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Abstract 

The maturity of simulation codes for aerodynamics (CFD) and structures (CSD) now 

leads to high fidelity computations of single discipline problems. The problem of 

aircraft flutter involves the coupling of aerodynamics and structures and has led to 

an interest in coupling CFD and CSD codes. There is strong motivation to couple 

existing codes to simulate this problem to avoid developing new methods since cur­

rent single discipline methods are both well established and differ in their formulation 

(Eulerian fluids descriptions based on finite volume methods and Lagrangian finite 

element methods for structures). Recent work on the sequencing of codes has ad­

dressed the time sequencing issue which can be resolved by an iterative scheme to 

make sure that both simulations advance simultaneously in time. The regeneration 

of volume grids around a deforming geometry has also received attention. 

A third problem involves the passing of loads and displacement information be­

tween the fluid and structural surface grids. These grids will not in general coincide 

and it is likely that they will not even lie on the same surface. This thesis considers 

this problem and evaluates several existing and proposed solutions from the point of 

view of geometrical considerations and time marching flutter analysis. The test cases 

considered are for the AGARD 445.6 wing and the MDO wing. A boundary element 

formulation is also considered both for the elimination of the transfer problem and 

also as a transformation method. 



A successful evaluation of the influence of the transformation method on the time 

marching response of a wing in a transonic flow is given and is based on the decompo­

sition of the transformation into two components inwards and outwards of the plane 

of the structural model's plane. 
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Chapter 1 Introduction 

... Could we not solve all our aeroelastic problems in one fell swoop by 
treating the dynamics of a deformable aircraft? In theory this was certainly 
possible, but the complexity of the problem ruled this out in practice. There 

was, however, a ray of hope that automatic calculating machines and electronic 
devices were being studied and offered the possibility of enormous advances on the 

capabilities of the machines of today 
A.R. COLLAR, Aeroelasticity~ Retrospect and Prospect. 

The Journal of the Royal Aeronautical Society, Jan. 1959, Vo1.63, number 557, p.4 

1.1 Historical Review of Flutter 

Collar[l] foresaw, 42 years ago, that computers would make a significant impact on 

the study of aeroelastic problems. No flying vehicle is perfectly rigid, and its flexibility 

can interact with the flow around it to create self-sustaining vibrations. Flutter is a 

self-excited oscillation in which energy is absorbed by the body from the airstream. 

The simulation of this problem is the subject of this thesis. An historical review of 

flutter is presented in the following paragraphs. 

The first major study on flutter, according to Garrick and Reed's historical re­

view on aircraft flutter [3], was made by F. W. Lanchester during World War I for 

the Handley Page 0/400 biplane bomber which experienced violent antisymmetric 

1 



2 

oscillations of the fuselage and tail. It was said that Lanchester's report[4] recognised 

two important points: 

• that the oscillations were not the result of resonance induced by vibratory 

sources but were self-excited 

• and that an increase in the structural stiffness could eliminate the problem. 

Tail flutter resulting in pilot fatalities was experienced only one year later by the de 

Havilland DH-9 airplane, as mentioned by Garrick and Reed[3] . 

In the review [3], the period from 1918 to the 1930's featured a systematic study of 

the van Berkel monoplane, a seaplane for reconnaissance( Baumhauer and Koning[5]). 

The flutter problem consisted of a vertical bending of the wing combined with the 

motion ofthe ailerons. It was argued that a mass balance ofthe aileron could eliminate 

the problem, and thus the idea of decoupling interacting modes was introduced. The 

same kind of flutter origin was also investigated in the UK for the Gloster Grebe and 

Gloster Gamecock biplanes. It was found that moving the aileron to balance the wing 

mass solved the problem. 

The review then asserts that due to the increase in aircraft speed and the use of 

new structures, the importance of flutter increased during the Wod War 11. In 1945 

in Germany, 146 flutter incidents took place of which 24 resulted in crashes [3]. All 

of these incidents involved flutter of the control surfaces or of the auxiliary controls. 

During the 10 years following the second war there was a major drop in the number 

of flutter incidents. A total of 54 flutter incidents were recorded and documented. 

As foreseen by Collar[l] this was made possible by computational methods which 

complemented improvements in experimental techniques for flutter models, ground 

resonance testing and flight flutter testing. These computational methods were all 

based on linear aerodynamic and structural models. The equations of motion for 



3 

the structure can then be transformed to the frequency domain and the analysis then 

examines the damping characteristics there. By contrast, the full nonlinear equations, 

with the nonlinearity resulting from the flow or the structure, must currently be 

integrated forward in time to examine stability properties. Theodor Theodorsen's 

work [6] on two-dimensional flutter theory led in the 1950's to the vg flutter analysis 

method. The decline in the number of flutter incidents continued between 1960 and 

1972 when seven mild flutter incidents are recorded. But as explained by Kaynes [7], 

an exception to the reduction of accidents arose in the UK in 1990 when the Shorts 

Tucano aircraft experienced vibrations in a flight test. This was due to the presence 

of stores on the wing which modified the flutter characteristics of the aircraft, and 

which were not predicted by linear aeroelastic methods[7]. 

Most flutter problems arising with modern aircraft are of the Limit Cycle Oscilla­

tion (LCO) type. Usually for a classical flutter there is a value of a system parameter 

such as air speed or altitude at which the stability of the system changes to an oscil­

lation with growing amplitude until structural failure. In the case of an LCO, above 

the onset of flutter the oscillations remain limited and sustained, and might not be 

destructive. However, from a practical point of view, these oscillations can be ex­

tremely uncomfortable for the pilot, and in the case of fighter aircraft, the precision 

of the air-to-air missile systems can be reduced. In addition they can increase fatigue. 

Much of the recent work on flutter attempts to characterise the limit cycle oscillation 

(LCO) within the flight envelope and to modify the flight control systems to minimize 

the effect on aircraft such as F16 and F / A 18. 

Most of the recent incidents concerning LCO's have been associated with exter­

nally mounted stores, although this behaviour is still to be explained. According 

to the review given in reference [7], unexpected instability arose for the Mitsubishi 
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F-2A/B fighter in 1999. These vibrations delayed the program for at 9 months l
. The 

problem was linked to the presence of stores. Stores integration was also responsible 

for a 30% reduction in the flight envelope for RAAF F-182
. In 1998, the American 

military aircraft F / A-18E/F Super Hornet showed vibrations during flight tests. At 

stake was the production of 222 aircraft with a value of 40 billion dollars. The US 

navy was confident that the problem could be overcome by modifying the wing struc-

ture . However, this solution led to the appearance of other aeroelastic phenomena. 

The money was ready to be released as long as the vibration problems were solved. 

In June 2000, it was said that the US General Accounting Office (GAO) would like to 

delay the full-rate production due to the discovery of potentially damaging noise and 

vibration problems. The vibration problems can cause damage to air-to-air and air-to-

ground weapons carried aboard the aircraft. The GAO reported that Congress should 

tell the Navy to defer production in order to avoid costly retrofitting. The Northrop 

Grumman USAF B-2 Bomber was designed using a linear aeroelastic code. However, 

during flight testing at higher subsonic Mach numbers, non linear aeroelastic pitch 

oscillations arose that were not predicted by linear models. Using a Navier-Stokes 

code it was shown that these phenomena were predictable [8], and that they arose 

from strong shock induced oscillations. 

Today there are few catastrophic flutter incidents due to modern testing tech-

niques and regulatory safety margins. However, theoretical prediction methods are 

unsatisfactory in a number of respects which will be discussed below. As illustrated 

by the examples cited above, there are still regularly arising flutter problems which, 

although rarely fatal, can delay projects and incur substantial additional costs to fix. 

In addition, flight testing is still done with heightened caution due to the lack of confi-

1 Flight magazine, 16th June 1999, p.27 
2Flight magazine, 10th October 2000, p 23 
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dence in theoretical predictions in the transonic range. This again causes substantial 

additional cost. Therefore, there is considerable motivation of a practical, scientific 

and monetary kind to advance the understanding and prediction of aeroelastic effects. 

1.2 Linear Analysis Methods 

The most widely used method for flutter certification is linear, and is available in 

the commercial package in MSC/NASTRAN among others. This method relies on 

a potential flow solver which is based on linearized aerodynamic potential theory 

where the undisturbed flow is supposed uniform or varying harmonically. The wing is 

modelled by panels, and the lifting surfaces are supposed to be nearly parallel to the 

flow. For the supersonic range, supersonic lifting surface theory is usua:lly employed. 

The structure is modelled as modes, and the spatial interfacing uses spline methods 

such as the Infinite Plate Spline described in detail later. 

For the classical approach the problem can be written as 

(1.1 ) 

where M, D and K are the structural mass, damping and stiffness matrices, c5xs is 

the wing deflection on a grid of points Xs and L indicates the aerodynamic loads. 

The flutter analysis is done in the frequency domain. The first hypothesis is that the 

dam ping is proportional to the stiffness 

(1.2) 

and then that the structural motion is supposed harmonic 

(1.3) 

where the real part of s determines the stability (positive is unstable, negative is 

stable). The aerodynamic loads L are computed using linear aerodynamics and are 
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linearly related to the deflections through the so called Aerodynamic Influence Coef-

ficient matrix. 

Usually equation (1.2) is expressed in modal coordinates as 

where M hh , D hh , Khh and Lhh refer to the modal mass matrix, damping matrix, stiff­

ness matrix and aerodynamic matrix respectively. To solve the system, the unsteady 

aerodynamic forces are supposed to be oscillatory with a reduced frequency of k at 

Mach number Moo. Here p refers to the fluid density, 9 to an artificial damping and 

V 00 the fluid velocity. 

From this last equation, several types of method have been developed to solve the 

system, including the Vg, pk and determinant based methods[9]. For the Vg method, 

also called the k method in MSC/NASTRAN, s is supposed to be purely imaginary. 

This leads to an eigenvalue problem for ( Moo, k, p). The flutter velocity is calculated 

where no additional damping is required to force the motion to be oscillatory (g = 0). 

The pk method does not make the hypothesis that s is purely imaginary and 

is also implemented in MSC/NASTRAN [71]. The methodology used to determine 

the flutter boundary is also based on a complex eigenvalue analysis. This supposes 

that the structure is at the flutter boundary or is varying harmonically on one of its 

modes. The modal equation leads to the problem of finding the frequency at which 

the system flutters, and corresponds in practice to determining (Moo, k, p) for which 

the structural frequency s corresponds to the reduced frequency k. This method 

requires special iteration techniques. 

The determinant based method, or P method, assumes that the aerodynamic 

matrix is a rational function of the displacements. The determinant of the system 

is then calculated for increased frequencies at constant altitudes and velocities. The 
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real part of the determinant is plotted against its imaginary part. These graphs are 

then interpreted to determine the stability position. 

1.3 Requirement for Non-linear Methods 

Due to the development of new types of aircraft, flutter studies based on classic 

methods fail to predict accurately the aeroelastic behaviour. There are a number of 

examples and reasons for this. 

There has been a growing interest in High Altitude, Long Endurance (HALE) 

aircraft in recent years. These aircraft are being considered for unmanned reconnais­

sance missions, long term surveillance, environmental sensing and also for communi­

cation relay. Such aircraft have slender wings (aspect ratio or the order of 35), which 

are highly flexible. Large deflections can result, reaching about 25 percent of wing 

semispan. Linear theory fails to accurately analyse such aeroelastic deformations. 

An example of this is the aircraft called strato2C [10]. This high altitude aircraft 

is intended for manned stratospheric research missions up to 80000 ft. Aeroelastic 

investigations are important and a critical requirement is low empty weight. Linear 

theory failed to give accurate estimates of the speeds at which aeroelastic instabilities 

occur due to the large scale deflections experienced. 

A number of examples of limit cycle oscillation( LCO) were cited above. There is 

ongoing debate about the origins of these but current thinking is that they are due to 

either shock wave motions or flow separation. In either case the linear aerodynamic 

theory can not predict these effects. Also, in the transonic range the linear aero­

dynamic theory is clearly not adequate. The techniques currently used to overcome 

this problem involve crude attempts at scaling the Aerodynamic Influence Coefficient 

matrix which relates the fluid forces to the structural displacements. Safety margins 
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have been sufficient to avoid problems with this approach but this is clearly not sat-

isfactory. Given that computational techniques now allow the realistic representation 

of aerodynamics over complete aircraft, settling for linear aerodynamics as the basis 

of aeroelastic analysis seems unecessarily restrictive and risky. 

This having been said, it is noted that the limitations of current techniques are well 

understood, even if only at an intuitive level, by aircraft designers. The development 

of new tools is at an early stage and has a large problem in gaining enough credibility 

to be used in practice. The current work should be seen in this context. 

1.4 Time Marching Analysis of Flutter using a Cou­
pled Simulation 

Because of the maturity of flow and structural solvers, it makes sense to bring together 

these two areas in order to simulate aeroelastic problems. The characteristics of fluid 

and structural systems make developing a single monolithic code difficult, with the 

exception of the approach developed in reference [2] which however places numerical 

restrictions on the efficiency of the solver arising from numerical stability. With the 

advances in numerical methods for CFD which permit accurate aerodynamic predic-

tions on rigid wing geometries, and the availability of a well established finite element 

method, for the prediction of structure deformations, it appears natural to couple the 

two well established methods in order to simulate fluid-structure interactions. In this 

approach the coupling between the two codes is crucial, because the aeroelastic solver 

accuracy will be limited by the coupling accuracy. 

So the problem we consider is, having two accurate codes, how can they be put 

together to create an accurate aeroelastic simulation? The question of time coupling 

has been extensively investigated in the literature. The issue of spatial coupling is 

less well researched and forms the major problem investigated in this thesis. 
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It is clear that solutions to the Euler equations depend on the aerodynamic shape. 

Calculations were made using different wing tips in reference [11]. The first study 

was on the influence of geometric modifications of a wing in steady flow. It was 

shown that static structural deformations could significantly change the values of the 

pressure coefficient distribution. Comparisons of wing tip effects on a flexible aircraft 

show that shock positions vary depending on the wing tip model. It is therefore 

essential not to introduce distortions into the aerodynamic profile due to the way 

that information on the deformation is passed from the structural model. 

Various methods have been proposed for the spatial coupling. The first were 

based on panel structural and aerodynamic models, and so consist mainly of in­

plane interpolation as in the infinite plane spline. However, with the necessity to use 

accurate aerodynamic solvers such as the Euler equations, the extrapolation of the 

structural displacements to the fluid interface, which now is no longer a simple panel, 

becomes important. There has been very little systematic study of this problem in 

the literature. A review of coupling methods is given in a separate chapter below. 

1.5 Thesis Originality and Plan 

The original aim of this work was to couple the Glasgow University flow code PMB 

with a modal structural solver for aeroelastic simulations. Initial effort focussed on 

the time sequencing for aerofoil problems and is described in section 2.3. The focus for 

three dimensional problems then shifted to the spatial coupling and two approaches 

were considered. First, the use of a BEM solver to eliminate the coupling problem by 

forcing the fluid and structural surface meshes to co-incide was considered and put 

under doubts for wing aeroelasticity (section 3.5). Secondly, after consideration of the 

performance of other coupling methods a new method, the Constant Volume Trans-
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formation( CVT) was proposed to transform data between the fluid and structural 

grids. This technique is considered and critically reviewed for two wing test cases 

and a good understanding of the influence of the coupling method on the response 

obtained is built up. Hence, the original objectives of the work have been met. 

Several publications have arisen from the work: journal papers on geometrical 

aspects of the spatial coupling [13] and time marching flutter test cases [12]; conference 

papers on the time sequencing [33], CVT transformation [34] and analysis of the CVT 

transformation[58]. 

The thesis is organised as follows. The general formulation is first described in 

Chapter 2; In the same chapter, the flow solver, structural solver and time sequencing 

are described together with indicative results for rigid wings and moving aerofoils. 

Next the boundary element method is described in Chapter 3 as a possible direct 

structural solver and also as the basis for a coupling method. 

Coupling methods are reviewed in Chapter 4 and their deficiencies are highlighted. 

The CVT transformation for coupling is proposed in Chapter 5 and its theoretical 

and geometrical performance are considered. 

The influence of the coupling method is illustrated in Chapter 6 where several 

coupling methods are compared for static and dynamic aeroelastic response for two 

wings. 

Finally, conclusions are presented in Chapter 7. 



Chapter 2 Formulation 

2.1 Fluid Model 

2.1.1 Overview 

With the advent of computational methods, it became possible to predict flow be-

haviour using nonlinear flow models in complex geometries. It is tempting for an 

aeroelastic calculation to use the highest aerodynamic model, the Navier-Stokes model. 

However, the effort needed to obtain a solution might not be justified if a compu­

tationally cheaper model could give realistic results. A summary of the available 

aerodynamic models is first presented before justifying why the Euler equations are 

chosen as part of our aeroelastic simulations. 

2.1.2 Choice of Model 

The Potential Models 

The potential flow model is an inviscid flow description which starts by supposing 

that the flow is irrotational, so that a velocity potential function can be defined. 

The full potential equation makes the hypothesis that the flow is irrotational and 

inviscid, but takes into account compressibility. If the potential function is denoted 

<I> , the density by p and the velocity by v, with v = V <I> , ensuring mass continuity 

leads to the equation 

(2.1) 

11 
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This is an equation with two unknowns <I> and p. Another relation between these two 

variables is needed to close the prolem. 

In order to obtain an equation for the density the momentum equation is used 

along with the hypothesis that the fluid is barotropic ( eg the density is only a function 

of the pressure). This leads to the unsteady Bernoulli's equation 

a<I> J dp v
2 

- + - + - = C(t) at p 2 
(2.2) 

Using the hypothesis that the flow is isentopic p <X p'Y and the definition of the speed 

of sound a2 = ,",(pip, the Bernoulli equation becomes 

(2.3) 

Finally, using the isentropic pressure density relation and the speed of sound, one 

obtains 

(2.4) 

Equations (2.1) and (2.4) form a closed system. This model is only realistic if the 

flow contains weak shocks which produce a small change in entropy. 

