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Abstract 

The research presented in this thesis is on the topic of the Bayesian approach to 

statistical inference. In particular it focuses on the analysis of mixture models. 

Mixture models are a useful tool for representing complex data and are widely 

applied in many areas of statistics (see, for example, Titterington et al. (1985)). 

The representation of mixture models as missing data models is often useful as 

it makes more techniques of inference available to us. In addition, it allows us 

to introduce further dependencies within the mixture model hierarchy leading to 

the definition of the hidden Markov model and the hidden Markov random field 

model (see Titterington (1990)). 

In the application of mixture models, as well as making inference about model 

parameters, the determination of the appropriate number of components is a 

primary objective. Both conventional cross-validation methods (see, for example, 

Ripley (1996)) and approaches involving Markov chain Monte Carlo methods (for 

example, Richardson and Green (1997)) have been employed in order to address 

this task. A main drawback of the cross-validation method is the computational 

intensity involved in fitting the various competing models using a training data-set 

and then comparing their results using a validation data-set. This computational 

expense renders this approach infeasible when there are more than a small number 

of model parameters to be considered. Markov chain Monte Carlo methods can be 

used to obtain a posterior distribution over the number of possible components. 

This approach has been popular in the statistical literature but these methods 

can be time-consuming and it can be difficult to assess convergence. 

In this thesis we will consider how variational methods, that have become 

popular in some of the neural computing/machine learning literature, can be 

used to determine a suitable number of components for a mixture model and 

estimate model parameters. The variational technique is a deterministic approx

imate method, the practical implementation of which is computationally efficient 
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and comparitively straightforward. 

The issue of model selection is important in Bayesian inference and, with 

increasingly complicated models, there is a need for more suitable selection cri

teria. We shall also explore how the Deviance Information Criterion (DIC), a 

selection criterion for Bayesian model comparison introduced by Spiegelhalter et 

al. (2002), can be extended to missing data models. 

Chapter 1 introduces the main themes of the thesis. It provides an overview 

of variational methods for approximate Bayesian inference and describes the De

viance Information Criterion for Bayesian model selection. 

Chapter 2 reviews the theory of finite mixture models and extends the varia

tional approach and the Deviance Information Criterion to mixtures of Gaussians. 

Chapter 3 examines the use of the variational approximation for general 

mixtures of exponential family models and considers the specific application to 

mixtures of Poisson and Exponential densities. 

Chapter 4 describes how the variational approach can be used in the con

text of hidden Markov models. It also describes how the Deviance Information 

Criterion can be used for model selection with this class of model. 

Chapter 5 explores the use of variational Bayes and the Deviance Information 

Criterion in hidden Markov random field analysis. In particular, the focus is on 

the application to image analysis. 

Chapter 6 summarises the research presented in this thesis and suggests 

some possible avenues of future development. 

The material in chapter 2 was presented at the ISBA 2004 world conference 

in Viiia del Mar, Chile and was awarded a prize for best student presentation. 
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Chapter 1 

Introduction 

The Bayesian approach to statistical inference allows us to incorporate prior 

knowledge into our analysis and makes use of all of the available data. The 

approach leads to a posterior distribution over the model framework and so it 

avoids overfitting of problems. It also provides a basis for model selection. Bayes' 

rule allows us to update our distribution over parameters from prior to posterior 

conditioning on the available observed data. The resulting posterior distribution 

is the key quantity in Bayesian inference. Unfortunately, except in the case of 

simple models, the associated posterior distributions and predictive densities are 

generally intractable. In this chapter we shall consider how this problem can be 

addressed by making use of variational approximations. We also describe the 

deviance information model selection criterion introduced by Spiegelhalter et al. 

(2002) and review some other popular selection criteria. 

1.1 The Variational Approach to Approximate 

Bayesian Inference 

The diversity of data available to researchers is continually growing due to many 

advances in computational power. Further to this, the invention of new meth

ods of analysis leads to the creation of more complicated hierarchical models 

which can better represent the available data. Of course, these developments 

present new challenges for Bayesian inference. A full Bayesian analysis of our 

data requires us to specify a prior distribution over our parameters. This prior 

distribution may then be parameterised further with unknown parameters termed 
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hyperparameters and this results in a hierarchical structure. Many modern ap

plications involve the use of hierarchical models; indeed, all of the models we will 

consider in this thesis have a hierarchical structure. The increasing complexity of 

statistical models and the intractability of posterior distributions is a main focus 

of much of the literature on Bayesian inference coming from the statistical as 

well as the machine learning community. In recent years, the most popular ap

proach to this problem among statisticians has involved using the Markov chain 

Monte Carlo (MCMC) simulation-based approximations to the incalculable dis

tributions (Gelfand and Smith (1990), Geyer (1992), Tierney (1994), Gilks et al. 

(1995), Green (1995), Gilks et al. (1996), Robert et al. (2000)). The use of 

MCMC simulation has also spread into the artificial intelligence literature (see 

Neal (1996), Doucet et al. (2001), Andrieu et al. (2003), for example). The 

attraction of MCMC methods comes from the fact that approximations are cor

rect provided the model used for sampling does provide a good representation 

of the true model and the number of simulations carried out is suitably large. 

The drawback of these methods is that if the model is very complicated then 

the method can involve substantial computational time as storage of parameters 

is required throughout the sampling iterations. It can also be difficult to assess 

the convergence of the algorithm. Variational methods are a fast, deterministic 

alternative to MCMC methods and recently they have been gaining popularity in 

the machine learning literature (for instance, Jordan et al. (1999), Corduneanu 

and Bishop (2001) and Veda and Ghahramani (2002)). 

Variational methods take their name from their roots in the calculus of vari

ations and they describe optimisation problems where the aim is to maximise or 

minimise an integral over unknown functions. Rustagi (1976) describes the use 

of variational methods in statistics and traces the origins of the calculus of varia

tions approach back to Sir Isaac Newton who used this method to find the optimal 

shape for the hull of a ship. Since that time the methods have gone through many 

stages of development and found application to problems in various disciplines. 

They have been applied to statistical problems in areas such as operational re

search and optimal design (see Rustagi (1976)). As mentioned above, lately these 

methods have enjoyed popularity with the machine learning community for their 

application to statistical learning problems. This kind of variational Bayesian 

method aims to construct a tight lower bound on the data marginal likelihood 

and then seeks to optimise this bound using an iterative scheme. This form of 
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variational approximation is often referred to as Variational Bayes (or occasion

ally ensemble learning) in the literature. Modern statistical techniques are widely 

used by the machine learning community to the extent that statistics plays an 

integral role in computer science research. There is a growing awareness of the 

strong links between the two subjects. The connection is emphasised by compila

tions such as Kay and Titterington (1999), which collects work from researchers 

in the statistical and the artificial neural-network communities. From a statisti

cal view point, review papers, such as those by Cheng and Titterington (1994) 

and Titterington (2004), and papers such as Ripley (1993,1994), describe the ap

plications of statistics in computer science. In the machine learning literature, 

publications such as Bishop (1995) and Ripley (1996) highlight the statistical 

aspects of artificial intelligence. This expansion of interest in statistical theory 

and practice has led to new developments and computational techniques and has 

opened up new avenues of further research for both communities. The work in 

this thesis is at the interface between machine learning and statistics. 

We now outline the basic theory of the variational approximation method 

for Bayesian inference. Suppose we have observed data y, that we assume a 

parametric model with parameters B and that z denotes missing or unobserved 

values. Of interest is the posterior distribution of B given y. The idea of the 

variational approximation is to approximate the joint conditional density of B 

and z by a more amenable distribution q(B, z), chosen to minimise the Kullback

Leibler (KL) divergence (Kullback and Leibler (1951)) between the approximating 

density q(B, z) and the true joint conditional density, p(B, zIY). The motivation 

for this is that we wish to obtain a tight lower bound on the marginal probability 

density p(y) of y. We can find a lower bound on p(y) as follows, 

logp(y) log J J p(y, z, B)dBdz (1.1) 

log J L q(B, z)p(y, z, B) dB 
{z} q(B, z) 

(1.2) 

> J~ ( ) p(y,z,B)dB ~ q B, z log (B z) , 
{z} q , 

by Jensen's Inequality. (1.3) 

The difference between the right and left hand sides of equation (1.3) is the KL 

divergence, given by 
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J
~ q((},z) 

K L(qlp) = L.., q((}, z) log (() I) d(}, 
{z} p ,zy 

since 

logp(y) = J L q((}, z) log p(~~ z, ~) d(} + K L(qlp)· 
{z} q ,z 

We want the lower bound to be as close as possible to p(y) and clearly, because 

of the positivity of the KL divergence, maximising the lower bound, (1.3), corre

sponds to minimising the KL divergence. 

The KL divergence is minimised by taking q((}, z) = p((}, zly), but this does not 

simplify the problem. We require a q( (), z) which provides a close approximation 

to the true joint conditional density and yet is simple enough to be computed. 

Usually q((}, z) is restricted to have a factorised form, in particular of the form 

q((}, z) = qo((})qz(z). 

The factors are chosen to minimise 

J J qo((})qz(z) 
qo((})qz(z) log ( ()) d(}dz. 

p y,z, 
(1.4) 

Since q((}, z) = qo((})qz(z) is being regarded as an approximation for p((}, zly), the 

corresponding (marginal) approximation for p((}ly) is clearly 

p((}ly) ~ qo((}) 

Observing the relationship 

( I
(}) - p(y, z, (}) _ p((}, zly)p(y) 

p y, z - p((}) - p((}) , 

and then substituting qo((})qz(z) for p((}, zly), this results in the approximation 

J qo((})p(y) 
p(yl(}) = p(y, zl(})dz ~ p((}) . 

So we have qo((}) which is the variational posterior for the model parameters and 

qz(z) which is the variational posterior for the missing variables. The equations 

for qo((}) and qz(z) resulting from the variational approximation are coupled. 
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They can be solved by choosing initial values for the sufficient statistics and then 

iteratively updating the equations for the model parameters and the missing 

indicator variables alternately until convergence. 

As a general rule, if the complete-data model corresponds to an exponential

family model and if the appropriate conjugate prior is chosen, it follows from 

the properties of the Kullback-Leibler divergence that the optimal qo(O) belongs 

to the conjugate family (see Ghahramani and Beal (2001) and Chapter 3). The 

relevant optimal hyperparameters are obtained by solving a set of coupled non

linear equations. Although it is clear that the 'correct' posterior density does not 

belong to the conjugate family, such approximations have been found to be very 

useful in many contexts. It can also be shown that the Variational Bayes method 

is monotonic: in a well-specified sense (1.4) 'decreases' (see Appendix B.1). For 

more general background on this type of variational approximation, see for exam

ple Ghahramani and Beal (2001) and Titterington (2004), and see Jordan (2004) 

for insight into a more general approach to variational approximations based on 

the duality theory of convex analysis. 

1.2 The Deviance Information Criterion (DIC) 

The recent expansion of research into complex hierarchical models for better 

representing real-world data has incurred the need for some suitable criterion 

for facilitating model comparison. The classical approach to model comparison 

usually involves a trade-off between how well the model fits the data and the level 

of complexity involved. In a somewhat similar spirit, Spiegelhalter et al. (2002) 

devised a selection criterion, called the Deviance Information Criterion, or DIC, 

based on Bayesian measures of the complexity level and of how well the model 

fits the data. 

Akaike's (1973) well known criterion, the AIC (Akaike's Information Crite

rion), proposes that the best model of competing set is the one which minimises 

AIC = -2Iog(maximum likelihood) + 2(number of parameters). 

The log-likelihood tends to favour models with more parameters and this is pe

nalised by the addition of the number of parameters term. In this way the AIC 

trades off the fit against complexity. However it has been shown by Shibata (1976) 
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and Katz (1981) that the AIC still tends to select a model with more parameters 

than is necessary. 

For a long time Bayes factors have been the standard criteria for performing 

Bayesian model comparison. They' provide a way of measuring the evidence in 

favour of a hypothesis and are defined as the ratio of posterior to prior odds 

of a hypothesis. However, there are some disadvantages to this criterion. Bayes 

factors are not well suited for models using improper priors (see Kass and Raftery 

(1995) for more detail). In addition they require the computation of marginal 

likelihoods which entails performing integration over the parameter space. There 

are few models for which these integrals can be evaluated exactly and so usually 

the Bayes factor has to be approximated. 

There are various ways of approximating the Bayes factor, the simplest ap

proximation being the Bayesian Information Criterion (BIC), also known as the 

Schwarz criterion (Schwarz 1978). It roughly approximates the Bayes factor in a 

way which avoids the computational difficulties described above. 

BIC - -210g(maximum likelihood) 

+(number of parameters) log (number of observations). 

The BIC is a conservative criterion in that it tends to provide less support for 

additional parameters or effects (Raftery (1998)). It also tends to prefer simpler 

models than those selected using the AIC as the penalisation term is larger than 

that of the AIC. The disadvantage of the BIC is that one has to be able to specify 

the number of free parameters in advance and it is not clear how to do this for 

complex hierarchical models. 

There are other methods for approximating Bayes factors but when the di

mensionality of the parameter space is high, as is often the case in modern appli

cations, the computational expense involved makes them impractical. Han and 

Carlin (2001) provides further discussion of some of the theoretical and com

putational barriers associated with using Bayes factors for the comparison of 

hierarchical models. So, for complex models, the DIC has the advantage that 

it is relatively straightforward to compute and, unlike the BIC, one does not 

have to specify the number of unknown parameters in the model to calculate 

it. This has made it an attractive option for modern applications, some exam-
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pIes are described in section 1.2.1. As the DIC was introduced fairly recently, 

its potential for application and properties are still being investigated. In their 

development, Spiegelhalter et al. (2002) concentrate on the application of the 

DIC to exponential-family models, with little said about other scenarios such as 

models for incomplete data. We consider how this criterion can be extended to 

these types of model by exploiting the use of variational approximations. 

Calculating the DIC and Extending it to the Case of Missing-Data Models 

The selection criterion devised by Spiegelhalter et al. (2002) combines Bayesian 

measures of model complexity and fit. They derive a complexity measure, PD, 

which is based on a deviance, the key term of which is 

D(()) = -210gp(yl()), 

where y denotes data and () are parameters within the parametric density p(·I()). 

The measure P D is defined as the difference between the posterior mean of the 

deviance and the deviance evaluated at the posterior mean or mode, (), say, of 

the relevant parameters: 

PD = EOly{ -210gp(YI())} + 210gp(yIO). 

This P D is a measure of the effective number of parameters in a model. Spiegelhal

ter et al. (2002) motivate the use of PD with an information theoretic argument 

and investigate some of its formal properties. An attraction of PD is that if it is 

being used in conjunction with an MCMC analysis, the quantity can easily be ob

tained without further approximation. Spiegelhalter et al. (2002) point out that, 

when () is taken to be the posterior mean, PD ~ 0 for likelihoods which are log

concave in (). However, it is possible to obtain negative PD'S for non-log-concave 

likelihoods in some instances. 

To measure the fit of the model, the posterior mean deviance, 

D(()) = EOIY{ -210gp(yl())}, 

is used. Using the posterior mean deviance as measure of fit was suggested by 

Dempster (1974) who proposed using the posterior mean of the classical deviance 

statistic to perform Bayesian model selection. It has been used since then by 

other authors for informal model comparison, but none of these has proposed 
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any formal method of trading off this quantity against the model complexity. 

Spiegelhalter et al. (2002) propose such a formal comparison criterion and their 

Deviance Information Criterion, or DIC, is formed by adding PD and D(()): 

DIC = D(()) + PD. 

Models which provide a good fit to the data should have larger likelihood, so 

since the measure of fit, D(()), is minus twice the posterior mean log-likelihood, a 

natural choice for a suitable model is one that minimises the DIC. An alternative, 

equivalent version (see Appendix A.I for more detail), reminiscent of Akaike's 

AIC, is 

DIC = -210gp(y\O) + 2PD' (1.5) 

Spiegelhalter et al. (2002) justify the use of the DIC via a decision-theoretic 

argument and draw parallels between the DIC and other non-Bayesian selection 

criteria. Spiegelhalter et al. (2002) point out that the DIC and the AIC are 

approximately equivalent for models having negligible prior information. The 

DIC can be thought of as a generalisation of the AIC as it is motivated in a 

similar way but it can be applied to any type of model. 

We briefly list some of the practicalities involved in using the DIC and refer 

the reader to Spiegelhalter et al. (2002) for more detail. 

Invariance to Parameterisation 

The P D is not invariant to the model parameterisation since changing posterior 

means corresponding to different choices of () can result in different values of D(O). 
PD may only be approximately invariant to these parameterisation changes. 

Focus of Analysis 

DIC may be sensitive to changes in the model structure. 

Nuisance Parameters 

Nuisance parameters such as variances which are not initially integrated out 

of the likelihood add to the complexity estimation. 

Significance of Differences Between DIG's 
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Spiegelhalter et al. (2002) suggest the rule of thumb that models with a DIC 

within one to two of the 'best' model are worth considering and that others are 

not well supported. This follows the suggestion made by Burnham and Anderson 

(1998) for comparing AIC values. 

Asymptotic consistency 

The DIC does not consistently choose the correct model from a fixed set with 

growing sample sizes. This is the same as for the AIC and the authors are not 

greatly perturbed by this. 

As previously mentioned, Spiegelhalter et al. (2002) say little about using the 

DIC to compare models such as those for incomplete data. Celeux et al. (2006) 

propose a number of adaptations for dealing with such cases. A crucial issue is the 

fact that D(()) is not known explicitly, and when necessary Celeux et al. (2006) 

replace such expectations with sample means based on a large number of MCMC 

realisations from p( ()Iy). Our approach is, instead, to exploit the use of variational 

approximations which allows us to express PD in the following computable form 

J q(}(()) q(}(O) 
PD ~ -2 q(}(()) log{ -(()) }d() + 210g{-_ }, 

P p(()) 
(1.6) 

and hence allows us to extend the DIC to missing data models. 

1.2.1 Some Applications of the DIC 

The DIC has been applied to various problems involving model comparison for 

complex models. For instance, Berg et al. (2004) apply the DIC to model selec

tion for stochastic volatility models which are used to analyse financial time series 

data. This is an example of an area where recent advances have led to increas

ingly complex models for which the standard selection criteria are unsuitable. 

Berg et al. (2004) point out that there is no straightforward, computationally 

efficient way of using Bayes factors for these models, since they involve a high

dimensional parameter space, and suggest that the DIC is more convenient for 

model comparison. Since stochastic volatility models are hierarchical, it is not 

straightforward to specify the number of free parameters to allow the calculation 

of the BIC which approximates the Bayes factor. The DIC has the advantage 

that this specification is not required. The authors found that, for a simulated 

data set, the DIC identified the correct model out of 8 possibilities. For a real 
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data example, they compared the DIC selection to that made using Bayes fac

tors (taking this as the "gold-standard" criterion) and found that both methods 

selected the same model for the data. They also noted that the DIC seemed to 

be robust against changes in priors. 

Zhu and Carlin (2000) apply the DIC to model selection for hierarchical mod

els in medical applications. They take a Bayesian approach to smoothing crude 

maps of disease risk. Developments in this area have led to the analysis of spa

tial data involving variables which are clustered across varying sets of regional 

boundaries (i.e. spatially misaligned). There is also a temporal aspect to be con

sidered. This type of data can be modelled using MCMC but a formal method 

for comparing fit is difficult due to the bulk of data and the use of improper 

priors. The DIC can be applied in complex hierarchical model settings like this. 

Zhu and Carlin (2000) found that the DIC performed reasonably well in their 

analysis although they were unable to obtain a satisfactory MCMC estimate of 

the variance of the DIC. 

Green and Richardson (2002) apply a hierarchical model of the spatial het

erogeneity of the rare count data arising in disease mapping by proposing a hid

den discrete-state Markov random field model generated by an underlying finite

mixture model which allows spatial dependence. They also use the DIC as a 

model selection tool for this complex model. 
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Chapter 2 

Bayesian Analysis of Finite 

Mixture Models 

In this chapter we give an introduction to finite mixture models and their applica

tions. We consider some of the issues involved in statistical inference for this type 

of model and, in particular, we shall show how variational methods, that have 

become popular in some of the neural computing/machine learning literature, 

can be used to determine a suitable number of components for a mixture model 

in the case of a mixture of Gaussian distributions. When this approach is taken, 

it turns out that, if one starts off with a large number of components, superfluous 

components are eliminated as the method converges to a solution, thereby lead

ing to an automatic choice of model complexity. When the method is applied to 

simulated data-sets, results suggest that the method is able to recover the correct 

number of components. 

Furthermore, we show how the DIC can be extended to this class of model 

via a variational approximation. 

2.1 Finite Mixture Models 

Finite mixtures have featured in statistical modelling throughout the past century. 

Mixture distributions provide a computationally convenient and flexible way of 

modelling complex probability distributions not well represented by the standard 

parametric models. The mixture density is made up of a linear combination of 

K, say, simpler component densities. This is an appropriate type of model when 
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one has experimental observations which are known to be grouped into K classes, 

where each component class is appropriately modelled by some parametric density 

and is weighted by the relative frequency of that class in the population. There 

is a vast array of literature available on the subject of finite mixtures particularly 

since computers became available to researchers. A comprehensive treatment of 

the subject is given by Titterington et al. (1985). The monograph by Everitt 

and Hand (1981) is also dedicated to the subject of finite mixture distributions. 

McLachlan and Peel (2000) is a recent text on the subject. 

Finite mixture densities with K components, for an observation Yi, are of the 

form (Titterington et al. (1985)) 

K 

p(Yilcf>, p) = L pj!(Yilcf>j) , (2.1) 
j=l 

where !(·Icf» denotes a parametric family model and Pj is the missing weight asso

ciated with the jth component. In most of the examples that one will encounter, 

all of the component densities will have the same parametric form, as they do 

in the examples we shall consider, but it is worth noting that this is not strictly 

necessary. 

With mixture data, the component which gave rise to any particular obser

vation is unknown and so mixture models can be interpreted as incomplete-data 

or missing-data models. If, for each observation, Yi, we introduce an imaginary 

indicator variable, Zi, which identifies the component our observation arose from, 

then since these indicators are unknown or missing to us, we have a missing-data 

model. If this set of indicator variables were available to us, parameter estimation 

would be straightforward. 

Data sets which are suitably represented by mixture models arise naturally in 

a variety of settings. Common applications of mixture models include problems 

in medical diagnosis and biological applications. In a medical setting, patients 

may be considered as belonging to a particular class determined by the disease or 

condition from which they are suffering, but the class to which they belong may 

be unknown and the aim of inference would be to predict the appropriate classi

fication. Biological studies often involve categorising organisms into recognisable 

species; in this case the mixture components would represent species groups. Re

cently, mixture models have become popular in machine learning where they are 
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used in unsupervised learning problems, and this has sparked interest in inference 

for mixture models among the machine learning community. In addition to these 

direct applications to data sets, mixture models also find a use in the development 

of statistical methodology; see Titterington et al. (1985) for an illustration. 

Due to the complexity of mixture models, and the fact that formulae for 

model parameters generally cannot be written down explicitly, early progress in 

mixture model research was slowed by the lack of computational resources. In 

recent years, the availability of such resources has allowed rapid expansion of 

investigation in this area and various new inference methods have been created. 

The main problems of inference for these models are estimation of the num

ber of components in the model and estimation of the component parameters. 

Often, with problems involving mixture models, the exact number of components 

present is unknown, and to estimate this assumptions are often made about what 

parametric form these components might take, or, if there is sufficient data avail

able then this parametric form may be known. Estimation of the number of 

component densities is not straightforward. The usual hypothesis test framework 

of testing hypotheses of alternative potential numbers of components cannot be 

easily applied here. For instance, asymptotic assumptions underlying tests such 

as the generalised likelihood ratio test based on the chi-squared approximation 

are not satisfied. There have been attempts to apply modifications of such tests, 

but the problem of estimating a suitable number of components still remains 

open. Recent approaches making use of MCMC schemes which are capable of 

comparing models with different numbers of components were developed, such as 

the reversible jump Markov Chain Monte Carlo (MCMC) method of Richardson 

and Green (1997) or the birth-death MCMC method, based on a continuous-time 

Markov birth-death process, of Stephens (2000). 

To estimate the unknown component parameters of the mixture model, vari

ous methods have been applied, for example, graphical methods, the method of 

moments, maximum likelihood estimation, minimum Chi-squared (see chapter 4 

of Titterington et al. (1985) for a description of all of these) and, increasingly 

popularly, Bayesian approaches, particularly using MCMC schemes; we elaborate 

on this below. The historic paper by Pearson (1894) used the method of mo

ments for inference on finite mixture models, and, despite some drawbacks, this 

was the main method of analysis used until computers became widely available 

(Titterington et al. (1985)). After that, maximum likelihood estimation became 
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popular, principally interpreting the mixture models as incomplete data models 

and making use of the Expectation-Maximisation (EM) algorithm of Dempster, 

Laird and Rubin (1977) to obtain maximum likelihood estimates of the mixing 

weights, means and variances not available in closed form. The EM algorithm 

involves two main stages, the expectation step and the maximisation step. Ini

tially observations are allocated to components and parameters are estimated 

as if the data were complete. In the first step the expected value of the com

plete data log-likelihood at these values is calculated. In the maximisation step 

the expectation found in the first step is maximised and parameter values which 

maximise it are used as the approximate maximising parameter values in the first 

step of the next iteration. Iterations alternate between the two steps until the 

algorithm converges to a solution. The EM algorithm is attractive due to the 

ease of implementation and its monotonicity. The monotonicity property means 

that the observed data likelihood never decreases as the iterations of the algo

rithm progress. Each new observed data likelihood will always be greater than 

or equal to the previous estimate. This means that the algorithm will converge 

monotonically to some value; of course convergence to the global maximiser is 

not guaranteed. A drawback of this method is that the convergence rate is very 

slow. Many modifications to the basic EM algorithm have been made over the 

years in an attempt to improve performance; see for example Celeux and Diebolt 

(1985,1989). 

The most notable advances in mixture model analysis in recent years have 

made use of a Bayesian approach and it is with the Bayesian approach that we 

are primarily concerned. Bayesian inference involves updating prior to posterior 

information through the relationship that the posterior is proportional to the 

prior times the likelihood. The problem with this paradigm for finite mixtures 

is that the posteriors which arise involve large numbers of terms, and this makes 

calculation of quantities such as posterior means infeasible if the mixture model 

has more than one or two unknown parameters. To circumvent this computational 

problem, most recent progress has made use of MCMC sampling methods which 

also interpret the mixture as an incomplete-data model (see, for example, Robert 

and Diebolt (1994), Casella et al. (2002)). These MCMC methods have become 

commonplace in Bayesian analysis, but MCMC schemes which are capable of 

performing model comparison between models of varying dimensions, such as 

those mentioned above, were introduced much more recently. 
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Green (1995) introduced the "reversible jump" methodology which constructs 

a Markov chain with a stationary distribution which is equal to the joint poste

rior distribution over the model and the parameters. The algorithm occasionally 

proposes "jumps" between different possible models with a rejection rate which 

ensures the desired stationary distribution is retained. It is hoped that the algo

rithm will adequately explore the various potential models. However, in practice 

it can be difficult to manage this. Richardson and Green (1997) applied this 

reversible jump move to perform Bayesian analysis of mixture models. They 

analysed three of the real data sets we use in section 2.8.3, where we compare 

their results with the ones we obtain. Stephens (2000) described an alternative 

MCMC method for estimating the number of components of a mixture model 

which is based on a continuous-time Markov birth-death process rather than re

versible jump moves. MCMC methods of this kind had previously been used for 

Bayesian analysis of point process model parameters. To adapt this idea to mix

ture models, Stephens (2000) views the mixture parameters as a marked point 

process with each point representing a mixture component. His MCMC scheme 

permits changes to the number of components by permitting the "birth" of new 

components and the "death" of some existing ones, taking place in continuous 

time. The relative birth and death rates determine the stationary distribution of 

the chain. There is a prior on the births so that they occur at a constant rate and 

the death rate is high for components which are not useful in explaining the data 

and low for components that are useful. So, rather than accepting or rejecting 

jumps as in Richardson and Green (1997), Stephens (2000) has good and bad 

births with bad ones being removed through the death process. Stephens (2000) 

states that his method seems to involve computational time comparable to that 

involved in the method of Richardson and Green (1997), in the case of mixtures 

of univariate Normals. However Stephen's (2000) method does not require the 

calculation of a complicated Jacobian and, with his method, it is straightforward 

to alter the algorithm to consider a different parametric model for the mixture 

components. 

