IKONOS in 1999 (Xiong and Zhang, 2009). Satellite 

images, that were not rectified are usually accompanied by RPC files which include 

normalization parameters and coefficients which can reach to a total of 80 coefficients 
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(Dowman et al., 2012). It is a model that stores the geometry of the camera at the time of 

acquiring the image. This file represents the analytical model for linking the image space 

(X, Y), which is represented by rows and columns, to the ground space (E, N, H) which is 

represented by latitude, longitude and elevation. The geometric processing and 

orthorectification production will be facilitated by using the RPC file, implementing only 

the DSM file for providing the elevation. In addition to that, the DSM can be obtained 

from the primary images using the RPC file only without using GCPs for the area; 

however, the GCPs are recommended in order to increase the accuracy of the results. 

 

The RPC file can be used as an alternative to provide information from the source such as 

camera geometry, position and orientation. The RPC file is calculated based on 

calculating the recognized interior and exterior sensor orientation using the global 

navigation system (i.e. GNSS) and attitude knowledge from star sensor and gyros, with 

the system calibration. Thus around the scene region detailed layers with object points 

will be generated in a cube model, see Figure  3.7. Thus for any coordinate on the ground 

in the cube of points the image coordinates are determined by implementing available 

data from the system calibration as well as straight sensor orientation. A considerable 

number, properly spread around the scene region, of 3D objects and their corresponding 

image coordinates will be used to adjust the RPC (Dowman et al., 2012).  

 

Figure  3.7 An illustration about determining the RPC using cube, shown object coordinate 
and image coordinate (Dowman et al., 2012). 
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3.4 Ground Control Points 

For processing and validation purposes it was necessary to gather some control points in 

the study area, to be used as ground control point for the triangulation or as checkpoints 

for the quality assessment. For that purpose Leica Geo-system GNSS 1200 has been used 

to measure points on the ground as illustrated in Figure  3.8.  

. 

 
 
 
 
 
 
 
 
 

    GCPs          
used in 

processing the 
imagery 

 
    Checkpoints 

used in  
quality 

assessment 

Figure  3.8 Numbered and measured Ground Control Points (GCPs) and Checkpoints 
(CPs) over the study area, which are used as control points and quality assessment points, 
respectively.  
 

In total seventy-three (73) points were measured, see Figure  3.9. Among these 12 points 

were used in the processing of the satellite image at the triangulation stage, as listed in 

the Table  3-2, thirty-one (31) were used to determine RMSE for quality assessment for the 

subsequent weighting of the DSMs prior to merging and the remaining thirty (30) were 

used as checkpoints for evaluation (also referred to as validation) of the final merged 

result. The points were assigned Universal Transverse Mercator (UTM) zone 30N 
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Eastings and Northings coordinates and their heights referenced to the WGS84 ellipsoid. 

The reason for selecting this international coordinate reference system and not that of the 

Ordnance Survey Great Britain (OSGB) was to use the same coordinate system as the 

satellite images data files (i.e. RPC). Two types of points were measured at the site, 

namely Static GNSS and RTK (Real Time Kinematic) GNSS points. It had been the 

intention to use the Static GNSS approach for gathering GCPs for the satellite image 

registration using SOCET GXP, but a small evaluation was carried out at three different 

locations, in order to see the difference between the two approaches. The result of the 

evaluation showed that there is little difference between static GNSS observation for 15 

minutes and an RTK GNSS observation for 1 minute, as shown in Table  3-3. In addition 

to the that test, another test was carried out on the University of Glasgow campus, also to 

see the differences between: long time static observation of around 7 hours; fifteen 

minute static observation; and, RTK GNSS observation. The results are as shown in 

Table  3-4. 

 

Table  3-2 List of the GCPs used in the triangulation of satellite imagery 

pt. E.(m) N.(m) 
GNSS 

Hgt.(m) 
Description 

0 417879.837 6193054.722 71.535 
Corner at edge of Walkway in 

public park 
1 417932.173 6194048.350 77.445 White road mark in car park 
2 418144.800 6194961.668 94.350 White mark on the walkway 
3 418378.985 6191933.824 59.765 White mark on the road 

4 418512.838 6194183.439 107.536 
White mark on the school’s 

car park 
5 418688.401 6195050.306 85.975 White mark on the road 

6 419204.354 6194352.670 91.041 
Corner at edge of walkway in 

public park 
7 419407.195 6192741.306 101.148 White mark in the car park 
8 420103.461 6191652.802 73.918 White mark in the car park 

9 420296.281 6193946.721 129.709 
Corner at edge of the grass in 

playground in the park 
10 420519.729 6192905.267 78.478 White mark in the car park 

11 420521.106 6191571.282 75.009 
White mark of the bus stop on 

the road 
 

The points that are used in the triangulation, quality measurement and validation were 

measured in two consecutive dates, 14 and 15 November, 2012. These points were 

measured after the WV-1 satellite imagery was acquired. The total number of points was 

87. Regarding the Pleiades imagery, the same point which were measured for the WV-1 

have been used. Among the points, only 73 were useful while the rest were difficult to 
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identify because they depended on road markings which had disappeared with time since 

the Pleiades was acquired eight months later, which was on 9 July, 2013. All these point 

were measured on a flat surface and far from buildings.
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Table  3-3 Comparison of Static and RTK measurement using different observation durations and at three different points. At the mid time of the field work for 
three different locations 

Point ID 
GNSS 

surveying 
technique. 

Date and 
duration 

Easting 
(m) 

Northing 
(m) 

Ellip. 
Height 

(m) 

Ortho. 
Height 

(m) 

Geoid Sep 
(m) 

σ-East. 
(m) 

σ-North. 
(m) 

σ-Height 
(m) 

Posn+Hgt. Qlty 
(m) 

Point_2 
53B Static 

15min 
15/11/2012 
11:29:54 

257501.8897 665756.1575 73.2693 19.1011 54.1682 0.0002 0.0002 0.001 0.0011 

Point_2 
53b RTK 

1Min 
15/11/2012 
11:51:02 

257501.8859 665756.1599 73.2603 19.0921 54.1682 0.0028 0.0041 0.0072 0.0087 

  
Diff. 0.0038 -0.0024 0.009 0.009 

     
            

Point_4 
12A Static 

15mins 
15/11/2012 
12:32:04 

255900.5349 666047.5545 59.7648 5.5720 54.1928 0.0001 0.0002 0.0009 0.001 

Point_4 
12a RTK 

1min 
15/11/2012 
12:58:27 

255900.5396 666047.5551 59.7679 5.5751 54.1928 0.0028 0.0035 0.0074 0.0087 

  
Diff. -0.0047 -0.0006 -0.0031 -0.0031 

     
            

Point_3 
40A Static 

15mins 
15/11/2012 
13:32:04 

255484.2526 668168.7766 77.4449 23.2642 54.1807 0.0003 0.0003 0.0022 0.0023 

Point_3 
40a RTK 

1Min 
15/11/2012 
13:49:57 

255484.2657 668168.7747 77.4169 23.2362 54.1807 0.0053 0.0056 0.0118 0.0141 

  
Diff. -0.0131 0.0019 0.0280 0.0280 
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Table  3-4 Static and RTK measurements made at the same point for different periods of time. 

Point ID 
GNSS 

surveying 
technique. 

Date and 
duration 

Easting 
(m) 

Northing 
(m) 

Ellip. 
Height 

(m) 

Ortho. 
Height 

(m) 

Geoid Sep 
(m) 

σ-East. 
(m) 

σ-North. 
(m) 

σ-Heig
ht 

(m) 

Posn+Hgt. 
Qlty 
(m) 

Point_1 
REF Static 
7hr 1 min 

14/11/2012 
08:28:44 

256902.4133 666545.6193 95.3638 41.1931 54.1707 0.0001 0.0001 0.0004 0.0005 

Point_1 
REF Static  

23 mins 
14/11/2012 
08:02:14 

256902.4105 666545.6209 95.3655 41.1948 54.1707 0.0003 0.0003 0.0014 0.0015 

  
Diff. 0.0028 -0.0016 -0.0017 -0.0017 

     

  
 
          

Point_1 
REF Static  

23 mins 
14/11/2012 
08:02:14 

256902.4105 666545.6209 95.3655 41.1948 54.1707 0.0003 0.0003 0.0014 0.0015 

Point_1 test RTK final 
14/11/2012 
15:37:01 

256902.4121 666545.6068 95.3822 41.2115 54.1707 0.0044 0.0059 0.0121 0.0141 

  
Diff. -0.0016 0.0141 -0.0167 -0.0167 
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It can be noted that there is little difference between the static and RTK GNSS 

measurement, being less than 0.015 m in Easting and Northing, and less than 0.03 m in 

height. Moreover, the difference between the seven-hour static and approximately 

fifteen-minute static is less than 0.003m in all coordinates. Since the resolution of the 

satellite image is considered to be 0.5m, i.e. considerably more than the differences 

recorded between the GNSS approaches, and locating the GCP on the satellite image will 

also be within that 0.5m, it is therefore preferred to measure the rest of the points using 

the RTK GNSS approach, saving time and effort. It is assumed that the differences 

between static GNSS and RTK GNSS coordinates are small because the reference 

station, although south of the area, was very close to the measured points, being less than 

4.5km distant with coordinates (418838.7349 mE, 6190590.333 mN), see Figure  3.9. 

.   

 

 

 

 

 

 

 

 

 

GCP 
 
Checkpoints used in 
quality assessment 
 
Checkpoints used in 
validation 
 

Figure  3.9 The distribution of GCP and Checkpoints with respect to the GNSS Reference 
Station in the study area 

GNSS reference station 
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3.5 Satellite Image Processing 

Processing satellite images has been achieved using techniques supported by Socet GXP 

software (Version 4.1) implemented in a digital photogrammetric workstation. Generally 

this involves two operations: (1) image acquiring, this includes selecting the required 

image type and the pre-processing stage that is needed to be applied prior to the 

production processes, and (2) image processing in order to generate the products that are 

needed for the project. Regarding the images acquired, the input products were 

OrthoReady (2A) Stereo Imagery from the WorldView1 sensor and Primary Type from 

the Pleiades sensor. Both of them came pre-processed and were accompanied by the 

necessary file (i.e. RPC file) for the subsequent production processes. Regarding the 

second operation, data processing was carried out with SOCET-GXP v4.1 software from 

BAE Systems. 

 

The processing of satellite images is similar to the traditional photogrammetric flowline 

as shown in Figure  3.10. DPW processing comprises two main stages in order to make 

use of the imagery. The first stage includes orientation and triangulation, which implies 

finding the relation between the images and the ground. The second stage, which is found 

in the right column of Figure  3.10, includes DSM and Orthoimage generation in addition 

to the feature extraction for the application of updates and to generate GIS components. 

Although the above-mentioned stages are similar to those found in former 

photogrammetric approaches (i.e. analogue and analytical approaches) in DPW 

processing it is fully automated. 

 

Figure  3.10 a schematic diagram illustrating the main components of DPW (Agouris et al., 
2004). 

Digital Imagery Interior Orientation 

Conjugate point 
Measurement 

Aerotriangulation and 
Absolute Orientation DSM/DEM 

Generation 

Orthoimage 
Generation 

Feature extraction 
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The aim of the following sections is to illustrate the principle of photogrammetry with 

respect to satellite image processing and then the production stage.  

 

3.5.1 Interior Orientation, Exterior Orientation an d Triangulation 

The first stage in processing images involves producing the sensor model that, among 

other things, defines the internal geometry of the sensor as it was during image capture. 

This definition, often called interior orientation, orients the coordinate system of the 

image pixels to the coordinate system of the image space. When traditional frame images 

are available, interior orientation uses fiducial marks and camera calibration will have 

taken place. Together the two processes provide data concerning: focal length; principle 

point location; optical distortions; and, the sensor location relative to the 

photo-coordinate system. 

 

The second stage of the processing is exterior orientation when the camera station and its 

orientation, at the time of image capture, with respect to the coordinate reference system 

is calculated. Determining the exterior orientation elements (rotations of the sensor 

platform with respect to the coordinate reference system, and the coordinate reference 

system position of the sensor at the time of imaging) is also, in newer systems, 

considered a component of the triangulation process. Circumstances may mean that only 

initial approximate exterior orientation parameters are obtained, and later these 

parameters are refined. 

 

In a satellite image the fiducial marks (found in traditional frame images) are not 

acquired, and an RPC file is provided instead giving the necessary interior and exterior 

orientation elements (Choi et al., 2012).  

 

The sensor model, if defined completely, is also employed to support stereo processing in 

the image space. With a satellite image this definition is again found in the RPC file. 

 

The purpose of a photogrammetric mapping project or photogrammetry in general, is to 

determine the ground coordinates of imaged points in the defined national or 

international coordinate reference system.  
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Early in the mapping project a data set, referred to as a ‘block’ of photography, must be 

created. Usually the ‘block’ includes two or more images that offer stereo (i.e. 3D) 

viewing through some common imagery. Attributes of the created ‘block’ comprise all 

the relevant details for a photogrammetric mapping project, including: the images that 

are employed in the project; data related to the images including their sensor models; 

camera/sensor orientations; mapping projection; reference spheroid; and, vertical datum. 

With these attributes, a mathematical relationship can be produced for the project, 

linking the images, their sensor models and ground control points, through a process 

called triangulation. Formerly the term triangulation, when referring to aerial 

photography would not have been applied to the very smallest blocks of (e.g.) only two 

images. But, now the term triangulation is used for simplicity (Gupta et al., 2013), 

regardless of whether the sensor platform was airborne or satellite borne, or whether the 

number of images is two, or more. 

 

Triangulation uses first interior orientation results, which are defined by the user from 

external sources (e.g. focal length, radial lens distortion, principle point, fiducial 

coordinates from a camera calibration) and some image measurements, to finalise the 

image coordinates (x,y). Then, next, uses collinearity equations (e.g.  3-3 and  3-4 which 

present the relevant version of the collinearity condition) to solve for the exterior 

orientation elements (embedded in the ai, bi and ci terms of the equations  3-3 and  3-4 

below). However, in some satellite images (e.g. WorldView-1, Ikonos, Pleiades and 

some others) these elements are already provided in the RPC file, therefore the user does 

not need to determine them. 

 

 ! = −"#$�%& − %' + )$�*& − *' + +$�,& − ,' #-�%& − %' + )-�*& − *' + +-�,& − ,'   3-3 

 

 . = −"#��%& − %' + )��*& − *' + +��,& − ,' #-�%& − %' + )-�*& − *' + +-�,& − ,'   3-4 

 

Where, for a particular point of interest: 

x,y are its image coordinates; 

XA,YA, ZA represent its ground coordinates in the selected coordinate reference system;  

XS,YS, ZS represent the sensor’s ground coordinates in the coordinate reference system; 
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a1 =  cos(φ).cos(κ); 

b1=  cos(ω ).sin(κ) + sin(ω).sin(φ).cos(κ); 

c1 = sin(ω).sin(κ) - cos(ω).sin(φ).cos(κ); 

a2=  -cos(φ).sin(κ); 

b2= cos(ω).cos(κ) - sin(ω).sin(φ).sin(κ); 

c2 =   sin(φ).cos(κ) + cos(ω).sin(φ).sin(κ); 

a3 =  sin(φ); 

b3=   -sin(ω).cos(φ); 

c3 =  cos(ω).cos(φ); 

   f =     sensor’s focal length;  

  

where ω (or omega or tilt), φ (or phi,tip or pitch), κ (or kappa or swing) are the camera’s 

tilts around the X, Y and Z axes of the coordinate reference system. 

 

Triangulation for satellite images is similar to that for aerial images. The coordinates of 

many points should be measured on the ground; each ground point generating a pair of 

equations as above. The solution is strengthened if all equations for all points in an 

overlap area, existing between images, are simultaneously solved. The final result best 

represents the registration between the image space and the ground space within the area 

of overlapped images. 

  

However, satellite imagery is characterised by a weaker geometry than aerial imagery, 

because it has been captured in space with a very high elevation, higher than aerial 

imagery. This consequently led to a lower base-to-height ratio, which leads to higher 

errors in elevations when the images are processed (Teo et al., 2010). From the 

triangulation viewpoint, satellite imagery can be considered to be time dependent, i.e. it 

is not a frame or instantaneously captured image. As a consequence this leads to an 

amendment of the collinearity equations for use with satellite images, and, therefore, a 

solution for different parameters needs to be achieved. With a frame image, only six 

parameters needed to be defined, three for the sensor location and three for the sensor tilt. 

However, for a typical image from a satellite borne sensor, many more parameters need 

to be determined, sometimes reaching ninety-four as in the case of Worldview01 images 

processed in SOCET-GXP. The reason is because a satellite image is captured line by line 

over a given time period, with each line being similar to a frame image and each line 

needing its own six parameters to define its exterior orientation. But for a satellite image, 
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a positive aspect is that the satellite platform is moving smoothly (mostly) which leads 

sensor location and sensor tilt parameters both being somewhat predictable functions of 

time, to be stored as RPC parameters hence supporting 3D point location determination 

(Xiong and Zhang, 2009).  

 

The aim of triangulation is to solve for the exterior orientation parameters, including ω, φ, 

κ that are the camera’s tilts around the X, Y and Z axes of the coordinate reference system, 

and the X, Y, Z coordinates of the camera station in the coordinate reference system. 

Initially approximate values are assigned to these parameters, but after a solution using a 

least adjustment technique a best estimate of these parameters is obtained. 

 

The X, Y geodetic coordinates of points of interest are then obtained from their image 

coordinates through the application of collinearity equations. In this case, the collinearity 

condition is expressed by the collinearity equations: 

 

 /0 = /1 + (20 − 21) 3�(4) + 35(6) + 37�8�(4) + 85(6) + 87�   3-5 

 

 

90 = 91 + (20 − 21) :�(4) + :5(6) + :7�8�(4) + 85(6) + 87�   3-6 

 

where all terms are as defined for equations  3-3 and  3-4.  

 

It should be noted that the elevation above vertical datum of each point of interest (i.e. ZA) 

needs to be known to use equations  3-5 and  3-6 to determine XA and YA. ZA may be 

obtained through accessing an appropriate DSM, for example, or the prior application of 

the parallax equation (Wolf, 1983). 

 

 

The process of triangulation that has been followed in this research was preceded by an 

additional preliminary step: digital relative orientation. In this step, the images are 

initially referenced to each other, not to the ground surface, through common tie-points. 

Searching for tie points may be achieved automatically using APM (automatic point 

measurement), or interactively. This process strengthens the application of the parallax 

equation, by removing y-parallax and improves the solution of ZA.  
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3.6 DSM Generation 

DSM production is the main task following the rectification of the stereo satellite images. 

It uses a correlation based matching technique. The produced DSM can either be 

represented in TIN or GRID format. Although the TIN format is more realistic, as has 

been mentioned earlier, in this research the focus will be on the grid since it is more 

suitable for the processing developed in this research. The main operator’s task in digital 

photogrammetry is measuring the coordinates on the images. These points’ positions are 

represented in rows and columns. The image matching operation requires finding a point 

in the second image whose location is known in the first image. Based on these points’ 

coordinates the corresponding ground coordinates can be determined through an 

application of the parallax equation. In digital photogrammetry the searching method is 

fully automated. The DPW (digital photogrammetric workstation) comprises hardware 

and software, which represents the end-to-end requirements of the photogrammetric 

work such as: the ability to image process; 3D point measurement; automated and 

interactive point measurements; in addition to the conventionally required facilities such 

as data storage and the display of geospatial datasets and images. 

 

It has been clear that the main challenge in photogrammetry is identifying matching 

points, which may be called corresponding or conjugate points, in both images 

automatically. This process is called image matching. This challenge is daunting because: 

the images used are taken from different viewpoints, which consequently causes the 

matched objects to be difficult to identify; some objects such as trees or buildings 

obstruct the view - which is called occlusion; and, points at elevation discontinuities are 

difficult to match. Shadow also has a great affect on hindering the matching. Gruen et al. 

(2000), claim shadows as the main obstacles for DSM generation, which consequently 

affects the precision and accuracy of the produced DSM. 

 

The matching algorithm that has been followed in this research is NGATE (DeVenecia et 

al., 2007) which consists of blending two well-established techniques: area based 

matching and edge matching. 

 

3.6.1 NGATE Technique 

The algorithm that is used to create DSMs within the SOCET-GXP suite of tools is called 

NGATE (Next-Generation Automatic Terrain Extraction). As mentioned earlier in 



 Chapter 3 
 

82 
 

section  2.2, it is based on the synthesis of two well-known techniques in computer vision, 

area based matching and feature based matching, each of them will be discussed later, 

individually. The reason for combining two methods is because area based matching 

cannot deal with the points at discontinuities, such as building edges or valleys. To 

overcome this problem feature or edge matching has been introduced, which is finding 

the corresponding edge points in both images (Zhang et al., 2007). This hybrid algorithm 

has lead NGATE to be considered a most powerful and favourable technique for urban 

and rural areas, in order to find very precise point coordinates for DSM creation. It 

compares favourably, both quantitatively and qualitatively, with algorithms that use area 

based matching techniques only (DeVenecia et al., 2007). 

 

The NGATE algorithm is based on using both area based and feature based matching 

methods in a state that each of them supports the other, see Figure  3. The result of an area 

based matching technique leads to the edge matching process, because, without restraint, 

all the boundaries in the reference image can be considered as candidates of the 

corresponding edge in the search space, therefore it is necessary to limit the area of the 

search. Also it should be taken into consideration that it is very rare to have the same 

shape (length and orientation) for an edge in all the images, due to the different image 

perspectives and orientations. In addition to the already mentioned problem of 

occlusions and shadow, image noise can cause possible flaws in the edge detection 

algorithm itself. The area matching technique will initially create a rough DSM in the 

case where the conjugate pixel falls within a 5-10 pixels error; this will limit the search 

for the edge and cause it to fall within the same window. Meanwhile the result obtained 

in each matching will be used in order to partition the window based on the edge, and 

consequently, this will help to constrain the area matching.  
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(a) 

 

(b) 

Figure  3.11 A sample of the generated DSM: (a) the Generated DSM from Satellite 
imagery, 0.5m resolution, using the NGATE approach; (b) the corresponding part of the 
DSM is shown on the satellite imagery. 
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In addition to using both of the aforementioned techniques in elevation determination, 

there is still another challenge in image matching which may be considered to be a 

blunder in the measured elevations. Blunder detection and elimination has become a 

critical issue in automatic image matching and DSM production. To solve this problem, 

an algorithm called back matching is used in order to re-compute the elevation of the 

candidate pixel. This algorithm helps to identify blunders through verifying the fidelity 

of forward and backward matching. During the forward matching, a window is fixed in 

the left image and moving it along the epipolar line in the right image, until the maximum 

image correlation is found, and subsequently determining the elevation. While backward 

matching is fixing the window in the right image and moving it along the epipolar line in 

the left image in the same manner until getting the maximum correlation, then using this 

distance, the x-parallax, to find the elevation. If the difference of elevation at forward 

matching is significantly different from backward matching, based on a user defined 

threshold, it means there is a blunder and the elevation is unreliable (Zhang et al., 2006). 

Conversely, if the difference of elevation is zero or very small this means that the 

elevation is reliable and it can be used as DSM elevation. However if backward or 

forward matching failed to get a good correlation this means that it is difficult to match 

successfully, thus the point is unreliable also.  

 

As has been stated NGATE is not efficient in areas of low texture variability, such as 

roofs of buildings (Zhang et al., 2007). However it provides robust 3D measurement at 

the locations with elevation discontinuities such as roof edges or corners, based on these 

discontinuity points the other intermediate roof surface points can be estimated using an 

interpolation method, see Figure  3.12 (Zhang et al., 2007). The NGATE technology is 

designed to very efficient when computing the elevation of each pixel in the image, and 

does not depend on post spacing (DeVenecia et al., 2007).  
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(a) 
 

(b) 

Figure  3.12 Imagery for 3D point extractions experiment: (a) imagery showing complex 
buildings and flat surfaces with little variability ; (b) the 3D points produced with the 
NGATE algorithm, the cyan line vertices are representing the ground truth points, the red 
dots are representing the 3D points produced by the NGATE algorithm. The algorithm 
successfully extracted points at highly variable locations or at the edges, while it failed at 
the locations of low variability (Zhang et al., 2007) 
 

3.6.2 Area Based Matching 

It is clear that area based matching is well-established in image matching. It is based on a 

correlation, using a small window, usually 5x5 or larger, up to 15x15. In this process, a 

window is fixed in one of the images and another window is traversed in the other image. 

In order to minimize the searching area and reduce the searching cost, the images are 

arranged so that the search is contained along a specific line, called the epipolar line. The 

window is moved pixel by pixel; at each location the normalised cross correlation value 

with the target window is recorded. Based on the result obtained from the correlation 

equation, the centre of the window location that gives the maximum correlation value 

will represent the conjugate point. 

 

Area based matching is a well known algorithm and has been applied by many different 

researchers (Ackermann, 1984; Calitz and Ruther, 1996; Helava, 1988; Li, 1991; 

Okutomi and Kanade, 1992; Rosenholm, 1987; Zhang and Miller, 1997). The method 

that is implemented by NGATE is normalized cross correlation which is extensively used 

in computer vision (Vosselman et al., 2004). This method assumes that the intensity of 

the pixels is identical or similar in both target and reference images. Another assumption 

is the elevation inside the window is the same (e.g. there is similar x-parallax between the 

points). This is considered a limitation of this method in giving robust results. Moreover, 

regions with low texture intensity variation, such as roads, parking areas, building roofs, 

fail. 
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3.6.3 Edge Based Matching Technique  

Edge matching, or feature matching, is used to improve the results of image matching. It 

is based on matching the points, along conjugate epipolar lines, in the images using an 

image-intensity matching technique. Zhang et al. (2006) referenced different algorithms 

that have been used in edge matching (Medioni and Nevatia, 1985; Ohta and Kanade, 

1985). Although giving robust results when hybridised with area matching, it is not 

known to give as reliable a result as the image correlation method. This is because the 

edges are sometimes considered to be difficult to detect or it is not possible to detect them 

all. 

 

In digital photogrammetry, there are some obstacles that face the edge-matching task, 

which can lead to fails or erroneous results. This is due to either no or a limited number of 

edges in the images, such as in flat areas. Popular algorithms (such as Canny Edge 

Detection) used in detecting the edges have not been considered robust and have not 

provided suitable edges, since the algorithm that is implemented in edge detection is 

based on the pixels’ intensities and is still affected by noise and discontinuities. However, 

edge based matching, using an edge detection algorithm, is nevertheless considered an 

optimal approach, among all other approaches. NGATE combining area matching and 

edge matching gives an ideal result for matching either artificial edges (i.e. building, 

bridges) or natural edges discontinues (valleys and ridges). 

 

3.6.4 DSM Quality  

The ‘quality’ of the DSM is referring to the extent that the DSM is close to the truth (i.e. 

quality refers to the error that exists in the DSM). Terminology relating to ‘quality’ 

differs. Many (e.g. Weng (2002)) argue that the errors of the features that are 

represented in the DSM are impossible to measure. The reason behind this statement is 

that it is not possible to measure the true position of geometrical features that appear in 

geographical data sets. Instead, the term uncertainty is suggested (Weng, 2002) to 

represent the quality of the DSM. To determine uncertainty the data set obtained should 

be evaluated against reference data that is known to be more accurate, for example 

obtained from field measurements or LiDAR, which eventually will be used to find the 

differences in heights between the two data sets, to determine uncertainty. Since the 

DSM is used in different applications, so the quality of the employed DSM must be 

defined in order to evaluate the integrity of these applications. Karel et al. (2006) claim 
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that there are three elements that can be used to define DSM quality, and these are 

precision, reliability and accuracy. The last one is the most practical.  

 

The interior quality or precision can be obtained from the estimated standard deviation, 

or estimated precision, of each value in the DSM, determined from a least squares 

adjustment procedure. Karel et al. (2006) recalls that the estimated precision can be 

controlled by redundancy, which minimizes and constrains the random error. 

Alternatively, redundancy can be used to measure reliability. The reliability can be 

represented by producing a Distance Map (Karel et al., 2006). The distance from input 

data and produced pixel can be represented in a Distance Map; the smaller the distance 

the more reliable the pixel value. The other type of the quality measurement is external 

quality assessment. This may be called accuracy measurement. The accuracy can 

represent the error. Generally, there are three types of errors: blunders, random errors and 

systematic errors. 

 

Maune (2007) reminds us that only random error, in theory, is linked to accuracy. Li 

(1990) and Weng (2002) list some of the statistical measurements that can be used to 

estimate the uncertainty or accuracy of the DSM, such as RMSE, mean (i.e. bias), 

estimated Standard Deviation, and finally the maximum and minimum height differences 

between the reference and generated data set. These statistics should be determined after 

eliminating blunders from the dataset. However both Li (1990) and Weng (2002), extol 

RMSE. It is possible to derive the vertical accuracy from RMSE of the vertical at a 

recognized confidence level, which is generally 95% (Maune, 2007). 

 

3.7 Orthoimagery Generation 

The next stage after creating the DSM is orthoimage generation. In this research, the 

orthoimage has been used as a source to help detect and extract the building footprints, 

because the buildings in the DSM can be blurred and not clear - therefore difficult to 

detect. The orthoimage generation follows the DSM production because one of the 

requirements of orthoimage production is the availability of a DSM and the exterior 

orientation results. Orthoimagery implies generating a new image with particular 

geometric characteristics, from the original image, see Figure  3.3. Orthorectification 

comprises removing the influences of perspective and relief displacement that existed in 

the original image, in conjunction with image resampling, in order to produce an image 



 Chapter 3 
 

88 
 

with a constant scale pixel. 

3.7.1 Quality of Orthoimagery 

Agouris et al., (2004) state that the main influences on the accuracy of generated 

orthoimagery are the spatial resolution of the original image, the accuracy of the exterior 

orientation, and the accuracy and resolution of the employed DSM.  

 

For building detection, if the DSM to be used is produced from satellite imagery, then it 

is preferable to use a DSM with a lower resolution than the eventual orthoimagery. 

Practice has shown that, using higher resolution DSMs, the buildings edges are distorted, 

see Figure  3.13, and do not reflect the real situation (when straight edged building 

segments are expected).  

 

 

Figure  3.13 Illustration for the orthoimage production from the original image using the 
DSM ((BAE Systems, 2013) cited in Agouris et al., 2004) 
 

 
(a) 

 
(b) 

Figure  3.13 The effect of using different resolution DSMs in orthoimage production: (a) 
orthoimage produced using a low resolution 10m DSM, where the building edges are 
straight; (b) orthoimage produced using a high resolution 50cm DSM, where the building 
edges are ‘wavy’. 

Original Image 

Orthoimage 

DSM 

Wavy edge 
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It is worth mentioning that there are some other problems arising in the orthoimagery 

related to buildings, which include the building’s roof displacement and building lean. In 

order to remove the effect of the building lean and to shift the roof building to the true 

location, a detailed building feature that represents the building’s model with its 

maximum height should be available (Agouris et al., 2004); obviously these may not be 

available. Mikhail et al., (2001) argue that the effect of relief displacement, and 

consequently building lean, can be minimized by using a camera with a longer focal 

length and working only on the inner section of the image rather than the outer part. They 

claim that a short focal length increases the effect of relief displacement. In this research, 

the imagery with lower nadir angle has been selected in order to minimize the effect of 

the building’s lean. 
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Chapter 4 Bayesian Statistics  

Statistical analyses are widely used by different researchers to summarize datasets 

through constructing probability models eliciting inferences related to current or future 

events. Such data analyses recognize that a population defined by a probability 

distribution function is expected to include any members of that population. The main 

methods that are applied in statistics are either the classical, or frequentist, methods or 

the Bayesian methods. But statisticians’ attitudes towards Bayesian methods are still 

ambivalent, despite evidence of better results than when using frequentist methods in 

some cases (Carlin and Louis, 1996). 

 

Statistical techniques are used when there is uncertainty in data. This uncertainty can be 

reduced by adding more data leading to it being minimized (FDA, 2010). However this 

continuous sampling of data may not be cost effective and, furthermore, it is sometimes 

difficult to provide more data. For that reason when the sample number is limited, it may 

be preferable to use a Bayesian approach and exploit a priori values in the calculation to 

minimizing the uncertainty (Berry, 1997; FDA, 2010). This chapter introduces the main 

statistical tools related to the Bayesian approach and the difference between the 

frequentist and Bayesian approaches.  

 

The chapter will look at the basic elements of statistics that are considered as the main 

ingredients of Bayesian statistics. Furthermore, it addresses the difference between the 

Bayesian and the frequentist approach. 

 

4.1 Probability  

Probability, in daily life, is used to represent confidence or uncertainty regarding an 

unknown quantity, and is often used informally. However, these informal probability 

expressions can be transformed into formal mathematical expressions; uncertainty can 

be represented numerically by utilizing probability. 

 

The basis of statistical techniques is probability. Statistics deal with mechanisms that are 

uncertain, and probability deals with events that are uncertain, which means probability 

and statistics are manipulating uncertainty. Both Bayesian and frequentist statistics use 

probability, but each in a different manner. The probability in frequentist statistics is 

utilized to exploit tools for statistical inference while the probability itself is used, in 
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Bayesian statistics, as a tool for statistical inference. This means that probability in 

Bayesian inference is refined using unknown parameters (Link and Barker, 2010). For 

both approaches, the value of probability, enclosed from 0 to 1, is shown in equation 4.1:  

 

 0 ≤ =(>) ≤ 1  4-1 

where P represents the probability value of the event E. Assigning probability to 

unknown parameters is considered the most difficult stage in Bayesian statistics (Link 

and Barker, 2010).  

 

4.2 Random Variables  

In the Bayesian approach, the result is represented by some random variable, rather than 

a real number derived from observations. All variables in Bayesian statistical analysis 

are represented by random variables (Beaumont and Rannala, 2004; Gelman et al., 2004; 

Held and Bove, 2014). The value of a random variable X is a real number from the 

sample space obtained by using a function for that purpose (Kobayashi et al., 2012; 

Leon-Garcia, 1994).  

 

The random variable, denoted by the capital letter X, usually reflects an actual 

probability distribution, �(4) with parameters that define the distribution, such as ? 

and @, as used to define normal distribution (Ang and Tang, 1975).  

 

4.3 Probability Distribution Functions 

In statistics, the probability density distribution function (pdf) is used either to represent 

the population, that is to make inference about uncommon measurements, or, to represent 

random variables. As mentioned, a random variable can be represented as a distribution 

function. In a discrete random variable, the probability distribution is a representation of 

possible quantities that correspond to a record of probabilities. In the case of a 

continuous random variable, the pdf is utilized to represent the random variable’s 

probability at a given interval by integrating the pdf within that interval.  

 

There are different types (or families) of probability distribution functions used in 

simulating random variables, such as Normal or Gaussian, Exponential, Bernoulli, 

Poisson, Binomial etc. (Gelman et al., 2004; Leon-Garcia, 1994). The focus, in this 

section, will be on the distribution that is very widely used, namely Gaussian. 
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Of the distribution families, Gaussian (or normal) distribution can be used to represent a 

number of measurements (n) of a set of random variables X1, X2…, Xn, which when 

independently and identically distributed have mean, μ, and standard deviation, σ, under 

the condition that −∞ < μ < ∞	and 0 < σ < ∞ . The function that represents the 

Gaussian distribution is:  

 ��4�|D = 1@√2G H4I J− �4� − 	? 52@5 K 
 4-2 

 

where θ	represents the values of unknown parameters, in this Gaussian case	μ	and	σ.  

 

The Gaussian pdf is represented as a ‘bell shape’, see: Figure  4.1; the mean parameter, μ, 

which is sometimes also called the expected value, controls the location of the bell shape 

while the standard deviation, σ, governs the shape of the bell - whether wide or narrow. 

The shape is symmetrical, which means that the mode and median are located at the same 

location as the mean. The Gaussian pdf is called unimodal as it has a solo (peak) modal 

value. It is feasible to use a Gaussian distribution for the representation of the relative 

frequencies of x-values produced by a random process. Moreover, degree of belief (the 

amount of belief about the certainty regarding different propositions) can be represented 

by using a normal distribution for different x-values (Kruschke 2011). These two 

concepts: relative frequency and degree of belief can be used effectively when finding 

the parameters of the model, based on the assumption that errors are distributed using a 

Gaussian distribution.  

 

Figure  4.1. Gaussian Probability Density Function with mean (?) equal to zero and 
variance (@5) equal to 1. 
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It is possible to use other forms of distribution instead of the Gaussian distribution, based 

on the situation and the circumstances of the problem, such as exponential, Bernoulli, 

Poisson and other distributions (Gelman et al., 2004). 

 

4.4 Statistical Inference Approaches  

Statistical inference requires that a model should be implemented and then the required 

parameters can be inferred. There is some variation in the use of the term ‘model’, but in 

most statistical situations, both the formula terms and the parameters are called the 

model. Selecting the most probable model best represents the situation being observed. 

 

Statistical analyses, such as frequentist and Bayesian analyses are pervasive in different 

fields, and, although the frequentist dominates, the Bayesian approach is considered to 

be the most useful in complex situations (Shoemaker et al., 1999).  

 

For long the frequentist, or classical, approach dominated, and has been widely used in 

various fields involving analyses and collection of data. In the late 20th century, due to 

the increased availability and power of computers, the Bayesian approach became very 

popular, since the simulation stage could now be carried out in a computer environment. 

It is still considered a state-of-the-art method, despite its 18th century origins. 

 

Frequentist inference can be used to obtain sample data sets’ probabilities, by analysing 

the results of frequent surveys or tests. Frequentist inference gives precise results close to 

reality if applied correctly, however, it is sometimes applied incorrectly (Johnson, 1999). 

Bayesian inference can, on the other hand, be used to find directly the probability of the 

parameters of interest, depending on the sample space (Stauffer, 2008). 

 

Supporters of the frequentist approach usually comment that the Bayesian approach is 

too sensitive to the a priori values and deals well with very specific problems but not all 

problems. Supporters of the Bayesian approach comment that the frequentist approach is 

inconsistent in the way it includes available data arising from observations to obtain the 

final result (Carlin and Louis 1996). Link and Barker (2010), when advocating Bayesian 

statistics to analyse data compared to the traditional frequentist method, identified the 

following advantages: 
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1. simplicity - it suits complicated models and data, and can be used in the situation 

where there is no frequentist solution available; 

2. exactness - it can provide rational and reasonable results, even when dealing with a 

small sample size; and, 

3. coherency – it is considered to use a straightforward interpretation technique with 

respect to the observed values while also being judged to be reliable in itself. 

 

It is frequently quoted that “all models are wrong, but some are useful” (Box and Draper, 

1987). This can be taken to mean that if the a priori data does not represent the prior 

belief accurately then it is regarded as “wrong”; nevertheless, the resulting a posteriori 

values are not necessarily lacking usefulness. The a posteriori data that arises from using 

assumed a priori data can still be considered to have the best possible probability of 

representing the unknown parameter (Hoff, 2009). This is justification for considering 

the Bayesian approach to be a more robust method for data inference than the frequentist 

approach. 

 

4.4.1 Likelihood Approach  

Likelihood represents the data revealed by all observations obtained in an experiment. It 

is expressed in probability form:  

 RSTH�Sℎ��V = =(V3W3|X�VH�(I3Y3ZHWHY[)) 

 

that is that likelihood is the probability of the parameters obtained from processing the 

observations, given a particular processing model. Among non-statisticians the terms 

‘likelihood’ and ‘probability’ are often considered to be have the same meaning, however 

they are completely different among statisticians. Probability is used with parameters to 

determine the unknown results, and likelihood is used with the known results to 

determine the unknown parameters.  

 

Probability is represented by	��4|D). It is based on representing the random variable X 

(of which there are several measurements xi) in order to calculate the parameters, 

represented by D, which are considered to be fixed. In the case that there is more than 

one measurement, 4�, according to probability theory statistically independent 
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measurements of the pdf of the data 4 = (4�,….,4�	 ,	given parameter ϴ, can be stated as 

the product of the pdf for individual measurements: 

 

 ��4 = �4�,….,4�	 |_ = ���4�|_ �5�45|_ … . . ���4�|_   4-3 

 

The pdf	��4|D  and the likelihood function	R�D|4  are similar, but not the same. The 

total probability is between 0-1, but the total of the likelihood values does need not to 

sum to 1. The likelihood function, sometimes only called likelihood for simplicity, can be 

expressed as an inverse problem concerned with finding the pdf that represents the 

observed data, given the designed model. This is achieved by testing all the probabilities 

that the model produces and then selecting the density that most probably generated the 

data. The pdf, meanwhile, represents the distribution of the probability of continuous 

parameters (Held and Bove, 2014; Myung, 2003). According to James (2003) the 

principal behind the likelihood function R�D|4  is that it offers information about the 

parameter(s) D  embedded in the experimental data 4 = 	 �41,… . , 4�	 , by making 

inferences about the unknown parameter(s) D.  

 

The likelihood function, represented by	R�D; 	41, … , 4� , provides the means to find the 

parameter value θ given	I�4|D . In this case I�4|D  is the joint probability mass 

function (pmf) or joint pdf of a collection of measurements	41, … , 4�.  

  

Maximum Likelihood Estimation (MLE) is used to examine the model that has produced 

estimated parameters. MLE uses a set of measurements and a model that can be exploited 

to represent the probability distribution of the variables of interest. MLE is used to make 

statistical inferences about the population of concern, using the likelihood model and the 

measured data. This is achieved by testing different parameter values and finding 

different probabilities then testing which of them agrees with the assumed probability 

distribution. According to Myung (2003) in the 1920’s Fisher maintained that in 

principal MLE involves trying to find the probability that has the highest possibility of 

representing the observed data. This is accomplished by trying different parameters and 

selecting the one that gives the maximum result for the likelihood function	R�D|4 . Thus 

the MLE estimate, equation  4-4, represents the parameter vector that was produced from 

searching the parameter space of the multi-dimensional data. 
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 D̅bc = arg	maxf∈h R�D   4-4 

 

The Maximum Likelihood function behaves in the same manner if a logarithmic 

approach is taken. It is preferred to use the log of the likelihood function, for two main 

reasons. First it is clear that the probability value is between 0 - 1, therefore, especially 

for a large number of measurements, this leads to tremendous rounding and consequently 

truncation error, because the result of Maximum Likelihood is based on the 

multiplication of probabilities to produce a final value for the Maximum Likelihood; this 

problem exists even with most advanced computers. The second reason is that adopting a 

logarithmic approach transfers the processing to an addition task rather than a 

multiplication task, which is consequently easier to deal with it and simplifies the final 

equation. The logarithmic approach is further considered in section  5.4.2. 

 

MLE is similar to least squares estimation (LSE) in the sense of finding the parameters to 

best fit the data, however there are two main differences between the techniques. First 

LSE tries to minimize the sum of squares of the predicted errors and there is no need to 

assume an error distribution while in MLE the result is obtained by maximizing the 

probability of fitting the model to the data having also modelled the behaviour of the data 

itself. LSE is based on making the fewest assumptions regarding the cause of the 

uncertainty during fitting the model to the data, to find the parameters. MLE, while 

considered a frequentist method, is considered to be more advanced in finding models’ 

parameters; it tries to take into consideration the assumed error, as uncertainty, which is 

distributed based according to an assumed distribution model. 

 

4.4.2 Frequentist Approach 

The frequentist method is also known as the classical or standard method. As is clear 

from its name, it is based on frequencies in a long run. The result of the frequentist 

approach is a probability value (P) or a confidence interval (CI). The confidence interval 

is the range within which the unknown parameter lies with, e.g., 95% confidence (Carlin 

and Louis, 2000).  

 

According to Held and Bove (2014) the probability associated with observed data, in 

frequentist analysis, is treated as random, while that associated with an unknown 

parameter is not treated as random.  
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The difference between data inference using MLE and the frequentist approach is that the 

latter takes all the values that are potentially expected to be true (Held and Bove, 2014), 

while the MLE is only giving one value that is potentially true.  

  

4.4.3 Bayesian Statistics 

Bayesian statistics, based on using Bayes’ rule (which is illustrated in the next section), is 

an approach linking relevant prior available information to new available data, provided 

by observations, to infer the required parameters of interest. Likelihood provides the tool 

to incorporate data update before determining a posteriori values. This linking led to the 

Bayesian statistical approach becoming widespread among researchers (Anscombe, 

1962). For example, the Bayesian statistical approach has emerged as a member of the 

machine learning family of techniques, and it has had a great impact on it (Kobayashi et 

al., 2012). Bayesian methods depend on prior information to infer new information, 

including new data from observations, encouraging the application of Bayesian 

approaches, over frequentist, in much research (O’Hagan, 2004). 

 

For the incorporation of a Bayesian approach to generate an output parameter’s a 

posteriori probability distribution, it is necessary to make assumptions of a priori 

probability distributions and likelihood, using the sample datasets. By analysing all the a 

posteriori parameters the user may be provided with more accurate details about the 

parameter of interest, than taking only the mean, mode, median or standard deviation. 

For example the a posteriori probability distribution can be used to estimate the 

parameters themselves; in Bayesian inference data are provided to enable the probability 

of the parameters to be determined, in order to achieve a solution (Stauffer, 2008). Or in 

other words, in the Bayesian approach, probabilities are fitted to all the information 

which has been presented in a particular situation (Gelman et al., 2004). The main 

challenge in using the Bayesian approach, according to FDA (2010), is the need for 

extensive understanding of the situation. It requires a thorough assessment at each stage, 

of the prior information and the information to be inferred from the observations, or of 

the model which is mathematically constructed to combine the two.  

 

4.5 Bayes’ Rule  

Bayes’ Rule, Bayes’ Theorem or Bayes’ Law, as it is variously named, can be used to 

define the Bayesian approach. The Bayesian approach involves determining the a 
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posteriori probability	��_|/), by combining information on the data to hand using a 

model that is typically represented by a form of probability distribution �(/|_). This 

probability distribution, �(/|_), is the likelihood and represents the measured data / = 4�, 45, … . , 4� given the vector of required parameters _, and values based on _ 

expressed through the a priori probability and the normalising constant (or sometimes 

called marginal likelihood (Gelman et al., 2004) or evidence (Kruschke, 2011)). 

 

The inferred outcome is obtained from the a posteriori probability distribution, focussed 

on the parameters, θ. 

 

Specifically Bayes’ rule stated: 

 

 3	I�[WHYS�YS	IY�:3:3S�SW6 = 3	IYS�YS	IY�:3:S�SW6	 ∗ 	�STH�Sℎ��VZ3Y�S�3�	�STH�Sℎ��V  
 4-5 

 

Bayes’ rule creates a joint conditional probability distribution for x and _. The joint 

distribution used is the probability distribution function (pdf) or merely the distribution 

function f(x) of a random variable; it is the function that produces p(X∈ j 	with respect 

to the region R within the limit X when it is summed, and X is the function of the value of 

x under the condition that f(x)>0 (Link and Barker, 2010). 