By supposing that the products of the time varying contributions to <I> and pare 

small compared to mean terms, one can obtain the transonic small disturbance (TSD) 

equation. Define <I> = <I>o + <I>' and then 

We drop the prime from now on and assume that we are calculating the perturbed 

part of the potential. The density equation is given by 

p = Poo[l - M~(:2 + ~; )]. 
00 00 

(2.6) 
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In the subsonic or supersonic range the TSD equation can be further simplified 

by neglecting the nonlinear terms to give 

(2.7) 

Considering the steady condition leads to the Prandtl-Glauert equation 

(1 - M!)cI>xx + cI>yy + cI>zz = O. (2.8) 

The equations can be further simplified if the flow solved is incompressible, when we 

obtain Laplace's equation 

(2.9) 

N avier-Stokes and Euler 

The Navier-Stokes equations describe the flow of air (a Newtonian fluid) with good 

realism. These were formulated in 1847 by Navier and later Stokes obtained the same 

equations independently. However, the solution of its full form is still an ongoing 

area of research. If the Reynolds' number of the flow is sufficiently high then the 

influence of viscous terms can be neglected and the Euler equations are obtained. The 

three-dimensional Euler equations can be written in conservative form and Cartesian 

coordinates as 

(2.10) 

where w = (p, pu, pv, pw, pE? denotes the vector of conservative variables. The flux 

vectors F i, G i and Hi are, 

pU* 
puU* + P 

Fi = pvU* 
pwU* 

U*(pE + p) + XtP 

(2.11) 



pV* 
puV* 

G i = pvV* + P 
pwV* 

V*(pE + p) + YtP 

pW* 
puW* +p 

Hi = pvW* 
pwW* +p 

W*(pE + p) + ZtP 

14 

(2.12) 

(2.13) 

In the above p, u, v, w, P and E denote the density, the three Cartesian components 

of the velocity, the pressure and the specific total energy respectively, and U*, V*, 

W* the three Cartesian components of the velocity relative to the moving coordinate 

system which has local velocity components Xt, Yt and Zt, i.e. 

U* = u - Xt (2.14) 

V* = v - Yt (2.15) 

W* = W - Zt. (2.16) 

The Euler equations can be solved using numerical methods. Since the equations 

permit rotational flow and entropy changes ( eg through shock waves), they are very 

useful in solving transonic flow problems, and flows with vortical structures already 

in the field. They cannot predict the influence of the boundary layer, including 

separation and the displacement effect, which would in general require the Navier-

Stokes equations. A simpler approach to including boundary layer effects is to couple 

an inviscid solution of the Euler equations with a boundary layer solver. 

Choice of Model for Aeroelastic Simulation 

The solution of the linearised potential flow model leads to a linear relationship be­

tween the deflections of the body and the forces introduced. This is very useful for 
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developing a matrix based analysis of aeroelastic stability. However, as discussed, the 

ability to describe shock waves and viscous effects is lost. Traditionally the potential 

model has been used almost exclusively for aeroelastic design calculations of aircraft. 

Research effort has been put into scaling the linear relationship to force agreement 

with higher fidelity models or measurements [14]. This approach cannot be expected 

to allow good prediction of nonlinear flow effects. The presence of shock waves in 

the flowfield leads to several nonlinear aeroelastic effects, including the transonic dip 

and limit cycle oscillations. To investigate these phenomena, a flow model able to 

realistically predict the shock waves is required. The TSD or full potential mod-

els are therefore candidates for the flow description, within their limitations on the 

shock strength. However, modern CFD techniques have tended to focus on solutions 

of the Euler equations, which treat the shock wave without simplifying assumptions. 

In addition, methods established for the Euler equations can easily be extended to 

the Navier-Stokes equations, and hence incorporate viscous effects. Hence, for es-

tablishing a nonlinear aeroelasticity prediction code for transonic wing flutter, the 

Euler equations capture the essential physics whilst being easily generalised. This is 

therefore the approach used in the current work. 

2.1.3 Numerical Method 

The flow solution in the current work is obtained using the Glasgow University code 

PMB( parallel multi-block). A summary of the applications examined using the code 

can be found in reference [15]. A fully implicit solution of the Euler equations is 

obtained by advancing the solution forward in time by solving the discrete nonlinear 

system of equations 

own
+

1 = 3wn
+l - 4wn + wn

-
1 R( n+l) 

07 2/lt + w . (2.17) 
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In the above, the first term on the right hand side is the discretisation of the time 

script i denotes the ith cell in the grid and 15 = Vipi where Vi is the volume of the cell. 

The second term on the right hand side, called the residual, is the discretisation of 

the convective terms, given here by Osher's approximate Rieman solver [16], MUSCL 

interpolation [17] and Van Albada's limit er. The right hand side is iterated to the 

updated flow solution w n+1 by the introduction of the pseudo time derivative on the 

left hand side. This term is discretised by 

own+1 wn+1,k+l _ wn+1,k 

aT .6T 
(2.18) 

to create the iteration through T. If the first term on the right hand side is neglected 

then this iteration is to the usual (non real time varying) steady state. At convergence, 

the updated flow solution is second order accurate in the real time step, .6t. The 

convergence level is monitored by the pseudo time tolerance (PTT) given by 

PTT = Ilwn +1
,k+1 - wn +1

,kll2 

IIwn+1,k+1 - W n ll2 
(2.19) 

which compares the size of the latest pseudo update with the latest best estimate of 

the real time update. The pseudo time problem is a non linear system of algebraic 

equations. These are solved in the current work by an implicit method which has 

been found to be efficient for calculating flow steady states [18] . The main features 

of the method involve an approximate linearisation to reduce the size and condition 

number of the linear system, and the use of a preconditioned Krylov subspace method 

to calculate the updates. The method has been tested on a number of unsteady flow 

problems including cavity flow[19]' pulsed spiked body flow [20], buffeting [21] and 

moving wings [22]. 

For aeroelastic applications the flow domain is deforming. A moving grid treat­

ment is therefore required. The grids used in the current work are block structured, 



17 

although the flow solution methodology is suitable for unstructured grids as well. 

The grids are deformed by interpolating boundary displacements to interior points 

[23]. The approach is independent of the method used to generate the initial grid. 

Grid speeds and transformation Jacobians are calculated by finite differences. Cell 

volumes are recalculated using a global conservation law by considering volume fluxes 

through cell sides. In the present calculations the geometric conservation law( GCL) 

was used. 

2.1.4 Example of Flow Solutions 

Results are first presented to validate and verify the flow solver. The F5 wing is a 

fighter type wing with small aspect ratio, a high leading edge sweep and about 5% 

thickness. Experimental data for a range of steady and pitching cases is available in 

[24] [25]. Previous results with the present method have been documented in [22] for 

cases involving rigid pitch and in [26] for steady flows around the wing with a tip 

launcher and missile. The results we present here are for the clean stationary wing 

with the freestream flow at Mach 0.896 and an incidence of 0.497 degrees. The grid, 

shown in figure 2.1, is of the C-O type with 125 points in the streamwise direction, 25 

points normal to the wing and 25 points in the spanwise direction. The time for one 

evaluation of the residual on this grid is 4.56 seconds on a Pentium Pro 200 processor. 

The convergence history is shown in figure 2.2. The magnitude of the residual (in the 

L2 norm) is reduced by 6 orders of magnitude in the equivalent time for 1560 work 

units1 which takes 120 minutes on a single Pentium Pro 200 processor. The pressure 

coefficient at 8 spanwise slices is shown in figure 2.3. Good agreement is obtained 

except for a discrepancy in the shock location due to the absence of the boundary layer 

displacement effect in the inviscid results. Finally, a plot of the pressure contours on 

11 work unit is the time for one residual evaluation 
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Figure 2.1: C-O grid for F5 test case. 

the upper surface of the wing is shown in figure 2.4. The shock wave strengthens as 

the tip is approached. 

We next look at a rigid pitching case on the same grid. The freestream Mach 

number is 0.947 and the mean incidence is -0.006°. The amplitude of the sinuisoidal 

pitching is 0.132° and the reduced frequency is 0.264. Twenty real time steps were 

used to resolve each period, leading to a total CPU time of 3681 work units to compute 

one cycle. On average 19.6 pseudo time iterations were required to drive the residual 

down four orders of magnitude at each real time step. The Fourier analysed pressure 
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Figure 2.2: F5 test case convergence history. Moo = 0.896, Cl! = 0.497°. 

coefficients are shown in figures 2.5 and there is good agreement with experiment. 

Note that the pressure coefficient is defined by 

(2.20) 

The main flow feature is a shock wave towards the trailing edge. The computation 

of similar cases for Mach numbers in the range 0.597 to 1.336 shows a similar level of 

numerical performance and agreement with measurements [22]. 

2.2 Structural Model 

2.2.1 Linear Elasticity Review 

We start with the two dimensional static linear case. The state of the strains at a point 

is defined in terms of stress components. Stress specifies how forces are transmitted 
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Figure 2.3: F5 test case pressure distributions. Moo = 0.896, a = 0.497°. The solid 
dots are the experimental measurements on the lower surface and the unfilled dots 
are from the upper surface. 

to a continuous body. The stress is defined as force divided by area. The planes 

normal and parallel to the coordinates help to define the 3 x 3 stress tensor u which 

is a symmetric matrix. 

The force equilibrium equations in three dimensions on a small element can be 

written as 
~ 

8x 
8uyx 
8x 
~ 

8x 

+8uyx 
8y 

+~ 8y 
+8uyz 

8y 

+~ 8z 
+8uzy 

8z 

+~ 8z 

The indicial form of this can be written as 

+bx = O. 

+by = O. 

+bz = O. 

aij,j + bi = 0, i,j = 1,2,3. 

(2.21) 

(2.22) 

Here the subscripts 1, 2, 3 refer to x, y, z and b refers to the body force vector which 
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Figure 2.4: F5 test case pressure contours. Moo = 0.896, a = 0.497°. 

has components bl , b2 and b3 . 
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Stress boundary conditions are associated with the equilibrium equation. The 

tractions on the boundary of the domain are denoted Px, py and pz. Equilibrium at 

the boundary requires the tractions on the boundary 

(2.23) 

to be satisfied where ni are the direction cosines of the outward normal n with respect 

to the x,y,z axes. 
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The 3 x 3 strain tensor € is linked to the displacements for the linear theory as 

1 
t .. - -(u· . + u··) tJ - 2 t,J J,t • (2.24) 

The state of stress and strain are related by eT = 'Dr€, where 'Dr is called the rigidity 

coefficients matrix, which depends on the elasticity coefficients (Young's modulus, 

Poisson's ratio and modulus of elasticity). 

The basic structural model equations are not simplified unlike the fluid case but 

there are two different solution approaches which we consider, namely the finite ele-

ment method (FEM) and the boundary element method (BEM). These are reviewed 

briefly in the next section. 

2.2.2 Finite Element Model (FEM) 

With advances in computational methods, finite element methods matured to allow 

the static and dynamic response of a structure to be determined. Stiffness (K) and 

mass (M) matrices are used to determine the equation of motion of an elastic structure 

subjected to an external force fs: 

(2.25) 

where oXs is a vector of displacements on a grid of points Xs' The structural matrices 

can be regarded as fixed at values calculated for the initial structure or can be updated 

as a function of Xs' Because the system we are considering is linear it is assumed 

that the structure characteristics are determined once and for all before the flutter 

calculations, so that M and K are constant matrices generated by, for example, the 

commercial package N ASTRAN. 

It is possible to directly couple a flow solver such as pmb with a structural solver, 

such as NASTRAN. An approach used by the current author consisted of communi­

cating between the two packages through files. From pmb, the unix command system 
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was used to run NASTRAN and to produce the NASTRAN files which contained the 

required surface force data. Then pmb read the data from the NASTRAN output files 

to obtain the structural displacements. However, this method proved to be very slow, 

and a better approach would be to have the finite element source code and include 

it with pmb to communicate through memory, or to interface through buffers, using 

the DMAP capability of Nastran. 

Another approach is to print the mass and stiffness matrices from the finite element 

package and then to use a Runge-Kutta ODE solver which is coupled with the flow 

solver. However, if the structure is linear and the stiffness and mass matrices do not 

change during calculations, the structural model can be reduced to a modal model, 

resulting in a very efficient structural solution. 

2.2.3 Modal Model 

In many cases the full finite element model can be simplified by neglecting all but a 

few dominant modes. The wing deflections 6xs are defined at a set of grid points Xs 

by 

(2.26) 

where cPi are the mode shapes and O'i the generalised displacements. Here the O'i 

depend on time but the mode shapes are fixed. The values of cPi and Wi are calculated 

by solving the eigenvalue problem 

(2.27) 

where M and K are the mass and stiffness matrices from the finite element model of 

the structure. The eigenvectors are scaled so that 

(2.28) 
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Projecting the finite element equations onto the mode shapes results in the equations 

(2.29) 

where fs is the vector of external forces at the structural grid points. This equation 

can be solved by a two stage Runge-Kutta method, which requires a knowledge of f~ 

and f~+l. The accuracy of the modal model depends on enough modes being used. 

2.2.4 Boundary Element Method (BEM) 

An alternative solution method for the structural equations is called the BEM. Here, 

the structural equation can be solved through an integration over the structural sur-

face only. This is in contrast to the finite element method which is discretised in three 

dimensional space. The potential advantages of the BEM over the FEM are that only 

a surface mesh is required and that the dimensions of the matrices are reduced. From 

an aeroelastic point of view the treatment of the structural model only using surface 

information offers potential benefits. This is considered in detail in chapter 3. 

2.2.5 Discussion 

Computational Structural Dynamics (CSD) is more mature than CFD because of 

a longer history of development. Several commercial FEM packages are in routine 

use. For linear structural analysis the structural simulation is much cheaper than a 

typical CFD simulation, and involves the solution of an ODE. The use of the modal 

simplification further improves this situation. The main problem arising from the 

structural model for an aeroelastic simulation is associated with the transfer of the 

fluid forces from the aerodynamic solver. This is the topic considered in chapter 4, 5 

and 6. This problem also motivates an interest in the BEM, as discussed in chapter 

3. 



2.3 Time Sequencing of the Models 

2.3.1 Formulation 
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The flow solver passes the required force information to the structure which returns 

the structural motion to the flow solver. This coupled problem is typically solved 

using the structural and flow solvers in sequence. The sequencing, which is used for 

numerical convenience, introduces an additional source of error into the calculation. 

This error is potentially serious since the energy exchange between the fluid and 

structure is altered. The consequence is a reduction in the time step which can be 

used to accurately calculate a response compared with the flow or structural solvers 

used separately, hence making an already expensive calculation more costly. This 

was shown in Djayapertapa's Thesis [27] where such an approach, called weak cou­

pling, was compared with a strong coupling. The rate of decay of a pitch-plunge 

NACA64AIO airfoil was considered at Mach 0.85, and the strongly coupled method, 

which avoided sequencing errors, was found to yield advantages in the size of time 

step allowed, and hence in the computational efficiency. 

The main cost in a fluid-structure interaction simulation is normally incurred 

during the flow solution. It is therefore very important to optimise the flow solver. 

A basic design criterion for a numerical method for unsteady flows is that the time 

step used should be chosen only on the basis of requirements for accurately following 

the evolution of the flow without considerations from other numerical factors like 

stability. The framework introduced by Jameson [28] allows this to be achieved by 

reformulating the problem of updating the flow as the solution of a modified steady 

state problem, which can be calculated using the most successful methods for steady 

state flow analysis. 

Within this formulation an iteration is used to update the flow solution. This 
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raises the possibility of building the structural solution into this iteration with the 

converged flow and structural solutions progressing forward in time together. The 

main question is whether the coupled solution behaves (in terms of time accuracy) as 

well as the two components of the simulation when used separately. 

The Euler equations are solved in a time varying domain r = r(t). The boundaries 

of this domain ar consist of the structural surface and the truncated far field. The 

structural model is used to compute the response of the structure, and hence the 

evolution of r. To illustrate the influence of the time sequencing for the full problem, 

a test problem consisting of the response of an aerofoil free to move in pitch and 

plunge is considered in the current section. This problem includes the influence 

of time coupling but avoids the effect of transferring data between the fluid and 

structural grids. 

Following the formulation of Kousen and Bendiksen[29]' the equations describing 

this are 
dq 
dt = F(q, w) (2.30) 

where q = (a, h, da/dt, dh/dtf, a is the aerofoil incidence and h is the vertical 

displacement non dimensionalised by the semi-chord, measured positive downwards. 

The vector on the right hand side is F(q, w) = (q3, Q4, F3, F4f where, denoting 

q = (ql, q2f, F = (F3, F4f is given by 

F = f(w) - M-1Kq (2.31) 

where 

M = [1 x~ 1 
Xa ra 

K = [w01 r~ 1 ,f = [ ~g~j~ 1 
and f3 = 4/ (7r MW;;). The notation and values used here are 
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• CL and CM are the lift and moment coefficients obtained from the flow solution 

• M and K are the mass and stiffness matrices respectively 

• Xo = -0.2 is the offset between the centre of gravity and the point about which 

the pitching motion takes place (called the elastic axis) , measured negatively 

for the centre of gravity aft of the elastic axis 

• r~ = 0.29 is the radius of gyration, representing the effect of the moment of 

inertia about the elastic axis 

• wh = 0.11789 is the square of the ratio of the natural frequencies of plunging 

Wh to pitching Wo 

• J-L = 10 is the ratio of the aerofoil to fluid mass 

• 0- = 4b/ (Uoowo) is called the reduced velocity of the problem where Uoo is the 

freestream fluid velocity and b is the aerofoil chord length. Increasing values of 

the reduced velocity indicate an increasingly flexible structure. 

