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  Abstract 

Bluetongue virus (BTV) is an arbovirus and the cause of “bluetongue”, a major infectious 

disease of ruminants. Whilst the BTV structure and replication strategies are well 

elucidated, less is known on the genetic variability of BTV and the molecular 

determinants affecting virus-host interactions.  

In order to investigate the determinants of BTV virulence, in this study, we compared the 

phenotype and genotype of a highly virulent strain of BTV-8 isolated in the Netherlands 

a passaged minimally in tissue culture (BTV8L), with a strain passaged extensively in tissue 

culture (BTV8H). BTV8L was shown to be highly pathogenic in sheep and in a mouse model 

of bluetongue, while BTV8H was attenuated in both hosts. Full genome sequencing 

revealed differences in 16 amino acid residues between these two strains. Using reverse 

genetics, we rescued both viruses, in order two further dissect their biological features. 

Rescued viruses retained the phenotype of the parental viruses in vivo and in vitro. 

Reassortants between BTV8L and BTV8H showed that mutations in several segments 

contributed to attenuation of the high passage virus. The major determinants of BTV8 

virulence in IFNAR-/- mice were shown to be located in segments 1, 2, 6 and 10. In vitro 

studies of selected reassortants showed that through extensive passage in tissue culture 

BTV8H acquired increased affinity for glycosaminoglycans. This property was conferred 

by mutations in segment 2 and resulted in increased yields of the virus in vitro and 

attenuation in vivo. Additionally, BTV8H was unable to replicate in IFN competent primary 

sheep endothelial cells. Our data showed that multiple segments were involved in 

decreased efficiency of BTV8H replication in cells in an IFN-induced antiviral state. 

Moreover, we examined changes in viral population diversity that occured after BTV-8 

isolation in insect cells (Culicoides, KC) and after passage in mammalian cells and linked 

decreased diversity with BTV virulence in vivo. We found, that in general, the number of 

genetic variants was higher in BTV-8 before cell passaging, or after one passage in KC 

cells, compared to the number observed after even a single passage in BHK-21 cells. The 

highest total number of variants was found in virus passaged in KC cells, which suggests 

that insect vector might serve as an amplifier of quasispecies diversity of BTV.  

Together, these findings suggest that the virulence of BTV is a multifactorial 

phenomenon involving many aspects of virus-host interactions and it is not only affected 

by changes in the viral proteins selected at the consensus level, but also by the genetic 

variability of the population as a whole. 
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1.1 History of bluetongue 

Bluetongue has been known for more than 100 years and the first detailed descriptions 

of its clinical manifestations and pathology come from Hutcheon (1881,1902) and Spreull 

(1905) (Coetzee et al., 2012a; Hutcheon, 1881; Spreull, 1905). Bluetongue was likely 

endemic in sub-Saharan Africa for centuries but attracted little interest from the 

scientific community and veterinary clinicians due the lack of overt symptoms in 

indigenous sheep breeds. The apparent ‘emergence’ of a more severe form of 

bluetongue coincided with the introduction of susceptible Merino sheep imported from 

Europe into South Africa (Coetzee et al., 2012a). Due to the abundant nasal discharge 

and high fever in affected animals, the disease was first referred to as “epizootic catarrh” 

and “malarial catarrhal fever” (or simply “fever”) (Spreull, 1905). These terms were later 

abandoned in preference of “bluetongue”, despite the fact that the actual symptom of 

a cyanotic tongue is rarely seen in infected sheep (Spreull, 1905).  

Early studies revealed that bluetongue was caused by a filterable agent found in the 

blood of sick animals but not necessarily associated with red blood cells. The disease did 

not appear to be contagious, but blood, spleen extracts or sera from viraemic animals 

were shown to be infectious when inoculated into naïve sheep (Spreull, 1905).  

Importantly, infected animals developed strong immunity and were protected against 

subsequent challenge with infectious material. Following these observations, in 1908 

Theiler attempted to produce a vaccine for bluetongue by multiple passage of the 

viraemic sheep blood (Theiler, 1908). Interestingly, this first “vaccine” was used with 

variable success for over 40 years and it induced a degree of protection against several 

BTV serotypes (Coetzee et al., 2012a). In 1948, Neitz performed extensive immunological 

studies in sheep that for the first time proved the existence of multiple antigenically 

diverse types of BTV. Cross-protection assays revealed that infection with a single virus 

type induced protection against the same strain but was not necessary effective against 

heterologous strains (Howell, 1960; Howell et al., 1970). Later, Howell and colleagues 

defined the first 16 BTV serotypes by means of serum-neutralisation assays. This number 

has now expanded to 27, with the last serotype defined in 2015 (Jenckel et al., 2015).  

Initially, bluetongue was thought to be confined to Africa. However, in 1943 the first 

confirmed outbreak of BTV occurred in Cyprus, which affected 60-70% of sheep leading 
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to more than 2,500 deaths across the island (Sellers, 1975). Earlier reports suggest that 

BTV emerged in Cyprus in the 1920s and caused significant animal losses in 1924 and 

1939. At that time, the disease was known as “stomatitis” and was not associated with 

BTV until the agent was recognised as BTV by the Ondersrepoort Veterinary Institute in 

1943 (Erasmus, 1985; Sellers, 1975). Following the Cyprus outbreak, further epidemics 

occurred in Israel, Pakistan and India and in 1956, BTV emerged in Southern Europe for 

the first time. Detection of bluetongue in 1952 in California, at that time referred to as 

“sore muzzle”, exposed significant potential for BTV expansion and the capability of the 

virus for adaptation to a variety of environmental factors (Hourrigan and Klingsporn, 

1975b). Indeed, since that time, different serotypes have been isolated in all continents 

with the exception of Antarctica. Until recently BTV was only considered endemic in 

tropical and subtropical parts of the world (between latitudes 35oS and 40oN) and in 

recent years bluetongue has been spreading northwards as far as the UK and Canada 

(Purse et al., 2005).  

1.2 Emergence of BTV-8  

Since 1998, several BTV serotypes (including BTV-1, -2, -4, -9, -16) have been introduced 

into Europe but they were only found in the Southern countries. The situation changed 

after August 2006 when BTV-8 arrived in Northern Europe. The strain that caused a great 

number of outbreaks across the continent was unusual in several ways. Not only was it 

the first BTV serotype able to invade regions beyond latitude 52oN but it also appeared 

to be remarkably virulent in the European  sheep breeds (Worwa et al., 2009). After the 

sudden outbreak of BTV-8 in 2006, it was hoped that the virus would not survive the cold 

winter period. Unfortunately, the virus not only overwintered in North Europe, but when 

it re-emerged in 2007, it affected an even greater number of holdings, and for the first 

time reached the United Kingdom (Wilson and Mellor, 2009). Interestingly, this BTV-8 

strain also caused symptomatic infections in cattle in some cases, and it was also later 

established that it could also cross the placental barrier (Backx et al., 2009; Dal Pozzo et 

al., 2009; Santman-Berends et al., 2010a; Santman-Berends et al., 2010b; van Schaik et 

al., 2008).  BTV-8 caused a higher incidence of respiratory symptoms, oedema, coronitis 

and necrosis of the tongue in sheep than in cattle, while the latter frequently suffered 

from lesions of nasal mucosa, conjunctivitis and teat (Elbers et al., 2008b). While the 

total morbidity of sheep in the 2006 outbreak in the Netherlands was estimated to be 
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low, median case fatality reached over 50%. Although case fatality was over 13 times 

lower for cattle, in affected herds, up to 80% of cattle displayed clinical signs (Elbers et 

al., 2008c). 

BTV-8 first emerged in Europe in the region of Maastricht in the Netherlands, bypassing 

all the common introduction routes previously described for other circulating BTV strains 

in Europe (Wilson and Mellor, 2009). The ability of the BTV-8 to spread vertically from 

mother to foetus, which is a phenomenon that was previously associated with tissue-

culture adopted strains, raised the suspicion that sudden emergence of this novel 

serotype/strain was somehow linked to the use of South African ‘Group B’ multivalent 

live vaccine (Maan et al., 2008). Sequence analysis of the full genome of BTV-

8NET2006/4 revealed however that the strain was not derived from the vaccine. 

Phylogenetic analysis of segment 2 (S2) showed close relation with a Nigerian strain of 

BTV-8 indicating that BTV-8NET2006/4 might have originated in sub-Saharan Africa 

(Maan et al., 2008). Although BTV-8 has been circulating in Africa for many decades, the 

route of its introduction to Northern Europe remains unclear. 

1.3 Reoviridae and Orbiviruses 

The family Reoviridae is composed of 15 genera of double stranded (ds) segmented RNA 

viruses, which infect a wide spectrum of hosts (e.g. plants, insects, fish and mammals) 

and include several important human and veterinary pathogens (Table 1). Viruses 

belonging to Coltivirus, Fijivirus, Orbivirus, Oryzavirus and Phytoreovirus are transmitted 

by insect vectors while the others are mainly spread by the faecal-oral route (Mellor, 

2009).   

.   
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Table 1. Genera within Reoviridae.  

Genus 
Number of genome 

segments 
Host Vector 

Aquareovirus 11 Molluscs, fish, Crustacea - 

Cardoreovirus 12 Crustacea - 

Coltivirus 12 
Mammals (including 

humans) 
Tick 

Cypovirus 10 Insects - 

Dinovernavirus 9 Mosquitoes - 

Fijivirus 10 Plants Planthopper 

Idnoreovirus 10 Insects - 

Mimoreovirus 11 Phytoplankton - 

Mycoreovirus 11/12 Fungi - 

Orbivirus 10 
Mammals (including 

humans), Birds 

Midge, mosquito, 

sandfly, tick 

Orthoreovirus 10 
Birds, reptiles, mammals 

(including humans), fish 
- 

Oryzavirus 10 Plants Planthopper 

Phytoreovirus 12 Plants Leafhopper 

Rotavirus 11 
Birds, mammals (including 

humans) 
- 

Seadornavirus 12 
Mammals (including 

humans) 
Mosquito 

(Mellor, 2009; Yamanaka et al., 2014) 

The name, Reoviridae is derived from the prototype of the family, Reovirus, (Respiratory 

enteric orphan virus) (Sabin, 1959) and encompasses viruses that share specific 

biochemical properties (Urbano and Urbano, 1994). Reoviruses possess non-enveloped 

icosahedral capsids, with or without an outer capsid layer. Their genome is segmented 

and made up of 9 to 12 segments coding for structural and non-structural proteins. The 

viruses carry their RNA-dependent RNA polymerase (RdRp) and RNA capping enzyme 

within the core. They replicate in the cytoplasm and produce distinct inclusion bodies 

involved in nascent virion assembly and morphogenesis. RNA transcription, capping and 

methylation occur within the core and mRNA is extruded into the cytoplasm through 

pores of the inner capsid. Due to their segmented genomes, genetic reassortment 

between homologous viruses can readily occur in co-infected cells (Urbano and Urbano, 

1994).  

Orbivirus, as a genus name, was suggested by Borden and colleagues as a reflection of 

large, doughnut shaped capsomers on the surface of these viruses (Borden et al., 1971). 
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The Orbiviruses are a group of arthropod-borne viruses. Twenty-two Orbiviruses are 

currently recognised by the International Committee on Taxonomy of Viruses (ICTV) and 

several tentative species are awaiting to be included in the genus (Figure 1) 

(Belaganahalli et al., 2015). Members of Orbivirus were commonly identified by high 

levels of serological cross-protection against conserved antigens, e.g. VP7 or cross-

hybridisation of conserved genome segments (>70% identity required), conserved 

termini sequences and clinical presentation and host/vector range. Viruses in the genus 

share 21 to 72% sequence identity in conserved S3 (Mellor, 2009).  

 

Figure 1. Orbiviruses and their vectors. ICTV-recognised orbiviruses (bold italics) and 

proposed Orbivirus species (italics) (Belaganahalli et al., 2015). 

Apart from BTV, several other Orbiviruses, including African horse sickness virus (AHSV), 

Epizootic hemorrhagic disease virus (EHDV) and Equine encephalosis virus (EEV) cause 

economically important disease in domesticated and wild ruminants. Humans can also 

be infected by some of the species e.g. Changuinola virus, Corriparta virus, Orungo virus, 

Lebombo virus and Kemerovo virus (Belaganahalli et al., 2013; Brown et al., 1991; 

Libikova et al., 1978; Silva et al., 2014). The history of the BTV expansion and the 

consequences of climate change on vector expansion have given rise to concern over the 

increased risk of incursions of other Orbiviruses into new areas where competent vectors 

and susceptible hosts reside  (Gale et al., 2010; MacLachlan and Guthrie, 2010). This in 
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turn would have an impact on wildlife populations, food production and possibly human 

health.    

1.3.1 African horse sickness virus (AHSV) 

AHSV is the cause of a haemorrhagic disease of equids (known as African horse sickness) 

and it is transmitted by Culicoides biting midges. Similar to BTV, AHS has likely been 

endemic in southern Africa for hundreds of years but it was first recognised during 

epidemics in 1719, around 60 years after introduction of horses to the area (Mellor and 

Hamblin, 2004). Since that time, the virus caused multiple outbreaks in South Africa, with 

the largest one in 1854-1855 that caused over 700,000 deaths of infected horses (Mellor 

and Hamblin, 2004). The disease is endemic in Africa but outbreaks have also been 

reported in the Middle East, Cyprus, Spain and Portugal (MacLachlan and Guthrie, 2010). 

To date, nine serotypes of AHSV have been recognised, two of which (AHSV-4 and AHSV-

9) in Southern Europe (Howell, 1962; Wilson et al., 2009). AHSV infects zebra, which are 

considered a main reservoir of the virus. Zebra rarely show signs of infection while the 

sickness can be very severe in other equids. The virus primarily replicates in lymphoid 

tissues including the spleen, and also in the lungs and certain types of endothelium. The 

infection can be expressed as horse sickness fever, cardiac form, pulmonary form or 

mixed form. The latter, which is a combination of both cardiac and pulmonary symptoms, 

is the most common and results in 70% mortality (Laegreid et al., 1993). Modified live 

vaccines (MLV) against AHSV are available and immunisation with polyvalent MLV is 

compulsory in Southern Africa (von Teichman et al., 2010).  

1.3.2 Epizootic haemorrhagic disease virus (EHDV) 

EHDV is one of the Orbiviruses that are most closely related to BTV (Belaganahalli et al., 

2014). The virus can infect most ruminants, however, the disease is most pronounced in 

wild animals including white-tailed deer. Like BTV and AHSV, EHDV is transmitted by 

Culicoides biting midges and the disease has been reported in multiple parts of the world 

including North America, Africa, Asia and Australia. EHD has also spread to several 

countries of the Mediterranean basin, but it has not been introduced into Europe yet 

(Savini et al., 2011). Clinical symptoms of EHD range from inapparent or mild infection 

to severe disease expression with widespread oedema, haemorrhage and death (Batten 

et al., 2011; Ruder et al., 2012). Currently there are eight serotypes of EHDV recognised 



INTRODUCTION   

   

21 

 

although AHDV-3 has been suggested to be included into the EHDV-1 serogroup based 

on sequence relatedness (Anthony et al., 2009). The difference between virulence of 

specific serotypes or strains in unclear. However, western strains (isolated from 

ruminants in the Middle East, Africa or North America) seem to be more pathogenic than 

the eastern strains (isolated from animals in Japan or Australia) (Anthony et al., 2009).  

1.3.3 Equine encephalosis virus (EEV) 

EEV is another Culicoides-borne Orbivirus associated with disease in horses. It was first 

isolated in South Africa in 1967 from a mare that died of an unknown illness with 

neurological symptoms (Viljoen and Huismans, 1989). Within 3 years from the first 

isolation, antibodies to EEV were found in over 75% of tested horses in South Africa 

(Viljoen and Huismans, 1989). All equidae are susceptible to EEV but donkeys and zebras 

are usually asymptomatic (Oura et al., 2012). To date, seven serotypes have been 

described, which may produce different disease syndromes in horses (Howell et al., 

2002). In general, EEV infection is asymptomatic or very mild and rarely results in death 

(Oura et al., 2012). In severe cases,  infection may be associated with oedema and brain 

swelling (encephalosis), catarrhal enteritis, cardiac failure, abortion, facial oedema or 

severe liver damage (Howell et al., 2002). EEV is endemic in South Africa and high EEV 

seroprevalence has been reported in other African countries including The Gambia, 

Ethiopia and Ghana (Oura et al., 2012). Additionally, a recent epidemiological study 

showed that the virus has been circulating in Israel since 2001, which highlighted the 

potential of EEV to spread to other regions where suitable hosts and vectors are found 

(Westcott et al., 2013) 

1.4 Bluetongue virus  

BTV is the Orbivirus prototype. It was the first virus within the genus to have a complete 

genome sequence determined and its structure has been studied in detail (Gouet et al., 

1999; Grimes et al., 1998; Pedley et al., 1988). 

BTV is a non-enveloped virus composed of an icosahedral core with two concentric 

protein layers containing the viral genome (19.2 kbp) and enclosed within an outer 

capsid. Like all members of the Reoviridae family, BTV possesses a segmented double 

stranded genome encoding for structural and non-structural proteins (Mertens et al., 



INTRODUCTION   

   

22 

 

2004). Each of the 10 dsRNA segments begins and terminates with conserved 

hexanucleotides (positive strand sequence 5’-GUUAAA . . . ACUUAC-3’) (Mertens and 

Sangar, 1985).  The untranslated regions (UTR) overlapping the open reading frames 

(ORF) of all BTV proteins are essential for sequential packaging of the genome and up-

regulation of viral protein translation mediated by NS1 (Boyce et al., 2012; Burkhardt et 

al., 2014; Sung and Roy, 2014). 

Based on specific migration of the RNA molecules in polyacrylamide gels and their in vitro 

translation products, 7 structural proteins (VP1-VP7) and 4 non-structural proteins (NS1-

NS4) have been assigned to the individual BTV genome segments (Table 2) (Mertens et 

al., 1984; Ratinier et al., 2011; Van Dijk and Huismans, 1988). 

Table 2. BTV genome segments and encoded proteins. 

Segment 
Size 

(nucleotides) 
Protein 

Size 
(amino acids) 

Proposed function 

1 3944 VP1 1302 RNA-dependent RNA polymerase 

2 2939 VP2 961 Receptor binding; cell entry 

3 2772 VP3 901 Structural scaffold for VP7 

4 1981 VP4 664 RNA-capping enzyme 

5 1776 NS1 552 
Tubule formation; up-regulation 
of BTV protein expression 

6 1637 VP5 526 Membrane penetration; cell entry 

7 1156 VP7 349 
Structural; binding to receptor on 
insect cells 

8 1125 NS2 354 
VIB formation; ssRNA binding and 
BTV genome package 

9 1049 
VP6 
NS4 

329 
77 

RNA helicase 
IFN antagonist 

10 822 NS3 229 Viral egress; IFN antagonist 

Nucleotide and amino acid number correspond to BTV-8NET2006/04. (Boyce et al., 

2012; Chauveau et al., 2013; Mertens and Diprose, 2004; Mertens et al., 2004; Ratinier 

et al.; Roy, 2005, 2008b). 

The outer capsid of BTV is composed of two proteins, VP2 and VP5, responsible for 

attachment and penetration of the host cell membrane. Cryo-EM studies of BTV 

structure revealed that VP2 forms sail-shaped spikes on the surface of the virion, that 
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protrude away from more internally located globular VP5 molecules (Hewat et al., 

1992a). Enclosed in the outer shell of the virus is the double-layered core. The 

intermediate layer is formed by VP7 trimers arranged as a T=13 icosahedral lattice 

covering the subcore. The subcore is composed of 120 copies of VP3 and it is sufficiently 

stable to maintain its structure even in the absence of the other structural proteins 

(Stuart and Grimes, 2006). The last three structural proteins, VP1, VP4 and VP6 are 

located inside the core in the complexes located at the five-fold symmetry axes of the 

BTV particle (Grimes et al., 1998).  

 

 

 

Figure 2. Schematic presentation of a BTV particle. BTV viron is assembled in three layer. 

The outermost capsid is formed by VP2 and VP5 proteins. The intermediate layer (core) 

is composed of VP7 trimers. VP3 layer (subcore) encloses the replication protein complex 

(VP1, VP4, VP6) and dsRNA. 
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1.5 BTV replication cycle 

BTV binds the host cell using specific cellular factor(s) and undergoes receptor mediated 

endocytosis via clathrin-coated vesicles (Forzan et al., 2007). The initial steps are 

mediated by VP2 and VP5, which can then be detected in the early endosome (Eaton et 

al., 1990). Both proteins are rapidly dissociated from the virus surface and only the cores 

are released from the endosome into the cytoplasm. VP5 acts as a fusion protein, which, 

under low pH, undergoes conformational change allowing the release of the outer capsid 

from the VP7 layer (Forzan et al., 2004; Zhang et al., 2010). 

Transcription and replication of the viral genome occurs inside the core in the host cell 

cytoplasm. Viral dsRNA never leaves the core and therefore it is believed to be protected 

from sensing by the cellular pattern recognition receptors and from destruction by 

cellular nucleases (Diprose et al., 2002). The complex of VP1, VP4 and VP6 acts as the 

viral transcriptional machinery (Mertens and Diprose, 2004). VP6 facilitates unwinding 

and/or separation of the two strands of each genomic segment (Stauber et al., 1997). 

VP1 acts as an RNA-dependent RNA polymerase (RdRp) and inside the core, it utilises the 

negative genome strand to transcribe viral mRNA (Boyce et al., 2004; Urakawa et al., 

1989). VP4 synthesizes a methylated cap at the 5’ terminus of each mRNA molecule 

(Martinez-Costas et al., 1998; Ramadevi et al., 1998) and the capped mRNA is then 

extruded through the pores in the capsid into the cytoplasm (Diprose et al., 2001; 

Verwoerd and Huismans, 1972). Positive strand RNA also acts as a template for synthesis 

of new negative strands inside the newly formed viral particles (Boyce et al., 2004). In 

the cytoplasm, BTV mRNA is translated by the host cell translational machinery and the 

nascent virions are sequentially assembled. Translation of BTV proteins starts soon after 

host cell entry. At 8 hours post-infection, viral proteins become the dominant fraction in 

the cytosol indicating that translation of host cell mRNA is effectively replaced by viral 

protein synthesis (Huismans, 1979). Upregulation of viral protein translation is facilitated 

by NS1 that has been shown to selectively increase the rate of expression of specific BTV 

genes (Boyce et al., 2012). The subcores and cores are formed in viral inclusion bodies 

(VIB) and the outer proteins are recruited as the new virions exit VIBs (Brookes et al., 

1993; Kar et al., 2007). The mode of BTV egress varies with the time of infection and host 

cell type. In insect cells, the virus exits by budding and causes no cytopathic effect, while 

in mammalian cells the virions are extruded through the membrane, which consequently 
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leads to cell lysis (Hyatt et al., 1989; Owens et al., 2004). The trafficking and exit of the 

new BTV particles are mediated through NS3 interaction with a cellular protein 

component of the ESCRT-I (endosomal sorting complexes required for transport-I) 

complex, Tsg101 (Celma and Roy, 2009). Although direct cell-to cell spread has been 

suggested for BTV, most particles are released from mammalian cells by cell lysis 

(Bhattacharya and Roy, 2008). Infection of neighbouring cells can be inhibited by 

induction of interferon (IFN)-related antiviral factors. Viral NS4 and NS3 have been 

implicated in BTV counteraction of host IFN response (Chauveau et al., 2013; Ratinier et 

al., 2011). Other sections in this chapter will describe the roles of specific BTV proteins 

in viral replication and in the interactions with the host cells.  

 

Figure 3. BTV replication cycle. BTV enters the cell by endocytosis in clathrin-coated pits. 

Acidification of early endosomes causes VP5 mediated membrane fusion. The outer 

capsid is dissociated from the particle and the core enters the cell cytoplasm. Inside the 

active core, transcription of viral RNA takes place and the ssRNA is extruded through the 

pores in the VP3 layer. BTV protein translation is performed via host cell translational 

machinery and viral NS1 is involved in up-regulation of BTV gene expression.  Subcore 

and core assembly takes place in viral inclusion bodies (VIB) and it is facilitated by 

interactions with NS2. NS4 is transported to the cell nucleus and localises in the nucleolus 

where it interferes with IFN synthesis.  Complete particles are formed by core association 

with VP2 and VP5. NS3 is involved in trafficking and egress of mature particles either by 

budding (through interactions with Tsg101) or by cell lysis (Mertens et al., 2004; Roy, 

2008b). 
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1.6 BTV proteins  

1.6.1 VP2 and VP5  

VP2 is an outer capsid protein that forms trimers on the surface of the BTV particle 

(Hewat et al., 1992a; Zhang et al., 2010). The protein has been shown to elicit 

neutralising antibodies and it determines the various BTV serotypes (Mertens et al., 

1989; Purdy et al., 1985). VP2 is the most variable among the BTV proteins with an inter-

serotype amino acid sequence variation ranging from 23 to 73%. Therefore, there is no 

significant cross-protection between antibodies elicited against different serotypes 

(Maan et al., 2007a). Only two regions of VP2 are relatively conserved (amino acids 338-

379 and 946-961) and the specific roles of these residues in BTV infection has not been 

explored further (Maan et al., 2007a).  

Early studies of VP2 interactions with host cells concentrated on the ability of BTV to bind 

erythrocytes and causing haemagglutination in a variety of mammalian species (Eaton 

and Crameri, 1989) (Cowley and Gorman, 1987; Hassan and Roy, 1999; van der Walt, 

1980). Consequently, BTV was shown to bind to glycophorins of human, porcine, equine 

and ovine origin. The binding was inhibited by addition of external glycophorins and by 

pre-treatment of erythrocytes with V.cholerae neuraminidase (Eaton and Crameri, 

1989). Eaton and colleagues suggested that BTV possessed at least two sites for 

attachment to different glycophorin residues in human (or porcine) and ovine 

erythrocytes (Eaton and Crameri, 1989). Experiments using tagged recombinant VP2 

protein demonstrated that VP2 was responsible for BTV binding to glycophorin A on the 

surface of erythrocytes and mediated virus entry into mammalian cells (Hassan and Roy, 

1999). Treatment of L929 cells with neuraminidase or treatment with sodium periodate 

reduced VP2 binding, confirming that VP2 bound to a cellular receptor(s) rich in 

carbohydrate moieties. Recently, cryo-EM studies showed that VP2 possesses a sialic 

acid binding region located in its hub domain, which is one of two sites suggested to 

interact with cell surface receptors (Zhang et al., 2010). However, the presence of 

another putative receptor-binding site at the VP2 tip domain strongly suggests that BTV 

utilizes another cellular factor for cell entry purposes. Furthermore, wheat germ 

competition assay studies showed that in the presence of wheat germ protein, which 

block sialic acid sites on the cell surface, BTV infectivity was reduced but not entirely 
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abolished (Zhang et al., 2010). Altogether, these studies showed that apart from sialic 

acid glycoprotein, another receptor must be involved in BTV attachment to the host 

surface (Hassan and Roy, 1999; Zhang et al., 2010).  

VP2 has also been shown to participate in BTV egress from the infected cells. Yeast two-

hybrid screening of a BTV protein library showed that VP2 interacted specifically with the 

C-terminal domain of NS3. Additionally, VP2 co-localized with NS3 in the Golgi apparatus, 

along the vesicle exocytic route and at the plasma membrane. These observations 

suggested that NS3 bridged the mature BTV particle through the VP2 and facilitated its 

transport to the cell surface (Beaton et al., 2002). The N-terminal of VP2 was also shown 

to associate with vimentin, and disruption of the vimentin network led to accumulation 

of intracellular BTV particles, suggesting that VP2-vimentin interactions play a role in 

virus release from infected cells (Bhattacharya et al., 2007).  

VP5 is the smaller of the outer capsid proteins and forms globular trimer complexes 

connected with the hub domains of the neighbouring VP2 trimers (Zhang et al., 2010). 

Cryo-EM studies showed that VP5 is composed of two domains separated by a flexible 

hinge. The N-terminal domain (amino acids 1-240) contains a coiled-coil structure while 

the C-terminal (amino acids 260-526) forms a globular domain (Hassan et al., 2001; 

Zhang et al., 2010). The predicted model of VP5 shows that the N-terminal region is 

composed of two amphipathic helices followed by a stretch of hydrophobic residues, 

which have been demonstrated to play a role in membrane destabilization and 

cytotoxicity (Forzan et al., 2004; Hassan et al., 2001). VP5 can induce cell-cell fusion and 

its membrane penetration properties are dependent on low pH, which is likely to be 

responsible for the conformational changes within the VP2 protein, enabling the VP5 

amphipathic helices to interact freely with the membrane of the endosome (Forzan et 

al., 2004). Low pH has also been suggested to cause loosening of the interactions 

between the outer capsid proteins and the viral core, facilitating the release of 

transcriptionally active particles into the cytoplasm. In addition, VP5 has been shown to 

interact with lipid rafts. Disruption of the rafts by exclusion of cholesterol from the cells 

leads to a significant decrease in BTV titres, confirming the roles of lipid rafts in the BTV 

replication cycle (Bhattacharya and Roy, 2008). Additional experiments showed that VP5 

directly interacted with NS3. This prompted the hypothesis that lipid rafts formed a 

scaffold for assembling the viral particles and that NS3 stabilised both VP5 and VP2 for 
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the final particle assembly (Bhattacharya and Roy, 2008). Interestingly, the C-terminal of 

VP5 contains a conserved WHXL motif that is also found in synaptotagmin-1 (Syt1), a 

SNARE regulatory protein. Mutation of this amino acid stretch leads to abrogation of VP5 

localization to the plasma membrane. VP5 is therefore likely to be specifically targeted 

to host cell plasma membranes through membrane-docking signals of the SNARE 

proteins (Bhattacharya and Roy, 2008). Additionally, due to its co-localisation with “pore-

like structures” present at the cellular junctions of infected cells, VP5 has been 

hypothesised to participate in cell-to-cell transfer between infected and uninfected cells 

(Bhattacharya and Roy, 2008). This hypothesis, however, has yet to be confirmed.  

1.6.2 VP3 and VP7 

The core of BTV is enclosed in two protein layers. The innermost layer is composed of 

120 copies of VP3 which is a 110 kDa protein encoded by genome S3. The VP3 shell 

serves as a scaffold for attachment of VP7 and together they form stable core-like 

particles (CLP) (Grimes et al., 1998; Tanaka et al., 1995). X-ray crystallography studies 

demonstrated that monomers of VP3 assemble to form decamers, each decamer is 

formed by two sets of 5 proteins with different conformations (‘A’ and ‘B’ forms) (Grimes 

et al., 1998; Grimes et al., 1997). These VP3 decamers, which resemble a dish-shaped 

structure, are likely to be the first assembly intermediates in formation of new virions 

and are subsequently bound by VP1 and VP4 (Kar et al., 2004; Nason et al., 2004). Studies 

using GFP-tagged VP3 showed that when expressed together with VP7, VP3 is present 

primarily in VIBs, the site of viral replication and assembly (Kar et al., 2005). VP3 is 

composed of 901 amino acid residues structurally organised into three domains, ‘apical’ 

(residues 298-587), ‘carapace’ (residues 7-297, 588-698 and 855-901) and ‘dimerisation 

domain’ (699-854) (Grimes et al., 1998). Several studies have investigated the roles of 

specific domains in assembly of the core particles (Kar et al., 2004; Kar et al., 2005; 

Tanaka et al., 1995). It has been shown that, whereas deletion of the C-terminal of VP3 

did not affect VP3-VP3 nor VP3-VP7 binding, the N-terminal sequence of VP3 was 

essential for interactions with other BTV proteins, particularly VP7 (Kar et al., 2004). The 

dimerization domain is crucial for the ability of the new forming core to bind viral RNA 

(Kar et al., 2004). 
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VP7 is 38 kDa protein arranged into 260 trimers that form the outer surface of the BTV 

core (Basak et al., 1997; Basak et al., 1992; Grimes et al., 1998). Structural studies of VP7 

showed that each of its monomers is composed of two separate domains. The “upper” 

domain of one molecule interacts with the “lower” domain of an adjacent monomer by 

hydrophobic and hydrogen bond interactions. The upper domain consists of a central 

amino acid chain (amino acid 121-249) and it is folded into an antiparallel β-sandwich. 

The upper domains of a trimer form its head region, which protrudes outwards from the 

viral core. The larger, lower domain is composed of the N-terminal (amino acids 1-120) 

and the C-terminal (amino acids 250-349) of the protein, which together form 9 α-helices 

and extended loops (Basak et al., 1997; Roy, 2005). The lower domain interacts with VP3 

and the sides of other VP7 trimers (Grimes et al., 1995). VP7 contains two cleavage sites; 

before Gly127 and Tyr250. Although the importance of these sites in BTV infection has 

not been shown, Basak and colleagues speculated that the cleavage and the resulting 

conformational change in VP7 could occur prior to membrane penetration and would 

facilitate BTV entry into insect cells (Basak et al., 1997). Indeed, another study showed 

that the core particles of BTV are 103 times more infective to Culicodes KC cells than to 

the mammalian cell line BHK-21, suggesting that the surface proteins of the core are 

directly involved in viral entry in Culicoides cells (Mertens et al., 1996). Therefore, distinct 

BTV proteins, as well as receptor molecules, appear to be involved in BTV entry into 

mammalian and insect cells (Xu et al., 1997).  

VP7 contains a conserved arginine-glycine-aspartate (RGD) motif located in the exposed 

part of the upper domain (amino acid residues 168-170) (Grimes et al., 1995). This 

tripeptide motif is a common recognition sequence for integrins and, as such, could be 

involved in BTV binding to the cell membrane of insect cells (Basak et al., 1997; Tan et 

al., 2001). Using core-like particles (CLP) composed of VP3 and VP7 that retain the three-

dimensional structure of the BTV core, Tan and colleagues explored how mutations in 

the RGD motif affect CLP binding to Culicoides cells. CLPs with mutated RGD regions 

showed reduced binding to the surface of insect cells. Additionally, monoclonal 

antibodies raised against the region containing the RGD tripeptide were able to compete 

for binding to CLPs, showing that this motif in VP7 is exposed and easily accessible for 

attachment to external molecules (Tan et al., 2001). Altogether, these data showed that 

VP7 was a likely candidate for receptor binding protein in insect cells.  
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1.6.3 VP1, VP4 and VP6  

The BTV core contains three minor proteins, VP1, VP4 and VP6, which are essential for 

viral RNA synthesis and transcription, and together form replication complexes 

associated with each of the 10 genome segments (Roy, 2008b). Double stranded RNA 

never leaves the core and thus remains protected from the cell’s antiviral surveillance 

machinery (Mertens and Diprose, 2004).  

