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Abstract

Diamagnetism is the magnetism exhibited by all materials, even those not normally

considered magnetic, in the presence of an applied magnetic field. On a microscopic

level, it is associated with the angular momentum acquired by individual electrons in

the magnetic field. Recently discovered electron vortices, meanwhile, possess orbital

angular momentum even in field-free space.

In this thesis, I consider the angular momentum of an arbitrary electron wavefunc-

tion in a uniform magnetic field. I show that the kinetic orbital angular momentum

of the electron can be represented as a sum of three components: the canonical an-

gular momentum associated with a vortex, the angular momentum associated with a

cyclotron orbit of the wavefunction as a whole, and a “diamagnetic” angular momen-

tum associated with an internal rotation of the wavefunction that is induced by the

magnetic field.

I show that the diamagnetic angular momentum depends on the moment of iner-

tia of the electron’s probability distribution, which for free electrons has interesting

consequences. Whereas diamagnetism in materials is normally very small compared to

the effects of intrinsic magnetic moments, a free electron – for example, in an electron

microscope – can have a probability distribution with a much larger average radius.

This means that the diamagnetic component can be the dominant contribution to the

electron’s angular momentum. On the other hand, the diamagnetic angular momentum

may instead be of a similar magnitude to the canonical and/or cyclotron components,

in which cases the current density strongly depends on the relative magnitudes and

directions of these components.

Further, diffraction and interference of the electron’s wavefunction lead to inter-

esting dynamical effects. I demonstrate that the kinetic angular momentum of the

electron can vary with time, which seems at first sight to violate angular momentum
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conservation. The diamagnetic angular momentum also gives rise to a “Faraday effect”

for electrons, analogous to the rotation of the polarization of light in a magnetic field.

All of this behaviour is a surprising departure from the simple cyclotron orbit predicted

by classical theory.
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When I was a young child I conceived the idea of an infinite series of uni-

verses, the solar system being an atom in a larger universe on the one hand,

and the mundane atom a universe to a smaller atom, and so on. I do not

go so far as that now, but only observe that there is a tendency to make

the electrons indivisible, and all exactly alike. But they must have size and

shape, and be therefore divisible. Unless, indeed, they are infinitely rigid.

Or they may vary in shape without dividing...

— Oliver Heaviside, The Radiation from an Electron describing a Circular

Orbit [3]



Chapter 1

Introduction

1.1 Background

1.1.1 Angular momentum of matter and fields

The concept of angular momentum is important for describing systems that possess

rotational symmetry. This includes electrons orbiting an atomic nucleus and, on a

larger scale, the planets in the solar system. Free rotations, whether of a fundamental

particle or of a macroscopic body, are also fruitfully analysed in terms of angular

momentum. So is the motion of an electron in a uniform magnetic field, where the

symmetry is cylindrical.

The connection between angular momentum and rotational symmetry is one instance

of the general principle that is Noether’s theorem [4]. Noether showed that for any
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symmetry a system possesses, there exists an associated conservation law [5, 6]. For

example, the conservation of momentum can be deduced from translational symmetry,

and the conservation of energy is related to symmetry in time. In the same way,

symmetry under rotation implies that the angular momentum of a system is conserved.

In quantum mechanics, this is reflected by the rotational symmetry of the angular

momentum eigenstates of a particle.

It is not only massive particles that can possess angular momentum. Electromagnetic

fields contain a momentum density, which is proportional to the Poynting vector, and

the moment of this momentum defines an angular momentum [7]. This is the case, for

example, with the spin angular momentum of the photon, which is associated with the

circular polarization of an electromagnetic wave [8, 9].

A subtlety arises when matter interacts with an external electromagnetic field. In this

case, the momentum of a massive particle, and therefore its angular momentum, can

be defined in different ways [10]. The particle’s mechanical motion is described by its

kinetic momentum. On the other hand, it is the canonical momentum that is related to

the symmetry of the system. The difference between these quantities can be ascribed

to the momentum exchanged between the particle and the field [11]. The distinction

between kinetic and canonical momenta is at the heart of the Abraham-Minkowski

dilemma, a long-running debate over the amount of momentum light transfers to a

material through which it passes [12, 13, 14]. This issue is also of significance when

charged matter interacts with an external magnetic field [15, 16, 17, 18].

Photons do not possess electrical charge, and therefore do not interact directly with

an external magnetic field. Nonetheless, the polarization of light can be affected by

a magnetic field, through the mediation of a magneto-active medium. This was first

observed by Michael Faraday, and was the first experimental evidence of a connection

between light and electromagnetism [19]. When linearly polarized light propagates

parallel to a magnetic field, the polarization direction rotates – an effect that now
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bears Faraday’s name. Faraday rotation arises as a result of changes to the angular

momentum of electrons in the medium, which cause right and left handed circularly

polarized light – photons with opposite spin – to travel at different speeds [20].

1.1.2 Optical and electron vortices

It is now well established that, in addition to their spin, photons can possess orbital

angular momentum [21, 22]. Whereas a photon’s spin is related to polarization, its

orbital angular momentum is associated with twisted wavefronts, in an “optical vortex”

[23, 24]. Such a vortex coincides with a singularity in the phase of an electromagnetic

wave, at which the intensity vanishes [25]. In contrast to the spin, a measurement of

which can yield one of only two values, the photon’s orbital angular momentum can be

an arbitrary multiple of ~. Over the last two decades optical angular momentum has

become a large and very active research field, with numerous emerging technological

applications [22, 26].

In a similar way that differing propagation speeds of photons with opposite spin gives

rise to a rotation of the linear polarization of light, an orbital angular momentum

dependent dispersion results in a rotation of the intensity distribution [27]. Such a

dispersion can be induced by rotating the medium through which the light propagates

[28, 29, 30], and the image rotation that follows can be interpreted as a “mechanical”

Faraday effect [31]. However, a magnetic Faraday effect for optical angular momentum

has not been observed. This is consistent with findings that light’s orbital angular

momentum, in contrast to its spin, does not interact strongly with the internal degrees

of freedom of atoms [32], or with chiral media [33, 34, 35].

Electrons possessing quantized orbital angular momentum are familiar from atomic

physics. It is only a few years ago, however, that free electrons possessing such angular
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momentum were predicted and then observed [1, 36, 37, 38]. This angular momentum is

associated with a singularity in the phase of the electron’s wavefunction, around which

the probability current density circulates [39, 40]. In some ways these free electron

vortices resemble vortices in fluids; whether classical [41] or quantum [42, 43, 44].

However, in an electron vortex state the angular momentum is associated with a single

particle. As with photons, or electrons in atoms, the total angular momentum of a

free electron is the sum of its spin and orbital components [45, 46, 47]. Since electrons

possess charge, this angular momentum is associated with a magnetic moment [36, 45].

Progress in the understanding of electron vortices, and spatially structured electron

states more generally, has been described in a recent review article [48].

Electron vortices have mostly been studied using transmission electron microscopes.

These instruments are designed to image materials and structures that are smaller

than the wavelength of light [49]. In experiments involving electron vortices, however,

the microscope often simply provides a convenient source of highly coherent electron

states. The most common technique that has been used to create vortices has been

transmitting the electron beam through a special diffraction grating that contains a fork

dislocation [1, 38, 50, 51]. This method has been adapted for use with electrons after

widespread use in optics. An example of a forked diffraction grating is shown in Fig. 1.1,

taken from [1]. Such a grating splits the incident beam into a series of diffraction orders,

each of which possesses a different value of orbital angular momentum. The resulting

probability distribution can be imaged on the microscope’s CCD camera, by detecting

the positions of a large number of electrons that pass through the microscope column

one after another [52, 53].

It is anticipated that electron vortex beams will have a number of applications, in

both fundamental physics and technology. In microscopy, they could be used to map

magnetic information at the atomic level [54, 55, 56, 57], as well as to probe chiral

properties of molecules and nanostructures [58]. Other potential applications include

nanomanipulation [59, 60] and, by exploiting spin-orbit coupling, an efficient method

of producing spin-polarized electron beams [61, 62]. Further, electron orbital angular
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momentum could be exploited to extract greater information from particle physics

collisions [63, 64], and to investigate the radiation produced by magnetic moments

[65].

In addition to this, the demonstration of electron vortices has led to an interest in

wavefunctions that are sculpted in other ways, and the use of these in specific appli-

cations. Recently Airy beams, previously realised with light, were demonstrated for

electrons [66]. These have intensity maxima that propagate along a curved trajectory,

even though no external force is applied, and open up new possibilities for steering

electron wavepackets. Similarly, Bessel beams, the transverse distributions of which

do not spread upon free propagation, have recently been realised [67]. These could

find application in electron tomography, where images at different planes of depth are

needed. Note that a Bessel beam can posses a vortex, but that this is not necessarily

the case. Another development is that calculations have shown that electron magnetic

circular dichroism can be performed without using a vortex probe, by tailoring the

symmetry of the electron phase distribution using abberation-correction optics [68].

1.1.3 Interaction of electrons with a magnetic field

The orbital motion of an electron is influenced by a magnetic field. This can be

most simply understood by considering the Lorentz force of classical physics, which

in a uniform magnetic field gives rise to a circular orbit of the electron in a plane

perpendicular to the field. This is commonly known as the cyclotron orbit, after the

early particle accelerator developed by Ernest Lawrence [69]. If the electron also has

motion parallel to the field, its trajectory is a helix. In the absence of an external

electrical potential, the electron’s orbital motion is independent of its spin, of which

the component in the direction of the magnetic field is conserved [70].
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Fig. 2 Nanofabricated gratings with fork dislocations (top row) used to create electron beams with quantized 
phase vortices (bottom row).  

Benjamin J. McMorran et al. Science 2011;331:192-195 

Published by AAAS 

Figure 1.1: Diffraction gratings used to generate electron vortex beams (top

row), and the associated probability distributions (bottom row). From [1],

available at http://www.sciencemag.org/content/331/6014/192.abstract, and

reprinted with permission from AAAS. An electron beam transmitted through one

of the gratings is split into a series of components, which have the orbital angular mo-

mentum quantum numbers shown. The diffraction spots corresponding to zero orbital

angular momentum are ordinary non-rotating electron states, while the ring-shaped

distributions are those of vortex states. The orbital motion of the electron in a vortex

state means that there is zero probability of the electron being detected at the cen-

tre. The quantum number is equal to a multiple of the number of prongs in the fork

dislocation of the grating, which here is equal to 1 (left) and 25 (right).

http://www.sciencemag.org/content/331/6014/192.abstract
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Interestingly, a uniform magnetic field does not define a unique rotation axis. This

is a consequence of the translational symmetry of the field. Rather, the symmetry

axis of a cyclotron orbit depends on both the initial position and the initial transverse

momentum of the electron.

The situation is different for electrons in atoms. Even when spin-orbit coupling [71, 72]

is ignored, the atomic potential has the important effect of constraining the electron’s

translational motion. The effect of a magnetic field is therefore appropriately described

in terms of a perturbation to the atomic energy eigenstates [73, 74]. To first order in

the magnetic field strength, the observed energy shifts can be explained using Larmor’s

theorem: the effect of the external magnetic field is equivalent to a rotation of the

coordinate system, with respect to the symmetry axis of the fields, at the Larmor

angular velocity [75]. This angular velocity is half of the value for free cyclotron motion

[76].

Another consequence of the Larmor rotation of atomic electrons is diamagnetism

[77, 78]. This is the small magnetization exhibited by all materials in the presence

of an external magnetic field that opposes, and partially cancels, the applied field.

Diamagnetism was first explained quantitatively by Langevin, who considered the mag-

netic moment associated with the Larmor rotation of each electron orbital [79]. The

magnetic moment is proportional to the cross-sectional area of the orbital, which is

the reason why, in the case of atomic electrons, the magnetization is weak. Typical

diamagnetic susceptibilities (the magnetization per unit field strength) are ∼ −10−5,

compared with susceptibilities of 10−5–10−3 for paramagnetic materials and 102–104

for ferromagnets [80].

Diamagnetism can also arise from the motion of free electrons within a material [81, 82].

This is observed in metals and semiconductors, when the temperature is low enough to

sufficiently limit scattering [83]. Such a magnetization cannot be understood classically:

classical orbits would be reflected at the boundaries of the material, resulting in a net
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magnetization of zero [82]. It is explained instead in terms of the energy eigenstates of

the system [81]. Known as Landau states, these possess quantized angular momentum.

Landau’s theory has been successful in explaining the properties of condensed matter in

the presence of a magnetic field [84, 85]. However, in such systems the precise state of

each electron, including its probability density and current density, remains obscured.

1.2 Outline of thesis

In this thesis, I consider the interaction of a single electron with a uniform magnetic

field. I show that, like in condensed matter, the electron possesses a “diamagnetic”

angular momentum. I compare and contrast this angular momentum with the canonical

angular momentum of a vortex state, and with the angular momentum of the classical

cyclotron orbit. My results are of a general nature, and are largely independent of the

particular experimental geometry. However, I refer throughout to experiments that

can be performed in electron microscopes.

I demonstrate that for a quantum state described by a wavefunction it is meaningful

and useful to decompose the electron’s total kinetic angular momentum with reference

to the centre of mass for the wavefunction. The centre of mass follows a classical

cyclotron orbit. The rotation relative to the centre of mass (in the absence of a vor-

tex), meanwhile, exhibits properties familiar from Langevin’s and Landau’s theories

of diamagnetism. For these reasons, I label the corresponding angular momentum

components as “cyclotron” and “diamagnetic” respectively.

I show how simultaneous rotations can occur with respect to more than one parallel

axis. These parallel-axis rotations are possible with or without the presence of canonical

angular momentum, but are particularly striking where there is a superposition of

vortices that have different values of this angular momentum. The identification of two
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distinct rotation axes does, however, depend on there being an extended probability

distribution. In the classical limit, the diamagnetic angular momentum vanishes.

Surprisingly, the diamagnetic angular momentum, and therefore the electron’s total ki-

netic angular momentum, can vary with time. This happens when, due to diffraction,

the moment of inertia of the electron’s probability distribution varies. Noether’s theo-

rem seems to require, however, that the angular momentum of the electron is conserved,

since the magnetic field is rotationally symmetric. This apparent paradox is resolved

by taking into account the radial electric field of the electron. I show that the com-

bination of this field with the external magnetic field gives rise to an electromagnetic

angular momentum, the change in which compensates for that of the familiar mechan-

ical angular momentum. This means that the total angular momentum, including that

of the electromagnetic field, is indeed conserved.

The diamagnetic angular momentum has no direct counterpart in optics, since, as

already noted, photons do not interact with an external magnetic field. Nonetheless, I

show that the rotation of the electron’s probability density is closely analogous to the

rotation of the polarization of light in the optical Faraday effect. Even in free space,

an electron beam experiences a Zeeman interaction with a longitudinal magnetic field.

This results in a dispersion that depends on the total angular momentum, including its

orbital component. As was predicted for optical angular momentum, such a dispersion

gives rise to a rotation of the probability density of a vortex superposition. At the

same time that our paper on electron Faraday rotation [86] was published, the same

effect, termed Larmor rotation, was predicted by others [87].

My results demonstrate that the rotational dynamics of a single electron can be signif-

icantly different from those of a photon, as well as from what is predicted by classical

theory for a point particle. In addition to being of fundamental interest, this is likely

to be of importance in future applications of electron orbital angular momentum. For

a start, magnetic fields are used to manipulate electrons’ trajectories, meaning that it
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is essential to understand their effect on the electron’s angular momentum. Further,

understanding such basic interactions with external fields is a necessary first step to-

wards a detailed picture of interactions with matter. While I consider only one very

simple field configuration, the concepts I describe apply more generally, and my results

could be used to make intuitive predictions and order of magnitude calculations in a

variety of situations.

The remainder of the thesis is organised as follows. The next chapter contains back-

ground material: both theory and relevant details of experiments. In Chapter 3, I

describe the decomposition of the electron’s kinetic angular momentum using the par-

allel axis theorem. Although this research was performed last, it is presented first

here as it provides an overview of the different angular momentum components. In

Chapter 4, I consider wavefunctions that have a time-varying radius, leading to the

aforementioned conservation paradox. This is followed, in Chapter 5, by my results

on Faraday rotation, which can be viewed as a consequence of the earlier theory and

suggest practical applications. A summary of the thesis and ideas for future research

are provided in Chapter 6.



Chapter 2

Electron wavefunctions in a

uniform magnetic field

I introduce well-established concepts and results upon which my own work will build.

This includes ideas that were established almost a century ago, in the early days of

quantum theory, as well as much more recent developments. I first concentrate on

theory, and then consider experiments in electron microscopes.

2.1 Theory

2.1.1 Hamiltonian

The motion of an electron in a uniform magnetic field is commonly described within the

framework of non-relativistic quantum mechanics [70]. This is appropriate whenever
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the electron has a velocity much less than the speed of light. This condition is satisfied,

for example, by conduction electrons in metals [81] and semiconductors [88], and elec-

trons trapped in quantum dots [89] or Penning traps [90]. Similarly, free electrons in

low energy [91] and photoemission [92] electron microscopes have a non-relativistic ve-

locity, as do electrons emitted in slow ion-atom collisions, where vortices were recently

observed [40].

Electrons in transmission electron microscopes typically have an energy ∼ 100 keV,

meaning that relativistic effects need to be taken into account. Once a relativistic

correction is made to the electron’s energy, however, its motion is accurately described

by the Schödinger equation [2, 93]. The reason for this is that the transverse compo-

nent of the electron’s momentum is relatively small, and, as a consequence, spin-orbit

coupling is negligible [45]. In this thesis, for simplicity, I do not consider relativistic

energy corrections. Where accurate quantitative predictions relating to transmission

electron microscopy are required, however, these corrections could be applied to my

results in the usual manner. The separation of spin and orbital angular momenta in

the non-relativistic approximation greatly simplifies the description of the electron’s

motion.

The Hamiltonian for an electron with non-relativistic energy interacting with an arbi-

trary magnetic field B, described by a vector potential A, is

H =
(pkin)2

2m
−B · µs. (2.1)

Here pkin = mv, where v is the velocity, is the electron’s kinetic momentum, which

describes its mechanical motion. The kinetic momentum is related to the canonical

momentum, pcan = −i~∇, by

pkin = pcan − eA. (2.2)

As will be described in sections 2.1.3 and 2.1.4, the canonical momentum is an abstract

variable that depends on the gauge chosen and does not have a definite physical mean-

ing. In the second term of (2.1) µs = −gµBσ/2 is the magnetic moment associated
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with the electron’s spin, µB = −~e/(2m) is the Bohr magneton, σ = (σx, σy, σz) is the

Pauli matrices vector,

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 , (2.3)

and g ≈ 2 [94] is the gyromagnetic ratio. The first term in (2.1) is the kinetic energy

of the electron’s motion in the magnetic field, while the second term describes the

Zeeman interaction of its spin angular momentum with the field. In general, this

Zeeman interaction will result in a coupling of the electron’s spin and spatial degrees

of freedom, even at non-relativistic velocities [61, 95, 96]. However, if the magnetic

field is uniform, this coupling vanishes.

In this thesis I consider a uniform magnetic field, the direction of which is taken to

define the z axis:

B = Bẑ. (2.4)

The vector potential is chosen as

A = −1

2
Byx̂ +

1

2
Bxŷ =

1

2
Bρφ̂, (2.5)

where I have introduced cylindrical polar coordinates r = (ρ, φ, z). This choice of

vector potential is convenient to exploit the rotational symmetry of both the magnetic

field and of the electron states I consider. The effect of choosing a different gauge

is described later in this chapter. With the magnetic field (2.4) and vector potential

(2.5), the Hamiltonian (2.1) becomes

H = H⊥ +Hz +Hs, (2.6)

where

H⊥ =
1

2m
(pkin
⊥ )2 =

1

2m
(pcan
⊥ )2 +

1

2
mω2

Lρ
2 + ωLL

can
z , (2.7)

Hz = (pkin
z )2/(2m) and Hs = gωLSz [95, 97]. Here Sz is the z component of the

electron’s spin, which has the eigenvalues ±~.

The component H⊥ describes the energy of the motion of the electron in the plane

perpendicular to the magnetic field. Here ωL = −eB/(2m) is the Larmor angular



CHAPTER 2. ELECTRON WAVEFUNCTIONS IN A UNIFORM MAGNETIC FIELD 33

velocity and

Lcan
z = (r× pcan)z = −i~ ∂

∂φ
(2.8)

is the z component of the canonical orbital angular momentum. The quadratic position

dependence of the second term in (2.7) indicates the similarity of this system to a two

dimensional harmonic oscillator, with a frequency equal to the Larmor angular velocity

[76], while the final term here describes a rotation of the coordinate system at this

angular velocity [75]. Note that for a uniform magnetic field, in the non-relativistic

approximation, the Hamiltonian (2.7) is correct to all orders in the magnetic field

strength.

The total energy of the electron depends additionally on its linear motion in the z

direction and on the Zeeman interaction of its spin. Since the vector potential (2.5)

has no z component, the z components of the kinetic and canonical momenta are equal:

pkin
z = pcan

z = −i~ ∂/∂z. This momentum commutes with the Hamiltonian (2.6), which

does not depend explicitly on the z coordinate, and is therefore a constant of motion

[81, 97]. This reflects the fact that classically an electron moving parallel to a uniform

magnetic field experiences no Lorentz force. Similarly, the z component of spin, Sz, is

a constant of motion. This means that it is straightforward to separate the transverse

motion of the electron, described by the Hamiltonian (2.7), from its longitudinal motion

and spin.

2.1.2 Landau states

As Landau demonstrated in [81], the energy of the orbital motion of a free electron in

a uniform magnetic field is quantized. This is a direct consequence of the harmonic

effective potential that appears in the Hamiltonian (2.7). Landau quantisation has a

significant effect on the properties of condensed matter systems at low temperatures in

the presence of a strong magnetic field. It gives rise to the de Haas-van Alphen effect,

which can be used to image Fermi surfaces, as well as related behaviour including
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Schubnikov-de Haas oscillations [84]. Further, Landau quantisation plays a key role

in the quantum Hall effects [85]. Landau levels are highly degenerate, and their effect

on condensed matter is associated with a large number of electrons occupying each

energy level. The Landau levels of a single electron, and transitions between these,

have however been detected using a Penning trap [90]. Very recently the probability

density and internal rotational dynamics of Landau states were imaged directly for the

first time using electron vortex beams [2].

The Landau wavefunctions are the solutions to the time-independent Schrödinger equa-

tion

H⊥ψ⊥(r⊥) = E⊥ψ⊥(r⊥), (2.9)

where r⊥ denotes the position within the plane perpendicular to the magnetic field.

In cylindrical coordinates, the transverse gradient operator, to which the canonical

momentum pcan
⊥ is proportional, is ∇⊥ = ∂/∂ρ ρ̂ + (1/ρ)∂/∂φ φ̂. The Hamiltonian

(2.7) can therefore be expressed as

H⊥ = − ~2

2m

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
− ~2

2m

1

ρ2

∂2

∂φ2
+

1

2
mω2

Lρ
2 − i~ωL

∂

∂φ
. (2.10)

The wavefunctions that satisfy the equation (2.9) are found to be the following products

of ρ and φ dependent contributions:

ψLan
⊥n,` = Nn,|`|

(
ρ
√

2

ρB

)|`|
exp

(
− ρ

2

ρ2
B

)
L|`|n

(
2ρ2

ρ2
B

)
exp (i`φ) (2.11)

[70]. Here n = 0, 1, 2, ... is the radial quantum number, ` ∈ Z is the quantum num-

ber for the z component of orbital angular momentum, L
|`|
n is an associated Laguerre

polynomial,

ρB = 2

√
~
|eB|

(2.12)

is a characteristic radius and Nn,|`| =
√

2n!/[π(n+ |`|)!]/ρB is a normalisation constant.

The wavefunction is normalised such that
∫

d2r⊥ |ψLan
⊥n,`|2 = 1. As will be discussed in

subsequent chapters, the Landau wavefunctions (2.11) closely resemble the Laguerre-

Gaussian functions used to describe optical and electron vortices.
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The probability density, |ψLan
⊥n,`|2, and probability current density,

jLan
⊥n,` =

1

m
Re(ψLan

⊥n,`
∗
pkin
⊥ ψLan

⊥n,`) = |ψLan
⊥n,`|2

(
`~
mρ

+ ωLρ

)
φ̂ (2.13)

[98], of Landau states with n = 0 and n = 1 are shown in Figs. 2.1 and 2.2. The

corresponding energy eigenvalues are

ELan
⊥N = (2n+ |`|+ 1)~|ωL|+ `~ωL

= (N +
1

2
)~|ωc| (2.14)

where N = n + [1 + sign(`B)] |`|/2 = 0, 1, 2, . . . and ωc = 2ωL = −eB/m is the

cyclotron angular velocity. These energy levels are equally spaced with an interval

~|ωc|, with a minimum value of ELan
⊥ 0 = ~|ωc|/2, as illustrated in Fig. 2.3. There is also

a degeneracy of the energy of the eigenfunctions ψLan
⊥n,`, with different combinations

of n and ` corresponding to the same value of N . Of particular note, all states for

which ` has the opposite sign to B have the energy quantum number N = n, which is

independent of the magnitude of `. It will be seen later that this is a consequence of

a partial cancellation of the canonical and diamagnetic components of the electron’s

orbital angular momentum. Reversing the direction of the magnetic field raises or

lowers the energy quantum number N by an amount equal to |`|.

In general, an electron in a magnetic field will not be in a stationary pure Landau state,

but rather in a superposition of a large number of these. This is certainly the case in

electron optics, where the probability density of the electron varies upon propagation,

and where an arbitrary initial state can be defined using components such as holograms

[99]. Even if the electron’s probability density is rotationally symmetric, and has a

radial distribution resembling a Laguerre-Gaussian function, it may be that there is a

net transverse momentum, resulting in motion of the centre of mass of the distribution.

I consider the consequences of such a transverse momentum in Chapter 3. Another

possibility is that the radial distribution is either more spread out or more tightly

focused than that of the corresponding Landau state, which has a mean-square radius

determined by the magnetic field. This is the situation I consider in Chapter 4. Also,

Landau states with different values of ` can be superposed, breaking the rotational

symmetry of the probability density. Such superpositions will be considered in both
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Figure 2.1: Probability density and current density for Landau states with

n = 0. These are shown for B > 0, meaning that the magnetic field is in the positive

z direction. Each tile is a square in the x-y plane of side length 5ρB. In this and

subsequent images the current density is scaled with respect to the maximum value

for the Landau state ψLan
⊥ 0,0, j⊥ 0 = Max

[
|jLan
⊥ 0,0|(r⊥)

]
. In the areas where the current

density is strongest, the colour scale representing it is saturated. The states are labelled

by both ` and the energy quantum number N that appears in (2.14).
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Figure 2.2: Probability density and current density for Landau states with

n = 1. As in Fig. 2.1, the magnetic field is in the positive z direction and the tiles have
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Figure 2.3: The Landau energy levels of an electron in a uniform magnetic

field. These are equally spaced by an energy difference of ~|ωc|. The ground state has

the zero-point energy ~|ωc|/2.
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Chapter 3 and Chapter 5.