Using the solution of equation (2.29), the geometry for the flow problem can now 

be denoted r = r( q), and hence depends on the structural solution. In return, the 

structural solution depends on the flow solution through the surface forces f. Following 

the pseudo-time approach of Jameson for the flow solution and using a Runge Kutta 

solution for the structural solution, the updated flow and structural solutions at time 

n+1 are calculated from the nonlinear system of algebraic equations 

3w~tl - 4w~. + W~-:-l 
R* . = Z,] Z,] Z,] + R. ·(wn+l) = 0 

Z,] 2tlt Z,] Z,] 
(2.32) 

for r = r( qn+l) and 

(2.33) 
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where Q indicates the Runge-Kutta solution. If an uncoupled solution is used then 

force values at time levels n-l and n are used to extrapolate for the values at n+1. 

The updated structural solution is then used to update the flow solution. However, 

the mismatch between the force values associated with the flow solution and the 

extrapolated values used to update the flow solution introduces a source of error into 

the calculation which is potentially serious since it is associated with the transfer of 

energy between the fluid and structure which is the crucial feature of the problem. 

We refer to this method as being sequenced in real time. 

This phasing error was removed in reference [30] by using the same Runge Kutta 

method to update the flow instead of equation (2.32). However, using an explicit 

method to update the flow values incurs a stability restriction on the size of the time 

step. Using equation (2.32) is preferable from this point of view since the time step 

can be chosen on the basis of time accuracy alone. Equation (2.32) is solved by 

introducing an iteration w~t,m through pseudo time which converges to the updated 

flow solution. An iteration for the structural solution can be introduced so that the 

latest approximation to the updated lift and moment values is used to calculate a 

better approximation to the updated pitch and plunge, eg 

(2.34) 

The m + lth flow iterate is calculated for the geometry f = f(an+1). The mesh 

velocities required for the transformation are calculated from the mesh locations at 

time n and pseudo time iterate n+l,m. At convergence, the structural solution has 

been updated using the the correct moment and lift values. The solution is sequenced 

in pseudo time, with the solution being coupled in real time. 

The next section uses a test problem involving limit cycle oscillations due to 

shock motions to evaluate the influence of using coupled or sequenced solutions in 
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real time on the computed' responses and the efficiency of the method. The test case 

considered involves delicate dynamics and is more difficult than the target wing flutter 

simulations. It can therefore be seen as a severe test of the approach. 

2.3.2 Results 

To provide a reference for the coupled solution we first look at the performance of 

the flow solver alone when applied to calculate the flow over a NACA64A006 aerofoil 

following a pitching motion at similar conditions to the free response examined later 

(sinusoidal pitching with an amplitude of 3.3 degrees and a reduced frequency of 

0.31). The convergence ofthe maximum moment coefficient during the cycle is shown 

in figure 2.6. 

Results are shown for the second order flow solver using equation (2.32) and for 

a first order method given by 

- n+l - n w·· -w·· 
R* . = t,] t,] + R. '(Wn-f"l) = O. 

t,] tlt t,] t,] (2.35) 

The superior convergence of the second order method is clear and a good solution is 

obtained using a time step of 0.32 (20 steps per cycle) for which the maximum lift is 

within 0.5% of the fully converged value. The first order solution does not reach this 

accuracy with 320 steps per cycle and exhibits linear convergence. 

To isolate the time sequencing influence we consider the response of an aerofoil 

section moving in two degrees of freedom. To examine these issues we use a test 

problem involving the pitch-plunge response of the NACA64A006 in a freestream at 

Moo = 0.85. This problem has been previously studied in references [29] and [32]. 

The bifurcation behaviour is shown in figure 2.7 and shows the response changing 

from a stable zero position to divergence followed by a finite amplitude limit cycle. 

The particular example we use here is at 0 = 1.9 which features flutter-divergence 
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interaction. The non linear nature of the behaviour presents the numerical scheme 

with a significant test. 

A time step refinement was carried out to test time accuracy using the solution 

which is sequenced in real time, the results of which are shown in figures 2.8 and 

2.9. The first point to notice is that the solution appears to be converging to a 

solution with negative divergence when the traces with tlt = 0.64,0.32,0.16 and 0.08 

are examined. However, when the time step is reduced to tlt = 0.04,0.02 and 0.01 

there appears to be a step change to positive divergence. Initial conditions used here 

are aa = 1.0 degrees and ha = O. This behaviour is explained by the need to resolve 

the fast initial transient accurately, which is not done for the larger time steps. To 

test this, a method with varying time step given by 

(2.36) 

was used with tltl = 0.02. This ensures that a small time step is used initially which 

is increased to some maximum value as the calculation proceeds. Compared with 

using a constant time step tlt = 0.02 throughout the calculation, this approach gives 

identical results for tltmax = 0.16 when using sequencing in pseudo time, as shown in 

figure 2.10. 

The traces obtained using sequencing in real and pseudo time are compared in 

figure 2.11 for the limit cycle phase of the motion. The sequenced solution in real time 

obtained using tlt = 0.08 is comparable in terms of quality with the solution obtained 

using tlt = 0.32 for sequencing in pseudo time, as shown in table 2.1. Hence, the 

solution which is sequenced in pseudo time gives some benefit in avoiding temporal 

errors introduced by the sequencing. From the table it is evident that introducing 

the structural solver into the pseudo time iterations does not increase the number 

of steps required to attain a converged flow solution. However, the method which is 
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Sequencing Time Step amin a max iterations/real time step CPU/unit time 
real time 0.64 -4.00 3.05 11.2 5.59 

0.32 -3.48 2.74 10.1 9.98 
0.16 -3.38 2.68 9.2 17.56 
0.08 -3.34 2.65 8.3 29.63 
0.04 -2.56 3.18 7.2 49.94 
0.02 -2.45 3.11 

pseudo time 0.64 -3.05 1.91 11.3 8.06 
0.32 -3.32 2.50 10.1 13.81 
0.16 -3.35 2.63 9.3 24.50 
0.08 -3.33 2.64 8.3 42.63 

Table 2.1: summary of time step refinement 

sequenced in pseudo time requires the solution of the structural equations and the 

movement of the mesh at each pseudo time step rather than just once per real time 

step. This increases the cost of each pseudo step by about 40 % in the current case. 

2.4 Conclusions 

The three dimensional flow solver, modal structural solver and the time sequencing 

have been described. For single discipline simulations the flow and modal solvers work 

well. The use of time sequencing in pseudo time allows sequencing errors between 

the two simulations to be removed in a straight-forward fashion. Satisfactory results 

were obtained for the pitch-plunge test case whose dynamics is more difficult than 

the target wing flutter simulations. The approach of sequencing in pseudo time will 

be therefore be considered satisfactory. 

The final problem to be overcome before time marching wing flutter simulations 

can be carried out is that of transferring information between the fluid and structural 

grids. This is investigated in the coming chapters. 
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Figure 2.5: Comparison between computed and experimental data for mean, real and 
imaginary pressure coefficients for the rigid pitching F5 wing case. 
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Chapter 3 Direct Solution by BEM 

3.1 Overview 

For aeroelastic simulations the finite element method (FEM) is almost always used 

to obtain the structural solution. Using FEM normally introduces the necessity of 

interpolating the structural displacements to the fluid mesh, and the fluid forces to the 

structural nodes. It is worth considering if an approach could be found to remove the 

interfacing problem altogether by, for instance, changing the type of structural solver. 

The interpolation problem is exacerbated when the surface of the structural model 

does not coincide with the fluid surface. By using the boundary element method 

(BEM) as the structural solver, the fluid and structural meshes can be defined on 

the same surface, and by using the fluid surface mesh as the BEM grid, the fluid 

and structural meshes can be made to coincide easily, and in fact mesh generation 

for the structural model is then completely avoided. In this chapter we consider the 

practicality of such an approach. 

First, the formulation for the BEM method is presented (following [36] [37] [38]) 

and its implementation is described and validated. Finally the practicality of the 

proposed approach for aeroelasticity simulation is discussed. 

38 
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3.2 Formulation and Implementation 

3.2.1 Origins 

The development of the boundary element is reviewed in the recent thesis of Gao [39]. 

A boundary element formulation was developed in the 1960's to study torsion prob­

lems in regular shafts [40] [41]. Constant elements were applied for the direct integral 

formulation for 2d problems in reference [42] and in 3d in [43]. The boundary element 

method gained in popularity with the research community after a conference in 1978 

at Southampton University. In civil engineering the boundary element method is be­

ing developed to study increasingly complex problems, including non-linear structural 

effects as in reference [39]. However, the BEM has hardly penetrated aeronautical 

engineering as a tool for structural analysis. The formulation used in this chapter 

reflects this situation in that basic methods, which have been incorporated into a 

simple research code written in the C programming language, are used to gain in-

sight into whether the BEM could be considered as a means to remove the interfacing 

problem between FEM and aerodynamics models for aeroelastic simulation. No new 

developments on the BEM formulation have been undertaken as they are beyond the 

scope of this thesis. 

3.2.2 The Problem 

Following [36] [37] consider a homogeneous body that occupies a volume r enclosed by 

the boundary ar which is composed ofr1 and r 2 . Let u, € and 0' be the displacement, 

strain and stress fields in r and let p be the traction vector. We assume that the 

body is restrained on r 1 and loaded on the free boundary r 2.1 If the body has linear 

IThe application of boundary conditions is usually more general than this with, for example, 
mixed traction and displacement conditions at the same point. However, in the current work this 
situation does not arise. 
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elastic behaviour and the small displacement theory is assumed then 

(3.1) 

in r. Here 'Dr is the rigidity coefficients matrix. 

The steady state differential equations of motion of a medium r enclosed by a 

boundary or are expressed in tensor notation as 

with the boundary conditions 

Ui = Ui, on r 1 

Pi = Pi, on r 2 · 

(3.2) 

(3.3) 

Here b represents the body forces on the volume r, er the Cartesian stress tensor, U 

the vector displacement field, r 1 the part of the boundary where kinematic conditions 

are imposed, r 2 the part of the boundary where traction conditions are imposed, U 

the known displacements on r 1 and p the known tractions on r 2 . The tractions on 

the boundary are related to the stress tensor by the expression Pi = (Jijnj, where nj 

are the components of the outward normal to the boundary. 

3.2.3 Weighted Residual 

As in [36], the numerical solution, u is approximated and the error can be minimised, 

by weighting the governing equation by a new function u*. Taking into account the 

equilibrium equation (3.2) and the boundary conditions (3.3) a weighted residual 

statement can be written as 
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where u*, p* are the displacements and tractions corresponding to the weighting field. 

The strain-displacement relationship and the constitutive equation are assumed to 

apply to both the approximating and the weighting field. Here uk are the virtual dis­

placements which satisfy the homogeneous boundary conditions Uk * = O. We interpret 

Uk as a weighting function and Pk = njCTjk as the surface tractions corresponding to 

the uk system. It is assumed that the strain-displacement relationships are linear, i.e. 

E-- - l(u- -+ u--) ZJ - ~ Z,J J,Z 

E*- = -(u* -+ u-i; -) zJ 2 z,J J,z 

(3.5) 

and that the material properties are also linear. 

Integrating twice by parts in equation (3.4), the boundary integral formulation of 

the problem is written ( see Appendix A) as 

3.2.4 Fundamental Solution 

The weighting field chosen is the fundamental solution (given in Appendix A) for the 

elasticity problem, i.e. the solution corresponding to the equation 

(3.7) 

with bl representing a unit load acting at point 'l m the direction k. With this 

weighting field, the displacements at any point inside the solid are given by 

with ci = 1. 

As the point i approaches a smooth boundary the integrals on the left hand side 

yield a jump term. Then equation (3.8) holds but with ci = 1/2. 
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3.3 Implementation 

3.3.1 Matrix Notation 

Following the formulation in [38], the implementation is presented for two dimensional 

problems. Equation (3.8) can be written in matrix form by defining some arrays. 

The fundamental solution terms in the integrals can be written, in two dimensions, 

as matrices with elements P* and U* 

(3.9) 

The basic equation (3.8) applied at point i then becomes (assuming that the body 

force is zero), 

(3.10) 

where u i defines the displacements at the internal or boundary point i and ci is a 

2 x 2 constant array whose values depend on the type of point under consideration. 

If point i is an internal point, cL = 6kl, and if the node is a boundary point on a 

. 1 
smooth surface Ckl = 26kl. 

3.3.2 Matrix Form after discretising the boundary 

The volume surface is discretised by elements which can be constant, linear, quadratic 

or even of higher order. For some elements (linear for instance), the corners have to 

be treated with care because of discontinuities of the structure which can complicate 

numerical implementation. In order to avoid this problem, constant elements can be 

used, but this means that more elements are required for accuracy. 

If the surface of the boundary under study is discretized using constant elements, 

this implies that the values of u and p are equal to the value at the mid-node of the 

element. If the body surface is discretized into N constant boundary elements then 
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for element i 

(3.11) 

The spatial order of the solution can be increased by using linear elements with the 

displacements and the pressures being represented in terms of linear shape functions. 

For instance if NI and N2 are the shape functions, the displacement of a point situated 

on the j-th element with end points at nodes lj and rj is given by 

(3.12) 

where ~ is the normalized coordinate which measures distance along the element. The 

discrete form of equation (3.10) then becomes 

(3.13) 

where the superscript i now refers to nodal values. 

The integrals produce, in two dimensions, two 2 x 2 submatrices called if and G. 

The equation (3.11) can now be written as 

N N 

CiU
i + L HijU

j = L G~jpj. (3.14) 
j=1 j=1 

This equation relates the values of u at node i with the values of u and p at all the 

nodes on the boundary, including node i and can be written in a more compact way, 

if we define Hij = Hij when i =1= j and Hij = Hij + d when i = j . The equation then 

has the following form 
N N 

" H· ou
j 

- "G· opj ~ tJ - ~ tJ . (3.15) 
j=1 j=1 

Applying this equation to all boundary points, the result can also be written in matrix 

form 

Hu= Gp. (3.16) 

Here Hand G are 2M x 2M matrices where M is the number of boundary nodes. 



44 

3.3.3 Results at Internal Points 

Once the values of displacements and tractions are known on the boundary it is 

possible to calculate the displacements at any internal point. The displacements are 

given by 

u i = Ir u*pdf -Ir p*udf. (3.17) 

In the same way as matrices Hand G were introduced above, matrices Hbi and G bi 

are defined and they relate the internal points to the boundary points 

(3.18) 

'i.:J 
3.3.4 'Integral Calculations 

A major issue for the implementation is the evaluation of the integrals to define the 

matrices Hand G. For integrals which are not singular, a weighted Gauss method is 

used. 

If the function to be integrated becomes singular, the method used for constant 

elements is to exclude an area around the singular point from the calculation, following 

the subdivision approach introduced by Lachat [44] who showed that this works for 

weakly singular integrals (which arise for the terms in the matrix G). For constant 

elements the analytical form of the strongly singular integrals is available in [37] on 

page 144. 

For linear elements the regular integrals are again evaluated using the Gauss 

method. The following relations result from invariance under rigid rotation and trans-

lation. For rigid translation 

Li Hli = 0 
Li H2i = 0 

(3.19) 
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and for the rigid rotation, 

L Hli (X2)i = L H2i (Xl)i 
i i 

L H2i (X3)i = L H3i (X2)i 
i i 

L Hli (X3)i = L H3i (Xl)i 
i i 

where Hli,H2i,H3i correspond to a row of coefficients in the influence matrix corre-

sponding to the node in the direction of Xl, X2, X3 respectively. These relations can 

be used to evaluate the diagonal terms on the matrices in terms of off-diagonal terms, 

thus avoiding the evaluation of the singular integrals. They can also be used to check 

the formulation for constant elements. 

3.4 Validation 

To test the implementation some examples of in-plane static analysis for homogeneous 

bodies are presented. 

3.4.1 2D Circular Cavity Test 

A cavity under internal pressure in an infinite medium is studied. The example 

is taken from Brebbia [36]. The circular cavity is under internal pressure in an 

infinite medium. The cavity has a radius of 100 in, a shear modulus of 0.945e+5 

N/in2 and Poisson's ratio of 0.1. The structure is discretised using 24 constant 

elements. The axis system used has its origin at the centre of the cavity. Comparisons 

of the displacements at the point (-400 in,O) are given on the Table 3.1 and agree 

quantitatively. 
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XO YO dX Brebbia dY Brebbia dX Glasgow dY Glasgow 
-400.0 0.0 -0.1250002e-2 0.1111766e-7 -0.1293453e-02 -2.303930e-19 

Table 3.1: Circular cavity internal point displacements. All distances are in inches. 

3.4.2 Cantilever Beam 

This case is taken from Nikken and Brebbia[35]. A beam is under transversal parabolic 

forces at its two ends. On the left end, horizontal displacements are constrained, 

with the lower corner node displacements set to zero. The calculations with constant 

;!; ~ --' ...:.;,'_.- -' 

+ 8rebbia 
. _. Glasgow 120 elements 
. _. Glasgow 600 elemenst 
- Glasgow 1200 elemenst 

+ 

+ 

Figure 3.1: Cantilevered Beam Using Constant Elements 

elements converge for 600 elements as shown in figure 3.1. The current results compare 

reasonably well with previous results obtained using quadratic elements. 

The second comparison when using linear elements is shown in figure 3.2 . The 

linear code requires 360 elements for a converged solution. Note that for the circle 

case, the constant and linear BEM give the same results using 24 elements. However, 
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Figure 3.2: Cantilevered Beam Using Linear Elements 
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for the beam, 360 nodes are needed for convergence using linear elements, whereas 

600 nodes are required to converge using constant elements. Faster convergence is 

obtainable if the integrals are calculated more accurately. However, at convergence, 

the constant BEM model does not converge to the right final position. It has been 

suggested in reference [35] that when bending is important, constant elements are 

insufficient to obtain the right solution. 

3.4.3 Conclusion 

We have presented here the implementation of the boundary element method. Bound-

ary element solutions offer several advantages over the 'volume' type method. The 

boundary method can be formulated in terms of influence functions and involves only 

discretisation on boundary surface elements. The current implementation is made 

using constant and linear element models. 

The potential use of the BEM for advanced industrial type application such as 
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wing flutter is considered in the following section. Indeed, the popular method in 

industry to perform aeroelastic calculations is to model the structure using finite 

element methods or lumped mass models. To our knowledge, no effort has been 

made to couple directly a BEM solver with a finite volume based flow solver for such 

challenging problems as aircraft flutter phenomena. The feasibility of the approach 

is considered in the next section. 

