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Abstract

Recently, especially within the last two decadés, demand for DSMs (Digital Surface
Models) and 3D city models has increased dramaticdhis has arisen due to the
emergence of new applications beyond constructi@nalysis and consequently to a focus
on accuracy and the cost.

This thesis addresses two linked subjects: firgprawing the quality of the DSM by merging
different source DSMs using a Bayesian approachlt second, extracting building
footprints using approaches, including Bayesianegghes, and producing 3D models.

Regarding the first topic, a probabilistic modes seen generated based on the Bayesian
approach in order to merge different source DSMsfdifferent sensors. The Bayesian
approach is specified to be ideal in the case wthendata is limited and this can
consequently be compensated by introducingatpeiori. The implemented prids based
on the hypothesis that the building roof outlines specified to be smooth, for that reason
local entropy has been implemented in order toritifea priori data. In addition to tha
priori estimation, the quality of the DSMs is obtained usyng field checkpoints from
differential GNSS. The validation results have shakat the model was successfully able to
improve the quality of the DSMs and improving soof@racteristics such as the roof
surfaces, which consequently led to better reptatiens. In addition to that, the developed
model has been compared with the Maximum Likelihooodel which showed similar
quantitative statistical results and better quaigaresults. Perhaps it is worth mentioning
that, although the DSMs used in the merging haea Ipeoduced using satellite images, the
model can be applied on any type of DSM.

The second topic is building footprint extractioasbd on using satellite imagery. An
efficient flow-line for automatic building footprirextraction and 3D model construction,
from both stereo panchromatic and multispectra¢list@t imagery was developed. This
flow-line has been applied in an area of diffetantding types, with both hipped and sloped
roofs. The flow line consisted of multi stages.sEidata preparation, digital orthoimagery
and DSMs are created from WorldView-1. Pleiadesgeng is used to create a vegetation
mask. The orthoimagery then undergoes binary ¢ieason into ‘foreground’ (including

buildings, shadows, open-water, roads and trees)l@ckground’ (including grass, bare
soil, and clay). From the foreground class, shadand open water are removed after

creating a shadow mask by thresholding the san@iaragery. Likewise roads have been
Il



removed, for the time being, after interactivelgating a mask using the orthoimagery.
NDVI processing of the Pleiades imagery has beed s create a mask for removing the
trees. An ‘edge map’ is produced using Canny edgection to define the exact building
boundary outlines, from enhanced orthoimagery. dradised digital surface model (nDSM)
is produced from the original DSM using smoothimgl a&ubtracting techniques. Second,
start Building Detection and Extraction. Buildingsn be detected, in part, in the nDSM as
isolated relatively elevated ‘blobs’. These nDSNbls’ are uniquely labelled to identify
rudimentary buildings. Each ‘blob’ is paired witls corresponding ‘foreground’ area from
the orthoimagery. Each ‘foreground’ area is usedrasitial building boundary, which is
then vectorised and simplified. Some unnecessagjlslén the ‘edge map’, particularly on
the roofs of the buildings can be removed usingheragtical morphology. Some building
edges are not detected in the ‘edge map’ due to domtrast in some parts of the
orthoimagery. The ‘edge map’ is subsequently furihgroved also using mathematical
morphology, leading to the ‘modified edge map’. dflipy A Bayesian approach is used to
find the most probable coordinates of the buildimgtprints, based on the ‘modified edge
map’. The proposal that is made for the footpaipriori data is based on the creating a PDF
which assumes that the probable footprint anglbetorner is 90and along the edge is
180, with a less probable value given to the othedemguch as 45and 138. The 3D
model is constructed by extracting the elevationtted buildings from the DSM and
combining it with the regularized building bounda¥galidation, both quantitatively and
gualitatively has shown that the developed procasd associated algorithms have

successfully been able to extract building footjsrend create 3D models.
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Chapter 1

Chapter 1 Introduction

A Digital Surface Model (DSM, plural DSMs) represeithe surface elevation of the
ground including, most importantly, the feature®\abit, such as roads, buildings,
trees, and even smaller features such as parkedandrroadside bins. DSMs play a
critical role in various applications including plang, 3D urban city maps, civilian

emergencies, natural disaster management (e.glifigoearthquake, and landslides);
military activities; airport management; and ge@iueal analysis, such as in the
geographies of health, crime and hazards (Saeediaick 2008). Moreover, rapid

population increase, in developing countries swglrag and in particular Kurdistan,

has led to a need to find the most cost-effectiethads for modelling and mapping
urban sites, among which building footprints haeerbshown to be extremely critical
in planning and infrastructure development. DSMs a#so be used to produce 3D

models of an area.

The increasing efficiency of computers has lechadutomation of much of the work
that was previously achieved manually (Smith andyveéa, 2005), thereby increasing
output and reducing execution time. Increased dut@s been achieved in the

surveying field, notably in the production of DSMs.

The Bayesian approaches differ from the classicdltemuentist methods in several
important ways leading to their popularity (Bert®97; FDA, 2010; O’Hagan, 2004).
The main reason for this greater popularity is thatBayesian approaches accept prior
information concerning the problem to hand. Thetdiee has the following advantages:
allows the use of smaller sample sizes; provideseninformative results than
frequentist method; and, determines the uncertaihtiymknown parameters in addition

to those parameters whose values are actively $9sBiA, 2010).

This research addresses the twin problems of iscrgdéhe quality of a DSM resulting
from the merging of several DSMs and increasinggbality of building footprints
automatically extracted from such a DSM, with mardar attention being paid to the

Bayesian approaches.

1.1 Motivation
The applications of satellite images have been,stiidare, expanding into different

fields especially in remote surveillance, includitigpose outlined in the following
1
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paragraphs (Dial et al., 2003).

Image analysis this aids national or international intelligencenvironmental
observation, emergency response, etc. It is p@ssidluse raw images with a low
resolution at a low cost (Lillesand et al., 2018)ages can be provided as panchromatic
or colour, for visual analysis (Olsen, 2007). laiso possible to obtain an infrared band,
which is useful for vegetation based, and othenate sensing applications (Dial et al.,
2003).

Cartography: this involves designing map products. To impletribis it is required to
extract the information from the imagery related particular maps such as
topographical, hydrological, transportation andeottifferent themes. It is assumed
that the data gathered is three-dimensional, andhis purpose, a stereo image is
required to obtain three-dimensional coordinategte features of interest, which are
needed for any 3-D geographic information syste@IS$), and contour maps(Poli et
al., 2007).

Orthorectified Images: this product is crucial input to orthoimage magatographic
feature extraction and GIS database constructise(ibeiss et al., 2004). In many ways
orthoimage maps are interchangeable with traditiovaps with their specified regular
scale, marginalia, and grid, except that tradiiomap data have undergone some
selection, are represented by icons (or symbol$Vaotors which have been corrected
planimetrically with respect to the terrain. Fronthoimagery all necessary data can be

digitized, as required for the application purpose.

Digital Elevation Models (DEMs). although considered a significant product for
assessing the danger of flooding, airport safdédyypng and other applications it is also
a vital component in orthorectifying imagery(Liat, 2005). DEMs can be produced
from stereo imagery; generally they are eithereetlio represent the ‘bare’ surface of
the earth without buildings and trees, called DTbtdeft with building, trees, etc., and
called DSMs. The first is useful for hydrologicahadysis and orthoimagemap
production, while the second is useful for linesajht analysis such as applied at
airports and by the military, and in planning amdl @ngineering in general(Li et al.,
2005).



Chapter 1

The applications that have been used in this reBeaere limited to DSM production
and orthoimagery, which will be illustrated in matdetail in the following chapters.
Presently available automated methods for creddilyls and building footprints are
facing difficulties with respect to cost, accura@gcceptable building shape and
extracting small buildings. Established methodspiarducing accurate footprints are
often very labour intensive, using architecturaldgrints, skilled personnel and much
time to achieve an outcome. Source data curreisiy o extract building footprints
accurately and with some level of automation, sachiDAR and aerial images, are
expensive and difficult to get. Satellite imagexyricreasingly free (e.g. GLOVIS, 2013

URL: www.glovis.usgs.goN and, assuming this trend continues then effectiethods

for its use must be developed.

Examining high-resolution commercial satellite inmgpgservices, to find an alternative
for costly LIDAR or aerial image data is valuablée developments in satellite images
have led to an ‘anytime and anywhere’ provisionrf@ny applications, and for some
applications, can be available for many years.dditeon, they can be available at a
lower price per unit area and with better accesegetoote or restricted regions than
aerial photography can provide. Based on the assoimghat images taken from
different directions and at different times, butloé same scene, will produce DSMs of
varying characteristics, the proposed method amnshérge DSMs, from different
images in order to produce an improved DSM and édaotprint. Specifically it is
hoped this will overcome problems of DSM productguch as: absence of sufficient
texture; distinct object discontinuities; local etl patches not being planar; repetitive
objects; occlusions; moving objects; and, radiomesirtefacts including specular
reflections (Zhang and Gruen, 2006). All these [@ots will be considered.

The application of DSMs to the creation of topodnapdatabases has become an
important issue. A particular focus has been thee afsDSMs for change detection,
especially changes related to planning applicat{@sbeid and Jacobsen, 2008) for
which a requirement is the identification of act¢arand well-defined building objects.
When using remotely sensed imagery for the extraabf quantitative information,

accuracy and clear definition is fundamental tosihecess of most applications.

According to the literature, satellite images hdeen classified according to the

resolution of the sensors, such as Low, MediumhHigd Very High resolution see
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Table 1-1. Although different researchers have used mdiffe terms for specific

resolutions, the most widely used terms, suggdstddowman et al. (2012) as follows:

Table 1-1 Satellite image classificationwith respect to their
resolution.
Low Resolution > 30m and <300m

Medium Resolution

\Y]

5m and < 30m

High Resolution

\

1.0m and <5m

Very High Resolution < 10m

Table1-2 shows the high resolution satellite opticalg@aensors that are available for
providing imagery of the Earth’s surface, based@msing reflectance in the visible and
near visible part of the electromagnetic spectraohlesting only Very High Resolution
(see: Table 1-1) imagery. Only passive sensorgnaheded. From the table it is clear
that the maximum resolution (at the time of wrijiraf civilian use satellite imagery
(‘Res’. In Table 1-2) now reaches 0.31m, as hasa bhehieved by the recently launched
WorldView-3 (launched in August 2014). Since VerighlResolution satellite images
have been used in this research, for that reasotalile below is focused only on that
type, although higher resolution data from otheurses such as Aerial imagery or
LIDAR are available.

