

Morvan, Herve P. (2001) Three-dimensional simulation of river flood flows. PhD thesis.

http://theses.gla.ac.uk/6881/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service http://theses.gla.ac.uk/ theses@gla.ac.uk

Three-Dimensional Simulation Of River Flood Flows

Volume II: Figures

Hervé P. Morvan (Eng. ESTP Paris, M.Sc.)

Thesis submitted for the degree of Doctor of Philosophy in the department of Civil Engineering, The University of Glasgow

Department of Civil Engineering, The University of Glasgow Rankine Building Oakfield Avenue Glasgow G12 8LT

June 2001

© 2001 Hervé P. Morvan

Conventions

The following conventions are used consistently in the following thesis:

- Cross-sectional figures are plotted looking in the downstream direction.
- Velocity figures display the velocity magnitude or norm, calculated as the square root of the three spatial components of the velocity elevated to the power of 2.
- Angle plots refer to the direction of the velocity vector in the horizontal plane, with respect to the normal to the cross-section (which represents the 0°). Positive angles are measured when the velocity direction is heading towards the left with respect to the normal (0°), and the value of the angle is that between the velocity direction and the normal. When the velocity is heading towards the right hand side, this is considered a negative angle and measured using the same convention. These were the conventions used by the FCF experimentalists.
- All units are SI units unless stated otherwise.

List of Figures

Fig. 4.1 – Finite Volume Grids	2
Fig. 4.2 – Shape Functions: Linear, Parabolic and Cubic	3
Fig. 4.3 – Illustration of A Finite Element Approximation	4
Fig. 4.4 – Multiblock Geometry and Meshing	5
Fig. 4.5 – Three-Dimensional Geometrical Representation of a Channel	6
Fig. 4.6 – Severn Plan View Multi-Block Structure for CFX Mesh Generation	7
Fig. 4.7 – Cross-Sectional Representation of the Bottom Topography	8
Fig. 4.8 – Plan View Representation of a Meander	8
Fig. 4.9 – Bank Line Inter-Block Connection	9
Fig. 4.10 – Bed Surface for a Natural Channel Block in CFX	10
Fig. 4.11 – Mesh Point Generation along a Curve in CFX	11
Fig. 4.12 – Velocity Profile for a Turbulent Boundary Layer	12
Fig. 4.13 – Law of the Wall E Value as a Function of the Non-dimensional Roughness	13
Fig. 4.14 – Parameters Influencing Roughness Height at the Walls	14
Fig. 4.15 – Convergence History	15
Fig. 4.16 – Convergence History	16
Fig. 4.17 – Convergence History	17
Fig. 4.18 – Convergence History	18
Fig. 4.19 – Scalability of CFX 4.2 for FCF Experiment B23 and River Applications	19
Fig. 4.20 – Topographical Representation and Mesh for a Channel Section in	
TELEMAC	20
Fig. 4.21 – Schematic Representation of the Outlet Cross-Section used to Implement	
the Subroutine Q3DSORTIE in TELEMAC	21
Fig. 4.22 – Scalability of TELEMAC-2D for Simulations of the Ribble Reach	22
Fig. 4.23 – Scalability of TELEMAC-3D for Simulations of Ribble Reach	23
Fig. 5.1. – Plan View Design of the 60 Degree Flood Channel Facility Programme	
Series B Flume	25

Fig. 5.2 – Photograph of 60 Degree Flood Channel Facility Series B Flume	26
Fig. 5.3 – Flow Structure at a Bend in a Meandering Compound Channel Flow	27
Fig. 5.4 – FCF B23 Velocity Norm Data (cm/s) at Cross-Sections 1, 3, 5 and 8	28
Fig. 5.5 – FCF B23 Direction Angle Data (deg.) at Cross-Sections 1, 3, 5 and 8	29
Fig. 5.6 – FCF B23 Turbulence Data at Cross-Section 3: u' (cm/s)	30
Fig. 5.7 – FCF B23 Turbulence Data at Cross-Section 3: v' (cm/s)	30
Fig. 5.8 - FCF B23 Turbulence Data at Cross-Section 3: w' (cm/s)	31
Fig. 5.9 – FCF B23 Turbulence Data at Cross-Section 3: $T_{yx}(N/m^2)$	32
Fig. 5.10 – FCF B23 Turbulence Data at Cross-Section 3: $T_{zx}(N/m^2)$	32
Fig. 5.11 – Interpretation of FCF B23 Turbulence Data at the Cross-Over: $T_{yx}(N/m^2)$	33
Fig. 5.12 – Interpretation of FCF B23 Turbulence Data at Cross-Section 3: $T_{zx}(N/m^2)$	33
Fig. 5.13 – FCF B23 Turbulence Data at the Cross-Over: $T_{yx}(N/m^2)$	34
Fig. 5.14 – FCF Turbulence Data at Cross-Section 3: $T_{zx}(N/m^2)$	34
Fig. 5.15 – FCF B23 Bed Shear Stress Data at Cross-Section 3 (N/m ²)	35
Fig. 5.16 – FCF Series B TELEMAC Geometry and Mesh Characteristics	36
Fig. 5.17 – FCF B23 TELEMAC Free-Surface Profile and Depth-Averaged Velocity	37
Fig. 5.18 – FCF B23 TELEMAC Free-Surface Contraction and Expansion past the	
Bend	38
Fig. 5.19 – FCF B23 TELEMAC Depth-Averaged Velocity Field	39
Fig. 5.20 – FCF B23 TELEMAC Velocity Norm Predictions (cm/s) at	
Cross-Sections 1, 3, 5 and 8	40
Fig. 5.21 – FCF B23 TELEMAC Velocity Angle Predictions (deg.) at	
Cross-Sections 1, 3, 5 and 8	41
Fig. 5.22 – FCF B23 TELEMAC Outputs for Cross-Section 1	42
Fig. 5.23 – FCF B23 TELEMAC Outputs for Cross-Section 3	43
Fig. 5.24 – FCF B23 TELEMAC Outputs for Cross-Section 5	44
Fig. 5.25 – FCF B23 TELEMAC Outputs for Cross-Section 8	45
Fig. 5.26 – FCF B23 TELEMAC Model: Recirculation at Cross-Section 1	46
Fig. 5.27 – FCF B23 TELEMAC Model: Recirculation at Cross-Section 3	47
Fig. 5.28 – FCF B23 TELEMAC Model: Recirculation at Cross-Section 5	48
Fig. 5.29 – FCF B23 TELEMAC Model: Recirculation at Cross-Section 8	49