3.5 BEM as a Direct Solver 

Before we move on to consider the issue of transferring information between offset 

fluid and structural grids it is interesting to consider the feasibility of using the BEM 

as a direct solver for aeroelastic problems. In theory, if the fluid surface mesh could 

be used as the mesh for a structural solution done by using the BEM, then the 

only additional work required to setup the coupled solution compared with a CFD 

simulation would be to specify the structural properties. Due to the coincidence of the 

fluid and structural meshes (by definition), the transfer of forces and displacements 

would be avoided, thus resolving this problem. 

First, we consider whether the fluid surface mesh would be suitable in terms of 

accuracy for the BEM solution. To test this a flow calculation on a mesh with 129 

points around and 33 points normal to the surface was undertaken for the NACA4412 

aerofoil at six degrees incidence and a Mach number of 0.6. This mesh has 97 points 

on the aerofoil surface. The grid is shown in figure 3.3. The pressure contours for 

these conditions indicate a shock wave on the upper surface which is well resolved, 

as shown in figure 3.4. The fluid grid here is of standard dimensions for an inviscid 

aerofoil calculation and has been shown by many authors to be capable of resolving 

the flow accurately if a second order spatial scheme is applied. 
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The surface pressures were re-dimensionalised assuming a free stream density of 

0.2kg 1m3 and a freestream speed of 247ml s. These values are typical of the calcu­

lations for the AGARD 445.6 wing shown later. The forces at the fluid centres were 

then fed into the linear static BEM solver just described. The aerofoil was fixed at the 

trailing edge and the deflections calculated assuming a shear modulus of 3 x 108 Pa 

and a Poisson ratio of 0.33. The resulting deflection is a nose up bending as shown in 

figure 3.5. Next, a coarser BEM mesh was created by merging adjacent cells in the 

original mesh. The deflection calculated on this coarser mesh is also shown in figure 

3.5. It is clear that the original mesh is the minimum which would be required for 

spatial accuracy of the BEM solver. In fact, considering the cantilever beam example 

shown above it would be expected that a finer grid might be required. These con­

clusions are all for a linear BEM solver and of course the mesh requirements could 

be reduced by using quadratic or higher order elements. As observed earlier the 

convergence performance of the BEM is sensitive to the accuracy of the numerical 

integration scheme used and the number of elements required might be significantly 

reduced by using an improved method. 

The following discussion is based on (and hence restricted to) the BEM formulation 

described above. These results allow an estimate of the cost of a BEM solution for 

a statically deflecting wing. The static BEM solver requires two full matrices to be 

stored, each of which has dimension (3Ns)2 where Ns is the number of surface points 

in the fluid mesh. For the AGARD 445.6 wing considered below Ns = 1500 although 

this could be considered as a low value due to the simplicity of the wing geometry 

and the flow over it (i.e. no strong shocks or separations). For this value, the number 

of floats that need to be stored is 2 x 9 x N; which works out at 36 million. This 

is comparable with the number of values which must be stored due to the implicit 

nature of the flow solver. For realistic cases a parallel solution is required to cope with 
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the memory requirements of the flow solver alone. Hence, it can be anticipated that a 

parallel BEM solver would be needed also. However, in the case of the flow solver the 

linear system is sparse whereas the BEM system is full. The parallel solution of a full 

system is a harder problem since iterative type methods need good preconditioning 

to converge, and this can be done relatively efficiently for sparse matrices but is not 

so easy for full matrices. So there are practical numerical issues which make using 

BEM structural solutions on the fluid surface grid a less attractive proposition than 

it might originally appear. 

Secondly,' the BEM method works well when the geometry. is an enclosed and 

contiguous shape. Wing structures are not like this since they consist of a lattice of 

beams. A BEM solution would need to describe this internal complexity to allow a 

realistic description of the structure. This would entail an increase in cost compared 

to the estimates of the previous paragraph and also the loss of the simplicity which 

is a motivating factor for considering this approach in the first place. The FEM can 

often construct a simplified version of the structure which reproduces the structural 

behaviour very well (eg using a wing box). Direct application of the BEM formu­

lation used in this thesis is unlikely to prove successful for modelling wing flutter. 

An improved formulation might change this conclusion and would involve accurate 

integral evaluations, multi-region and shell capabilities. These features improve the 

convergence and matrix conditioning properties of the method but their development 

lies outside the scope of the thesis. We continue with an FEM representation of the 

structure and attempt to resolve the problems this causes with respect to transferring 

information between the structural and fluid grids. 
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Figure 3.3: Grid for NACA4412 aerofoil. 

3.6 Conel us ion 

In conclusion, using the boundary element method can eliminate the coupling prob­

lem. However, significant practical problems arise, especially considering complex 

structures such as wings. Even if from the hardware and software point of view this 

is feasible, from an engineering one this is often impractical. A real wing can be mod­

elled accurately by simplifying the structural components, reducing the effort required 
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Figure 3.4: Pressure contours for NACA4412 aerofoil at Moo = 0.6 and a = 6°. 

to model all the structural details. It is therefore concluded that direct application 

of the BEM is unlikely to prove successful for modelling wing flutter. An alternative 

approach which uses the BEM as the basis for a transformation method between a 

finite element grid and a fluid grid is instead considered. 
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Figure 3.5: Normal deflections for NACA4412 aerofoil on the fine (i.e. derived from 
CFD) and coarse meshes. 



Chapter 4 Review of interpolation Methods 

4.1 Overview 

The state of the art for computational fluid dynamics (CFD) and computational 

structural dynamics (CSD) is represented by different types of numerical methods, 

finite volume and finite element respectively. This means that simulating a fluid­

structure interaction using one monolithic code is an unattractive proposition. A 

more popular alternative is to interface well established CFD and CSD codes through 

a coupling procedure. Coupling between the fluid and the structure is achieved by 

exchanging boundary data, such as aerodynamic pressures and structural deflections, 

at each time step. 

There are two cases to consider for the data exchange. First, even if the surfaces 

of the fluid and structural problems coincide, in general the grids for the fluid and 

structure do not. Therefore interpolation between these grids is required. The second 

case, which arises frequently in aeroelastic analysis, is when the fluid and structural 

surfaces themselves do not coincide. This happens when a simplified representation 

is used for the structure but the fluid simulation is carried out for the full geometry. 

In this case, displacements from the structural surface are used to reconstruct the 

fluid surface. A plate structural model can be used to represent various aircraft 

components. If the real geometry is used for the fluid solution then the problem of 

passing information between the fluid and structural grids becomes more complicated. 

54 
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Historically, interpolation methods have been developed for fluid-structure sim­

ulations based on potential aerodynamic models and plate based structural models. 

Here, the fluid and structural surfaces are both defined on a plate. For wing flut-

ter simulations the dominant motions are bending and torsion, with dilatation being 

small. For this type of motion there is only a small coupling between the displace­

ments in different directions and this fact has influenced the interpolation methods 

developed. A review of these methods is presented in this chapter. 

The following notation is adopted. A grid point is denoted by Xss = [xss, YssjT 

when it lies on a 2d surface (such as a plate) and Xss = [xss, Yss, zss]T when it lies 

on a general three dimensional surface. Here the subscript ss could denote the aero-

dynamic grid (a), the structural grid (s) or a virtual grid (v). It is useful to define 

a vector which contain all of the grid points strung together and this is denoted by 

xss = [Xss,l, ..... Xss,NjT where Xss,i is the ith point of type ss. Similar definitions are 

used for Yss and zss· Similarly, xss = [Xss,l, Yss,l, Zss,l·····Xss,N, Yss,l, zss,ljT. Finally, 

changes in a grid point location are denoted by adding <5 in front of the symbol for 

the location (s). 

4.2 Spline Type Methods 

The first proposed transfer method for aeroelastic calculations was the least squares 

technique, developed by Schmitt [45] in 1956. This calculated out of plane deflections 

for grids defined on a plate. Assume that the vertical (i.e. out-of-plane) displace­

ments <5zi are known at N structural nodes Xs,i = (Xs,i, Ys,if. The displacements 

at M aerodynamic grid points Xa,i = (Xa,i, Ya,if are calculated from evaluating the 

expression 
i=N 

<5z(x, y) = L CiE(Xs,i) (4.1) 
i=l 



56 

where E is a known function, and Ci are constants calculated by the least squares 

method, minimising the errors at structural grid points. The function E used in the 

original paper was E(x) = E(x, y) = cPa(X)cPb(Y), where cPa and cPb are the bending 

modes for a beam. 

A significant advance followed when Harder and Desmarais developed the Infi-

nite Plate Spline (IPS) method [46]. IPS remains one of the most popular methods 

for interpolation and is used in the current thesis to provide benchmark results for 

evaluation of the developed methods. 

4.2.1 Infinite Plate Spline 

IPS is based on the superposition of solutions for the partial differential equation of 

equilibrium for an infinite plate. Using the solutions of the infinite plate equation, 

the set of concentrated loads at the known data points which gives rise to the known 

structural deflections is calculated. Those concentrated forces are then substituted 

back into the solution, thus providing a smooth surface that passes through the 

structural points. The resulting expression is then evaluated on the aerodynamic grid. 

Points far away from known points are extrapolated nearly linearly. This method is 

used in this thesis for comparison and hence a more detailed formulation is given 

A surface spline defines the out-of-plane deflections oz(x) = oz(x, y) of an infinite 

thin plate which pass through known structural deflections OZ(Xs,i) = OZi. The static 

equilibrium equation for the plate is 

(4.2) 

where 1) is the plate flexibility and ql the distributed load. The solution, can be 

written as 
N 

oz(x, y) = ao + alX + a2Y + L Fir; In r; (4.3) 
i=l 
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where ri is the distance from the point (x, y) to the structural point (Xs,i, Ys,i). To sat­

isfy the boundary conditions at infinity, bz(x, y) must be similar to a linear function, 

thus satisfying the total force and total moment conservation 

'L,Fi=O 
'L,xiFi = 0 
'L, YiFi = O. 

(4.4) 

From these equations the coefficients Fi which give the known displacements at the 

structural nodes are calculated. These forces can then be used to determine the 

function bz, enabling the unknown displacements to be obtained at the aerodynamic 

points. 

According to the equation of equilibrium, the IPS method takes into account only 

the bending of the structure, i.e movement in the direction orthogonal to the struc­

ture, and any compression or dilatation in the direction parallel to the structure is 

neglected. In addition if the aerodynamic and structural points do not lie on the 

same surface then a projection is used onto a neutral surface. The projected aerody­

namic points are then displaced using the projected structural points and finally the 

aerodynamic points are recovered by adding the original offsets. 

The relation between the displacements at N structural and M aerodynamic 

points is conveniently written in terms of a spline matrix. Writing in matrix form the 

equation( 4.3), one gets: 

bz(x, y) = [1, x, y, K 1(x, Y), K 2(x, Y), ... , KN(X, y)] (4.5) 
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where Ki(x, y) = r;ln r;' Including the force and moment equations, and restricting 

the surface to pass through the structural points leads to the system 

0 0 0 0 1 1 ao 
0 0 0 0 Xs,1 Xs,N al 
0 0 0 0 Ys,1 Ys,N a2 

bzs 1 1 Xs,1 Ys,1 0 Kl,N Fl , 
bzs 2 1 Xs,2 Ys,2 K~1 K2,N F2 = [C][F] ( 4.6) , , 

Kj.l1 , o 1 Xs,N Ys,N 

where Kt,j denotes the function K j evaluated at the i - th structural point and bZs,i 

is the displacement at the i - th structural point. This equation can be solved for the 

vector with components ai and Fi. The displacements at the M aerodynamic points 

can then be evaluated from 

0 0 
0 

1 Kfl Kf2 KfN 
0 

0 
Xa,1 Ya,1 0 , , , 

bZa 1 
1 Xa,2 Ya,2 K21 K22 K2N bZ1 , , , 

, 
bZa2 , [C- 1] bZ2 (4.7) 

1 Xa,M Ya,M KAll KM2 KMN , , , 

bZaM , bZN 

where K~j indicates the function K j evaluated at the i - th aerodynamic point. A 

linear relationship 

(4.8) 

can be obtained by forming the matrix product on the right hand side of equation 

(4.7) and deleting the first three rows and columns. Note that this relation only gives 

out-of-plane displacements. If in-plane displacements are required then the same 

spline matrix is also applied for these. This implies that there is no coupling between 

displacements in different coordinate directions. 
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Next, we consider some of the properties of the IPS method. If the structure 

undergoes a unit translation at every point then c5z(x) = 1 is the unique solution 

of the biharmonic equation with the boundary conditions at infinity. This means 

that the unit translation is also recovered at the aerodynamic points, as would be 

expected. 

If the structural points are displaced according to a unit rigid rotation then we 

note that a unit rigid rotation represents also a solution of the plate equation. This 

can be seen by noting that for a rotation the displacemements must be linear in x 

and y, which is automatically a solution of the plate equation with· associated far 

field c0nditions. Hence, the aerodynamic points must also undergo the rotation, 

again as would be required. This is true when the spline has been calculated when 

the fluid and structure lie on the same plane. If the aerodynamic points do not lie 

on the structural surface, each aerodynamic point is linked to its projection onto the 

structural surface by a rigid bar. The normal displacements of the projected points 

are determined by IPS and the aerodynamic points are recovered by adding the rigid 

bars. Since the rigid rotation is not applied to the out-of-plane component, a rigid 

rotation applied to the structural points is not recovered for the aerodynamic points. 

Hence, the recovered aerodynamic profile will be distorted in this case. 

4.2.2 Other Spline Based Methods 

Other methods compatible with potential aerodynamic theories have been presented, 

and they follow closely the IPS. These are now briefly reviewed. 

Multiquadric-Biharmonic 

The method named Multiquadric-Biharmonic (MQ) method was proposed by Hardy 

[47J. MQ was used to perform interpolation in topography and the name reflects 



60 

the method's use of quadratic basis functions. The quadratic surface used in most 

cases is a hyperboloid of revolution in two sheets. The aerodynamic displacements 

are represented as a function 

N 

oz(x, y) = L Ci[(X - Xs,i)2 + (y - Ys,i)2 + ~]. (4.9) 
i=l 

This equation should be compared with equation (4.3) for IPS. The coefficients Ci 

are determined by forcing agreement with the known displacements at the structural 

points. The user-defined parameter ~ controls the shape of the basis functions. A 

large value for ~ gives a fiat sheet-like function, while a small value for ~ gives a narrow 

cone-like function. For non-zero values of ~, MQ produces an infinitely differentiable 

function that preserves monotonicity and convexity. 

Whereas IPS has a translation invariance property, MQ does not. To illustrate, 

consider the one-dimensional case, where the structure is represented by two nodes 

(Xs,l, Ys,lf and (Xs,2, Ys,2f which are given displacements OZs,l = 1 and OZs,2 = 1. 

This represents a rigid translation of the aerodynamic grid by one unit. Due to the 

nonlinearity of equation 4.9 however, calculating the displacement at an aerodynamic 

point will not yield a unit value and so a distortion in the surface will be introduced. 

In reference [48] it was pointed out that MQ performs poorly in regions which are 

relatively fiat when a rigid surface deforms during a rigid translation to a parabolic 

surface. 

Thin Plate Spline( TPS) 

Duchon [59] laid the groundwork for the thin plate spline( TPS). An irregular surface 

is represented by using functions that minimize an energy function. This method is 

very similar to the MQ method, the difference being in the basis functions which are 
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used, 
N 

bz(x, y) = L Cir; In(r;). (4.10) 
i=l 

For a 1-D problem, cubic splines are interpreted as equilibrium positions of a beam 

undergoing bending deformation. For a 2-D problem, these splines can be determined 

from the minimization of the bending energy (thus defining the equilibrium position) 

of a thin plate, and thus are similar to the IPS. Since these splines are invariant with 

rotation and translation they are suitable for the interpolation of moving or flexible 

components [49]. The properties of shape preservation under translation and rotation 

are similar to IPS. 

Finite Plate Spline 

For the FPS, described by Guruswany [50], a "virtual surface" is defined which does 

not necessarily pass through all the defined points. For known structural displace-

ments the virtual surface displacement is calculated which then determines the aero-

dynamic displacements. The relationship between the virtual surface displacements 

and the structural displacements can be written 

(4.11) 

where Xv is the vector of points on the virtual surface corresponding to the structural 

points xS. Similarly the relationship between the virtual surface displacements and 

the aerodynamic displacements is 

(4.12) 

In practice the virtual surface is constrained to pass through the structural points, 

whose displacements are known. To find the matrix 'IT a another condition is intro-

duced, namely that at a steady-state, the potential energy 7r of the system is min-
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imised. A constrained minimization problem in terms of the loads applied to the 

structure and properties of the virtual surface can then be solved. 

Inverse Isoparametric Method( IIM) 

In this method the aerodynamic point displacements are interpolated using the same 

shape functions used to approximate the deformation of the surface. To illustrate, 

Cr-__________________ ~D 

11' 

-A B 

Figure 4.1: Inverse Isoparametric Element 

the aerodynamic point M can be represented using shape functions as 

x = NA(~' f/)XA + NB(~' f/)XB + Nc(~, f/)xc + ND(~' f/)XD 
Y = NA(~,f/)YA +NB(~,f/)YB+Nc(~,f/)Yc+ND(~,f/)YD' (4.13) 

For point M, the associated values of ~ and f/ can be determined and then the fluid 

point displacement is calculated by evaluating the same shape function for these 

values and using them to weight the known structural displacements. The limitation 

of the method is that the aerodynamic and structural points must lie on the same 

surface. 

Summary of Review by Smith 

In reference [48], a full literature survey was performed to determine the interpolation 

methods most suitable for aeroelastic calculations. The methods were selected from 
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aeroelasticity, physical sciences and engineering design (CAD). They were assessed in 

terms of accuracy, ease of use, robustness and cost-effectiveness. 