Table 1-2 Characteristics of popular commercial optical veryhigh resolution satellite
image sensors. (Pan = panchromatic - a single baraler the visible parts of the
electromagnetic spectrum,; MS = multispectral - usally three or more bands in
narrow wavelength ranges within the visible and neavisible, including infra-red,
parts of the electromagnetic spectrum)

Satellite Organization Launch Bands Res. Height
Country Date Pan/MSPan/MS (m) (km)
i DigitalGlobe, USA
WorldView-1 (DigitalGlobe Inc., 1992) 18 Sep, 2007 1/- 0.45/- 496
i DigitalGlobe, USA
WorldView-2 (DigitalGlobe Inc., 1992) 8 Oct, 2009 1/8 0.46/1.8 770
Worldview-3 | D9italGlobe USADIgitalGlobe 15 A\ 5014 | 1/28|  0.31/1.24 617
Inc., 1992)
i GeoEye Inc.,USA E
GeoEye-1 (DigitalGiobe Inc., 1992) 6 Dec, 2008 1/4 0.41/1.64 684
Quick Bird |P9italGlobe,USADIgitalGlobe 15 5 5001 |  1/4| 0.61/2.44 450
Inc., 1992)
GeoEye Inc.,USA (DigitalGlobe
IKONOS Inc., 1992) 24 Sep, 1999 1/4 0.82/3.2 681
Pleiades-1A+  Airbus Defence and Space
Pleiades-1B| France(Astrium Services, 2013)16 Dec, 2011 Ya 0.7/2.8 694
SkySat-1 Skybox Imaging-USA 21 Nov, 2013 1/4 0.9/2.0 572
SkySat-2 Skybox Imaging- USA 8 Jul, 2014 1/4 0.9/2.0 625
Korea Aerospace Research
KOMPSAT 3 Institute- South Korea 17 May, 2012 1/4 0.7/2.8 685
(SI Imaging Services, 2013
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The most significant information that can be seefablel-2 is pixel resolution and
band numbers. The highest satellite image resoluidrom WorldView-3, which is
0.31m. All satellite images, except WorldView-1 ges which are available in
panchromatic only, provide infrared bands in additio the colour (or visible) bands
(blue, green, red). However, as shown in Tdbl® satellite sensors Worldview-3 are
providing even more bands than other sensors; famele, in addition to the
panchromatic and visible bands, Worldview-3 prosigght short-wave infrared and
12 atmospheric compensation bands. The short-wdrared bands are considered to
be useful for more remote sensing applications siscmodelling surface composition

and mineral mapping (Kruse and Perry, 2013).

1.2 Problems Associated with Creating DSMs

The quality of any contributing DSM plays an img@ont role in both the quality of the
merged DSM and the extracted building footprinte Thandamental step in DSM
generation from stereo imagery is image matchintistfof problems associated with
the automation of DSM generation has been prodbgd@ruen et al. (2000). The nine
items on this list are provided below.

Poor or no texture Area Based Matching (ABM) mainly depends on imbeeure to

support statistical pattern matching. Sometimes$ paiscene may have poor or no
texture. The problem is mainly noticed in largelsdanages of dense urban areas,
consisting of extensive homogeneous areas, sutdrgmarks, flat warehouse roofs and

sports fields.

This problem is also compounded, for example, wime modern buildings, which
have the same wall as roofing material, making rreching process even more
difficult. This has led to incorrect results whée troofs edges are excessively unclear.
According to research conducted by Zhang and G{2@06) sometimes there are what
should be conjugate edges but they can only beiseare image and not in the other; it
is difficult to construct the building if the edgase missing or fragmented (Liu et al.
2008). Aytekin et al. (2009) illustrated that bimd extraction is a challenging issue
because buildings may appear similar to roads aadmpents. Morgan et al. (2008) and
Xiong and Zhang (2010) have mentioned that somecurate results appeared due to
the lack of texture in specific topographicallytféand featureless areas.
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Occlusions: Alobeid and Jacobsen (2008) suggest the two nraiblgms faced when
producing a DSM are rapid change in elevation aullusions, and both are serious in
dense urban areas. Occlusions arise when the edqdetail in one image of a
stereopair is hidden, such as by a deep roof eahegh building or another building
close by. They are a consequence of surface discityt Occlusions can be considered
a source of mismatching for almost all availabla@ahismg methods. This is supported
by a variety of researchers. For example, Tackl.ef2809) mentioned that sudden
changes in height cause problems such as occlusindsshadow which lead to
matching difficulties. Baltsavias et al. (2006) dfidus et al. (2009) suggested that the
main problems in creating DSMs are caused by magclong and deep shadows and
occlusions, particularly in mountainous or snow@@d areas. Finally Aytekin et al.
(2009) found that some objects may be difficuletdract due to occlusion by other

structures or trees.

Habib et al. (2004) found matching becomes morécdif due to the different
directions of view onto the objects, which neetdéanatched; one outcome is that, due
to perspective projection, some edges will not htseesame shape as their conjugate
edge and another outcome of this is occlusion. Sidhetion proposed by Habib et al.
(2004) was to group building extraction into tweksinitially: low level and high level.
The low level task was to identify the area foragtion after which the high level task
(feature extraction and classification) could befgrened. A multi-image matching
approach may, also, address the problem of occlsgas well, at the same time, as
addressing other problems such as repetitive strestmultiple solutions and shadows
(Zhang and Gruen, 2006)).

Distinct object discontinuities: Object discontinuities occur in large-scale images
built-up areas. As indicated in the previous segtihese can cause occlusions. In
general the required image segments are fragmemtedhd the discontinuities. For
example a small tree can fragment the depictioa @quired roof-line in all images.
This causes difficulty in getting an accurate restien building roof-lines according to
Liu et al. (2008), especially in densely built-ugeas (Alobeid and Jacobsen 2008).
According to Tack et al. (2009) most difficulties DSM generation are due to sudden
discontinuities produced by buildings and otheranrlieatures, excessive variation in

heights and the difference between the smooth grsurfaces and emerging buildings,

6
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or other artificial features.
To overcome this problem Zhang and Gruen (2006¢ Isanggested using multi image
matching consequent on multiple-views of the objdeading to a decreased

discontinuity effect.

A local object patch is not a planar surface:Some matching techniques, such as
Cross-correlation and Least Squares Matching (L&)dependent on the assumption
that it is possible to represent localised objastsiclined planar surfaces. Violations of
this assumption cause low values for similarity sugas when Area Based Match

(ABM) methods are used, and thus result in mismiagch

Repetitive structure: A repetitive structure manifests itself as a paddexture style in
images. An example might be marked parking bagsaar park, or plough furrows in a
farmer’s field. These usually confuse the matcheralise the matcher mixes up a
feature in one image with a feature from a neighingupart of the structure in the other
image, especially if the image characteristics poed by these structures are similar
compared with the discrepancies of the featurengtaad Gruen (2006) mentioned that
there would be confusion due to repetition of otgdbat leads to confusion during

searching for an edge.

Shadows: Shadows in images show little texture informationdaa lower
signal-to-noise ratio. Both may result in numerousmatches. According to Tack et al.
(2009) the main source of error in edge detectolnuilding shadows; when shadows
show a high contrast with their surroundings pixeldges will be detected at the
shadow border. In addition to that, rooftops maffeot fragmented characteristics
produced by shade (Aytekin et al., 2009).

Zhang and Gruen (2006) illustrate that if high leBon images have more than 8-bit
pixel values, then this leads to improved imagechiag by reducing the number of

“homogeneous” dark, or light, (shadowed) areas.

Moving objects: Moving objects usually disturb the image matchirggmod.

Multi-layered and transparent objects: This phenomenon leads to occlusion

problems and spatial ordering changes in diffener@iges. Generally this problem is

7
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very difficult to handle in image matching, buni®re related to the objects considered
in close range photogrammetry (small glass objgatsstic bottles, etc.) than those

addressed in creating topographic databases (Eedn 2009).

Radiometric artefacts: Examples of these are affects such as speculactiefhs and

variations in reflected light. As perspective chesigradiometric artefacts are
introduced. This problem can be solved by using) hggolution satellite images, which
have the ability to provide more data for specifems and, thus, provide more
opportunity to achieve automatic matching. Suchgesaoffer better radiometric
performance (i.e. higher dynamic range and sigmaieise ratio). Using along-track
stereo images from the same orbit has led to actieduin radiometric differences and

consequently better chances for achieving cormgiat{Zhang and Gruen 2006).

1.3 Scope of the Research

This research focuses on merging DSMs and 3D aiijating. The aim of merging the
DSMs is to get qualitatively better DSMs that capsently can be applied city-wide,
generally considered an appropriate applicatiorsaitllite imagery (Partovi et al.,
2014). So, this research is intended to supplitatscale, three-dimensional products,
in a less labour intensive and quicker manner tisang aerial imagery. The products
are limited to LoDO and LoD1, as referred to intget 1.7 (‘Objectives of the
Research’). LoD1 (and LoDO, to an extent) can bedu®r applications such as
planning and disaster management (Groger and P|(20&2). The reason for the
limitation to these two levels, and no higher, sasiLoD2, is due to the satellite image
resolution being about 50cm. Objects in this typencagery have limited detail,
therefore the products, such as DSMs and the bgileédges on the orthoimagery show
fewer details than aerial imagery (Guducl, 200&)e Bb the relatively low resolution
of satellite imagery compared to aerial imageryegally, the extracted objects, based
on VHR satellite imagery, are limited to buildingghich are typically occupied,
excluding those such as outhouses, garages, ethiy@et al., 2012; Kim et al., 2005;
Mayunga et al., 2007), which are typically smald amoccupied. As a guideline, the
Ordnance Survey of Great Britain regards buildiegs than 0.1 ha, equivalent to10m x
10m (Ordnance Survey, 2015), to be small and thase a low priority in revision;
buildings less than 8hare not mapped. In this research the smallest etappilding
was 4.2m x 6.2m as shown in Figurd (b), implementing the proposed algorithm and

based on 0.5m resolution data.
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1.4 Further Merging Considerations

In this thesis three aspects of merging have nen baken into consideration, but their
consideration has been recommended in the conokisthapter 9. These are: the
multitemporal effect; the multiresolution effectdano-registration. Generally, prior to
implementing merging, the above three factors ghoube considered
(Papasaika-Hanusch, 2012).

The multitemporal effect is the difference or thege that has occurred in the DSMs
due to change over time between the data setsvéiry common for the data that are
used in merging to be multitemporal since theyfiema different sensors (i.e. sources),
consequently leading to the data (i.e. the feajuresg affected by changes, especially
when the gap between the data capture reachesymars; Therefore this point should
be addressed during merging the DSMs (Bruzzond.etl@99). However, in this
research, the aim was focussing on examining thidtref the merging only, therefore
the multitemporal factor has not been taken bekantanto consideration and it is
assumed, for the purposes of this research, thahaoge has occurred. In fact in the
small study areas used this assumption can be folal&ing the validations in the area

which showed no temporal changes had arisen.

The multitemporal effect has been addressed byaresers, as further discussed in
section2.3.2, and further recommendations have been intexd in sectiorD.2.1.
Although a DSM merging application would in praetize applied over a large area and
using data captured at different times, this effeas been ignored by testing and
validating only in areas where no changes haveroegwuring image capturing.

Different DSMs are produced with different grid esizelements, causing a
multiresolution effect on merging; also, frequentlye DSM data are generated from
different sources which do not have the same réealutherefore the multiresolution
effect should be taken into the consideration (Ramand Wald, 2000). Nevertheless,
in this research it is assumed that the multirdswieffect is not pertinent, and there is
no need for resampling or otherwise addressingisbise, because the used data in the
merging are generated using the same softwaregamerated to the same resolution.

The effect has been further considered in se&iar8.