2.1.3 Canonical and kinetic angular momenta

The mass of a particle multiplied by its velocity, mv, is the kinetic momentum of the

particle [93]. This is a physical observable, and describes the mechanical motion of the

particle.

In Hamiltonian mechanics, on which Schrödinger’s quantum theory is based, the term

“momentum” is additionally used in a more general sense. Hamilton’s theory is formu-

lated in terms of “canonical coordinates” and “canonical momenta”, which may or may

not correspond to physical positions and momenta [93]. These quantities can be cho-

sen in a way that simplifies calculations and are related, via Noether’s theorem [5, 6],

to symmetries of the system. The quantum mechanical operator −i~∇ represents a

canonical momentum [10].

For an electron moving in an the absence of a magnetic field, the kinetic and canonical

momenta are equivalent. However, as seen in (2.2), when there is an interaction with

a magnetic field these quantities differ by the amount eA. The canonical momentum

in this case depends on the gauge chosen. This is demonstrated explicitly in the

next section. I note that regardless of which definition of momentum is used, the

commutation relations between the coordinates of position and momentum are the

same. This is because the vector potential commutes with the position. For example:

[x, pkin
x ] = [x, pcan

x ]− e[x,Ax] = i~, (2.15)

since [x,Ax] = −B[x, y]/2 = 0.

Orbital angular momentum is defined as a cross product of position and momentum
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vectors. If the canonical momentum is chosen, the result is a canonical angular mo-

mentum, as in (2.8). Here it is the z component of the angular momentum that is of

interest as this describes the rotational motion of the electron in a plane perpendicular

to the magnetic field. The canonical angular momentum Lcan
z is related to symme-

try under azimuthal rotation [4]. The Landau wavefunctions (2.11) are eigenstates of

this angular momentum, with eigenvalues `~. However, like the canonical momentum

pcan, Lcan
z depends on the choice of gauge. The mechanical motion of the electron is

described by the kinetic angular momentum [87, 10]

Lkin
z = (r× pkin)z

= (r× pcan)z − e(r×A)z

= Lcan
z +mωLρ

2. (2.16)

For a Landau state, the kinetic angular momentum has the expectation value

〈Lkin
z 〉Lan

n,` =

∫
d2r⊥ ψ

Lan
⊥n,`

∗
Lkin
z ψLan

⊥n,`

= `~ +mωL〈ρ2〉Lan
n,`

= `~ + sign(B)(2n+ |`|+ 1)~

= sign(B)(2N + 1)~, (2.17)

since the mean-square radius of the probability distribution for this state is

〈ρ2〉Lan
n,` =

∫
d2r⊥ ρ

2|ψLan
⊥n,`|2 =

1

2
(2n+ |`|+ 1)ρ2

B (2.18)

[87, 98]. These allowed values of the kinetic angular momentum are illustrated in

Fig. 2.4. They are closely related to the Landau energy levels, with the energy and

kinetic angular momentum satisfying the classical relation for a particle in a circular

orbit with an angular velocity ωc:

ELan
⊥N =

1

2
ωc〈Lkin

z 〉Lan
n,` . (2.19)

The canonical and kinetic angular momenta, as well as the probability density and

current density, for a Landau state with n = 0 and ` = 1 are illustrated in Fig. 2.5. It

is the kinetic angular momentum that is associated with the circulation of the electron’s
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Figure 2.4: Kinetic orbital angular momentum of the Landau states. The

expectation value of this angular momentum always has the same sign as the magnetic

field, and assumes only odd multiples of ~.

probability current density:

〈Lkin
z 〉n,` ≡ m

∫
d2r⊥ ρjφ (2.20)

[87].

The angular momentum of a charged particle is associated with a magnetic moment.

The magnetic moment corresponding to the electron’s kinetic orbital angular momen-

tum is

Mz =
e

2m
Lkin
z (2.21)

[10]. Using (2.20) and (2.21), the expectation value of this magnetic moment can be

expressed as an integral over the electrical current density, jelec
⊥ = ej⊥:

〈Mz〉 =
e

2m
〈Lkin

z 〉

≡ e

2

∫
d2r⊥ ρjφ

=
1

2

∫
d2r⊥ ρj

elec
φ . (2.22)



CHAPTER 2. ELECTRON WAVEFUNCTIONS IN A UNIFORM MAGNETIC FIELD 41

can ˆzL z

B

z

x

y

kin ˆzL z

Figure 2.5: Geometry of the canonical and kinetic angular momenta, and

probability and current densities, for a Landau state with n = 0 and ` = 1.

Here the canonical angular momentum has the expectation value 〈Lcan
z 〉Lan

0,1 = ~ and,

as B > 0, the kinetic value obtained from (2.17) is 〈Lkin
z 〉Lan

0,1 = 3~.

Since the electron has negative charge, the magnetic moment is in the opposite direction

to the angular momentum. For a Landau state the expectation value of the kinetic

angular momentum is given by (2.17), and therefore the first line of (2.22) evaluates

to

〈Mz〉Lan
n,` =

e

2m
〈Lkin

z 〉Lan
n,` = −`µB − sign(B)(2n+ |`|+ 1)µB. (2.23)

The first term here is the magnetic moment corresponding to the canonical angular

momentum. The second term, which has the opposite direction to the magnetic field,

is the diamagnetic contribution to the electron’s magnetic moment [10]. Summing over

a large number of such magnetic moments yields the diamagnetic response of a free

electron gas that is described in Chapter 1.

In this thesis I characterise the diamagnetic response of an electron wavefunction in

terms of its angular momentum. It should be remembered, however, that the diamag-

netic angular momentum is always related, through (2.21), to a magnetic moment.

The specific form of the diamagnetic moment in (2.23), and the corresponding angular

momentum in (2.17), are particular to Landau states. In subsequent chapters, I shall

consider the diamagnetic angular momentum of other wavefunctions.
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2.1.4 Gauge transformations

Care must be taken, when describing interactions between matter and fields, to identify

which quantities depend on the choice of gauge. All physically meaningful variables

are of course gauge-invariant. Here, the gauge has been fixed through the choice of the

vector potential in (2.5). However, this vector potential could be transformed according

to

A→ A +
~
e
∇χ, (2.24)

for any smoothly varying function χ(r), without affecting the magnetic field B = ∇×A.

The Schrödinger equation is invariant under such a transformation if the local phase

of the wavefunction is changed as follows:

ψ → ψ′ = exp [iχ(r)]ψ (2.25)

[100, 101]. This means that under a gauge transformation the gradient of the phase –

and therefore the canonical momentum, pcan – changes. The action of the canonical

momentum operator on the wavefunction becomes:

pcanψ → −i~∇ exp(iχ)ψ = exp(iχ)(−i~∇ + ~∇χ)ψ. (2.26)

This change in the canonical momentum is counterbalanced by the transformation of

the vector potential such that the kinetic momentum pkin is unaffected by the gauge

transformation. The current density, which is defined in terms of the kinetic momen-

tum, is similarly unaffected. The change in the phase of the wavefunction under a

transformation of the vector potential is illustrated in Fig. 2.6. The canonical angular

momentum transforms in a similar manner to the canonical momentum, with its action

on the wavefunction becoming:

Lcan
z → −i~ ∂

∂φ
+ ~

∂χ

∂φ
. (2.27)

I note that for a state with a rotationally symmetric probability density, the expectation

value of the canonical angular momentum is gauge-invariant. If the probability density
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senting the phase of the wavefunction is modulated by the wavefunction amplitude. It

is the vector potential on the left, introduced in (2.5), which is used in the rest of this
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|ψ|2 = |ψ′|2 is independent of φ then the expectation value of the second term in (2.27)

is 〈
~
∂χ

∂φ

〉
= ~

∫ ∞
0

ρdρ |ψ|2
∫ 2π

0

dφ
∂χ

∂φ
= 0, (2.28)

since χ is smoothly varying and therefore the integral of ∂χ/ ∂φ is zero. Whatever

the gauge, therefore, a rotationally symmetric state has 〈Lcan
z 〉 = `~. I will provide a

physical interpretation for this quantity in Chapter 4. The variables that depend on

the gauge chosen, and those that do not, are summarised in Table 2.1.

Table 2.1: Variables that depend on the gauge chosen, and the corresponding physical

observables that are gauge-invariant. For a rotationally symmetric state, the expecta-

tion value 〈Lcan
z 〉 = `~ is gauge-invariant.

Depends on gauge Independent of gauge

A B

pcan pkin

Lcan
z Lkin

z

argψ |ψ|2, j

2.2 Experimental realisation in a transmission elec-

tron microscope

The influence of a magnetic field on the motion of electrons can be studied using a

transmission electron microscope. In fact, the interaction of electrons with a magnetic

field is key to the function of most electron microscopes, as it underlies the operation

of magnetic electron lenses [102, 103]. Transmission electron microscopes are also used

to image the magnetic field distributions within magnetic materials, using Lorentz

microscopy [104] or electron holography [105]. It is interesting to note as well that

conclusive experimental proof of the existence of the Aharonov-Bohm effect [101, 106],

which is a non-local interaction between electrons and a magnetic field, was obtained

using a transmission electron microscope [107, 108].
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Recently, the interaction of electron vortices with magnetic fields has been investigated

using transmission electron microscopes. It has been demonstrated that particular

configurations of spatially varying magnetic fields can be used to convert the spin an-

gular momentum of electrons into orbital angular momentum, and vice versa [61, 62].

Similarly, astigmatic magnetic lenses have been shown to produce transformations be-

tween states with different orbital angular momenta [109, 110, 111]. Meanwhile, the

interaction of an electron beam with a nanofabricated magnetic needle, which produces

a field resembling that of a monopole, has been shown to impart orbital angular mo-

mentum to the electrons [112, 113]. The potential to use vortex beams for imaging

magnetic materials using magnetic dichroism measurements has also been considered

[38, 56, 68, 114]. Of particular interest in the context of this thesis, vortex beams

in electron microscopes have been used to image the rotation of electron wavefunc-

tions, including those of Landau states, in uniform, or quasi-uniform, magnetic fields

[2, 99, 115].

In this section, I shall describe some important characteristics of experiments involving

vortex beams in transmission electron microscopes, and in particular their interaction

with the magnetic field provided by the objective lens of the microscope.

2.2.1 Wavepackets

Many aspects of the operation of an electron microscope can be understood in terms

of classical mechanics. In geometrical electron optics, classical electron trajectories are

identified with rays [93, 116]. As with the description of light, however, some aspects

of image formation require a wave description. In electron optics this is normally

based on the time-independent Schrödinger equation [93, 117]. In order to make a

connection with the behaviour I will describe in subsequent chapters, much of which

involves time-dependent effects, here I explain how an electron microscope beam can

instead be understood in terms of propagating wavepackets.
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The electron beam in a transmission electron microscope is formed by accelerating

electrons through a large potential difference Φ, which is typically of the order of

100 kV [49]. This results in each electron leaving the electron gun with a kinetic (and

total) energy of E = eΦ ∼ 100 keV. For a classical particle following a straight-line

trajectory in the z direction (and ignoring relativistic effects), this corresponds to a

velocity of vz =
√

2E/m. At an energy of 100 keV, this velocity has the magnitude

vz = 1.88 × 108 m s−1. Unlike a classical particle, however, an electron emitted by

the electron source in an electron microscope has a degree of uncertainty in its energy;

typically this energy spread, ∆E, is of the order of 1 eV [49]. This means that there is an

uncertainty in the electron’s longitudinal position that is described by the Heisenberg

relation ∆z∆pz ≥ ~/2, where ∆pz = (∂pz/∂E)∆E = ∆E/vz is the uncertainty of the

momentum pz = mvz [103]. For the state with minimum uncertainty, the uncertainty

in the electron’s z coordinate is therefore equal to ∆z = vz~/(2∆E). With the values

of vz and ∆E given above, this spread in position would be ∆z = 61 nm.

The average distance between successive electrons can be determined from the beam

current. This current, I, may be of the order of 1µA [49], which corresponds to an

average time interval between electrons of τ = e/I = 16 ps. For electrons with an

energy of 100 keV, this corresponds to a spatial separation of d = vzτ = 20µm. This

is 2–3 orders of magnitude larger than the spread in position for a single electron,

∆z, which is derived above. Therefore, the overlap between successive wavepackets is

negligible, as illustrated in Fig. 2.7. This means that the interaction between electrons

is negligible, justifying the use of the single particle Schrödinger equation.

In an electron microscope, it is the transverse probability density of the electron, |ψ⊥|2,

that is measured. This is imaged by recording on a CCD camera the signals associated

with a large number of electrons being detected at different transverse positions [52,

103]. The probability distribution of a single electron, the position of which has not

yet been measured, evolves with time, and, since the electron is propagating along the

z axis, also with the z position. For an electron travelling with a constant longitudinal

velocity, vz, the z position of the centre of mass of the wavepacket, 〈z〉(t), is simply
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Figure 2.7: Schematic illustration of electron wavepackets in a transmission

electron microscope. The longitudinal probability density, that is, the probability

density as a function of the z coordinate, is shown for two different electrons. Each

electron has the same average velocity, vz, and uncertainty in position, ∆z. The average

spatial separation between electrons is d� ∆z.
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proportional to the time of flight: 〈z〉 = vzt. Therefore, the evolution of the electron’s

wavefunction can be described more easily by eliminating one of these variables, either

the propagation distance or the time.

As has already been mentioned, in electron optics it is conventional to eliminate the

time coordinate, and use the time-independent Schrödinger equation. Effectively, this

means considering a time-average over a very large number of propagating wavepackets,

each of which has a different arrival time. Such a time-average is what is normally

detected on the microscope’s CCD camera. In Chapter 5 I follow the conventional

electron optical approach of using the time-independent Schrödinger equation.

In Chapters 3 and 4, on the other hand, I am concerned less with the specific ap-

plication to electron optics, and I have found it preferable to use a time-dependent

description. This means that my results are equally applicable whether the electrons

are propagating along the z axis or not. The time-dependent description is particularly

appropriate when discussing the fundamental concept of angular momentum conserva-

tion, in Chapter 4. This means that I simply solve the two dimensional time-dependent

Schrödinger equation for the wavefunction in the r⊥ plane. For a wavepacket propa-

gating along the z axis, this can be understood as describing the wavefunction at the

z position of the centre of mass of the wavepacket, that is, in the plane z = 〈z〉 = vzt

[36].

2.2.2 Manipulating the electron’s wavefunction

Recent advances in nanofabricated diffractive optics for electrons have greatly increased

the control that can be exercised over an electron’s wavefunction, and particularly

its orbital angular momentum. The first demonstration of electron beams carrying

orbital angular momentum, five years ago, used stacks of thin graphite films, carefully
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arranged to form a spiral phase plate [37]. This was quickly followed by the introduction

of specially designed holographic diffraction gratings, a technique that is far more

accurate, reproducible and versatile [1, 38].

A particular strength of the holographic method is that it is not restricted to the

generation of eigenstates of canonical angular momentum, which have a rotationally

symmetric probability density; in principle, the wavefunction of the electron can be

sculpted into any state that is desired [66, 115, 118]. Early efforts were limited in

practice as they utilised only binary gratings, such as that shown in Fig. 1.1, which

either transmit or block electrons depending on their position. The most advanced

gratings, however, now allow the phase of the electron to be manipulated directly,

through a spatial variation of the thickness of the grating material [50, 51]. This

means that a net transverse momentum can be imparted to the electron, with a greater

proportion of the beam intensity being directed into the first diffraction order. Phase

gratings of this type can also be machined with smaller feature sizes, which allows

beams with larger values of orbital angular momentum to be generated; at the time of

writing, the record appears to be ` = 200 [51].

While hologram patterns that are calculated by superposing the desired wavefunction

with that of a plane wave result in diffraction orders that are separated transversely, a

longitudinal separation can be obtained by replacing the plane wave with one that is

spherical [119, 120]; this may be advantageous for applications in scanning transmission

electron microscopy. An alternative approach to holography is instead to manipulate

the electron’s wavefunction by utilising the interaction with a spatially varying mag-

netic field [109, 110, 111, 112, 113].
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2.2.3 Propagation through a magnetic lens

Electron microscope beams are normally focused using magnetic lenses [102, 103], which

consist of a current-carrying coil producing a magnetic field that is directed along the

optical axis. That such a magnetic field will focus an electron beam can be understood

qualitatively by considering the classical cyclotron trajectories in geometrical electron

optics: electrons are confined to circular orbits, the radii of which depend on the

strength of the magnetic field. Unlike a glass lens focusing light, magnetic lenses also

result in a rotation of the image; normally this is considered a background effect,

however, and may be partially compensated by combining lenses that have opposite

current directions [103]. In the Schrödinger formalism, the focusing of the electron

beam can be associated with a change in the phase of the wavefunction, due to the

magnetic field, which depends quadratically on the radial position [121].

The field of a magnetic lens is not uniform, but rather varies in strength along the

optical axis, and, consequently, also has a radial component. An arbitrary rotationally

symmetric magnetic field may be expressed as a series expansion in the axial component

Bax(z) as follows:

B(ρ, z) =

[
Bax(z)− 1

4

d2Bax(z)

dz2
ρ2 +

1

64

d4Bax(z)

dz4
ρ4 +O(ρ6)

]
ẑ

+

[
−1

2

dBax(z)

dz
ρ+

1

16

d3Bax(z)

dz3
ρ3 +O(ρ5)

]
ρ̂ (2.29)

[93]. Close to the z axis, the approximation

B(ρ, z) ≈ Bax(z)ẑ− 1

2

dBax(z)

dz
ρρ̂ (2.30)

can be used. The axial magnetic field in an electron lens is commonly approximated by

the bell-shaped function Bax(z) = B0/ [1 + (z/a)2] where B0 is the field at the centre

of the lens and 2a is the full-width at half-maximum [122]. This field is illustrated

schematically in Fig. 2.8. While a transmission electron microscope has a number of

lenses, it is the objective lens that can produce by far the strongest magnetic field. For

an objective lens, B0 can have values up to ≈ 2 T [49].
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Figure 2.8: Schematic illustration of an electron beam propagating through

the objective lens of a transmission electron microscope. In this case, prior

to it entering the lens, the wavefunction of the electron is shaped by a hologram. The

probability density of the electron is subsequently imaged on a CCD camera. A real

microscope contains many components that are not shown here, including additional

lenses for which the maximum magnetic field is much weaker.

Close to the centre of the lens, the field is approximately uniform, and in this region free

electron Landau states have recently been observed [2, 99]. This is shown in Fig. 2.9,

taken from [2]. The evolution of the electron’s wavefunction upon propagation through

the entire lens field, meanwhile, can be obtained by integrating over the function Bax(z)

[115, 121, 123]. Although in principle a spatially varying magnetic field produces a

spin-dependent force on electrons, in an electron microscope lens the effect of this is

negligible [93, 124]. More significant, but beyond the scope of this thesis, are the

spherical, chromatic and other aberrations of the lens [103, 125].
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Figure 2.9: Imaging free electron Landau states in an electron microscope.

From [2], available at http://www.nature.com/ncomms/2014/140808/ncomms5586/

full/ncomms5586.html and licensed under Creative Commons Attribution 4.0 Inter-

national. In this experiment a forked diffraction grating was used to create a series of

vortex states in the same way as shown in Fig. 1.1; here m denotes the angular mo-

mentum quantum number for these states. Then, each diffraction order was truncated

using a knife-edge, breaking the symmetry of the probability density, and therefore

allowing the rotation of the electron to be imaged. In agreement with theoretical pre-

dictions for the Landau states, rotations at either the classical angular velocity, ωc, the

Larmor angular velocity, ωL = ωc/2, or an angular velocity of zero, were measured,

in the cases where m > 0, m = 0 and m < 0 respectively. Note that part (a) also

shows an additional rotation due to the Gouy phase, associated with the focusing of

the electron beam; this Gouy rotation has been subtracted in (b). The variable zk is

the propagation distance from the knife-edge, and tk is the corresponding time. The

scale bar is 50 nm.

http://www.nature.com/ncomms/2014/140808/ncomms5586/full/ncomms5586.html
http://www.nature.com/ncomms/2014/140808/ncomms5586/full/ncomms5586.html
http://creativecommons.org/licenses/by/4.0/legalcode
http://creativecommons.org/licenses/by/4.0/legalcode


CHAPTER 2. ELECTRON WAVEFUNCTIONS IN A UNIFORM MAGNETIC FIELD 53

2.2.4 Measuring the orbital angular momentum and current

density

The simplest property of the electron to measure in an electron microscope is its prob-

ability distribution in the plane perpendicular to the optical axis. As has already been

mentioned, this is given by the intensity pattern captured on the CCD camera. The

orbital angular momentum of electron vortex beams, however, is associated with the

transverse current density and the transverse phase gradient, which are more difficult

to measure.

One way to reveal the phase distribution of an electron beam is to interfere it with

a known reference wave – this is electron holography [53, 105]. Using the measured

probability density of the interference pattern, it is possible to reconstruct the un-

known phase distribution. This technique has been used to experimentally map the

spiral phase of an electron vortex beam propagating in field-free space [112]. However,

holographic imaging is time-consuming and requires specialist equipment.

Recently a number of techniques for more easily characterising the orbital angular

momentum of electron beams have been under investigation. Each of these is an

adaptation of a method used to measure optical angular momentum. Perhaps the

simplest is the obstruction of part of the beam by an opaque knife-edge [115, 126,

127]. This breaks the rotational symmetry of the probability density of a canonical

angular momentum eigenstate, and the subsequent propagation of the truncated beam

visualises the circulation of the current density. For electrons in a magnetic field,

this provides information about the kinetic angular momentum of the electron [2].

The canonical angular momentum, meanwhile, can be determined from the intensity

pattern recorded after transmission through a second hologram [128] or different forms

of geometrical aperture [129, 130], as well as by using an astigmatic lens [129, 131].
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Another technique, besides holography, that is widely used to image the spatial vari-

ation of the current density of an electron beam is differential phase contrast [132,

133, 134, 135, 136]. This involves scanning a tightly focused electron probe across

the area of interest, and measuring the deflection of this probe. A related technique,

that, instead of scanning, involves recording two slightly defocused images, allows the

current density to be determined from the so-called transport of intensity equation

[137, 138, 139].

In this chapter, I have presented background material that sets the context for my own

research. Now, I shall begin to describe my results.



Chapter 3

Parallel axis theorem for free-space

electron wavefunctions

I consider the orbital angular momentum of a free electron vortex moving in a uniform

magnetic field. I identify three contributions to this angular momentum: the canoni-

cal orbital angular momentum associated with the vortex, the angular momentum of

the cyclotron orbit of the wavefunction, and a diamagnetic angular momentum. The

cyclotron and diamagnetic angular momenta are found to be separable according to

the parallel axis theorem. This means that rotations can occur with respect to two or

more axes simultaneously, which can be observed with superpositions of vortex states.

The chapter is structured with the main results presented first, followed by additional

material that complements these. This allows the key ideas to be highlighted, while

greater depth and detail is available for those who want it.
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3.1 Main results

3.1.1 Introduction

In this chapter I consider an electron wavefunction that exhibits centre of mass mo-

tion, in addition to possessing canonical orbital angular momentum. I demonstrate

that the total kinetic angular momentum of the wavefunction is described by the par-

allel axis theorem. This angular momentum comprises the canonical and diamagnetic

components, which are associated with rotation relative to the centre of mass of the

wavefunction, and a cyclotron component that has expectation value equal to that for

the classical orbit. Interestingly, for free electrons all three of these components can

have similar magnitude. This means that the trajectory of the electron is strongly

dependent on how these angular momenta add and subtract. Further, I show that dif-

ferent cyclotron orbits can be superposed, leading to rotations with respect to multiple

parallel axes, and periodic interference. These results suggest novel means of structur-

ing electron beams for use in specific applications, such as probing magnetic and chiral

materials.

3.1.2 Model

I consider an otherwise free electron moving under the influence of a uniform magnetic

field. I take the direction of this magnetic field to define the z axis, and consider the

motion of the electron within the x-y plane. The electron may also be moving in the z

direction; however, as already noted in section 2.1.1, the component of its momentum

in this direction is a constant of motion, and will not affect my results. I consider

non-relativistic energies, meaning that the spin angular momentum is also constant,

and can be separated from the orbital motion of the electron. In what follows, I shall
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consider only the electron’s orbital angular momentum. The magnetic field and vector

potential are described by (2.4) and (2.5) respectively. The Hamiltonian of the system

is therefore (2.7).

I am interested in the evolution of non-stationary states of the system, described by

the time-dependent Schrödinger equation

i~
∂Ψ⊥(r⊥, t)

∂t
= H⊥Ψ⊥(r⊥, t). (3.1)

Throughout this thesis the capital letter Ψ is used to denote a time-dependent wave-

function, whereas the lower-case ψ denotes a wavefunction that is time-independent.

As discussed in section 2.2.1, if the electron is moving along the z axis with a velocity

vz, the Schrödinger equation (3.1) describes the state of the electron after a propagation

distance of z = vzt.

An electron with momentum transverse to the magnetic field will exhibit cyclotron

motion. This is conventionally described in a classical context. Here I will derive the

cyclotron motion by assuming an electron wavefunction

Ψ⊥(t = 0) = Ψ⊥,0 = u(ρ) exp
[
i
(
`φ+

pc

~
x
)]
, (3.2)

where ` ∈ Z. I have defined the x axis as the direction of the transverse kinetic

momentum at t = 0. This state has a rotationally symmetric probability density

|Ψ⊥,0|2 = |u(ρ)|2, and an expectation value of canonical angular momentum 〈Lcan
z 〉 =

`~. We shall see that the momentum 〈pkin
⊥ 〉0 = pcx̂ results in a cyclotron orbit of the

wavefunction.

Note that in my model the canonical orbital angular momentum is not collinear with

the instantaneous direction of propagation of the wavefunction. This is illustrated

in Fig. 3.1. The angular momentum is in the direction of the magnetic field, while

the kinetic momentum has a component perpendicular to the magnetic field. This

contrasts with vortex states, either in field-free space or in a magnetic field, which

are energy eigenfunctions, as these have momentum and angular momentum that are
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Figure 3.1: Cyclotron trajectory of the centre of mass of the wavefunction.

This orbit occurs with respect to the axis y = y0, the position of which depends on

the initial transverse momentum 〈pkin
⊥ 〉0 as well as the magnetic field. Also indicated

is the direction of the canonical orbital angular momentum 〈Lcan
z 〉ẑ.

collinear [60, 87]. Electrons in non-stationary states can have angular momentum at

an arbitrary angle to their direction of propagation, however [39, 76, 140]. Here, as a

result of the cyclotron orbit, the time-averaged expectation value of kinetic momentum

is collinear with the angular momentum 〈Lcan
z 〉.

3.1.3 Electron trajectories and angular momentum

In the following I will show that the different forms of angular momentum give rise

to rotations with respect to more than one axis. This can be seen by examining

the “trajectories” associated with the electron’s probability distribution and current

density.