Three methods were retained for a follow-on paper which appeared three years 

later [49]. These were IPS, TPS and MQ. These methods were evaluated for the 445.6 

wing, an engine liner and a space shuttle test case. 

The first case presented was on the 445.6 wing. This wing interpolation was 

assumed to involve only out-of-plane displacements. The TPS and MQ methods 

yielded good results. However the IPS method was found to give oscillations which 

perhaps indicates a problem of implementation. 

The second case performed was the engine liner. It was found that MQ performed 

poorly and that the TPS had the same significant distortions when used unscaled. 

However, it was claimed that applying scaling to the methods yielded good results, 

although it was never explained what this means. For the IPS method, three splines 

were needed and problems were seen in joining these splines. 

For the lifting body test case ( space shuttle), it was found that results could be 

improved for the IPS by modifying the implementation, although again the details 

were not given. Otherwise the MQ and TPS performed well. These results were 

confirmed for an F-16 wing interpolation. 

In conclusion, it was asserted that the best methods were the MQ and TPS, when 

scaled. It was also recognised that aeroelastic calculations should be performed using 

different interpolation methods to see their effects. 

Brown interpolation method 

An attempt to tackle the problem by introducing virtual elements between the struc­

tural and the fluid meshes for three dimensional configurations was given in Brown[51]. 

The idea resulted from consideration of an airfoil beam structural model. It was noted 
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that points originally perpendicular to the beam stay perpendicular and that their 

distances stay constant. This allows the extrapolation for the aerodynamic profile to 

be done by rigidly rotating the aerodynamic points as a function of the rotation of 

associated structural points. To generalise the method in three dimensions, virtual 

finite elements were introduced, which do not add mass or stiffness to the problem 

because they are solely used for displacement interpolations. However, it has been 

suggested that the addition of virtual elements is an unnecessary complication, par­

ticularly for complex geometries by Cebral and Lohner [52] . 

4.3 Weighted Residual Based Methods 

4.3.1 Method of Chen 

To overcome the shape distortion problem often associated with spline based meth­

ods an interpolation method based on the boundary element method (BEM) was 

proposed in reference Chen and Jadic [53]. The BEM is used in conjunction with 

structural potential energy minimisation and the spline matrix is built by assuming 

that the structure is at equilibrium and the potential energy is minimised, requiring 

the stiffness matrix. The use of the BEM instead of the finite element method allows 

the problem to be tackled when the fluid and structural surfaces are not co-incident. 

But because the number of structural nodes is often less than the number of aerody­

namic surface nodes, building a displacement interpolation method leads to a system 

of equations which has less equations than unknowns. In order to have a well posed 

problem the condition of minimum potential energy is introduced. Demonstrations 

of the method were performed for two dimensional problems in reference [53]. 

In figure 4.2, the fluid points lie on the real structural surface, and the internal 

points are used to represent the structural points used in the modelling. For the 
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Figure 4.2: Structural BEM problem 
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BEM interfacing, the fluid points, xI, are represented as the boundary points, and 

the structural ones, Xs as the internal points. Note here that in common with the 

BEM literature the displacements on these grids are denoted by the symbol u in this 

section. 

Writing the BEM for the internal structural points leads to the relation 

(4.14) 

Here the notation for the BEM matrices follows the description given in chapter 3. 

For the boundary points 

(4.15) 

Substitution of this last equation into equation 4.14 yields 

(4.16) 

Three cases need to be considered. If the number of internal points is equal to the 

number of boundary points, the system can be inverted. If the number is greater then 
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a least squares solution is used. If the number is lower then additional conditions are 

required to solve the system and in this case the strain energy is minimised. 

Denote the strain energy by £ = fr Pf,kUf,kdf where f designates the fluid bound­

ary, and the indices k the three spatial directions. In matrix form the strain energy 

is written as £ = U}RaP f where Ra is a matrix containing the areas of the boundary 

elements. Using the equation (4.14) and defining A = RaH-1G, then £ = U}AUf· 

Finally, the strain energy can be written as 

( 4.17) 

A Lagrange multiplier technique is then used to minimise the energy. The objec­

tive function is defined as F = U}AUf - ,xT(us - Us,given), where ,x and Us,given are 

the vector of Lagrange multipliers and the given structural displacements respectively. 

Solving the system 

o 

U - Us,given 

(4.18) 

leads to the spline matrix uf = Sus. The transpose of the spline matrix is taken in 

order to get the force transformation matrix. 

The method was improved by Chen and Hill [54] by introducing a virtual BEM 

mesh, as shown in figure 4.3. The BEM mesh is defined to contain the fluid and 

structural nodes. So considering the BEM mesh as the external mesh and the fluid 

mesh as the internal mesh one has 

(4.19) 

and for the structural mesh 

( 4.20) 
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FLUID POINT 

STRUCTURAL 

POINT 

Figure 4.3: Virtual BEM method 

Hence the relation between the fluid and structural points is 
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(4.21) 

The performance of the original and modified Chen methods is evaluated in the next 

chapter. 

4.3.2 Methods of Lohner and Cebral 

The method described by Lohner and co-workers [55] consists of two parts, the in­

plane and out-of-plane interpolation. For the in-plane motion, the method first consid­

ers the exchange of information in terms of pressures. The fluid pressure distribution 

is defined on a coarse fluid mesh and features a shock. The problem is to interpolate 

the pressure defined on the fluid grid to the structural grid. The fluid and structural 

grids lie on the same surface but are not coincident, as shown in figure 4.4. 

Using a point wise interpolation, the pressure shock is not interpolated correctly. 
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The method defines the interpolation so that Ps (X) = P f (X). Interpolating the pres­

sures with the help of shape functions gives Ps(x) = N;Pi,s for the pressure on the 

structural surface, and Pf(x) = N}Pi,J for the pressure on the fluid surface. For 

illustration, constant shape functions give 

Ps(X) = 0, x tJ. [Xs,i-l, Xs,i] Ps(x) = Ps,i(X), x E [Xs,i-l, Xs,i] 
Pf(x) = O,x tJ. [Xf,i-l,xf,i] Pf(x) = Pf,i(X),X E [Xf,i-l,xf,i]. 

( 4.22) 

Using the shape functions as weights the pressure equality can be expressed in integral 

form as 

(4.23) 

This form, similar to a weighted residual, leads to a matrix system: 

( 4.24) 

Using constant shape functions from a force point of view is equivalent to a linear 
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interpolation. 

When the fluid and structure meshes are offset, a surface tracking method with 

distance vectors is performed. The distance vectors are rotated according to the 

rotations of the normals to the deforming CFD mesh. In Cebral [56] it is stated 

that "For the case of reduced models or models with incompatible dimensionalities, 

it is still not clear if the rotation of the distance vector is enough" and "Treatment 

of reduced models or models with incompatible dimensionalities, in particular, the 

surface tracking algorithms that ensure work or energy conservation " is listed as a 

future development of the method. This method is in fact an inverse isoparametric 

method using linear shape functions and supposes that any out-of-plane motion is a 

rigid rotation. The limitations of this assumption will become clear when the CVT 

method is presented in the next chapter. 

I 



Chapter 5 : Analysis of Transfer Methods 

With the growth in multi-disciplinary simulation, the problem of coupling fluid and 

structural dynamics codes has attracted increasing interest. Most approaches were 

designed for the case where the fluid is modelled by a linear method which allows 

the true geometry to be simplified to a plate, consistent with the structural dynamics 

model. The transformation in this case can be based on scalar splines for the in-plane 

displacement. With the advent of higher levels of fluid modelling, which require a 

grid that conforms to the aerodynamic surfaces, new transformation procedures are 

needed. 

A new transformation method between a structural surface grid and a fluid surface 

grid is proposed and analysed in the current chapter. The transformation is local and 

is based on a volume conservation property. The method is analysed for conservation 

properties which are identified as being important in airframe aeroelasticity. The 

method properties are contrasted with other transformation method, the IPS and 

BEM methods, which were described in the preceding chapter. 

5.1 Transformation Methods 

5.1.1 The Constant Volume Tetrahedron Transformation 

The CVT method for the position of a fluid surface grid point is local in the sense 

that it only relies on information obtained from one element constructed from the 
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surface structural mesh. The first stage is to identify fluid grid points with structural 

grid points. Denote the fluid grid point under consideration by Xa,l (t). A search 

is carried out over the structural surface points to locate the nearest three points 

XS,i(t), Xs,j(t), Xs,k(t) which form a triangle (see figure 5.1). 

~:~---_Q X,I 
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/ I \ 

/ I '-
/ \ 

/ \ 
/ \ 

// \ 

/ \ 
/ \ 

/ \ 

~,i 

\ 
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\ 
\ 

\ 
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~,j 

Figure 5.1: Interpolation from structural mesh to fluid mesh. 

Once the fluid point has been associated with a structural surface element the 

position of Xa,l is expressed as 

c = aa + ,Bb + I'd (5.1) 

where a = x sJ" - Xsi, b = Xsk - Xsi, C = Xal - Xsi and d = a x b. The parameters 
)) , , " 

a, ,B and I' are computed from 

IbI2 (a.c) - (a.c)(b.c) 
a= ~~--~~--~--~ 

Idl 2 
(5.2) 



(3 
= laI 2 (b.c) - (a.b)(a.c) 

Idl2 

(c.d) "(=w· 
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(5.3) 

(5.4) 

Here, the term aa + (3b denotes the component of Xa,l in the plane of the structural 

points and "(d the component normal to the plane. The volume of the tetrahedral 

element formed by the three structural and one aerodynamic points is given by the 

triple product 

v = (a.b x c)/4 (5.5) 

which remains constant if the displaced fluid grid position is calculated from 

Xa,l = Xs,i(t) + aa(t) + (3b(t) + "((t)d(t) (5.6) 

where a and (3 are fixed at their initial values and 

(5.7) 

This expression means that the projection of the fluid point onto the plane of the 

structural points moves linearly with the structural points whereas the out of plane 

component is chosen to conserve the volume of the tetrahedron. If the fluid and 

structural points are planar then the expression reduces to linear interpolation for 

the position of the fluid point. 

It proves useful for defining force transformations to have a linear relationship 

between fluid and structural grid displacements. Equation (5.6) can be linearised in 

the structural displacements, giving 

(5.8) 

where A = 1- B - C, B = al - "(UV(b) and C = (31 + "(UV(a). Here 

U = 1 - :2 V(d)S(d) (5.9) 
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[ 0 
-Z3 

Z, 1 V(z) = Z3 0 -;1 , (5.10) 
-Z2 Zl 

[ ZI 
0 !l V(z) = ~ Z2 (5.11) 
0 

[ ZI 
Z2 

Z3 1 S(z) = Zl Z2 Z3 . (5.12) 
Zl Z2 Z3 

The linear relationship can also be expressed in the form bc = Bba + Cbb. For 

all of these expressions the matrices are evaluated at the initial values of a, band c. 

The two-dimensional version of the method is now described here along with a 

complex variable form. In the special case of two dimensional problems the linear 

form of the CVT method can be written as 

(5.13) 

where 

[
I-a "( 1 

A = _"( 1- a . (5.14) 

(5.15) 

Here the constants a and "( are calculated from the initial decomposition of Xa,l into 

a component in the direction of the structural points Xs,i - Xs,j and a component 

normal to this direction d, given by 

(5.16) 

This expression is simpler than the three dimensional case since in two dimensions 

the displaced normal direction d is a linear expression of the structural points (d = 

k x (xs,j - Xs,i) where k is the normal vector to the plane of the points), but is a 

nonlinear expression in three dimensions (d = (xs,j - Xs,i) X (Xs,k - Xs,i))' 
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We express also the method in complex notation for the two dimensional cases. 

This formulation will be used for demonstrating invariance properties. If the position 

of a point (x, y) is represented by the complex number x + iy then properties of 

complex numbers can be used to prove rotational invariance. Adopting the notation 

that the fluid point is at (a and the two associated structural points are at (s,i and 

(s,j with (ij = (s,j - (s,i then the nonlinear CVT method can be written as 

(a = (1 - a)(s,i + a(s,j + 6i(ij (5.17) 

where a and 6 are real. The vector associated with i(ij is orthogonal to the one 

associated with (ij. The linearised form in complex notation is 

(5.18) 

where a and 'Y are fixed at their initial values. 

5.1.2 Spline Based Transformation Methods 

We summarise here the characteristics of the spline based methods which will help 

the understanding of the ideas behind the CVT. 

Commonly used transformation methods rely on projection, interpolation and 

recovery. The CVT method described in the last section uses volume conservation and 

angle preservation principles for the projection and recovery stages. The interpolation 

phase is done using linear interpolation. 

In contrast, the projection and recovery steps for transformation methods designed 

for plate aerodynamics assume constant out-of-plane vectors. Using the notation from 

the previous section, the displacements of projected aerodynamic points xp onto the 

plane of the structural points are calculated from 

(5.19) 

I 

I 
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(5.20) 

(5.21) 

and then the displaced aerodynamic points from 

(5.22) 

If we write Xa = xp + do then the transformation maintains a constant out-of-plane 

component do The matrices S are calculated from equation (4.8). Note that these 

matrices are calculated for the out-of-plane displacement but are then applied for the 

in-plane displacements also. To obtain the consolidated for of the three dimensional 

transformation 

(5.23) 

the matrix S = [Sill, where Sij are 3x3 blocks is defined by 

(5.24) 

The method used for the comparisons shown in this chapter is IPS. 

5.2 Translational and Rotational Shape Preserva­
tion 

The nature of one of the most common aeroelastic instabilities which an airframe 

encounters is torsion-bending flutter, involving torsion and bending modes. Rotation 

(for torsion) and translation (for bending) are therefore important component mo­

tions. A desirable property for a transformation method is that it should be able 

to reproduce a translation or rotation in the aerodynamic grid when one of these is 

applied to the structural grid. 
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5.2.1 Translation 

If the transformation is linear of the form 

(5.25) 

a translation is reproduced on the aerodynamic grid if 

(5.26) 

for every vector h which can be partitioned so that 

(5.27) 

where hs is a three component vector of position. 

For the linearised CVT method, in three dimensions, A = I - B - C and hence 

Ahs + Bhs + Chs = (A + B + C)hs = hs. (5.28) 

For the IPS method the transformation recovers a translation due to the properties 

of the thin-plate solution used to define the matrices S. The rigid projection does not 

disrupt this. 

5.2.2 Rotation 

Two dimensions 

We first prove here that the CVT method is invariant under rigid rotation in two 

dimensions, before presenting the demonstration for the three dimensional case. 

The displacement 6Xs ,i of a point Xs,i caused by a rigid rotation through an angle 

() about the origin can be written as 

(5.29) 



where 

R = [ C?s () - sin () ]. 
sm () cos () 
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(5.30) 

A simple calculation shows that if two matrices satisfy A = _AT and B = - B T
, 

then AB = BA. Since Al = -AT, A2 = -AI and R = _RT, it follows that 

AIR + A2R = R(Al + A2) and so the displacement of the aerodynamic point which 

is interpolated from a rigid rotation applied to the structural points is 8xa = Rxa . 

Hence the transformation is invariant under rotation. 

Using the complex formulation, the displacement of point (1 due to a rotation 

through an angle () is given by 8(1 = ei8(1' Then, applying a rigid rotation to the 

structural points implies that 

Hence the two-dimensional linear transformation recovers rigid rotations. 

Three Dimensions 

The analysis of this section follows the approach laid out by Jonathan Smith of BAE 

SYSTEMS in private communications with the author. 

The rotation through an angle () about an axis parallel to the vector n can be 

written in the form x = Rxo where R = RoRxR6'. Here 

[

cos:::: cos e - sin e sin:::: cos e 1 
Ro = cos ::::.si~ e cos e sin:::: s~ e 

-sm.::. 0 cos.::. 

where e and:::: are angles defining the direction of the axis and 

[ 

1 0 
Rx = 0 cos() 

o sin () 

Expanding R in a Taylor series in () gives 

- s~n () l. 
cos () 

(5.31) 

(5.32) 

(5.33) 
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which to first order in (J is R = (I + T) where T = _TT. Hence the rotation can be 

wri tten as x = (I + T)xo. For a matrix of the form T = - TT, there exists a vector w 

such that Tx = w x x. Hence, to first order in the rotation angle, the displacement 

Ox of a point at position x due to the rotation is Ox = w x x. 

Applying a rotation to the structural points, the linear CVT method can be 

written as 

oc = Boa+ Cob (5.34) 

where oa = w x a and ob = w x b. Noting that V(a)b = a x b since VT = -V and 

V(a)S(b)c = (b.c)a, it follows that 

2,d 
Boa = aw x a -,b x (w x a) + "d2(d.(b x (w x a))). (5.35) 

Now, b x (w x a) = (b.a)w - (b.w)a and (d.a) = (d.b) = 0 since d = a x b, this 

expression simplifies to 

2,d 
BOa = aw x a -,b x (w x a) + "d2((d.w)(b.a)). (5.36) 

Similarly, 
2,d 

Cob = aw x b + ,ad x (w x b) - "d2((d.w)(b.a)). (5.37) 

Hence, 

. Boa + Cob = aw x a + {3w x b -,b x (w x a) +,a x (w x b). (5.38) 

Using the identity for the vector products it follows that 

a x (w x b) - b x (w x a) = w x (a x b) (5.39) 

and hence 

BOa + Cob = aw x a + {3w x b +,w x d = w x c. (5.40) 
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In other words, the linear CVT method applied to a linearised rotation of the struc­

tural grid returns the same linearised rotation applied to the fluid grid. 

For IPS, the influence of the constant projection vector means that this type of 

method cannot be invariant under a rotation since the rotation is not applied to do . 

Setting OXs = Rxs , the error incurred in recovering a rigid rotation is 

(5.41) 

and noting that 8R = R8 since the matrix R is block diagonal and the blocks of 8 

are diagonal, 

(5.42) 

Hence, the magnitude of this error increases linearly with () for small values of the 

rotation angle. 