Finally, the last issue considered is co-regisiratiThe process of correctly aligning
9
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both of the DSMs to each other is called co-regigin. This step is important, in
merging, as reviewed & 3.4. In the co-registration process, the 3D ssfmar between
the DSMs is minimized (Akca, 2007). The DSMs thas better quality is specified as
the “master”, this DSM is specified to be the bas®] the other DSM specified as a
search DSM and is called as “slave” DSM (Akca, 200 he co-registration shifts the
slave DSM horizontally and vertically and then aegampling is aligned to the master
DSM (Li, 2007).

The used data in this research are assumed tdlypalfle to undergo co-registration, as
suggested by the suppliers (United States Geolb§gevey, 2009). In this research

co-registration was not carried out, and the nafjgeregistration values were used.
This decision may be questioned, but was takennpldy the proposed merging

process, which may be particularly suitable fanations where evidence may not exist
to identify which data set is the most appropriatact as “master”. As mentioned in the
above paragraph, the co-registration process dsrdisesampling one of the DSMs to
be aligned to the other DSM that is called theresfee or “master” DSM. The latter is

selected based on the quality. For example, iretl@at that the quality was unknown,
selecting the wrong DSMs as a reference could aaté error to the DSMs. The issue

or co-registration is revisited in section 2.3.4.

1.5 Aim of the Research

The aim of this research is to contribute to theettjppment of the efficient
production of an improved DSM by merging existingface models, each produced
from different high resolution satellite image sanss for the purpose of (automatically)
generating reliable building footprints and 3D mididg, particularly investigating

using Bayesian approaches.

1.6 Objectives of the Research
There are seven specific objectives, namely, to:
1. evaluate existing approaches to DSM merging anddibgi extraction,
essentially through a critical literature review;
2. generate DSMs using a technique, from among theigees that are listed in
Table 2-1 that can produce high resolution DSMs from higbotution images
produced from different sensors, and is efficient;

3. develop an optimal procedurerneergethe high resolution DSMs derived from
10
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high resolution satellite imagery, particularly exaing methods based on
Bayesian theory(subsequently referred to as Bayesian mergingtneg in
equal or better quality than the original DSMs;

4. validate the resultant DSMs arising from the preubsnerging model using
Bayesian approaches;

5. upgrade procedures to extract building footprintsf high resolution satellite
imagery;

6. apply the developed building extraction approachtite merged DSM to
facilitate automated 3D model generation at LoDid,a

7. validate the performance and quality of the devedbapproach with respect to
building footprint extraction and 3D modelling aselected test site.

1.7 3D Building Modelling

The application of the 3D building modelling hasreased rapidly, either through the
survey achieved by national government (e.g. mpality incorporation) or by
commercial organization. In addition to the geomatrand graphical issues, it can be
used for the semantic study for the objects. Fstiaimce, mapping and noise simulation
propagation, planning for telecommunications, devasnanagement such as flood
study and investigation (Groger and Plumer, 2082cording to the literature five
different levels have been defined, based on theuamof the details as shown in
Figurel. In this research the devoted levels is focus#yg @an LoDO which represents
the building footprint which is represented by fphaetric coordinates without height,
and LoD1 which is represented by taking the bugdwotprint “LoD0” and assigning
maximum height within this area which leads to pr@albuilding prismatic shape.

LoD0 LoD1

LoD2 LoD3 LoD4
Figure 1.1 Definition given by CityGML for different types of level of detail (LoD) for 3D

model (Gréger and Pliimer, 2012).

The other levels such as LoD2 are difficult to ¢ounst because they need more accurate
11
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and precise data such as that derived from LiDARewen high resolution aerial
imagery. However, the higher models LoD3 are coragas more intensive buildings

measurements while LoD4 is based on interior bogadneasurements.

1.8 Implemented Software

As well as using some scripts written by the auflsee appendices A,B, C and D))
many software packages have been implementedsmdbearch, either for processing
the images for DSM generation and building footpconstruction, or for the merging

stage. In this section the main software that le@hlused will be discussed.

SOCET-GXP 4.1has been used for processing the satellite imfmgdbe DSM and
orthoimage generation. It is considered to be v@wowerful commercial software
supporting the processing of acquired sensor imiaggsnerate geo spatial data, since it
has robust techniques for DSM generation (Electso&i Integrated Solutions, 2008).

C++ has been used as programming language in ordevidop the required code for
merging DSMs and for building footprint extractioAlthough this programming
language is referred to as a naive (or low lewalyliage, because the programmer has
to write many of the functions, rather than haventhrsupplied from libraries, in order
for them to be embedded in scripts, it has prowelet robust in implementing code

rapidly and providing the result quickly.

ImageJ software The author is most grateful that this softwareldde downloaded,

free, from the web http://imagej.nih.gov/ij. Thisfisvare is open source software

written in Java, designed for image processing gegp and has been used at several
different stages in the work, as well as for vigiaf outcomes. It is specified to be user
friendly software since implementing an author'goaithm does not need much
experience. Since the product of C++ (above) wastHile it was necessary to see the
graphic result by using ImageJ. In addition, Imapad been used to enhance the
orthoimage and to apply both convolution and médaft-algorithms. Also, ImageJ
software provides an edge detection tool based@canny edge algorithm, in order to
find edges in the orthoimagery. The software waslbped, in 1987, by the National
Institutes of Health, for medical image processigl is still undergoing continuous
development (Schneider et al., 2012).

12
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ArcGIS package:this is the final software package implementetheresearch. It has
been used as a complete system for the resultghsation and for the analysis, for
validation purposes. In addition it has been used &y necessary coordinate
transformation of the products that have resultethfsatellite images, and it has been
used to create the final report of the results.

1.9 Thesis Structure

The dissertation is structured hierarchically,cimapter 2 the background and the
methods that are used to generate DSMs from sateiiages and that are used in
merging DSMs are briefly introduced. Also thereaidocus on applying Bayesian
approaches to image fusion and building footprinktraetion. Pertinent
photogrammetric principles and techniques for DS&hegation are illustrated in
chapter 3. The data that has been used and the techniqu2Shfgeneration will be
clarified. Also there will be some considerationtioé principles of acquiring satellite
imagery. The theory behind the implemented proksitulmethods used in merging
the DSMs, including both Bayesian and classicahoas, are discussed chapter 4.
Also the methods are comparedhapter 5 will show the methodology used in
merging DSMs using probability, in two different yga(Bayesian and Maximum
Likelihood approaches) in order to minimize the entainty of the merged DSMs.
Also thea priori data, that is compulsory in the Bayesian approhahk,been stated.
Chapter 6 is devoted to an explanation of the results aedvdiidation of the original
and merged DSMs. The data used in the experimehth&reference data used for the
validation are introduced in this chapter. The dini footprint extraction and 3D
modelling are presented ichapter 7, the methodology for building footprint
detection and the extraction which was later used3D model construction are
shown in detail. For the developed process, all tdehniques that have been
implemented (successful or otherwise) have beastilited. In addition to that it has
been shown that 3D buildings have been createdntsgducing heights from the
DSM. The results and validation of the extracteddmgs and 3D models have been
presented irfChapter 8. The conclusion, to whickhapter 9 is devoted, summarises
the proposed technology and how it can be usetuftter improvement of currently
implemented methodologies, either with respect éogng the DSMs or for building
footprint extraction. Furthermore, it presents #xpected benefits from this research
and highlights gaps where further research is reeede

13
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Chapter 2 Research Background

The processing method that is proposed for thystomprises three main stages, DSM
generation, DSM merging and building footprint extron. The novelty of this research
arises from merging the DSMs using Bayesian theamd regularizing building
boundaries for 3D city modelling by also applyin@ayesian approach. The literature
has been reviewed in a manner directed by thege thtiages. First a brief literature
review focuses on the methods followed for DSM gatien. This is followed by a
critical review of the literature on the merging DEMs (and DTMs) from different
sources and an explanation of a probabilistic niethmplementing a Bayesian approach
to merging different data. The last stage focuseshe literature related to building
extraction from satellite imagery (including gapajile also launching the approach that
is subsequently implemented for extracting buildinging, simultaneously, different

sources of data as input.

2.1 Overview of Satellite Images

Since 1972 satellite images have been availablgdneral use by the public. This was
started with the launch of Landsat-1, previouslNecaERTS-1, into orbit (Dowman et

al., 2012). Since then different sensors have apgeaf these SPOT-1 HRV, launched in
1986, is the most important of the optical sensén@n the survey and mapping

perspective, as it provided stereo-coverage anddeagned to support topographic
mapping and 3D map construction (Dowman et al.220ater in 1999 IKONOS was

launched. Since then different imaging satellitesjaling images with better resolutions
have continued to be launched into orbit. Recemlyaugust 2014, a state-of-the-art
satellite named WorldView-3 was launched into gnsthich can provide images with a
resolution of up to 0.31meters. All these improvataehave led to satellite imagery
being widely available and used by many, for exanipt planning purposes, mapping
and 3D city modelling. Moreover, the increased lab@lity of images has encouraged

competition among the providers to make the imayedable to the user at lower cost.

2.2 DSM Generation Algorithms

Different investigations have been carried outxaneine the automatic production of

accurate DSMs using images, and these have revewag difficulties in producing

reliable algorithms that recognize (especially ctamp buildings formed from the

geometric components of planes, curves, etc., dnchvdeal with some of the problems
14
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mentioned by Zhang and Gruen (2006), referred ®eiction 1.2. The most crucial step
in producing a DSM is image matching which, if astgd to a high standard, leads to a
high quality DSM. Even the most robust approaclesntage matching still face
difficulties in achieving correct matching (Ber# al., 2015; DeVenecia et al., 2007).
Image matching when using satellite imagery to poeda DSM has been an important
focus of research, due to the increased applicaticsuch imagery in different fields
such as flood studies, change detection and plgniiimble2-1 summarises different
methods, presented in the literature, which haes i@plemented for DSM generation;
these are compared by indicating the publishedlatn outcome for each approach.

Table 2-1 shows different algorithms which canulsed to produce DSMs; from this
table it can be inferred that all the techniquégdaconstruct small buildings and that the
accuracies of the methods vary. The RMSE valuetlier DSM produced using
BAE-System’s NGATE approach is 0.98m using IKONGO resolution imagery while
the accuracy is 0.35 m using WorldView-1 0.5m regoh imagery, as explained in
section 5.2, and this is the best compared toth#r methods. The NGATE method is
based on measuring the coordinates of each pigiglg larea based matching and edge
based matching, with each of them supporting tinerofThat is the matched pixels
produced from area based matching will be usedippat matching edge pixels, and
additionally the results of edge matching will Iz=d to support pixel matching, as will
be described in more detail in section 3.6.1. Ruthe high reported accuracy of the
NGATE method, it was decided to use it in this agsk for producing the initial DSMs
used in merging and also later as a primary companebuilding footprint extraction

and 3D modelling.
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Table 2-1 Comparison of Different DSM generationdchniques.

Algorithms Incorporated Validation: Advantages Disadvantages
Techniques Best (i.e.
smallest) cited
height quality
statistic
1-Least Squares |Area based RMSE: 0.6m Getting High accuracy of Building shapes are
Matching (LSM) |matching (using satellite |building height blurred.

(Alobeid, 2011)

image of 0.5m
resolution)

Searching in 2D, no
need for epipolar
images Require extr
tie points.