A drawback of these iterative MCMC methods is that they can be time

consuming. In addition to this, it can also be difficult to assess when the sampler 

has reached convergence. The variational technique we describe is a non-iterative 

deterministic alternative to the MCMC methods. Variational methods can also be 

used to compare competing models with differing numbers of components while si-
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multaneously estimating model parameters. The attractiveness of the variational 

approximation is the fast computational time and the ease of implementation. 

2.2 Variational Methods for Analysis of Finite 

Mixture Distributions in Machine Learning 

Variational methods for inference about mixture models have been appearing in 

the machine learning literature over the last decade. Waterhouse et al. (1996) 

proposed estimating the parameters and hyperparameters of a mixture model by 

using a Bayesian framework based on the variational approximation. This was 

presented as an alternative to the maximum likelihood approach to parameter 

estimation in artificial neural networks which tends to over-fit the model. This 

paper does not consider the idea of using the variational framework for model 

selection. 

Attias (1999) extends the variational Bayes technique to perform model se

lection as well as estimating parameters by introducing a prior over the model 

structure. This results in a variational posterior distribution over the model struc

ture. For mixture models this leads to a posterior distribution over the number 

of components in the model. For application of the algorithm to mixtures of 

Gaussians, Attias (1999) assigns non-informative priors to the model parameters 

and the number of components is given a uniform prior based on a prescribed 

maximum number of components. Attias (1999) uses the log posterior over the 

number of components which arises from application of the algorithm to identify 

a suitable number of components, the optimal number being the peak of this pos

terior. However, Attias (1999) states that, for this model set-up, if the number 

of observations assigned to a component is one or less, the posterior mean of the 

mixing weight of that component is zero, effectively indicating that that compo

nent is unnecessary and eliminating it. Attias (1999) suggests that, in this way, 

the variational algorithm avoids the problem of singularities which can arise with 

the EM algorithm. The problem is that such a component may become centred 

at a single observation point resulting in zero variance, which leads to an infinite 

likelihood and the incorrect model having a larger likelihood than a correct one. 

Both Waterhouse et al. (1996) and Attias (1999) emphasise the connection 

between the EM algorithm and the variational Bayes algorithm. Variational 
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Bayes is an EM-like algorithm, the expectation step of EM corresponding to 

finding the expected value of the posterior of the component indicator variables 

in variational Bayes. The maximisation step of EM relates to estimating the 

model parameters in variational Bayes by maximising the lower bound on the 

marginal log-likelihood. 

Corduneanu and Bishop (2001) also apply the variational learning technique 

to the analysis of a finite mixture of Gaussians. They consider the variational 

approach to estimating the number of components as well as estimating compo

nent parameters. They take an approach which involves optimising the mixing 

co-efficients using type-2 maximum likelihood and marginalising out the model 

parameters using variational methods which leads to automatic recovery of the 

number of components. They have a fixed maximum potential number of com

ponents. They employ an EM-like procedure in which they alternately maximise 

the lower bound on the marginal log-likelihood with respect to the mixing weight 

co-efficients and then update the expected values of the model parameters and 

hidden variables. Corduneanu and Bishop (2001) find that optimising the mix

ing co-efficients using type-2 maximum likelihood causes the mixing weights of 

unwanted components to go to zero. As their algorithm progresses, if Gaussians 

with similar parameters are fitting the same part of the data, they become unbal

anced, in terms of the expectations of the mixing co-efficients, until one dominates 

the rest which means the others can be removed. Corduneanu and Bishop (2001) 

remove components when the expectations of the mixing co-efficients are less 

than 10-5, Corduneanu and Bishop (2001) found that starting their program 

with initial means which were equal or too similar made differentiation between 

components during the optimisation stage difficult and led to slow convergence 

and removal of too many components. To address this problem, the authors use 

K-means clustering to set the initial means. They assign'large initial covariance 

matrices to the components, which they opine is enough to avoid local maxima. 

Veda and Ghahramani (2002) state that variational learning algorithms can 

become trapped in poor local optima near initial values. With a view to si

multaneously optimising the parameters of a mixture model and automatically 

selecting the number of components whilst avoiding becoming trapped in poor 

local optima, Veda and Ghahramani (2002) present a Variational Bayes Split 

and Merge Expectation-Maximisation (Variational Bayes SMEM) algorithm, fol

lowing on from their SMEM for mixture models developed within the maximum 
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likelihood approach (Veda et al. (2000) ). The maximum likelihood framework 

used in Veda et al. (2000) limits the algorithm to fitting a model with a fixed 

number of components, since the maximum likelihood value tends to increase with 

model complexity meaning that the SMEM cannot find the optimal model struc

ture. Veda and Ghahramani (2002) define prior distributions over the model 

parameters, hyperparameters, hidden variables and the model complexity (Le. 

the number of components). The Variational Bayes SMEM algorithm first per

forms the conventional variational Bayes method for a model with a given number 

of components, and then, for this fitted model, the algorithm seeks to maximise 

the lower bound on the log marginal likelihood by performing either a split of 

components, a merge of components or a split and merge simultaneously. In this 

way the algorithm searches for the optimal number of components whilst trying 

to avoid local maxima. The variational posterior for this new model is then gen

erated and if the lower bound is improved this proposal is accepted, otherwise it 

is rejected. This is repeated until the lower bound is no longer improved. The 

technique involves a greedy search strategy in that at each stage it tries to find a 

better local maximum for the objective function and so convergence to a global 

maximum cannot be guaranteed, but at each stage the value of the objective 

function is improved and so a better local maximum is obtained. The authors 

were successful in applying this method to real and simulated data sets. Veda and 

Ghahramani (2002) do not report that unwanted components are automatically 

removed through the application of their variational Bayes. 

In our implementation of the variational method, we also observe the compo

nent elimination property noted by Attias (1999) and Corduneanu and Bishop 

(2001), although our model hierarchy is different from that used in these papers. 

We did not find it necessary to use a clustering method to choose the initial es

timates of the component means as was done in the paper by Corduneanu and 

Bishop (2001) nor did we encounter any problems from initialising our algorithm 

with equal component means set to zero. 
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2.3 Mixture Models Interpreted as Missing-Data 

Models 

In the context of a random sample of mixture data, we can interpret the model as 

a missing data model by introducing a set of missing binary indicator variables 

{Zij}, (i = 1, ... ,n,j = 1, ... ,K) to describe which component gave rise to a 

particular observation. The {Zij} are defined so that if observation Yi is from 

component m, say, then 

Zij = 1 if j = m 

o if j =f- m. 

This leads to a model of the form 

n 

p(YIO) = II {LP(Yi, ziIO)}, 
i=l Zi 

where n denotes the sample size and Z = {Zi} denotes missing data. The param

eters 0 include mixing weights and parameters of the component densities. It is 

well known that, with mixture data, posterior densities p(OIY) are complicated 

and exact evaluation of posterior expectations is not practicable. We shall deal 

with this difficulty by using a factorised variational approximation for p(O, zIY) 

in order to calculate PD and to find an expression for B, the latter to be inserted 

into the exact formula for p(YIB). 

2.4 DIC for Mixture Models 

This section examines how the DIC can be applied to mixture models. The most 

convenient forms for the DIC and PD, for our purposes, are those given in Chapter 

1: 

DIC = 2PD - 2logp(YIB) 

and 

PD = EOl y { -2logp(yIO)} + 2logp(YIB). 
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For mixture data, it is straightforward to calculate p(YIO) but evaluation of 

EOl y is difficult. Ideally B will be a summary parameter from p(Oly). We take B 
to be the posterior mean. 

The following section explains how the difficulty in this case can be dealt with 

using a factorised variational approximation for p(O, zIY) in order to calculate 

PD and to find an expression for B. The DIC value can then be obtained by 

substituting the exact formula for p(yIB). 

2.5 Mixture of K Univariate Gaussian Distribu

tions 

Consider a mixture of K univariate Gaussian distributions with unknown means, 

variances and mixing weights. The mixture model is of the form 

K 

p(YiIO) = LPjN(Yii/-lj,Tj-l), for i = 1, ... ,n 
j=1 

where Ti is the precision and is equal to u\. 
J 

We consider a data set made up of observations Yl, ... , Yn which are assumed to 

have been drawn independently from the mixture distribution. By the definition 

given in section 2.3, for each observation Yi, Zij is defined such that Zij = 1 if Yi 

comes from component j and Zij = 0 otherwise. By this definition E.f=1 Zij = 1, 

for each i, and we can write 

n K 

p(Y, zIO) II II {pjN(Yii /-lj, Tj -1 )}Zij 

i=1 j=1 

IT IT {Pj fije-~(Yi-lJ.j)2yij. .. v 2;. 
'=13=1 

2.5.1 The Variational Approach 

Assigning the Prior Distributions 

We now assign prior distributions to the parameters of 0. 
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The mixing weight coefficients are given a Dirichlet distribution 

- ( ) D' ((0) (0)) P- P1,,,,,PK f'V Ir a1 , ... ,aK . 

Conditional on the precisions, the means are assigned independent univariate 

Normal conjugate priors, so that 

K 

p(J.llr) = II N(J.lj; m/O), ((3/0)rj) -1). 
j=1 

The precisions are given independent Gamma prior distributions, so that 

K 

p(r) = II Ga(rjl~l'/O), ~8/0)). 
j=1 

We then have 

p(B) = p(p)p(J.llr)p(r) 

K K 

II 0·(0)-1 II ex Pj J 

j=1 j=1 

Thus, the resulting joint distribution of all of the random variables is 

{3.(0)7· (0) 1 
x exp{ - J 2 J (J.lj - mj )2 - 28/O)rj}]. 

For the variational approximation to p(z, Bly) we take q(B, z) to have the 

factorised form 

q(B, z) = q(}(B)qz(z). 

Forms of the Variational Posterior Distributions 
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For details of the calculation of these formulae see Appendix C.l. The optimal 

qp(p) and qj(/lj, Tj) have the forms 

K 

() II a'-1 
qp p ex: p/, 

j=1 

where 

hj-l {I } Qj(Tj) ex: Tj exp -28jTj . 

For the qZi (Zi) we have, for each i = 1, ... , n and each j = 1, ... , K, 

where \lI(.) is the digamma function, 

lLr(a) a 
\lI(a) = 8a = -In r(a). 

r(a) aa 
The qz; (Zi = j) are normalised to sum to 1 over j for each i. 

For q's going with the parameters we have 

n 

qj(/lj, Tj) ex: T}(1+Ef=l qz;(z;=j)+-r/O)-2) exp{ -? L qz;(Zi = j)(Yi - /lj)2} 

i=1 
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The posterior distributions are therefore 

1 
I/.·IT· rv N(m· -) 
,..,Z) )'(3 

jTj 

1 1 
T, rv Ga(-'V· -0') 

l 2 I)' 2 ) 

If we denote qZi(Zi = j) by qij, hyperparameters are given by 

n 

Ctj = Ctj (0) + L qij 

i=l 

n 

(3j = (3/0) + L qij 

i=l 

n 

"Ij = "I/0) + L qij 
i=l 

(3 .(O)m .(0) + ",n q .. y. m. -) ) L.Ii-l Z) Z 

) - (3 (0) ",n 
j + L..i=l qij 

n 

OJ = 0/) + L qijYi2 + {3/0)m/0)2 - {3jml· 

i=l 

say, where Si = E.f=l 'Pij' 

Obtaining Formulae for PD and the DIG 

Now we derive formulae to calculate PD and DIC (see Appendix C.2 for de

tails). We have 
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where we use 

_ G.j 

Pj = K 
Ej=l G.j 

Jlj = mj 

- 'Yj 
Tj=T' 

J 

In this case we obtain 

P D ~ -2 ! qo (()) log{ qO((()())) }d() + 2log{ qo (~) } 
p p(()) 

where 

We can then obtain a value for the DIC through the formula 

DIC = 2PD - 2logp(yIO). 

2.6 Multivariate Case 

The method applied to the mixtures of univariate Normals can easily be extended 

to the multivariate case. In this case we have 

n K 

p(y, zl()) = II II {pjNd(Yi; Jlj, Tj -l)}Zii. 

i=l j=l 
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where Nd denotes the multivariate Normal density with dimensionality d and Tj 

denotes the jth precision matrix, equal to the inverse of the lh covariance matrix. 

2.6.1 The Variational Approach 

Assigning the Prior Distributions 

As with the univariate case, the mixing weight coefficients are given a Dirichlet 

prior distribution 

() D · (I (0) (0») P p = 1,r p a1 , ... , aK . 

The means are assigned the multivariate Normal conjugate prior, conditional on 

the covariance matrices, so that 

K 

p(/LIT) = IT Nd(/Lj; m/O) , (f3/0)Tj ) -1), 
j=l 

where 

The precision matrices are given independent Wishart prior distributions, 

K 

p(T) = rrW(Tjlv/O),~/O»). 
j=l 

The complete prior is then 

p( ()) = p(p )p(/LIT)p(T) 

K K 1 1 
ex IT p/j (O)-l IT 1f3/0)Tj I2 exp{ -2(/Lj - m/O) ( f3/o)Tj (/Lj - m/o»)} 

j=l j=l 
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K K 1 1 
p(y, z, ()) ex: rr p//O)+Ei=l Zir1 rr 1,B/o)Tj I

2 exp{ -2(J.Lj - m/O) ( ,B/o)1j(J.Lj-m/o))} 
j=1 j=1 

v·(OLd-l 

rrK IT·I J 2 exp{ -ltr(~(O)T·)} x J 2 J 
(0) v·(O) 

j=1 2~1~/0)I-Y n:=1 r[Hv/O) + 1- s)] 

For the variational approximation to p(z, ()Iy) take q((), z) to have the fac

torised form 

q((), z) = qo(())qz(z). 

Form of the Variational Posterior Distributions 

Details of the calculations are given in Appendix D.l. The posterior distribu

tions which maximise the right hand side of (1.3) are then 

with hyperparameters given by 

n 

aj = a/D) + Lqij 
i=1 
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n 

{3j = {3j (0) + L qij 
i=1 

(3 .(O)m.(O) + ",n q .. y. 
J J L..,.i-l zJ t 

mj = -
(3j 

n 

~j = ~/O) + L qijYiY? + {3/0)m/O)m/O)T - (3jmjml 
i=1 

n 

Vj = V/O) + Lqij 
i=1 

with 

say, where Si = l:f=1 'Pij' 

The expectations are given by 

d 

Eq[ln ITjl] = L \lI(Vj +; -s) + dIn (2) -In I~I 
8=1 

Obtaining Formulae Jor PD and the DIG 

Now we derive formulae for calculating PD and DIC (see Appendix D.2). We 

have 
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where we use 

P D is approximated as 

P D ~ -2/ q(} ((}) log{ q(}(((}(})) }d(} + 2log{ q(} (~) } 
p p((}) 

We can then obtain a value for the DIC through the formula 

DIC = 2PD - 2Iogp(y/B). 

2.7 Practical Implementation 

Our variational method and calculation of the DIC and PD values is implemented 

using a program which is run in R. Code has been written to deal with both one

dimensional and two-dimensional data sets and can be initialised to start with 

any number of maximum potential components. 

The user must specify the initial number of components, K, to start with, and 

the data set to be analysed. The user's input data must contain the observed data 

and a list of indices ranging from 1, ... , K initially allocating the observations to 

one of the K components. In our examples, we allocated roughly equal numbers 
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of the observations to each of the K components. No particular method was used 

for doing so but we found that the initial allocation did not seem to affect results. 

The initial allocation is just to start the program off and as the algorithm cycles 

through its iterations, the observations find their own places. 

At the initialisation stage, a user-specified value is given for the weight that 

is to be assigned to each observation indicator variable (the qi/S). These initial 

values for the qi/S were chosen to give a slightly higher weighting to the initial 

allocation to components just to start the algorithm running. For example, sup

pose that the initial number of components chosen by the user is 5 and that the 

initial weighting is 0.3. If observation i has initially been assigned to component 

1, then 

qil = 0.3 

and 
1- 0.3 

qij = 4 for j -:I 1. 

In most cases, the results obtained were the same for all values of the initial 

weight but occasionally it led to slight differences. When this was found to be 

the case, the DIC value was used to choose between models. 

The user has the option to specify initial values for the sufficient statistics 

or, alternatively, defaults which specify broad priors are available. All of our 

examples use these broad priors. 

As the program runs, the resulting qi/S are nonnegative and sum to lover j 

for each i. They therefore form a set of predictive probabilities for the indicator 

variables for the data. The sum of the qij'S over the i time points for each compo

nent provides an estimate of the number of observations that are being allocated 

to each component, we can think of this as a weighting for each component. The 

cutoff value determines at which point a component is no longer deemed to be 

part of the solution. The default value we use for this is 1 and this was the value 

used in all examples given. This means that a component is not considered use

ful if less than one observation is assigned to it. When one component's weight 

falls below this cutoff value it is removed from consideration and the program 

continues with one fewer component. 

At each iteration of the code, the DIC and PD values are computed and the 

updated weights for each component are obtained. The program runs until it 

converges and the solution it finds will have a number of components which 
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is less than or equal to the number the user started with. This means that 

components which were considered to be superfluous are removed as the program 

cycles through its iterations. 

To summarise, application of the method leads to an automatic choice of 

model: 

• The algorithm is initialised with a number of components larger than one 

would expect to find. 

• If two or more Gaussians with similar parameters seem to be representing 

the same component of the data then one Gaussian will dominate the others 

causing their weightings to go to zero. 

• When a component's weighting becomes sufficiently small, taken to be less 

than one observation in our approach, the component is removed from con

sideration and the algorithm continues with the remaining components until 

it converges to a solution. 

• At each step the DIC value and PD value are computed. In our results, these 

decrease as the algorithm converges so that the model chosen by comparing 

the DIC values corresponds to the model chosen by the variational method. 

2.8 Performance of the Method on Simulated 

and Real Data Sets 

2.8.1 Results of Analysis of Simulated Data from Mix

tures of Multivariate Gaussians 

We first consider multivariate data-sets simulated from the three models analysed 

by Corduneanu and Bishop (2001). As mentioned previously, Corduneanu and 

Bishop (2001) take an approach based on optimising the mixing co-efficients us

ing type-2 maximum likelihood and marginalise out the model parameters using 

variational methods which leads to automatic recovery of the number of compo

nents. Their approach is based on a different prior for the component means than 

that used in our approach. They assign a Gaussian prior, with zero mean, and 

a covariance matrix, proportional to the identity matrix, chosen to give a broad 
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prior over the component means. Corduneanu and Bishop's (2001) prior for the 

component means is not conditional on the precision matrix of the component 

as ours is. Another difference in their prior structure is that they assign a dis

crete distribution to the latent variables, conditioned on the mixing co-efficients. 

No prior is assigned to mixing co-efficients and the joint distribution over all 

the random variables is conditioned on them. The means and covariances of 

the true models the data were generated from and the fitted variational pos

teriors for each data-set are displayed in Tables 2.1, 2.2 and 2.3. Data-set 1 

comprises 600 observations, data-set 2 comprises 900 observations and data-set 

3 comprises 400 observations. In each case the correct number of components 

is automatically found by our method and it is clear that the method obtains 

good posterior estimates of the component parameters. All three data-sets are 

generated from models with equal mixing weights and we find good estimates of 

these also (the variational posterior estimates of the mixing weights for data-set 

1 were 0.20,0.20,0.20,0.23,0.17, for data-set 2 they were 0.31,0.37,0.32 and for 

data-set 3 they were 0.34,0.30,0.36). We applied our method to these data-sets, 

initialising the program with 7 components (a maximum above the number of 

components we knew to be present), and in each case our method automatically 

recovered the correct number of components for the model. However, with our 

approach it turned out not to be necessary to use clustering methods to assign the 

initial means, as was done by Corduneanu and Bishop(2001). In our approach, 

the means were assigned independent bivariate Gaussian priors, conditional on 

the precision matrices, and the initial means were all set to zero. The parameter 

(3(O) was chosen to be 0.05 to give a broad prior over the mean. The precision 

matrices were assigned a Wishart prior and the initial values for the degrees of 

freedom and the scale matrix were taken to be 2 and [0,0; 0, 0] respectively. The 

mixing weights were given a Dirichlet prior with the initial a's set to 0. These 

choices lead to improper priors for the precision matrices and the mixing weights. 

Figures 2.1-2.3 show the final model fitted using the variational method (dashed 

line) and the true distribution from which the data were generated (solid line) and 

in each case the method has returned a close fit to the true model. The ellipses, 

corresponding to each fitted component, are plotted using the variational poste

rior estimate of the mean and the variational posterior estimate of the covariance 

matrices. Each ellipse defines an area of probability content equal to 0.95 for the 

corresponding Gaussian distribution. 
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Table 2.1: True and Fitted Means and Covariances for Data-Set 1 

True Distribution Variational Posterior 
Component Mean Covariance Mean Covariance 

1 [0,0] 
1 0 

[0.01,0.03] 1.08 0.05 
0 1 0.05 1.19 

2 [3, -3] 
1 0.5 

[3.19, -2.84] 0.95 0.54 
0.5 1 0.54 1.1 

3 [3,3] 
1 -0.5 

[3.04,2.98] 
1.1 -0.61 

-0.5 1 -0.61 0.81 

4 [-3,3] 
1 0.5 

[-2.97,2.88] 
1.07 0.66 

0.5 1 0.66 1.17 

5 [-3, -3] 
1 -0.5 

[-2.78, -3.15] 
0.87 -0.46 

-0.5 1 -0.46 0.95 

Table 2.2: True and Fitted Means and Covariances for Data-Set 2 

True Distribution Variational Posterior 
Component Mean Covariance Mean Covariance 

1 [0, -2] 
2 0 

[0.03, -2.02] 
2.28 -0.01 

0 0.2 -0.01 0.24 

2 [0,0] 
2 0 

[0.00, -0.01] 
2.15 -0.02 

0 0.2 -0.02 0.20 

3 [0,2] 
2 0 

[-0.13,2.02] 
2.22 0.01 

0 0.2 0.01 0.18 

Table 2.3: True and Fitted Means and Covariances for Data-Set 3 

True Distribution Variational Posterior 
Component Mean Covariance Mean Covariance 

[0,0] 
1 0 

[0.06, -0.03] 
0.96 0.07 

1 0 0.2 0.07 0.18 

[0,0] 
0.02 -0.08 

[0.01, -0.01] 0.01 -0.08 
2 -0.08 1.5 -0.08 1.4 

[0,0] 
0.5 0.4 

[0.02, 0.07] 0.55 0.45 
3 0.4 0.5 0.45 0.57 
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Figure 2.1: Fitted model and true distribution for data-set 1 

I Fitted Density 
TClJA DenSlt¥ ==1 

'" 

N 

0 

0 

';" 

0 
0 

'l' 
0 

'? 

·6 ·4 ·2 0 2 4 6 

Figure 2.2: Fitted model and true distribution for data-set 2 
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Figure 2.3: Fitted model and true distribution for data-set 3 
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Table 2.4 shows the DIC and PD values obtained for each data-set for number 

of components ranging from 2 to 7, to allow comparison of the DIC values one 

would obtain in each case. It was not possible to force the program to converge 

with a number of components higher than that automatically selected because 

if superfluous components are not removed the algorithm cannot progress. To 

obtain an estimate of what these DIC's might be, we have reported "indicative" 

DIC's (highlighted by *) which were calculated as the algorithm was converging to 

its solution, these are not what would be obtained for fixed K. For example, the 

DIC for K = 7 components corresponds to the last DIC output by the program 

before the 7th component was dropped. The table clearly contains scenarios 

in which the algorithm is initially implemented with a number of components 

which is smaller than the correct number. In general, if we begin with fewer 

components than we would reasonably expect to discover, or fewer than the 

number automatically selected, the algorithm does converge to a solution with 

this number of components, but one can see that the DIC value is higher, reflecting 

the 'incorrect' choice. In this way, DIC values are useful for validating the model 

selected using the variational method. 
Comparing the DIC's and considering the model with the lowest value to 

be the most suitable also indicates the correct number of components for all 

three data-sets, so that the two methods of selection are in agreement for these 

examples. In general we have found that there is agreement between models 

selected by the variational scheme and the DIe. Looking at Table 2.4, one can 

see that the DIC values calculated at each stage of the iterations are decreasing 

as the variational scheme throws out components and converges to a solution. 

Solutions with fewer components than that selected by the variational approach 

also have higher DIC's. We found this pattern repeated with other examples we 

considered. 
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Table 2.4: DIC and (PD) values for the three simulated data-sets 

Components Data-set 1 Data-set 2 Data-set 3 

7 5187* 6336* 1711* 
(29.32) (25.96) (29.20) 

6 5186* 6339* 1689* 
(26.11) (21.97) (26.72) 

5 5184 6333* 1703* 
(23.84) (18.08) (20.55) 

4 5468 6331* 1696* 
(18.87) (15.41) (15.62) 

3 5577 6329 1691 
(13.94) (13.96) (13.9) 

2 5752 6533 1703 
(8.98) (8.97) (8.9) 
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2.8.2 Results of Analysis of Simulated Data from Mix

tures of Univariate Gaussians 

To further investigate performance of the method, the program was used to anal

yse several simulated univariate data sets. The first such example is a simulation 

of 150 values from a Normal distribution with mean 0 and standard deviation 1. 

The result obtained for this, starting with 7 components, is given in Table 2.5. 

The program automatically finds the correct number of components and good 

estimates of the mean and standard deviation. 

Table 2.5: Results for Simulation from N(O,l) 

No. of Components Fitted Mean Standard Deviation DIC PD 
1 -0.078 1.008 428 1.99 

Figure 2.4 shows a kernel plot of the simulated data used in the one component 

example. Superimposed is a plot of the exact density from which the data were 

generated, and a plot of the density which was fitted. This kernel plot, and all 

other kernel plots displayed in this thesis, were produced using the sm library for 

S-Plus which accompanies the book by Bowman and Azzalini (1997). 
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Figure 2.4: Simulated Values from N(O,l) 

The next example is taken from the paper by Celeux et al. (2006). Celeux et 
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al. (2006) consider using different versions of the DIC for model comparison in the 

case of latent variable models. The underlying distribution is the 4-component 

Normal mixture 

0.288N(0, 0.2) + 0.26N( -1.5,0.5) + 0.171N(2.2, 3.4) + 0.281N(3.3, 0.5), 

and the sample size is 146. 
When started with 7 components, the program automatically recovered 4 com-

ponents with means and standard deviations given in Table 2.6. The variational 

method finds the correct number of components and reasonably good estimates 

of means and variances. The DIC value for this was 599 and the PD value was 

10.83. The DIC for this model was the lowest and so the DIC also selects a 4 

component mixture. 
In the Celeux et al. (2006) analysis of this simulated data set, only two of the 

forms of the DIC they use select the correct number of components. However, 

these particular DIC's have negative PD values which is not satisfactory. 

Table 2.6: Results for Simulation from Mixture of 4 Normals. 

Component Mean Standard Deviation Mixing Weight 

1 0.005 0.147 0.251 

2 -1.49 0.44 0.206 

3 1.36 3.3 0.296 

4 3.38 0.54 0.247 

Figure 2.5 displays a kernel plot of the simulated data used in the four compo

nent mixture examples. Superimposed is a plot of the exact density from which 

the data were generated and the density which was fitted. 
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Figure 2.5: Results for Simulation from Mixture of 4 Normals 

The following examples are simulated from mixtures of 2 Normal distributions 

with means +/- 0 and standard deviation 1, the first component having weight 

p and the second having weight 1 - p. In each case the sample size is 150. These 

mixtures are of the form 

pN( -0,1) + (1 - p)N(o, 1). 

The sample size is not very large and, for certain combinations of 0 and p, the 

resulting mixture will be unimodal making it very difficult to distinguish between 

components. For examples where the method can converge to more than one 

solution depending on how the program is initialised, the DIC value is used to 

select the model. Table 2.7 displays the results for the different combinations. 