5.3 Forces 

A coupled simulation also requires the transformation of forces. The principle of 
<;' , 

virtual work can be applied to define the force transformation from the fluid to the 

structural grid in terms of the linearised displacement transformation 

(5.43) 

~ ~ 

where fa and fs are the forces at the fluid and structural grid points respectively. This 

yields 

(5.44) 

The condition of conserved virtual work is a global one. It is also interesting to 

examine behaviour at the local level. Taking one CVT tetrahedron, the force at the 

aerodynamic point fa,l is distributed to forces fs,i, fs,j and fs,k at the structural points 
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according to fs,i = ATfa,l, fs,j = BTfa,l and fs,k = CTfa,l. Since A = I - B - C, it 

follows that fs,i + fs,j + fs,k = fa,l. 

Considering the structural moment about point Xs,i, 

(5.45) 

Applying a similar argument to that used to show rotational invariance, this expres­

sion simplifies to 

m = (aa + ,Bb + ,d) x fa,l = c x fa,l (5.46) 

which shows that the moment is conserved by the initial transformation of forces. 

The total force and moment are conserved by IPS through the conditions applied 

to obtain a closed system for the weights of the basic thin-plate solutions. However, 

no local properties are available. 

5.4 Representation of Structural Behaviour 

Transformation methods attempt to recover structural dynamic responses from in­

formation at a limited number of points. For IPS this is done by constructing a 

solution to the thin-plate equations which passes through the known points. An error 

is incurred by the projection of the known and unknown points onto the common 

thin-plate and the neglect of thickness effects. 

The CVT method constructs control volumes in the structure which involve one 

unknown point and three known points. Conservation of volume restricts the un­

known point to a surface. To choose the correct point on this surface the deformation 

of the control volume is required. For wing aeroelastic examples the known points are 

likely to lie in a plane, with the unknown points being on a surface which is roughly 

parallel to this plane (consider a wing modelled by a plate structural model). The 

significant local forces for high Reynolds' number flow are normal to these surfaces. 
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To change the angle of projection of the unknown point onto the plane of the known 

point, there needs to be a significant internal force in the plane of the known points. 

Given that the externally applied forces are normal to this plane, this type of defor­

mation seems unlikely. Hence, the choice in the CVT method to keep the projection 

angle fixed appears justified for this particular case. 

5.5 Evaluation of CVT and IPS 

To illustrate the behaviour of the CVT and IPS tranformations we first consider two­

dimensional examples where it is easy to view and interpret the results. We shall 

apply a rigid rotation to a plate representation of the geometry and then calculate 

the recovered position of the fluid grid which lies on the true geometry. For these 

cases the analysis presented above predicts that the error in the recovered fluid grid 

points is zero for the CVT method and increases linearly with the rotation angle for 

IPS. 

First, consider the deformation of a circle. The initial and rotated shapes are 

shown in figure 5.2. 

The linear CVT transformation recovered fluid points preserve the shape of the 

circle exactly for any rotation angle and are not shown. The IPS recovered shape 

becomes distorted as shown in the figure. The plot of error against rotation angle in 

figure 5.3 shows a first order variation as predicted. 

The circle case is difficult for the IPS method because at some points there is a 

large distance between the circle and the plate. An aerofoil test case is shown in figure 

5.4. Here the aerofoil surface and the plate are closer at all points and therefore the 

IPS should perform better (in the sense of less introduced deformation). Again the 

CVT method recovers the aerofoil profile exactly. The recovered profiles by IPS are 
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Figure 5.2: Rigidly rotated circle - solid line is interpolated fluid grid points by IPS, 
crosses are structural grid used for transformation, circles are exactly rotated fluid 
points. 

shown in figure 5.4 and indeed show a smaller distortion than for the circle. Again 

the error is linear in the rotation angle, as shown in figure 5.5. 

For a second set of test cases a finite element solution is used to calculate the 

deformation of a solid under an applied load. The ability of the transformation to 

recover the deformation of one surface of the solid given the exact location of another 

surface is examined. 

The next test case involves the bending of a beam. The aerodynamic grid lies on 

the exterior of the beam and the structural grid is defined by three points on a line 

along the main axis of the beam. The outer two structural points are displaced by 

equal amounts. Sections through a beam undergoing such a motion remain parallel 

to the beam axis [60]. 

The transformation methods are again used to recover the fluid grid, as shown in 

figure 5.6. The IPS results do not conserve the beam right angles, again due to the 

out-of-plane treatment, in contrast to the CVT. 

The final two-dimensional case involves significant dilatation. A bar is fixed at one 
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Figure 5.3: Rigidly rotated circle - L2 norm of the difference between the rigidly 
rotated fluid positions and the interpolated positions by IPS for different rotation 
angles 

end and is stretched by a force applied parallel to the axis of the beam at the other 

end. The deformed shape was calculated using the finite element package NASTRAN. 

The ability of the interpolation methods to recover the fluid grid points on the outer 

surface given the locations of grid points on the beam axis was investigated. First, 

since the out-of-plane component for IPS is fixed and the displacements on the axis 

are in-plane, IPS stretches the upper and lower surfaces parallel to the axis. This 

results in a bar of increased volume. In contrast, CVT adjusts the out-of-plane 

components according to in-plane displacements. The recovered surfaces are close to 
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initial O.27T 

Figure 5.4: Rigidly rotated aerofoil- solid line is interpolated fluid grid by IPS, crosses 
are structural grid used for transformation, circles are exactly rotated fluid points. 

the FE solution, as shown in figure 5.7. 

To test the method for three dimensional problems the bending and torsion of a 

half cylinder fixed at the root is considered. The response of the cylinder to applied 

forces is calculated using an FE model in MSC IN ASTRAN. The deformation of the 

flat surface is then used with a transformation for the new location of the curved 

surface, shown in figure 5.8. The interpolated points are then compared with the 

predictions of the FE model to assess the performance of the interpolation. For 

the bending motion IPS and CVT both perform well, with the maximum difference 

with the FE solution in calculated location being 2.5 %. For the torsional case the 

maximum differences are 2.4 % and 6 % respectively. The node line patterns for 

the torsional case are shown in figure 5.9 and show the qualitative differences in the 

reconstructed surface for IPS, again arising from the treatment of the out-of-plane 

motion. 
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Figure 5.5: Rigidly rotated aerofoil - L2 norm of the difference between the rigidly 
rotated fluid positions and the interpolated positions by IPS for different rotation 
angles 

5.6 Evaluation of CVT and BEM-based Tranfor­
mation 

Next, the CVT method is compared for some of the above test cases with the BEM 

methods described in the previous chapter. The first case is the aerofoil under rigid 

rotation. Slight distortions are seen at the trailing edge when using the original 

method which are eliminated when using the modified method, as seen in figures 5.10 

and 5.11. The results are similar to those obtained using CVT. 

The second case considered is the rigid rotation of a circle. For small rotations, 
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(c) IPS 

Figure 5.6: Bending beam - solid line is interpolated fluid grid, crosses are structural 
grid used for interpolation, circles are FE solution from MSC/ NASTRAN. 
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Figure 5.7: Upper half of stretching beam - solid line is interpolated fluid grid, 
crosses are· structural grid used for interpolation, circles are FE solution from 
MSC /NASTRAN. 
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Figure 5.8: Initial Solid and Fluid Surfaces 
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Figure 5.9: Torsion Node Line Pattern Comparisons for Curved Surface 
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Figure 5.11: Aerofoil rigid motion with Modified BEM method 
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the shape is conserved as shown in figure 5.12, However, the circle is thickened for 

larger rotations, as shown in figure 5.13. These results are worse than those presented 

above for CVT. 

In reference [53] the bending beam was considered to illustrate that, because of 

the lack of coupling of displacements in different directions, the IPS method does not 

conserve orthogonality. This was seen in the results already presented. Reproducing 

the results using the Chen method we found that although the orthogonality of the 

beam corners is preserved, the area is not. In fact the BEM based method thickens 

the beam as illustrated in figure 5.14. 
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Figure 5.12: Circle rigid motion with Virtual BEM 

In conclusion, the results here show no reason for using the Chen methods, espe-

cially when considering the disadvantages of a relatively involved derivation and the 

need to store full matrices. 

5.7 Conel us ions 

A method for transforming data between non-matching fluid and structural grids 

has been analysed. The shape preservation properties of the new method for rigid 

rotations has been shown to be superior to a commonly used scalar method, which 

introduces significant distortion which increases with both the rotation angle and the 

distance between the surfaces, and the BEM based methods of Chen. Two dimen-

sional test cases have verified the analysis. 

An immediate possibility is to combine the CVT out-of-plane treatment with a 

spline based method for the in-plane treatment. One significant advantage of the 

CVT as formulated is that the transformation can be written in terms of a sparse 
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Figure 5.13: Circle rigid motion with Virtual BEM 
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matrix whereas spline based methods result in a full matrix which can be very costly 

to construct, store and retrieve. 

The final stage of the work is to evaluate the influence of the transformation effects 

on dynamic and static aeroelastic responses. This is presented in the next chapter. 
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Figure 5.14: Beam under large bending 
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Chapter 6 Time Marching Analysis 

6.1 Overview 

The geometrical properti~s of some tranformation schemes have been considered in 

the previous chapter. However, these are only really significant in the way that they 

impact on the calculation of aeroelastic responses. In this chapter this aspect is 

examined by looking at two wing test cases. These cases are first reviewed and then 

results are presented for each case in turn. The results considered are the geometrical 

influence of the transformations and the influence on results computed for static and 

dynamic cases. 

The transformation methods considered are listed in table 6.1. The colours next 

to each method are used for the presentation of transformed mode shapes and aero­

static and dynamic data unless stated otherwise. These methods are derived from 

those presented in the last chapter with constant CVT being the linearised version 

of CVT, constant CVT-IPS being the CVT method but with the linear in-plane 

treatment replaced by IPS and regenerated CVT being the linearised version of CVT 

applied incrementally, i.e. the structural deflections are applied in small steps and 

the tranformation matrix is recalculated at each step. The latter method approaches 

the full non linear version of CVT as the increments become small. 

94 



95 

method in-plane out-of-plane colour 
regenerated CVT linear updated CVT blue 

constant CVT linear fixed CVT red 
constant CVT -IPS IPS fixed CVT cyan 

IPS IPS stick green 
linear linear stick purple 

Table 6.1: Transformation Methods Evaluated in this chapter together with plotting 
colours used 

6.2 Description and Review of Wing Flutter Test 
Cases 

6.2.1 AGARD 445.6 Wing 

An important problem inhibiting the development of aeroelastic simulation tools is 

the lack of experimental data available for their assessment. The experiments are 

intrinsically destructive and require delicate model construction to ensure the correct 

scaling of frequencies. Hence they are more expensive than rigid model tests. A 

complete set of measurements is available for the AGARD 445.6 wing and results 

for this case have been included in most publications on simulating flutter, giving a 

wide range of data with which to evaluate the current results. The disadvantage of 

this test case is that it does not feature significant nonlinear effects since the wing is 

thin. However, in the absence of a better case and due to the wide range of previous 

results, this test case will be used to evaluate the current method. 

The AGARD 445.6 wing, whose planform is represented below, is made of ma­

hogany and has a 45° quarter chord sweep (figure 6.1), a root chord of 22.96 inches 

and a constant NACA64A004 symmetric profile [61]. 

A series of flutter tests, which were carried out at the NASA Langley Transonic 
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Figure 6.1: 445.6 wing planform. The dark shaded area indicates the extent of the 
grid for a reduced plate structural model used for some tests. 
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Dynamics Tunnel to determine stability characteristics, were reported in 1963 . Vari­

ous wing models were tested (and broken). The case for which most published results 

have appeared is the weakened wing (wing 3) in air. This wing had holes drilled out 

to make it weaker and these were filled with plastic to maintain the aerodynamic 

shape. Published experimental data includes the dynamic conditions at which the 

wing was viewed to be unstable for Mach numbers in the range 0.338 to 1.141. The 

structural characteristics of the wing were provided in the form of measured natural 

frequencies and mode shapes derived from a finite element model. 

A stability analysis of the wing using linear aerodynamic theory is described in 

the manual of the aeroelastic package ZAERO [62]. The small disturbance potential 

model is used to relate the fluid forces on a series of wing panels to the deflection of 

structural grid points. This linear relation, which is frequency dependent, can then 

be used in an eigenvalue analysis of the structural system to determine flutter points. 

The results of this method are used below for comparison with results from the current 

method. In theory linear results can be improved by using known nonlinear data to 

correct the linear force-deflection relationship. One example, which uses a Navier­

Stokes solution of the steady state around the rigid wing at fixed Mach numbers, is 

given in reference by da Silva [63]. 

The aerodynamic model used in reference by Batina [64] is based on the frequency 

modified transonic small disturbance (TSD) equation. This model accounts for weak 

shock waves but involves a grid based fluid solution and hence is more expensive than 

a potential based model. It was found that the TSD results compared less favourably 

with experiment than linear results. 

A coupled solution of the transonic small disturbance equations and a boundary 

layer model was used in reference by Edwards [65] to provide the fluid loading on a 

modal structural model. A time step of about 100 steps for each cycle of the first 
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bending mode was used with a sub-iteration to reduce sequencing errors. It was 

concluded that viscosity only has a small influence on the flutter behaviour but that 

non linear amplitude effects are significant at supersonic conditions. 

An unstructured grid explicit solution of the Euler equations was coupled with 

a modal model of the wing by Gupta [66]. The fluid grid featured more than 240 

thousand elements and 4167 explicit steps were used to resolve a cycle of the first 

bending mode. The region exterior to the wing was regridded when the deflections 

exceeded a user specified tolerance. 

A multiblock Navier-Stokes solution was reported in reference [67]. The flow 

solution used the Beam-Warming Approximate factorisation with one sub-iteration 

to reduce factorisation errors. A modal model with 14 modes was used to describe 

the structure with transfinite interpolation being used for grid deformation. A grid 

with 815 thousand points was used for the flow solution with a coarse grid derived 

from this by taking every second point in each direction. Four thousand time steps 

were used to resolve the first bending mode. The wing stability was investigated 

at Mach 0.96 and at a Reynolds' number of 365 thousand. It was noted that the 

behaviour using 4 and 14 modes to describe the structural motion resulted in very 

similar behaviour. A very useful static test case was also published. The deflection at 

Mach 0.8, one degree of incidence and a dynamic pressure of 60.0 psf (pounds force 

per square foot) was computed by setting the time derivative in the structural model 

to zero. 

An unstructured grid explicit solution of the Euler equations was coupled with a 

modal solver in Rausch [68]. A spring analogy was used to deform the mesh around 

the moving wing. The mesh contained about 130 thousand elements and 3000 time 

steps were used to resolve each cycle of the first bending mode. 

A full finite element structural model was coupled to an unstructured solution of 
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the Euler equations by Lesoinne and Farhat[69]. The grid used for the fluid calculation 

is coarse with only 22 thousand vertices. A second order time accurate formulation 

was used which allowed large time steps to be used, resulting in 100 steps for a cycle 

of the first bending mode. The simulation produced comparable results to those in 

the references cited above but at less computational cost. 

The numerical details of these calculations are summarised in table 6.2 and the 

prediction of the reduced flutter speed in table 6.3. Results are presented in this 

chapter which were generated by a time marching solution of the Euler equations 

coupled with a modal structural model. The performance of the method is indicated 

through comparison with the results shown in tables 6.2 and 6.3. 

The linear structural model for the 445.6 wing which is used for the current results 

was built in NASTRAN. The model parameters are as quoted in Kolonay's[70] aeroe­

lastic optimisation study and were also used in a static and dynamic time marching 

study, Melville [67]. The wing is modelled as a homogeneous material by quadrilateral 

plates. The material properties used are El = 3.15106 X 109 Pa, E2 = 4.16218 X 108 

Pa, v = 0.31, G = 4.39218 X 108 Pa and p = 381.98kg/m3 where El and E2 are the 

moduli of elasticity in the longitudinal and lateral directions, v is Poisson's ratio, G 

is the shear modulus in each plane and p is the wing density. The model consists 

of two hundred and thirty one elements. Comparison of the frequencies of the first 

four modes with experiment is made in table 6.4, showing reasonable agreement, and 

the first four mode shapes are shown in figure 6.2. Previous results have suggested 

that the difference in flutter speed for a dynamic test case when using 4 and 14 nodes 

is less than 1% [67]. To characterize the modes, the first is a bending mode at a 

frequency of 9 Hz, the second is a torsion mode at a frequency of 34 Hz, the third 

mode is a bending mode at a frequency of 50 Hz, and the fourth is a torsion mode at 

80 Hz. 
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First Bending Second Bending 

First torsion Second torsion 

Figure 6.2: First four modes from FE model of 445.6 wing. 
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reference Modelling grid Time step CPU 
(steps / cycle) 

[64] TSD N/A N/ A (105) N/A 
[66] Euler 240k elem N/ A (4167) 19h on RS6000/590 
[69] Euler 22k vert N/ A (100) N/A 
[68] Euler 130k elem N/ A (3000) 12h on Cray-2s 
[67] N avier-Stokes 102k cells N/ A (4000) N/A 

present Euler 98k cells 0.22 (105) 4 hours on P200 

Table 6.2: Summary of numerical details for single flutter calculation. N / A indicates 
that the information was not included in the reference. Here, steps per cycle refers 
to the first bending mode and the time step is non-dimensionalised with respect to 
the freestream velocity and the root chord. 

Mach Pmb Nastran [61] [63] [62] [68] [66] [67] [69] 
Exp da Silva Zaero Rausch Gupta Melville Lesoinne 

0.449 0.452 0.43 0.4459 0.45 0.44 0.439 0.436 N/A 
0.678 0.418 0.43 0.4174 0.395 0.44 0.417 0.380 N/A 
0.901 0.332 0.373 0.3700 0.367 0.38 0.352 0.341 N/A 
0.960 0.293 0.34 0.3076 0.319 0.35 0.275 0.280 0.34 
1.072 0.452 0.424 0.3201 N/A N/A 0.466 0.302 N/A 
1.141 0.476 0.39 0.4031 N/A N/A 0.660 0.410 N/A 

Table 6.3: Summary of flutter speed predictions and measurements for AGARD 445.6 
wing. N / A indicates that the information was not included in the reference. 