Small buildings are
merged into one group

W

2-Dynamic
Programming
Matching Median

. Measuring pixel
disparity along the
epipolar line with

RMSE: 0.5m
(using satellite
image of 0.5m

Obtain sharp edge of the
building outlines
Getting High accuracy

The produced
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(Zzhang and Gruen
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7-NGATE (NEXT |Epipolar geometry | RMSE:0.98m Getting High accuracy Small buildings are
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leads better results.
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2.3 Data Merging

Merging data has become an important issue inrdiftdields. It has been applied in the
image fusion field to increase image detail by gné¢ing the details from different
sensors, to produce a single scene that contaime dedail than any of the original
separate images. Also it has helped to reduceuirder of scenes stored for a specific
area saving memory space. In the Survey and Magf@lty due to an increase in the
number of techniques for data acquisition, whichsagjuently has led to an increase in
the sources for DSMs, there has been a motivatoroinbine these data sets into a
single data set that thus contains more detaibabetter quality — a productive synergy
of the DSMs. The following sections will focus dmetbackground to merging DSMs
(and DTMs), which in turn will be followed by an@anation of the application of the
Bayesian approach in merging different types oadat

2.3.1 DSM Merging

As indicated in the previous section, data merdgiag becoming increasingly important
in different fields due to increasing amounts ofad&enerally, when there were few
DSM sources, little research was done into theirgmg. However, now this has
changed and DSM merging has become an importait &spthe range of sources of

DSMs has increased and the need for better qu28tys has emerged.

Data merging is complex if optimum results are ¢oobtained from the available data
(Smith and Goldberg 1987). It can be used potdntalidentify the highest quality data
for the area, as well as to address problems @& dalume. Data merging is also
important as it fills the gaps and voids producedrd) constructing the original DEMs.
The obvious solution for merging DEMs is to averétgs or strips from DEMs of the
same area (Reuter et al., 2011), but this willrefiect the original data quality, because

it gives the same weight to all data.

Dowman (2004) stressed the importance of data mgfgr improving the quality of the
DSM prior to feature extraction. Moreover, he ebedlthe advantages of combining
different DSMs such as: eliminating error and dealWith outliers; treating atmospheric

corrections; and dealing with a lack of controlrisi

Reuter et al. (2011) conducted research to aligMDifes horizontally and vertically,
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and then, after that, merge them to produce a &sanidSM. They tried to solve the
problems that appear in existing DSMs that haveftednstance, to the bias found in the
30m resolution ASTER GDEM v1 and striping in tharB@esolution SRTM datasets.
These problems appear due to the horizontal andalemisregistration of the data used
and these researchers focussed their attentiohi®nTihe method Reuter et al. (2011)
used comprises three stages. Firstly, horizontghaient is achieved, by selecting a
reference surface. Then the correlation betweemefeeence surface and the DSM for
different horizontal offsets is determined, prior dligning the DSM to the location
where the maximum correlation is found. Seconéigeating the process but performing
vertical alignment, using a vertical offset, whishcalculated by sampling the rectified
dataset with respect to the elevation of the refsesurface. Following this process
Reuter et al. (2011) achieved a mean displacenetwielen the two data sets of less than
a centimetre, whereas prior to their adjustmewais of the order -300m. Thirdly, they
applied the LOESS filter (also known as local regien) to merge and mosaic each tile
(or strip) into a single final DSM. The LOESS filt&ttributes each final individual pixel
with the number of pixels employed in its estimatgrocess and also provides an error
estimation, using the minimum, average and maxinelewations for each individual

pixel.

Wegmiiller et al. (2010), focussed on the value &VDmerging to fill gaps, and
developed a method for merging the ERS-2 ENVISAndEan (EET) CINSAR DSM
with another existing DSM, such as the SRTM DSMe Ttethodology was used to fill
in the gaps existing in the CINSAR DSM, due to deficies of EET CInSAR in
mountainous areas or those of considerable slbpg réendering the DSM more accurate
and efficient. The methodology was based on usingemhting function, with the
original CInNSAR DSM used in the areas away from ¢gjaps, whereas a smoothed
weighted transition is applied at and near the gélps purpose of this weighted merging
is to prevent elevation ‘steps’; this method wagpliad successfully, on an area in
California, USA, which comprises flat and hilly ase no ‘steps’ were detected near the
flat areas in the merged DSM, but in the steepeasasome interactive editing was

required to avoid ‘steps’.

Karkee et al. (2006) also carried out researchrmtoging DSMs produced from INSAR
techniques, i.e. the SRTM DSM, and an optical sysiee. the ‘relative’ ASTER DSM.
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The purpose of this research was to increase DSMracy, particularly filling DSM
voids. The flowline of the algorithm initially in\eed registering the ASTER DSM to
the SRTM DSM. The slope and aspect values fromstlieounding pixels’ elevations
were used to fill the gaps by interpolation, aslvasl data from an additional DSM.
During the merging, the incorrect elevations inlbbSMs were removed by applying a
Fast Fourier transform in the frequency domain Ki€aret al., 2006). The errors in the
optical DSM showed high levels of variation, whderors in the SRTM DSM were
limited to low levels of variation. The result hiasen evaluated by using a reference
DTM derived from a contour map with scale 1:25001@ topographical (i.e. contour)
map used had been generated by the Survey Deparfiigapal with teamwork by the
Finish International Development Agency. The reswhowed that the approach
successfully increased the accuracy (i.e. redubedRMSE) and filled the voids; it
increased the accuracy by 44%. (The term ‘rela®&TER DSM has been used to refer
to a DSM obtained from using image matching techesqwithout using GCPs
(Tokunaga et al., 1996), and when using GCPs itbkas called an ‘absolute’ ASTER
DSM). Both data sets were registered using the gamend control points, resulting in
RMSE values of several pixels in each set. Theastboncluded that it would be more
efficient to use image based correlation co-regfigin, with the expectation of less

interactivity and greater sub-pixel accuracy.

Hosford et al. (2003) showed an approach for enhgnDSMs through a merging
operation based on a geostatistical approactcémable of estimating anvalue). They
used DSMs from stereo-radargrammetric SAR satelhittairborne laser altimeter data.
The merged DSM has been evaluated against a DThMupeal from a 1:25,000 scale
topographic map and a helicopter-borne laser aléam&he validation showed that the:
i) estimated standard deviation; and, ii) RMSE wiference to the map of the fused
DSM decreased from 21.2m to 14.0m and 27.2m to,2&8&pectively. For the
helicopter-borne data error statistics decreased #5.3m to 11.0m and 44.0 to 36.5 for
the estimated and RMSE, respectively.

A study carried out by Papasaika et al. (2009),rawpd the details and accuracy of
DSMs arising from poor image matching, by mergismg extra data sources. The extra
data was a DSM acquired from IKONOS and airborneAR. The approach used
addressed the merging based on each DSM’s quaitgrgting a DSM with blunders
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and errors eliminated. Initially the DSMs are aédrto each other by using least squares
3D matching for the co-registration. Then, errorttid DSMs was estimated through
their geo-morphological characteristics such agesbind aspect without using measured
ground truth. These characteristics later guidddseéon process based on an active
contour model (Kass and Witkin, 1988) also callesih@ke’. An active contour tries to
find the lines or edges in the image. A splineafireed in the image and the operation
tries to shift the location of the spline onto tivee or edge features. This operation
involves two constraints - internal and externale Tnternal constraint is specified by the
user to control the smoothness of the defined ‘shafithile the external constraint is
obtained from pixel intensity values (also refertedas ‘energy’). The active contour
method is trying to minimize the discrepancies leetwthe spline and the pixels of the
initial edges and lines. The results showed thatajbproach was able to merge DSMs
successfully and also dealt with blunders, sucalgsemoving artefacts in the LIDAR

data.

Papasaiki and colleagues (Papasaika and Kokiopo2@dil; Papasaika-Hanusch, 2012)
also conducted further research into mitigatingetrers that were generated in DSMs
during their construction, through developing a ustb model based on sparse
representation. The sparse representation modapable of dealing with more than two
DSMs, using “dictionaries”. The components of sacHictionary, entitled atoms, are
local terrain forms, constructed from training datae DSM so produced from merging
optical imagery and INSAR has been evaluated again®AR DSM. Promising results
were obtained and the sparse representation mgtnsgood results compared to the
weighted average method, in less steep areash&sldpes that are greater than 30% the
weighted average was better than sparse method teilresult was the opposite when

slope was less than 30%.

Costantini et al. (2006) conducted research intogmg using different data sources
(SRTM SAR-X, ERS SAR tandem data) for the purpdsmage mosaicking. The focus
was to manipulate discontinuities at the edge efdterlap area, arising from either
horizontal or vertical systematic error. In theppeoach, first, they addressed the
problem of systematic horizontal error, throughregistration. Later they addressed
vertical systematic error. After the systematioelrad been removed, the next stage was
combining the DSMs, by weighted averaging basedtren DSM’s accuracy. The
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subsequent interpolation filled any existing DSMdg The validation result was RMSE
values of 8.7m when compared to a higher accuraayce (having a 1.3m RMSE)
suggesting the approach is capable of reducingetiee inherent in the sources (for
example the ERS SAR tandem data RMSE was 13.8m).

A study conducted by Schultz et al. (1999) gendr&t8Ms from aerial imagery and
fused them for mosaicking purposes. At the fusingge, self-consistency was
implemented to detect elevations that were unrigiab order to remove them. They
claimed that their merging approach improved thegexd DSMs by taking advantage of
redundant elevations, removing outliers and hagdjeospatial uncertainty. A downside

was the significant computational overload.

Lee et al. (2005) merged two different DSMs, froiffedent sources, different dates and
different resolutions (e.g. airborne and INSAR daili DSMs). They followed a neural
network approach to merging in order to improvelitpa he data that were used in this
merging were specified to be multi-sensor, mulsietation and multi-temporal. The
outcome was successful to the extent that gapsfillece However, the accuracy of the
resulting DSM arising from fusing the two SAR devDSMs using weights based on
height error maps, derived from the interferomeatdberence of the SAR data, could be

considered low.

Podobnikar (2007) conducted research into mergi@lyl®from different sources for the
purpose of mapping. The aim of the merging wadtaia higher quality DSMs through
removing potential gross errors without using aaryl data. The fusion was based on
weighted averaging. Although the aim of the redearas to address the enhancement of
geomorphic characteristics leading to superior g@ion and thus more effective
mapping, considerable consideration was given ¢ogtnality of the outcome, and he
concentrated very much on the visualisation ofésalting DSMs, in order that blunders
could be detected.

Fuss (2013) explained how DSM merging could redarecers such as systematic errors
and outliers, in addition to the offset that exidige to land use. In her thesis, she
generated different DSMs from RADARSAT-2 imagery,stereo-radargrammetric

method being implemented for this purpose. In tisgoin, elevation estimation based on
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slope and elevation thresholding was later followgdk-means clustering. Finally, the
merged DSM was filtered and smoothed. Althoughait®uracy increased globally, the
precision decreased, and land cover was found fmakieularly influential. The study

indicated, strongly, that different fusion methati®uld be applied in areas of different

land cover.