Figures 2.6 to 2.11 show the simulated data plotted with the true densities and 

the fitted densities. 
The analysis of the first and fourth mixtures selects 1 component in the mix-

ture rather than two; however the two mixtures are not well separated as one 

can see from Figures 2.6 and 2.9. The method chooses 3 components for the 

fifth mixture. In the remaining cases the method recovers the correct number of 

components. 
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Table 2.7: Results for Simulation from Mixtures of 2 Normals. 

p {} Components Fitted Means Standard Deviations Mixing Weights 

0.25 0.5 1 0.33 1.12 1 

0.25 1 2 -2.360.8 0.45 1.15 0.070.93 

0.25 2 2 -1.97 2.18 0.840.95 0.290.71 

0.5 0.5 1 0.07 1.12 1 

0.5 1 3 -1.53 -0.14 1.12 0.93 0.17 0.79 0.39 0.1 0.51 

0.5 2 2 -2.11 1.77 0.9 1.14 0.470.53 

Table 2.8: DIC and PD Values for Simulated Mixtures of 2 Normals. 

p {} DIC PD 
0.25 0.5 464 1.99 
0.25 1 524 4.87 
0.25 2 584 4.95 
0.5 0.5 466 1.99 
0.5 1 546 4.94 
0.5 2 630 4.96 
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Figure 2.6: Simulated Values from Mixture of 2 Normals with p = 0.25 and 

{} = 0.5 
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Figure 2.7: Simulated Values from Mixture of 2 Normals with p = 0.25 and 8 = 1 
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Figure 2.8: Simulated Values from Mixture of 2 Normals with p = 0.25 and 8 = 2 
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Figure 2.9: Simulated Values from Mixture of 2 Normals with p = 0.5 and 0 = 0.5 
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Figure 2.10: Simulated Values from Mixture of 2 Normals with p = 0.5 and 0 = 1 
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Figure 2.11: Simulated Values from Mixture of 2 Normals with p = 0.5 and c5 = 2 
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2.8.3 Analysis of Real Data Sets 

The real data are the familiar examples of the galaxy, acidity and enzyme data 

analysed by Richardson and Green (1997) and Corduneanu and Bishop (2001), 

among others. A copy of these data sets is given in Appendix E.l. 

Galaxy Data 

This data set comprises the velocities (in 103 km/s) of 82 distant galaxies, 

diverging from our own galaxy. The observations come from six well-separated 

conic regions of the corona Borealis. Multimodality of the velocities is of interest 

as it might suggest the presence of superclusters of galaxies which are surrounded 

by large voids (since distance of a galaxy is proportional to the measured velocity), 

each mode being interpreted as a cluster moving away at a particular speed 

(more detail is given in Roeder (1990)). The original data set was analysed by 

Postman et al. (1986) and contained 83 observations but when it was analysed 

by Roeder (1990) one of the observations was removed. It is this data set which 

was subsequently analysed under different mixture models by several authors 

including Richardson and Green (1997) and Stephens (2000). We analyse this 

same data set to allow comparison of results. 

Acidity Data 

This data is from an acid neutralising capacity (ANC) index measured in a 

sample of 155 lakes in North-central Wisconsin, United States. Acidification is 

an environmental problem and identifying different sUbpopulations of lake (e.g. 

at risk lakes, not at risk lakes) can be useful in determining which lake charac

teristics, if any, can be used to predict higher acidification. This data set was 

previously analysed as a mixture of Gaussian distributions on the log scale by 

Crawford et al. (1992). 

Enzyme Data 

This data set concerns the distribution of enzymatic activity in the blood , 
for an enzyme involved in the metabolism of carcinogenic substances, among a 

group of 245 unrelated individuals. The study was undertaken to validate caffeine 

as a probe drug to establish the genetic status of rapid metabolisers and slow 

metabolisers and to use such subgroups as a marker of genetic polymorphism in 
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the general population. This data set was analysed by Bechtel et al. (1993), who 

fitted a mixture of 2 skewed distributions using maximum likelihood techniques. 

We display the results we obtained for each of these data sets when our pro

gram was started with 7 initial components. We chose 7 as the maximum number 

of components as it seemed unlikely that we would fit any more components than 

this to any of these data sets. Upon convergence, the method finds 3, 2 and 4 

components for these data sets, respectively. The variational posterior means of 

all parameters are given in Table 2.9 and the DIC and PD values are displayed in 

Table 2.10. Figures 2.12-2.14 show plots of kernel-based density estimates based 

on the actual data, together with the Gaussian mixture based on the estimates 

given in Table 2.9. The kernel plots were produced using a kernel smoothing 

function with constant bandwidth. For some data-sets, there will occasionally be 

convergence to another solution for certain values of the initial starting weights 

given to the components. However, it is important to note that these alternative 

solutions have higher DIC values. Also, we found that the occurrence of alterna

tive solutions seems to become less frequent as the initial number of components 

increases and eventually one will obtain the same answer for any initialisation. 

So far we have considered what happens if the program begins with a number 

of components which seems larger than the number we would expect to have. 

Alternatively, if one begins with a number of components which is less than the 

number selected via the variational approach then the program will still converge 

with this number of components. The result will have a DIC value which is 

higher, reflecting this. The DIC's given below in Table 2.10 correspond to the 

lowest that one could possibly obtain by starting with any number of components 

for each data set. 

The treatment of the enzyme data by Richardson and Green (1997) produced 

similar results to our method. Their method, which produced a set of probabilities 

associated with different numbers of components, favoured a choice of between 

3 and 5 components for the data, the highest posterior probability being for 4 

components which is the same as the number of components selected by our 

method. Their analysis of the galaxy and acidity data sets favoured a slightly 

higher number of components than was selected here. They estimated there to be 

between 5 and 7 components for the galaxy data, the highest probability being 

for 6 components. For the acidity data their posterior distribution estimated 

between 3 and 5 components, with 3 having the highest probability. Corduneanu 
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and Bishop (2001) also analysed these three data sets with results similar to those 

of Richardson and Green (1997). 

Celeux et al. (2006) analyse the galaxy data-set with several versions of the 

DIC. Each version indicates that there are 3 components in the mixture which 

corresponds to our selection. Stephens (2000) analyses the galaxy data by fitting 

a mixture of t densities and a mixture of Normal densities, and the posterior over 

the number of components selects 4 and 3 components for each fit, respectively. 

This is also similar to our result. 

Table 2.9: Number of components fitted and posterior estimates of means, vari
ances and mixing weights for the three real data sets 

Data Components Means Variances Mixing Weights 
Galaxy 3 9.64 21.35 31.58 0.6589 4.8875 23.31 0.085 0.872 0.043 
Acidity 2 4.32 6.23 0.1440.304 0.59 0.41 
Enzyme 4 0.16 0.31 1.05 1.49 0.003 0.003 0.034 0.282 0.48 0.13 0.17 0.22 

Table 2.10: DIC and PD values for the three real data sets 

Data DIC PD 
Galaxy 430 7.51 
Acidity 380 4.96 
Enzyme 104 10.88 

The figures below show a plot of a kernel-based density estimate based on 

the actual data. Superimposed upon this is the exact density fitted using the 

program which was constructed using the posterior means and variances fitted 

to the parameters and the mixing weights which were assigned to each compo

nent. These plots were produced using a kernel smoothing function with constant 

bandwidth. 
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2.9 Conclusions 

We have shown in this chapter how application of variational methods to model 

selection in the case of mixtures of Gaussian distributions leads to an automatic 

choice of model. For the simulated data sets considered, our variational scheme 

has found good estimates of the number of components and posterior estimates of 

components parameters .. For the real data sets, we obtained results which seem 

to be reasonable fits to the observed data and which are comparable with models 

fitted via other methods. 

We have also shown how variational techniques can be used to extend the 

DIC framework to include the comparison of mixture models. Furthermore, the 

models indicated as being most suitable according to the DIC values obtained 

by this approximating method correspond to the models automatically selected 

through the variational approach, and it therefore seems feasible that DIC values 

could be used to validate the model selection. 

The variational method is computationally efficient. For example, convergence 

of our method and calculation of PD and DIC values for the galaxy data analysed 

in section 2.8.3 took 4.49 seconds to run in R on a Windows NT Intel P4 2GHz 

workstation. Analysis of the Enzyme data set took 62.6 seconds. This compares 

favourably with the computational expense of MCMC based methods. For in

stance, Richardson and Green's (1997) analysis involves 200 000 MCMC sweeps 

for the enzyme data set set and they report that their program makes around 160 

sweeps per second on a SUN SPARC 4 workstation. The running time involved 

would be around 1250 seconds (about 21 minutes). Stephens (2000) reports a 

time of between 150 and 250 seconds to fit different mixture models to the galaxy 

data and making 20 000 iterations using a Sun Ultrasparc 200 workstation, 1997. 

The longest example to run of those we considered was the analysis of the 900 

simulated data points from a mixture of 5 bivariate Gaussians. This took 1487 

seconds which is approximately 24 minutes. So, even the longest running time 

for our variational method was. fairly short which demonstrates how fast results 

can be obtained using this approach. 

In this chapter we have demonstrated how the variational approximation 

method is straightforward to implement, produces good results and is compu

tationally efficient for the analysis of finite mixtures of Gaussians. We have 

considered other methods of analysis, in particular MCMC methods which are 
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difficult to implement and monitor and are more time consuming, and so we 

have shown that the variational approach is a practical and useful alternative to 

MCMC analysis of finite mixture data. 
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Chapter 3 

Application of the Variational 

Approach to Mixtures of 

Exponential Family Models 

We now consider how the variational approach can be taken with mixtures of 

other exponential family distributions. In particular, we consider mixtures of 

Poisson and Exponential models but first we show the general results for any 

member of the exponential family in the one-parameter case. In each case we will 

consider a data set Yb ... , Yn which we assume has been drawn independently from 

the relevant mixture model with parameters ¢, and, as before, we introduce a set 

of missing binary indicator variables {Zij}, (i = 1, ... ,n,j = 1, ... ,K) to describe 

which component gave rise to a particular observation. The {Zij} are defined so 

that if observation Yi is from component m, say, then 

Zij 1 if J = m 

o if j =J m. 

Mixtures of densities which are members of the exponential family have the 

general complete-data form 

n K 

p(y,z/¢,p) = IIIIp/i j [S(Yi)t(¢j)exp{a(Yi)b(¢j)}]Zi j • 

i=l j=l 

where b(¢j) is called the natural parameter and a(Yi), S(Yi) and t(¢j) are functions 
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which define the exponential family. The conjugate prior for the parameters will 
have the form 

K K 

p(¢,p/1],V) ex IIp/jO)-l II w(1]jO),vjO))t(¢j)TJjO) exp{v;o)b(¢j)}. 
j=l j=l 

Therefore, 

n K 

p(y, Z, ¢, p/1], v) ex II II p/ij [S(Yi)t( ¢j) exp{ a(Yi)b( ¢j)}]Zij 

i=l j=l 

K K 

X II p/jO)-l II W(1]jO), vjO))t( ¢j)TJjO) exp{v;o) b( ¢j)}. 
j=l j=l 

The variational approximation for the posterior is defined by the factorisation 

q(z,(}) == q(z,¢,p) == n~=lqzi(Zi)q¢>(¢)qp(p), and in fact q¢>(¢) == n~lq¢>j(¢j). 
We now derive the form of the variational posterior for z. We find the form of the 

variational posterior, qZi (Zi == j), by maximising the lower bound on the marginal 

log-likelihood. 

! lIn ) () p(¢,p)n~lP(Yi,Zi/¢'p) 
{. qz;(Zi)}q¢>(¢ qp p log {n~=l qZi (Zi)}q¢> (¢)qp(p) d¢dp 

t=l 

~! . () ()I P(Yi,Zi==j/¢,P)dA.d 
- ~ qZi(Zi == J)q¢> ¢ qp p og qz;(Zi == j) Ip P 

J 

+ terms independent of qz; 

- LqZj(Zi ==jH! q¢>(¢)qp(p)logp(Yi'Zi ==j/¢,p)d¢dp-Iogqzi(zi ==j)} 
j 

+ terms independent of qz; 
~ (. == .) 10 [exp J q¢>(¢)qp(p) 10gp(Yi,. Zi == j/¢, P)d¢dp] 

- L..t qZj Zz J g qZj (Zi = J) 
j 

+ terms independent of qz;. 

Therefore, 
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Substituting the general forms for the mixture density and the prior density gives 

us 

qz;(Zi = j) ex: exp{! q</J(¢)qp(p) [logpj + logt(¢j) + a(Yi)b(¢j)] d¢jdp} 

exp{Eq[logpj] + Eq[logt(¢j)] + a(Yi)Eq[b(¢j)]}. 

In a similar way, we obtain the form of the variational approximation to the 

posteriors for the mixing weights, p, and model parameters, ¢j, by focusing on 

relevant parts of the lower bound, 

It turns out that 

K (0) "n 
II OJ +":"';=1 Qij-l 

Pj 
j=1 
K 

II OJ-l 
Pj , 

j=1 

where qij = qz; (Zi = j) and 

n 

n, _ n,(O) + " q .. 
uj - Uj L.-t ZJ' 

i=1 

The variational posterior for the parameter ¢j is of the form 

n 

q</Jj (¢j) ex: t( ¢j )L:f=1 E qZi [zii] eXP[L Eqz; [zij]a(Yi)b( ¢j )]t( ¢j )11]0) exp[lIjO) b( ¢j)] 
i=1 

t ( I"j) E~~, 'ij +.j" exp [ { t. q;j a(y;) + vJO) } b( I"j) ] 

t(¢j)l1i exp [lIjb(¢j)] , 
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and 

n 

17j = 17JO) + L qij 
i=l 

n 

Vj = VJO) + L qija(yJ 
i=1 

It would be straightforward to extend these formulae to the multidimensional 

case by treating ¢ as a vector rather than a scalar. 

We now look at the variational approach for two examples of exponential 

family distributions, namely, the Poisson distribution and the Exponential distri

bution. 

3.1 The Poisson Distribution 

In this case, we have a model of the form 

n K 

p(y, zlB) IT IT {pjPo(Yi;¢j)Yii 
i=1 j=1 

Assigning the Prior Distributions 

The mixing weights are given a Dirichlet prior distribution, 

() D· (. (0) (0)) p P = Ir p,a1 , ... ,aK . 

The means are given independent Gamma conjugate prior distributions, with 

hyperparameters {'j (O)} and {,8j (0) }, so that 

K 

p(¢) = IT Ga(¢j; ,/0), ,8/0)), 
j=1 

which gives, 
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p(O) p(p)p(¢) 
K K 

ex: II 
Ctj(O)-lII'" 'Yj(O)-l (fJ (0)",) Pj 'fJj exp - j 'fJj 

j=l j=l 

and 

p(y, Z, 0) - p(y, z/O)p(O) 
n KKK 

II II z·· ('" )'" YiZi;' II Ct;·(O)-l II '" 'V,(O) 1 ( (0) ex: Pj ,; exp -'fJjZij 'fJj Pj 'fJj I; - exp - fJj ¢j) 
i=l j=l j=l j=l 

KKK II p//O)+E[:l Zir
1 II ¢j 'Yj(O)+E[:l Yizij-l exp[-¢j(fJ/O) + L Zij)] 

j=l j=l j=l 

Form of the Variational Posterior Distributions 

Clearly, the variational posteriors will turn out to have the conjugate forms 

(see Appendix F.l for details): 

with, 

qp(p) Dir(p;al,,,.,aK) 
K 

ex: IIp/r l 

j=l 

K 

qcp(¢) II Ca(¢j; '/'j,fJj) 
j=l 

K 

ex: II ¢/j-l exp( -¢jfJj) 
j=l 

K 

aj = a/O) + Lqij 
j=l 
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K 

"Ij = "I/0) + L Yiqij 
j=l 

and 

K 

(3 . - (3.(0) + "'"" q .. J - J ~ tJ' 

j=l 

In addition, 

'Y' 
Eq[q)j] = (3; 

and Eq[log Pj] and Eq[log q)j] can be evaluated using the digamma function, 

3.2 The Exponential Distribution 

Here, we have a model of the form 

n K 

p(y, ziti) IT IT {PjEX(Yi;q)j)Yij 

i=l j=l 

n K 

IT IT {Pjq)j exp( -q)jYi)} Zij 
i=l j=l 

Assigning the Prior Distributions 

The mixing weights are given a Dirichlet prior distribution, 

( ) - D' (, (0) (0») p P - Ir p,al , .. "aK ' 
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The exponential rates are given independent Gamma conjugate prior distribu

tions, with hyperparameters {,/O)} and {,s/O)}, so that 

K 

p( ¢) = II Ga( ¢j; ,/0) , ,s/O)) , 
j=l 

giving 

p(B) - p(p)p(¢) 
K K 

ex: II p;j(Ol_l II ¢j "Y;,ol-l exp( -,s/O)¢j) 
j=l j=l 

and 

p(y, z, B) p(y, zIB)p(B) 
n KKK 

ex: II II p/ij ¢/ij exp( -¢jYiZij) IT p/;'Ol_l IT ¢j "Yj(OLl exp( -,s/O)¢j) 
i=l j=l j=l j=l 
KKK _ IT p/;'Ol+L:f=l Zir

1 II ¢j "Y;'Ol+L:~l zij-l exp[-¢j(,s/O) + LYiZij)]. 
j=l j=l j=l 

Form of the Variational Posterior Distributions 

Again, the variational posteriors will turn out to have the conjugate forms 

(see Appendix F.2 for details): 

qp(p) Dir(p; at, ... , aK) 
K 

ex: ITp/r1 

j=l 
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with, 

and 

In addition, 

K 

q¢(cjJ) II Ga(cjJj; 'Yj, ,8j) 
j=l 
K 

ex: II cjJ/y;-l exp( -cjJj,8j) 
j=l 

K 

aj = a/O) + Lqij 
j=l 

K 

'Yj = 'Yj (0) + L qij 
j=l 

K 

,8 . - ,8.(0) + '" y.q .. J - J L...J ~ ~J. 

j=l 

"/' 
Eq[cjJj] = ,8; 

and Eq[log Pj] and Eq[log cjJj] can be evaluated using the digamma function. 
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Chapter 4 

Bayesian Analysis of Hidden 

Markov Models 

In this chapter we will extend the ideas of the previous chapters to apply them 

to Bayesian inference for hidden Markov models. So far we have dealt with finite 

mixture distributions, where the missing indicator variables for each observation 

are considered to be independent. This model structure can be thought of as the 

'standard' one for mixture models but extensions to this are possible. If instead 

we assume that the missing indicator variables that determine which component 

gave rise to a particular observation are not independent, but are governed by a 

stationary Markov chain, this results in the hidden Markov chain structure, most 

commonly referred to as a hidden Markov model (HMM) structure. This model 

structure is suitable for modelling data that varies over time and can be thought 

of as having been generated by a process which switches between different phases 

or states at different times, such as speech or stock market data. These states 

are the components of the Markov mixture model and the particular sequence 

of states which gave rise to an observation set is unobserved i.e. the states are 

'hidden'. The extension to the hidden Markov structure presents new challenges 

for Bayesian inference and here we discuss these together with possible solutions. 
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4.1 An Introduction to Hidden Markov Models 

4.1.1 Origins and Applications of Hidden Markov Mod
elling 

The theory of hidden Markov modelling was initially introduced in the 1960s by 

Leonard E. Baum and Ted Petrie (1966), who considered inference for stationary, 

ergodic, finite state Markov chains where observations could only take values 

in a finite set. These ideas were developed further by Baum, Petrie, and their 

colleagues at the Institute for Defense Analyses, in the following years (Baum and 

Egon (1967), Baum and Sell (196S), Petrie (1969), Baum et al. (1970), Baum 

(1972)). Baum et al. (1970) made a significant contribution to the progress in 

inference for HMM's by introducing an early version of the EM algorithm for 

maximum likelihood estimation as well as presenting the well known forward 

backward procedure (also known as the Baum-Welch procedure) which removes 

the computational difficulties attached to calculating the likelihood and obtaining 

estimates of parameters for HMM's. Baum and Petrie proved the consistency 

and asymptotic normality of the maximum likelihood estimator for these finite 

set HMM's. Later this was extended by Leroux (1992), who established the 

conditions under which the maximum likelihood estimator is consistent for general 

HMM's, and Bickel et al. (199S), who established asymptotic normality of the 

maximum likelihood estimator for general HMM's. 

HMM's were quickly applied to speech recognition, see Baker (1975) and Je

linek et al. (1975), for example. Since then, there has been a lot of interest 

in using HMM's for automatic speech recognition and nowadays practically all 

speech recognition systems use HMM's. There is a wealth of material available 

on this subject. Ferguson (19S0), Bahl et al. (19S3) and Juang and Rabiner 

(1991), are some examples, and the tutorial by Rabiner (19S9) provides an excel

lent introduction to hidden Markov models, discusses practical implementation 

and considers application to speech recognition. These studies on speech recogni

tion popularised the theory of HMM's and these models have since been applied 

to a wide range of applications where data can be grouped into components or 

states and there is a time dependency between observations. Examples include 

biometrics problems such as gene sequencing (Churchill (1995) and Boys et al. 

(2000), for example), econometrics (Chib (1996), for instance) and finance (see 
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Ryden et al. (1998)). MacDonald and Zucchini (1997) is a recent text on the 

subject of hidden Markov modelling. 

4.1.2 The Characteristics of a Hidden Markov Model 

A hidden Markov model (HMM) is a stochastic process generated by a stationary 

Markov chain whose state sequence cannot be directly observed. A Markov model 

assumes that a system can be in one of K states, 1, ... , K, at a given time point 

i (i = 1,2, ... are evenly spaced time points). At each time point the system 

changes to a different state or stays in the same state. A discrete first-order 

Markov model has the property that the probability of occupying a state, Zi, at 

time i, depends only on the state occupied at the previous time point i.e. 

It is possible to define higher-order Markov models, although these are encoun

tered less frequently, but these shall not be considered here. To define a HMM, 

we begin with an initial state probability distribution, 

'!fj = P(ZI = j), 1 5: j 5: K. 

This is the probability that the Markov chain is in a particular state at the 

first time point. Then, the probability of moving from one state to another is 

characterised by a transition matrix 

where 

'!fiIh = P(Zi = j2lzi-1 = jd, 1 5: jl, h 5: K, 

'!f .. > 0 and "1.< '!fJ' J'2 = 1, for each jl' The transition probabilities represent J132 - L.JJ2==1 1 

the probability that the system is in state j2 at time i given that it was in state jl 

at time i-I. As mentioned above, we assume that the Markov chain is stationary 

(time invariant); in other words, the state transition probabilities are independent 

of the actual time point at which the transition takes place. 
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In a HMM, the state sequence for observations is 'hidden', and instead what 

we observe is a probabilistic function of the state. In other words we have 'noisy' 

observations. There is a density function associated with each state and the 

probabilities attached to each observation are known as emission probabilities. 

However, despite the fact that we do not observe the states, for many real world 

applications, different states, or sets of states, have a physical interpretation 

attached to them. For instance, in speech recognition, the hidden states might 

be different words or phonemes and, in gene sequencing, hidden states could 

correspond to segments of interest within a DNA sequence. For instance, Boys et 

al. (2000) use HMM's to identify homogeneous segments within DNA sequences. 

This is of interest as these segments may have a functional role, and locating them 

allows researchers to study them and gain more insight into their purpose. The 

Bayesian HMM approach taken by Boys et al. (2000), allows the incorporation of 

prior knowledge about significant aspects of the sequence. The observations are 

the DNA bases A,C,T and G which make up the sequence, and the hidden states, 

in this application, are the homogeneous segment types. The approach taken by 

Boys et al. (2000) uses Gibbs sampling with data augmentation. This method 

involves repeatedly simulating a sequence of segmentation types, conditional on 

the parameters, then simulating the parameters, conditional on the segmentation 

sequence. Simulating the segmentation sequence makes use of a forward backward 

iterative scheme. Their analysis shows that HMM's are an effective tool for 

modelling DNA regions and locating homogeneous segments. 

If the observations can be thought of as discrete symbols from a finite set , 
then a discrete density can be used within each state, but in many applications 

observations are continuous outputs and so a continuous observation density is 

more suitable. Throughout this chapter we will assume Gaussian observation 

densities with unknown means and variances: 

4.1.3 Problems of Inference for Hidden Markov Models 

and their Solutions 

Given a set of observations from a hidden Markov model there are three main 

problems of inference (these are described in detail in the tutorial by Rabiner 
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(1989)): 

1. calculating the likelihood of an observed sequence given a certain HMM 

2. finding the best state sequence to account for the observed data 

3. finding the best estimates of the model parameters to account for the ob

served data. 

We are primarily concerned with problems 1 and 3. Problem 2 corresponds to 

finding the 'hidden' part of the model i.e. the 'correct' state sequence. However , 
of course, there is no 'correct' sequence to find, so instead we would look for an 

optimal sequence. This may be of interest to discover more about the model 

structure or to find the best state sequence for a continuous speech processing 

problem, for example. This problem is usually solved using the Viterbi algorithm 

(Viterbi (1967)) which finds, via recursion, the whole state sequence with the 

maximum likelihood. However, we will not consider this aspect of inference any 
further. 

Problem 3, which corresponds to optimising the model parameters to find the 

best description of how our observation sequence was generated, often referred 

to as 'training' the model, is an important problem as it allows us to build the 

best models to represent real phenomena. It is also the most difficult inference 

problem associated with HMM's. 

Calculation of the likelihood is not as straightforward for HMM's as it was 

in the case of finite mixtures. Essentially we want to compute the marginal 

probability of observing a given set of data, marginalising over all state sequences. 

The 'straightforward' way to do this would be to consider every possible state 

sequence for the n time points. Unfortunately this would involve of the order 

of 2n x Kn calculations, which is clearly computationally infeasible. Fortunately 

there is an algorithm known as the forward backward algorithm (Baum et al. 

(1970)) which provides an efficient way of performing these calculations. The 

forward backward algorithm leads to an expectation-maximization algorithm that 

can be used to find the unknown parameters of a hidden Markov model. It 

computes the maximum likelihood estimates for the parameters of an HMM, 

given a set of observations and so it also provides a solution to problem 3. In 

fact evaluation of the likelihood only involves the forward part of the algorithm. , , 
the likelihood is obtained by summing over the final forward variable but problem 
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3 can be solved using both the forward and backward parts. Details are provided 
later. 

The algorithm for solving problem 3 has two steps: based on some initial 

estimates, the first involves calculating the forward probability and the backward 

probability for each state, and the second determines the expected frequencies 

of the paired transitions and emissions. These are obtained by weighting the 

observed transitions and emissions by the probabilities specified in the current 

model. The new expected frequencies then provide new estimates, and iterations 

continue until there is no improvement. The method is guaranteed to converge 

to at least a local maximum, and estimates of the transition probabilities and 

parameter values can be obtained. 

We apply the variational method to perform model selection (Le. select the 

number of hidden states) and optimise model parameters at the same time, mak

ing use of the forward backward procedure to obtain estimates of the marginal 

posterior probabilities of the indicator variables. The forward backward algorithm 

is described in Appendix G.2. In addition, we will extend the DIC model selection 

criterion to this case, using the forward variables to obtain the likelihood. 

4.2 Inference for Hidden Markov Models with 

an Unknown Number of States 

Much of the original research done on HMM's was based on the premise that the 

number of hidden states was fixed. Also, more recently, Robert et al. (1993), 

Chib (1996) and Robert and Titterington (1998), for instance, consider Bayesian 

inference for HMM's with a fixed number of states. We are interested in the 

problem of inference when the number of hidden states, K, is unknown. This 

is still an open issue in HMM inference. Classical approaches to determining a 

suitable number of states include likelihood ratio tests and penalised likelihood 

methods such as the AIC. As with mixture models, for HMM's the underlying 

assumptions of the likelihood ratio test are not satisfied. Finding the limiting 

distribution of the likelihood ratio requires a simulation based approximation. 

Ryden et al. (1998) use a parametric bootstrap approximation to the limiting 

distribution of the likelihood ratio but this approach is severely limited by the 

computational intensity involved. Because of this drawback, Ryden et al. (1998) 
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were only able to use it to test models with number of states K = 1 against 

K = 2 and K = 2 against K = 3. Testing of a higher number of states would be 

too time consuming with this method. 

Robert et al. (2000) approach the problem of determining a suitable number 

of states using the RJMCMC technique of Green (1995). Their method provides a 

posterior distribution over the possible number of states for the model up to some 

maximum value. This extends the ideas used in Richardson and Green (1997) 

for finding the number of components in a mixture model. In a similar manner , 
Robert et al. (2000) estimate a suitable number of states using trans-dimensional 

moves which either split a state in two or merge two together, these moves be

ing accepted based on acceptance criteria. In applications, the acceptance rates 

for the moves to split and merge states were low, and so it would be desirable 

to increase these. However, this method is attractive computationally and it si

multaneously performs model selection and parameter estimation. In this way, 

Robert et al. (2000) present a Bayesian alternative to the classical approaches 

for selecting the number of states. 

MacKay (1997) was the first to propose applying variational methods to 

HMM's. He showed how variational methods could be applied to HMM's with dis

crete observations, assuming Dirichlet priors over the model parameters. MacKay 

(1997) shows that the algorithm is a modified version of the forward backward/Baum_ 

Welch algorithm. In a short paper written in 2001, MacKay discusses some of the 

problems with using variational methods for mixture models or HMM's (which 

he notes were observed by Zhoubin Ghahramani in studying MacKay (1997)), 

namely that of the component or state removal effect, which he refers to as model 

pruning. As mentioned in Chapter 2, this phenomenon has previously been noted 

by other authors in the context of mixtures (Attias (1999) and Corduneanu and 

Bishop (2001)). MacKay expresses concern about the appropriateness of this au

tomatic removal of extra degrees of freedom as it prevents the user from fitting 

the model they wish to fit and obtaining error estimates. 