 

Generally the joint probability distribution is created by the product of two distributions, 

here utilized by the data model-likelihood I�4|_) and the a priori probability 

distribution	I�_ : 
 I�_, x = I�_ I�4|_)  4-6 

 

Taking _  conditioned on the observations and using the fundamental property of 

conditional probability, as recognised by Bayes’ rule, leads to an a posteriori probability 

distribution (Carlin and Louis, 2000). According to Link and Barker (2010) the basis of 

Bayes’ theorem is the relationship between the joint and conditional probabilities: 

 

 I(_|x) = I(_, 4)I(4) = I(_)I(4|_)I(4)  
 4-7 

 

where I(4) is called the normalization factor which is related to all possible values. 
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This can be calculated by summing all possible values I(4) = ∑ I(_)I(4|_)l  in the 

case of a discrete probability value. In the case of a continuous variable, the value will be I(4) = m I(_)I(4|_)d _ using all possible values.  

 

The normalization factor is used when it is required to know the absolute value of the 

probability, but if the situation only requires estimating the maximum or minimum 

relative probability it is not necessary to determine the normalization factor.  

 

4.6 Bayesian Inference 

One of the applications of Bayesian statistics is Bayesian inference. It can be used to 

infer information of interest from observations providing data concerning undetected 

quantities. Bayesian inference is used to obtain estimations of a parameter or unobserved 

data; usually probability statements are used to infer the estimations. The values that are 

used in Bayesian approaches, are random variables and provide uncertainties as output, 

represented as probability expressions. Bayesian inference is a statistical inference 

method where observations are utilized to determine the probability that assumptions are 

likely to be true, or to revise an already determined probability. In the applied field, 

Bayesian inference uses an a priori probability calculated from the likelihood of certain 

assumptions regarding the observations imported into a computation or process. 

 

Bayesian inference is represented by constructing a model that adequately represents the 

situation from which information is to be inferred. The constructed model is based on 

Bayes’ rule in which the results are represented by probability and called the a posteriori 

probability distribution. The input components of Bayesian inference are a priori 

probability and likelihood. The a priori probability represents the subjective belief 

regarding the situation before seeing any data; while the likelihood is the model that 

represents the data by fitting a probability distribution on it (Gelman et al., 2004). 

 

Bayesian inference handles information generation from an appropriate model. The 

implementation begins by employing a particular belief about the unknown parameter 

that is called the a priori information. The a priori information could be any information, 

even ambiguous, about the unknown parameter. The certainty of the a priori information 

could, later, be increased by adding more measured data from the observations. In 

Bayesian statistics, to make an inference about an unknown parameter, it is necessary to 
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determine the whole a posteriori probability distribution, having been provided with the 

a priori probability of the parameter. Bayesian statistics procedures are based on 

determining probability of the ‘trueness’ (or accuracy) of the parameters (i.e. uncertainty 

is evaluated in Bayesian statistics by using probability).  

 

The unknown parameters that are of interest are represented through the model that 

incorporates the parameters and their probability distributions. Modelling is used to infer 

the shape of the underlying procedure by examining the feasibility of specified models 

(Myung, 2003). Bayes’ approach involves measurements that have been observed and 

others that can be inferred or expressed through probability models. These probability 

models can be considered a basic tool in the Bayesian method and lead to uncertainty 

information originating from statistical analyses. The basic Bayesian analysis can be 

summarized in three main stages as follows (Gelman et al., 2004): 

 

1-Utilize all observations and parameters associated with the problem and assign a full 

joint probability distribution model. The constructed model should be compatible with 

the data gathering method and the underlying problem. 

 

2- From the above constructed model derive an a posteriori probability distribution, 

based on observed measurements and analyse it.  

 

3-Asses the results’ goodness of fit and check whether the outcome represents the real 

facts and the resulting model corresponds to the data used. Check the result’s sensitivity 

to the assumed model in stage 1; sometimes it is necessary to amend or develop the 

model and re-evaluate (i.e. repeat) these three stages.  

 

The above three stages are the core of Bayesian inference and estimation. However, the 

first stage is considered the main stage, and the main challenge in Bayesian analysis is 

how to produce a model and an a priori probability that fits the data.  

 

It has been mentioned that it is possible to make a connection between probability and 

observations; also, it is possible to represent numerically beliefs regarding a situation. 

The expressed belief can be updated with new data by employing Bayes’ rule, which is 

considered to be delivering a sensible connection between beliefs and observations. On 
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the other hand Bayesian inference is considered as a means for using specific sets of facts 

to infer general knowledge (Hoff, 2009). Bayesian inference (or the Bayesian method) 

used in data analysis, offers the following advantages:  

• it accompanies the estimation of the output parameter with useful statistical 

information;  

• it provides superior statistical properties for the estimated parameter; 

• it minimizes the number of measurements that need be used in the experiment to infer 

the result;  

• it makes allowances for lost data;  

• it estimates future data; and finally,  

• it provides an environment for model prediction, choice and validation (Hoff, 2009). 

The Bayes formula that is used in inference, for the continuous type of probability 

distribution, is of the form: 

 

 I(D|4 = I�4, D I�4 = I�D I�4|D m I�D I�4|D VD  4-8 

 

The term mI�D I�4|D VD  =m 	I�4, D VD = I�4 , is sometimes referred to as the 

marginal density distribution of the random variable X or its a priori predictive 

distribution (Boos and Stefanski, 2013). It is clear that this function is used to normalize 

the a posteriori distribution. It is obvious that θ need not be taken into account to find 

the final value of the marginal distribution	��4 . The marginal distribution is used to 

show the prediction based on random variable /, by considering the uncertainty of the 

random variables of the initial data, and the residual uncertainty of the random variable 

when D is calculated. This marginal distribution is significant in model selection. 

 

The main characteristics of Bayesian inference that made it a focal point for researchers 

are: the straightforward quantification of a measured parameter’s uncertainty using 

probability; the removal of any obstacles to the number of parameters addressed; and, the 

applicability of joint probability density functions (Gelman et al., 2004). 

 

4.7 Bayesian Parameters 

A parameter can be considered to be a governor, or adjustor, of the influence input has on 

the resulting numerical probability that arises from the implementation of a model. It is 
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very rare for only one parameter to be considered. Most of the problems to which the 

Bayesian approach can be applied address more than one parameter. However, when the 

model consists of many unknown parameters it is not necessary to calculate all of them. 

Usually inferring only one (or just a few) of them will be enough. In all cases, the 

procedure is to calculate the joint a posteriori probability distribution of all the 

parameters that require to be determined and to assign a marginal distribution to the 

parameters that need not be calculated. A marginal distribution can be obtained by 

integration with respect to any unnecessary parameters’ values. Parameters, not 

necessarily of direct interest to the situation, are often called nuisance parameters, such 

as standard deviation	@.  

 

Gelman et al. (2004) explained the above as follows. Consider there is one unknown 

parameter D composed from two unknown parameters, thus	D = �D�, D5 . For the work 

which is the subject of the research reported in this thesis, let, D� be μ	(the average), and 

another parameter	D5, also called a ‘nuisance’ parameter, be @ (standard deviation). This 

can be stated as: 

 4|?, @    4-9 

 

In the case of assigning normal distribution to the form of expression given in equation 

4-9 (i.e. 4|?, @), in Chapter 5 	n�?, @5  is used. 

 

The aim is to find	=�D�|4), which is defined as the conditional probability distribution 

based on the existing data. The procedure for calculating the value of =(D�|4) involves: 

 

calculating the joint a posteriori probability; 

 

 I(D�, D5|4) ∝ I(4|D�, D5)I(D�, D5)  4-10 

 

averaging with respect to	θ5; 

 I�D�|4) = p I(D�, D5|4) VD5  4-11 

 

Substituting the averaged over θ5 in the joint posterior probability distribution will 

produce; 
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 I(D�|4) = p I(D�|D5, 4) I(D5|4)VD5  4-12 

 

Thus it can be shown that the parameter of interest, μ, which is represented above by D�, 

is reflected in a conditional distribution function using the second parameter D5, and it is 

obtained by synthesis of the conditional distributions, given D5,	which is a so-called 

nuisance parameter in this context. 

 

4.8 A priori  Data  

The uncertainty of an unknown parameter is represented in the a priori data; for this it is 

possible to use any available precedent data about the unknown parameter (Boos and 

Stefanski, 2013). A priori data plays an important role in Bayesian inference, and it has a 

particularly large influence on a posteriori data when small data sets have been utilized. 

Therefore the a priori probability must be chosen judiciously, and the results (the a 

posteriori probability distribution) should be evaluated carefully for goodness of fit to 

estimate the dependability of the model’s predictions (Stauffer, 2008).  

 

According to Ang & Tang (1975) the parameters of the a priori probability distribution 

are defined by logic, experience or empirical considerations. Typically, the parameters of 

the a priori data are based on real practical information or personal belief about the 

situation. The a priori data should be selected carefully to convey the original situation 

because different outcomes result from using different a priori data. The a priori data 

become less doubtful if it is based on experimental data or on concrete assumptions. It 

may become suspect if it is based on personal conclusions (FDA, 2010). It is also 

possible to use a Bayesian approach without depending on a priori data (this is called the 

‘uniform prior’ situation), by getting a temporary result, until it adjusts itself based on the 

arrival of a priori data (FDA, 2010) 

 

Until now, the most serious obstacle to using Bayesian methods has been finding suitable 

a priori data to represent the situation. Although the a priori data are based on previous 

data or on a professional’s subjective opinion, it is possible to simplify the selection of 

the a priori values by limiting them to a well-known distribution, to improve the data 

inference process and make the calculation task easier. It is possible to produce a priori 

data based on a few instructive observations, consequently this will help to make the 

study’s input data the main source for producing the eventual a posteriori values (Carlin 
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and Louis, 1996). 

 

Hoff (2009) has pointed out that the Bayes method does not help to specify any 

information about the a priori data, however it has the ability to modify the a priori data 

used based on the observed data. 

 

Some important types and characteristics of a priori data are addressed in the following 

paragraphs. 

 

4.8.1 Subjectivity in a priori Data 

The Bayesian approach is considered to be subjective because it is based on assumed a 

priori  data and that a priori data depends on personal evaluation, which varies from one 

person to another (Berry, 1997). In all cases, the a priori probability should reflect the 

problem. Researchers are always trying to minimize the disparity between the a priori 

probability and reality by invoking more evidence. Variance in the a posteriori 

probability distribution can be minimized by strengthening the model with more data.  

 

The potential capability of Bayesian inference is embedded in quantifying all uncertainty 

using probability. This can be achieved by assigning a priori probability to each 

unknown parameter. According to Link and Barker (2010) the main aspect hampering 

the wider use of Bayesian inference is the subjectivity involved in deciding the a priori 

data.  

 

4.8.2 Uniform a priori Data 

If there is no information about the data that has been used in the problem, which means 

no prior knowledge, then, a value between the minimum and maximum, which is 

between 0 and 1, will be used. As shown in Figure  4.2, this gives the same properties to 

all values of the parameter, which in that case is equal to	P�θ = 1. This type of prior 

information is useful when the problem uses very reliable measurement data. In that 

situation, a priori probability data has no significant effect and it is better to use uniform 

a priori probability or non-informative a priori probability instead of a conventionally 

constructed a priori probability. If the a priori probability that is used in the model is 

non-informative then it will have a very negligible effect on the a posteriori probability, 

and in that case all the results will be based on available data from the observations, 
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usually called the likelihood. The distinct method that is used to define the uniform a 

priori  probability is called Jeffrey’s’ prior probability and can be adapted for 

multi-parameter situations although it is very commonly used with single parameter 

models. A uniform a priori probability can be used successfully in Bayesian approaches, 

but problems may arise when hypothesis testing or identifying the model. 

 

Figure  4.2 Uniform a priori probability distribution, for the value of � for interval 
[26,1500](Held and Bove, 2014). 
 

4.8.3 Conjugate Prior  

Sometimes both the a priori probability distribution and the a posteriori probability 

distribution belong to the same family type (e.g. Gaussian, exponential, Poisson, etc.) 

and in that case, the a priori probability is referred to as conjugate prior probability . A 

posteriori probability determination will be simpler when using a conjugate prior 

probability; it makes calculation easier. However, if the conjugate prior probability does 

not properly reflect the main a priori data, particularly if any new data arrives, then it is 

necessary to use a more genuine a priori probability. In this case it is better to use a 

‘conjugate prior probability’  and, then, after that amend it to suit the situation (Held and 

Bove, 2014). 

 

4.8.4 Improper Prior Distribution 

A priori probability has a significant effect on the a posteriori probability distribution 

and thus on the final result. In order to minimize this effect it is common to use a “vague” 

or “improper” a priori distribution (represented by adding the proportional sign ∝ and 

referred to as an improper prior); this prior could, for instance, be specified with a large 

variance (Held and Bove, 2014). Consequently, it is necessary to check that the a 

posteriori distribution is a proper distribution, and if so, then it is possible to use the 

improper prior in the Bayesian analysis. 

D		 

P
(D 		 
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4.9 Posterior Distribution 

After data sampling, using the likelihood function (represented as a random variable and 

denoted by the density function I(4|D 	 	and deciding on the a priori probability, the 

next stage is to obtain the a posteriori probability by normalizing the product of the a 

priori  probability and the likelihood. The a posteriori probability distribution so 

obtained is represented by the conditional probability distribution of D	given the random 

variable X (Boos and Stefanski, 2013): 

 

 =�D|4 = I�4|D I�D m I�4|D I�D f VD = I�4|D I�D I�4  
 4-13 

 

 

The most significant output in Bayesian inference is the a posteriori probability 

distribution that incorporates all information about the unknown parameters using 

Bayes’ rule. It is possible to use it in order to obtain point inference and interval estimates 

in addition to all other necessary information about any unknown parameter (Boos and 

Stefanski, 2013; Gelman et al., 2004; Hoff, 2009; Kobayashi et al., 2012) 

 

It can be noted that p�x  does not depend on _, therefore the equation  4-13 can be 

simplified to produce an a posteriori distribution, by eliminating the fixed term I�4 , 
thus the equation for the a posteriori probability can be: 

 

 I�_|x 	∝ p(_)I(4|_   4-14 

or 

 =�[WHYS�YS	 ∝ =YS�YS	. RSTH�Sℎ��V  4-15 

 

A posteriori probability p�_|x 	is proportional to the equation  4-14 and summarizes the 

substance of Bayesian theory. It can be noticed that the a posteriori probability 

distribution I�_|x  is proportional, not equal, to the a priori I�_ 	and likelihood 

model I�4|_ . The a posteriori probability distribution function represents the outcome 

of Bayesian inference. To give the full picture of the situation it may be useful to 

represent a posteriori distribution graphically, as shown in Figure  4.3. 

 



 Chapter 4 
 

107 
 

 

Figure  4.3 The components and result of Bayesian statistics, a posteriori (or Posterior), 
likelihood and a priori (or Prior) distributions (Berry, 1997). 

 

However, a representation of the a posteriori probability distribution by numerical value 

is necessary for numerous practical implementations.  

 

4.10 Data Inference 

The final stage of the Bayesian inference approach is to infer information, such as an 

estimated parameter, from the a posteriori probability. Model selection and parameter 

estimation are considered to be two of the most important problems that researchers face 

in data analysis (Punska, 1999).  

 

The most used statistics extracted from the summaries of the a posteriori distribution 

(referred to as point summaries) are: mean, mode; median; and, standard deviation. The 

mean and standard deviation play an extremely important role in deciding the final 

results of the original unknown parameters.  

 

In Bayesian statistics, according to Gelman et al. (2004), there is relation between a 

posteriori and both a priori and likelihood. The average of all a posterior probabilities 

over the distribution of all data will lead to the mean a priori parameter that is known by s. This can be shown in equation  4-16: 

 

 >(D) = >t>(D|4 u  4-16 

 

Variance is also important and shows how uncertainty can be reduced. The 

equation  4-17, manifests that relation and it shows that the variance of the derived θ is 
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less than the variance of the a priori D.  

 

 v3Y(D) = >tv3Y(D|4 u + 	v3Yt>�D|4 u  4-17 

 

The variance in equation  4-17 is less than the variance of the original data represented by 

the a priori distribution due to incorporating the data. According to Gelman et al. (2004) 

the a posteriori distribution has greater impact on reducing the uncertainty when the 

original variance is large rather than small. 

 

The main outcome of the Bayesian approach is reflected by sampling the a posteriori 

distribution. The procedure that is followed in the Bayesian approach for parameter 

estimation involves manipulating the parameter D as a random variable accompanied by 

its a priori probability I�D . The aim, in the Bayesian context, is to evaluate the a 

posteriori probability distribution, using a posteriori inference, by finding the a 

posteriori value of the parameter from the a priori data. To commence one starts by 

evaluating the conditional probability	I�D|w , by implementing Bayes rule:  

 

 =�D|4 = I�4|D I�D I�4  
  4-18 

 

As has been mentioned earlier, p�x  does not relate to the random variable	D,	which 

means it is independent and it can be omitted in the proportionality function. The 

equation  4-14 shows that the a posteriori probability is specified by the multiplication of 

the likelihood function and the a priori probability.  

 

In Bayesian analysis, assessing the maximum a posteriori (MAP) parameter values is 

considered a helpful means of relating model to data. The a posteriori distributions’ 

mode can be evaluated through: 

 

  Db0x = 3Y�maxf 	I�D|4  
= 3Y�maxf I�4|D I�D I�4 	= 3Y�maxf I�4|D I�D 	 

 4-19 

 

The evaluation of MAP and MLE are similar, with the difference being in the handling of 

the a priori probability. In the calculation during estimating the parameters, MAP links to 
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the a priori data that influences the result of the parameter estimation. In the work 

reported in this thesis the result, using MAP, is achieved by representing the models’ 

parameter values with group measurements, which are a set of angles and distances. 

 

The result of the MAP is very helpful, practical and clear, but the main negative aspect of 

using MAP, is in calculating only one mode if and when the a posteriori is multimode, as 

shown in the Figure  4.4 below, and this is then detrimentally neglected. Sometimes, 

when there is a model with many parameters and a high a posteriori probability results as 

a consequence of assigning a high value to one of the parameters, MAP does not give 

adequate information about the correlation of the parameters as is necessary in the 

Bayesian approach. Also sometimes, there is more than one outcome, rather than only a 

mode value, to be inferred from an a posteriori distribution, for example average, 

variance, marginal distribution etc. In that case, a statistical technique such as Markov 

Chain Monte Carlo (MCMC) estimation could be used to sample from the a posteriori 

distribution. 

 

Figure  4.4 Multi mode a posteriori probability (from Bernacchia, 2014). 
 

Bayesian inference involves determining the a posteriori probability distribution to 

achieve point estimation, interval estimation and model comparison, as summarised in 

the following paragraphs. 

 

Point estimation. If the a posteriori distribution representing a univariate case in a 

continuous probability distribution function forms around θ, then to infer the result from 

the a posteriori data will be achieved by selecting the mode, the average or the median. 

Usually the mode is the simplest mean to be considered; for point estimation in a 

symmetric a posteriori distribution, the average and the median are matching values. 
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The mean usually represents the expectation (estimated value) of the parameter θ, with 

the most important data from the a posteriori distribution being the average and standard 

deviation along with the parameter θ, itself. However, the mode is important, especially 

in the case of complex problems, where it is difficult to calculate the average and the 

median. The probability density function (pdf) which is shown in the graph below, in 

Figure  4.5, illustrates an example of the value of the average from an a posteriori 

distribution. 

 

Figure  4.5 the a posteriori distribution showing the conditional distribution and its 
relation to the joint marginal distribution (http:/ /www.statisticalengineering.com/ ). 

 

Interval estimation. For an a posteriori interval, in addition to the point estimation, it is 

necessary to find out the uncertainty of the a posteriori data. This estimation calculates 

the value of the extent of the parameter θ. In recent studies involving Bayesian statistics, 

attention has turned to determining the probability interval estimation for the unknown 

quantity, consequently this gives further strength to the Bayesian perspective (Gelman et 

al., 2004). This limit of the value is also called the Bayesian confidence interval or a 

posteriori interval. When dealing with a univariate parameter it is called the confidence 

interval, and it is used to measure the uncertainty of the a posteriori distribution. This 

value is calculated by an interval representing 95% of the area between the ends of the a 

posteriori distribution (a, b), see Figure  4.6, for example Pr (θ<a) = 0.025 and Pr (θ>b) = 

0.975, which is considered a MLE when a uniform a priori value is used in the Bayesian 

theorem. The property of 95%, which is also called Highest Density Interval (HDI), 

represents the values of the parameters that is more believed to be true than the points 

outside that limit. 
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Figure  4.6 Illustration of Highest density interval (HDI) for measuring the parameter 
uncertainty (Kruschke, 2011). 
 

Model Selection. This is also called model comparison, and is based on the selection of 

the most appropriate model, given the data. Model selection, is reflected in the a 

posteriori probability. However, the result does not give any information, directly, about 

the model and whether the model is correct or not; for that reason it is necessary to use a 

method that tests the model. Model testing can be achieved by expanding the range of the 

model and then later selecting the model that is the correct (or ‘best’) one. However, this 

method penalizes the models that contain numerous parameters. To perform model 

selection the a posteriori probability for each model is calculated based on equation  4-13 

or equation  4-20 in case of discrete random variables: 

 

 p(θ|x) = p(x|θ)p(θ)
∑p(x|θ)p(θ) 

 4-20 

 

In order to start model selection, and then to decide which of them is better, first the a 

posteriori probability for each model is determined. 

 

Then, selection of the best model, between two models, for the calculation of the 

parameter(s)θ, can be based on the result of equation  4-21, to determine the posterior 

ratio. If the result of the posterior ratio, is bigger than 1 by an extreme value then the 

selection is based on the first model, p(θ�|x). If the I�[WHYS�Y	Y3WS� is much less than 

one, then the selection will be based on the second model, p(θ5|x). If the result is unity, 

this probably means the data is not adequate to make the selection (Sivia, 1996). 

 

 posterior	ratio 
 p�θ�|x 
p�θ5|x 
 p�x|θ� 

p�x|θ5 }
p�θ� 
p�θ5  

 4-21 

  

a b 
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4.11 Applying a Bayesian approach 

Bayesian techniques have been applied in two of the mathematical models implemented 

in the work reported on in this thesis: DSM merging and building footprint optimization. 

Regarding the merging, the implemented prior has been obtained using local entropy by 

assuming the building and ground surface in urban areas are smooth and not rough. 

Meanwhile, the prior that has been used in the regularization of a building footprint is 

based on the concept that the corner of building is orthogonal and edges are straight. 

 

4.11.1 Bayesian Fusion Approach  
A Bayesian approach has been successfully applied, by others, to improving the fusing of 

images, as can be seen from the various perspectives of improving a data set, reducing 

the size of a data set or enhancing it for purposes of investigation. Image fusion has been 

used in miscellaneous fields such as medicine, airport security, remote sensing and 

computer vision. Gheta et al. (2008) used a Bayesian approach to fuse images for the 

purpose of getting better depth information (i.e. 3D data). A Bayesian approach, 

incorporated with a Markov Chain Monte Carlo (MCMC) method, has been 

implemented to fuse MRI (Magnetic Resonance Imaging) and CT (Computed 

Tomography) data for medical images and for airport security checks, by improving 

segmentation (Feron and Mohammad-Djafari, 2004; Mohammad-Djafari, 2003; Punska, 

1999; Shi and Manduchi, 2003). Sharma et al. (2001) had more robust results when using 

a Bayesian approach in the fusing of synthetic infrared and radar images for the purpose 

of enhanced airport landings. Jones et al. (2003) fused images of low resolution thermal 

data and high resolution visible range data to get better segmentation in a scene of 

interest. Bayesian approaches have been applied in the remote sensing field also, for 

example Zhang et al. (2008) and Zhang (2011) used Bayesian approaches to combine 

multispectral and hyperspectral images. Bayesian approaches were also applied to 

multispectral images to improve several principle components (Ge et al., 2007; 

Mascarenhas et al., 1992; Zaniboni and Mascarenhas, 1998; Zhang, 2010b). Bayesian 

approaches have been used to get an enhanced image for better visualization and to 

combine heterogeneous images in order to get one image with more features, or just to 

incorporate new incoming images (Mascarenhas et al., 1996) or in the case of 

astronomical images to fuse either one-band astronomical images (Jalobeanu et al., 

2008) or hyperspectral images (Petremand et al., 2012). A study by Sommer et al. (2009) 

showed the ability of the Bayesian approach to evaluate the uncertainty of fused data. It 
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has also been used to fuse panchromatic and multispectral images to obtain 

pansharpened images (Fasbender et al., 2008). A Bayesian approach can been used to 

achieve better image properties because it provides sharper and clearer edges on the 

image (Kotwal and Chaudhuri, 2013). 

 

According to the literature, Bayesian approaches have been applied in remote sensing 

successfully, but no study has been found relating to their use in merging or fusing digital 

surface models. The common approach to fusing DSMs is based on using a weighted 

average, after assigning weights to the DSMs’ points based on checking their fidelity or 

performing a “DSM accuracy assessment” by calculating some statistical measurements 

(i.e. RMSE).  

 

 

The Bayesian approach utilizes all a priori and test data, and it does not eliminate or 

delete any a priori information. In the Bayesian approach, uncertainty is handled by 

employing a priori probability, consequently, it can be utilized for getting more accurate 

solutions in a decision a making situation (O’Hagan, 2004). The a priori probability 

information in this study can be based on one of the original DSMs (e.g. that produced 

from the WorldView-1 sensor), and its uncertainty statistics.  

 

It should be noted that the literature uses alternate words for the merging of Digital 

elevation models, such as fusion, combination, integration and synergy. These all can be 

considered to be a synonym for merging (Papasaika-Hanusch, 2012). 

  

4.12 Comparison between Bayesian and Frequentist Approaches  

According to a report by Berry (1997), a number of differences between Bayesian and 

frequentist approaches can be shown. 

 

• Parameter probabilities. All parameters of interest are, in the Bayesian approach, 

fitted with a probability distribution, thus the Bayesian approach relates 

probability to the input parameters while the frequentist approach does not 

behave in the same way, and assigns probability just to the data that is produced 

from the experiment.  
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• Bayesian approaches can consider wide ranging facets of a process with the result 

being summarized by the a posteriori probability. The resulting probability 

distribution takes into account all the available facts regarding the unknown 

parameters, while the frequentist approach is just based on the data from a 

specific set of observations. This feature renders a Bayesian approach, 

potentially, more useful although it does meanwhile lead to a need for more 

judgments and quantification of the facts surrounding a situation and its 

assessment. Potentially this is the best approach for computing uncertainty and 

consequently it makes the Bayesian approach an important tool for decision 

making. 

 

• Taking genuine observed outcomes, Bayesian inference is based on utilizing the 

outcomes from existing analyses only, whereas the frequentist approach is based 

on utilizing the probability that is assigned to the data.  

 

• Flexibility. The most important characteristic of the Bayesian approach is that it 

accepts new data as the analytical process continues, which leads to a continuous 

update of the a posteriori probability, thus it is not necessary to specify the 

sample being analysed in advance. This makes the Bayesian approach very 

applicable to situations where is not possible to use a frequentist approach, 

because the frequentist approach is only executed when all relevant data are 

completely available. 

  

• Randomization. This is implemented in order to minimize the bias, and to 

produce balance between covariates (e.g. known and unknown variables). 

Randomization is considered to be the core in frequentist analysis, but is not 

required in the Bayesian approach.  

 

• Predictive probability. The Bayesian approach has the ability to calculate the 

probability for unmeasured information. This feature is available in the 

frequentist approach as well, but in terms of conditions on specific parameters. 

 

• Decision making. The Bayesian approach is considered very useful for 

establishing a decision for a particular situation or problem, because there is cost 
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and benefit associated with each problem and the Bayesian approach can support 

the evaluation of these costs and benefits for each likely future measurement 

event. In the frequentist approach this feature is not available, consequently this 

makes it weaker in decision making applications. In addition to that, the Bayesian 

approach provides more information through a priori probabilities which 

augments the available information (FDA, 2010).  

 

4.13 Summary 

The Bayesian model differs from the classical frequentist method, in that the unknown 

model parameters are random variables, while in the classical approach they are fixed 

constants. The Bayesian approach can give robust results compared to the classical 

method. Questions may arise concerning the veracity of the used a priori values since 

they may be based on personal opinion, and consequently judgements of subjectivity. 

The result of the Bayesian approach is totally affected by the implemented prior. Thus, 

results are effective if based on information correctly reflecting the situation in the 

problem. The Bayesian Approach can give reliable results when the data are limited to a 

few samples, for example merging DSMs if only two data sets are available, or building 

footprint extraction limited to only one data set.  
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Chapter 5 Merging Digital Surface Models (DSMs) Using Bayesian 

Approaches 

Advances in data acquisition have led to a provision of heterogeneous data sources. 

Notionally, using many data sources is better than using only one, but the problem is 

dealing with all the data simultaneously. It is necessary to use an efficient method to 

merge them. Merging or fusing DSMs using different techniques is an active research 

field, due to increasing sources of DSMs. The candidate merging technique selected for 

this investigation utilizes Bayesian statistics; it has been selected because it offers the 

means to clearly consider the uncertainties in the estimated parameters.  

 

The aim of merging is to obtain both more informative and more accurate data than 

originally existed (particularly with respect to the objects of interest and the Survey and 

Mapping application). The new merged DSM is obtained from data arising from the 

combination of two or more digital elevation models. 

 

If a sound technique is used in the merging it will provide an informative result. 

However, when different images are used, to produce digital elevation models, the image 

matching will produce different results and somewhat different objects. Perhaps the 

simplest method of merging DSMs is averaging and giving the same weight to all 

sources. Even a weighted average method may not attain the most accurate results in the 

output merged digital surface model, and, in order to overcome predicted imperfections 

in the output, an approach more soundly based in theory has been established, for 

consideration.  

 

As well as considering the well-established weighted-average approach (Maximum 

Likelihood Estimation) that is widely used for merging and is later used for comparison 

(see Table  6-1), this chapter will describe the methodology for merging DSMs using a 

Bayesian approach. The stages that are described (see Figure 5.1) support the merging of 

DSMs that have been produced from processing satellite images. Two approaches to 

merging: Maximum Likelihood Estimation (the weighted-average approach) and using a 

Bayesian approach will be tested. A quality assessment of the input data was essential for 

both methods and was executed prior to the merging process and also an a priori 

estimation of the elevation’s probability distribution had to be performed in order to 

proceed with the merging method using the Bayesian approach.  
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Figure  5.1 Flow chart for DSM merging process. 
 
5.1 Test Site  

The test area that is used to merge the DSMs is located in Glasgow, United Kingdom. 

The test area was on the Universal Transverse Mercator (UTM) projection, longitudinal 

zone 30 ‘North’ using the WGS84 figure of the Earth for both the vertical and horizontal 

datum. The area had coordinates, bottom left corner (417820 mE, 6191335 mN) and 

upper right (420527 mE, 6195090 mN), covering an area about 10km2 that measured 

2.7km by 3.75km. It is an urban area including different kinds of buildings, different 

types of vegetation including trees, and a river with steep banks in an otherwise gently 

sloping area. The elevation range varied from 49m to 152m, an elevation range of more 

than 100m. It was considered important to have a Glasgow location to enable a high level 

of local knowledge. 

 

The study area that has been selected in this research is located in Glasgow, UK, which 

has high levels of cloud cover most of the year. Consequently, the number of archived 

satellite images for that area is very limited. Therefore, the only very high resolution 

satellite imagery available among that illustrated in Table  1-2 is limited to two stereo 
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scenes, one of them is Pleiades (Figure  5.2(a)) and the other is WorldView-1 (Figure  5.2 

(b)). They have been processed using Socet GXP in order to produce different DSMs 

(Figure  5.2(c)).  

 

As shown in the Table  3-1, the first source was from the Worldview-1 (WV-1) sensor 

from the DigitalGlobe organization, dated 24 May, 2012 covering 100km2, while the 

other was from the Pleiades sensor from Astrium Geo-information services, dated 09 

July, 2013, covering 25km2. Both products were provided by their suppliers with a 

resolution of 0.50m.  

 

As shown in Table  3-1 the time gap between the satellite imagery is calculated to be 

around 14 months. Merged DSMs can be useful at the city-scale, thus it is normal that 

changes will have occurred in the area of concern over the period of the images’ capture, 

as referred to it in  1.4. However it has been assumed, in this research, that no changes 

have arisen within the time period, therefore the merging in this research does not 

consider any multitemporal effect. This assumption has been made in order to focus on 

the effect of the merging using a Bayesian approach. For that reason, at the validation 

stage, the focus was only in an area in which no building changes had arisen during the 

image capturing period, which represents a gap of about 14 months. There is a seasonal 

gap of seven weeks, which in the west of Scotland, will result in slightly denser leaf 

coverage in early July than late May, so it might have been necessary to consider the 

multitemporal effect of increased leaf coverage during the merging process. It is 

suggested that prior to merging the possibility of change should be considered and 

change detection, perhaps arising from significant differences in vegetation cover or 

building development, introduced, if needed. In this research, any multitemporal effect 

arising from vegetation cover or building development has been neglected since the 

study area was for an urban area. During testing, it was noted that no building change 

occurred in the area, therefore no action has been taken with regard to this; otherwise, it 

is important to consider this factor.  

 

Also, in this research, since the DSMs used have been produced with the same software it 

is assured that the resolution of the used data are identical, and the same resampling 

operation has been applied on the used data during the DSM generation stage. As 

mentioned in section  3.6.1, the techniques used in DSM generation, were based on 
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determining the coordinate at locations of high intensity variation or edges, only. Later 

resampling has been implemented to produce a grid pattern. 

 
(a) 

 
(b) 

.  

 
 (c) 

 

  
(d) 

Figure  5.2 Study area and study data used in merging DSMs: (a) Pleiades satellite 
imagery with resolution 50cm; (b) WorldView-1 satellite imagery 50cm; (c) DSM 1m 
resolution produced form Pleiades stereo imager; and, (d) DSM with 1m resolution 
from WorldView-1 stereo satellite imagery. 
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The study area is specified to have varying morphology and types of built structures of 

different scales. In addition, land cover varied from green areas to road surfaces. The data 

have been processed and rectified for DSM production and orthoimagery using Socet 

GXP 4.1 software, with the aid of GCPs. Using SOCET-GXP, the resolution of the 

orthoimagery produced was 50cm, while the resolution of the DSMs was 1m. It is 

recommend by the SOCET GXP provider that the orthoimagery resolution be higher than 

the GSD of the DSM (Zhang and Smith, 2010), and the project reported in this thesis 

confirmed that as good practice. 

 

5.2 Digital Surface Model (DSM) Quality Assessment  

To start the merging process it is necessary to find out the quality of each digital surface 

model. DSM quality is an intensely researched topic commencing about 40 years ago, in 

1972, led by Makarovic (Li, 1990), in The Netherlands. The quality of the DSM is based 

on measuring the error in DSM heights. 

 

There are many factors affecting the accuracy of a DSM, according to Chen and Yue 

(2010), Li (1992) and Papasaika-Hanusch (2012), such as: 

• distortion inherent in the sensor; 

• the source data’s attributes such as density and spread; 

• surface or terrain features such as relief, land-cover, and texture;  

• the mathematical approach that has been implemented to produce the DSM from 

the data source or the interpolation methods used; and,  

• techniques used in map-digitization or field surveying. 

common statistical measurements that have been used to describe the quality of the 

Digital Surface Models (DSMs) include the following (Papasaika-Hanusch, 2012 ): 

 

Arithmetic Mean of the error 

 	� = $~	�∆��
~

$��   5-1 

 Standard	Deviation of unbiased error 

 	� = 	� $�~ − $ ��∆�� −~
$�� � �  5-2 
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 Root	mean	square	error	 
 	jX�> =	�1��∆ℎ�5

�
���   5-3 

Mean	absolute	deviation	 
 MAD0 = 1�	� |∆ℎ� −�

��� ?|  5-4 

Median	absolute	deviation	 
 MAD1 = median|∆ℎ� − ?|  5-5 

 

Where: 

 ∆ℎ� is the difference between the checkpoint measured by GNSS and that obtained 

elevation from the DSM - i.e. the ‘error’ (or discrepancy);  

μ is arithmetic mean of the error; and, 

n is number of measurements or checkpoints. 

 

Li (1990) evaluated the quality of the DSM experimentally using average error and 

RMSE, based on the difference between checkpoints and interpolated DSM points. To 

concur with Li, according to Chen & Yue (2010) the quality of the DSM is assessed by 

measuring the relation of the elevation of the produced DSM to the real elevation. The 

statistics that are often used to encapsulate the quality of a DSM are root mean square 

error (RMSE) and, sometimes, estimated standard deviation of the unbiased error; the 

latter may be considered when the bias is neglected in the data (Abdullah, 2013).  

 

The accuracy of the DSM varies at each pixel and error is not distributed uniformly over 

all the DSM, it varies with changes of morphology and thus quality details could be 

given at each point (Karel and Kraus, 2006) in a DSM. However, the calculation of the 

quality of DSM at each pixel is considered to be complex and more challenging than 

determining a single RMSE value. According to Li (1988), Papasaika-Hanusch (2012), 

Torlegård et al. (1986), Wise (2000) and Yang and Hodler (2000), RMSE is considered to 

be the most common method to calculate the quality of the DSM.  
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But a problem with this single value, RMSE, is it is based on the assumption that the 

error in the data has no bias, which should not be always legitimate ((Li, 1993) cited in 

(Papasaika-Hanusch 2012)), furthermore it does not give any indication about the bias. 

In additon to that the RMSE is influenced by: the slope; reference data elevation 

distibution; and, the number of check measurements (Papasaika-Hanusch 2012). 

 

 To overcome this deficiency in the RMSE Papasaika-Hanusch (2012 ) suggested using 

other parameters that do consider outliers and biases, such as mean absolute deviation 

MAD0 and median absolute deviation MAD1.  

 

The quality index that has been used foremost in this study to represent the quality of 

DSMs is a single RMSE value per terrain model, based on using the measured ground 

control points as shown in Figure  5.3. The points that have been measured are located far 

from buildings on the ground and on a flat surface, in order to reduce the errors arising 

during image matching. Some of them have been selected on the roads or walkways. 

 

In addition to assuming the errors are distributed uniformly, it has been assumed the 

images are fully registered; this assumption arises from the situation where both DSMs 

are produced with the same grid spacing using the same software, same technique, and 

similar resolution satellite images. The only differences are sensor source and acquisition 

angle. These two factors (source and acquisition angle) cause the created DSMs to be 

different due to the image matching technique, thus identical features appear different in 

their respective DSMs. 
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Figure  5.3 The study area indicating the checkpoints used for quality assessment. 
 

5.2.1 Blunders 

The quality, or the uncertainty, of each DSM (i.e. produced from Pleiades and 

WorldView-1 imagery) is obtained from the RMSE equation  5-3. The sources of errors 

(whether blunders, systematic or random) in DSMs arise either during acquiring the data 

or during the modelling stage (i.e. interpolation). Although much research has been 

undertaken into how to remove blunders during DSM construction (Jancso, 2008; 

Milledge, 2009), still some of them exist, and in the case of this study it was necessary to 

detect and remove them. Before calculating the quality of the DSM, blunders, or outlier 

errors at checkpoints have been detected and eliminated.  
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The ground truth value, which is used to calculate error, was based on using checkpoints 

which have been obtained using differential GNSS (the points consisted of a mixture of 

RTK and Static GNSS points as mentioned in section  3.4), and each is referred to as ‘a 

true ground point’. The number of measured points is 61 points, and they have been 

located as well-defined points following an irregular pattern in the study area 

(Figure  5.3). Among those 61 points, only 30 points were used to evaluate the quality of 

the DSMs and the rest were left to assess and evaluate the results of merging.  

 

The use of checkpoints to determine accuracy is well-established in Survey and 

Mapping, and the assumption is that both the set of checkpoints and the data being 

checked are blunder free, and that remaining errors are purely random, that is without 

outlier errors. Although all efforts should be made to avoid these, there may be blunders 

in the data being checked or even the checkpoints. Torlegård et al. (1986) introduced the 

term “unfiltered errors” for the difference between the elevation produced from 

photogrammetric techniques and checkpoints produced directly from measurements, 

whereas errors that remain after eliminating blunders, Torlegård et al. (1986) called 

“filtered errors”. 

 

Ideally, “filtered errors” should be used for assessing accuracy; various approaches for 

eliminating outlier errors (i.e. blunders) have been proposed. An attractive approach, 

perhaps proposed because of its similarity to the removal of blunders when determining 

the precision of a set of repeat observations is the so-called “3 sigma” approach. Based 

on the assumption that the distribution of the errors following a Gaussian distribution, 

then sigma (σ) is the standard deviation of the error, thus “3 sigma” is a threshold to 

remove those checkpoints possibly associated with blunders, this means that 99.73 of the 

errors are lying within the often specified limits (e.g. ASPRS, 2015) of ±3σ. In their 

publication, Höhle and Höhle (2009) demonstrate that such an approach lacks robustness 

when calculating RMSE and suggest alternatives, including median, normalized median, 

absolute deviation, absolute deviation and sample quantile. Nevertheless, a “3 sigma” 

approach in the project later reported in this thesis (see section  6.3.1) did reveal a single 

checkpoint associated with a high error, which when removed from the set of 

checkpoints produced a more encouraging RMSE value. 

Although a comparison of data quality procedures is not a main focus of this research, 

one can concur with Hohle and Hohle, and acknowledge that removing checkpoints post 
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hoc lacks robustness. Checkpoints represent ‘the truth’; efforts should be made to ensure 

that checkpoints do so and contain no blunders. Furthermore, the points checked should 

also not be likely to included blunders. To quote the recent American Society for 

Photogrammetry and Remote Sensing (ASPRS) publication (ASPRS, 2015): 

 

“Vertical checkpoints shall be established at locations that minimize 

interpolation errors when comparing elevations interpolated from the data set to 

the elevations of the checkpoints. Vertical checkpoints shall be surveyed on flat 

or uniformly-sloped open terrain and with slopes of 10% or less and should 

avoid vertical artefacts or abrupt changes in elevation.” 

 

Considering the checkpoints used in this report, they were obtained using GNSS 

procedures. These procedures are susceptible to multipath errors introduced by nearby 

high buildings. Also, considering the points being checked, failures in image matching 

can arise near vertical objects, at steep slopes or where the height changes rapidly. As 

will be seen in Chapter 6, a ‘suspect’ checkpoint (point 20, in Table  6-1) was next to a 

14m high building, and for this reason should not have been included in the 

checkpointing process. Not only might the GNSS observation at the point be of low 

quality because of multipath problems, but the image matching could have resulted in an 

estimated height value in the generated DSM with a low probability of being correct 

because of a nearby high vertical object. Based on the above ASPRS recommendations, 

at least, the suspect point can be dropped from the set of checkpoints, and indeed should 

have been prior to accuracy analysis. 

 

In this research, all the errors in the DSMs, prior to merging, obtained from the satellite 

imagery and the measured checkpoints were within the limits defined by the threshold 

mentioned above. The histograms, in Figure  5.4, show the discrepancies for each original 

DSM against measured checkpoints. In order to estimate the distribution of the errors and 

to check whether they follow a normal distribution the q-q plot test has been applied. 

From Figure  5.4 (c and d) the q-q plots shows that the error does not deviate from the 

fitted line by a large amount and they are very close to the fitted line; this application of 

q-q plots was implemented by Bilskie and Hagen (2013) in their investigation of LiDAR 

DSM error over marshland and urban areas, where the close fit indicated that errors are 

normally distributed. 
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(a) 

 
(b) 

 
(c) (d) 

Figure  5.4 Original DSMs error distribution histograms , DSM points against checkpoints 
in Table  5-1 (a) Pleiades DSM against RTK checkpoints, the histogram of the error 
appears not to be distributed normally (b) WV-1 DSM against RTK checkpoints, the 
histogram of the error appears to be distributed normally (c) the q-q plot for Pleiades 
discrepancy against measured checkpoints (d) the q-q plot for WV-1 discrepancy against 
measured checkpoints. 
 

Furthermore the Shapiro-Wilk test has been used for both datasets in order to confirm the 

normal distribution of the data analytically (Bilskie and Hagen, 2013; Shapiro and Wilk, 

1965). The investigation determined that the Shapiro-Wilk value for the Pleiades data is 

0.962 and the p-value is 0.370 and for the WV-1 is 0.944 and 0.124, respectively; it can 

be seen that both of the p-values are greater the 0.05. From the Shapiro-Wilk test it can be 

inferred that the error is normally distributed (Shapiro and Wilk, 1965). 

 

Table  5-1 shows the ground checkpoints that have been used to evaluate the quality of the 

Digital elevation models from WorldView-1 and Pleiades after checking for the 

blunders. Although both of the images which have been used to produce the DSM have a 

50 cm resolution, their panchromatic characteristics are different, as are their quality 

characteristics. The DSM produced from the pansharpened Pleiades images has an 

RMSE of 0.8m and 0% of errors in the checkpoint heights are blunders; the DSM 

produced from the panchromatic WorldView-1 images has an RMSE of 0.35m and 0% of 
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the errors in the checkpoint heights are blunders. As illustrated in the literature, see 

Table  1-1, the RMSE obtained is 0.6m from using satellite imagery with resolution 0.5m 

implementing an LSM technique, and the RMSE is 0.98 implementing an NGATE 

technique but using satellite imagery with resolution 1m. While the RMSE of the 

processing 0.5m resolution satellite imagery implementing SGM is 0.4m as shown in 

Table  1-1. However the result obtained from processing WV-1 satellite imagery is better, 

with an RMSE of 0.35m, while it is twice that with respect to the Pleiades result with an 

RMSE of 0.8m. The discrepancies are assumed to be due to the resolution of the satellite 

imagery as referred in the last paragraph of the section  8.6 and the geometry of the 

satellite platform as explained in  6.4.  
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Table  5-1 The quality characteristics of the two DSMs using the available checkpoints. A +ve 
discrepancy means the GNSS elevation is above the Pleiades or WV-1 elevation. 

pt. E.(m) N.(m) 
GNSS 

Hgt.(m) 
Pleiades 
Hgt.(m) 

WV-1 
Hgt.(m) 

Description 

0 419984.044 6191665.674 73.269 72.848 73.067 
corner’s edge of walkway in 

public park 

1 419827.489 6192039.621 75.220 75.008 75.093 
corner’s edge of walkway in 

public park 

2 419157.261 6192231.164 72.249 72.592 72.154 
Walkway edge in Kelvin Grove 

museum park 

3 417861.733 6192359.230 61.611 62.447 62.330 Car park edge 

4 419792.232 6192381.036 96.616 96.620 96.322 
fence’s corner of statue in public 

park 

5 419374.942 6192448.093 95.256 95.780 95.658  white mark of road in car park 

6 419855.809 6192494.495 87.011 87.852 87.043 white mark in football Stadium 

7 419009.251 6192531.022 78.947 80.223 79.133 white mark in Car park 

8 419896.604 6192772.322 68.180 68.796 68.173 white mark in Car park 

9 417893.129 6193083.474 74.153 75.419 74.752 
corner’s edge of Walkway in 

public park 

10 420166.325 6193155.845 81.503 82.118 81.613 Road white mark 

11 419278.398 6193245.370 82.643 83.417 82.816 Texture variation in the walkway 

12 418253.589 6193605.839 82.762 83.923 83.201 Public walkway corner  

13 419226.770 6193655.078 72.136 73.529 72.428 
Walkway’s corner in the public 

park 

14 420021.903 6193699.987 97.970 98.996 98.106 boundary’s corner in Public park 

15 419763.363 6193875.322 90.948 91.912 90.979 boundary’s corner in Public park 

16 420181.657 6194030.566 115.529 116.381 115.865 
Boundary’s corner in 
Playground 

17 418920.726 6194071.048 81.444 82.302 81.668 
slow down ground mark’s corner 

in the road 

18 419276.224 6194105.983 86.485 87.499 86.445 
Residential area green park 

boundary’s corner 

19 419500.284 6194232.121 96.613 97.095 96.812 
Pedestrian crossing white mark 

edge. 