v

1, 3, 5 and 8	65
Fig. 5.49 – FCF B23 CFX Velocity Angle Predictions (deg.) at Cross-Sections	
1, 3, 5 and 8	66
Fig. 5.50 – Velocity Vectors at Depth 60, 120 and 180 mm at FCF B23 Sections	
1 and 3	67
Fig. 5.51– Velocity Vectors at Depth 60, 120 and 180 mm at FCF B23 Sections	
5 and 8	68
Fig. 5.52 – FCF B23 CFX Numerical Tracer Experiment	69
Fig. 5.53 – Tracer Experimental Data in FCF B23	70
Fig. 5.54 – Surface Tracer Experiment Photographs in FCF Series B	71
Fig. 5.55 – FCF B23 CFX Model: Recirculation at Cross-Section 1	72
Fig. 5.56 – FCF B23 CFX Model: Recirculation at Cross-Section 3	73
Fig. 5.57 – FCF B23 CFX Model: Recirculation at Cross-Section 5	74
Fig. 5.59 – FCF B23 CFX Model: Recirculation at Cross-Section 8	75
Fig. 5.60 - CFX Predicted Turbulence Kinetic Energy ($\times 10^{-3} \text{ m}^2/\text{s}^2$) at	
Cross-Section 3	76
Fig. 5.61 – CFX Predicted Turbulence Kinetic Energy (× 10^{-3} m ² /s ²) at	
Cross-Section 8b	77
Fig. 5.62 – Comparison of T_{yx} (N/m ²) at Cross-Section 3	78
Fig. 5.63 - Comparison of T_{zx} (N/m ²) at Cross-Section 3	79
Fig. 5.64 - Comparison of $T_{zx}(N/m^2)$ at the Cross-Over	80
Fig. 5.65 - Comparison of T_{yz} (N/m ²) at the Cross-Over	81
Fig. 5.66 – Comparison of Bed Shear Stress Profiles at Cross-Section 3 from	
CFX FCF B23 Model	82
Fig. 5.67 – Calculated Bed Shear Stress Profile at Cross-Section 1 from	
CFX FCF B23 Model	83
Fig. 5.68 – Calculated Bed Shear Stress Profile at Cross-Section 5 from	
CFX FCF B23 Model	83
Fig. 5.69 – Calculated Bed Shear Stress Profile at Cross-Section 8 from	
CFX FCF B23 Model	84

Fig. 5.70 – Comparison of Velocity Profile in Tominaga's Model For Different Grid	
Resolutions (54,000 and 109,200 Elements)	85
Fig. 5.71 – Predicted Velocity Profiles in Tominaga's Experiment (CFX)	86
Fig. 5.72 – Tominga's Experiment Results	87
Fig. 5.73 – Impact of Reynolds Number in Tominaga's Experiment (CFX)	88
Fig. 6.1 – Location of the River Severn Site	90
Fig. 6.2 – Plan View of the Severn, Location of the Cross-Sections, Path of the	
Free Surface Measurements and Location of the Measurement Tower	91
Fig. 6.3 – Observed Water Surface Elevation for the Event of 14 December 1999	92
Fig. 6.4 – Measured Velocity Profile at Cross-Section 7 in the Severn	93
Fig. 6.5 – Measured Velocity Profile at Cross-Section 7 in the Severn	93
Fig. 6.6 – Measured Velocity Profile at Cross-Section 5 in the Severn	94
Fig. 6.7 – Measured Velocity Profile at Cross-Section 5 in the Severn	94
Fig. 6.8 – Measured Velocity Profile Between Cross-Sections 4 and 5 in the Severn	95
Fig. 6.9 – Velocity Profiles along the Right Main Channel Bank of the River Severn	
at the Tower	96
Fig. 6.10 – Turbulence Kinetic Energy Profiles along the Right Main Channel Bank	
of the River Severn at the Tower	97
Fig. 6.11 – Location of the River Ribble Site	98
Fig. 6.12 – Plan View of the Ribble and Location of Cross-Sections	99
Fig. 6.13 – Peak Flood Hydrograph recorded by the Environmental Agency (EA)	
upstream of the River Ribble Study Reach over the Winter 1998-1999	100
Fig. 6.14 – Large-Scale Problem Grid Resolution: Impact on Velocity	101
Fig. 6.15 – Large-Scale Problem Grid Resolution: Impact on Bed Shear Stress	101
Fig. 6.16 – Severn Plan View Meshes for TELEMAC	102
Fig. 6.17 – Mesh Independence for River Severn Models using TELEMAC	103
Fig. 6.18 – River Severn Multi-Block Layout in CFX	104
Fig. 6.19 – CFX Main Grid Constraints in the Severn	105
Fig. 6.17 – CEX Main Mesh Constraints in the Ribble	106
Fig. 6.21 – Mesh Independence Test for River Severn Models using CFX	107
Fig. 6.22 – Comparison between the Results with Hybrid and QUICK-CCCT at	