Despite the lack of understanding of this phenomenon, variational methods 

are beginning to be applied to HMM's. For instance, Lee et al. (2003) propose a 

variational learning algorithm for HMM's applied to continuous speech processing 

and conclude that variational methods have potential in this area. 

Variational methods have been shown to be successful in other applications 

but their full potential in HMM analysis is yet to be explored. 
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4.3 The Variational Approach to Inference about 

Hidden Markov Models with an Unknown 

Number of States 

Here we consider the application of the variational technique to a HMM with con

tinuous observations, an unknown number of states and hidden state sequence 

having Gaussian noise with unknown means, variances and transition probabili

ties. Suppose we have n observations, corresponding to n time points, i.e. data 

Yi : i = 1, ... , nand K states. We define our initial state probability as 

7rj = P(ZI = j), 

which is the probability that the first state is state j. In fact, we fix our first 

state by setting Zl = 1. The other states in the sequence are not fixed and 

the probability of moving from one state to another is given by the transition 

probabilities, stored in the transition matrix 

where 

7rjd2 = P(Zi+l = hlzi = jd· 

Then, the probability of observing Yi at time point i, given that the system is in 

state j, is given by 

where the {(Pi} are the parameters within the ph noise model. These probabilities 

are often called the emission probabilities. The model parameters are given by 

with 
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The prior densities are assumed to satisfy 

p(7T, ¢) = p(7T)p(¢). 

Then, the joint density of all of the variables is 

n K n-l 

p(y,Z,()) = IIII{pj(Yil¢j)Yi j IIIIII(7ThhYihZi+1hp(¢)p(7T), 
i=l j=l i=l h ja 

where Zij indicates which state the chain is in for a given observation and is equal 

to the Kronecker delta, i.e. 

Therefore, 

is of the form 

Zij = 1 

o 
if Z = J 

if i ~ j. 

where we assume that q(z, ()) = qz(z)q{}(()). The ¢/s are distinct and we assume 

prior independence, so that 

K 

p(¢) = ITPj(¢j) 
j=l 

We also assume prior independence among the rows of the transition matrix, and 

therefore q{} (()) takes the form 

K 

q{}(()) = IT q(jJj(¢j) IT qh(7Th), 
j=l h 

where 
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If pj(Yi/¢>j) represents an exponential family model and Pj(¢>j) is taken to be from 

an appropriate conjugate family then q¢j belongs to the ¢>j conjugate family as 

do the qjl' 

Prior to performing this analysis, we first considered the case where qz(z) 
takes a fully factorised form, but results for this were not satisfactory, largely 

because of course the hidden states are not independent. 

4.4 Model Specification 

Assigning the Prior Distributions 

For each j1, we assign an independent Dirichlet prior for {7riIh : j2 = 1, ... , K}, 
so that 

p(7r) = ITDir(7rjl/{aiIh(O)}). 
jl 

We assign univariate Normals with unknown means and variances to the Pj(Yi/¢>j), 
the emission probabilities. Therefore, 

where Tj is the precision and is equal to ;?-. 
As with the case of a mixture of univariate Normals, the means are assigned 

independent univariate Normal conjugate priors, conditional on the precisions. 

The precisions themselves are assigned independent Gamma prior distributions 

so that 

K 

p(J.L/T) = IT N(J.Lj; m/O), (f3/0)Tj) -1) 
j=l 

and 

K 

p(T) = IT Ga(Tj/~'/O), ~8/0)). 
j=l 

68 



Then 

Ljq(Z, B) log{P(Y, z, B) }dB 
{z} q(z, B) 

will have the form 

Form of the Variational Posterior Distributions 

As in the case of a mixture of univariate Gaussians, the variational posteriors for 

the model parameters turn out to have the following forms: 

where 

and 

n-l 

Q(jlh = Q(ith (0) + L qz(Zi = jl, Zi+l = j2); 
i=l 

1 1 
q(Tj) tV Ga("2'Yj, "26"j), 

with hyperparameters given by 

n 

{3j = {3j(O) + L qij 
i=l 
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n 

'Yj = 'Y(O) + L qij 
i=l 

n 

6j = 6(0) + L qijYi2 + (3/0)m/0)
2 

- {3jm; 
i=l 

where qij = qz (Zi = j). 
The variational posterior for qz (z) will have the form 

qz (z) ex II II b;j Zij II II II ajlh Zii! Zi+lh , 
i j i iI h 

for certain {ajlh} and {bij} (see Appendix G.1). This is the form of a conditional 

distribution of the states of a hidden Markov Chain, given the observed data. 

From this we need the marginal probabilities 

These can be obtained by the forward-backward algorithm (see Appendix G.2), 

based on a* and b* quantities given by 

where 

1 1 1 6j 1 ('Yj ) ( 2 1 
Eq[logpAYi/¢j)] = 2W(2'Yj) - 2 log "2 - 2 6

j 
Yi - mj) - 2{3j. 

Here a;lh is an estimate of the probability of transition from state jl to j2 and 

bij is an estimate of the emission probability density given that the system is in 

state j at time point i. One can obtain qz(Zi = j) and qz(Zi = j, Zi+l = j2) from 
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the following formulae based on the forward and backward variables, which we 

denote by fvar and bvar, respectively: 

fvari (j1) bvari (j1) 
fvari (j1) bvari (j1) 

2:i2 fvari (j2) bvari (h) 

qz(Zi = j1, Zi+1 = j2) ex: fvari(jdajlhb;+1jbvari+1 (j2) 

fvari(jdajlhbi+1h bvari+1 (j2) 
- 2:JI 2:i2 fvari(j1)ajd2bi+1h bvari+1 (j2) . 

Obtaining Formulae for PD and the DIG 

Our variational approximation to PD is 

/ 

qe(()) qe(O) 
PD ~ -2 qe(()) log{ -(()) }d() + 2log{ -=-} 

P p(()) 

To find the DIG value we use the usual formula 

DIe = 2PD - 2Iogp(yIO), 

in which p(yjO) can be found using the forward algorithm: 

K 

p(yIO) = L fvarn(j). 
j=l 
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Note that in practical applications it is often necessary to work with nor

malised versions of the forward and backward variables in order to avoid numer

ical problems when the data set is reasonably large (generally more than 100 

observations). To see why this issue arises, consider that the forward variable is 

given by the sum of a large number of product terms. Each term in the product 

is smaller than one, often very much smaller, so that, as the number of obser

vations increases, each term of the forward variable tends exponentially to zero. 

This means that, if the number of observations is large enough, values arising in 

the calculation of the forward variable will be beyond the precision range of the 

computer performing the calculations. For this reason, the forward and back

ward variables were normalised in our implementation; the details are given in 

Appendix G.2. 

4.5 Practical Implementation 

Our variational method and calculation of the DIe and PD values is implemented 

using a program which is run in R. The code deals with one-dimensional data 

sets and can be initialised to start with any number of maximum potential states. 

The user must specify the initial number of states, K, to start with, and the 

observed data set. As with the mixtures program, the user's input data must 

contain the observed data and a list of indices ranging from 1, ... , K initially 

allocating the observations to one of the K states. In our examples, we allocated 

roughly equal numbers of the observations to each of the K states. No particular 

method was used for doing so, but we found that the initial allocation did not 

seem to affect results. The initial allocation starts the program off and as the 

algorithm cycles through its iterations, the observations find their own places. At 

the initialisation stage, a user-specified value is given for the weight that is to be 

assigned to each observation indicator variable (the qi/S). In the same way as for 

the mixtures case, these initial values for the qij'S were chosen to give a slightly 

higher weighting to the initial allocation to states to start the algorithm running. 

Initial estimates for the qz(Zi = jl, Zi+1 = h)'s were obtained from the initial qi/S 

by setting qz(Zi = jl, Zi+1 = j2) = qijt x qi+1h' In most cases, the results obtained 

were the same for all values of the initial weight but occasionally it led to slight 

differences. As with the finite mixtures example, when this was found to be the 
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case, the DIC value was used to choose between models. The user has the option 

to specify initial values for the sufficient statistics or, alternatively, defaults which 

specify broad priors are available. All of our examples use these broad priors. 

As the program runs, the resulting qi/S are nonnegative and they sum to 1 

over j for each i. They therefore form a set of predictive probabilities for the 

indicator variables for the data. The sum of the qij'S over the i time points for 

each state provides an estimate of the number of times the system is in that state , 
and we can think of this as a weighting for each state. The cutoff value determines 

at which point a state is no longer deemed to be part of the solution. The default 

value we use for this is 1 and this was the value used in all examples given. This 

means that a state is not considered necessary if less than one observation is 

assigned to it. When a state's weight falls below this cutoff value, it is removed 

from consideration and the program continues with one fewer component. We 

found that, in implementing this method, the weightings of extra states tended 

towards zero more quickly than extra components did in the mixtures case, and so 

it was necessary to remove extra components simultaneously. We also found that 

it was often necessary to place a lower bound of 10-22 on values of a* to ensure 

convergence. For our simulated examples, this was necessary when initialising 

the algorithm with too many states. We describe this and the effect on results in 

more detail when we consider some examples. 

At each iteration of the code, the DIC and Pn values are computed and the 

updated allocation weights for each state are obtained. The program runs until 

it converges and the solution it finds will have a number of states which is less 

than or equal to the number the user started with. This means that states which 

were considered to be superfluous are removed as the program cycles through its 

iterations. 

We summarise the method: 

• Iteration initialised with a larger number of hidden states than one would 

expect to find. 

• Placing a lower bound on a* values ensures that the program converges for 

all initial numbers of states. 

• In some cases, the weightings of one state will dominate those of others 

causing the latter's weightings to tend towards zero. 
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• When a state's weighting becomes sufficiently small it is removed from 

consideration and the algorithm continues with the remaining states. 

• At each step the DIC and PD values are computed. 

• The algorithm eventually finds a solution with a number of states less than 
or equal to the number one started with. 

• Applying variational methods to the learning of a HMM with Gaussian 

noise leads to an automatic choice of model complexity. 

• Solutions with fewer states than that selected can be obtained by start

ing the algorithm with fewer states and the resulting DIC value can be 

compared with that obtained with more states. 

4.6 Performance of the Method on Simulated 

and Real Data Sets 

4.6.1 Application to Simulated Examples 

A Well-Separated Example 

We begin by considering a well-separated simulated example to investigate 

performance of the method and explore the automatic feature of the variational 

approximation when it is applied to HMM's. We simulated 800 data points from 

a 2-state hidden Markov model with transition matrix given by 

- [0.2 0.8 J 7r- , 
0.7 0.3 

with Gaussian noise distributions with means 2,-2 and standard deviations of 

0.5,0.5 respectively. The variational program was initialised with a number of 

states ranging from 1 to 15 and the resulting posterior estimates were extremely 

close to the true values. The results are reported in Table 4.1. However, there 

were some convergence issues that we had to consider in order to obtain these 

results. 

We found that extra states were being eliminated as the program converged, as 

we had observed in the finite mixtures case. We originally designed the program 
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to remove only one component at a time, as we had done in the finite mixtures 

case. However, the program failed to converge for several numbers of starting 

states, generally the higher ones. This was because the qij values of two or 

more states were tending towards 0 simultaneously and as they were not removed 

from consideration quickly enough the program could not continue. Since the 

example is well-separated, superfluous states were quickly identified which led 

to the weightings of several states tending towards 0 at the same time. It is 

interesting to note that weightings for unnecessary states appear to tend to zero 

more quickly in the HMM case than we observed with our finite mixture examples, 

for which it was sufficient to remove unwanted components one at a time when 

the initial number of components was of a reasonable size. We modified the 

program to simultaneously remove more than one state in the same iteration 

which eliminated this convergence problem. 

We then encountered another, more significant, convergence problem. When 

we initialised the program with an initial number of states larger than the true 

number (Le. more than 2 states), the posterior estimates of some of the transition 

probabilities (a* values) became so small that they exceeded the precision range 

of the computer performing the calculations. This could be because states which 

are unnecessary are still not being removed quickly enough. For this reason, it 

was necessary to impose a lower bound on the a* values to allow the program to 

continue when the initial number of states was higher than the true number. The 

results given in Table 4.1 correspond to the 'best' solution found for each number 

of initial components with various initial weights for the qij, where the solution 

with the lowest DIe value is considered to be the 'best'. 

One can see from Table 4.1 that, for this example, in most cases this lower 

bound allowed us to find a close estimate of the true solution, but, even in this 

well-separated example, it is possible to find alternative solutions to the ones 

reported in Table 4.1 when the initial value for the weights assigned to the qij is 

altered even for the same number of starting states. However, these alternative , 
solutions occurred infrequently. Some examples are given in Table 4.2 and we can 

see that some states are representing the same part of the data and are clearly 

redundant. We can also see, from the presence of the lower bound values (10-22) 

in the estimated transition matrices, that we have only been able to obtain these 

solutions via the use of a lower bound. It also appears that, in these instances, 

the algorithm was unable to identify and remove these extra components. This is 
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slightly concerning as it suggests that this lower bound can cause the algorithm 

to fit a model which it would not have selected otherwise, and for real data sets 

this might be misleading. On the other hand, there may be cases where the 

variational algorithm is removing too many components. 

It would be preferable if the solution were not being artificially altered since , 
as well as preventing any transition from having zero probability, in some cases 

it may be leading to a solution with more states than are truly present, with the 

program becoming trapped in these states which we have allowed to remain in 

consideration through the imposition of the lower bound. One could suggest that 

the need for a lower bound indicates that more states should be removed, but it 

would be difficult to justify forcibly removing these extra states or to find Some 

other criterion for reducing the complexity of the model. It would be interesting 

to investigate this phenomenon further in an attempt to discover why in some 

cases superfluous states are not eliminated when they are in others. Perhaps the 

answer to this lies in the initial values assigned to the posterior estimates of the 

pairwise marginal probabilities qz(Zi = iI, Zi+l = i2)' 

Using the lower bound to force the algorithm to find a solution for all initial 

numbers of states also allows us to get some idea of what the DIe would be for 

these cases, although there is some slight variation in the resulting values of PD 

and DIC for the same solution when reached by starting with a different number 

of states. Another point is that the lower bound on a* values ensures that PD, 

and hence the DIC, can be calculated, since PD is not defined when any of the a* 

values are exactly zero (since values of a* equal to zero lead to values of zero for 

some a· . 's and this means that the digamma function required in the calculation JIJ2 

of PD cannot be evaluated). Exact zeroes are not problematic in the variational 

approximation. 

Figure 4.1 displays a kernel plot of the raw data with the true density and the 

fitted 2 state density, found by the variational method, superimposed. 

Table 4.3 shows the PD and DIC values corresponding to the aforementioned 

alternative solutions for this data set. Note that the DIC values are higher for 

these solutions than for the solution having 2 states and the DIC appears to be 

useful in identifying the best solution available for the alternative outcomes. 
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Table 4.1: Results for the 800-observation data set with a lower bound on a* 

No. of No. of Estimated Estimated Estimated Estimated Pv DIC 
Initial States Posterior Posterior Posterior Posterior 

States Found Means st. dev. Weights Transition 
Probabilities 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

15 2 0.67 0.32 
5.99 600 

14 2 -2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

5.99 0.67 0.32 600 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

5.99 13 2 0.67 0.32 600 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

12 2 0.67 0.32 
5.99 600 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

5.99 11 2 0.67 0.32 600 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

5.99 10 2 0.67 0.32 600 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

5.99 9 2 0.67 0.32 600 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

5.99 8 2 0.67 0.32 600 

-2.03,1.98 0.48,0.51 0.45,0.55 
0.19 0.81 

5.99 7 2 0.67 0.32 600 

0.48,0.51 0.45,0.55 
0.19 0.81 

6 2 -2.03,1.98 0.67 0.32 
5.99 600 

0.48,0.51 0.45,0.55 
0.19 0.81 

5 2 -2.03,1.98 0.67 0.32 5.99 600 

0.48,0.51 0.45,0.55 
0.19 0.81 

4 2 -2.03,1.98 0.67 0.32 5.65 600 

0.48,0.51 0.45,0.55 
0.19 0.81 

3 2 -2.03,1.98 0.67 0.32 5.99 600 

0.48,0.51 0.45,0.55 
0.19 0.81 

2 2 -2.03,1.98 0.67 0.32 5.99 600 

1 1 0.15 2.05 1 [1] 1.99 1958 
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Table 4.2: Some other possible results obtained by using different initial weights 
for the qij'S 

No. of No. of Estimated Estimated Estimated Estimated Posterior 
Initial States Posterior Posterior Posterior Transition 
States Found Means st. dev. Weights Probabilities 

-2.5 0.34 0.001 10 -~~ 10 -~~ 1 
11 3 -2.02 0.48 0.454 10-22 0.19 0.81 

1.97 0.51 0.545 10-22 0.67 0.33 
-2.03 0.48 0.46 0.19 0.42 0.28 0.11 
1.81 0.47 0.30 0.55 0.37 0.08 10-22 8 4 
2.25 0.47 0.19 0.78 10-22 0.21 10-22 

1.90 0.23 0.05 1 10-22 10-22 10-22 

Table 4.3: PD and DIC values corresponding to other possible results given in 
Table 4.2 

No. of Initial PD DIC 
States 

10 28.64 642 
8 25.96 636 
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Figure 4.1: Results from BOO-observation data initialised with number of states 
ranging from 2 to 15 resulting in a 2-state model with parameter estimates given 
in Table 4.1 
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A 4-State Example 

Next we analysed a simulated data set, comprising 500 observations, generated 
from a 4-state hidden Markov chain with transition matrix 

0.2 0.2 0.3 0.3 

0.3 0.2 0.2 0.3 
7r= 

0.2 0.3 0.3 0.2 

0.3 0.3 0.2 0.2 

and Gaussian noise distributions with means -1.5,0, 1.5 and 3, and equal standard 
deviations of 0.25. 

The results presented here are obtained by placing a lower bound on the 

values of a*. Again, for this example, when we did not enforce a lower bound, the 

algorithm would only converge to a solution when initialised with the true number 

of states (4), or less. The results given also correspond to the 'best' solution found 

for each number of initial states, where the solution with the lowest DIC value 

is considered to be the 'best'. Table 4.4 reports the variational estimates of the 

posterior means, standard deviations and weights. Table 4.5 shows the relevant 

DIC and Pv values. 

For this example, using the lower bound, we were able to recover a 4 state 

solution with good posterior estimates for initial number of states ranging from 4-

6. For 7 initial states, the best solution we obtained had 5 states and so the lower 

bound has led to a solution with too many states. However, two of the states have 

noise models that are close together and one of the estimated posterior weights 

is small. Again, the DIC appears to be useful in indicating the appropriateness 

of the fitted model. 

Figure 4.2 shows a kernel plot of the raw data with the fitted model and true 

generating distribution superimposed. 
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Table 4.4: Results for the 500-observation data set with a lower bound on a* 

No. of No. of Estimated Estimated Estimated 

Initial States Posterior Posterior Posterior 

States Found Means st. dev. Weights 
-1.47 0.26 0.25 
-0.01 0.24 0.22 

7 5 0.04 0.22 0.05 
1.5 0.23 0.24 
3 0.27 0.24 

-1.47 0.26 0.25 
-0.005 0.24 0.27 

6 4 1.5 0.23 0.24 
3 0.27 0.24 

-1.47 0.26 0.25 
-0.005 0.24 0.27 

5 4 1.5 0.23 0.24 
3 0.27 0.24 

-1.47 0.26 0.25 
-0.005 0.24 0.27 

4 4 1.5 0.23 0.24 
3 0.27 0.24 

-1.5 0.23 0.22 

3 3 0.68 0.97 0.56 

3 0.24 0.22 

-0.67 0.85 0.53 
2 2 2.24 0.85 0.47 

1 1 0.7 1.68 1 

Table 4.5: DIC and Pv values for the 500-observation data set corresponding to 

the solutions presented in Table 4.4 

No. of Initial States No. of States Selected Pv DIC 

7 5 35.09 540 

6 4 20.03 513 

5 4 20.03 513 

4 4 20.03 513 

3 3 12.00 729 

2 2 5.99 936 

1 1 1.99 1025 
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Figure 4.2: Results from 500-observation data initialised with number of states 
ranging from 4 to 6 resulting in a 4 state model with parameter estimates given 
in Table 4.4 
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4.6.2 Application to Real Data Sets 

The three data sets used in this section were analysed by Robert et al. (2000) 

using RJMCMC and have also previously been analysed by other authors. We 

analyse these data sets using our variational approach and compare our results 

with other treatments of the data. 

Daily Returns Data 

The first data set is an extract from the Standard and Poors 500 stock index 

consisting of 1700 observations of daily returns from the 1950s. It was previously 

analysed by Ryden et al. (1998) and was the data referred to as subseries E in 

their paper. 

Wind Data 

This data comprises a series of 500 hourly wind velocity measurements taken 

in Athens in January 1990. This data has had a small uniform disturbance added 

to avoid exact zeroes. This data was also analysed by Francq and Roussignol 

(1997) (without the added disturbance). 

Geomagnetic Data 

The third observation set is made up of 2700 residuals from a fit of an autore

gressive moving average model to a planetary geomagnetic activity index. Francq 

and Roussignol (1997) also analysed this data set. 

Running the program on the wind data set with 7 initial states and placing 

a lower bound on the values of a* resulted in the selection of a posterior solution 

with 5 states using the variational method. However, the variational algorithm 

failed to converge for initial numbers of states which were larger than 2 without 

this lower bound on a*. The DIC and PD values associated with other initial 

numbers of states are given in Table 4.7 and from this we can see that the DIC 

selects 2 or 3 states for this data. The variational posterior for the transition 

probability matrix obtained by starting with 7 initial states was 
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10-22 0.84 0.14 10-22 10-22 

10-22 0.89 0.085 10-22 0.013 

0.12 10-22 0.46 0.4 10-22 

0.092 10-22 10-22 0.9 10-22 

10-22 0.046 10-22 10-22 0.95 

It is clear that in many cases the estimated transition probability has been set 

to 10-22 and so we have artificially ensured that the algorithm converges. This 

need for a lower bound could be due to the presence of too many states, but it is 

unclear why these were not removed along with the other two that were, if indeed 

they were superfluous. Lack of separation could be a contributing factor. The 

posterior estimates of some of the parameters from the solutions obtained, when 

starting with 7 states, are given below in Table 4.6. Figure 4.3 shows a Kernel 

plot of the data with the density fitted by the algorithm superimposed. 
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Figure 4.3: Wind data starting with 7 initial states, terminating with 5 states 
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Table 4.6: Results for the Wind Data starting algorithm with 7 states 

Estimated posterior means -0.81 -0.06 0.008 0.02 0.61 
Estimated posterior standard deviations 0.36 0.42 2.48 0.23 0.33 

Estimated posterior weights 0.04 0.417 0.34 0.118 0.08 

Table 4.7: DIC and PD values and number of states selected for the Wind Data 
with different initial numbers of components 

Initial No. of States No. of States Found DIC PD 
15 5 510 43.94 
7 5 507 43.06 
6 6 537 65.72 
5 5 506 43.73 
4 4 492 27.95 
3 3 467 14.06 
2 2 476 6.00 
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The DIe favours 3 states for this data-set, but based o~ the fact that the 

variational algorithm only converges for solutions with a number of states less 

than or equal to 2, from our analysis, the most appropriate solution appears to 

be the 2-state solution with variational posterior transition matrix 

[ 
0.955 0.045] 
0.074 0.926 

and variational posterior estimates given in Table 4.8. The fitted density is plotted 

in Figure 4.4. 

Table 4.8: Results for the Wind Data starting algorithm with 2 states 

Estimated posterior means -0.015 0.0069 
Estimated posterior standard deviations 0.43 2.37 

Estimated posterior weights 0.62 0.38 

The method used by Robert et al.(2000), selected a 3-state model, and Francq 

and Roussignol's (1997) analysis selected a 2-state model for the wind data set. 

The posterior estimates we obtain for the transition probabilities and the state 

density standard deviations for our 2 state model resemble those found in the 

analysis by Francq and Roussignol (1997). Francq and Roussignol (1997) esti

mated that 71"12 = 0.048, 71"21 = 0.079 and al = 0.437, a2 = 2.393. They suggest 

that their two state model can only distinguish between periods having fairly 

constant gusts of wind and periods with many gust of wind. 
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Figure 4.4: 2-state model fitted to the wind data when the algorithm was ini
tialised with 2 states 
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For the geomagnetic data, the number of states selected;DIC and PD values 

associated with different numbers of starting states, as obtained from the program 

with a lower bound on a* values (posterior transition probability estimates), is 

reported in Table 4.9. Without this lower bound, the algorithm does not converge 

if initialised with more than 2 states. The DIC favours 4 states. 

Table 4.9: DIC and PD values and number of states selected for the geomagnetic 
data with different initial numbers of components 

Initial No. of States No. of States Found DIC PD 
15 7 7325 84.44 
7 7 7268 84.98 
6 6 7236 63.66 
5 5 7200 41.99 
4 4 7183 23.99 
3 3 7203 12.11 
2 2 7217 5.99 
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Since the variational algorithm will not converge to a solution with more than 

2 states without the lower bound on a*, it seems most appropriate to consider 

the 2-state solution with variational posterior transition matrix 

[ 
0.982 0.018] 
0.187 0.813 

and variational posterior estimates given in Table 4.10. The fitted density is 

plotted in Figure 4.5. 

Table 4.10: Results for the geomagnetic data, starting the algorithm with 2 states 

Estimated posterior means -0.209 1.769 
Estimated posterior standard deviations 1.997 5.408 

Estimated posterior weights 0.911 0.089 

This analysis by Robert et al.(2000) selected a 3-state model for this data. 

Francq and Roussignol's (1997) analysis selected a 2-state model for the geomag

netic data set. The posterior estimates we obtain for the transition probabilities 

and the state density standard deviations for our 2-state model are similar to 

those found by Francq and Roussignol (1997). Francq and Roussignol (1997) 

estimated that 71"12 = 0.014, 71"21 = 0.16 and 0'1 = 2.034, 0'2 = 5.840. Francq and 

Roussignol (1997) suggest that this two-state model corresponds to tumultuous 

and quiet states, the tumultuous state being the one with the highest variabil

ity. Since their model visits tumultuous states less frequently than it does quiet 

states, and spends less time in them, they propose that these tumultuous states 

mig~t correspond to geomagnetic storms. 
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Figure 4.5: 2-state model fitted to the geomagnetic data when the algorithm was 
initialised with 2 states 
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For the daily returns data set, Table 4.11 summarises the:esults for different 

initial numbers of states, obtained by imposing a lower bound on the a* values. 

Table 4.11: DIC and PD values and number of states selected for the daily returns 
data with different initial numbers of components 

Initial No. of States No. of States Found DIC PD 
15 7 -15488 90.91 
7 5 -15576 43.99 
6 6 -15540 64.94 
5 5 -15572 43.98 
4 4 -15594 27.99 
3 3 -15580 13.99 
2 2 -15563 6.00 

For the daily returns data, the variational algorithm only converges for models 

with an initial number of states less than or equal to 2 if we do not impose a lower 

bound on posterior transition probability estimates. The DIC's are negative for 

this data set, but comparing these, the lowest DIC is for 4 states. Based on these 

results, we fitted the 2-state solution with variational posterior transition matrix 

[ 
0.96 0.04] 
0.07 0.93 

and variational posterior estimates given in Table 4.12. The fitted density is 

plotted in Figure 4.6. 

Table 4.12: Results for the daily returns data starting algorithm with 2 states 

Estimated posterior means 0.00084 -0.00145 
Estimated posterior standard deviations 0.00453 0.00898 

Estimated posterior weights 0.63 0.37 

Robert et al.(2000)'s analysis favoured 2 or 3 states in a model for this data 

and Ryden et al. (1998) selected a 2-state model. In the analysis by Robert 

et al. (2000), the estimated transition probabilities for the 2-state model were 

11"12 = 0.044 and 11"21 = 0.083, and the estimated posterior standard deviations 

were 0"1 = 0.0046 and 0"2 = 0.0093. These were close to the estimates found 
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by Ryden et al. (1998); their estimates for the transition/probabilities were 

7r12 = 0.037 and 7r21 = 0.069, and their estimated posterior standard deviations 

were 0'1 = 0.0046 and 0'2 = 0.0092. Our estimated transition probabilities and 

posterior standard deviations are similar to both sets of estimates. 