First, I will consider the expectation value of the electron’s position, which is equivalent

to the centre of mass of its probability distribution. Differentiating twice with respect
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to time, I obtain the equation of motion

∂2〈r⊥〉(t)
∂t2

= − 1

~2
〈[[r⊥, H⊥], H⊥]〉 (t)

= −ω2
c

〈
r⊥ −

[
x+ pkin

y /(eB)
]
x̂−

[
y − pkin

x /(eB)
]
ŷ
〉

(t)

= −ω2
c (〈r⊥〉(t)− y0ŷ) , (3.3)

where y0 = pc/(|e|B). Here I have used the fact that the quantity
[
x+ pkin

y /(eB)
]
x̂ +[

y − pkin
x /(eB)

]
ŷ, which is the centre of the orbit of a classical particle that has posi-

tion r⊥ and momentum pkin
⊥ [98], has the constant expectation value y0ŷ. The initial

position and velocity of the centre of mass of the probability distribution are given by

〈r⊥〉(0) = 0 and
∂〈r⊥〉(0)

∂t
= − i

~
〈[r⊥, H⊥]〉 (0) =

pc

m
x̂ (3.4)

respectively, and substituting these into (3.3) yields the trajectory

〈r⊥〉(t) = y0[sinωctx̂ + (1− cosωct)ŷ]. (3.5)

This trajectory, illustrated in Fig. 3.1, is a circular orbit with radius

σ = |y0| =
∣∣∣ pc

eB

∣∣∣ (3.6)

and angular velocity ωc – the cyclotron orbit of a classical particle with the momentum

pc. The trajectory of the centre of mass of the probability distribution is therefore

independent of the canonical angular momentum of the electron.

The canonical angular momentum is instead associated with a circulation of current

within the electron’s probability distribution. This can be seen by examining the

probability current density

j⊥(r⊥, t) =
1

m
Re(Ψ∗⊥pkin

⊥ Ψ⊥). (3.7)

To do so I have solved the time-dependent Schrödinger equation (3.1) numerically using

the Chebyshev method [141, 142, 143], as described in section 3.2.1. I must first specify

the radial distribution, u(ρ), of the initial wavefunction (3.2). Here I will set this to be

the same as that of a Landau state:

u(ρ) = uLan
n,|`|(ρ) = ψLan

⊥n,`(ρ, φ = 0), (3.8)
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with ψLan
⊥n,` defined by (2.11). This means that if pc = 0, the electron would be in a

Landau state. An arbitrary radial distribution could be decomposed in terms of the

eigenfunctions uLan
n,|`|.

The time-evolution of the probability density |Ψ⊥|2 and the current density j⊥ are

shown in Fig. 3.2. Here the transverse momentum pc has been chosen such that the

radius of the cyclotron orbit is approximately equal to the width of the probability dis-

tribution. In (a) and (b) the electron has no net canonical orbital angular momentum,

while in (c) and (d) it has a canonical orbital angular momentum ` = 1. The evolution

of these states is shown for different directions of the magnetic field, which result in

different directions of the cyclotron orbit. Whereas the probability density follows a

straightforward classical orbit, the current density is seen to depend in a non-trivial

manner on both the wavefunction and the magnetic field. In particular, in contrast to

the classical cyclotron trajectory, and also to orbital angular momentum eigenstates in

the absence of a magnetic field, the current distribution here is not rotationally sym-

metric. The rotational symmetry of the probability distribution, with respect to its

centre of mass, is preserved, however. This reflects the fact that the magnetic field is

rotationally symmetric, and the canonical angular momentum Lcan
z is conserved. This

means that the canonical orbital angular momentum of the electron is associated with

a rotation axis at the centre of mass of the probability distribution, and is independent

of the cyclotron orbit.

More surprising, perhaps, is that rotations in fact occur with respect to the cyclotron

axis and the centre of mass axis even when the electron does not possess any net

canonical angular momentum. This is as a result of the diamagnetic angular momentum

of the wavefunction. In section 2.1.3 I described the diamagnetic angular momentum

of a Landau state, which has the value mωL〈ρ2〉Lan
n,` . For the more general wavefunction

I consider here, I define the diamagnetic angular momentum as Ldia
z = I ′ωL, where

I ′ = m〈ρ′2〉 (3.9)

is the moment of inertia of the electron’s probability distribution, in the reference
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Figure 3.2: Probability density |Ψ⊥|2 and current density j⊥ for wavefunctions

with canonical orbital angular momentum ` = 0 (a, b) and ` = 1 (c, d), for

opposite directions of the magnetic field. In each case the transverse momentum

is pc = 2~/ρB and the wavefunction has the radial distribution uLan
0,|`|. The red arcs

indicate the trajectory of the centre of mass of the probability distribution, which is

highlighted in green.
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B

Figure 3.3: Probability density and current density for an equally weighted

superposition of wavefunctions that both have transverse momentum pc =

2~/ρB, but have opposite values of canonical angular momentum ` = ±1. The

constituent states have the same radial distributions as in Fig. 3.2.

frame of its centre of mass. Here ρ′ = |r⊥ − 〈r⊥〉| is the radial coordinate in this

reference frame. This angular momentum arises as a result of the circulating current

the magnetic field induces within the wavefunction, and is associated with a rotation

of the probability density at the Larmor angular velocity ωL [2, 115]. In contrast to

cyclotron motion, the diamagnetic rotation depends on there being an extended prob-

ability distribution, and vanishes in the classical limit. The effect of the diamagnetic

angular momentum becomes clear when considering a superposition of opposite val-

ues of canonical orbital angular momentum, such as that shown in Fig. 3.3. As this

superposition has no net canonical angular momentum, the rotation of the electron’s

probability density with respect to its centre of mass is due entirely to the diamagnetic

angular momentum.

In general, the orbital angular momentum with respect to the centre of mass axis will

be given by a sum of canonical and diamagnetic contributions. The motion is thus

described by two independent rotations: the cyclotron orbit, and the rotation around

the instantaneous centre of mass axis due to the canonical and diamagnetic angular

momenta.
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3.1.4 Parallel axis theorem

The rotation of the electron’s wavefunction is reminiscent of a classical rigid body. I

will explore this analogy further by considering the total kinetic angular momentum of

the electron. Here this angular momentum has the z component given by (2.16), with

an expectation value of

〈Lkin
z 〉 = `~ + IωL (3.10)

for any state with a canonical orbital angular momentum `~. Here I = m〈ρ2〉 is the

moment of inertia of the electron’s probability distribution for rotation with respect to

the z axis. Just as with a rigid body, I can use the parallel axis theorem to express the

moment of inertia I as a sum of two components:

I = mρ2
0 + I ′, (3.11)

where ρ0 = |〈r⊥〉| =
√

2(1− cosωct)σ, with σ defined by (3.6), is the radial coordinate

of the centre of mass, and I ′ is the moment of inertia with respect to the centre of mass

axis, given by (3.9). These two components correspond to the cyclotron orbit of the

wavefunction and its diamagnetic angular momentum respectively. The total kinetic

angular momentum of the electron, which I obtain from (3.10) and (3.11), can therefore

be expressed as

〈Lkin
z 〉 = `~ + Lcyclo

z + Ldia
z , (3.12)

where Lcyclo
z = mωLρ

2
0 = (1− cosωct)mωcσ

2 is the angular momentum associated with

the cyclotron orbit. While the relation between the kinetic and canonical angular

momenta in (2.16) is true also for a classical point particle [103], the decomposition

into separate cyclotron and diamagnetic components that follows from (3.11) is only

meaningful for an extended probability distribution.

Unlike the canonical and diamagnetic components, the cyclotron angular momentum

depends on the choice of reference axis. A natural choice is to consider the angular

momentum with respect to the centre of the cyclotron motion. In this reference frame,

which we reach by making the transformation y → ỹ = y − y0, the cyclotron angular
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momentum has the constant value

L̃cyclo
z = mωcσ

2. (3.13)

Irrespective of the reference frame, of course, the total kinetic angular momentum will

be equal to the sum of the three components described.

One may expect that the cyclotron angular momentum, which exists classically, would

be the dominant contribution to the electron’s kinetic angular momentum. How-

ever, this need not be the case, as can be seen by considering typical parameters

for free electrons in electron microscopes. For example, if an electron beam that

is initially propagating parallel to a magnetic field is transmitted through a diffrac-

tion grating with a period d = 100 nm, the first diffraction order will have a net

transverse momentum of pc = ~(2π/d) = h/d, which corresponds to an energy of

p2
c/(2m) = h2/(2md2) = 0.15 meV. In a magnetic field of B = 1 T, the resulting cy-

clotron orbit, which has radius 41 nm, will have an angular momentum of 2.6~. This

is of the same order of magnitude as the canonical angular momentum of the low-

est order vortex states, and considerably smaller than that of vortex beams recently

generated with a winding number of ` = 200 [51]. Indeed, in a given magnetic field,

the cyclotron angular momentum can in principle have any size, ranging from zero to

macroscopic values, depending on the net transverse momentum pc. The diamagnetic

angular momentum can also take a wide range of values, as the mean square radius

of the probability distribution is varied [144], although this has a lower limit due to

the uncertainty principle and a maximum due to the requirement of spatial coherence.

This means that the different rotations I have described can indeed occur on the same

length scale, justifying the choices of parameters in the figures.

3.1.5 Superposition of cyclotron orbits

So far I have considered rotations with respect to two different axes – the cyclotron

axis, as well as the centre of mass axis. The position of the cyclotron axis was defined
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by the transverse momentum pc that appears in a plane wave factor in the wavefunction

(3.2). Suppose, however, that we have a superposition of different transverse momenta.

Arbitrary distributions of transverse momentum could be created using appropriately

designed holograms, as described in section 2.2.2. A simple example would be the

following superposition of two momenta, pc,1 and pc,2, which may also be associated

with different canonical orbital angular momenta, `1 and `2:

Ψ⊥,0 =
uLan
n,|`1|(ρ)
√

2
exp

[
i
(
`1φ+

pc,1

~
x
)]

+
uLan
n,|`2|(ρ)
√

2
exp

[
i
(
`2φ+

pc,2

~
x
)]
. (3.14)

This is similar to the wavefunction formed when a plane wave is transmitted through a

forked diffraction grating [1]. For the discussion here the particular form of the radial

distribution is not important, and the Landau function has been chosen with numerical

efficiency in mind. The evolution of such a state, here with equal and opposite values of

both the transverse momentum and canonical angular momentum, is shown in Fig. 3.4.

It can be seen that there are now two cyclotron orbits, which have different rotation

axes. These are associated with different directions of the initial momentum pc. As a

result, the two components of the superposition move apart, before recombining and

interfering.

Taken together, the cyclotron orbits in Fig. 3.4 describe a rotation, with respect to the

z axis, at the Larmor angular velocity ωL. This is consistent with the predictions of

classical electron optics regarding image formation in rotationally symmetric magnetic

lenses [93]. Interestingly, though, in the case here the axis of the Larmor rotation is not

defined by a symmetry of the magnetic field – a uniform magnetic field is rotationally

symmetric with respect to an infinite number of axes. Rather, here the Larmor rotation

occurs with respect to the centre of mass of the electron’s probability distribution. This

is the case both in Fig. 3.3, where the centre of mass follows a cyclotron orbit, and

in Fig. 3.4, where the centre of mass is stationary. Further, it must be remembered

that I am considering here a single electron that is in a state of superposition. This

means, for example, that if one of the two cyclotron components in Fig. 3.4 underwent

an interaction that modified its phase, this could be detected through its effect on the

subsequent interference pattern.
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B

Figure 3.4: Probability density and current density for an equally weighted

superposition of a wavefunction with pc = 3~/ρB and ` = −1 and a wave-

function with pc = −3~/ρB and ` = 1. The constituent states have the same radial

distributions as in Figs. 3.2 and 3.3. The centre of mass of the superposition remains

stationary in the x-y plane, while the individual components follow the cyclotron tra-

jectories indicated.

3.1.6 Summary and outlook

In summary, I have shown that in a magnetic field an electron can rotate around more

than one axis simultaneously. The wavefunction of the electron follows a cyclotron

orbit, and superposed onto this is a rotation around the instantaneous centre of mass.

The rotation with respect to the centre of mass axis arises as a result of the diamagnetic

angular momentum, as well as any canonical orbital angular momentum the electron

possesses. The kinetic angular momentum of the electron is therefore described by the

parallel axis theorem.

My results show that canonical orbital angular momentum and cyclotron motion pro-

vide separate degrees of freedom for shaping electron current distributions. This could

allow electron beams to be structured for use in specific applications. For example, the

symmetry of the current distribution could be optimised to probe specific transitions

in materials [68, 145]. It may also be possible to utilise cyclotron trajectories in novel
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forms of interferometry. Moreover, here I have only considered the case in which the

canonical angular momentum and magnetic field are parallel, so that the rotation is

confined to a plane. With canonical angular momentum and magnetic fields that are in

different directions to one another, the angular momentum and current density could

be shaped in three dimensions.

Further, if the angular momenta were in different directions, it appears that they would

become coupled. Canonical orbital angular momentum that is at an angle to a uniform

magnetic field would be expected to precess around the direction of the field [39, 76].

The canonical angular momentum is also not conserved when the rotational symmetry

of the magnetic field is broken, such as in astigmatic magnetic lenses [109, 110, 111].

Not only this, but in non-uniform magnetic fields the spin and orbital degrees of freedom

of an electron with non-relativistic velocity are no longer independent [61, 95]. The

nature of the coupling between all of these angular momenta is an interesting avenue

for future investigation.

3.2 Complements to section 3.1

The remainder of this chapter consists of additional details and considerations that

complement the material already presented. This begins with the use of the Chebyshev

method to solve the time-dependent Schrödinger equation.

Following that, I provide a detailed derivation of the equation of motion for the centre

of mass of the probability distribution. This is a rather lengthy calculation, which was

only briefly outlined in section 3.1.3. To begin with, I consider the equation of motion

for the expectation value of an arbitrary operator, in the presence of a uniform magnetic

field, and obtain a result that I will reuse in Chapter 4. This general expression is then

evaluated for the position operator; first for an arbitrary initial wavefunction and then
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for the particular form of wavefunction I consider in this chapter.

The results of further numerical calculations of the electron’s probability density and

current density are then presented. This allows me to illustrate more fully how the

orbital motion of the electron depends on the two degrees of freedom pc and `, including

how different superpositions of these variables evolve.

The chapter is concluded with some additional details of the Chebyshev polynomial

expansion on which the numerical calculations are based. Specifically, the expansion

coefficients given by (3.21) are derived, and the exponential decay of these coefficients

with increasing q is demonstrated. While these results can be found in some of the

publications cited, it will be helpful for anyone wishing to reproduce the work described

here to have a complete and self-contained description of exactly how my own calcu-

lations have been performed. This is especially true as many authors have used an

alternative, “complex”, form of Chebyshev polynomial, in which case the expansion

coefficients are different.

3.2.1 Numerical solution of the Schrödinger equation

The time-dependent Schrödinger equation can be solved numerically with high accu-

racy and efficiency by expanding the time-evolution operator in a series of Chebyshev

polynomials. In this section, I describe how this method can be applied to the two-

dimensional Schrödinger equation for an electron interacting with an external magnetic

field. For generality, I shall consider here a Hamiltonian of the form

H(x, y) = S2

(
∂2

∂x2
+

∂2

∂y2

)
+ iS1x(x, y)

∂

∂x
(3.15)

+iS1y(x, y)
∂

∂y
+ S0(x, y)
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[143]. In the case of the Hamiltonian used in the rest of this chapter, I would have

S2 = −~2/(2m), S1x = −~eBy/(2m), S1y = ~eBx/(2m) and S0 = e2B2(x2 +y2)/(8m).

The Mathematica code I have written to perform these calculations is described in

Appendix A, and is also available online at [146].

Since the Hamiltonian (3.15) is independent of time, I can write the solution of the

Schrödinger equation as

Ψ⊥(t+ ∆t) = exp

(
− i

~
H∆t

)
Ψ⊥(t). (3.16)

In order to evaluate this numerically, first I must represent the wavefunction, and the

coefficients S2 etc., on a two-dimensional grid. If this grid covers an area Lx × Ly,

and contains Nx × Ny points, then the maximum spatial frequencies represented are

kx,max = πNx/Lx and ky,max = πNy/Ly. The maximum and minimum values of energy

represented on the grid are then

Emax = −S2(k2
x,max + k2

y,max) + Max(S1x)kx,max (3.17)

+Max(S1y)ky,max + Max(S0)

and

Emin = − [Max(S1x)kx,max + Max(S1y)ky,max] + Min(S0). (3.18)

I shall now introduce a new operator

H̃ =
H− b
a

, (3.19)

where a = (Emax − Emin)/2 and b = (Emax + Emin)/2. This operator has eigenvalues

represented on the grid that lie in the range [−1, 1]. I can then expand the time-

evolution operator in a series of Chebyshev polynomials Tq(H̃):

Ψ⊥(t+ ∆t) = exp(− i

~
b∆t) exp(− i

~
aH̃∆t)Ψ⊥(t)

≈ exp(− i

~
b∆t)

M∑
q=0

αq(a∆t)Tq(H̃)Ψ⊥(t). (3.20)

Chebyshev polynomials are chosen as these minimise the error associated with trun-

cating the expansion at a finite order M [141]. The expansion coefficients are given
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by

αq(a∆t) =

 (−i)qJq(a∆t/~), q = 0

2(−i)qJq(a∆t/~), q 6= 0
(3.21)

where Jq is a Bessel function. For q > ea∆t/(2~), where e, in roman font, denotes the

mathematical constant, the magnitudes of these coefficients decay exponentially with

increasing q [147, 148]. This means that the error due to truncating the series at order

M , which can be estimated by |αM(a∆t)|, can be made arbitrarily small. If I set

M =
e

2~
a∆t+ δ, (3.22)

δ can be adjusted so that this error is less than machine precision. The numerical error

resulting from the Chebyshev expansion is then negligible.

In order to evaluate the individual terms in the expansion (3.20), the action of the

Chebyshev polynomial Tq(H̃) on the initial wavefunction Ψ⊥(t) must be calculated.

Using the recurrence relation for the Chebyshev polynomials, I obtain

Tq(H̃)Ψ⊥(t) = 2H̃Tq−1(H̃)Ψ⊥(t)− Tq−2(H̃)Ψ⊥(t), (3.23)

for q > 0, with the initial conditions T0(H̃)Ψ⊥(t) = Ψ⊥(t) and T1(H̃)Ψ⊥(t) = H̃Ψ⊥(t).

The action of the Hamiltonian on the wavefunction can be efficiently calculated by

evaluating the spatial derivatives in Fourier space [147, 149]. That is,

HΨ⊥(t) ≈ S2FT−1[(−k2
x − k2

y)FTΨ⊥] + iS1xFT−1(ikxFTΨ⊥)

+iS1yFT−1(ikyFTΨ⊥) + S0Ψ⊥, (3.24)

where kx, ky are the coordinates in Fourier space and FT denotes a discrete Fourier

transform and FT−1 the corresponding inverse transform.

3.2.2 Centre of mass trajectory

In this section I provide additional details of the derivation of the centre of mass of the

electron’s probability distribution; that is, the expectation value 〈r⊥〉.
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Equation of motion for the time-evolution of an arbitrary operator

The time-derivative of the expectation value of an operator can be related to its com-

mutation with the Hamiltonian of the system. For any operator O, which I will assume

does not depend explicitly on time, this derivative can be expressed as

∂〈O〉(t)
∂t

=

∫
d2r⊥

(
∂Ψ∗⊥
∂t
OΨ⊥ + Ψ∗⊥O

∂Ψ⊥
∂t

)
=

i

~

∫
d2r⊥ (H⊥Ψ∗⊥OΨ⊥ −Ψ∗⊥OH⊥Ψ⊥)

= − i
~
〈[O, H⊥]〉 (3.25)

[150]. In the second line I have substituted in the time-dependent Schrödinger equation

i~
∂Ψ⊥
∂t

= H⊥Ψ⊥ (3.26)

and also its complex conjugate i~ ∂Ψ∗⊥/∂t = −H⊥Ψ∗⊥.

Here I am interested in a quantity that evolves periodically with time, and as such

will be described by a differential equation that is second order in time. Therefore, I

require an expression for the second derivative of the operator with respect to time,

which I can obtain in a similar manner to above:

∂2〈O〉(t)
∂t2

= − 1

~2
〈[[O, H⊥], H⊥]〉 . (3.27)

Position operator

These expressions will now be used to evaluate the expectation value of r⊥ = (x, y).

I will work in Cartesian coordinates here as this is convenient for evaluating the com-

mutation relations. Using Cartesian coordinates, the Hamiltonian H⊥ is expressed

as

H⊥ =
1

2m

[
(pcan
x )2 +

(
pcan
y

)2
]

+
1

2
mω2

L(x2 + y2) + ωL(xpcan
y − ypcan

x ). (3.28)
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The commutator of x with this Hamiltonian is

[x,H⊥] =

[
x,

1

2m
(pcan
x )2 − ωLyp

can
x

]
=

1

2m

[
x, (pcan

x )2
]
− ωL [x, ypcan

x ]

= i~
(
pcan
x

m
− ωLy

)
, (3.29)

where I have used [
x, (pcan

x )2
]

= pcan
x [x, pcan

x ] + [x, pcan
x ]pcan

x = 2i~pcan
x (3.30)

and

[x, ypcan
x ] = y [x, pcan

x ] + [x, y]pcan
x = i~y. (3.31)

Here, and in subsequent calculations, the identities [AB,C] = A[B,C] + [A,C]B and

[A,BC] = B[A,C]+[A,B]C prove useful. The standard commutations relations for the

position and canonical momentum, [x, pcan
x ] = [y, pcan

y ] = i~ and [x, pcan
y ] = [y, pcan

x ] = 0,

are also used.

The double commutator, which will be used to evaluate the second time-derivative, is

[[x,H⊥], H⊥] = −2~2ωL

(
ωLx+

pcan
y

m

)
= −~2ω2

c (x− x̃). (3.32)

Here

x̃ = x+
pkin
y

eB
(3.33)

is the x coordinate of the centre of the orbit of a classical particle that, when located

at the position x, has a y component of kinetic momentum pkin
y [98]. The expectation

value of the x coordinate therefore obeys the equation of motion

∂2〈x〉(t)
∂t2

= −ω2
c (〈x〉(t)− 〈x̃〉) , (3.34)

which describes a harmonic oscillation with respect to the value 〈x̃〉.

The y coordinate can be obtained in a similar manner. The commutation relations are

[y,H⊥] =

[
y,

1

2m
(pcan
y )2 + ωLxp

can
y

]
=

1

2m

[
y, (pcan

y )2
]

+ ωL

[
y, xpcan

y

]
= i~

(
pcan
y

m
+ ωLx

)
(3.35)
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using [
y, (pcan

y )2
]

= pcan
y

[
y, pcan

y

]
+ [y, pcan

y ]pcan
y = 2i~pcan

y , (3.36)[
y, xpcan

y

]
= x

[
y, pcan

y

]
+ [y, x]pcan

y = i~x (3.37)

and

[[y,H⊥], H⊥] = 2~2ωL

(
ωLy −

pcan
x

m

)
= −~2ω2

c (y − ỹ). (3.38)

Here ỹ is the y coordinate of the classical orbit centre, defined similarly to (3.33):

ỹ = y − pkin
x

eB
. (3.39)

The equation of motion for the expectation value 〈y〉 therefore has the same form as

that for the x coordinate:

∂2〈y〉(t)
∂t2

= −ω2
c (〈y〉(t)− 〈ỹ〉) . (3.40)

Equations (3.34) and (3.40) can be expressed more compactly as

∂2〈r⊥〉(t)
∂t2

= −ω2
c (〈r⊥〉(t)− 〈r̃⊥〉) , (3.41)

where r̃⊥ = (x̃, ỹ). Note that [r̃⊥, H⊥] = 0, so that the expectation value 〈r̃⊥〉 is

independent of time [98].

The solution of this equation of motion, for any initial wavefunction Ψ⊥0, can be written

as

〈r⊥〉(t) = 〈r⊥0〉+ 〈r⊥〉(0) cosωct+
1

ωc

∂〈r⊥〉(0)

∂t
sinωct. (3.42)

Evaluation for the initial state considered in section 3.1

Now consider the wavefunction

Ψ⊥(t = 0) = Ψ⊥0 = u(ρ) exp
[
i
(
`φ+

pc

~
x
)]
. (3.43)
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Figure 3.5: Cyclotron orbit of the expectation value of position 〈r⊥〉(t).

With this initial state, the expectation value of the classical orbit centre r̃⊥ is 〈r̃⊥〉 =

〈r̃⊥〉(0) = 〈pkin
x 〉(0)/(mωc)ŷ = y0ŷ, where y0 = pc/(|e|B). The expectation value of

the position r⊥ is initially 〈r⊥〉(0) = 0, and the initial velocity in the x direction is

described by
∂〈r⊥〉(0)

∂t
= − i

~
〈[r⊥, H⊥]〉 (0) =

pc

m
x̂. (3.44)

Therefore, upon substitution into (3.42), the particular solution is found to be

〈r⊥〉(t) = y0[sinωctx̂ + (1− cosωct)ŷ]. (3.45)

This trajectory is plotted in 3.5.

3.2.3 Probability density and current density

In this section I present further numerical calculations of the evolution of the probability

density and current density. These complement the results of section 3.1 by providing

a more detailed picture of how the probability density and current density depend on

the initial state of the electron.

Figures 3.6–3.8 illustrate how these quantities depend on the radius of the cyclotron



CHAPTER 3. PARALLEL AXIS THEOREM FOR FREE-SPACE ELECTRON
WAVEFUNCTIONS 75

orbit, which is determined by the momentum pc. Each of these figures shows a state

with a different value of n and `. In each case, the three parts show the evolution

of this state for different values of pc. When pc = 0, there is no cyclotron orbit,

and the electron is in a Landau state. This means that the probability density and

current density are symmetric under rotation about the z axis. As the value of pc is

increased, the current is increasingly influenced by the cyclotron motion of the electron.

When ` = 0 or −1, that is, when there is no canonical angular momentum or else it

is in the direction opposite to the magnetic field, the current becomes increasingly

dominated by the cyclotron motion. However, when ` = 1, in which case the canonical

angular momentum is in the same direction as the magnetic field, this canonical angular

momentum has a clear effect on the current density even when pc/pc 0 = 3.

Figure 3.9 shows the evolution of a superposition of two states that have different

magnitudes of canonical angular momentum. Unlike the superposition in Fig. 3.3 of

section 3.1, which had no net canonical angular momentum, these superpositions have

a net canonical angular momentum of magnitude ~, which may be either parallel or

anti-parallel to the magnetic field. It is seen that the motion of the wavefunction is

very different in each of these two cases. In the upper panel, where the net canonical

angular momentum is anti-parallel to the magnetic field, there is no rotation of the

probability density with respect to its centre of mass, and the only rotation is that of

the cyclotron orbit. This contrasts to Fig. 3.3 of section 3.1, where there is an internal

rotation of the probability density at the Larmor angular velocity. In the lower panel,

meanwhile, where the net canonical angular momentum is parallel to the magnetic

field, there is an internal rotation at twice the Larmor angular velocity, that is, at the

cyclotron angular velocity. This means that here the rotation of the centre of mass,

and the rotation in the reference frame of the centre of mass, both have the same

angular velocity. The dependence of the angular velocity of the internal rotation of the

probability density on the canonical angular momentum that is seen here is the same

as predicted in [87] and is consistent with the experimental observations of [2].