108
•
100
109
110
110
111
112
113
114
115
116
110
117
118
119
120

Fig. 6.36 – Calculated CFX Pressure Field (Pa) on the Lid for Varying	
Roughness Values	121
Fig. 6.37 – River Severn CFX Velocity Profiles at Cross-Section 7 for Varying	
Roughness Values	122
Fig. 6.38 – River Severn CFX Velocity Vectors close to the Free Surface for a	
Flow of 100 m^3/s	123
Fig. 6.39 – River Severn CFX Velocity Profile (m/s) at Cross-Sections 1, 2, 3 and 4	124
Fig. 6.40 – River Severn CFX Velocity Profile (m/s) at Cross-Sections 5, 6 and 7	125
Fig. 6.41 – River Severn CFX Velocity Direction (deg.) at Cross-Sections	
1, 2, 3 and 4	126
Fig. 6.42 – River Severn CFX Velocity Direction (deg.) at Cross-Sections 5, 6 and 7	127
Fig. 6.43 – River Severn CFX Model: Recirculation (m/s) at Sections 1, 2, 3 and 4	128
Fig. 6.44 – River Severn CFX Model: Recirculation (m/s) at Sections 5, 6 and 7	129
Fig. 6.45 – CFX Numerical Tracer Release at Elevation 13.0 m in the Severn	130
Fig. 6.46 – CFX Numerical Tracer Release at Elevation 16.5 m in the Severn	131
Fig. 6.47 – CFX Numerical Tracer Release at Elevation 17.9 m in the Severn	132
Fig. 6.48 – CFX Numerical Tracer Release at Elevation 18.3 m in the Severn	133
Fig. 6.49 – Comparison between Field Data and River Severn CFX Model	
Predictions at Cross-Section 4	134
Fig. 6.50 – Comparison between Field Data and River Severn CFX Model	
Predictions at Cross-Section 5	135
Fig. 6.51 – Comparison between Field Data and River Severn CFX Model	
Predictions at Cross-Section 5 for a Flow of 120 m^3 /s (Discharge + 20%)	136
Fig. 6.52 – Comparison between Measured and Predicted Velocity Profiles along the	
Severn Main Channel Right Bank, at the Tower	137
Fig. 6.53– Comparison between Measured and Predicted Turbulence Kinetic Energy	
along the Severn Main Channel Right Bank, at the Tower	138
Fig. 6.54 – Calculated Bed Shear Stresses at Section 1 from CFX River Severn Mode	1 1 3 9
Fig. 6.55 – Calculated Bed Shear Stresses at Section 2 from CFX River Severn Mode	1 1 3 9
Fig. 6.56 – Calculated Bed Shear Stresses at Section 3 from CFX River Severn Mode	1 1 4 0
Fig. 6.57 – Calculated Bed Shear Stresses at Section 4 from CFX River Severn Mode	1 1 4 0

Fig. 6.58 - Calculated Bed Shear Stresses at Section 5 from CFX River Severn Model	141
Fig. 6.59 - Calculated Bed Shear Stresses at Section 6 from CFX River Severn Model	
for the Two CFX Grids	141
Fig. 6.60 - Calculated Bed Shear Stresses at Section 7 from CFX River Severn Model	142
Fig. 6.61 – River Severn: Bank Collapse at the Inner Bank of the Second Meander	142
Fig. 6.62 – TELEMAC Model of the Ribble: Sensitivity Analysis of the Free Surface	
to Roughness	143
Fig. 6.63 – TELEMAC Model of the Ribble: Impact of Roughness on Velocity	
Distribution across the Flood Plain	143
Fig. 6.64 – River Ribble TELEMAC Depth-Averaged Velocity Vectors for a	
Flow of 98 m ³ /s	144
Fig. 6.65 – River Ribble TELEMAC Velocity Profile (m/s) at Cross-Sections	
1, 2, 3 and 4	145
Fig. 6.66 – River Ribble TELEMAC Velocity Profile (m/s) at Cross-Sections	
5, 6, 7 and 8	146
Fig. 6.67 – River Ribble TELEMAC Velocity Orientation (deg.) at Cross-Sections	
1, 2, 3 and 4	147
Fig. 6.68 – River Ribble TELEMAC Velocity Orientation (deg.) at Cross-Sections	
5, 6, 7 and 8	148
Fig. 6.69 – River Ribble TELEMAC Model: Recirculation at Cross-Sections 1 to 4	149
Fig. 6.70 – River Ribble TELEMAC Model: Recirculation at Cross-Sections 5 to 8	150
Fig. 6.71 – River Ribble: Comparison between Water Surface Elevation Predicted by	
TELEMAC and CFX	151
Fig. 6.72 – Calculated CFX Pressure Field (Pa) on the Lid	151
Fig. 6.73 – River Ribble CFX Velocity Vectors close to the Free Surface for a	
Flow of 98 m ³ /s	152
Fig. 6.74 – River Ribble CFX Velocity Profile (m/s) at Cross-Sections 1,2, 3 and 4	153
Fig. 6.75 – River Ribble CFX Velocity Profile (m/s) at Cross-Sections 5, 6, 7 and 8	154
Fig. 6.76 – River Ribble CFX Velocity Orientation (deg.) at Cross-Sections	
1, 2, 3 and 4	155