Daily Returns Data 

0·· .. ·----

-0.04 ·0.02 0.0 0.02 0.04 

Daily Relums Dala 

Figure 4.6: 2-state model fitted to the daily returns data when the algorithm was 
initialised with 2 states 
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To summarise, we give a brief comparison of results for th;se data sets found 
through different analyses: 

• Geomagnetic Data: 
- Variational method - 2 states 

- DIC - 4 states 

- Analysis by Robert et al.(2000) - 3 states 

- Analysis by Francq and Roussignol (1997) - 2 states 

• Daily Returns Data : 
- Variational method - 2 states 

- DIC - 4 states 

- Analysis by Robert et al.(2000) - 2 or 3 states 

- Analysis by Ryden et al. (1998) - 2 states 

• Wind Data: 

- Variational method - 2 states 

- DIC - 3 states 

- Analysis by Robert et al.(2000) - 3 states 

- Analysis by Francq and Roussignol (1997) - 2 states (no preprocessing 
of data) 

Modelling the Real Data Sets as Mixture Models, Ignoring the Time Dependency 

We also analysed the 3 real data sets as mixture data, using the variational 

approach from Chapter 2. For the wind data set, initialising the algorithm with 

15 components resulted in a solution with 7 components. All but 2 of the fitted 

components had small weights attached to them. So, for the wind data sets, ig

noring the dependency between observations and treating them as identically and 

independently distributed, resulted in a more complex model than that.which was 

obtained by modelling the dependency. We also initialised the mixture program 

with two components to allow a comparison of the fit with that obtained from the 

HMM analysis. Results are given in Table 4.13 and the fitted density is plotted 
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Table 4.13: Results from mixture analysis of the wind dat~ starting algorithm 
with 2 components 

Estimated posterior means 0.0049 -0.028 
Estimated posterior standard deviations 0.47 2.45 

Estimated posterior weights 0.64 0.36 

Figure 4.7: Density fitted to the wind data by mixture analysis 

in Figure 4.7. There are similarities between these posterior estimates and those 

obtained from the HMM analysis (Table 4.8). 

Interestingly, the DIC value for the 2 component model (DIC=1571.98) was 

higher than that for the 7 component model obtained by initialising with 15 states 

(DIC=1487.43), so going by the DIC, the more complex model has more support. 
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For the geomagnetic data, initialising the algorithm with'15 components re

sulted in a solution with 5 components. This is more complex than the result 

we obtained in the HMM analysis without imposing a lower bound on a*. To 

compare results with the HMM analysis, the results found by fitting a mixture 

model with two components are reported in Table 4.14. The fitted density is 

shown in Figure 4.8. 

Table 4.14: Results from mixture analysis of the geomagnetic data starting algo
rithm with 2 components 

Estimated posterior means -0.232 2.658 
Estimated posterior standard deviations 

Estimated posterior weights 

~ .... ,----
·20 ·10 

Geomagnetic Data 

o 10 

1 Kemel Plot of Data 
Fitted Densif¥ 

20 

Geomagentlc data 

2.02 5.69 
0.93 0.07 

==1 

30 

Figure 4.8: Density fitted to the geomagnetic data by mixture analysis 

The posterior estimates presented above are similar to those found in the HMM 

analysis (Table 4.10). Again, the DIC value for the 2-state model (DIC=12289.25) 

was higher than that for the 5-state model (DIC=12261.81) and ~o the DIC 

favours the more complex model. 
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For the daily returns data, initialising the algorithm with 15 components 

resulted in a solution with 2 components; results are presented in Table 4.15 and 

the fitted density is plotted in Figure 4.9. In this case we select a model with the 

same complexity as that found by the HMM analysis with no lower bound on a*. 

Table 4.15: Results from mixture analysis of the daily returns data starting al
gorithm with 15 components 

Estimated posterior means 0.00058 -0.00138 
Estimated posterior standard deviations 0.00457 0.00978 

Estimated posterior weights 0.7 0.3 

Daily Returns Data 

0 .... ----

-0.04 -0.02 0.0 0.02 0.04 

Dally Returns Data 

Figure 4.9: Density fitted to the daily returns data by mixture analysis 

Again, these posterior estimates are similar to those obtained in the HMM anal

ysis (Table 4.12). 
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In the case of the wind and geomagnetic data sets, the ~mixture analysis re

sulted in a more complex model than the HMM analysis did. In these instances, 

adding model complexity has led to a smaller number of components. However, 

for the daily returns data, the level of complexity found was the same. In all 

cases there were similarities between the posterior estimates found by both types 

of analysis. 

4.7 Conclusions 

As with the mixture case, applying variational methods in the case of a hidden 

Markov model with Gaussian noise leads to the removal of extra components. 

_ Solutions with fewer states than the number selected can be obtained by starting 

the algorithm with fewer states. The variational approximation also enables the 

calculation of DIC values which can be used to choose between competing models. 

A difference between the finite mixture and HMM case was that weightings 

for unnecessary states appeared to tend to zero more quickly and so unwanted 

states had to be simultaneously removed. 

Another difference is that it was necessary to impose a lower bound on the a* 

values, which are the posterior estimates of the transition probabilities, to allow 

the algorithm to converge when initiated with larger numbers of initial states 

than were present in our simulated examples. In some cases this allowed us to 

find a close estimate of the true solution but in others this seemed to be leading 

to a solution with more states than were present, with the algorithm becoming 

trapped in these states which we had allowed to remain in consideration through 

the imposition of the lower bound. It was not necessary to impose a lower bound 

when we began with the correct number of states, or a smaller number than was 

actually present, in our simulated examples. This implies that the need for the' 

lower bound could be indicative of the fact that there are too many states being 

considered, but if these are not removed by the method, via small weightings, 

then it is difficult to justify forcibly making extra removals based on bounded 

a* values. Perhaps some other method of identifying superfluous states could be 

introduced, and it might also be worthwhile investigating the affect of the initial 

assignment of observations to states. These points merit further investigation. 

The DIC can also be used to select a model. However, in the HMM's case, 
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there is less agreement between the model selected by the bIC and that selected 

using the variational method than we observed in the finite mixtures case. 

We have also compared results obtained here with those we find by treating 

the data as if it had come from a mixture distribution and ignoring the extra 

dependencies. With the real data, in two cases the mixture analysis resulted in 

a model with higher complexity than the HMM analysis did. However, for the 

other data set, the level of complexity found was the same for both the mixture 

and the HMM set up. So, in two instances, adding model complexity led to a 

smaller number of components but there is insufficient evidence to apply this rule 

in general. For all 3 data sets the posterior estimates found by both types of 

analysis showed similarities. 

Again, for this type of model, we found the variational method to be com

putationally efficient. For example, convergence to a variational solution and 

calculation of PD and DIC values for the 2-state 800 observation data set anal

ysed in section 4.6.1, initialising the algorithm with 15 states and imposing a 

lower bound on a* values, took 367.58 seconds (around 6 minutes) to run in R 

on a Windows NT Intel P4 2GHz workstation. 

Variational methods for the analysis of HMM's have potential, but there is 

much scope for further investigation into the state-removal phenomenon which 

occurs in the implementation. 
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Chapter 5 

Hidden Markov Random Fields 

and Image Analysis 

In previous chapters we have studied mixture models with different dependency 

structures. In all cases we have interpreted the mixture data as incomplete data, 

the missing information being the indicator variables or labels for the class of 

each observation. We considered finite mixture models, in which the indicator 

variables for each observation are independent. This might be thought of as 

the standard mixture dependency set-up. We then went beyond this structure 

and allowed the indicator variables to correspond to a stationary Markov chain, 

thereby leading to a hidden Markov chain or hidden Markov model. The next 

level of complexity is to have the indicator variables being realisations from a 

Markov random field with a two-dimensional index set. This leads to the hidden 

Markov random field model which we will study in this chapter. For more detail 

on the dependency structures of such models see Titterington (1990). 

'In this chapter we review the application of hidden Markov random fields to 

Bayesian digital image analysis. In addition, we attempt to extend the variational 

framework and the DIC to the spatial setting of analysis of an image represented 

by a hidden Markov random field. The empirical findings presented here are 

somewhat exploratory in nature and a fuller assessment would require further 

detailed study. 
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5.1 Introduction and Background / 

The Markov random field (MRF) concept dates back to Dobrushin (1968) al

though models of this kind were in fact already in use in statistical physics long 

before then. MRFs are spatial models whose spatial locations or sites gener

ally follow some sort of lattice structure. Each site on the lattice has a set of 

neighbouring sites and the attractiveness of such models lies in the fact that 

the conditional probability at each site is dependent only upon the values of 

its neighbours. The MRF concept represents one method of extending the one

dimensional Markovian property to a more general setting like a two-dimensional 

spatial problem. 

The MRF structure is of interest in a variety of research applications where 

there is spatial information and an interest in representing the spatial association 

between data. As encountered in previous chapters, there are also situations 

where we have missing data' in the sense that the labels indicating the state 

to which a given observation belongs are unknown. In this setting, the hidden 

Markov random field (HMRF) formulation is often an appropriate representation. 

For example, HMRFs have been used in areas such as disease mapping, where 

interest lies in modelling any potential spatial dependency between regions or 

countries which are geographically close to another or which are related in some 

other way. See, for example, Green and Richardson (2002) for an example of 

, HMRFs in disease mapping or Besag and Higdon (1999) for an application to 

agricultural field experiments. 

Hidden Markov Random Fields and Image Analysis 

The application area on which we shall focus is the area of image analysis 

and restoration. We can think of an image as a two-dimensional area subdivided 

into a rectangular lattice of sites which we call pixels. An image will typically 

have at least 256 x 256 = 216 pixels (so that they present a large data problem) 

each taking one of a finite set of possible intensities (or levels of brightness). For 

instance, an image can be obtained from a video camera where the light from a 

scene passes through the lens and on to a matrix of sensors. Each sensor records 

the rate at which photons strike it while the image is being captured. There 

are other ways of recording an image (e.g. scanners, photographic camera) but 

all of these result in the production of a finite matrix of brightness. Brightness 
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levels are often called grey levels and frequently these are represented by integers 

ranging from 0 to K - 1. Black is usually considered to be the lowest intensity, 

0, and white the highest, K - 1. Grey scales generally use 256 different levels. 

This is sufficient to represent an image, as humans cannot distinguish between 

more levels than this on a video display. As well as binary images made up of 

black and white (or any other two colours of) pixels and grey scale images, we 

may have colour images which comprise the intensities of the colours red, green 

and blue. 

There are occasions when an image can become corrupted, either through 

distortion which occurs during the actual imaging process or by degradation at 

a later stage. Image noise is the term used for anything included in an image 

which was not originally meant to appear; it can be summed up as the visible 

resul ts of an error (or electronic interference) in the final image from the imaging 

apparatus. Images affected by noise are called noisy images. Thermal noise, for 

instance, is the most common and is always present in digital imaging systems. 

Thermal noise is caused by the irregularity of heat-generated electron fluctuations 

in the resistive parts of the physical apparatus used to record an image. It adds a 

snow-like appearance to the image, and hence thermal noise on digital television 

is commonly termed snow-noise. Uncorrelated Gaussian noise with mean 0 and 

variance (12 is called white Gaussian noise and thermal noise is in fact fairly well 

_ modelled by the Gaussian distribution (although strictly speaking the Gaussian 

model is a little unrealistic since it allows negative values on a grey scale). In 

this chapter we will concentrate on the statistical analysis of images with added 

white Gaussian noise. When an image has become degraded or affected by noise, 

rather than observing the actual value (or state) of each pixel, we have a noisy 

realisation of it and from this we have to reconstruct the original image. It 

is possible to imagine that there exists an allocation vector indicating the true' 

value of each pixel, but of course these variables are hidden, leading us to the 

domain of the HMRF. Image analysis problems arise from various sources such 

as automated computer object recognition, astronomy, digital imaging software 

and numerous others. Satellite imaging also gives rise to image data. However, 

this is an example of a spatial problem where there might also be interest in 

incorporating a temporal element to the model as well as a spatial one; spatial

temporal problems will not be considered here. 

Besag (1974,1975) was the first to propose general methods of statistical in-
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ference for MRFs, overcoming the complications for such models by using the 

Hammersley-Clifford theorem (see section 5.2.1). This ground-breaking work was 

influential on later developments in the area. 

MRF models were first introduced into the study of statistical image analysis 

by Geman and Geman (1984) who proposed a Bayesian approach to the problem 

of image restoration. They drew parallels between images and lattice-like sys

tems arising in statistical physics where the Gibbs distribution (see section 5.2.1) 

is used as a model. Noting the equivalence of the Gibbs distribution and Markov 

random fields, as revealed by the Hammersley-Clifford theorem, they applied a 

Markov random field image model. They could then recover an original image 

from its degraded version by using a stochastic relaxation and annealing restora

tion algorithm to find maximum a posteriori (MAP) estimates of the original 

image given the degraded one. The algorithm generates a sequence of images 

that converges to the MAP e$timates. The sequence is generated through local 

changes in pixel intensities and other variations in the scene, these changes being 

made randomly so as to avoid becoming trapped in local maxima. In statistical 

physics, the Gibbs distribution involves a temperature parameter representing 

the temperature in a physical system. This is a global control parameter and 

local conditional distributions are dependent upon it. The restoration algorithm 

is initialised at high temperatures and the temperature is then decreased as the 

. algorithm continues. At the higher temperatures, many of the changes in in

tensities and boundary elements will decrease the posterior density whereas, at 

lower temperatures, these changes are likely to increase the posterior density. In 

this way Geman and Geman's (1984) algorithm simulates the chemical procedure 

called annealing which forces chemical systems to their low energy and highly 

regular states. The low energy states of the Gibbs posterior distribution are the 

MAP estimates of the true image given the corrupted version. This paper ex-· 

plicitly introduced the well known Gibbs Sampler which can be thought of as a 

special case of the Metropolis-Hastings algorithm. Geman and Geman's (1984) 

algorithm was very computationally demanding. This work, which was influenced 

by statistical physics, introduced new ideas to image analysis methodology. 

Besag (1986) also dealt with the topic of MRFs in digital image analysis and 

proposed the method of Iterated Conditional Modes(ICM) for image restoration. 
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5.2 Markov Random Fields and the Hammersley

Clifford Theorem 

In this section we set out the relevant theory of Markov random fields. We give 

the definition of a MRF and explore its equivalence to the Gibbs distribution as 

proven by the Hammersley-Clifford Theorem. We also explore the representation 

of a MRF through the well known Ising and Potts models from statistical physics. 

5.2.1 Markov Random Fields 

Pixels, Neighbours and Cliques 

Consider a grid or lattice with regularly spaced sites i = 1, ... , n; these sites 

correspond to pixels in our image. Let Y denote the finite space of observed pixel 

states Y = (Y1, ... , Yn ), where the {Yi} can take values in {I, ... , K}. The process 

Y is called a stochastic or random field if p(y) > 0 for all y E y. 
Before we can define a Markov random field we first have to describe the 

concept of a neighbourhood system. A collection of subsets 5 = (5i : i E 1, ... , n) 
of the space of sites is called a neighbourhood system if 

The sites j E 5i are called neighbours of i. We also use the notation i f'V j to 

indicate that i and j are neighbours of one another. 

A subset of the space of sites, or pixels, is called a clique if any two sites in 

that subset are always neighbours. We let C denote the set of all cliques on our 

set of pixels under the neighbourhood system 5. 

In this thesis we consider first-order neighbourhood systems. The first-order 

neighbours of a pixel are the pixel above, below, to the left and to the right as 

shown in Figure 5.1. Naturally pixels on any edge of the image will not have four 

neighbours. It is common practice to use some method which gives edge pixels 

four neighbours to tie in with the other pixels for calculations. In this research, 

the two neighbours of each edge pixel are used twice to make four neighbours. 

This can be thought of as reflecting the edges of the image in a mirror and using 

the reflected pixels as neighbours. Another common approach is the toroidal 
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design in which one imagines the image is wrapped around a cylinder (vertically 

and horizontally) so that every pixel has four neighbours. Figure 5.2 shows the 

cliques for a first order neighbourhood system. 

Figure 5.1: First-Order Neighbours 

Figure 5.2: Cliques for a First-Order Neighbourhood System 

Definition of a Markov Random Field 

We give the definition of a Markov random field as established by Dobrushin 

(1968). The process Y is defined to be a Markov random field if, for all Y E y, 

(i) p(y) > 0 

(ii) p(Y'i = YilYj = Yj, i i- j) = p(Y'i = YilYj = Yj, j E <5J 

So; in relation to our image model, condition (i) ensures that every possible 

configuration (in terms of grey levels or colours) of our original image prior is ' 

possible. Of course condition (i) is the condition which the process has to meet 

in order to be a random field . Condition (ii) requires that, in order for the process 

to be a Markov random field, the conditional probability at a given pixel depends 

only upon the values of neighbouring pixels. 

A drawback of MRFs is that their definition does not lead to a natural way 

of writing down their distribution. This limited early research in MRFs as it 

was unclear how the joint probability distribution should be evaluated or how 

local conditional probabilities could be defined in away which led to a valid joint 
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probability distribution. A significant breakthrough with regard to this problem 

was made by Besag (1974) who detailed a probabilistic structure for MRFs which 

was made possible through the Hammersley-Clifford Theorem which is described 

below. The progress made in this area is described in more detail in section 

5.3. The theorem identifies MRFs with Gibbs distributions, which is useful in 

the specification of conditional probabilities, and so usually MRFs are defined 

through their representation as Gibbs distributions. 

Gibbs Distributions 

Gibbs distributions originate in statistical physics where there was interest 

in discovering properties of large systems from local characteristics. Gibbsian 

models are of the form 

( ) 
_ exp( -H(y)) 

.p y - G 

where H is a real-valued function, H : Y f-t R, y f-t H(y). In physics terminology, 

H is referred to as the energy function of p(y) and the normalising constant, G, 

is called the partition function. The energy function is specified in terms of 

potentials, with 

H(y) = L VA(y), 
A 

where VA is called the potential corresponding to A and A is a subset of the sites. 

The potential, VA, is such that 

(i) V0 = 0 

(ii) VA(x) = VA(y) if YA(x) = YA(y). 

If, for a given neighbourhood system, 8, VA(y) = 0 whenever A is not a clique, 

then V is called a neighbour potential with respect to 8. This case is of particular 

interest to us. The energy function is then specified in terms of potentials for 

each clique in the neighbourhood system. For a clique c E C we let Vc(Y) be its 

potential and then define the energy function as 

Hv(y) = L Vc(y)· 
cEC 
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Probability functions of a Gibbsian form are always st~ictly positive and so 

they are always random fields. Every random field can be expressed in Gibbsian 
form. 

The Hammersley-Clifford Theorem 

The Hammersley-Clifford theorem essentially states that the process Y is a 

Markov random field if and only if its corresponding probability density function 

is a Gibbs distribution. This result makes it possible to write down the form of 

the joint probability distribution for any given MRF. 

The Hammersley-Clifford theorem was first presented in a paper by its authors 

in 1971. However Hammersley and Clifford decided not to publish the work as 

they felt it had been superseded by subsequent research and their original proof 

remained unpublished for a number of years. A proof of a special case of the 

theorem was given though in.the seminal paper by Besag (1974) in which novel 

methods of inference were developed for MRFs based on the Hammersley-Clifford 

result. For more detail on the developments of the theorem and the reasons why it 

was not published by its authors, the reader is referred to Hammersley's discussion 

of Besag (1974). 

5.2.2 The Ising Model and the Potts Model 

We now consider two well-studied examples of Gibbsian models that are often 

used to represent images: the Ising model and its generalisation, the Potts model. 

The Ising Model 

We shall consider the HMRF representation of an image in more detail. Con

sider a rectangular lattice where observations Yi are pixels or sites on this lattice .. 

We initially restrict our attention to a binary image where pixels can only take 

the values -lor +1 corresponding to black and white (values 0 and 1 are more 

commonly used to represent black and white in the computing literature). Such 

an image is often well-represented locally by the well-knowIl Ising model which 

originated in statistical physics and has been studied extensively since the 1920s. 

It is named after the German physicist Ernst Ising who used it to try to explain 

theoretical properties of ferromagnets (although the model was in fact postulated 

by Ising's doctoral supervisor Wilhelm Lenz in 1920). Magnetic materials are 
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essentially made up of atoms called magnetic dipoles (Le./ they have North and 

South poles). In atomic material, magnetic dipoles are caused by the spinning of 

the atomic particles, and are often called spins. The idea behind the Ising model 

is that the magnetisation of a magnetic material comprises the sum of the mag

netic dipole positions of the numerous spins of the atoms within it. The model 

proposes that the atoms form a lattice of any geometry and at each site on this 

lattice there is a magnetic spin or dipole which can take the value +1 or -1. These 

states correspond to the physical interpretation of up- and down-pointing spins 

of magnitude 1. Spins cannot move around the lattice, but they can flip between 

up and down states. If there is an equal number of up and down states then 

the magnetisation will be zero; it will be non-zero if there is a majority of either 

state. The total system energy for a given spin configuration is proportional to 

the products of spins of adjacent sites, reflecting the interaction between spins on 

neighbouring sites which is present in real magnetic material. The Ising model 

is simplistic but it displays phenomena typical of more complex models and so it 

has been extensively researched by physicists. For further detail on the role of the 

Ising model in statistical physics the reader is directed to the book by Newman 

and Barkema (1999). 

The idea of the Ising model translates in a natural way to the binary image 

setting, if we represent the two colours by +/-1 and assume that nearby pixels 

are likely to have similar colour values. Suppose we have data (or observed pixel 

values) y, model parameters 8 alld hidden variables Z corresponding to the states 

such that Zi€{ -1, +1}. Then the Ising model is of the form 

( I
ll) _ ( I r.?) = exp{{3 Ei"'j ZiZj} 

p Z 0 - p Z fJ G({3) , 

where i ,...., j means that i,j are neighbours and G({3) is a normalising constant 

which is not usually computable. 

The Potts Model 

The natural extension of the Ising model to more than two states is given by 

the Potts model. In the Potts model the spin on each site can take more than 

two discrete values. For instance, a K-state Potts model is one in which each site 

can take values in states 1, ... , K. In a remote sensing problem, the states might 

correspond to land-use types, for example. 
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For K = 2 states, the Potts model is equivalent to the Ising model up to an 

additive constant. Further, for larger values of K, the Potts model behaves in a 

similar way to the Ising model. 

5.3 Estimating the Parameters of a Hidden Markov 

Random Field 

The Intractability of the Normalising Constant 

These models provide an appealing representation of images and other spatial 

problems. Unfortunately the difficulty with these models lies in the fact that 

the normalising constant, also called the partition function, cannot be evaluated 

unless the observation set is very small since it involves such a large number of 

terms. This means that there.is no straightforward method for finding likelihoods 

or the normalising constant for the prior distribution of the HMRF and these dif

ficulties have limited their use. The forward-backward algorithm which made 

such computations feasible in the HMM case is no longer available to us here. 

This presents a great obstacle in analyses utilising these representations and con

sequently the investigation of normalising constants is an area of active research. 

Some recent research has included a method by Pettitt, Friel and Reeves (2003) 

which does not require simulation. A toroidal view of the lattice is taken i.e. it 

is thought of as having been wrapped around a cylinder (so that the first and 

last columns are alongside one another) and then each column on the cylinder is 

taken to have two neighbouring columns, namely the columns on either side of 

it. A matrix approach is then taken to find the normalising constant . 

. There is also interest in this subject among the machine learning community. 

For instance, Murray and Ghahramani (2004) suggest many different ways of 

trying to overcome the normalising constant intractability issue. See section 5.9 

for a discussion of this work. They consider several possible combinations of 

existing methods and highlight the fact that clearly there are many possibilities 

yet to be explored. 

The Pseudo-likelihood Approach 

The approach which is taken in this thesis involves replacing the intractable 

likelihood, at appropriate stages, by the pseudo-likelihood proposed by Besag 
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(1974,1975). This follows the approach taken by Ryden arl'd Titterington (1998). 

They proposed analysing HMMs and HMRFs using versions of the Gibbs sampler 

which were made obtainable by using the pseudo-likelihood in the simulation step 

for the parameters of the Markov system. The pseudo-likelihood is given by 

n 

IIp{zilzi',,B), where Zi' = {Zj: j i= i} 
i=l 
n 

IIp{zilzop,B), 
i=l 

where zo; denotes the z-values of the pixels which are neighbours of pixel i. The 

normalising constants for the factors of the pseudo-likelihood are trivial and so 

the unobtainable quantity has been replaced by something more amenable. 

Qian and Titterington (1989) refer to this form of the pseudo-likelihood as 

the point pseudo-likelihood as it only involves a single site or point and its neigh

bours. They suggest that the point pseudo-likelihood could be generalised by 

partitioning the observation sites {1, ... , n} into R parts where R is a number 

smaller than the number of sites. One could then define the pseudo-likelihood 

by taking the product over the conditional probability of each partition "block" 

given the neighbouring partition "blocks", i.e. a "block" pseudo-likelihood. 

Besag's work on lattice data, which led to the proposal of the pseudo-likelihood, 

was motivated by the desire to find a non-degenerate conditional probability for

mulation of a spatial stochastic process. Bartlett (1955,1967,1968) defined the 

conditional probability distribution of a realisation from a rectangular lattice, 

given all other observations, as depending only upon the four nearest sites (or 

nearest neighbours) to the point in question. Besag (1974) notes the appeal of 

Bartlett's interpretation of conditional probability as it is computationally fea

sible and for binary data it leads to the formulation of the Ising model. Besag 

(1974) also points out that there are drawbacks to this interpretation; some of 

the problematic issues were considered in Besag (1972). However the practical 

advantages associated with this conditional probability structure encouraged Be

sag to pursue this type of model. Besag (1974) takes the approach of allowing 

the conditional distribution of a particular observation to depend on more sites 
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than just the 4 nearest ones and building a hierarchical modelling structure which 

extends the theory of 1st and higher-order Markov chains to the spatial domain. 

This was possible through the Hammersley-Clifford Theorem. 

The Hammersley-Clifford Theorem essentially states that, in order to find the 

conditional probability of any observation, given all the others, we only have to 

know about the neighbouring observations of that site. Besag (1974) investigated 

coding techniques to estimate parameters of lattice schemes, but these were found 

to be lacking in efficiency and so Besag (1975) proposed the concept of pseudo

likelihood in an attempt to improve point estimates. The pseudo-likelihood tech

nique is more efficient as it uses information on all sites of the lattice and does 

not require coding. 

5.4 Hidden Binary Markov Random Field 

Here we consider a variational approximation for a Hidden Binary Markov Ran

dom Field modelled by the Ising Model with independent Gaussian noise as de

scribed above in section 5.2.2. Recall that 

p(zJO) = p(zJ,B) = exp{,B ~~'~/ Z,Zj} 

The joint probability distribution over y, Z and () will be 

n 2 

p(y,z,()) - ITp(Yi\Zi,<P)P(Z\f3) ITp(<PI)p(f3) 
i=1 1=1 
n 2 

IT {p(Yi\<pd} 9- {P(Yi\<P2)} ~p(z\f3) ITp(<PI)p(f3). 
i=1 1=1 

Here the <PI are parameters within the Ith noise model and I~Zi and I~Zi act as 

indicator variables for the state the ith observation is from, since I~Zi = 0 when 

Zi = 1 and I~Zi = 0 when Zi = -1. p( <PI) and p(f3) are the prior distributions for 

<P and 13. Altogether, () = {{<PI}, f3} 
So, the lower bound on p(y), that we wish to maximise, will have the form 
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The preferred assumption is that 

q(z,O) = qz(z)q(J(O). 

The optimal variational approximation q(O) would then have the form 

2 

q(J(O) = qfj({3) IT qj(¢l). 
1=1 

If the p( ¢j) are conjugate priors then the qj will have simple forms. qfj ((3) will 

be problematic because of the difficulty in computing G({3). The function qz(z) 

will also be difficult to deal with if it is not simplified further; therefore, another 

assumption is required. 

We will consider the simplest proposal for qz(z), namely 

n 

qz(z) = IT qZi (Zi), 
i=l 

a mean-field like approximation. (Clearly this is a drastic assumption, but with

out some such simplification it is not clear how to proceed.) Then the optimal 

qZi (Zi) maximises 

= Lqzi(Zi) log 
{z;} 

where OJ denotes the j that are neighbours of i. Thus, 
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Si 

exp[Er/>2 {logp(YilcP2)} + E!3(,B) l:j€8; E(zj)] 

where Si is a normalising constant that ensures that 

Of course, 

E(Zj) = qZj(Zj = +1) - qZj(Zj = -1), 

showing that the {qz; (Zi)} are all interlinked. 

There is still the problem of deciding what to do about q!3 ([3). Its exact 

solution is the maximiser of 

exp{!3 E;~j Eq(z;zj )}p(!3) 

f { G(!3) 
q!3 ([3) log q!3 ([3) }d[3. 

Thus, 

with 

if the above factorised approximation to qz(z) is used. 