The rotation in the centre of mass frame can also occur at different fractions of the
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Figure 3.6: Evolution of the probability density and current density for dif-

ferent values of the cyclotron radius, for a wavefunction with n = 0 and

` = 0. The radius of the cyclotron orbit is determined by the value of the transverse

momentum pc. In this and subsequent images, pc is quoted relative to the value for a

classical particle in a circular orbit with a radius ρB and an angular momentum of ~,

pc 0 = ~/ρB.
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Figure 3.7: Evolution of the probability density and current density for dif-

ferent values of the cyclotron radius, for a wavefunction with n = 0 and

` = −1.
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Figure 3.8: Evolution of the probability density and current density for dif-

ferent values of the cyclotron radius, for a wavefunction with n = 0 and

` = 1.
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Figure 3.9: Superpositions of states that have different magnitudes of canon-

ical angular momentum. In each part the wavefunction is an equally weighted

superposition of the labelled values of `, while n = 0 and pc/pc 0 = 2. In this and

subsequent images the wavefunction of the superposition is normalised to satisfy the

condition
∫

d2r⊥ |Ψ⊥|2 = 1.
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cyclotron frequency. This is illustrated by Fig. 3.10. Here, for clarity, pc has been

set to zero, so that there is no cyclotron orbit. As in Fig. 3.9, the two superpositions

shown here have a net canonical angular momentum of magnitude ~, which in one case

is parallel to the magnetic field and in the other case is anti-parallel to the field. The

difference here though is that the components of the superposition have magnitudes

of canonical angular momentum equal to ~ and 2~, rather than 0 and ~. This results

in a probability density that is a triangular arrangement of three spots. In the upper

panel, where the net canonical angular momentum is anti-parallel to the magnetic field,

this pattern rotates at an angular velocity equal to one third of the cyclotron angular

velocity. In the lower panel, where this angular momentum is in the same direction

as the magnetic field, the rotation is at twice this rate: 2ωc/3. This contrasts with

the superpositions considered in [2, 87], which rotate at an angular velocity equal to

0, ωL = ωc/2 or ωc. Note that the expression for the expectation value of the angular

velocity that is derived in [2], and describes rotations at one of these three rates, applies

specifically to Landau states, or superpositions of Landau states with different n but

the same `.

In general, the probability density does not simply rotate, but also deforms as the

wavefunction evolves. This is seen in Fig. 3.4 of section 3.1, where the two components

of the superposition have different values of pc, and so follow different cyclotron orbits.

Such a deformation can also occur in the absence of any cyclotron orbit however, when

there is a superposition of a larger number of canonical angular momentum components.

This is shown in Fig. 3.11. Here the probability density at t = 0 again has a triangular

pattern, but this time one of the spots is darker than the other two. As time passes,

not only does this pattern rotate, but also the spot that is initially darker diminishes

in intensity, and at the same time another spot appears on the opposite side of the

pattern.

Finally, I will present further examples of superpositions of components that follow

different cyclotron orbits. Figure 3.12 shows superpositions similar to that in Fig. 3.4

of section 3.1, but with different choices for the values of `. As in the previous figure, the
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Figure 3.10: Rotations at different fractions of the cyclotron frequency. Here

pc is set to 0, so that there is no orbit of the centre of mass, and the internal rotation

is clearer. As before n = 0, and each part displays a superposition with equal weights

of the labelled values of `. In the top image the probability density rotates through an

angle of 2π/3 rad, corresponding to an angular velocity of ωc/3. On the bottom the

rotation is through twice this angle, and the angular velocity is therefore 2ωc/3.
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Figure 3.11: Deformation of the probability density of a more complicated

superposition. This is a superposition with equal weights of the values ` = −2,−1, 1

and 2, with n = 0 and pc = 0. Unlike the superpositions of two values of ` in the

previous figures, here the probability density does not simply rotate with respect to its

centre of mass – it deforms as the wavefunction diffracts.

two canonical angular momentum components periodically separate and overlap. The

interference pattern formed when they overlap is different depending on the components

of the superposition. This could potentially be utilised in interferometry: if one of the

components were modified at the point where they are separated, this would be revealed

by a change in the interference pattern formed when the components recombine, as

illustrated by Fig. 3.13.

3.2.4 Chebyshev polynomial expansion

The numerical calculations I employ are based on an expansion of the time-evolution

operator in a series of Chebyshev polynomials. In this section, I describe this expansion

in more detail.
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angular momentum and follow overlapping cyclotron orbits. In each case

n = 0.
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Figure 3.13: Prototype for a magnetic orbital interferometer. The initial state

is the same as that in Fig. 3.4 of section 3.1: an equally weighted superposition of a

wavefunction with pc/pc 0 = 3 and ` = −1 and a wavefunction with pc/pc 0 = −3 and

` = 1. Here, however, after half of a cyclotron period the wavefunction in the region

y > 0 is modified. In (a), the phase arg Ψ⊥ in this region is shifted through an angle

∆θ = π, while in (b) the amplitude |Ψ⊥| in the same region is set to zero. It is seen that

the relative phase shift in (a) results in a shift in the interference fringes formed after a

complete cyclotron period, while the absorption in (b) eliminates one of the cyclotron

components, resulting in a change in the angular momentum of the final state.
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It is well known that any function f(X) can be expressed as a series expansion

f(X) =
∞∑
q=0

αqPq(X), (3.46)

where Pq is a complete set of polynomials satisfying an orthogonality relation 〈Pq|Pr〉 =

δq,r〈Pq|Pq〉. The expansion coefficients are

αq =
〈Pq|f〉
〈Pq|Pr〉

, (3.47)

where

〈f |g〉 =

∫ b

a

dX w(X)f(X)g(X) (3.48)

is a scalar product, with [a, b] the interval on which f is defined and w(X) a weighting

function.

While any set of orthogonal polynomials can be used in such an expansion, for numerical

calculations it is advantageous to work with Chebyshev polynomials, since in this case

the convergence of the series is particularly rapid [148]. The Chebyshev polynomials

of the first kind,

Pq(X) = Tq(X) = cos(q cos−1 q), (3.49)

are defined on the interval [a, b] = [−1, 1], and are associated with the weighting func-

tion w(X) = 1/
(
π
√

1−X2
)
. They have the orthogonality relation

〈Tq|Tr〉 =
δq,r(1 + δq,0)

2
=

δq,r, q = 0

δq,r/2, q 6= 0

(3.50)

[148].

Now consider the application to the time-evolution operator that appears in the Schrödinger

equation. As described in section 3.2.1, the Hamiltonian should first be scaled such

that its eigenvalues are mapped onto the interval [−1, 1] – the domain of the Chebyshev

polynomials. This is achieved by the transformation described by (3.19) in section 3.2.1:

H̃ =
H− b
a

, (3.51)
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where a = (Emax − Emin)/2 and b = (Emax + Emin)/2, with Emax and Emin being the

maximum and minimum energies involved in the problem. The function that must be

expanded is the complex exponential

f(X) = exp

(
−i1

~
aX∆t

)
, (3.52)

where X = H̃. Using the Chebyshev polynomials (3.49), the scalar product that

appears in the expansion coefficients (3.47) is then

〈Tq|f〉 =
1

π

∫ 1

−1

dX
1√

1−X2
cos
(
q cos−1 q

)
f(X)

= (−1)qJq(
1

~
a∆t), (3.53)

where Jq is a Bessel function of the first kind. In evaluating this integral I have first

made the change of variables X = cos Φ, and then used the relations

Jq(Z) =
i−q

π

∫ π

0

dΦ exp(iZ cos Φ) cos qΦ (3.54)

[151] and Jq(−Z) = (−1)qJq(Z). Using this result along with the orthogonality relation

(3.50), the expansion coefficients are found to be

αq =

(−1)qJq(a∆t/~), q = 0

2(−1)qJq(a∆t/~), q 6= 0.

(3.55)

Note that the series expansion presented here is slightly different from that in [141],

where “complex Chebyshev polynomials”, defined by ϕq(ω) = Tq(−iω), where ω ∈

[−i, i], are employed.

As has already been mentioned, the choice of Chebyshev polynomials results in a

particularly rapid series convergence. The reason for this is the asymptotic behaviour

of the Bessel functions in (3.55), which is described by

q →∞⇒ Jq

(
a∆t

~

)
→ 1√

2πq

(
ea∆t

2q~

)q
(3.56)

[152]. Here e, in roman font, denotes the mathematical constant. When

q >
ea∆t

2~
, (3.57)
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so that the argument of the exponent in (3.56) is less than unity, the magnitude of

the Bessel function decays exponentially (or, more accurately, faster than this, due to

the factor of q−1/2). This means that the magnitudes of the coefficients (3.55) decay

exponentially whenever the inequality (3.57) is satisfied, as illustrated in Fig. 3.14.

Therefore, the error associated with truncating the series at a finite order can be made

negligible, by choosing a number of terms

M =
e

2~
a∆t+ δ, (3.58)

where δ is an adjustable parameter. This rapid convergence of the series expansion

means that, for most applications, the Chebyshev method is the most accurate and

efficient technique available for numerically solving the time-dependent Schrödinger

equation [153, 142].
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Figure 3.14: Exponential decay of the magnitude of the Chebyshev expansion

coefficients. Here the logarithm of the coefficient αq is plotted for different values of

the Bessel function argument a∆t/~. The dashed vertical lines indicate when q =

a∆t/~. It is seen that when q & a∆t/~, the magnitude of the expansion coefficients

decays approximately exponentially.



Chapter 4

Is the angular momentum of an

electron conserved in a uniform

magnetic field?

I show that the diamagnetic angular momentum of an electron moving in a uniform

magnetic field can vary with time. Surprisingly this means that the kinetic angular

momentum of the electron may vary with time, despite the rotational symmetry of

the system. This apparent violation of angular momentum conservation is resolved by

including the angular momentum of the surrounding fields.

As in the preceding chapter the main results are presented first, and followed by com-

plementary material.
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4.1 Main results

4.1.1 Introduction

As described at the very beginning of this thesis, there is an intimate relation between

angular momentum and rotational symmetry. In particular, if a system is symmetric

under rotation about a given axis, the angular momentum along that axis will be

conserved. This is the case with electron vortex beams in field-free space. These

have a cylindrically symmetric wavefunction and maintain a constant orbital angular

momentum in the direction of propagation.

Based on the same argument of rotational symmetry it would seem that for an electron

exposed to a uniform magnetic field its orbital angular momentum in the direction of

the field must be conserved. This is indeed true of the angular momentum about the

axis of the classical cyclotron orbit, and the energy eigenstates of the system – the

Landau states – also have constant angular momentum.

On the other hand, it is known that the kinetic angular momentum of an electron is

not necessary constant even when the electron interacts with external fields that are

rotationally symmetric [93]. The balance and redistribution of momentum and angular

momentum between matter and fields is a fundamental problem of great general interest

[11, 15, 60, 154].

Recent investigations of vortex electron states in uniform and quasi-uniform magnetic

fields have revealed that the angular velocity of the electron depends not only on

the field strength but also on the azimuthal quantum number and the radial position

[2, 87, 115]. Furthermore, in these quantum states the average radial position of the

electron is not in general constant, but rather changes as the wavefunction diffracts
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[76, 86, 115]. This contrasts sharply with the classical orbit in a uniform magnetic

field, leading to the question of whether the angular momentum of the electron is in

fact conserved.

In this chapter, I show that for an electron in a non-stationary state, the changing radius

of the electron’s probability distribution in fact gives rise to a time-varying kinetic

angular momentum. The canonical angular momentum however remains constant.

The apparent violation of angular momentum conservation is resolved by considering

the angular momentum in the fields surrounding the electron. I show that the total

kinetic angular momentum, including that of the fields, is conserved, as indeed it must

be.

4.1.2 Canonical and kinetic angular momenta

I consider an electron moving in a uniform magnetic field, and take the direction of

this field to define the z-axis. As in the preceding chapter, I do not consider the effect

of spin, the z component of which will be a constant of motion. The (non-relativistic)

Hamiltonian for the system can therefore be written in the form

H =
1

2m
(pkin)2. (4.1)

This is the same as the first term in (2.1). I again choose the vector potential (2.5),

meaning that the Hamiltonian (4.1) can be rewritten as

H =
1

2m
(pcan)2 +

1

2
mω2

Lρ
2 + ωLL

can
z . (4.2)

As the Hamiltonian, in the chosen gauge, is independent of φ, it commutes with the

canonical angular momentum, [Lcan
z , H] = 0, meaning that Lcan

z is conserved [76].

Consider an electron wavefunction with cylindrical symmetry so that

Ψ = u(ρ, z, t)ei`φ. (4.3)



CHAPTER 4. IS THE ANGULAR MOMENTUM OF AN ELECTRON CONSERVED IN A
UNIFORM MAGNETIC FIELD? 92

I make no assumption about the form of the function u, so that in general this will

not be an energy eigenstate. This state is however an eigenstate of Lcan
z and hence the

expectation value of its angular momentum has the time-independent value

〈Lcan
z 〉 = `~. (4.4)

This is to be expected as the system is symmetric under rotation about the z-axis,

so that according to Noether’s theorem the z-component of the angular momentum

should be conserved.

As described by (2.16), in the presence of a magnetic field, the kinetic orbital angular

momentum differs from its canonical counterpart. The field-dependent contribution to

the kinetic angular momentum is associated with a rotation of the electron probability

distribution at constant angular velocity ωL – the diamagnetic response of the electron

to the external magnetic field.

The expectation value of the kinetic orbital angular momentum can be expressed here

as

〈Lkin
z 〉 = `~ + 〈Iz〉ωL, (4.5)

where I have used the fact that the expectation value of the z-component of the elec-

tron’s moment of inertia is

〈Iz〉 = m〈ρ2〉. (4.6)

This means that the kinetic angular momentum of the electron will be constant only if

the radial probability distribution is constant. The squared radius ρ2 does not commute

with the Hamiltonian however, meaning this quantity is not a constant of motion [98].

This means that, in contrast with the classical motion, the mean value 〈ρ2〉 will not,

in general, be a constant.



CHAPTER 4. IS THE ANGULAR MOMENTUM OF AN ELECTRON CONSERVED IN A
UNIFORM MAGNETIC FIELD? 93

4.1.3 Radial oscillation

It can be seen from the form of the Hamiltonian (4.2) that the radial coordinate exhibits

a harmonic motion. This can be understood as the radial diffraction of the electron

wavefunction in a harmonic potential generated by the interaction with the magnetic

field [76]. The energy associated with the motion perpendicular to the magnetic field

remains constant and has the expectation value

E⊥ =

〈
H − 1

2m
(pkin
z )2

〉
. (4.7)

I will obtain the time-dependence of the radial width, and later also of the kinetic

orbital angular momentum, from Heisenberg’s formalism:

∂2〈ρ2〉(t)
∂t2

= − 1

~2

〈[
[ρ2, H], H

]〉
(t)

= −ω2
c

(
〈ρ2〉(t)− ρ̃2

)
(4.8)

where

ρ̃2 =
1

mω2
L

(E⊥ − ωL`~) (4.9)

is the constant steady-state value that depends on the energy, the canonical angular

momentum and the magnetic field. It can be seen from (4.8) that the mean-square

radius oscillates sinusoidally about the value ρ̃2 at the cyclotron frequency. Setting

t = 0 to correspond to a stationary point of this oscillation, I have

〈ρ2〉(t) = ρ̃2 +
(
〈ρ2〉(0)− ρ̃2

)
cos(ωct). (4.10)

According to the relation (4.5) this is intrinsically linked to an oscillation of the kinetic

angular momentum:

〈Lkin
z 〉(t) = L̃kin

z +
(
〈Lkin

z 〉(0)− L̃kin
z

)
cos(ωct), (4.11)

where the steady-state value of the kinetic angular momentum

L̃kin
z = `~ +mωLρ̃2 =

2

ωc

E⊥ (4.12)
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coincides with the classical value of the kinetic angular momentum for an electron with

rotational kinetic energy E⊥. In general the angular momentum oscillates sinusoidally

about the classical value, with the same frequency, ωc, as the classical cyclotron motion.

Only if the kinetic angular momentum is equal to the classical value does its expectation

value remain constant. In this sense (4.12) defines the steady-state value ρ̃2.

I can obtain an exact solution for (4.10) in the case when at t = 0 the wavefunction

(4.3) has the Laguerre-Gaussian form

Ψn,`(0) = LGn,` ∝

(
ρ
√

2

ρ0

)|`|
exp

(
−ρ

2

ρ2
0

)
L|`|n

(
2ρ2

ρ2
0

)
× exp [i (`φ+ kzz)] , (4.13)

where ` ∈ Z and n = 0, 1, 2, .... As with a Landau state the index n specifies the number

of radial nodes in the wavefunction, while ρ0 is the width of the Gaussian envelope.

The Laguerre-Gaussian wavefunctions can be used to describe electron vortex beams

that have intrinsic orbital angular momentum `~ [36] as well as electron beams with

no intrinsic orbital angular momentum in the case when ` = 0.

The mean-square radius of the Laguerre-Gaussian wavefunction (4.13) is equal to

〈ρ2〉n,`(0) =
1

2
(2n+ |`|+ 1)ρ2

0 (4.14)

[155]. As this depends on the radial index n, it follows that the kinetic angular mo-

mentum of the electron also depends on n, which is not the case in the absence of

a magnetic field. The steady-state mean-square radius for the same electron energy

obtained from (4.7) and (4.12) is

ρ̃2
n,` =

1

4
(2n+ |`|+ 1)

[
1 +

(
ρB

ρ0

)4
]
ρ2

0. (4.15)

As the phase of the wavefunction (4.13) does not depend on ρ, I have

∂〈ρ2〉n,`(0)

∂t
=

1

~
Im
〈
[ρ2, H]

〉
n,`

(0) = 0, (4.16)

meaning that this wavefunction corresponds to a stationary point of the oscillation.

The time-evolution of 〈ρ2〉n,` can therefore be obtained by substituting (4.14) and

(4.15) into (4.10).
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In the special case when ρ0 = ρB the Laguerre-Gaussian wavefunctions in (4.13) become

the Landau energy eigenstates and I obtain the constant values of 〈Lkin
z 〉n,` expected

in this case [87]. In general however the angular momentum will oscillate around the

classical value, as illustrated in Fig. 4.1(a) for different ratios ρ0/ρB and in Fig. 4.1(b)

for different quantum numbers ` corresponding to canonical angular momenta `~. If

the canonical angular momentum is in the opposite direction to the magnetic field then

the kinetic angular momentum may even change direction, as clearly seen for ` = −4

in Fig. 4.1(b). I note that the moment of inertia increases with the radial quantum

number n, resulting in larger amplitude oscillations, and that a reversal of the direction

of the magnetic field corresponds to a shift of the phase of the oscillations by 180◦.

As we have seen, the kinetic angular momentum may change with time despite the fact

that the system is entirely rotationally symmetric – seemingly contradicting Noether’s

theorem. In order to restore angular momentum conservation I have to include the

angular momentum contained in the field. The calculation in the following section was

performed with Stephen Barnett.

4.1.4 Field angular momentum

The density of (kinetic) momentum in an electromagnetic field is given by

Pkin field = µ0ε0S

= ε0E×B, (4.17)

where S = E ×B/µ0 is the Poynting vector [156]. The corresponding orbital angular

momentum density therefore has the z component

Lkin field
z = (r×Pkin field)z

= ε0ρ(E×B)φ. (4.18)
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Figure 4.1: Time-evolution of the expectation value of the electron’s kinetic

orbital angular momentum for Laguerre-Gaussian states with n = 0 and a

magnetic field in the positive z-direction (B > 0). This is shown in (a) as a

function of the initial width ρ0 for ` = 1, and in (b) for different values of ` assuming

ρ0 = 1.5ρB. Image created with Sonja Franke-Arnold.
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The total kinetic angular momentum in the field can be expressed as

Lkin field
z =

∫
dV Lkin field

z

= ε0

∫
dV ρ(E×B)φ

= ε0

∫
dV ρ(−EρBz + EzBρ). (4.19)

Here this will be evaluated for the uniform external magnetic field and the radial electric

field of the electron itself.

In order for the integral in (4.19) to be finite, it must be taken into account that in

reality the external magnetic field will not be completely uniform, but rather reverse

direction at very large ρ, such that the total flux through the r⊥ plane is zero:∫
d2r⊥Bz(ρ) =

∫
dV ∇.B = 0. (4.20)

Here I have used the divergence theorem and also Maxwell’s equation ∇.B = 0. The

radial electric field of the electron can be obtained by integrating Gauss’s law

∇.E =
%

ε0
=
e|Ψ|2

ε0
, (4.21)

where % is the charge density of the electron, over a cylindrical Gaussian surface. This

way, I obtain

Eρ(ρ) =
e

ε0ρ

∫ ρ

ρ′=0

ρ′ dρ′ |Ψ|2(ρ′). (4.22)

The integral (4.19) then becomes

Lkin field
z = −2πe

∫ ∞
ρ=0

ρ dρBz(ρ)

∫ ρ

ρ′=0

ρ′ dρ′ |Ψ|2(ρ′)

= −2πe

[∫ ρ

ρ′=0

ρ′ dρ′Bz(ρ
′)

∫ ρ

ρ′′=0

ρ′′ dρ′′|Ψ|2(ρ′′)

]∞
ρ=0

+2πe

∫ ∞
ρ=0

ρ dρ

∫ ρ

ρ′=0

ρ′ dρ′Bz(ρ
′)|Ψ|2(ρ)

=
1

2
eB 2π

∫ ∞
ρ=0

ρ dρ ρ2|Ψ|2(ρ)

=
1

2
eB〈ρ2〉. (4.23)

In integrating the first line by parts I have made use of the identity

∂

∂ρ

∫ ρ

ρ′=0

ρ′ dρ′ |Ψ|2(ρ′) = ρ|Ψ|2(ρ) (4.24)
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[157]. I have then used the result (4.20), from which it follows that the term in the

square brackets vanishes, and also the fact that in the region of the electron the mag-

netic field has the uniform value B.

Using (4.5) and (4.23) it is seen that the total kinetic angular momentum including

that of the field is equal to the conserved canonical angular momentum:

Lkin total
z = `~ = Lcan

z . (4.25)

Therefore, when the field is included, the angular momentum of the system has the

unique value (4.25), which is conserved.

4.1.5 Discussion

The magnitude of the diamagnetic contribution to the kinetic angular momentum is

strongly dependent on the length scale. As can be seen from (4.5), it is characterised by

the constant −e/2 = 7.60×10−4~T−1nm−2. In an atomic bound state with rms radius

1 Å, even in a field of strength 1 T the diamagnetic angular momentum is negligible

compared to a single unit of canonical angular momentum. However, for unbound

electrons, which can be distributed over a much larger area, the diamagnetic angular

momentum can become significant, and may be the dominant contribution, both to

the electron’s kinetic angular momentum and to E⊥. This can certainly be the case in

transmission electron microscopes, where the electron beam may have a radius 〈ρ2〉1/2 ∼

1 nm − 100µm and a field ∼ 1 T is provided by the objective lens. Note that in an

electron microscope the radial dynamics occur in a reference frame moving with the

electron along the z-axis [36], and so can be observed as a function of the propagation

distance [86, 115].

While the creation of electron vortices has aroused a considerable interest in the orbital

angular momentum of electron beams [55, 65, 145], little attention has been given
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previously to the angular momentum that arises in a magnetic field. Diamagnetic

angular momentum is possessed by any electron beam, even those with no canonical

orbital angular momentum. The canonical angular momentum is related to symmetry

under azimuthal rotation, and is restricted to integer multiples of ~. In contrast, the

diamagnetic contribution, and hence the kinetic angular momentum of the electron,

may take any value.

4.2 Complements to section 4.1

In the remainder of this chapter I will expand upon the preceding material by presenting

additional detail and further considerations.

First, I provide a detailed derivation of the equation of motion for the mean-square

radius of the electron’s probability distribution. Like the calculation of the centre of

mass in Chapter 3 this is a rather lengthy calculation, and it was only briefly outlined in

section 4.1. This calculation starts in the same way as that of the centre of mass, and I

make use of the expression I derived previously for the expectation value of an arbitrary

operator. Following the derivation of the mean-square radius for an arbitrary initial

wavefunction, I consider the particular solution in the case of a Laguerre-Gaussian

wavefunction.

It is illuminating to consider the spatial distributions of the probability density and

the current density of Laguerre-Gaussian states that have a time-varying radius. I do

this here using numerical calculations similar to those in Chapter 3. First, I present

simulations for Laguerre-Gaussian wavefunctions of the form used in section 4.1, which

do not exhibit any cyclotron motion. I then simulate wavefunctions that also possess

a net transverse momentum, and therefore exhibit cyclotron motion, as well as having

an oscillating radius.
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Following this, I provide additional considerations on the relationship between Laguerre-

Gaussian wavefunctions and the Landau states. I discuss both the kinetic angular

momentum and the energy of Laguerre-Gaussian wavefunctions in a uniform magnetic

field, and illustrate how these vary as a function of the mean-square radius of the

probability distribution and the strength of the magnetic field. It is demonstrated how

these tend towards, in the appropriate limits, the values for the Laguerre-Gaussian

wavefunctions in field-free space and for the Landau states.

Finally, I discuss changes in the angular momentum of the electron as a result of

cyclotron radiation. An estimate of the order of magnitude of this effect is presented.

4.2.1 Mean-square radius

In this section I provide additional detail of the derivation of the mean-square radius

of the electron that is described in section 4.1.

Arbitrary wavefunction

First, I consider the derivation of the equation of motion for the expectation value 〈ρ2〉;

that is, (4.8) in section 4.1.