Tupin (2004) conducted research into merging SARaptical imagery for the purpose
of 3D building representation using a Region AdmageGraph implementing a Markov
Random Field by segmenting the optical images. Wais based on using segmentation
over the optical imagery for obtaining regions dnen assigning the heights from the
SAR data. The consequence of applying this metiadved successful results with

respect to large buildings, but failed with smaillaw height buildings.

A study was carried out by Reinartz et al. (200bpider to generate and fuse DSMs
from different sources (i.e. Spot-5 optical satelimagery, SRTM C-band and X-band
radar data) and also to model forest trees. Teestent that this study both looked at
fusion of DSMs and extracting objects (trees) itesawere not unlike those of the

building based study reported in this dissertatibn.the merging process, they
determined a height error from each DSM, basederptoduction process, which was
used in order to provide a local estimation of B¥&M'’s accuracy. The result has been
evaluated using more accurate data sourced thrdagér scanning and aerial

photography. The result showed that accuracy imgdolly merging these DSMs.

Turning to the trees the difference between theasarmodel (DSM) and the bare earth
model gives the tree heights. The SRTM derived DSMssistently gave more accurate
tree heights than SPOT-5 derived DSMs.

From the literature, DTMs generally and DSMs intijgatar have become an important
issue in different applications especially in 3Ddualting, therefore getting an accurate
and detailed DSM has become a necessary and imp@ssae. To obtain the highest
quality DSM is still a challenge due to deficierscia the applied algorithms and the
resolution of satellite images (and not discountthg presence of random error);
however, one approach to obtaining a good DSM imbyging different sources. The
studies reviewed in this section do indicate theaathges of merging DSMs that can

arise as follows: filling holes; improving the quiative attributes; and, raising accuracy
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by integrating the details from different DSMs acmhsequently removing potential
gross errors (or blunders). But these accounteséarch into DSM fusion do also
indicate high computational overheads; some remginiinteractive editing

requirements; problems of registration even wigpad supply of GCPs; slope and land
cover having a differential affect on the qualifyoatput; a desire to move away from an
overall accuracy figure (e.g. for weighting) to @lixspecific figures but an

acknowledgement that these can be difficult to eddi and, finally, that small objects

can get lost in a DSM.

2.3.2 Multitemporal Effect

Usually the data used in merging are from diffeepuchs, which means there is a high
possibility of changes within the data sets’ afdaus, merging data, using an effective
approach, from different sources at different tingeean important challenge that faces
researchers, due to the increasing number of diffedata sources such as optical
satellite imagery, DSMs, LIDAR and INSAR availalifang, 2010a).

Different researchers have followed different pohaes to address this problem. For
instance Papasaika et al. (2008) introduced th@toig procedure: prior to fusion using
weighted averaging, they produced a residuals magdch DSM, using a DSM of
identical extent and resolution as shown in Figife Then if the heights at each grid

point were contradictory, they assigned the masgneDSM'’s height to the outcome.

(a) 3D residuals ~ (b) lidar DEM
Figure 2.1 3D residuals map showing the effect of multitemporadata on the different
DSMs (Papasaika et al., 2008).

Ghannam et al. (2014) introduced an approach fogimg multitemporal data. Their
approach was called the Wavelet-based Spatiotempdiptive Data Fusion Model
(WSAD-FM), based on wavelet transformation to meid©DIS low-resolution

imagery with Landsat scenes, implementing a limeadel. The aim of this approach is

to increase the spatioresolution of satellite immpgaptured at different periods of time.
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The fusion (or merging) of multitemporal data hisodeen utilized to enhance image
classification. Bruzzone et al. (1999) utilized aamerging for the compound
classification of remote-sensing data that was iBpdcto be multisource and
multitemporal. The merging approach was achievgdementing a Bayes approach.

Data merging, in the context of this research, aonsut heights together from different
DSMs in order to get a better DSM, however it isyveare to have DSMs that are
produced from data captured at exactly the same; teither the time gap is small, or
large, perhaps reaching several years. Thus mitant to address the changes that

have occurred during the time gap between diffedatd sets.

2.3.3 Multiresolution Data

Since the merging operation is using data frormediffit sensors, the data that are used in
merging do not necessarily have the same resolUgonthat reason, it is important to
know how to deal with the effect of multi-resolutidata.

According to the literature, it is preferred toae®ple the data to the higher resolution; in
that case the feature on the ground will not be [Bsis action is followed by Damron
(1999) to merge 10m resolution DSMS from IFSAR DHEterferometric Synthetic
Aperture Radar) which has been up-sampled to besahee as the LIDAR resolution,
2m. Ranchln and Wald (2000) also followed the sanrciple to up-sample the lower
resolution data in order to merge SPOT multi-spéctata that has resolution 20m with
higher resolution imagery that has a resolutiobGrh. Kumar et al. (2009) also followed
the same principle for merging panchromatic and tispéctral images to obtain
pansharpened image. They resampled low resolutioitispectral data with 4m

resolution into higher resolution data at 1m resotu

The other sampling method, which is leads to redudhe resolution, is called
downsampling. This type of resampling is not preférand the disadvantage of using it
as referred by Frajka and Zeger (2004) is causingpss information in the data
consequently is lead to reduce the quality of tad
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2.3.4 Data Co-registration

Prior to merging the data they should be georete@mo the same reference plane, and
co-registered (Costantini et al., 1997). Karkeal ef2008) emphasize the importance of
removing the shift that may exist between datamets to the merging. For the purpose
of improving the accuracy of the DSMs by removihg voids in the data, Karkee et al.
merged two public DSMs: SRTM and ASTER DEM. The ARI DEM has been
co-registered to the SRTM. In the co-registratisocpss the ASTER data has been
shifted to the mean elevation of SRTM as showniguie 2.2 The reference data for
assessing the original and merged datasets ha®btened from contour maps at scale
1:25000.
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Figure 2.2 Effect of co-registration of SRTM and ASTER DEM profiles, respect to the
reference data (a) the ASTER DEM and SRTM profilesefore the co-registration (b) the
final profiles situation after co-registration operation.

For co-registration, Papasaika-Hanusch (2012) impidged the LS3D algorithm of
Gruen and Akca (2005). The co-registration wasieggdrior to the merging the DSMs.
It aimed to remove the shifts, both horizontally vartically and less probably the
rotation and scale variances, between the DSMei.S3D algorithm, the sum of the

squares of the Euclidean distances between the [8M&s have minimized.
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2.3.5 Probabilistic Method in Merging including maxmising Entropy
One merging method to be investigated in this stwdlybe based on a probabilistic
method applyingayesian theory This aids decision by making use of new evidence,

but taking into account previously existing evidenc

Within the surveying and mapping disciplines, meggor fusion has long been applied
in the production of pansharpened images (Fasbetdér 2008) and in the reduction of
satellite image scene dimensionality through PpalciComponents Analysis (Kumar
and Dass, 2009). More recently, as the literatitexidn later paragraphs will show,
Bayesian approaches are used, to some advantdgehithese areas. As a regular DSM
is very similar to a single band from a multispacimage, except that every grid value
represents elevation rather than reflectance, esbaps, Bayesian approaches could be

applicable to DSM merging?

A considerable body of literature exists which shdww researchers have attempted to
use Bayesian approaches to improve the resultsataf merging or fusion. Not all of
these researchers have been working in the fielsupfeying and mapping, or Earth
Observation. For example a dissertation by Pundi&@99) shows merging data
incorporating a Bayesian approach and Markov Chente Carlo methods applied to
different sources of data from different sensorg] particularly addressing problems
arising from discontinuities, using an algorithmigorally developed for speech

recognition.

Rather than image bands or DSMs, Christensen (2@@Ked at a small simulated data
set, to compare the Fisherian, Neyman-Pearson @\id) Bayesian approaches to
hypothesis testing. Christensen (2005) showedBhgésian approaches are influenced
by a priori information, and the user can exploit differargriori information to reach a
decision with respect to hypotheses that are mlytuatclusive. The Fisher and
Neyman-Pearson approaches to testing hypothesesaaesl on starting with a null
hypothesis. In the Fisherian approach the disiobuts selected and the data are
evaluated as to whether the data suits the propusdel, or not. In the Neyman-Pearson
approach two hypotheses are tested, a null andtemative hypothesis, with the test
based on rejecting the null hypothesis. Hypothtesisng is not a large component of the

research being reported on in this dissertation),dsuwvell as considering the value of the
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null-hypothesis, which for many is counter-intugj\Christensen (2005) emphasises that
the Bayesian approach to assigning confidence touétome is very intuitive, as it
directly links confidence and probability. Chrissen (2005) further, stresses the
importance of good priori information to achieve an appropriate result whsimg

Bayesian approaches.

In a real, non-simulated, application, Jalobeanal.e{2008) conducted research into
merging multi-source data from astronomical imafgesthe purpose of mosaicking,

co-registration, improved resolution and, above tl reduce the large number of
redundant astronomic images, through fusion. Gegymiglur and noise statistics were
taken into account, uncertainty was also addressedl, then, a probabilistic method
based on Bayesian inference to achieve the fusvas, tested, along with two other
frequentist, purely image based solutions methdtt® RMSE value after Bayesian

fusion was half, or less, that of the other tedteion methods. However, despite the
higher accuracy, some noise in the final fused enags probably due to less than

optimala priori values.

Sharma et al. (2001) implemented a probabilisticdehobased on the Bayesian
approach, to fuse images from a variety of diffememisy sensors, for aircraft landing
guidance, rather than Earth Observation. For thameter estimation least squares
factor analysis was used; the merging implementedally weighted linear operation.
For weighting, characteristics such as signal,earsd polarity change (necessary in the
case that images have reverse contrast) were tat@ionsideration. As a result, the
fused image, had improved features and contrast, adso the noise was reduced,

however high computational overheads preventeghitty practical implementation.

Mohammad-Djafari (2003) also published researchildatn using a Bayesian approach
for merging data and images. He demonstrated difteapplications for applying
Bayesian approaches such as merging images wtealegistered, and registering and
merging images using 2D images to construct 3D sietvich have been linked with a
DSM. He showed how to fuse different types of insagech as ultrasound echo-graph
data or X-ray radiograph data. He also implememteBlayesian approach later with
Feron (Féron and Mohammad-Djafari,2005) for theppse of automatic image fusion
followed by segmentation, again not for Earth obaton, but to fuse and interpret
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X-ray security images; different images from diffiet sensors or different bands were
exploited in this research. Féron and Mohammaddbjaf2005) obtained the final
segmentation result following the merging of thekterent images. Results were
satisfactory, with regard to the Bayesian approbahthe authors admitted to not having
addressed the issue of automatic image co-regosirat their otherwise automatic
image fusion procedure. Turning to the segmentasigpect of this 2003 study, at
more-or-less the same time Jones et al. (2003} fursages from high resolution visual
and low-resolution thermal data incorporating a &agn approach, for surveillance
purposes; the fused images giving better resultsxglisegmentation than any of the

un-fused images.

A literature search has been conducted which hasdfat least thirteen applications of
Bayesian approaches in the surveying and mappahd) fielated to the fusion of Earth

Observation imagery. These will be considered bssguent paragraphs.