The fact that we cannot calculate G([3) causes a problem, as does the need 

to normalise q!3([3). Furthermore E!3([3) is required for the calculation of qz(z). 

One possibility is to replace p(zl[3) by the pseudo-likelihood at this stage, i.e. 
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This then gives 

q.B ((3) ex: 

i=1 
n 

ex: IT e.Bzi(EjEO; Zj) 

i=1 
n e.Bz;(EjEO; Zj) n e -.B(Ejeo; Zj) + e.B(EjEO' Zj) • ,=1 • 

exp [Ei E log( e.B(EjEO; Zj) + e -.B(EjEO; Zj»)] 

~xp{2(3 Ei'Vj E( q(ZiZj)) }p((3) 

2n exp[Ei Eqz log cosh( e.B(EjEO; Zj»)] • 

This is not very complicated for small neighbourhoods. Also, there may be other 

approximations for the denominator. 

5.5 Hidden K-State Markov Random Field 

In this section we extend our ideas to a Hidden Markov Random Field with 

K states modelled by the Potts Model with independent Gaussian noise. More 

detail on the derivation of formulae used in this section is given in Appendix 

H.l. If the number of states is K = 2 then the Potts model corresponds to the 

Ising model. Suppose we have data y, model parameters () and hidden variables 

Z corresponding to the states {I, ... ,K}. Then 

p(y, Z, ()) p(Ylz, ())p(zl())p(()) 
n K 

IT p(Yilzi, ¢)p(zl(3){IT p( ¢1)}p((3) 
i=1 1=1 

the ¢I are parameters within the Ith noise model and, if Zi = (Zit, ... , ZiK) (Le. the 

{Zil} are indicator variables for the state of a particular observation), then 
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We assume that the lth noise model is N(J.Lt, 71-
1
), where 71 is the precision (7/-

1 = 
al). 

Assigning the Prior Distributions 

We assign independent Gaussian priors to the means, conditional on the pre

cisions, so that 

K 

p(J.L17) = II N(J.LI; ml(O), (A~0)71)-I). 
1=1 

The precisions are given independent Gamma prior distributions: 

K 
~ . 1 (0) 1 (0) 

p(7) = L...J Ga (71'2'1 '2~1 ). 
1=1 

Form of the Variational Posterior Distributions 

We wish to maximise 

~1 ( ) {P(y,z,B)} ~(q,p) = il 8 q z,B log q(z,B) dB. 

Assume that 

q(z,8) = q,(z) {fi q,( ,M } qp(fj). 

Then ~(q,p) = 

Then ql(¢l) optimises 
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l.e. 

n 

ql(cPl) ex II {p(YilcPl)EzZiI
} P(cPl), 

i=l 

where 

according to the notation used in previous chapters. Thus, 

n 

ql(cPl) ex II {p(YilcPl)qil} P(cPl). 
i=l 

This results in variational posteriors of the form 

q(J,tllr!) = N(J,tI; m[, (AtTltl) 

1 1 
q(TI) = Ga(Tl; '2 Al , '26), 

with hyperparameters given by . 

n 

Al = A~O) + L qil 
i=l 

n 

'Yl = 'Yl(O) + L qil 
i=l 

n 
(0) ~ 2 dO) (0) 2 \ 2 

~l = ~l + ~ qilYi + 1\1 m 1 - I\lml • 

i=l 

Also, q/3 ({3) optimises 
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r q/3((3) log [exP{Ez logp(zl(3)}p((3)] d(3 
} /3 q/3 ((3) 

l.e. 

q/3((3) ex exp {Ez logp(zl(3)} p((3). (5.3) 

Finally, qz (z) optimises 

(5.4) 

We are unable to optimise (5.3) and (5.4) explicitly. We encounter difficulties 

because of the complexity of p(zl(3). In Section 5.5.1 we describe a way of circum

venting the problem of optimising (5.4) which involves assuming a fully factorised 

form for qz(z). We also require E/3((3) in order to evaluate (5.4). Section 5.5.2 

describes how (5.3) can be optimised using the pseudo-likelihood in place of the 

true likelihood function and Section 5.5.3 describes an approximation for E/3((3). 

5.5.1 Optimisation of qz(z) 

Formula (5.4) cannot be optimised explicitly because logp(zl(3) is a fairly com

plicated function of z. As in the binary case, the simplest proposal is to assume 

that 

n 

qz(z) = II qz;(zJ 
i=l 

Then qz; optimises 

(5.5) 

where Zi' represents all z/s except for Zi· 

We now have to consider the form OflOgPi(Zil(3), which is the part oflogp(zl(3) 

that depends on Zi. Consider an isotropic pairwise-association Markov random 

field, for which 
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( I 
R) = exp{f3 Li'Vj 8(Zi' Zj)} 

P Z p G(f3) 

This is the Potts model, where i f'.J j means that i, j are neighbours and 

Here 

l.e. 

i.e. 

l,if z{Zj = 1 

-1, otherwise, i.e. if z{ Zj = o. 

K 

z{ Zj = L ZilZj/, 
1=1 

2z{ Zj-l 
K 

2 LZilZjl-l 
1=1 

exp{2f3 Li'Vj L~1 ZilZjl} 
p(zlf3) = G*(f3) 

where G*(f3) = G(f3)ef3, so that G*(f3) absorbs the extra constant, e- f3 , from the 

numerator. 

K 

10gp(zlf3) = 2f3LL Zi/Zjl-logG*(f3). 
i'Vj 1=1 

The quantity required to go in (5.5) as Ef3EZ;1 10gpi(zilf3) is 

Thus, in (5.5), we have 
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which is optimised by 

qil ex: exp {E¢/lOgp(Yil¢>l) + 2E,a(,8) ~ qjl} , 1 = 1, ... , K, (5.6) 
J f5i 

normalised so that 2:~1 qi/ = 1. In the above, apart from an additive constant 

1 1 1 
E¢, [lOgp(Yil¢>I)] = 2E¢, [log lTd] - 2E¢, h](Yi - ml)2 - 2~1' 

with expectations given by 

E¢, [Tl] = ;;. 

Therefore, given the qi/'S, the ql(¢>I)'S can be updated through (5.2). Given 

E,a(,8), the {qil} can be calculated/updated through (5.6). 

5.5.2 Optimisation of qf3(f3) 

We now have to deal with ,8. The optimum q,a optimises 

i.e. 

with 

so that 

r (,8)1 [exP{Ez lOgp(zl,8)}p(,8)] d,8 
J [3 q[3 og q[3 (,8) 

q[3(,8) ex: exp {Ez 10gp(zl,8)} p(,8) 

K 

10gp(zl,8) = 2,8 L: L: ZilZjl -logG*(,8), 
i"'j 1=1 
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K 

E 10gp(zl,8) = 2,8 L L Ez;zj (Zi/Zjl) -log G*(,8). 
irvj l=1 

If we assume a factorised qz(z) then 

K 

E 10gp(zl,8) = 2,8 L L qilqjl -log G*(,8), 
irvj 1=1 

so that 

(
,8) exp{2,8 Eirvj E~1 qilqjl}P(,8) 

q{3 ex G* (,8) 

In principle q{3(,8) can be updated from the qil'S. However, this is not practicable 

in practice and so we require a further approximation. 

A Pseudo-Likelihood Approach 

In the spirit of Ryden and Titterington (1998), our approach is to use the 

pseudo-likelihood (Besag (1974,1975)) and to replace p( Z 1,8) by 

n 

PPL(zl,8) := IT P(ZiIZil , ,8) 
i=1 

i.e. by 

n 

IT p(zilzop ,8). 
i=1 

Here 

p(zll1) Q( exp { 211 i; t, zilzil } 

and 
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exp { 2f3 E~l Zil Ej f5; Zjl} 

Ez; exp { 2f3 E~l Zil Ej f5; Zjl} 

exp { 2f3 E~l Zil Ej f5; Zjl} 

E~l exp { 2f3 Ej f5; Zjl} 

To see this note that possible values for Zi are 

Thus 

1 

o 

o 

o 
1 

o 

, ... , 

o 
o 

1 

rrn exp { 2f3 E~l Zil Ej f5. Zjl} 

p(zlf3) = • 
i=l E~l exp { 2f3 Ej f5; Zjl} 

If we replace p(zlf3) by p(zlf3) in (5.7), then the optimum q{3(f3) optimises 

giving 

q{3(f3) oc exp {Ez logp(zlf3)} p(f3). (5.8) 

However, 

logp(zJ;9) 2;9 t f.t t. z;!zr t lOg {t. exp(2;9 f.t Zjl) } 

- 4;9 t1 t. Zi/Zjl - t log { t. exp(2;9 f.t Z;I) } , 
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and thus, assuming a factorised form for qz (z), we have 
// 

E,logp(zl;3l = 4;3 i; t Mjl - t. E,., [lOg {t exp(2;3 f,;: Zjll}] 

In principle this can be used in (5.8), but, in the case of a first-order hidden 

Markov random field, each E Zc5 . in the denominator contains K4 terms, making 
• 

computation impractical. 

Here we suggest tackling this obstacle by approximating the denominator of 

(5.9) by 

so that 

((3) rrn exp{2(3 L:j€d; L:~l qilqjl}P((3) 
q(3 ex K . 

i=l . {L:l=l exp(2(3 L:j€d; qjl)} 
(5.11) 

We have to choose a prior for (3 but there is no conjugate set-up for this. We 

shall use an improper prior for (3, i.e. we will set p((3) = constant. 

There is still the problem of calculating E(3((3), for use in (5.6). We have 

q(3((3) = CQ((3), (5.12) 

where Q((3) is the right-hand side of (5.11) and C is a normalising constant. The 

difficulty here lies in calculating C. A possible solution is to approximate q(3 ((3) 

and consequently the associated expectation. 
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5.5.3 Approximating the Expected Value of f3 

We wish to approximate qf3(f3) to obtain an approximation to Ef3(f3). Taking the 
log of (5.12) gives 

log qf3 (f3) log( CQ(f3)) 

log C + log Q(f3) 
1 ~ 

~ constant - ~ (f3 - (3)2. 
2(7 f3 

i.e. We are approximating to log Q(f3) by a quadratic. This type of approximation 

seemed reasonable looking at plots of log qf3 (f3). Then, we have, 

and so, approximately, 

Estimates of ~ and a~ can be found via the method of least squares estimation. 

This, of course, requires calculation of the value of Q(f3) for various values of f3, 
we used values of f3 ranging from -1.5 to 1.5 with increments of 0.05. The prior 

for f3 was taken as being Uniform and so p(f3) was constant in the calculation. 

However, when we actually implemented the method, using simulated data 

sets, the estimate of ~ obtained via the least squares method tended to be larger 

than the true value. In fact, it turned out that a better approximation to ~ was 

obtained by taking the mode of log Q(f3) and as this led to better results, we used 

this as the estimate of ~ instead. 

5.5.4 Obtaining the DIC and PD Values 

The formula for PD is given by 

and so in this case the form of PD is 
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PD 
K n ~ 1 K n 

- L L qil {w (~I) - log( d) - :f} + fJ~FI/ (/3) + 2 L L qillog( "II) 
1=1 i=1 I 1=1 i=1 ~l 

n K 

-2 Llog{Lexp(2,BLqjl)} 
i=1 1=1 

(5.13) 

See Appendix H.2 for further detail, including the definition of FI/(/3). The DIC 
can then be obtained through the usual formula, 

DIC = 2PD - 2logp(y/B). 

However the difficulty with this formula is that the likelihood , 

p(yIO) 
z 

n 

L II P(Yi/Zi)p(Z), 
z i=1 

would be too computationally intensive to compute. Even use of the pseudo
likelihood, which gives 

n n 

p(y/O) = L II P(Yi/Zi) II p(zdzaJ, 
z i=1 i=1 

would not simplify computation sufficiently. Instead, we propose using a mean

field approximation for the lower bound of the likelihood. 

M ean-Field Approximation 

Mean-field methods are a computationally efficient way of approximating in

tractable posterior probabilities. The simplest form of this approximation (known 

as simple mean-field approximation), which we adopt, involves using a completely 

factorised approximating function for the distribution of interest. The motivation 

behind the method is that, in a large lattice, each site is affected by. interactions 

with numerous others, so that each individual influence is small and the total 

influence is approximately additive. Intuitively then, each site should be roughly 

characterised by its mean value. Each mean valueis known only through its re-
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lation to every other mean value, meaning that one can obtain coupled equations 

for the mean values which can be solved iteratively. Mean-field methodology can 

be developed from more than one perspective. The view we shall take is the vari

ational one. This involves using the KL divergence as a measure of the quality 

of our approximation. Through Jensen's inequality we can obtain a lower bound 

on our likelihood which is maximised by minimising the KL divergence. See Ap

pendix H.3 for more detail. An overview of mean-field theory and applications is 

given by Opper and Saad (2001). 

Here we consider the mean-field approximation in the case of binary images. 

The variational lower bound on the likelihood is 

~ rrn p(Ylz)p(z) 
logp(yIO) ~ ~ qZi (Zi) log nn (.) . 

{Z} i i qZi Z, 

Note that our approximating distribution q(z) is fully factorised. Our mean values 

are related through the following set of nonlinear equations 

p(Yilzi = +1)e.B~je6i ffij - p(Yilzi = -1)e-.B~je6i ffij 
mi = p(Yilzi = +1)e.B~je6iffij +p(Yilzi = -1)e-.B~je6iffij· 

This set of equations for the mi can be solved iteratively. When we have the 

values of the mi we can calculate 

qz;(Zi = +1) = p(Yilzi = +1)e.B~je6i ffij + p(Yilzi = -1)e-.B~je6; ffij' 

Then the approximate lower bound for p(YIO) is given by 

This is our estimated likelihood, into which we substitute 0 in order to calculate 
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the DIe. 

5.6 Practical Implementation 

We implemented the variational method and calculation of the DIe and PD values 

in R. The code was written to deal with HMRF's having any number of states 

but in our examples we focused on application to binary HMRF's. Note that we 

have only approximated the DIe in the binary case. 

As with the previous programs, the user must specify the initial number of 

states, K, and the observed data. The user's input data must contain the observed 

data and a list of indices ranging from 1, ... , K initially allocating the observations 

to one of the K states. In our examples, we allocated roughly equal numbers of 

the observations to each of the K states, not using any particular method. The 

initial allocation starts the algorithm and as iterations proceed, the observations 

find their own places. At the initialisation stage, a user-specified value is given for 

the weight that is to be assig~ed to each observation indicator variable (the qil'S). 

In the same way as for the mixture and HMM programs, these initial values for 

the qil'S were chosen to give a slightly higher weighting to the initial allocation to 

states to start the algorithm. The user has the option to specify initial values for 

the sufficient statistics or, alternatively, defaults which specify broad priors are 

available. Unless otherwise indicated, all of our examples use these broad priors. 

The estimated qil'S, obtained as the algorithm converges, are nonnegative and 

are normalised so that they sum to 1 over l for each i. They therefore form a 

set of predictive probabilities for the indicator variables for the data. The sum of 

the qz(Zi = l) over the n observations for each state provides an estimate of the 

number of observations that are being allocated to each state and can be thought 

of as a weighting for each state. 

At each iteration of the code, the DIe and PD values are computed and the 

updated weights for each component are obtained. 

In our examples, we only considered data sets simulated from a binary HMRF, 

but we did try initialising the algorithm with more than 2 states, removing from 

consideration any state with less than 1 observation assigned to it, as we did with 

the previous models. We did occasionally observe the state removal phenomenon 

for certain initial values for the qil'S, but in most experiments, extra states were 
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l not removed. 

5.7 Simulating a Binary Image Using Gibbs Sam

pling 

5.7.1 The Gibbs Sampler (or Alternating Conditional Sam

pling) for Sampling from a Posterior Distribution 

Gibbs sampling is the simplest Markov Chain Monte Carlo (MCMC) algorithm. 

The idea of MCMC algorithms is to sample from a Markov chain with a stationary 

distribution which is the target distribution of interest. It has been found to be 

useful in many multidimensional problems. Suppose, for instance, that it is of 

interest to sample from p(Oly), the posterior density of a set of parameters 0, 

given data y. The algorithm 'is defined in terms of subvectors of (). Suppose first 

of all that the parameter () has been divided into d subvectors or components 

() = (01, ... , ()d). 

At each iteration step of the Gibbs sampler we cycle through the subvectors 

of 0, drawing each subset conditional on the value of the remaining subvectors. 

So, each iteration, t, involves d steps. 

At each iteration, an ordering of the d subvectors is chosen and each ()} is 

sampled from the conditional distribution given all the other subvectors of (), i.e. 

where ()/-I represents all components of () except for ()j, at their current values. 

Thus, 

() t-I (()t () t () t-I () t-I) 
j' = 1'"'' j-I, j+I , ... , d • 

For most standard problems it is generally possible to sample directly from 

most or all of the conditional posterior distributions of the parameters. Under 

certain conditions, the sampler ultimately provides realisations from p(()ly). 
As mentioned previously, the Gibbs sampler can be considered a special case 

of the Metropolis-Hastings algorithm (due to Hastings (1970)) which generalises 

the Metropolis algorithm (Metropolis et al. (1953)). 
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5.7.2 Using a Gibbs Sampler to Sample from a Binary 

Markov Random Field 

The Ising model for observations has the form 

( 1(3) 
= exp{f3 Li"'j ZiZj} 

p Z G(f3) , 

where Zi E {-I, +1} and G(f3) is the normalising function. We have 

We can simulate from the Binary HMRF as follows: 

• Find the neighbours of each point in the image. 

• Randomly assign points on the grid to be + 1 /-1 initially. This provides an 

initial estimate for our image Z given by 

• We can then use the Gibbs sampler to set points in the simulated image as 

+1/-1. We begin by dividing Z into n subvectors corresponding to the n 

pixels in the image. As described in the previous section, in each iteration, 

we cycle through each of the n pixels, drawing each one conditional on the 

current values of the other remaining ones. I.e. for m = 1,2, ... , generate 

(m) f ( (m)1 (m-l) (m-l)) 
Zl rom P Zl Z2 , ... , zn , 

(m) ( (m) I (m) (m) (m-l) (m-l)) 
Zi from p Zi Zl , ... , Zi-l' Zi+1 , ... , Zn , 

(m) f ( (m) I (m). (m) ) 
Zn rom P Zn Zl , ... , Zn-l , 
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where the probability of a pixel being white, conditional on the other pixels, 
is given by 

e/3 LjEOi Zj + e -/3 LjEo; Zj 

1 - P(Zi = -llzil). 

• Once convergence has been reached, we can add Gaussian white noise to 

each pixel in our simulated image so that the noisy {Yi} which we actually 
observe are given by 

Zi + realisation from N(O, ( 2). 

The choice of f3 will affect how patchy the resulting image will be. Larger 

positive values of f3 encourage neighbouring pixels to be of the same colour so 

that increasing f3 leads to bigger sections of like coloured pixels in the image. 

5.8 Results from the Analysis of Simulated Bi

nary Images with Added White Gaussian 

Noise 

We tested the algorithm on some data sets simulated from a binary hidden Markov 

random field. In each simulated image, the number of observations, or pixels, is 

3136 and the image is of size 56 x 56. The true images are made up of black and 

white pixels, corresponding to the values -1 and +1, respectively. The images 

in this chapter were produced by a C++ application which read in the relevant 

image data and produced the noisy, true and recovered images. True images had 

values of -lor +1 which were plotted as blackand white pixels, respectively. In 

the noisy images, values were plotted according to a grey-scale. In the 2-state 

recovered images, the ith pixel is labelled white if, in the variatio.nal posterior 

solution, q(Zi = +1) > ~, and black otherwise. 
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5.8.1 Data generated from an Ising Model with f3 = 0.45 

Simulated data sets 1-3 are generated by adding white Gaussian noise to a simu

lated image based on an Ising model with f3 = 0.45. The true image is that which 

is shown in Figure 5.3 and the value of f3 has led to an image which is made up 

of fairly large patches of like-coloured pixels. 

Figure 5.3: True image used in simulated data-sets 1-3 

Initialising the Algorithm 2 States 

We first analysed the data initialising the algorithm with 2 states, which is of 

course the correct number. 

Simulated Data Set 1 was generated by adding Gaussian noise, with mean 

equal to 0 and a standard deviation of 0.25, to the true image shown above 

(Figure 5.3). The noisy image is shown in Figure 5.4. For Simulated Data Set 

1, the HMRF variational program was initialised with 2 states and both initial 

means set to O. Figure 5.5 shows the recovered image. A solution is reached in 

ten iterations of the program and variational estimates of the posterior means 

are -1.001 and 0.9998. Both estimates are very close to the true means. The 

expected posterior standard deviations are 0.25 and 0.25, which are equal to the 

true values. Our posterior estimate for f3 is 0.45, which again is equal to the 

true value of the parameter. 2701 (around 86%) pixels are labelled black and 435 

(around 14%) are labelled white. The DIC is -31016 and PD is -12659.61. All 

3136 pixels are correctly labelled. 
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Figure 5.4: Noisy Image: Simulated Data Set 1 

Figure 5.5: Recovered Image: Simulated Data Set 1 . 
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Simulated Data Set 2 is based on the same true distribution as Simulated 

Data Set 1, but more noise has been added (Figure 5.6). The added noise has 

mean equal to 0 and standard deviation equal to 0.5. When the HMRF program 

was run with 2 states and both initial means set to 0, we obtained the recovered 

image shown in Figure 5.7. Seventeen iterations are required before a solution 

is reached, at which the posterior means are -1.005 and 0.958, and the posterior 

standard deviations are 0.49 and 0.54. The posterior estimate for f3 is 0.45. Even 

with this extra noise, we have still obtained good estimates of the parameters. 

Again, around 86% of pixels are labelled as black and around 14% are labelled as 

white. The PD value is -16886.94, and the DIe is -35262. This time, 3114 pixels, 

99.3%, were labelled correctly. 

Figure 5.6: Noisy Image: Simulated Data Set 2 
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Figure 5.7: Recovered Image : Simulated Data Set 2 
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Simulated Data Set 3 is also based on the same true diStribution as Simulated 

Data Set 1 but the added noise has mean equal to 0 and standard deviation 

equal to 1; see Figure 5.8. Again the HMRF program was run with 2 states and 

both initial means set to O. The recovered image obtained is shown in Figure 

5.9. A solution was found after 24 iterations. The posterior means were -1.072 

and 0.937, and the posterior standard deviations were 0.98 and 0.96. This is 

the noisiest version of the image yet these posterior estimates are still reasonably 

close to the true values. In this case, the posterior estimate for {3 is 0.4 which is 

slightly lower than the true value. 83% of pixels were labelled as black and 17% 

were labelled as white. The PD value was -18525.59 and DIC was -34620. This 

time 2970 pixels, 94.7%, were labelled correctly. 

Figure 5.8: Noisy Image: Simulated Data Set 3 
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Figure 5.9: Recovered Image: Simulated Data Set 3 
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With the variational approximation we are able to obtain good posterior es

timates of the parameters of a HMRF with added white Gaussian noise. We are 

also able to recover a close representation of the original image. When noise is 

low, we can accurately label 100% of the pixels, but clearly, as the added noise 

increases, the performance deteriorates, as we would expect. For all three data

sets, we also tried initialising the algorithm with means equal to -1 and +1, but 

this had no effect whatsoever on the results we obtained. 

Initialising the Algorithm with More than 2 States 

To investigate what would happen to the results if we initialised the algorithm 

with more than two states, we re-analysed data sets 1 to 3, this time initialising 

the algorithm with 4 states and initial means equal to O. Most of the time, 

this lead to a variational solution with 4 states, but, for certain initial values of 

the weights for the qil'S, the ~tate removal phenomenon did occur. However, the 

resulting solutions when state removal had occurred, even when both extra states 

were removed, were not close to the true distribution for these examples. The 

algorithm also required a much larger number of iterations to converge a solution, 

whether states were removed or not, than were required when we initialised with 

2 states. 

For simulated data set 1, most initial values for the qil's led to a 4-state solu

tion. The variational posterior means were 0.99, -0.99, -0.99 and -1.01, posterior 

standard deviations were 0.25, 0.27, 0.25 and 0.22, and the posterior weights for 

the states were 0.14, 0.23, 0.45 and 0.18. The extra states were not removed, 

but the posterior mean estimates were close to the true values of +/-1, and the 

posterior estimates of the standard deviations were all fairly close to the true 

values. However, 3 of the states seem to be representing the same part of the 

data. The weight appears to be fairly evenly spread amongst the states, but note 

that adding the weights assigned to states 2, 3 and 4 (which seem to correspond 

to black pixels) gives 0.86, and so we still have the same proportions of pixels in 

the categories black and white as we had in the 2-state solution. The estimate 

for (3 was 0.55, and is higher than the true value. So, we have obtained a solution 

with what appears to be 3 states corresponding to the same true state (-1), the 

posterior estimates of which are close to the true value and with weight spread 

evenly amongst the 3. 
It was possible, for simulated data set 1, to obtain a 3-state solution. How-
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ever, this only occurred for one configuration of the initial values for the qil'S, a 

configuration which assigned an extremely low weight to the initial assignment 

of the observations to states. In this instance, the posterior estimates of the 

means were 0.99, -1.00 and -1.00, the variational posterior standard deviations 

were 0.25, 0.25 and 0.25, and the estimated weights were 0.14, 0.29 and 0.57. One 

extra state has been removed but the second and third states seem to represent 

the same component. If state 1 represents the white pixels, and states 2 and 3 

represent the black pixels, then again we have the same proportions assigned to 

each as we did in the 2-state solution. The estimated value of (3 in this solution 

was 0.55. 

For simulated data set 2, several initial values for the qil'S led to the removal of 

one of the extra states, despite the fact that this data set had more added noise. 

However, the parameter estimates from the resulting 3-state solutions were not 

satisfactory. 

For simulated data set 3, most initialisations of the qil'S led to the removal of 

at least one of the extra states. This is surprising as it would seem more natural 

for states to be removed when noise is low and there is clearer separation in 

the data. Unfortunately, as with simulated data set 2, the resulting parameter 

estimates for this data set were not close to the true distribution, even when both 

extra states were removed. 

From these results, it appears that, in the HMRF framework, the noisier 

the data, the more likely it is for extra states to be removed by the variational 

approximation algorithm. However, for noisy data, initialising the algorithm 

with more states than are truly present, prevents the method from obtaining 

satisfactory results. 

5.8.2 Data generated from an Ising Model with {3 = 0.6 

Simulated data sets 4 and 5 are generated by adding white Gaussian noise to a 

simulated image based on an Ising model with (3 = 0.6. The true image is that 

which is shown in Figure 5.10 and one can see that increasing the value of (3 to 

0.6 has produced an image which is less patchy and is mainly one colour (black). 

Initialising the Algorithm with 2 States 
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Figure 5.10: True image used in simulated data-sets 4 and 5 

We analysed the data initialising the algorithm with the true number of states 

(2). As above, in the recovered images, the ith pixel is labelled white if, in the 

variational posterior solution, q(Zi = +1) > !, and black otherwise. 

Simulated Data Set 4 was generated by adding Gaussian noise, with mean 

equal to 0 and a standard deviation of 0.25, to the true image (Figure 5.10). The 

noisy image is shown in Figure 5.11. The variational algorithm correctly labelled 

100% of the pixels and returned good estimates of the parameters in fourteen 

iterations of the algorithm. The variational posterior means were 1.01 and -0.99, 

the posterior standard deviations were 0.24 and 0.25 and the fitted weights were 

0.02 and 0.98, i.e. 98% of the pixels were labelled as black. The value of Pv was 

-20739.84 and the DIe was -47944. The method also correctly estimated that the 

value of f3 was 0.6. 
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Figure 5.11: Noisy Image: Simulated Data Set 4 
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Simulated Data Set 5 had more noise added to the true image (Figure 5.10). 

The noisy image is shown in Figure 5.12. The added Gaussian noise had mean 

equal to 0 and a standard deviation of 0.5. With this higher level of noise, the 

algorithm did not obtain a good estimate of the true mean of 1. The resulting 

posterior estimates for the means were -0 .52 and -1.03, for the standard deviations 

were 0.93 and 0.45, and for the weights were 0.11 and 0.89. Clearly, since so few 

observations truly had the value + 1, this part of the data was not detected due 

to the noise. The estimated value of f3 was 0.35 which was far lower than the 

true value. The PD value was -15964.20 and the DIC was -34142. 

Initialising the means to have the values +/-1 had no effect on results with 

the broad priors that we have been using until now. We incorporated our prior 

knowledge about the states present in the data by setting the initial means to 

be +/-1 and increasing the value of ),(0) (which is a hyperparameter of the prior 

distribution on the means) to 1000 to place more importance on the initial values 

of the means. This forced the algorithm to identify the component of the data 

which relates to the less numerous white pixels. This led to variational posterior 

means of -1.00 and 1.00, standard deviations of 0.49 and 0.50, and weights of 

0.985 and 0.015. These estimates are close to the true values. The estimate of 

f3 was 0.6 which was equal to the true value. 99.6% of the pixels were labelled 

correctly. For this solution the value of PD was -25302.08 and the DIC was -52953. 