The equation of motion for the evolution of an arbitrary operator O, in a system gov-

erned by the Hamiltonian H⊥, was already obtained in the previous chapter. Therefore,

all that is required is to substitute O = ρ2 into (3.27). The commutator of ρ2 with the
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Hamiltonian H⊥ is given by

[ρ2, H⊥] = [x2, H⊥] + [y2, H⊥]

= x[x,H⊥] + [x,H⊥]x+ y[y,H⊥] + [y,H⊥]y

=
2~
m

[
~ + i(xpcan

x + ypcan
y )
]
, (4.26)

using the previous results for [x,H⊥] and [y,H⊥] in (3.29) and (3.35). The double

commutator can therefore be expressed as

[
[ρ2, H⊥], H⊥

]
=

2i~
m

(
[xpcan

x , H⊥] + [ypcan
y , H⊥]

)
=

2i~
m

(
x[pcan

x , H⊥] + [x,H⊥]pcan
x + y[pcan

y , H⊥] + [y,H⊥]pcan
y

)
= 2~2

{
ω2

L(x2 + y2)− 1

m2

[
(pcan
x )2 + (pcan

y )2
]}

= ~2

{
ω2

cρ
2 − 4

m
[H⊥ − ωLL

can
z ]

}
, (4.27)

where I have made use of the results

[pcan
x , H⊥] =

[
pcan
x ,

1

2
mω2

Lx
2 + ωLxp

can
y

]
=

1

2
mω2

L[pcan
x , x2] + ωL[pcan

x , xpcan
y ]

=
1

2
mω2

L (x[pcan
x , x] + [pcan

x , x]x) + ωL

(
x[pcan

x , pcan
y ] + [pcan

x , x]pcan
y − i~pcan

y

)
= −i~ωL(mωLx+ pcan

y ) (4.28)

and

[pcan
y , H⊥] =

[
pcan
y ,

1

2
mω2

Ly
2 − ωLyp

can
x

]
=

1

2
mω2

L[pcan
y , y2]− ωL[pcan

y , ypcan
x ]

=
1

2
mω2

L

(
y[pcan

y , y] + [pcan
y , y]y

)
− ωL

(
y[pcan

y , pcan
x ] + [pcan

y , y]pcan
x − i~pcan

x

)
= −i~ωL(mωLy − pcan

x ). (4.29)

This results in the differential equation

∂2〈ρ2〉(t)
∂t2

= −ω2
c

(
〈ρ2〉(t)− ρ̃2

)
, (4.30)

where ρ̃2 = 〈H⊥ − ωLL
can
z 〉/mω2

L, which describes a sinusoidal oscillation of 〈ρ2〉 about

ρ̃2 with frequency ωc.



CHAPTER 4. IS THE ANGULAR MOMENTUM OF AN ELECTRON CONSERVED IN A
UNIFORM MAGNETIC FIELD? 102

The general solution of this equation of motion can be expressed as

〈ρ2〉(t) = ρ̃2 +
(
〈ρ2〉(0)− ρ̃2

)
cosωct+

1

ωc

∂〈ρ2〉(0)

∂t
sinωct. (4.31)

Setting t = 0 to correspond to a stationary point of the oscillation, the second term

vanishes; then the result is the same as (4.10) in section 4.1.

Laguerre-Gaussian wavefunction

I now consider the particular solution in the case of a Laguerre-Gaussian wavefunction

[22], and set

Ψ⊥(t = 0) =

√
2n!

π(n+ |`|)!
1

ρ0

(
ρ
√

2

ρ0

)|`|
exp

(
−ρ

2

ρ2
0

)
L|`|n

(
2ρ2

ρ2
0

)
exp (i`φ) . (4.32)

In this case, t = 0 indeed corresponds to a stationary point of the oscillation:

∂〈ρ2〉n,`(0)

∂t
= − i

~
〈
[ρ2, H⊥]

〉
n,`

(0)

=
1

~
Im
〈
[ρ2, H⊥]

〉
n,`

(0)

=
2~
m

Im

〈
ρ
∂

∂ρ

〉
n,`

(0)

= 0. (4.33)

Here I have used the fact that the time-derivative of 〈ρ2〉must be real, as well as the fact

that the phase of Ψn,`(0) is independent of ρ. As noted in section 4.1, for the Laguerre-

Gaussian initial state the mean-square radius is initially 〈ρ2〉n,`(0) = (2n+ |`|+ 1)ρ2
0/2

[155].

In order to obtain the steady-state squared radius ρ̃2
n,`, the expectation value of the

energy, 〈H⊥〉n,`, must be evaluated. To do this, I use the fact that the wavefunction

(4.32) would be an eigenstate of a Hamiltonian

H⊥ 0 =
1

2m
(pcan
⊥ )2 +

1

2
mω2

0ρ
2, (4.34)
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Figure 4.2: Oscillation of the mean-square radial position of the electron.

Here ρ0 = 1.5ρB.

where ω0 = 2~/(mρ2
0), with eigenvalues (2n+ |`|+ 1)~ω0. Therefore:

〈H⊥〉n,` = 〈H⊥ 0〉n,`(0) +
1

2
m(ω2

L − ω2
0)〈ρ2〉(0) + ωL〈Lcan

z 〉

= (2n+ |`|+ 1)

[
~ω0 +

1

4
m(ω2

L − ω2
0)ρ2

0

]
+ `~ωL

=
1

4
mω2

L(2n+ |`|+ 1)

[
1 +

(
ρB

ρ0

)4
]
ρ2

0 + `~ωL, (4.35)

and so

ρ̃2
n,` =

1

mω2
L

〈H⊥〉n,` − `~ωL

=
1

4
(2n+ |`|+ 1)

[
1 +

(
ρB

ρ0

)4
]
ρ2

0. (4.36)

The mean-square radius of the Laguerre-Gaussian probability distribution is therefore

given by

〈ρ2〉n,`(t) =
1

4
(2n+ |`|+ 1)

{
1 +

(
ρB

ρ0

)4

+

[
1−

(
ρB

ρ0

)4
]

cos(ωct)

}
ρ2

0. (4.37)

The oscillation of the mean-square radius described by (4.37) is illustrated, for different

values of n and `, in Fig. 4.2. Note that the value of 〈ρ2〉(t) is independent of the

direction of the magnetic field; it is affected only by the magnitude of the field, which

determines the value of ρB.
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4.2.2 Numerical calculations

In section 4.1 the motion of the electron was characterised by the mean-square radius,

as well as the expectation value of the kinetic angular momentum. It is also interesting,

however, to examine the corresponding changes in the current density. Here I present

the results of numerical calculations of the probability density and current density,

which have been performed using the method described in Chapter 3.

Figure 4.3 illustrates the evolution of the probability density and current density for a

Laguerre-Gaussian wavefunction that has oscillating width, for different values of `. In

contrast to the images in Chapter 3, where the radial distribution remained constant,

here the current density acquires a radial component. It is only at the stationary

points of the width oscillation that this radial component vanishes, and the current

is purely azimuthal. This contrasts with the orbit of a classical particle around the z

axis, where the velocity would always be in the azimuthal direction. The intensities

of the probability density and current density also vary with time, having the largest

values where the mean-square radius is smallest.

It is also worth noting that the cyclotron orbit of the centre of mass and the oscillation

of the radial distribution, which up until now have been considered separately, can

occur simultaneously. This can be seen by numerically propagating an initial state of

the form

Ψ⊥ 0 = Nn,|`|

(
ρ
√

2

ρ0

)|`|
exp

(
−ρ

2

ρ2
0

)
L|`|n

(
2ρ2

ρ2
0

)
exp

[
i
(
`φ+

pc

~
x
)]
. (4.38)

This resembles the Laguerre-Gaussian wavefunction used elsewhere in this chapter in

that the width ρ0 can take any value, and resembles the wavefunction in the previous

chapter in that there is a transverse momentum pc. Examples of the evolution of such

states are shown in Fig. 4.4. The motion of the electron has three components: the

orbit of its centre of mass, the rotation of the probability density with respect to the

centre of mass and the radial expansion and contraction of the probability density.
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Figure 4.3: Evolution of the probability density and current density as the

radius of the state varies. Here n = 0 and ρ0 = 1.25ρB.
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Figure 4.4: Simultaneous width oscillation and cyclotron motion. Here n = 0,

ρ0 = 1.25ρB and pc/pc0 = 2.
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Figure 4.5: Centre of mass trajectory and kinetic angular momentum for a

state that exhibits both radial oscillation and cyclotron motion. Here n = 0,

B > 0, ρ0 = 1.25ρB and pc/pc 0 = 2. In (a) 〈r⊥〉(t) was calculated for ` = 1. In (b) the

angular momentum is calculated with respect to the centre of the cyclotron orbit and

the dashed line indicates the constant cyclotron component.

It can be verified that the centre of mass still follows the classical cyclotron orbit in

this case by calculating this quantity numerically – the results of such a calculation are

shown in Fig. 4.5(a). The value of the kinetic orbital angular momentum with respect

to the centre of the cyclotron orbit can also be calculated numerically. As described

by (3.12) and (3.13) in section 3.1, this quantity, which is equal to a sum of canonical,

cyclotron and diamagnetic components, is constant for a probability distribution with

constant mean-square radius. Here, due to the oscillation of the radial distribution,

and therefore of the diamagnetic angular momentum, the kinetic angular momentum

with respect to the centre of the cyclotron orbit, 〈L̃kin
z 〉, also oscillates. This is shown

in Fig. 4.5. This indicates that the result (3.12) obtained analytically in section 3.1

for a wavefunction with constant radial distribution also holds when this distribution

varies.

4.2.3 Laguerre-Gaussian wavefunctions and the Landau states

As has been shown in section 4.1, the Landau states can be understood as a special type

of Laguerre-Gaussian wavefunction, in which the Laguerre-Gaussian radius parameter,
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ρ0, is equal to the magnetic length ρB. In this case, the kinetic angular momentum of

the Laguerre-Gaussian state has the quantized values described by (2.17). This angular

momentum is always in the same direction as the magnetic field, and the allowed values

are equally spaced by an interval of 2~. The minimum allowed magnitude of the angular

momentum is equal to ~ – no Landau state has zero angular momentum.

This is in contrast to the Laguerre-Gaussian states in field-free space, for which the

kinetic angular momentum is equal to the canonical angular momentum, and therefore

is simply an integer multiplied by ~. In this case the kinetic angular momentum can

have either direction, and may be equal to zero.

As I have shown, however, in general the kinetic angular momentum is not quantized.

Both the field-free Laguerre-Gaussian wavefunctions and the Landau states are spe-

cial examples in this regard. The kinetic angular momentum for Laguerre-Gaussian

wavefunctions of different radii is shown in Fig. 4.6. Here the angular momentum is

plotted for different values of the ratio ρ0/ρB = ρ0

√
|eB|/(4~), which is equal to zero

in field-free space, and equal to 1 for a Landau state. The diamagnetic contribution

to the kinetic angular momentum, which is proportional to the area of the probability

density, increases in magnitude quadratically with ρ0, in such a way that the Landau

angular momenta are obtained when ρ0 = ρB. Remarkably, states that otherwise have

different values of angular momentum from one another become degenerate where the

Landau condition is satisfied.

Similarly, the energy of the state varies as a function of the radius. This is illustrated

in Fig. 4.7. Again, the Landau values are obtained when ρ0 = ρB. These are the

minimum possible values of the energy, which is to be expected, as they represent

stationary points of a harmonic motion. Where ρ0 > ρB, the energy associated with

the diamagnetic angular momentum dominates, and will tend to squeeze the proba-

bility distribution to a smaller radius. On the other hand, when ρ0 < ρB the energy

associated with the radial momentum of the electron, arising, as described by the un-
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Figure 4.6: Kinetic angular momentum of Laguerre-Gaussian states of dif-

ferent radii. This is shown both for B > 0 (solid curves) and B < 0 (dashed). The

horizontal dotted lines indicate the values of the angular momentum for the Landau

levels, which occur when ρ0 = ρB.
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Figure 4.7: Energy of Laguerre-Gaussian states that have different radii. As

in Fig. 4.6, the values for the Landau states are indicated by the horizontal dotted

lines.

certainty principle, from its localisation in space, will dominate. This acts to expand

the probability distribution to a large radius, resulting in the harmonic motion I have

already described.

4.2.4 Cyclotron radiation

In principle, angular momentum can be lost through the radiation of photons resulting

from the orbital motion of the electron [3, 158]. In this section, I show that on the
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length scale I have been considering, the probability that a photon will be radiated

during the course of a single cyclotron orbit is extremely small. This calculation was

performed with Stephen Barnett.

I apply Larmor’s formula for the power radiated by an accelerating charge, and consider

an electron in a circular orbit with the cyclotron angular velocity ωc. Larmor’s formula

reads

P =
µ0e

2a2

6πc
, (4.39)

where a is the electron’s acceleration [156]. An electron that is in a circular orbit with

a radius ρ has acceleration a = ρω2
c . The energy lost by radiation per rotation period

is therefore

Erad =
2π

ωc

P =
µ0e

2ρ2ω3
c

3c
. (4.40)

Now, as described in section 2.1.2, the electron’s energy is quantized in units of ~ωc,

meaning that the minimum energy that can be radiated by a photon is ~ωc. The

number of photons that can be emitted per cyclotron period is therefore at most

Erad

~ωc

=
µ0e

2ρ2ω2
c

3~c
. (4.41)

For a magnetic field of strength 1 T, and an orbit radius of ρ = 100 nm, this expression

evaluates to 10−10.



Chapter 5

Electron orbital angular momentum

Faraday rotation

I show that the diamagnetic rotation of an electron vortex superposition in a uniform

magnetic field can be interpreted as a “Faraday effect” for electrons. Whereas in the

original Faraday effect the rotation is of optical polarization, here it is a nodal line

in the electron’s wavefunction that rotates. This can be understood to occur as a

result of a canonical orbital angular momentum dependent dispersion of the vortex

superposition.

Again the main results are presented first, and followed by complementary material.
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5.1 Main results

5.1.1 Introduction

As first reported by Michael Faraday in the middle of the nineteenth century [19], the

polarization of light can be affected by magnetic fields. Specifically, Faraday showed

that, upon propagation through a suitable medium, in the presence of a longitudi-

nal magnetic field, the plane of polarization of linearly polarized light rotates. Such

a medium is referred to as “magneto-active”. Now termed the Faraday effect, this

phenomenon is of significant historical importance as the first experimental evidence

of a connection between light and electromagnetism. Further, the Faraday effect has

found numerous applications, including the ultra-sensive detection of magnetic fields

[159, 160], and the detection of magnetic fields in outer space [161] and the ionosphere

[162].

Faraday rotation can be understood to arise as a consequence of differing propagation

speeds for left and right handed circularly polarized light, as illustrated in Fig. 5.1(a).

In vacuum, each polarization state has the same velocity. However, with a magneto-

active medium in the presence of an external magnetic field, the orbits of the electrons

in the medium have an overall handedness that is determined by the magnetic field,

resulting in the aforementioned polarization-dependent dispersion of light interacting

with these electrons [20].

As noted in Chapter 1, circular polarization of light is associated with the spin angular

momentum of photons. Photons can also possess orbital angular momentum, however,

associated with an optical vortex. This has led to the question of whether an effect

analogous to Faraday rotation exists for optical orbital angular momentum.
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Figure 5.1: Illustration of the Faraday effect for optical polarization (a) and

the analogous rotation of electron vortex superpositions (b). Image created

by Sonja Franke-Arnold. In (a) the left and right circular polarization components

propagate at different speeds through a magneto-active medium in a magnetic field,

resulting in a rotation of the linear polarization. In (b) the differing propagation speeds

of electron vortex states with canonical orbital angular momenta ` = ±1 leads to a

rotation of the probability density of the superposition.
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It can be shown that an orbital angular momentum dependent dispersion results in a

rotation, not of polarization, but of the intensity distribution of light [27]. That is,

image rotation. Such a dispersion can be induced by rotating the medium through

which the light propagates [28, 29, 30], and the resulting image rotation has been

interpreted as a “mechanical” Faraday effect [31]. However, a similar interaction of

light’s orbital angular momentum in a stationary medium appears not to exist [32, 33,

34, 35].

Here, I consider the situation for electron beams carrying orbital angular momentum.

It is known that in a longitudinal magnetic field, even in vacuum, an electron beam

does exhibit an image rotation, which arises as a result of a rotation of each electron’s

probability distribution. Such “Larmor rotation” has already been described through-

out this thesis. I now show that, in the specific case of superpositions of vortex states

with canonical angular momenta ` = ±1, the rotation is in essence a Faraday effect for

electrons. Here, instead of optical polarization, it is a nodal line in the electron wave-

function that rotates. This can be understood as arising from the differing propagation

speeds of oppositely handed electron vortex states in the magnetic field, as illustrated

in Fig. 5.1(b).

5.1.2 Angular momentum dependent phase shift

I begin by considering the energy-momentum relationship for an electron with well-

defined canonical orbital angular momentum propagating parallel to a uniform mag-

netic field. From this I will show that the electron undergoes a phase shift that depends

on its total canonical angular momentum, including the orbital component.

As before, I consider a uniform magnetic field parallel to the z axis, described by the

cylindrical vector potential (2.5). In contrast to Chapters 3 and 4, here I include the
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effect of spin. This aids in comparing and contrasting the electron Faraday effect I

describe with that for photons. The appropriate Hamiltonian in this case is (2.6),

which it may be helpful to rewrite here as

H = − ~2

2m

∂2

∂z2
− ~2

2m
∇2
⊥ +

1

2
mω2

Lρ
2 + ωL(Lcan

z + gSz). (5.1)

The first three terms describe, as before, the kinetic energy in field-free space and also

the potential energy of the radial oscillation due to the magnetic field. The final term

gives the Zeeman energy, with contributions from both the canonical orbital angular

momentum and the spin. Recall that g (≈2) is the gyromagnetic ratio for electron

spin.

With this Hamiltonian the time-independent Schrödinger equation Hψ = Eψ can be

solved exactly, for eigenstates with given z components of momentum, canonical orbital

angular momentum and spin [70]. The eigenfunctions are

ψn,`,s(ρ, φ, z) = ψLan
⊥n,`(ρ, φ) exp(ikzz)

= Nn,|`|Rn,|`|(ρ) exp [i (`φ+ kzz)] (5.2)

where ψLan
⊥n,`, defined in (2.11), describes the radial and azimuthal dependence of a

Landau state and Rn,|`|(ρ) is the radial function

Rn,|`|(ρ) =

(
ρ
√

2

ρB

)|`|
exp

(
− ρ

2

ρ2
B

)
L|`|n

(
2ρ2

ρ2
B

)
. (5.3)

The corresponding energy eigenvalues are

E =
~2k2

z

2m
+ ELan

⊥ + ~ωLgs

=
~2k2

z

2m
+ ~|ωL|(2n+ |`|+ 1) + ~ωL(`+ gs), (5.4)

where ELan
⊥ , defined by (2.14), is the energy of the transverse motion in a Landau state.

The total energy (5.4) includes, in addition to ELan
⊥ , contributions from the electron’s

longitudinal motion and its spin.

Here I am interested in an electron state that has a well-defined energy E, and wish to

calculate the value of the wavenumber kz. The wavenumber for one of the states (5.2)
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with a given energy is obtained by rearranging (5.4) as follows:

kz n,`,s = k0

√
1− 1

E
[(2n+ |`|+ 1)~|ωL|+ (`+ gs)~ωL]. (5.5)

Here

k0 =
1

~
√

2mE (5.6)

is the wavenumber of the corresponding plane wave energy eigenstate in field-free space.

In the magnetic field, the wavenumber depends on the quantum numbers n, ` and s,

and also on the field. This means that the phase accumulated upon propagation

θn,`,s = kz n,`,sz, (5.7)

depends on these quantities.

From here on I consider the case in which the magnetic energy is small compared to

the total energy of the electron. That is, (2n+ |`|+ 1)~|ωL|+ (`+ gs)~ωL � E. This

would be the case, for example, in a transmission electron microscope. I can then apply

a Taylor expansion to (5.5) as follows:

kz n,`,s = k0

{
1− 1

2E
[(2n+ |`|+ 1)~|ωL|+ (`+ gs)~ωL]

}
. (5.8)

Here

kL =
mωL

~k0

= − eB

2~k0

(5.9)

is the spatial frequency corresponding to the temporal Larmor frequency ωL, for an

electron with a longitudinal velocity ~k0/m. The phase (5.7) is therefore

θn,`,s = k0z − (2n+ |`|+ 1)|kL|z − (`+ gs)kLz. (5.10)

The first term here describes the phase evolution for a plane wave in field-free space.

The second term depends on the energy of the radial motion in a magnetic field. It is the

final term that is of particular interest here – this describes a phase shift, resulting from

the Zeeman interaction, that is proportional to the total canonical angular momentum

of the electron. This “Zeeman phase” has a sign depending on the relative directions

of the angular momentum and the magnetic field. As will now be shown, this phase is

revealed in the evolution of vortex superpositions.
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5.1.3 Rotation of a vortex superposition

For an electron in one of the angular momentum eigenstates (5.2), the probability

density is independent of φ, and is invariant upon propagation along the z axis:

|ψn,`,s|2(ρ) = ψLan
⊥n,`(ρ, φ) = N2

n,|`|Rn,|`|(ρ)2. (5.11)

In order for the Zeeman phase to be revealed, it is necessary to consider instead a

superposition of angular momenta. Here I concentrate on superpositions of two states

that have the same values for n, s and |`|, but opposite magnitudes of ` – as required

for an orbital version of the Faraday effect [27]. That is, a wavefunction:

ψsuperpos =
1√
2

(
ψn,`,s + ψn,(−`),s

)
=

1√
2
Nn,|`|Rn,|`|(ρ)

×
{

exp [i (`φ+ kz n,`,sz)] + exp
[
i
(
−`φ+ kz n,(−`),sz

)]}
=

1√
2
Nn,|`|Rn,|`|(ρ)

×{exp [i` (φ− kLz)] + exp [−i` (φ− kLz)]}

× exp {i [k0z − (2n+ |`|+ 1)|kL|z + gskLz]}

=
√

2Nn,|`|Rn,|`|(ρ) cos `(φ− kLz)

× exp {i [k0z − (2n+ |`|+ 1)|kL|z + gskLz]} . (5.12)

In contrast to the rotational symmetry of each of its components, this superposition

has an amplitude that depends sinusoidally on φ. At z = 0, its probability density is

|ψsuperpos|2(z = 0) = 2N2
n,|`|R

2
n,|`|(ρ) cos2 `φ. (5.13)

This consists of a pattern of 2|`| lobes separated by lines of zero density, as shown in

the top row of Fig. 5.5 in section 5.2. In the case of |`| = 1, the single line of zero

density is analogous to optical linear polarization, as emphasised in Fig. 5.1. Now, as

the electron propagates along the z axis the probability density is no longer invariant;

rather it evolves as

|ψsuperpos|2(z) = 2N2
n,|`|R

2
n,|`|(ρ) cos2 `[φ− ΦB(z)], (5.14)
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Figure 5.2: Schematic illustration of the evolution of the probability distri-

bution upon propagation for a superposition of states with ` = ±1, where

the radial distribution also oscillates. Here the initial radial distribution has the

Laguerre-Gaussian form considered in Chapter 4, with ρ0 6= ρB. The rotation of the

probability density has half the frequency of the radius oscillation (see inset). Image

created with Sonja Franke-Arnold.

rotating through the angle

ΦB(z) = kLz = − eBz
2~k0

. (5.15)

Like in the optical Faraday effect this angle is proportional to both the magnetic field

and the propagation distance. Here it is also inversely proportional to the longitudinal

momentum of the electron.

So far in this chapter I have considered the eigenstates of the Hamiltonian (5.1), which

have a fixed radial distribution. As described in the preceding chapter, however, a

Laguerre-Gaussian state with a different transverse scale – that is, with a radial width

ρ0 6= ρB – would not be an eigenstate. In such a case the probability density exhibits

radial oscillations that occur at the cyclotron frequency, and therefore twice every full

rotation. This is illustrated in Fig. 5.2.
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5.1.4 Observing the electron Faraday effect

Electron vortex superpositions can be generated using nanofabricated diffraction grat-

ings. We proposed this in [86], at a time when only the generation of eigenstates of

Lcan
z had been reported. A suitable grating pattern can be obtained by interfering the

desired vortex superposition with a plane wave ψ = exp(ikxx). For a binary absorbing

mask, the transmission function can be defined as

T =

 1, if |2 cos `(φ− φ0) + exp(ikxx)|2/3 > 1/2 and ρ < a

0, otherwise.
(5.16)

Here cos `(φ−φ0) is the azimuthal dependence of the wavefunction for a vortex super-

position that has a density maximum at φ = φ0. The radial distribution is specified

as a circular aperture of radius a. Such a grating is illustrated in Fig. 5.3(a), with the

simulated far-field diffraction pattern (obtained by a Fourier transform calculation)

shown in part (b). The desired vortex superposition, here with |`| = 1, appears in the

±1 diffraction orders. The generation of vortex superpositions in this manner has now

been demonstrated experimentally [115].

In optical Faraday rotation, the rotation angle per unit propagation distance and mag-

netic field strength in a given material is a constant, known as the Verdet constant

of the material. The electron Faraday effect I describe, in contrast, does not have a

material dependence, as I consider an electron propagating in vacuum. The electron

“Verdet parameter” ΦB/(Bz) = −e/(2~k0) does, however, depend on the longitudinal

momentum of the electron. The slower the electron, the longer the time it will be

exposed to the field, and the larger the rotation angle will be. The Verdet parameter

is plotted in Fig. 5.4, as a function of the energy E, to which k0 is related by (5.6).

As can be seen, the rotation angle diminishes rapidly with increasing energy. As a

consequence, measuring Faraday rotation due to a perpendicularly magnetised sample

in transmission electron microscopy will be challenging. For E = 60 keV, B = 1 T and

a sample thickness of 100 nm, the rotation angle calculated from (5.15) is 0.06 mrad.

It may be better therefore to consider experiments that utilise lower energy electrons,

such as photoelectrons.
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(a)

(b)

Figure 5.3: Hologram producing a superposition of vortex states with ` =

±1. (a) Grating profile calculated using (5.16) with φ0 = 0. (b) Simulated far-field

diffraction pattern for this grating, with the desired superposition in the ±1 diffraction

orders.
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Figure 5.4: Rotation angle per unit propagation distance and magnetic field

strength (the Verdet parameter), as a function of energy.
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5.1.5 Discussion

Although observation of electron Faraday rotation as a result of transmission through

a magnetised material is yet to be reported, rotations of vortex superpositions in mag-

netic lenses have been observed [115]. In light of these experiments it is now clear that,

in this context, the Faraday effect described here and the Larmor rotation that is well

known in electron optics are one and the same thing. The results of this chapter can

therefore be regarded as a reinterpretation of this feature of electron optics.

One reason this is of value is that it bridges a gap between conventional electron optics

theory and studies of light’s angular momentum. In addition to this, the analogy drawn

with optical polarization suggests that Larmor rotation, which in electron imaging is

normally considered a background effect, could have practical applications. The most

obvious of these is spatially resolved magnetic field measurements. Also, the theoretical

approach presented here appears promising for investigating effects that also depend

on the spin of the electron.

5.2 Complements to section 5.1

The remainder of this chapter is made up of two sections, each complementing the

results that have already been described.

The first of these deals with superpositions of higher order canonical angular momen-

tum states. The electron Faraday effect most closely resembles the rotation of optical

polarization for superpositions of states with |`| = 1. Nonetheless, as noted in sec-

tion 5.1, the rotation for electrons also occurs with superpositions having |`| > 1. Here

this is discussed further, and it is demonstrated that, where rotation angles are to be
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measured, states with |`| = 1 are advantageous. I also explain why the rotation angle

is independent of |`|.

I then consider more generally the phase change of an electron beam propagating in

a magnetic field. Specifically, I derive an expression for the change, due to an arbi-

trary magnetic field, in the z component of the wavevector, for any paraxial wavefunc-

tion. I demonstrate that this formalism provides an alternative means to obtain the

`-dependent phase shift described in section 5.1.