The outcome of the supervised classification of ayeBian fused image and the
supervised multispectral classification of the ctmiting images reported by Shi and
Manduchi (2003) showed disappointing results. Is\whown that merging the output
from various classifiers, using a Bayesian apprpgatie a rather high misclassification
result, when it was applied in a situation when entbran one image characteristic is
available (e.g. colour and texture). The misclassiion rate for the Bayesian fused
image was 38% while for the multispectral clasatiign it was 27%. The advantage of
working with only data set could be set againsiaberer classification outcome, but Shi

and Manduchi (2003) predicted improved resultofeihg further development.

Fasbender et al. (2008) implemented a Bayesiarefrark for fusing panchromatic and
multispectral images prior to subsequent land colasification. In this fusion process,
Fasbender et al. (2008) depended on the statigtiigmhction between different bands,
whether multispectral or panchromatic. The bengfithis method is that there is no
requirement for hypothesis modelling, and it exslaiisual or quantitative criteria to
give weights to multispectral or panchromatic d&tansequently, this provides a result
based on the study area and the user’s requiremidrgsuggested algorithm proved to
be successful; at 250,000 check pixels the coroalatvith the classification under a
Bayesian framework for four land-cover classes, better than 0.9. In addition to the
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multispectral images, it is also possible to fuseges from SAR and hyperspectral
sources, using this algorithm. Fasbender et agpaid not also includa priori values
for the land cover classes, but recommended tlegt ¢buld in the future, despite the

already very good results for the method tested.

Although unlikely to help in addressing this resd& objectives, because the large
number of bands involved is not an issue in thekweported in this thesis, a Bayesian
approach implemented for segmenting hyperspectralges has been considered.
Mohammadpour et al. (2004) carried out researabrdier to achieve segmentation by
exploiting information from the heterogeneous barlkigt construct hyperspectral
images. Their proposed algorithm was based on eqgply Bayesian approach to the
problem of joint segmentation of hyperspectral isgagrhey tested their algorithm on a
simulated image and found it to reduce by 80% timabrer of misclassified pixels.

Murthy et al. (2005) implemented a Monte Carlo Teghe incorporated into a Bayesian
framework for the purposes of image restorationleveome parts of the images under
consideration are left unchanged. They worked siitiulated images, and much of their
effort focussed on the issues of establishing hibéha priori and likelihood values
needed for the Bayes approach. Clear guidelinesatidmerge from this article, as work
was continuing, but the problem, particularly, eftqhng good a priori values was clearly
stated. Kumar and Dass (2009), also concerned geitting a gooda priori value to
merge images that were obtained from differenteErimplemented the total variation
(TV) approach to give a value they used as a [mipixelwise merging. They used the
TV approach together with Principle Component Asalyo obtain an optimum image
from source images. The benefit is that smoothiegimage and while maintaining the
image’s discontinuities consequently led to shalges. This is essentially a Bayesian
approach with a focus on smooth surfaces and sbdges — again a value when

considering the urban environment.

A Bayesian approach was used by Diebel et al.,gR0®03D surface reconstruction and
also subsequent decimation, from point cloud datudace meshes of small real world
objects, usually obtained from stereophotogrammeptocedures. Although the
application area was computer animation, it wasight that the focus on real world
objects might have some bearing on this reseanatgation to extract building models
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from DSMs. The Diebel et al., (2006) approach wascsssfully applied on noisy data
that had been combined with anpriori probabilistic model resulting in improved
features through smoothing and establishing goodgers. Results were not good where
highly curved smooth surfaces were being re-coosd) but although the urban
landscape has many smooth surfaces, these teedotartar with pronounced corners. A
useful point made by these authors was that aduegearch could focus on the noise

systematically generated by each sensor.

Confirmation of the value of the Bayes approacimarging was provided by Ge et al.
(2007) who used a probabilistic linear estimaticegtmod based on a Bayesian approach
in order to merge multispectral Landsat ETM+ andgbaomatic images for enhancing
the multispectral image. According to Ge et al.020) the proposed method gives better
results than the traditional methods (i.e. prirei@omponent Analysis (PCA) and

wavelets).

Providing further background, Bayesian approachege halso been used by Zhang
(2011), and Zhang et al.(2008) to fuse hypersplemtichmultispectral images; by Kotwal
and Chaudhuri(2013) when fusing for improved visadion; and, by Mascarenhas et al.
(1992) who used a Bayesian framework to fuse SR¥llige imagery after selecting the
best characteristics from multispectral and pandatec bands to obtain an ideal
synthesised image. Finally, Sommer et al., (2008)uated the uncertainty in a data set
after data fusion claiming that uncertainty canrbleustly evaluated through using a
Bayesian approach.

From the foregoing, it can be noted that Bayesppr@aches have been able to solve the
problems of mergingnagesby including a proper prior. Identifying the progeior is a

challenge.

In the work reported on in this dissertation, itlwe seen that tha priori probability

that has been used is based on, and benefitstlhermorphological characteristics of the
ground and buildings particularly roughness, asgestgd by Papasaika-Hanusch
(2012). The index which is tested, in this resea@identify the proper prior is based on

a roughness index using the entropy concept.

Several decades ago a clear relationship betwerimmuia entropy and prior probability
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was established (Jaynes, 1968) with the recommiemd#tat despite the apparent
subjectivity ofa priori values, computing the maximum entropy could prewsdch a

value, objectively.

The entropy concept was developed by the Germasig@hyRudolf Clausius ((Clausius,
1850) cited via (Downarowicz, 2011)) and meansr$umto”. The word is used to
express the ineffective heat that is released \mlea is being produced from an energy
system (Downarowicz, 2011). Shannon (1948) usedopytin probability and
information theory, and later Downarowicz (2011fereed to him as the “Father of
information theory”. Downarowicz (2011) advocatbd tise of the term entropy in other
fields of science, not only physics or mathematas. example, it is now being used in
sociology. Generally the expression of entropy, capresent many conditions as
indicated by (Downarowicz, 2011) such as:

“disorder”; “chaos”; ........ or, “tendency toward undrm distribution of kinds”.

In information theory, concepts such as uncertaimyormation and choice are
influenced by entropy. Shannon (1948) mentionedl ¢én&ropy, Hy, can be quantified,
for a group of independent probabilities (n), usaggiation 2-1:

Hp =zn:fil0g [%] = —zn:filogfi 2-1
i=1 i=1

where:

Hp: local entropy value; and,

fi: probability density for (n) values.

Cover and Thomas (1991 cited in Gill (1994)) mdmtthat, in information theory,
entropy expresses the distribution of a specifidoan variable, based on the average
information quantity. The value of entropy is ligdtto between 0 ankdbg(n) and the
measurement unit is referred to as either thedbithe ‘Shannon’ (Downarowicz, 2011).
When the state is dense, the value will be 0 oy etrse to 0, and when the state is
diffuse, the value will be close tog(n), shows the entropy for pairs of probability

values: p, and, (1-p).
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Figure 2.3 Graph shows the value of the entropy fopairs of probabilities (Shannon, 194¢&.

According to the graph, it can be noted that tHaevaf entropy, represented by H, is a
vital requirement regarding the choice of inforroatiH achieves the minimum, or H=0,
when there are certain choices or information alibet situation, and one of the
probabilities is zero, or while the other is unidowever H=1 when the values of both
probabilities are equal, which in the case of infation theory represents the situation
when the information is not certain, and there gaadity with regard to certain and
uncertain probabilities. The value of entropy Wi equal tdog(n) when all probilities
are equal (i.e. having the same value). It shoeldhdted that in the case of trying to
increase the similarity or trying to minimize thie&ence between the probabilities, the
value of the H will be increased, as implied by 18t@n (1948).

As mentioned, entropy is linked to disorder. Gi®94) illustrates that uncertainty in the
probabilities can be evaluated using entropy, @aadprding to Shannon the entropy
value H reaches a maximum when the values of tbbailities (p, p, ...., p) are

uniformly distributed, and its value increases nmonwally with the value of n.

From the considerations of the reported work oéothprovided in this section, it can be
seen that Bayesian approaches have been widelyswwessfully applied in fusing
greyscale or hyperspectral images for better vigai@bn, segmentation or restoration.
Some success has been achieved in smoothing gariaces and sharpening edges at
discontinuities. However, the degree of succesewvamonsiderably amongst reported

projects. Bayesian approaches can be used to mamioncertainty in the data with a
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proper model construction. Computational overheaedgrequently reported as high, but

these will tend to reduce over time.

Unfortunately, there have been no specific examfadaesd of Bayesian approaches to
merging DSMs, although the similarity between a D&M a multispectral band is clear.
The work of Diebel et al. (2006) with point cloug@s dense meshes) of small real world
objects, and using Bayesian approaches to imptoeeriodelling, is closely related.
Thus, even if using Bayesian approaches for mer@iils, an objective of this
research,is considered novel it is likely that many of tihedings with regard to merging

images will be relevant.

2.4 Building Extraction Literature

Various research projects have been developed &ecting buildings, either
automatically or semi-automatically, instead ohgsmanual methods. Different sources
of data are utilized for this purpose such asaheriages; satellite images; LIDAR data;
unmanned aerial vehicle (UAV) or unmanned aeriateay (UAS) data; or, DSMs.

Extracting building footprints from satellite imagybas been a challenge for a long time,
due to the low resolution of satellite images coragato aerial imagery. But, many
researchers have focused on using satellite imagergxtracting building footprints
possibly since its cost is very competitive comdate LIDAR and aerial imagery

(Suérez et al., 2005), which are already commosédior the purpose.

The following sections illustrate building footpriaxtraction for Survey and Mapping
purposes. The sections are organised accordifgttype of input data implemented in

the processing.

2.4.1 Building Extraction from Satellite Imagery

Kim et al. (2005) conducted research into extrgcbaildings using a ‘voting’ process
rather than a ‘grouping’ strategy. A grouping stitpt requires detecting all boundaries of
the building in order to be able to extract thelding. However, this method will fail
when applied to high resolution images such as 1KSNoften, the long side of the
building will be detected as disconnected piecdme$ and the short side of the building
would not be detected. To overcome this difficiiyn et al. (2005) introduced their
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voting strategy algorithm. The algorithm concersadn a building’s ‘lines’ rather than

the whole building. Kim at al. (2005) investigatedages with 1m resolution of

buildings of rectangular shape and relatively lasige. The algorithm works by taking a
point on the roof of the building to be consideasdhe starting point. After that, a small
area is defined centred on the starting pointnA kxtraction algorithm by Burns et al.
(1986) is used to extract lines near the startiogtp after that their location and
orientation is ‘voted’ based on an analysis of dhientation of neighbouring extracted
lines. The line extraction algorithm was able ttrast only the lines in the long side of

the building Figure.4. The Building Extraction rate was 83%.

Estimated
orentation

Figure 2.4 The building extraction process from satelliteimagery by the voting algorithm
(Kim et al., 2005). Top row: the fragmented detectd edge using the Burns et al. (1986)
method. Bottom row: the constructed edges of the hg side of the building.