The largest of the BTV proteins, VP1 (149.5 kDa) is an RNA-dependent RNA polymerase 

(RdRp) which is present in approximately 12 copies per viral particle (Grimes et al., 1998; 

Urakawa et al., 1989). VP1 acts as a replicase and in the absence of other BTV proteins, 

it can initiate and synthesise minus strand RNA de novo (Boyce et al., 2004; Matsuo and 

Roy, 2011). At 37oC, recombinant VP1 remains active for at least 23 h. However, replicase 

activity is relatively low suggesting that the efficiency of replication might be modulated 

by other BTV proteins (Boyce et al., 2004). Further experiments showed that the 

replication efficiency of VP1 was enhanced by the presence of 5’ cap structure in the 

template ssRNA (Matsuo and Roy, 2011). Interestingly, the activity of VP1 is not affected 

by removal of conserved 3’ end hexanucleotides, and the enzyme can synthesise dsRNA 

from genomic segments of other members of the Reoviridae (Boyce et al., 2004; Matsuo 

and Roy, 2011). It is therefore possible that VP1 sequence specificity and preference for 

viral over foreign templates is conferred by secondary structures of ssRNA (Matsuo and 

Roy, 2011).  

The structure of VP1 has not been resolved to date. However, 3D models of BTV-1 VP1, 

based on the structure of known RdRp molecules, provided insights on the structural 

organisation of this protein (Wehrfritz et al., 2007). According to the model, VP1 is 

composed of the N-terminal domain (amino acids 1-373), the polymerase domain (581-

880) and the C-terminal domain. Replicase activity has been mapped to the polymerase 

domain but it requires the two other domains for its activity (Wehrfritz et al., 2007). The 

polymerase domain of VP1 possesses a ‘right hand’ structure with fingers (581-632, 672-

731), palm (633-671, 732-810) and thumb (811-880) subdomains and it is responsible 

for NTP binding. At the core of the palm subdomain there is a GDD motif (763-765) which 

serves as a catalytic site of the enzyme (Wehrfritz et al., 2007).   
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Before translation, newly synthesised BTV transcripts need to be capped and this process 

takes place inside the core. This function is provided entirely by VP4, which has an RNA 

triphosphatase, guanyltransferase, guanine-N7-methyltransferase and 2’-O-

methyltransferaze activities (Le Blois et al., 1992; Martinez-Costas et al., 1998; Ramadevi 

and Roy, 1998; Roy, 2008a). The resolved atomic structure of BTV-10 VP4 allowed 

mapping of these catalytic activities to specific regions of the protein (Sutton et al., 

2007). In the first step in cap formation, hydrolysis of the 5’triphosphate to diphosphate 

is catalysed by RtPase which likely resides within the most conserved C-terminal domain 

of VP4 (GT-domain). The GT-domain (C-terminal 135 amino acids) is also proposed to 

contain the GTPase activity responsible for addition of GMP via a 5’-5’ triphosphate 

linkage to the diphosphate terminus. The next step in cap formation, i.e. transfer of a 

methyl group to the N7 position, is catalysed by N7MTase. The N7MTase domain is split 

between amino acid residues 110-154 and 370-509, between which the 2’OMTase 

domain is inserted (amino acid residues 175-377).  2’OMTase catalyses methylation of a 

2’hydroxyl group in the ribose of the 5’ terminal nucleotide. The active site of 2’OMTase 

has been mapped to the KDKE tetrad, encompassing Lys178, Asp265, Lys306 and Glu335 

(Sutton et al., 2007). Both VP4 methyltrasferases use AdoMet as a substrate and in vitro 

experiments confirmed that in the presence of AdoMet, VP4 could modify BTV mRNA to 

form a fully methylated cap structure (Ramadevi and Roy, 1998). Interestingly, VP4 

possesses another domain at its N-terminal (first 108 amino acids) which contains a 

kinase fold but lacks some of the typical features of kinases (Sutton et al., 2007). This 

domain (termed KL) was proposed to facilitate protein-protein interactions, possibly with 

VP1 or VP3 during core assembly (Sutton et al., 2007).  

The smallest enzymatic protein found in the core is VP6 (35.7 kDa), a viral helicase that 

acts early in BTV replication (Matsuo and Roy, 2009). It possesses nucleic acid-binding 

sites and can act as an RNA-dependent ATPase (Calvo-Pinilla et al., 2009a; Roy et al., 

1990; Stauber et al., 1997). In vitro, in the presence of ATP and magnesium ions, VP6 can 

bind blunt-ended dsRNA as well as duplexes with 3’ or 5’ overhangs, and it is capable of 

unwinding double-stranded RNA molecules. Hence, it likely assists in the transcription 

process by unwinding the RNA duplex ahead of active VP1 replicase, or by separating the 

newly synthesised strand from the template after transcription (Roy, 2008a; Stauber et 

al., 1997). The nucleic acid binding properties of VP6 have been partially mapped to two 
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regions located within amino acid residues 181- 212 and at the C-terminal (Hayama and 

Li, 1994). A study by Kar and colleagues showed that two conserved motifs played roles 

in VP6 ability to unwind the RNA duplex (Kar and Roy, 2003). An AxxGxGK110V motif is 

essential for ATPase activity and Lys110Asn mutation abrogated the ability of VP6 to bind 

ATP. An Arg205Gln mutant in the arginine-rich RxGRxxR motif also showed reduced 

ATPase activity, but ATP binding was not affected. Additionally, the latter mutant was 

not able to bind RNA, which confirmed that ATPase function was directly related to RNA-

binding activity (Kar and Roy, 2003).  

1.6.4 NS1  

BTV encodes four non-structural proteins. NS1, the largest of these proteins, forms 

tubules in the cytoplasm of BTV infected cells (Hewat et al., 1992b). NS1 is the most 

abundant viral protein synthesised in the infected cells, constituting 25% of all viral 

proteins (Van Dijk and Huismans, 1988). Multimers of NS1 form helically coiled ribbons 

68 nm in diameter and can reach 1000 nm in length (Huismans and Els, 1979). The 

carboxy terminus is required for tubule formation and deletion of 10 C-terminal amino 

acids abrogates its function (Monastyrskaya et al., 1995). Mutations of two cysteine 

residues positioned at 337 and 340 in the hydrophilic region of the protein lead to 

products that are polymerised into ribbon-like structures but do not form clearly defined 

tubules (Monastyrskaya et al., 1994). Tubules first appear 2-4 h post infection at 

approximately the same time as synthesis of other BTV proteins can be observed, but no 

virus progeny have yet formed. While, at the early stages of infection, tubules are mostly 

associated with viral inclusion bodies, later they can be seen dispersed across the host 

cell cytoplasm (Huismans and Els, 1979). Cryo-electron microscopy studies showed that 

tubules could be associated with intermediate filaments of the infected cells (Hewat et 

al., 1992b). NS1 is highly conserved among different serotypes but its function has not 

been fully elucidated.  

NS1 is involved in cellular pathogenicity and disruption of tubule formation leads to a 

change in the mode of BTV exit from infected cells (Owens et al., 2004). Using antibodies 

that interfered with NS1 tubule formation, Owens et al. induced a shift in mammalian 

infected cells from lytic release of virions, to egress via budding through the cell 

membrane (Owens et al., 2004). Viral replication was not affected but little virus-induced 



INTRODUCTION   

   

33 

 

CPE was observed compared to when the tubules were intact. Since NS1 tubules are also 

abundant in insect cells, which do not display CPE when infected with BTV, another factor 

has been proposed to affect viral egress via budding from the cell membrane (Owens et 

al., 2004). Another BTV protein, NS3, is abundantly expressed in infected invertebrate 

cells where the NS1:NS3 ratio is much higher compared to what is observed in 

mammalian cells. NS3 has been shown to facilitate non-lytic release of virions via the 

calpactin dependant exocytic pathway (Beaton et al., 2002). Owens and colleagues 

hypothesised that NS1, in conjunction with NS3, might play a role in the different 

mechanisms followed by BTV to exit the infected cell (Owens et al., 2004). High NS1 

levels relative to NS3 (as seen in mammalian cells) would favour accumulation of BTV 

progeny in the cytoplasm, leading to cell lysis and virion release, while low NS1:NS3 ratio 

would lead to BTV egress via a budding mechanism (Owens et al., 2004).  

Until recently, the mechanism by which BTV mRNA competes with the host mRNA for 

the protein translation machinery has been unclear. Boyce and colleagues showed that 

NS1 is sufficient to preferentially upregulate BTV translation (Boyce et al., 2012). The 

authors used a reporter RNA composed of a GFP ORF incorporated within the sequence 

of S10 to examine the effect of individual BTV segments on gene expression (Boyce et 

al., 2012). The increase of fluorescence was observed only when cells were transfected 

with the reporter in the presence of NS1. The UTRs of viral RNA were shown to be 

sufficient for NS1 induced up-regulation of protein expression. However, the relative 

level of expression varied between individual BTV genes, suggesting that specific UTR 

sequences dictate the amount of protein synthesis from individual genes (Boyce et al., 

2012). 

1.6.5 NS2 

NS2 is a major component of VIBs, large perinuclear structures that increase in size and 

density as infection progresses (Thomas et al., 1990). VIBs can be observed within four 

hours and reach their peak at about 18 hours post infection (h.p.i.) (Brookes et al., 1993). 

VIBs are the sites of viral protein synthesis and assembly and contain newly formed 

virions at different stages of morphogenesis (Brookes et al., 1993). By expressing NS2 in 

insect cells, Thomas et al. showed that NS2 was associated with VIB but not with free 



INTRODUCTION   

   

34 

 

virions, and that it could form inclusion bodies within the cells even if expressed 

independently of the other BTV proteins (Thomas et al., 1990).  

NS2 has a strong affinity for single stranded RNA but it does not bind double stranded 

RNA (Huismans et al., 1987b; Lymperopoulos et al., 2006; Thomas et al., 1990). The 

protein has been reported to interact with ssRNA in a non-specific manner (Huismans et 

al., 1987b; Taraporewala et al., 2001). However, recent studies showed that NS2 

preferentially binds to BTV-specific RNA (Lymperopoulos et al., 2006; Lymperopoulos et 

al., 2003). RNA binding regions are located at amino acid residues 2-11, 153-166, and 

274-286, and each of these domains differ in their affinity for ssRNA (Fillmore et al., 

2002). Lymperopoulos et al. suggested that NS2 might have particular domains solely 

responsible for binding to BTV RNA as well as sites that can bind ssRNA non-specifically 

(Lymperopoulos et al., 2003). The RNA sequences recognised by NS2 lie within the coding 

region and the protein-RNA interactions are likely due to the secondary structure of RNA 

rather than the primary sequence (Lymperopoulos et al., 2003). These secondary 

structures have been mapped for four BTV-10 segments, to nucleotide regions 901-1352 

for S5, 721-861 for S8, 1-273 for S9 and 99-170 for S10 (Lymperopoulos et al., 2006; 

Lymperopoulos et al., 2003).   

In addition to high affinity for ssRNA, NS2 has the ability to initiate BTV core formation 

by interacting with VP3 and indirectly recruiting VP7 (Kar et al., 2007). It has also been 

shown to bind VP1, the component of the transcriptase complex (Modrof et al., 2005). 

Together, these observations suggest that in VIBs, NS2 recruits BTV ssRNA that directly 

interacts with the VP1, VP4, and VP6 complexes, which are then encapsulated by VP3 

and VP7 to form the viral core. The synthesis of the second RNA strand would then occur 

inside the previously assembled core (Lymperopoulos et al., 2003). 

NS2 is the only BTV protein that is phosphorylated, a process that can be mediated in 

vitro by CK2 kinase (Modrof et al., 2005). Phosphorylation has been mapped to two 

serine residues located at the C-terminal at positions 249 and 259. Modrof and 

colleagues demonstrated that non-phosphorylated NS2 is still able to interact with RNA 

with equivalent efficiency to wild-type NS2. Phosphorylation, however, was essential for 

VIB formation as mutation of the two serine residues into alanine caused dispersion of 

NS2 throughout the cytoplasm. Moreover, BTV infection of BHK-21 cells expressing the 
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non-phosphorylated form of NS2 did not result in VIB formation (Modrof et al., 2005). 

NS2 can bind nucleotides and possesses nucleotidyl phosphatase. The ability to 

hydrolyse NTPs has been suggested to aid energy generation for transport of ssRNA and 

its packaging inside the viral core (Taraporewala et al., 2001). 

1.6.6 NS3  

NS3 is a membrane protein with two transmembrane domains within amino acid 

residues 117-140 and 162-183, which are spanned by a longer N-terminal domain and a 

short C-terminal domain (Bansal et al., 1998; Beaton et al., 2002). Both N-terminal and 

C-terminal domains are located in the cytosol, and the extracellular domain located in-

between contains the only glycosylation site (asparagine at position 150) (Beaton et al., 

2002). Two conserved late domains have been identified within the N-terminal 

cytoplasmic domain of NS3. Late domains are commonly found in enveloped viruses that 

utilise budding for virion release (Celma and Roy, 2009; Freed, 2002). NS3A is a shorter 

variant of NS3 that lacks the 13-N terminal amino acid residues and it is translated from 

a second initiation codon at position 14 within the ORF of NS3.  

Expression of NS3/NS3A varies between mammalian and insect cells with much higher 

NS3A levels in the latter (Guirakhoo et al., 1995). Guirakhoo and colleagues observed 

that a BTV-10 strain adapted to C6/36 cells did not cause CPE in this cell line. Additionally, 

the concentration of viral particles recovered from the medium of infected insect cells 

was much higher than from BHK-21 cells infected with the parental strain (Guirakhoo et 

al., 1995). As mentioned above, two different modes of BTV egress have been 

demonstrated. The lytic cycle, with distinctive CPE is typically seen in mammalian cells, 

whereas the virus is released from insect cells through budding from the cell membrane 

(Celma and Roy, 2009; Guirakhoo et al., 1995). These observations prompted 

speculations that NS3/NS3A plays a crucial role in viral egress in its vector.  

Yeast two-hybrid approaches revealed interactions between NS3 and the mammalian 

protein A100A10/p11, which is a light chain component of the calpactin complex 

involved in trafficking and cellular exocytosis (Beaton et al., 2002). Binding of 

A100A10/p11 is dependent on the first 13 amino acid residues of NS3 (absent in NS3A), 

forming a putative amphipathic helix. The same study showed that, whereas the N-

terminal portion of NS3 is involved in the interaction with A100A10/p11, the C-terminal 
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binds to VP2 forming a bridge between mature the virion and the exocytic machinery 

(Beaton et al., 2002). These data suggest that NS3 (but not NS3A) acts as an intermediate 

that facilitates non-lytic release of mature virions by utilising a common cellular pathway. 

These results are further substantiated by the fact that BTV NS3 can recruit tumour 

susceptibility gene 101 protein (Tsg101), a member of the ESCRT-1 complex involved in 

protein sorting, formation of multi-vesicular bodies and the last stages of membrane 

fission (Wirblich et al., 2006). Specifically, the late domain motif of NS3, PSAP, was shown 

to interact directly with Tsg101 in vitro, and with the protein’s homologue in the 

Drosophila infection model (Wirblich et al., 2006).  The ability to bind A100A10/p11 and 

Tsg101 is likely to be more important in establishing persistent infection in the vector 

than in the infection of the mammalian host (Roy, 2008b; Wirblich et al., 2006). The 

second late domain motif in NS3, PPRY, is located downstream of PSAP and separated 

by just one amino acid residue. The PPxY motif acts as a ubiquitination substrate of 

enzymes of the Neuronal precursor cell-expressed developmentally downregulated 4 

(NEDD4) family and is critical for budding and release of retroviruses from the host cell 

(Ingham et al., 2004). NEDD4 proteins regulate multiple cellular ubiquitin-mediated 

processes including targeting of proteins for proteasomal degradation, protein sorting 

and transport via endocytic pathways.  (Ingham et al., 2004). PPRY is highly conserved 

among all serotypes of BTV (Bhattacharya et al., 2015). When this motif was mutated 

into AARA, distribution of BTV in ovine PT cells changed and the virions were no longer 

found inside vesicles (as seen for wild type BTV), but were found free inside the cytosol 

in the areas surrounding the vesicles (Bhattacharya et al., 2015). Additionally, virus 

mutants showed decreased yields in BSR and PT cells and a significant reduction 

specifically in the titres of BTV released into cell culture medium. It is possible that the 

PPRY motif plays a role in non-lytic exit of BTV, similar to the manner of enveloped virus 

egress, and facilitate cell-to-cell spread in the early stages of infection (Bhattacharya et 

al., 2015). Both late domain motifs, PPxY and PxAP, are well conserved amongst many 

species of Culicoides-borne Orbiviruses such as AHSV, EHDV, Pata virus, Changuinola 

virus, Chuzan virus and Lebombo virus, while others (e.g. Orungo virus and EEV) possess 

only one complete late domain (Belaganahalli et al., 2015). Interestingly, mosquito-

borne Orbiviruses such as Peruvian horse sickness virus and Yunnan virus carry no late 

domain motifs in their NS3 sequence, and these viruses cause cell death in mosquito 
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C6/36 cells (Attoui et al., 2009). The role of late domains in Orbiviruses other than BTV 

have not been described to date.  

A recent study showed that expression of NS3, and NS3A in particular, is essential for 

release of BTV from Culicoides cells. Mutations of either the first or the second start 

codon in S10 dramatically reduced the titres of BTV recovered from culture medium, 

while the amount of cell-associated virus remained similar to wild type BTV. Interestingly, 

mutation of the second methionine did not affect viral release from the mammalian cells 

(van Gennip et al., 2014). The authors concluded that both NS3 and NS3A were necessary 

for BTV egress from KC cells, while only NS3 was essential in the mammalian host. 

However, the specific role of the second methionine residue in NS3 binding to 

A100A10/p11 (and not related to initiation of NS3A translation) was not discussed 

(Beaton et al., 2002; van Gennip et al., 2014).  

Interaction of NS3 with VP2 mediates virus release from the host cell. In vitro studies 

showed that both proteins co-localize in the Golgi apparatus, along the exocytic pathway 

and plasma membrane of the host cell. These observations suggest that interaction of 

the two proteins plays a role in viral egress. Based on sequence comparison of NS3 

proteins of different Orbiviruses, Celma and Roy identified a conserved region in the C-

terminal region of NS3 (amino acid residues 196-202) likely to be involved in NS3-VP2 

binding. Using a series of NS3 mutants with Ala substitutions in residues either 196-198 

and/or 201-202 or a STOP codon in position 212, the authors examined the importance 

of specific amino acids in the C-terminal (Celma and Roy, 2009). The mutants co-localised 

with VP2 in the same manner as the wild type proteins. However, they did not bind VP2 

in pull-down assays, which suggested that the interaction between the proteins was 

disrupted by these mutations. It was impossible to rescue viruses containing mutations 

in NS3 residues 201-202 using reverse genetics, and the other mutant viruses that were 

rescued, showed decreased growth compared to the wild type controls. Additionally, 

one of the virus mutant containing a premature stop codon resulting in the deletion of 

the last 18 amino acid residues (BTVCT4) was shown to be released from BSR cells 4 

times less efficiently than the control virus.   

The properties of NS3 described above suggest that NS3 is essential for BTV egress and 

that it interacts with both viral and host cellular factors to facilitate trafficking of the 
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nascent particles (Roy, 2008b). Additionally, the protein was shown to inhibit the IFN-β 

promoter by acting on the IFN expression pathway downstream of RIG-I and upsteam of 

IKKε (Chauveau et al., 2013). Surprisingly however, recent work by van Gennip and 

colleagues suggested that NS3 was not essential for BTV replication (van Gennip et al., 

2014). The authors based their conclusion of the fact that they were able to rescue and 

propagate BTV carrying mutations in the first two start codons in the NS3 ORF. The 

mutants produced CPE in BSR cells albeit it was delayed in mutAUG1 and mutAUG1+2-

infected monolayers. The same study also showed that insertion of 4 bp restriction sites 

at amino acid positions 56 or 88 that led to expression of truncated forms of NS3 

abrogated CPE formation until revertant mutants emerged in subsequent passages (van 

Gennip et al., 2014). Moreover, mutant viruses lacking a stretch of amino acids between 

the first and the second AUG of NS3 ORF (the region interacting with A100A10/p11) were 

found not to be viable (Feenstra et al., 2014). Further work is therefore necessary to 

clarify the importance of S10/NS3 in BTV replication in vitro.  

1.6.7 NS4  

Until recently, it was believed that the BTV genome is monocistronic (Firth, 2008; 

Ratinier et al., 2011). Bioinformatics analysis of S9, however, revealed the presence of a 

second ORF located at +1 position with respect to the VP6 ORF. This ORF encodes a 

protein of 77-79 amino acids, which is highly conserved among different BTV serotypes 

(Ratinier et al., 2011). NS4 contains 11 basic amino acids at the N-terminal domain, 

shown to be involved in nuclear trafficking of the protein. Due to the presence of a 

leucine zipper at the C-terminal, the protein was suggested to have nucleic acid binding 

properties. NS4 has been shown to be expressed in BTV-infected cells both in vitro and 

in vivo. The protein localises in the nucleolus and its presence in the infected cells can be 

detected as early as 2 hours post infection. Ratinier and colleagues rescued, by reverse 

genetics, BTV mutants that did not express NS4 protein but kept VP6 expression intact. 

These mutants replicated in vitro at a similar rate to the native viruses, showing that NS4 

is dispensable for virus replication, at least in tissue culture (Ratinier et al., 2011). 

Additionally, there was no difference in the virulence of these mutants and the parental 

strains in two mouse models examined by the authors. The role of NS4 has not been 

elucidated, however, it might be involved in evasion of the host immune system. In BTV-

8 the presence of intact NS4 allowed for more efficient replication in  cells primed with 
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type I interferon (IFN), compared to NS4 deletion mutants (Ratinier et al., 2011). The role 

of NS4 in infection of the insect vector and the natural host has not been described to 

date. NS4 of BTV, and recently of AHSV, have been demonstrated to bind to dsDNA, 

however the significance of this finding has not been explored further (Belhouchet et al., 

2011; Zwart et al., 2015).  

1.6.8 Segment 10 ORF 2 

Recent bioinformatics analysis of the BTV genome revealed the presence of yet another 

previously unidentified ORF (Sealfon et al., 2015). This approach identified an internal 

signal in S10 corresponding to a 50-59 codon-long ORF conserved among BTV isolates. 

Two initiation codons are present at the amino terminal of the sequence, the second of 

which is fully conserved while the first is absent in several isolates. Apart from the two 

AUGs and the stop codon, the rest of the sequence of this overlapping ORF is poorly 

conserved and majority of mismatches are non-synonymous (Sealfon et al., 2015). In 

addition, the second AUG sits in +1 frame of the late domain PPxY of the NS3 

(Bhattacharya et al., 2015). This part of the sequence is does not allow much flexibility.  

It is unclear at present whether this ORF encodes a functional protein, and Sealfon and 

colleagues suggested the possibility that the sequence might encode an RNA structural 

element (Sealfon et al., 2015). A recent study demonstrated that a plasmid-expressed 

tagged product of this ORF localises in the nucleolus of transfected cells (Stewart et al., 

2015). A luciferase expression assay showed that ORF 2 expressed protein inhibited gene 

expression, but not RNA translation. No differences were observed in the growth assays 

between wild type BTV and the mutant virus not expressing the ORF 2 protein. 

Moreover, the ORF 2 deletion mutants did not have any effect on BTV pathogenicity in a 

mouse model of disease. The authors suggested that the protein might play a role in 

infection of the Culicoides vector or the ruminant host (Stewart et al., 2015). 

1.7 Clinical disease and pathogenesis 

Hutcheon’s first detailed description of bluetongue in sheep was published in 1881 

where he referred to the disease as Epizootic Catarrh (Hutcheon, 1881). Animals affected 

by bluetongue initially display a fever that usually exceeds 40oC and can last up to 7 days. 

The first characteristic signs of disease appear a few days later and include excessive 

salivation, facial oedema, nasal discharge and inflammation of the oral and nasal mucosa 
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(Cox, 1954; Elbers et al., 2009; Spreull, 1905). The onset of these symptoms might be 

preceded by 1-2 days of anorexia (Spreull, 1905). As disease progresses, erosions of the 

oral mucosa and characteristic lesions of the tongue and buccal mucosa become 

apparent and are often accompanied by swelling of the lips and tongue. At this stage, 

anorexia, apathy and depression are usually present (Elbers et al., 2008b; Erasmus, 

1975). In severe cases, the tongue epithelium might become entirely necrotic, and then 

slough (Elbers et al., 2008c; Elbers et al., 2009; Hutcheon, 1881; Spreull, 1905). However, 

cyanosis of the tongue leading to a “blue tongue” is rarely seen in the field (Hutcheon, 

1881). Respiratory distress is common and partially related to nasal congestion and 

encrustation of the nasal passage, and in severe cases caused by pulmonary oedema and 

pleural effusion (Cox, 1954). In the later stages of the disease, diarrhoea might occur, 

often containing mucus or blood (Cox, 1954; Erasmus, 1975).  

Foot lesions are often present in sick animals. Generally, inflammation of the coronary 

band develops after nasal and mouth sores begin to heal. The extent of coronitis differs 

between affected sheep and may result in lameness and reluctance to stand. Sheep 

trying to walk and feed on their knees are a characteristic picture of BTV-induced 

coronitis (Erasmus, 1975). 

Animals with severe bluetongue may show signs of muscle degeneration ranging from 

general weakness and prostration to sudden emaciation. Torticollis develops in some 

cases, usually around two weeks after disease onset (Cox, 1954; Spreull, 1905). Excessive 

desquamation and fleece shedding can occur (Elbers et al., 2008b; Erasmus, 1975). 

Mortality usually ranges from 2 to 30% but can reach much higher numbers in naïve 

susceptible flocks (Conraths et al., 2009; Cox, 1954; Erasmus, 1975; Szmaragd et al., 

2007).    

Until recently there has been little emphasis on bluetongue in cattle (Hourrigan and 

Klingsporn, 1975a). Although viraemic, infected cattle rarely develop symptomatic 

disease. The clinical presentation in animals that show signs of bluetongue is much 

milder than in sheep, and is rarely fatal. The most common clinical signs include fever, 

hyperaemia of the oral and nasal mucosae, mucopurulent nasal discharge, frothing, 

swelling of the tongue, ulceration and coronitis (Bekker et al., 1934; Dal Pozzo et al., 

2009; Hutcheon, 1881; Thiry et al., 2006). Lactating cows can develop inflammation and 
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lesions of the teat and udder. Milk production is markedly reduced (Dal Pozzo et al., 

2009; Thiry et al., 2006). Skin of affected animals might be inflamed, and necrotic lesions 

are often observed. Animals with acute dermatitis display photosensitivity and seek 

shaded areas at pasture (Bekker et al., 1934). Often, infected cattle show only one of the 

characteristic bluetongue signs combined with non-specific signs of infection such as 

apathy and inappetance (Williamson et al., 2008).  

Other species of ruminants can also become infected with BTV. White-tailed deer are 

particularly susceptible to BTV and often succumb to severe and fatal disease (Thomas 

and Trainer, 1970). On the contrary, BTV-infected goats become viraemic but rarely 

display signs of disease (Caporale et al., 2014; Erasmus, 1975; Luedke and Anakwenze, 

1972). In addition, antibodies against several BTV serotypes were detected in a range of 

carnivorous species including cheetahs, lions, hyenas and domestic cats and dogs in 

Africa (Coetzee et al., 2012a).  

BTV invasion of a mammalian host begins when a carrier vector deposits infectious 

virions at the bite site. The initiation of infection is likely facilitated by insect-dependent 

factors that modulate the host’s innate immune reaction (Pages et al., 2014). The virus 

then travels into regional lymph nodes where the primary replication takes place 

(Barratt-Boyes and MacLachlan, 1994; Barratt-Boyes et al., 1995; MacLachlan et al., 

1990). Conventional dendritic cells in the lymph of the skin are specifically targeted by 

BTV and interestingly the virus infection prolongs their survival, making them an optimal 

vehicle for further spread (Hemati et al., 2009). From lymph nodes, BTV disseminates to 

a variety of tissues and virus replication takes place primarily in capillary endothelial cells, 

mononuclear cells and lymphocytes (Darpel et al., 2007; Maclachlan et al., 2009; Pini, 

1976). Bovine monocytes can support BTV replication in vitro, however in vivo they are 

infected with low frequency and therefore unlikely to be a major source of viraemia in 

cattle (Whetter et al., 1989). BTV can also infect the γδ subset of T-lymphocytes without 

inducing shut-off of host protein synthesis or causing cell death (Takamatsu et al., 2003). 

In the bloodstream, a large fraction of BTV can be found associated with erythrocytes 

and thrombocytes, where it can persist for extended periods (Maclachlan, 1994). Indeed, 

BTV can be detected in the blood of infected animals for approximately 6 months, 

although infectious virus can only be isolated for up to two months post infection 
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(Barratt-Boyes and MacLachlan, 1994; Bonneau et al., 2002; Koumbati et al., 1999; 

MacLachlan, 2004).  

Once vireamia is established (4-6 days post infection; d.p.i.) BTV can be detected in most 

organs, including the lymph nodes, spleen, lungs, heart and intestines (Pini, 1976). In the 

spleen, the majority of BTV-infected cells are found on the periphery of lymphoid follicles 

(MacLachlan et al., 1990). Lung tissue collected from sick animals often shows signs of 

oedema and inflammation with moderate infiltration of lymphocytes, plasma cells and 

eosinophils (Darpel et al., 2012). In the heart, BTV can be found associated with 

capillaries, but is not found in cardiac muscle cells. Similarly, infected capillaries can be 

detected in the lip, tongue and skin tissue (Darpel et al., 2012). Infection of the 

endothelium leads to increased vascular permeability and therefore is the major cause 

of activation of the inflammatory cascade and development of extensive oedema 

(Chiang et al., 2006). 

Damage to endothelial cells and the subsequent inflammatory response are the likely 

mechanism leading to the pathology seen in infected animals. In particular, BTV infection 

was shown to induce expression of interleukin (IL) -1, IL-8 and vasoactive mediators in 

vitro in ovine (OvEC) and bovine endothelial cells (BoEC). Additionally, increased levels 

of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were found in 

BTV-infected BoEC. While COX-2 is considered an inflammatory mediator, it is also an 

important source of prostaglandins (prostacyclin in particular) and therefore can play a 

role in inhibition of platelet aggregation, indirectly reducing BTV-induced vascular 

damage (Cheng et al., 2002). A comparison between responses of lung endothelium of 

sheep and cattle to BTV challenge revealed that production of vasoactive mediators, and 

specifically the ratio between thromboxane and prostacyclin, was crucial in determining 

the degree of endothelial cell susceptibility to virus-induced damage (DeMaula et al., 

2001; DeMaula et al., 2002a). Thromboxane is a vasoconstrictor and has prothrombic 

properties, while prostacyclin is a vasodilator and an inhibitor of platelet aggregation 

with anti-inflammatory functions (Cheng et al., 2002). Healthy endothelium maintains 

homeostasis between both types of prostaglandin. In cattle and sheep infected with BTV, 

the ratio of thromboxane to prostacyclin is increased indicating enhanced coagulation 

(DeMaula et al., 2002a). However, the increase of thromboxane is significantly greater 

in sheep (DeMaula et al., 2002a). Russell and colleagues compared responses of OvEC 
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and BoEC to BTV infection in vitro (Russell et al., 1996). The authors showed that 

infection of OvEC results in higher virus yields at 72 h.p.i., despite higher levels of IFN 

released by this cell line in response to infection (Russell et al., 1996). Overall, these 

observations could in part explain the factors behind the low incidence of symptomatic 

disease in infected and viraemic cattle in comparison to more severe bluetongue 

manifestations in sheep (Maclachlan et al., 2009).  

1.8 Epidemiology 

1.8.1 Overview of global BTV distribution 

There are currently 27 serotypes of BTV recognised and distributed across all continents 

with the exception of Antarctica (Jenckel et al., 2015; Maclachlan, 2011). The global 

distribution of specific strains/serotypes is constantly changing and new incursions 

happen frequently. In recent years, BTV distribution has been expanding northwards and 

now includes areas between latitudes of 34oS and 53oN. Two geographic groups of BTV 

have been described based on phylogenetic studies and they divide the strains into 

western and eastern “topotypes” that include the Americas and Africa, or the Middle 

East, Asia and Australia, respectively (Bonneau and MacLachlan, 2004). Figure 4 shows 

the serotypes reported in specific regions of the world.  

 

Figure 4. Global distribution of BTV. Based on data obtained from: 
http://www.reoviridae.org/dsrna_virus_proteins/ btv-serotype-distribution.htm, edited 
by Mertens et al. (accessed June 2015) 

http://www.reoviridae.org/dsrna_virus_proteins/%20btv-serotype-distribution.htm
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Prior to 1998, BTV incursions into Europe occurred very infrequently and affected only 

countries of the Mediterranean Basin including Spain, Portugal, Cyprus and Greece 

(Mellor and Wittmann, 2002).  The situation changed dramatically when a BTV-9 

outbreak occurred on several Greek islands and spread northwards and westwards 

affecting nine other countries. Further incursions of BTV-1, -4 and -16 from Greece and 

separately from Morocco followed shortly after. With the additional introduction of BTV-

2 into Italy from Northern Africa, it became clear that the environment of Southern 

Europe was sufficient to support the spread of BTV (Purse et al., 2005). In 2006, BTV-8 

was first introduced to the Netherlands by unknown means and expanded across 

Europe, reaching as far north as Scandinavia. Shortly after, BTV-1 emerged in Southern 

Europe and by 2008, it was detected in several countries including Spain, Portugal and 

France (Wilson and Mellor, 2009). In the same year, an additional serotype, BTV-6, was 

reported in the Netherlands and in Germany, and it appeared to be related to the 

modified live vaccine strains from South Africa (Eschbaumer et al., 2010; Maan et al., 

2010). Moreover, surveillance in Switzerland detected a novel virus that caused disease 

in goats and did not belong to any known BTV serogroup. The virus was first called 

Toggenburg and later, based on sequence and phylogenetic analysis, reclassified as BTV-

25 (Hofmann et al., 2008). Another novel serotype, BTV-27, was reported in 2014 in the 

Corsica region of France. The virus was closely related to BTV-25 from Switzerland and 

BTV-26 from Kuwait (Jenckel et al., 2015). 