Figure 5.12: Noisy Image: Simulated Data Set 5 
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5.9 Other Interesting Applications of Hidden Markov 

Random Fields 

HMRFs in Disease Mapping 

The work by Green and Richardson (2002) provides an interesting example of 

the use of HMRFs in disease mapping. This application involves the investigation 

of whether or not there is any spatial link to disease risk, given data in the form 

of incident counts in a defined set of geographical regions. Green and Richardson 

(2002) provide a more flexible alternative to the models currently used in disease 

mapping. They build a hierarchical representation of the spatial heterogeneity 

of the rare count data by proposing a hidden discrete-state Markov random field 

model generated by an underlying finite-mixture model which allows spatial de

pendence. However, the main novelty of their approach is that the number of 

hidden states, or components of the mixture distribution, is not predefined and 

is estimated along with the model hyperparameters. 

The main aim in studies of this nature is to make inference about the relative 

risk variable specific to each area in the study. Recent work in disease mapping 

commonly characterises the spatial dependence of the relative risk by parame

ters that are constant across the whole study region. Such global parameters 

can lead to oversmoothing and can prevent the detection of local discontinuities. 

Various ways of avoiding this problem have been investigated in the literature. 

Green and Richardson (2002) take the approach based on the idea of replacing 

the continuously-varying random field for the relative risk variable by a partition 

model having k different components and allocation variables indicating the com

ponent from which a particular observation comes. The resulting extra level of 

hierarchy increases model flexibility. , 
Green and Richardson (2002) use a Potts model for the allocation variables 

with an unknown number of states/components and unknown interaction strength. 

There is a prior distribution over the number of states and this, as well as the 

interaction strength, has to be estimated along with the hyperparameters. The 

allocation variables have a Markovian structure and, given the number of states , 
they follow a spatially correlated process. Since these are assumed'to follow the 

Potts model, there is no explicit use of weights on components, as would be the 

case for mixture models. 
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The Potts spatial mixture is fitted using MCMC methods. Updating the 

number of states requires the use of a variable-dimension reversible jump move 

(Green (1995)). The method used in Green and Richardson (2002) follows that of 

Richardson and Green (1997) in that there is a random choice between merging 

two components into one component or splitting one component in two. However, 

one difference in the implementation is that here the reallocation of observations 

to the new set of components is not done independently for each observation but 

instead the reallocation of observations to the newly formed states is done while 

approximately respecting the spatial structure of the Potts model. 

The normalising constant still presents a problem as it is required for up

dating the spatial interaction term and for the split and merge moves. Green 

and Richardson (2002) tackle this by using thermodynamic integration and then 

improving the resulting estimates via MCMC methods. 

They also use the DIC to. compare competing models fitted via this approach. 

HMRFs in Machine Learning 

There is active research into HMRF models within the machine learning com

munity. For example, Murray and Ghahramani (2004) investigate various ways 

of overcoming the difficulty of normalising constant estimation in their paper 

on Bayesian learning in undirected graphical models. An undirected model is 

a model having a node for each variable and the edge connecting each pair of 

variables is undirected. The cliques are subgraphs which are fully connected. 

HMRFs come under this category. 

The work in their paper is focused around the fully observed Boltzmann ma

chine(BM) although the ideas should generalise to all undirected models. A BM 

is a Markov random field which defines a probability density function over a vec

tor of binary observations. The energy function of the Boltzmann machine is 

similar to that of the Ising model. 

Murray and Ghahramani (2004) consider the Metropolis Sampling Scheme 

and the Langevin Method. If one cannot compute the normalising constant then 

one cannot use the Metropolis Scheme since it is intrinsic to the method. Murray 

and Ghahramani explore ways of circumventing this problem such as approx

imating the normalising constant using a deterministic method leading to an 

approximate sampling method which will not converge to the true equilibrium 

distribution over the parameters. The authors remark that in the steps of the 
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Metropolis scheme this approximate value will be raised tothe nth power, which is 

perhaps problematic. Murray and Ghahramani also try to tackle the inefficiency 

of the Metropolis sampler for continuous spaces using the Langevin Method. In 

the Langevin Method, parameters are updated at every step, with no rejections, 

according to a rule which performs gradient descent. This too is only an approx

imation. They also suggest taking some of the existing learning algorithms and 

plugging them into stochastic-dynamics MCMC methods to perform Bayesian 

learning. Using these ideas, several approximate samplers are derived, in the 

case of a BM. 

The first sampler is the Naive mean field approach. Using Jensen's inequal

ity and a mean-field algorithm, they obtain a local maximum of the log of the 

normalising constant; this is then used in the Metropolis scheme leading to a 

mean-field Metropolis scheme. 

The tree-structured vari~tional approximation uses Jensen's inequality to ob

tain a tighter bound on the normalising constant than that provided by the naive 

mean-field method. Constraining to the set of all tree-structured distributions, a 

lower bound for the normalising constant can be found and then it can be used 

in the Metropolis algorithm to define the tree Metropolis algorithm. 

Following the idea of Bethe approximation, which provides an approximation 

for the normalising constant, Murray and Ghahramani (2004) derive a loopy 

Metropolis algorithm. This entails running belief propagation on each proposal 

and then using Bethe free energy to approximate the acceptance probability. 

A brief Langevin sampler is defined by using brief sampling to compute the 

expectations required for the Langevin method. The brief sampling results in 

low-variance but biased estimates of the required values, but the computational 

ease of this form of sampling makes it an attractive option. It· is pointed out 

that one could perform the Langevin method using exact sampling by employing 

coupling from the past to obtain unbiased estimates of the required expectations. 

Variance could be lowe·red by re-using random numbers. 

The authors found that the pseudo-likelihood approach was not suitable for 

the models used in their paper and so it was not investigated. 

The paper also considers extension of these ideas to models with hidden vari

ables. This is straightforward for the samplers based on approximations to the 

normalising constant or quantities related to it. 

Murray and Ghahramani (2004) found that the mean-field and tree-based 
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variational Metropolis algorithms gave very poor results even for straightforward 

problems. The loopy Metropolis algorithm based on Bethe energy performed 

reasonably well on the artificial systems but performed poorly on their main 

application. The brief Langevin method performed reasonably well on larger 

systems where the others performed poorly. 

Murray and Ghahramani (2004) suggest many different ways of overcoming 

the intractability issue for general undirected models using combinations of ex

isting methods and they point out that there are many other possibilities to be 

explored. 

5.10 Conclusions 

In this chapter, we have reviewed the theory of HMRF's and discussed some of 

the important progress made in the area. We have also attempted to extend the 

variational approximate method and the DIC to this complex type of model. In 

doing so, it has been necess~ry to make some simplifying assumptions in order 

to make calculations possible. Three main approximations introduced for this 

purpose were that: 

• we assumed a fully factorised form for qz (z) 

• we used the pseudo-likelihood in the formula for q/3((3) . 

• we approximate the denominator of the exponent of the expected value of 

the pseudo-likelihood (5.9). 

~ach of these approximations is a potential source of substantial difficulty. How

ever, as there is no exact way to perform these calculations, approximation was 

necessary. 
Despite these drastic assumptions, for our simulated data sets, we were often 

able to obtain good posterior estimates of model parameters using the varia

tional method. When the noise added to the image was low, we could recover 

the original image with 100% accuracy. Naturally, as the noise leyel increases, 

the performance deteriorates. However, in some cases we can incorporate prior 

knowledge about the true distribution to obtain better estimates of the true pa

rameters even when there is a lot of noise in our data. 
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We only considered application of our method to binary HMRF's and the next 

step for this problem is to consider data generated by a HMRF with more than 2 

states. We did try initialising the algorithm with more than 2 states. In this case, 

we occasionally observed the state removal phenomenon that had occurred when 

we applied variational methods to finite mixture models and to hidden Markov 

models. However, for our simulated examples, starting the algorithm with extra 

states, even when they were subsequently removed during the iterations, led to 

unsatisfactory estimates of the model parameters. Although we observed the 

phenomenon of certain states being rejected by the method, as we did with the 

other types of model, the outcome for the HMRF case was much less useful. 

It might be worthwhile investigating how the results obtained by starting with 

more states than are truly present might be influenced by the choice of values for 

parameters in the prior distributions. It is worth noting that the cut-off value 

which determines the number of observations a state should have allocated to it 

before it is removed from the model will affect the final number of states in the 

model. We remove a state when less than 1 observation is allocated to it, but 

naturally if we increased this cut-off value (to 10 observations, for example) then 

in some cases this would result in a final fitted model with fewer components. 

It has to be said that this investigation of the case of HMRFs can only be 

regarded as exploratory. The assumptions described above are really quite severe, 

especially the assumption of a factorised form for qz(z). As commented upon in 

Section 4.3, results based on this assumption for the hidden Markov model case 

were disappointing, so it can hardly be expected that the assumption will always 

be useful for HMRFs. However, it seemed hard to proceed without making some 

such assumption. 
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Chapter 6 

Conclusions and Possible Areas 

for Future Research 

We have reviewed the theory of finite mixture models and their extension to 

the hidden Markov model and hidden Markov random field structure. We have 

also described some of the difficulties associated with inference for such models 

and discussed some of the approaches that can be taken to overcome them. In 

particular, we have explored the variational approximation method for Bayesian 

inference and shown how it can be applied to the aforementioned models. In 

addition, we have extended Spiegelhalter et al.'s (2002) Deviance Information 

Criteria for model selection to each of these scenarios. 

Applying the variational method, we have been able to obtain good posterior 

fits to simulated data sets for each of the models we considered. The method was 

also extremely time-efficient and, for these reasons, we consider it to be a viable 

alternative to MCMC methods and to have a great deal of potential for practical 

application. 
In the case of finite mixtures of Gaussians, and HMM's with Gaussian obser-

vation densities, we observed the phenomenon of superfluous component/state 

removal, which occurs in the application of the variational method. In our sim

ulated examples, we were able to show that, in many cases, this feature of the 

variational method leads to the recovery of the true number of components in the 

model. This feature may be viewed by some as a disadvantage, since it is unclear 

exactly why this occurs and it takes control of the fitted model complexity away 

from the user (see the discussion by Mackay (2001) for example). We take the 
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view that this is a very interesting feature of the method and deserves further 

exploration. Naturally, some theoretical understanding of this result and how it 

can be affected would be desirable. 

We also used the DIe in conjunction with the variational technique in making 

a final decision on the most suitable model for each data set and, in many cases, 

the model selected by the DIe was the same as that selected using the variational 

approach. 

We also observed the state removal phenomenon in the HMRF setting, but 

unfortunately, for our simulated examples, this did not lead to the automatic 

recovery of a close approximation of our true model as it had with the other 

types of model. Further investigation into the effect of including prior information 

would be worthwhile. We only considered binary HMRF's in our examples and 

clearly a next step would be to look at multiple-state examples, which, in the 

context of image analysis, m~ght correspond to colour images. However, it seems 

likely that the approximations we have made so far are too crude, and more work 

is required to refine them. 

As a next stage of progress, it would be interesting to extend the model 

hierarchy to include a temporal, as well as a spatial, dependence and investigate 

how variational methods might be applied to this case. Another consideration is 

models involving discrete as well as continuous variables. 

In many practical application areas of statistics, researchers are interested in 

studying the effect of covariates in their models. It would be interesting to con

sider how these might be incorporated into the variational framework. Mixtures, 

for instance, are often applied to medical studies and it would seem reasonable 

to include a covariate term. In the HMRF setting, it would be useful to include 

such a term for application to areas such as disease mapping where there are 

covariates to be considered. 

It would also seem feasible to consider combining variational methodology 

with MeMe schemes. This might have the effect of reducing the computational 

time involved in implementing MeMe methods, and of course it would be inter

esting to discover whether this would lead to the removal of components or states 

in the variational MeMe scheme. 

In this thesis we have explored to some extent the potential for application of 

variational methods in statistics, but clearly there is still much scope for further 

investigation. 
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Appendix A 

A.I Reformulation of the DIe 

Spiegelhalter et al. 's (2002) complexity measure, P D, is based on a deviance, 

D(()} = -210gp(yl()) + 2log f(y). 

P D is taken as the difference between the posterior mean of the deviance and 

the deviance at the posterior means of relevant parameters. f (y) is a standard

ising term which is a function of the data alone and so it does not affect model 

comparison. PD is a measure of the effective number of parameters in a model, 

PD = D(()) - D(O). 

To measure the fit of the model, the posterior mean deviance, D(()), is used. 

Then the deviance information criterion, or DIe, is formed by adding PD and 

D(()): 

We can rewrite this as 

DIe = D(()) + PD. 

DIe D(()) + PD 

2PD + D(O) 

2PD - 2logp(yIO), 

since f (y) can be assumed to be equal to 1. 
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Appendix B 

B.l 'Monotonicity' of Variational Bayes 

Define 

1(q" q" y) = J J q,(O)q,(z) log {:'i~)::~;) } dOdz 

Suppose at stage It' in the iteration, we have q~t) , q~t). 

Then 

(t+1) _ 1( (t)) q(J - argmaxq8 q(J, qz ,y , 

so that, in particular, 

Next we obtain 

q(t+l) = argmax 1(q(t+l) q y) z q. (J ,z, , 

so that, in particular, 

Combining (B.1) and (B.2) we have 

1(Q8(t+1),q~t+1),y) ~ 1(q(J(t),q~t),y). 

(B.1) 

(B.2) 

Note that monotonicity holds if q(J(t+1) and q~t+1) are any q(J and qz that achieve 
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(B.1) and (B.2). 
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Appendix C 

In this appendix we describe how one can derive the form of the variational 

posterior for the model parameters and the missing indicator variables as well as 

approximate the DIC. 

C.l Finding the Hyperparameters of the Varia

tional Posterior for a Mixture of Univariate 

Gaussian Distributions 

The goal is to maximise the marginal likelihood (1.3) (which corresponds to min

imising the Kullback-Leibler divergence). (1.3) is given by 

!~ (0 )1 p(y,z,O) 0 
b q ,Z og (0 ) d 
{Z} q ,Z 

We assume that q(O, z) factorises over the model parameters 0 and the missing 

variables Z so that q(O, z) = q(O)q(z) . 
. To obtain the form of the variational posterior for the univariate mixture of 

Gaussians, we begin by considering the form of p(y, z, 0). In the univariate case 

the joint p.d.f. is given by 

K K n 

p(y, Z, 0) ex: IT p//O)-1+L:i=l Zij IT [Jij{1+L:i=l Zij)T}-Yj(O)-l exp{ - ~ L Zij(Yi-j1j)2} 

j=l j=l i=l 

. {3/0) Tj ( (0»)2 1 .. (0) }] 
x exp{- 2 j1j - mj -2Uj Tj . 
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For the variational approximation, we take q((}, z) to have the factorised form 

n K 

q((}, z) = {II qZi (zinqp(p){II qj (/lj , Tjn, 
i=l j=l 

over the parameters in the model and the missing variables. 

Now the variational posteriors can be found by focusing on maximising the 

relevant parts of (1.3). We derive the forms for the model parameters p, /l and T 

in this way. Similarly, we obtain the posterior for the missing variables z. 

Finding the posterior distribution for p 

We consider only the parts of the joint distribution that involve p. We have 

J 
n~ p.aj(O)+E?=l Zij-l 

= q(/l, T)qz(Z)qp(p) log{ J=1 J qp(p) }d(}dz + terms not involving p 

K n 

= f qp(p)q,(z) f; {(ap) + 8 Z;j -1) logpj}dpdz - f qp(p) log(qp(p))dp 

J nK p.aJ.(O)+E~=lq.·(Zi=j)-l 
. j=l J " 

= qp(p) log[ ( ) ]. 
qp p 

Thus, 

where n 

a. - a·(O) + "'q .. 
J - J ~ tJ' 

i=l 

in which qij denotes qZi (Zi = j). Therefore, 

K 

qp(p) ex II p/j-l. 

j=l 
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Finding the posterior for Zij 

= L qZi(ZiH! q(}(O) 10gp(Yi' zilO)dO -logqzi(zi)} + terms independent of qZi 
Zi 

= 2;:qz;(Zi =jH! q(}(O)logp(Yi,zi =jIB)dO-10gqz;(zi =j)} 
J 

= ""' .(z. =. ·)10 [expf q(}(O)logp(Yi,zi =jIO)dO] 
L..J qz, , J g (.) . 

. qZi Zi = J 
J 

Therefore 

with 

Therefore 

qz;(Zi =j) ex exp{Eq10gpj + ~Eq10ghl- ~Eq[Tj(Yi - JLj)2]}, 

where Eq denotes expectation with respect toq. Now, 

Eq[(Yi - JLj)2ITj] - Eq[(Yi - mj + mj - JLj)2ITj] 

- (Yi - mj)2 + Eq[(mj - JLj)2h] 
2 1 

- (Yi-mj) +
{3jTj 
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and so 

qz;(Zi = j) ex: exp{Eq[logpj] + ~Eq[lOg hi] - ~Eq[Tj((Yi - mj)2 + f3~T)]} 
J J 

= exp{Eq[logpj] + ~Eq[lOg hl1- ~Eq[Tj](Yi - mj)2 - 2~j} 
The expected values in the above are given by 

Eq[logpj] = w(aj) - w(~=aj-) 
j. 

1 8· 
Eq [log ITj 11 = w ( -'Yj) - log ..1. 

2 2 

Finding the posterior for JLIT and T. 
We concentrate on the parts of the joint distribution that involve j: 

"1'(0) - 1 1 (0) + J 10gT' - -8· T']) 2 J 2 J J 

! 1 T' 2 "'r 1 1 
= q(JLj, Tj) 10g('2Tj - exp( ~ (JLj - mj) ) x Tj 2 exp( -'2()jTj)) 

with the hyperparameters derived below. 

i.e. 
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1 1 
q(r·) f"V Ga(-'V· -8·) 

J 2 IJ' 2 J • 

Finding the hyperparameters 

n 

L qijTj(Yi - J-Lj)2 + f3/0)Tj(J-Lj - m/O»)2 
i=1 

n 

= L qijTj(Yi2 - 2YiJ-Lj + J-L/) + f3/0)Tj(J-L/ - 2J-Ljm/O) + m/O)2) 
i=1 

n n n 

= (L qijTj+f3/0) Tj)J-L/+ LoqijTjYi2- 2 L QijTjYiJ-Lj-2f3/0)TjJ-Ljm/0) +f3/0) Tjm/O) 
2 

i=1 i=1 i=1 

n n 

= f3jTjJ-L/ + L QijTjYi2 - 2 L QijTjYiJ-Lj - 2f3/0)TjJ-Ljm/O) + f3/0)Tjm/O)2 
i=1 i=1 

n n 

= f3jTjJ-L/+ L QijTjYi2- 2 L Qij(f3jTj )f3j -IYi J-Lj- 2f3/0) (f3jTj)f3j -1 J-Ljm/O) +f3/0) Tjm/0)2 

where 

i=1 i=1 

n 

- '" Q .. r·y·2 + f3.T·(II.· - m .)2 + f3.(O)T.m .(0)2 - f3-r.m. 2 
- ~ ~J J ~ J J I""'J J J J J J J J' 

i=1 

m· J 

f3 .(O)m .(0) + ""n Q .. y. 
J J 0i=1 ~J ~ 

f3 .(O) "+ ""n q .. 
J 0i=1 ~J 

f3 .(O)m .(0) + ""n Q .. y. 
J J 0i-l ~J ~ 

f3j 
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n 

= {3j7j(p,j - mj)2 + 7j(L qijYi2 + (3/0)m/O)2 - (3jmj2). 
i=1 

Collecting terms then gives 

n 

"Ij = "I/0) + L qij 
i=1 

n 

8j = 8/) + L qijYi2 + {3/0)m/O)2 - (3jm/. 
i=1 

C.2 Derivation of the Formulae for PD and DIC 

for a Mixture of Univariate Gaussian Dis

tributions 

We have 

! qo(()) qo(O) 
PD ~ -2 qo(()) log{ -(()) }d() + 2Iog{-_ }. 

p p(()) 

For the first term, we have 

! qo(()) 
qo(()) log{ p(()) }d() 

K K 

. = J q, (8) log[ D p/ro
; ,OJ D exp {-~ (fJ; (1'; - m;)' - fJ/O) (1'; - m/O)) ')} 

K 1 
x IT 7j!('Yr'Y/

O
») exp{ -27j (8j - 8/0))}]d() + constant 

j=1 
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K 1 K 

= L(aj - a/O})Eq[logpj] + 2 L(rj -1'/O})Eq[logTj] 
j=1 j=1 

K 

-! "'E . . [r·{{3·(II. - m·)2 - {3'(0}(". - m.(0»)2 + 8· - 8·(0}}] + constant 2 ~ J-t) ,T) 3 3 /""3 3 3 /""3 3 3 3 

j=1 

K n 1 K n 

= L(Lqij)Eq[logpj] + 2 L(Lqij)Eq[logTj] 
j=1 i=1 j=1 i=1 

K {3 (O) 
-! "'E .[T'{~ - -j- - {3.(O}(m· - m·(0})2 + 8· - 8·(0}}] + constant 2 ~ TJ 3 r. {3.r. 3 3 3 3 3 

j=1 3 3 3 

For the second term in P D we have 

K 

-~ L Tj{{3j(fI; - mj)2 - (3/0}(fI; - m/0})2 + 8j - 8/0
)} + constant 

j=1 

K 

+~ L);~){{3/0)(mj - m/O»)2 +8/°) - 8j } + constant. 
j=1 3. 

The constants in terms 1 and 2 are the same and so they subtract out when 

PD is calculated. These terms give us 

! q(J(O) q(J(O) 
PD ~ -2 q(J(O) log{ -(0) }dO + 2log{-_ } P p(O) 
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To find the DIC value we use 

DIC = 2PD - 2logp(y\O) 

where 

where we use 

J.Lj = mj 

- 'Yj 
Tj =-. 

8j 
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Appendix D 

D.I Finding the Hyperparameters of the Varia

tional Posterior for a Mixture of M ultivari

ate Gaussian Distributions 

In the multivariate case the joint p.d.f of all of the variables is given by 

ply, z, 8) DC IT pt;<O)+L.?~, ,,;-1 IT ItJ/"T;11 exp{ -~(i';-m/")tJ/"T;(i';-m/")} 
j=l j=l 

K Ln. . 1 n Ef=l Zij 

X 11 ITjl i-21 %'J exp{ -"2 L Zij(Yi - /-ljfTj(Yi - /-ljn 
j=l . i=l 

" .(O)-d_l 

11
K ITjl J 2 exp{ -~tr(E(O)Tjn 

x (0) ".(0) • 
". d ::L...:.... j=12::.z.rIE/O)I- 2 I1~=1 rrHV/O) + 1 - s)] 

For the variational approximation to p(z, (), y) we take q((}, z) to have the 

factorised form 

n .K 

q((}, z) = {11 qZi (Zinqp(p){11 qj(/-lj, Tjn· 
i=l j=l 

Now the variational posterior distributions can be found in the .usual way. 

Finding the posterior distribution for p 

We consider only the parts of the joint distribution that involve p. We have 
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J qo(O) log{ p(y, 0, p) }dO 
qo(O) 

J n~l PjQj(O)+~i:l zij-l 

= q(J-l, T)qz (z)qp (p) log{ J qp(p) } + terms not involving p 

K n 

= J qp(p)q,(z) ~ ((ap) + ~ z,; - 1) logp;}dpdz - J qp(p) log(qp(p))dp 

Thus, 

where 
n 

"', _ ",,(0) + ~q', 
UJ - UJ L....J tJ' 

i=l 

in which again qij denotes qZi (Zi = j). Therefore, 

K 

qp(p) ex II p/j-l. 
j=l 

Finding the posterior for Zij 

= L q" (z;){ J q, (0) log p(y" z, 10) dO - log q" (z;)} + terms indepe~dent of q" 
Zi 
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= ~ qZi(Zi = j){! qO(O) logp(Yi) Zi = j)dO -logqzi(zi = jn 
J 

= ~ (, = ') 1 [exp f qo(O) logp(Yi) Zi = jIO)dO] 
L...J qZi Z~ J og (') . , qZi Zi = J 

J 

Therefore 

with 

'1).1 I I 1 T logp(Yi) Zi = J 0 = '2 log Tj + logpj - '2(Yi - J.Lj) Tj(Yi - J.Lj). 

Therefore 

1 = exp{Eq[log Pj] + '2Eq[log ITjl] 

-~Eqtr(Eq[Tj](Yi - mj + mj - J.Lj)(Yi - mj + mj - J.Lj)Tn 

= exp{Eq[logpj] + ~Eq[log ITjl] - ~tr(Eq[7j](Yi - mj)(Yi - mjf 

+Eq[Tj]Cov(J.LjITj)) >} 

= exp{Eq[logpj] + ~Eq[log ITjll- ~tr(Eq[Tj](Yi - mj)(Yi - !7Ljf 

+Eq[Tj,Bj -ITj -I])} 
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where Id denotes the identity matrix of dimension d and 

d 

'" Vj + 1 - s Eq[log /Tj/J = w w( 2 ) + dlog (2) -log /~I 
8=1 

Finding the posterior for ~IT and T. 

For this we concentrate on the parts of the joint distribution that involve j. 
So we consider 
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i.e. 

Finding the hyperparameters 

n 

L qij(Yi - JLj)TTj(Yi - JLj) + (JLj - m/O) ( (3/0)Tj (JLj - m/O)) 
i=l 

n 

= L qij(y?1jYi - JL/TjYi - y?TjJLj + JL/1jJLj) + (JL/ (3/0) TjJLj - m/O)T (3/0) Tj JLj 
i=1 

-/I.T{3.(O)Tm .(0) + m .(O)T{3.(O)T'm .(0)) 
r') ) )) ) ) )) 

n n 

- /I.T{3.(O)T·/I· + "'q .. /I.TT·/I· + "'q .. y.TT.y. + m.(O)T{3.(O)Tm (0) 
- r') ) )r') ~ 1)r') )r') ~ 1) 1 ) 1 ) ) j j 

i=l i=1 

n n 

- "'q .. /I.TT·y· - "'q"y.TT/I· - m·(O)T{3.(O)T·/I. - /I.T{3.(O)T m (0) 
~ 1) r') ) 1 ~ 1) 1 ) r') ) ) ) r') r') ) j j 

i=1 i=l 

n n n 

= JL/ (3jTj JLj + L qijy?TjYi +m/O)T (3/0) Tj m/O) - L qijJL/TjYi - L qijy?TjJLj 
i=l i=l. i=1 

-m·(O)T{3.(O)T/I. - /I.T{3.(O)T'm.(O) 
) ) )r') r') ) )) 

(putting (3j = (3/0) + L~=l qij) 

n n 

= tr(L qijYiy?Tj ) + JLjT {3jTj JLj + m/O)T (3/0) Tjm/O) - L qijJLjT({3jTj){3j -lYi 

~1 ~1 

n T 
-{3j -1 L qijyt (3j1jJLj - m/O) (3/0) ({3jTj ){3j -1 JLj - JLjT (3/0) ({3jTj){3j -lm/O) 

i=1 
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n 

= trCi:J qijYiytTj ) + (J.tj - mj)T (3jTj(J.tj - mj) +m/O)T (3/0) Tjm/O) - m/ (3jTj mj 

i=l 

where 

a (0) (0) ",n 
I-'j mj + L...i=l qijYi 

a.(O) + ",n q .. 
1-') L...i=l Z) 

a .(O)m .(0) + ",n q .. y. 
1-') ) L...i=l Z) Z 

{3j 

n 

= (J.tj - mjf (3j1j(J.tj - mj) :t- tr( {L qijYiyt + (3/0)m/O)m/O)T - (3jmjmjT}Tj). 
i=l 

Collecting terms then gives 

n 

Ej = E/O) + 2:::: qijYiyt + {3/0)m/O)m/O)T - (3jmjmjT 

i=l 

and 

n 

v. - v·(O) + ""'"" q .. . ) -) L....J Z)' 

i=l 

D.2 Derivation of the Formulae for PD and DIe 

for a Mixture of Multivariate Gaussian Dis~ 

tributions 

We have 

f q{}(B) q{}(O) 
PD ~ -2 q{}(O) log{ -(B) }dfJ + 21og{-_ }. 