Research conducted by Theng (2006) to extractibgsdfrom high resolution satellite
imagery used the Circular Casting Algorithm. Theplemented algorithm was
developed as an alternative to the Radial Castgayithm (Mayunga et al., 2005, 2007).
Circular Casting has the ability to overcome thebpgms of complex buildings, by
initializing an active contour. The initializatiggoint can be at any point of the building,
and it is not compulsory to select this point iesitie building. Hence this leads to
automation and the point can be picked by compapingls using corner detectors
(Harris and Stephens 1988). Corner point dete@sssime that corners are related to
local maxima at each pixel of the image. If thealomaximum is higher than a certain
threshold, the pixel is declared as a corner. Assalt, Circular Casting can start from

any of the first corner pixels found. Fig2é illustrates the steps for applying Circular
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Casting to a building. As shown, the casting w#irsgradually from first detected point

and will stop when the extracted building is clased Circular cas
Detected boundary

Building boundary

Figure 2.5 Process ofthe Circular Cast Algorithm as it draws contour for extracting a
building from satellite imagery (Theng, 2006).

Liu et al. (2008) conducting research into buildiggneration semi-automatically by
selecting a building location manually, developedawel method, based on feature
extraction and region segmentation for extractoaftops. They assumed that a building
would be seen in high resolution satellite imagearaindividual building object. They
also assumed that orthogonal corners of the bgitdare connected with each other by
straight outer lines. Generally, their hypothesssWwased on the fact that a building has
two parallel lines, which are connected to eacleo#t orthogonal corners, and which
can be classified as the dominant line set. Acooigj the buildings can be depicted if
the corners and lines are correctly selected, sgerd-2.6(a) and 2.3(b). For the
extraction to be achieved, they merged the twosidigst, effective segmentation of the
building region has been used to extract compord@raduilding roof’s outline from its
background; second, using pose clustering to adjustdirection of roof outline
components and building corner locations. Poseeling) is based on a voting process in
which the majority position of components in anedge used to determine the position

and location of that edge (Olson, 1997).
i3 i !

(b)
Figure 2.6 Result of extracted buildings from high resolutionsatellite images(Liu et al.
2008).

In order to achieve buildings’ roof boundary exti@at precisely, Liu et al. (2008) used
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seeded region growth segmentation and multi schjecb oriented segmentation
methods, applied to Quickbird imagery. Based ongensegmentation, by combining
clustering and model matching techniques, they gse@d a new method for building
locating. This method finds building objects by silering spectral, geometric and
textural characteristics. In order to attach thieaeted building to a suitable shape, they
created a template library with a collection ofeliént types of buildings. Generally they
depended on locating or extracting, or both, thebates of the building using two
different methods: first, region based buildingragtion or RBBE (combining seeded
region growth where the user needs to calculatdittie of a building and manually
define the threshold used in the growing proceas), second, localized multi-scale
object oriented segmentation. The latter is effitihen applied to small and simple
buildings, where the edge contrast is low, usirghhiesolution images based on edge
confidence and mean shift. Localized multi-scalgatoriented segmentation also uses
seeded region growth to gather pixels inside regemmd approximate the shape of the

building.

After developing RBBE, Liu et al. (2008), commendedture based building extraction
or FBBE. The output of this stage can be used ttovedisplays. Typically FBBE
consists of feature extraction, which includes edgéection, corner detection, line
detection and orthogonal corner detection. Sewdifidrent algorithms are used; for
example to locate the building, they used the ntAlgorithm’ — discussed earlier.
After locating the building Liu et al. (2008) empéd the Hough Transform to extract
the dominant line sets. This was followed by edg#eb analysis which was used to
filter out (some) false edges. The building carabeurately constructed by using search
algorithms for building corners based on the irgetion of line sets. The result of the
proposed method was successful when applied tamrgatar shaped buildings’ roof

scans, achieving a 75% building extraction rate)(BE

A study was conducted by Shaker et al., (20113building extraction from IKONOS
stereo satellite imagery after creating a DSM anithoomagery. For the building
extraction, the multispectral data underwent supedv classification. A Maximum
Likelihood classifier was applied to classify théltings based on the supplied training
data, which was provided as four classes (bare Isoildings, roads and vegetation).
Finally, the classes were reclassified into twesds, buildings and other objects, based
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on a majority filter. The planimetric buildings’ @awas obtained from detected edges
from the images’ building class; the imagery subsadjy also stored the elevation from
the DSM. The validation of the result has shownoadgRMSE value for the height
validation, which is 1.33m, and based on the nurobbuildings extracted correctly and
incorrectly, the generated indices such as thedBiglExtraction (BE) rate reached 82.6%
and the missing factor (MF) was 16%. BE, expressed percentage, is obtained from
TP/(TP+FP) and likewise MF from FN/TP: where TRigtipositive) is a building that
was a building and is marked as a building, in otlerds, there is no error in the
extracted buildings; and, FN (false negative) rdsdhe buildings that exist but have not

been extracted.

An approach to building footprint extraction deye#d by San and Turker (2010) is
based on applying the Hough transform on a sadlitage to automatically extract
buildings. The approach aimed to extract circulad aectangular buildings from
IKONOS satellite images Figur2.7. The Support Vector Machine (SVM) (San and
Turker, 2010) algorithm is based on building detecand delineation from the building
patches defined in the nDSM. For the first stage building detection, orthoimagery is
used to detect the buildings based on the NDVbindiee nDSM and the NDVI index of
the SVM algorithm implemented in ENVI software sed to classify the buildings. The
SVM algorithm includes statistical learning for £t#fying the complex and noisy image
data and supervised classification. Eventually nmegerobjects are converted into vector
map data after distinguishing and then eliminating-buildings areas. For that purpose
the edges are detected, first, using Canny edgetew®t, and then converted into a vector
map, based on the Hough transform that is spedi@ietktect lines and curves. These
lines and curves are eventually grouped togetheotstruct building boundaries. The
results in the study area have been classifiedlméz types and shapes of buildings. The
guantitative validation was based on BDP (Buildiistected Percentage) which is
obtained by TP/(TP+FP+FN)%; and CM (Completeness$ijchv is obtained by
TP/(TP+FN)%; where TP (true positive) is buildingsit are originally buildings and
marked as buildings, in other words, there is moren the extracted buildings; FP (false
positive) are the buildings that have incorrecteb extracted; FN (false negative) the
buildings that exist but have not been extractdte flesults were as follows: for the
industrial rectangular shaped buildings the CM @8$% and the BDP was 79.5%; for
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the residential rectangular buildings CM was 958#%h a BDP of 79.1; and, for the
residential circular buildings it was the lower Gi4s 78.7% with a BDP of 66.8%.

Figure 2.7 Different sites showing extracted buildings, as repted by San and Turker
(2010) from satellite imagery using the Hough trarferm, in which 80% of buildings were
detected.

Aytekin et al. (2009) used satellite images forghepose of automatic building footprint
extraction. The CM reached 80.8% and the percertddgDP reached 84.5%. Their
approach is based on classifying the satellite @sagto manmade and natural objects.
For the natural object classification, which cotesisof vegetation and shadow, they
implemented the NDVI index and the shadows werealetl based on converting the
colour image’s RGB space into YIQ (luminance (WeH(1), and saturation (Q)) colour
space; shadow is specified by its high Q/I ratimaly the manmade structures were
detected using the Otsu threshold, that is fin@irigreshold value in the grey intensity
histogram after minimizing the intraclass variane®d maximizing the interclass
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variance (Deserno, 2011). After eliminating theunaltobjects, the mean shift algorithm
was applied to segment the rest of the objects;iwtpnsisted of man-made objects. The
resulting objects suffered in that some parts weo¢ related to buildings and
consequently needed to be removed through a mativameorphology operation.
Other objects related to roads were removed basesiog a shape ratio system, which
is based on the road geometrical shape being elifférom building shape, in that roads
have a longer shape and smaller width. Moreovearciple component analysis (PCA)
was also implemented to remove the small irrelegaapes or artefacts. Aytekin et al.
(2009) implemented PCA in order to distinguish raaéfacts from the road segments
that are considered to be thin and long and notesstully detected earlier as road
segments, based on their shape ratio.

Dahiya et al., (2013) extracted buildings autonadifcas vector shapes by using
IKONOS high resolution satellite imagery. Their med was based on segmenting the
image using a ‘split and merge’ segmentation metBefbre converting the image into a
vector map, numerous filters were applied whichtéethe removal of objects that were
not specified to be buildings. The filters that eapplied at this stage were probability,
size and clump size. Eventually the vector map aioetl candidate buildings, but to
further improve the accuracy, another group of apans were applied which comprised
a probability and island filter, a smoothing opemat and enforcement of orthogonality.
These operations were implemented in the ERDASenrient. The result showed that
among the 122 known buildings, 24 buildings were identified which means the
extraction rate is 80%, but there was a furthebler in that 18 building were identified

incorrectly as buildings, see FigL2es.

Figure 2.8 Building footprint extraction result using satellite imagery proposed byDahiya
et al. (2013), extracted buildings (purple) obtaing from the applied algorithm compared
with manually extracted buildings (black line).
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Another study was also carried out by Dahiya arlttagues (Dahiya et al., 2012) for
extracting buildings automatically from high redodu satellite imagery using an object
oriented approach. First, they classified the Beteimagery using a pixel-based
approach. The training data was used to computerbigability of the pixel being a
building. Several samples of training data wereftdlly used for the tree study area, and
not including any background. Later the producedgemwas segmented using the split
and merge segmentation method, which led to anenvéth all pixels with similar
characteristics being connected. After that a gradpfilters was applied (e.g.
morphological operator, probability filter, sizétdér, reclump, dilate, erode, and clump
size filter) in order to clean up the image fromuainecessary pixels and noise, remove
small objects and smooth remaining objects. Thatiag raster map was then converted
to a vector map, which was filtered to achieve eaclp. The result of the method
suffered some errors that required further filtgrialso, the method did not work on any
image that had similarities between buildings arldeo objects. The quantitative
validation indicated a good result. The approach agplied in three different areas that
contained different numbers of buildings: 66, 94 462 with the overall accuracy BDF,
based on the manually extracted buildings, for egohp being 85.4%, 73.8% and 70.6%

respectively.

Another study for building footprint extraction frosatellite images was conducted by
Krauss et al. (2007). IKONOS stereo satellite insagere used for that. Prior to the
production of the DSM and the DTM, the images weeeprocessed. Later on, Krauss et
al. (2007) classified the images using the nDSM ihabtained from subtracting the
DTM from DSM. Then the remaining objects were deddnto manmade and vegetation
objects by using the NDVI index, since the imagergs multispectral. From the
classified image, it was possible to model heigbjects as buildings or trees, see
Figure 2.9 (where low height objects have been treatethasground surface). All

buildings in the small test area were extracted.
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Figure 2.9 Constructed 3D site using satellite imagery as shawn the research byKrauss
et al. (2007).