Fig. 6.77 – River Ribble CFX Velocity Orientation (deg.) at Cross-Sections	
5, 6, 7 and 8	156
Fig. 6.78 – River Ribble CFX Model: Recirculation (m/s) at Sections 5, 6 and 7	157
Fig. 6.79 – River Ribble CFX Model: Recirculation (m/s) at Sections 5, 6, 7 and 8	158
Fig. 6.80 – CFX Numerical Tracer Release at Elevation 7.0 m in the Ribble	159
Fig. 6.81 – CFX Numerical Tracer Release at Elevation 10.0 m in the Ribble	160
Fig. 6.82 – CFX Numerical Tracer Release at Elevation 10.5 m in the Ribble	161
Fig. 6.83 – Calculated Bed Shear Stresses at Section 1 from River Ribble Model	162
Fig. 6.84 – Calculated Bed Shear Stresses at Section 2 from River Ribble Model	162
Fig. 6.85 – Calculated Bed Shear Stresses at Section 3 from River Ribble Model	163
Fig. 6.86 – Calculated Bed Shear Stresses at Section 4 from River Ribble Model	163
Fig. 6.87 – Calculated Bed Shear Stresses at Section 5 from River Ribble Model	164
Fig. 6.88 – Calculated Bed Shear Stresses at Section 6 from River Ribble Model	164
Fig. 6.89 – Calculated Bed Shear Stresses at Section 7 from River Ribble Model	165
Fig. 6.90 – Calculated Bed Shear Stresses at Section 8 from River Ribble Model	165
Fig. 6.91 – River Ribble CFX Velocity Profile (m/s) at Cross-Sections 1, 5, 6 and 8	166
Fig. 6.92 – River Ribble CFX Velocity Orientation (deg.) at Cross-Sections	
1, 5, 6 and 8	167

Chapter 4: Grids, Boundary Conditions, Solution Techniques and other Numerical Issues

Figures for Chapter 4

Fig. 4.1 – Finite Volume Grids: (a) Staggered Grid, (b) Non-Staggered Grid

Fig. 4.2 – Shape Functions: Linear, Parabolic and Cubic (After Quarteroni and Valli, 1994)

Fig. 4.3 – Illustration of A Finite Element Approximation

Fig. 4.4 – Multiblock Geometry and Meshing

- Fig. 4.5 Three-Dimensional Geometrical Representation of a Channel: (a) Two-Solid Representation,
 - (b) Five-Solid Representation.

Fig. 4.6 – Severn Plan View Multi-Block Structure for CFX Mesh Generation

Fig. 4.7 – Cross-Sectional Representation of the Bottom Topography

- (a) Composite Edge made of Linear Interpolation;
- (b) Quadratic Interpolation or Spline.

Fig. 4.9 –Bank Line Inter-Block Connection in CFX

Fig. 4.10 – Bed Surface for a Natural Channel Block in CFX

Fig. 4.11 – Mesh Point Generation along a Curve in CFX: (a) one-directional, (b) bi-directional

Fig. 4.13 – Law of the Wall E Value as a Function of the Non-dimensional Roughness

Fig. 4.16 - Convergence History (FCF Model, Grid FCF-3, K-Epsilon Model, ks = 0.2 mm)

Fig. 4.17 - Convergence History (FCF Model, Grid FCF-3, RSM, ks = 0.8 mm)

-

Chapter 5: Numerical Models Evaluation - The Flood Channel Facility Test Case

Figures for Chapter 5

Fig. 5.1. – Plan View Design of the 60 Degree Flood Channel Facility Programme Series B Flume (modified from Ervine et al., 1993)

Fig. 5.2 – Photograph of 60 Degree Flood Channel Facility Programme Series B Flume

Fig. 5.3 – Flow Structure at a Bend in a Meandering Compound Channel Flow (after Willetts and Hardwick, 1993)

Fig. 5.4 – FCF B23 Velocity Norm Data (cm/s) at Cross-Sections 1, 3, 5 and 8 (looking downstream)

Fig. 5.5 – FCF B23 Direction Angle Data (deg.) at Cross-Sections 1, 3, 5 and 8 (looking downstream)

Fig. 5.6 – FCF B23 Turbulence Data at Cross-Section 3: u' (cm/s)

Fig. 5.7 – FCF B23 Turbulence Data at Cross-Section 3: v' (cm/s)

Fig. 5.8 – FCF B23 Turbulence Data at Cross-Section 3: w' (cm/s)

Fig. 5.9 – FCF B23 Turbulence Data at Cross-Section 3: $T_{yx}(N/m^2)$

Fig. 5.10 – FCF B23 Turbulence Data at Cross-Section 3: $T_{zx}(N/m^2)$

Fig. 5.11 - Interpretation of FCF B23 Turbulence Data at the Cross-Over: Tyx(N/m²)

Fig. 5.12 – Interpretation of FCF B23 Turbulence Data at Cross-Section 3: $T_{zx}(N/m^2)$

Fig. 5.13 – FCF B23 Turbulence Data at the Cross-Over: $T_{yx}(N/m^2)$

Fig. 5.14 – FCF B23 Turbulence Data at Cross-Section 3: $T_{zx}(N/m^2)$

Fig. 5.15 – FCF B23 Bed Shear Stress Data at Cross-Section 3 (N/m²)

Fig. 5.20 – FCF B23 TELEMAC Velocity Norm Predictions (cm/s) at Cross-Sections 1, 3, 5 and 8 (C = 68 m^{1/2}/s, Mesh TELEMAC FCF-1, Mixing-Length Model)

Fig. 5.21 – FCF B23 TELEMAC Velocity Angle Predictions (deg.) at Cross-Sections 1, 3, 5 and 8 (C = 68 m^{1/2}/s, Mesh TELEMAC FCF-1, Mixing-Length Model)

Fig. 5.22 – FCF B23 TELEMAC Outputs for Cross-Section 1: (a)Velocity Norm (left; m/s) (b) Angle (deg.) (C = 68 m^{1/2}/s, Mesh TELEMAC FCF-1, Mixing-Length Model)