5.2.1 Higher order superpositions

The electron Faraday effect is most directly analogous to the rotation of optical po-

larization in the case of a superposition of two wavefunctions with canonical angular

momentum of magnitude ~. In this case, the nodal line in the wavefunction of the

superposition corresponds to the direction of linear polarization. Nonetheless, electron

Faraday rotation can be observed with superpositions with larger values of angular

momentum as well.

The probability densities for three different superpositions of the form

Ψ⊥(t = 0) =
1√
2

(
ψLan
⊥ 0,` + ψLan

⊥ 0,−`
)

(5.17)

are shown in Fig. 5.5. These are plotted both before propagation in a magnetic field and

after rotations through progressively larger angles. Each of the superpositions rotates

through the same angle: the rotation angle ΦB, defined by (5.15), is independent of

|`|. The higher order superpositions have more than one nodal line however: these are

spaced at an angle of π/|`|. Since the intensity pattern is periodic in φ with the period

π/|`|, higher order superpositions repeat more quickly. This is seen in Fig. 5.5, where

after a rotation through ΦB = π/3 the superposition with |`| = 3 has returned to its

starting orientation. For rotation angles ∼ π/|`| the magnetic field can no longer be
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Figure 5.5: Faraday rotation of superpositions of Landau states with equal

and opposite values of canonical angular momentum. Shown here is the prob-

ability density for wavefunctions of the form given by (5.17), with ` = 1, 2 and 3

(left-right), for rotation angles of ΦB = 0, π/6 and π/3 (top-bottom). Each tile has a

side length of 5ρB.

unambiguously inferred from the size of the rotation, meaning that when measuring

large rotations the superposition with |`| = 1 would be most suitable.

It may appear surprising that the rotation angle ΦB does not depend on the magnitude

of `, even though the Zeeman phase shift does. This can be understood, however, by

considering the geometry of the twisted phase contours of the wavefunction.

In field-free space, an electron with a canonical angular momentum `~ and longitudinal

momentum ~kz has a wavefunction with a helicoidal phase described by θ(φ, z) =

`φ + kzz. In general the phase will also depend on the radius ρ, but for the purposes

of the discussion here that can be ignored. The surfaces of constant phase are defined

by the relation θ = 2πq + C, where q ∈ Z and C is an arbitrary constant. Using
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kz = 2π/λ, where λ is the wavelength, the phase contours can therefore be described

by the expression

z = λq − `λ φ
2π
. (5.18)

Here I have set C = 0. As illustrated in Fig. 5.6, this describes ` intertwined helicoids,

each of which has a pitch equal to `λ. Since the pitch of the helicoid is proportional

to `, an azimuthal rotation of the surface through an angle ∆φ is equivalent to a

longitudinal translation that is proportional to `:

φ→ φ+ ∆φ⇒ z → z − `λ∆φ

2π
. (5.19)

This means that a longitudinal phase shift equal to −`∆φ corresponds to an azimuthal

rotation through the angle ∆φ. Hence, the Zeeman phase−`ΦB results in the azimuthal

rotation ΦB, which is independent of the value of `.

It should be noted that I am considering here only rotations that arise as a result of

the interaction with the magnetic field. If, instead of choosing a superposition in which

the two components have the same magnitude of |`|, an “unbalanced” superposition

that has a non-zero net canonical angular momentum were formed, this superposition

would exhibit a rotation even in the absence of a magnetic field, as a result of the

differing Gouy phases [127, 163, 164] of the superposition components. In a magnetic

field, the total rotation of the electron’s probability distribution is in general given by

the sum of the Faraday (or “Larmor”) rotation and the Gouy rotation [87, 99, 115].

5.2.2 General expression for phase shift

The Faraday effect described in the preceding section is associated with the differing

phases acquired by vortices with different angular momentum propagating in a uni-

form magnetic field. In this section I consider the phase change of an arbitrary paraxial

electron wavefunction in the presence of an arbitrary magnetic field. I obtain an ex-

pression for this phase change in terms of the gradient of the wavefunction and the
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Figure 5.6: Surfaces of constant phase for Landau wavefunctions with dif-

ferent values of canonical angular momentum. In each case, n = 0, and the

phase contour is plotted over a z interval equal to three wavelengths. The pitch of the

helicoid is equal to `λ.
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vector potential. In the appropriate limit the results of section 5.1 are recovered.

I consider an arbitrary time-independent magnetic field, described by a vector potential

A(r). The electron is assumed to be in an energy eigenstate, with energy E, such that

its state is described by the time-independent Schrödinger equation

1

2m
(pkin)2ψ(r) = Eψ(r). (5.20)

The effect of the electron’s spin is not considered here. Choosing the Coulomb gauge,

∇.A = 0, so that

(∇.A + A.∇)ψ = 2A.∇ψ + ψ∇.A

= 2A.∇ψ, (5.21)

(5.20) becomes [
∇2 + k2

0 −
e

~

(
2iA.∇ +

eA2

~

)]
ψ = 0, (5.22)

where k0 =
√

2mE/~ is the wavenumber of a plane wave that has the energy E. It is

convenient when applying the paraxial approximation to express the wavefunction as

ψ = u(r) exp(ik0z). (5.23)

Substituting this expression into (5.22) yields
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(5.24)

In the paraxial approximation, the function u varies slowly with z, meaning that its

second derivative, with respect to z, is negligible:∣∣∣∣∂2u

∂z2

∣∣∣∣� ∣∣∣∣k0
∂u

∂z

∣∣∣∣ (5.25)

[165]. Here, I also assume that the fractional change in the z component of the kinetic

momentum, as a result of the interaction with the magnetic field, is small, so that

|eAz|/~� |k0|. I thus arrive at

i
∂u
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u, (5.26)

where
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(5.27)
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is the change, due to the presence of the vector potential, in the z component of the

electron’s wavevector. The change in the wavevector depends not only on the vector

potential, but also on the gradient of the wavefunction, which is related to the electron’s

momentum. This reflects the dependence of the classical Lorentz force on the velocity

of the electron.

The paraxial wave equation (5.26) is equivalent in form to the time-dependent Schrödinger

equation. As such, its solution is described by the integral

u(z + ∆z) = Z exp

{
i

∫ z+∆z

z

dz

[
1

2k0

∇2
⊥ + kzA(z)

]}
u(z), (5.28)

where Z is the equivalent of the time-ordering operator [150]. For a value of ∆z that is

small enough that terms O [(∆z)2] can be ignored, the expression (5.28) simplifies to

u(z + ∆z) = TAT0u(z), (5.29)

where

T0 = exp

(
i∆z

1

2k0

∇2
⊥

)
(5.30)

is the field-free propagator, which describes the diffraction of the wavefunction, and

TA = exp (i∆zkzA) (5.31)

describes the effect of the vector potential. Such an approximation, although normally

involving a scalar potential and not a magnetic field, is the basis for both the split

operator method of numerically propagating the time-dependent Schrödinger equation

[150] and also the related multi-slice method used in electron optics [121, 166].

I will now demonstrate that the formalism developed above reproduces the Zeeman

phase shift derived in section 5.1. To do this I first evaluate the propagators (5.30)

and (5.31) for a Laguerre-Gaussian wavefunction that can have any radius ρ0, before

subsequently considering the particular case where the electron is in a Landau state.

The Laguerre-Gaussian initial wavefunction is the same as that considered in Chapter 4:

un,`(z = 0) =

√
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)
exp(i`φ). (5.32)
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The action of the propagator T0 on this wavefunction – the evolution of this state in

field-free space – is well known:

T0un,`(0) = exp

(
i
k0ρ

2

2R(z)

)
exp[−i(2n+ |`|+ 1)ξ(z)]

√
2n!

π(n+ |`|)!

× 1
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2ρ2
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)
exp(i`φ) (5.33)

[22, 36, 165]. Here ρz(z) = ρ0

√
1 + (z/zR)2 describes the radius of the probability

distribution, where zR = |k0|ρ2
0/2 is the “Rayleigh range” [165], R(z) = z [1 + (zR/z)2]

is the wavefront radius of curvature, and −(2n+ |`|+ 1)ξ(z) is the Gouy phase, where

ξ(z) = tan−1(z/zR). Note that if the exponent in the definition (5.23) had the opposite

sign, as is the case in [165], then the sign of the first exponent in (5.33) – which depends

on R(z) – would be reversed. To first order in a short propagation distance ∆z, the

above parameters take the values ρz(∆z) = ρ0, R(z) = z2
R/z and ξ(∆z) = z/zR, in

which case the expression (5.33) simplifies to

T0un,`(0) = exp

(
i
2∆zρ2

k0ρ4
0

)
exp

[
−i(2n+ |`|+ 1)
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zR

]
un,`(0). (5.34)

In this case the amplitude of the wavefunction is unchanged upon propagation – to

first order in ∆z, the propagator T0 affects only the phase. The first exponential in

(5.34) describes the curvature of the wavefronts, while the second factor describes the

Gouy phase.

The effect of a uniform longitudinal magnetic field on the Laguerre-Gaussian wavefunc-

tion can be seen by evaluating the propagator (5.31) using the vector potential (2.5).

With this vector potential, (5.31) becomes:

TA = exp

(
−kL∆z

∂
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)
exp

(
−i2∆zρ2

k0ρ4
B

)
, (5.35)

where ρB and kL are defined, respectively, by (2.12) and (5.9). The wavefunction at

z = ∆z is then obtained by substituting (5.34) and (5.35) into (5.29):

un,`(∆z) = TAT0un,`(0)

= exp(−ikL`∆z) exp

[
i
2∆zρ2
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[
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]
un,`(0). (5.36)



CHAPTER 5. ELECTRON ORBITAL ANGULAR MOMENTUM FARADAY ROTATION 129

The first exponential in (5.36) contains the `-dependent Zeeman phase we described

in section 5.1. The second term is related to the wavefront radius of curvature, which

is seen to depend here on the magnetic field – the magnetic field acts to produce a

curvature of the opposite sign to that which develops due to diffraction. The Gouy

phase, described by the final exponential in (5.36), is unaffected by the magnetic field.

In the case where ρ0 = ρB, meaning that the Laguerre-Gaussian state (5.32) is a Landau

state, (5.36) simplifies to

un,`(∆z) = exp {−i [`kL + (2n+ |`|+ 1)|kL|] ∆z}un,`(0), (5.37)

which is in agreement with (5.7) in section 5.1.



Chapter 6

Summary and outlook

6.1 Summary

I have shown that in a uniform magnetic field the orbital angular momentum of a

free electron comprises three components: canonical, cyclotron and diamagnetic. The

canonical angular momentum in the direction of the magnetic field is independent of

the field. This angular momentum has the same properties as the orbital angular

momentum of photons, which do not interact with an external magnetic field. The

cyclotron angular momentum, on the other hand, is associated with the motion of a

classical charged particle in the magnetic field. Here, this is related to the centre of

mass of the electron’s probability distribution.

The diamagnetic angular momentum is particularly interesting as it has properties

that exist neither for an electron wavefunction in field-free space or for a classical

particle. This angular momentum depends on the moment of inertia of the electron’s

probability distribution. Therefore, it varies with time as the wavefunction diffracts.
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The diamagnetic angular momentum also has a minimum allowed magnitude, as a

consequence of the uncertainty principle.

The diamagnetic angular momentum is associated with a rotation of the electron’s

probability density at the Larmor angular velocity. I have shown that this rotation can

be observed using electron beams that are in superpositions of states with oppositely

handed canonical angular momenta. This rotation can also be understood as arising

from a differential phase shift that depends on the canonical angular momentum, and

is therefore, in essence, a Faraday effect for electrons.

I have established and illustrated connections between a number of well-known rota-

tional phenomena that are normally considered in separate contexts. This includes

optical and electron vortices, cyclotron motion and diamagnetism, as described above,

as well as the connection between diamagnetism and Faraday rotation. I hope that

this helps to bridge gaps between photon optics, electron optics and condensed matter

physics.

One important conclusion to draw is that, where an external magnetic field is present,

care must be taken in applying to electrons ideas relating to optical angular momentum.

This is because theories developed to describe light take account only of the canonical

angular momentum of the electron, and not the additional angular momentum due to

the magnetic field. For example, when the centre of mass of an electron’s probability

distribution is moving in a straight line, along a magnetic field line, it may not be

obvious from this distribution that a magnetic field does in fact change the angular

momentum of the electron. Also, the diamagnetic angular momentum exists even for

“ordinary” electron beams, which do not contain vortices. These are important prac-

tical considerations for the utilisation of orbital angular momentum in electron optics,

as strong external magnetic fields are used to manipulate electron beams. Of course,

the interaction with a magnetic field also presents possibilities for novel technologies

that are not possible using photons.
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Perhaps what is most interesting of all, however, is that such a simple system – a single

electron in a uniform magnetic field – can exhibit such rich and unexpected behaviour.

6.2 Outlook

There are a number of ways in which the ideas contained in this thesis could be de-

veloped further or applied. Some promising directions for future research have already

been discussed in the results chapters. In what follows, I consider three ideas for future

research in more detail.

6.2.1 Vorticity of the current density

The electron states I have described in this thesis have uncertainty in their position and

momentum. This means that there is uncertainty in the electron’s angular momentum

[167], and I have considered the expectation value of this angular momentum, 〈Lkin
z 〉.

This is the angular momentum that would be expected to be measured upon averag-

ing over interactions that can occur at all positions within the electron’s probability

distribution.

What if, though, we are interested in the angular momentum within a specific region

of space? For example, what would be the angular momentum transferred to a small

absorbing target that occupies only a small region of the electron’s probability distri-

bution? A similar situation is encountered in optics, when laser beams carrying orbital

angular momentum interact with small particles located within the beam profile [168].

This also recalls rotations in fluids, where the local angular velocity that a small test

particle inserted into the fluid would experience is described by the vorticity of the
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fluid [41].

It seems that the local angular momentum density associated with the diamagnetic

current of the electron could be characterised using the concept of vorticity. Indeed,

a similar approach has already been taken for optical currents [168, 169]. It has been

shown that the angular momentum transferred to a small spherical absorbing particle

is proportional to the vorticity of the optical current at the location of the particle

[169]. For electrons, though, this current will be influenced by a magnetic field. The

electron’s current vorticity is equal to

ωz =
1

2
(∇× j)z =

1

2
∇⊥|Ψ|2 ×

j⊥
|Ψ|2

+ ωL|Ψ|2. (6.1)

The first term here is associated with a flow of current that is orthogonal to a gradient

in the probability density – this current may be due to canonical angular momentum,

a magnetic field, or both. The second term, however, describes an additional vorticity

that will arise only in the presence of a magnetic field. Interestingly, this vorticity is

present even when the probability density does not have a gradient. The dependence of

the electron’s current vorticity on its probability density, as well as the magnetic field,

and how this may appear in experiments, would be an interesting avenue for further

investigation.

6.2.2 Angular momentum coupling

It is well known that in atoms the spin and orbital components of an electron’s angular

momentum are not independent. Rather, when the electron moves under the influence

of the atomic nucleus there is a spin-orbit coupling. This can be understood in terms of

the relativistic quantum theory developed by Dirac. In fact, electron vortices moving

in field-free space are also expected to exhibit spin-orbit coupling [45]. This would

occur when the electron has sufficiently high energy (such that the non-relativistic

approximation is no longer valid) and also has a large radial component of momentum.
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This would be similar to the spin-orbit coupling that is observed with photons in tightly

focused light beams [170, 171].

In this thesis I have considered electrons moving in the absence of attractive Coulomb

forces, and with sufficiently low energy that the non-relativistic approximation is valid.

I have also considered only a magnetic field that is spatially uniform. As described in

Chapter 2, under these conditions the spin and orbital components of the electron’s

angular momentum can be separated. I have also discussed only the component of

canonical angular momentum that is in the direction of the magnetic field. As guar-

anteed by Noether’s theorem, this is constant, and independent of the diamagnetic

and cyclotron orbits. In a uniform magnetic field the cyclotron and Larmor angular

velocities are uniform throughout space.

What, though, about spatially varying magnetic fields? In such fields not only could

the orbital angular momentum be coupled to the spin, but also different components

of orbital angular momentum could be coupled to one another. Under what conditions

could a separate “diamagnetic” contribution to the electron’s angular momentum be

identified, and, in general, how would this be coupled to the other angular momentum

components?

One reason such questions are of interest is that coupling effects could lead to novel

means of manipulating the electron’s angular momentum. Free electrons could also

provide a simple and highly controllable system to investigate angular momentum

coupling in atoms and condensed matter.

It would be helpful for performing research in this direction to be able to obtain numer-

ical solutions to the Pauli equation with a non-uniform magnetic field. This would be

possible using a modification of the Chebyshev program I have described in this thesis.

Spinor wavefunctions could be incorporated in the same manner as in [172], where the

Chebyshev method was used to study wavepacket propagation in graphene on the basis
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of the Dirac equation. For reasons of numerical efficiency, it would be much preferable

to continue to numerically propagate the wavefunction in only two spatial dimensions.

This could be achieved by applying the WKB approximation to the motion in the z

direction [95], which is valid as long as the field varies slowly compared to the wave-

length of the electron. If the Hamiltonian in the reference frame of an electron moving

along the z axis were to be considered, then the Hamiltonian would depend on time.

Applying the Chebyshev method with a time-dependent Hamiltonian is possible if the

propagation is split into a series of short time steps, over which the Hamiltonian can be

approximated as uniform [173]. Given that these described changes would increase the

required computation time, and that investigating small coupling effects would require

high accuracy, it may be necessary to increase the speed of the program. One approach

to this would be to exploit the parallel processing capability of a graphics card [143].

Analytical solutions may also be feasible for simple field configurations. For example,

consider a magnetic field that is symmetric under rotation about the z axis, but may

vary along this axis. As described in section 2.2.3, close to the z axis the longitudinal

component of this field can be approximated by its axial value Bax(z), while the radial

component is determined by the gradient of the axial field. Such a magnetic field can

be described by the vector potential A(ρ, z) = Bax(z)ρφ̂/2 [93]. With this magnetic

field and vector potential, the Hamiltonian of the electron is

H =
1

2m
(pcan)2 +

1

2
mω2

L(z)ρ2 + ωL(z)Lcan
z + gωL(z)Sz

−1

4
g

dωL(z)

dz
ρ
(
e−iφS+ + eiφS−

)
, (6.2)

where ωL(z) = eBax(z)/(2m) is the spatially varying Larmor frequency, and S+ =

Sx + iSy and S− = Sx − iSy are the ladder operators. When Bax is constant, this is

the same as the Hamiltonian I used in Chapter 5. In general, however, the Larmor

angular velocity varies spatially along the z axis. Further, there is a spin-orbit coupling,

described by the last term, which is proportional to this variation of the Larmor angular

velocity. In investigating the questions discussed in this section, approximate analytical

solutions of such a Hamiltonian would likely be of value.
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6.2.3 Orbital Stern-Gerlach effect

The Stern-Gerlach experiment was one of the most important in the history of physics,

as it confirmed the existence of the electron’s spin. Stern and Gerlach passed a beam

of neutral atoms through an inhomogeneous transverse magnetic field, and observed a

splitting of the beam that was consistent with a dipole force associated with the spin

of atomic electrons [174].

Interestingly, a Stern-Gerlach splitting has never been observed for free electrons. Such

an experiment has long been discussed, and famously Bohr and Pauli argued that

such an observation would be impossible [175]. The important difference between free

electrons and the neutral atoms used by Stern and Gerlach is that, as a result of their

electrical charge, the electrons will experience a Lorentz force as they move in the

magnetic field. This force depends on the velocity of the electron, and Bohr argued

that, as a result of the uncertainty of this velocity, there would be a spreading of the

electrons’ trajectories that would dominate the dipole interaction of the spin. A fully

quantum mechanical analysis has revealed, however, that there is no barrier in principle

to measuring a splitting associated with the electron’s spin [95]. Different experimental

geometries have been proposed, and it appears that a measurement is feasible using

existing technology, but remains challenging [95, 96, 176, 177].

Here I propose that an analogous splitting may be observed that is associated with the

electron’s orbital angular momentum. This is based on a simple semi-classical argument

that concerns the trajectories of a classical particle that is ascribed a magnetic moment

of µ = −`µBẑ, which corresponds to an angular momentum of `~ẑ. Rather than the

transverse magnetic field used by Stern and Gerlach, I consider a magnetic field that is

longitudinal to the direction of propagation, which I take to be the z axis. As described

in Chapter 5, this gives rise to a Zeeman interaction with the orbital magnetic moment:

U = −µ.B = `µBBz. If the magnetic field, and therefore the Zeeman energy, has a

transverse gradient, this will result in a transverse dipole force. Here I consider a
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magnetic field the strength of which is proportional to the x coordinate: Bz(x) = αx.

Then, the dipole force is: F = −∇U = −`µBαx̂. Solving Newton’s equation of motion

for an electron that is initially moving in the z direction with velocity vz, and travels a

longitudinal distance L, it is found that the electron experiences a transverse deflection

in the x direction of x` = −`µBαL2/(4E), where E = mv2
z/2 is the electron’s kinetic

energy. This is equivalent to a deflection angle of

θ` ≈
x`
L

= −`µBαL

4E
, (6.3)

where a small angle approximation has been applied. Accordingly, it may be expected

that a superposition of states with different values of ` would display a splitting anal-

ogous to that observed by Stern and Gerlach. This is illustrated in Fig 6.1. For a

superposition of two states with equal and opposite angular momenta ±`, the separa-

tion angle would be

∆θ|`| = 2θ|`|. (6.4)

The size of this splitting depends on the magnitude of the orbital angular momen-

tum, the field gradient α, the longitudinal distance for which the electron propagates

through the field, L, and the electron’s kinetic energy. These quantities could vary

greatly depending on the experimental geometry; as an example, though, consider free

propagation over a distance of L = 1 mm, alongside a strip of permalloy providing a

field gradient of α = 108 T m−1 = 1 T/(10 nm), with ` = 100 and E = 100 keV. In this

case, the separation angle (6.4) would be 3 mrad. Deflections smaller than this, rarely

exceeding 100µrad, are measured in Lorentz electron microscopy [104].

The above considerations are based on a largely classical model, which does not take

into account the uncertainty in the electron’s position and velocity. It would be very

interesting to find out whether these predictions are borne out in a fully quantum

mechanical analysis of the problem. Such an analysis could be performed numerically

using an approach along the same lines as discussed in the previous section. If the

prediction of a Stern-Gerlach effect for electron orbital angular momentum were borne

out by accurate simulations, these could motivate and guide the design of experiments.

The observation of such an effect would be of significant fundamental interest, and could

also have technological potential for measuring and sorting electron angular momentum
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Figure 6.1: Stern-Gerlach effects for atoms (a) and free electron orbital an-

gular momentum (b).
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in a similar way to devices used in optics [178, 179].

Of course, it is impossible to imagine all the ways that electron orbital angular mo-

mentum could prove to be useful or important, and what else may be learned about

it. I am very interested to see what the future holds.



Appendix A

Numerical code

The Mathematica program I have written to solve the time-dependent Schrödinger

equation is described. The code here can also be accessed online at [146].

A.1 Description of Mathematica program

Note that \[symbol] indicates where a special character was used in Mathematica; for

example, \[HBar] would appear in the Mathematica notebook interface as ~. Semi-

colons are used to suppress output. This code was written for Mathematica 9.
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A.1.1 Global variables

Here $ is used to indicate a global variable. $Lx and $Ly are the lengths of the simula-

tion area along the x and y axes respectively, while $Nx and $Ny are the corresponding

numbers of grid points. $m and $q are the mass and charge of the particle for which the

Schrödinger equation is being solved. $δ is the parameter that determines the accuracy

of the Chebyshev expansion, as described in Chapter 3.

$Lx=7.5; $Ly=7.5;

$Nx=64; $Ny=64;

$m=1;

$\[HBar]=1;

$q=-1;

$\[Delta]=100;

A.1.2 Discretisation

The following functions return the x and y coordinates of the grid points corresponding

to the indices i and j, and, similarly, the coordinates kx and ky when working in Fourier

space. Note that the real space grid is centred on the origin, i.e. x and y lie in the

range −Lx/2 < x < Lx/2, −Ly/2 < y < Ly/2.

x[i_] := $Lx/$Nx(i-$Nx/2)

y[j_] := $Ly/$Ny(j-$Ny/2)

kx[i_] := (2\[Pi])/$Lx(i-$Nx/2)

ky[j_] := (2\[Pi])/$Ly(j-$Ny/2)
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The following functions, based on the in-built Mathematica functions Fourier and In-

verseFourier, implement the discrete Fourier transforms. Here RotateLeft is used since

the Mathematica functions require the zero frequency to be at the start of the array,

rather than in the centre.

FT[\[CapitalPsi]_] :=

($Lx/Sqrt[2\[Pi]])($Ly/Sqrt[2\[Pi]])

RotateLeft[Fourier[RotateLeft[\[CapitalPsi],{$Ny/2,$Nx/2}],

FourierParameters->{-1,-1}],{$Ny/2,$Nx/2}]//N

InverseFT[\[CapitalPsi]FT_] :=

(Sqrt[2\[Pi]]/$Lx)(Sqrt[2\[Pi]]/$Ly)

RotateLeft[InverseFourier[RotateLeft[\[CapitalPsi]FT,{$Ny/2,$Nx/2}],

FourierParameters->{-1,-1}],{$Ny/2,$Nx/2}]//N

Spatial derivatives of the wavefunction:

GridLaplacian[\[CapitalPsi]_] :=

InverseFT[Table[-kx[i]^2-ky[j]^2,{i,0,$Nx-1},{j,0,$Ny-1}]

FT[\[CapitalPsi]]]

GridxDeriv[\[CapitalPsi]_] :=

InverseFT[Table[I kx[i],{i,0,$Nx-1},{j,0,$Ny-1}]FT[\[CapitalPsi]]]

GridyDeriv[\[CapitalPsi]_] :=

InverseFT[Table[I ky[j],{i,0,$Nx-1},{j,0,$Ny-1}]FT[\[CapitalPsi]]]

Maximum frequency represented on the grid:

kxMax[Lx_,Nx_] := \[Pi]Nx/Lx

kyMax[Ly_,Ny_] := \[Pi]Ny/Ly
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Take any continuous function f(x, y) and represent it on the grid:

ToGrid[f_] := Table[f[x[i],y[j]],{i,0,$Nx-1},{j,0,$Ny-1}]//N

A.1.3 Wavefunctions and potentials

Introduce cylindrical coordinates:

\[Rho][x_,y_] := Sqrt[x^2+y^2]

\[Phi][x_,y_] := If[{x,y}=={0,0},0,ArcTan[x,y]]

Here a rotationally symmetric vector potential that describes a uniform magnetic field

in the z direction is defined. The symmetry axis of this vector potential is located at

(x0, y0).

CylindricalA[x0_,y0_,B_] :=

ToGrid[Function[{x,y},

{-0.5B\[Rho][x-x0,y-y0]Sin[\[Phi][x-x0,y-y0]],

0.5B\[Rho][x-x0,y-y0]Cos[\[Phi][x-x0,y-y0]],0}]]

The following generates a Laguerre-Gaussian wavefunction. The symmetry axis of this

wavefunction is located at (x0, y0) and the wavefunction has a transverse momentum

specified by the wavevector (kx 0, ky 0).