P p(fJ) 

For the first term we have 
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f qo(O) 
qo(O) log{ p(O) }dO 

K 

X IT exp{ -~((J.Lj - mjf (3jTj (J.Lj- mj) - (J.Lj - m/O))T (3/0)Tj (J.Lj - m/O)))} 
j:::1 

K 

-~ 1:: {(J.Lj - mjf (3jTj (J.Lj - mj) - (/1j - m/O){ (3/0)Tj (J.Lj - m/ol) 
j:::1 

K 1 K 

= 1::(aj - a/ol)Eq[logpj] + 2 I)Vj - v/ol)Eq[log ITj \] 

j:::1 j:::1 

K 
_! "'E . T. [(II.' - m·)T (3-T.(J.L' - m·) - (J.L' - m.(O))T (3.(O)T·(II .. - m·(O)) 2 L...J /1-J, J r'J J J J J J J J J J I""J J 

j:::1 

+tr( {1;j - 1;/0)} Tj )] + constant 

K n 1 K n 

= I)2: qij) Eq[log Pj] + 22:(1:: qij) log Eq[lTjll 
j:::1 i=l j:::1 i:::1 

K 
1 "'E [{3.T'({3.T..)-l - {3.(OlT.'({3.T..)-l - (m· - m.(O))T{3.(O)T-(m. - m·(O)) -2 L...J Tj J J J J J J J J J J J J J J 

j:::1 
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K 

+~ L tr{ (j3j l d(mj - m/O))(mj - m/O){ + ~/O) - ~j)Eq[Tj]} + constant. 
j=l 

For the second term in PD we have 

K 

-~ L {(iij - mj)T j3j'ij(iij - mj) - (iij - m/O) { j3/0)Tj (iij - m/O)) 
j=l 

+tr(~j'ij) - tr(~/O)Tj)} + constant 

K 

+~ L tr{(j3j l d(mj - m/O))(mj - m/O){ + ~/O) - ~j)Tj} + constant. 
j=l 

. The constants in terms 1 and 2 are the same and so they subtract out when 

PD is calculated. These terms give us 

J qo(O) qo(O) 
PD ~ -2 qo(O) log{ -(0) }dO + 2log{-_ } 

P p(O) 

To find the DIC value we use 

DIC = 2PD - 2logp(YIO) 
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where 
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Appendix E 

E.l Real Data Sets Used in Section 2.8.3 

Galaxy Data 

9.172 9.350 9.483 9.558 9.775 10.227 10.406 16.084 16.170 18.419 

18.552 18.600 18.927 19.052 19.070 19.330 19.343 19.349 19.440 

19.473 19.529 19.541 19.547 19.663 19.846 19.856 19.863 19.914 

19.918 19.973 19.989 20.166 20.175 20.179 20.196 20.215 20.221 

20.415 20.629 20.795 20.821 20.846 20.875 20.986 21.137 21.492 

21.701 21.814 21.921 21.960 22.185 22.209 22.242 22.249 22.314 

22.374 22.495 22.746 22.747 22.888 22.914 23.206 23.241 23.263 

23.484 23.538 23.542 23.666 23.706 23.711 24.129 24.285 24.289 

24.366 24.717 24.990 25.633 26.960 26.995 32.065 32.789 34.279 

Enzyme Data 

0.130 0.080 1.261 0.224 0.132 1.052 0.085 0.124 0.718 0.280 0.687 

0.106 0.088 0.137 0.096 0.124 0.126 1.279 1.007 0.195 0.167 0.213 

0.108 1.371 0.190 0.184 1.298 1.036 0.205 1.950 1.018 0.~72 0.148 

0.292 0.113 0.185 0.129 1.329 0.149 0.236 2.545 1.073 0.162 2.518 

0.142 2.880 0.178 1.075 0.128 0.083 0.409 0.340 0.246 1.195 1.452 

1.123 1.361 0.222 0.962 0.875 0.078 0.5200.194 1.195 0.709 0.021 
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0.166 0.081 0.265 0.159 0.308 1.604 0.179 0.172/0.131 0.305 0.215 

0.214 0.853 0.137 0.466 1.419 2.016 1.944 1.040 1.200 0.255 0.232 

0.200 0.240 0.216 0.277 2.427 0.320 0.142 0.134 0.198 0.126 1.173 

0.342 1.672 0.193 1.633 0.860 1.293 0.207 1.811 1.741 1.488 0.124 

1.326 0.148 0.109 1.848 1.310 0.118 1.004 0.204 0.192 0.299 1.885 

0.264 0.230 0.250 0.061 0.953 0.138 0.313 0.174 1.768 1.369 0.130 

1.113 0.320 0.190 0.818 1.461 0.149 0.291 0.225 1.622 0.185 0.198 

0.360 0.387 2.338 1.713 0.3681.573 0.309 0.232 0.347 0.325 1.861 

0.258 0.258 1.625 0.291 1.169 0.210 0.241 0.112 0.183 0.258 0.357 

1.176 0.111 0.978 0.279 1.742 0.184 0.230 0.275 2.183 2.264 1.405 

0.408 0.126 0.263 0.162 0.902 1.516 0.293 0.198 0.118 0.305 0.031 

0.192 0.151 0.182 0.909 0.379 1.010 0.167 0.929 0.083 0.179 1.567 

1.241 0.077 0.166 1.271 0.100 1.229 0.152 1.374 0.157 1.003 0.084 

0.171 0.953 0.192 0.967.1.300 0.122 1.036 0.200 0.070 0.998 0.176 

0.673 0.839 0.867 0.985 0.096 0.238 0.933 1.231 0.162 0.044 0.175 

0.132 1.166 0.144 0.180 0.945 0.180 0.152 0.108 0.923 0.192 0.895 

0.176 0.191 1.161 

Acidity Data 

2.928524 3.910021 3.732896 3.688879 3.822098 3.735286 4.143135 

4.276666 3.931826 4.077537 4.779123 4.234107 4.276666 4.543295 

6.467388 4.127134 3.977811 4.264087 4.007333 3.921973 5.384495 

4.912655 4.046554 4.043051 4.406719 4.505350 3.931826 6.752270 

6.928538 5.994460 4.248495 4.060443 4.727388 6.047372 4.082609 

4.244200 4.890349 4.416428 5.743003 4.127134 5.489764 4.778283 

5.249652 4.855929 4.128746 4.442651 4.025352 4.290459 4.593098 

4.652054 4.178992 4.382027 5.569489 5.049856 4.188138 6.629363 

4.647271 4.784989 4.348987 5.361292 4.574711 4.442651 6.120297 

4.060443 4.143135 4.510860 6.049733 4.510860 4.406719 6:343880 

4.430817 5.929589 5.973301 4.481872 4.301359 6.452680 4.204693 

4.143135 6.603944 4.644391 5.863631 4.025352 5.717028 5.308268 
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, 

6.267201 4.060443 5.017280 4.510860 5.834811 4.330733 4.007333 

6.806829 5.257495 4.624973 4.781641 4.099332 7.044382 3.914021 

4.330733 4.016383 5.572154 4.043051 4.843399 4.110874 4.454347 

4.356709 6.154858 6.284321 6.978214 4.301359 5.929855 4.465908 

6.035481 6.726473 7.105130 6.014937 4.882802 7.032095 4.518522 

6.476665 6.125558 4.189655 5.323498 4.938065 6.313548 5.853925 

6.278146 7.020191 5.023881 4.262680 6.725634 6.489205 5.743003 

6.739337 6.466145 6.855409 5.120983 5.913773 6.516932 4.058717 

6.213608 6.554218 6.155707 4.314818 6.662494 6.749931 6.100319 

4.112512 6.946014 4.131961 6.234411 6.595781 6.683861 6.957973 

4.497585 
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Appendix F 

F.1 The Poisson Distribution 

Finding the posterior for Zij 

with 

and 

Therefore 

Finding the posterior distribution for p 

We consider only the parts of the joint distribution that involve p. We have 

nK p,G:j(O)+Lf=lZij-l • 

= L I qt/> (¢»qz (z)qp (p) log{ j=l J qp(p) }d¢>dp + terms not involving p 
Z 
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K n 

= ~ ! qp(p)q,(Z) ~ {(,,/O)+ ~Z;;-1) logp;}d(p)d(z)-! qp(p) log(qp(p))d(p) 

= ! qp(p) log[I1f=, P;"j('::~~=' "'("=;)-']. 

Thus, the optimal qp (p) is 

where n 

a. = a .(0) + "" q .. J J ~ tJ· 
i=1 

Thus, 

K 

qp(p) ex IT p/j-l. 
j=1 

Finding the posterior distribution for ¢ 
We consider the parts of the joint distribution which involve ¢. We have 

L J q(}(O) log{P(Y, z, 0) }dO 
Z . q(}(O) 

nn nK (,/-,),/-, YiZij n K ,/-, 'Y.(0)-1 ( (0) "" J (,/-,) () 1 { i=1 j=1 exp -'I-'jZij 'l-'j j=1 'l-'j J exp -f3j ¢j) 
ex ~ q</> 'I-' qz Z og q</>(¢). }d¢ 

Z 

+ terms not involving ¢ 

+ terms not involving ¢ 
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say, putting 

and 

+ terms not involving ¢ 

K 

"Ij = "I/0) + L Yiqij 

j=l 

K 

(3 . - (3.(0) + "q .. 
J - J L ~J' 

j=l 

F.2 The Exponential Distribution 

Finding the posterior for Zij 

As detailed above, 

qz,(Zi = j) ex: exp{j qo(O) logp(Yi' Zi = jIO)dO}. 

In the case of a mixture of Exponential distributions, 

and 

Therefore 

Finding the posterior distribution for p 

We consider only the parts of the joint distribution that involve p. We have 

L j qo(O) log{P(Y, z, 0) }dO 
z qo(O) . 
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K n 

= L f qp(p)qz(z) ~((a/O) + ~Zij -l)logpj}d(p)d(z) - f qp(p)log(qp(p)) 
Z 3=1 ,=1 

f n~ p,Q/O)+E:'=lQz;(Zi=j)-l 
() [ 

3=1 3 = qp p log ( ) ]. qp p 

Thus, the optimal qp(p) is 

where n 

"" - a'(O) + ~q" .... 3 - 3 L...J ~3 

i=l 

and letting qij denote qZi (Zi = j). So 

K 

q(p) ex II p/j-1. 
j=l 

Finding the posterior distribution for cP 

We consider the parts of the joint distribution which involve cp. We have 

L f qo(O) 10g{P(Y, z, 0) }dO 
Z qo(O) 

nn nK ),. Zij (),. ) nK ),. 'Y,(0)-1 ( (0) 
~ f () () I {. i=l j=1 IjJj exp -ljJjYiZij j=l IjJj J exp - (3j Cpj) 

ex L...J ql/> cp qz Z og ql/>(cp) }dcpdz 
Z 

+ terms not involving cp 
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+ terms not involving ¢ 

= ! q.( 4» log{ nf=l <)1/; ::( :~p( -<)Ij;3j) }d4> 

+ terms not involving ¢ 

say, putting 

K 

"(j = ,,(/0) + I: qij 

j=l 

and 

K 

{3 . - {3'(0) + "'" y.q .. J - J L..J Z ZJ' 

j=l 
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Appendix G 

G.l Finding the Form of the Variational Poste

rior for qz(z) in the case of a Hidden Markov 

Model with Gaussian Noise 

We consider the parts of J J q(z, 0) 10g{p!(;~B~) }dzdO which involve qz(z): 

n n nK {p (y I"" )}Zii nn-l I1 I1 ( )Z" Z'+1' ~ r (z) (0) 10 i=l j=l j i 'f'j i=l j1 h 7rjd2 '31' 32 dO 
L...J i(} qz qo g qz(z)q(}(O) 
{z} 

n-l 

- L qz(z)[j q(}(O) L L L ziilzi+lh 10g7rjd2 dO 
{z} i=l j1 h 

n K 

+ I q,(O) ~ ~ Zi; logp;(y'!<p;)dO -logq,(z)] + constant 

n-l 

- LqAZ)[j qtr(7r) LLLZiilZi+lh 10g7rjd2 d7r 

{z} i=l j1 h 

+ t t Zi; I q.( 1>;) logp; (Yil1>; )d1>; - log q, (z)] + constant 
i=l j=l 
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n-l 
L: qZ(Z)[L: L: L: Zij1 Zi+li2 Eq[log7rjd2] 
{z} i=l iI i2 

n K 

+ L: L: zijEq[logpj(Yil4>j)] -logqz(z)] + constant 
i=l j=l 

"'" () I i=l j=l ij i=l jl i2 ajd2 31 )2 (n
n nK b* Zjj nn-l n n * Zj' ZHl' ) 

= .L.t qz Z og (z) + constant, 
{z} qz 

where 

and 

in which 

1 1 1 8, 1 'Y' 1 
Eq[logpj(Yil4>j)] = 2W(2'Yj) - 2 log ~ - 2( 8~ )(Yi - mj)2 - 2{3j' 

Thus, the optimal qz(z) is given by 

qz(Z) ex: IlIl b:/ij IlIlII ajd2ZiilZiHia. 
i j i jl h 

G.2 The Forward Backward Algorithm 

The Forward Algorithm 

Forward Algorithm : calculate the probability of being in state j at time i 

and the partial observation sequence up until time i given the mod~l. 

The forward variable is given by fvariUd = P(Yl' Y2, ... , Yi, Zi = jd· 
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normalise such that E~=1 fvar1(j1) = 1, i.e. define /"' ' 

2. For i = 1, ... , n - 1 and each h, 

K 

fvar;+1(j2) = {I:fv;;;i(j1)p(Zi+1 =hlzi =jd}P(Yi+1lzi+1 =h). 
iI=1 

We then normalise once again, giving 

3. We finally have 

since E~=1 ~n(j1) = 1 and where Cn is the normalising constant fvar is 

multiplied by at the nth iteration. 

We can calculate the nth normalising constant, Cn, since one can obtain Ci+1 from 

Ci in the following way; 

where, 

E~=1 {E~=1 fv;;;i(j1)P(Zi+1 = j21 zi = j1) }p(Yi+1Izi+1 = h) 

cdE~=1 fvari(j1)P(Zi+1 = j21 zi = j1)}p(Yi+1I zi+1 = h) 

- E~=1 {E~=1 fva:ri(jdp(Zi+1 = hlzi = iI)}P(Yi+1I zi+1 = j2) 
Ci 

- d
i 
fVari+1 (h) 

K K 

di = I: {I: ~i(jdp(Zi+1 = j21 zi = j1)}P(Yi+1l zi+1 = j2)' 
h=1 ;1=1 
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Thus, 

Ci 
Ci+1 = di ' 

and Cn can be found recursively in this way. It may be more convenient to deal 

with the logarithms of these normalising constants, Ci, in which case we would 

have 

log ci+ 1= log Ci - log di · 

The Backward Algorithm 

Backward Algorithm: works back from the last time, n. 

The backward variable is given by bvari(jl) = P(Yi+1, Yi+2, ... , YnlZi = jl), i.e. the 

probability of generating the last n - i observations given state j at time i. 

1. bvarn(jd = 1, 

1, i.e. 

for all jl, and we normalise such that 2:~=1 bvarn(jl) = 

2. For i = n - 1, n - 2, ... , 1, 

bvari(jl) = :L:P(Zi~l = hlzi = jl)bvari+1(h)p(Yi+llzi+1 = j2)' 
ja 

We normalise again, giving 

In the above algorithms, for p(Zi+1 = hlzi = jd we use the quantity a~ . and 3132 

for p(Yi+t!Zi+l = j2) we use the quantity bi+1ja' 
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G.3 Obtaining Formulae for PD and DIe in the 

case of a Hidden Markov Model with Gaus

sian Noise 

We have 

! q(J((}) q(J(O) 
PD ~ -2 q(J((}) log{ -((}) }d(} + 2Iog{-_ }, 

P p((}) 

where p( (}) is given by 

p((}) - p(¢)p(rr) 

- p(JLIT)p(T)p(rr). 

For the first term, we have 

- J q(J ((}) log [00 rrj1i2 Cthh -Cthh (0) 

31 32 

K 

X II e~p{ - ~ (f3j(JLj - mj)2 - f3/0)(JLj - m/O))2)} 
j=l 

x D 7;\(,,-,;'0') exp[-~7j(O; - o/O)l]] dO 
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J q(} (0) [I: I: (<x;,;, - <X;,;, (0)) log 11";,;, + ~ i5'Y; -'I/0)) log T; 
31 32 3=1 

- ~ ~ T;{/3; (/1>j - m;)' - /3/0) (/1>; - m/O)) 
2 + OJ - O/O)}] dO 

1 K 
- ~ ~(ajd2 - aith (O))Eq[log 7rith] + 2" ~(")'j - 'Y/O))Eq[logrj] 

31 32 3=1 

K 

-~ LE/Lj,Tjh{,8j(llj - mj)2 - ,8/0)(llj - m/0))2 + 8j - 8/0)}] 

j=l 

n-l K n 

- ~ ~ {~qZ(Zi = iI, Zi+1 = i2)}Eq[log7rjd2] + ~ L(L qij)Eq[logrj] 
31 32 t=l j=l i=l 

1 K 1,8 .(0) 
--~E .[r·{ - - _3_ - ,8.(O)(m. - m.(O))2 + 8. _ 8.(O)}] 

2 L...J TJ 3 T' ,8 'T' 3 3 3 3 3 
j=l 3 3 3 

n-l 

- L L {L qz(Zi = iI, Zi+1 = i2)}{'l1(ajI,j2) - \lI(ait·)} 
it h i=l 

K n 1 1 8· 1 
+ L(Lqij){2"{'l1(2"'Yj) -log ~} - 2,8) 

j=l i=l 3 

K 

+~ L(;~){,8/0)(mj - m/0))2 + 8/°) - 8j} + constant. 
j=l 3 .' 

The second term in the approximate PD is given by 

K 

- ~ L 7j {,8j (fii - mj)2 - ,8/0) (fii - m/O)) 
2 + 8j - 8/0)} + constant 

j=l 
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K ~,' 

+~ I);~){,B/O)(mj - m/0))2 + 8/°) - 8j } + constant. 
j=l J 

The constants in the two terms in the approximate PD are the same, and so 

they subtract out when PD is calculated, giving 

f q{)(O) q{)(O) 
PD ~ -2 q{)(O) log{ -(0) }dO + 2log{--} 

P p(O) 

To find the DIC value we use 

DIC = 2PD - 2logp(yIO), 

in which p(YIO) can be found using the forward algorithm: 

K 

p(YIO) = L fvarn(j). 
j=l 
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Appendix H 

H.I Finding the Forms of the Hyperparameters 

for the Gaussian Noise Model of a Hidden 

Markov Random Field 

We have 

n 

ql((Pl) ex: IT {p(Yil<pl)qil} p(<PI) 
i=l 
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if we put "tl = "tfO) + L~=l qil. As derived previously, ./ 

n 

L qilTl(Yi - /1>1)2 + AfO)Tl(/1>1 - mfO))2 
i=l 

can be written as 

n 

AtTl(/1>1 - ml? + Tl(L qilY; + AfO)mfO)2 - AlmT) 
i=l 

by putting 

n 

Al = AfO) + Lqil 
i=l 

(0) (0) ""n 
Al ml + L.Ji=l qilYi 

ml = A . 
• 1 

We therefore have 

(AfO)TI) ~ exp{ ~AtTl(/1>I-ml)2} x TtYl
-

1 
exp{ ~(~l(O)TI+Tl(t qilY;+AfO)mfO)2 -AlmT) n. 

i=l 

Putting 

gives 

and so 

q(/1>t!TI) rv N(/1>I; mlJ (AtTltl) 

1 1 
q( Tz) rv Ga( Tl; 2AlJ 26). 

The formula for updating qil is of the form 
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qil ex exp {E4>110gp(Yil¢l) + 2E,8(,B) ~ Qjl}, I = 1, "" K (H,I) 
JE5; 

normalised so that E~l qil = I, In the above, 

with expectations given by 

ex E4>1 [log( Tl! exp{ - !TI(Yi - JiI)2})] 
2 

- ~Eq[lOg hI] - ~Eq[TI(Yi - Jil?], 

E(Yi - JiI)2ITI - E(Yi - ml + ml - JiI?ITI 

- (Yi - ml)2 + E(ml - JiI)2ITI 

- (Yi - ml)2 + ~, 
€m 

and so 
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H.2 Derivation of Formulae for PD and DIe for a 

Hidden Markov Random Field with Gaus

sian Noise 

In this case 

p(O) = p(¢»p({3) = p(ILIT)p(T)p({3) 

and so 

K 

q( 0) = q(ILIT )q( T )q({3) = II {q(ILt!TI)q( Tl)}q({3). 
1=1 

The formula for PD is given by 

PD ~ -2! qo(O) 10g{qO(~)) }dO + 2l0g{qo(~)}. 
P u p(O) 

The first term is 

! qo(O) 
qo(O) log{ p(O) }dOz 

K _ I q,(O) log[D, exp{ -~T'[.x,(", - m,)' - .xlO)(", - min))']} 

K 1 (0») 1 
x rr Tlb/-'Y1 exp[-'2Tl(6 - ~iO))] 

1=1 

rrn exp{2{3 2:j fOi 2:~1 qilqj l}]dl1 + t t 
x K u cons an 

i=l {2:1=1 exp(2{3 2: j fO; qjl)} 
K 

I 1 ~ {( )2 ,(0)( (0))2 (O)} - qo(O)[-'2 {;: Tl Al ILl - ml - Al ILl - ml + 6 - ~l 

1 ~ (0) 
+'2 L.)'Y1 - 'Yl ) 10gTI 

1=1 
n K n K 

+2{3 L {L L qilqjl} - L 10g{L exp(2{3 L qjl) }]dO + constant 
i=1 jfO; 1=1 i=1 1=1 jfO; 
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where 

1 K ./. 

-'2 L EJL/,T/[rl{AI(J11 - ml)2 - A~0)(J11 - m~0))2 + 6 - €;O)}] 
1=1 

1 K n n K 

+'2 L L qilEq[logrd + 2Eq[,8] L {L L qilqjl} 
1=1 i=1 i=1 j£5i 1=1 

- E, (t log{t exp(2j3 ~ qjl)}) + constant 

1 KIA (0) 
- - "" ET/ [rl { - - _1_ - A~O) (ml - m~0))2 + €I _ €(O)}] 

2 L.J rl Am 1 
1=1 

1 K n n K 

+2" L L qilEq[logrd + 2Eq[,8] L {L L qilqjl} 
1=1 i=1 i=1 j£5; 1=1 

- E, (t log{ t exp(2j3 ~ qjl)}) + constant 

K 

~ L Eqh]{A~O\ml - m~0))2 + €I(O) - 6} 
1=1 

1 K n 1 n K 

+'2 L L qil{Eq[logrd - r} + 2Eq[,8] L {L L qilqjl} 
1=1 i=1 1 i=1 j£5; 1=1 

- E, (t log{t exp(2j3 ~ qjl)}) + constant, 

Eq[rd = ;;. 

As explained in Section 5.5.3, Eq[,8] is estimated as the mode of the function 

log Q(,8). We will require another approximation for 

We derive an approximation below. 

The second term in PD is given by 
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where 

and 

10 {q()(~)} 
g p(O) 

K 

-~ LT[Al(Jil - ml)2 - Al(O)(Jil - m}O)) + 6 - ~iO)] 
1=1 

K n K 

+ Lbl - {leO)) 10gTI + 2~ L {L L qilqjl} 
1=1 i=1 jf.6, 1=1 

n K 

- L 10g{L exp(2~ L qjl)} + constant 
i=1 1=1 jf.6i 

K 

-~ LT[Al(Jil - ml? - Al(O) (Jil - m~O)) + 6 - ~iO)] 
1=1 

K n n K 

+ LLqillogfl +2~L{LLqilqjd 
1=1 i=1 

n K 

- L 10g{L exp(2~ L qjl)} + constant, 
i=1 1=1 jf.6, 

- {I 
71 =-

6 

Jil = mi· 

We take ~ to be the expected value of (3 as obtained via the least squares approach. 

We therefore have 
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K K n 

"" []{ (0)( (0))2 (0) "" "" 1 PD - L..J Eq Tl Al ml - ml + ~l - 6} - L..J L..J qil{Eq[logTl] - :f} 
l=1 l=1 i=1 l 

-4Eq [,BJ t, {f,t. t, q"qjl} + 2E, (t, iOg{t, exp(2;'i f,t. qj.)} ) 

K K n 

- L f[Al(Jll - ml)2 - Al(O)(Jll - m~O)) + ~l - ~l(O)] + 2 L L qillogfl 
l=1 l=1 i=1 

n K n K 

+413 L {L L qilqjl} - 2 L log{L exp(2j3 L qjz)} 
i=1 j€Oi l=1 i=1 l=1 j€Oi 

K K n 

- - L(;I){AfO)(ml - m~0))2 + dO) - ~l} - L L qil{'lI(Yl) -log(6) - ~} 
1=1 I"l 1=1 i=1 2 2 Al 

-4Eq [1iJ t {~ t, IJ"qjd + 2E, (t, iOg{t, exp(2;'i ~ qjl)} ) 

K K n 

+ £? ;: )[>,/0) (ml - miO)) HIO) - ~IJ + 2 ~ ~ q,dogq: ) 
n K n K 

+413 L {L L qilqjl} - 2 L log{L exp(2j3 L qjl)} 
i=1 j€Oi l=1 i=1 1=1 j€Oi 

K n 

+2 L L qillog(;l) 
l=1 i=1 I 

n K n K 

+413 L {L L qilqjl} - 2 L log{L exp(2j3 L qjl)}. 
i=1 j€Oi l=1 i=1 l=1 j€Oi 

The constants in terms 1 and 2 cancel each other out in PD and, since we are 

taking Eq[,8] = 13, we will have further cancellation in the above formula. 

In order to approximate Eo (L~=llog{L~1 exp(2,8 Lj€Oi qjl)} ) 'we recall the 

approximation to q/3 (,8) used in Section 5.5.3. We have 
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10gq/3(,8) - 10g(CQ(,8)) 

- log C + log Q(,8) 
1 A 

~ constant - ~(,8 - ,8)2. 
2(7/3 

Then, approximately, after approximating to log Q(,8) by a quadratic, we have 

,8 '" N(~, fJ~). 

If we denote the function E~llog{E~l exp(2,8 E j f5i qjl), by F(,8) then we can 

expand to give 

which implies that 

with 

So we can approximate Eo (E~=llog{E~l exp(2,8 E j f5i qjl)}) by !fJ~F"(~). Plug

ging this into our formula for PD and cancelling out terms gives 

PD 

The DIC can then be obtained through the usual formula, 

DIC = 2PD - 210gp(YIB). 
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H.3 Mean-Field Approximation /' 

The lower-bound on the log-likelihood is given by 

logp{YIO) - log { ~p{Y' z) } 

_ log {L (qz(z)p(y, Z))} 
z qz(z) 

> L qz(z) logP(Y, z). 
{z} qz(z) 

Of course we would have equality if we were to take qz(z) = p(zIY) but in order 

to simplify calculations, the most straightf<;>rward approach is to take 

n 

qz(z) = rr qZi (Zi) 

leading to 

~ rrn p(Ylz)p(z) 
logp(yIO) ~ L.J qZi (Zi) log nn (,) . 

{z} i i qZi z~ 
(H.2) 

We have n 

p(Ylz) = rr p(Yilzi), 
i=l 

and, for the Ising model, 

p{Z) G~f3) exp {f3 i; Z;Zj } 

_ _(1) exp {f3Zi L Zj + terms not involving Zi} . 
G f3 'er, J ~ . 

If we concentrate on terms involving Zi, the right-hand side of (H.2) becomes 
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Zi,{Zj :jE5i} 

where mj = Eqzj (Zj). Then optimising with respect to qz, gives 

Since Zi can take the value +1 or -1, we have 

where the {mi} are given by 

P(Yi IZi = +1 )eJS EjEo, mj - P(Yi IZi = -l)e -JS EjEO, mj 

mi = p(YdZi = +l)eJSEjEo,mj +p(Yilzi = _l)e-JSEjEo,mj 

This set of nonlinear equations for the mi can be solved iteratively. From this we 

will have obtained qZi (Zi = +1) and qZi (Zi = -1) for each pixel i. These can then 

be used to obtain a lower bound approximation for p(YIO). 

The right-hand side of (H.2) can be written 
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The term log G(8) is too complex for computational purposes, and we therefore 

require an approximation. We will use a pseudo-likelihood approximation again, 

for logp(z). 

Using this approximation we obtain 

n 

+2fi L mimj - L L IT qZj (Zj) log (e,B~jE6i Zj + e-,B~jE6i Zj) • 

i"'j i=l Zj:jEo;iE1h 

Then the approximate lower bound for p(yIO) is given by 
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n 

- L L II qZj(zj)log(e.BEjEoizj +e-.BEjEoiZj). 
i=l {Zj:jE5iljE5i 
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