42

Fig. 5.23 – FCF B23 TELEMAC Outputs for Cross-Section 3: (a)Velocity Norm (left; m/s) (b) Angle (deg.) (C = 68 m^{1/2}/s, Mesh TELEMAC FCF-1, Mixing-Length Model)

Fig. 5.26 – FCF B23 TELEMAC Model: Recirculation at Cross-Section 1

Computed Main Recirculation at Cross-Section 3

Fig. 5.27 – FCF B23 TELEMAC Model: Recirculation at Cross-Section 3

Computed Main Recirculation at Cross-Section 5

Fig. 5.28 – FCF B23 TELEMAC Model: Recirculation at Cross-Section 5

Fig. 5.29 - FCF B23 TELEMAC Model: Recirculation at Cross-Section 8

Fig. 5.30 – Construction of the CFX Numerical Grid of the FCF

Fig. 5.31 – CFX Grid FCF-1

Fig. 5.32 – CFX Grid FCF-3

Fig. 5.33 – Mesh Independence: Comparison of the Non-dimensionalized Pressure Term C_p for Different Mesh Resolution in CFX

Fig. 5.34 –Difference in Velocity at Cross-Section 8 between CFX FCF-1 and FCF-3 (cm/s)

Fig. 5.35 –Difference in Angle at Cross-Section 8 between CFX FCF-1 and FCF-3 (deg.)

Fig. 5.36 –Difference in Velocity at Cross-Section 8 between CFX FCF-2 and FCF-3 (cm/s)

Fig. 5.37 –Difference in Angle at Cross-Section 8 between CFX FCF-2 and FCF-3 (deg.)

Fig. 5.38 –Difference in Velocity at Cross-Section 8 between Model using an I/O Boundary Condition and a Model using Periodic Boundary Conditions (FCF-2)

Fig. 5.39 –Difference in Angle at Cross-Section 8 between Model using an I/O Boundary Condition and a Model using Periodic Boundary Conditions (FCF-2)

Fig. 5.40 – Sensitivity Analysis for the CFX Model of FCF B23 Experiment: Variation of the Pressure Slope with Roughness

Fig. 5.42 – FCF B23 CFX Velocity Norm Predictions (cm/s) at Cross-Sections 1, 3, 5 and 8 ($k_s = 0.8$ mm, Grid FCF-3, $k - \varepsilon$ Model)

Fig. 5.43 - FCF B23 CFX Velocity Angle Predictions (deg.) at Cross-Sections 1, 3, 5 and 8 ($k_s = 0.8$ mm, Grid FCF-3, $k - \varepsilon$ Model)

Fig. 5.44 – FCF B23 CFX Velocity Norm Predictions (cm/s) at Cross-Sections 1, 3, 5 and 8 (k_s = 0.8 mm, Grid FCF-3, RSM Model)

Fig. 5.45 – FCF B23 CFX Velocity Angle Predictions (deg.) at Cross-Sections 1, 3, 5 and 8 (k_s = 0.8 mm, Grid FCF-3, RSM Model)

Fig. 5.46 – FCF B23 CFX Velocity Norm Predictions (cm/s) at Cross-Sections 1, 3, 5 and 8 ($k_s = 0.2$ mm, Grid FCF-3, $k - \varepsilon$ Model)

Fig. 5.47 - FCF B23 CFX Velocity Angle Predictions (deg.) at Cross-Sections 1, 3, 5 and 8 (k_s = 0.2 mm, Grid FCF-3, RSM)

Fig. 5.48 – FCF B23 CFX Velocity Norm Predictions (cm/s) at Cross-Sections 1, 3, 5 and 8 (k_s = 0.2 mm, Grid FCF-3, RSM)

Fig. 5.49 - FCF B23 CFX Velocity Angle Predictions (deg.) ay Cross-Sections 1, 3, 5 and 8 ($k_s = 0.2$ mm, Grid FCF-3, RSM)

Fig. 5.50 - Velocity Vectors at Depth 60, 120 and 180 mm at FCF Sections 1 and 3

Fig. 5.51- Velocity Vectors at Depth 60, 120 and 180 mm at FCF Sections 5 and 8

(b)

- (a) Release in Main Channel at Mid-Depth (100 mm)
- (b) Release on the Floodplain at Mid-Depth (175 mm)

Fig. 5.53 – Tracer Experimental Data in FCF B23 (after Willetts and Hardwick, 1993)

Fig. 5.54 – Surface Tracer Experiment Photographs in FCF Series B: (a) Dr = 0.25, (b) Dr = 0.40 (Courtesy of Professor Ervine, Univ. of Glasgow)

Fig. 5.55 – FCF B23 CFX Model: Recirculation at Cross-Section 1

0

Velocity (cm/s)

10

20

30

-30

-20

-10

Fig. 5.56 – FCF B23 CFX Model: Recirculation at Cross-Section 3

Computed Main Recirculation at Cross-Section 5

Fig. 5.57 – FCF B23 CFX Model: Recirculation at Cross-Section 5

Fig. 5.59 – FCF B23 CFX Model: Recirculation at Cross-Section 8

Fig. 5.60 - CFX Predicted Turbulence Kinetic Energy (× 10^{-3} m²/s²) at Cross-Section 3: (a) *k*- ε Model

Fig. 5.61 – CFX Predicted Turbulence Kinetic Energy (× 10^{-3} m²/s²) at Cross-Section 8b: (a) *k*- ε Model