6.2.2 MDO Wing 

The Multi-Disciplinary Optimisation (MDO) wing was extracted from the MDO air­

craft designed in a Brite-Euram project to establish design methodology for future 

large commercial aircraft. It was used in the Unsteady Flow in the Context of Fluid­

Structure Interaction (UNSI) project as a test case for coupled CFD-structural dy-

namics simulations. Presentation of the case and the comparison of the results be-

tween the different parters can be found in the publication by the UNSI [57] partners. 

The MDO configuration was optimized for high performance at a particular cruise 

0.45 
0.42 
0.38 
0.30 
0.45 
0.66 



measured 
calculated 

mode 1 
9.60 
9.67 

mode 2 
38.10 
36.87 

mode 3 
50.70 
50.26 

mode 4 
98.50 
90.00 
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Table 6.4: Measured [61] and computed modal frequencies in Hertz for AGARD 445.6 
wing. 

condition. The calculations are started from an estimate of the jig shape which leads 

to the design shape at cruise conditions. 

The wing has a span of 36m and the planform is shown in figure 6.3. The profile 

is a thick supercritical section. The wing was structurally modelled as a box using 

finite elements. Calculations made on the wing used 18 mode shapes extracted from 

this model, a selection of which are shown in figure 6.4. 

The different parters involved in the comparisons for this case were Alenia, BAE 

SYSTEMS , Dassault, ONERA and Saab. The methods they used for their calcula-

tions are now briefly described. Most of the codes solved the Euler equations, with 

one full potential solution and some codes being coupled with a boundary layer solver. 

Alenia used the full finite element structural model for their calculations. The static 

and dynamic results showed minor differences between the different methods. The in-

terpolation methods used were IPS or polynomial methods for ONERA, interpolation 

on an intermediate grid for Dassault and the use of rigid elements in the NASTRAN 

solver by Alenia. 

Three cases were used for the comparisons and are summarised in table 6.5. For 

each code the angle of attack is chosen to match the design lift coefficient. This 

necessitates at least three calculations to obtain the correct angle of attack. The static 

results are compared for the leading and trailing edge displacement distributions. For 

cases 2 and 3 dynamic calculations are initiated from the converged static solution 
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Figure 6.3: MDO wing planform. The dark shaded region indicates the extent of 
the structural model. 
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mode 1 mode 2 

mode 5 

Figure 6.4: MDO mode shapes. 
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by giving the first mode a velocity of VI = 27r !IqI = 78.95 where qI is the coordinate 

of the first mode which results in a tip deflection of one metre. Case two turns out 

to be stable and case three gives flutter. A linear analysis using MSC NASTRAN 

indicates that case two is just below the flutter boundary and that the stability 

changes due to the damping of mode three becoming positive. Comparison of the 

current results is made with results from Saab which are typical of the results from 

the UNSI comparisons [57]. 

CaseI Case 2 Case 3 
Mach Number 0.85 0.88 0.88 
Lift Coefficient 0.4581 0.3263 0.1686 
Aircraft Mass 371 tons 537 tons 537 tons 

Altitude 11.27 km 7km 2km 

Table 6.5: Conditions for MDO test case. The lift coefficient quoted here is scaled in 
terms of the wing surface area, 

The Saab results were generated using the EURANUS code which solves on multi­

block structured grids using explicit time stepping and multigrid. Central and upwind 

differencing options are available. The mesh is moved via a sequence of pre-determined 

perturbation grids. The transfer is achieved by projection onto a neutral surface and 

interpolation to obtain the displacement of projected points. Pseudo-time stepping is 

used for unsteady calculations and pseudo iterations are used to remove sequencing 

effects between the fluid and structural solutions. 

6.3 445.6 Results 

6.3.1 Grids and Numerical Tests 

The aerodynamic grid is of C-H topology with 217 points around the section, 57 

points normal and 61 points in the spanwise direction. There are 153 by 41 points 
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on the wing. A coarse grid was extracted to facilitate a grid convergence study by 

taking every second point in each direction. 

No aerodynamic measurements are available for this wing. To test the aerody­

namic predictions comparison is first made with previously published results [68J. 

The case considered is at a freest ream Mach number of 1.141 and zero incidence. 

The convergence history on the coarse grid is shown in figure 6.5. The residual is 

reduced by 8 orders of magnitude in 638 residual evaluations on the coarser grid and 

936 residual evaluations on the fine grid. The pressure distributions at 4 spanwise 

slices are shown in figure 6.6. It is clear that the coarser grid gives a good solution 

and close agreement is observed with the previous results by Rausch [68J. The coarse 

grid is used below for the aeroelastic calculations. Finally, a plot of the pressures on 

the wing in figure 6.7 indicates that a shock wave is located close to the trailing edge 

and is in good agreement with the plot shown in reference [68J. 

6.3.2 Interpolated Mode Shapes 

Before presenting the aeroelastic results we examine how the mode shapes are tran­

formed onto the fluid grid from forced motions in single modes on the structural grid. 

The interpolation methods tested group around the in- ( with linear or IPS used) 

and out- (with stick, CVT constant and CVT regenerated) of plane treatments. The 

transformed mode shapes are presented as the profile cut at 75% of the span. 

First, the bending modes do not show any differences (figure 6.8 (a)) between 

the various methods, as anticipated above when considering the model problems. 

However, when a torsion mode is considered differences are observed as seen in figure 

6.8(b). These are exaggerated here by applying a large modal coordinate value to 

mode 2 to make the behaviour clear. The largest influence is seen if the constant 

CVT method is used for out-of-plane treatment, leading to a substantial fattening of 
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Figure 6.5: 445.6 rigid wing steady test case convergence history. Moo 
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1.141, 
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Figure 6.6: 445.6 rigid steady test case pressure distributions compared with the 
results from [68]. Moo = 1.141, a = 0.°. 

the profile. This is ascribed to the linearisation error used to derive the spline matrix. 

This can be cured by applying the modal coordinate as a series of increments (here ten 

increments was found to give an identical final result to using one hundred increments) 

and updating the spline matrix at each increment. Since the modal displacements 

are in the vertical direction the aerofoil chord is stretched by the torsional motion. 

The nonlinear CVT method, which the regenerated CVT method approaches here to 

good accuracy, reacts to this in-plane stretching by thinning the profile to maintain 

a constant volume between the fluid and aerodynamic surfaces. The thinned profile 

is seen in the figure. Finally, the influence of a stick out-of-plane treatment is seen to 

further thin the aerofoil profile. The in-plane treatment does not change the behaviour 

at all. 

It proves useful for understanding the behaviour for the MDO wing examined later 



p 

0.802889 
0.764247 
0.725606 
0.686965 
0.648324 
0.609683 
0.571042 
0.532401 
0.49376 
0.455119 

109 

z 

x~ 

Figure 6.7: 445.6 rigid steady test case pressure contours. Moo = 1.141, a = 0.°. 
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to view the transformed mode shapes from a structural grid which is a subset of the 

full grid and has had the leading and trailing edge portions removed, as shown in the 

darker area in figure 6.1. This challenges the transformation method to extrapolate 

the mode shapes off the leading and trailing edges of the structural grid onto those 

of the aerodynamic grid. The out-of-plane behaviour is as described above for the 

full structural model. However, in contrast, the in-plane treatment leads to different 

shapes for the torsional mode, as shown in figure 6.9 for the region around the leading 

edge. The essential shape of the mode is linear and hence it is not surprising that the 

linear in-plane treatment for the reduced model leads to a transformed shape which 

is close to that obtained using the full plate. The IPS method forces the displacement 

to behave linearly at increasingly large distances from the reduced plate leading and 

trailing edges, but linear behaviour is not enforced at small distances. This introduces 

an unwanted camber into the transformed profile. This influence has been noted by 

Brown [51] and has been termed graphically by one researcher as the "potato chip 

effect" since the edges of the aerodynamic profile become curled. 

6.3.3 Static Case 

As a check on the fluid grid movement and inter-grid interpolation, the static case 

first published in reference [67] was considered. This case is for the AGARD 445.6 

wing at Moo = 0.8 and Cl( = 1°. The freest ream conditions are a velocity of 247.09 

m/s and density of 0.09411 kg/m3 . The wing tip deflections on the coarse and fine 

grids are summarised in table 6.6 and shown in figure 6.10. 

The deflections on the coarse grid differ from those on the fine grid by less than 

2% indicating that the fluid loading is well predicted on the coarse grid. The results 

are in close agreement with previously published results [67], which in turn agree well 

with the predictions from other codes. These results provide a good first check on 
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Figure 6.8: Transformed mode shapes at 75 % span 
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0.50 
0.48 
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Table 6.6: Tip Deflection in inches for static aeroelastic deformation of AGARD 445.6 
wing at a Mach number of 0.8 and an incidence of 1 degree. 



112 

0.35 

0.3 

>0.25 

0.2 

x 

Figure 6.9: Transformed mode shapes for the 445.6 wing in the region of the leading 
edge at 75 % span. The profile marked with squares is obtained using IPS on the 
full span grid and is almost indistinguishable from that obtained using the linear 
transformation on both the full span and reduced span grids. The profile which is 
unmarked with squares is obtained using IPS on the reduced span grid. 
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Figure 6.10: Aerofoil profile for first grid point inboard of tip for aerostatic 445.6 
wing test case. Moo = 0.8, a = 1.0. 
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Figure 6.11: 445.6 aerostatic test case convergence history. Moo = 0.8, et = 1.0
• 

the methodology before examining dynamic behaviour. The calculation time using 

a Pentium Pro 200 MHz processor is 833 sec on the coarse grid. The convergence 

history is shown in figure 6.11 and shows that the convergence behaviour is similar 

for the rigid and deforming phases of the calculation. The rigid phase here refers to 

the calculation of the flow solution around the rigid wing, which is then followed by 

the deforming phase when the structure is allowed to deform. 

Finally, we note that the tip profiles show that, due to the small displacements, 

and the small contribution of the torsional mode compared with the bending mode, 

the differences between the various transformation methods is small. 
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6.3.4 Numerical Tests for Dynamic Cases 

For the dynamic results we look at four Mach number cases separately, with values 

of 0.678, 0.901, 0.960 and 1.141. The wing is given an initial dimensionless velocity 

in the first mode of 5.0e-5 . The subsequent time evolution of the modal response 

is then calculated to see whether this grows or decays. The freestream velocity is 

fixed and the freestream density is increased until the damping changes sign (from 

negative to positive with increasing density). The value of the density at which 

this happens indicates the flutter speed, which can be expressed as an altitude or a 

dynamic pressure. Here, following convention, we express the flutter point in terms 

of a flutter speed coefficient 
- Uoo U---­

- bswoJJi· 

where Uoo is the freestream velocity at flutter, bs is the semispan, Wo = 36.87 H z is 

the frequency of the first torsional mode and Jj, = m/ Poo V where m = 1.863 kg is the 

mass of the wing, V = 0.130 m3 is related to the volume of the wing (see reference 

[61]) and Poo is the freestream density at flutter. 

We first show that the numerical parameters used for the time marching calcu-

lations give reasonably accurate solutions. The conditions used for these tests are a 

freestream Mach number of 0.96, a velocity of 308.20 m/s and a density of 0.08kg/m3. 

This turns out to be an unstable condition, where the initial velocity perturbation to 

the first mode grows in time. 

The comparison of the time histories of the generalised displacements when using 

reduced time steps of 0.11 and 0.22 is shown in figure 6.12. Here the linear in-plane 

and stick out-of-plane transformations are applied although similar conclusions for 

the sensitivity studies were deduced for every method. The close comparison shows 

that the larger time step is adequate. The responses on the coarse and fine grids 
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are shown in figure 6.13. The coarse grid produces some numerical damping for the 

response and this increases the flutter speed. Due to the memory requirements of 

the method (about 2 Gb on the fine grid) it was not possible to continue the grid 

convergence study to complete convergence. The differences in the dynamic solutions 

is larger than was observed for the static aeroelastic cases. However, the results are 

in reasonable agreement, justifying the use of the coarse grid for the study of stability 

over a Mach number range. Typically only about four pseudo iterations are needed 

per real time step since small wing deflection changes are encountered at each time 

step. The coarse grid calculations require only 3-4 hours on a Pentium Pro 200 to 

calculate eight cycles of the first bending mode. 

Comparing the performance of the numerical scheme with previously published 

results, as summarised in table 6.2, the advantages of the pseudo time method become 

clear. Results using explicit time stepping, as in Gupta [66], typically require 3-5 

residual evaluations for each real time step. The stability limit on the time step leads 

to a very large number of steps being required for each cycle. In contrast the pseudo 

time method allows the time step to be chosen for time accuracy and hence much 

fewer steps are required (by a factor of 40). On average, using the unfactored solution 

method for the pseudo time problem, the equivalent computational time for about 

20 residual evaluations per real time step is needed. Hence, by using a steady state 

solver which gives good convergence properties and the pseudo time method which 

allows sequencing effects to be removed without significant additional cost, the cost 

of Runge-Kutta time stepping method can be reduced by an order of magnitude. 

The pseudo time method recovers second order time accuracy at convergence. 

Implicit time stepping is used by Rausch [68] but no mention was made of the use of 

sub-iterations to remove linearisation or sequencing errors. This could be the reason 

why a much larger number of time steps is required to resolve each cycle. An implicit 
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method is also used by Lesoinne and Farhat[69] in which second order accuracy is 

recovered. A staggering algorithm is used to ensure that the sequencing between the 

fluid and structural solvers does not reduce the accuracy of the coupled simulation 

below either component solver. The time step used is comparable to the one used here. 

Finally, an approximately factored implicit solver with three subiterations to remove 

fluid factorisation and sequencing effects was used by Melville [67]. This method 

is similar to the pseudo time method but using a restricted number of iterations is 

unlikely to completely remove the influence of factorisation errors at every time step, 

and this possibly"explains the larger number of time steps required. 

Dynamic Results 

The dynamic results are presented in terms of the modal time histories for two values 

of the density which bracket the flutter point. The responses are shown in figures 

6.14 to 6.17 for the four Mach numbers 0.678, 0.901, 0.960 and 1.141. The results 

are influenced by the out-of-plane treatment, with the constant CVT transformation 

introducing additional damping. For these dynamic calculations the transformation 

is recalculated at each real time step for regenerated CVT. The stick out-of-plane 

treatment gives results which are similar to regenerated CVT. There is no strong in­

plane influence on the results, with the IPS results being only slightly more energetic. 

The dynamic results for the 445.6 wing group according to the out-of-plane treat­

ment. At all the Mach numbers the constant CVT and constant CVT-IPS methods 

are more heavily damped than the other three. The flutter boundary for the constant 

CVT and constant CVT -IPS methods lies above the one calculated using the other 

three methods, indicating that the response is stable at a higher density. The other 

three methods give a flutter boundary which agrees well with the experimental data 

and other calculations, as shown in figure 6.18. The difference introduced by the 
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Figure 6.14: Time marching responses at Mach 0.678 for two values of density. 
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Figure 6.16: Time marching responses at Mach 0.960 for two values of density. 



x 10'" M=0.678, density=0.222 
4~~~------~--------, 

c;, 0 

c;, 

'" Cl 

-2 
-- CVTregen 
-- CVT constant 

-4 '----~--~--~__i -- IPS 
o 20 40 60 -- CVT -IPS 

-- UN 

X 10-6 
1.5i'--"~------------------, 

_1L---~--~--~----~--~ 

o 20 40 60 80 100 

x 10'" 
4~~~----------------, 

before flutter 
X 10-3 M=1 .141 , density=0.180 
1~~------------------, 

'J, 0 

-1 

-- CVTregen 

-1 
-- CVT constant 

-2 
0 20 40 60 -- IPS 0 20 40 60 80 100 

-- CVT- IPS 
-- UN 

x 10-' x 10-' 
4 1 

0.5 

.. 
Cl 

-0.5 

-4 -1 
0 20 40 60 80 100 0 20 40 60 80 100 

after flutter 

123 

Figure 6.17: Time marching responses at Mach 1.141 for two values of density. 
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transformation method for the constant CVT out-of-plane treatment was seen above 

to be a fattening of the aerofoil profile for the torsion modes. Since the deflections are 

small and the wing is thin, the difference between the regenerated CVT and stick out­

of-plane treatments is small, explaining the close agreement between time responses 

for these cases. 

The computed stability boundary is compared with linear results in figure 6.18 

and previously published results in table 6.3. For the thin wing considered here the 

transonic effects are minimal and linear methods can provide very good agreement 

with the measured behaviour. This is shown in figure 6.19 where the difference in 

the pressure coefficient between the lower and upper surfaces at Mach 0.96 and 10 

incidence is shown for the Euler and potential models. No shock waves are present 

and the two sets of results agree closely. Even considering the thickness of the wing 

this is still a surprising result and shows that the advantages of a nonlinear flow model 

need to be quantified for a range of wing geometries. The linear results required a 

total of five minutes of CPU time on an SGr workstation to compute, although large 

memory requirements increased the elapsed time to thirty minutes due to swapping. 

The time marching results required about 250 hours of CPU time on a Pentium Pro 

200 processor. 

6.4 MDO Wing 

6.4.1 Grids and Numerical Tests 

The grids using for the MDO wing calculations are of C-H type and were previously 

generated at Saab for use in the EURANUS calculations discussed below. The grid has 

129 by 25 by 33 points in the streamwise, normal and spanwise directions respectively, 

with 81 by 25 points on the wing itself. The total number of points in the grid is 



0.56 

0.54 

0.52 

0.5 

0.48 

0.46 

0.44 
== Q) 
0 0.42 u 
ID 

0.4 :::: 
::J u: 

0.38 

0.36 

0.34 

0.32 

0.3 

0.28 

0.26 
0.4 0.5 0.6 0.7 0.8 

Mach 
0.9 

Experiment -+-­
Pmb ---)(---

Nastran ....... . 