20 418365.912 6194296.239 104.684 105.486 104.715 
Walk way corner to the schools 

tennis yard 

 
21 420456.344 6194416.052 107.369 108.048 107.485 

Corner of the slowdown ramp in 
the street 

22 420270.417 6194523.306 120.904 121.364 121.074 
Corner of the walkway to the 

entrance to the  school 

23 420415.829 6194545.737 112.530 113.257 112.486 White mark in the road 

24 418204.263 6194556.991 111.292 111.697 111.212 Centre of the road round-about 

25 420043.469 6194571.014 131.332 132.317 131.441 Pedestrian road crossing mark 

26 420506.778 6194654.890 109.602 110.028 110.017 
Corner of the slowdown ramp in 

the street 

27 419833.300 6194754.782 123.470 123.705 123.837 
White mark of intersection of 

two roads 

28 418211.988 6194994.794 95.250 94.982 96.065 
Corner of manhole cover on the 

walkway 

29 418675.675 6195044.468 85.781 86.935 86.718 White mark on the ground 

RMSE (m) 0.800 0.350  
number of points 30 30  
Arithmetic mean of the error (bias)(m) -0.660 -0.198  
σ of error (m) 0.460 0.294  
Max +ve discrepancy (m) 0.421 0.294  
Max –ve discrepancy (m) -1.393 -0.937  
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5.3 DSM Formation Model 

In order to achieve the merging operation using a Maximum Likelihood Estimate and a 

maximum a posteriori probability, it is necessary to establish a model that relates the 

DSM to the true underlying DSM. As has been mentioned earlier in section  5.2.1, the 

DSMs obtained from image matching or any other techniques do not typify the surface 

perfectly, because it has many errors (blunders, systematic, and random errors). The first 

two errors can be treated, however, the third one, random error, cannot. Thus, the 

underlying measured DSM had errors that were embedded in it. 

 

The true DSM, which is denoted as	DSM�������, is related to the measured DSMs from the 

satellite image using equation  5-6. 

 

 	Z��,� 						= 			 Z���,� 						 + ε��,�   5-6 

Where: 

Z is the generated height from the DSM at location x,y, Z�	is the true underlying height from the DSM������ at location x,y, and 

ε is the height error in each DSM at location x,y. 

Equation  5-6 shows the proposed forward model that relates the measured digital surface 

model that is obtained by combining the true (i.e. very accurate) digital surface model 

and latent error. The latter, is considered as the source of uncertainty in the DSM, 

determined through the inverse model of equation 5-6 (Sommer et al., 2009), which will 

be explained in the next section.  

 

5.4 Merging DSMs  

After constructing the model (in section  5.3), and despite its simplicity that may be 

considered the most challenging part of the whole process, the next stage is merging the 

DSMs to obtain the underlying true DSM, represented as DSM������. An algorithm for 

merging of differently sourced digital surface models is sought. Clearly, the proposed 

algorithm is used to reduce the number of data sources providing information related to 

substantial ground objects and to improve the quality of that information, and to produce 

more complete and reliable data.  

 

Merging DSMs may present an ill-posed problem. According to Hadamard (1902), cited 

via Beyerer et al.(2011)) a problem is considered to be ill-posed if a solution: is not 
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unique; fails to exist; or the result is greatly affected by small changes in the input data. 

The reasons for considering the merging of DSMs as perhaps ill posed is that the results 

of merging are not unique (perhaps because of inherent random error). More generally, 

although the used DSMs are for the same area, due to occlusions, or other faults in the 

matching process, objects in some of the DSMs cannot be detected, which consequently 

will affect the merging. 

 

The processing model used arises from considering the combination of the actual digital 

surface model values, represented by DSM������, and noise, through a simple transformation 

from the measured noisy digital surface model, represented by DSM, to the DSM������, at each 

point in the model. The model for generating the data, developed from equation 5-6, is 

shown in equation  5-7, 

 

 

�
��

DSM�(�,�):::DSM�(�,�)�
�� = DSM������(�,�) +

�
��

ε�(�,�):::ε�(�,�)�
�� 			 ∶ T > 0  5-7 

The above model can be inverted, to form a so-called inverse model, in order to infer the 

required DSM. DSM�	to	DSM� represent the measured digital surface models, while DSM������		 represents the underlying real or latent digital surface model values and �ε� 	to	�ε� 	represents the error at each location in the measured DSMs. The calculation 

determines the DSM value for each DSM and the error as well at each grid location x,y. 

Regarding the errors, they are assumed to be random variables that are normally 

distributed, therefore, for each grid location’s elevation in each DSM, an error can be 

calculated. This calculation, based on the normal distribution, requires a mean and a 

standard deviation. The mean will be 0 and the variance is assumed from the numeric 

value of the RMSE determined from the checkpoints for each DSM, and can be 

represented as ε~n�0, @5 ; N is the representation of a Gaussian distribution with µ 

equal to zero and σ2equal to determined RMSE.  

 

The error (RMSE) is assumed to be constant throughout the digital surface model, 

therefore εk�i, j 	is assumed to be constant overall the DSM which is represented by a 

single value (RMSE) of each DSM. The problem in this situation is to merge many noisy 

measurements for the purpose of determining the original DSM	 from these noisy 

measurements. 
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The aim of this merging is to evaluate contributing digital surface models using 

redundant measurements, with the expectation that this will lead to both a more accurate 

estimation of DSM������,  and a more robust method for removing the error or noise. 

Maximum Likelihood and maximum a posteriori methods are used in order to get 

elevation values for the merged DSM. This is based on inverting the DSM formation 

model, see equation 5-7, to get the real digital surface model (DSM)�������. 

 

As indicated, the merge procedures followed are based on a Maximum Likelihood 

approach and a Bayesian approach; the later approach requires a priori data, which can 

be any fact(s) about the situation. In the case reported on in this thesis, the fact that was 

used to establish the a priori data is based on the assumption that digital surface models 

of the ground represent a smooth and not a rough surface. This assumption helps to 

establish an a priori probability for the digital surface models based on local entropy; an 

extended explanation of this will be given in section  5.5. 

 

The proposed approach is probabilistic, built on an assumption of noisy DSM data 

(Beyerer et al., 2011; Jalobeanu et al., 2008; Papasaika-Hanusch, 2012; Petremand et al., 

2012; Sharma et al., 1999, 2001; Torlegård et al., 1986). The assumption that is made is 

that the underlying data (i.e. DSM������) records the true elevation which is represented by a 

linear function equation 5-6. The DSMs contains errors that are classified to be random 

which consequently result in uncertainty in the yielded data. For that reason, it is difficult 

to analyse problems that contain randomness or uncertainty using deterministic methods, 

therefore probabilistic methods appear to have an advantage in solving such a situation 

(Andrews and Phillips, 2003).  

 

Thus a probabilistic (also referred to as frequentist or classical) approach providing the 

Maximum Likelihood for the true elevation and a Bayesian approach giving the 

maximum a posteriori probability (MAP) for the true elevation, based on solving the 

proposed inverse model (derived from 5-7), are both examined. 

 

5.4.1 Merging Using Maximum Likelihood Method  

A Maximum Likelihood method is considered the traditional method for estimating the 

results using noisy input data, in order to solve the proposed ill-posed inverse model, 

based on the assumption that noise is normally distributed within the data. The 
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Maximum Likelihood is based on maximizing the probability associated with the 

estimated value of a pixel in the merged DSM; that is the error between the elevations in 

the input pixel (DSM������(�,�)) and the corresponding estimated pixel (DSM�(�,�)) is required 

to be minimized. This can be summarized as estimating the parameters of the model, 

referred to as the inverse model, which has been formed for the merging task using the 

data that have been gathered. In summary, it is based on selecting the model’s parameters 

in the case where the probability assigned to the measured data has produced a maximum 

probability. The function for estimating Maximum Likelihood, developed by 

Mittelhammer (2013), is represented by	R�D , and in the case that there are many sensors 

(i.e. two sensors), the likelihood function is: 

  

 R�D = 	I� �,  5|D = I� �|D I� 5|D   5-8 

 

The probabilities I� �|D  and I� 5|D  assumed to be normally distributed with mean 

z1 and variance σ�5 and z2 and variance σ55respectively; 

 

 
I� �|D = �¡¢√5£ H�¤¢¥¦ §§¨¢§  ; I� 5|D = �¡§√5£ H�¤§¥¦ §§¨§§  

 

 5-9 

The estimated value of z is obtained by Maximizing the Likelihood function 

Equation  5-8 with respect to z (Mittelhammer, 2013), which leads to: 

  

  b̅c© = argmaxª I( �,  5|D = 1@�√2G H�«¢¬­ §5¡¢§ 	. 1@5√2G H�«§¬­ §5¡§§   5-10 

 

where: 

  e is: is the exponential function  

 σ is: is the standard deviation which is representing the Digital Surface Model quality 

  b̅c©: is the value of the merged elevation using Maximum Likelihood.  

 

Equation  5-10 yields Equation  5-11, after it is simplified and maximized with respect to 

z, in order to get the Maximum Likelihood estimate for z. This method requires the 

variances to be known for each measurement, which in this case is represented by the 

square value of the quality (using RMSE in this situation) of each digital surface model.  
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  b̅c© = ®  �@�5 +  5@551@�5 + 1@55¯  5-11 

 

Figure  5.5 illustrates the result of obtaining Maximum Likelihood from two 

measurements along the z axis to find the value of the  b̅c© (Zisserman, 2007) 

 

Figure  5.5 the explanation of probability parameters using Maximum Likelihood method 
(Zisserman, 2007). 
 

In other words, when the likelihood function and the observations z (i.e. z1, z2) are given 

the estimated value is referred to as  b̅c©. 

 

The code for the merging of the DSMs using C++ code is listed in appendix A. 

 

The model can be extended to cover more than two sensors, which is the case if there is 

more than one set of measurements: 

 

  b̅c© = ®  �@�5 +  5@55 +  5@75 + ⋯1@�5 + 1@55 + 1@75 + ⋯	¯  5-12 

 

Equation  5-12 can be used for any number of sensors; this is called the weighted average; 

it merges the data based on the quality of each dataset, the better quality getting the more 

weight (or a lower standard deviation). This method is a widely used and popular method 

in data fusion and merging digital elevation models; it is considered to give appropriate 

results and is easy to use (Battiato et al., 2002; Costantini et al., 2006; Ferretti et al., 

1999, 1998; Hoja and D’Angelo, 2009; Knöpfle et al., 1998; Podobnikar, 2007; Schultz 

et al., 1999; Torlegård et al., 1986; XU et al., 2010). The Maximum Likelihood approach 

has been said to offer a promising result when using it in merging satellite images 

(Schindler and Papasaika-Hanusch, 2011).  
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5.4.2 Merging Using Bayesian Approach  

In the previous section  5.3 the inverse-model was defined; this relates the measured 

digital surface model (DSM�(�,�)) to the actual digital surface model (DSM������(�,�)) derived 

using Maximum Likelihood. The aim of merging, using a Bayesian approach, is to get an 

estimate of the real digital surface model by converting the inverse model. In this section 

the Bayesian approach is used to invert the forward model; this model is used to express 

the digital surface model formation, blended with uncertainty, while incorporating a 

priori  knowledge about the digital surface model (i.e. its morphological properties). The 

most important benefit in a Bayesian approach and which does not exist in the other 

methods, is that the effect of noise is reduced by using a suitable a priori value. As 

already mentioned, it is assumed the errors are random and they can be represented by a 

Gaussian distribution with mean equal to elevation of the used DSM and variance 

numerically linked to the uncertainty in the digital surface model, measured by 

evaluating the quality, using checkpoints. 

 

To effectively produce a merging technique that is efficient, dependable and economic, 

researchers have used probability models which help them to understand the situation of 

interest clearly (Leon-Garcia, 2008). The aim of using a Bayesian approach to merge the 

data is to increase the digital surface model quality and to solve problems that arise 

during the digital surface model production - such as occlusions and shadows, which are 

considered to be the main drawbacks in image matching when producing a digital 

surface model. Meanwhile as much topographic detail as possible should be kept in the 

resulting data (i.e. this can be produced by adding details from different Digital surface 

models into one, meanwhile minimizing the uncertainty in the produced digital surface 

model). The aim is to construct a new digital surface model through a probabilistic 

approach, incorporating a priori knowledge. The proposed technique is based on 

utilizing the image formation model. This is based on the idea that the underlying digital 

surface model is affected by noise (error) and a local linear function. Digital surface 

model merging can be considered an estimation problem and the image formation model 

is based on correlating the merged digital surface model with the measured digital 

surface model using a first order approximation.  

 
The proposed method for merging digital surface models consists of two parts:  
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1. computation of the weights and a priori elevation for each digital surface model at 

each specific grid point; 

2. merging the digital surface models using the Bayesian approach to get MAP.  

 

Regarding the computation, included are:  

1. quality assessment, at this stage the accuracy of each digital surface model is 

calculated individually;  

2. a priori elevation calculation, the a priori elevation value has been calculated, and 

for each digital surface model the quality has been calculated individually and later 

has been added to the model; and finally, 

3. implementation of the model, which is considered a trivial part.  

 

To implement the model, both sets of input data should be at the same resolution (in this 

research this has been achieved during the digital surface model production stage; 

however it is possible to resample the digital surface model so they match each other), 

but this might well introduce additional uncertainties to the resampled Digital Surface 

Model due to the defects in the applied algorithm.  

 

The uncertainty in the processed data can be considered to be of two types, either 

stochastic or systematic. The stochastic uncertainties are due to random processes arising 

from using a probabilistic model. The systematic uncertainties arise from using an 

imperfect model. For that reason since the Bayesian approach is using probability to 

evaluate the parameters, consequently for measuring uncertainty then it is possible to 

consider probability as an essential tool. For that reason a Bayesian approach has been 

considered for dealing with such uncertainties (Gelman et al., 2004). Also it is possible to 

use the probability distribution function to evaluate the degree of belief in the 

measurements (Beyerer et al., 2011).  

 

Since merging deals with more than one digital surface model it is hoped that the 

uncertainty will eventually be decreased. According to Jalobeanu et al. (2008), a 

Bayesian approach can give a robust solution, in data merging, if judicious a priori 

information is employed, in contrast to a likelihood method. The traditional method for 

merging digital surface model is Maximum Likelihood and does not include perturbation 

in the computation. A priori information is necessary in the Bayesian approach, and the 
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assumption made to infer the a priori elevation that is used in model is based on the idea 

that buildings in the digital surface model specified have smooth surfaces. Based on this 

assumption a roughness index (i.e. local entropy) is used for maximizing local entropy. 

Without some assumptions it is impossible to make inference about new parameters 

(MacKay, 2003). 

 

The Maximum Likelihood approach can be considered to deal with each pixel 

individually and does not take into consideration spatial correlation in the fused images’ 

pixels. For that reason the DSM resulting from the fusion does not consider natural 

characteristics, such as smoothness, or other representations of the natural ground 

(Kotwal and Chaudhuri, 2013). So, in order to overcome the spatial correlation problem, 

it was necessary to introduce an a priori value which satisfactorily transformed the 

Maximum Likelihood value into a maximum a posteriori value, and transformed the 

problem from an ill-posed one into a well-posed one, by introducing an a priori value 

into the solution of equation 5-7, which leads to the merged digital surface model 

(Beyerer et al., 2011). 

 

According to the Bayesian equation, the merging is based on multiplying the likelihood 

by the a priori elevation; the likelihood is based on maximizing the probability. 

Recalling that the Bayesian rule, used to get the a posteriori probability, is represented 

by: 

 I(D|  = I� |D I�D I�  = �STH�Sℎ��V × IYS�Y��YZ3�S S��	�38W�Y  5-13 

 

Recalling equation  5-7, and assuming that the sensor error is normally distributed with 

mean z and variance σ
2
, n� , σ5  (which represents the quality of the digital surface 

model) if there are two sensors, then: 

  � =   + ±�	, ±1~n� 5, σ�5   5-14 

 

  5 =   + ±5	, ±2~n� 5, σ55   5-15 

 

where N is normal distribution. 

From the joint likelihood function it is possible to get the following:  
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I( �1,  52|  = 	I� 1|  × I� 2|   

 
 5-16 

 

The elevations predicted through maximizing entropy have associated probabilities. 

Suppose that the elevation error is normally distributed, that the mean error is equal to 

mean elevation which is in this case is � �, �Y	 5 , then the estimated a priori probability 

of the elevation, from (DSM���,�  , can be based on a smoothed surface. This smoothing 

can be achieved by maximizing local entropy; three smoothed data sets are produced, 

based on a 3x3, a 5x5 and a 9x9 window respectively. For the two models being 

considered here, i.e. (DSM���,�  	where k = 1 or k = 2, the estimated a priori probability 

of the elevation can be expressed: 

 

 I� � ~nt �²,σ�5u  5-17 

 

 I� 5 ~nt 5²,σ55u  5-18 

 

where: 

p(.) is the probability distribution of the error which is normally distributed N(. , .); 

and, 

σ5  is the variance of the error which is represented by the square of the quality or RMSE 

of the DSM.  

 

For each data set the probability can be calculated and, since they are independent, the 

product will be: 

 It �²,  5²u = It �²u × It 5²u  5-19 

 

The, a priori elevations are obtained by maximising the entropy index, as discussed in 

the next section in more detail. This is based on the assumption that the surface of the 

building and ground are smooth, therefore by maximizing the entropy index it is possible 

to get a value which can be used as an a priori elevation and which later can be used in a 

probability form.  

 

Regarding variance, the other parameter of the normal distribution, it will be the quality 

parameter of the original digital surface model, although the quality of the digital surface 
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model could be considered to have changed slightly since assigning new heights to the 

candidate pixels in the model (that change will be very small and can be neglected since 

a large area is being dealt with, which consists of thousands of pixels, moreover that 

change is between -0.25m and 0.25m, therefore it will have very little effect on the 

overall quality of the digital surface model).  

 

It was mentioned in section  4.9, that the Bayesian approach can be simplified to include 

only the likelihood and a priori data, and that I( ), the normalization factor, can be 

eliminated since the situation is not dealing with finding the absolute value of the 

probability. 

 

Recalling the simplified Bayesian equation:  

 

 I( | �,  5 = I� |D I�D = I� �,  5|  It �²,  5²u  5-20 

 

and, assuming there are only two sensors, this results in: 

  ̂b0x = 3Y�Z34	I� | �,  5 = � | �,  5 ~H¬J�­¢¬­ §5¡�§ 	´			�­§¬­ §5¡5§ ´			�­¢µ¬­ §5¡�§ ´			�­§µ¬­ §5¡5§ K
 

 5-21 

 

Simplifying the equation and minimizing the result by taking the log of equation  5-21, 

the result of the Maximum A Posteriori (probability) (or MAP) which represents the 

merged digital surface models can be obtained from the following expression: 

 

  ̂b0x = ®  �@�5 +  5@55 +  �²@�5 +  5²@551@�5 + 1@55 + 1@�5 + 1@55¯  5-22 

 

The result represents the value after merging two sensors. It is clear that the merging 

depends on the weight that is assigned to each DSM and this is obtained from assessing 

the quality of each digital surface model. It is clear that weight is inversely proportional 

to height and more weight is given to the lower variance or higher quality value and less 

to the low quality digital surface model. In addition to the weight, the other factor that 

influences the result is the value of the estimated a priori elevations, the derivation of 

which will be explained later, in section  5.5. 
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The code used for merging DSMs implementing Bayesian approaches is listed in 

Appendix B. 

 

In the case of merging more than two sensors and accepting that the errors in the Digital 

elevation models are independently distributed, so the merging will be carried out by 

using the previous result as a priori and incorporating the new data in the Bayesian as 

likelihood (Beyerer et al., 2011). If and when a new digital surface model arrives, for 

example when there are three sets of data, the approach will be as follows: 

 

use the result of merging the two data sets as obtained from equation  5-22, to give a 

priori  probability of the elevation, and use the third data set (z3) in its original form, with 

the merged data set (ZMAP_old) in a weighted average operation, as shown in 

equation  5-23: 

  ̂b0x_�·¸ = ®  7@75 +  b0x_¹º»@b0x_¹º»51@75 + 1@b0x_¹º»5¯  5-23 

 

 

The equation  5-23 leads to minimizing the uncertainty in the digital surface model, by 

using the merged digital surface model as a priori elevation data. The new digital surface 

model data (z3) will be used to minimize that uncertainty. It is worth mentioning that in 

addition to obtaining an a priori value, it is important to determine the quality of the a 

priori elevation, also. It is clear that the quality of the prior digital surface model depends 

on the original quality of the input digital surface model; many approaches have been 

investigated to evaluate the data quality (σ). Torlegård et al., (1986) argue that the total 

quality of the digital surface model can determined by summing the quality of all the 

digital surface models and multiplying by a factor, which is either known or derived from 

photogrammetric input process, such as height of the flight, quality of the image, control 

points errors’ propagation and operation and instrument precision. On the other hand, 

(Chunmei et al., 2013; Hu et al., 2009; Weng, 2002) all calculate the total quality of 

different digital surface models by adopting the less rigorous approach of adding the 

quality as shown in the equation  5-24:  
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 @b0x_¹º»5 = @�5 + @55@�5@55   5-24 

 

5.5 Estimating the a priori using Maximum Entropy 

The above-mentioned characteristics can be exploited to measure surface roughness, 

while respecting multiple surfaces and distinguishing between rough and smooth 

surfaces. From this, it can be understood that entropy can be used to measure randomness 

with higher values indicating higher randomness and lower values representing lower 

randomness or lower disorder. From the viewpoint of energy, surface roughness can be 

represented by energy, with an excessive rate of similar minimal surface roughness 

values referring to a high value for entropy. The opposite is correct, when the values are 

not the same, or not close to each other; in that case roughness leads to low entropy. It is 

clear that entropy is representing the randomness in elevation variations which, 

consequently, can be employed to characterize the digital surface model. These 

characteristics can be used to manifest the representation of surface roughness, by 

assuming that the surface is smooth when the entropy is at the maximum and it is rough 

(or not smooth) when the entropy is lowest. Based on this assumption one can try to 

maximize the entropy by changing the value of the middle of the window. Maximizing 

the entropy by assigning different values will give an elevation that can be considered as 

the value of the a priori elevation. 

 

According to the earlier discussion, about entropy and how entropy can be used to 

represent roughness, and as illustrated in Figure  5.6, maximum entropy is obtained when 

the probabilities are similar, and the uncertainty is high between the probabilities, i.e. the 

elevations are close to each other and the surface is smooth. 

(a) 

 

 
(b) 

Figure  5.6 DSM shows different value of elevations used to represent the entropy (a) the 
entropy is low since the randomness in the elevations is high (b) the entropy is high since 
the variance in the elevation is low. 

 

Shannon’s approach to entropy has been used by researchers in different image analysis 
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applications. Telfer et al. (2003) implemented entropy in order to smooth the signal by 

removing the noise. Shiozaki, (1986) and (Dai and Wang, 2007) applied the principle of 

entropy to detected the edge based on using the pixel’s intensity to detect the entropy and 

the edge is represent at the location where the entropy is high. 

 

The assumption that is made when constructing the a priori value is to build on the 

assumption that building surfaces are smooth and have low roughness. This assumption 

can be quantified by using maximum entropy. The group of probabilities	p¼½ from p�� to p¾¿ in a specific window size MN, are represented by the value	H�. The equation  5-25 

represents a one dimension signal, but it can be transformed to apply to a window.  

 

 �� = ���I�À
Á

À��
b
��� ∗ ���I�À	 		  5-25 

Where: 

 			I�À = ��4, 6 /����S, Ã 	Á
À��

b
���   5-26 

 

The values of the height have been transformed into probability with the specific 

window, MN. At each element of the window, the height probability has been evaluated 

by dividing each pixel value, f, by the total values of elevation within the specific 

window in order to find 	I�À as shown in Figure  5.7. 

 

In order to determine the a priori elevation value, the window is generated each time the 

maximum entropy is determined for a specific elevation. The model that is used for 

determining the entropy is illustrated in Equation  5-27. 

 

 DÄ = 3Y�maxf Å���4 		  5-27 

 DÄ	in equation 5.19 represents the maximum entropy, and the value obtained can be 

considered an initial elevation, which will be used to create an a priori probability, this is 

obtained by maximizing each patch’s entropy. This approach can be followed for each 

Digital Surface Model individually.  

 

For the optimization, a window 3x3, see Figure  5., is traversed over the entire image in a 
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convolution operation, at each position the reference point Pi,j, the centre of the window, 

is simulated and is processed using equation  5-27 in order to find the maximum entropy. 

The height value (H) that produced the maximum entropy will be used as a priori. It is 

obvious that the value of Pi,j is extremely dependent on the neighbour pixels and their 

pixel values.  

 

Figure  5.7 Hyperpixel size 3x3 (green pixels), that is used to find the a priori elevation (red 
pixel) and is passed over the DIGITAL SURFACE MODEL (grey pixels). 
 

5.6 Prior Optimization 

In optimizing the maximum entropy, it was difficult to use the Monte-Carlo approach to 

get a best value. The reason behind this is that the Monte-Carlo method depends on 

assigning a value randomly sampled from a distribution based on a specified mean 

denoted by its elevation and variance; sometimes, in the approach used in this work, the 

random number generated is too far from the mean because the assigned distribution has 

the limits [- ∞,∞]. Consequently, this achieves an extreme value for the probability due to 

high roughness within the specified window, causing extreme modification of the ground 

morphology. This was happening because the entropy measurement was affected by 

boundary pixels. For that purpose, it was decided to find an alternative for simulating the 

error by creating a loop incrementing by 0.01m within a specific range. Two ranges were 

nominated: ± 0.1m and ± 0.25m. In addition to that, the time cost has been reduced 

dramatically, with the Monte-Carlo method the time was 6 hours and 4 minutes for 1k 

iteration and 12 hours for 250,000 iteration using 3x3 windows, and using a 2 x CPU 2.3 

GHz processor. However it cost less than 6 minutes to do the merging with a loop 

increment method, based on an increment value 0.01 which lead to the number of 

iterations being twenty for the ±0.1m (i.e. – 0.1m to + 0.1m) range and fifty iterations for 

the ±0.25m (i.e. – 0.25m to + 0.25m) range. 

pi-1,j-1 pi-1,j pi-1,j+1 

pi,j-1 pi,j pi,j+1 

pi+1,j-1 pi+1,j pi+1,j+1 
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5.7 The Implementation of Merging 

In the following section, the implementation process of the merging is outlined, by 

showing how the data are prepared and used in two different models for the merging: 

Maximum Likelihood (weighted average) and a Bayesian approach. 

 

Regarding the merging using, the Maximum Likelihood approach (i.e. weighted 

average): 

1. Calculate the quality of each DSM using the measured ground checkpoints as 

discussed in section  5.2. 

2. Apply the weighted average model that is explained by equation  5-11 in the case 

of two data sets, and the equation  5-12 implemented in the case of more than two 

data sets, as discussed in section  5.4.1. 

3. The format of the data and the C++ code used is shown in Appendix A. 

 

Regarding the Merging using the Bayesian approaches (i.e. maximizing local entropy): 

1. Find out the quality of each DSM using the measured checkpoints as discussed in 

section  5.2. 

2. Find the a priori elevation using the model described in sec.  5.5 and the 

Equation  5-27. Different window sizes have been used to find the a priori value 

in order to estimate the prior elevation (i.e. windows of 3x3, 5,5 and 7x7, see 

sec.  5.5), and for each window size two ranges of elevation has been used in the 

optimization process, namely prior elevation ±0.1m and prior elevation ±0.25m 

as discussed in section.  5.6.  

3. Use the model described by equation  5-22 to achieve the merging. 

4. The processing code for the merging and for the a priori elevation calculation is 

shown in Appendix B. 

 

5.8 Summary  

The merging process has been examined in this chapter. The first stage was built on 

constructing a model representing the relationship between an ideal data set and one 

containing error; the second stage used Maximum Likelihood and a Bayesian approach, 

in order to find an estimate for the merged digital surface model. The result obtained was 

either the Maximum Likelihood or the maximum a posteriori probability of the real 
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digital surface model in the case of having provided an a priori probability distribution.  

In this chapter the following has been discussed: eliminating the blunders from 

checkpoints for assessing the quality of the digital surface models using RMSE, by 

assuming the errors are uniformly distributed over the digital surface models; and, how 

the a priori probability of elevation has been evaluated for digital surface models using a 

maximum entropy index based on measuring the surface roughness. The chapter 

discussed the optimization process for finding the merged digital surface models.  

 

It has been assumed that the source digital surface models are correctly coordinated and 

there is no need for co-registration, although this assumption is not always valid and the 

DSMs should then be registered.  
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Chapter 6 Result and Validation of Merged Digital Surface Models 

The evaluation of merging algorithms and models developed for this research is 

presented in this chapter. It includes the evaluation of each created and merged DSM that 

has been generated from optical satellite imagery implementing the developed models. 

For evaluation purposes check data have been used which were acquired by differential 

GNSS observations and are considered to be the ‘true’ ground elevations. Both 

quantitative and qualitative analyses have been used in this evaluation. Empirical 

equations and statistical tests have been used in the quantitative evaluation and with 

respect to the qualitative evaluation visual inspection has been used based on generated 

profiles and slope maps from the DSMs. 

 

6.1 Reference Data  

To proceed in the validation, it was necessary to get reference data of known accuracy. 

The data that were used for this purpose were limited to GNSS checkpoints. The 

checkpoints that have been used to validate the original and merged DSMs were acquired 

in the field using Leica Geosystem differential GNSS. The points are referenced to the 

Universal Transverse Mercator (UTM) projection zone 30 ‘North’ and the height datum 

referenced to ellipsoid WGS-84. The number of checkpoints measured was 61. The 

number of the points were used in the quality assessment were 30 and the rest have been 

used in the validation as shown in Figure  6.1. 

 

6.2 Evaluation Indices  

The accuracy and precision of the defined model has been evaluated using two types of 

assessments; Root Mean Square Error (RMSE) and ‘determination coefficient’, r2, see 

equation  6-1 and  6-2, respectively, for further clarification. 

 

 



 Chapter 6 
 

146 
 

  
Figure  6.1 Validation checkpoints, the 31 checkpoints that have been used in the validation 
stage distributed over study area.  
  

The RMSE has been used to give an indication of accuracy rather than precision, and 

because it retains the effect of any bias embedded in the error. For that reason the RMSE 

has been preferred to standard deviation of error (Abdullah, 2013). Podobnikar (2009) 

and Li et al., (2013b) extolled RMSE for evaluating a DSMs. By utilizing some 

checkpoints measured in the field it can express random and systematic errors in the 

DSMs as well as standard deviation of error and bias.  

 

In determining RMSE, the difference of values between that predicted from a model and 

the ‘true’ value is measured. Each individual difference is a discrepancy, and may be 

considered an error. The RMSE value combines these errors into a single powerful 
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statistic. RMSE can be used to provide an estimation of error in any process model 

(Hansen and Schjoerring, 2003). As a means to represent error, RMSE has been 

increasingly used, according to Willmott et al., (1985).  

 

 jX�> = Æ∑ (2¹ÇÈ·É.� − 2Ê¹»·º,�)5���� � 	  6-1 

 

The RMSE index has been used in much research and it has been extolled by researchers 

because it is a straightforward calculation and not difficult for implementation. 

Nevertheless, it does not give an estimation for quality, at each individual post (i.e. 

interpolated grid point), in the surface that results from interpolation, therefore RMSE 

should be considered a global value for all DSMs (Wood, 1996), though unique to each.  

 

There are three types of error in height developed during DSM construction, these are the 

well-established blunder, systematic and random error. RMSE can initially represent 

systematic and random errors, and can reveal systematic errors (Li et al., 2013b), prior to 

their removal. According to ASPRS Guidelines for height assessment (ASPRS, 2015)  

1.9600 * RMSE is used to define vertical (or elevation) accuracy with a 95% Confidence 

Level (CL). This inference is based on the assumption that the discrepancies in elevation 

are random, follow a normal distribution and that neither systematic error nor blunders 

remain. 

 

r2 is the determination coefficient and helps to report the magnitude of the variance of the 

data as shown by the model (i.e. regression line). The coefficient of determination value 

ranges between 0 and 1 and the better agreement is indicated by a higher value (Legates 

and McCabe, 1999). 

 

First the r  value, the Pearson’s correlation coefficient, will be determined using 

equation  6-2 (Legates and McCabe, 1999) and then from it r2 is calculated: 

 Y = 	 �∑46 − �∑4 �∑6 Ë��∑45 − �∑4 5 ∙ Ë��∑65 − �∑6 5  6-2 

 
where: 

x is the elevation value given in the first dataset 
y is the elevation value given in the second dataset 
n is the number of values  
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With r2 the assumed linear relationship between two normally distributed variables can 

be represented; it gives an indication of the certainty with which data can be inferred 

from that linear relationship. Correlation between checkpoint heights and their DSM 

values has shown only a weak association with accuracy, which has led to it not being as 

popular as RMSE (Willmott et al., 1985). Nevertheless, it can be used to inspect the 

relation between the two variables (Li et al., 2013b), namely, the GCP height and the 

DSM height, see section  6.3.2. 

 

6.3 DSM Quantitative Assessment 

For the DSM assessment, a group of checkpoints (31 points) has been used to evaluate 

the quality of the DSMs. The merged DSMs can be classified into two types: Maximum 

Likelihood (i.e. weighted average) and Bayesian Merging. Within Bayesian Merging 

there were three groups derived from the implemented window size used in estimating 

the a priori probability of elevation, based on maximising local entropy, namely 3x3, 

5x5 and 7x7 windows. Each of them has been evaluated based on two different iteration 

loops in a ± 0.1m range and a± 0.5m range, using a 0.01m increment. 

 

Merging (fusion) using Maximum Likelihood, as discussed in the previous chapter, 

consists of two steps, first determining the weight of each grid cell in each digital surface 

model, and then merging the digital surface models; the operation is performed grid wise. 

The first step is considered the most important; the second step is considered trivial and 

can be executed easily using equation  5-12. It should be noted that the Maximum 

Likelihood approach is applied when all the data are available (i.e. simultaneously) 

which is unlike the Bayesian approach, which allows use of the model even before 

obtaining all the data, as discussed in chapter four, section  0 4.11.  

 

Instead of using checkpoints, some researchers have depended on using difference maps 

for evaluating the accuracy results (Karkee et al., 2006; Sadeq et al., 2012), in a raster 

environment, such as DSMs. This type of difference map is valid when a reference data 

set is available covering the whole study area and is not confined to only finite 

checkpoints. However, in the research that is the topic of this thesis, checkpoints have 

been used. 
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6.3.1 Statistical Assessment 

For each DSM the RMSE, σ of error and maximum and minimum difference has been 

determined as shown in Table  6-1. The statistical tests that have been used in the DSM 

validation have been applied after eliminating blunders (point 21 is considered to be a 

blunder). 

 

The coefficient r2 has been used in order to test the correlation between the DSMs 

elevations and GCPs elevations. From the previous chapter it can be seen that the 

equation  5-22, represents the merged model using a Bayesian approach in the case when 

the measurements was limited to two digital surface models only. However, the 

equation  5-23 refers to a model supporting the continuous input of digital surface 

models, and is an update of the equation 5-13. The a priori probability of elevation is 

based on maximizing local entropy; in the entropy maximization stage two ranges have 

been used. The first range was 0.2m, from -0.1m to 0.1m, and the second range was 

0.5m, from -0.25m to 0.25m.  

 

During the quality assessment for the digital surface models produced by the Bayesian 

approach it is noticeable that the RMSE of the merged digital surface model with range 

±0.1m is smaller than the RMSE of the merged digital surface model with the ±0.25m 

range for both the a priori probability of elevation obtained from the 3x3 and 5x5 

windows, while the RMSE when the 7x7 window is used to obtain the a priori 

probability of elevation with the ±0.25m range was better than that achieved with ±0.1m 

range. The σ of error values were almost the same in all cases (i.e. all size windows and 

all increments for estimating a priori elevation), see Table  6-1. 

 

From Table  6-1, the bias (or average discrepancy) in the merged digital surface models 

can be seen. The bias produced when merging using any Bayesian approach is larger than 

that resulting from the Maximum Likelihood merging method. Considering two 

Bayesian approaches, using a 3 x 3 window, the bias using the smaller range (± 0.1m) is 

less than when using the larger range (± 0.25m), being -0.255m and -0.292m 

respectively. It can be noticed that the errors (discrepancies), which are represented by 

RMSE, for the Maximum Likelihood case was 0.375m while for all the Bayesian 

approaches was larger, i.e. being 0.392m, or greater. 
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In the original source data, the maximum positive discrepancies were 0.391m and 

0.221m in the digital surface models produced from WV-1 and Pleiades respectively, and 

the relevant maximum negative discrepancies were -0.766m and -1.348m. 

 

It should be noted that the standard deviation of the error (or σ of discrepancies), which 

can be considered to be an unbiased representation of error, has been reduced in all the 

merged DSMs to be better than that for the original data. Initially it was 0.359m 

(Pleiades) and 0.320m (WorldView-1) and the merging has led it to be 0.306m in the 

worst case. 

 

To estimate the a priori probability of elevation, local entropy has been utilized. This has 

been based on three different window sizes and for each window size two increment 

ranges, namely ±0.1m and ±0.25m, the increment being 0.01m.  

 

From Table 6.1, it can be noticed that similar values for the RMSE are found in the three 

Bayesian approaches recorded in columns E, G and J, namely: 0.393m, 0.394m and 

0.392m, respectively. For the Bayesian approach recorded in column F, the RMSE value 

was 0.418m. For the Bayesian approaches recorded in columns H and I, the RMSE value 

was 0.431m and 0.432m respectively. 

 

With respect to the σ of the discrepancies, the values for the Bayesian merging 

approaches are slightly smaller than those for the Maximum Likelihood merging, 

indicating less variability in the discrepancies, in the Bayesian methods. The Bayesian 

approaches also had less variability in the discrepancies than the original DSMs from 

Pleiades and WorldView-1 (which had σs of discrepancies of 0.359m and 0.320m 

respectively). It can be mentioned that the value of the σ of discrepancies was higher in 

WorldView-1 before removing the blunder, being 0.391m before removal and 0.320m 

after removal. 
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Table  6-1 quality characteristics of the two digital surface models using the checkpoints. Red text 
indicates that the error in the point is greater than 1.96 x RMSE or outside the 95% confidence 
interval 
  A B C D E F G H I J 

Pt. #.

GNSS 
checkpoint 
elevation 

(m) 

Pleiades 
checkpoint 
elevation 

(m) 

WV-1 
checkpoint 
elevation 

(m) 
without 
blunder 

Max. Likel.
checkpoint 
elevation 

(m) 

Bayesian 
merging 3x3 

window 
±0.1m range 
checkpoint 

elevation (m) 

Bayesian 
merging3x
3 window 
±0.25m 
range 

checkpoint 
elevation 

(m) 

Bayesian 
merging 

5x5 
window 
±0.1m 
range 

checkpoint 
elevation 

(m) 

Bayesian 
merging 

5x5 
window 
±0.25m 
range 

checkpoint 
elevation 

(m)  

Bayesian 
merging 

7x7 
window 
±0.1m 
range 

checkpoint 
elevation 

(m) 

Bayesian 
merging 

7x7 
window 
±0.25m 
range 

checkpoint 
elevation 

(m) 
0 76.237 76.080 76.159 76.119 76.148 76.183 76.169 76.223 76.239 76.169 
1 98.334 98.998 99.049 99.039 99.059 99.094 99.016 99.061 99.012 98.995 
2 72.050 72.249 72.075 72.077 72.104 72.139 72.114 72.163 72.180 72.127 
3 71.025 72.071 71.510 71.638 71.664 71.699 71.634 71.682 71.655 71.613 
4 62.967 63.627 62.793 62.953 62.997 63.032 63.003 63.073 63.073 63.003 
5 96.169 96.532 96.478 96.505 96.555 96.613 96.555 96.625 96.625 96.555 
6 95.382 95.161 95.169 94.857 94.886 94.923 94.907 94.977 94.977 94.907 
7 76.409 77.137 76.602 76.695 76.729 76.765 76.741 76.790 76.811 76.745 
8 83.341 84.145 83.046 83.264 83.303 83.338 83.300 83.345 83.354 83.299 
9 68.287 69.468 68.216 68.361 68.388 68.423 68.397 68.451 68.463 68.396 
10 88.579 89.453 88.802 88.877 88.915 88.950 88.927 88.972 88.994 88.927 
11 87.847 89.195 88.163 88.298 88.325 88.360 88.340 88.388 88.393 88.336 
12 85.504 86.239 85.499 85.491 85.538 85.586 85.541 85.609 85.611 85.541 
13 85.256 86.303 85.523 85.643 85.651 85.686 85.664 85.709 85.712 85.657 
14 97.737 98.507 97.804 97.952 97.970 98.005 97.962 98.007 98.007 97.953 
15 85.755 86.603 85.847 85.913 85.938 85.973 85.959 86.011 86.029 85.963 
16 111.676 112.618 112.130 112.191 112.212 112.247 112.233 112.279 112.299 112.241 
17 88.241 89.067 88.606 88.724 88.774 88.809 88.774 88.844 88.844 88.774 
18 87.633 88.103 87.561 87.609 87.645 87.680 87.659 87.716 87.729 87.659 
19 93.710 94.549 94.109 94.105 94.142 94.177 94.146 94.192 94.197 94.147 
20 
21 108.976 109.616 108.585 108.783 108.828 108.872 108.813 108.858 108.848 108.793 
22 110.201 110.967 110.558 110.603 110.638 110.673 110.653 110.698 110.723 110.653 
23 94.383 94.554 93.997 94.085 94.107 94.142 94.089 94.134 94.121 94.068 
24 108.169 108.809 107.991 108.136 108.168 108.203 108.186 108.256 108.256 108.186 
25 124.891 125.606 125.550 125.400 125.441 125.479 125.450 125.520 125.520 125.450 
26 114.165 114.514 114.419 114.458 114.486 114.521 114.483 114.535 114.540 114.487 
27 111.280 111.772 111.448 111.502 111.552 111.595 111.548 111.593 111.598 111.543 
28 131.356 131.862 132.013 131.986 132.002 132.037 131.982 132.031 132.018 131.965 
29 109.522 109.970 109.710 109.788 109.829 109.864 109.838 109.908 109.908 109.838 
30 94.514 94.699 95.280 95.241 95.253 95.294 95.291 95.361 95.361 95.291 
RMSE 0.721 0.357 0.375 0.393 0.418 0.394 0.431 0.432 0.392 

95% 
Confidence 
level 1.414 0.701 0.735 0.770 0.819 0.772 0.845 0.846 0.768 
number of 
points 30 30 30 30 30 30 30 30 30 
Arithmetic 
mean of 
discrepancies 
or bias, (m) -0.629 -0.170 -0.223 -0.255 -0.292 -0.259 -0.314 -0.317 -0.256 
σ of 
discrepancies 
(m) 

 
0.359 0.320 0.306 0.304 0.304 0.301 0.301 0.298 0.301 

Max +ve 
discrepancy 
(m) 

 
0.221 0.391 0.525 0.496 0.459 0.475 0.405 0.405 0.475 

Max –ve 
discrepancy 
(m) 

 
-1.348 -0.766 -0.727 -0.739 -0.779 -0.777 -0.847 -0.847 -0.777 
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6.3.2 Correlation Assessment 

Further data analysis can be supported by Figure  6.2. Correlation (r2) has recently been 

supported by the author and colleagues, as a means to quickly compare derived 

elevations and their checkpoints, Sadeq et al. (2012) 

 

The correlation between the merged digital surface model’s elevations values and those 

of the checkpoints has not decreased for any of the types of merging. Although the 

correlation was strong, especially for the WV-1_DSM where it was 0.9997 (for the 

Pleiades_DSM it was 0.9995), it has remained the same in the merged digital surface 

models where the correlation was 0.9997 with the Maximum Likelihood and Bayesian 

approaches for both the ±0.1m and ±0.25m ranges. 

 

Figure 6.2 consists of twenty-seven diagrams, arranged as nine triplets. Each one of the 

nine sets of triplets validates a single method of determining elevations. The first two sets 

validate the original Pleiades and WorldView-1 sources and the remaining seven sets 

validate sources merged in different ways. 

 

The leftmost diagram of each triplet, of Figure 6.2, shows the correlation (r2) between 

checkpoint elevations (CPs) and the elevations provided by the method being 

considered. Checkpoint elevations are on the x-axis and those of the method being 

considered are shown on the y-axis.  

 

The central diagram of each triplet, of Figure 6.2, shows a scatterplot of each CPs 

discrepancy. 

 

The rightmost diagram of each triplet (of Figure 6.2) uses histograms to show the 

distribution of discrepancies between the CPs and elevations provided by the method 

being considered, across the range of elevations being considered. 
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a-1) Pleiades vs. Checkpoints  a-2) Pleiades and Checkpoint  a-3) Pleiades and Checkpoint  
 

b-1)WV-1 vs. Checkpoints  b-2) WV-1 vs. Checkpoints  b-3) WV-1 vs. Checkpoints  

c-1)Maximum Likelihood 
(ML) merging vs. Checkpoints 

c-2) Maximum Likelihood 
(ML) merging vs. Checkpoints 

c-3) Maximum Likelihood (ML) 
merging vs. Checkpoints 
 

d-1) Bayesian merging - range 
±0.1m window 3x3 vs. 
Checkpoints. 

d-2) Bayesian merging - range 
±0.1m window 3x3 vs. 
Checkpoints. 

 
d-3) Bayesian merging - range 
±0.1m window 3x3 vs. 
Checkpoints. 
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e-1) Bayesian merging - range 
±0.25m window 3x3 vs. 
Checkpoints 

e-2) Bayesian merging - range 
±0.25m window 3x3 vs. 
Checkpoints 

e-3) Bayesian merging - range 
±0.25m window 3x3 vs. 
Checkpoints 
 

f-1) Bayesian merging - range 
±0.1m window 5x5 and 
Checkpoints. 

f-2) Bayesian merging - range 
±0.1m window 5x5 and 
Checkpoints. 

 
f-3) Bayesian merging - range 
±0.1m window 5x5 and 
Checkpoints. 
 

g-1) Bayesian merging - range 
±0.25m window 5x5 vs. 
Checkpoints 

g-2) Bayesian merging - range 
±0.25m window 5x5 vs. 
Checkpoints 

g-3) Bayesian merging - range 
±0.25m window 5x5 vs. 
Checkpoints 
 

h-1) Bayesian merging - range 
±0.1m window 7x7 vs. 
Checkpoints 

h-2) Bayesian merging - range 
±0.1m window 7x7 vs. 
Checkpoints 

h-3) Bayesian merging - range 
±0.1m window 7x7 vs. 
Checkpoints 
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i-1) Bayesian merging - range 
±0.25m window 7x7 vs. 
Checkpoints 

i-2) Bayesian merging - range 
±0.25m window 7x7 vs. 
Checkpoints 

i-3) Bayesian merging - range 
±0.25m window 7x7 vs. 
Checkpoints 
 

Figure  6.2 Comparison of the correlation, scatter plot and histograms for the input data 
and merging results using Maximum Likelihood and Bayesian techniques against 
checkpoints (CPs), where: the left column represents the correlation of the original and 
merged DSMs heights against CP heights; the middle column represents the scatter plot of 
the CP discrepancies and the original or merged DSMs, relative to the ellipsoidal height; 
and, the right column represents the frequency of the CP discrepancies (errors).  
 