(b) RSM

Fig. 5.62 – Comparison of T_{yx} (N/m²) at Cross-Section 3

FCF Turbulence Data at Cross-Section 3: $T_{zx}(N/m^2)$

Processed $T_{zx}(N/m^2)$ at Cross-Section 3, using $k-\varepsilon$ Data

Calculated $T_{zx}(N/m^2)$ at Cross-Section 3 with RSM

Fig. 5.63 - Comparison of $T_{zx} \ (N/m^2)$ at Cross-Section 3

FCF Turbulence Data at the Cross-Over: $T_{zx}(N/m^2)$

Processed $T_{zx}(N/m^2)$ at the Cross-Over, using $k - \varepsilon$ Data

Calculated $T_{zx}(N/m^2)$ at the Cross-Over with RSM

Fig. 5.64 - Comparison of $T_{zx}(N/m^2)$ at the Cross-Over

FCF Turbulence Data at the Cross-Over: $T_{yx}(N/m^2)$

Processed $T_{yz}(N/m^2)$ at the Cross-Over, using $k - \varepsilon$ Data

Calculated $T_{yz}(N/m^2)$ at the Cross-Over with RSM

Fig. 5.65 - Comparison of $T_{yz}\,(N/m^2)$ at the Cross-Over

Fig. 5.66 – Comparison of Bed Shear Stress Profiles at Cross-Section 3 from CFX FCF B23 Model:
(a) with k-ε turbulence model;
(b) with LRR-RSM.

Fig. 5.67 – Calculated Bed Shear Stress Profile at Cross-Section 1 from CFX FCF B23 Model

Fig. 5.68 – Calculated Bed Shear Stress Profile at Cross-Section 5 from CFX FCF B23 Model

Fig. 5.69 – Calculated Bed Shear Stress Profile at Cross-Section 8 from CFX FCF B23 Model

Fig. 5.70 – Comparison of Velocity Profile in Tominaga's Model For Different Grid Resolutions (54,000 and 109,200 Elements)

Fig. 5.71 – Predicted Velocity Profiles in Tominaga's Experiment (CFX):
(a) k-ε Model
(b) LRR-RSM

Fig. 5.72 – Tominga's Experiment Results: (a) Laboratory Data (Tominaga et al., 1989) (b) LRR-RSM Numerical Model (Cokljat, 1993)

Fig. 5.73 – Impact of Reynolds Number in Tominaga's Experiment (CFX):

(a) Re = 3.5×10^4 (b) Re = 7.0×10^4

Chapter 6: Application of CFD to Flooded Rivers – Rivers Severn and Ribble

Figures for Chapter 6

(b)

Fig. 6.1 – Location of the River Severn Site (MultiMap.Com)

Fig. 6.2 – Plan View of the Severn, Location of the Cross-Sections, Path of the Free Surface Measurements — and Location of the Measurement Tower

Fig. 6.3 – Observed Water Surface Elevation for the Event of 14 December 1999: (a) Along the First Bend (b) Along the Right Bund (point planview coordinates in brackets)

Fig. 6.4 – Measured Velocity Profile at Cross-Section 7 in the Severn (m/s; December 1999)

Fig. 6.5 – Measured Velocity Profile at Cross-Section 7 in the Severn (m/s; March 2000)

Fig. 6.6 – Measured velocity Profile at Cross-Section 5 in the Severn (m/s; October 2000)

Fig. 6.7 – Measured Velocity Profile at Cross-Section 5 in the Severn (m/s; November 2000)

Fig. 6.8 – Measured velocity Profile Between Cross-Sections 4 and 5 in the Severn (m/s; December 2000)

Fig. 6.9 – Velocity Profiles along the Right Main Channel Bank of the River Severn at the Tower (m/s; March 2000)

Turbulence Kinetic Energy at Location (598.800; 625.780)

Turbulence Kinetic Energy at Location (596.360; 626.650)

18000

17.800

17.600 17.400

Ê^{17.200}

17.000

16.600 16400

16200

16000

യ

5000

10,000

15000

TKE(m9/2 x 10/3)

മത

ജ്ഞ

3000

18000

17.800

17.600

17.400

Fig. 6.10 – Turbulence Kinetic Energy Profiles along the Right Main Channel Bank of the River Severn at the Tower (m²/s²; March 2000)

97

(a)

(b)

Fig. 6.11 - Location of the River Ribble Site (MultiMap.Com)

Fig. 6.12 - Plan View of the Ribble and Location of Cross-Sections (Scale in m)

Fig. 6.13 – Peak Flood Hydrograph recorded by the Environmental Agency (EA) upstream of the River Ribble Study Reach over the Winter 1998-1999

Fig. 6.14 - Large-Scale Problem Grid Resolution: Impact on Velocity

Fig. 6.15 - Large-Scale Problem Grid Resolution: Impact on Bed Shear Stress

Fig. 6.16 – Plan View Meshes for TELEMAC Models of the Severn: (a) Mesh TELEMAC S-1 (b) Mesh TELEMAC S-2

Fig. 6.17 – Mesh Independence for River Severn Models using TELEMAC: Comparison of Calculated Fields at Sections 4, 5, 6 and 7 as well as on the Floodplain and along the Thalweg

Fig. 6.18 - River Severn Multi-Block Layout in CFX

Fig. 6.19 - CFX Main Grid Constraints in the Severn

Fig. 6.20 - CFX Main Grid Constraints in the Ribble

Fig. 6.21 – Mesh Independence Test for River Severn Model using CFX: Comparison of Non-dimensional Pressure along the Main Channel, at the Bed

Fig. 6.22 – Comparison between the Results with Hybrid (left) and QUICK-CCCT (right) at Cross-Sections 3, 4 and 5 for the River Severn CFX Model

Fig. 6.23 – Comparison of Water Surface Elevations between TELEMAC Models and Field Data (100 m³/s Event of Dec. 1999):
(a) along the upstream first bend
(b) along the right embankment