Nn\[ScriptL][n_,\[ScriptL]_] := Sqrt[(2n!)/(\[Pi](n+Abs[\[ScriptL]])!)]
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LG[x0_,y0_,kx0_,ky0_,n_,\[ScriptL]_,\[Rho]0_] :=

Nn\[ScriptL][n,\[ScriptL]]

Table[1/\[Rho]0 If[\[ScriptL]!=0,((\[Rho][x[i]-x0,y[j]-y0]Sqrt[2])/

\[Rho]0)^Abs[\[ScriptL]],1]

Exp[-(\[Rho][x[i]-x0,y[j]-y0]^2/\[Rho]0^2)]

LaguerreL[n,Abs[\[ScriptL]],2\[Rho][x[i]-x0,y[j]-y0]^2/\[Rho]0^2]

Exp[I\[ScriptL]\[Phi][x[i]-x0,y[j]-y0]]Exp[I kx0(x[i]-x0)]

Exp[I ky0(y[j]-y0)],{i,0,$Nx-1},{j,0,$Ny-1}]//N

Strength of uniform B field for which a Laguerre-Gaussian wavefunction with width ρ0

is a Landau state:

B0[\[Rho]0_] := (4$\[HBar])/(Abs[$q]\[Rho]0^2)

Width that a Laguerre-Gaussian wavefunction must have, to be a Landau state of a

field with strength B:

\[Rho]B[B_] := 2Sqrt[$\[HBar]/Abs[$q B]]

A.1.4 Time-evolution

These functions are used to calculate the time-evolution of the wavefunction using

the Chebyshev method. GeneralCheby works for any Hamiltonian with the form H

defined in section 3.1. For convenience when performing calculations for a uniform
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magnetic field a further function ChebyTDSEuniformB is defined, which implements

GeneralCheby with the vector potential CylindricalA.

a[S2_,S1x_,S1y_,S0_] :=

(S2(-kxMax[$Lx,$Nx]^2-kyMax[$Ly,$Ny]^2)+2(Max[S1x]kxMax[$Lx,$Nx]+

Max[S1y]kyMax[$Ly,$Ny])+Max[S0]-Min[S0])/2

b[S2_,S1x_,S1y_,S0_] :=

(S2(-kxMax[$Lx,$Nx]^2-kyMax[$Ly,$Ny]^2)+Max[S0]+Min[S0])/2

\[ScriptCapitalH][\[CapitalPsi]_,S2_,S1x_,S1y_,S0_] :=

S2 GridLaplacian[\[CapitalPsi]]+I S1x GridxDeriv[\[CapitalPsi]]+

I S1y GridyDeriv[\[CapitalPsi]]+S0\[CapitalPsi]

Overscript[\[ScriptCapitalH], ~][\[CapitalPsi]_,S2_,S1x_,S1y_,S0_] :=

1/a[S2,S1x,S1y,S0](\[ScriptCapitalH][\[CapitalPsi],S2,S1x,S1y,S0]-

b[S2,S1x,S1y,S0]\[CapitalPsi])

M[S2_,S1x_,S1y_,S0_,\[Eta]_] := Ceiling[a[S2,S1x,S1y,S0]\[Eta]/

$\[HBar]]+$\[Delta]

GeneralCheby[S2_,S1x_,S1y_,S0_,\[CapitalDelta]t_,\[CapitalPsi]Initial_] :=

Module[{Tq\[CapitalPsi],TqMinus2\[CapitalPsi],TqMinus1\[CapitalPsi],sum},

TqMinus2\[CapitalPsi]=\[CapitalPsi]Initial;

TqMinus1\[CapitalPsi]=Overscript[\[ScriptCapitalH],~][\[CapitalPsi]

Initial,S2,S1x,S1y,S0];

sum=BesselJ[0,a[S2,S1x,S1y,S0]\[CapitalDelta]t/$\[HBar]]

TqMinus2\[CapitalPsi]-2I BesselJ[1,a[S2,S1x,S1y,S0]

\[CapitalDelta]t/$\[HBar]]TqMinus1\[CapitalPsi];

Do[Tq\[CapitalPsi]=2Overscript[\[ScriptCapitalH],~][TqMinus1

\[CapitalPsi],S2,S1x,S1y,S0]-TqMinus2\[CapitalPsi];
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sum=sum+2(-I)^q BesselJ[q,a[S2,S1x,S1y,S0]\[CapitalDelta]t/

$\[HBar]]Tq\[CapitalPsi];

TqMinus2\[CapitalPsi]=TqMinus1\[CapitalPsi];

TqMinus1\[CapitalPsi]=Tq\[CapitalPsi];,{q,2,M[S2,S1x,S1y,S0,

\[CapitalDelta]t]}];

Exp[-I b[S2,S1x,S1y,S0]\[CapitalDelta]t]sum//N]

ChebyTDSEuniformB[\[CapitalPsi]Initial_,B_,\[CapitalDelta]t_] :=

Module[{Ax,Ay,Az,S2,S1x,S1y,S0},Ax=CylindricalA[0,0,B][[All,All,1]];

Ay=CylindricalA[0,0,B][[All,All,2]];

Az=CylindricalA[0,0,B][[All,All,3]];

S2=-$\[HBar]^2/(2$m);

S1x=$q$\[HBar]Ax/$m;

S1y=$q$\[HBar]Ay/$m;

S0=$q^2(Ax^2+Ay^2)/(2$m);

GeneralCheby[S2,S1x,S1y,S0,\[CapitalDelta]t,\[CapitalPsi]Initial]]

A.1.5 Calculation of observables

Action of operators for the x and y components of kinetic momentum on a wavefunction

Ψ:

pkinx\[CapitalPsi][\[CapitalPsi]_,A_] := Module[{Ax},Ax=A[[All,All,1]];

-I $\[HBar] GridxDeriv[\[CapitalPsi]]-$q Ax \[CapitalPsi]]

pkiny\[CapitalPsi][\[CapitalPsi]_,A_]:=Module[{Ay},Ay=A[[All,All,2]];

-I $\[HBar] GridyDeriv[\[CapitalPsi]]-$q Ay \[CapitalPsi]]
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Now the x and y components of the current density can be evaluated. These are then

combined into a single array containing the vector components j⊥ = (jx, jy); this is

required to plot the current using ListVectorPlot.

jx[\[CapitalPsi]_,A_] :=

Re[Conjugate[\[CapitalPsi]]pkinx\[CapitalPsi][\[CapitalPsi],A]]/$m

jy[\[CapitalPsi]_,A_] :=

Re[Conjugate[\[CapitalPsi]]pkiny\[CapitalPsi][\[CapitalPsi],A]]/$m

Combine two arrays into an array of 2D vectors, in the form required by ListVectorPlot:

Create2DVectors[vxArray_,vyArray_] :=

MapThread[Function[{vx,vy},{vx,vy}],{vxArray,vyArray},2]

jxy[\[CapitalPsi]_,A_] :=

Create2DVectors[jx[\[CapitalPsi],A],jy[\[CapitalPsi],A]]

It is also convenient to have a function to calculate the absolute value of the current

density within the x-y plane, |j⊥|:

Absjxy[\[CapitalPsi]_,A_] := Sqrt[jx[\[CapitalPsi],A]^2

+jy[\[CapitalPsi],A]^2]

Action of the operator for the z component of kinetic orbital angular momentum, with

respect to an axis located at (x0, y0), on the wavefunction Ψ:
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LkinzPsi[\[CapitalPsi]_,x0_,y0_,A_] := Module[{Ax,Ay},Ax=A[[All,All,1]];

Ay=A[[All,All,2]];

-I $\[HBar] (ToGrid[Function[{x,y},x-x0]]GridyDeriv[\[CapitalPsi]]-

ToGrid[Function[{x,y},y-y0]]GridxDeriv[\[CapitalPsi]])-

$q (ToGrid[Function[{x,y},x-x0]]Ay-ToGrid[Function[{x,y},y-y0]] Ax)

\[CapitalPsi]]

Expectation values of the z component of the kinetic orbital angular momentum, and

of the x and y coordinates:

ExpectationLkinz[\[CapitalPsi]_,x0_,y0_,A_] :=

Re[Total[Conjugate[\[CapitalPsi]] LkinzPsi[\[CapitalPsi],x0,y0,A],2]/

Total[Abs[\[CapitalPsi]]^2,2]]

Expectationx[\[CapitalPsi]_] := Total[ToGrid[Function[{x,y},x]]

Abs[\[CapitalPsi]]^2,2]/Total[Abs[\[CapitalPsi]]^2,2]

Expectationy[\[CapitalPsi]_] := Total[ToGrid[Function[{x,y},y]]

Abs[\[CapitalPsi]]^2,2]/Total[Abs[\[CapitalPsi]]^2,2]

A.1.6 Plotting

It is convenient to have functions to calculate the Larmor angular velocity, the cyclotron

period and the radius of the classical cyclotron orbit:

\[Omega]L[B_] := -$q B/(2 $m)

T[B_] := 2Pi/(2\[Omega]L[B])
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\[Sigma][B_,pC_] := (Abs[pC]/(2 $m Abs[\[Omega]L[B]]))

When using ListDensityPlot it is necessary first to transpose the array to be plotted.

It is also preferable to shift the array by one grid point in each direction. These

manipulations are achieved with the following function.

ProbDensForPlot[\[CapitalPsi]_] :=

Abs[Transpose[RotateLeft[\[CapitalPsi],{1,1}]]]^2

Now the probability density in x-y plane, at a given time, can be plotted. The colour

scale on the density plot runs from 0 to intensityScaleMax. The plot area is specified

by xLength and yLength, and may be smaller than the simulation area. The parameter

yOffest allows the centre of the plot area to be shifted along the y axis – this can be

used to centre the plot on the axis of the cyclotron orbit.

PlotProbDens[\[CapitalPsi]_,probDensScaleMax_,xLength_,yLength_,

yOffset_] :=

ListDensityPlot[ProbDensForPlot[\[CapitalPsi]],BaseStyle->

{FontSize->10},PlotRange->{{-xLength/2,xLength/2},{-yLength/2

+yOffset,yLength/2+yOffset},{0,probDensScaleMax}},

ColorFunction->(Directive[Opacity[Rescale[#,{0,1},

{0,Max[Abs[\[CapitalPsi]]^2]/probDensScaleMax}]],

Lighter[Blue,1/3]]&),ColorFunctionScaling->True,DataRange->

{{-$Lx/2,$Lx/2},{-$Ly/2,$Ly/2}},AspectRatio->

yLength/xLength,Frame->False,Background->None]

The current density is plotted in a similar manner:
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PlotCurrentDens[\[CapitalPsi]_,A_,currentScaleMax_,xLength_,

yLength_,yOffset_] :=

ListVectorPlot[jxy[\[CapitalPsi],A],DataRange->{{-$Lx/2,$Lx/2},

{-$Ly/2,$Ly/2}},AspectRatio->yLength/xLength,VectorScale->

{0.06,Scaled[1.8],None},Frame->False,VectorColorFunction->

(Directive[Opacity[Rescale[#5,{0,1},{0,Max[Absjxy[

\[CapitalPsi],A]]/currentScaleMax}]],Darker[Red,1]]&),

VectorColorFunctionScaling->True,VectorPoints->16,

PlotRange->{{-xLength/2,xLength/2},{-yLength/2+yOffset,

yLength/2+yOffset}},Background->None]

Now a time-series illustrating the evolution of the probability density and current den-

sity can be generated. The following functions accept as an argument a list containing

the wavefunction at a number of different time steps, which can be generated by ap-

plying ChebyTDSEuniformB iteratively using NestList.

Surface[\[CapitalPsi]List_,step_,xLength_,yLength_,yOffset_] :=

Polygon[{{(step-1)/(Length[\[CapitalPsi]List]-1),-xLength/2,

-yLength/2+yOffset},{(step-1)/(Length[\[CapitalPsi]List]-1),

xLength/2,-yLength/2+yOffset},{(step-1)/(Length[

\[CapitalPsi]List]-1),xLength/2,yLength/2+yOffset},{(step-1)

/(Length[\[CapitalPsi]List]-1),-xLength/2,yLength/2+yOffset}},

VertexTextureCoordinates->{{0,0},{1,0},{1,1},{0,1}}]

PlotEvolution[\[CapitalPsi]List_,A_,probDensScaleMax_,

currentScaleMax_,xLength_,yLength_,yOffset_] :=

Show[

Map[Function[step,

Graphics3D[

Style[

{Texture[ImageData[
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Show[PlotProbDens[\[CapitalPsi]List[[step]],

probDensScaleMax,xLength,yLength,yOffset],

PlotCurrentDens[\[CapitalPsi]List[[step]],A,

currentScaleMax,xLength,yLength,yOffset],

Background->None]]],

EdgeForm[Gray],Surface[\[CapitalPsi]List,step,xLength,

yLength,yOffset]},Lighting->{{"Ambient",White}}]]],

Range[Length[\[CapitalPsi]List]]],

Graphics3D[{Gray,Line[{{0,0,0},{1,0,0}}]}],

BoxRatios->{3,1,yLength/xLength},Boxed->False,

ViewPoint->{1.9,-2,0.7},ImageSize->72*3.125,Background->None,

Axes->True,AxesEdge->{{-1,-1},Automatic,Automatic},

AxesLabel->{"Subscript[\[Omega], c]t","x/Subscript[\[Rho], B]",

"y/Subscript[\[Rho], B]"},

Ticks->{{{0,0},{0.5,"\[Pi]"},{1,2\[Pi]}},{-1,0,1},{-2,-1,0,1,2}}]

A.2 Example of use

A Laguerre-Gaussian wavefunction with n = 0, ` = 1 and ρ0 = 1 can be generated as

follows:

\[CapitalPsi]0 = LG[0,0,0,0,0,1,1];

Now a magnetic field will be defined that has strength such that this wavefunction is

a Landau state. The corresponding vector potential in the cylindrical gauge is then

calculated.
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B = B0[1];

A = CylindricalA[0,0,B];

The maximum values of the probability density and current density that will be dis-

played in the density plots must be chosen. Examples of such settings are the following:

probDensScaleMax = Nn\[ScriptL][0,0]^2;

currentScaleMax = Max[Absjxy[\[CapitalPsi]0,A]];

The probability density and probability current density can be plotted together by

overlaying one plot on top of the other. This is achieved with the following code, which

generates the output shown in Fig. A.1.

Show[PlotProbDens[\[CapitalPsi]0,probDensScaleMax,4,4,0],

PlotCurrentDens[\[CapitalPsi]0,A,currentScaleMax,4,4,0],

ImageSize->28.45*3]

The following code propagates this wavefunction over a time interval equal to a quarter

of a cyclotron period.

\[CapitalPsi] = ChebyTDSEuniformB[\[CapitalPsi]0,B,T[B]/4];

As this wavefunction is a Landau state – one of the energy eigenstates of the system

– the magnitude of the wavefunction should be conserved. This can be checked as

follows:
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Max[Abs[Abs[\[CapitalPsi]]-Abs[\[CapitalPsi]0]]]

Here the result is:

2.79284*10^-6

The expectation values of the kinetic orbital angular momentum before and after prop-

agation can also be inspected. (Note that I have set $~ = 1.)

ExpectationLkinz[\[CapitalPsi]0,0,0,A]

ExpectationLkinz[\[CapitalPsi],0,0,A]

3.

3.

For multiple time steps, it is convenient to apply ChebyTDSEuniformB iteratively

using the built-in Mathematica function NestList. Here this is done for an initial

wavefunction that is the same as Ψ0 above expect that it also has a net momentum

in the x direction that is described by the wavenumber kx 0 = 2. This results in a

cyclotron motion of the centre of mass. Here there are 4 propagation steps, each equal

to a quarter of a cyclotron period.

\[CapitalPsi]list = NestList[Function[\[CapitalPsi]i,

ChebyTDSEuniformB[\[CapitalPsi]i,B,T[B]/4]],LG[0,0,2,0,0,1,1],4];

The probability density and current density will now be plotted for Ψlist. Note that

here the plot area is shifted along the y axis by an amount σ[B,2$~], which is the radius
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Figure A.1: Density plot displaying the probability density and current den-

sity of a Laguerre-Gaussian wavefunction with n = 0 and ` = 1. This is

generated by combining the output of the functions PlotCurrentDens and PlotProb-

Dens.

Figure A.2: Plotting the evolution of the probability density and current

density using the PlotEvolution function. This is shown for a Laguerre-Gaussian

wavefunction with n = 0, ` = 1 and an x component of transverse momentum equal

to 2~/ρB.

of the cyclotron orbit (here equal to 0.5). This means that the plot area is centred on

the axis of the cyclotron motion. The output of this code is shown in Fig. A.2.

Show[PlotEvolution[\[CapitalPsi]list,A,probDensScaleMax,

currentScaleMax,4,4,\[Sigma][B,2$\[HBar]]],ImageSize->28.45*10,

BaseStyle->{FontSize->12}]
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1. The optical Faraday effect and its generalization for electron waves

Michael Faraday reported in 1845 that the polarization of light can be affected by magnetic
fields, an effect that now bears his name. Since then, the Faraday effect has found numerous
metrological and research applications, including the ultra-sensitive detection of magnetic
fields, [1, 2], or of fields generated by electron plasmas in interstellar space and the
ionosphere [3, 4].

Faraday noted that the polarization direction of light is rotated after passing through ‘heavy
glass’ exposed to a longitudinal magnetic field. We now understand that the Faraday effect
arises from the different speed of propagation of right and left handed circularly polarized light
through an optically active medium. The associated difference in accumulated phase between
the circular components of linearly polarized light results in a rotation of the polarization
direction, shown in figure 1(a).

One of the intriguing properties of light is that it can carry angular momentum: a spin
contribution associated with circular polarization (±h̄), but also orbital angular momentum
(OAM) [5, 6]. While circular polarization describes a rotation of the electric field vector upon
propagation, the OAM is a feature of ‘twisted’ light beams. The OAM can take on arbitrary
multiples of h̄ depending on how tightly wound the phase fronts are. These so-called ‘vortex
beams’ have a rotational intensity pattern and are associated with a phase dependence exp(i lφ),
where l is a non-zero integer and φ the azimuthal angle.

Strictly speaking, Faraday rotation is not a relevant concept for optical OAM. The reason
is that there is no intrinsic mechanism in a gyromagnetic medium to produce the required
OAM state dependent dispersion, because selection rules forbid coupling of the OAM to the
atomic electron degrees of freedom. This is consistent with results from a recent experiment
in which no rotation was observed for a superposition of right and left handed OAM states
(a Hermite–Gauss mode) propagating through cholesteric liquid crystals [7]. We note that a
relative phase shift between right and left handed OAM components will appear as a rotation
of the intensity pattern [8]. Such phase shifts can be induced by spinning the medium through
which the light propagates, inducing a ‘mechanical’ Faraday rotation, as demonstrated recently
in a slow light medium [9].

New Journal of Physics 14 (2012) 103040 (http://www.njp.org/)
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Figure 1. (a) Illustration of the Faraday effect for spin angular momentum, i.e.
optical polarization, where the two opposite circular polarization components
propagate at different speeds through an optically active medium in a magnetic
field. As a result, the linear polarization rotates by an angle proportional to
the magnetic field. (b) The analogous effect for transverse beam profiles of
electrons, where the different propagation speed of states with opposite OAM
in a longitudinal magnetic field leads to image rotation.

Electron vortices are unusual quantum states that have only recently been predicted [10]
and produced in transmission electron microscopy (TEM) experiments [11, 12]. Electron vortex
beams have the same geometrical properties as their optical counterparts, being characterized
by an exp(i lφ) angular dependence related to lh̄ units of OAM, but they also produce features
that have no analogue in optics. In particular the circulation of charge in an electron vortex
beam gives rise to an arbitrarily large orbital magnetic moment (figure 2), distinct from the
magnetic moment due to spin [10, 13]. Hence electron vortices can couple to electronic degrees
of freedom through dipole selection rules forbidden to optical vortices [14].

Given the analogies (and differences) between optical and electron vortices, the question
arises: do electron vortex waves undergo something analogous to an optical Faraday effect?
Here we show that there is indeed a Faraday rotation (compare figure 1(b)) arising through
Zeeman interaction from propagation parallel to a uniform, external magnetic field (i.e. in a
geometry where there is no Lorentz force).

New Journal of Physics 14 (2012) 103040 (http://www.njp.org/)



4

2. Electron vortex states

The dynamics of a non-relativistic electron propagating in a magnetic field B (with associated
vector potential A) is described by the Hamiltonian

Ĥ =
1

2m
(−i h̄∇ − e A)2 − B · µ̂S, (1)

where m and e = −|e| are the electron mass and charge, respectively. The Hamiltonian
contains the kinetic energy due to the canonical momentum and the Zeeman interaction of the
electron spin with an arbitrary external magnetic field B. The electron’s two-component spinor
wavefunction ψ̃ satisfies the Pauli equation Ĥ ψ̃ = i h̄ ∂

∂t ψ̃ . Here µ̂S = −gµBσ̂/2 is the operator
for the magnetic moment,µB = h̄|e|/(2m) is the Bohr magneton, g ≈ 2 is the Landé g-factor for
electron spin and σ̂ is the vector of Pauli spin matrices (σ̂ x , σ̂ y, σ̂ z). In agreement with typical
parameters in transmission electron microscopes (∼8 nA nm−2), we assume that beam currents
are sufficiently low so that Coulomb repulsion can be neglected.

In the case of the uniform magnetic field directed along the z-axis, a suitable choice for
the vector potential is A = (Bzr/2)φ̂. Exploiting the cylindrical symmetry of the system, the
Hamiltonian can be put in the form

Ĥ = −
h̄2

2m

∂2

∂z2
−

h̄2

2m
∇

2
⊥

+
1

2
mω2

Lr 2 +ωL(L̂ z + gŜz). (2)

Here ωL = |e|Bz/(2m) denotes the Larmor frequency, L̂ z = −i h̄ ∂

∂φ
and Ŝz = sh̄σ̂ z are the

operators for the z component of OAM and spin, respectively, where s is the spin quantum
number. The first term gives the kinetic energy of motion along z, which is the same as in field-
free space; the second and third terms together give the energy for the transverse motion, and
have the form of the Hamiltonian for a harmonic oscillator with characteristic frequency ωL; the
final term gives the Zeeman energy, with contributions from both OAM and spin.

With Hamiltonian (2) the spinor components decouple and we can find monochromatic
wave solutions which obey the time independent Schrödinger equation for a scalar
wavefunction ψ . This problem can be solved exactly for eigenstates with given z components
of OAM and momentum [15]. Separating the degrees of freedom,

ψnls(r, φ, z)= Rn|l|(r) exp(i lφ) exp(i knlsz), (3)

we identify the radial modes

Rn|l|(r)=

√
2n!

π(n + |l|)!

1

wB

(√
2r

wB

)|l|

e−r2/w2
B L |l|

n

(
2r 2

w2
B

)
, (4)

where wB = 2
√

h̄/|eBz| is a characteristic width which depends on the magnitude of
the magnetic field, and L |l|

n is an associated Laguerre polynomial. The radial modes are
characterized by the OAM quantum number, l, and the radial mode number n = 0, 1, 2, . . .
which denotes the number of radial nodes of the electron density function. The radial profile
of a mode with l = 1 and n = 0 is shown in figure 2. The transverse beam profile, given
by Rn|l|(r) exp(i lφ), is the same as that of the Laguerre–Gauss beams familiar from optical
vortices, as was also pointed out in [16].

New Journal of Physics 14 (2012) 103040 (http://www.njp.org/)
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Figure 2. The circulating charge in an electron vortex beam generates a magnetic
moment which interacts with external magnetic fields. The electron density
function vanishes at the vortex core and the propagation direction is twisted
around this core.

Recognizing that the combined second and third terms in (2) describe a two-dimensional
harmonic oscillator, which in polar coordinates has energy eigenvalues h̄|ωL|(2n + |l| + 1), the
eigenvalues for the total energy are the well known Landau levels

E = −
h̄2k2

nls

2m
+ h̄|ωL|(2n + |l| + 1)+ h̄ωL(l + gs). (5)

The corresponding allowed wave numbers are then

knls = k0

√
1 −

1

E
[(2n + |l| + 1)h̄|ωL| + (l + gs)h̄ωL], (6)

where E is the total energy determined by the electron source, and k0 =
√

2m E/h̄ is the wave
number for a plane (non-vortex) wave propagating freely along the z-axis. For electron vortices,
the phase acquired upon propagation depends on the magnetic field. We see from (6) that the
geometric path depends upon the direction of the angular momentum through the signs of
l and s. This corresponds to a phase θnls = knlsz acquired upon propagation which depends
(via the Larmor frequency) on the magnetic field and on both the spin and orbital angular
momenta.

If the magnetic energy is small compared to the total energy (a situation justified e.g. for
electrons in TEM experiments), i.e. (2n + |l| + 1)h̄|ωL| + (l + gs)h̄ωL � E , we can apply the
paraxial approximation to the wave numbers (6). The corresponding phase shift accumulated
along the trajectory of the vortex then comprises three parts:

θnls = k0z − (2n + |l| + 1)|kL|z − (l + gs)kLz, (7)

New Journal of Physics 14 (2012) 103040 (http://www.njp.org/)
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where kL =
√

m
2EµB Bz/h̄ is a spatial frequency which corresponds to the Larmor temporal

frequency ωL. The first term describes the phase evolution in free space; the second depends
on the energy of the transverse motion due to the magnetic field, and the third term arises from
the Zeeman interaction with the total angular momentum. In the following it is this latter term
which is important, as it causes a different phase shift for vortex states with opposite helicity.
We note that electrons in superpositions of left and right spin components should result in a spin
Faraday rotation, analogous to optics. Here we concentrate on OAM Faraday rotation for which
there is no optical counterpart.

Just like for the optical Faraday effect, the differential phase shifts become observable as
a rotation angle for electrons in superpositions of vortex states with opposite handedness. As
they originate from the interaction of the magnetic dipole moment with the external field, the
electron Faraday effect does not require the mediation of an optically active medium but occurs
in vacuum!

3. Considerations on observing the Faraday effect for electrons

Electron vortex states have recently been generated in transmission electron microscopes (TEM)
via diffraction from nano-fabricated holograms [12, 17–19]. Using suitably designed holograms,
also superpositions of vortex states can be generated (see appendix B). The required shape of
the holograms is determined by the interference pattern of the target state with a reference wave
function, e.g. a plane or spherical wave, resulting in transverse or longitudinal separation of the
diffraction orders respectively.