The error distribution has been assessed for each of the produced DSMs. It can be seen 

that in figures Figure  6.2 (rightmost diagrams) that the errors in the Bayesian approaches 

seem more normally distributed than the Maximum Likelihood and the standard 

deviation of the error in the Bayesian approaches were the same as or lower than for the 

Maximum Likelihood approaches, as can also be seen in Table 6-1.  

 

The error illustrated in Figure  6.2, shows the differences between the DSMs either from 

the original or a merged DSM and the ‘true’ values. This has been measured by taking the 

difference from of the GCP elevations and the aforementioned DSMs at each checkpoint, 

as shown in Figure  6.1.  

 
The Bayesian approach has considerable influence on imposing normality on the error 

distribution as can be seen from the plots of each type regardless of the window size and 

the iteration range used in looping for estimating the a priori probability of the elevation 

value. An analysis of the discrepancy scatter plots Figure  6.2 (middle column), as 

recommended by Rusling and Kumosinski (1996) shows that all the values are randomly 

distributed which further validates the linear relationship between all sets of interpolated 

heights and their checkpoint values.  

 
By investigating the error of the Bayesian approach using an estimated a priori 

probability of elevation produced from different ranges ±0.1m and ±0.25m, it indicates 

that the Bayesian approach was able to remove the systematic error during merging the 
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DSMs. 

6.4 DSM Qualitative Assessment 
In addition to the quantitative assessment, a qualitative assessment has been 

implemented, as well. This has been achieved by plotting the height profiles and 

comparing them for a specific location, also the slope map has been produced to be used 

in validation and to assess the effect of merging on smoothing the surface.  

 

Figure  6.4 shows the profile (line A-B see Figure  6.3) that was produced at the merging 

stage, against the original profiles. The weighted average (Maximum Likelihood) 

approach enhances the DSM by removing irregularities in the underlying DSM. As has 

been shown earlier the RMSE value of the DSM produced from WorldView-1 is smaller 

than that produced by the Pleiades data, but the effect on the output DSM is not 

proportional, and this reflects the implemented equation, which is not linear. Figure  6.4 

shows, graphically, that the WorldView-1 DSM has, through the weighting process based 

on the DSM’s quality, more influence on the underlying DSM than does Pleiades. 

 

 

Figure  6.3 Orthoimagery for the study area indicating the specified profile location. 
 

Due to variations in satellite geometry, it can be noticed from Figure  6.4 that there is a 

misregistration in the DSMs and consequently in the produced profile. Generally, since 

the geometry of satellite imagery is rather weak this causes extra errors in the generated 

elevation (Teo et al., 2010); moreover the Pleiades stereo imagery has a weaker geometry 
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than the WV-1 stereo imagery. From Table  1-2 it can be seen that the Pleiades sensor 

altitude is higher, by around 200km, than the WV-1 sensor. Moreover Table  3-1 shows 

that the incident image angle for Pleiades, 11.91o+14.03o=25.94o, is less than that for 

WV-1 which is 17.33o+21.01o=38.34o. This shows that the WV-1 base-to-height ratio is 

higher than Pleiades, which consequently leads to WV-1 having better accuracy than 

Pleiades (Teo et al., 2010). 

 

Figure  6.4 shows the result of using a Bayesian approach to merging digital surface 

models. The Bayesian approach, with an estimated a priori probability of elevation, had 

more effect on smoothing than the Maximum Likelihood approach. Figure  6.4 shows 

how the Bayesian approach was able to remove the high peaks from the profile and 

increase the smoothness of the profile while the Maximum Likelihood approach was 

slightly less sensitive with respect to smoothing the surface of the DSM. 

 

The merged digital surface model has a smoother surface than the original digital surface 

model. The Bayesian approach is able to remove the peaks from the building, and has 

more influence on the resulting digital surface model than Maximum Likelihood, 

especially when the range used to infer an a priori probability of elevation has been 

increased to ±0.25m instead of ±0.1m.  

 

The result of the merging using different window sizes has been investigated also. 

Figure  6.5 shows different profiles along the line A-B over the DSMs that were produced 

from using different window sizes 3x3, 5x5 and 7x7 with simulation range ±0.1m. It is 

clear from the profile that there is not much difference between these types, except the 

profile for the used window 5x5 has an average falling between the other two window 

sizes (i.e. 3x3 and 7x7). The other range for variance, simulation range ±0.25m, has been 

tested also as shown in Figure  6.6. The profiles show that the effects of the change of the 

window size with the specified variance are slight. Again, the window size 5x5 is close to 

the average of the windows 3x3 and 7x7, as in the case with the simulation range ±0.1m  
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Figure  6.4 Profile along line A-B as shown in Figure  6.3, showing the merging results using Maximum Likelihood,  Bayesian approaches and the data sets: 
Pleiades DSM and WorldView-1 DSM. The Y-axis is elevation (m) and the X-axis distance (m) along the AB profile. 
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Figure  6.5 Profile over the line A-B as shown in Figure  6.3. It shows the comparison between the merging results using the Bayesian approach with range ±0.1m. 
The Y-axis is elevation (m) and the X-axis distance (m) along the AB profile. 
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Figure  6.6 Profile over the line A-B as shown in Figure  6.3 it shows the comparison between the merging results using Bayesian approach with simulation range 
±0.25m. The Y-axis is elevation (m) and the X-axis distance (m) along the AB profile. 
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Another profile has been taken at a different location as shown in Figure  6.7. This profile 

passes over two checkpoints. The first checkpoint is number 26 with elevation as shown in 

Table  6-1, which is equal to 114.165m, and the other is number 29 with elevation 109.522m. 

 

 

 

Figure  6.7 A profile located over two checkpoints marked with red dots, being located at points 
No 26 and 29 in Table  6-1. 
 
The profile shows that there is a misregistration between the profiles from DSMs of Pleiades 

and WV-1. This is around 3m in the building location, as can be noticed in the profiles in the 

Figure  6.4 and Figure  6.8, however. The building near point A, in the Figure 6.7, has almost 

disappeared from the Pleiades DSM probably since it has low height and the profile passes 

through the edge of the building. As mentioned earlier in this section, the misregistration 

error is due to the Pleiades geometry being weaker than that of the WV-1 stereo imagery. The 

effect of the misregistration has not been further considered and the DSMs are treated as 

fully registered. 
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Figure  6.8 Profile over the line A-B as shown in Figure  6.7. It shows the comparison between the merging results using the Bayesian approach with simulation 
range ±0.25m, and its relation with the checkpoints. The Y-axis is elevation (m) and the X-axis distance (m) along the A-B profile, passing through the 
checkpoints 26 and 29 
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6.4.1 Slope Analysis 
Further DSM assessment has been achieved by producing a slope map. In the analysis of the 

produced maps, it has been shown that the Bayesian approach has an active affect on 

smoothing the flat surfaces during the merging process. This can support the assumption that 

has been made during estimating the a priori probability of elevation used in the Bayesian 

approach. The assumption is based on the surface of structures (such as buildings and roads) 

having flat (i.e. planar) surfaces rather than rough surfaces, as has been shown in the DSMs 

produced from photogrammetric processing. The building roofs for a specific area are 

shown in Figure  6.9 (a and b), and they show the orthoimagery for the flat surface structure. 

The building roofs in the original DSM from Pleiades, which is used in the merging, are 

shown in Figure  6.9 (c) and are speckled and have a very rough surface while in reality the 

main central building has a flat surface and does not have any small irregularities. However, 

in the merging using the Bayesian approach, see Figure  6.9(d), it is obvious that the 

produced DSM does not suffer from much roughness and it almost represents the real 

structure without many affects of roughness. 

 
(a)orthoimagery over the study area 

 
(b) WV-1 DSM in 3D view format 

 
(c) Pleiades DSM in 3D view format 

 
(d)Bayesian merged DSM in 3D view format 

Figure  6.9 Orthoimagery and 3D view to examine the effect of the merging over a flat 
surfaced structure – outlined in yellow.  
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For further detailed qualitative validation, different slope maps have been produced either 

for the original DSMs or for the merged DSMs as shown in Figure  6.10, in order to find out 

the change in the surface slope between each stage. The circle referred to as “b” overlaid on 

the slope map see Figure  6.10 (a) and the circle referred to as “a” overlaid on the slope map 

Figure  6.10(b), show that some noise exists in the original DSMs used in the merging. This 

has been reduced in the DSMs merged using Maximum Likelihood and Bayesian 

approaches. with an optimized simulation range of ±0.25m and a 3x3 kernel window, 

Figure  6.10 (c and d) for both of the marked circles “a” and “b” in the Figure  6.10 (c and d). 

From the Figure  6.10 (c and d), it is clear that the noise, which existed in the original DSM, 

has been minimized in the marked circles.  

 
(a) slope map for DSM from Pleiades 

  
(b) slope map for DSM from WorldView-1 

 

 

Slope in 
degrees 

 

 
(c) slope map for merged DSMs using 

Maximum Likelihood merging 

 
(d) slope map for merging DSMs using 
Bayesian approaches, with optimization 
range ±0.1m and 3x3 kernel window 

Figure  6.10 Slope map analysis for merged DSMs, the white symbolization shows the effect 
of merging on removing the slope. 

 

The slope map has been used further in order to find out the changes between different 

DSMs that were produced using a Bayesian merging approach, by using different window 
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sizes and variance ranges during estimating an a priori probability for elevation. From 

visual scrutinizing of the slope map in Figure  6.11(a) to (e), it can be noticed that the 

Bayesian approach was able to flatten the surface of the structures in all cases. In addition, it 

can see that there are no dramatic differences among the different slope maps with regard to 

the flat-roofed building and almost all of the results are similar. 

 
 (a) slope map for DSM produced with 

range ±0.1m and window 3x3 

 
(b) slope map for DSM produced with 

simulation range ±0.25m and window 3x3 

 

 

 

 

 

Slope in 

degrees 

 
(c) slope map for DSM produced with 

range ±0.1m and window 5x5 

 
(d)slope map for DSM produced with 

simulation range ±0.25m and window 5x5 

 
(e) slope map for DSM produced with 

range ±0.1m and window 7x7 

 
(f) slope map for DSM produced with 

simulation range ±0.25m and window 7x7 
Figure  6.11 slope map visualisation for merged DSMs. 
 

For further detailed analysis of the DSM’s slope map, Table  6-2 shows the statistics analysis 
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for each slope map within the study area, explained in Figure  6.11. The statistical analysis is 

represented by the arithmetic mean of the slope values across the whole study area and the 

slope standard deviations across that area. In the slope map analysis, the average slope of the 

merged DSMs using the Bayesian approaches (e.g. all used window size and variances) is 

less than that for the slopes of the merged DSM achieved using the Maximum Likelihood 

approach. Moreover, the arithmetic mean values decrease with increasing the window size 

or with increasing the range value, because with a higher increment value, the patch that is 

used to infer an a priori probability of elevation has become smoother. On the other hand, 

the standard deviations of slope across the whole study area for the merged DSMs are less 

than the original DSMs used in the merging. The standard deviation of the merged DSMs 

using Maximum Likelihood method is less than the DSMs using Bayesian approaches. 

Moreover, the standard deviation of slope across the whole study area rose with increased 

the window size, and for each window size the standard deviation is increase with increasing 

the range (e.g. with simulation range of ±0.25m rather than ±0.1m). 

 

The standard deviation of the slope map of the WV-1 DSM is less than the Pleiades DSM. 

However, the standard deviation of the merged DSM is slightly less than the standard 

deviations of the slope maps of the original DSMs WV-1 and less than the Pleiades DSM., 

hence the merged DSM is smoother than original DSMs used in the merging. Based on the 

author’s own local knowledge the smoother representation of roofs and ground surfaces is 

considered closer to the ‘truth’. 

 

In reality, the ground surface and the roofs of the buildings are considered to have smooth 

surfaces. This leads to the assumption that the pixel elevations in the windows used (e.g. size 

3x3, 5x5 or 7x7) change uniformly and there are no sudden changes in the surface elevations 

inside the windows. By simulating the elevation in the centre of the window and fixing the 

surrounding’s elevation, the a priori elevation to be applied in merging the DSMs using the 

Bayesian approach, is obtained. During the simulation, the value of the elevation that 

optimizes the local entropy is selected as a priori, as discussed section  5.5.  
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Table  6-2 Merged and original slope map statistical analysis. 
Source of the DSM Arithmetic mean of 

slope (degrees) 
σof slope (degrees) 

WorldView-1 satellite imagery(A) 25.402 19.919 

Pleiades satellite imagery(B) 27.740 21.199 

Merging (A and B) with Maximum Likelihood 25.292 19.495 

Merging (A and B) with Bayesian range ±0.1m 
and 3x3window 

25.279 19.628 

Merging (A and B) with Bayesian simulation 
range ±0.25m and 3x3window 

25.220 19.515 

Merging (A and B) with Bayesian simulation 
range ±0.1m and 5x5window 

25.196 19.725 

Merging (A and B) with Bayesian simulation 
range ±0.25m and 5x5window 

25.037 19.617 

Merging (A and B) with Bayesian simulation 
range ±0.1m and 7x7window 

25.135 19.778 

Merging (A and B) with Bayesian simulation 
range ±0.25m and 7x7window 

25.892 19.705 

6.5 Summary 
The quantitative analysis have been implemented to evaluate the merged DSMs. The 

statistical analysis using RMSE, implementing field check points, has showed that there is 

no significant difference between the merged DSMs using Maximum Likelihood and 

Bayesian approach (using different window sizes 3x3, 5x5, and 7x7). The Maximum 

Likelihood was better just by 0.02m than Bayesian approach. Respect the σ of error, a 

quality indicator after the removal of bias, gave a similar result for the Maximum likelihood 

and Bayesian approach. 

 

Furthermore, the investigation has showed that the correlation between maximum likelihood 

and Bayesian approach has been kept to be the same, with respect to all window sizes. 

However, the error distribution has been to be more normally distributed using the Bayesian 

approach than maximum likelihood, this means that the Bayesian was able to remove the 

systemic error from the DSMs via merging. 

 

For intense evaluation, profiles have been generated from different DEMs at two different 

locations. The quantitative evaluation has showed that both methods, Maximum Likelihood 

and Bayesian approaches, has produced similar result, however, Bayesian Approach was 

able to produce smoother DSM to be close to the reality. 

 

To proceed further in the smoothness investigation, the Slope Analysis of ESRI´s ArcGIS 

has been utilized, and this showed that both methods are able to smooth the surface. 
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From this chapter it can be concluded that the Bayesian approach has a smoothing effect on 

the surface, and also quality can be increased using the Bayesian approach if bias can be 

removed – otherwise the resulting accuracy of the Maximum Likelihood approach is better. 
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Chapter 7 Building Footprint and 3D Model Generation 

It can be assumed that Digital Surface Models (DSMs), constructed by merging individual 

DSMs each produced from stereo processing different satellite images and as discussed in 

Chapter 3, are imperfect, due to the low resolution of the satellite imagery compared to aerial 

imagery. Therefore, it is difficult to use such DSMs in building footprint extraction, because 

parts of buildings are not clearly identified. In addition to that, parts of buildings have been 

merged with some non-building parts that have similar heights, such as trees, consequently 

affecting the shape of the building.  

 

This chapter examines a methodology developed for building footprint extraction and 

subsequent 3D model construction from an imperfect DSM and related imagery. The 

flow-line comprises four main stages. 

 

First, data preparation, including DSM and orthoimagery construction. The normalized 

DSM (nDSM) is produced and labelled according to the Connected Component Labelling 

algorithm. The orthoimagery is segmented. Shadows are detected. The Normalized 

Difference Vegetation Index (NDVI) is produced and the edge map generated.  

 

Second, building detection and extraction. At this stage, rudimentary building locations 

are detected using the nDSM and then the initial building boundary is extracted from the 

segmented orthoimagery. In addition, the edge map is modified, using Mathematical 

Morphology (or MM), for subsequent use. 

 

Third, building boundary regularization . A Bayesian approach is used to find the most 

probable coordinates of the building footprints, based on the modified edge map. 

 

Fourth, and finally, the 3D model is constructed by extracting the elevations of buildings 

from the DSM and combining these with the regularized building boundaries. 

 

The implemented code, including the functions for the building footprint extraction, has 

been written in C++ and listed in Appendix D, except the code for labelling the nDSM, 

which is listed in Appendix C. 

 

The above-mentioned stages are listed in flow chart see Figure  7.1. 
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Figure  7.1 Flow chart illustrating the process for building footprint extraction, with the 
heading numbers at the left of the diagram. 

 

7.1  Mathematical Morphology 

Mathematical Morphology (MM), is a non-linear process commonly used in image 

analysis. It is based on modifying the geometrical shapes within the image, rather than 

pixel values. It was developed by Matheron and Serra in 1964 cited by Ronse et al. (2005), 

and subsequently gained popularity following three seminal publications from Matheron 

(1975) and Serra (1982 and 1988) also cited in Ronse et al. (2005). It has proved its value 
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in image analysis (Ronse et al., 2005). MM was originally created to deal with binary 

images, using sets to represent such images mathematically (Heijmans, 1992). It changes 

an image and makes it simpler, meanwhile retaining the main items in the image. It is 

worth mentioning that it can be applied on a greyscale image as well, but in this work only 

a binary image is considered. MM can be used at various stages in image processing such 

as, image pre-processing, image entity structure enhancement, image segmentation, and 

quantitative object description. The effects and results that can be obtained from using MM 

include: keeping the important characters of the objects in the image; filtering out 

irrelevant objects; thinning and thickening objects; object marking; finding the area and 

parameter of objects; extracting features from the image; detecting edges; removing noise; 

image restoration and reconstruction; etc. (Sonka et al., 1993). 

 

In this section MM will be considered in more detail, since it has been used in many stages  

in developing the building extraction algorithm subsequently used in this work. The basic 

concept of MM is to test the geometrical composition of an image by matching it with 

small patterns at diverse positions in the image, while changing the dimensions and form 

of the “matching model” or “structuring element”, (see Figure  7.2(a,b,c and d)). The three 

most important factors in the structural element are: the shape of the structural element 

(circular, square, cross etc.); the size - either 3x3, 5x5, 7x7 etc.; and, the reference point of 

the structural element. All three have considerable effect on the result. The reference point 

is the basic point in the structural element that is used to assign it to the foreground pixel in 

the image; it is not compulsory for the reference point to be in the centre of the structural 

element, it could be anywhere. Also it not necessary that the structural element be 

symmetric, it can be non-symmetric as shown in the figures below (see Figure  7.2 (e, f, g 

and d)).  

 

MM is based on set theory; the objects in binary images are represented by sets. All 

foreground pixels are represented as sets, which consist of a group of pixels that form a 

shape in the image. The basic operations that are introduced are: erosion; dilation; and 

opening and closing. These are considered in the following three sections. 
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7.1.1 Erosion 

Along with dilation, erosion is considered a fundamental action in MM (Pawar and Banga, 

2012). This operation plays an important role in modifying the image. The consequence of 

this operation is to erode the margins of the objects in the binary image. This leads to a 

shrinking of the foreground area (i.e. reduces the size of the objects and thinning the size of 

linear objects); as a result the size of the holes will be increased. The operation is based on 

merging two sets using vector subtraction. The erosion of A (i.e. the binary image) by B 

(i.e. using structural element) to form A’, can, be written as: 

 

 AÎ = A ⊖ B  7-1 

 

The above formula can be understood to mean the erosion of the binary image A using 

structural element B to form A’; the symbol ⊖ represents the erosion operation.  

 

 

 

 
 

      

    

      
 
 

 

 

 
 

      

    

      
 

(a)5x5 Circular structural 
element, with reference 
point in the middle 

(b)3x3 Cross 
structural 
element, with 
reference point 
in the middle 

(c)5x5 Square structural 
element, with reference 
point in the middle 

(d)3x3 Square 
structural 
element, with 
reference point 
in the middle 

 

 

 
 

 
 

 

 

 
 

 

(e)5x5 Circular structural 
element, with reference 
point not in the middle 

(f)3x3 Cross 
structural 
element, with 
reference point 
in the corner 

(g)5x5 Square structural 
element, with reference 
point in the side 

(h)3x3 Square 
structural 
element, with 
reference point 
in the corner 

Figure  7.2 Different types and size of structural elements with different location for 
reference points, red is foreground pixel, white background pixels and green is the 
reference point in the structural element. 
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7.1.2  Dilation 
The second most important operation in MM is dilation, which is the opposite of erosion. 

Applying this process will lead to an increase in the foreground pixels. The sizes of the 

objects are increased and the holes’ sizes and gaps are decreased. In this operation, it is the 

union of the structural element pixel with the image pixel that represents dilation, which 

can be written as: 

 AÎ = A ⊕ B  7-2 

 

The above formula is used to show that the binary image A is dilated with the structural 

element B, to form A’; the symbol ⊕ is used to express the dilation operation. 

 

Some of the structural elements that could be used in the erosion and dilation are listed in the 

Figure  7.2, and is it possible to use other types that may lead to better results. 

 

7.1.3  Opening and Closing  

When the image is eroded it is not possible to re-obtain the original image by dilating it, in 

other words the dilation is not the inverse of erosion and vice-versa. Alternatively, the 

images are simplified and will contain a smaller amount of detail. If an image is eroded 

and then dilated this is called opening, and can be represented by X ∘ B, see equation  7-3. 

This equation represents dilating X by the structural element B, after having eroded it by 

the same structural element. 

 

 X ∘ B = (X ⊖ B) ⊕ 	B	  7-3 

 

The effect of opening is to smooth the contour of an image, and it isolates the objects from 

each other if they have been connected with a narrow strip of pixels. In summary opening 

removes small objects, such as noise, speckles and other objects smaller than the structural 

elements, and make the image simpler. In addition, the sizes of the holes are increased. The 

other operator is closing which is represented by X	•	B, see equation ( 7-4), which means 

eroding the image with structural element B that had been dilated by the same structural 

element. 

 

 X	•	B = �X⊕ B 	⊖ 	B  7-4 
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The effect of closing is on the hole, as it removes small holes, or their sizes are decreased. 

In addition, the closing operation smoothes the contours, as opening does, but the 

difference is that small break lines in the contours are joined. 

 

The above operations were applied at different stages in the processing and were very 

effective during detecting and extracting buildings. They have been used to isolate and 

separate the buildings from each other and to smooth building boundaries, as well as 

extracting the buildings. 

 

7.2  Data Preparation 

The data, which are used in this stage, include the merged DSM and the orthoimagery. The 

DSM is obtained from implementing DSM merging using Bayesian theory as explained in 

Chapter 5. The constituent DSMs are produced from stereo satellite images, either 

WorldView-1 (or WV-1) or Pleiades, using photogrammetric techniques as outlined in 

Chapter 3. The merged DSM can be employed to obtain both the nDSM for rudimentary 

building location and the heights of the buildings for the 3D model construction. The other 

input is the orthoimagery, which is produced from the stereo satellite images by processing 

the satellite image from WV-1. WV-1 was chosen as that has better resolution, at 0.5m, than 

Pleiades at 0.7m. WV-1 offers stereo images with different viewing angles (or nadir angles) 

and in this case, nadir angles of 16.5 degrees and 17.2 degrees were used, and that with the 

lowest nadir angle (16.5 degrees) was actually used for the orthoimage production. In 

addition, the DSM that was used was that assessed to have a lower resolution - used because 

the higher resolution produced wavy edges. Since the classification is based on segmenting 

the orthoimagery, by extracting the roofs of the buildings, it is preferable to use the image 

that has a lower nadir angle, because near the nadir the building roofs show smaller shifts 

from their building footprints. This will affect the accuracy of the extracted buildings.  

 

Making the orthoimagery, it was decided not to use a DSM that had a resolution of 0.5m, 

because it resulted in irregularities in the shape of the buildings (i.e. at the edges) in the 

orthoimagery (Zhou, 2010) (the irregularity arises because of using a DSM instead of a 

DTM). Generally, the DSM that is produced from photogrammetric techniques suffers from 

irregularity; this irregularity arises because the generated elevation value is based on image 

matching. The image matching is based on using correlation windows, with various window 

sizes between 5x5 pixels to 15x15 pixels. Due to different image perspective views (for 

example one image might contain more of one roof than the other might) it may happen that 
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matching based on correlation values does not quite identify conjugate pixels. Along a level 

feature such as a roof-line, where elevation values are expected to be constant, it may be that 

the calculated values following image matching are therefore uneven. For that reason, the 

produced edge will suffer from irregularity, and when the DSM is used in producing the 

orthoimagery the problem will be evident especially at the edges of buildings. If a lower 

resolution DSM has been applied during the production, using Socet GXP, with high 

smoothing the irregularity problem is overcome and produces better orthoimagery from the 

stereo images.  

 

Therefore, the DSM that is used in producing the orthoimagery is produced from the same 

stereo images, as discussed in the Chapter 3, but with lower resolution (i.e. 10 meters). The 

comparison of two different types is shown in Figure  3.13. The other contributions to the 

algorithm, and obtained from the orthoimagery, are image segmentations, detected roads and 

an edge map. In addition, sourced from Pleiades, the NDVI image is available. 

 

7.2.1  Image Segmentation 

Image segmentation is considered to be the initial and most important part of image 

analysis (Gonzalez and Woods., 1992; Sonka et al., 1993). The aim of image segmentation 

is to partition the image into to clusters, within the image, that have solid connections with 

objects or areas of the actual world. Segmentation is used to construct regional higher-level 

image structures, which probably correlate with structures in a higher-level object model. 

The segmentation process is executed before analyzing the shape of the object in 3-D; in 

general segmentation is considered to greatly influence success or failure in image analysis 

(Schalkoff, 1989). Russ (1999) indicates that image segmentation is a method used 

extensively in image analysis to reduce the amount of information needed for identifying 

image objects, as required. 

 

As stated in section  1.6 a goal in this study is to ameliorate procedures to extract building 

footprints. Due to the difficulty of segmenting individual buildings, this amelioration may 

be achieved through partial segmentation. In partial segmentation the area does not 

represent the objects in the images completely, consequently, to obtain a complete 

segmentation, it is necessary to introduce a higher processing level (Sonka et al., 1993). In 

our case, the higher processing level is offered by MM and Bayesian statistics. 
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Autonomous segmentation, which is investigated here, was achieved by using a global 

thresholding method on the image - an important method in image segmentation. The idea 

is to analyse a grey-level histogram of the image so that the objects and the background are 

assigned to two grey levels. To distinguish one from the other, a threshold value (T) splits 

the image in such a way that pixels with a grey value greater than T are considered objects 

and a value ‘1’ assigned to them, while the remaining pixels will have the value ‘0’ 

assigned to them. The result will be a binary image with objects clearly identified on it.  

 

The image used in segmentation, in this work, is an orthoimage, which as mentioned in 

section  7.2, is, along with the DSM, the main input data. Objects can be extracted from the 

orthoimage - such as buildings. It was necessary, prior to segmentation using global 

thresholding, to enhance the image for better results.  

 

Several enhancements methods were used, as described in the following paragraphs. 

 

First, image sharpening, this process started by convolving the orthoimagery using a 3x3 

kernel, with all values equal to -1 and central value equal to 12. The sharpening leads to 

increased image contrast and gives emphasis to edges, however, it also give an emphasis to 

noise (Deserno, 2011). In this process, the value of the measured pixel is combined with its 

neighbouring pixel values based on the kernel used. 

 

Second, image smoothing, which is achieved by passing a kernel 3x3, with all values equal 

to 1, over the data in order to replace each pixel value by its neighbouring average. This 

will lead to a blurred image, but noise removal has been accentuated by the previous 

sharpening stage. 

 

Next, the Mean-Shift Algorithm developed by Comaniciu et al. (2002), which is built-in to 

the ImageJ package, is applied. Its purpose is to delineate arbitrarily shaped clusters. The 

assigned values were spatial radius 5 representing the kernel dimension (i.e. the difference 

between the centre pixel and its neighbouring pixels) and colour distance which is used to 

fuse all the greyscale values that lie within the assigned colour limits and then assigning 

one value to them, which is represented by the mode. Figure  7.3 shows the comparison of 

the result of applying mean shift on the enhanced orthoimage (i.e. it is sharpened and 

smoothed).  
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(a) (b) 

Figure  7.3 Applying Mean shift on orthoimagery for study area produced from WV-1 
satellite imagery (a) original orthoimagery after applying sharp and smoothing operation 
(b) applying mean shift algorithm with radius 5 and colour difference 5 on image shown at 
‘a’. 

 

The Mean-Shift Algorithm is a non-parametric method (i.e. it works without needing to 

define any prior information and the shape of the clusters is not a required constraint). 

Typically, the algorithm is used to identify image clusters in Computer Vision and Image 

Analysis, and is based on defining a window with a specific circular size centred on a 

specific pixel in the data set. Later the defined window will be shifted based on the mean 

value of the pixels’ intensity in the window; the calculated mean value will be used to find 

the magnitude and direction for shifting the original window for the next iteration. 

Repeating this until the result converges and the vector value change is so small that it does 

not need, effectively, to be shifted any more. Finally, the mean colour of the final iteration 

will be assigned to the starting location of the window’s initial location. 

 

The previous operation is trying to smooth the image by finding the mode inside a specific 

local region in the image, and later applying the mode value to the whole specific region. 

The Mean-Shift algorithm converts the image into homogenous tiles based on the closest 

neighbour pixels values and calculating the similarity inside each pixel group. It leads to 

better results in segmentation than by using a thresholding method because it is 

maintaining the edges of the objects and removing the noise that is not related to the 

building as shown in Figure  7.4. 
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(a)  

 

(b) 

Figure  7.4 Thresholded image using global thresholding method(a) thresholding the 
enhanced orthoimagery using minimum error thresholding (b)thresholding the enhanced 
orthoimagery after applying the mean shift algorithm, the noise has been removed and the 
holes have been eliminated.  
 

Then, the next stage, after applying the Mean-Shift Algorithm, is starting the segmentation, 

using the global thresholding method of Kittler and Illingworth (1986), namely their 

Minimum Error Algorithm. This method is based on the idea that it is possible to 

discriminate between the object and image background values utilizing the histograms of the 

image’s grey intensity values. It is assumed that these histograms, for both object and 

background pixels, are normally distributed. Thus, a threshold value (or grey-level boundary 

value between the segments) is obtained in the overlap area of the two distributions (i.e. 

foreground and background pixels). Initially an arbitrary threshold value is assumed, later on 

the value is changed iteratively, thus, at each iteration, the histogram for the foreground (i.e. 

objects) and background is calculated, consequently an overlap is obtained from intersecting 

the tails of these two histograms (the normal distribution tails). Eventually, the value of the 

thresholded that gives the minimum the overlap area will be select as the optimized 

threshold value. The segmentation method used was able to detect the buildings and the 

roofs, however it was not able to detect the buildings that had high intensity greylevel values 

due to either their high reflectance, or that they contrasted highly with their surroundings, 

see Figure  7.3. Therefore it was necessary to use an additional threshold, determined using 

the Moments Algorithm (Tsai, 1985). 

  

Moment thresholding (i.e. the basis of the Moments Algorithm, referred to above) is based 

on determining the mathematical moment for the greyscale image and comparing it with 

different values of the binary images produced from different values of thresholding. The 

moment is calculated deterministically using the equation  7-5. The value of the threshold 
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will be based on selecting the value that gives closest image moment to the original 

greyscale image.  

 m¼ 
 �p½�z½ ¼
�

½��
			,				S 
 1,2,3,….  7-5 

Where: 

m the image moment 

i is the moment order 

pj= nj/n, is the probability of the grey level and it is equal to  

nj is the number of pixels that has the value zj in the image. 

n is the total number of the pixels  

j is the intensity value of the pixel 

zj pixel grey value 

 

Moment thresholding can be considered to be an image transformation tool, and helps to 

retrieve the real image from the blurred image. With the moment threshold, the flat roofs 

were not detected, until an inverse image was produced, with a white background instead of 

a dark background, in order to make the objects visible (see Figure  7.5). 

 
(a) 

 
(b) 

Figure  7.5 Segmenting orthoimagery using different thresholding algorithms: (a) Minimum 
Error threshold, the buildings and roads are detected, except some buildings with high 
intensity; (b) Moments threshold, the high intensity buildings are detected, which had not been 
detected with the method used in the Figure  7.5(a). 
 
7.2.2  Producing nDSM  

As explained in section  7.2 the main input data are DSMs and orthoimagery; they represent 

the basic data for the building footprint extraction. For example as well as providing height 

information, the DSMs are used for nDSM production, bringing all the buildings to one 

level ground surface. According to the literature (Dorninger and Pfeifer, 2008; Kocaman et 

al., 2006; Ma, 2004; Yang and Lin, 2009) an nDSM is produced by subtracting the DTM 

from the DSM, which leads to all the buildings being on one level ground surface. The 

The high intensity building’s that have not 
been detected with the previous method 
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DSM is the digital ground representation including the buildings and trees and the DTM 

represents the bare terrain; this subtraction leads to a model that contains just buildings and 

trees (and possibly some noise arising from small features such as cars, bushes and bins) 

on one level ground surface, or ‘zero datum’. However, in the absence of a DTM, Brunn 

and Weidner (1997) implemented a MM operation to obtain an approximate nDSM for 

building extraction purposes. 

 

In order to make this research general and due to possible non-availability of any 

satisfactory DTM for this subtraction, an alternative method is followed to produce the 

nDSM. This alternative method commences by convolving the DSM using a 49x49 kernel 

with a standard deviation of 10 pixels, which leads to smoothing the buildings’ heights and 

particularly their edges. The reason for using a 49x49 kernel is necessitated by the range of 

building sizes. The kernel that was used in the convolution was Gaussian see Figure  7.6 (a) 

and (b), with values in the kernel taken from that distribution using equation  7-6. If a small 

standard deviation (e.g. σ=5pixels, see Figure  7.6(a)) was used this produced a kernel that 

had an effect on the middle part only without any significant effect on the edge parts of the 

kernel, because it had a very narrow bell shape. However, higher standard deviations, as 

used in this research to produce nDSM, (i.e. σ=10pixels, see Figure  7.6(b)) created a wide 

bell shape which consequently had an effect on the outer parts of the kernel, and was better 

than σ=5 pixels. Therefore the kernel with σ=10 pixels has been selected in the smoothing 

process so it can be used in the nDSM production algorithm. To produce the nDSM, the 

smoothed DSM is subtracted from the original DSM, see Figure  7.6(c) and(d), leading to 

an nDSM see Figure  7.6(e), which, ideally includes the buildings and trees only, but also, 

possibly, some noise arising from small features. 

 G(x , y , σ ) = 12πσ5 e¬J�§ ´�§5Ù§ K
  7-6 

where: G(x, y) is the pixel value at kernel point x,y  σ  the standard deviation or parameter of smoothing  

 

Concerning noise arising from small features, Kittler and Illingworth (1986) addressed this 

problem using their Minimum Error Thresholding Algorithm. This was implemented, and 

the nDSM was classified into background/foreground classes resulting in a ‘background’ 

class containing the ground and small features and a ‘foreground’ class containing 

buildings and trees. If the original DSM only had been thresholded it would have merged 



 Chapter 7 
 

181 
 

the buildings placed in valleys or lower down hillsides with the highest elevation areas, see 

Figure  7.6(f), therefore it was necessary to produce the nDSM. 

 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure  7.6 Process of producing an nDSM using MM : (a) 3d representation of the kernel, size 
49x49, that is used in the smoothing with σ=5 pixels; (b) 3d representation of the kernel, size 
49x49, that is used in the smoothing with σ =10 pixels; (c) DSM produced from merging 
satellite images; (d) applying a 49x49 kernel to the original DSM with σ =10 pixels; (e) 
thresholded nDSM - the top of the buildings have been detected; (f) thresholded DSM, the 
buildings on the upper left has been merged with higher elevation ground. 
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The 49x49 kernel leaves gaps and holes in the large buildings which can be overcome, see 

Figure  7.7, at ‘a’ for example, while it is ideal for small buildings, see Figure  7.7 ’b’ and 

‘c’. 

 

7.2.3  Uniquely Labelling nDSM Buildings 

The nDSM for the study area contained more than one building, thus it was necessary to 

label each building individually. The final stage of nDSM production is, therefore, 

labelling the regions in order to represent each individual building. The labelling results in 

giving an integer tag to each group of pixels. 

 

The labelling used the Connected Component Algorithm, described by Di Stefano and 

Bulgarelli (1999). The basic idea behind this algorithm is clustering the connected pixels 

and assigning an integer label to each cluster. It can be applied on grey scaled or binary 

images, but only binary image labelling is used here.  

 

The labelling process began by labelling each cluster of a group of pixels connected to 

each other. This was achieved by scanning the binary image, to find the joined pixels, by 

examining their values (i.e. whether the pixels belonged to the foreground or the 

background). 

 

 
Figure  7.7 Overlaying the thresholded nDSM on orthoimagery: (a) a small part of the building 
has been detected in the nDSM; (b) nDSM has covered over two houses; (c) a part of the nDSM 
covers the building partially; (d) a green/vegetated area has been detected. 
 

c 
b  

  d  

a   

c   
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The scanning process works from top to bottom and from left to right. The notion of this 

algorithm is to scan the binary image twice, passing a kernel over each pixel. The aim of 

the first scan is assigning provisional labels to each pixel based on their location and 

linking to the cluster structure. This labelling is done by traversing a mask, see 

Figure  7.8(a), over each pixel in the image, (see Figure  7.8(b). The reference point P(i,j) 

will be a foreground pixel, then, first it will check its left neighbour pixel P(i,j-1) and upper 

neighbour pixel P(i-1,j). If none of the neighbour pixels is foreground then it will assign a 

new label to the reference pixel. Otherwise, in the case, that one of them is foreground then 

it will take the label of that pixel. If both of them are foreground then it will take the label 

that has least value, and will save the label value that has the higher integer. Iteratively, it 

will continue until all the pixels in the image are scanned. 

 

It is clear that some of the objects acquire two labels (see Figure  7.8(c), left object), 

therefore it is necessary to correct them. For that purpose a second pass is required; the 

objects that have more than one label will be adjusted using the data structure that has been 

saved in the first pass. The provisional second label values are replaced by the lowest 

provisional label value and thus each disjoint region will have a unique value, see 

Figure  7.8(d). 

 

The algorithm has been applied successfully on the nDSM binary image, and each object 

has taken a different label (see Figure  7.9) which can be used to identify each building 

individually for the purpose of rudimentary boundary extraction. 

 

 

 
P 

(i-1,j) 

P 

(i,j-1) 

P 

(i,j) 
 

   

(a) (b) (c) (d) 
Figure  7.8 Object labelling process. (a) The mask used to label the region. Green is the 
reference pixel - a foreground pixel and red pixels are the connected neighbour pixels, used to 
check the connectivity of the pixels. (b) The original binary image with objects before labelling, 
both the objects having the same label. (c) Applying first pass of labelling, first object to the 
left has two labels, while the right has only one label. (d) Applying the second pass of the 
labelling on the object, the left object has only one label and the right object takes no different 
label. 
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Figure  7.9. The result of labelling nDSM: a different colour value is given to each different 
object label, for better visualisation. 
 

7.2.4 Shadow Detection 

In the segmented image, the shadows are detected together with the buildings, due to the 

close similarity of texture values. The detected shadows were incorporated with the 

buildings, consequently adding additional parts to them. Since the detected buildings are 

used as initial building boundaries, it was necessary to eliminate the shadows in order to 

retain just the original building. The elimination process has been achieved by first 

detecting, then extracting the shadows, and then, later on, subtracting the shadows from the 

segmented image. 

 

Different researchers have looked at the shadow problems in images. For instance Tsai 

(2006) proposed a method for shadow detection and its replacement by ‘foreground’ area 

using shape data. In the study reported in this thesis it has not been necessary to manipulate 

the shadows; it was enough just to detect and eliminate the shadows. The method which is 

followed here for panchromatic images, is similar to those of Yamazaki et al. (2009) and 

Liu et al. (2011). It is carried out by using a threshold value for shadow, by classifying the 

image into shadow and non-shadow area. It is based on the idea that pixel values less than 

the specified threshold are shadow and anything higher is non-shadow. The threshold value 

has been obtained by inspecting the image in shadow areas interactively, in the 
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orthoimagery, (see Figure  7.10(a)). The selected pixel greylevel value for shadow is 26 or 

less. This leads to detecting the shadows (see Figure  7.10(b)). The detected shadows 

initially consisted of discrete pixels from which regions were produced and contained 

many holes, for that reason Güdücü (2008) suggested using the “opening” process of MM 

(dilation and erosion), see Sec. 7.1. This process helped to join the pixels together and close 

the holes, consequently producing a solid object that represented each shadow Figure  7.10 

(c). 

 

The extracted shadows lead to a newly constructed shadows map. This new shadows map 

can be used as a mask, to subtract shadows from the segmented image, consequently 

leading to a new image with clearly identified boundaries, closer to real buildings. The 

intention of shadow detection in this research is just to rectify that error in segmented 

images. Therefore, it was not necessary to implement very accurate methods for shadow 

detection, because later on the Canny edge map is used to regularize the boundary of the 

building footprints. 

 
(a) 

 
(b) 

 
(c) 

Figure  7.10 Detecting and subtracting shadows (a) orthoimagery shows the shadow area (b) 
the detected shadows from the orthoimagery, (c) the refined shadows after applying 
Mathematical Morphology, leading to the production of solid objects. 
  

7.2.5  Road Extraction 

The texture similarity of buildings and roads has encouraged an examination of building 

detection in the segmented image using the orthoimagery, in particular the segmented 

image resulting from applying a Minimum Error threshold, (see Figure  7.5(a)). The 

algorithm used causes the roads to be detected as buildings. Therefore, it was necessary to 

eliminate the roads from the segmented orthoimagery. Many different algorithms have 

been used to detect roads, some successfully, either from aerial images or satellite images 

(Ahmed and Rahman, 2011; Bacher and Mayer, 2005; Benkouider et al., 2011; Christophe 

and Inglada, 2007; Gecena and Sarpb, 2008; Hu et al., 2007; Kim et al., 2004; Liu et al., 

2003; Long and Zhao, 2005; Ye et al., 2006; Yuan et al., 2009) but in this case, as road 

detection is not a focus of this research, the roads were initially extracted following their 
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manual digitizing using ArcGIS software (see Figure  7.11), and then the road pixels were 

subtracted from the segmented image. It is expected that an available automated algorithm 

can be implemented, by the author in the future, to do this. 

 
Figure  7.11 the digitized road using ArcGIS software. 
 

7.2.6  Vegetation Area Masking 

The DSM used to start the process contains all the objects above the ground, including 

building and non-building objects (such as cars and trees); all of them have height above 

the ground. Concerning the lower non-building objects such as cars, they can be removed 

by adding a height threshold to the nDSM. However, as tree heights are close to building 

heights it was necessary to find another way to discriminate them from the building 

objects, so they could be eliminated later. Different indices have been developed to 

indicate built up and vegetation areas such as Normalized Difference Vegetation Index 

(NDVI), Normalized Built-up area Index (NBI), Normalized Difference Impervious 

Surface index (NDIS), Normalized Difference Built-up Index (NDBI), Enhanced Built-Up 

and Bareness Index (EBBI), and they are described in general texts (e.g. Waqar et al., 

2012). Studies, such as those by Waqar et al. (2012) and As-syakur et al. (2012) indicate 

that the above indices have the ability to discriminate built-up areas and vegetation. In 

addition to these, the study by Li and Liu (2008) advocates NDBI for finding the built-up 

areas, because it shows a stronger correlation between NDBI and land surface temperature, 

than NDVI, which leads to the NDBI giving more accurate result for the vegetation area. 

However, the images used in this research are pansharpened images, produced by using 

50cm panchromatic images with 2m multispectral images from Pleiades having spectral 

bands Blue, Green, Red and Near-infrared. Specifically the pansharpened image has the 
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following spectral bands: panchromatic -  470 to 830nm; blue -  430 to 550nm; green -  

500 to 620; and, near-infrared -  740 to 940nm (Astrium Services, 2013). It is clear that 

there is no shortwave infrared: 1550-1750nm which is necessary to compute the NDBI 

(As-syakur et al., 2012), see equation ( 7-7). For that reason, it was not possible to calculate 

the NDBI. Under the circumstances NDVI, is the only index that can be calculated, 

according to Deng & Wu (2012), using Equation ( 7-8). 

 

 NDBI 
 RÜÝÞß �	R¿Þß
RÜÝÞß (	R¿Þß

  7-7 

 

 NDVI 
 R¿Þß �	Ráâã
R¿Þß (	Ráâã

  7-8 

The NDVI values ranges between -1 and +1; high values represent the vegetation area and 

the low values represent the built-up area. In order to segment the NDVI map, the 

Minimum Error Threshold method is suitable for segmenting the NDVI images into 

vegetation and non-vegetation areas. This method can be used to extract those vegetated 

areas identified in the NDVI map, (see Figure  7.12). The candidate thresholding method, 

using the Minimum Error Threshold, has been examined qualitatively, by the author, and it 

was found that it gave better results than other automatic threshold methods (i.e. Moments 

Algorithm (Tsai, 1985)). The nominated method distinguished between buildings and 

vegetation, however some of the smaller examples of vegetation have remained 

undetected, probably because the resolution of the Pleiades multispectral bands at 2m was 

resampled from the original 2.8m resolution, see sec  3.3.3. 

   
Figure  7.12 Green Mask production (a) Pleiades sensor’s imagery including multispectral and 
infrared bands (b) NDVI map produced from using NDVI index (c) the vegetated (green) area 
which results from applying Minimum Error threshold  on the NDVI map and overlaid over 
the Pleiades imagery. 
 

7.3  Producing an Edge Map  

Initially it was expected that segmentation could be followed by building extraction using 

MM. The segmented images show the buildings clearly (see Figure  7.4), but, the MM 

process, when implemented initially caused the buildings to lose their spatial resolution, 

because the operation is based on using circular and square structural elements, see 
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Greyscale image 

Gaussian Filter, remove noise 

Gradient Image, calculate edge magnitude|∇�| and 
direction θ 

Non-Maximum Suppression process, to find peak points, 
using ∇�  and θ 

Hysteresis thresholding, using the image obtained from 
suppression of non-maximum points 

Edge Map 

Figure  7.2(a) and (d). Therefore, it was necessary to improve the boundary definition of the 

buildings using edge mapping with Bayesian optimization. The selected operator used to 

produce an edge map is the Canny edge detector (Canny, 1986). 

 

Based on the literature, it appears that the most powerful algorithm for edge detection in 

image processing and computer vision is Canny edge detection. Although it gives the best 

result if compared to the other known edge detectors such as Sobel, Robert cross and 

Prewitt edge detectors, its high response to noise is considered a drawback (Cardoso, 1999; 

Yang-Mao et al., 2008). Regardless of this downside, Canny edge detection is recognized 

as having the practical features that it can detect edges down to one pixel width and it has 

the ability to join scattered edges together (Cardoso, 1999; Yang-Mao et al., 2008). The 

Canny edge detector is known to be an ideal algorithm in low-level computer vision (i.e. 

detecting edges and corners in the image) for finding the main geometric features from the 

images (i.e. lines and corners) (Liu et al., 2008). However, as mentioned, it is influenced 

by noise and therefore a lot of artefacts are detected (Barry, 2011; Yang-Mao et al., 2008). 