Fig. 6.24 – TELEMAC Model of the Severn: Sensitivity Analysis of the Free Surface to Roughness

Fig. 6.25 – TELEMAC Model of the Severn: Impact of Roughness on Velocity Distribution across the Upstream Part of the Reach

Fig. 6.26 – River Severn TELEMAC Depth-Averaged Velocity Vectors for a Flow of 100 m³/s

Fig. 6.28 – River Severn TELEMAC Velocity Profile (m/s) at Cross-Sections 5, 6, and 7 (C = 45 $m^{1/2}$ /s (MC) and 35 $m^{1/2}$ /s (FP); Mesh S-2; Mixing-Length Model)

Fig. 6.29 – River Severn TELEMAC Velocity Direction (deg.) at Cross-Sections 1, 2, 3 and 4 (C = 45 $m^{1/2}$ /s (MC) and 35 $m^{1/2}$ /s (FP); Mesh S-2; Mixing-Length Model)

Cross-Section 7

20.0

2§.0

0.0

Fig. 6.30 – River Severn TELEMAC Velocity Direction (deg.) at Cross-Sections 5, 6, and 7 (C = 45 $m^{1/2}$ /s (MC) and 35 $m^{1/2}$ /s (FP); Mesh S-2; Mixing-Length Model)

Fig. 6.31 - River Severn TELEMAC Model: Recirculation at Cross-Sections 1 to 4

Fig. 6.32 - River Severn TELEMAC Model: Recirculation at Cross-Sections 5 to 7

(At 9.00 m from the Left Bank)

(At 19.00 m from the Left Bank)

Fig. 6.33 – River Severn: Comparison between Field Data and TELEMAC Predictions at Cross-Section 4

Fig. 6.34 – River Severn: Comparison between Field Data and TELEMAC Predictions at Cross-Section 5

Fig. 6.35 – Comparison of Water Surface Elevation between CFX Models and Field Data (100 m³/s Event of Dec. 1999) (a) along the upstream first bend (b) along the right embankment

 $k_s = 0.100 \text{ m}$

 $k_s = 0.300 \text{ m}$

Fig. 6.36 – Calculated CFX Pressure Field (Pa) on the Lid for Varying Roughness Values

Fig. 6.37 – River Severn CFX Velocity Profiles at Cross-Section 7 for Varying Roughness Values

Fig. 6.38 – River Severn CFX Velocity Vectors close to the Free Surface for a Flow of 100 m³/s

Fig. 6.39 – River Severn CFX Velocity Profile (m/s) at Cross-Sections 1, 2, 3 and 4 $(k_s = 0.100 \text{ m}, \text{Grid CFX S-1}, k - \varepsilon \text{ model})$

Fig. 6.40 – River Severn CFX Velocity Profile (m/s) at Cross-Sections 5, 6 and 7 $(k_s = 0.100 \text{ m}, \text{Grid CFX S-1}, k - \varepsilon \text{ model})$

Fig. 6.41 – River Severn CFX Velocity Direction (deg.) at Cross-Sections 1, 2, 3 and 4 ($k_s = 0.100$ m, Grid CFX S-1, $k - \varepsilon$ model)

Fig. 6.42 – River Severn CFX Velocity Orientation (deg.) at Cross-Sections 5, 6 and 7 ($k_s = 0.100$ m, Grid CFX S-1, $k - \varepsilon$ model)

Fig. 6.43 – River Severn CFX Model: River Severn CFX Model: Calculated Recirculation (m/s) at Sections 1, 2, 3 and 4

Fig. 6.44 – River Severn CFX Model: River Severn CFX Model: Calculated Recirculation (m/s) at Sections 5, 6 and 7

(a)

Fig. 6.45 – CFX Numerical Tracer Release at Elevation 13.0 m in the Severn: (a) Tracer Route (b) Rotational Effects and Velocity

(a)

Fig. 6.46 – CFX Numerical Tracer Release at Elevation 16.5 m in the Severn: (a) Tracer Route (b) Rotational Effects and Velocity

Fig. 6.47 – CFX Numerical Tracer Release at Elevation 17.9 m in the Severn: (a) Tracer Route (b) Rotational Effects and Velocity

Fig. 6.48 – CFX Numerical Tracer Release at Elevation 18.3 m in the Severn: (a) Tracer Route (b) Rotational Effects and Velocity

At 19.00 m from the Left Bank

At 22.00 m from the Left Bank

Fig. 6.50 – Comparison between Field Data and River Severn CFX Model Predictions at Cross-Section 5

At 12.00 m from the Left Bank

Fig. 6.52 – Comparison between Measured and Predicted Velocity Profiles along the Severn Main Channel Right Bank, at the Tower (m/s; March 2000)

į

Fig. 6.53– Comparison between Measured and Predicted Turbulence Kinetic Energy along the Severn Main Channel Right Bank, at the Tower $(m^2/s^2; March 2000)$

Fig. 6.54 – Calculated Bed Shear Stresses at Section 1 from CFX River Severn Model (k- ε model)

Fig. 6.55 – Calculated Bed Shear Stresses at Section 2 from CFX River Severn Model (k- ε model)

Fig. 6.56 – Calculated Bed Shear Stresses at Section 3 from CFX River Severn Model (k- ε model)

Fig. 6.57 – Calculated Bed Shear Stresses at Section 4 from CFX River Severn Model (k- ε model)

Fig. 6.58 – Calculated Bed Shear Stresses at Section 5 from CFX River Severn Model (k- ε model)

Fig. 6.59 – Calculated Bed Shear Stresses at Section 6 from CFX River Severn Model for the Two CFX Grids (k- ε model)