In addition to automatic building footprint extramt, some research was also conducted
using satellite images for building footprint exttian but with some interactive input to
the algorithm. Mayunga et al., (2007) developedemisautomated algorithm for
building extraction from the satellite imagery. Tdlgorithm has been applied to an area
that was specified to be a rapidly growing are®dar es Salam city, Tanzania. The
buildings and their distribution were irregular. eTalgorithm that was used was the
‘snake and radial casting’ algorithm. The suggestethod depended on an initial point
being located on a building then the boundary wdagddetected automatically. The
results were validated using regional truth datactvwas measured manually. Since the
initial points were located manually for the buidithe efficiency of the building
detection was high and it reached 90.5%, the medRMSE accuracy reached 0.68m
(well-defined features). The author advocated tlethod since it depended only on
orthoimagery, did not need any auxiliary technolégye implemented, such as stereo

viewing, and unskilled operators could implement it

A study was conducted by Sohn and Dowman (200&xptoit Ikonos high resolution
satellite images and extract buildings that hacélneear edges. It was implemented by
picking a seed point inside the building, whicltesatively expanded until it reaches the
edge of the building. The expansion is based oghteur pixel values within a
threshold limit. To infer an initial building shapgiickly, a local Fourier analysis was
implemented; this was assisted by analysing thecimie direction angle in the building
cluster. For the threshold limit, this expandecath iterative stage until meeting the
limit of a maximum number of iterations and the stoaint of a fixed area as shown in

Figure 2.10. The algorithm has the ability to overcomebpems appearing during
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building extraction using traditional area-basegnsentation and consequently has led

to successful building extraction. The achievedding extraction rate was 73%.

Figure 2.1C Buildings extraction using the BUS (Building Unit $iape) algorithm
implementing IKONOS imagery. The top row representshe satellite image, and bottom
row represents the extracted building superimpose@n the satellite image (Sohn and
Dowman, 2001).

Lari and Ebadi (2007) exploited high resolutioneidé images in partnership with
artificial neural networks for building extractiqgmurposes. Their aim was to exploit
selective information from both spectral and stuaitfeatures. The proposed approach
consisted of three stages: image processing andesggtion; feature extraction; and
finally, applying an artificial neural network toecide whether the extracted edge
belonged to the building or not. For the segmeomatihey implemented a seeded region
growing algorithm, based on using seed points asdumbe evenly distributed over the
image. Itis implemented by comparing the seed withneighbour pixel intensities, if it

is within the assumed threshold then it will besidered as the same region. Later on, a
closing and opening operation was implemented haece the segmented image. The
implemented artificial neural network is based wo tmain phases; the first phase is
called the learning phase, uses training dataishsdived manually, and is exploited to
train for great accuracy; the second phase iscc#tie application phase, where the data
will be used to test new datasets. The input dedane@ural network is based on extracted
features consisting of mean colour and intensigundness, area, perimeter,
compactness and the structural features of eaadhesdg The algorithm when applied,
gave a reasonable result, the detection percenéagbed around 81% for urban areas,

see: Figure.11.
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Figure 2.11 Applying artificial neural network for building foo tprint extraction (a) the
data set used in experiment (b) the result of appiyg the algorithm (Lari and Ebadi, 2007)

Jin and Davis (2005) carried out research in a@extract buildings automatically from
high resolution satellite imagery (e.g. IKONOS iraag 1 meter resolution) using
information based on structural, contextual andcspk specifications. Initially a
differential morphological profile (DMP) operatiomas carried out to supply image
structural information. Information related to thailding’s assumed size and position is
inferred from the DMP. The DMP is also used to detiee building’s shadow, which is
consequently used to provide appropriate data @heytroposed size and position of the
related building. At the final segmentation stdgdding rectangles used as a seed are
evaluated and expanded. The third stage is exigathie building that have a high
intensity value based on spectral information. Evally, the buildings extracted from
the three operations are combined to representfitia result. The result of the
implemented algorithm gave a 72.7% CM rate overmapiex urban area, with a BDP of
58.8%.

Guducu (2008) utilized both shadow and multispécindormation for detecting
buildings from the IKONOS satellite imagery, by &iping these to detect buildings in
dense urban regions. The assumption that was Hig @the algorithm is that building
boundaries consist of rectilinear sides. Therefin#, the building edges were detected
using edge detection algorithms. Then, the linesewextracted using the Hough
Transform algorithm and the edges that fell in mewn straight line were selected as a
building boundary. Shadows and HSV (hue, saturatiaiue) colour was also an aid.
The validation has been based on a BDP and a Braactor (BF). Branch Factor is
obtained from: BF=FP/ (TP+FP) %. The algorithm basn applied in nine different

areas that contained different types of buildingd #he results, based on number of
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extracted building and not on calculated area vavied from 82%-100% with respect
to the BDP and 0%-8.6% with respect to the Brarattdr (BF).

The research so far outlined in this section hasifipally used satellite imagery only as
data input, however some researchers have implechaigorithms that were applied on
both satellite and aerial imagery. Satellite armibhenages have been integrated for the
purpose of building extraction by Saeedi and ZwWRB08) who described an approach
to automatically extracting building edges usintpei aerial or satellite images. Other
research has been implemented using the LevelSetién based on the active contour
model, which detects buildings from mono-view desiasatellite imagery (Karantzalos

et al., 2007), using prior shapes.

The findings of this section are summarised inTihgle 2-2, below.

Table 2-2 List of the summarised Building Extracton rate (BE) based on the data source.
REFERENCE DATA SOURCE BE

Kim et al. (2005) IKONOS 83%
Theng (2006) QUICKBIRD 100%

Liu et al. (2008) - RBBE QUICKBIRD 75%
Shaker et al., (2011) IKONOS 83%
San &Turker (2010) IKONOS 66 - 79%
Aytekin et al. (2009) QUICKBIRD 84%
Dahiya et al. (2013) IKONOS 80%
Dahiya et al. (2012) IKONOS 71-85%
Krauss et al. (2007). IKONOS 100%
Mayunga et al., (2007) QUICKBIRD 91%
Sohn&Dowman (2001) IKONOS 73%
Lari & Ebadi (2007) IKONOS 81%

Jin and Davis (2005) IKONOS 72%
Guduci (2008) IKONOS 82-100%
Saeedi & Zwick (2008) QUICKBIRD 80-100%
Karantzalos et al. (2007) IKONOS NA

2.4.2 Building Extraction from Aerial Imagery
Some of the research has used exclusively aerggeny. For instance Ahmadi et al.
(2010) implemented an algorithm which is based onaative contour model for

detecting and extracting building boundaries autarally using only aerial imagery (i.e.
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no other data such as a DTM). The extraction metveglable to overcome deficiencies
that existed in classical active contouring forldhag extraction, which primarily arose
because of sensitivity to the point of initializatiand image noise. The results were
acceptable, the validation has been conducted masétk true buildings in the region.
The completeness factor (CM) was about 80%. Ameangiildings, only 281 could be
detected, while the others failed to be extractesitd the low radiometric discrimination
between the building roof and the object backgro®e& among the 281 building were
extracted correctly (i.e. the extracted buildingsrevconsidered sufficiently identical to

the real building shape).

2.4.3 Building Extraction from UAVs

In the last few years, data acquisition from UAV/§AUnmanned Aerial Vehicle or
Unmanned Aerial System) has increased tremendeumslg it has been identified as low
cost and high resolution. It has become an impbraarce of data for rural areas but
only sometimes (due to insurance restrictionsyrban areas. UAV images can reach a
very high resolution, for example 1cm/pixel if flavat low altitude (Turner et al., 2012).
Some research has addressed using images acqoimed)RAVs for building extraction
purposes. Jizhou et al. (2004) utilized single Ugdénes for 3D model construction
including building texture, and implemented quaiMa validation of the algorithm
based on the constructed models, Figui2(a). Also other research carried out by Kiing
et al., (2011) created prismatic building shapesetieon the building footprint and a
constant height (e.g. LoD1, see sectfon) from processing UAV stereo images, so it
can be used for more detailed building construdticorporating, e.g., Google Sketchup

software to create a more detailed building (i@DR), Figure2.12(b).

(a) (b)
Figure 2.12 Building construction implementing UAV images (a) ® building model basec
on single UAV image (Jizhou et al., 2004) (b) LoD®uilding using Google Sketchup
software based on model created from UAV images.
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2.4.4 Building Extraction from LiDAR

For more than two decades Aerial LIDAR has beely yiaportant to researchers, and
has been implemented to extract buildings with vegi accuracy, since the point cloud
provided by LIDAR is very dense and accurate, aaditsoffered great potential
regarding building footprints (Meng et al., 2007).

Wang et al. (2006) introduced a footprint extractialgorithm based on Bayesian
techniques for the automatic construction of admg footprint from pre-classified
LIDAR data. The algorithm consists of three stefie first step finds a point on the
approximate boundary. The second step establisieeapproximate building footprint
based on the found boundary point. The third st&s @ Bayesian maximuarposteriori
(MAP) estimation method, to find the most probabielding footprint. A Bayesian
method is used to enhance the footprint by integgahe goodness of fit to the data with
a priori footprint shapes, see Figw2el3, using the most probable angles for buildings,
such as 180for straight lines, and 8@or corners. A problem remains in that trees are
often extracted as buildings in the areas whetbthleings overhung with trees.

Figure 2.13 Recommended algorithm byWang et al.(2006 to extract buildings from
LiDAR data using the Bayesian approach.

Shen et al. (2011) developed an algorithm callepphA Shape’ to extract building
boundaries from LIDAR Data. Their algorithm had #i#lity successfully to delineate

the ‘inner’ and ‘outer’ boundaries of ‘welled’ bdihgs from point cloud data with
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convex and concave polygon shapes. In additiohat it was possible to retain the fine
features of buildings, adaptively, and to distirsfjuthe footprints of non-buildings.

Alpha shapes can be used to delineate a buildéhgpe using a randomly distributed set
of data points and is characterised by high pracgspeeds. Moreover, it is possible to
extract different shapes and sizes, selectivelsthEumore, the alpha shapes algorithm
can remove noise and some trees by deciding tlygqok size and number of sides, and
the number of points used to delineate the boundadownside of this work is that

small irregular buildings were not successfullyragted.

Haithcoat et al. (2001) conducted research intoraatic building footprint extraction
and 3D reconstruction from LIDAR data. Their algiom is based on detecting the
objects that are higher than the ground surfacd, gemeral knowledge of building
geometric characteristics, such as size, height sivape. The building extraction
algorithm is based on the notion that buildingsenggometric descriptions such as size,
height and shape, for example, a height threshdldesnove entities with lower height
such as cars and grass; in addition, roads andydamut will be identified and removed
also. By using size thresholds, it is possibleeimaove smaller entities such as single
trees. Regarding the other objects such as vegetateas and vegetation mixed with
buildings, it is not possible to use height or siziéeria to remove them. In this case,
differential geometric criteria, based on usindeténtial calculus or shape descriptors
through derivatives, are used to distinguish betwtbe objects. This is based on the
roughness of measured surfaces, because buildiegsoéyhedrons consisting of flat
planes while trees are irregularly shaped, lackiage surfaces. Buildings with complex

shapes were not always extracted correctly.

In addition to the above research, LIDAR has becamateresting and active research
field for different researchers, briefly summariskdre. Awrangjeb et al. (2013)
extracted 3D building roofs automatically by intatgng LIDAR data and multispectral
imagery. Elhifnawy et al. (2011) utilized LIDAR @atto extract the buildings by
implementing a wavelet method. Kabolizade et 1) used an algorithm composed
of three models: firstly extracting the initial lding boundary; secondly, improving the
accuracy of the extracted boundary; and finallg, ¢bntour of the initial building was
generalized and the building extracted, the da&al uis this research b