These artefacts, consequently lead to incomplete buildings and inaccurate building 

boundaries, if, as is usual, the extracted edge refining the approximate boundary of a 

building has been obtained from segmenting orthoimagery using a Bayesian method. This 

will be discussed further  7.6.3(b). 

 

The Canny algorithm uses several parameters and the success of edge detection depends on 

the good selection of these parameters. The algorithm is summarised in  

Figure  7.13. 
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Figure  7.13 Flow chart for Canny edge detection process. 
 

 

and works as described in the following paragraphs. 

 

First, smooth the original image using a Gaussian Filter (equation  7-6). The purpose of this 

smoothing is to remove image noise. Because noise causes high gradient magnitudes it 

consequently produces edges that are not required. Canny (1986) greatly extolled the effect 

of the Gaussian kernel in reducing noise (Nixon and Aguado, 2008). The sigma (@) value, 

in the Gaussian kernel, has a noticeable influence on image smoothing as does window (or 

kernel) size. If a window size is large, it will result in extra-smoothing, causing frail edges 

to be removed. Consequently, therefore, a smaller window size is recommended and is less 

expensive computationally. In summary a window size of 5x5 or 7x7 pixels is 

recommended (Worthington, 2002). If		å is the image and	��4, 6  is the Gaussian filter 

then the smoothed image, Equation  7-9, ��4, 6 	will be: 

 

 ��4, 6 = å ∗ � = ��åæT − 4, � − 6ç ∗ �æ4, 6çºè   7-9 

 

The new x,y pixel values in the image are calculated based on multiplying each pixel in the 

image with its corresponding part in the kernel. (It is referred to as a discrete convolution, 

i.e. the elevations are in grid format.) 

 
Second, find the gradient values, éê, and	éë, of	the	smoothed	image	at	location	�x, y ,	in 

both x and y directions respectively for each point. These are obtained, in both x and y  

directions by using the Sobel filter (Nixon and Aguado, 2008), see Figure  7.14. After 

getting the result, which is two gradient images, these will be used to calculate the 

magnitude of the gradient (its vector strength) and the direction of the gradient, which are 

considered the most important values in edge detection, using equations  7-10 and  7-11 

(Nixon and Aguado, 2008).  

 
 -1 0 1 

Mx= -2 0 2 
 -1 0 1 

  (a) 

 
 1 2 1 

My= 0 0 0 
 -1 -2 -1 

      (b) 
Figure  7.14 The filters used to produce gradient map (a) gradient in x-direction (b) gradient in 
y-direction (Nixon and Aguado, 2008). 
 



 Chapter 7 
 

190 
 

 

 |∇�| = îéê	5 +	éë	5   7-10 

	 
 θ = W3�¬� ïé6é4ð  7-11 

 

where: ∇� represents the gradient value of the image at location (x,y);  	éê	and		éë	�Y	ñ�/ñ4 and ñ�/ñ6 represent the gradient at location (x,y) in the x 

and y direction (using the preceding pixel in the x-direction and the preceding pixel 

in the y-direction), respectively; and θ represents the direction of the gradient. 

The third stage is non-maximum suppression. It has been shown that the Sobel operation 

was able to detect edges, but a problem was that the edge obtained contained an extensive 

range of points along the exact edge point, consequently it was a very irregular and thick 

representation of the edge in the image (Ali and Clausi, 2001). Therefore, it was necessary 

to increase the quality of the detected edge and limit it to only one pixel width. 

Consequently, the Canny edge detector became very popular. Non-maximum suppression 

detects points at the highest location of a ridge and neglects all the points beside these. 

Instead of being used to analyse ridges, it can be applied in edge processing. The principle 

of non-maximum suppression is explained in Figure  7.15 (Nixon and Aguado, 2008). First 

by checking a pixel, p, in a 3x3 window, then the values of the points p1 and p2 along the 

perpendicular of the edge direction at p will be calculated, by using interpolation from 

neighbour pixels. If the value of the pixel p is greater than p1 and p2 then pixel p will be 

labelled as ‘maximum’ and consequently as an edge. If not, it will be set to zero. 

Consequently, this operation preserves only the highest points on the edge (or ridge as 

originally implemented). 

 
Figure  7.15 Illustrating non -maximum operation process (from Nixon and Aguado, 

Perpendicular 
to edge 
direction 

p 

P1 

P2 

Edge  
Direction 
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2008). 
Finally, the image that is obtained from the suppression of non-maximal gradients contained 

only the peak along the ridges, representing either a weak or a strong edge. At this stage, the 

weak edges (small intensity change) will be eliminated through testing the edge points 

against the given thresholds, thus the remainder will be only the edges at the locations of 

large intensity change. In this operation two thresholds will be defined the upper and the 

lower thresholds. The operation that is used to keep the high intensity change edges while 

removing weak edges is called hysteresis thresholding. Figure  7.16 (based on Nixon and 

Aguado, 2008) shows how the hysteresis process is achieved on the image that is obtained 

from non-maximum suppression stage. First, the points that have magnitude above the upper 

threshold are set as a strong edge and given a value equal to 255, while the points below the 

lower threshold are considered as weak and set to zero. The hysteresis operation starts by 

first taking any point that is above the upper threshold and use it as a seed point. Next, the 

neighbours of that seed point will be set as an edge point if their value exceeds the lower 

threshold, then they are considered as seed points for other neighbour points. In this process, 

the investigation will be continued along the neighbour points until all the points are visited.  

 

The flow chart of edge detection using the Canny approach was summarized in  

Figure  7.13. The result of Canny edge detection is an edge map and among the edges we 

can find the building boundaries that will be used in the optimization process, see 

Figure  7.17. 

 

 
 

Figure  7.16 Illustrating non-maximum operation process with hysteresis 
thresholding (from Nixon and Aguado, 2008). 
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(a) (b) 

Figure  7.17 producing edge map (a) the study area used to produce Canny edge map (b) result 
of applying Canny edge detection on ‘a’, using Gaussian kernel radius=1, low threshold=1 
high threshold =2 in the study area 
 

7.4  Building Detection 

Before building extraction and construction, building detection is implemented. In this 

stage, the locations of the buildings are identified based on using the labelled nDSM and 

the segmented image, to deliver the buildings for the next stage.  

 
 

7.4.1  Enhancing Segmented Image 

The segmented image, either produced from the Minimum Error or the Moments algorithm 

and used to extract the building boundaries, has been refined by subtracting the roads, 

shadows and vegetation (using NDVI) from it. In addition to containing many irrelevant 

objects attached to the buildings, due to the segmentation process, the image also contains 

much inherited noise arising from the image refining subtraction process. These irrelevant 

objects and noise were causing false object representation, therefore, it was necessary to 

enhance the image and remove them prior to embarking on detecting the buildings and 

starting building footprint extraction. 

 

In this enhancement, the refined segmented image that is obtained by using the Minimum 

Error algorithm has been used first. Two types of structural elements have been utilised, 

one circular, 5x5, and the other square, 3x3, (see Figure  7.2(a) and (d)). 

 

Both the structural elements were used to achieve opening, but in a different order. First, 

the circular structure was used to achieve erosion using equation  7-1; this lead to 

simplifying the image, see Figure  7.18 (b). Later, the square structural 3x3 element was 
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used, twice, to achieve erosion followed by applying dilation, twice. Finally dilation was 

applied using the circular structural element to restore the spatial losses arising from 

erosion, in order to restore the rudimentary object, see Figure  7.18 (c) and (d). The reason 

for alternating between both structural elements arises because the circular element was 

able to remove the extra parts from the shapes of interest, as could the square structural 

element, but the square element was not able to break the links between the objects. The 

reason being that the square structural element, at 3x3 had a smaller size, and it was 

effective only on the objects that were parallel to the structural element. In addition, if a 

larger square structural element was used, then that caused excessive building erosion with 

consequent shape loss. It is important to retain the building shape as much as possible for 

the subsequent Bayesian processes and for edge enhancement. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  7.18 Process of refining the segmented orthoimagery which is produced from applying 
Minimum error thresholding (a) the output of subtracting the roads NDVI and shadows from 
the first segmented image which is obtained in sec  7.2.1 (b)Image erosion applying circular 
structural element(c) Using MM opening operation, apply structural element erosion twice 
and dilation twice, using square structural element(d) Image dilation applying circular 
structural element. 
  

Regarding the segmented image, this has arisen from the processing of a high contrast 

image. This high contrast image has been produced following Moment thresholding, 
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subtraction of road, shadow and vegetation (using NDVI) and also MM treatment. It was 

clear that the square structural element was enough to remove the noise from the image by 

applying erosion twice followed by dilation twice. The result of the final image after 

applying MM is shown in Figure  7.19(a) and (b). 

 
 

 
(a) 

 
(b) 

Figure  7.19  Process of refining the segmented orthoimagery which is produced from applying 
moment thresholding: (a) the output of subtracting the roads, NDVI and shadows from the 
second segmented image; (b) using MM opening operation, apply structural element erosion 
twice and dilation twice, using the square structural element, the noise has been eliminated 
and the objects separated. 
 

The object segmentation of the binary image arising from the MM processing seemed 

promising. It could provide an initial building boundary, which is very important input for 

the Bayesian method. 

 

7.4.2  Detect Building Boundary  

In order to implement the buildings extraction process, it was necessary to detect the 

buildings in the image. This process has been carried out, first, by taking each object 

individually in the labelled nDSM, which was described earlier in section  7.2.3. It has been 

assumed that each label represents an object that has height - either a building or a tree. 

The trees have been eliminated by using the vegetation mask, and the remaining objects 

represent only the buildings. 

 

In order to start building detection, each building is taken individually from the labelled 

nDSM. Later, the parts for the corresponding building are taken from the enhanced 

segmented image described in section  7.4.1, in order to produce an initial building 

boundary. However, the buildings in the labelled image are not complete and just represent 

a part of the building, consequently the initial building boundary will be imperfect (see 



 Chapter 7 
 

195 
 

Figure  7.20 (a)). Therefore, it was necessary to increase the size of the detected building in 

the labelled image. The size is increased using the dilation operation that is explained in 

section  7.1.2, by dilating the specific object δ(X) 17 times, using a circular structural 

element. The number of dilations has been concluded experimentally. 

 

As mentioned in section  7.4.1, two segmented images have been produced, due to 

differences in building texture, therefore it was necessary, before extracting the initial 

building boundary, to decide which of the segmented images better contains the building - 

either image A or B. The rule that is used is based on measuring the image areas that best 

correspond to the labelled areas in the nDSM. The area under the labelled nDSM is 

measured in both segmented images, and that giving the maximum area will be considered 

further. 

 

The detected buildings at this stage are not limited to single specific buildings, but may 

cover parts of other buildings. Therefore, it was necessary to eliminate other areas by using 

‘common parts’. If there are any common pixels between the labelled nDSM and the 

segmented image then those common parts belong to a specific building, otherwise the 

pixels can be eliminated as belonging to other buildings, the process is illustrated in 

Figure  7.20.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  7.20 The process of building detection. (a) The labelled nDSM overlaid on 
orthoimagery. (b) The segmented image. (c) The remaining corresponding part of the 
segmented image after dilating the labelled nDSM image. (d) The object that will be used in 
building extraction. 
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7.5  Building extraction  

Beyond building detection the boundary of the buildings are marked out giving the initial 

building boundary. This stage in the flow line concerns delineating the building footprint. 

Earlier, to transfer the initial building boundary to the final stage that consists of building 

boundary construction, initial building boundaries are vectorised and approximated in 

order to make them ready for the final stage. 

 

In this section 7.5 and its sub-sections (7.5.1 – 7.5.3) and in section 7.6 (and its 

sub-sections 7.6.1 - 7.6.3) a number of boundaries are generated and processed. These are 

listed below and briefly defined. However, the reader will also find a fuller explanation of 

their meaning when they are introduced at the relevant points of the discussion. 

 

• Initial Building boundary: the boundary, in pixel format, that is obtained after 

detecting the building in the segmented binary imagery. 

• Vector boundary: converted initial building boundary from pixel format to vector 

• Approximate initial building boundary: approximates the above, vector, boundary 

by minimizing the number of points at the border.  

• Simulated boundary: the boundary generated by adding random numbers to the 

corner of approximated initial building boundary. 

• Building footprint: the boundary of the building that is located under the roof. 

• Individual base boundary: the remaining part of the edge map at the location of the 

building after removing the other pixels.  

• Constructed individual building boundary or Solo boundary: the result that is 

obtained from the individual base boundary. 

• Canny edge map: the obtained result from applying canny algorithm on 

orthoimagery. 

• Modified edge : the enhanced edge map that is obtained from applying MM  

• Regularized boundary, Optimised boundary or accurate building boundary: the best 

result of obtained boundary after applying Maximum Likelihood and Bayesian 

approach, this represents the most accurate building boundary that is obtained from 

applying the proposed algorithm. 
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7.5.1 Extract initial Building Boundary 

The resulting image, which is produced from taking the corresponding segmented image in 

the previous section, contains the specific object that represents the building in image 

space, see Figure  7.21(a). At this stage, the initial building boundary of the building can be 

extracted using MM, as described in the next paragraph 

 

The process for the initial building boundary extraction is as follows. First erode the image 

then subtract the resulting image from the original image X; the whole operation can be 

represented in equation  7-12. The erosion has been achieved by using a square structural 

element 3x3, and gives a promising result. 

 

 β(X 
 X � �X ⊖ 	ò    7-12 

 

The resulting boundary, see Figure  7.21(b) will be used as an initial building boundary and 

the pixels will be converted into the UTM zone 30 (North) projection grid coordinate 

system, on the WGS84 ellipsoid, and later on connected to each other to produce a vector 

map. Prior to the vectorizing operation, it was necessary to sort the points because the 

points are randomly distributed. For that purpose the procedure described in the next 

section was followed, to sort the points around the initial building boundary. 

 
 

(a) (b) 
Figure  7.21 The process of extracting building boundary: (a) the extracted building obtained from 
segmented image in the binary form; (b) the initial building boundary’s pixels obtained from 
applying mathematical morphology operations on the binary image in (a).  

 

7.5.2  Sorting Initial Building Boundary 

At this stage, the initial boundary of the buildings is represented by pixels in a binary 

image and the image contains only a specific building. It was necessary to convert the 

initial building boundary into vectors for the simulation requirements of the Bayesian 

approach. For the vectorizing, the coordinates of each pixel are converted into Cartesian 

coordinates from the row and column value of each pixel. The sorting of the points was 
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based on reading the image file, from top to bottom, and from right to left. As is clear in 

the figure the points are not ordered sequentially around the initial boundary, but are in 

their pixel (reading) order (see Figure  7.22). 

 
 

 

 
 
 

Figure  7.22 Two different types of buildings show the representation of the initial 
building’s boundary points after converting them from pixel wise to vector. It shows 
the initial building’s boundary sorted, based on the pixel readings. 

 

The algorithm used for the sorting is the Nearest Neighbour Algorithm (NNA) used by 

Gutin et al. (2002) in the travelling salesman problem. The algorithm works as follows: 

first, any point is selected as the base point and is labelled as being visited; next, the 

distance from that point to all other points, not marked as visited, is measured. The point 

that gives the minimum distance will be assigned as the next point to the base point, and 

marked as visited. The new point is as the next base point and the procedure repeated. The 

process is continued until all points of the initial boundary of the building are visited. 

 

The above method was very robust in the situation reported on in this work since the points 

are distributed close to each other and without gaps of varying size between them. The 

method has been applied successfully on buildings that are either square or L-shaped, see 

Figure  7.23, and without producing a convex hull shape. It is a simple algorithm which 

does not require additional parameters such as required by the Alpha Shape Algorithm 

(Bernardini and Bajaj, 1997), which needs the alpha parameter before sorting the initial 

boundary of the building and may produce a convex hull shape. 
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Figure  7.23 Sorted vectorised initial building’s boundary vectors, obtained from applying 
the Nearest Neighbour algorithm. 

 

7.5.3 Approximate Initial Building Boundary  

Beyond sorting the points of the initial boundary of the buildings, it is possible to connect 

each coordinate to the next, to obtain the vector boundary. The initial boundary of the 

building obtained consists of a number of segments equal to the number of points minus 

one. For simulation purposes at the Bayesian optimization stage, the simulated boundary is 

generated based on applying random noise at the initial building boundary corners with 

specific variance. Later the optimized boundary based on the initial building boundary 

giving Maximum A Posteriori (MAP) probability is found. The large number of segments 

creates a cumbersome situation taking a lot of time to process, and potentially an 

unexpected outcome. In addition to the large number of segments representing the real 

continuous initial building boundary that has arisen from vectorization performed by 

connecting pixels, there will have been some irregularities in the initial building boundary, 

as a consequence of segmentation or MM. 

 

It is necessary to join the segmented edges and remove the irregularities in the detected 

initial building boundary, meanwhile keeping the points of interest (i.e. the corners) of the 

initial building boundary. To join the segmented edges and remove the irregularities from 

the initial building boundary, an approximation method has been implemented, as 

proposed by Ramer (1972) and Douglas and Peucker (1973).  

 

The suggested method minimizes the number of the points in the polygon based on a 

defined threshold and retains important bends/corners. The threshold, in this study, is 5 

pixels and gives the best result, It is found experimentally that the threshold value which is 
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larger than 5 pixels will result in deleting important corner points while smaller values than 

5 pixels will keep more points for the initial building boundary even if these are not main 

corner points.  

 

Originally, the Ramer-Douglas-Peucker method was proposed for curve generalisation by 

iteratively reducing the number of points in the curve based on specified threshold(s). The 

Ramer-Douglas-Peucker method first checks the perpendicular offset distance between the 

vector connecting the two ends of a curve and other points that lie on the line between the 

end points. If the offsets are less than the threshold then their points will be deleted, 

otherwise it will make new vectors between the end points and the identified point that 

gave the maximum offset. This process can be repeated, using the end points and the 

identified point. This method was designed for open curves. In the first trial, the initial 

building boundary was treated as a curve, with terminal points p(0) and p(n). In the first 

trial, the approximation had not covered the part p(1)-p(0), p(0)-p(n), p(n)-p(n-1). In order 

to apply the algorithm on the missed parts, it was necessary to operate the algorithm at 

different points, by assuming the curve terminal points are p(3) and p(4), instead of p(0) 

and p(n). It was noticeable that the second trial guarantees that the approximation has 

covered all the points and the result was promising, see Figure  7.24. It was also noticeable 

that some non-building objects have been detected with the building footprints, such as 

trees, but such areas were very small and after approximation consisted of just three points. 

Therefore in addition to the Ramer-Douglas-Peucker method a rule has been added, which 

is based on the number of points. If the total number of points is three or less then the 

initial building boundary will be neglected, based on the assumption that triangular 

buildings are extremely rare. 

 

 
Figure  7.24 Applying the Ramer-Douglas-Peucker algorithm to approximating the initial 
building boundary points that were produced in Figure  7.23 and using these as the initial 
building boundary. 
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7.6  Building Footprint Construction 

The extracted initial building boundary from the previous section is considered to be 

approximate; therefore, it needed to be enhanced. Two different methods have been used 

for this purpose: Bayesian and Maximum Likelihood. Moreover, the Canny edge map has 

been modified in order for it also to be implemented at the enhancement stage.  

 

7.6.1  Modifying the Edge Map  

So far, the building boundary that is obtained by approximating the detected boundary can 

be considered as an initial building boundary and it is ready to be used in an optimization 

process using Bayesian theory. In the optimization, a Canny edge map has also been used. 

The optimization process is achieved by measuring the distance between the initial 

building boundary line and the Canny edge map. However, the edge map, whose creation 

was discussed in section  7.3, contains extra edges (see Figure  7.25). These extra edges 

were scattered in the roof area or connected to the edge of the buildings, either inside or 

outside of the building. The extra edges, produced due to building roof edges, caused 

confusion, because the measured distances were not representing the real boundary. This 

situation was complicated, and it had a significant effect on the result, because it caused 

the boundary of the building to shrink during the simulation stage while regularizing the 

initial building boundary. 

 

The Canny edge shows the location of the path where there is contrast in pixel greyscale 

intensity values. The parameters of the Canny edge, such as the radius of the smoothing 

filter and hysteresis thresholds, control the intensity of these edges. 

 

The quantity of detected edges in an edge map can be controlled by changing the 

parameters, if low values are used all small details will be detected as edges and vice versa, 

see Figure  7.25(c and d). So if a low threshold value is used a highly detailed edge map is 

generated. In this situation, the real building edges will be difficult to distinguish from 

other edges, see Figure  7.25(c). However, if a high threshold value is used a less detailed 

edge map is generated, see Figure  7.25(d), then the real building edge will be lost because 

only the edges with a very high difference in the pixels’ intensity values will be detected as 

an edge (i.e. the boundary of the shadows will be detected as edge and the real building 

will be lost). For that reason the parameters that have been chosen are mid range, see 

Figure  7.25(b). It can be noticed that in addition to the main building roofs some small 
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details have also been detected as edges (i.e. shadows and some secondary roofs) and can 

be considered noise. 

 

To avoid confusion and to ensure the real edges are measured it was necessary to remove 

all detail created inside the building. It was noticed that the extra details were numerous in 

the hipped roof buildings and when some structures, such as dormer windows and 

chimneys, create a large variance in contrast and produce shadows on the roof these will be 

detected as an edge. These edges have been removed by eroding the segmented image, see 

section  7.4.1, then taking its boundary using MM and finally subtracting it from the Canny 

edge map. The problem of extra details on the roof does not exist with flat roof slabs, 

whereas the problem was very clear in the hipped roof building, as shown in the 

Figure  7.26 (a), below. 

 
(a) 

 
(b) 

 
(c)  

(d) 
Figure  7.25 Explanation of the detected edge on the orthoimagery; (a) the orthoimagery that 
shows hipped building (b) the edge map which produced using orthoimagery with a lot of extra 
edges radius Gaussian=1, lower threshold=1, upper threshold=2 (c) the edge map which 
produced using same orthoimagery with very intense amount of edges, with radius 
Gaussian=0.5, lower threshold=0.1, upper threshold=0.2 (d) the edge map which produced 
using same orthoimagery with very few edges, with radius Gaussian=1, lower threshold=1, 
upper threshold=5. 
 

To solve this problem the segmented image, which is discussed in section  7.2.1, has been 

eroded twice and then subtracted from edge map. The reason for the subtraction is in order 

not to remove some details from the boundary; however, this method was leaving some 

small amount of noise in the roof itself, although this was acceptable when considering the 

gaps Internal edge 
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result obtained. However, edge map modification was not stopped at this stage. It was 

necessary to perform another operation for filling gaps that existed in the Canny edge map, 

because the Canny algorithm failed in detecting some edges when the variation of the 

textures is low between two different areas, such as some (flat) slab roofs and the ground. 

For that purpose, the segmented image has been dilated twice, using MM. Later the 

boundary of each building, in the resulting segmented image after the double dilation, has 

been extracted using MM as well (see Figure 7.20). This operation has helped to fill the 

gaps that have been produced in the Canny edge map due to low contrast in the texture 

leading to some edges being undetected, causing a problem during constructing the 

individual base boundary (see section  7.6.2). Finally, the resulting map will be combined 

with the edge map and the result will be a new map where no gaps exist (see 

Figure  7.26(b)).  

(a) (b) 
Figure  7.26 Comparisons of modified edge map (a) the original Canny map (b) the refined 
Canny map. 
 
Despite removing the noise from the segmented image, still some noise (as extra edges) 

has been left, consequently causing problems. It was necessary to remove such noise from 

the edge map. At this stage, a 7x7 cleaning filter was passed over the edge map, see 

Figure  7.27. 

 
Figure  7.27 The cleaning filter which is used to remove the noise in the edge map. This filter 
traverses the edge map, and if all the red pixels overlie the background pixels of the edge map 
then any foreground pixels that are overlaid by green pixels will be removed from the edge 
map. 
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The image under the filter was examined; if the boundary of the pixel was background then 

the object inside the filter is removed, otherwise it shifted to the next position. Based on 

the idea that the foreground pixels are connected to each other, it was possible to remove 

the noise that was left inside the building, successfully. 

 

7.6.2  Construct Individual Base Boundary 

For the simulation purposes, it was necessary to measure the distance from each simulated 

boundary (obtained from adding random numbers to the initial building boundary) and the 

Canny edge map to be used, to find goodness of fit. However, the result was not as 

expected, because the distance was based on the Euclidean distance from the edge of the 

initial building boundary to the closest distance on the modified Canny edge map, and this 

distance varied during the measurement, which was consequently affecting the argmin 

result. For that purpose, it was necessary to create a new image space keeping only the 

building of interest and removing all the objects from the edge map except the boundary of 

interest, which is called solo boundary. To perform that operation, the nominated building 

in the segmented image described in section  7.4.1, has been dilated 10 times and then 

eroded 14 times to smooth the boundary and keep just the core of the building. Later on, it 

was necessary to minimize the number of core points, by taking the boundary of the core 

object. The final stage is to take each pixel from that boundary and scan around it for 360 

degrees, record any intersected point on the modified edge map, and repeat this operation 

on all the boundary points, thus producing the solo boundary, see Figure  7.28 (c).  

 
(a) 

 
(b) 

 
 (c) 

Figure  7.28 Modifying the edge map for the optimization purpose (a) Canny edge map (b) 
filling the gap by adding the thresholded image boundary to the Canny edge map (c) keeping 
the solo boundary by selecting the intersection point of the centre ray with the boundary in the 
image (b). 
 

7.6.3  Building Boundary Optimization 

For planning purposes, it is necessary to get an accurate building boundary with a regular 

shape. The initial building boundary, obtained from processing satellite image was not 

adequate for use in planning or city modelling purposes, due to loss of spatial resolution 

with the consequent effect on accuracy, and it was not sufficiently regular, due to applying 
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a MM operation. Therefore, it was necessary to add another operation to regularize the 

initial building boundary. Two methods have been tested, the Maximum Likelihood 

approach and a Bayesian approach. The first method depends on measuring the data while 

the later incorporates prior data to the measured data. The result from Maximum 

Likelihood was still not promising although it enhanced the initial building boundary but 

not with the required amount, therefore a Bayesian approach has been used to enhance the 

result. It was possible to gain a robust result by incorporating a proper and suitable prior in 

the calculation of the building footprint using a Bayesian approach. The methodology that 

is followed for the optimization process, in both Maximum Likelihood and Bayesian 

approaches, is based on Monte Carlo Simulation (Graham and Talay, 2013; Kruschke, 

2011). This generates a sample of random numbers using normal distribution and a specific 

variance (in this case, the used variance was 3), and then adding these random numbers to 

the original coordinates of the initial building boundary to obtain new coordinates. The 

output involves producing a large number (n) of simulated boundaries, which represent the 

building footprints. The following sub-sections (a and b) illustrate these two methods 

applied to building boundary regularization. 

 

a  Maximum Likelihood Estimation 

The likelihood function has been tested to optimize the initial building boundary using a 

Monte Carlo simulation procedure. The simulation was started by simulating each initial 

building boundary individually and measuring the distance from the solo boundary 

(produced from Canny edge map, see Figure  7.28 (c)) at each pixel, to the simulated initial 

building boundary.  

 

The likelihood model used is represented in equation  7-13. It is based on modelling the 

estimated quality of the original approximate initial building boundary, following a Normal 

Distribution or Gaussian approach, assuming the errors (i.e. the distance between the 

original and simulated boundary) are normally distributed (i.e. zero mean and σ standard 

deviation of error) (Wang et al., 2006). 

 L(_) = P(w|_ = ∏ P�d¼|X =ô¼�� ∏ õ �√5öÙEXPø− ãù§5Ù§úûô¼��   7-13 

where: 

L(_ 	�Y	P(D|	_), are the likelihood or the probability distribution of the data required in 

order to calculate the unknown parameters _, the function that forms the observed data;  

_ is the best value of the boundary based on maximizing the probability; 
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d is the distance between the boundary pixels on the solo map and the simulated building 

boundary at each i pixel location; and, 

σ

5 is the variance of the of normal distribution.  

The applied model is based on measuring the distance from each pixel in a constructed 

individual base boundary or solo boundary to the simulated boundary. The simulation is 

based on the Monte Carlo method. The distance from initial building boundary’s pixel to 

the solo boundary is obtained by using the geometrical equation (negative values are given 

to the distances that lie outside the solo boundary). From the diagram Figure  7.31, the 

distance d can be inferred which represents the shortest distance from the pixel point (x0, 

y0), in the solo boundary, to an intersection with the edge of the simulated boundary. 

 

This distance (d) is obtained by applying the equation  7-14 (Weisstein, 2014). The 

equation is finding the projection from point P0 to the line P1P2. The distance is calculated 

for all segments of the simulated boundary and the minimum distance will be considered 

the required one.  

 V = |(45 − 4�)(6� − 6�) − (4� − 4�)(65 − 6�)|Ë(45 − 4�)5 + (65 − 6�)5   7-14 

 

The above procedure is repeated until all the pixels are visited in the individual base 

boundary as shown in Figure  7.29(a), and having found the value of P(D|_) using the 

equation  7-13. The above procedure is repeated on each simulated building boundary, 

which in this research is 250k times, and calculating and recording the value of P(D|_) at 

each time. Since the aim is to try to find the maximum probability according to Maximum 

Likelihood principles, the result of the Maximum Likelihood will be the simulated 

boundary that gives maximum value for	P�D|_). The Maximum Likelihood approach is 

trying to find the best fit for the initial building boundary given measured points from the 

Canny edge map Figure  7.29(c), which consequently represents the best goodness of fit to 

the data (Deserno, 2011).  
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(a) (b) (c) 

Figure  7.29 The result of optimizing the boundary using Maximum Likelihood method (a) 
simulated boundary and constructed individual base boundary based on Canny edge map 
(b)the simulated boundary overlaid on the orthoimagery (c) the result of Maximum 
Likelihood method. 
 

By repeating the above-mentioned procedure on each building, the Maximum Likelihood 

for each of them was found in order to construct an overall result for the study area as shown 

in Figure  7.30. 

 
Figure  7.30 The result of applying Maximum Likelihood method to regularize building 
footprints over the case study area.  
 

The role of Maximum Likelihood estimation is to try to maximize probability along the 

simulated building boundary using a normal distribution. At each pixel point on the 

individual building boundary the distance between the simulated and solo boundary is 

measured, later a normal distribution is fitted as shown in Figure  7.31. Using the measured 

distance (red colour), the probability is calculated at each point (yellow colour). Finally, the 

total probability is calculated using equation  7-13. 
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Figure  7.31 Diagram showing the distance from selected pixel to the simulated boundary. 

 

b  Bayesian Approach 

Due to losing some of the spatial resolution from the initial building boundary, in the 

earlier stages, the inability of the Canny edge map to detect the building edges clearly and 

the modifications applied to the edge map to produce an individual base boundary, the 

result when using the Maximum Likelihood approach was not acceptable. 

  

The next stage of building regularization is an examination using Bayesian statistics. The 

Bayesian approach is based on using prior probability, because it represents the expected 

situation and if the prior probability is a poor representation, the outcome may be 

unsatisfactory. Therefore the prior probability should reflect the expected situation as 

purely as possible. 

 

In general, the Bayesian approach as discussed earlier, in chapter 4, consists of a joint 

probability distribution (which is often called the posterior probability) divided by 

probability term p�X  for normalization purposes. This is shown in equation  7-15 

(Kruschke,2011), and is based on the normalised joint distribution of the likelihood and the 

prior probability (often referred to as a priori probability), which are both initially 

represented by their relevant probability density functions (pdf) of p(ϴ) and p(X|ϴ). 
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 p(_|X = p�_, X p�X = p�_ p�X|_ p�X   7-15 

 
Where: 

p(_|X) the posterior probability, which is the probability of the hypothesis given the 
observed data. 

p(_,X) the joint distribution of the hypothesis and the observed data 

p(_) the prior probability, the probability of hypothesis is true before measuring any 
data. 

p(X|_) the likelihood, which is the probability of the observations arising given the 
hypothesis.  

p(X) the evidence, marginal likelihood, or normalization factor, which is used to 
normalize the Bayesian model. 

 
Since the aim is to find a solution providing a relative maximum value, not finding the 

overall probability, and because the parameter _ does not interfere in the calculation of 

the normalization factor, therefore, it is not necessary to calculate the normalization factor 

p(D), and thus the equation becomes (Link and Barker, 2010):  

 

 p�_|X ∝ p(_)p(X|_   7-16 

 
The equation  7-16 can be translated into another form by substituting the _ as the 

building footprint and X as the location of the initial building boundary points. 

 p�building	footprint	|location	of	inital	building	boundary	points) 					∝ 				p�_ p�X|_  
 

The aim is to find the building footprint boundary in terms of its x,y coordinates given the 

angle between the edges and the distance from the simulated boundary and the Canny edge 

map, 

 

 ptx�, y�,x5, y5,x7, y7, …	üα�, α5, α7, … , d�,d5,d7, … ∝ p(_)p(X|_   7-17 

 

The result is obtained by finding the maximum of the argument (the product of prior 

probability and likelihood), or argmax, for several possibilities, using equation  7-18 

(Tournaire et al., 2010). 
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 _Ä = 	argmaxl 	{	p�_ p�X|_ }  7-18 

 

The author suggests that the Bayesian approach has been believed to be a more robust 

method for building footprint construction than Maximum Likelihood method since it is 

based on synthesising the model using prior information about the buildings and 

measurements.  

 

The assumption (or expectation) used here for the prior probability is based on considering 

building footprints to have straight edges and right-angled corners, i.e. 180 degrees 

between the edge points (defining walls) and 90 degrees at corners, with low penalties 

applied to other angles such as 45 degrees. This assumption is based on work by Wang et 

al. (2006) who implemented a Bayesian approach with LiDAR data to extract building 

boundaries. By reflecting this assumption into a probability distribution form, it can be 

used in a Bayesian approach as shown in the following graph, Figure  7.32. From the graph, 

it can be seen that the value of the penalty near 90o ±3o and 177o to 180o is equal to 10-45. 

Using such small number has a considerable effect during the optimization stage. The 

experimental results show that using other values rather than the abovementioned 

sometimes failed to achieve right-angled corners or straight lines for all building corners or 

edges, respectively. 

 
Figure  7.32 The prior probability function f( α) that used to find the penalty, 90o and 180o 
degrees gives the minimum penalty while the penalty for 45o and 135o is higher, and even 
higher for other angles. 
 

The formula that has been used in the above graph is shown as equation  7-19 and has been 

obtained experimentally based on the assumption that made by (Wang et al., 2006), which 

is used to find the penalty for the angles obtained during the simulation stage. 
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�(α) =
���
�
���0.21 − 6(� − 45)5 + 60 − 2(� − 90)5 + 9.7 − 6(� − 135)5 + 60 	− 2�� − 180 5 + 9.6529.92 …… . . S�	0 ≤ � < 87	�Y	93 < � < 177¹

10¬��																																																																																																																					�WℎHY�S[H ���
�
���
  7-19	

 

The multiplication of the prior probability and the likelihood will lead to a posterior 

probability. It is possible to find the maximum posterior probability, or take either the 

maximum of the log of the argument derived from equation  7-23 or the minimum of the 

negative log function (Diebel et al., 2006) It is preferable to take the minimum value since 

the values of the product of probabilities are very small. To derive the posterior probability 

the prior probability ( 7-20) is multiplied by the likelihood ( 7-21): 

 P�_ = 		Åf�α¼ 		……… prior�
¼��   7-20 

 

 P(/|_| ) = 	Å � 1√2πσeJ− d52σ5K�ô
¼��   7-21 

 
 
To optimize the function ( 7-18) the above formulae are utilized to give: 
 
 _� = argmin	{− logþP(_). P(X|_)��  7-22 

 

 	_� = argminl {− log [∏ f(α¼)] − log	æ∏ õ �√5öÙ e ø− ã§5Ù§úûç�ô½���¼��   7-23 

  

_� = argminl �− � log	æf�α¼ �
¼�� ç − nlog � 1√2πσ − 12σ5 � log	æe J− d52σ5Kô

½�� ��  7-24 

 

By simplifying the equation  7-24, opening the brackets and omitting the constants that do 

not affect the result, the final equation can be represented by equation  7-25. 

 

 	_� = argminl �− � logf(α¼) +�
¼��

12σ5 � d½5
ô

½�� �  7-25 

 

The Monte Carlo simulation method has been used in the optimization process, as 

subsequently described. First, evaluate the distance of the simulated boundary to the actual 

building boundary or solo boundary derived from the Canny edge map. Then measuring 
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the corner angles, see Figure  7.33, for each simulated boundary calculate the penalty from 

the graph. Utilize the values obtained in Equation.  7-25 to evaluate the result, which is 

based on a minimum value of the result produced from the equation with all simulated 

values. The value of the σ5 has been selected initially as 0.5 and increased gradually. It 

was found that the best value is considered to be 3, and it can be fixed at this value. 

However the larger value leads to neglecting the Maximum Likelihood cost consequently 

giving all the weight to the prior ∑ logf�α¼ �¼�� , and for that reason it was necessary to 

select a value which leads to achieve a balance between prior and Maximum Likelihood.  

 

 
(a) 

 
(b) 

Figure  7.33 (a) Initial building boundary overlaid over the edge map, the corner angles and 
the distances from the solo boundary to the initial building boundary can be seen; (b) result 
of regularized initial building boundary which is obtained by seeking the situation 
generating the minimum value for Eq. 2. 
 
The result of applying a Bayesian approach can be seen in Figure  7.34, which follows 

executing the model on all buildings, in order to find the optimized result for each 

building. 

 

Figure  7.34 The result of applying Bayesian Approach to regularize building footprints over 
the case study area. 
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The Figure  7.35 shows the difference between the initial and optimized boundary using 

Bayesian theory. The initial building boundary first has been overlaid on the edge map, see 

Figure  7.35(a). Clearly, it was not possible to utilize this in the optimization process, 

because of so many edges in the area. During measuring the distance from the initial 

building boundary to the simulated footprint, other edges were constantly being intercepted 

consequently giving a wrong result. For that reason, the individual base boundary has been 

introduced. The boundary, which is used for the optimization, is shown in the Figure  7.35 

(b). It is clear that only one boundary has been kept and the simulation will be against that 

boundary only. The images in the lower row of Figure  7.35 show the result of the 

optimization overlaid on the edge map, individual base boundary and orthomap. It is 

noticeable that the boundary that has been extracted has almost right-angled corners and 

the points on the edge have been straightened. 

 

 
 

 
(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure  7.35 Comparison of initial and optimized building boundary: (a)&(d) initial and 
optimized building boundary sample overlaid over the edge map; (b)&(e) initial and optimized 
building boundary overlaid over individual base boundary; (c)&(f) initial and optimized 
building boundary overlaid over orthoimagery. 
 

 

Figure  7.36 shows the initial building boundary (blue) and optimized building boundary 

(red), both are overlaid on the orthoimagery to see the effect of applying a Bayesian 

approach. 

 

The processing time expended to achieve building footprint extraction and regularization 

using a 2xCPU 2.3 GHz processor, with either a Maximum Likelihood or a Bayesian 
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approach for the 49 buildings with 250k iterations, extended to 6 hours and 4 minutes. The 

choice of 250k iterations was selected experimentally: initially it is started at 100k iterations 

but the result of the optimized building boundary was not regular, therefore the number of 

iterations was been increased gradually to 250k iteration. At 250k iterations building 

boundaries were regular, that is the corners were right-angled and the edges were straight. 

 
 
Figure  7.36 Vector map showing the result of applying Bayesian theorem (red) to regularize 
building boundary lines. Green lines represent the initial building boundary. 

 
 

7.7  3D Model Building Construction 

Once the building footprint has been produced for each building, the next stage is producing 

a 3D model utilizing the extracted height from the DSM. The constructed model is based on 

LoD1 which is based on taking the maximum height of the building according to the 

specifications of CityGML (see Figure  1.1) as mentioned by Gröger and Plümer (2012). 

 

For the 3D model construction, the regularized building footprint has been extracted by 

taking the height in the corresponding part from the DSM. The above procedure has been 

applied on each building and saved as vector file so it can be used in the visualization, see 

Figure  7.37. 
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Figure  7.37 3D models for the study area based on extruding the building footprint based on 
maximum DSM height in the specified area. 
 

For the purpose of visualization and to place the buildings on the ground, as shown in the 

above figures, the smoothed DSM that is utilized for the nDSM production in section  7.2.2 

has been used. The resulting DTM was obtained by smoothing the DSM by implementing a 

49x49 kernel. It is possible to use more exacting technique to produce a higher quality DTM 

such as mentioned by Krauss et al. (2007), but it was sufficient to use a rudimentary method. 

 

7.8  Summary of the Developed Process and Associated Algorithms  

The building extraction process and associated algorithms, which are shown in the flow 

chart Figure  7.1, are summarized below, in twenty-three steps, which include data 

processing, enhancement and building detection, extraction and construction. 

1. Produce orthoimagery and DSM using Socet GXP from Satellite imagery.  

2. Produce NDVI from multispectral imagery, using Pleiades satellite imagery, using 

ArcGIS software.  

3. Extract the road from orthoimagery. 

4. Enhance the orthoimagery by sharpening and applying a mean shift algorithms, 

using ImageJ software. 

5. Produce segmented images and edge map from orthoimagery, and then produce 

nDSM from DSM, using ImageJ software.  

Note: All subsequent operations have been implemented using C++ scripts written by the 

author 

6. Label the nDSM using the connected component algorithm. 
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7. Detect the shadow by thresholding using pixel values less than 26. Then apply 

closing MM to produce mass shadow segments. 

8. Subtract the road and NDVI from nDSM keeping the buildings only. 

9. Subtract the roads, shadow and NDVI from the segmented images. Then apply 

minimum error threshold to obtain image-A and Moment threshold method to 

obtain image-B. 

10.  Erode the segmented image-A using a circular structural element then opening the 

image - using erosion twice and dilation twice. Then perform a further dilation 

using a circular structural element in order to remove noise and separate the objects 

from each other. 

11. Apply MM opening on the segmented image-B using a square structural element, 

first erode the image twice then dilate it twice. 

12. Enhance the edge map by removing the noise,  

a. First dilate the segmented images A and B, just once. 

b.  Take the boundary and add it to the edge map, this process fill the gaps in 

the location where the Canny edge detection could not detect the edges, due 

to low contrast.  

c. Erode the segmented images A and B twice then subtract them from the 

edge map, this process removes the noise from inside the building.  

d. Pass a cleaning filter to remove the scattered object from the edge map 

13. Take each region in the labelled nDSM individually. Since each building is 

detected as a ‘blob’, and just part of it, it is necessary to dilate each building 17 

times in order to cover a whole building, and little more. 

14. Take the corresponding part of the labelled image from the segmented images A 

and B, compare each segment and take the object that has the maximum area. 

15. The area in the previous section consists of many parts, therefore these need to be 

labelled, using connected component labelling taking each part individually. 

16. Compare each detected object in the segmented image with the objects in the 

nDSM and keep the common ones only.  

17. Use the above segments to find each initial building’s boundary using the MM 

method. 

18. Sort the initial building boundary using the NNA algorithm and then approximate 

using the Ramer-Douglas-Peucker algorithm. 

19. Create the individual base boundary, by taking the segmented image that is 

produced in section 14, and then erode it 5 times. From each pixel on the boundary 
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create a ray of lines, through 360 degrees and record wherever it intersects the 

modified Canny map, keep only this intersection and use it in the optimization 

process. Apply the Bayesian Model to find the best fit boundary with the most 

right-angled corners and straight edges. 

20. Create a prior probability that represents our belief in the building boundary. 

21. Use the initial building boundary, produced in item 17 and use the Monte Carlo 

method, simulating a random boundary and selecting MAP.  

a. First, measure the internal angles of the simulated boundary and use it in the 

prior function, equation  7-19, to find prior penalty. 

b. Measure the distance from each pixel In the individual base boundary - (see 

item 18) to the simulated boundary that produced  

c. Plug-in the values from a and b in the Bayesian model and find MAP, the 

boundary that corresponding to the maximum value of the Bayesian will 

represent the candidate building boundary. 

22. Take the boundary that created in item 19, and check the maximum height using 

DSM created in item 1. 

23. Repeat items 19 and 20 on each building individually, covering all objects in the 

labelled nDSM. 

 

7.9  Preliminary Assessment 

The method was able to detect full 3D models by depending on the raw data only, without 

using any external data such as 2D Cadastre database, such as had been used by Tack et al. 

(2012). By applying the above-mentioned algorithm on the WV-1, it is noticed that the 

buildings are clearly extracted although some of them still have problems. 100% of the 

buildings have been detected. The algorithm applied gave as good as or a better result than 

other projects in the same field, Aytekin et al. (2009) showed in their paper that the 

extraction result was only about 81%. Meanwhile Dahiya et al. (2013), another study in the 

same field, exhibited the result that 24 building has not been extracted among 122 building, 

and moreover, 18 buildings were wrongly identified. 

 

The algorithm has been checked against another study area and is marked as area-2, see  

 Figure  7.38, with dimensions 203.5m by 271m that has different building orientations with 

low variability and the buildings being close to each other, see Figure  7.40. For that reason 

after the meanshift algorithm and before applying the minimum error threshold algorithm 

for the segmentation, the image has been smoothed by substituting each pixel’s value by the 

median of the group of 5 x 5 pixels surrounding it, see Figure  7.39. 
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 Figure  7.38 Study area-1 and study area-2 inset in the WorldView-1 satellite imagery. 

 

 

It can be noticed that all the building have been detected successfully, except some of the 

buildings mostly at the border. It is worth mentioning that the buildings and surrounding 

texture were quite similar and therefore it was difficult to distinguish the buildings, 

precisely. Moreover, due to the building orientation being inclined the structural element 

was based on a cross structural element Figure  7.2(b) instead of square structural element, 

see Figure  7.2(d). Used were one Circular Erosion, followed directly by one Circular 

Dilation, followed by two Cross Erosions and finally then two Cross Dilations. In addition to 

that, the threshold value that has been used in smoothing (i.e. Ramer-Douglas-Poiker) the 

initial building boundary has been reduced to 3 pixels (1.5m) instead of 5 pixels (2.5m). 

 

 

Building Extraction 
boundary for area-1 

Building Extraction 
boundary for area-2 
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(a) 

 
(b) 

Figure  7.39 Segmented image showing the effect of smoothing by replacing the median with 
its surrounding boundary (a) before enhancement (b) after enhancement. (Also see 
Figure  7.40) 

 

In the second test area of the fifty-eight buildings, ten were partially detected and one not 

detected at all. It is also worth reminding the reader that in the first test area among the 

forty-nine buildings all were detected with only four of them having been detected partially. 

In the first test area it is clear that 46 of the buildings have been detected very clearly, which 

gives a successful extraction percentage of 88%, although a few buildings are rotated 

slightly and have poor edges. This initially subjective evaluation will be extended, using 

more objective means, in chapter 8. 