Fig. 6.60 – Calculated Bed Shear Stresses at Section 7 from CFX River Severn Model (k- ε model)

Fig. 6.61 - River Severn: Bank Collapse at the Inner Bank of the Second Meander

Fig. 6.62 – TELEMAC Model of the Ribble: Sensitivity Analysis of the Free Surface to Roughness

Depth-averaged Velocity Across the Floodplain

Fig. 6.63 – TELEMAC Model of the Ribble: Impact of Roughness on Velocity Distribution across the Flood Plain

Fig. 6.64 – River Ribble TELEMAC Depth-Averaged Velocity Vectors for a Flow of 98 m³/s

Cross-Section 4

Cross-Section 7

Cross-Section 8

Fig. 6.66– River Ribble TELEMAC Velocity Profile (m/s) at Cross-Sections 5, 6, 7 and 8 (C = 38 m^{1/2}/s on the flood plain, C = 55 m^{1/2}/s in the main Channel, mixing-length model)

Fig. 6.67 – River Ribble TELEMAC Velocity Orientation (deg.) at Cross-Sections 1, 2, 3 and 4 (C = $38 \text{ m}^{1/2}$ /s on the flood plain, C = $55 \text{ m}^{1/2}$ /s in the main Channel, mixing-length model)

Fig. 6.68 – River Ribble TELEMAC Velocity Orientation (deg.) at Cross-Sections 5, 6, 7 and 8 (C = 38 m^{1/2}/s on the flood plain, C = 55 m^{1/2}/s in the main Channel, mixing-length model)

Ì.

Fig. 6.69 – River Ribble TELEMAC Model: Recirculation at Cross-Sections 1 to 4

Fig. 6.70 – River Ribble TELEMAC Model: Recirculation at Cross-Sections 5 to 8

Fig. 6.71 – River Ribble: Comparison between Water Surface Elevation Predicted by TELEMAC and CFX (98 m³/s)

Fig. 6.72 - Calculated CFX Pressure Field (Pa) on the Lid

Fig. 6.73 – River Ribble CFX Velocity Vectors close to the Free Surface for a Flow of 98 m³/s ($k_s = 0.08$ m in the main channel, $k_s = 0.12$ m on the floodplain)

Fig. 6.74 – River Ribble CFX Velocity Profile (m/s) at Cross-Sections 1,2, 3 and 4 $(k_s = 0.12 \text{ m on the flood plain}, k_s = 0.08 \text{ m in the main channel}, \text{mesh R-1}, k \cdot \varepsilon \text{ model})$

Fig. 6.75 – River Ribble CFX Velocity Profile (m/s) at Cross-Sections 5, 6, 7 and 8 $(k_s = 0.12 \text{ m on the flood plain}, k_s = 0.08 \text{ m in the main channel}, \text{mesh R-1}, k - \varepsilon \text{ model})$

Fig. 6.76 – River Ribble CFX Velocity Orientation (deg.) at Cross-Sections 1, 2, 3 and 4 ($k_s = 0.12$ m on the flood plain, $k_s = 0.08$ m in the main channel, mesh R-1, $k \cdot \varepsilon$ model)

Fig. 6.77 – River Ribble CFX Velocity Orientation (deg.) at Cross-Sections 5, 6, 7 and 8 ($k_s = 0.12$ m on the flood plain, $k_s = 0.08$ m in the main channel, mesh R-1, $k \cdot \varepsilon$ model)

Fig. 6.78 – River Ribble CFX Model: Recirculation (m/s) at Sections 5, 6 and 7

Fig. 6.79 – River Ribble CFX Model: Recirculation (m/s) at Sections 5, 6, 7 and 8

(a)

(a)

Fig. 6.81 – CFX Numerical Tracer Release at Elevation 10.0 m in the Ribble: (a) Tracer Route (b) Rotational effects and Velocity

(a)

Fig. 6.82 – CFX Numerical Tracer Release at Elevation 10.5 m in the Ribble: (a) Tracer Route (b) Rotational effects and Velocity

Fig. 6.83 – Calculated Bed Shear Stresses at Section 1 from River Ribble Model $(k - \varepsilon \text{ model})$

Fig. 6.84 – Calculated Bed Shear Stresses at Section 2 from River Ribble Model $(k \cdot \varepsilon \text{ model})$

Fig. 6.85 – Calculated Bed Shear Stresses at Section 3 from River Ribble Model $(k - \varepsilon \text{ model})$

Fig. 6.86 – Calculated Bed Shear Stresses at Section 4 from River Ribble Model $(k - \varepsilon \text{ model})$

Fig. 6.87 – Calculated Bed Shear Stresses at Section 5 from River Ribble Model $(k \cdot \varepsilon \text{ model})$

Fig. 6.88 – Calculated Bed Shear Stresses at Section 6 from River Ribble Model $(k - \varepsilon \text{ model})$

Fig. 6.89 – Calculated Bed Shear Stresses at Section 7 from River Ribble Model $(k - \varepsilon \text{ model})$

Fig. 6.90 – Calculated Bed Shear Stresses at Section 8 from River Ribble Model $(k \cdot \varepsilon \text{ model})$

Fig. 6.91 – River Ribble CFX Velocity Profile (m/s) at Cross-Sections 1, 5, 6 and 8 $(k_s = 0.12 \text{ m on the flood plain}, k_s = 0.08 \text{ m in the main channel}, \text{mesh R-1, RSM})$

Constant of the second	_
ASGO	
WIVEDS	ſ
LIBRARY	

Fig. 6.92 – River Ribble CFX Velocity Orientation (deg.) at Cross-Sections 1, 5, 6 and 8 ($k_s = 0.12$ m on the flood plain, $k_s = 0.08$ m in the main channel, mesh R-1, RSM)