The reasons behind the sudden spread of BTV in Europe are still a matter of debate 

although several factors, including increased vector range, climate change (especially 

milder temperatures in winter) and effective overwintering mechanisms are likely to play 

a crucial role in the process (Purse et al., 2005). Moreover, the emergence of novel 

serotypes in distinct areas of Europe could reflect a rapid adaptation of BTV to new 

environments and the available vector and host species.  
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Figure 5. BTV serotype distribution in Europe and the Mediterranean Basin in 2004-2014. 
Representation of BTV distribution based on data obtained from OIE-BT-Labnet 
http://oiebtnet.izs.it/oiemaps/  

 

1.8.2 Vector and transmission 

BTV is transmitted from an infected host to a susceptible animal primarily by biting 

midges, Culicoides spp. The earliest concept of bluetongue as an insect transmitted 

disease came from observations of disease occurrence patterns in South Africa. In 1905, 

Spreull noted that bluetongue was most common in warm seasons, and depended on 

rainfall, and outbreaks cease after the first frost season. Additionally, flocks grazing at 

high altitudes and kept indoors overnight did not contract BTV, and animals with unshorn 

wool were more resistant to infection (Spreull, 1905). In 1944, du Toit experimentally 

infected sheep with homogenates of either wild-caught Culicoides midges or midges fed 

on infected animals. Consequently, the sheep developed bluetongue, which confirmed 

that Culicoides was a vector of bluetongue (du Toit, 1944). The virus has also been shown 

http://oiebtnet.izs.it/oiemaps/
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to cross the placental barrier leading to foetal infection, the phenomenon attributed 

mainly to egg and cell passaged strains (Parsonson, 1990). Experimental infection of 

IFNAR-/- mice showed that BTV-8 could be spread orally between infected and naïve 

animals (Calvo-Pinilla et al., 2010). Recently, Batten and colleagues showed that BTV-26 

was not able to replicate in C. sonorensis but it was spread in goats via direct contact 

(Batten et al., 2014).    Additionally, there is evidence that suggests that BTV can spread 

via an oral route to certain African carnivores, but their role in the natural infection cycle 

is unclear (Alexander et al., 1994). 

Culicoides biting midges are extremely common worldwide and although over 1000 

species are recognised, only a few have been shown to be able to transmit BTV efficiently 

(Meiswinkel et al., 2004). Competent vector species differ between continents. C. imicola 

is the traditional BTV vector commonly found in Africa and parts of Asia, as well as 

Southern Europe (du Toit, 1944; Maclachlan, 2010b, 2011; Mellor et al., 1984; Savini et 

al., 2005). This species, however, is not present in the north of Europe and the 

transmission of BTV-8 was therefore attributed to Palearctic species of Culicodes 

including C. obsoletus, C. pulicaris, C. dewulfi and C. chipterus (Caracappa et al., 2003; 

Purse et al., 2004; Savini et al., 2004). It has been suggested that certain species of 

Culicoides might be competent vectors for only specific serotypes of BTV (Tabachnick, 

2004). In particular, C. sonorensis has been associated with BTV- 10, 11, 13 and 17 spread 

in Northern America, while C. insignis is a vector of BTV-1, 3, 6, 8, 12 and 14 in South 

America (Lager, 2004; Tabachnick, 2004). BTV-2 has been isolated only in southern parts 

of the USA likely due to specific association with C. insignis that is not found in the 

northern parts of USA  (Gibbs and Greiner, 1994; Maclachlan, 2011).  This division 

between the occurrence of a specific competent vector in a confined geographic area 

and the prevalence of distinct BTV serotype could involve factors such as vector-virus 

interactions, availability of a particular host species or other environmental factors 

(Tabachnick, 2004). 

C. sonorensis is one of the common vector species of BTV. The rate of transmission by 

this species is extremely high and a single bite of an infected midge is sufficient for 

infection of the natural host (Baylis et al., 2008).  Transmission of BTV from an infected 

animal to a vector occurs at a much lower frequency (estimated transmission at less than 

1% efficiency). Although in experimental conditions 70% of midges feeding on viraemic 



INTRODUCTION   

   

47 

 

sheep had detectable BTV titres immediately after a blood meal, only 0.6% became 

infected with BTV (Baylis et al., 2008). This suggests the presence of barriers within the 

vector that constrain viral growth or dissemination to salivary glands where BTV 

replicates prior to release into the mammalian host during the bite of an infected midge 

(Fu et al., 1999). Three of such barriers have been identified in C. variipennis. The 

mesenteron infection barrier prevents establishment of infection in the midgut. The 

mesenteron escape barrier limits the replication to the cells of the gut and this 

dissemination barrier can impede the spread of BTV from the haemocoel to the 

secondary sites of replication (Fu et al., 1999). These barriers might effectively stop the 

transmission of BTV in the majority of C. variipennis, referred to as refractory midges. 

The remaining susceptible population is transmission competent and serves as a genuine 

vehicle that allows BTV spread in the natural infection cycle (Fu et al., 1999; Mellor, 

1990). The traits that govern susceptibility of an individual midge to bluetongue infection 

are genetic, and cross-breeding of the midge population can lead to selection of insects 

that are either highly susceptible or refractory to BTV (Jones and Foster, 1974; Mellor, 

1990). Tabachnick identified a single genetic locus, blu that controlled C. variipennis 

competence for BTV infection (Tabachnick, 1991). Interestingly, the rate of transmission 

by Culicoides is extremely high and a single bite from an infected midge might be 

sufficient for infection of the natural host (Baylis et al., 2008). Viraemia and antibody 

levels increase, however, with the number of infected midges that feed on the host, and 

the BTV titre of the vector (Baylis et al., 2008).  

Transplacental transmission of BTV had been associated mainly with the use of live 

vaccine strains passaged multiple times in embryonated chicken eggs or in tissue culture. 

In 1955, Schultz reported that a significant number of lambs were aborted or born with 

severe developmental abnormalities after a vaccination campaign in California.  Cerebral 

malformations were most common, often leading to so called “dummy lamb syndrome”, 

where the animals would be unresponsive to sensory stimuli, would not feed and would 

often walk in circles (Schultz and Delay, 1955). Sheep vaccinated between 30-80 days of 

gestation with live attenuated strains of BTV are most likely to give birth to congenitally 

deformed lambs, but the degree of pathology differs depending on the period of 

gestation. Specifically, experimental infection with the vaccine strain on the 40th day of 

gestation resulted in hydranencephaly and development of subcortical cysts in 20% of 
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lambs, while infection on the 75th day caused mild, and predominantly focal, lesions and 

porencephaly at birth. BTV does not naturally infect mature cells of neural origin, instead 

it replicates in precursor cells (neuronal and glial) found in the subependymal plate prior 

to their migration to the cerebral cortex. The virus then induces lysis of the 

undifferentiated cells leading to widespread necrosis and hydranencephaly (Osburn, 

1994; Osburn et al., 1971a; Osburn et al., 1971b). At later stages of gestation, the only 

susceptible cells are undifferentiated glial cells and these are selectively targeted by BTV.  

In cattle, the highest susceptibility of foetuses to BTV-induced malformations occurs 

between 70-85 days of gestation (Waldvogel et al., 1992).  

Transplacental spread of BTV seems to be primarily associated with the culture-adapted 

strains. This could be limited by controlled timing of vaccination programmes so that 

pregnant animals were not inoculated during the susceptible period of gestation. 

However, when the novel BTV-8 strain emerged in Northern Europe, it was reported to 

cross the placenta in more than 10% of cases. Since the virus was responsible for high 

mortality and morbidity of hundreds of thousands of animals, the fact that it was also 

transmissible from the mother to offspring became a new concern, not only due to 

potential reproductive losses but also as a possible cause of viral persistence in the 

population, and overwintering (Gibbs et al., 1979; Wilson et al., 2008). However, recent 

studies  comparing vertical transmission of minimally passaged BTV-8 and BTV-2 in 

experimentally inoculated ewes showed higher frequency of transplacental spread in 

sheep infected with the latter serotype (Rasmussen et al., 2013).  It is therefore possible 

that other serotypes/strains of BTV are equally capable of crossing the placenta, at least 

in experimental situations. Molecular determinants enabling BTV to cross the placenta 

have not been described to date. 

1.9 Mouse models of bluetongue infection 

Neonatal mice have been used as a model to study the virulence of BTV strains and 

specific aspects of bluetongue pathogenesis (Caporale et al., 2011; Carr et al., 1994; 

Franchi et al., 2008; Waldvogel et al., 1987; Waldvogel et al., 1986). Mouse death is 

caused invariably by necrotising encephalitis and mortality is affected by the route of 

virus inoculation (Waldvogel et al., 1987). Subcutaneous injection has been used in 

studies to compare neuroinvasiveness of BTV strains, whereas mortality of newborn 
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mice inoculated intracranially has been shown to be an indicator of attenuation of 

vaccine strains (Brewer and Osburn, 1998; Carr et al., 1994; Franchi et al., 2008; 

Waldvogel et al., 1986).  Neonatal mice are useful in differentiating between virulent and 

avirulent BTV strains, however they do not permit the in-depth study of the mechanisms 

of infection, nor reflect the pathology associated with virus dissemination within the 

host. Moreover, an adult model is necessary to identify host factors involved in adaptive 

immunity to BTV.   

Calvo-Pinilla recently developed a new small animal model of bluetongue (Calvo-Pinilla 

et al., 2009a). Adult IFNAR-/- mice on a C57BL/6 genetic background deficient in 

interferon alpha and beta receptors are susceptible to infection with different BTV 

serotypes, and display visible signs of infection such as ocular discharge, fur ruffling and 

apathy. IFNAR-/- mice have been used to compare virulence of different BTV strains, as 

the animal mortality rate gives an indication of the degree of BTV serotype/strain 

pathogenicity (Calvo-Pinilla et al., 2009a; Ratinier et al., 2011). Dissemination of BTV in 

the IFNAR-/- mice resembles infection in the natural host. After intravenous inoculation, 

high levels of BTV are first detected in the spleen followed by an increase in BTV levels 

in the blood and virus dissemination to other tissues including lymph nodes, lungs and 

thymus. Similar to the natural host, IFNAR-/- mice infected with BTV show widespread 

oedema. Histopathological examination of tissues collected from infected animals show 

microscopic lesions present in the lungs and spleen. Lymphoid depletion and neutrophil 

infiltrates are observed in the white pulp of the spleen and the lungs show signs of 

interstitial pneumonia (Calvo-Pinilla et al., 2010; Calvo-Pinilla et al., 2009a). Vaccinated 

IFNAR-/-mice develop neutralizing antibodies and are protected against lethal challenge 

with virulent BTV strains, which makes them a good model for evaluating efficacy of 

modified live vaccines (MLV) against BTV (Calvo-Pinilla et al., 2012; Calvo-Pinilla et al., 

2009b). 

Combining experiments using IFNAR-/- mice and neonatal mice in BTV research can 

provide insight into different aspects of infection. Indeed, two recent studies took 

advantage of both BTV models to assess pathogenicity of BTV in vivo (Caporale et al., 

2011; Ratinier et al., 2011). Caporale and colleagues showed that a minimally passaged 

strain of BTV-9 that caused over 95% mortality in 3-day old NIH-Swiss mice was avirulent 

in the IFNAR-/- model (Caporale et al., 2011). Comparison of survival rates in both models 
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can allow more precise definition of the degree of virus attenuation, which is especially 

important in the development of live vaccines. 

1.10 Host factors influencing outcome of bluetongue infection  

Although BTV can infect all species of domestic ruminants, severe clinical manifestations 

are only commonly found in sheep (described in section 1.7). Sheep inoculated with 

blood from viraemic animals generally develop acute infection with overt symptoms of 

bluetongue while cattle show only mild signs of infection (Bekker et al., 1934; Spreull, 

1905). The difference in morbidity and mortality of cattle and sheep infected with BTV 

has been attributed to the difference in severity of microvascular lesions in these animals 

(as described in chapter 1.7) (Russell et al., 1996). Goats inoculated with infectious blood 

remain asymptomatic, even when infected with blood passaged multiple times in the 

goat (Bekker et al., 1934; Cox, 1954; Erasmus, 1975; Spreull, 1905) 

Early studies that compared the severity of bluetongue in sheep of diverse breeds in field 

and in experimental conditions found that there are marketed differences, particularly 

between indigenous African and imported European breeds (Spreull, 1905). Dorset Horn 

and Dorset Poll are generally considered highly susceptible to BTV (Jeggo et al., 1987). 

Merino, Sardinian and East Friesian sheep were reported to suffer from more severe 

symptoms and more frequently succumb to infection than African or Asian breeds such 

as Awassi and Damani (Cox, 1954; Sellers, 1984). However, outbreaks of symptomatic 

bluetongue were also reported in local breeds in Sudan and Iraq (Sellers, 1984). In recent 

work, no significant differences were seen between Swiss sheep and Dorset Poll (Worwa 

et al., 2008) or between mixed, Sardinian or Dorset Poll breeds (Caporale et al., 2014). 

Cattle of most breeds, including Friesland, Afrikander, Hereford and Shorthorn, were 

reported to be equally susceptible to BTV and to rarely develop severe disease (Bekker 

et al., 1934; Hourrigan and Klingsporn, 1975a). 

It is important to stress that there are marked differences in response to BTV between 

animals of the same breed due to their genetic makeup and immunological status. For 

example, a “Report of the Cattle and Sheep Diseases for 1876” stated that “fat” sheep 

were more susceptible to bluetongue (Cox, 1954). Extensive immunological studies 

performed over several years by Neitz showed that individual Merino sheep injected 
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with the same infectious blood inoculum develop a wide range of symptoms, from mild 

transient fever to full-blown, fatal disease (Neitz, 1948).  

Understandably, previous exposure to BTV and presence of neutralising antibodies have 

major influence on morbidity and mortality caused by bluetongue and it is one of the 

factors that explains why major outbreaks occur when naïve sheep are imported to BTV 

endemic regions (e.g. introduction of Merino to South Africa) or when the virus emerges 

in a new area for the first time (Jeggo et al., 1983; Schwartz-Cornil et al., 2008). In 

addition, co-infection with another pathogen can suppress or sensitise an animal’s 

immunity to such an extent that it becomes more susceptible to BTV infection or displays 

a severe inflammatory reaction (Howell et al., 1970). Treatment of calves with 

dexamethasone prior to inoculation with BTV was shown to facilitate the development 

of severe symptoms in experimental conditions, which shows that innate immunity is 

also in part responsible for the host’s resistance to bluetongue (Hourrigan and 

Klingsporn, 1975a).  

Age has also been quoted as a factor determining the clinical outcome of BTV infection. 

According to Neitz, lambs of immunologically naïve mothers are susceptible to infection, 

but they tend to present milder symptoms than those seen in older animals (Neitz, 1948). 

Bekker reported that bluetongue rarely occurred in young calves. The apparent 

“resistance” of young animals could be explained by either passive immunity in suckling 

animals, or by the fact that calves tend to be kept indoors, thus decreasing the chances 

of being exposed to biting midges (Bekker et al., 1934). On the other hand, Spreull 

reported that young lambs, especially those in poor physical condition, succumbed to 

bluetongue more easily than adults and more often suffered from a gastrointestinal 

presentation followed by death (Spreull, 1905). In recent work, Caporale et al. showed 

that under standardised experimental conditions, 8-month old Dorset Poll sheep 

inoculated with BTV-8 showed no statistical difference in total clinical score compared 

with 2-year old animals of the same breed (Caporale et al., 2014).   

1.11 Determinants of viral virulence 

In addition to host-related factors, differences in clinical outcomes of BTV infection have 

been associated with specific serotypes or strains of the virus itself (Caporale et al., 2014; 

Maclachlan et al., 2009; Sellers, 1984). To date, 27 BTV serotypes have been reported, 
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generating variable levels of cross-protection and varying disease severity. In Europe, at 

least 11 different serotypes circulated over the years, but attention has been brought to 

BTV-8, in part due to its particularly high virulence. The differences between the 

pathogenicity of specific serotypes and strains, however, were previously noted in early 

studies of BTV in the natural host. 

Neitz reported up to 72% mortality in sheep inoculated with blood containing serotype 

4 (“Bekker” strain) while infection with serotype 8 (“Camp” strain) was generally non-

lethal. No differences in virulence were noted between two strains of serotype 3 

(“Mimosa Park” and “Cyprus”) (Neitz, 1948). Interestingly, the severity of the clinical 

signs or pyrexia does not necessary correlate with mortality in sheep. Howell et al. 

observed that sheep inoculated with clinical isolates of BTV-3 displayed a range of 

symptoms (from mild to moderate) but all eventually succumbed to disease (Howell et 

al., 1970). However, animals infected with BTV-5 showed invariably severe bluetongue 

expression but recovered from the infection. Similarly, variation in clinical presentation 

was reported in sheep experimentally infected with BTV-16, BTV-10 and BTV-4, the last 

inducing the highest mortality (Goldsmit et al., 1975). Hooper and colleagues compared 

the virulence of South African (RSA) and Australian strains of BTV in groups of five Merino 

sheep and found that overall, RSA viruses were more pathogenic than homologous 

serotypes from Australia (Hooper et al., 1996). The RSA strain of BTV-3 caused 

particularly severe disease that culminated in the death of four sheep. Interestingly, of 

the four RSA serotypes tested (BTV-1, -2, -3, -4), only BTV-4 caused mild symptoms, 

which were comparable to Australian strains (Hooper et al., 1996).  

Comparison of clinical signs associated with different BTV serotypes that circulated in 

Israel from year 2008 to 2011 showed that during these years, cattle on different farms 

suffered from a variety of ‘clinical syndromes’ that were associated with one specific BTV 

serotype (Brenner et al., 2011). BTV-8 exhibited relatively low virulence in animals in 

Israel but BTV-8 introduced to Northern Europe in 2006 caused severe disease and major 

losses of affected sheep. Similar observations were made with BTV-24, which was 

innocuous in the United States, yet in Israel was responsible for high morbidity in 

affected flocks (Brenner et al., 2010; Maclachlan, 2010a). Using an Italian strain of BTV-

2 and Northern European BTV-8, both passaged once in KC cells and twice in BHK-21 

cells, Caporale et al. demonstrated a similar degree of virulence of these two serotypes. 
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Interestingly however, the authors noted that there was a significant difference between 

two different strains of BTV-8 from Europe, with the Italian strain (isolated in 2008) being 

highly attenuated compared with the strain isolated in the Netherlands (Caporale et al., 

2014).  

In light of these data, it is clear that serotype by itself cannot be used as a reliable 

indication of the pathogenicity of a specific BTV isolate. In addition, only VP2 is the 

determinant of BTV serotype, other proteins may contribute to the pathogenicity of 

specific strains. Through natural reassortment of genomic segments within one host or 

vector, BTV can acquire new pathogenicity traits, yet remain within the same serotype 

group.  With multiple serotypes and strains of BTV circulating in one area the possibility 

of reassortment is also quite high (Batten et al., 2008b; Maan et al., 2015; Nomikou et 

al., 2015; Oberst et al., 1987; Sugiyama et al., 1982).  

The study of determinants of BTV pathogenicity had long been hampered by the 

unavailability of a small animal model to replace the complex system of a natural host. 

Therefore, the majority of data regarding BTV pathogenicity have been obtained by field 

observations rather than laboratory experiments. The establishment of the IFNAR-/- 

mouse model (2009) that reproduces many aspects of bluetongue infection in ruminants 

was a major step that facilitated the study of the molecular determinants of BTV 

pathogenesis (Calvo-Pinilla et al., 2009a). Caporale et al. used IFNAR-/- mice to examine 

differences in virulence of viruses that have been maintained at low or high passage in 

vitro (Caporale et al., 2011). In this study, attenuated strains of BTV-2, -4, -9, showed 

amino acid changes occurring consistently in VP1, VP2 and NS2, when compared to the 

related virulent strains. The authors speculated that these proteins contained major 

determinants of pathogenicity. They did not exclude the possibility that attenuation 

could have been a result of a specific combination of mutations occurring within the 10 

segments of the BTV genome. 

VP2 has been previously suggested to be one of the virulence factors in the Australian 

strain of BTV-1 (Gould and Eaton, 1990) and BTV-17 isolated in the USA (Bernard et al., 

1994). Comparison of nucleotide sequences between pathogenic BTV-1AUS and an non-

pathogenic strain with multiple in vitro passage history revealed presence of ten 

nucleotide mismatches, four of which lead to amino acid changes (Gould and Eaton, 
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1990). The non-synonymous mutations likely contributed to attenuation of the virus in 

the natural host. Unfortunately, the remaining genomic segments were not sequenced 

and therefore not all putative determinants of pathogenicity of BTV-1AUS were 

described.  In order to recreate the results of this study in an independent experiment, 

the virulent strain was passaged in chicken embryos and multiple times in tissue culture 

and the resulting strain was used to inoculate sheep (Gould and Eaton, 1990). Again, the 

tissue culture adapted strain was attenuated in vivo but no differences in nucleotide 

sequence of VP2 were found when compared with the parental virus. The authors 

hypothesised that in the absence of amino acid changes in VP2, mutations in other 

proteins, such as VP5 and VP7, could have changed conformation in the outer capsid 

resulting in altered tropism or virulence (Gould et al., 1988).  

Carr and colleagues studied factors involved in neurovirulence of BTV-11 using an 

attenuated strain UC-2 and a virulent strain UC-8 (Carr et al., 1994). In adult ruminants, 

BTV does not normally possess neurotrophic properties but it can cause malformations 

of the brain of the developing foetus (Richardson et al., 1985). Similarly, most wild-type 

strains of BTV are pathogenic in newborn mice and when injected intracerebrally, they 

cause extensive necrotising encephalitis (Caporale et al., 2011; Carr et al., 1995; van der 

Sluijs et al., 2013). Carr et al. generated reassortant viruses between neurovirulent UC-8 

and the non-pathogenic UC-2 and assessed their virulence in subcutaneously inoculated 

newborn BALB/c mice (Carr et al., 1994). Viruses that contained segments 4, 8, 9 and 10 

of UC-2 were partially attenuated and the viruses containing either segments 4, 5 and 10 

or 1, 3, 4, 5, and 6 caused equal or lower mortality than UC-2. Based on these 

observations, the authors concluded that S5 (corresponding to VP5 in that study) was 

likely the main determinant of BTV neuroinvasiveness (Carr et al., 1994). It is possible 

however, that other proteins, such as VP4, also contributed to UC-2 attenuation, but this 

option has not been discussed further.   

A few studies attempted to identify the determinants of pathogenicity of BTV or AHSV 

by generating reassortants between two parental viruses of different serotypes (Celma 

et al., 2014; O'Hara et al., 1998). O’Hara and colleagues assessed virulence of 

reassortants between the non-pathogenic strain of AHSV-8 and a pathogenic strain of 

AHSV-3 in Balb/c mice (O'Hara et al., 1998). They found that replacement of AHSV-3 S2 

with the equivalent in AHSV-8 was sufficient to attenuate the virus completely. Minor 
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reduction in virulence was found in the reassortant that contained AHSV-8 VP1 in the 

AHSV-3 backbone (80% mortality). Several other reassortants displayed a ‘novel’ 

phenotype characterised by intermediate mortality and morbidity (ranging from 20% - 

80%) compared with parental viruses. The authors concluded that the intermediate 

pathogenicity in the mouse model was conferred by the presence of S2, S5 and S6 

(coding for VP2, VP5 and NS1 respectively) from AHSV-8 and S10 (NS3) from AHSV-3. 

AHSV-3 NS3 alone was not sufficient to confer any degree of virulence. However, 

reassortants containing AHSV-3 NS3 in conjunction with AHSV-3 VP7 and VP1 and the 

remaining proteins from AHSV-8, caused mortality and morbidity comparable with the 

virulent ASHV-3. Moreover, reassortant A79 (AHSV-8 backbone + AHSV-3 S7 and 9) 

produced very small plaques in vitro while A790 (AHSV-8 backbone + AHSV-3 S7, S9 and 

S10) produced normal size plaques. Based on their data, the authors suggested that 

molecular interactions between serotype specific forms of VP2, VP5 and NS3 (and 

possibly other structural proteins) played a major role in determining the phenotype of 

AHSV reassortants in mice (O'Hara et al., 1998). The reassortment of diverse serotypes 

of AHSV or BTV in the field (including vaccine strains) could therefore lead to emergence 

of viruses with superior pathogenicity.  

A recent study examined a role of serotype specific VP2, VP5 and NS3 in the 

pathogenicity of BTV by assessing the virulence of BTV-1/BTV-8 reassortants with 

exchanged S2, S6 and S10 in sheep (Celma et al., 2014). First, the authors performed 

titrations of parental and various reassortants in ovine SFT-R cells. BTV-1 replicated more 

efficiently than BTV-8 in this cell line.  However, BTV1/8NS3 produced yields comparable 

to BTV-1 while BTV1/8VP5.NS3 replicated least efficiently. Clinical scores of animals 

infected with the various reassortants showed no significant differences compared with 

parental virus-infected sheep. The authors argued however, that of all tested viruses, 

BTV1/8VP2.5.NS3 produced most of the different clinical manifestations that did not 

resemble parental BTV-1 phenotype (Celma et al., 2014). It is difficult to interpret the in 

vivo data, especially in light of the fact that little variation in virulence was observed 

between the parental viruses. The differences in replication kinetics of the reassortants 

used in this study could again point at the multigenic nature of BTV fitness in vitro and 

the more complex mechanisms of pathogenicity in the natural host. 
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Coetzee and colleagues tried to determine if BTV phenotype in vitro was a correlate of 

pathogenicity in vivo (Coetzee et al., 2014). Replication kinetics, cell viability and 

apoptosis/cytotoxicity induced by two rescued avirulent strains of BTV (BTV-1 and BTV-

6, rgP1 and rgP6, respectively), virulent strain of BTV-8 (rgP8), and various reassortants 

between these three parental viruses, were assessed in Vero cells (Coetzee et al., 2014). 

In general, rgP1 produced the highest yields from all parental viruses, which showed that 

the ability of a strain to replicate efficiently in vitro did not necessary correlate to its 

virulence in vivo. A similar conclusion was reached for the other two parameters as no 

difference was observed between cell viability and cytotoxicity induced by rgP6 and rgP8. 

One reassortant virus that contained the backbone of rgP1 and segments 2, 6, 7 and 10 

(VP2, VP5, VP7 and NS3 respectively) of rgP6 had a very different phenotype compared 

to the parental viruses. Its replication kinetics resembled that of rgP6 yet it caused very 

little apoptosis/cytotoxicity, and the cells infected by this strain remained the most viable 

of all tested samples 72 h.p.i. For other reassortants, having S5 and S8 of rgP8 correlated 

with decreased cell viability compared to parental viruses, while having S10 of rgP8 in 

the rgP6 backbone reduced the reassortant ability to cause apoptosis (Coetzee et al., 

2014). The data demonstrated that the complete BTV phenotype is governed by gene 

constellations and while specific genes might confer individual characteristics, 

combinations of proteins could equally contribute to the virus fitness and virulence 

(Coetzee et al., 2014). 

Altogether, these studies show that several factors, both host and virus related, 

contribute to the overall clinical presentation and the outcome of bluetongue in the 

mammalian host. Additionally, environmental stress, such as UV irradiation, can trigger 

a more severe response to infection.  In light of the involvement of so many variables, it 

is difficult to weight the influence of individual elements confidently. Moreover, the 

majority of work describing factors that determine the clinical outcomes of BTV infection 

come from early, poorly controlled studies or from field observations and therefore have 

to be interpreted with caution.  

1.12 BTV interactions with host interferon system 

It has been known for a long time that BTV is a strong inducer of interferon (IFN) in vitro 

and in vivo (Doceul et al., 2014; Foster et al., 1991; Huismans, 1969; Jameson et al., 1978; 
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Vitour et al., 2014). However, in recent years there has been increasing interest in 

exploring the role of type 1 IFN in BTV infection and the viral means to counteract IFN-

related immune responses.  

Ruminants at different stages of development are able to produce IFN in response to 

BTV infection (Maclachlan et al., 1984; Maclachlan and Thompson, 1985). Experimental 

infection of bovine foetuses at 125 days of gestation with BTV-10 resulted in IFN 

production in tissues and in the serum, which might have played a role in limiting the 

dissemination of the virus (Maclachlan et al., 1984). Calves inoculated intravenously with 

BTV-10 produced high levels of IFN soon after infection, which persisted for a maximum 

of 4 days. Hence, MacLachlan and colleagues concluded that the IFN response was 

important primarily for controlling the initial stages of BTV infection (Maclachlan and 

Thompson, 1985). In sheep infected with various serotypes of BTV, IFN was detected in 

serum at 5 d.p.i. and reached the highest levels at 6 d.p.i (Foster et al., 1991). At the 

same time, a first peak of viraemia was observed. Interestingly, the levels of IFN 

decreased at day 9 after infection, which correlated with the second increase in BTV 

titres in the blood that occurred a day later.  The authors speculated that the biphasic 

nature of the viraemia could have been related to induction of the IFN response followed 

by adaptive immune responses (Foster et al., 1991). Increased levels of type I IFN were 

also observed in skin lymph of sheep inoculated intradermally with BTV-2 and BTV-8, 

with the peak levels of IFN detected at 5-6 d.p.i (Ruscanu et al., 2012). 

BTV has been shown to be an extremely potent IFN inducer in mice (Jameson et al., 

1978). Infection with 107.5 PFU of a vaccine strain of BTV induced up to 250,000 IFN U/ml 

in mouse sera, which was over 10 times higher than any other agents used in the study 

(including Reovirus 3, Newcastle disease virus, endotoxin etc.). The levels of IFN peaked 

at 8 h.p.i. and declined rapidly afterwards. Interestingly, high levels of IFN were also 

detected when UV-inactivated virus was used as inoculum.  

Knocking-out the IFNAR receptor makes mice susceptible to lethal infection with BTV 

(Calvo-Pinilla et al., 2009a), which suggests that extreme levels of IFN prevent successful 

infection in this species. Moreover, the difference between the strength of the IFN 

response in ruminants and rodents could be potentially explained by host-specific IFN 

antagonism by one of BTV’s molecular factors (Parisien et al., 2002; Webby et al., 2004). 
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Different cell lines express variable amounts of IFN in response to BTV infection, which 

might be due to their intrinsic properties, or to the ability of BTV to counteract IFN 

production in particular cell types (Chauveau et al., 2012; Doceul et al., 2014; Jameson 

and Grossberg, 1979; Ruscanu et al., 2012; Russell et al., 1996). For example, BTV-8 

infection of bovine endothelial cells caused >2000 fold increase in IFN-β mRNA 

expression while more than a 10,000 fold increase was observed in A549 cells (human 

pulmonary adenocarcinoma cells) (Chauveau et al., 2012). Interestingly, a difference 

between IFN-β expression in response to infection with diverse serotypes has been 

described (Chauveau et al., 2012). Similarly, Fulton and Pearson observed differences in 

the amount of IFN produced in bovine and feline cell lines in response to  BTV -10, -11, -

13, and -17  (Fulton and Pearson, 1982). These data suggest that individual 

serotypes/strains of BTV might not be equally capable of modulating the IFN response in 

the infected cells. Multiple passage in vitro in cells with a defective IFN system might 

result in the generation of viruses with decreased capability to counteract IFN-related 

host responses and therefore the passage history should be considered when assessing 

the IFN response  to a specific BTV strain (Janowicz et al., 2015; Perez-Cidoncha et al., 

2014). 

In non-hematopoietic cells, BTV is sensed primarily by RIG-I and Mda5 and silencing of 

either of the helicases or one of the adaptor proteins MAVS leads to a significant 

decrease in type I IFN produced in response to infection (Chauveau et al., 2012).  

Moreover, IFN expression is not induced by UV treatment of BTV, which shows that 

replication is essential for virus sensing and activation of the IFN cascade in non-

hematopoietic cells. On the contrary, in plasmacytoid dendritic cells (pDC), type I IFN is 

also upregulated due to stimulation with UV-inactivated BTV. In pDC infected with BTV, 

the IFN cascade is triggered through the MyD88 adaptor and is independent of TLR7/8 

activation (Ruscanu et al., 2012). The primary sensor of BTV in pDC has not been 

described to date but Ruscanu et al. speculated that some novel helicases coupled with 

MyD88 might be involved in sensing of BTV dsRNA in the cytosol (Ruscanu et al., 2012).  

BTV, like other viruses, has evolved several strategies to counteract the host IFN 

response. Specifically, BTV has been shown to interfere with STAT-1 phosphorylation and 

translocation to the nucleus (Doceul et al., 2014). Reduced STAT-1 phosphorylation in 

vitro was not observed in cells infected with UV treated BTV and therefore replication, 
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or protein expression, seems to be crucial for inhibition to occur. Moreover, the level of 

phosphorylation in Vero cells (infected with 0.1 TCID50/cell) was not affected at an early 

time point after infection (3 and 6 hours) while it was prominent at 24 h.p.i. and complete 

at 42 h.p.i. BTV-8 and BTV-4 equally inhibited STAT-1 phosphorylation suggesting that 

the process was not serotype/strain specific. At 24 h.p.i. levels of JAK, TYK, STAT-2 or 

their phosphorylation were not affected by BTV infection. However, at 42 h.p.i. their 

expression in A549 and Vero cells was markedly reduced (Doceul et al., 2014). It is 

possible therefore that BTV actively inhibits phosphorylation of STAT-1 while the down-

regulation of the other proteins at later time points might be caused by generalised virus-

induced protein translation shutdown (Mertens et al., 1984; Ratinier et al., 2011).  

To date, only two BTV proteins have been implicated in interactions with the IFN system 

(Chauveau et al., 2013; Doceul et al., 2014; Ratinier et al., 2011). In a recent study, the 

effect of products expressed from different BTV ORFs on the activation of the IFN-β 

promoter in 293T cells was assessed (Chauveau et al., 2013). Among various BTV 

proteins, NS3 was shown to reduce IFN-β promoter activation most efficiently.  This 

effect was conserved between wild type and vaccine strains of BTV-8, BTV-4 and BTV-2, 

although NS3 of vacBTV-2 was less potent than then the other ORFs tested. Neither C-

Jun-driven transcription nor CMV promoter activation were inhibited by NS3, suggesting 

that the effect is IFN-β promoter specific. NS3 was demonstrated to have an effect on 

transcription of IFN-β gene expression and consequently reduced expression of several 

interferon stimulated genes (ISG). However, the exact mechanism of NS3 activity was 

not determined although it was narrowed down to pathways acting downstream of RIG-

I and upstream of TBK1/IKKɛ.  