 

Some of the boundary has been detected more than once, namely the building at the 

bottom-left, as shown in Figure  7.30 and Figure  7.34. This is because the mentioned building 

has been extracted twice due to some objects remaining in the nDSM, see Figure  7.9. This 

consequently causes that object to appear as a separate building. These extra boundaries can 

be removed by applying some rules to the algorithm based on keeping the area that has 

biggest common area with initial building boundary and filter out the rest. 
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(a) 

 
(b) 

Figure  7.40 Alternative study area used in applying the building footprint construction 
algorithm (a) orthoimagery used in the test (b) extracted building footprint overlaid on the 
orthoimage. 

 

7.10  Conclusion 

The results obtained shows that satellite imagery can stand as a cost effective source for 

producing building footprints and 3D modelling. Both Maximum Likelihood and Bayesian 

approaches were able to extract building boundaries more effectively, when compared with 

the majority of approaches mentioned in section  7.9; for example the work reported here 

achieved 100% and 88% building detection in the two study areas, whereas earlier efforts 

did not achieve this, with Aytekin et al. (2009) achieving an extraction result of 81% and 

Dahiya et al. (2013), 80%. Furthermore, the Bayesian approach was able to improve 

building footprints noticeably. The suggested method is an almost fully automated and 

unsupervised method, except for the road detection part that is done manually since there 

has been considerable research in this field (and thus might have been done automatically). 

The applied algorithm can be implemented with few parameter changes, which 

consequently can be considered a good feature in terms of building footprint extraction.  
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Chapter 8 Result and Evaluation of Building Footprint and 3D Modelling  

The process evaluation is presented in this chapter; it includes the evaluation of the 

constructed building footprint and 3D models. For the evaluation purpose the ‘true’ data that 

have been used were acquired from differential GNSS and total station observations of real 

ground elevations. In the assessment, both subjective and objective analyses have been used. 

Visual inspection has been used for the subjective evaluation. Regarding the objective 

validation, statistical analyses have been used such as RMSE and the percentage of false 

negative and false positive areas extracted. 

8.1 Study Area and Implemented Data 
For testing the building boundary regularization, two areas were selected for that purpose. 

Since the time used in regularizing the building boundaries was very large, due to simulating 

each building boundary through 250k iterations, small study areas were used in order to 

minimize the time of processing. The nature of the investigation reported in this thesis meant 

that the simulations were repeated many times as the method evolved. To make the 

investigation manageable relatively small study areas were used. The study areas that have 

been used in building extraction were within the 10km2 that have been used in the merging 

operation, as shown in Figure  5.2. The study areas were representing the whole sample space 

which contained all types of buildings such as complex buildings, one direction sloped roof 

buildings and hipped roof buildings.  

 

Two urban areas located in Glasgow were chosen, selected to facilitate evaluation purposes. 

The first area used to evaluate building footprints, called area-1, has the extents 419870 mE, 

6194210 mN lower left and 420160 mE, 6194430 mN upper right, which covers an area 

290m by 220m shown in Figure  8.1(a), and includes 49 different buildings with different 

heights, structures and roof slopes. The other area is called area-2, it has been having 

boundary coordinates as (418302.54 mE,6194480.78 mN) lower left (418506.04 

mE,6194751.78 mN) upper right, the study area covers an area 203.5m by 271m as shown in 

Figure  8.1(b). The given coordinates are referenced to UTM zone 30 (North), using the 

WGS84 ellipsoid. 
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(a) (b) 

Figure  8.1 The study area that has been used to test building extraction (a) study area-1, (b) 
study area-2 

8.2 Reference Data 
The checkpoints that have been used to validate the extracted building footprints and 

3Dmodels were acquired in the field using total station equipment. The observations were 

taken of the building corners and the highest elevation point on each rooftop using a 

reflector-less total station instrument. Prior to embarking on observing the field points, a set 

of GCPs using GNSS-RTK instrumentation has been established in the area.  

 

Originally, the E and N coordinates for each point were in the OSGB coordinate system only, 

however the elevations were available on two vertical datums, Newlyn (Ordnance Survey 

(UK), 2013) and WGS84 ellipsoid. Since the coordinates of the orthoimagery and the DSMs 

that are implemented in the processing were on the UTM-Zone30 projection grid coordinate 

system and Eastings, Northings and height were all referenced to the WGS84 ellipsoid, as it 

was necessary for all coordinates to be on the same coordinate system, any British National 

Grid coordinates were transformed to UTMZone30 on WGS84. For the transformation, 

ArcGIS software has been implemented. Different projection systems exist in the ArcGIS 

environment that can be used in the transformation, WGS84-UTM30N (i.e. northern 

hemisphere) with the option “OSGB 1936 to ED 1950 UKOOA +ED 1950 to WGS 1984_1” 

selected. 

 
Prior to assigning the projection UTM-30N to the coordinates, first, the data are imported to 

the ArcGIS and the OSGB coordinate system was assigned. Later it has been transformed 

using the available ArcGIS tool as shown in Figure  8.2, and displayed with the orthoimage 

Figure  8.3. 
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Figure  8.2 Transforming the British coordinate system (OSGB 1936) to UTM-30North. 
 

 

Figure  8.3 The blue line is OS master map produced using transformation option in ArcGIS  
overlaid on the WV-1 orthoimagery. The green dots represent the measured filed points 
with total station. Crown Copyright and Database Right 2015. Ordnance Survey  

8.3 Qualitative Assessment for Building Footprints 
It was decided to use qualitative assessment to express the shape quality of extracted 

buildings. It is clear that the algorithm was able to detect the buildings and construct 
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geometrical building shapes close to the original shape. The visual inspection shows that the 

buildings were constructed as intended, based on extracting the building roofs Figure  8.4. 

However depending on the roofs, systematic error was found during the validation stage, 

which will be shown in the next section.  

 

Figure  8.4 The extracted building footprint by applying Bayesian approach. 
 

The qualitative assessment shows that the algorithm, in addition to detecting regular simple 

small buildings, was also able to detect and extract complex buildings. As illustrated in 

Figure  8.5 complex buildings have been clearly identified, as shown in the lower right. Such 

a building is very challenging for automatic construction because it specified to have 

complex fragmented shape. A building that has an L-shape also clearly was identified and 

extracted. 
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Figure  8.5 The extracted buildings in the study area. 
 

In addition to the successful building shape extraction in some areas, it is necessary to 

mention that the algorithm had some shortcomings in extracting building successfully. In 

some areas although it was possible to extract buildings as they had been originally 

expressed, they have been rotated. As shown in Figure  8.6, some buildings were rotated and 

there is a building for which just a part has been extracted. 

 

 
(a) 

 
 

 
(b) 

Figure  8.6 Building Extraction Assessment (a) The buildings which were rotated or 
incorrectly constructed (b) true and incorrectly constructed buildings with their centre 
points 
 

It is clear that the delineated buildings are located at almost the correct building position with 

slight discrepancies, which could be neglected under some subjective circumstances, such as, 

when required to construct 3D model for the purpose of general planning or emergency 

response. 
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8.4 Quantitative Assessment of Building Footprint 
For the quantitative building validation, various objective assessments have been 

implemented. The reference data that have been used in this validation have been derived 

from field survey by using total station data and referenced to UTM-30N and WGS84 

ellipsoid, as discussed in section  8.2. 

 

As mentioned earlier the total number of detected buildings is 49. One building, 

Figure  8.6(a) has not been extracted very well. In the validation stage, only the buildings that 

have been extracted correctly are used, i.e. the building labelled “22a”, illustrated in 

Figure  8.6(a) (right), is excluded from the calculation. This arises because in the nDSM 

image a green object (i.e. a tree) has been left over, after using the NDVI mask, this 

consequently caused the object 22 to be in two parts. 

 

Figure  8.7 shows the total number of extracted building and the buildings that are measured 

for validation, using field observations. 

 

Figure  8.7 The original surveyed building with total station (blue) and the extracted 
buildings (black) in the study area. 
 

The type of the statistical measurement that has been used to evaluate the algorithm 

regarding building footprint extraction was limited to the RMSE, max, min, mean, σ of the 

discrepancies. These statistical terms will be discussed in the following section (sec  8.4.1). 

In addition to the statistical terms, the histogram of the errors has been plotted; see Fig 8.9, in 

order to demonstrate how the errors are distributed.  
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8.4.1 Quantitative Evaluation Indices 
For validation purposes, the RMSE index has long been considered as the best index for 

measuring error, as reported by the ASPRS under the title “ASPRS Accuracy Standards for 

Digital Geospatial Data” (2013). The report praises the importance and effectiveness of 

RMSE rather than standard deviation (or σ ) for representing error. The latter is used to give 

an indication as to how measurements cluster (Wood, 1996).  

 

If no blunders or systematic error (systematic error is manifest as bias) exist in the data, then 

RMSE and the σ of unbiased error are expected to be numerically close in value, however if 

there is bias the RMSE will incorporate it while the σ of unbiased error will not, and for that 

reason the σ of unbiased error- cannot be considered to represent accuracy. 

 

Bias is an important concept and the arithmetic mean of discrepancies gives an indication of 

its nature. The formula that is used in calculating the bias is showing in equation  5-1, while 

equation  5-2 refers to the standard deviation formula that is used to estimate the standard 

deviation (or σ ) of unbiased error, and equation  5-3 refers to RMSE.  

 

These three indices (subsequently referred to as: arithmetic mean discrepancy; σ of 

discrepancies; and RMSE), in addition to minimum and maximum error, have each been 

calculated for the corner coordinates, centre point coordinates, area dimensions and the 

height of the buildings. 

8.4.2 Corner Validation 
A quantitative test has been applied at the building corners in order to assess the accuracy of 

the constructed buildings. The accuracy has been estimated by measuring the discrepancy 

between the corner of the constructed building’s footprint and the measured coordinate. The 

measured coordinates have been obtained from a total station referenced to the WGS-84 

coordinate system using GNSS, and thus these coordinates can be considered as the ‘truth’. 

The total station used was Leica TCR805 with 1-second angular resolution. The accuracy 

that has been evaluated in this section is limited to the positional planimetric accuracy 

derived from the discrepancies in the corner points, Figure  8.8. The discrepancy of each 

corner at each building has been measured individually. The RMSE and other statistical 

indices used to indicate the planimetric quality of each building is shown in Figure  8.6, and 

similar indices have been determined for the 35 buildings shown in (e.g.) Figure  8.7.  



 Chapter 8 
 

228 
 

 

Figure  8.8 The constructed and true building corners, with planimetric corner 
discrepancy measurements.  

 

The result of the discrepancies in the corners is summarized in Table 8.1 (see APPENDIX E). 

It shows that the value of the RMSE in addition to the other statistical measurements. 

 

Table  8-1 Buildings Corners’ planimetric quantitative statistical result from 
measuring 144 building corner points. 
Min. discrepancy(m) 0.12 

Max. discrepancy(m) 9.65 

Arithmetic Mean discrepancy (m) 2.23 

σ of discrepancies (m) 1.62 

RMSE (using discrepancies)(m) 2.88 

 

Focusing on the roof of the building that exhibits lean, the building extraction has 

consequently led to a well-known systematic error. The issue of systematic building lean is 

well researched and commercial proprietary tools exit for its removal (Haskell and 

O’Donnell, 2001) should a project’s quantitative specifications require it. Knowledge of a 

building’s height is required to effect building lean removal. 

 

The distribution of corner discrepancies (d) is shown in Figure  8.9. It is clear from the error 

distribution that the discrepancy bias (Arithmetic Mean of discrepancies) is about 2.23m.  
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Figure  8.9 The building corner error (discrepancy or residual) distribution for 144 corner 
measurements. 

 

These results were based on the planimetric discrepancies (residuals) of corners, but it is 

possible to go deeper into the analysis and consider the X, Y discrepancies of the corners 

individually, see Figure  8.10.  

 

Figure  8.10 The constructed and true building corners, with corner discrepancy 
measurements in x and y directions. (All dimensions and coordinates are meters) 

 

For each building the X and Y discrepancies have been measured, and the statistics of these 

measurements are shown in Table  8-2, see APPENDIX E. 

Table  8-2 X and Y Corners discrepancies of buildings’ - statistical results 
obtained from measuring 144 building corner points.  
Type of statistical test X- discrepancy in 

meters 
Y- discrepancy in 

meters 
Min discrepancy (m) i.e. most negative -4.76 -9.47 

Max discrepancy (m) i.e. most positive 7.27 8.63 

Mean discrepancy (m) 0.76 1.29 

σ of discrepancy (m) 1.49 1.79 

RMSE (m) 1.67 2.20 
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From the above analysis it is clear that the displacement or bias of X is smaller than Y. This 

is due to the lean of the building and the image exposure angle. The images used are not true 

orthoimages, which consequently leads to the roofs of the buildings being displaced from 

their original location. In addition the displacement value signs are positive, so the 

displacement is it to the north east. The RMSE value in X is smaller than in the Y direction, 

which is 1.67m in X and 2.20m in Y. 

 

The histogram of the discrepancies has been evaluated as well, see Figure  8.11, in order to 

evaluate the distribution of the X and Y errors. 

  

Figure  8.11 The corner error distribution of the buildings from measuring 144 corners. 
 

 
The details of the measured values have been stated in Appendix E. 
 

8.4.3 Building’s Centre Validation 
In addition to the corner displacement, it was also possible to apply a quantitative analysis of 

the error of the building’s centre. The centre of each building, constructed and true, has been 

determined, by using AutoCAD software, and the discrepancy calculated. The planimetric 

discrepancy of the centre, as shown in the Figure  8.7, is mainly to south and west except for 

two buildings (bldg 26 and 27), whose discrepancy was only to the south. 

 

As mentioned earlier this bias of the centre of the building is due to the acquisition angle of 

the satellite image and the fact that the building extraction process has focused on the roof of 

the buildings. The displacement of the centre has been evaluated twice, first the total 

planimetric discrepancy and then, individually, the discrepancies in X and Y. The overall 

validation results are shown in Table  8-3.  
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Table  8-3 Planimetric statistical result for the discrepancy (m) at each building 
centre for 35 buildings. 
Min discrepancy (m) 0.35 

Max discrepancy (m) 4.05 

Arithmetic Mean discrepancy (m) 1.66 

σ discrepancy (m) 0.87 

RMSE (m) 1.84 

 

The RMSE value is relatively small, at 1.84m, however there is still bias, as indicated by the 

arithmetic mean discrepancy which reaches to 1.66m - about three pixels. The histogram of 

the centre discrepancies can be shown in Figure  8.12.  

 

Figure  8.12 The discrepancies between the constructed and true Centre of the buildings 
for 35 buildings.  

 

The graph shows the error is not distributed normally, due probably to the different type of 

buildings, such as the L shaped building, existing among the rectangular shapes. 

 

The other test on the centre that has been applied is the discrepancy of the centre X, and Y 

coordinates, individually. The individual X and Y discrepancies have been evaluated and the 

statistics are shown in Table  8-4,  
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Table  8-4 Individual X and Y coordinate discrepancies (m) of building centres 
- quantitative results for 35 buildings. 
Type of statistical test X- discrepancies (m) Y- discrepancies(m) 

Min discrepancy (m) -0.96 -0.22 

Max discrepancy (m)  2.15 4.01 

Mean discrepancy (m) 0.61 1.38 

σ of discrepancies (m) 0.59 0.95 

RMSE (m) 0.84 1.64 
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The histogram of the discrepancies has also has been evaluated in order to give an indication 

as to how the errors have been distributed. Figure  8.13 shows X and Y discrepancy 

distributions. It is clear from the histograms that the errors are not normally distributed, 

probably due to the buildings having different shapes therefore their centres discrepancy are 

different.  

 

The details of the measured values have been stated in Appendix E. 

  

Figure  8.13 The Centre error distribution of the 35 buildings. 
 

8.4.4 Area Validation 
The next assessment is related to the percentage of extracted areas. Areas have been 

calculated in the AutoCAD environment. In this evaluation, the amount of the area that is 

represented as buildings is taken into consideration. At this stage the area that has been 

extracted as building through the process developed in this research is compared to the 

actual (or ‘true’) area, in order to test the percentage of the area that has been missed from or 

added to the total extracted area. The true area for the buildings in the first study area is 

calculated using the boundary that was obtained from total station coordinates, while for the 

second study area, they have been calculated by digitizing the boundary of the buildings on 

the ortho imagery. The quantitative tests applied are shown in the table below: 

  

Table  8-5 Quantitative results for the discrepancies (m2) of the building areas for 
35 buildings. 
Min. area discrepancy of an extracted building (m2) – 

i.e. most negative discrepancy 

-210.66 

Max. area discrepancy of an extracted building (m2) – 

i.e. most positive discrepancy 

154.50 

Total ‘true’ area of buildings (m2) 5912.91 

Total extracted area of buildings (m2) 6209.54 

Difference (extracted - true) (m2) 296.62 

% Difference (extracted - true)  4.89% increase  
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The histogram of the difference in the area is shown in the below Figure  8.14  

 

 

Figure  8.14 The error distribution of the building areas for 35 buildings. 
 

It can be seen that the error is nearly normally distributed, but shows a bias and that the 

extracted area is consistently larger than the than the ‘true’ building area. The total area of 

the extracted buildings is higher than the ‘true’ area by 4.89%, which is larger than can be 

accounted for when considering that the extracted area is based on the roofline, whereas the 

‘true’ building area uses the measured footprint. 

 

The details of the measured values have been stated in Appendix E.  

   

8.5 Quality Property Assessment  
It is necessary to estimate, quantitatively, the practicability and the efficiency of the 

proposed process and its related algorithms. For that purpose, it was necessary to define 

some measurements that represent the operational quality of the developed process and its 

associated algorithms. Agouris et al., (2004) illustrated some accuracy measurements that 

have been used to evaluate building extraction rates. They show that some measurements 

should be defined, such as:  

 

• the footprint area extracted correctly, denoted as true positive (TP);  

• the footprint area extracted incorrectly, denoted as false positive (FP); 

 and finally,  

• the footprint area that remained un-extracted incorrectly, denoted as false negative 

(FN).  

From these measured values different quality indices can be obtained, for example 
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Correctness, Completeness and Quality, see equations  8-1,   8-2 and  8-3. 

 

 BE = ø ��
��	´	��ú%  8-1 

 

  CM 
 ø ��
��	´	�¿ú%   8-2 

 

 BDP 
 ø	 ��
��	´	��´�¿ú%  8-3 

Where: 

BE is Building Extraction or Correctness; 

CM is Completeness; and 

BDP is Buildings Detected Percentage or Quality. 

 

For the assessment of surface-area quality, two areas have been used in the quality 

assessment analysis, namely area-1 and area-2 as shown in Figure  8.1. For area-2 the true 

building boundaries have been obtained by digitizing the buildings using ArcGIS with the 

aid of a raster version of Ordnance Survey Master Map see Figure  8.15(b).  
 

 

 
 

(a) 
 

(b) 

 

(c) 

Figure  8.15 The second study area: (a) the numbering system for true building areas overlaid 
on the extracted buildings; (b) the true buildings digitized using ArcGIS; (c) the extracted 
buildings overlaid on the true buildings. 
 

The correctness and completeness are complementary to each other and their values are 

between [0,1], or could be expressed in percentage terms. The Building Detected Percentage 

rate (BDP) statistic (equation  8-3) is considered more expressive than the others. These 

practicability and efficiency values have been calculated and presented in Table  8-6. 
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Table  8-6 Quality Property Assessment 
 
Area # of 

building 
TP m2 FP m2 FN m2 Correctness 

BE 
Completeness 

CM 
Quality 
BDP 

1 35 4912.09 1019.119 1297.443 82.8% 79.1% 68.0% 

2 58 5112.664 2451.737 1720.094 67.6% 74.8% 55.1% 

 
The number of buildings extracted (excluding buildings located at the border of the study 

area, since they are not completely generated) and used in analysis for Area-1 is 35 buildings, 

see Figure  8.7, and for Area-2 is 58 buildings, excluding one building,number-8, as shown in 

Figure  8.16 (a). The analysis presented in Table  6-1 shows that the Quality Assessment 

statistics with respect to all indices (BE, CM and BDP) are higher in study Area-1 than study 

Area-2. This is due to the buildings in study Area-2 being densely distributed and very close 

to each other, as shown in Figure  7.40 (a). This consequently causes the initial building 

boundary produced by the segmentation process to be not fully extracted. Visual inspection 

shows that most of the buildings have been clearly identified.  

 

The buildings that are detected are limited to buildings having a dimension larger than 

4-meters, as shown Figure  8.4 and Figure  8.15 (c). This means that small buildings, as exist 

in area-2 Figure  8.15(c) are not detected, due to the resolution of the images being 50cm and 

the application of Mathematical Morphology (especially eroding more than once) causing 

small buildings to be missed.  

 

The algorithm used is giving reasonable results if compared to other automatically applied 

algorithms. For instance the algorithm used by Aytekin et al. (2009) reached 80.8% with 

respect to CM (slightly higher than that achieved by the author’s algorithm) and 34.5% with 

respect to BDP which is considerably less than that achieved by the algorithm used in this 

research.  

 

The algorithm that has been implemented by Jin and Davis (2005) shows that the CM 

reached 72.7% and the BDP reached 58.5%.  

 

However a better result has been obtained by applying supervised classification as the 

algorithm used by San and Turker (2010) had better accuracy since they used supervised 

classification and the CM reached 95.34% and the BDP reached 79.05%. 
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8.6 3D model assessment  
Following the evaluation of planimetry described in preceding sections, the 3D models 

extracted following the proposed processes and their associated algorithms, now have their 

elevations assessed. The heights that are being assessed have been inferred from their DSMs. 

The DSMs being evaluated are from WorldView-1 and Pleiades as generated using Socet 

GXP, and three merged DSMs, namely, that resulting from merging using a Maximum 

Likelihood approach and two resulting from merging using a Bayesian approach. The 

summary of the quantitative tests for these five different 3D-models is shown in Table 8.7. 

 

To achieve the validation for the constructed 3D buildings, a single measurement on the top 

of the building has been taken using a total station. The points that have been measured 

belonged to the highest building point, it having been selected in order to evaluate it against 

the highest elevation that will be taken using the constructed and merged DSMs. 

 

As has been mentioned earlier, there was only one DSM generated with the Maximum 

Likelihood method, meanwhile, six types of DSM were generated using the Bayesian 

approach. In the validation just two DSMs have been used that belong to the Bayesian 

approach; one of them belongs to the DSM generated using the a priori range ±0.1m and the 

window size 3x3 and the other were from a priori simulation range ±0.25m with window 

size 7x7. The reason for selecting these two is because they have the lowest RMSE values: 

0.420m for the window 3x3 and 0.419m for the window 7x7. 

 

The validation has been achieved at three different stages on the study area, first covering all 

the buildings, then the buildings that have inclined roofs and finally the buildings with flat 

roofs (including among the ‘flat roofs’ those with a roof having a small incline to one side, 

only). 
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Table  8-7 3D statistical test using different sources for elevation for buildings with flat (one 
direction sloped) roofs only, showing discrepancies (d) obtained against measured points using 
a total station. Total number of measured buildings is 9 
Type of statistical 
test 

WV-1 
DSM 

Pleiades 
DSM 

Maximum 
Likelihood 
merging DSM 

Bayesian Merging 
DSM range ±0.1m 

Bayesian Merging 
DSM range ±0.25m 

Min. d (m) -0.17 -3.69 -0.75 -0.73 -0.71 
Max. d (m) 1.20 0.52 1.16 1.22 1.22 
Arithmetic Mean d 
(m) 

0.44 -1.48 0.36 0.40 0.39 

σ of d (m) 0.52 1.33 0.68 0.68 0.68 
RMSE using 
discrepancy (m) 

0.66 1.94 0.73 0.76 0.75 

 
Table  8-8 3D statistical test using different sources for elevation for buildings with hipped roofs 
only, showing discrepancies (d) obtained against measured points using a total station. Total 
number of measured buildings is 26 
Type of statistical 
test 

WV-1 
DSM 

Pleiades 
DSM 

Maximum 
Likelihood 

merging DSM 

Bayesian 
Merging DSM 
range ±0.1m 

Bayesian 
Merging DSM 
range ±0.25m 

Min. d (m) -1.36 -2.80 -1.33 -1.28 -1.20 
Max. d (m) 5.92 2.97 5.77 5.77 5.74 
Mean d (m) 2.30 0.45 2.30 2.32 2.34 
σ of d (m) 1.98 1.53 1.69 1.68 1.67 
RMSE using 
discrepancy (m) 

3.01 1.56 2.83 2.84 2.86 

 
Table  8-9 3D Statistical test using different sources for elevation for all buildings (hipped and 
one direction sloped roofs), showing discrepancies (d) obtained against measured points using a 
total station. Total number of measured buildings is 35 
Type of statistical 
test 

WV-1 
DSM 

Pleiades 
DSM 

Maximum 
Likelihood 

merging DSM 

Bayesian 
Merging DSM 
range ±0.1m 

Bayesian 
Merging DSM 
range ±0.25m 

Min. d (m) -1.36 -3.69 -1.33 -1.28 -1.20 
Max. d (m) 5.92 2.97 5.77 5.77 5.74 
Mean d (m) 1.82 -0.05 1.80 1.82 1.84 
σ of d (m) 1.90 1.69 1.71 1.71 1.71 
RMSE using 
discrepancy (m) 

2.62 1.67 2.47 2.48 2.49 

 

The histogram of the errors also has been analysed in order to see how the errors are 

distributed among each of the datasets. Figure  8.16 shows the distribution of error for each of 

the generated 3D models.  

 

The details of the measured values have been stated in Appendix E.  
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Figure  8.16 The height error distribution and Cumulative Distribution Function (CDF) of the 
buildings: left column the histogram of error for the flat roofed (one-side slope) buildings - total 9 
samples; middle column for the hipped roof buildings - total 26 samples; and, the right column 
for all buildings (one direction slope and hipped roof buildings) - total 35 samples. 
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The frequency histogram shows that the error in the flat (or roof with almost no slope and 

that in only one direction) is less than for hipped roofed buildings and all buildings together. 

This high accuracy in the building with little roof’s slope is because the image matching is 

more successful in the one-direction-slope near-flat roof.  

 

From the Figure  8.16 (e.g. Cumulative Distribution Function)  it can be noticed that the 

buildings obtained from Pleiades DSM having larger negative discrepancies than buildings 

from WV-1 DSM, with respect to all types of buildings (flat, hipped and mixed buildings). 

This is due to the large amount of bias in the Pleiades DSM, as illustrated in Table  6-1; it can 

be noticed that the bias of Pleiades is -0.629m compared to WV-1 DSM which is -0.170m.  

 

Regarding the discrepancies in the buildings of the Merged DSMs, it can be noticed that with 

respect to 90% of buildings the residual is 1.5m for all buildings from three types of DSMs 

(i.e. Bayesian DSMs with both ranges ±0.25m, and ±0.10m and Maximum likelihood 

DSM).  

 

The discrepancies are different in the hipped roof buildings, 90% of building having residual 

4.5m for both Bayesian DSM with range ±0.10m and Maximum likelihood DSM while the 

discrepancy was larger reaching 5m with respect to the Bayesian DSM with range ±0.10m. 

   

Similar discrepancies were found in the mixed type of buildings. The residual is 4.5m for 90% 

of buildings obtained using the Bayesian DSM with range ±0.10m. The residual has 

decreased to reach 4m with respect to 90% for buildings obtained from Bayesian DSM with 

range ±0.25m and Maximum likelihood. 

 

 According to the study by Sadeq et al., (2012) correlation between the surface slope and the 

increased discrepancy has formerly been noted. 

 

In addition, the WV-1 image has better results than the Pleiades image although the Pleiades 

image is multispectral; but the Pleiades GSD is 0.7m resampled to a resolution of 0.5m, 

whereas the original resolution of WV-1 is 0.5m. This leads to the image matching being 

more successful for WV-1 data since the original image resolution is higher there is greater 

image texture and better image matching - consequently more precise and accurate DSM can 

be produced. 
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8.7 Conclusion 
This chapter has been limited to showing the results of analyses of the quality of the building 

footprints and 3D models, as generated using the processes and associated algorithms 

developed in this research. The visual inspection shows that the developed process detected 

different roof textures, i.e. either specified to be high intensity or low intensity, also detected 

whether the roof is highly sloped in both directions (hipped) or is flat (i.e. with a low slope in 

one direction).  

 

Two different areas have been used to test the algorithm, although the average of the BDP is 

61.55% it can be noted the average of the building extraction rate for both areas is much 

higher reaching 94%.  

 

Also, the quantitative assessment shows a bias in both building footprint corners and 

building centres, which is due to building lean caused by the inclination of the satellite 

optical axis, and consequently this bias affects the result of quality assessment.  

 

The height validation results, regarding the building 3D models, were better with respect to 

the flat roofed buildings than hipped roofed buildings. 

 

The reason of the lower accuracy in the hipped roofed buildings is probably due to the 

relative high slope compared to the other buildings consequently affecting the DSM 

production using NGATE technique, which has been mentioned in section  3.6.1 
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Chapter 9 Conclusions and Future Work 

This research has been devoted to developing a tool for merging numerous DSMs and 

constructing building footprints and their 3D models, aiming for an efficient method that can 

be applied worldwide. The research is based on using satellite image data, which is available 

for anywhere on earth. The tool was applied in the case study area and it gave reasonable 

results with respect to both qualitative and quantitative evaluations. This chapter will focus 

on the conclusion of the research and the future work that is expected to enhance the results 

of this research. 

  

The proposed merging algorithm using Bayesian approach or ML can be used successfully 

in reducing data redundancy. In addition, the Bayesian approach can increase the quality of 

the merged data if the proposed recommendations in the forthcoming section are followed. 

Moreover, building footprint extraction and 3D modelling have shown reliable results based 

on satellite imagery. Also the highest accuracies have been shown to be among the areas that 

have flat roofs as in the case of the buildings in Iraq. Also it is possible to get more 

less-cloudy data in Iraq than the study area, Glasgow, consequently leading to a more 

up-to-date 3D city model.  

9.1Conclusion 
In this research a statistical approach, based on probabilistic methods, has been investigated 

for the merging DSMs and enhancing building footprints.  

 

Due to increasing the sources of DSM construction, merging DSMs can reduce data 

redundancy meanwhile improving the quality of the data. The applied statistical tests have 

shown that merging using a Bayesian method can provide DSM results similar to those 

achieved using a Maximum Likelihood method for merging, and it can be used for its 

intended purpose. It was hoped to obtain a DSM that had better characteristics than the 

original. Noticeable improvements in accuracy cannot, theoretically, be achieved, and purely 

on the positional accuracy basis the unmerged WorldView-1 DSM offers the greatest 

accuracy, but a more complete model can be achieved, and an approach is offered which can 

be used to detect blunders in a contributing DSM. Also the Bayesian approach has helped to 

smooth the surface of the generated structures so it may represent the real surfaces found in 

urban areas better. It can be acknowledged that the effect of misregistration has not been 

treated and the result would be more accurate if this was addressed. But the more complete 

DSM achieved is likely to assist greatly in a variety of applications, when this problem is 

addressed. 
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The source of the data used was limited to the very high resolution satellite images. The 

research commenced by acquiring and processing satellite images from WorldView-1 and 

Pleiades. For the purpose of the merging DSMs, the quality of each of them has been 

evaluated using checkpoints obtained from Differential GNSS for the purpose of the 

weighting the DSMs. It was noticed that the accuracy of the DSM of WV-1 is better than the 

DSM of Pleiades since the geometry (i.e. base-to-height ratio) of WV-1 is better than that of 

Pleiades. For the merging purpose, a model has been developed based on using a Bayesian 

approach, the a priori information that is required in a Bayesian approach has been 

established by maximizing entropy. In addition a more conventional merging method has 

been used also, based on the Maximum Likelihood method (i.e. weighted average).  

 

The approach that has been developed is able to merge two or more DSMs, thus integrating 

the characteristics from various DSM into one single DSM. The suggested Bayesian method 

aimed to address and overcome the problems that arise from image matching during DSM 

production, in particular those caused by occlusions and shadow areas. From the application 

of the DSMs in 3D modelling, it can be noticed that there is very slight difference, in the 

produced 3D buildings model, using DSMs that obtained from ML and Bayesian 

approaches.  

 

The scope of the research was extended in order to cover constructing rectilinear building 

footprints and 3D modelling. The algorithm, using a Bayesian approach, successfully 

constructed buildings footprints which represent LoD0 and constructed a 3D city model 

which represents LoD1. The algorithm has utilized both the DSM and orthoimagery. 

Regarding the 3D modelling, the original and merged DSMs have been used individually. 

Subsequently the algorithm was been evaluated qualitatively and quantitatively. Both 

evaluations gave promising results and consequently can be used at any place having similar 

characteristics to the study area regarding building roof intensity. Alternatively some of the 

parameters can be modified that relate to constructing the initial building footprint, which 

can be considered to be the key step in building detection. Moreover the Bayesian approach 

has proved its robustness in regularizing building footprints by producing shapes that have 

straight edges and right-angled corners, a common feature in most buildings, thus it is 

suitable for the purposes of planning and 3D modelling, especially for areas traditionally 

mapped at large scale.  
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The method developed is semi-automated and depends on just a few parameters to detect the 

building. The only part that is manual is interactive road detection, but as automated road 

detection is also a research area undergoing parallel development for which a successful 

outcome is expected, looking to the future this interactivity is unlikely to be required. Thus, 

this method is transferable to any area in the world using imagery that has similar sensor 

characteristics.  

 

The novelty of this part of the study is introducing a Bayesian approach to refining building 

footprint boundaries using satellite image data. The approach was able to detect all the 

buildings, with different accuracy results, and, importantly, the benefit of this method is that 

it is, potentially relatively low cost since it is dependent on a single source of data for 

processing when incorporating the Bayesian approach. Due to dependency on image texture 

for segmentation, the algorithm was not able to detect the buildings by applying the same 

thresholding method in different areas. Additionally due to the buildings being oriented 

differently, it was necessary to use different structural elements with the mathematical 

morphology operations.  

 

DSMs can be used in different planning, engineering and remote sensing applications, 

therefore merging DSMs increases their potential usefulness since aspects of quality and 

also completeness are increasing. However, it is expected that more robust results can be 

obtained by enhancing the approaches explored in this research following the suggestions 

and recommendations given in the following section. 

9.2 Future Work 
As it is clear from the dissertation and the conclusion, the work is pertinent to merging 

DSMs and building footprint extraction. Therefore the future work suggested here will 

address both aspects. There are many suggestions that can be made to fill the gaps that exist 

in this research in order to improve the result.  

9.2.1 Further work for Merging DSMs 
The merging technique used which is based on a probabilistic method, the Bayesian 

approach, can be improved by amending the ingredients that have been used in the model, 

such as the a priori information; further than that the model does not need to be modified. 

Although the cost of implementing the merging was ideal, the following section offers 

further experiments which might provide results leading to a better outcome: 

 

1. DSM Quality can be considered as one of the main contributing factors of the 
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probabilistic method. It is assumed that quality is considered a constant over the 

whole DSM, since the quality is utilized to add weight to each DSM. However, it 

could be better to make it pixel based. Using error propagation to distribute the 

accuracy of the ground points over all a DSM, will obviate the need to depend on a 

global RMSE value.  

2. In addition to using accuracy from ground points, it is valuable to test the accuracy 

estimation using geo-morphological specifications such as slope and aspect, and 

even land-cover in order to introduce more robust methods for assigning accuracy to 

the DSMs, instead of only depending on the ground points. 

3. Concerning the a priori information, investigate merging based on using total 

variation (TV) to minimize the roughness in the surface instead of, or integrated with 

local entropy. TV is widely used in signal processing to smooth the signal meanwhile 

preserving the discontinuities in the data, which is in this case represented by change 

of the elevation. 

4. The DSMs are based on global co-registration, however, there is potential 

displacement in the buildings which may be overcome by achieving co-registration 

based on the patches produced in an earlier step. Thus will minimize the variance 

that exists in each pixel. Consequently, this will lead to removing the systematic error 

from the merged DSMs, and consequently improve the result.  

5. The study area was not suffered any changes during the period of the image taken, 

therefore the multi-temporal effect has not taken in consideration, however it is 

important to consider including the multi-temporaleffect in the model since the 

source DSMs may relate to different dates and seasons. 

This problem probably can be solved, as referred in  2.3.2, by producing a residuals 

map, and if the height in the specific grid points are different then the height of the 

latest DSM will assigned to that specific grid point.  

6. Since the DSMs used were produced from the same software, it was possible to 

control the resolution of the DSMs and make them uniform. However, it is important 

to consider multi-resolution data and to enable the use of different resolutions of data, 

by resampling the lower resolution data to the same resolution if the higher 

resolution.  

7. Using information that has been generated during image matching and incorporating 

the extra detail resulting from image matching into the DSM quality assessment for 

each individual pixel instead of (or as well as) using ground truth data for the DSM 

quality assessment. 
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9.2.2 Further work for building footprint extractio n  

3D modelling has proved its importance for different engineering and environmental fields 

(Gröger and Plümer, 2012). The approach that has been presented in this thesis, which was 

based on satellite imagery only, was able to create a city model approximately based on 

levels of detail LoD0 and LoD1 (see  1.7).  

 

The level of detail LoD0 represents volume objects with polygons and it is specified to be 

the coarsest representation of the city model, and for the level of detail LoD1 the buildings 

are represented by 3D block models consisting of a prismatic building type having a flat roof 

(Gröger and Plümer, 2012).  Implementing the proposed approaches for 3D modelling will 

reduce the challenges currently existing for acquiring large scale 3D geodatabases.   

 

LoD1 models can be used for flood simulation which is used for managing disasters. 

Monitoring and protecting against flood is becoming an important issue in developing and 

even in developed countries, causing death and displacement for large numbers of people, 

and billions of dollars of damage globally to property (Kokkas, 2008). LoD1 also can be 

used for preventing noise pollution. The LoD1 that has been generated from this research 

and overlaid on the DTM, can be used to produce a noise map when integrated with the roads, 

railways, airports and industrial sites (Czerwinski et al., 2007). Noise map analysis is 

considered as an important tool in the management of public health. LoD1 can also be 

implemented in urban planning for shadow analysis. Shadow analysis is important in order 

to find the relation between the planned building and the existing buildings and how this 

effect the aesthetics and suitability of the building with respect to its designed function, 

considered as necessary requirement for the design in some countries (Kokkas, 2008) 

 

But in addition to the applications mentioned in the preceding paragraph, it must be 

remembered that there are other usages for 3D modelling which challenge the value of LoD1 

because of the required higher level of detail which is currently limited to aerial imagery or 

LiDAR data. 

 

Recently the 3D City model has been developed widely in tourism industry in order to help 

the tourist in order to plan their city visits. However for the virtual city modelling the more 

complex LoD3 or LoD4 models are required, although occasionally LoD2 is used (Kokkas, 

2008).  Also 3D modelling has been used for simulation and training purposes. But, for 

example, for simulating airport areas the level of detail is limited to LoD3 for simulating the 
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airport area while a lower level of detail, LoD2, was appropriate for other areas (Kokkas, 

2008). 

 

As shown in Fig. 7.37, data generated through the processes developed in this research can 

be directly imported into a standard GIS such as ArcGIS, for use by those involved in the 

implementation of flood mitigation, noise mapping, planning and tourism services. 

 

However, the following suggestions could be examined to address deficiencies, so that a 

better accuracy can consequently be achieved and the products incorporated more 

effectively into a database.  

 

1. The accuracy of the building footprint can be increased by using orthoimagery that has a 

lower nadir angle. Alternatively, by removing the bias that exists due to building lean, 

producing a so-called ‘true-orthoimage’, consequently leading to increased accuracy.  

2. The time that is required to simulate the building can be decreased by introducing some 

statistical methods for speeding up the iteration and getting results more quickly such as 

a stochastic optimization method, for example simulated annealing (Chatterjee and 

Siarry, 2013). This method has the ability to find the global maximum rather than local 

optima only.  

3. Examining image enhancing techniques in order to improve the image contrast for the 

purpose of producing better building edges, consequently leading to improved results 

during the optimization process. 

4. Investigate more robust methods for object based analysis, e.g. investigate the level set 

method for image segmentation instead of the general threshold method for the purpose 

of getting initial building footprint, since it is considered to give better results than the 

classical threshold method due to the absence of noise and that there is no need for any 

morphological operation.  

5. Convert the algorithm to full automation by changing the interactive road detection into 

automated road detection.  

6. Test the algorithm on higher resolution satellite imagery (e.g. WorldView-3 resolution 

0.31m, if available) in order to get better accuracy and better building shapes than in the 

current reported work. 

7. Introduce texture mapping for the constructed 3D building by inferring it from the 

available stereo images, in order to make the 3D more realistic. 

8. Applying the algorithm to an extensive area such as a whole city and incorporating the 
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result in topographical database for the purpose of GIS applications. 

9.3 Revisiting Objectives 
The general aim of the this research has been to investigate merging DSMs using a Bayesian 

approach and extracting building footprints and 3D modelling based on satellite images also 

incorporating Bayesian approaches. Specifically all the objectives as presented in the 

introduction section  1.5 1.6, namely: 

 

1. to evaluate existing approaches to DSM merging and building extraction, essentially 

through a critical literature review;  

2. to generate DSMs using a technique, from among the techniques that are listed in 

Table  2-1, that can produce high resolution DSMs from high resolution images produced 

from different sensors, and is efficient; 

3. to develop an optimal procedure to merge the high resolution DSMs derived from high 

resolution satellite imagery, particularly examining methods based on Bayesian theory, 

resulting in equal or better quality than the original DSMs;  

4. to validate the resultant DSMs arising from the proposed merging model using Bayesian 

approaches; 

5. to upgrade procedures to extract building footprints from high resolution satellite 

imagery; 

6. to apply the developed building extraction approach to the merged DSM to facilitate 

automated 3D model generation at LoD1; and, 

7. to validate the performance and quality of the developed approach at a selected test site. 