1.1 

125 

1.2 

Figure 6.18: Comparison of predictions and measurements of 445.6 flutter boundary. 

106 thousand. This grid, termed coarse, was derived from a fine grid by taking every 

second point. The tip is sharpened off to a line in one cell. 

A steady calculation was computed for a freestream Mach number of 0.88 and an 

incidence of one degree. The comparison of the pressure distributions on the coarse 

and fine grids at 20, 40, 60 and 80 % span are shown in figures 6.20. There is good 

agreement between the two solutions, with the main feature being the shock wave 

which is close to the trailing edge. The coarse solution required 45 minutes and the 

fine solution 190 minutes to converge six orders on a 750 MhZ processor. 
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Figure 6.19: Comparison of pressure coefficient difference for flow around the rigid 
445.6 wing at Moo = 0.96 and et = 1.0° computed from the Euler and potential 
models. 

6.4.2 Interpolated Mode Shapes 

The main geometrical differences between the MDO and AGARD wings are first that 

the structural model for the MDO wing is only defined on part of the planform and 

secondly that the section for the MDO wing is thicker. To test the influence of a 

reduced plate on the recovered aerodynamic profile and the subsequent aeroelastic 

response some experiments were first carried out with the 445.6 wing. A cut down 

version of the structural model was prepared by removing layers at the leading and 
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trailing edge to make the mismatch between the structural and aerodynamic plan­

forms resemble the MDO wing. The results of this study were shown in section 6.3.2 

above and it was concluded that linear in-plane transformation gives a good represen­

tation of the transformed mode shapes on the reduced model whereas the IPS method 

introduces additional (and spurious) camber to the torsion modes. It is expected that 

this will be the case for the MDO wing also due to the extent of the structural plate. 

Secondly, the shape of the transformed mode 5, which is a torsion mode, is con­

sidered at 75 % of the span. The structural solution is given a large modal coordinate 

for the fifth mode and then the shape is transformed onto the fluid grid, as shown in 

figure 6.21. First, it is seen that using the constant CVT method for the out-of-plane 

treatment leads to a fattening of the section, as seen for the 445.6 wing. Also, the 

CVT-IPS result has an additional twist at the trailing edge comparing green for linear 

in-plane with blue for IPS in-plane). Since the trailing edges of the aerodynamic and 

structural planforms are much further apart than the leading edges it is consistent 

that the discrepancy should be largest at the trailing edge. This conclusion also holds 

when the stick out-of-plane treatment is used (comparing cyan for IPS in-plane with 

purple for linear in-plane). Using an incremental application of the modal coordinate 

and updating the CVT spline matrix at each step leads to a good preservation of 

the original aerodynamic profile. The stick out-of-plane treatment leads to a slightly 

different profile around mid-chord and also shortens the chord by about 2 %. Hence, 

the out-of-plane treatment makes a more significant difference for this case than for 

the 445.6 wing. This is explained by the thicker profile. However, it is noted that the 

applied motion for the case shown is extreme and that for cases with a smaller dis­

turbance the differences between stick and regenerated CVT out-of-plane treatment 

are likely to be small. 
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Figure 6.21: Comparison of transformed mode 5 for MDO wing. 

6.4.3 Static Cases 

We first present static results for the three test cases. The first task is to calculate 

the angle of attack for which the target lift coefficient is attained. This was done 

by calculating the lift coefficient for two values of the angle of attack and estimating 

the required value through a linear approximation. A calculation was then made 

at this angle of attack to check that the correct lift coefficient is in fact obtained. 

The trimmed conditions and corresponding lift coefficients are given in table 6.7. 
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CaseI Case 2 Case 3 
a CL a CL a CL 

Target 0.1187 0.0845 0.0437 
regenerated CVT 1.094 0.1188 0.589 0.0844 -0.313 0.0437 

constant CVT 1.070 0.1188 0.514 0.0845 -0.424 0.0437 
constant CVT - IPS 1.642 0.1120 0.938 0.0843 -0.187 

IPS 1.987 0.1273 0.970 0.0843 -0.135 0.0437 
linear 1.074 0.1188 0.539 0.0844 0.3743 0.0437 

Table 6.7: T~immed conditions for MDO wing. Note that the lift coefficient is based 
on an area given by the root chord squared and the angle of attack a is given in 
degrees. 

The results are compared in terms of the leading and trailing edge deflections and 

the profiles adjacent to the tip which are shown in figures 6.22 to 6.24. The results 

calculated by Saab using the EURANUS code are included for comparison. 

The results group around the in-plane treatment. When IPS is used the deflec­

tions and twist tend to be larger. This could be explained by the additional camber 

introduced by the extrapolated part of the aerodynamic profile as discussed above. 

The influence tends to be greater at the trailing edge than the leading edge, consis- . 

tent with this interpretation since the extrapolation is over a greater distance for the 

trailing rather than the leading edge for the MDO wing. The linear in-plane results 

are all very similar, indicating that the influence of the out-of-plane treatment is rel­

atively small for these cases. In addition, all of the results agree reasonably with the 

Saab results, which in turn fall within the scatter of the UNSI results. 

The calculations for cases 1,2 and 3 using linear tranformation require 74, 196 and 

236 CPU minutes respectively on an Athlon 750 MHz processor. These calculations 

drive the residual for the initial rigid and subsequent aerostatic phases down six orders 

of magnitude, which might not represent the optimal strategy. The convergence 
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history for case 1 is shown in figure 6.25. The convergence behaviour using the other 

methods is similar. 

6.4.4 Dynamic Cases 

We first show that the numerical parameters used for the time marching calculations 

give reasonably accurate solutions. This is tested for case 3 using linear transfor­

mation. The other transformation methods behave in a similar fashion. The two 

issues tested are the suitability of the time step (0.01) and the pseudo time tolerance 

(0.001). The comparison of the modal time histories when these values are reduced 

by half is shown in figures '6.26 and it is clear that the traces are identical. Hence 

the quoted values give an accurate solution. Since the only detailed comparisons of 

interest here are method to method comparisons and since no experimental data is 

available to compare with, the cost of the mesh refinement tests was not felt to be 

justified and we rely on the mesh refinement test for the rigid case presented above 

to indicate that the flow solution is reasonable. 

Time marching calculations have been carried out for cases 2 and 3. These were 

restarted from the converged static solution with an initial velocity given to the first 

mode, as described above. Case 2 is expected to be stable, so the initial disturbance 

is damped, whereas case 3 is a flutter case in the transonic range and so a limit cycle 

oscillation is expected. 

Comparison of the time traces using regenerated CVT with the EURANUS re­

sults are given in figure 6.27 and show good qualitative and reasonable quantitative 

agreement for both cases. The results from UNSI [57] show quite a spread of damping 

and the Saab results lie within the range. 

A comparison of the influence of the transformation method is shown in figure 6.28. 

Considerable differences are seen. First, the constant CVT results show increased 
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Figure 6.26: Comparisons of modal time histories for case 3 using linear transfor­
mation and various time stepping parameters. 
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damping, consistent with the behaviour for the 445.6 wing, leading to case 3 showing 

more of the features of a stable case. This is again ascribed to the fattening of the 

profile caused by the linearisation error incurred by the constant spline matrix. 

The remaining results group roughly around the in-plane treatment. Using IPS 

leads to a more energetic response. This is explained by the erroneous camber intro­

duced by the transformation of torsion modes. To test this suggestion the reduced 

plate model was used to recompute a time response for the 445.6 wing at a Mach 

number of 0.96. All other details of the calculation and models were identical to 

those used for the full plate calculations. The comparison is shown in figure 6.29 and 

shows that the IPS result on the reduced plate is much more energetic than the linear 

result on the reduced plate, and that both are more energetic than the linear and IPS 

results using the full plate. 

Finally, the regenerated CVT results are slightly less energetic than the linear re­

sults (i.e we are comparing the influence of the CVT and stick out-of-plane treatment 

here), but are close. This suggests that the in-plane treatment is more significant for 

the MDO test case due to the reduced planform for the structural model. 

The CPU time used for these calculations was higher than for the relatively simple 

445.6 wing. On average around 8-10 pseudo steps per real time step are required when 

40 reduced time units have been calculated. This holds for for cases 2 and 3. For case 

3, with the increasingly amplitude of the motion the number of pseudo time steps 

is increasing however. To time 40 the calculation takes about 92 CPU hours on an 

Athlon 750 MHz processor for both cases. 
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Figure 6.27: Comparisons of modal time histories for cases 2 and 3 using regenerated 
CVT and EURANUS results. 
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Figure 6.28: Comparisons of modal time histories for cases 2 and 3 using different 
transformation methods. 
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Figure 6.29: Comparisons of modal time histories for 445.6 wing at M=0.901, p = 
0.lkg/m3 , using a full and reduced plate structural model. Note that the standard 
colour coding has not been used in this figure. 
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6.5 Conclusions 

The results of this section have shown that the simulation of aeroelastic responses 

of simple wing geometries can be influenced by the transformation method used to 

couple the fluid and structural grids. Specifically the following conclusions can be 

drawn 

• The efficiency of the simulations are comparable with the best published 

• The constant CVT transformation thickens the profile and introduces excessive 

spurious damping· 

• This problem can be overcome by updating the CVT matrix during the calcu­

lation, an operation which is computation ally cheap due to the compact form 

of the CVT method 

• There is little difference seen between the regenerated CVT and stick out-of­

plane treatment for these cases due to the fact that the wing is thin and is only 

ever rotated through small angles 

• A significant influence of the in-plane treatment is seen when the planform of 

the fluid and structural models do not coincide and the aerodynamic profile 

must be extrapolated from the structural model. In this case the IPS method 

introduces an unwanted camber while the linear treatment preserves the mode 

shape beyond the extent of the structural model. 

• The IPS method produces too energetic a response when a reduced planform 

structural model is used. 

For the current test cases no significant advantage was seen by using the regen­

erated CVT tranformation. However, when moving to a complete aircraft analysis 
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there are two components which might require the improved properties of the CVT 

method. A cylindrical fuselage which is modelled by a stick has a much greater out­

of-plane component and hence will suffer from increased distortion due to the stick 

treatment. Secondly, motions of control surfaces through higher angles might intro­

duce more out-of-plane distortion. The test cases presented in the current chapter are 

a necessary first step to investigate these issues on complete aircraft test cases. The 

properties of the CVT method will be valuable when attempting these more complex 

problems. The problems introduced by the IPS in-plane treatment were unexpected 

and illustrate how much care must be taken with aeroelastic simulations. 



Chapter 7 : Conclusion 

7.1 Objectives 

This work started with the aim of setting up an aeroelastic (static and dynamic) 

solver based on the Euler solver pmb. The resulting aeroelastic solver would be able 

to tackle fluid-structure interaction for elastic aircraft wings without the limitations of 

a linear aerodynamic model in the transonic regime. The solver had to be evaluated 

by considering the different issues linked to such a problem, and in particular the 

influence of the transfer of information between the fluid and structural grids. 

All of these objectives have been met. The aeroelastic code has been developed 

and tested for two wing test problems. The influence of time and spatial coupling has 

been evaluated. Reliable results for the MDO wing test case have been presented. 

The efficiency of the code has been compared with other published results and is 

competitive with the best available. 
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7.2 Lessons Learned 

Two major errors can be introduced whilst coupling the fluid and structural codes. 

The first one is linked with the time sequencing of the codes. The use of the pseudo 

time method for iterating between the two solutions gives a simple way of removing 

sequencing errors. This was tested for an aerofoil case featuring significant aerody­

namic induced nonlinearity. The result in accord with other published experience, is 

that the strong coupling in real time produces some benefits in terms of the compu­

tational cost required for a given acuracy. These benefits are much less than an order 

of magnitude however, but are still worth having. 

The second issue, of major concern for doing three dimensional simulations, is 

how to transfer information between the fluid and structural grids. This problem 

is enhanced by the simplifications used during structural modelling, which lead to 

the fluid and structural surface grids not even being defined on the same surface. 

It was shown that previous methods, developed for linear aerodynamics, introduce 

distortions to the aerodynamic profile due to the way that this offset is handled. 

The framework used for tackling the problem is essentially to consider the dis­

placements in the plane of the structural model and the component out of the plane. 

A new method for treating the out-of-plane component, based on the idea of rotating 

and rescaling the component, was proposed and called the constant volume tetrahe­

dron transformation. The method, when combined with linear in-plane interpolation, 

is simple to calculate and store. A linearised version was suggested for application. 

It was suggested that a suitable test of transformation methods is to examine 

their ability to reproduce on the fluid grid applied translations and rotations on the 

structural grid. Some analysis showed that the linear CVT transformation satisfies 

this criteria to first order in the rotation angle. The application to wing test cases 
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showed that the effect of the linearisation error was to fatten the profile. This can be 

rectified simply by updating the transformation matrix regularly so that only small 

increments in the structural model are treated at anyone time. In practice this means 

updating the relation at each real time step at minimal cost. 

The coupled code was tested on two wing test cases. The first, the AGARD 445.6 

wing, showed that the results were reliable, except when using the linearised and 

constant out-of-plane CVT treatment. The predicted flutter boundaries agree well 

with experimental data and the efficiency of the simulations is comparable with the 

best published results. The second case, the MDO wing, showed up an interesting 

influence of the in-plane treatment. Since the structural and fluid planforms are 

different, the displacements for the nose and trailing edge have to be extrapolated 

from the structural grid. Using IPS causes a spurious camber to be introduced which 

increases both the static and dynamic response of the wing. Linear in-plane treatment 

was found to preserve the aerodynamic profile better. 

Finally, the BEM was considered both as a direct structural solver and as an inter­

polation method. It was hoped that a BEM solution defined on the fluid surface mesh 

would provide a way of avoiding the transformation problem. However, the results 

obtained with the simple BEM method used in this study were not encouraging and 

to model complex wing structures would require using a more complex formulation 

which was outside the scope of this work. The BEM based interpolation was not con­

sidered to present significant benefits over other available methods, including CVT, 

for geometrical test problems, and was hence not pursued into three dimensions for 

the final stages of the work. 
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7.3 Future Work 

The work of this thesis can be taken forward in a number of exciting directions. First, 

the time marching aeroelastic code opens up opportunities for starting to evaluate 

nonlinear aeroelastic effects which were partly discussed in the introduction. The 

challenge of using the code to explain physical mechanisms for some of these problems 

is worthwhile and exciting. 

For this to be realised the treatment of complex geometries must be addressed. 

The main unsolved problem is to set up the inter-grid transformation so that different 

components in the structural grid drive the right components in the fluid grid without 

holes or distortions being introduced at interfaces. 

Thirdly, the work of this thesis has established test cases and transformation 

relationships for another PhD project within the CFD Group which is aimed at using 

Hopf bifurcation methodology to calculate flutter points from direct steady state 

calculations. 

One limiting factor for future extensions is the lack of experimental data available 

for validation. A new dataset has been generated at NASA Langley Research Centre 

and is called MAVRICK. Its release for general use could allow increased confidence 

to be built up in aeroelastic simulations. In addition, access to flight test data is 

considered crucial for establishing simulations like the one developed in this thesis as 

a serious tool in design and certification. 



Appendix A Summary of BEM Theory 

A.1 Summary of the Weighted residual method 

We explain here briefly the weighted residual idea. The description follows that given 

in reference [38]. Assume that the equation to be solved on the domain r is 8(u) = 0 

with the cqndition on the boundary r 1 : U = ii and r 2 : P = p. 

The method consists of finding an approximation to u and P by uapprox and Papprox· 

The error of the system e is defined from 

(1.1 ) 

and on r 1 

U - uapprox = el (1.2) 

and on r 2 

P - Papprox = e2· (1.3) 

A weighting function Wb is used to spread the error through the domain as 

(1.4) 

Using the functional expression of e given above, integrating twice by parts, and 

taking into account the boundary conditions, the possibility of working only on the 

boundary arises if the weighting function Wb is chosen to be solution of the problem 
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A.2 Boundary integral from weighted residual state­
ment 

The first integral term in equation(3.4) can be rewritten as 

(1.5) 

From the divergence theorem 

(1.6) 

Thus equation (3.4) becomes after integration by parts 

The reciprocity principle 

(1.8) 

results from the manipulation of 

(1.9) 

since OijEij = E~n' Ekk = OijEij and the strain-displacement relationship and the con­

stitutive equation apply for both the approximating and weighting fields. Here A and 

Jl are the Lame constants of the material. 

Integrating equation( 3.4) by parts again, one obtains 

A.3 Fundamental Solutions 

We need the solution of the elastic problem with the same material properties as 

the body under consideration but corresponding to an infinite domain loaded with 
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2D 3D 

ulk 87rGh-lI) [(3 - 4v)ln(~)olk + r,lr,k] 1 e-4110 + ) 167rG(1-1I) -r- Ik r,lr,k 

Plk 47r(l~lI)r(g~[(1- 2V)Olk + 2r,lr,k] 87r(1-=!-II)r2 (*[(1 - 2V)Olk 
-(1 - 2v)(nlr,k - nkr,I)) +5r,lr,k] + (1 - 2v)(nkr,1 - nlr,k)) 

Table A.I: Fundamental solutions of elasticity. 

a concentrated unit point load. This is the fundamental solution of elastostaticity. 

Using the equilibrium equation, and the stress-strain relationship, and the strain 

displacement equation, one gets the Navier equation: 

1 1 
---U"I + UI " + -bl = O. 1 - 2v J,J ,JJ fJ (1.11) 

The fundamental solution is obtained when a unit force is applied at point i in the 

direction of the unit vector in the l direction. 

The problem is then to find the stress solution of 

For this one solves the system: 

aa\ _J_=O 
ax' J 

aakj ~k _ -+u· -0 ax. I 
J 

(1.12) 

(1.13) 

where a unit load at the point i acts in the k direction. If this function is found then 

Plk and u1k are the tractions and displacements in the k direction due to unit forces 

acting in the l direction. 

The expressions of the fundamental solutions used in the equations( 3.8) are given 

for two and three dimensions in table A.l. The 2D formula holds for plane strain . 
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