NS4 is the second of the BTV proteins suggested to interact with the host cell innate 

immune system (Ratinier et al., 2011). In cells pre-treated with universal IFN, NS4 confers 

a replication advantage to BTV serotype 8. However, it seems to be dispensable for 

serotype 1 under similar conditions. Ratinier and colleagues speculated that since NS4 

has a leucine zipper motif it could bind nucleic acids and control the transcription of 

genes involved in the induction of the IFN cascade (Ratinier et al., 2011). More studies 

to describe the role of NS4 in BTV interactions with the host are currently ongoing.  
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The antiviral IFN response is an essential tool to control BTV replication in the 

mammalian host. In the insect vector however, the IFN system does not exist and a 

different mechanism is utilised to limit dissemination of the virus. Early reports showed 

that Culicoides cells (KC) could be persistently infected with BTV without causing 

cytopathic effects. Interestingly, at late stages after infection (>14 d.p.i.) only single large 

VIBs, likely formed by fusion of individual smaller bodies, was present in the cytoplasm 

of infected cells. The cells containing these giant VIBs, however, contained very few BTV 

particles, suggesting that insect cells were able to inhibit viral replication (Fu, 1995). 

Deep sequencing of KC cells infected with BTV revealed the presence of 21-nucleotide 

long virus-derived small interfering RNAs (viRNAs) directed against eight of the BTV 

genomic segments (Schnettler et al., 2013). This demonstrated that vector cells mount 

an iRNA response against the virus. Additionally, larger classes of BTV-specific small RNAs 

(26 and 31 nucleotide long) were detected but their role in BTV infection has not been 

established to date (Schnettler et al., 2013).  

1.13 Evolution of BTV 

The BTV genome evolves through a combination of genetic drift, reassortment and 

intragenic recombination (Batten et al., 2008b; Bonneau et al., 2001; He et al., 2010; 

Nomikou et al., 2015; Shaw et al., 2013).  

Analysis of consensus sequence and viral populations of VP2 and NS3 coding segments 

during alternating cycles of BTV replication in Culicoides and a sheep or Culicoides and a 

calf showed that these segments evolve by genetic drift (Bonneau et al., 2001).  Although 

the consensus sequences of both segments remained stable throughout the 

transmission cycle, heterogeneic populations of virus variants were found in the vector 

and in the ruminant host. Interestingly, a specific minority variant present in the BTV 

quasispecies in sheep was selected and fixed in a midge that fed on the animal at 8 d.p.i. 

Founder effect might therefore play an important role in genetic diversification of BTV 

strains in nature. In addition, individual genome segments were shown to evolve 

independently of one another creating a very heterogeneous mutant population both in 

the ruminant and in Culicoides (Bonneau et al., 2001). Furthermore, following the 

introduction of a new strain into a region, some of the BTV segments (e.g. S3, S10) evolve 

through strong negative selection. The strains, which emerged and evolved within a 
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specific episystem, cluster together within one “topotype” (Bonneau et al., 1999; 

Nomikou et al., 2009). On average BTV segments show between 0.5 and 7x10-4 

nucleotide substitutions per year. S6 (VP5) has been shown to have particularly low 

substitution rate, likely reflecting the structural constraints imposed by its interaction 

with the host cell (Carpi et al., 2010).  Interestingly, an estimation of the time to the most 

recent common ancestor (TMRCA) showed that S10 had a mean TMRCA of only 517 

years, which was almost ten times less than S2, which has a similar mean nucleotide 

substitution rate. This evidence of selective sweep that occurred at some point in the 

last century suggests that BTV underwent a rapid adaptation event that required 

selection of specific NS3 variants (Carpi et al., 2010). A recent study examining a larger 

set of BTV sequences showed that multi-dimensional scaling plots of the TMRCA of S1, 

S3, S4, S5, S8 and S9 clustered closely together while the TMRCA of S2, S6, S7 and S10 

did not overlap with the other segments (Nomikou et al., 2015). Based on these data, 

the authors suggested that S2, S6, S7 and S10 had fewer restrictions imposed by 

interactions with the remaining segments and could therefore evolve independently of 

the rest of the genome (Nomikou et al., 2015). 

He and colleagues analysed almost 700 BTV sequences in order to determine whether 

homologous recombination events occurred during virus evolution (He et al., 2010). 

Signatures of intragenic recombination were found in over 1.6% of the BTV genome. The 

mosaic genes containing nucleotide fragments of divergent strains were particularly 

common in segments 1, 7 and 10. The highest number of mosaic elements was found in 

the last segment, but these never resulted in amino acid changes. Several strains of 

different spacio-geographical origin seemed to contain genes of the same mosaic 

ancestor, which might suggest that recombinants might be selected and fixed within 

populations (He et al., 2010). The exact mechanism or significance of intragenic 

recombination in BTV is unclear.  

BTV reassortment readily occurs in the field and in experimental conditions, and can lead 

to significant changes in virus pathogenicity and fitness (Batten et al., 2008b; Celma et 

al., 2014; Coetzee et al., 2014; Maan et al.; Mecham and Johnson, 2005; Shaw et al., 

2013). Reassortment events between some serotypes can be flexible and can involve 

individual or multiple segments at the same time (Shaw et al., 2013). This means that, in 

theory, if a vector or a ruminant is infected with two strains/serotypes at the same time, 
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1024 different segment combinations may arise as a result of random reassortment 

events. However, a large proportion of reassortants do not become established in the 

population possibly due to functional/structural constrains imposed by specific protein 

interactions (Nomikou et al., 2015). Several studies attempted to estimate the frequency 

of reassortment in ruminants or insect vectors (Samal et al., 1987a; Samal et al., 1987b; 

Stott et al., 1987). Samal et al. found that 5% of all viruses recovered from sheep co-

infected with BTV-10 and BTV-17 were reassortants (Samal et al., 1987b), while this ratio 

was almost 90% in infected cattle (Stott et al., 1987). In addition, a high frequency of 

reassortment was observed in the insect vector and the proportion of reassortants 

recovered from a single midge ranged from 7% to 78% (Samal et al., 1987a). It is 

therefore anticipated that multiple reassortant strains may be found in areas where 

more than one serotype circulate, and it serves as a natural means for rapid genetic shift 

and generation of novel BTV strains. Reassortment can however be an artificial driver of 

virus evolution, when field strains recombine with viruses of laboratory origin, and in 

particular, MLV strains (Chong et al., 2010; Rose et al., 2013). In fact, in 2008, the two 

South African vaccine strains BTV-6 and BTV-11 were detected in Northern Europe, 

which were likely introduced through illegal vaccination or transport of immunised 

animals from outside Europe (De Clercq et al., 2009; Maan et al., 2010). Moreover, 

reassortants containing segments of MLV BTV-6, BTV-16 and BTV-2 were already 

reported in the field (Batten et al., 2008b; Maan et al., 2010). Nomikou et al.  assessed 

the rates of reassortment of European BTV strains isolated in last 50 years. The authors 

demonstrated that reassortment was a widespread phenomenon and it was responsible 

for the high genetic heterogeneity of the European BTV strains. Moreover, at least four 

MLV strains (South African vaccine strains of BTV-2, -4, -9, -16) were involved in the 

reassortment events in recent years (Nomikou et al., 2015).  These events are of 

particular concern, as tissue culture attenuation can for instance lead to changes in 

receptor affinity or tissue tropism (as suggested in the case of transplacental 

transmission). 

1.14 Control of bluetongue  

BTV is an economically important disease, due not only to potentially high morbidity and 

mortality of infected animals, but also because of a decrease in milk and wool 

production, losses in animal reproduction, and constraints in trade between affected and 
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unaffected areas. Introduction of a novel strain/serotype into areas with 

immunologically naïve ruminant populations is of particular concern and warrants 

imposition of stringent control measures.  

Until 1998, the main strategy of bluetongue control was based on “stamping-out”, which 

involved slaughter of all susceptible animals within a 3 km radius of an affected area 

(Caporale and Giovannini, 2010). Additionally, vaccination provided complementary 

means to prevent the spread to other areas. In 2000, the World Organisation for Animal 

Health (OIE) introduced a new directive describing improved bluetongue control 

procedures based on movement restrictions. Moreover, intensive surveillance, which 

included clinical and serological assessment of sentinel animals and entomological 

investigations, were put in place (Caporale and Giovannini, 2010).   

In order to facilitate the rapid recognition of BTV-positive animals, diagnostic tests to 

detect viral antigens or host antibody responses are currently utilised with variable 

results (Batten et al., 2008a; Eschbaumer et al., 2011; Shaw et al., 2007; Vandenbussche 

et al., 2008). Serum neutralisation tests are still performed to distinguish between 

different BTV serotypes, however these are increasingly replaced by nucleic acid 

amplification based methods or next generation sequencing in the case of newly 

emerged strains (Maan et al., 2012; Maan et al., 2011). Group reactive qRT-PCR based 

on genome regions conserved between all BTV serotypes can detect any known viral 

strain with high sensitivity, while serotype-specific qRT-PCR help with the determination 

of the causative serotype (Maan et al., 2012; Mayo et al., 2012; van Rijn et al., 2012). 

ELISA tests have long been a gold standard for the detection of BTV-specific antibodies 

and currently there are several commercially available kits on the market. Most of these 

are based on recombinant VP7 proteins and they can efficiently detect humoral 

responses in animals as early as 7 days after infection (Batten et al., 2008a; Oura et al., 

2009). These tests cannot however distinguish between immunised and naturally 

infected animals, nor between viraemic and non-viraemic ruminants. Similarly, BTV RNA 

can be detected in blood long after it is possible to isolate the virus, which makes it 

difficult to distinguish which animals are still infectious (Bonneau et al., 2002; Hoffmann 

et al., 2009).  
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Vaccination has long been used as the main means to limit the incidence of bluetongue 

in endemic areas. Live vaccines hold a particular place in the history of BTV control. The 

first “attenuated” vaccine was generated by Theiler in 1908 through multiple passage of 

infectious blood in sheep (Theiler, 1908). The vaccine was routinely used for almost 40 

years and was generally considered relatively effective in reducing the severity of disease 

in sheep. However, increasing numbers of complaints from farmers over the insufficient 

protection and particularly severe reactions to this vaccine prompted investigations into 

immunological responses of vaccinated sheep to a variety of circulating BTV isolates 

(Neitz, 1948). The subsequent discovery of several BTV strains and the lack of adequate 

cross-protection between heterologous serotypes prompted an investigation into 

alternative systems for BTV attenuation (Neitz, 1948).  Theiler’s vaccine was 

subsequently replaced by strains serially passaged in embryonated chicken eggs in the 

late 40s (Alexander et al., 1947) followed by tissue-culture attenuated strains in the 60s. 

MLV generated by passage in eggs and in BHK-21 cells are still produced by 

Onderstepoort Biological Products in Pretoria (South Africa) and are widely used in Africa 

(Coetzee et al., 2012a). However, with the increasing number of recognised serotypes, 

inclusion of multiple serotypes was necessary to achieve adequate protection against 

the majority of circulating viruses (Howell, 1960; Howell et al., 1970). The current vaccine 

consists of three vials, each containing five different serotypes, segregated based on 

their in vivo replication efficiency (Coetzee et al., 2012a). Modified live vaccines have also 

been used in Europe (Bulgaria, France, Italy, Portugal, and Spain) (Roy et al., 2009). 

However, due to the risks associated with MLV teratogenicity, persistence in the field, 

under-attenuation or possible reversion to virulence, the use of these vaccines has been 

quite controversial (Dungu et al., 2004; Monaco et al., 2004; Savini et al., 2010). Indeed, 

there has been a number of cases where immunisation with MLV strains has led to the 

development of clinical signs and viraemia in inoculated animals (Savini et al., 2010; 

Veronesi et al., 2010). One of the South African vaccine serotypes, which was shown to 

cause disease in European sheep breeds, was BTV-16 (Savini et al., 2010). Indeed, in Italy, 

the vaccine had to be withdrawn from use and attempts have been made to produce a 

new attenuated vaccine, innocuous to the native breeds (Franchi et al., 2008).  

Due to concerns associated with the use of MLVs, these vaccines were withdrawn from 

the market in Northern Europe and replaced by inactivated virus formulations. The 
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inactivated vaccines have been used in Mediterranean countries since 2005 and have 

proven to be safe, efficacious and to provide good protection against homologous BTV 

serotypes (Eschbaumer et al., 2009; Hamers et al., 2009; Savini et al., 2008; Savini et al., 

2007; Wackerlin et al., 2010). Furthermore, inactivated vaccines were successfully used 

to control recent outbreaks of BTV in Europe (Mellor and Oura, 2008; Szmaragd et al., 

2010).  

Recombinant BTV vaccines show promising results in experimental settings, with 

additional advantages of replicating the virus (the backbone) without the risk of 

reassortment or reversion to virulence (Boone et al., 2007; Calvo-Pinilla et al., 2009b). 

Additionally, new-generation products, such as virus-like particles, ‘Disabled Infectious 

Single Cycle strains (with lethal mutation in the VP6 gene) or Disabled Infectious Single 

Animal (not expressing NS3) were shown to produce good serological responses and 

serotype specific protection without causing detectable viraemia in the vaccinated 

animals (Celma et al., 2013; Feenstra et al., 2015; Stewart et al., 2012; Stewart et al., 

2013). Moreover, novel platforms allow for the rational incorporation of serotype-

specific antigens based on currently circulating strains, and incorporation of diverse 

antigens into multivalent preparations (Feenstra et al., 2015; Nunes et al., 2014).   
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2.1 Cell lines 

All mammalian cell cultures were grown at 37oC in 5% CO2 humidified atmosphere. BHK-

21 and BSR cells (a variant of BHK-21 cells, kindly provided by Karl-Claus Conzelmann) 

were propagated in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 

10% FBS and 1% penicillin/streptomycin (p/s). Transfections in BSR cells were performed 

in DMEM with reduced FBS and no antibiotics. CPT-Tert cells are sheep choroid plexus 

cells immortalised with simian virus 40 (SV40) T antigen and human telomerase reverse 

transcriptase (Arnaud et al., 2010). CPT-Tert cells were propagated in Iscove’s Modified 

Dulbecco’s Medium (IMDM) supplemented with 10% FBS and 1% p/s. CHO, is a cell line 

obtained from adult Chinese hamster ovary and pgsA-745 (ATCC® CRL-2242™) is a CHO-

derived cells line deficient in xylotransferase that does not produce glycosaminoglycans 

(GAGs). Both cell lines were propagated in Ham’s F-12 medium supplemented with 10% 

FBS and 1% p/s. A549 cells (human adenocarcinoma epithelial cells) and their variant 

A549/pr(IFN-β).GFP (expressing GFP under control of IFN promoter; kindly provided by 

Rick Randall) (Chen et al., 2010) were propagated in DMEM supplemented with 10% FBS. 

KC cells were derived from Culicoides sonorensis larvae and grown at 28°C in Schneider's 

insect medium supplemented with 10% FBS. 

2.2 Primary cell cultures 

Primary ovine aortic endothelial (OvEC) cells were isolated from aortas harvested from 

recently euthanized animals as recently described (Varela et al., 2013). Briefly, the aortas 

were incubated for 2 h at room temperature in DMEM supplemented with 5% FBS, 

25ug/ml p/s and 100U/ml nystatin. The aortas were then rinsed with PBS and excess 

tissue was trimmed off. The vessels were cut longitudinally and the endothelial cells were 

stripped off the luminal surface by 1 h treatment with 2 mg/ml collagenase in DMEM at 

37oC. After incubation, cells were scraped off the aorta slices, washed once with DMEM 

and re-suspended in human large vessel endothelial cell growth medium (HuVECM, TCS 

Cellworks) supplemented with antibiotics, 1% human large vessel endothelial cell growth 

supplement (TCS Cellworks) and 20% FBS and seeded in 12 well plates.  Confluent 

cultures were trypsinised, pooled and further grown in DMEM. Cells were maintained at 

37oC in 5% CO2 and 3% O2 for a maximum of 3 passages.  
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2.3 Virus strains 

BTV-8NET2006 (Pirbright reference collection number NET2006/04) was originally isolated 

from a sheep naturally infected during the 2006 outbreak in Northern Europe and has 

been previously described (Caporale et al., 2014; Ratinier et al., 2011). In this study, we 

refer to this virus as BTV8L. The subscript “L” is used to denote that this virus has a “low” 

number of passages in cultures. BTV8H (“H” – “high passage”) was obtained following 65 

serial passages of the BTV8L strain in BSR cells followed by plaque purification. BTV-

8NET2007(blood) was derived from the spleen of a sheep infected with blood derived from a 

naturally infected cow in the Netherlands during the 2007 BTV-8 outbreak as already 

described (van Gennip et al., 2010). Further viruses were isolated in vitro from BTV-

8NET2007(blood) after 1 passage in KC cells [BTV-8NET2007(1KC)], 1 passage in KC and 1 passage 

in BHK-21 cells [BTV-8NET2007(1KC-1BHK)], 1 passage in KC and 2 passages in BHK-21 cells 

[BTV-8NET2007(1KC-2BHK)] as described in ‘Isolation and propagation of BTV-8’ section. BTV-

8IT2008 was isolated in 2008 in naturally occurring outbreak of bluetongue in sheep in 

Italy.  

2.4 Reassortant viruses 

RgBTV8L and rgBTV8H were derived by reverse genetics (see below). Sequences of the 

genome of rgBTV8L were identical to BTV8L while rgBTV8H encoded proteins identical to 

BTV8H at the amino acid level. The genome of rgBTV8H did not contain silent mutations 

that occurred during passage in BSR cells of BTV8H. Each reassortant is described with 

the name of virus that formed its backbone (either BTV8L or BTV8H) followed by 

substituted proteins marked with the “L” or “H” subscript to indicate their origin. E.g., 

BTV8L+S2H has the backbone of BTV8L with VP2 from BTV8H.  

2.5 Isolation and propagation of BTV-8  

Blood and spleen samples were collected from a single sheep infected with BTV-8NET2007-

positive infectious blood (Caporale et al., 2014). For isolation of BTV from blood samples, 

chilled RNAse-free water was added to 500 µl of washed blood, gently mixed and 

incubated on ice for 10 min. Samples were then centrifuged at 12,000 g at 4oC and the 

supernatant was collected and filtered through a 0.2 µm syringe filter. 250 µl of the 

filtrate was added to 90% confluent KC cells and incubated for 5-7 days. The medium 
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was then collected and briefly centrifuged to remove cell debris and used for further 

passaging in BHK-21 cells. For the isolation of BTV-8 from spleen, samples were 

homogenised using a sterile quartz and pestle, and diluted in 500 µl of sterile PBS + p/s 

solution. The homogenate was incubated for 1 h at room temperature and then 

centrifuged at 10,000 g for 10 min. The supernatant was collected, filtered through 0.2 

µm syringe filter and 250 µl was used to infect 90% confluent KC monolayers as before. 

Cells were harvested after passage in KC and BHK-21 cells (after one and two passages) 

and viral dsRNA was isolated (as described in ‘Extraction of dsRNA’) for next generation 

sequencing. 

2.6 Extraction of dsRNA  

Infected cell monolayers in tissue culture medium were collected (when 80% CPE was 

formed, or after 5-7 d.p.i. for KC cells) and centrifuged for 10 min at 4000 g. Tissue 

culture fluids were stored at 4oC and  cells were used for total RNA extraction using TRIzol  

(Invitrogen) following the manufacturer’s instructions. For the isolation of RNA from 

spleen, the organ sample was homogenised using a sterile quartz and pestle directly in 

TRIzol and continued using a standard protocol as recommended by the manufacturer. 

Next, single-stranded RNA was removed from the sample by precipitation with lithium 

chloride at 4oC overnight. The precipitated ssRNA was discarded and the dsRNA was 

precipitated with isopropanol in presence of ammonium acetate for 3 h -20oC. The 

samples were centrifuged for 15 min at 12,000 g and the dsRNA pellet was washed twice 

with 75% (v/v) ethanol and re-suspended in RNAse-free water. DsRNA was used to 

amplify each of the 10 genomic BTV segments using SuperScript® III One-Step RT-PCR 

System with Platinum® Taq DNA Polymerase (Invitrogen) according to the 

manufacturer’s instructions. The resulting PCR products were cleaned using QIAquick 

PCR Purification Kit (Qiagen) according to the manufacturer’s instructions and stored at 

-20oC until used.  

2.7 Plasmids 

Vectors used for the rescue of BTV8L by reverse genetics were obtained following 

established procedures (Boyce et al., 2008). The RG constructs for BTV8L were generated 

by Maxime Ratinier as described before (Ratinier et al., 2011). Briefly, BSR cells cultured 

to 90% confluency in T75 flasks were infected with specified viruses and incubated at 
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37oC until 80% CPE was formed. Tissue culture fluids were discarded and cells were used 

for total RNA extraction using TRIzol (Invitrogen) following the manufacturer’s 

instructions. Single stranded RNA was depleted from the sample by precipitation with 

lithium chloride at 4oC overnight. The precipitated ssRNA was discarded and the dsRNA 

was precipitated with isopropanol in the presence of ammonium acetate for 3 h at -20oC. 

Precipitated dsRNA was washed twice with 75% (v/v) ethanol and re-suspended in RNA 

free water. DsRNA was used to amplify each of the 10 genomic BTV segments using 

AccuScript PfuUltra II RT-PCR Kit (Agilent) according to the manufacturer’s instructions. 

The resulting PCR products were gel-purified and cloned into pUC57 vector (Fermentas). 

Each construct contained the T7 promoter located immediately upstream of the viral 

sequence and a BsaI or SapI restriction site located downstream of the segment.  

The full set of plasmids containing nucleotide sequences of the 10 segments of BTV8H 

were obtained by mutagenesis of BTV8L vectors using QuikChange II Site-Directed 

Mutagenesis Kit (Stratagene), according to the manufacturer’s instructions. Briefly, the 

primers for mutagenesis were designed using PrimerX (Table 3). Fifty nanograms of 

plasmid DNA were used as a template for PCR using PfuUltra II Polymerase (Agilent). 

Following amplification, the PCR reaction was digested with DpnI for 1 h at 37oC to 

remove template DNA. The PCR product was then purified using QIAquick PCR 

Purification Kit (Qiagen) and used to transform XL-10 Gold cells (Agilent) according to the 

manufacturer’s instructions. Resulting colonies were screened for the presence of 

correct inserts. The correct constructs were transformed into Subcloning Efficiency 

DH5α cells (Life Technologies) and the cells were used for the amplification of the 

plasmids. Plasmid preparations were purified with HiSpeed Plasmid Maxiprep 

Purification (Qiagen) kits and fully sequenced before use.   

2.8 Reverse genetics 

Twenty micrograms of plasmid constructs containing genomic segments of BTV8L and 

BTV8H were fully linearised using a specific restriction enzyme (SapI or BsaI). The DNA 

was purified using phenol-chloroform/isoamyl alcohol twice and followed by 

chlorophorm/isoamyl acohol extraction. Purified plasmid DNA was then precipitated 

with isopropanol in presence of sodium acetate overnight at -20oC. Precipitated DNA was 

washed twice with 70% (v/v) ethanol and resuspended in RNAse free water.  
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Single stranded RNA was produced using in vitro transcription mMESSAGE mMACHINE 

T7 Ultra Kit (Ambion) according to the manufacturer’s instructions with minor changes. 

Two micrograms of linearised plasmid DNA were used as a template for in vitro 

transcription and additional 1.5 µl of T7 RNA polymerase (20U/µl; Ambion) were added 

to the reaction mix. After 2 h incubation at 37oC, the template DNA was digested with 

TURBO DNAse 1 (2U/ul) for 20 min at 37oC. The newly transcribed RNA was extracted 

using acidic phenol-chlorophorm/isoamyl alcohol followed by chlorophorm/isoamyl 

alcohol. RNA was further purified by gel filtration using Illustra Microspin G25 columns 

(GE Healthcare) and then precipitated with isopropanol in presence of sodium acetate 

for 2 h -20oC. After two washes with 70% (v/v) ethanol, RNA was resuspended in RNAse 

free water.  

Monolayers of BSR cells were grown in 12-well plates to reach ~90% confluency. Cells 

were then transfected twice with sets of purified single stranded RNA using 

Lipofectamine 2000 (Invitrogen). Briefly, equimolar amounts of segments 1, 3, 4, 5, 8 and 

9 were diluted in Opti-MEM I Reduced Serum Medium containing 0.5 U/mL of RNAsin 

Plus (Promega) and incubated for 25 min with Lipofectamine 2000 diluted in Opti-MEM 

I Reduced Serum Medium containing 0.5 U/mL of RNAsin Plus (Promega). The RNA–

Lipofectamine complexes were then added to the BSR cells and cells were incubated 

overnight at 35oC. Second transfection was performed using all 10 single stranded RNA 

segments in equimolar amounts 18 hours later following the same procedure. Four hours 

after the second transfection the medium was removed and cells were overlaid with 2 

ml of Minimal Essential Medium containing 1.5% agarose type VII and 2% FBS or with 

fresh DMEM and monitored for CPE development. 48-72 h later transfected cells 

containing reassortant viruses were collected and used to infect BSR cells. After 80% of 

CPE developed, the media were collected and centrifuged briefly. Supernatants were 

stored and used as virus stocks for further experiments. Titres of the viral stocks were 

determined by standard plaque assays in CPT-Tert cells. All reassortants were screened 

for correct segment combination by Sanger sequencing of short nucleotide fragments 

spanning the nucleotides mismatched in BTV8H compared with BTV8L, as described in 

‘Sequencing of rescued viruses’ section. 
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Table 3. List of primers used in site directed mutagenesis. 

Segment
/protein 

Amino acid 
mutation 

Primer sequence (5’-3’) 

S1/VP1 D1231N GTTGACAAAAACGGAAGTCAATGCCATATCGTTGTATTGC 
GCAATACAACGATATGGCATTGACTTCCGTTTTTGTCAAC 

S2/VP2 E16K 
 
 

N322D 
 
 

I327V 
 
 

R400V 

CGAATGTATTCCCAGCGAAGCTTTTAGATGGATATG 
CATATCCATCTAAAAGCTTCGCTGGGAATACATTCG 
 
GAAATATTTCGACCGGGAAATGACGAGCGTACCAACATCATGG 
CCATGATGTTGGTACGCTCGTCATTTCCCGGTCGAAATATTTC 
 
GAAATGACGAGCGTACCAACGTCATGGGGGGCGGAGTACATC 
GATGTACTCCGCCCCCCATGACGTTGGTACGCTCGTCATTTC 
 
CCTACCTATGTACCTTACGATTGGAATAGAGAAAGTGATAAG 
CTTATCACTTTCTCTATTCCAATCGTAAGGTACATAGGTAGG 

S3/VP3 T804M GCTTGCCTTTTAGTTATGATATGAATGAAAAAGGTGGACTATC 
GATAGTCCACCTTTTTCATTCATATCATAACTAAAAGGCAAGC 

S4/VP4 D322N 
 
 

T566I 
 

GCCGGGGGCTGATGCGAATATGTACGAATTAAG 
CTTAATTCGTACATATTCGCATCAGCCCCCGGC 
 
GTCTGGCGCTTATGTCATAGATTTGTTCTGGTGG 
CCACCAGAACAAATCTATGACATAAGCGCCAGAC 

S5/NS1 N226K 
 
 

A456V 
 

CGAAGGCACAACGCAGTGTACTGCTCAGGTTGTTCTGC 
GCAGAACAACCTGAGCAGTACACTGCGTTGTGCCTTCG 
 
GAACGAGATATTGCCTAGAATTAAGAAGGCGATGGACGAG 
CTCGTCCATCGCCTTCTTAATTCTAGGCAATATCTCGTTC 

S6/VP5 F328I GAACGAGATATTGCCTAGAATTAAGAAGGCGATGGACGAG 
CTCGTCCATCGCCTTCTTAATTCTAGGCAATATCTCGTTC 

S7/VP7 H276Y 
 
 

A328T 
 

GTTTATAGCTTCAGAGATTACACATGGCACGGGTTGAG 
CTCAACCCGTGCCATGTGTAATCTCTGAAGCTATAAAC 
 
CTGTTTTGAGACCTGAGTTTACGATTCATGGCGTAAACCC 
GGGTTTACGCCATGAATCGTAAACTCAGGTCTCAAAACAG 

S8/NS2 A25T GCTAAAACATTATGCGGAACGATCGCAAAGTTGAGTTC 
GAACTCAACTTTGCGATCGTTCCGCATAATGTTTTAGC 

S9/VP6 T314A CATATTAGCTTACACGAGCGCGGGAGGGGATGTAAAAACG 
CGTTTTTACATCCCCTCCCGCGCTCGTGTAAGCTAATATG 

S10/NS3 H97Y GACTGAGACAGATCAAGCGCTATGTGAACGAGCAGATTTTAC 
GTAAAATCTGCTCGTTCACATAGCGCTTGATCTGTCTCAGTC 

 

  



MATERIALS AND METHODS   

   

73 

 

2.9 Plaque assays 

Virus titrations were performed in CPT-Tert cells by plaque assays. Briefly, cells were 

seeded in 12-well plates and incubated until 90% confluent. Serial 10-fold dilutions of 

stock viruses were prepared in DMEM in triplicate. Dilutions were added to the cells and 

incubated for 1.5 h at 37oC. After adsorption, the wells were washed with PBS and the 

cells were overlaid with 1.5 ml of semi-solid overlay (Avicel, 1.4%). The plates were 

incubated for 72 h at 37oC. The overlay was then removed and the cells were washed 

twice with PBS. The monolayers were then stained with a crystal violet solution to 

visualise plaques. Individual plaques were then counted and the mean number of 

plaques obtained from three replicates was used to calculate virus titers expressed as 

PFU/ml.   

Additionally, separate plaque assays were performed to depict plaque sizes produced by 

rescued viruses in CPT-Tert cells. The assays were performed in 6-well plates using 

specific virus concentrations and infections were performed as described above. 

Infected monolayers were overlaid with Avicel, incubated for 48 h and then stained with 

crystal violet solution. 

2.10 End-point dilution assay 

End-point dilution assays were performed in 96 well plates. 100 µl of DMEM 

supplemented with 4% FBS and p/s were added to each well and 11 µl of each virus 

sample were added to the top wells in quadruplicate or sextuplicate. Serial 10-fold 

dilutions were made for each sample. BSR cells were harvested from fully confluent T75 

flasks and diluted to 1x105cells/ml in DMEM supplemented with 4% FBS and p/s. 100 µl 

of the cell suspension were then added to each well. After 4 days incubation, the 

cytopathic effect in all wells was assessed and the 50% endpoint dilution was calculated 

according to the method developed by Reed and Muench and expressed as TCID50/ml.  

2.11 Growth curves 

Growth curves in CPT-Tert, OvEC and A549 cells were performed in 12 or 24-well plates. 

Ninety percent confluent monolayers were infected at 0.01 MOI of selected viruses. The 

inoculum was discarded after 1.5 h of incubation at 37oC and cells were washed once 

with cell culture medium. The medium was then replaced and the cells were incubated 
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for 72 h. Supernatants were collected at 2, 24, 48, and 72 h.p.i. and centrifuged for 5 min 

at 500 g to remove cell debris. To compare growth of selected viruses in CHO and CHO-

pgsA 745 cells, infections were performed at MOI 0.01 as described above and 

supernatants were collected 72 h.p.i only. Samples from collected time points were 

titrated by end-point dilution assay and titres were expressed as Log10TCID50/ml. The 

assays were performed twice or three times and the mean result was used to plot growth 

curves of individual viruses with error bars indicating standard deviations.  

2.12 Sequencing of rescued viruses 

To confirm the identity of the rescued viruses, 400-800 bp fragments of specific 

segments that contained mutated nucleotides were sequenced by traditional 

sequencing method. Briefly, total RNA was extracted from virus-infected cells using 

TRIzol (Invitrogen) according to the manufacturer’s instructions. PCR products were 

generated using SuperScript® III One-Step RT-PCR System with Platinum® Taq DNA 

Polymerase (Invitrogen) using BTV-8 specific primers (Table 4). The sequences were 

obtained using Sanger sequencing. 

Table 4. List of primers used for amplification of RNA fragments spanning 
regions containing BTV8L/BTV8H mismatches. 

Segment/ 
protein 

Primer sequence (5’-3’) 
Genome position 

(BTV8L) 

S1/VP1 
TGATGATTGGCCCACGGGTTAG 
GTAAGTGTAATGCGGCGCGTG 3331-3944 

S2/VP2 
TTCACAAGAGGCGGCGTATAC 
CACTTTCTCTATTCCTATCGTAAGG 572-1230 

S3/VP3 
GGATGATATTGAGAGGTTTAGGCAG 
GTAAGTGTGTTCCCGCTGCC 2162-2772 

S4/VP4 
ATGGCAATGGCGCAATCCTATTTC 
GTAAGTTGTACATGCCCCCCTC 1414-1981 

S5/NS1 
GCTGATGATTGGATCGATCCAAATC 
AATTTGTTCATCGCGAACCAATTTCG 

560-1210 

S6/VP5 
CTTAACCGAGGAGGAAAAACAAATGAG 
GGATTTGGGGCTGTTGAGTTCG 510-1120 

S7/VP7 
ACAGCAGATATTTCAGGGTCGTAAC 
GTAAGTGTAATCTAAGAGACGTTTGAATG 530-1156 

S8/NS2 
GTTAAAAAATCCTTGAGTCATGGAGCAAAAG 
TTTAGCCTCTTCATCCACTTTTGCTTC 1-610 

S9/VP6 
AGATGAGGTCCCAGTACAGATC 
GTAAGTGTAAAATCGCCCTACGTC 480-1049 

S10/NS3 
GTTAAAAAGTGTCGCTGCCATGC 
CACTCATATCGCTTGAAAGGGTAC 

1-452 
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2.13 Deep sequencing of BTV8H 

Full genome sequence of BTV8H was obtained by Illumina sequencing. Sample 

preparation and genome amplification were performed by Salvatore Gulletta. Briefly, 

BSR cells were infected with viruses and total RNA was extracted from the cells using 

TRIzol Reagent (Invitrogen). Single stranded RNA was precipitated using lithium chloride 

and double stranded RNA was harvested from the supernatant by precipitation with 

isopropanol in the presence of sodium acetate. Double stranded RNA was used as a 

template for full-length amplification of cDNA (FLAC) by reverse transcription PCR (RT-

PCR) using the method developed by Maan et al. (Maan et al., 2007b). Samples were 

analysed using the Illumina Genome Analyser (Sir Henry Wellcome Functional Genomics 

Facility, University of Glasgow). The libraries were constructed from the PCR samples 

using TruSeq DNA sample preparation kit (Illumina) according to the the manufacturer’s 

instructions. Briefly, DNA samples were fragmented, fragment-end repaired and 3’ ends 

were adenylated. After adaptor ligation steps, the fragments were purified by size 

selection on agarose gel and the fragments containing adaptors on 3’ and 5’ end were 

enriched by PCR. Sequencing was performed on GAIIX sequencer (Illumina) according to 

manufacturer’s protocol. Genomes were assembled using Maq software (Li et al., 2008) 

with BTV8L used as a reference sequence. The assemblies were manually curated using 

Tablet (The James Hutton Institute) for sequence visualisation (Milne et al., 2010) and 

consensus sequences were generated as fasta files. 