 

This chapter has suggested that although all seven objectives have been addressed and some 

improvements discerned when compared to more established processes, better results could 

be obtained by pursuing some further experimentation as recommended in sections. 9.2.1 

and 9.2.2. 
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Appendix A-C++ Code for merging Digital surface 
model using Maximum Likelihood approach 

The following appendix is related to merging DSMs based on using Bayesian Approach, the 

number of required DSMs should be two and the format should be ascii as shown below: 

 

(a) 

 

(b) 

Figure A.1 The used input data in the merging (a) first input DSM from Pleiades with 
cell size 1m(b) second input DSM for WorldView-1 with cell size 1m. 
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The implemented Code in the merging with Maximum Likelihood approach is: 
///This program is written using Microsoft's Visual Studio 2010 C++ 
//The author ship of the code is Haval A.Sadeq as a part of the Ph.D. dissertation 
//Ph.D. in Geomatics, college of sciences and Engineering, University of Glasgow, 
Scotland,UK  
//Email 
h.sadeq.1@research.gla.ac.uk,website:http://www.gla.ac.uk/schools/ges/pgresearch/hav
alsadeq/ 
//This code is for merging two DSMs using Maximum Likelihood (i.e. weighted average) 
// It is completed and evaluated 15/10/2013 
//Define header files 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <iomanip> 
#include<float.h> 
using namespace std; 
#define a 2719// Number of rows in the data  
#define b 3770//Number of rows in the data  
int main() 
{float i1,i2, mle;     
 ofstream myfile1; 
  string 
line1,line2,line3,line4,line5,line6,line7,line8,line9,line10,line11,line12,line13;//
reading the header of the file 
 float r1[a][b],r2[a][b],//the array for saving the DSM 
  merged[a][b];  //the array for saving the merged DSM 
 ///////opening and reading first file///////// 
    char *inname1 = "pleiades_1x1_clip.txt";  
    ifstream infile1(inname1);   
     if (!infile1) { 
       cout << "There was a problem opening file " 
        << inname1 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname1 << " for reading." << endl; 
getline (infile1,line1); 
getline (infile1,line2); 
getline (infile1,line3); 
getline (infile1,line4); 
getline (infile1,line5); 
getline (infile1,line6); 
getline (infile1,line7); 
getline (infile1,line8); 
getline (infile1,line9); 
getline (infile1,line10); 
getline (infile1,line11); 
getline (infile1,line12); 
getline (infile1,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
///////////////////// 
int j=0, k=0; 
while (infile1 >> i1) 
{if (j==(b-1)) 
  {r1[k][j]=i1;j=0; k++;} 
   else{r1[k][j]=i1;j++;} 
      ;} 
/////////////////////////////////////////////////////////////////////// 
///////opening and reading second file///////////////////////////////// 
    char *inname2 = "wv01_1x1_clip.txt";  
    ifstream infile2(inname2);   
     if (!infile2) { 
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       cout << "There was a problem opening file " 
        << inname2 
       << " for reading." 
        << endl;       return 0;    } 
 
  cout << "Opening Second File "<<endl; 
cout << "Opened " << inname2 << " for reading." << endl; 
getline (infile2,line1); 
getline (infile2,line2); 
getline (infile2,line3); 
getline (infile2,line4); 
getline (infile2,line5); 
getline (infile2,line6); 
getline (infile2,line7); 
getline (infile2,line8); 
getline (infile2,line9); 
getline (infile2,line10); 
getline (infile2,line11); 
getline (infile2,line12); 
getline (infile2,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
////////////////////// 
j=0, k=0; 
while (infile2 >> i2) 
{if (j==(b-1)) 
  {r2[k][j]=i2;j=0; k++;} 
   else{r2[k][j]=i2;j++;} 
      ;} 
 cout << "start merging "<<endl; 
////////////////// 
//define sigma value based on the RMSE calculated from GNSS checkpoints 
float sigma1=0.8, sigma2=0.35, n3=0; 
//////////////////////////////////////////////////////////////////////////////// 
for (k=0;k<a;++k) 
{    
 for (j=0;j<b;++j) 
    { 
     //the model used in the merging based on Maximum Likelihood (weighted average) 
     merged[k][j]=sigma2*sigma2/(sigma1*sigma1+sigma2*sigma2)*r1[k][j] 
        +sigma1*sigma1/(sigma1*sigma1+sigma2*sigma2)*r2[k][j]; 
    
    } 
 
 cout<<std::fixed<<std::setprecision(3)<<(float)k/a*100<<"%"<<endl;// pecentage of 
progress 
} 
/////saving the merged data to a file 
 myfile1.open ("merged_dsm_likelihood.txt"); 
 myfile1 << line1<<endl; 
   myfile1 << line2<<endl;myfile1 << line3<<endl;myfile1 << line4<<endl; myfile1 << 
line5<<endl; myfile1 << line6<<endl; myfile1 << line7<<endl; myfile1 << line8<<endl;
 myfile1 << line9<<endl; myfile1 << line10<<endl; myfile1 << line11<<endl;
 myfile1 << line12<<endl; myfile1 << line13<<endl; 
    for (k=0;k<a;++k) 
   for (j=0;j<b;++j) 
   {    
myfile1<< std::fixed << std::setprecision(4)<< merged[k][j]<<' ';// controlling the 
precison of the number 
     
   } 
 myfile1.close( );  infile1.close( ); infile2.close( );//close the file 
    
     return 0;} 
///////////////End of the code////////////////////////////////////// 
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Appendix B-C++ Code for merging Digital surface 
model using Bayesian approach 

The following code used in the merging with Bayesian approach, using the same format of 
data that is shown in figure A.1: 
///This program is written using Microsoft's Visual Studio 2010 C++ 
//The authorship of the code is Haval A.Sadeq as a part of the Ph.D. dissertation 
//Ph.D. in Geomatics, college of sciences and Engineering, University of Glasgow, 
Scotland, UK  
//Email 
h.sadeq.1@research.gla.ac.uk,website:http://www.gla.ac.uk/schools/ges/pgresearch/hav
alsadeq/ 
//This code is for merging DSMs using Bayesian approach from two different sources with 
equal or different quality 
// It is completed and evaluated 20/01/2014 
 
 
//Define header files 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <iomanip> 
#include<float.h> 
#include <random> 
using namespace std; 
 
//not when finish from the processing deduct 4 from col and row in the output file 
#define b 2719//Number of rows in the data  
#define a 3770 //Number of rows in the data 
#define var .1 //the range used in the local entropy simulation 
 
 
double entropy(int k11, int j11, double  r[a][b]); 
int main() 
{//define the variables     
 double  i1,i2,i3, mle; 
  ofstream myfile1; 
  string 
line1,line2,line3,line4,line5,line6,line7,line8,line9,line10,line11,line12,line13; 
 double  r1[a][b],r2[a][b],pij_temp[a][b],  
  merged_dem[a][b],r1_sim[a][b],r2_sim[a][b] 
 
 ; 
  
 
 //////////////////opening first DSM//////////////////////// 
 cout<<"start reading first file"<<endl; 
      char *inname1 = "pleiades_1x1_clip.txt";  
  
    ifstream infile1(inname1);   
     if (!infile1) { 
       cout << "There was a problem opening file " 
        << inname1 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname1 << " for reading." << endl; 
getline (infile1,line1); 
getline (infile1,line2); 
getline (infile1,line3); 
getline (infile1,line4); 
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getline (infile1,line5); 
getline (infile1,line6); 
getline (infile1,line7); 
getline (infile1,line8); 
getline (infile1,line9); 
getline (infile1,line10); 
getline (infile1,line11); 
getline (infile1,line12); 
getline (infile1,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
////////////////////////Reading first file and saving to array 
int j=0, k=0; 
while (infile1 >> i1) 
{if (j==(b-1)) 
  {r1[k][j]=i1;j=0; k++;} 
   else{r1[k][j]=i1;j++;} 
      ;} 
 
/////////////////////////opening second DSM///////// 
 cout<<"start reading second file"<<endl; 
      char *inname2 = "wv01_1x1_clip.txt";  
      ifstream infile2(inname2);   
     if (!infile2) { 
       cout << "There was a problem opening file " 
        << inname2 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname2 << " for reading." << endl; 
getline (infile2,line1); 
getline (infile2,line2); 
getline (infile2,line3); 
getline (infile2,line4); 
getline (infile2,line5); 
getline (infile2,line6); 
getline (infile2,line7); 
getline (infile2,line8); 
getline (infile2,line9); 
getline (infile2,line10); 
getline (infile2,line11); 
getline (infile2,line12); 
getline (infile2,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
 
//////////Reading second file and saving to array 
 j=0, k=0; 
 
while (infile2 >> i2) 
{if (j==(b-1)) 
  {r2[k][j]=i2;j=0; k++;} 
   else{r2[k][j]=i2;j++;} 
      ;} 
 
//////////////////////////////////////// 
 cout<<"start mearing the DSMs using Bayesian approach"<<endl; 
 
double entropy_edge[a][b],pij[a][b],z; 
for (k=0;k<a;++k) 
  for (j=0;j<b;++j) 
  {entropy_edge[k][j] = 
0;merged_dem[k][j]=0;r1_sim[k][j]=r1[k][j];r2_sim[k][j]=r2[k][j];} 
///selecting the window size for the for a priori elevation estimation using maximum 
entropy 
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     int wind=1;//for window size 3x3 
   // int wind=2;//for window size 5x5 
   // int wind=3;//for window size 7x7 
 
////////////////merging the elevations 
 
j=0, k=0; 
 double optim_max1,optim_max2,ent_dem1,ent_dem2,prior1,prior2; 
 
 
for (k=wind;k<a-wind;++k) 
{ 
  for (j=wind;j<b-wind;++j) 
  { 
int itr1=0,itr2=0; 
 double vv1=r1[k][j],vv2=r2[k][j],vvv1,vvv2;  
 
 optim_max1=-100000000,optim_max2=-100000000; 
 int i=0; 
 
 for (float v=-var;v<var;v=v+0.01)   
 { 
 
   double err1,err2; 
 
/////////////////////////calculate  new value of maximum entropy 
 r1_sim[k][j]=r1[k][j]+v; 
 r2_sim[k][j]=r2[k][j]+v; 
  
  
  ent_dem1=entropy( k, j,  r1_sim); 
  ent_dem2=entropy( k, j,  r2_sim); 
 
 if (ent_dem1 >= optim_max1) {optim_max1=ent_dem1;itr1=i;vvv1=v;} 
  if (ent_dem2 >= optim_max2) {optim_max2=ent_dem2;itr2=i;;vvv2=v;} 
 
  i=i+1; 
  
     } 
  
 prior1=vv1+vvv1;//the prior elevation for the first DSM 
 prior2=vv2+vvv2;//the prior elevation for the second DSM 
 
 double var1=0.8*0.8,//the quality of first DSM is 0.8m  
   var2=0.35*0.35;//the quality of first DSM is 0.35m 
//define merging model based on Bayesian approach after determining the prior elevation 
fro the function using the maximum entropy 
   merged_dem[k][j]=(r1[k][j]/var1+r2[k][j]/var2+prior1/var1+prior2/var2)/ 
(1/var1+1/var2+1/var1+1/var2); 
  
                 } 
    
cout<<std::fixed<<std::setprecision(2)<<(float)k/a*100<<"%"<<endl;// percentage of 
progress 
                  } 
 
///////////////////////////////////////////////////////////////////////  
 cout<<"start writing the result to a file"<<endl; 
  
 myfile1.open ("merged_dsm_.1var_high_entropy_wind_3x3.txt"); 
 myfile1 << line1<<endl; 
   myfile1 << line2<<endl;myfile1 << line3<<endl;myfile1 << line4<<endl; myfile1 << 
line5<<endl; myfile1 << line6<<endl; myfile1 << line7<<endl; myfile1 << line8<<endl;
 myfile1 << line9<<endl; myfile1 << line10<<endl; myfile1 << line11<<endl;
 myfile1 << line12<<endl; myfile1 << line13<<endl; 
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///write the result to a file 
for (k=0;k<a;++k) 
  for (j=0;j<b;++j) 
{  
 myfile1<< std::fixed << std::setprecision(4)<< merged_dem[k][j]<<' '; 
                   } 
 
 myfile1.close( );   infile1.close( );  infile2.close( ); //close the files 
    return 0;} 
/////////end of teh program for merging DSMs//////////// 
 
///////////////////////////////////////////////////////////////////// 
////functions using for the prior extimation based on maximum entropy 
     double entropy(int k11, int j11, double  r[a][b]) 
    { 
///////////////////////////////defining the window size////// 
   double  pij_temp[3][3],r_wind[3][3],sum_wind=0,Hij;  int wind=1;//for window 
size 3x3 
 //double  pij_temp[5][5],r_wind[5][5],sum_wind=0,Hij;  int wind=2;//for window 
size 5x5   
 //double  pij_temp[7][7],r_wind[7][7],sum_wind=0,Hij;  int wind=3;//for window 
size 7x7 
    
     int co_k=0,co_j=0; 
 ////////////////////////////// 
     for(int k1=k11-wind;k1<=k11+wind;k1++) 
     {co_j=0; 
      for(int j1=j11-wind;j1<=j11+wind;j1++) 
    { 
      r_wind[co_k][co_j]=r[k1][j1]; 
         co_j=co_j+1; 
            } 
         co_k=co_k+1; 
            } 
for(int k1=0;k1<=1+wind;k1++) 
    for(int j1=0;j1<=1+wind;j1++) 
    { 
     sum_wind=sum_wind+r_wind[k1][j1]; 
              } 
   //////////////////////// find probability for each pixel 
    for(int k2=0;k2<=1+wind;k2++) 
  for(int j2=0;j2<=1+wind;j2++) 
   {pij_temp[k2][j2]=r_wind[k2][j2]/sum_wind;} 
////////////////////////////// find the entropy for the group 
Hij=0; 
   for(int k3=0;k3<=1+wind;k3++) 
    for(int j3=0;j3<=1+wind;j3++) 
    { 
     Hij=Hij+pij_temp[k3][j3]*log10(pij_temp[k3][j3]); 
                 } 
    return  (-Hij)*1000000;} 
///////////end of the function////////////// 
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The processing window is as shown below indicating the percentage completed. The used 
parameter merging is 3x3 window and the range is ±0.1m. At the end the output will be an 
ASCII file: 

 
Figure B.12 A screen shot of merging process using Bayesian approach. 
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Appendix C-C++ Code for labelling nDSM 

This code is used in order to label the nDSM that produced from subtracting the original 
DSM from the convolved DSM as illustrated in  7.2.2 
 
Note: the nDSM labelling code has not been embedded in the main code which is shown in 
appendix D, because it was taking a long time and it is preferred to run this separately so it 
will not affect the time needed for building footprint extraction and 3D modelling. 
///This program is written using Microsoft's Visual Studio 2010 C++. 
//The author ship of the code is Haval A.Sadeq as a part of the Ph.D. dissertation. 
//Ph.D. in Geomatics, college of sciences and Engineering, University of Glasgow, 
Scotland, UK. 
//Email 
h.sadeq.1@research.gla.ac.uk,website:http://www.gla.ac.uk/schools/ges/pgresearch/hav
alsadeq/ 
//This code is for labelling the binary images using the connected component labelling. 
// It is completed and evaluated 15/8/2013. 
 
 
 
//Define the header files 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <iomanip> 
#include<float.h> 
using namespace std; 
#define b 704 //Number of columns in the data 
#define a 381  //Number of rows in the data 
 
int main() 
{//define the variables 
 float i;   
 ofstream myfile1; 
 ofstream myfile2; 
 int c1[1000000],c2[1000000]; 
  string 
line1,line2,line3,line4,line5,line6,line7,line8,line9,line10,line11,line12,line13; 
 float r[a][b],r_new[a+2][b+2]; 
 int label[a][b]; 
 float thr_level[a][b]; 
 
 int j=0, k=0; 
 
 char *inname = "ndsmgrid.txt";// define the file name  
 
    ifstream infile(inname); 
     if (!infile) { 
       cout << "There was a problem opening file " 
        << inname 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname << " for reading." << endl; 
getline (infile,line1); 
getline (infile,line2); 
getline (infile,line3); 
getline (infile,line4); 
getline (infile,line5); 
getline (infile,line6); 
getline (infile,line7); 
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getline (infile,line8); 
getline (infile,line9); 
getline (infile,line10); 
getline (infile,line11); 
getline (infile,line12); 
getline (infile,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
///////////////////// 
while (infile >> i) 
 
{if (j==(b-1)) 
  {r[k][j]=i;j=0; k++;} 
else{r[k][j]=i;j++;} 
;} 
///////////////calculate the threshold at each level and save the data into layers 
 
 {  int level=1; 
{for(k=0;k<a;k++){ 
    for(j=0;j<b;j++){ 
        if(r[k][j] < level) thr_level[k][j] = 0; 
       else thr_level[k][j] = 1;       } }  } 
 ///////////////////////////////////start labelling/////////////////// 
 
{    int lab=0, newlabel; 
     if (thr_level[0][0] == 1) label[0][0]=1;else  label[0][0]=0;//check first 
corner 
    for (j=1;j<b;++j) 
  { 
if (thr_level[0][j] == 1)// 1 is foreground , 0 is for background 
{ if (thr_level[0][j]  == thr_level[0][j-1]  ) { label[0][j]= label[0][j-1];//check 
frist row 
   } 
    else {++lab; label[0][j]=lab;}      } 
   
else  label[0][j]=0;  } 
////start the other  rows 
   int ch=0; 
  for (k=1;k<a;++k) 
 
 for (j=0;j<b;++j) 
 { 
 
if (thr_level[k][j] == 1) 
{  
 if (j == 0) if (thr_level[k-1][j]== 1 )  { label[k][j] = label[k-1][j];}//specify the 
first column 
 else {++lab; label[k][j]=lab;;} 
  
////////////////////start first pass      
//for the other columns rather than first column 
 //case1 
 { 
 if (thr_level[k][j]  == thr_level[k][j-1] && thr_level[k][j]  == thr_level[k-1][j] 
) 
 { if ( label[k-1][j] >  label[k][j-1])  
 {  label[k][j]= label[k][j-1];ch=ch+1;;c1[ch]= label[k-1][j];c2[ch]= 
label[k][j-1];    }    
    
 else  {label[k][j]= label[k-1][j];ch=ch+1;;c1[ch]= label[k][j-1];c2[ch]= 
label[k-1][j];}} 
 
//case2 
if (thr_level[k][j]  != thr_level[k][j-1] && thr_level[k][j]  == thr_level[k-1][j] ) 
  label[k][j]= label[k-1][j]; 
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//case3 
if (thr_level[k][j]  == thr_level[k][j-1] && thr_level[k][j]  != thr_level[k-1][j] ) 
     label[k][j]= label[k][j-1]; 
  
//case 4 
if (thr_level[k][j]  != thr_level[k][j-1] && thr_level[k][j]  != thr_level[k-1][j] ) 
  {++lab; label[k][j]=lab;} }} 
   
else  label[k][j]=0;  } 
 
////////////////////start second pass 
 
 for (int ch1=0;ch1<=ch;++ch1) 
  {   if (c1[ch1] != c2[ch1] ) 
  {   
 
   for (k=0;k<a;++k) 
   for (j=0;j<b;++j) 
  {  
   if (label[k][j]==c2[ch1] && c1[ch1] > c2[ch1]) label[k][j]=c1[ch1]; 
   else if  (label[k][j]==c1[ch1] && c1[ch1] < c2[ch1]) label[k][j]=c2[ch1]; 
    }}} 
/////////////////scan the image for discrepancy in the labels 
  for (int ss=0;ss<100;++ss) 
    { 
 for (k=0;k<a;++k) 
   for (j=0;j<b;++j) 
if (thr_level[k][j] == 1) 
 { 
  if (thr_level[k][j]  == thr_level[k-1][j-1]  ) 
     if ( label[k][j] >  label[k-1][j-1]) label[k][j]=label[k-1][j-1]; 
  if (thr_level[k][j]  == thr_level[k-1][j]  ) 
     if ( label[k][j] >  label[k-1][j]) label[k][j]=label[k-1][j]; 
  if (thr_level[k][j]  == thr_level[k-1][j+1]  ) 
     if ( label[k][j] >  label[k-1][j+1]) label[k][j]=label[k-1][j+1]; 
  if (thr_level[k][j]  == thr_level[k][j-1]  ) 
     if ( label[k][j] >  label[k][j-1]) label[k][j]=label[k][j-1]; 
  if (thr_level[k][j]  == thr_level[k][j+1]  ) 
     if ( label[k][j] >  label[k][j+1]) label[k][j]=label[k][j+1]; 
  if (thr_level[k][j]  == thr_level[k+1][j-1]  ) 
     if ( label[k][j] >  label[k+1][j-1]) label[k][j]=label[k+1][j-1]; 
  if (thr_level[k][j]  == thr_level[k+1][j]  ) 
     if ( label[k][j] >  label[k+1][j]) label[k][j]=label[k+1][j]; 
  if (thr_level[k][j]  == thr_level[k+1][j+1]  ) 
     if ( label[k][j] >  label[k+1][j+1]) label[k][j]=label[k+1][j+1]; 
      } 
       } 
/////saving the labelled nDSM data to a file so it can be used in the building footprint 
extraction 
   myfile1.open ("label.txt"); 
 
 myfile1 << line1<<endl; 
    myfile1 << line2<<endl; myfile1 << line3<<endl; myfile1 << line4<<endl; myfile1 
<< line5<<endl; myfile1 << line6<<endl; myfile1 << line7<<endl; myfile1 << 
line8<<endl; myfile1 << line9<<endl; myfile1 << line10<<endl; myfile1 << 
line11<<endl; myfile1 << line12<<endl; myfile1 << line13<<endl; 
          {      for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
  myfile1<< label[k][j]<<' ';} }} 
 
//close the file 
myfile1.close( ); 
  infile.close( );  
  return 0;} 
  /////////end of the program for labelling nDSM////////////  
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Appendix D-C++ Code for Building footprint 
Extraction processes 
Appendix C is related to the building footprint extraction,  

 
-The used DSM for height elevation 

 
-Labelled nDSM that produced from using 
code in  appendix C 

 
-Ortho images  -Segmented ortho photography with 

minimum error 

 
-Segmented orthoimagery with the moment 
segmentation method 

 -Extracted road using ArcGIS software 

-Produced edge map using Canny edge 
detection  

 
 -NDVI vegetation map 

Figure B.23The input data used in the building footprint extraction and 3D modelling. 
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The implemented code for building footprint extraction and 3D construction is shown 

below,  

///This program is written using Microsoft's Visual Studio 2010 C++ 
//The author ship of the code is Haval A.Sadeq as a part of the Ph.D. dissertation 
//Ph.D. in Geomatics, college of sciences and Engineering, University of Glasgow, 
Scotland, UK  
//Email 
h.sadeq.1@research.gla.ac.uk,website:http://www.gla.ac.uk/schools/ges/pgresearch/hav
alsadeq/ 
//This code is for building extraction from satellite image  
// It is completed and evaluated 03/02/2014 
//the input data consisted from eight types: 
//1-Digital Surface Model(DSM) of the area produced fromSocet GXP 
//2-the Labelled nDSM produced from code in Appendix C 
//3-the orthoimagery for the area from Socet SET 
//4-segmented image with minimum error thresholding method using ImageJ software 
//5-segmented image with moment error thresholding method using ImageJ software 
//6-extracted road file using the ArcGIS 
//7-edgce map using Canny edge map algorithm using ImageJ software 
//8-NDVI map produce using infrared band exist in the Pleiades satellite imagery using 
ArcGIS 
 
//Define header files 
#include <iostream> 
#include <fstream> 
#include <string> 
#include <iomanip> 
#include<float.h> 
#include <sstream> 
#include <random> 
using namespace std; 
int c1[1000000],c2[1000000];//define parameters for sub laballing 
const double pi=3.14159265358979323846264338327950;// 
void sort_nna(int point , int (&point_x)[10000], int (&point_y)[10000]) ;  
void doglus_appr(int point , int point_x[1000], int point_y[1000], int 
sort_point_x[1000],int sort_point_y[1000], float& thre_dis); 
#define rnd 250000//Number of iteration for the simulation purposes 
#define points 150//Number of maximum points for building boundary 
#define b 580//Number of columns in the data 
#define a 440 // Number of rows in the data 
void erosion_square(int r[a][b] , int (&erosion)[a][b]   );// define the MM-erosion 
function using square S.E. 
 void dilation_square(int r[a][b] , int (&dilation)[a][b]   );// define the MM 
function-dilation using square S.E. 
 void erosion_circular(int r[a][b] , int (&erosion)[a][b]   );// define the MM 
function-erosion using square C.E. 
  void dilation_circular(int r[a][b] , int (&dilation)[a][b]   );// define the MM 
function-dilation using square C.E. 
   void labeling( int thr_level[a][b] , int (&label)[a][b], int& max_lab 
);//labelling function 
     void boundary1(int r[a][b] , int (&boundary)[a][b]   );//Finding the boundary 
using MM the boundary 
int boun(int loop, int& min_x,int& min_y, int& max_x, int& max_y ,int& area,int 
label[a][b]);// determine the corners of the work area to minimize the time 
int main() 
{float var1=3;//variance value sigma^2, the variance of the normal probability 
distribution that used to estimate random points 
 float i0,likelihhod_d;//define float variables 
int i1,i2,i3,i4,i5,i6,i7,i8;//define integer variables       
 long double rn[points][rnd];//this array is for the generated random variables 
rn[number of points][rnd] 
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 float candidate_p_x[points][rnd],candidate_p_y[points][rnd]; 
 int point, v1;  int j, k; int max_lab=-1e10; 
//define files for reading the data and saving the output 
 ofstream myfile1,myfile2,myfile3,myfile4,myfile5; 
 myfile2.open ("bayesian_result_v3_th_5_5men_10.txt"); 
  string 
line1,line2,line3,line4,line5,line6,line7,line8,line9,line10,line11,line12,line13; 
// defining arrays for saving the data during the processing 
  float r0[a][b],r00[a][b],final_dsm[a][b];  
 int
 r1[a][b],r2[a][b],r3[a][b],r3a[a][b],r3b[a][b],r4[a][b],r5[a][b],r01[a][b],shadow
[a][b],temp_r1[a][b], 
 
 temp1[a][b],temp1a[a][b],temp1b[a][b],temp2[a][b],temp3[a][b],label[a][b],r0_indv
i[a][b], 
 
 intial_boundary[a][b],temp_r[a][b],dilation[a][b],erosion[a][b],harris[a][b],harr
is1[a][b], 
  harris_co[a][b],canny_specific[a][b],new_canny[a][b]; 
 
//////opening first file-this file is related to DSM///////////// 
    char *inname0 = "DSM_Bayesain_merg_resampled_50cm_bilinear_3x3_rmse_0.420m.txt"; 
//the Used DSM in the Merging 
   ifstream infile0(inname0);   
     if (!infile0) { 
       cout << "There was a problem opening file " 
        << inname0 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname0 << " for reading." << endl; 
getline (infile0,line1); 
getline (infile0,line2); 
getline (infile0,line3); 
getline (infile0,line4); 
getline (infile0,line5); 
getline (infile0,line6); 
getline (infile0,line7); 
getline (infile0,line8); 
getline (infile0,line9); 
getline (infile0,line10); 
getline (infile0,line11); 
getline (infile0,line12); 
getline (infile0,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading first file and saveing to array 
  j=0, k=0; 
while (infile0 >> i0) 
{if (j==(b-1)) 
  {r0[k][j]=i0;j=0; k++;} 
   else{r0[k][j]=i0;j++;} 
      ;} 
//////////////////start extract coordinates of the corner///////////// 
float  x_cor_val,y_cor_val;string txt; 
 
stringstream x_cor (line10);//extracat the coordinates  
   x_cor>> txt>>x_cor_val; 
     
stringstream y_cor (line11);//extracat the coordinates  
   y_cor>> txt>>y_cor_val; 
       
///////opening the second file/////////the labelled nDSM from the previous code described 
in APPENDIXC C in the thesis// 
    char *inname1 = "labeled_nDSM.txt";  
    ifstream infile1(inname1);   
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     if (!infile1) { 
       cout << "There was a problem opening file " 
        << inname1 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname1 << " for reading." << endl; 
getline (infile1,line1); 
getline (infile1,line2); 
getline (infile1,line3); 
getline (infile1,line4); 
getline (infile1,line5); 
getline (infile1,line6); 
getline (infile1,line7); 
getline (infile1,line8); 
getline (infile1,line9); 
getline (infile1,line10); 
getline (infile1,line11); 
getline (infile1,line12); 
getline (infile1,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading second file and saving to array 
 j=0, k=0; 
while (infile1 >> i1) 
{if (j==(b-1)) 
  {r1[k][j]=i1;j=0; k++;} 
   else{r1[k][j]=i1;j++;} 
      ;} 
/////opening the third file///////////the orthoimagery 
 char *inname2 = "ortho_image.txt";  
    ifstream infile2(inname2);   
     if (!infile2) { 
       cout << "There was a problem opening file " 
        << inname2 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname2 << " for reading." << endl; 
getline (infile2,line1); 
getline (infile2,line2); 
getline (infile2,line3); 
getline (infile2,line4); 
getline (infile2,line5); 
getline (infile2,line6); 
getline (infile2,line7); 
getline (infile2,line8); 
getline (infile2,line9); 
getline (infile2,line10); 
getline (infile2,line11); 
getline (infile2,line12); 
getline (infile2,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading third file and saving to array 
 j=0, k=0; 
 
while (infile2 >> i2) 
{if (j==(b-1)) 
  {r2[k][j]=i2;j=0; k++;} 
   else{r2[k][j]=i2;j++;} 
      ;} 
 
///////opening fourth file///////////the segmented image with minimum error 
 
 char *inname3 = "segmented_ortho_min_error.txt";  
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    ifstream infile3(inname3);   
     if (!infile3) { 
       cout << "There was a problem opening file " 
        << inname3 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname3 << " for reading." << endl; 
getline (infile3,line1); 
getline (infile3,line2); 
getline (infile3,line3); 
getline (infile3,line4); 
getline (infile3,line5); 
getline (infile3,line6); 
getline (infile3,line7); 
getline (infile3,line8); 
getline (infile3,line9); 
getline (infile3,line10); 
getline (infile3,line11); 
getline (infile3,line12); 
getline (infile3,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading fourth file and saving to array 
 j=0, k=0; 
 
while (infile3 >> i3) 
{if (j==(b-1)) 
  {r3[k][j]=i3;j=0; k++;} 
   else{r3[k][j]=i3;j++;} 
      ;} 
/////opening fifth file///////////the segmented image with moment 
 char *inname4 = "segmented_ortho_moment.txt";  
     ifstream infile4(inname4);   
     if (!infile4) { 
       cout << "There was a problem opening file " 
        << inname4 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname4 << " for reading." << endl; 
getline (infile4,line1); 
getline (infile4,line2); 
getline (infile4,line3); 
getline (infile4,line4); 
getline (infile4,line5); 
getline (infile4,line6); 
getline (infile4,line7); 
getline (infile4,line8); 
getline (infile4,line9); 
getline (infile4,line10); 
getline (infile4,line11); 
getline (infile4,line12); 
getline (infile4,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading fifth file and saving to array 
 j=0, k=0; 
 
while (infile4 >> i4) 
{if (j==(b-1)) 
  {r4[k][j]=i4;j=0; k++;} 
   else{r4[k][j]=i4;j++;} 
      ;} 
 
 



Appendix D 
 

286 
 

/////opening sixth file///////////the digitized road raster file 
char *inname5 = "extracted_road.txt";  
    ifstream infile5(inname5);   
     if (!infile5) { 
       cout << "There was a problem opening file " 
        << inname5 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname5 << " for reading." << endl; 
getline (infile5,line1); 
getline (infile5,line2); 
getline (infile5,line3); 
getline (infile5,line4); 
getline (infile5,line5); 
getline (infile5,line6); 
getline (infile5,line7); 
getline (infile5,line8); 
getline (infile5,line9); 
getline (infile5,line10); 
getline (infile5,line11); 
getline (infile5,line12); 
getline (infile5,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading sixth file and saving to array 
 j=0, k=0; 
 
while (infile5 >> i5) 
{if (j==(b-1)) 
  {r5[k][j]=i5;j=0; k++;} 
   else{r5[k][j]=i5;j++;} 
      ;} 
///////opening seventh file///////// //the edge map produced with Canny algorithm 
 
char *inname6 = "edgemap_produced_from_orthophotography.txt"; 
    ifstream infile6(inname6);   
     if (!infile6) { 
       cout << "There was a problem opening file " 
        << inname6 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname6 << " for reading." << endl; 
getline (infile6,line1); 
getline (infile6,line2); 
getline (infile6,line3); 
getline (infile6,line4); 
getline (infile6,line5); 
getline (infile6,line6); 
getline (infile6,line7); 
getline (infile6,line8); 
getline (infile6,line9); 
getline (infile6,line10); 
getline (infile6,line11); 
getline (infile6,line12); 
getline (infile6,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading seventh file and saving to array 
 j=0, k=0; 
while (infile6 >> i6) 
{if (j==(b-1)) 
  {r01[k][j]=i6;j=0; k++;} 
   else{r01[k][j]=i6;j++;} 
      ;} 
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//////opening eighth file///////////the NDVI, vegetation map that produced using 
Pleiades 
 
char *inname7 = "ndvi_vegetation_map.txt";  
    ifstream infile7(inname7);   
     if (!infile7) { 
       cout << "There was a problem opening file " 
        << inname7 
       << " for reading." 
        << endl;       return 0;    } 
cout << "Opened " << inname7 << " for reading." << endl; 
getline (infile7,line1); 
getline (infile7,line2); 
getline (infile7,line3); 
getline (infile7,line4); 
getline (infile7,line5); 
getline (infile7,line6); 
getline (infile7,line7); 
getline (infile7,line8); 
getline (infile7,line9); 
getline (infile7,line10); 
getline (infile7,line11); 
getline (infile7,line12); 
getline (infile7,line13); 
cout << line1 << endl;cout << line2 << endl<< line3 << endl<< line4 << endl<< line5 << 
endl<< line6 << endl<< line7 << endl<< line8<< endl<< line9 << endl<< line10 << endl<< 
line11 << endl<< line12 << endl<< line13 << endl;  
//////////Reading eighth file and saving to array 
 j=0, k=0; 
 
while (infile7 >> i7) 
{if (j==(b-1)) 
  {r0_indvi[k][j]=i7;j=0; k++;} 
   else{r0_indvi[k][j]=i7;j++;} 
      ;} 
//////////////////////////////////////// 
 
//this part to remove shadow because it has pixel less than 25, using ortho photo 
for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
 if (r2[k][j]<=25)shadow[k][j]= 1;else shadow[k][j]=0; 
dilation_circular( shadow ,  dilation     ) ;//to join the parts together  
 for (k=0;k<a;++k)for (j=0;j<b;++j)shadow[k][j]=dilation[k][j]; 
erosion_circular( shadow ,  erosion     )   ;// 
for (k=0;k<a;++k)for (j=0;j<b;++j)shadow[k][j]=erosion[k][j]; 
///////////////////////////////////////////////////// 
for (k=0;k<a;++k) 
  for (j=0;j<b;++j) 
 
 { 
 
r3a[k][j]= r3[k][j]-r5[k][j]-shadow[k][j]-r0_indvi[k][j]; ;//subtract road from the 
segmented  images 
r3b[k][j]= r4[k][j]-r5[k][j]-shadow[k][j]-r0_indvi[k][j]; ;//subtract road from the 
segmented  images 
 
  harris[k][j]=0; 
  harris1[k][j]=0; 
  harris_co[k][j]=0; 
 
  } 
/////////////start to subtract NDVI and produce binary image 
for (k=0;k<a;++k) 
  for (j=0;j<b;++j) 
{ 
 if (r3a[k][j]==-1 || r3a[k][j]==-2|| r3a[k][j]==-3) r3a[k][j]=0; 
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    if (r3b[k][j]==-1 || r3b[k][j]==-2 || r3b[k][j]==-3)r3b[k][j]=0; 
 
     if  (r0_indvi[k][j]!=0) r1[k][j]=0; //subtract the NDVI from label images 
 
      } 
//////////////Apply Mathematical morphology(MM) on the segmented images to remove noise 
and enhance the image 
////first segmented image 
erosion_circular( r3a ,  erosion     )   ;//Apply MM erosion with C.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)r3a[k][j]=erosion[k][j]; 
  
 
erosion_square( r3a ,  erosion     ) ;//Apply MM erosion with S.E. once 
for (k=0;k<a;++k)for (j=0;j<b;++j)r3a[k][j]=erosion[k][j];  
erosion_square( r3a ,  erosion     ) ;//Apply MM erosion with S.E. once 
for (k=0;k<a;++k)for (j=0;j<b;++j)r3a[k][j]=erosion[k][j];  
 
dilation_square( r3a ,  dilation     ) ;//Apply MM dialtion with S.E. once 
for (k=0;k<a;++k)for (j=0;j<b;++j)r3a[k][j]=dilation[k][j];  
dilation_square( r3a ,  dilation     ) ;//Apply MM dilation with S.E. once 
for (k=0;k<a;++k)for (j=0;j<b;++j)r3a[k][j]=dilation[k][j];  
 
/////////// 
dilation_circular( r3a ,  dilation     ) ;//Apply MM dilation with C.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)r3a[k][j]=dilation[k][j];// the r3a  used as 
inital boundary 
 
dilation_circular( r3a ,  temp2     ) ;//Apply MM dilation with C.E. once 
 
boundary1( temp2 ,  temp2)   ;//boundary function to be used to modify Canny edge map
    
  
////Second segmented image 
erosion_square( r3b ,  erosion     ) ;//Apply MM erosion with S.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)r3b[k][j]=erosion[k][j];  
erosion_square( r3b ,  erosion     ) ;//Apply MM erosion with S.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)r3b[k][j]=erosion[k][j];  
dilation_square( r3b ,  dilation     ) ;//Apply MM dilation with S.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)r3b[k][j]=dilation[k][j];  
dilation_square( r3b ,  dilation     ) ;//Apply MM dilation with S.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)r3b[k][j]=dilation[k][j];  
 
////////////////////////////////// 
dilation_circular( r3b ,  temp3     ) ;////Apply MM dilation with C.E. once 
boundary1( temp3 ,  temp3)   ;//boundary function to be used to modify Canny edge map
  
for (k=0;k<a;++k)for (j=0;j<b;++j) 
if (temp2[k][j]==1 ||temp3[k][j]==1 )r01[k][j]=1;//merge the produced above boundary 
with the Canny edge map 
 
 
////////////////////////////////////// 
 //decrease the size of the segmented  images and the subtract them the above Canny 
edge map 
erosion_circular( r3a ,  erosion     ) ;//Apply MM erosion with C.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)temp2[k][j]=erosion[k][j]; 
erosion_circular( r3b ,  erosion     ) ;//Apply MM erosion with C.E. once 
 for (k=0;k<a;++k)for (j=0;j<b;++j)temp3[k][j]=erosion[k][j]; 
 
//////////////////////////////////// 
//Vacant data in the Canny edge map whenever there is data in the segmnted image 
 for (k=0;k<a;++k)for (j=0;j<b;++j) 
  if (temp2[k][j]==1 || temp3[k][j]==1)r01[k][j]=0; 
 
///////////////////////clean the edge map by removing noise 
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/////////make a mask 7x7 to clean the objects in the 5x5 area 
  for (k=0;k<a-6;++k) 
  for (j=0;j<b-6;++j) 
if (r01[k]  [j]==0 && r01[k][j+1]==0 && r01[k][j+2]==0 && r01[k][j+3]==0 && 
r01[k][j+4]==0 && r01[k][j+5]==0 && r01[k][j+6]==0 && 
 r01[k+1][j]==0 &&                                                                                            
r01[k+1][j+6]==0 && 
 r01[k+2][j]==0 &&                                                                                            
r01[k+2][j+6]==0 && 
 r01[k+3][j]==0 &&                                                                                            
r01[k+3][j+6]==0 && 
 r01[k+4][j]==0 &&                                                                                            
r01[k+4][j+6]==0 && 
 r01[k+5][j]==0 &&                                                                                            
r01[k+5][j+6]==0 && 
 r01[k+6][j]==0 && r01[k+6][j+1]==0 && r01[k+6][j+2]==0 && r01[k+6][j+3]==0 && 
r01[k+6][j+4]==0 && r01[k+6][j+5]==0 && r01[k+6][j+6]==0 ) 
 
   {     
     r01[k+1][j+1]=0 ; r01[k+1][j+2]=0 ; r01[k+1][j+3]=0 ; r01[k+1][j+4]=0 ; 
r01[k+1][j+5]=0 ; 
     r01[k+2][j+1]=0 ; r01[k+2][j+2]=0 ; r01[k+2][j+3]=0 ; r01[k+2][j+4]=0 ; 
r01[k+2][j+5]=0 ;   
     r01[k+3][j+1]=0 ; r01[k+3][j+2]=0 ; r01[k+3][j+3]=0 ; r01[k+3][j+4]=0 ; 
r01[k+3][j+5]=0 ;  
     r01[k+4][j+1]=0 ; r01[k+4][j+2]=0 ; r01[k+4][j+3]=0 ; r01[k+4][j+4]=0 ; 
r01[k+4][j+5]=0 ;  
     r01[k+5][j+1]=0 ; r01[k+5][j+2]=0 ; r01[k+5][j+3]=0 ; r01[k+5][j+4]=0 ; 
r01[k+5][j+5]=0 ;  
  } 
 
 
////////////////assign the value zero to the a new array 
   int v;   
     for (k=0;k<a;++k) 
  for (j=0;j<b;++j) 
   final_dsm[k][j]=0; 
 
////////////////////////////////////////stat building extraction 
 //estimate the number of labels in the label layer 
     int max_lab_count=0; 
 for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
   if (r1[k][j]>max_lab_count) max_lab_count=r1[k][j]; 
 cout <<"max_lab_count"<<max_lab_count<<endl; 
  
for (int lab_co=1;lab_co<=max_lab_count;++lab_co) // start reading each label(building) 
individually  
   
 { 
for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
  if (r1[k][j]==lab_co){temp_r[k][j]=1;temp_r1[k][j]=1;}// produce a new layer 
containing only one label 
  else {temp_r[k][j]=0;temp_r1[k][j]=0;} 
  
////////////////////////////// 
for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
  {if (temp_r[k][j]!=0){v=0;goto start;}}//this to check whether there is a label or 
not 
 {v=1;   goto continu1;} 
//////////////////////////////// 
start: 
 cout <<"building label no.: "<<lab_co<<endl; 
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 for (int dil=0;dil<17;++dil) 
 {cout<<"dialte"<<endl; 
dilation_circular ( temp_r ,  dilation   );//Apply MM dilation with C.E. on the labelled  
object seventeen times 
  for (k=0;k<a;++k)for (j=0;j<b;++j)temp_r[k][j]=dilation[k][j]; 
 } 
////////////find the boundary of the selected region to minimize the time  
 int max_xb=1e-10,max_yb=1e-10,min_xb=1e10,min_yb=1e10,areab=0; 
boun( 1, min_xb, min_yb,  max_xb,  max_yb , areab ,temp_r);//use function to calculate  
the corners of the work area 
  int a_start=0; 
   int a_end=a; 
    int b_start=0; 
     int b_end=b; 
///////////////find the corresponding part from the segmented image 
 for (k=a_start;k<a_end;++k) 
    for (j=b_start;j<b_end;++j) 
    { 
     if (temp_r[k][j]==1) 
     {temp1a[k][j]=r3a[k][j];;temp1b[k][j]=r3b[k][j];} 
     else  
     {temp1a[k][j]=0;temp1b[k][j]=0;} }   
////////////////////check the area and pick the biggest/////////////////// 
    ///then element the other parts         ////////////// 
 int area_a=0, area_b=0;  
    for (k=a_start;k<a_end;++k) 
    for (j=b_start;j<b_end;++j) 
    { 
     if (temp1a[k][j]==1)area_a=area_a+1;if (temp1b[k][j]==1)area_b=area_b+1; 
    } 
////////////////add the boundary either from the segmentesd image 1(area_a) or from 
segmented 
////////////////image 2(area_b) and save it to the new array called  
temp1//////////////////// 
     
    if (area_a>area_b) 
  { 
   for (k=a_start;k<a_end;++k) 
   for (j=b_start;j<b_end;++j) 
    temp1[k][j]=temp1a[k][j]; 
     } 
    else 
  { 
   for (k=a_start;k<a_end;++k) 
   for (j=b_start;j<b_end;++j) 
    temp1[k][j]=temp1b[k][j]; 
     } 
 
     labeling(  temp1 , label , max_lab );// label the objects in array1 
////create new array with only the final object and taking the elevation of maximum  from 
corresponding original  dsm 
   int k1,j1; 
     float height,min_height,max_height ; 
      for (int lab=1;lab<=max_lab;++lab)  
    
{   
 max_height =-1e10;min_height=1e10;int area_matching=0; 
 ////create new blank arrayies 
for (k=a_start;k<a_end;++k) 
 for (j=b_start;j<b_end;++j) 
   {harris[k][j]=0;  new_canny[k][j]=0;intial_boundary[k][j]=0;} 
 
 for (k=a_start;k<a_end;++k) 
  for (j=b_start;j<b_end;++j) 
  { 
   if (label[k][j]==lab)  
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   {if (r0[k][j]>max_height) max_height=r0[k][j];//find the max height at each 
sub-label 
   if (r0[k][j]<min_height) min_height=r0[k][j];//find the min height at each 
sub-label 
   harris[k][j]=1;  //create  an array with value 1  
   intial_boundary[k][j]=1;//create  an array with value 1 
   } 
 } 
///////////////17/12/2013 pick the common segment on the  
 for (k=a_start;k<a_end;++k) 
   for (j=b_start;j<b_end;++j) 
// find weather the sub-label area and the segmented image are common  
      
    if (harris[k][j]!=0  && temp_r1[k][j]!=0){area_matching=1;} 
     
    if (area_matching==1){ goto start2;}//if common goto to start2 in order to 
implement boundary regularization 
    /////otherwise skip this sub-label and check the other sublabel 
   else {  goto continu11;} 
 
///////////////////// 
 start2: 
 
//dilate and erode each building individually to close the holes 
start1: 
 
 for (int dil=0;dil<10;++dil) 
 { 
dilation_square ( harris ,  dilation   );//Apply MM dilation with S.E. ten times 
 for (k=a_start;k<a_end;++k) 
  for (j=b_start;j<b_end;++j) 
   harris[k][j]=dilation[k][j]; 
 } 
 
///find the centre of the area 
 int cen_k=0,cen_j=0,p_k=0,p_j=0; 
 for (k=a_start;k<a_end;++k) 
  for (j=b_start;j<b_end;++j) 
 if (harris[k][j]==1) 
  { cen_k=cen_k+k;p_k=p_k+1; 
   cen_j=cen_j+j;p_j=p_j+1; 
 
 } 
 if (p_k==0 ||p_j==0) goto end_this_loop1; 
 cen_k=cen_k/p_k;cen_j=cen_j/p_j; 
 cout<<cen_k<< "  "<<cen_j<<endl; 
 
 end_this_loop1:; 
for (int ero=0;ero<14;++ero) 
 {erosion_square( harris ,  erosion)   ;//Apply MM dilation with S.E. fourteen times 
  for (k=a_start;k<a_end;++k)for 
(j=b_start;j<b_end;++j)harris[k][j]=erosion[k][j]; 
  } 
 
for (k=a_start;k<a_end;++k) 
 for (j=b_start;j<b_end;++j) 
 {if (harris[k][j]==1)goto end_this_loop2; 
  else harris[cen_k][cen_j]=1; 
 } 
end_this_loop2:; 
 
 /////////////////record the result in new array which is called final_dsm[ ][ ] 
 {  for (k1=0;k1<a;++k1) 
   for (j1=0;j1<b;++j1) 
  if (harris1[k1][j1]==1)final_dsm[k1][j1]=max_height; 
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      } 
///////////////////////////detect the boundary 
 /////create new edge map contain only the candidate image, 
  
 for (k=a_start;k<a_end;++k) 
  for (j=b_start;j<b_end;++j) 
   canny_specific[k][j]=r01[k][j]; 
  for (k=a_start;k<a_end;++k) 
   for (j=b_start;j<b_end;++j) 
 if (harris[k][j]==1)canny_specific[k][j]=0; 
/////////////////////////////// the following steps is to produce a 'solo' edge map 
boundary1 ( harris ,  harris)   ;//boundary function  
 
float tk,tj;int tk_int,tj_int; 
  for (k=a_start;k<a_end;++k) 
 for (j=b_start;j<b_end;++j) 
  if (harris[k][j]==1)// if any pixel detected then start to detect points on canny 
edge detector 
  {  //this part is used to create a new array with just boundary pixels 
  for  (int theta =0;theta<360;theta=theta+20) 
  // int theta =0; 
   for  (float dist =0;dist<a;dist=dist+0.5) 
   {  tj=j+cos(theta*pi/180)*dist; 
   tk=k+sin(theta*pi/180)*dist; 
    
////convert the the numbers to integer and remove the decimals in order to fill in the 
pixel exactly 
 if( (tk + 0.5) >= (int(tk) + 1) ) 
    tk_int= int(tk)+1; 
 else tk_int=int(tk);  
  
 if( (tj + 0.5) >= (int(tj) + 1) ) 
  tj_int = int(tj)+1; 
 else  
  tj_int=int(tj);  
 //////////////////////////// 
 
  
   if (canny_specific[tk_int][tj_int]==1)  {new_canny[tk_int][tj_int]=1;  
;break; } 
   if (canny_specific[tk_int][tj_int+1]==1)
 {new_canny[tk_int][tj_int+1]=1;;break;} 
   if (canny_specific[tk_int+1][tj_int+1]==1)
 {new_canny[tk_int+1][tj_int+1]=1;;break;} 
   if (canny_specific[tk_int+1][tj_int]==1)
 {new_canny[tk_int+1][tj_int]=1;;break;} 
  
   } 
 
  } 
///////////////fill the gaps in the generated canny 
  int pixel,temp_k, temp_j; 
 for (k=a_start;k<a_end;++k) 
   for (j=b_start;j<b_end;++j) 
{ 
 if (new_canny[k][j]==0 && new_canny[k][j-1]==1 && 
new_canny[k][j+1]==1)new_canny[k][j]=1; 
 if (new_canny[k][j]==0 && new_canny[k][j+1]==1 && 
new_canny[k+1][j-1]==1)new_canny[k][j]=1; 
 if (new_canny[k][j]==0 && new_canny[k-1][j-1]==1 && 
new_canny[k+1][j+1]==1)new_canny[k][j]=1; 
 if (new_canny[k][j]==0 && new_canny[k-1][j-1]==1 && 
new_canny[k+1][j]==1)new_canny[k][j]=1; 
 if (new_canny[k][j]==0 && new_canny[k-1][j+1]==1 && 
new_canny[k+1][j]==1)new_canny[k][j]=1; 
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 } 
 
////////////////////////connect the pixels using mathematical morphology to produce 
initial building boundary for the optimization  
 
dilation_square ( intial_boundary ,  dilation   );//Apply MM dilation with S.E.  
 for (k=a_start;k<a_end;++k)for 
(j=b_start;j<b_end;++j)intial_boundary[k][j]=dilation[k][j]; 
 
erosion_square ( intial_boundary ,  erosion   );//Apply MM erosion with S.E.  
 for (k=a_start;k<a_end;++k)for 
(j=b_start;j<b_end;++j)intial_boundary[k][j]=erosion[k][j]; 
 
  boundary1(intial_boundary,intial_boundary);//find the boundary  
 /////////////////////////////////get the common parts in order to find the exterior 
boundary only 
 
   int point_x[10000],point_y[10000] ;  
   float thresh; 
  point=0;  
for (k=a_start;k<a_end;++k) 
   for (j=b_start;j<b_end;++j) 
   
 if(intial_boundary[k][j]!=0){point_x[point]=j;point_y[point]=k;point=point+1;  
//new_canny_original[k][j]=0; 
} 
    if (point <= 3) {goto continu11;}//rule: if the number of the points in the 
initial boundary is less or equal to 3 then neglect this label and goto the another one 
 sort_nna( point ,  point_x,  point_y);//sort the boundary  
 