2.14 Sequencing of BTV-8IT2008, BTV-8NET2007(blood), BTV-8NET2007(1KC), BTV-

8NET2007(1KC-1BHK), and BTV-8NET2007(1KC-2BHK) 

DsRNA was extracted from the spleen or infected cells as described in “Extraction of 

dsRNA” section.  Full-length genome segments were amplified from dsRNA using the 

SuperScript III One-Step reverse transcription (RT)-PCR system with Platinum Taq DNA 

polymerase (Invitrogen) using primers complementary to the 5′- or 3′-end terminus of 

the viral genome segments (Table 5). The genome of BTV-8IT2008 was sequenced using 

the Sanger method. For the other viruses, equimolar, purified PCR products of the 10 

genomic segments of each virus were pooled and sheared by focused sonication 

(Covaris), followed by size selection using Ampure XP magnetic beads. Illumina MiSeq 

libraries were generated using the KAPA real-time library preparation kit (KAPA), further 
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quantified using quantitative RT-PCR (qRT-PCR; KAPA), and sequenced using an Illumina 

MiSeq with a 300-cycle cartridge as suggested by the manufacturers. Analysis of genetic 

diversity was carried out using CLC Genomic Workbench version 6.0.1 (CLC bio). After 

quality assessment and the removal of sequencing artefacts, reads were mapped using 

BTV-8NET2006 as a reference sequence, and the consensus sequences were extracted. 

Reads with a similarity fraction below 70% were omitted in the final assembly. Single 

nucleotide polymorphisms were identified using the quality-based variant detection 

function within CLC Genomics Workbench version 6.0.1. Total sample reads were 

mapped to the consensus sequence of each segment, and variants were called using, as 

parameters, nucleotides with total coverage of over 100 reads and a central quality score 

of Q20 or higher. Average quality score per nucleotide was above Q35.8 in all samples. 

The mean depth of coverage per variant in each viral genome was between 8,154 and 

12,461 reads. Presence of both forward and reverse reads was required to call a variant, 

while the frequency threshold was arbitrarily set at 0.1%. 

Table 5. Primers used to amplify full-length genomic 
segments of BTV-8. 

Segment Primer sequence (5’-3’) 

S1 
GTTAAAATGCAATGGTCGCAATCACC 
GTAAGTGTAATGCGGCGCGTG 

S2 
GTTAAAATAGCGTCGCGATGGAG 
GTAAGTTGATAGCGCGCGAGC 

S3 
GTTAAATTTCCGTAGCCATGGCTG 
GTAAGTGTGTTCCCGCTGCC 

S4 
GTTAAAACATGCCTGAGCCACAC 
GTAAGTTGTACATGCCCCCCTC 

S5 
GTTAAAAAAGTTCTCTAGTTGGCAACC 
GTAAGTTGAAAAGTTCTAGTAGAGTGCTA 

S6 
GTTAAAAAAGCGATCGCTCTCGC 
GTAAGTGGAAAGCGGTGGCTC 

S7 
GTTAAAAATCTATAGAGATGGACACTATCG 
GTAAGTGTAATCTAAGAGACGTTTGAATG 

S8 
GTTAAAAAATCCTTGAGTCATGGAGCAAAAG 
GTAAGTGTAAAATCCCCCCCC 

S9 
GTTAAAAAATCGCATATGTCAGCTGC 
GTAAGTGTAAAATCGCCCTACGTC 

S10 
GTTAAAAAGTGTCGCTGCCATGC 
GTAAGTGTGTAGTGTCGCGCAC 
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2.15 Experimental infection of mice  

Transgenic mice deficient in type I interferon (IFN) receptor (129sv IFNAR-/-) were 

maintained at biosafety level 3. For each experiment, groups of adult mice matched for 

sex and age (n=5 per group) were used. 

2.15.1 Survival plots and LD50 

Mice were infected intraperitoneally with specified doses of virus or mock-infected with 

cell culture medium. For in vivo pathogenicity studies of parental, reassortant and 

intermediate passage viruses, doses of 300 PFU and 3000 PFU were used as stated in the 

Result section. Doses of 5, 10, 30, 100, 300 PFU of rgBTVL and 300, 1x103, 3x103, 1x104, 

3x104, 1x105 PFU for rgBTV8H were used in additional experiments. Mice were examined 

for clinical signs daily until the experiment was concluded 14 days later. 

2.15.2 Viraemia, rectal temperature and body weight changes 

Groups of IFNAR-/- mice were inoculated intraperitoneally with 300 PFU rgBTV8L, rgBTV8H 

or mock infected with tissue culture medium. All mice were micro-chipped and individual 

mice were monitored for daily changes in body weight and rectal temperature. Blood 

samples were collected from mice infected intraperitoneally with 300 PFU of rgBTV8L, 

rgBTV8H or mock-infected animals at time points indicated in the Result section and 

blood samples were analysed by qRT-PCR for the presence of viral RNA.  

2.15.3  Immunohistochemistry  

Spleen, lung and heart samples were collected at various time points p.i. (3, 5 and 9 d.p.i.) 

after subcutaneous inoculation of IFNAR-/- mice with 300 PFU of rgBTV8L and rgBTV8H 

and from mock-infected animals. Formalin-fixed and paraffin-embedded tissue sections 

were used in immunohistochemistry. Sections were examined for the presence of BTV 

using a polyclonal NS2 antiserum and the EnVision (DAKO) detection system according 

to the manufacturer’s instructions. 

2.16 Serum neutralisation assay 

Sera were collected from mice infected with 300 PFU of rgBTV8H or mock infected with 

tissue culture medium at 16 d.p.i. and used in serum neutralisation assays. At 20 d.p.i., 
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surviving mice were challenged with 300 PFU of rgBTV8L and monitored for a further 14 

days. Survival plots were constructed for each experimental group. 

The presence of neutralising antibodies in infected mice was assessed by neutralisation 

assays testing serial 2-fold dilutions of sera as previously described (Caporale et al., 

2014). Sera were inactivated at 56oC for 30 min prior to testing. Two-fold serial dilutions 

of each serum sample (total volume 50 µl) and 50 µl of BTV-8 diluted to 100 TCID50/ml 

were added to 96-well plates.  After 1 h incubation at 37oC, 100 µl of Vero cells 

resuspendedmin minimal essential medium, (MEM) were added to each well and plates 

were incubated for 6-7 days. Following the incubation period, cells in individual wells 

were scored for CPE. Titres of neutralising antibodies were determined by endpoint 

dilution assays and reported as log10 of the 50% endpoint (proportionate distance [PD]) 

of each sample tested in quadruplicates.   

2.17 qRT-PCR and qPCR  

Levels of viraemia in mice were assessed by qRT-PCR as decribed before (Caporale et al., 

2014; Caporale et al., 2011). Red blood cells were lysed with ice cold water for 10 min 

on ice and centrifuged at 4°C for 10 min at 13,000 × g. Armoured West Nile RNA 

(Asuragen, USA) was spiked into each sample as internal control of extraction efficiency. 

Total RNA was extracted using High Pure Nucleic Acid Extraction Kit (Roche, Nutley, NJ) 

according to manufacturer’s instructions. For all samples, 250 ng of total RNA were 

amplified by one-step qRT-PCR using primers and probes for BTV segment 5 (NS1). 

Armoured RNA and β-actin were amplified as control reactions. Samples were analysed 

using a 7900HT fast real-time PCR system and the Sequence Detection System Software 

SDS, version 2.3 (Applied Biosystems). Standard curves were generated by amplifying 

known concentrations of in vitro transcribed synthetic BTV segment 5 RNA synthesised 

using mMESSAGE mMACHINE T7 Ultra kit (Ambion). BTV genome copy numbers were 

expressed as log10/μg of total RNA and threshold cycle (CT) values ≥40 were considered 

negative.  

Levels of GAPDH, β-Actin, IFN-β, Mx1, RSAD2 expression in infected OvEC cells were 

measured by qPCR. Briefly, cells were seeded in 24-well plates and infected 48 h 

afterwards with high MOI of rgBTV8L, rgBTV8H and selected reassortants. The medium 

was replaced after 1 h and the cells were incubated for a further 17 h at 37oC.  Next, the 
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supernatants were collected and monolayers were directly lysed in 0.5 ml of TRIzol (Life 

Technologies) followed by storage at -80oC until extraction. Phase separation was 

performed according to the manufacturer’s instructions, whereupon the aqueous phase 

was mixed with ethanol and purified using the RNeasy Mini kit (Qiagen), including RNase 

Free/DNase set on-column DNase treatment step. Residual contaminating genomic DNA 

was removed using the TURBO DNA-Free™ kit (Ambion) according to the manufacturer’s 

conditions. Reverse transcription was performed using 100 ng of RNA using random 

hexamers and SuperScript III (Life Technologies) for 1h at 45°C. qPCR was performed 

using the Brilliant III Ultra-Fast QPCR mastermix reagents (Agilent) and in-house designed 

primers/probes (sequences available upon request) targeting ovine GAPDH, β-ACTIN, 

IFN-β, Mx1, RSAD2. Samples were run on an Mx3005P PCR machine with rgBTV8L-

infected cells set as a calibrator. GAPDH was used as the normalising gene against which 

fold-induction was determined for IFN-β, Mx1, RSAD2, β-ACTIN. qPCR of experiment 

replicates was kindly performed by Andrew Shaw. 

Table 6. Primers and probed used for amplification of ovine genes. 

Gene Primer sequence (5’-3’) 

IFN-β 
CTGAGGAGATGAAGCAAG 
GGTGAGAATATTGAAGATGTG 

Mx1 
TAGGACCATAGGTAGAATCTTGAC 
CTTGACGATCATGTAGCCCT 

RSAD2 
CAGAAGTACGGTGAATATTTGGAC 
TGTATTCCTTACACCATGTCCTC 

Β-Actin 
GAAGATCAAGATTATCGCTCCTC 
GCCAGACTCATCATACTCCT 

GAPDH 
CCTCTCAAGGGCATTCTAG 
ATTGTCGTACCAGGAAATGAG 

Gene Probe sequence 

IFN-β 5'FAM-TGACCAATACGGCATCTTCCTTCC-3'BHQ1 

Mx1 5'FAM-CGTCCACAACCTTGTCTTCCGTGCCT-3'BHQ1 

RSAD2 5'FAM-TCCTCGCCATCTCCTGTGACAGCTT-3'BHQ1 

Β-Actin 5'FAM-AGCCTCCGATCCACACCGAGTAC-3'BHQ1 

GAPDH 5'FAM-TGCGACTTCAACAGCGACACTCACTCT-3'BHQ1 
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2.18 IFN protection assays 

Measurement of IFN levels in cell supernatants was based on the methods described 

previously (Varela et al., 2013). Briefly, OvEC cells were seeded in 24-well plates and after 

48-72 h infected with selected viruses at MOI of 1. Culture medium was replaced after 1 

h and supernatants collected for analysis 18 h after infection. Supernatants were treated 

for 20 min with UV light in order to inactivate infectious virus. CPT-tert cells were seeded 

in 96-well plates and 24 h later serial dilutions of UV-treated supernatants were added 

to the cells. Serial dilutions of known concentration of universal interferon (UIFN) were 

used as internal controls. After a 24-hour incubation, the supernatants were removed 

and cells were infected with encephalomyocarditis virus (EMCV) and incubated for 48 h. 

Cells were then inspected for EMCV induced cytopathic effect. The levels of IFN in 

supernatants collected from BTV-infected OvEC cells were calculated based on the 

number of wells protected from EMCV-induced cell death compared to UIFN control 

wells.  

Cell protection by pre-treatment with universal interferon (UIFN) was performed using 

CPT-tert cells.  Cells were seeded in 24-well plates and 24 h later treated with 1000 units 

of UIFN. After 18 h incubation, UIFN was removed and cells were infected with selected 

viruses at MOI 0.01. In parallel, untreated CPT-tert cells were infected with the same set 

of viruses. The inocula were replaced 1.5 h later with fresh tissue culture medium. At 48 

h.p.i, supernatants were collected and virus titrated by end-point dilution assays as 

described above. At 72 h.p.i., cell monolayers were washed with PBS and stained with 

crystal violet in a formaldehyde solution to visualise plaques.  

2.19 Fluorescence-activated cell sorting (FACS) 

A549/pr(IFN-β).GFP cells were seeded in 96 well plates and after 24 h infected with 

rgBTV8L, rgBTV8H and selected reassortants. For mock-infected samples, tissue culture 

medium was replaced with fresh DMEM. After 48 h incubation, supernatants were 

removed and cells were trypsinised and re-suspended to obtain uniform suspensions 

containing single cells. Samples were then fixed with 4% formaldehyde and FACS was 

performed to quantify the number of GFP positive cells using the Guava PCA-96 Base 

System (Merck Millipore) and analysed using InCyte (Merck Millipore). The experiment 

was performed 4 times in quadruplicate and 4000 events were measured for each 
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replicate. Images of infected A549/pr(IFN-β).GFP expressing GFP were produced using 

an EVOS FL Cell Imaging System (AMG, Invitrogen). 

2.20 Statistical analysis 

All statistical analysis were performed using GraphPad Prism vesion 5.01 (GraphPad 

Software, Inc., California, USA) 
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3.1 Introduction 

Among the 27 serotypes of BTV found worldwide, at least six serotypes (BTV -1, -2, -4, -

8, -9 and -16) have been circulating in different parts of Europe over the last 20 years, 

each of them showing a marked variation in the degree of pathogenicity (Saegerman et 

al., 2008). While some serotypes such as the Northern European BTV-8 proved to be 

extremely virulent, other serotypes, such as BTV-6, -11 and -14, were reported in Europe 

only on a few occasions and did not cause any clinical signs in the field (Maan et al., 2010; 

Wilson and Mellor, 2009).  Moreover, reassortment between viruses in the field (both 

wild type and vaccine strains) is extremely common and can lead to the emergence of 

viruses with a spectrum of different phenotypes (Batten et al., 2008b; Shaw et al., 2013). 

Additionally, due to other factors such as overwintering and transplacental spread, 

different serotypes can persist in the environment for many seasons providing an 

opportunity for genetic drift and the emergence of new strains with altered 

pathogenicity (Bonneau and MacLachlan, 2004; Bonneau et al., 2001; Gibbs et al., 1979; 

Maclachlan et al., 2009). Although the concept of BTV serotype/strain related virulence 

is often quoted in the literature, only a few studies attempted to identify the molecular 

determinants of BTV pathogenicity are (Caporale et al., 2011; Celma et al., 2014; 

Waldvogel et al., 1987). 

Previously, our group used extensively passaged strains of BTV (including South African 

life-attenuated vaccines) to identify common genomic segments that are most likely to 

play a role in BTV virulence (Caporale et al., 2011). With a similar approach, in order to 

study the molecular determinants of BTV virulence, we have used a BTV-8 strain that was 

isolated during the bluetongue outbreak in 2006 and had a minimal in vitro passage 

history (BTV-8NET2006, referred from now on as BTV8L in this thesis) and then passaged 

this virus 65 times in BSR cells and plaque purified (BTV8H). Virulence of both viruses was 

then assessed in vivo in newborn NIH-Swiss mice (intracerebral route) and in sheep. In 

the mouse model, both viruses caused the same total mortality, however the survival of 

BTV8H animals was prolonged by 3 to 5 days (Caporale, unpublished results). In sheep 

infected with BTV8H however, we saw no clinical signs of bluetongue while low passage 

virus was fully pathogenic. Strikingly, the attenuated virus did not induce fever in sheep 

and we detected no viraemia over the entire course of the experiment (Janowicz et al., 
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2015).  Furthermore, we detected neutralising antibodies in sheep infected with both 

viruses albeit the titres were lower in BTV8H -infected animals (Janowicz et al., 2015).  

In this chapter, we characterised genetic differences between BTV8L and BTV8H and their 

phenotypes in vivo. IFNAR-/- mouse is a well-established model of bluetongue and the 

pathological  changes observed in these animals infected with wild type BTV viruses 

resemble those of sheep (Calvo-Pinilla et al., 2010; Caporale et al., 2011; Ortego et al., 

2014). Hence, we used this animal model to compare the virulence of BTV8L and BTV8H 

as well as the clinical signs and histopathological presentation induced by both strains.  
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3.2 Results 

3.2.1 BTV8H shows efficient replication in vitro in the absence of a functional IFN 
system and it is attenuated in IFNAR-/- mice. 

First, we assayed in vitro replication kinetics of the extensively passaged BTV8H and the 

minimally passaged BTV8L in the ovine cell line CPT-Tert. CPT-Tert cells do not produce 

IFN and therefore are suitable to assess virus replication kinetics in absence of an IFN-

induced antiviral response.  Cells were infected with BTV8H and BTV8L at MOI 0.01 and 

virus titres assessed at 2, 24, 48 and 72 h.p.i. Both viruses replicated very efficiently in 

IFN-deficient CPT-Tert cell lines. However, BTV8H produced approximately 100-fold 

higher titres than its minimally passaged equivalent (Figure 6A). The 2-log difference 

between the two viruses was seen as early as 24 h.p.i. BTV8H infected monolayers 

developed full CPE at 48 h.p.i., while it took 72h for BTV8L to cause total cell death.  

Next, we titrated BTV8H and BTV8L in IFN-competent primary ovine endothelial cells 

(OvEC). In these cells, both viruses produced lower yields than in CPT-Tert cells. BTV8L 

reached 4.1x105 TCID50/ml at 72 h.p.i. (Figure 6B).  Strikingly, the titres of BTV8H peaked 

at 24 h.p.i. and did not significantly increase over the 72 h period reaching a maximum 

titre of only 5x103 TCID50/ml at 72 h.p.i. These data strongly suggested that through 

extensive passage in BSR cells, BTV8H acquired the ability to grow much more efficiently 

than the original strain in the absence of an IFN response in CPT-Tert cells but was unable 

to overcome the IFN response in OvEC cells.   

In light of these data, we wanted to determine if these diverse phenotypes correlated 

with differences in virulence in interferon receptor deficient (IFNAR-/-) mice. We 

experimentally infected groups of five IFNAR-/- mice with 300 PFU of each virus 

intraperitoneally and used tissue culture medium in the mock-infected controls.    BTV8L 

was highly virulent in this mouse model (100% mortality within 7 days p.i.) while BTV8H 

was completely attenuated (Figure 6C). Mice infected with BTV8L showed signs of BTV 

infection as early as 2 days p.i. The main symptoms included apathy, ocular discharge 

and fur ruffling. Additionally, infected mice displayed higher water intake and 

consequently excessive urination, presumably as a response to increasing body 

temperature. Mice infected with BTV8H displayed no visible symptoms of infection 

throughout the experiment. Complete attenuation of BTV8H in IFNAR-/- mice clearly 
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showed that factors other than the IFN response also played a role in the loss of virulence 

of the tissue-adapted strain.   

 

  

Figure 6. In vitro and in vivo phenotype of minimally passaged BTV8L and tissue culture 

adapted BTV8H. BTV8L and BTV8H replication kinetics in ovine CPT-Tert cells (A) and primary 

ovine endothelial cells (OvEC) (B). Cells were infected with BTV8L or BTV8H at MOI 0.01. 

Supernatants were collected at 2, 24, 48 and 72 h p.i. and then titrated in BSR cells by limiting 

dilution analysis. Virus titers are expressed as log10(TCID50/ml). (C) Survival plot of IFNAR-/- 

mice (n=5 per group) infected with 300 PFU of BTV8L and BTV8H or mock-infected. 
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3.2.2  Genetic differences between BTV8L and BTV8H. 

Extensive passage of BTV8L in tissue culture resulted in a virus (BTV8H) possessing a very 

different phenotype, both in vitro and in vivo, from the parental strain. To discern which 

genomic segments played a role in the changed characteristics of BTV8H, we sequenced 

the full genome of BTV8H and compared it with the sequence of BTV8L (Figure 7A). 

Alignment of both genomes revealed 31 mutations out of which 16 resulted in amino 

acid substitutions. The non-synonymous mutations were present in each of the 10 

genomic segments and affected all proteins except NS4. Several mutations occurred in 

the non-coding part of the genome and including a GC insertion in segment 6. 

Interestingly, S2, which is the most variable among the BTV genomic segments in nature 

(Maan et al., 2004 5075), had the highest number of amino acid mismatches. Two of 

these, at positions 321 and 327, clustered at the region previously shown to be 

consistently mutated in tissue culture adapted strains of BTV (Caporale et al., 2011). To 

study the roles of individual genomic segments in tissue culture adaptation and 

pathogenicity of BTV8 we first rescued both BTV8L and BTV8H by reverse genetics (RG). 

In order to obtain the plasmids to be used for RG of BTV8H, we used site-directed 

mutagenesis and introduced each non-synonymous mutation present in BTV8H into the 

BTV8L RG plasmids. Hence, we rescued rgBTV8L with the same nucleotide sequence as 

the original virus while rgBTV8H was identical to the original high passage virus only at 

the amino acid level.   

3.2.3 RgBTV8L and rgBTV8H retain phenotypes of the original viruses.  

As the genome of the rescued rgBTV8H only possessed identical viral proteins (but not 

the nucleotide sequence of genomic segments) of BTV8H, our first goal was to assess 

whether the amino acid changes introduced were sufficient to confer an attenuated 

phenotype to the resulting virus. We therefore inoculated groups of five mice with 300 

PFU of each rescued virus and monitored the mice over 14 days. Similar to the original 

BTV8L, rgBTV8L was highly virulent in vivo and caused 100% mortality within the first 4 

d.p.i. (Figure 7B). All rgBTV8L-infected mice showed typical signs of infection two d.p.i. 

with ocular discharge, apathy, ruffled fur and anorexia as the main visible symptoms.  As 

anticipated, rgBTV8H was fully attenuated and it did not cause any clinical signs of 

disease. These data showed that both rescued viruses retained the phenotypes of the 
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original viruses and that amino acid substitutions in BTV8H were sufficient for the fully 

attenuated phenotype, at least in IFNAR-/- mice.  

 

Figure 7. Genetic differences between BTV8L and BTV8H and virulence of rescued viruses 

in IFNAR-/- mice.  (A) Schematic representation of the 10 genomic segments of BTV8L and 

BTV8H. Mutations in BTV8H compared to the minimally passaged BTV8L are indicated with 

red dots. Non-synonymous mutations are marked with asterisks and the numbers 

relative to the mutated amino acid residue in the corresponding viral proteins are shown. 

The plus sign indicates a nucleotide insertion. The length of the schematic genome 

segments and the relative position of mutations are indicative only. (B) Survival plots of 

IFNAR-/- mice (n=5 per group) infected intraperitoneally with 300 PFU of rgBTV8L and 

rgBTV8H.  
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3.2.4 Attenuation of rgBTV8H.  

A recent study done by Calvo-Pinilla et al. showed differences in survival rates of IFNAR-

/- mice inoculated with 10 fold dilutions of BTV-4 (Calvo-Pinilla et al., 2009a). At low doses 

(100 PFU or less) the majority of IFNAR-/-  mice infected with BTV-4 survived over 21 days 

while doses higher than 1x103 caused 100% mortality within 7 d.p.i. (Calvo-Pinilla et al., 

2009a). Therefore, we wanted to determine if the virulence of rgBTV8L and rgBTV8H also 

correlated to the inoculation dose in IFNAR-/- mice.  To this end, we intraperitoneally 

injected groups of 5 mice with 5, 10, 30, 100 or 300 PFU of rgBTV8L and 300, 1x103, 

3x103, 1x104, 3x104 or 1x105 PFU of rgBTV8H. RgBTV8L proved to be highly virulent at all 

infection doses and the majority of infected mice died within 6 days of inoculation (Figure 

8). Only two mice, injected with doses of 5 and 10 PFU, survived infection with rgBTV8L. 

We did not note any significant differences between the mortality induced by rgBTV8L at 

doses of 300, 100 or 30 PFU. Although, two mice inoculated with 300 PFU of rgBTV8L 

died at 3 and 4 d.p.i., the majority of animals were died at day 6, similarly to what we 

observed with doses of 100 and 30 PFU. All mice inoculated with rgBTV8H survived and 

remained healthy over the entire course of the experiment, showing that the high 

passage virus was fully attenuated even at doses as high as 1x105 PFU.   
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Figure 8. Virulence of rgBTV8L and rgBTV8H in IFNAR-/- mice. Groups of IFNAR-/- mice (n=5 

per group) were infected intraperitoneally with varying doses of rgBTV8L (A) or rgBTV8H 

(B). Mortality was recorded for 14 d.p.i. Note that rgBTV8H was attenuated at all 

inoculation doses. 
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Although we did not note any characteristic signs of infection, such as ocular discharge 

or fur ruffling in rgBTV8H-infected mice, we wanted to establish whether the mice 

displayed subtler signs of infection, such as increase in body temperature, or bodyweight 

loss. Hence, we micro-chipped groups of five IFNAR-/- mice and inoculated them 

intraperitonally with 300 PFU of rgBTV8L or rgBTV8H or mock infected with tissue culture 

medium. We measured bodyweight and rectal temperature of individual mice daily over 

the experimental period of two weeks.  

Animals inoculated with rgBTV8L showed pronounced weight drop starting on the 

second day after infection (Figure 9B). This correlated with the development of other 

clinical signs such as apathy and anorexia. Two mice lost over 10% of their body weight 

24 h prior to death. In contrast, rgBTV8H infected mice showed less than 5% average 

body weight loss over the entire experimental period. The body weight of all mice 

remained stable for 4 d.p.i. However, a slight decrease was observed (with the exception 

of one mouse) at 5 d.p.i. Differences were also noted between individual mock-infected 

mice, where some mice gained and retained more body mass after the inoculation, while 

one mouse lost weight and did not regained it by the end of the experiment.   

The majority of mice infected with low passage virus showed increased rectal 

temperature as early as 24 h.p.i (Figure 9A). Two of these mice continued to have fever 

on day 2, which was then followed by hypothermia and death within the next 48 hours. 

In contrast, the majority of mice inoculated with rgBTV8H did not develop fever although 

we detected a slight increase in average rectal temperature at day 6 d.p.i. compared with 

mock-infected animals. A single mouse in particular showed a rectal temperature 

approaching 39oC, which was the highest reading we noted in rgBTV8H infected mice 

during the course of the experiment.  A high degree of variation (up to 1.5oC) was 

observed in rectal temperatures of mock-infected animals. This suggests that measuring 

the rectal temperature would not be suitable for detecting subtle rises in body 

temperature that could be the result of BTV infection.   
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Figure 9. Change in body temperature and body weight following infection with rgBTV8L 

or rgBTV8H. Groups of IFNAR-/- mice (n=5 per group) were micro-chipped and infected 

intraperitoneally with rgBTV8L and rgBTV8H. Rectal temperature (A) and body weight 

changes (B) were recorded until 14 d.p.i. Single points represent readings for individual 

animals.  Note that mice inoculated with rgBTV8L did not survive past 4 d.p.i.   
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3.2.5 RgBTV8H induces viraemia and neutralising antibodies in IFNAR-/- mice. 

The previous data obtained from sheep experimentally infected with BTV8L and BTV8H 

showed that while BTV8L-infected animals showed high levels of viraemia, BTV8H RNA 

was not detected at any time point after experimental infection. Therefore, our next step 

was to examine whether the same pattern was observed in the mouse model used in 

this study. We inoculated groups of five micro-chipped IFNAR-/- mice with 300 PFU of 

rgBTV8L and rgBTV8H and collected their blood at the day of inoculation and at 1, 2, 4, 6, 

10 and 13 d.p.i. As previously, tissue culture medium inoculated mice were used as 

controls. Total RNA was extracted from all blood samples and BTV segment 5 RNA was 

detected by qRT-PCR. BTV RNA was detected in two mice infected with low passage BTV-

8 as early as 24 h.p.i (Figure 10). The remaining rgBTV8L-infected mice developed 

viraemia at 2 d.p.i. The highest BTV RNA load was detected in three mice that survived 

until day 4. Surprisingly, all mice inoculated with rgBTV8H also developed viraemia but it 

was lower (more than 1.5 log lower peak viraemia) and delayed compared with rgBTV8L-

infected mice. We did not detect rgBTV8H RNA until 6 d.p.i., after which time the levels 

of viraemia started declining. Not surprisingly, the onset of viraemia in rgBTV8H-infected 

mice coincided with the increased mean body temperature observed in this group of 

mice. At 13 d.p.i. we were not able to detect any more BTV RNA in three of the five 

rgBTV8H-infected mice, suggesting that the virus was efficiently cleared from the blood. 

No BTV RNA was detected in mock-infected control samples.   
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Figure 10. Viraemia in rgBTV8L and rgBTV8H infected IFNAR-/- mice Groups of five animals 

were inoculated intraperitoneally with 300 PFU of rgBTV8L, rgBTV8H or mock infected 

with culture media. Blood was collected on the indicated days and viral RNA levels 

estimated by qRT-PCR as described in Materials and Methods.   
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Our data suggested that contrary to what we observed in sheep, in IFNAR-/- mice, 

rgBTV8H was able to replicate and induce viremia. Our next step was therefore to 

determine whether mice infected with high passage BTV-8 produced neutralising 

antibodies and whether infection with the attenuated virus protected animals against 

challenge with the virulent strain. To this end, we inoculated groups of five IFNAR-/- mice 

with 300 PFU of rgBTV8H or tissue culture medium intraperitoneally. We collected sera 

from all animals at 16 d.p.i. and performed serum neutralisation assays. All rgBTV8H-

infected mice developed neutralising antibodies while no antibodies were detected in 

the sera of mock-infected control animals (Figure 11A). After a 4-day recovery period, 

mice were challenged with 300 PFU of the virulent rgBTV8L. Mice were monitored for a 

further 14 days. Control animals challenged with rgBTV8L developed typical symptoms of 

bluetongue 2 d.p.i. and 100% mortality was reached 3 days after (Figure 11B). Mice 

vaccinated with rgBTV8H survived the challenge and did not develop any clinical 

symptoms throughout the duration of the experiment. These data confirmed that 

rgBTV8H infection led to the development of protective adaptive immune response in 

IFNAR-/- mice effective against challenge with a virulent strain of BTV-8.  

 

 

Figure 11. RgBTV8 elicits protective antibody response against challenge with virulent 

rgBTV8L in IFNAR-/- mice. Neutralising antibody titres were measured 16 days post 

infection in sera collected from IFNAR-/- mice (n=5) inoculated with 300 PFU of rgBTV8H 

or mock infected with cell culture medium (A). Groups of five IFNAR-/- mice immunised 

with 300 PFU of rgBTV8H (rgBTV8H vaccinated) or inoculated with cell culture medium 

(unvaccinated) were challenged with 300 PFU of rgBTV8L and their survival was 

monitored for 14 days (B). 
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3.2.6 High levels of rgBTV8L but not rgBTV8H are detected in mouse tissues. 

We inoculated groups of IFNAR-/- mice subcutaneously with 300 PFU of rgBTV8L, rgBTV8H 

or tissue culture medium and collected organs to determine the sites where the virus 

localised.   Previous studies have shown that BTV RNA could be detected in spleen, lung, 

lymph nodes and thymus of experimentally infected IFNAR-/- mice (Calvo-Pinilla et al., 

2010; Calvo-Pinilla et al., 2009a). We therefore collected spleens, lungs and additionally, 

hearts at 3, 5 and 9 d.p.i. For ethical reasons we used two animals for both infection 

groups and only one mock infected animal per time point. Gross pathological 

examination of mice infected with rgBTV8L and sacrificed 5 d.p.i. revealed widespread 

oedema, grossly enlarged spleen, distended stomach and slight liver discoloration 

(Figure 12).  No obvious signs of haemorrhage were observed.  Pathological changes in 

animals inoculated with attenuated virus included lung oedema and slight enlargement 

of the spleen with no discoloration. No changes in stomach size were noted.  

 

Figure 12. Gross pathological changes in IFNAR-/- mice  following infection with rgBTV8H 

and rgBTV8L. IFNAR-/- mice (n=5) were inoculated subcutaneously with 300 PFU of 

rgBTV8L and rgBTV8H or mock infected with tissue culture medium (control). Animals 

were euthanized 5 d.p.i. and their organs (liver, spleen, stomach, lungs) were harvested. 

Note splenomegaly in rgBTV8L infected mouse.  
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Spleens, lungs and hearts harvested from IFNAR-/- mice inoculated with rgBTV8L and 

rgBTV8H at specified time points were fixed in 10% formalin and embedded in paraffin 

wax. Sections were stained using polyclonal NS2 antiserum and examined for the 

presence of BTV antigen (Figure 13). The most dramatic effect was observed in the 

spleen of a mouse infected with the virulent strain (Figure 13 A). At 3 d.p.i. rgBTV8L 

antigen was detected across large areas of the spleen, both in white and red pulp. At five 

days post infection, extensive necrosis was observed and spleen architecture was almost 

completely erased. The strongest stain was associated with cells surrounding blood 

vessels.  Marked necrosis was also found in the areas where little BTV antigen was found, 

suggesting that the cell death was related to severe inflammation. In constrast, no 

lymphoid depletion was observed in spleen samples collected from animals infected with 

rgBTV8H at any time point post infection.  A few NS2 positive foci were detected 5 d.p.i. 

and were mainly associated with the white pulp.  

Similarly, BTV was only detected in the heart samples of mice infected with BTV8L (Figure 

13B). Only few positive cells were found at 3 d.p.i. but several large areas positive for 

NS2 were detected at 5 d.p.i. Again, positive cells resembled endothelial cells 

surrounding blood vessels.  BTV was localised in the cardiac muscle. No virus was 

detected in tissues obtained from mice inoculated with rgBTV8H. 

BTV positive cells were only found in lung sections from rgBTV8L-infected mice (Figure 

13C). Three days post infection only few cells were detected but the amount increased 

considerably 5 d.p.i. No virus was detected in lung samples from rgBTV8H-infected mice. 

Previous experiments showed that viremia was delayed in rgBTV8H-infected IFNAR-/- 

mice compared with rgBTV8L-infected animals. Therefore, we also collected organ 

samples from mice inoculated with BTV8H strains at a later time post infection (9 d.p.i.). 

No virus was detected by IHC in any of the examined sections at this time point (Figure 

14) (as mentioned before mice inoculated with rgBTV8L die before this time point).  

Overall, these results showed that in infected IFNAR-/- mice, rgBTV8L was able to 

disseminate efficiently to different organs and replicated mainly in blood vessels 

associated with specific tissues. In contrast, rgBTV8H was only transiently found in the 

follicles of the spleen and it did not seem to cause any marked pathological inflammatory 

response or necrosis.       
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Figure 13. Immunohistochemistry of tissue sections collected from mice infected with rgBTV8L or rgBTV8H. Mice were inoculated subcutaneously with 300 PFU 

of the virus or mock infected with tissue culture medium.   The mice were sacrificed at 3 or 5 d.p.i. and spleen (A), heart (B) and lungs (C) were collected, 

formalin fixed and stained to detect BTV NS2. The arrows in (C) indicate BTV positive cells. Scale bars depict 100 µm (A) and 50 µm (B, C). 
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Figure 14. Immunohistochemistry of tissue sections collected from 

rgBTV8H-infected IFNAR-/- mice. Mice were inoculated subcutaneously 

with 300 PFU of rgBTV8H and sacrificed at 9 d.p.i.   Spleen (A), heart (B) 

and lung (C) sections were stained to detect BTV antigen as described in 

Materials and Methods. Scale bars represent 100 µm (A) and 50 µm (B, 

C).  
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3.3 Discussion 

In this study, we have developed a strain of BTV-8 that was fully attenuated in sheep. 

Interestingly, in ovine CPT-Tert cells (an IFN-defective cell line), BTV8H replicated to titres 

over 100 times higher than BTV8L. However, replication of BTV8H was less efficient than 

BTV8L in primary ovine endothelial cells. These data showed that the cellular IFN 

response could play a role in the inhibition of BTV8H replication.  We analysed full 

genome sequences of BTV8L and BTV8H and found 16 non-synonymous nucleotide 

mismatches between these two viruses, distributed in each viral genomic segment. 

Rescued rgBTV8H only contained amino acid changes present in the original virus and the 

silent mutations were not included in the RG constructs of this virus. Nevertheless, 

rgBTV8H retained the phenotype of BTV8H in vitro and in vivo in IFNAR-/- mice. We cannot 

exclude that the silent mutations in the untranslated regions of the genome might have 

additional effects on the reduced pathogenicity of BTV8H, however, the amino acid 

mutations were sufficient to fully attenuate the virus at least in IFNAR-/-  mice.  

Only two small animal models have been used successfully to induce fatal BTV infection 

(Calvo-Pinilla et al., 2009a; Franchi et al., 2008; Ortego et al., 2014). Intracerebral 

infection of new-born Swiss-NIH mice has been particularly useful to confirm attenuation 

of BTV MLV vaccines (Caporale et al., 2011; Franchi et al., 2008). This model is particularly 

sensitive to BTV. Indeed, our previous work showed that BTV8H was lethal in newborn 

NIH-Swiss mice while it is avirulent in sheep and in adult IFNAR-/- mice. Similarly, Caporale 

et al. showed that at least 2 of the South African vaccine strains of BTV that were virulent 

in 3 year old NIH Swiss mice inoculated intracerebrally, were not pathogenic in IFNAR-/- 

mice (Caporale et al., 2011). The IFNAR-/- model lacks a functional type I IFN receptor, 

and therefore animals cannot mount efficient IFN-dependent antiviral responses which 

renders them highly susceptible to viral infections (Keller et al., 2006; Lorenzo et al., 

2010; Ortego et al., 2014). However, the immune system, including the adaptive immune 

response is otherwise intact and these animals can be used effectively to study various 

aspects of the pathogenesis of BTV (Caporale et al., 2011; Ortego et al., 2014; Rojas et 

al., 2011). Here we showed that rgBTV8H did not cause any apparent signs of disease, 

although we did detect delayed viraemia in all rgBTV8H-infected animals. These data 

were in clear contrast with experiments performed in sheep, where no viral RNA was 

detected in BTV8H-infected animals over the entire course of the experiment. We could 
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speculate that in the natural host, innate immunity limits the spread and replication of 

BTV8H, in  contrast to IFNAR-/- mice where a functional component of the IFN system is 

missing, allowing therefore the virus to spread easily to uninfected cells. Moreover, we 

used the intraperitoneal route of inoculation in mice, while in sheep the intradermal 

route is used. We therefore could hypothesise that in sheep, BTV8H is unable to spread 

beyond the lymph nodes draining the sites of infection, while in IP inoculated mice we 

would expect to have a wider virus spread. We also observed several day delay in the 

onset of viraemia in BTV8H-infected mice compared with BTV8L and viraemia was rapidly 

cleared during the second week p.i. IFNAR-/- mice infected with virulent strains of BTV 

did not survive beyond 7 d.p.i. Consequently, a direct comparison of the rate of virus 

clearance between “wild type” and attenuated strains is not possible in this model.   

Interestingly, we did not detect BTV8H in the hearts or lungs of infected mice even at 9 

days post infection, and only a few positively stained cells in the spleen at 5 days p.i. This 

suggests that the attenuated strain was not able to replicate in secondary sites (despite 

the viraemia) and therefore infection was self-limited, likely cleared by adaptive immune 

responses. In contrast, high concentrations of BTV8L antigen were detected in spleen, 

lungs and hearts of infected mice showing that this strain disseminated to and replicated 

in these organs rapidly after infection.  

Although the IFNAR-/- mouse model does not completely mirror the phenotype of BTV8L 

and BTV8H infection in sheep, it allowed the differenciation between attenuated and 

virulent BTV strains within a wide range of doses used for experimental infections Hence, 

this model was suitable to assess the pathogenicity of reassortants between virulent and 

attenuated strains. Our data showed that mutations acquired through high passage of 

BTV-8 in an IFN defective cell line led to the loss of pathogenicity of the resulting virus 

(BTV8H) by several mechanisms. While IFN independent factors were involved in the 

inability of high passage virus to cause disease in IFNAR-/- mice, other factors, that could 

have been IFN-related, might have additionally contributed to the observed loss of 

fitness in OvEC cells and should therefore be assessed further.  
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4.1 Introduction 

Bluetongue is remarkably variable in its clinical manifestations, which can range from an 

asymptomatic infection to a lethal haemorrhagic fever (Anderson et al., 1985; Brenner 

et al., 2011; Maclachlan et al., 2009; Spreull, 1905). This variability is due to a variety of 

factors related both to the infected host and to the virus (Caporale M., 2014; Maclachlan, 

1994; Maclachlan et al., 2009; Oura et al., 2009; Parsonson, 1990; Waldvogel et al., 

1987). Over the years, BTV has been used extensively as a prototype virus to study the 

replication cycle of Orbiviruses, their structural biology and their interaction with the 

host cell. Although the concept of BTV serotype/strain related virulence is often quoted 

in the literature, only a few studies addressed the question of what the molecular 

determinants of BTV pathogenicity are (Caporale et al., 2011; Celma et al., 2014; 

Waldvogel et al., 1987). Caporale et al. showed that MLVs and tissue culture adapted 

strains of BTV with a history of multiple passages in vitro show accumulation of 

nucleotide substitutions correlating with increasing number of passages in mammalian 

cells (Caporale et al., 2011).  Although specific mutations  leading to in vivo attenuation 

of BTV have not been investigated, genomic segments 1, 2 and 8 (encoding VP1, VP2 and 

NS2) were shown to be consistently mutated in attenuated strains of BTV-2, BTV-4 and 

BTV-9 passaged extensively in tissue culture (Caporale et al., 2011). 

In this chapter, we aimed to determine which genomic segments affect viral fitness in 

vitro and virulence in vivo. BTV is a potent inducer of type 1 IFN in sheep and in various 

cell lines. The ability of the virus to counteract the host IFN response was linked to its 

pathogenicity (Chauveau et al., 2013; Huismans, 1969; Jameson et al., 1978; Maclachlan 

and Thompson, 1985; Ratinier et al., 2011; Ruscanu et al., 2012). The data presented in 

the previous chapter suggested that BTV8H attenuation might be related to the inability 

of the virus to counteract the IFN system. Consequently, in our study we investigated 

genetic factors that contributed to BTV8 virulence either in the presence or absence of 

a functional IFN system. In IFNAR-/- mice, we assessed the mortality caused by 

rgBTV8L/rgBTV8H reassortants and identified segments contributing to attenuation of 

BTV8H in absence of IFNAR receptor signalling. Additionally, in IFN competent OvEC we 

assessed the growth kinetics of selected reassortants, as well as IFN induction and ISG 

expression in response to infection with these viruses. Our data show that BTV8 
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adaptation to growth in tissue culture is a complex multifactorial phenomenon related 

to both IFN-dependent and -independent factors. 
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4.2 Results 

4.2.1 Segment 2 is a major determinant of BTV8 pathogenicity in IFNAR-/- mice. 

In the previous chapter, we showed that through extensive passage in tissue culture 

BTV8H acquired 16 amino acid changes (compared to BTV8L) and each could be 

responsible for attenuation of the virus in IFNAR-/- mice. It was however not feasible to 

create all possible reassortants between BTV8L and BTV8H. Data published by Caporale 

et al. showed that S1, S2 and S8 are consistently mutated in BTV strains that are 

attenuated in the mouse model (at least in some strains of BTV-2, -4, and -9). However, 

their definite role as determinants of BTV pathogenesis has not been established 

(Caporale et al., 2011). Hence, our first goal was to rescue reassortants with exchanged 

S1, S2 and S8 (either separately or in combinations), in either the BTV8L or the BTV8H 

backbone, and assess their virulence in IFNAR-/- mice. The set of 14 reassortants was 

rescued by reverse genetics and titrated in CPT-Tert cells. We then inoculated groups of 

five mice with either 300 or 3000 PFU of each reassortant and monitored the animals for 

14 days. Additionally, we measured weight changes of the mice inoculated with 

individual reassortants at a dose of 300 PFU.  

Mortality plots are shown in Figure 15. We achieved partial attenuation of reassortant 

viruses by replacing S2L with S2H. BTV8L+S2H (i.e. a reassortant containing S2 of BTV8H 

within the BTV8L backbone) caused no mortality at the infection dose of 300 PFU and 

40% mortality at 3000 PFU. These data showed that VP2 was one of the main 

determinants of BTV8 pathogenicity in this mouse model. Only one mouse inoculated 

with BTV8L+S1H survived the experiment.  However, BTV8L+S1/2H was completely 

attenuated at both infection doses. This suggested that the mutation in VP1H also 

contributed to BTV8H attenuation, although its impact was less than that of amino acid 

changes in VP2H. BTV8L+S8H and BTV8L+S1/8H were fully virulent and caused 100% 

mortality within the first 6 d.p.i. Unexpectedly, we noted 20% mortality of mice 

inoculated with 300 and 3000 PFU of BTV8L+S1/2/8H. This showed that S8H did not carry 

attenuating mutations but, on the contrary, it made the virus more virulent than 

BTV8L+S1/2H in vivo. None of the reassortants that contained the BTV8H backbone was 

virulent in this mouse model, as we noted no mortality or typical symptoms of BTV 
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infections such as fur ruffling or ocular discharge. These data suggested that attenuation 

of BTV8 involved mutations in segment(s) other than S1 and S2.  

 

 

 

Figure 15. Virulence of S1, S2 and S8 reassortants with BTV8L or BTV8H backbone. Groups 

of 5 IFNAR-/- mice were inoculated intraperitoneally with either 300 or 3000 PFU of 

BTV8L/BTV8H reassortants with exchanged segments 1, 2 and 8.  Panels show mortality 

plots of reassortants with the BTV8L backbone (A, B) or the BTV8H backbone (C, D). Note 

that all reassortants in the BTV8H background were attenuated at both 300 and 3000 

PFU inoculation doses.   
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In addition, we assessed the average weight change in mice inoculated with 300 PFU of 

each of the 14 reassortants, the parental viruses and in the mock-infected animals. In 

general, no differences in weight loss were observed in mice infected with reassortant 

viruses or infected with the parental viruses (Figure 16). An exception included single 

segment reassortants with exchanged S2. Mice inoculated with BTV8H+S2L showed more 

than 5% average weight loss at 6 d.p.i., which was approximately 3% more than we 

observed in rgBTV8H-infected mice. This difference was however much less pronounced 

than that observed between animals inoculated with rgBTV8L (or containing the BTV8L 

backbone) and rgBTV8H. Please note that the values indicated are only averages for the 

distinct groups as mice were not micro-chipped prior to the experiment and therefore 

we could not discern between weight changes of individual animals nor establish the 

range of body weight loss at individual time points.   
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Figure 16. Body weight changes of IFNAR-/- mice following infection with S1, S2 and S8 
reassortants with BTV8L or BTV8H backbone. Groups of five IFNAR-/- mice were inoculated 
intraperitoeally with 300 PFU of rgBTV8L, rgBTV8H or reassortants (as indicated in 
individual panels). Body weight changes were recorded daily and mean body weight per 
group (presented as of % of initial body weight) were plotted.  
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4.2.2 Progressive attenuation of BTV8 during cell culture passages. 

The data accumulated so far clearly showed that more than one genomic segment 

determined the pathogenicity of BTV8 in IFNAR-/- mice. We identified S2 as the main 

virulence factor and, additionally, S1 as a minor determinant that contributed to BTV8H 

attenuation albeit to a lesser extent. Since the mismatches between BTV8H and BTV8L 

occurred in all 10 genomic segments, instead of testing the remaining seven, we 

attempted to exclude some segments from our analysis.  To this end, we analysed 

genomic sequences and in vivo pathogenicity of three viruses collected after 21, 38 and 

56 passages of BTV8L in tissue culture (p21, p38, p56 respectively) and examined how 

the emergence of amino acid changes in the consensus sequences correlated with 

decreased mortality in IFNAR-/- mice. Note that BTV8H had been derived from passaging 

BTV8L 65 times in tissue culture. dsRNA was isolated from cells infected with these 

intermediate passage viruses and used to amplify the ten viral genomic segments. 

Samples were Sanger-sequenced using fragment-specific primers and sequences were 

compared to BTV8L. In order to assess virulence in IFNAR-/- mice, groups of five IFNAR -/- 

mice were inoculated with 300 or 3000 PFU of BTV8 p21, p38 and p55 and their mortality 

was recorded over a period of 14 days. As expected, virulence of the intermediate 

passage viruses decreased with the increasing number of passages (Figure 16). Five 

amino acid mutations present in BTV8H were found in the consensus sequence of p21 (in 

S2, S4, S8, S9 and S10). However, we observed double peaks in chromatogram sequences 

for four of these (S4, S8, S9, S10) suggesting the presence of mixed virus populations that 

could contain combinations of mutated and original sequences. Moreover, we found two 

non-synonymous mutations that were not present in BTV8H (in S2 and S3).  In vivo, p21 

displayed intermediate level of virulence compared to BTV8L and BTV8H and caused 60% 

mouse mortality at 300 and 3000 PFU.  Additional amino acid substitutions occurred in 

the consensus sequence of p38 and these included mutations in all segments except S3. 

Again, we identified polymorphisms in S1, S5 and S8.   Unlike BTVp21 however, BTV8p38 

was attenuated in vivo. The majority of BTV8p38-infected mice remained healthy 

throughout the experiment and only one death occurred at 4 d.p.i. Previous experiments 

showed that BTV8L is virulent in IFNAR-/- even at very low infection doses. Hence, it is 

possible that the inoculum used to infect the mouse that did not survive the experiment 

contained a fraction of viral population that had not acquired attenuating mutations and 
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as such retained their pathogenic potential. Almost all amino acid substitutions that 

occurred in BTV8H were also found in BTV8p56. The only exception was a mismatch in 

S3 that must have emerged during further passages. As expected BTV8p56 was non-

pathogenic in IFNAR-/-. It is important to note that while BTV8H was plaque-purified, 

BTV8p21, BTV8p38 and BTV8p56 were not, and therefore additional mutations and 

mixed virus populations were detected in these virus preparations. We cannot exclude 

that the mismatches and polymorphisms that were not present in either BTV8L or BTV8H 

passage virus also had an effect on virulence of these strains.  

To summarise, we observed two levels of reduction of virulence of these intermediate 

viruses. The first one occurred during the first 21 passages and it was likely attributed to 

either individual or a combination of mutations in S2, S4, S8, S9, and S10. A further 

decrease in pathogenicity was observed between p21 and p38 and it could have involved 

amino acid substitutions in all other segments except S3. However, amino acid 

substitution in S5 of p38 appeared to be a polymorphism and therefore we concluded 

that S5 was unlikely to be one of the major factors involved in BTV8H attenuation. Hence, 

to refine our approach further, in our next experiment we ruled out S3 and S5, as well as 

S1 and S8 that had already been tested in the earlier work.  
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Figure 17. Genetic differences between BTV8L and BTV8H , and intermediate passage viruses BTV8p21, BTV8p38 and BTV8p65 and their virulence in IFNAR-/- mice.  Schematic 
representation of the 10 genomic segments of BTV8L, BTV8H, BTV8p21, BTV8p38 and BTV8p65.  Mutations in the intermediate passage viruses and BTV8H are compared to 
the minimally passaged BTV8L and are indicated with dots. Black dots depict nucleotides where polymorphisms were detected in the sequencing chromatograms and red 
dots correspond to homogenous bases. Non-synonymous mutations are marked with asterisks and the numbers relative to the mutated amino acid residues in the 
corresponding viral proteins are shown. The plus sign indicates a nucleotide insertion. The length of the schematic genome segments and the relative position of mutations 
are indicative only. Survival plots of IFNAR-/- mice (n=5 per group) infected intraperitoneally with 300 PFU of BTV8L and BTV8H and intermediate passage viruses. 



 

4.2.3 Complete attenuation in IFNAR-/- mice is achieved by combining S2H with S6H or 
S10H in BTV8L backbone. 

We previously identified S2 as a major determinant of BTV8 pathogenicity and 

replacement of S2L with S2H lead to marked (although not complete) attenuation in 

infected IFNAR-/- mice. Our next goal was to find if, in combination with S2H, any other 

segment would confer full attenuation to the resultant reassortant in vivo. Based on 

analysis of intermediate viruses, we constructed a set of double segment reassortants 

that contained the BTV8L backbone and the BTV8H S2 in conjunction with either S4, S6, 

S7, S9 or S10 also from BTV8H. Additionally, we rescued the counterpart reassortants 

containing the BTV8H backbone in order to find whether exchange of two segments 

would be sufficient to restore BTV8L virulence. As previously, groups of 5 IFNAR-/- mice 

were inoculated intraperitoneally with 300 or 3000 PFU of each of the 10 reassortants 

and observed for clinical signs over 14 days. Two reassortants with the BTV8L backbone, 

BTV8L+S2/6H and BTV8L+S2/10H showed complete attenuation at both infection doses, 

which suggested that S6 and S10 contributed to attenuation of BTV8H (Figure 18). We 

observed 0%, 20% and 40% mortality in animals infected with 300 PFU of BTV8L+S2/4H, 

BTV8L+S2/7H and BTV8L+S2/9H, respectively. Mice survival decreased with increased 

infection dose (3000 PFU) to 60%, 40% and 60% for BTV8L+S2/4H, BTV8L+S2/7H and 

BTV8L+S2/9H-infected mice, respectively. Surprisingly, none of the viruses with the BTV8H 

backbone caused mortality or clinical symptoms in IFNAR-/- mice, which proved that a 

combination of more than two BTV8L segments was necessary to confer virulence to a 

virus containing the BTV8H backbone.  
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Figure 18. Virulence of double segment reassortants with BTV8L or BTV8H backbone. 

Groups of five IFNAR-/- mice were innoculated intraperitoneally with either 300 or 3000 

PFU of BTV8L/BTV8H reassortants with exchanged segment 2 and either 4, 6, 7, 9 or 10. 

Separate panels show mortality plots of reassortants with BTV8L backbone (A, B) or 

BTV8H backbone (C, D). Note that all reassortants in BTV8H background were attenuated 

at both 300 and 3000 PFU inoculation doses.  
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4.2.4 A minimum of five BTV8L segments within BTV8H backbone are required to restore 
virulence in IFNAR-/- mice 

Although it was possible to attenuate BTV8L fully by replacing two of its genomic 

segments by BTV8H equivalents, we were not able to restore virulence to BTV8H by 

double segment replacement. We therefore rescued another set of reassortants 

containing three or more proteins of low passage virus in the BTV8H backbone and tested 

them in the mouse model for increased pathogenicity. Triple segment reassortants were 

generally non-pathogenic in IFNAR-/- mice (Figure 19). All animals infected with 

BTV8H+S2/6/7L and BTV8H+S2/7/10L survived the experiment and only one mouse 

inoculated with 3000 PFU of BTV8H+S2/6/10L died at 7 d.p.i. Surprisingly, 

BTV8H+S1/2/6/10L also possessed an attenuated phenotype. These data suggested that 

other viral proteins besides VP1, VP2, VP5 and NS3 also play a role in the virulence of 

BTV8L. We found that a tetra-reassortant, BTV8H+S2/6/7/10L caused clinical signs in mice 

and 20% and 60% mortality when injected at 300 and 3000 PFU, respectively. To achieve 

100% mouse mortality, at either 300 or 3000 PFU inoculation doses, it was required that 

at least 5 proteins of BTV8H were replaced by the BTV8L equivalents, including either VP4 

or VP7 in conjunction with VP1, VP2, VP5 and NS3. Hence, mutations in S4H and S7H must 

have also contributed to attenuation of BTV8H, either by having a direct effect on their 

function in vivo or by decreasing structural/functional compatibility between BTV8H and 

BTV8L proteins. 
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Figure 19. Virulence of BTV8L/BTV8H reassortants. Groups of 5 IFNAR-/- mice were 

innoculated intraperitoneally with either 300 or 3000 PFU of BTV8L/BTV8H reassortants 

and monitored for 14 d.p.i. Figure was divided into four separate panels  that show 

mortality plots of reassortants with BTV8H backbone and three or four segments of BTV8L 

(A, B) or containing five or six segments  of BTV8L (C, D). Note that full virulence at 300 

and 3000 PFU was observed in animals inoculated with BTV8H+S1/2/4/6/10L, 

BTV8H+S1/2/6/7/10L and BTV8L+S1/3/5/8H only. 
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4.2.5 BTV8L+S4H and BTV8L+S10H, but not BTV8L+S6H, show partial attenuation in the 
mouse model. 

In light of the data presented above, we concluded that although VP1, VP2, VP5 and NS3 

were major determinants of BTV8 virulence, other proteins also played a role in BTV8H 

attenuation, albeit to a lesser extent. As we had already rescued BTV8L+S1H, BTV8L+S2H, 

and BTV8L+S8H, our next step was to rescue the remaining monoreassortants with the 

BTV8L backbone. As previously, we assessed virulence of these viruses in IFNAR-/- mice.  

The majority of these reassortants caused clinical symptoms starting from 2 d.p.i. and 

100% mortality in the first week of the experiment (Figure 20). In this experiment, 

BTV8L+S4H and BTV8L+S10H were the only viruses that showed some degree of 

attenuation in IFNAR-/- mice. In particular, BTV8L+S10H did not cause any deaths when 

inoculated at 300 PFU and showed reduced mortality compared to rgBTV8L (40%) at the 

dose of 3000 PFU. BTV8L+S4H caused 60% mortality and 100% mortality at 300 and 3000 

PFU, respectively. These data confirmed the previous conclusion that S4 played a role in 

BTV8 pathogenicity.  S6H and S7H however did not confer attenuation when present 

without other BTV8H segments.  

To summarise, assessment of virulence of BTV8L/H reassortants in IFNAR-/- mice showed 

that virulence of BTV8 was a multigenic phenomenon and involved at least six 

determinants i.e. VP1, VP2, VP4, VP5, VP7 and NS3, in this experimental model. Figure 

20 summarises mortality data obtained from individual experiments.  
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Figure 20. Mortality of IFNAR-/- mice inoculated with BTV8L/BTV8H reassortants.  Groups 
of five IFNAR-/- mice were innoculated intraperitoneally with either 300 or 3000 PFU of 
reassortants and monitored for 14 d.p.i. The figure is divided into two separate panels 
that show mortality of reassortants with the BTV8L backbone (A) or the BTV8H backbone 
(B).  
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4.2.6 Segment 2 increases BTV8H fitness in CPT-Tert cells. 

Having found that replacement of specific segments of the BTV8L backbone with BTV8H 

equivalents resulted in the attenuation of the resulting reassortants in vivo, we then 

wanted to establish whether these segments also affected their replication in vitro. We 

assessed growth kinetics of a full set of 10 monoreassortants containing the BTV8L 

backbone in CPT-Tert cells, hence without IFN constraints, and compared their growth 

to parental viruses. Confluent monolayers were infected at a MOI of 0.01 with each 

monoreassortants and supernatant were collected 2, 24, 48 and 72 h.p.i. Additionally, 

we performed plaque assays in order to compare the sizes of plaques produced by 

parental viruses and individual reassortants. Overall, the majority of monoreassortants 

demonstrated similar replication kinetics to rgBTV8L (Figure 21A). BTV8L+S4H and 

BTV8L+S9H had slightly lower titres than rgBTV8L over the 72 h period but no substantial 

reduction in growth was shown by any of the viruses. Strikingly, BTV8L+S2H 

demonstrated growth comparable with rgBTV8H and reached over 100 fold higher titres 

than rgBTV8L at 72 h.p.i.  Moreover, rgBTV8H and BTV8L+S2H produced larger plaques at 

48 h.p.i. than rgBTV8L and the remaining monoreassortants (Figure 21B).  We did not 

detect any significant variation in plaque sizes produced by the other assayed viruses. 

Overall, these data indicated that rgBTV8H replicated much better in CPT-Tert cells than 

rgBTV8L and that VP2 was the main determinant of this increased fitness in this particular 

cell line.   

We also carried out several virus replication kinetic assays in order to assess whether the 

attenaution in vivo of some reassortants corresponded to an overall decreased 

replication fitness also in vitro. However, none of the attenuated reassortants showed 

significantly decreased yields compared to parental rgBTV8L (Figure 22).  
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Figure 21. Replication kinetics of BTV8L/BTV8H monoreassortants. (A) Growth curves of 

parental rgBTV8L (red triangle), rgBTV8H (blue square) and monoreassortants containing 

the BTV8L backbone (grey circle) in CPT-Tert cells. Monolayers were infected with the 

indicated viruses at MOI 0.01 and supernatants collected at 2, 24, 48 and 72 h p.i. Viral 

titres were determined by endpoint dilutions. Growth curves were performed three 

times in duplicate; error bars correspond to standard deviation. All reassortants, with 

exception of BTV8L+S2H, showed replication kinetics similar to parental rgBTV8L. (B) 

Plaques produced in CPT-Tert cells by parental rgBTV8L and rgBTV8H and derived 

monoreassortants 48h p.i. Note the increased plaque size in rgBTV8H and BTV8L+S2H.  
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Figure 22. Replication kinetics of BTV8L/BTV8H reassortants. Growth curves of parental 

rgBTV8L (red triangle), rgBTV8H (blue square) and monoreassortants containing the 

BTV8L backbone (grey circle) in CPT-Tert cells. Monolayers were infected with indicated 

viruses at MOI 0.01 and supernatants collected at 2, 24, 48 and 72 h p.i. Viral titres were 

determined by endpoint dilutions. All reassortants showed replication kinetics similar or 

better than parental rgBTV8L. Error bars corresponding to standard deviations are 

shown.   
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4.2.7 S2H confers increased affinity for glycosaminoglycans in vitro. 

VP2 is the main determinant of BTV serotype and mediates viral attachment and cell 

entry (Forzan et al., 2007; Hassan and Roy, 1999; Huismans and Erasmus, 1981; 

Huismans et al., 1987a; Mertens et al., 1989). Cells cultured in vitro tend to increase 

expression of glycosaminoglycans (GAGs) at the cell membrane. Interestingly, some 

viruses like foot and mouth disease virus (FMDV) (Baranowski et al., 1998) show an 

increase in affinity for heparan sulphate after passaging in vitro. Since our data showed 

that rgBTV8H produced much higher yields in CPT-Tert cells than rgBTV8L, we 

hypothesised that extensive passage in tissue culture affected rgBTV8H binding to GAGs. 

Hence, we performed viral replication kinetic assays in CHO cells expressing GAGs 

ubiquitously and in a derived cell line, CHO-pgsA745, deficient in xylotransferase and 

lacking therefore heparan sulphate glycosaminoglycans.  RgBTV8L, or an rgBTV8H 

reassortant with the VP2 of BTV8L (BTV8H+S2L), grew equally well in both cells lines. 

However, BTV8H and BTV8L+S2H reached approximately 10 folds higher titres in CHO cells 

(Figure 23). This confirmed that the VP2 of BTV8H had a higher affinity for GAGs thus 

facilitating BTV8 replication in vitro, but not in vivo.   

 

 

Figure 23. Viral titres reached in CHO and pgsA-745 cells infected by rgBTV8L, rgBTV8H and 

reassortant viruses (MOI= 0.01). Supernatants were collected 72 h p.i. and titrated in BSR 

cells by limiting dilution analysis. Mean values from three experiments performed in 

duplicate are shown (error bars correspond to standard deviations). Note that significant 

differences were observed between titres produced in CHO and pgsA-745 by 

rgBTV8L+S2H and rgBTV8H+S2L (*** = p<0.001; 2-way ANOVA followed by Bonferroni 

post-hoc test). 
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4.2.8 Poor replication of rgBTV8H in OvEC is not related to levels of expressed type 1 
interferon. 

In vitro experiments described in Chapter 3, showed that BTV8H was not able to replicate 

in IFN competent ovine cells suggesting that the IFN response could be crucial in 

attenuation of the high passage virus in its natural host. Thus, we further explored this 

model to characterise differences between rgBTV8L and rgBTV8H interactions with the 

cellular IFN system, as well as the involvement of specific segments in these interactions.  

First, we used parental viruses and the set of single-segment reassortants and compared 

their replication kinetics in OvEC infected at MOI of 0.01.  Interestingly, in these cells we 

found a spectrum of different growth patterns produced by various monoreassortants 

(Figure 24). BTV8L+S2H displayed a replication efficiency superior to the other tested 

viruses, which suggested that mutations in S2H conferred an advantage to in vitro growth 

irrespective to cells ability to produce IFN. Several reassortants demonstrated delayed 

growth compared to rgBTV8L. In particular, BTV8L+S4H and BTV8L+9H produced 

substantially lower titres than the parental virus at 48 and 72 h.p.i. None of the 

reassortants however, replicated as poorly as rgBTV8H, which indicated that the growth 

restriction of high passage BTV8 was a cumulative result of mutations in several genome 

segments.    
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Figure 24. Replication kinetics of parental and monoreassortant viruses in primary OvEC 

cells. OvEC cells were infected at MOI 0.01 with rgBTV8L (red triangle), rgBTV8H (blue 

square) and monoreassortants containing BTV8L backbone (grey circle). Supernatant 

samples were collected at 2, 24, 48 and 72 h.p.i. and viral titres were determined at the 

specified time points by limiting dilution assays. Each panel shows growth curves of both 

parental viruses and a specific monoreassortant (as labelled). The experiment was 

performed twice in duplicate and error bars correspond to standard deviations.  
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Next, we wanted to establish whether through extensive passage with no IFN 

constraints, BTV8H lost the ability to counteract the IFN production in infected cells and 

became a more potent IFN inducer than the original BTV8L. To this end, we assayed IFN 

production in OvEC cells infected with the same set of rescued viruses at MOI 1 and 

measured the levels of IFN in the supernatants collected 18 hours later. Surprisingly, we 

did not find any significant difference between IFN levels produced by OvEC infected 

with the two parental viruses. Moreover, most of the reassortants induced similar 

amounts of IFN (Figure 25A). A statistically significant difference (p< 0.05) was observed 

between rgBTV8L and BTV8L+S9H. Interestingly the latter induced approximately six times 

less IFN in OvEC than the parental virus, which could be a result of less efficient 

replication in these cells. No IFN was detected in the mock-infected samples. 

To confirm our results further, we measured the relative quantities of the IFN-β gene 

and selected ISGs mRNA (MX1 and RSAD2) and -actin in OvEC cells infected with  

rgBTV8H, rgBTV8L and the various monoreassortants (MOI = 1) and collected at 18 h.p.i.  

In addition to infections with rescued viruses, mock infected and UIFN treated cells were 

used as controls. We detected no IFN-β RNA in either of the control samples while it was 

readily detectable at similar levels in cells infected with rgBTV8L, rgBTV8H and the 

rgBTV8L/rgBTV8H monoreassortants (Figure 25B). No significant differences were found 

in the expression of IFN-β in cells infected with different viruses. Similarly, there was a 

marked induction of RSAD2 and MX1 in all virus-infected samples compared to mock-

infected controls. However, no significant variation was found in expression of the ISG in 

cells infected with the various monoreassortants and the parental viruses. Act-β levels 

were consistently uniform in all samples. Together, these data demonstrated that 

inhibition of rgBTV8H replication in OvEC and reduced growth of selected 

monoreassortants was not related to the levels of IFN produced in infected cells. 
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Figure 25. IFN production and gene expression induced by infection of OvEC by rgBTV8L, 

rgBTV8H and BTV8L/BTV8H monoreassortants. OvEC cells were infected with rgBTV8L, 

rgBTV8H and monoreassortants within the BTV8L backbone (MOI=1). (A) IFN protection 

assays. Supernatants were collected at 18h p.i., inactivated by UV treatment and used in 

a biological assay to estimate the amount of IFN present as described in Materials and 

Methods. The only major differences were observed in cells infected with BTV8L+S9H 

where the amount of IFN released was significantly lower than what was found in cells 

infected with rgBTV8L (p<0.05; 1 way ANOVA followed by Dunnett’s multiple comparison 

test to dissect individual interactions). (B) IFNB, ActB, Rsad2 and Mx1 expression. mRNA 

was measured by qPCR in OvEC 18h p.i. with parental and reassortant viruses (MOI = 1) 

as described in Materials and Methods. Mock-treated and UIFN-treated cells were used 

as controls. Panels show gene expression relative to rgBTV8L and normalised to GAPDH 

levels. Error bars correspond to standard deviations. 
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4.2.9 Mutations in multiple segments reduce rgBTV8H capability to replicate in IFN pre-
treated CPT-Tert cells. 