 ///////////////////////// 
  thresh=5;// boundary approximation threshold 
  doglus_appr(point, point_x, point_y, point_x, point_y,thresh);//approximate the 
boundary  
 
   int new_points=0,temp_x0,temp_y0,temp_x1,temp_y1;  
  for (int s1=0;s1<point;++s1) 
  if(point_x[s1] !=-100000000)new_points=new_points+1; 
  point=new_points; 
 
if (point <= 3) {goto continu11;} 
/////////////////////////////////////////// 
thresh=5; 
   doglus_appr(point, point_x, point_y, point_x, point_y,thresh); 
     new_points=0; 
  for (int s1=0;s1<point;++s1) 
  if(point_x[s1] !=-100000000)new_points=new_points+1; 
  point=new_points; 
 
if (point <= 3) {goto continu11;} 
/////////////////////////////////////////////// 
 for (int s1=0;s1<point;++s1) 
 { 
cout<<point_x[s1]<<"   "<<point_y[s1]<<"  "<<max_height<<endl;// print the 
coordinates on the screen  
// save the initial boundary coordinate to a file 
 myfile5<< std::fixed << std::setprecision(2)<<s1<<" "<<lab_co<<lab<<" "<< 
point_x[s1]/2+x_cor_val<< " "<<(a-point_y[s1])/2+y_cor_val<<" "<<max_height<<endl; 
 } 
 
//////start Bayesian 
  //create new array for the r0 and for canny 
  for (k=a_start;k<a_end;++k) 
  for (j=b_start;j<b_end;++j) 
   if(harris1[k][j]==1)r00[k][j]=1;else r00[k][j]=0; 
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int px,py,itr=0; 
float  new_point_x[points],new_point_y[points],minimum_value_arg=1e20, argmin[rnd]; 
//generate random points for the corner boundary simulation 
  std::default_random_engine generator; 
std::normal_distribution<double> distribution(0,var1);  
 
for (int i=0; i<rnd; i=i+1) 
  { 
 
   for (int s=0;s<point;++s) 
 {new_point_x[s]=point_x[s]+
 distribution(generator);candidate_p_x[s][i]=new_point_x[s]; 
  new_point_y[s]=point_y[s]+
 distribution(generator);candidate_p_y[s][i]=new_point_y[s]; 
 
  } 
 
   float d[points],mean,var; 
 
float px0,py0,px1,py1,d_lik_seg, m, m_per, px_new, py_new, 
 px_new_per_out,py_new_per_out,px_new_per_in,py_new_per_in,d_likelihood[100000];//
d_likelihood=0; 
int px_out,py_out,px_in,py_in,d_cou=0,dis,sign_v1,sign_v2,sign,dis_sign; 
 
 
 ////////find the distance in the new_canny to each line and find the sign then find 
for each line 
for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
   
  if (new_canny[k][j]==1) 
  { 
/////////////////////////////find the distance for k,j to the  
 
float px2=j,px3=j+1; 
float py2=k,py3=k; 
 
 
////////////////////////////////////////////////////// 
float min_dist=10000; 
int cou_poi=0; 
for (int s=0;s<point;++s) 
  { 
   if(s!=point-1){ 
px0=new_point_x[s];py0=new_point_y[s];px1=new_point_x[s+1];py1=new_point_y[s+1];} 
   if(s==point-1){ 
px0=new_point_x[point-1];py0=new_point_y[point-1];px1=new_point_x[0];py1=new_point_y
[0];}  
 
   d_lik_seg=sqrt((px0-px1)*(px0-px1)+(py0-py1)*(py0-py1)); 
        m=(py1-py0)/(px1-px0);//slope  
    m_per=-1/m;//slope of perpendicular line 
/////////////////////////////////////////////////// 
 float di=((px0-px1)*(py2-py3)-(py0-py1)*(px2-px3)); 
   if (di==0) continue; //no intersection are parallel 
    else { 
   float 
distance=abs((px1-px0)*(py0-k)-(px0-j)*(py1-py0))/sqrt((px1-px0)*(px1-px0)+(py1-py0)
*(py1-py0)) ; 
 if (distance<=min_dist)min_dist=distance; 
  float pre=(px0*py1)-(py0*px1), post=(px2*py3)-(py2*px3); 
   float x =(pre*(px2-px3)-(px0-px1)*post)/di; 
    float y =(pre*(py2-py3)-(py0-py1)*post)/di; 
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    if (x>px3&& y<=py1 && y>=py0)cou_poi=cou_poi+1; 
    
    } 
 
} 
if (cou_poi==0 ||cou_poi==2 ||cou_poi==4||cou_poi==6 ||cou_poi==8 
||cou_poi==10||cou_poi==12||cou_poi==14)min_dist=-1*min_dist; 
    else min_dist=abs(min_dist); 
 
 
 d_likelihood[d_cou]=min_dist; 
 d_cou=d_cou+1; 
    } 
   
 likelihhod_d=0; 
for (int ii=0; ii<d_cou; ++ii) 
 { 
   
 likelihhod_d = likelihhod_d + d_likelihood[ii]*d_likelihood[ii];// likelihhod 
probabaility value 
} 
 
//////////////////////////// 
 //////////////////////////////////start Bayesian theorem 
 //calculate the angles between  points of the new profiles for the prior calculation 
 
long double edg_a,edg_b,edg_c,ang[points],penalty, prior;; 
 
edg_a=sqrt((( new_point_x[1]-new_point_x[0])*( new_point_x[1] -new_point_x[0])) + (( 
new_point_y[1]-new_point_y[0])*( new_point_y[1] -new_point_y[0]))); 
edg_b=sqrt((( new_point_x[0]-new_point_x[point-1])*( new_point_x[0] 
-new_point_x[point-1])) + (( new_point_y[0]-new_point_y[point-1])*( new_point_y[0] 
-new_point_y[point-1]))); 
edg_c=sqrt((( new_point_x[1]-new_point_x[point-1])*( new_point_x[1] 
-new_point_x[point-1])) + (( new_point_y[1]-new_point_y[point-1])*( new_point_y[1] 
-new_point_y[point-1]))); 
 
ang[0]=acos((edg_a*edg_a+edg_b*edg_b-edg_c*edg_c)/(2*edg_a*edg_b) ) * 180 / pi;// angle 
in degrees 
 
 
edg_a=sqrt((( new_point_x[0]-new_point_x[point-1])*( new_point_x[0] 
-new_point_x[point-1])) + (( new_point_y[0]-new_point_y[point-1])*( new_point_y[0] 
-new_point_y[point-1]))); 
edg_b=sqrt((( new_point_x[point-2]-new_point_x[point-1])*( new_point_x[point-2] 
-new_point_x[point-1])) + (( new_point_y[point-2]-new_point_y[point-1])*( 
new_point_y[point-2] -new_point_y[point-1]))); 
edg_c=sqrt((( new_point_x[0]-new_point_x[point-2])*( new_point_x[0] 
-new_point_x[point-2])) + (( new_point_y[0]-new_point_y[point-2])*( new_point_y[0] 
-new_point_y[point-2]))); 
 
 ang[point-1]=acos((edg_a*edg_a+edg_b*edg_b-edg_c*edg_c)/(2*edg_a*edg_b) ) * 180 / 
pi;// angle in degrees 
 
 for (int s=1;s<point-1;++s) 
 { 
   
edg_a=sqrt((( new_point_x[s]-new_point_x[s-1] )  * ( new_point_x[s] 
-new_point_x[s-1])) + (( new_point_y[s]-new_point_y[s-1])*( new_point_y[s] 
-new_point_y[s-1]))); 
edg_b=sqrt((( new_point_x[s]-new_point_x[s+1] )  * (new_point_x[s] -new_point_x[s+1])) 
+ (( new_point_y[s]-new_point_y[s+1])*( new_point_y[s] -new_point_y[s+1]))); 
edg_c=sqrt((( new_point_x[s-1]-new_point_x[s+1]) * ( new_point_x[s-1] 
-new_point_x[s+1])) + (( new_point_y[s-1]-new_point_y[s+1])*( new_point_y[s-1] 
-new_point_y[s+1]))); 
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 ang[s]=acos((edg_a*edg_a+edg_b*edg_b-edg_c*edg_c)/(2*edg_a*edg_b) ) * 180 / pi;// 
convert angle to degrees 
 
 } 
 
   ///////////////////////////define the penalty using the defined equation in the 
thesis 
  
 prior=0; 
  for (int s=0;s<point;++s) 
 
    { 
  if(ang[s]<87 && ang[s]>0)   penalty= 
    
   ((0.21-6/((ang[s]-45)*(ang[s]-45)+60)) 
    -2/((ang[s]-90)*(ang[s]-90)+9.7) 
    -6/((ang[s]-135)*(ang[s]-135)+60) 
    -2/((ang[s]-180)*(ang[s]-180)+9.65))/29.92; 
   
 
 if(ang[s]<177 && ang[s]>93)   penalty= ((0.21-6/((ang[s]-45)*(ang[s]-45)+60)) 
    -2/((ang[s]-90)*(ang[s]-90)+9.7) 
    -6/((ang[s]-135)*(ang[s]-135)+60) 
    -2/((ang[s]-180)*(ang[s]-180)+9.65))/29.92;   
    
 if(ang[s]<=93 && ang[s]>=87) penalty= 1e-45; 
 if(ang[s]<=180 && ang[s]>=177)  penalty= 1e-45; 
   prior=prior+(log10(penalty)); 
 
  } 
    //////////////////////end priori//////////////// 
  argmin[i]=1*likelihhod_d/(2*var1)+1*prior;//find the Maximum a Posteriori  
  if  (argmin[i]<minimum_value_arg) {minimum_value_arg=argmin[i];itr=i;}; 
 } 
 cout<<"itr:"<<itr<<"     "<<argmin[itr]<<"   "<<minimum_value_arg<<endl<<endl;// 
prnt the result on the screen 
 
  // test if the points are three nodes or not, after applying doglus approximate 
 
 thresh=0.5; 
     new_points=0,temp_x0,temp_y0,temp_x1,temp_y1;  
  for (int s1=0;s1<point;++s1) 
  if(point_x[s1] !=-100000000)new_points=new_points+1; 
  point=new_points; 
///////////////////////// 
      new_points=0,temp_x0,temp_y0,temp_x1,temp_y1;  
  for (int s1=0;s1<point;++s1) 
  if(point_x[s1] !=-100000000)new_points=new_points+1; 
  point=new_points; 
///////////////////////// 
   for (int s=0;s<point;++s) 
{ 
 
 new_point_x[s]=candidate_p_x[s][itr];new_point_y[s]=candidate_p_y[s][itr]; 
 
  cout<<"Bayesian result boundary"<<" "<<s<<" "<<lab_co<<lab<<" "<< new_point_x[s]<< 
" "<<new_point_y[s]<<" "<<max_height<<endl; 
 
    new_point_x[s]=candidate_p_x[s][itr]/2+x_cor_val;// this is real coordinate 
system 
     new_point_y[s]=(a-candidate_p_y[s][itr])/2+y_cor_val; 
  myfile2<< std::fixed << std::setprecision(2)<<s<<" "<<lab_co<<lab<<" "<< 
new_point_x[s]<< " "<<new_point_y[s]<<" "<<max_height<<endl; 
   
} 
continu11:;if (point <=3 )continue;//when it reaches here it will still in the loop 
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therefore i used continue to skip this loop 
  
} 
continu1:;if (v==1 )continue ; 
} 
/////close the files 
myfile2.close( ); 
 infile0.close( );   infile1.close( );   infile2.close( );  infile3.close( );  
    infile4.close( );  infile5.close( );  infile6.close( );  infile7.close( );  
 
 
    return 0;} 
//*********************************************************************// 
//*********************************************************************// 
//*********************************************************************// 
//////////////Functions that used in building extraction code ////////////// 
 
    /////////////// start calculate the erosion 
 void erosion_square(int r[a][b] , int (&erosion)[a][b]   ) 
   {int r_temp[a][b]; 
for(int k=0;k<a;k++) 
      for(int j=0;j<b;j++) 
   erosion[k][j]=0; 
     
 
////////////////////////////////////////////////////sqaure structure 
for(int k=1;k<a-1;k++) 
      for(int j=1;j<b-1;j++) 
   { 
  
if (r[k][j]==r[k-1][j] && r[k][j]==r[k+1][j] && r[k][j]==r[k][j-1] && 
r[k][j]==r[k][j+1]  && //box element  
    r[k][j]==r[k-1][j-1]&& r[k][j]==r[k-1][j+1]&& r[k][j]==r[k+1][j-1]&& 
r[k][j]==r[k+1][j+1] )//first upper left corner calculator        
    
     erosion[k][j]= r[k][j]; 
    else  erosion[k][j]=0;   }  
//////////////////////////////////////////////////// 
   } 
   /////////////// End calculate the erosion 
      /////////////// start calculate the erosion Circular 5x5 
 void erosion_circular(int r[a][b] , int (&erosion)[a][b]   ) 
   {int r_temp[a][b]; 
for(int k=0;k<a;k++) 
      for(int j=0;j<b;j++) 
   erosion[k][j]=0; 
 ////////////////////////////////////////////////////square structure 
for(int k=2;k<a-2;k++) 
      for(int j=2;j<b-2;j++) 
   { 
 
if (r[k][j]==r[k-1][j] && r[k][j]==r[k+1][j] && r[k][j]==r[k][j-1] && 
r[k][j]==r[k][j+1]  && //box element  
    r[k][j]==r[k-1][j-1]&& r[k][j]==r[k-1][j+1]&& r[k][j]==r[k+1][j-1]&& 
r[k][j]==r[k+1][j+1]  && //box element  
    r[k][j]==r[k-2][j]&& r[k][j]==r[k+2][j]&& r[k][j]==r[k][j-2]&& 
r[k][j]==r[k+2][j] 
                    )//first upper left corner calculator 
       
     erosion[k][j]= r[k][j]; 
    else  erosion[k][j]=0;   }  
 
   } /////////////// End calculate the erosion circular  SE 5x5 
////////////////////////////////////////////////// start calculate the function 
   void dilation_square(int r[a][b] , int (&dilation)[a][b]   ) 
  { 
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   for(int k=0;k<a;k++) 
{  dilation[k][0]=0; dilation[k][b-1]=0;} 
for(int j=0;j<b;j++) 
{  dilation[0][j]=0; dilation[a-1][j]=0;} 
 
for(int k=1;k<a-1;k++) 
 
      for(int j=1;j<b-1;j++) 
   { 
    if (r[k-1][j-1]==1 || r[k-1][j]==1|| r[k-1][j+1]==1|| r[k][j-1]==1|| 
r[k][j]==1||  r[k][j+1]==1|| r[k+1][j-1]==1 || r[k+1][j]==1|| r[k+1][j+1]==1)//box 
element 
  
  dilation[k][j]=1;else  dilation[k][j]=0 ;} 
  } 
  ///////////////////////////// start calculate the function circular SE 5x5 
 
  void dilation_circular(int r[a][b] , int (&dilation)[a][b]   ) 
  {for(int k=0;k<a;k++) 
      for(int j=0;j<b;j++) 
   dilation[k][j]=0; 
 
for(int k=2;k<a-2;k++) 
 
      for(int j=2;j<b-2;j++) 
   { 
    if (r[k-1][j-1]==1 || r[k-1][j]==1|| r[k-1][j+1]==1|| r[k][j-1]==1|| 
r[k][j]==1|| 
     r[k][j+1]==1|| r[k+1][j-1]==1 || r[k+1][j]==1|| r[k+1][j+1]==1|| 
     r[k-2][j]==1|| r[k+2][j]==1 || r[k][j-2]==1|| r[k][j+2]==1  ) 
          dilation[k][j]=1;else  dilation[k][j]=0 ; 
   } 
  } 
  ///////////////////////////////////////////////start labelling/////////////////// 
  void labeling( int thr_level[a][b] , int (&label)[a][b] , int& max_lab ) 
 
 {  int j;  int lab=0, newlabel; 
     if (thr_level[0][0] == 1) label[0][0]=1;else  label[0][0]=0;//check first 
corner 
 
 for (j=0;j<b;++j) 
  { 
if (thr_level[0][j] == 1)// 1 is forground , 0 is for background 
{ if (thr_level[0][j]  == thr_level[0][j-1]  ) 
{  
 label[0][j]= label[0][j-1]; 
} 
    else {++lab; label[0][j]=lab;} 
} 
   
else  label[0][j]=0;  
 } 
 
//for the other  rows 
   int ch=0,k; 
 for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
 { 
 
if (thr_level[k][j] == 1) 
{  
 if (j == 0) if (thr_level[k-1][j]== 1 )  { label[k][j] = label[k-1][j];}//test the 
first column 
 else {++lab; label[k][j]=lab;;} 
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/////////////for the other columns rather than first column 
//case1 
 //else 
 { 
 if (thr_level[k][j]  == thr_level[k][j-1] && thr_level[k][j]  == thr_level[k-1][j] 
) 
 { if ( label[k-1][j] >  label[k][j-1])  
 {  label[k][j]= label[k][j-1];ch=ch+1;;c1[ch]= label[k-1][j];c2[ch]= 
label[k][j-1];    }  
    
 else  {label[k][j]= label[k-1][j];ch=ch+1;;c1[ch]= label[k][j-1];c2[ch]= 
label[k-1][j];}} 
 
 
//case2 
if (thr_level[k][j]  != thr_level[k][j-1] && thr_level[k][j]  == thr_level[k-1][j] ) 
  label[k][j]= label[k-1][j]; 
 
 
//case3 
if (thr_level[k][j]  == thr_level[k][j-1] && thr_level[k][j]  != thr_level[k-1][j] ) 
     label[k][j]= label[k][j-1]; 
  
 
//case 4 
if (thr_level[k][j]  != thr_level[k][j-1] && thr_level[k][j]  != thr_level[k-1][j] ) 
  {++lab; label[k][j]=lab;} 
//  
 
 }} 
   
else  label[k][j]=0;  } 
 
////////////////////start second pass 
  
 for (int ch1=0;ch1<=ch;++ch1) 
  {   if (c1[ch1] != c2[ch1] ) 
  {   
  for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
  {  
   if (label[k][j]==c2[ch1] && c1[ch1] > c2[ch1]) label[k][j]=c1[ch1]; 
   else if  (label[k][j]==c1[ch1] && c1[ch1] < c2[ch1]) label[k][j]=c2[ch1]; 
    
    }}} 
  
/////////////////scan the image for discrepancy in the labels 
    for (int ss=0;ss<25;++ss)// number of loops this should be treated automatically 
    { 
 for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
if (thr_level[k][j] == 1) 
 { 
  if (thr_level[k][j]  == thr_level[k-1][j-1]  ) 
     if ( label[k][j] >  label[k-1][j-1]) label[k][j]=label[k-1][j-1]; 
  if (thr_level[k][j]  == thr_level[k-1][j]  ) 
     if ( label[k][j] >  label[k-1][j]) label[k][j]=label[k-1][j]; 
  if (thr_level[k][j]  == thr_level[k-1][j+1]  ) 
     if ( label[k][j] >  label[k-1][j+1]) label[k][j]=label[k-1][j+1]; 
  if (thr_level[k][j]  == thr_level[k][j-1]  ) 
     if ( label[k][j] >  label[k][j-1]) label[k][j]=label[k][j-1]; 
  if (thr_level[k][j]  == thr_level[k][j+1]  ) 
     if ( label[k][j] >  label[k][j+1]) label[k][j]=label[k][j+1]; 
  if (thr_level[k][j]  == thr_level[k+1][j-1]  ) 
     if ( label[k][j] >  label[k+1][j-1]) label[k][j]=label[k+1][j-1]; 
  if (thr_level[k][j]  == thr_level[k+1][j]  ) 
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     if ( label[k][j] >  label[k+1][j]) label[k][j]=label[k+1][j]; 
  if (thr_level[k][j]  == thr_level[k+1][j+1]  ) 
     if ( label[k][j] >  label[k+1][j+1]) label[k][j]=label[k+1][j+1]; 
   } 
    } 
 
 for (k=0;k<a;++k) 
 for (j=0;j<b;++j) 
 {  if (label[k][j]>max_lab) max_lab=label[k][j];} 
  
 } 
 ////////////end of labelling 
  
///////////////////////////////sort the points using Nearest neighbour algorithm 
    void sort_nna(int point , int (&point_x)[10000], int (&point_y)[10000])  
{ 
    int vx[1000],vy[1000]; 
     vx[0]=point_x[0],vy[0]=point_y[0];point_x[0]=-1000;point_y[0]=-1000;float 
d; 
     for (int s=0;s<point;++s) 
     { d=10e10; 
       
     for (int s1=0;s1<point;++s1) 
     { 
       
      if (vx[s]==point_x[s1] && 
vy[s]==point_y[s1]){point_x[s1]=-1000;point_y[s1]=-1000; }//to make the point visited 
     }   
       for (int s1=0;s1<point;++s1) 
       { 
 
        if (point_x[s1]!=-1000 && point_y[s1]!=-1000  ) 
        { 
         float 
d1=sqrt((float)(vx[s]-point_x[s1])*(vx[s]-point_x[s1])+(vy[s]-point_y[s1])*(vy[s]-po
int_y[s1])); 
         if (d1<= d){d=d1;vx[s+1]=point_x[s1];vy[s+1]=point_y[s1]; } 
  
        } 
 
       } 
 
     } 
    for (int s=0;s<point;++s) 
    {point_x[s]=vx[s];point_y[s]=vy[s];} 
 
 
     } 
///////////////////////////////////////////////////////////////// 
//////////Start doglus approximate algorithm to minimize number of point in the boundary 
///////////////// 
 void doglus_appr(int point , int point_x[1000], int point_y[1000], int 
sort_point_x[1000],int sort_point_y[1000],float& thre_dis) 
 { 
 int temp_x0,temp_y0;  
 temp_x0=point_x[0];temp_y0=point_y[0]; 
for (int s1=0;s1<point;++s1) 
 {point_x[s1]=point_x[s1+1];point_y[s1]=point_y[s1+1];} 
 point_x[point-1]=temp_x0;point_y[point-1]=temp_y0; 
 
  
 float thresh; 
 thresh=thre_dis; 
 int point1, st;  
   point1=point; 
     int s1=0,end1; 
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 float m,b1,d,px0,py0,px1,py1,px,py; 
 int index,temp,temp1; 
  
 float end= point1; 
 
  st=s1; 
  end1=point1-1; 
  
  do{ 
 
start_dogl: 
 
  px0=point_x[st]; 
  py0=point_y[st]; 
  px1=point_x[end1]; 
  py1=point_y[end1]; 
  
 m=(py1-py0)/(px1-px0);//slope 
 b1=py1-m*px1 ;  
       
 float max_dis=-10000; 
 index=0; 
 for (int s11=st;s11<end1 ;++s11)   
   
 { 
 
  px=point_x[s11];// the coordinate at each point 
  py=point_y[s11]; 
   d=abs(py-m*px-b1)/sqrt(m*m+1);// calculate the distance from point to the line 
    
  if (px0==px1) d= abs(px1-px); 
   
   if (d< 0.0001) d=0; 
if(d>max_dis){max_dis=d;index=s11;}//find maximum distance 
     } 
 if ((st== index) && (st+1 == end1)) {st=st+1;goto skip_parameter;} 
  
  if  
  (max_dis>thresh){ 
     end1=index;goto start_dogl;} 
 else   
{ 
 for (int s111=st+1;s111<end1 ;++s111)  
{   point_x[s111]=-100000000;point_y[s111]=-100000000; 
           } 
//////////////////////calculate the points number again 
 ///1-sort the points 
 ///2-calculate the number of points 
  for (int i=0;i<point1;++i)   
 for (int s=0;s<point1-1;++s)  
  if(point_x[s] ==-100000000) 
  { 
  temp =point_x[s];temp1 =point_y[s]; 
  point_x[s]=point_x[s+1];point_y[s]=point_y[s+1]; 
  point_x[s+1]=temp;point_y[s+1]=temp1; 
   } 
 
 int new_points=0; 
  for (int s1=0;s1<point1;++s1) 
  if(point_x[s1] !=-100000000)new_points=new_points+1; 
  point1=new_points; 
   st=0; 
//////////////////////////////////////////////////// 
  goto skip_parameter; 
  
 } 



Appendix D 
 

302 
 

st=index;  
skip_parameter:; 
end1=point1-1; 
   } while ( st!=end1); 
  
  //////////////sort  
     for (int i=0;i<point1;++i)    
 for (int s=0;s<point1-1;++s)  
  if(point_x[s] ==-100000000) 
  { 
  temp =point_x[s];temp1 =point_y[s]; 
  point_x[s]=point_x[s+1];point_y[s]=point_y[s+1]; 
  point_x[s+1]=temp;point_y[s+1]=temp1; 
 } 
 
////////////////////////////////////////// 
 
  for(int i=0;i<point;++i)//sort the points 
 for (int s=0;s<point-1;++s) 
  if(point_x[s] ==-100000000) 
  { 
  temp =point_x[s];temp1 =point_y[s]; 
  point_x[s]=point_x[s+1];point_y[s]=point_y[s+1]; 
  point_x[s+1]=temp;point_y[s+1]=temp1; 
 
 } 
//////////////////////////calculate the number of real points 
   int new_points=0; 
  for (int s1=0;s1<point;++s1) 
  if(point_x[s1] !=-100000000)new_points=new_points+1; 
  point=new_points; 
 
//////////////////////check angle filter and eliminate the angles which is less than 25 
///////////calculate the angles between  points of the new profiles 
double edg_a,edg_b,edg_c,ang[1000];; 
edg_a=sqrt((float)(( point_x[1]-point_x[0])*( point_x[1] -point_x[0])) + (( 
point_y[1]-point_y[0])*( point_y[1] -point_y[0]))); 
edg_b=sqrt((float)(( point_x[0]-point_x[point-1])*( point_x[0] -point_x[point-1])) + 
(( point_y[0]-point_y[point-1])*( point_y[0] -point_y[point-1]))); 
edg_c=sqrt((float)(( point_x[1]-point_x[point-1])*( point_x[1] -point_x[point-1])) + 
(( point_y[1]-point_y[point-1])*( point_y[1] -point_y[point-1]))); 
 
ang[0]=acos((edg_a*edg_a+edg_b*edg_b-edg_c*edg_c)/(2*edg_a*edg_b) ) * 180 / pi;// angle 
in degrees 
 
edg_a=sqrt((float)(( point_x[0]-point_x[point-1])*( point_x[0] -point_x[point-1])) + 
(( point_y[0]-point_y[point-1])*( point_y[0] -point_y[point-1]))); 
edg_b=sqrt((float)(( point_x[point-2]-point_x[point-1])*( point_x[point-2] 
-point_x[point-1])) + (( point_y[point-2]-point_y[point-1])*( point_y[point-2] 
-point_y[point-1]))); 
edg_c=sqrt((float)(( point_x[0]-point_x[point-2])*( point_x[0] -point_x[point-2])) + 
(( point_y[0]-point_y[point-2])*( point_y[0] -point_y[point-2]))); 
 
 ang[point-1]=acos((edg_a*edg_a+edg_b*edg_b-edg_c*edg_c)/(2*edg_a*edg_b) ) * 180 / 
pi;// angle in degrees 
 
 for (int s=1;s<point-1;++s) 
 { 
   
edg_a=sqrt((float)(( point_x[s]-point_x[s-1] )  * ( point_x[s] -point_x[s-1])) + (( 
point_y[s]-point_y[s-1])*( point_y[s] -point_y[s-1]))); 
edg_b=sqrt((float)(( point_x[s]-point_x[s+1] )  * (point_x[s] -point_x[s+1])) + (( 
point_y[s]-point_y[s+1])*( point_y[s] -point_y[s+1]))); 
edg_c=sqrt((float)(( point_x[s-1]-point_x[s+1]) * ( point_x[s-1] -point_x[s+1])) + (( 
point_y[s-1]-point_y[s+1])*( point_y[s-1] -point_y[s+1]))); 
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 ang[s]=acos((edg_a*edg_a+edg_b*edg_b-edg_c*edg_c)/(2*edg_a*edg_b) ) * 180 / pi;// 
angle in degrees 
 
  } 
///////////////////////////////////  
   for (int s=0;s<point;++s) 
   { 
     if  (ang[s]<=45)point_x[s]=-100000000;  
   } 
////////////////////// 
 
     for(int i=0;i<point;++i)//sort the points 
 for (int s=0;s<point-1;++s) 
  if(point_x[s] ==-100000000) 
  { 
  temp =point_x[s];temp1 =point_y[s]; 
  point_x[s]=point_x[s+1];point_y[s]=point_y[s+1]; 
  point_x[s+1]=temp;point_y[s+1]=temp1; 
 } 
 } 
///////////////End doglus approximate  ///////////////////////////////////////// 
////////////////////////////////////////////////////////////////////////////// 
///////////////calculate the the boundary of the object using mathematical morphology 
      void boundary1(int r[a][b] , int (&boundary)[a][b]   ) 
   {int r_temp[a][b]; 
for(int k=0;k<a;k++) 
      for(int j=0;j<b;j++) 
    r_temp[k][j]=0; 
 
for(int k=0;k<a;k++) 
{   r_temp[k][0]=0;  r_temp[k][b-1]=0;} 
for(int j=0;j<b;j++) 
{   r_temp[0][j]=0;  r_temp[a-1][j]=0;} 
 
///////////////////////////////////////////////////square structure 
for(int k=1;k<a-1;k++) 
      for(int j=1;j<b-1;j++) 
  {  if (r[k][j]==r[k-1][j] && r[k][j]==r[k+1][j] && r[k][j]==r[k][j-1] && 
r[k][j]==r[k][j+1]  &&   
     r[k][j]==r[k-1][j-1]&& r[k][j]==r[k-1][j+1]&& r[k][j]==r[k+1][j-1]&& 
r[k][j]==r[k+1][j+1] )//first upper left corner calculator 
          r_temp[k][j]= r[k][j]; 
    else   r_temp[k][j]=0;   }  
         
   for(int k=0;k<a;k++) 
      for(int j=0;j<b;j++) 
     boundary[k][j]=r[k][j]- r_temp[k][j]; 
   } 
   /////////////// End calculate the dilation 
 /////////// detection of the buildings to locate the limits of the objects 
  int boun(int loop, int& min_x,int& min_y, int& max_x, int& max_y ,int& area, int 
label[a][b]) 
  { 
  
   for (int k=0;k<a;++k) 
 for (int j=0;j<b;++j) 
  if (label[k][j]==1)  
  {area=area+1;if (k>=max_y)max_y=k;if (k<=min_y)min_y=k; 
 if (j>=max_x)max_x=j;if (j<=min_x)min_x=j;} 
 return 0; 
  } 
  ////////////detection of the buildings to locate the limits of the objects 
  ////////////End of the function part///////////////////////////////////// 
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The result of the processing the code will be an ASCII file that contains five columns, and 
listed as follow: first column is for the sequence of the building boundary nodes; the second 
column is for the building boundary label; the third, fourth and fifth indicates the coordinates 
with respect to the UTM for each corner individually. 
 
 

 
Figure C.14 A screen shot of the output of building footprint and 3D modelling is shown in text 
format. 
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Appendix E- Building footprint measured data 
 

Table E-1 Corner planimetric discrepancies of true and extracted buildings. 

Building # planimetric corners(m) 

1 1.59 1.61 0.79 1.43     

2 3.29 1.17 3.57 1.35     

3 2.49 0.12 2.24 2.70     

4 0.94 1.37 0.76 0.26     

5 1.60 1.35 3.35 3.32     

6 1.24 1.76 1.44 0.90     

7 1.38 0.87 1.61 1.44     

8 1.44 1.09 0.45 1.90     

9 0.89 2.10 2.73 2.15     

10 1.67 1.68 2.23 3.76     

11 4.25 5.83 9.20 7.19     

12 2.39 2.75 2.99 5.85     

13 1.96 1.95 2.16 1.57     

14 0.75 2.02 2.47 1.11     

15 2.57 2.07 0.14 1.96     

16 1.10 2.07 2.26 1.24     

17 1.59 0.71 2.81 0.59     

18 1.87 0.36 2.36 0.74     

19 3.41 1.62 2.75 2.81     

20 2.48 2.69 1.94 7.73     

21 0.80 2.44 5.50 2.95     

22 9.65 8.21 2.59 1.84     

23 1.07 1.78 1.10 2.00     

24 0.29 2.38 3.40 1.73     

25 1.82 2.00 1.64 2.19     

26 2.87 3.18 0.87 3.91 4.34 1.88 

27 3.81 2.48 4.07 4.25 3.09 4.69 

28 1.52 2.64 2.80 1.45     

29 0.20 1.94 1.58 2.20     

30 0.79 1.32 2.34 1.34     

31 1.39 0.99 2.92 1.96     

32 1.80 0.98 0.50 0.61     

33 0.49 2.18 2.44 2.33     

34 2.08 3.42 0.79 3.94     

35 1.39 1.49 1.38 1.00     

Min(m) 0.12 

Max(m) 9.65 

Mean(m) 2.23 

σ(m) 1.62 

RMSE(m) 2.88 
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Table E-2 Corner planimetric discrepancies in X and Y direction of true and extracted buildings 

Building # X_corners_residual   Y_corners_residual 

1 -0.27 1.42 0.26 -0.96       1.57 0.75 0.75 1.06     
2 -2.85 -0.32 2.14 0.79       -1.64 1.12 2.86 1.09     

3 1.91 0.01 -0.91 0.95       1.60 0.12 2.05 2.53     

4 -0.10 0.95 0.76 0.22       0.94 0.99 0.09 0.14     

5 1.59 0.20 0.94 2.48       -0.18 1.33 3.22 2.21     
6 1.02 1.74 1.21 0.45       0.71 0.23 0.79 0.77     

7 1.33 0.75 1.22 1.36       0.38 0.45 1.05 0.48     

8 1.04 -0.42 0.29 1.78       0.99 1.01 0.34 0.68     

9 0.88 1.54 2.40 2.14       -0.21 1.42 1.31 -0.19     
10 -0.14 1.62 0.14 -1.71       1.67 0.47 2.23 3.34     

11 -1.45 -4.76 3.19 7.09       -4.00 3.36 8.63 1.19     

12 -0.43 2.83 0.34 2.89       2.35 0.75 2.98 5.09     

13 0.60 1.83 0.60 0.14       1.87 0.66 1.45 2.15     
14 -0.58 0.46 1.50 0.67       0.47 1.96 1.97 0.89     

15 1.02 1.68 0.11 -0.85       2.36 1.21 0.09 1.77     

16 0.01 1.15 1.50 0.71       1.10 1.73 1.69 1.01     

17 -1.30 0.38 1.53 0.19       0.91 0.59 2.55 0.56     
18 -1.47 0.34 2.19 0.62       1.15 0.12 0.87 -0.40     

19 -3.40 0.35 -1.52 0.72       -0.27 1.58 2.65 2.37     

20 2.44 0.12 0.14 0.47       0.48 2.69 1.91 7.18     

21 -0.67 -0.21 1.04 0.51       0.43 2.43 5.40 2.91     
22 1.85 7.27 2.49 1.17       -9.47 -3.82 0.73 -1.42     

23 0.79 0.20 1.05 1.61       0.71 1.76 0.34 -1.20     

24 -0.03 0.80 0.83 1.51       0.29 2.24 3.30 0.84     

25 0.06 1.39 0.98 -0.08       1.82 1.44 1.32 2.19     
26 -1.66 -1.47 -0.02 2.22 2.56 -1.24   2.33 2.82 0.87 3.22 3.51 1.41 

27 2.07 1.95 2.17 3.46 2.98 -1.69   3.20 1.54 3.95 2.19 0.82 4.37 

28 0.95 2.51 2.45 0.58       1.19 0.81 1.36 1.33     

29 0.08 0.32 1.22 1.85       0.19 1.91 1.00 -1.19     
30 0.42 1.30 1.84 0.81       0.67 -0.25 1.44 1.07     

31 0.24 0.48 0.11 0.36       1.37 0.87 3.60 1.92     

32 0.83 0.86 0.18 0.59       1.60 0.47 0.47 0.15     

33 0.28 0.28 1.66 2.29       0.40 2.16 2.22 0.47     
34 1.00 3.16 -0.20 -1.77       1.83 -1.29 0.77 3.52     

35 -0.08 0.90 0.69 -0.10       1.38 0.90 1.19 1.00     

Min(m) -4.76   -9.47 

Max(m) 7.27   8.63 
Mean(m) 0.76   1.29 

σ(m) 1.49   1.79 

RMSE(m) 1.67   2.20 
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Table E-3 Centre planimetric discrepancies in X and Y direction of true and 
extracted buildings. 

Building # 

Planemtaric 
centre residual 

 X centre 
residual 

Y centre 
residual 

1 1.05  0.21 1.03 

2 1.05  -0.08 1.05 

3 1.67  0.38 1.62 

4 0.64  0.44 0.46 

5 2.12  1.35 1.64 

6 1.18  1.05 0.55 

7 1.26  1.11 0.60 

8 0.7  0.60 0.36 

9 1.85  1.71 0.70 

10 1.87  -0.02 1.87 

11 2.47  0.96 2.28 

12 2.77  -0.03 2.77 

13 1.75  0.68 1.62 

14 1.46  0.53 1.36 

15 1.42  0.53 1.32 

16 1.67  0.83 1.45 

17 0.64  0.07 0.63 

18 0.35  0.27 -0.22 

19 2.09  -0.96 1.85 

20 3.18  0.31 3.16 

21 2.77  0.13 2.76 

22 4.05  0.51 4.01 

23 0.91  0.84 0.35 

24 1.67  0.34 1.63 

25 1.89  0.70 1.75 

26 3.15  1.06 2.96 

27 2.82  2.15 1.82 

28 1.92  1.56 1.12 

29 0.8  0.65 0.47 

30 1.23  1.14 0.47 

31 1.74  -0.20 1.73 

32 0.71  0.53 0.47 

33 1.61  0.99 1.26 

34 1.36  0.53 1.26 

35 0.36  0.36 0.06 

Min(m) 0.35  -0.96 -0.22 

Max(m) 4.05  2.15 4.01 

Mean(m) 1.66  0.61 1.38 

σ(m) 0.87  0.59 0.95 

RMSE(m)f 1.84  0.84 1.64 
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Table E-4 measured area of the true and extracted buildings. 

Building 
# 

area common 
area (TP) 

wrongly 
extracted 

(FN)  

missed area 
(FP)  

true area extracted area Diff. 

1 89.6546 103.675 14.0204 81.56 22.115 8.0946 

2 152.7253 179.385 26.6597 137.332 42.053 15.3933 

3 88.811 60.715 -28.096 53.3 7.415 35.511 
4 78.409 96.23 17.821 77.53 18.7 0.879 

5 87.9964 58.7975 -29.1989 49.72 9.0775 38.2764 

6 90.762 91.4175 0.6555 77.12 14.2975 13.642 

7 80.1817 75.615 -4.5667 63.9 11.715 16.2817 
8 88.0907 87.4975 -0.5932 75.52 11.9775 12.5707 

9 88.1016 98.3925 10.2909 73.72 24.6725 14.3816 

10 117.4319 116.2375 -1.1944 90.54 25.6975 26.8919 

11 117.4993 133.07 15.5707 89.33 43.74 28.1693 
12 117.4085 121.6525 4.244 78.94 42.7125 38.4685 

13 79.657 84.71 5.053 62.47 22.24 17.187 

14 88.7595 100.6875 11.928 76.53 24.1575 12.2295 

15 88.741 103.4025 14.6615 78.45 24.9525 10.291 
16 89.3722 102.3775 13.0053 74.79 27.5875 14.5822 

17 77.1729 80.835 3.6621 64.79 16.045 12.3829 

18 152.9226 177.705 24.7824 147.77 29.935 5.1526 

19 153.2231 194.3725 41.1494 132.39 61.9825 20.8331 
20 153.5556 169.585 16.0294 115.29 54.295 38.2656 

21 77.2712 65.33 -11.9412 45.57 19.76 31.7012 

22 774.9193 564.2625 -210.657 536.47 27.7925 238.4493 

22a   18.3 18.3  18.3 0 0 
23 154.4471 183.83 29.3829 145.19 38.64 9.2571 

24 80.6323 76.285 -4.3473 59.33 16.955 21.3023 

25 411.729 421.7075 9.9785 353.39 68.3175 58.339 

26 646.312 800.815 154.503 575.11 225.705 71.202 
27 590.3626 680.01 89.6474 526.19 153.82 64.1726 

28 258.2512 266.0175 7.7663 223.05 42.9675 35.2012 

29 90.6505 107.2825 16.632 83.71 23.5725 6.9405 

30 125.553 123.4775 -2.0755 103.7 19.7775 21.853 
31 117.8535 106.935 -10.9185 88.76 18.175 29.0935 

32 185.4073 204.3525 18.9452 177.48 26.8725 7.9273 

33 103.7491 105.7975 2.0484 83.42 22.3775 20.3291 

34 124.5665 124.41 -0.1565 100.81 23.6 23.7565 
35 90.731 124.3625 33.6315 90.62 33.7425 0.111 

total 5912.9115 6209.535 296.6235 4912.092 1297.443 1019.119 
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Table E-5 Measured height of the true and extracted buildings of hipped buildings with hipped 
and one direction sloped roofs. 

Building 
# 

WGS-Ele
v. 

WV-1 
DSM 

Pleiades 
DSM 

Maximum 
Likelihood 

Merging DSM 

Bayesian 
Merging DSM 
range ±0.1m 

Bayesian Merging 
DSM range 

±0.25m 
1 118.16 113.38 115.19 113.70 113.66 113.63 
2 117.34 115.02 118.33 114.89 114.84 114.76 
3 118.09 114.70 118.09 115.26 115.23 115.15 
4 118.15 114.08 116.86 114.56 114.53 114.46 
5 118.61 115.70 118.37 115.92 115.99 116.03 
6 118.66 112.86 118.19 113.64 113.63 113.65 
7 118.55 112.63 116.64 112.78 112.78 112.81 
8 118.64 115.16 118.06 115.04 114.99 114.94 
9 118.00 116.92 117.59 116.66 116.72 116.77 
10 118.59 113.10 120.43 114.11 114.11 114.12 
11 118.49 113.06 119.66 114.06 114.06 114.07 
12 118.37 118.66 119.13 118.39 118.39 118.37 
13 116.54 114.22 114.67 113.98 113.93 113.88 
14 117.71 115.77 116.95 115.95 115.95 115.97 
15 118.25 117.58 116.26 116.69 116.69 116.62 
16 118.43 117.06 116.36 116.16 116.10 116.05 
17 117.92 117.45 116.05 116.52 116.45 116.40 
18 115.83 113.74 114.47 113.55 113.50 113.47 
19 117.85 117.34 119.71 117.99 117.95 117.92 
20 117.73 116.92 116.15 115.87 115.81 115.76 
21 117.64 116.04 115.57 115.47 115.42 115.37 
22 114.24 114.24 115.26 114.42 114.41 114.44 
23 115.62 114.76 116.02 114.82 114.77 114.71 
24 115.83 113.95 115.01 114.11 114.07 113.99 
25 119.80 119.26 122.60 119.38 119.38 119.42 
26 125.86 124.06 124.57 124.16 124.16 124.19 
27 122.99 124.35 124.98 124.32 124.27 124.19 
28 116.23 116.14 118.52 116.57 116.53 116.55 
29 116.64 116.81 120.33 117.39 117.37 117.35 
30 118.88 117.77 118.36 117.87 117.84 117.88 
31 118.88 117.68 121.42 118.28 118.26 118.28 
32 118.89 118.82 118.74 117.73 117.67 117.67 
33 118.89 118.73 119.81 117.82 117.78 117.79 
34 119.14 118.60 120.71 118.87 118.83 118.81 
35 118.85 117.92 120.84 118.40 118.37 118.37 

Min. d(m) -1.36 -3.69 -1.33 -1.28 -1.20 
Max. d(m) 5.92 2.97 5.77 5.77 5.74 
Mean d(m) 1.82 -0.05 1.80 1.82 1.84 
σ of d (m) 1.90 1.69 1.71 1.71 1.71 
RMSE using 
discrepancy(m) 

2.62 1.67 2.47 2.48 2.49 
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Table E-6 Measured height of the true and extracted buildings of hipped roofs. 

Building 
# 

WGS-Ele
v. 

WV-1 
DSM 

Pleiades 
DSM 

Maximum 
Likelihood 

Merging DSM 

Bayesian 
Merging DSM 
range ±0.1m 

Bayesian Merging 
DSM range 

±0.25m 
1 118.16 113.38 115.19 113.70 113.66 113.63 
2 117.34 115.02 118.33 114.89 114.84 114.76 
3 118.09 114.70 118.09 115.26 115.23 115.15 
4 118.15 114.08 116.86 114.56 114.53 114.46 
5 118.61 115.70 118.37 115.92 115.99 116.03 
6 118.66 112.86 118.19 113.64 113.63 113.65 
7 118.55 112.63 116.64 112.78 112.78 112.81 
8 118.64 115.16 118.06 115.04 114.99 114.94 
9 118.00 116.92 117.59 116.66 116.72 116.77 
10 118.59 113.10 120.43 114.11 114.11 114.12 
11 118.49 113.06 119.66 114.06 114.06 114.07 
12 118.37 118.66 119.13 118.39 118.39 118.37 
13 116.54 114.22 114.67 113.98 113.93 113.88 
14 117.71 115.77 116.95 115.95 115.95 115.97 
15 118.25 117.58 116.26 116.69 116.69 116.62 
16 118.43 117.06 116.36 116.16 116.10 116.05 
17 117.92 117.45 116.05 116.52 116.45 116.40 
18 115.83 113.74 114.47 113.55 113.50 113.47 
19 117.85 117.34 119.71 117.99 117.95 117.92 
20 117.73 116.92 116.15 115.87 115.81 115.76 
21 117.64 116.04 115.57 115.47 115.42 115.37 
23 115.62 114.76 116.02 114.82 114.77 114.71 
24 115.83 113.95 115.01 114.11 114.07 113.99 
25 119.80 119.26 122.60 119.38 119.38 119.42 
26 125.86 124.06 124.57 124.16 124.16 124.19 
27 122.99 124.35 124.98 124.32 124.27 124.19 

Min. d(m) -1.36 -2.80 -1.33 -1.28 -1.20 
Max. d(m) 5.92 2.97 5.77 5.77 5.74 
Mean d(m) 2.30 0.45 2.30 2.32 2.34 
σ of d (m) 1.98 1.53 1.69 1.68 1.67 

RMSE using 
discrepancy(m) 3.01 1.56 2.83 2.84 2.86 

 

Table E-7 Measured height of the true and extracted buildings of one direction slope roofs. 

Building 
# 

WGS-Ele
v. 

WV-1 
DSM 

Pleiades 
DSM 

Maximum 
Likelihood 

Merging DSM 

Bayesian 
Merging DSM 
range ±0.1m 

Bayesian Merging 
DSM range 

±0.25m 
22 114.24 114.24 115.26 114.42 114.41 114.44 
28 116.23 116.14 118.52 116.57 116.53 116.55 
29 116.64 116.81 120.33 117.39 117.37 117.35 
30 118.88 117.77 118.36 117.87 117.84 117.88 
31 118.88 117.68 121.42 118.28 118.26 118.28 
32 118.89 118.82 118.74 117.73 117.67 117.67 
33 118.89 118.73 119.81 117.82 117.78 117.79 
34 119.14 118.60 120.71 118.87 118.83 118.81 
35 118.85 117.92 120.84 118.40 118.37 118.37 

Min. d(m) -0.17 -3.69 -0.75 -0.73 -0.71 
Max. d(m) 1.20 0.52 1.16 1.22 1.22 
Mean d(m) 0.44 -1.48 0.36 0.40 0.39 
σ of d (m) 0.52 1.33 0.68 0.68 0.68 

RMSE using 
discrepancy(m) 0.66 1.94 0.73 0.76 0.75 
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