The data illustrated above, showed that the reduced replication kinetics of rgBTV8H, 

BTV8L+S4H and BTV8L+S9H in OvEC were not due to an increased IFN induction in these 

cells. In light of these data, we wanted to establish whether dramatically inhibited growth 

of rgBTV8H in an IFN competent cell line was due to its reduced ability to overcome 

restriction factors in cells activated by IFN prior to infection.    For these experiments, we 

used CPT-Tert cells that do not produce IFN but will respond to exogenous IFN (Arnaud 

et al., 2010; Ruscanu et al., 2012; Varela et al., 2013) We pre-treated cells with 1000 

units of UIFN or control media for 18 h prior to infection with rgBTV8L, rgBTV8H or 

monoreassortants with a BTV8L backbone at MOI 0.01. In parallel, we infected untreated 

cells with the same set of viruses and 48 h.p.i. we collected supernatants from IFN-

treated and untreated samples. Supernatants were used to determine viral titres. Cells 

were stained with crystal violet to visualise CPE 72 h.p.i. Comparison of viral yields in cells 

treated and untreated with UIFN showed that replication of all viruses was significantly 

inhibited by UIFN and titres in untreated cells were more than 100-fold higher than in 

the UIFN pre-treated samples (Figure 26A). The reduction of rgBTV8L yield in UIFN-

treated cells, compared to untreated cells, was approximately 5x103-fold. Strikingly, this 

ratio was more than a million fold (1.7x106) for rgBTV8H. Moreover, the titre of rgBTV8H 

in UIFN-treated cells at 48 h.p.i. was 16 times lower than the titre of rgBTV8L. Most 

reassortants showed similar yields in UIFN-treated cells as the parental low passage 

virus. A notable exception was BTV8L+S4H, which reached tenfold lower titres than 

rgBTV8L (p < 0.05) under these conditions. BTV8L+S2H showed the highest degree of 

inhibition in treated CPT-Tert cells among all the ten monoreassortants. However, the 

yield of BTV8L+S2H in treated cells was equivalent to the one obtained by rgBTV8L in the 

same conditions. This suggested that the increased efficiency of replication conferred by 

VP2H could be limited to a large extent in cells that were activated by IFN prior the 

infection.  

Plaque comparison in UIFN pre-treated cells showed that while most of the viruses 

caused visible CPE, no detectable plaques were formed in rgBTV8H-infected cells (Figure 

26B). BTV8L+VP4H showed decreased CPE compared to rgBTV8L but this reduction was 

not as dramatic as in the case of rgBTV8H. Collectively, these data demonstrated that 
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rgBTV8H was not able to overcome the restriction barriers in cells already in an antiviral 

state and its replication was limited due to mutations present in multiple segments 

including VP4. 
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Figure 26. Replication of rgBTV8L, rgBTV8H and BTV-8L/BTV-8H monoreassortants in CPT-

Tert cells pre-treated with universal IFN (UIFN). (A) Viral titres produced in untreated 

(dark grey) and IFN-pretreated (light grey) CPT-Tert cells by parental and reassortant 

viruses 48 h.p.i. at MOI 0.01. Mean values from three experiments performed in 

duplicate are shown (error bars correspond to standard deviations; *= p < 0.05; ** = p< 

0.01; ***= p< 0.001; 1 way ANOVA followed by Dunnett’s multiple comparison test to 

dissect individual interactions). (B) Plaques produced in CPT-Tert cells pretreated with 

1000U/ml of UIFN by parental rgBTV8L and rgBTV8H and derived monoreassortants 72 

h.p.i. Note that no plaques were formed by rgBTV8H and decreased size plaques by 

BTV8L+S4H.    
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4.2.10 RgBTV8H infection leads to increased activation of IFN-β promoter in A549 cells. 

A549 are cells of human origin that have been used previously to study BTV interactions 

with the innate immune system (Chauveau et al., 2012; Doceul et al., 2014). The cells are 

able to produce and respond to IFN and therefore could potentially be used to discern 

the differences between BTV8L and BTV8H in the interactions with the IFN system. In the 

assays we performed previously in OvEC cells, we found no differences in expression of 

the IFN-β gene nor production of IFN in cells infected with rgBTV8H, rgBTV8L or individual 

reassortants. We therefore wanted to check whether this could be confirmed also in cell 

lines of human origin. Hence, we have obtained A549/pr(IFN-β).GFP reporter cells that 

express GFP under the control of the IFN-β promoter (Chen et al., 2010) and are 

therefore useful for the analysis of IFN induction in virus-infected samples. 

We infected A549/pr(IFN-β).GFP cells with rgBTV8H, rgBTV8L or monoreassortants (MOI 

1.5). 48 h.p.i. cells were trypsinised and fixed with formaldehyde. Strikingly, we found a 

major difference between the amounts of GFP-positive cells in rgBTV8H or rgBTV8L 

samples (Figure 27). Infection with rgBTV8L did not induce considerable GFP expression, 

and only a few green fluorescent cells were detected. RgBTV8H-infected cells on the 

contrary showed high GFP expression. With the exception of BTV8L+S4H, infection with 

reassortant viruses did not cause an increased GFP production.  We used FACS to 

quantify the percentage of green fluorescent cells in our samples. We detected 

approximately six times more GFP positive cells in rgBTV8H-infected cells compared with 

rgBTV8L samples (9.3% and 1.5% respectively). No statistically significant differences 

were found in the numbers of GFP+ cells between cultures infected with rgBTV8L and 

those infected with the majority of monoreassortants. The exception was BTV8L+S4H 

which induced significantly more GFP than the parental low passage virus (p<0.01). 

However, the mean number of fluorescent cells was almost two times smaller than in 

rgBTV8H samples (5.1% for BTV8L+S4H). Altogether, these data showed that in contrastto 

what was observed in OvEC, in A549 cells rgBTV8H had a reduced ability to down-regulate 

the IFN response directly or was sensed more efficiently by the infected cells, which led 

to a more potent IFN promoter activation. 
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Figure 27. Upregulation of IFN-β expression in cells infected with rgBTV8L, rgBTV8H and  

monoreassortants. (A) GFP fluorescence in A549/pr(IFN-β).GFP infected with rgBTV8L, 

rgBTV8H or specified monoreassortants (MOI 1.5).  (B) Proportion of GFP fluorescent cells 

in A549/pr(IFN-β).GFP infected with MOI 1.5 of indicated viruses. The cells were 

harvested and formalin-fixed 48 h.p.i. and the number GFP positive cells in each sample 

was counted by FACS as described in Materials and Methods. Mean values from three 

experiments performed in duplicate are shown (error bars correspond to standard 

deviations; ** = p< 0.01; ***= p< 0.001; 1-way ANOVA followed by Dunnett’s multiple 

comparison test to dissect individual interactions). 
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To assess whether increased prIFN activation resulted in inhibition of rgBTV8H replication 

we titrated the parental viruses and monoreassortants in A549 cells. Confluent 

monolayers were infected with MOI 0.01 of selected viruses and supernatants were 

collected at 2, 24, 48 and 72 h.p.i. Surprisingly, rgBTV8H gave higher yields than rgBTV8L. 

We noted almost 1 log difference in titres between both parental viruses at 72 h.p.i. 

Growth of BTV8L+S2H closely mirrored that of the high passage virus which confirmed 

our previous conclusion that VP2 mediated increased replication efficiency of rgBTV8H in 

vivo. Curiously, unlike in primary ovine cells, replication of high passage virus was not 

inhibited in A549 cells. However, BTV8L+S4H and BTV8L+S9H failed to grow as efficiently 

as rgBTV8L in both OvEC and in A549 cells. Both these reassortants reached 

approximately 10 times lower titres than the parental low passage virus at 72 h.p.i.  

BTV8L+S7H showed intermediate growth efficiency when compared with parental 

viruses, which suggested that VP7H was advantageous over the BTV8L equivalent protein 

in this cell line.   

 

 

Figure 28. Growth kinetics of rgBTV8L, rgBTV8H and monoreassortants in A549 cells. A549 

cells were infected at MOI 0.01 with rgBTV8L (red triangle), rgBTV8H (blue square) and 

monoreassortants containing BTV8L backbone (grey circle). Supernatant samples were 

collected at 2, 24, 48 and 72 h.p.i. and viral titres were determined at the specified time 

points by limiting dilution assays. Experiment was performed twice in duplicate and error 

bars correspond to standard deviation values.  
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4.3 Discussion 

In this chapter, we identified the molecular determinants of pathogenicity of a virulent 

strain of BTV-8. We rescued a set of reassortant viruses between BTV8H and BTV8L and 

described their phenotypes in vitro and in vivo. Our approach allowed us to identify 

specific genetic differences that occurred as a consequence of virus passage in an IFN-

defective cell line, in order to understand the involvement of individual genomic 

segments in BTV-8 adaptation to tissue culture and attenuation in vivo.  

Here, we found that mutations in four segments (S1, S2, S6, S10) encoding VP1, VP2, VP5 

and NS3 contributed to attenuation of BTV8H in IFNAR-/- mice. In particular, reassortants 

with the rgBTV8L backbone and VP2 or NS3 from rgBTV8H caused no mortality when 

inoculated at 300 PFU dose. These data are an accord with the study of Caporale et al. 

who showed that VP1 and VP2 were two of three proteins consistently mutated in tissue 

culture adapted strains derived from Italian strains of BTV-2, BTV-4 and BTV-9 (Caporale 

et al., 2011).  S2H with either S1H, S6H or S10H in the context of the rgBTV8L backbone 

fully attenuated the resultant reassortants but, surprisingly, replacing these four proteins 

with the equivalents of rgBTV8L in the rgBTV8H backbone did not restore virulence of the 

latter. The fact that partial virulence was achieved only after combining VP7L with VP2L, 

VP5L and NS3L strongly suggests that interactions between specific viral proteins could 

play a role in the pathogenicity of BTV. Both VP2 and VP5 have previously been shown 

to interact with VP7 trimers in the BTV particle (Nason et al., 2004). Additionally, other 

studies demonstrated the importance of NS3 interactions with outer capsid proteins in 

virus trafficking, assembly and inter-serotype pathogenicity in the natural host  (Beaton 

et al., 2002; Bhattacharya and Roy, 2008; Celma et al., 2014). It is therefore possible that 

while mutations in high passage VP5 or VP7 did not directly affect functions of these 

proteins, they did influence the pathogenicity through more compatible interactions 

with VP2 and NS3 derived from the same strain.  

Interestingly, two mutations found in VP2 of BTV8H (positions 321 and 328) were located 

at the same region that was previously associated with attenuated BTV strains and 

identified as a target for neutralising antibodies (Gould and Eaton, 1990). This external 

and highly exposed area of VP2 was also implicated in attachment to a host cell receptor 

and the mutations that arise in this region could be due to the changes in affinity for 
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binding to specific ligands (Zhang et al., 2010). The receptor binding protein of BTV, VP2, 

has been well characterised but only a few studies focused on identifying its cellular 

target. Cryoelectron microscopy studies showed that VP2 possess a sialic acid binding 

region located in its hub domain, which is one of two sites suggested to be interacting 

with the cell surface receptor (Zhang et al., 2010).  Additionally, VP2 alone is responsible 

for agglutination of ruminant erythrocytes through glycophorins, which further confirms 

sialic binding properties of VP2 (Eaton and Crameri, 1989; Hassan and Roy, 1999). The 

presence of another putative receptor-binding site at the VP2 tip domain however 

strongly suggest that BTV utilizes another cellular factor for cell entry.  Moreover, wheat 

germ competition assay studies showed that in the presence of wheat germ protein, 

which blocks sialic acid sites on the cell surface, BTV infectivity was reduced but not 

entirely abolished (Zhang et al., 2010). Altogether, these data show that BTV entry is 

facilitated by sialic acid but it also requires another unidentified receptor. It is common 

for many viruses to utilise more than one cell surface factor for attachment. The primary 

interaction with the host cell might first occur via non-specific molecules followed by 

high affinity binding to another host receptor.  In particular, an increased affinity for 

binding to glycosaminoglycans (GAGs) has often been cited in the context of tissue 

culture adapted strains (Baranowski et al., 1998; Gardner et al., 2014; Klimstra et al., 

1998; Mandl et al., 2001). Here we found that BTV8H, or reassortants with the VP2 of 

BTV8H, had indeed a greater affinity for GAGs and reached titres approximately 10 fold 

higher in wild type CHO cells compared to cells lacking GAGs.  Previous studies have 

shown that viruses that acquire mutations that confer the ability for attachment to GAGs, 

and in particular to heparan sulphate proteoglycans, are often attenuated in vivo 

(Bernard et al., 2000; Byrnes and Griffin, 2000; Lee et al., 2006; Mandl et al., 2001; 

Olmsted et al., 1984). Similarly, BTV8L+S2H was attenuated in IFNAR-/- mice despite the 

fact that in tissue culture (both in IFN deficient and competent cells) it replicated to 

higher titres than any other monoreassortant. Studies looking into dissemination of S2 

reassortants in low or high passage backbone would be necessary to understand 

whether increased binding to GAGs leads to sequestration of the virus at sites not 

favourable for replication and/or to a more efficient clearance of the virus from blood. 

Moreover, the BTV8H VP2 acquired four amino acid mutations during passage in BSR 

cells. Consequently, to confirm which mutation was responsible for the change in 

receptor affinity it will be necessary to rescue reassortant viruses that contain individual 
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mutations in S2 separately. Binding to GAGs occurs through interactions with positively 

charged amino acids of the viral receptor binding protein. Therefore, increased affinity 

for GAG attachment is acquired through amino acid mutations into His, Lys or Arg 

residues (Byrnes and Griffin, 1998). Only one mutation in S2 (Glu to Lys substitution at 

position 16) fit this description and hence it is most likely that this mutation is responsible 

for increased binding to cell surface GAGs.  

BTV is a potent inducer of type 1 interferon in vivo and in vitro and the ability of the virus 

to counteract the host IFN response was linked to its pathogenicity (Chauveau et al., 

2013; Huismans, 1969; Jameson et al., 1978; Maclachlan and Thompson, 1985; Ratinier 

et al. 2011; Ruscanu et al. 2012). The IFNAR-/- mouse is a well-established model of 

bluetongue and due to the lack of expression of alpha/beta IFN receptor, it is a suitable 

tool to study the determinants of pathogenicity that are unrelated to IFN expression 

(Calvo-Pinilla et al., 2010; Caporale et al., 2011; Ortego et al., 2014). Using this mouse 

model, we demonstrated the involvement of several segments in the pathogenicity of 

BTV-8. We cannot exclude however that other factors, IFN system related, additionally 

contributed to decrease pathogenicity of rgBTV8H in the natural host. As studies on the 

pathogenicity of multiple reassortants in sheep are not feasible, we used primary OvEC 

cells as an in vitro “surrogate” model to demonstrate the involvement of IFN in restriction 

of the growth BTV8H and its reassortants. Recently, two BTV proteins have been 

implicated in counteracting the host IFN system (Chauveau et al., 2013; Ratinier et al., 

2011; Vitour et al., 2014). In particular, NS3 has been shown to interfere with the IFN 

synthesis in mammalian cells (Chauveau et al., 2013).  However, we saw no significant 

variation in the IFN production in OvEC infected with parental viruses or single segment 

reassortants while their growth patterns in the same cell line differed.  Most of the 

reassortants were able to replicate to similar titres as the low passage virus. Two notable 

exceptions included BTV8L+S4H and BTV8L+S6H. It is however essential to remark that 

VP4 also influenced viral phenotype in IFNAR-/- mice, which would suggest that mutations 

in this protein could also have affected its functions unrelated to the IFNAR signalling 

cascade. The VP4 of BTV acts as a capping enzyme and therefore mutations in S4H could 

have an adverse effect on the efficiency of viral mRNA capping (Ramadevi and Roy, 1998; 

Sutton et al., 2007). A recent study of Stewart et al. highlighted the importance of the K-

D-K-E amino acid tetrad and the surrounding residues in the efficiency of BTV 2’OMTase 
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and the effect of its mutation on the virus fitness (Stewart and Roy, 2015). Importantly, 

mutations in some of these residues led to decreased activity of guanyltransferase and 

showed a slight delay in replication assays, compared to wild type virus (Stewart and Roy, 

2015).   Moreover, recent studies showed that viral mRNA lacking 2′-O-methylation at 

their 5′ cap structure induces more potent innate immune response through Mda5 

activation or direct interactions with proteins from the IFIT family (Daffis et al., 2010; 

Garcia-Sastre, 2011; Zust et al., 2013). Inefficient capping mechanism would therefore 

explain the slight, yet consistent decrease in virus yields reached by BTV8L+S4H in IFN 

deficient cell lines. This hypothesis was further supported by comparing growth kinetics 

of monoreassortants in the BTV8L backbone in CPT-Tert cell line untreated or pre-treated 

with UIFN. It has been shown that pre-treatment of cells with UIFN leads to initial 

decrease in BTV growth efficiency but with time, the virus is able to overcome this 

restriction (Ratinier et al., 2011). Indeed, we saw that growth of BTV8L and most 

reassortants was inhibited by UIFN approximately 1000 fold. Replication of rgBTV8H on 

the other hand was inhibited more than a million fold in cells in an antiviral state.  Of all 

reassortants, BTV8L+S4H showed the lowest titres 48 h after UIFN pre-treatment which 

suggested that VP4H was one of the proteins contributing to the inability of rgBTV8H to 

replicate in cells primed with IFN. These data are in concordance with the study of Daffis 

and colleagues who demonstrated that West Nile Viruses, Coronaviruses and Poxviruses 

with deficient 2’OMTase activity were not able to escape IFIT-2 induced restriction in 

transgenic cells stably expressing IFIT-2 (Daffis et al., 2010). It is therefore possible that 

through viral mRNA capping, the VP4 of BTV-8 could play a role in evading host restriction 

factors to allow the virus to replicate in host cells already induced in an antiviral state. 

VP6 is encoded by S9 of BTV genome, as is the NS4 protein, which is the second of the 

BTV proteins shown to counteract the IFN system (Ratinier et al., 2011). However, we 

found no mutations in the NS4 open reading frame but we detected a non-synonymous 

mutation in VP6. There is no evidence in the literature of VP6 or other viral helicases 

being involved in interactions with the innate immune system. It is therefore likely that 

the reduced growth of BTV8L+S6H in OvEC was due to decreased replication efficiency in 

endothelial cells per se. We have noticed a minor decrease in yields BTV8L+S6H in CPT-

Tert cells (compared with BTV8L) and the lowered replication efficiency could have been 

more evident in the OvEC. Additionally, expression of the IFN could have slowed the 
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replication rates of this virus even further. It is possible that specific interactions between 

minor proteins in the core (VP1, VP4 and VP6) rely on their structural compatibilities and 

VP6 of BTV8H was not fully efficient in the context of the BTV8L backbone. 

It is important to stress that although the single segment reassortants displayed an array 

of intermediate growth patterns in OvEC, none of them replicated in these primary cells 

as poorly as rgBTV8H. This indicated that mutations in several segments contributed to 

the restricted replication of rgBTV8H. A similar study by Pérez-Cidoncha et al. 

demonstrated that multiple passage of Influenza virus in an IFN unresponsive cell line 

led to the emergence of viruses that were unable to counteract the effects of exogenous 

IFN (Perez-Cidoncha et al., 2014). Most of these viruses were shown to have mutations 

in proteins other than the immunomodulatory NS1 and several were identified as IFN 

hyper-inducers. Similarly, we found no mutations in the NS4 protein and the single amino 

acid substitution in NS3 did not affect the amount of IFN induced in response to rgBTV8H 

infection in OvEC. Altogether, these data show that passaging the virus with no 

constraints from the IFN system allows for greater flexibility of the entire genome, which 

in turn allows the emergence of viruses with optimal replication efficiencies. The 

mutations that arise in such conditions might not necessarily involve major IFN 

antagonists but can involve proteins that are normally fine-tuned to evoke minimal 

immune response while allowing sufficient (yet suboptimal) transmission in the natural 

host (Perez-Cidoncha et al., 2014).  In the case of BTV8H, the extensive passage in BSR 

cells led to the emergence of a virus with mutations in all 10 segments that likely 

complemented each other to form a virus with supreme replication efficacy in the 

system lacking immune defences. However, when the IFN was re-introduced into this 

system, some of these mutations became disadvantageous to the virus.  

The results of in vitro experiments discussed above are derived from work using sheep 

cell lines. Several studies used a human cell line (A549) as a more convenient interferon 

competent infection model. Chauveau et al. demonstrated that this cell line expresses 

IFN-β and pro-inflammatory cytokines in response to BTV infection (Chauveau et al., 

2012). We have therefore used A549 cells expressing GFP under the control of the 

interferon promoter (prIFN) to quantify the number of cells where prIFN was activated 

in response to either parental or monoreassortant viruses. Unexpectedly, we found that 

more cells expressed GFP after high MOI infection with rgBTV8H than rgBTV8L. 
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Interestingly, BTV8L+S4H was also a more potent prIFN activator which would fit the 

hypothesis that this virus had a decreased capping ability and therefore was sensed more 

efficiently by cellular pattern recognition receptors.  Surprisingly, we did not detect 

decreased replication of rgBTV8H and on contrary to what we observed in OvEC, this virus 

produced at least 10 times higher titres than rgBTV8L in A549 cells. An important aspect 

that has to be considered when using human carcinoma cell lines to study BTV fitness 

and IFN related responses is whether this cell line can be used as an adequate model of 

host-pathogen interactions of the natural host. BTV has been shown to be a potent IFN 

inducer, especially in human transformed cell lines (Jameson and Grossberg, 1981). 

However, the levels of produced IFN varied depending on the type of cell, as well as the 

animal species (Russell et al., 1996; Vitour et al., 2014).  This observation could be related 

to the intrinsic ability of specific cell lines to express IFN or to the virus being capable of 

interfering with IFN induction in particular lineages or species (Randall and Goodbourn, 

2008; Spiropoulou et al., 2007). The role of the IFN system in cross-species barrier to 

viral infections is well established (Parrish et al., 2008; Randall and Goodbourn, 2008). A 

particularly suitable example here is the susceptibility of IFNAR knockout mice to BTV 

infection, while wild type mice are resistant. Similarly, humans are not susceptible to BTV 

and therefore specific restriction mechanisms must exist in human cell lines that are not 

found in sheep cell lines. Our data strongly suggested that A459 cells might not be the 

most suitable model to study BTV-host interactions. Hence, we did not find this cell line 

relevant for further exploration of the determinants of BTV pathogenesis.  

In conclusion, our data shows that virulence of BTV-8 is a complex multifactorial 

phenomenon that is not attributed to a single protein only.  Although we cannot exclude 

the possibility that silent mutations present in the original BTV8H, but not in the rescued 

rgBTV8H, contributed to the inability of BTV8H to replicate in the natural host, we found 

that amino acid mutations were sufficient to attenuate this virus. Interestingly, replacing 

only one or two segments of rgBTV8L with the corresponding segments from rgBTV8H, 

were sufficient to attenuate the virus in vivo. However, at least five segments of the 

BTV8L strain had to be present for full virulence to be achieved. Given the high diversity 

of BTV, it is likely that different determinants of pathogenicity will be found in other 

serotypes. However, our data show that it is possible to design BTV vaccine strains 

rationally to minimise the probability of reversion to virulence in the field. Additional 
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investigations in the determinants of virulence of BTV will shed more light into the 

mechanisms of BTV replication and dissemination within the host in order to understand 

further why some strains (such as BTV8H) do not induce viraemia in sheep or display 

delayed replication patterns. With the rapidly changing dynamics between climate, 

vector ecology and BTV, the understanding of virus virulence factors will be exceedingly 

important in order to understand and predict the risk posed by newly emerging BTV 

strains. 
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5.1 Introduction 

Bluetongue is remarkably variable in its clinical outcomes (Anderson et al., 1985; Brenner 

et al., 2011; Maclachlan et al., 2009; Spreull, 1905). This variability has been attributed 

to host related factors such as species, breed, age and immune status and equally 

importantly, to virus facts related to differences between viral serotypes and strains 

(Caporale M., 2014; Maclachlan, 1994; Maclachlan et al., 2009; Oura et al., 2009; 

Parsonson, 1990; Waldvogel et al., 1987). Early studies looked at the pathogenicity of 

two strains of BTV-11, UC-2 and UC-8, which showed striking differences in their 

virulence in newborn BALB/c mice (Waldvogel et al., 1986). Both strains had the same in 

vitro passage history. However, they were isolated from a different animal species (UC-

2 from calf, UC-8 from deer). Increased pathogenicity of UC-8 was later attributed to its 

ability to infect and spread in cells of neural origin and mapped to genetic differences in 

the VP5 protein (Waldvogel et al., 1987) (Carr et al., 1994). Experimental studies 

comparing the pathogenicity of different BTV strains in the natural host demonstrated 

that South African strains of BTV-1 and 3 caused significantly more severe disease than 

the Australian strains (Hooper et al., 1996). Another notable example is a strain of BTV-

8 that emerged in Northern Europe in 2006 and spread through the continent causing 

high mortality in naïve sheep flocks and severe clinical disease in cattle (Elbers et al., 

2008a; Elbers et al., 2008c; Perrin et al., 2010). However, no clinical signs in 

ruminantswere seen when BTV-8 appeared in North Italy in 2008. 

Comparison of the virulence of European strains of BTV-8 and BTV-1 showed that the 

latter was significantly more pathogenic in the natural host (Sanchez-Cordon et al., 

2013). However, passage history of both viruses in this study was omitted. Virus passage 

history has been reported to influence the clinical outcome of BTV infection in ruminants 

(Bonneau et al., 2002; Caporale et al., 2014; DeMaula et al., 2002b; Ghalib et al., 1985). 

Our group used standardised experimental conditions to assess the pathogenicity of 

BTV-8 strains isolated in 2006 and in 2007 in the Netherlands (BTV-8NET2006, BTV-8NET2007) 

and in 2008 in Italy (BTV-8IT2008) in the BTV natural host, the sheep (Caporale et al., 2014). 

All viruses used in the study had similar passage history in cell culture. Marked reduction 

in virulence was observed in animals infected with BTV-8IT2008 compared with the Dutch 

strains of BTV-8 (BTV-8NET2006 and BTV-8NET2007). BTV-8IT2008-infected sheep showed only 
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mild transitory fever and no obvious clinical signs while both BTV-8NET2006, BTV-8NET2007 

induced typical symptoms of bluetongue. The cumulative clinical scores recorded in 

animals infected with BTV-8NET2006, BTV-8NET2007 and BTV-8IT2008 were 58, 49 and 15, 

respectively (Caporale et al., 2014).  

Genetic drift and especially reassortment occurring during epidemics plays a significant 

role in the diversification of BTV strains and their pathogenic potential (Nomikou et al., 

2015). Experimentally, passaging of BTV in tissue culture was shown to have an impact 

on virulence in vivo (Caporale et al., 2011; Coetzee et al., 2012b; Moulin et al., 2012). In 

particular, strains isolated from severe clinical cases and subsequently adapted to 

mammalian tissue culture have been reported to have a reduced virulence in 

experimentally infected animals (Caporale et al., 2014). Some studies used therefore 

blood from vireamic animals as inoculum in the experimental setting in order to 

reproduce those severe clinical manifestations of bluetongue that are often seen in the 

field (MacLachlan et al., 2008; Moulin et al., 2012). In order to evaluate the effect of in 

vitro isolation of BTV-8 on its virulence in vivo, Caporale and colleagues inoculated two 

groups of Sardinian sheep with either blood from a BTV-infected animal (BTV-

8NET2007(blood)) or with the same virus but after isolation in KC cells and passaged twice in 

BHK-21 cells (BTV-8NET2007(1KC-2BHK)). Sheep infected with BTV-8NET2007(blood) displayed more 

severe clinical symptoms, had greater fever and significantly higher viraemia compared 

with  BTV-8NET2007(1KC-2BHK) (Caporale et al., 2014).  

In this chapter, we aimed first to analyse the genetic changes that led to variation in 

virulence of BTV-8NET2006, BTV-8NET2007 and BTV-8IT2008. We therefore fully sequenced the 

genomes of these viruses and compared their consensus sequences. In addition, we 

aimed to investigate the the genetic changes that might have occurred after isolation of 

BTV-8NET2007(blood) in cell culture.  
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5.2 Results 

5.2.1 Influence of BTV-8 strain on clinical outcome of infection. 

Experimental infection of sheep with three distinct strains of BTV-8 isolated in 

subsequent years (BTV-8NET2006, BTV-8NET2007 and BTV-8IT2008) showed progressive 

gradation in their virulence (Caporale et al., 2014). BTV-8IT2008 was significantly less 

pathogenic than the strains from the Netherlands and induced only mild clinical signs of 

infection. To link the phenotypic differences described above to genetic mutations that 

might have emerged during the BTV-8 circulation between 2006 and 2008, we 

sequenced the genomes of BTV-8NET2007 and BTV-8IT2008 and compared their sequences 

to BTV-8NET2006. Compared to BTV-8NET2006, BTV-8NET2007 and BTV-8IT2008 had 26 and 24 

nucleotide mismatches, respectively. Five mismatches were present in both strains 

(Figure 29). Amino acid mismatches were only found in four segments of BTV-8NET2007 

(S1, S4, S8 and S9). Interestingly, a mutation in nucleotide 413 of S9 lead to Ala to Val 

change in VP6 and at the same time introduced an early stop codon in the NS4 protein, 

resulting in a protein of 77 amino acid residues instead than 79. The presence of two 

stop codons in close proximity in the NS4 ORF suggests that this region is adapted to 

allow for variability in the VP6 ORF without affecting the NS4 structure.  S10 was 

conserved between BTV-8NET2006 and BTV-8NET2007.  In contrast, mismatches compared to 

BTV-8NET2006 were found in all 10 segments of BTV-8IT2008 while non-synonymous 

mutations were concentrated in S1, S2, S4, S5, S8 and S9 (encoding VP1, VP2, VP4, NS1, 

NS2 and VP6, respectively). We have not been able to carry out experiments to identify 

which of these mutations led to decreased pathogenicity of the Italian strain compared 

to the strains isolated in the Netherlands. However, as amino acid changes in S8 position 

59 and S9 position 5 occurred in both BTV-8NET2007 and BTV-8IT2008, these were unlikely 

responsible for the difference in their phenotypes in vivo.  
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Figure 29. Genomic differences between BTV-8NET2006, BTV-8NET2007 and BTV-8IT2008. 

Schematic representation of the 10 genomic segments of BTV. Mutations in BTV-8NET2007 

or BTV-8IT2008 compared to BTV-8NET2006 are indicated with red dots. Non-synonymous 

mutations are marked with asterisks and the numbers relative to the mutated amino 

acid residue in the corresponding viral proteins are shown. Blue triangles mark mutations 

that are present in both BTV-8NET2007 and BTV-8IT2008.  Drawings (length of the schematic 

genome segments and relative position of mutations) are indicative only. 
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5.2.2 Influence of passage history on BTV population diversity. 

Previous experiments performed by our group showed that sheep inoculated with 

infectious blood carrying BTV-8NET2007 (termed BTV-8NET2007(blood)) displayed more severe 

clinical signs than animals infected with the same virus passaged once in KC cells and 

twice in BHK-21 cells (BTV-8NET2007(1KC-2BHK)) (Caporale et al., 2014). In order to find if these 

phenotypic differences were associated with genetic changes we analysed the genomes 

of BTV-8NET2007(blood) and BTV-8NET2007(1KC-2BHK) by deep sequencing. RNA of both viruses 

was isolated from (i) the same inoculum (i.e. blood) that was used in in vivo experiments 

described above, (ii) after isolation in KC cells  (BTV-8NET2007(1KC)), (iii) after one (BTV-

8NET2007(1KC-1BHK)) and two further passages in BHK cells BTV-8NET2007(1KC-2BHK). Furthermore, 

we independently repeated the isolation of BTV-8NET2007 from infected tissue in KC cells 

followed by two passages in BHK-21 cells and sequenced the resulting viruses. Hence, 

deep sequencing of seven samples was carried out which included BTV-8NET2007(blood), and 

two independent isolates of BTV-8NET2007(1KC), BTV-8NET2007(1KC-1BHK) and BTV-8NET2007(1KC-

2BHK). 

We did not find any amino acid mismatches between the consensus sequences of BTV-

8NET2007(blood) and BTV-8NET2007(1KC-2BHK) (Figure 30A). Two synonymous mutations, in 

segments 1 (nt 2756) and segment 4 (nt 1431) however, were found in BTV-8NET2007(1KC-

2BHK) and these were selected after the initial passage in KC cells and in both experiments. 

To understand how the same mutations could have emerged in two independent 

replicates we examined the proportion of reads in BTV-8NET2007(blood) that contained either 

the original or mismatched nucleotide. We found that more than 10% of reads in BTV-

8NET2007(blood) sample contained an adenine in position 2756 of S1 (14.9% of reads) and a 

thymine residue in position 1431 of S4 (10.4% of reads) (Figure 30B). These minority 

variants were then selected after the first passage in tissue culture. 
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Figure 30. Isolation of BTV-8NET2007(blood) in vitro. The effects of adaptation in vitro of BTV-

8NET2007(blood) was assessed by comparing the genomic sequences of BTV-8NET2007(blood) with 

the sequences of viruses isolated in vitro after passaging in Culicoides KC cells (1 passage) 

and two further passages in BHK-21 cells (A). Two independent isolations (represented 

with blue or red arrows) were carried out and genome sequences were obtained after 

each passage in cell culture. The cartoon shows the schematic representation of 

individual genomic segments of BTV. Mutations found in the consensus sequences of the 

cell culture passaged viruses are shown as red or blue dots indicating the two 

independent experiments. Two synonymous mutations were selected in Seg-1 and Seg-

4 immediately after passage in KC cells in both independent experiments and were 

conserved after further passaging in BHK-21 cells. (B) Analysis of nucleotide variants at 

the mutation site revealed mixed population in BTV-8NET2007(blood) and the minority 

variants were selected in both independent experiments. 
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RNA viruses have very high mutation rates and as such they exist as a ‘cloud’ of variants 

(or quasispecies), each possessing random nucleotide mismatches and often different 

phenotypes (Lauring and Andino, 2010; Lauring et al., 2013; Vignuzzi et al., 2006). Since 

we did not detect any amino acid mismatches between consensus sequences of BTV-

8NET2007(blood) and tissue culture adapted viruses and yet we saw clear differences in the 

severity of disease in sheep, we hypothesised that in vitro passage affected viral 

population diversity. We analysed the single nucleotide variation present in BTV-8NET2007 

before and after passage in KC and BHK-21 cells. We re-mapped reads to the established 

consensus sequences and analysed variability at each nucleotide position for all ten 

genomic segments.  Figure 31 shows the degree of variability that occurred at each site 

of the genome before and after passage in cell culture.  A ‘variant’ was called (and plotted 

in the graph) if it was present in at least 0.1% of mapped reads at a specified site and in 

at least 0.1% of the virus population. In general, the number of variants dramatically 

decreased after passage in mammalian cells. Interestingly, for 9 of the 10 segments in 

the first set of experiments, and for 8 of the 10 segments in the second set of 

experiments, the number of variable nucleotides was higher in the virus passaged once 

in KC cells than in the virus from blood before passage in cell culture. Additionally, in all 

samples passaged in vitro S1 (VP1) had the highest percentage of detected variants 

(Table 7). 
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Figure 31. Viral population diversity of BTV-8NET2007(blood) before and after isolation in vitro. 

Changes in nucleotide diversity of BTV-8NET2007(blood) amplified directly from the spleen of an 

infected sheep were compared with sequences of the same virus after isolation in KC and 

BHK-21 cells. Differences were assessed by deep sequencing as described in Materials and 

Methods. Total reads of individual genome segments were mapped to consensus sequences 

and single nucleotide polymorphisms (SNPs) were assigned above the arbitrary 0.1% 

frequency threshold. On the graph each dot represents the percentage of nucleotides 

difference (y-axis) from the consensus sequence of each nucleotide composing the individual 

genomic segments of the virus (x-axis). The total number of variable nucleotides (> 0.1%) for 

each sample is shown in the right corner of each plot. Dots circled in red in Seg-1 and Seg-4 

of BTV-8NET2007(blood) are those nucleotides that have been selected in the majority of the viral 

populations after passage in vitro. Virus isolation was performed twice independently and 

the variant detection analysis was performed for the first (A) and second (B) replicates 

separately.  
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Table 7. Percentage of variable nucleotides (SNP>0.1%) in genome of BTV-8NET2007(blood) 

before and after passage in vitro. 

  Replicate 1 Replicate 2 
Segment BTV-8 

NET2007(blood) 
BTV-8 

NET2007(1KC)   
BTV-8 

NET2007 

(1KC-1BHK)   

BTV-8 

NET2007 

(1KC-2BHK)   

BTV-8 

NET2007(1KC)   
BTV-8 

NET2007 

(1KC-1BHK)   

BTV-8 

NET2007 

(1KC-2BHK)   

1 16.51 45.85 12.85 13.45 33.06 9.33 13.08 

2 16.51 19.86 6.87 6.80 25.32 5.26 6.43 

3 16.71 21.70 7.15 10.61 32.35 7.15 10.58 
4 18.37 21.45 7.07 6.56 31.50 5.86 6.66 
5 18.09 24.19 6.27 7.01 24.31 7.12 8.14 
6 18.74 18.44 9.10 7.63 23.14 7.20 12.58 
7 19.72 27.94 6.14 9.34 23.88 6.49 4.76 
8 19.66 21.98 7.65 7.21 26.33 5.69 8.19 

9 28.68 21.41 6.41 6.31 26.67 6.79 5.26 

10 22.63 25.18 9.12 4.74 25.91 5.47 2.80 

Total 19.56 24.80 7.86 7.97 27.25 6.64 7.85  

 

Low frequency variants (0.1 – 0.29%) were most abundant in BTV-8NET2007(1KC), while the 

number of variants with a frequency of >0.4% was several fold higher in BTV-8NET2007(blood) 

(Figure 32).   We detected only a few nucleotides with >10% variability and these included 

the above mentioned variants in S1 and S4 as well as two others in BTV-8NET2007(blood) (S3 and 

S6) that were not selected for in vitro. The majority of viral species had a thymine at position 

1644 of S3 and position 1407 of S6, while minority variants had a cysteine instead. This 

variation did not lead to amino acid mismatches. 
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Figure 32. Frequency distribution of variable nucleotide in BTV-8NET2007(blood), BTV-8NET2007(1KC), 

BTV-8NET2007(1KC-1BHK) and BTV-8NET2007(1KC-2BHK). Histograms showing for each virus the number 

of nucleotides with percentage variation falling within defined bins. Panels A-B and C-D 

represent data of two independent experiments. Note that panels B and D have a different 

scale in the y-axis compared than panels A and C as the frequency of variants present in 

more than 0.4% of the total population was significantly lower compared to variants 

presented in panels A and C.   
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5.3 Discussion 

BTV-8 has emerged in central Europe in 2006 and subsequently spread to neighbouring 

areas, reaching Northern Italy in 2008. Two strains of BTV-8 used in this study were isolated 

from viraemic animals in 2006 and 2007 in the Netherlands. It has been reported that the 

2007 epidemics in the Netherlands involved a larger number of animal herds than the 2006 

outbreak, and consequently led to higher morbidity and mortality. The disease severity 

reported in the field was similar for both strains, although more cases of lameness were 

observed in sheep in 2007 (Elbers et al., 2009). Experimental studies done by our group using 

BTV-8NET2006 and BTV-8NET2007 with similar in vitro passage history confirmed that both viruses 

were highly virulent in sheep, although BTV-8NET2006 achieved slightly higher clinical scores 

in all tested categories (respiratory, general, fever and total clinical score) (Caporale et al., 

2014).  On the contrary, BTV-8IT was not associated in the field with overt clinical symptoms 

and was detected only due to several animals seroconverting to this serotype.  In 

experimental conditions, BTV-8IT2008 was shown to be less virulent than both strains isolated 

in the Netherlands (Caporale et al., 2014). Deep sequencing of all three strains showed BTV-

8IT2008 had over 20 mismatches compared with BTV-8NET2006 and these included 

nonsynonymous changes in six segments. Four of these segments (S1, S2, S4, and S9), had 

already been identified by our group as  major determinants of BTV virulence (Chapter 4), 

while S8 (as well as S1 and 2) has been shown to be consistently mutated in tissue culture 

attenuated strains of BTV-2, BTV-4 and BTV-9 (Caporale et al., 2011). We found five common 

mismatches when we compared both BTV-8NET2007 and BTV-8IT2008 with BTV-8NET2006. BTV-

8NET2007 retained similar in vivo phenotype to BTV-8NET2006 (despite 7 coding and 19 silent 

mutations) while BTV-8IT2008 became much less pathogenic. It is unlikely that the amino acid 

substitutions present both in BTV-8NET2007 and BTV-8IT2008 played a role in their pathogenicity, 

although we cannot exclude this possibility. In the previous chapter, we demonstrated that 

combinations of mutations in several segments are involved in BTV-8 virulence in vivo. 

Hence, a similar approach will need to be considered in order to determine which genomic 

segments, or individual mutations, are responsible for the different virulence possessed by 

BTV-8IT2008 and BTV-8NET2006.     

Passage of a wild type virus in vitro often leads to genetic changes that facilitate entry and 

replication in specific cell lines without constraints from the host antiviral immune 

responses. Hence, tissue culture adaptation can alter viral phenotype and consequently 
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change its virulence in vivo. Experimental infection of sheep with BTV-8NET2007(blood) and BTV-

8NET2007(1KC-2BHK) showed that the latter produced less severe disease manifestations.  

However, comparison of consensus sequences of both viruses showed only two nucleotide 

mismatches that did not lead to amino acid changes. These variants were already present in 

10% of the viral pool in BTV-8NET2007(blood) and were independently selected in two 

experiments.  Very little is known about the determinants of BTV pathogenicity and the 

involvement of synonymous mutations in BTV virulence.  It is possible that these mutations 

could influence BTV RNA structures and thus affect its fitness (Feenstra et al., 2014). In 

addition, since our sequencing approach involved amplification of individual segments using 

specific primers overlapping the 3’ and 5’ end of each genomic segment, it is possible that 

we could have missed some changes in the untranslated regions of the virus genome that 

might have affected BTV-8NET2007(1KC-2BHK) virulence (Lymperopoulos et al., 2003; Sung and 

Roy, 2014). Nonetheless, our experiment showed that isolation and initial passages of BTV-

8 in vitro, have little overall effect on consensus sequence of BTV-8 and it appears that the 

selection of specific variants happens immediately after the first passage in KC cells. 

Our data demonstrate that high frequency variants (>10%) were the most abundant in 

BTV8NET2007(blood) but polymorphisms in different nucleotides also started to emerge in BTV-

8NET2007(1KC) as well. Surprisingly, two independent experiments showed that variation across 

the entire genome was the highest in both BTV-8NET2007(1KC) samples (24.8% and 27.25%), 

followed by BTV-8NET2007(blood) (19.56%). These results suggest that BTV-8 replication in insect 

cells leads to amplification of a number of emerging variants and as a result, to the 

generation of a wide spectrum of viral progeny genetically divergent from the consensus 

sequence. These data are in accord with Jerzak et al. who compared genetic diversity of 

West Nile virus passaged multiple times in either birds or mosquitos and concluded that 

while virus population passaged in chickens was more homogenous, higher number of 

quasispecies was observed in insect passaged virus (Jerzak et al., 2007; Jerzak et al., 2008). 

Moreover, at least double the amount of variation was observed in naturally infected 

mosquitoes than in the avian host. In light of these data, the authors concluded that insect 

vectors served as sources of genetic variation of the virus while the vertebrate host was a 

“selective sieve” that reduced viral population diversity (Jerzak et al., 2005). Only few studies 

looked at changes of BTV genetic variability in insect and mammalian hosts. Bonneau et al. 

showed that transmission of BTV-10 between ruminants and Culicoides midges led to an 
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increased number of variants in S2 and S10 (coding for VP2 and NS3, respectively) but the 

consensus sequence remained unchanged (Bonneau et al., 2001).  

The factors accounting for an increased number of variants in the BTV population found in 

insect cells are not clear at present. One of the more recognised causes behind increased 

quasispecies generation is the decreased polymerase fidelity (Lauring and Andino, 2010). 

Early studies looking into the efficacy of BTV RdRp (VP1) showed that the optimal 

transcription of the BTV genome occurred at 28oC but this threshold could be shifted 

upwards by altering the sugar concentration in the medium (Van Dijk and Huismans, 1980, 

1982). The temperature in insects is lower than 30oC and KC cells were maintained in our 

studies at 28oC. On the other hand, sheep body temperature exceeds 38oC while mammalian 

cell cultures used in our study are maintained at 37oC. Hence, it is possible that the activity 

of VP1 is affected by the temperature in the host organism and consequently its fidelity 

might be dramatically different between the insect and the mammalian hosts.  

In addition, factors affecting the interaction of the virus with the insect cell could also explain 

the high number of observed variants in KC cells, as opposed to host or mammalian cells. 

Several proteins including NS4 and NS3 have been shown to interact with the host cell 

antiviral response (Chauveau et al., 2013; Ratinier et al., 2011). Hence, changes on the amino 

acid level could influence the ability of the virus to counteract defences of the mammalian 

host cell. However, insect cells do not have an IFN system and instead rely on interference 

RNA (RNAi) to combat invading pathogens (Kingsolver et al., 2013). An interesting hypothesis 

could therefore be that the generation of a larger spectrum of variants would be a means to 

escape highly specific RNAi species. Other, virus unrelated factors, e.g. cellular  RNA editing 

enzymes could also play role in increased/decreased variant numbers in different types of 

samples (Liu et al., 2014; Rima et al., 2014; Zahn et al., 2007). 

Alternatively, it is possible that the number of virus replication cycles was higher in KC than 

in BHK-21 cells, raising the number of events when polymerase errors occurred, which 

consequently led to the generation of larger amount of variants. Moreover, passaging virus 

at high MOI often results in larger population size (Froissart et al., 2004; Lauring et al., 2013; 

Montville et al., 2005). In our study, we passaged the virus blindly and therefore did not 

control the titre of virus in the inoculum nor in the cell lysate used for the isolation of dsRNA. 

Future work looking at expansion of BTV population using a defined virus concentration in a 
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homogenous inoculum (e.g. strain rescued with reverse genetics) and during virus passage 

would therefore provide more insight into mechanisms of BTV quasispecies generation and 

limitations of using specific types of inocula for in vivo experiments. 

Our data clearly indicate that a dramatic bottleneck in BTV transmission happened in 

mammalian cells. Additionally, very few CPE foci were observed initially after BHK-21 cells 

were infected with infectious supernatant from KC cells (data not shown). These foci likely 

represented the rare variants that were able to efficiently infect and replicate in BHK-21 

cells.  It has been shown previously that high-fidelity mutants of Poliovirus generate low 

diversity progeny population and loses neurotropic properties in vivo (Vignuzzi et al., 2006). 

Interestingly, the generation of higher quasispecies diversity through chemical mutagenesis 

restores virulence in the mouse model despite having the same consensus sequence as the 

attenuated virus.  Several other studies confirmed that genetic heterogeneity of the 

quasispecies should be considered as an important determinant of pathogenicity in non-

clonal virus populations (Ebel et al., 2011; Farci et al., 2002; Sauder et al., 2006) (Clarke et 

al., 1993; Coffey and Vignuzzi, 2011). This could explain why we detected a decrease in 

virulence in sheep inoculated with BTV-8NET2007(1KC-2BHK) compared with animal blood despite 

having only two nucleotide mismatches in the consensus sequence. In BTV-8NET2007(1KC-2BHK) 

less than 8% of genome showed variability of 0.1% or more, while in BTV-8NET2007(blood) this 

number was ~20%. A more diverse BTV virus cloud could therefore be a factor in increased 

pathogenicity of infectious blood compared with the sample passaged in tissue culture. 

In summary, the clinical outcome of BTV infection is determined by both host and virus 

factors. Within the virus factors, the severity of the disease depends on the infecting strain 

(but not necessarily from the serotype).  However, the virulence is not only affected by 

genetic changes at the consensus level but also by the overall genetic diversity of the viral 

population (quasispecies). Although the majority of randomly generated variants will carry 

deleterious or fatal mutations, the remaining ‘viral cloud’ might contain specific variants 

with the ability to cross specific infection barriers of the host or the vector. Our study reveals 

many questions about the importance of BTV quasispecies in nature and the role of the 

vector/host cycle in the maintenance of variant heterogeneity that should be addressed in 

order to gain a further understanding of basic BTV biology.  
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One of the basic biological characteristics of a virus is its ability to cause disease (or lack of 

thereof), which is referred to as pathogenicity (Casadevall and Pirofski, 2001; Dortmans et 

al., 2011). The degree of pathogenicity can be “quantified” further in terms of virulence, 

which is usually associated with the clinical outcome or severity of infection. Therefore, 

although pathogenicity is a property of a virus, it can only be measured in vivo, in the context 

of an appropriate host and specific virus-host interactions. This poses a particular problem 

for viruses such as BTV, which exist as multiple serotypes/strains and can infect several 

animal species/breeds. Indeed, although BTV has been extensively studied for decades, 

there is very little concrete evidence of specific viral determinants of its virulence. Moreover, 

the established mouse models do not fully mirror the virus/host interplay in ruminants, 

which further hinders research on bluetongue pathogenesis. Nonetheless, an identification 

of the molecular determinants of viral pathogenicity is essential in order to: 1) gain basic 

understanding of BTV biology (e.g. host/vector range, transplacental spread, potential for 

rapid transmission, strain virulence); 2) devise control measures that fit the risks posed by 

specific strains/serotypes; 3) generate safe and efficacious vaccines based on truly 

attenuated strains that cannot be transmitted by vectors and cannot reassort  in the field or 

revert to virulence.  

In our study, we used several models of infection to assess virulence and the fitness of 

parental BTV8H and BTV8L and reassortant viruses. The viruses had different phenotypes in 

the natural host. While BTV8L was highly pathogenic in sheep, BTV8H was fully attenuated 

and did not cause either detectable viraemia or clinical signs in infected animals.  In order to 

understand roles of specific genomic segments in determining BTV-8 pathogenicity in vivo 

we therefore generated reassortants between both parental viruses and tested them in 

IFNAR-/- mice. It is necessary however to recognize the limitations of IFNAR-/- mice as a model 

of BTV infection. Due to the lack of a functional IFN system, IFNAR-/- mice are particularly 

susceptible to infection with wild type BTV-8 and infection even at very low doses will 

invariably lead to animal death.  In contrast, in the field, mortality due to BTV rarely exceeds 

30%, partially due to specific immune responses mounted by the natural host (Schultz and 

Grieder, 1987). Moreover, certain strains of BTV, e.g. BTV8IT2008, are only mildly pathogenic 

in ruminants but cause 100% mortality in mice, which shows that certain factors might be 

overlooked when studied exclusively in the mouse model. Similarly, a BTV-8 NS4 deletion 

mutant replicates with the same efficiency as wild type BTV in vitro, and is equally virulent 
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in IFNAR-/- and newborn mice yet in sheep it is attenuated (Ratinier et al., 2011) and (Ratinier 

et al., unpublished). Our study showed that BTV8H was non-pathogenic in IFNAR-/- mice as 

well as in the natural host. However, the effect of specific segment mutations on the clinical 

outcome of infection could not be tested in sheep.  It is very likely that the combination of 

mutations that conferred fully attenuated phenotype in the mouse model (mutations in S2 

and S1, S6 or S10) would likewise render the resulting reassortants non-pathogenic in the 

sheep as well. It is however also possible that some other combinations that were not 

identified in mouse studies would be sufficient for BTV attenuation in the natural host.  

Additional experiments in the ruminant host using selected reassortants would therefore 

further complement our work and provide further details on the roles of specific 

determinants in BTV pathogenesis.  

Reverse genetics allows the generation of viruses with artificial genetic modifications that 

might not have arisen in the field, for example due to constraints imposed by the insect 

vector-mammalian host transmission boundaries. Similarly, tissue-culture attenuated 

strains might acquire features that would render them not viable in natural conditions. Even 

though such mutants might be good indicators of the importance of specific gene products 

in replication and host interactions, their use for the prediction of virulence potential has to 

be taken with caution.  For example, based on our studies of BTV8H fitness in vitro and 

virulence in the mouse model we predicted that mutations in at least six proteins 

contributed to its attenuated phenotype, with VP2 being the main determinant. However, 

increased affinity of VP2H for GAGs is a result of tissue-culture passage and is unlikely to arise 

and contribute to strain pathogenicity in the field. While artificially generated characteristics 

might therefore tell us something about the biology of BTV, they might be less informative 

in determining factors contributing to the broad spectrum of in vivo phenotypes displayed 

by various strains/serotypes in the field. It would therefore be interesting to include in our 

analysis the mutations that we identified in BTV8IT2000 as these occurred as an effect of 

natural genetic drift and resulted in decreased virulence in ruminants.  

Viral pathogenicity is often multigenic and largely determined by specific gene 

constellations.  For viruses with segmented genomes, genetic drift combined with genetic 

shift can lead to the generation of a variety of viruses with altered phenotypes. The polygenic 

nature of virulence has been particularly well studied in influenza A viruses, which similarly 

to BTV exists as multiple serotypes/strains that can differ significantly in their virulence 
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(Chen et al., 2008; Perez-Cidoncha et al., 2014). Similarly, multiple genes contribute to the 

pathogenicity of different members of the Reoviridae in animal models. Hoshino and 

colleagues showed that to achieve virulence in piglets it was necessary to replace four genes 

(VP3, VP4, VP7 and NSP4) of human Rotavirus strain DS-1 with analogous porcine genes 

(Hoshino et al., 1995). Single, double or triple segment reassortants were not capable of 

producing disease in this model (Hoshino et al., 1995). Rotavirus VP4 and NSP1 were also 

found to be the main factors associated with the murine intestine tropism, while a gene 

constellation including the VP3, NSP1, NSP3 and NSP2 determined the titre of virus 

produced in the intestine (Feng et al., 2013). A similar study looking into the determinants 

of pathogenicity of another member of the Reoviridae, Reovirus, demonstrated that L1, L2, 

M1, and S1 segments together contributed to the severity of disease in the mouse, while 

specific genes (or combinations) were responsible for particular tissue tropism (Haller et al., 

1995). The data obtained in our work showed that, likewise, multiple genes govern BTV-8 

virulence. Some of the proteins e.g. VP2 and NS3 determine BTV pathogenicity likely due to 

specific functions they play in virus/host interactions and therefore have the most dramatic 

effect viral virulence. Other proteins might have no effect on their own, but in combination 

with other factors can influence viral phenotype. It is likely that some of the segment 

combinations resulted in reassortants containing proteins that were not fully compatible 

with one another. For example, mismatches in segment 7 (VP7) alone did not have any effect 

on BTV8 pathogenicity or fitness, however the addition of S7L to a construct of 

BTV8H+S2/6/10L resulted in increase of IFNAR-/- mortality from 20% to 60% at the 3000 PFU 

inoculation dose. Several studies showed that reassortment between particular BTV 

serotypes might not be fully flexible and preferential combinations might occur in a co-

infected host or a vector (Nomikou et al., 2015; Ramig et al., 1989; Samal et al., 1987b). 

Nunes et al. attempted to rescue a full set of reassortants containing BTV-1 backbone and 

VP2 of 26 serologically different reference strains but did not succeed in rescuing eight of 

the proposed combinations (Nunes et al., 2014). Shaw et al. on the other hand showed that 

reassortment between all segments of BTV-1 and BTV-8 is flexible, however during mixed 

infection in vitro, certain combinations are recovered more often than others (Shaw et al., 

2013).  These studies clearly show that interactions between BTV proteins require specific 

molecular patterns (or sequences) and mismatches within interacting regions can result in 

suboptimal virion formation and release, and consequently affect virulence. This opens the 

possibility of using reverse genetics to generate viruses that are not able to reassort due to 
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strong structural affinity for specific protein sequences. Such a property would be important 

for MVL vaccines and as it would minimize the risk of reassortment with field strains.  

Another study investigating the multigenic nature of Rotavirus pathogenicity, compared 

sequences of the EB strain passaged in either mice or in tissue culture (Tsugawa et al., 2014). 

Their results showed that mutations in at least three genes (VP4, NSP4 and NSP1) are 

associated with virulence in mice (Tsugawa et al., 2014). However, mutations in these 

proteins consistently appeared in viruses after in vivo passage and then disappeared during 

serial passage in cells. The authors suggested that the observed amino acid changes in the 

consensus could have been the result of particular quasispecies variants being selected in a 

specific passage system, rather than arising de novo.  In Chapter 5, we showed that isolation 

of BTV-8 in insect cells followed by passage in mammalian cells decreases the number of low 

frequency variants in the sample pool, effectively reducing the size of “virus cloud” 

surrounding the consensus type. Furthermore, this change has an effect on virus virulence 

in vivo.  A heterogeneous population has an advantage over a clonal one, as it contains a 

selection of viruses, that can freely reassort and use this “mix & match” system to adapt to 

diverse environments encountered in the vector, in the host, and also in diverse tissues 

within an animal. To date, there are no data available on the different bottlenecks imposed 

on the virus during its natural transmission cycle. Moreover, the mechanism of generation 

of variant diversity, other than random polymerase errors have not been established. 

Further studies looking into the role of the insect vector as a generator of a broad spectrum 

of BTV quasispecies would therefore be of great interest.  

Our study shows that BTV-8 pathogenesis is governed by a combination of factors. These 

include major molecular determinants involved in direct interactions with the host and in 

the structure and functioning of the virion itself. Moreover, virulence is affected by the 

heterogeneity of the variants within a single strain population. It is necessary to point out 

that the specific factors might differ for other BTV serotypes/strains and therefore future 

studies examining conserved determinants would be of great interest. Such work would 

enable the generation of candidate MLV viruses that display high fitness in IFN-deficient 

systems but are unable to cause viraemia and induce clinical symptoms in the host. 

Additionally, synthetic high fidelity RdRp strains could prove effective in minimizing MLV 

genetic drift and reversion to virulence and therefore improve further BTV control 

measures.  
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Appendix 

 
 
 
 

Table 8. Genetic differences between BTV8L and BTV8H. 

.   

Segment 
 

Protein 
Nucleotide 

position 
BTV-8L 

nucleotide 
BTV-8H 

nucleotide 
Amino acid 

position 
BTV-8L 

amino acid 
BTV-8H 

amino acid 

1 VP1 3702 G A 1231 Asp Asn  

2 VP2 63 
981 
996 

1215 
1874 
2060 

G 
A 
A 
A 
G 
A 

A 
G 
G 
T 
A 
G 

16 
322 
327 
400 

Glu 
Asn 
Ile 
Arg 

Lys 
Asp 
Val 
Trp 

3 VP3 1091 
1097 
1994 
2428 

A 
T 
T 
C 

G 
C 
C 
T 

 
 
 

804 

 
 
 

Thr 

 
 
 

Met 
4 VP4 1002 

1705 
G 
C 

A 
A 

332 
566 

Asp 
Thr 

Asn 
Ile 

5 NS1 85 
712 

1000 
1401 
1540 

C 
T 
T 
C 
G 

T 
A 
C 
T 
A 

 
266 

 
456 

 
Asn 

 
Ala 

 
Lys 

 
Val 

6 VP5 12-13 
252 

1009 
1216 

 
A 
T 
T 

+GC 
G 
A  
C 

 
 

328 

 
 

Phe 

 
 

Ile 

7 VP7 843 
999 

C 
G 

T 
A 

276 
328 

His 
Ala 

Tyr 
Thr 

8 NS2 92 
1078 
1106 

C 
C 
G 

A 
T 
A 

25 Ala Thr 

9 VP6 
 

NS4 

955 
1022 

 

A 
C 

G 
T 
 

314 Thr Ala 

10 NS3 308 
319 

C 
G 

T 
A 

97 His Tyr 
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Table 9. Genetic differences between BTV-8NET2006 and BTV-8NET2007. 

Segment Protein 
Nucleotide 

position 
BTV-8NET2006 
nucleotide 

BTV-8NET2007 

nucleotide 

Amino 
acid 

position 

BTV-8NET2006 
amino acid 

BTV-8NET2007 
amino acid 

1 VP1 2051 
2534 
2634 
2756 
3701 

T 
T 
G 
G 
T 

C 
C 
A 
A 
C 

 
 

875 

 
 

Thr 

 
 

Ala 

2 VP2 242 
443 
470 

1007 

G 
A 
T 
A 

A 
G 
C 
C 

   

3 VP3 113 
1328 
2471 

T 
C 
T 

C 
T 
C 

   

4 VP4 620 
1026 
1431 

A 
T 
T 

G 
A 
C 

 
340 

 
Met 

 
Leu 

5 NS1 1639 T C    

6 VP5 144 
546 

1365 
1383 

G 
G 
T 
G 

A 
A 
C 
A 

   

7 VP7 392 C T    

8 NS2 194 A G 59 Asp Asn 

9 
 
 
 
 

VP6 
 

 
NS4 

30 
142 
413 
413 

A 
A 
C 
A 

G 
G 
T 
G 

5 
43 

133 
78 

Ile 
Thr 
Ala 
Gln 

Met 
Ala 
Val 

STOP 

10 NS3 --- 
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Table 10. Genetic differences between BTV-8NET2006 and BTV-8IT2008. 

Segment Protein 
Nucleotide 

position 
BTV-8NET2006 
nucleotide 

BTV-8IT2008 
nucleotide 

Amino 
acid 

position 

BTV-8NET2006 
amino acid 

BTV-8IT2008 
amino acid 

1 VP1 2683 C T 891 Thr Met 

2 VP2 1527 C T 504 His Tyr 
3 VP3 395 

1667 
2471 
2645 

C 
C 
C 
A 

T 
T 
T 
G 

   

4 VP4 1375 T C 456 Val Ala 

5 NS1 865 
1426 

G 
G 

A 
A 

277 
 

Met Ile 

6 VP5 1383 A G    

7 VP7 170 
392 

T 
T 

C 
C 

   

8 NS2 93 
194 
247 
512 
592 

C 
G 
C 
C 
A 

T 
A 
T 
A 
G 

25 
59 

 
 
 

Ala 
Asp 

Val 
Asn 

9 VP6 
 
 
 

NS4 

30 
166* 
168* 
714 
864 
969 

G 
G 
A 
G 
G 
A 

A 
A 
G 
A 
A 
G 

5 
51 
51 

 
 
 

Met 
Ala 
Ala 

Ile 
Thr 

10 NS3 151 G A    

*mutations present in the same codon 
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Table 11. Number of sequencing reads mapped to specific segment. 
 

n - total number of reads  

 

 

 

Segment 
BTV-

8NET2007(blood) 
BTV-

8NET2007(1KC) 

BTV-
8NET2007(1KC

-1BHK) 

BTV-
8NET2007(1KC-

2BHK) 

BTV-
8NET2007(1KC) 

BTV-
8NET2007(1KC-

1BHK) 

BTV-
8NET2007(1KC-

2BHK) 

 n=746,830 n=1,013,474 n=935,152 n=1,210,870 n=1,057,314 n=1,121,860 n=1,102,576 

1 64,298 202,966 168,436 212,171 175,947 212,148 188,854 

2 110,867 142,787 128,157 167,334 167,972 149,994 155,230 

3 118,959 141,247 137,284 171,899 162,033 161,714 160,489 

4 73,380 98,522 93,542 117,047 100,560 110,123 108,899 

5 75,065 92,875 87,426 117,116 100,580 99,530 106,745 

6 61,501 90,105 82,903 117,952 96,991 107,884 106,492 

7 52,928 67,352 65,517 85,587 63,560 78,113 68,837 

8 44,264 62,353 62,332 79,176 62,614 70,209 69,995 

9 51,430 57,943 56,312 68,895 64,618 62,467 64,776 

10 37,427 47,427 44,144 62,374 51,542 58,018 63,222 

Total 
matched 

690,119 1,003,577 926,053 1,199,551 1,046,417 1,110,200 1,093,539 

% 
Matched 

92.4 99.0 99.0 99.1 99.0 99.0 99.2 
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Table 12. Number and quality of reads covering detected variants in BTV-8NET2007(blood) before and after passage in KC and BHK-21 cells (first replicate). 

  BTV-8NET2007(blood) BTV-8NET2007(1KC) BTV-8NET2007(1KC-1BHK) BTV-8NET2007(1KC-2BHK) 

SEGMENT 
Mean 

number 
of reads 

Minimum 
number 
of reads 

Maximum 
number of 

reads 

Mean 
read 

quality 
(Q) 

Mean 
number 
of reads 

Minimum 
number 
of reads 

Maximum 
number of 

reads 

Mean 
read 

quality 
(Q) 

Mean 
number 
of reads 

Minimum 
number 
of reads 

Maximum 
number of 

reads 

Mean 
read 

quality 
(Q) 

Mean 
number 
of reads 

Minimum 
number 
of reads 

Maximum 
number of 

reads 

Mean 
read 

quality 
(Q) 

1 3321.6 2085 6041 36.3 10859.1 6211 19230 37.1 7892.0 5261 16284 36.2 10337.1 5931 20626 36.3 

2 7743.6 3161 12762 36.9 10170.0 5022 13059 37.2 7589.1 5310 12595 37.0 10760.0 8385 17571 37.2 

3 8687.2 6264 16515 35.8 10403.1 5846 18131 37.1 8351.3 6063 11085 36.6 11464.8 7545 17284 36.6 

4 7685.4 5757 12565 37.1 10579.6 7719 17320 37.3 8479.1 6817 10917 36.9 11467.2 8878 19476 36.9 

5 8906.6 6064 13940 37.1 11019.2 7102 16625 37.3 8738.6 7072 15677 37.3 12738.3 10320 21743 37.3 

6 7772.1 5424 13944 37.0 11612.0 7857 16219 37.1 9033.8 6958 14678 37.4 13430.1 11208 20232 37.4 

7 9527.8 6569 16277 36.8 12270.6 8386 19105 37.0 10092.0 6508 20211 37.1 14227.4 9299 26144 37.2 

8 8237.8 6028 14337 36.9 11504.7 7467 18551 37.4 9398.1 6649 16267 37.4 12957.1 8818 16625 37.3 

9 10126.6 5703 18161 36.4 11439.5 6640 19393 36.4 9911.3 6258 20247 36.7 12535.7 8898 22017 36.8 

10 9537.7 6352 15368 37.3 11775.3 8421 18134 37.4 9617.4 7501 16500 37.2 14697.7 12478 25741 37.4 

Mean 
(All) 

8154.6 5340.7 13991.0 36.8 11163.3 7067.1 17576.7 37.2 8910.32 6439.70 15446.1 37.0 12461.6 9176.0 20745.9 37.1 



Appendix   

   

166 

 

 

 

Table 13 .Number and quality of reads covering detected variants in BTV-8NET2007(blood) before and after passage in KC and BHK-21 cells (second replicate). 

 BTV-8NET2007(1KC) BTV-8NET2007(1KC-1BHK) BTV-8NET2007(1KC-2BHK) 

SEGMENT 
Mean 

number 
of reads 

Minimum 
number of 

reads 

Maximum 
number of 

reads 

Average 
read quality 

(Q) 

Mean number 
of reads 

Minimum 
number of 

reads 

Maximum 
number of 

reads 

Average 
read quality 

(Q) 

Mean number 
of reads 

Minimum 
number of 

reads 

Maximum 
number of 

reads 

Average 
read quality 

(Q) 

1 9399.6 5402 17466 37.1 10205.3 6361 18177 36.4 9126.5 5433 21741 36.2 

2 11886.7 5654 20989 37.4 9369.4 4942 14138 36.9 9708.3 5926 14439 37.2 

3 12101.5 7292 23298 37.3 10281.2 6853 15176 36.1 10517.3 6775 20797 36.6 

4 10938.4 7798 19008 37.4 10318.4 8094 12830 37.3 10433.4 8007 14826 36.9 

5 11842.1 9180 20833 37.5 10860.5 8904 18228 37.1 11591.8 9105 19708 37.4 

6 12221.7 9088 20701 37.4 12467.8 10114 24740 37.1 12452.0 10028 21570 37.4 

7 11680.7 6885 20411 37.3 12643.5 8660 15638 36.8 11311.1 7615 20909 36.9 

8 11591.3 6975 20321 37.4 11308.0 8279 14346 37.4 11215.8 7567 18319 37.1 

9 12813.9 7909 23750 37.1 10942.1 7804 16134 36.4 11679.3 8514 15212 36.0 

10 13419.8 9368 20749 37.6 12860.3 11428 14413 37.2 13942.4 12480 15268 37.2 

Mean 
(All) 

11789.6 7555.1 20752.6 37.35 11125.6 8143.9 16382.0 36.8 11197.8 8145.0 18278.9 36.9 
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