In order to realize electron Faraday rotation we require electrons in a superposition of two
modes with the same spin and radial mode number but opposite vorticity ±l. The probability
density then has an azimuthal dependence

1

2

∣∣ψnls +ψn(−l)s

∣∣2 ∝ cos2[l(φ−8B)], (8)

where we define

8B = kLz =
1

h̄

√
m

2E
µB Bzz. (9)

For n = 0 this is a petal pattern consisting of 2|l| maxima equally spaced around a circle,
which after propagating through a region of a longitudinal magnetic field is rotated through the
angle 8B. The maxima are separated by phase singularity lines, where the phase changes by
π and the probability density vanishes. For the case of l = ±1 the transverse profile, shown in
figure 3, is that of the H G10 Hermite–Gaussian mode. Here the analogy with optical polarization
is clearest, with the l = ±1 components corresponding to the right and left handed circular
polarization states, and the nodal line to the linear polarization.

While the phase change depends on l, the rotation of the intensity pattern is independent
of l. The Laguerre–Gauss modes form a complete basis with which an arbitrary wavefunction
can be described, and therefore any intensity and phase profile will rotate through the same
angle 8B [8].

So far we have considered the eigenstates of (2) with a transverse scale determined by
the magnetic field strength through the parameter wB. A beam with the same radial profile
but a width w 6= wB is, however, no longer an eigenstate and will therefore change upon
propagation. Solving the paraxial wave equation (see appendix A) we find that the radial profile
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7

Figure 3. The electron density distribution rotates when propagating through a
parallel magnetic field, and at the same time varies its beam waist periodically,
with twice the period of the rotation (see inset).

Figure 4. Verdet parameter as a function of energy, i.e. the rotation angle per T
and m.

retains the same Laguerre–Gauss form, only now expands and contracts periodically in time,
or equivalently with propagation distance (A.7). This contraction happens at twice the Larmor
frequency and hence twice every full rotation. The width variation can be understood in terms of
the competition between diffraction, which dominates when w <wB, and the confining effect
of the magnetic field, which dominates when w >wB. This is illustrated in figure 3.

The rotation angle 8B, depends on the initial kinetic energy E of the electrons, as
detailed in (9); as slow electrons spend more time in the magnetic field, their rotation angle is
larger. While optical Faraday rotation is characterized by the Verdet constant (a proportionality
constant of rotation angle per propagation distance and magnetic field strength), the electron
‘Verdet’ parameter varies with kinetic energy (see figure 4).

Even with low-energy TEM, measuring the proposed deflection due to an interaction
with a perpendicularly-magnetized sample remains challenging, in particular the necessity
to distinguish Faraday rotation from the usual cycloid motion of an electron beam within

New Journal of Physics 14 (2012) 103040 (http://www.njp.org/)
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magnetic lenses. Ignoring relativistic corrections, typical values (E = 60 keV, sample thickness
= 100 nm, longitudinal field B = 1 T) yields a rotation about the beam axis of 0.06 mrad. In
certain geometries differential phase contrast techniques routinely measure deflections of this
magnitude, when the rotation can be projected by long camera lengths to give measurable
deflections. A more promising experimental approach will be to consider low energy electron
beams. Low energy photoelectrons ejected by circularly polarized photons are also known to
carry OAM [20] and the subsequent propagation of these electrons through magnetic thin films
may also visualize Faraday effects.

4. Conclusions

We have demonstrated that for electron vortex states propagating in a longitudinal magnetic
field the Zeeman interaction produces an OAM dependent dispersion. This results in a rotation
of the probability density of a superposition of vortex states about the beam axis, analogous
to the optical Faraday effect. To the best of our knowledge this is a new concept, it is an
effect that is not present in optics, and it may lead to applications in electron spectroscopy.
The magnitude of the rotation scales with the magnitude of the magnetic field, and increases
with decreasing energy. There are a number of interesting applications which may follow. OAM
Faraday rotation provides the possibility of spatially resolved measurements of longitudinal
magnetic field components, analogous to the measurement of transverse fields in Lorentz
microscopy, by measuring the rotation angle of a vortex superposition. Moreover, we note that
in the approximation considered here, spin and OAM are separately conserved. This would not
be expected for relativistic non-paraxial beams [13] or spatially varying magnetic fields [21],
suggesting a route to investigating intrinsic spin–orbit coupling in an electron vortex beam, via
a spin-dependence of the rotation angle.
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Appendix A. Calculation of beam width variation using the paraxial approximation

To find the propagation of a beam with a given beam waist we evaluate the time-independent
Schrödinger equation with Hamiltonian (2) as before in the paraxial approximation. We assume
a solution of the form

ψ(r, φ, z)= u(r, φ, z) ei k0z, (A.1)

where u(r, φ, z) is an envelope function which describes the evolution of the beam profile upon
propagation. k0 is as defined in the main text. If u varies sufficiently slowly with z we can use
the paraxial approximation∣∣∣∣∂2u

∂z2

∣∣∣∣� ∣∣∣∣2k0
∂u

∂z

∣∣∣∣ , ∣∣∇2
⊥

u
∣∣ . (A.2)
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Then, substituting (A.1) into the Schrödinger equation (now no longer including spin), we arrive
at the paraxial wave equation

∇
2
⊥

u + 2i k0
∂u

∂z
− k2

0k2
Lr 2u −

2k0kL

h̄
L̂ zu = 0. (A.3)

The first two terms here are the same as in the paraxial equation for an optical beam propagating
in vacuum, or for an electron beam in field-free space. The third term represents the confining
effect of the magnetic field, and the final term gives the Zeeman interaction. For an OAM
eigenstate with u ∝ ei lφ , the last term takes a constant value −2k0kLlu. We can then factor
out the phase due to the Zeeman interaction by writing

u = v e−i lkLz, (A.4)

for some function v(r, φ, z). v then satisfies the equation

∇
2
⊥
v + 2i k0

∂v

∂z
− k2

0k2
Lr 2v = 0. (A.5)

This equation has the same form as the equation from paraxial optics for a medium with
quadratically varying refractive index n(r)= n0 −

1
2n2r 2, where n0 and n2 are constants (see

for example [22]), only here n2 → k2
L. Such an optical system supports Laguerre–Gauss type

modes which experience a periodic width variation due to the competition between diffraction
and the focusing effect produced by the refractive index variation. A similar effect is described
in [23], for the propagation of vortex wavepackets in a transverse field.

The solutions can be written [24, 25] as

vnl(r, φ, z)=

√
2n!

π(n + |l|)!

1

w(z)

(√
2r

w(z)

)|l|

e−r2/w2(z)L |l|
n

(
2r 2

w2(z)

)
ei lφ

× exp

[
−i

k0r 2

2R(z)

]
e−i(2n+|l|+1)ξ(z), (A.6)

where w(z) is the beam width, R(z) is the wavefront radius of curvature and ξ(z) gives the
longitudinal phase shift. The equation (A.6) is the same as for the LG modes in free space,
except here the functions w(z), R(z) and ξ(z) are different. Choosing z = 0 to coincide with
one of the minima of w(z), and calling this minimum value w0, the width function can be
written, for the electron beam in a magnetic field, as

w(z)= wB

√√√√1 −

[
1 −

(
w0

wB

)2
]

cos (2kLz). (A.7)

Appendix B. Diffraction grating patterns for production of electron vortex superpositions

For interference with a plane wave ψ ∝ ei kx x , in which case the diffraction orders will be
separated transversely, a suitable hologram pattern is generated from

|ψ2
|holo =

{
1 if 1

3 |2 cos l(φ−φ0)+ ei kx x
|
2 > 1

2 ,

0 otherwise,
(B.1)

where φ0 specifies the orientation of the singularity lines. A grating producing a superposition
of l = 1 and −1 modes in the first diffraction order is shown in figure B.1(a), where we have
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10

(a) (b)

(c)

Figure B.1. (a) Hologram grating to produce a superposition of vortex modes
with l = ±1. (b) Grating to produce the same superposition but with the
diffraction orders separated longitudinally along the beam axis. (c) Diffraction
pattern produced by grating in (a), with the desired superposition in the ±1
diffraction orders.

chosen φ0 = 0. Note that the left and right sides of the grating are displaced by half a period
with respect to one another, introducing the necessary π phase shift. In a similar way a hologram
which separates the diffracted beam components longitudinally rather than transversely could
be used [18, 19]. An example of this type of grating is shown in figure B.1(b). This is calculated
using the same method, only with the plane wave factor ψ ∝ ei kx x replaced with the spherical
wave profile ψ ∝ ei Cr2

, where C is a constant which determines the curvature of the wavefront,
and hence the spacing of the diffraction orders. Such grating patterns can be produced in the
same way as those already used to generate single vortex modes. We note that gratings which
generate superpositions of vortex beams from beams that have flat phasefronts have recently
been produced and used to investigate the Gouy phase for electrons [26].
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We show that an electron moving in a uniform magnetic field possesses a time-varying “diamagnetic”
angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary
with time, despite the rotational symmetry of the system. This apparent violation of angular momentum
conservation is resolved by including the angular momentum of the surrounding fields.
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Introduction.—There is an intimate relation between
angular momentum and rotational symmetry, as encapsu-
lated by Noether’s theorem [1]. In particular, if a system is
symmetric under rotation about a given axis, the angular
momentum along that axis will be conserved. This is the
case with free electron vortices, which in the last few years
were predicted and observed in electron microscopes [2–5].
Electronvortex beams in field-free space have a cylindrically
symmetric wave function and maintain a constant orbital
angular momentum in the direction of propagation [2].
Based on the same argument of rotational symmetry it

would seem that for an electron exposed to a uniform
magnetic field its orbital angular momentum in the direc-
tion of the field must be conserved. This is indeed true of
the angular momentum about the axis of the classical
cyclotron orbit, and, furthermore, the energy eigenstates
of an electron in a uniform magnetic field—the Landau
states—have constant angular momentum [6,7].
On the other hand, it is known that the kinetic angular

momentum of an electron, which describes its mechanical
motion, is not necessarily constant even when the electron
interacts with external fields which are rotationally sym-
metric [8]. The balance and redistribution of momentum
and angular momentum between matter and fields is a
fundamental problem of great general interest [9–12].
Recent investigations of vortex electron states in uniform

and quasiuniform magnetic fields have revealed that the
angular velocity of the electron depends not only on the
field strength but also on the azimuthal quantum number
and the radial position [7,13,14]. Furthermore, in these
quantum states the average radial position of the electron
is not in general constant, but rather changes as the wave
function diffracts [14–16]. This contrasts sharply with the
classical orbit in a uniform magnetic field, leading to the

question of whether the angular momentum of the electron
is in fact conserved.
In this Letter, we show that for an electron in a nonsta-

tionary state, the changing radius of the electron’s prob-
ability distribution in fact gives rise to a time-varying
kinetic angular momentum. The canonical angular momen-
tum however remains constant. The apparent violation of
angular momentum conservation is resolved by considering
the angular momentum in the fields surrounding the
electron. We show that the total kinetic angular momentum,
including that of the fields, is conserved, as indeed it
must be.
Results.—We consider an electron moving in a uniform

magnetic field, and take the direction of this field to define
the z axis. The (nonrelativistic) Hamiltonian for this system
can be written in the form

H ¼ 1

2m
ðpkinÞ2; ð1Þ

where pkin ¼ mv ¼ pcan − eA is the kinetic momentum,
pcan ¼ −iℏ∇ is the canonical momentum, e ¼ −jej is the
charge of the electron, and m its mass. We choose a vector
potential which in cylindrical polar coordinates (ρ;ϕ; z) has
the form

A ¼ Bρ
2
ϕ̂ ⇒ B ¼ ∇ ×A ¼ Bẑ: ð2Þ

We note, for later reference, that this choice of vector poten-
tial corresponds to the Coulomb gauge, in that ∇ ·A ¼ 0.
The Hamiltonian (1) can then be rewritten as [17]

H ¼ 1

2m
ðpcanÞ2 þ 1

2
mω2

Lρ
2 þ ωLLcan

z ; ð3Þ

where ωL ¼ −eB=ð2mÞ is the Larmor frequency and

Lcan
z ¼ ðr × pcanÞz ¼ −iℏ

∂
∂ϕ ð4Þ

is the z component of canonical orbital angular momentum.
As the z component of linear momentum pkin

z ¼ pcan
z

commutes with the Hamiltonian, the motion of the electron
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in the z direction is unaffected by the magnetic field. This
means that for an electron beam propagating along the z axis
we need only consider the z component of angular momen-
tum. Furthermore, as the Hamiltonian, in our chosen gauge,
is independent of ϕ it commutes with the canonical angular
momentum ½Lcan

z ; H� ¼ 0 and, hence,Lcan
z is conserved [15].

Consider an electron wave function with cylindrical
symmetry so that

Ψ ¼ uðρ; z; tÞeilϕ: ð5Þ

We make no assumption about the form of the function u,
so that in general this will not be an energy eigenstate.
This state is, however, an eigenstate of Lcan

z and hence the
expectation value of its angular momentum has the time-
independent value

hLcan
z i ¼ lℏ: ð6Þ

This is eminently reasonable as the system is symmetric
under rotation about the z axis, so that according to
Noether’s theorem the z component of the angular momen-
tum should be conserved.
In the presence of a magnetic field, the kinetic orbital

angular momentum differs from its canonical counterpart:

Lkin
z ¼ ðr × pkinÞz ¼ Lcan

z þmωLρ
2 ð7Þ

[8], where we have used the definition of the kinetic linear
momentum and the specific form of the vector potential (2).
We see that the field-dependent contribution to the kinetic
angular momentum is associated with a rotation of the
electron probability distribution at constant angular veloc-
ity ωL. This is consistent with Larmor’s theorem [18] and
can be interpreted as a diamagnetic response of the electron
to the external magnetic field [19].
The expectation value of the kinetic orbital angular

momentum can be expressed as

hLkin
z i ¼ lℏþ hIziωL; ð8Þ

where we have used the fact that the expectation value of
the z component of the electron’s moment of inertia is

hIzi ¼ mhρ2i: ð9Þ

This means that the kinetic angular momentum of the
electron will be constant only if the radial probability
distribution is constant. The squared radius ρ2 does not
commute with the Hamiltonian, however, meaning this
quantity is not a constant of motion [6]. This means that, in
contrast with the classical motion, the mean value hρ2i will
not, in general, be a constant.
It can be seen from the form of the Hamiltonian (3) that

the radial coordinate exhibits a harmonic motion. This can

be understood as the radial diffraction of the electron wave
function in a harmonic potential generated by the inter-
action with the magnetic field [15]. The energy associated
with the motion perpendicular to the magnetic field remains
constant and has the expectation value

E⊥ ¼
�
H −

1

2m
ðpkin

z Þ2
�
: ð10Þ

We will obtain the time behavior of the radial width, and
later also of the kinetic orbital angular momentum, from
Heisenberg’s formalism:

∂2hρ2iðtÞ
∂t2 ¼ −

1

ℏ2
h½½ρ2; H�; H�iðtÞ

¼ −ω2
cðhρ2iðtÞ − ~ρ2Þ; ð11Þ

where ωc ¼ 2ωL ¼ −eB=m is the classical cyclotron

frequency and ~ρ2 ¼ ðE⊥ − ωLlℏÞ=ðmω2
LÞ is the constant

steady-state value which depends on the energy, the
canonical angular momentum, and the magnetic field. It
can be seen from (11) that the mean-square radius oscillates

sinusoidally about the value ~ρ2 at the cyclotron frequency.
Setting t ¼ 0 to correspond to a stationary point of this
oscillation, we have

hρ2iðtÞ ¼ ~ρ2 þ ðhρ2ið0Þ − ~ρ2Þ cosðωctÞ: ð12Þ
According to the relation (8) this is intrinsically linked to an
oscillation of the kinetic angular momentum:

hLkin
z iðtÞ ¼ ~Lkin

z þ ðhLkin
z ið0Þ − ~Lkin

z Þ cosðωctÞ; ð13Þ
where the steady-state value of the kinetic angular
momentum

~Lkin
z ¼ lℏþmωL

~ρ2 ¼ 2

ωc
E⊥ ð14Þ

coincides with the classical value of the kinetic angular
momentum for an electron with rotational kinetic energy
E⊥. In general, the angular momentum oscillates sinus-
oidally about the classical value, with the same frequency
ωc as the classical cyclotron motion. Only if the kinetic
angular momentum is equal to the classical value does its
expectation value remain constant. In this sense (14)

defines the steady-state value ~ρ2.
We can obtain an exact solution for (12) in the case when

at t ¼ 0 the wave function (5) has the Laguerre-Gaussian
form

Ψn;lð0Þ ¼ LGn;l ∝
�
ρ

ffiffiffi
2

p

ρ0

�jlj
exp

�
−
ρ2

ρ20

�
Ljlj
n

�
2ρ2

ρ20

�

× exp ½iðlϕþ kzzÞ�; ð15Þ
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where l ∈ Z, n ¼ 0; 1; 2;…, and Ljlj
n is an associated

Laguerre polynomial. The index n specifies the number
of radial nodes in the wave function, while ρ0 is the width
of the Gaussian envelope. The Laguerre-Gaussian wave
functions can be used to describe electron vortex beams
which have intrinsic orbital angular momentum lℏ [2] as
well as electron beams with no intrinsic orbital angular
momentum in the case when l ¼ 0.
The mean-square radius of the Laguerre-Gaussian wave

function (15) is equal to

hρ2in;lð0Þ ¼
1

2
ð2nþ jlj þ 1Þρ20 ð16Þ

[20]. As this depends on the radial index n, it follows that
the kinetic angular momentum of the electron also depends
on n, which is not the case in the absence of a magnetic
field. The steady-state mean-square radius for the same
electron energy obtained from (10) and (14) is

~ρ2n;l ¼ 1

4
ð2nþ jlj þ 1Þ

�
1þ

�
ρB
ρ0

�
4
�
ρ20; ð17Þ

where ρ2B ¼ 2ℏ=ðmjωLjÞ ¼ 4ℏ=jeBj. As the phase of the
wave function (15) does not depend on ρ, we have

∂hρ2in;lð0Þ
∂t ¼ 1

ℏ
Imh½ρ2; H�in;lð0Þ ¼ 0; ð18Þ

meaning that this wave function corresponds to a stationary
point of the oscillation. The time evolution of hρ2in;l
can therefore be obtained by substituting (16) and (17)
into (12).
In the special case when ρ0 ¼ ρB the Laguerre-Gaussian

wave functions in (15) become the Landau energy eigen-
states and we obtain the constant values of hLkin

z in;l
expected in this case [7]. In general, however, the angular
momentum will oscillate around the classical value, as
illustrated in Fig. 1(a) for different ratios ρ0=ρB and in
Fig. 1(b) for different quantum numbers l corresponding to
canonical angular momenta lℏ. If the canonical angular
momentum is in the opposite direction to the magnetic field
then the kinetic angular momentum may even change
direction, as clearly seen for l ¼ −4 in Fig. 1(b). We note
that the moment of inertia increases with the radial quantum
number n, resulting in larger amplitude oscillations, and
that a reversal of the direction of the magnetic field
corresponds to a shift of the phase of the oscillations
by 180°.
As we have seen, the kinetic angular momentum may

change with time despite the fact that the system is entirely
rotationally symmetric—seemingly contradicting Noether’s
theorem. In order to restore angular momentum conserva-
tion we have to include the angular momentum contained
in the field.

The combination of the externally imposed magnetic
field and the electric field of the electron itself gives rise to a
nonzero angular momentum density ε0r × ðE × BÞ [11].
The z component of the field angular momentum is

Lkin field
z ¼

Z
dVε0½r × ðE ×BÞ�z

¼
Z

dVε0ð∇ ·EÞðr ×A⊥Þz ð19Þ

[21], where A⊥ is the (manifestly gauge invariant) trans-
verse part of the vector potential, defined by ∇ ·A⊥ ¼ 0.
In rewriting the second line we have used the fact that
the electric field of the electron is longitudinal, that is,
∇ ×E ¼ 0. To complete our resolution we need only note
that the first Maxwell equation is

∇ · E ¼ ϱ

ε0
¼ e

ε0
jΨj2; ð20Þ

FIG. 1 (color online). Time evolution of the expectation
value of the electron’s kinetic orbital angular momentum for
Laguerre-Gaussian states with n ¼ 0 and a magnetic field in
the positive z direction (B > 0). This is shown in (a) as a function
of the initial width ρ0 for l ¼ 1, and in (b) for different values
of l assuming ρ0 ¼ 1.5ρB.
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where ϱ is the charge density, so that

Lkin field
z ¼ eB

2
hρ2i: ð21Þ

Using (8) and (21) the total kinetic angular momentum of
the electron plus the field is, therefore,

Lkin total
z ¼ lℏ ¼ Lcan

z ; ð22Þ

which is conserved, as it should be. Adding the kinetic
angular momentum of the field to that of the electron
has restored the unique and conserved total angular
momentum.
Effect of gauge transformations.—We have worked

throughout in the Coulomb gauge and uncovered the result
that the canonical angular momentum of the electron is
equal to the total angular momentum (with the value lℏ).
We can and should ask what we would have found had we
worked in a different gauge. The kinetic angular momen-
tum of the field is, as we have seen, gauge invariant. To
underline this point, we note that it depends only on the
magnetic field B and the mean-square radius hρ2i, both of
which are gauge invariant. Making a gauge transformation
does change, however, both the vector potential and the
phase of the wave function. The natural way to introduce a
gauge transformation in quantum theory is through a local
change in the phase of the wave function:

Ψ → eiχðr;tÞΨ: ð23Þ

In this case, the action of our canonical momentum operator
on the state changes to

pcanΨ → −iℏ∇eiχðr;tÞΨ ¼ eiχðr;tÞð−iℏ∇þ ℏ∇χÞΨ: ð24Þ

This change is counterbalanced by the corresponding
transformation of the vector potential

A → Aþ ℏ
e
∇χ ð25Þ

so that the kinetic momentum pkin is unchanged. The z
component of the canonical angular momentum is similarly
changed by a gauge transformation to

Lcan
z → −iℏ

∂
∂ϕþ ℏ

∂χ
∂ϕ : ð26Þ

Interestingly, the expectation value of this quantity for
our cylindrically symmetric state will still be lℏ,
as jeiχðr;tÞΨj2 ¼ jΨj2 is independent of ϕ, and, in particular,
hℏ∂χ=∂ϕi ¼ 0.
Discussion.—The magnitude of the diamagnetic contri-

bution to the kinetic angular momentum is strongly

dependent on the length scale. As can be seen from (8),
it is characterized by the constant −e=2 ¼ 7.60×
10−4ℏ T−1 nm−2. In an atomic bound state with rms radius
1 Å, even in a field of strength 1 T the diamagnetic angular
momentum is negligible compared to a single unit of
canonical angular momentum. However, for unbound elec-
trons, which can be distributed over a much larger area, the
diamagnetic angularmomentum can become significant, and
may be the dominant contribution, both to the electron’s
kinetic angular momentum and to E⊥. This can certainly be
the case in transmission electron microscopes, where the
electron beam may have a radius hρ2i1=2 ∼ 1 nm–100 μm
and a field∼1 T is providedby the objective lens.Note that in
an electron microscope the radial dynamics occur in a
reference frame moving with the electron along the z axis
[2], and so can be observed as a function of the propagation
distance [14,16].
While the creation of electron vortices has aroused a

considerable interest in the orbital angular momentum of
electron beams [22–24], little attention has been given
previously to the angular momentum which arises in a
magnetic field. Our diamagnetic angular momentum will
occur with any electron beam, even those with no canonical
orbital angular momentum. The canonical angular momen-
tum is a manifestation of the cylindrical symmetry and
is restricted to integer multiples of ℏ. In contrast, the
diamagnetic contribution, and hence the kinetic angular
momentum of the electron, may take any value.
It is interesting to ask why our electron carries two

distinct angular momenta and where each of these might
be expected to appear in experiment. The total angular
momentum contains a part Lkin

z that may be ascribed
to the electron, and a second part Lkin field

z that depends
on both the externally imposed magnetic field and
the electric field due to the electron. This latter part may
be assigned either to the field, which gives the kinetic
momentum, or to the electron, giving the canonical momen-
tum. This situation is reminiscent of the linear momentum
of a photon in a dielectric medium, where two rival
momenta, due to Abraham and Minkowski, are the kinetic
and canonical momenta [25]. As with the photon, we can
associate the canonical and kinetic momenta of the electron
with wavelike and particlelike properties, respectively.
Hence, an electron interference pattern should reveal the
eilϕ dependence associated with the canonical angular
momentum [26]. Absorption of an electron by an initially
neutral target, however, should transfer the kinetic angular
momentum of the electron to the rotational motion of the
target, with the remaining angular momentum retained by
the electric field of the now charged target.
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Abstract
Weconsider the orbital angularmomentumof a free electron vortexmoving in a uniformmagnetic
field.We identify three contributions to this angularmomentum: the canonical orbital angular
momentum associatedwith the vortex, the angularmomentumof the cyclotron orbit of the
wavefunction, and a diamagnetic angularmomentum. The cyclotron and diamagnetic angular
momenta are found to be separable according to the parallel axis theorem. Thismeans that rotations
can occurwith respect to two ormore axes simultaneously, which can be observedwith superpositions
of vortex states.

1. Introduction

In classicalmechanics, an electronmoving in a uniformmagnetic field follows a circular orbit in the plane
perpendicular to the field, as dictated by the Lorentz force. This so-called cyclotronmotion, which occurs even
in the absence of a central potential, plays a role in areas as diverse as particle physics [1, 2], electronmicroscopy
[3], plasma physics [4], and also inmicrowave ovens [5].

Electrons can also possess quantized canonical orbital angularmomentumwhich does not depend on the
presence of amagnetic field. This is well known in the case of bound states in atoms and quantumdots [6], in
which there is a confining potential, however recently it was discovered that free electrons can be imprintedwith
orbital angularmomentum. Electron vortex beams [7–10], generated, for example, in electronmicroscopes,
have twistedwavefronts, and resemble freely propagating atomic orbitals. The understanding,manipulation
and exploitation of this angularmomentum for a range of technological applications is currently a very active
area of investigation [11–21].

In amagnetic field, an electron can possess both canonical orbital angularmomentum, and angular
momentum arising from the interactionwith the field. If themagnetic field is uniform, the canonical angular
momentum in the direction of the field is independent of the field and is constant [22].Meanwhile, themagnetic
field induces an additional current within the electron’s wavefunctionwhich gives rise to a diamagnetic angular
momentum [23–26].Manipulating the canonical and diamagnetic orbital angularmomenta of free electrons
recently led to thefirst direct imaging of Landau states [27, 28]. In addition to the diamagnetic rotation of an
electron’s wavefunction, however, in amagnetic field therewill generally also be a cyclotron orbit of the centre of
mass of thewavefunction [22, 29]. The angularmomentum associatedwith this cyclotronmotion has not
previously been considered.

In this paper, we show that the total orbital angularmomentumof the electron is described by the parallel
axis theorem. This angularmomentum comprises the canonical and diamagnetic components, which are
associatedwith rotation relative to the centre ofmass of thewavefunction, and a cyclotron component which has
expectation value equal to that for the classical orbit. Interestingly, for free electrons all three of these
components can have similarmagnitude. Thismeans that the trajectory of the electron is strongly dependent on
how these angularmomenta add and subtract. Further, we show that different cyclotron orbits can be
superposed, leading to rotationswith respect tomultiple parallel axes, and periodic interference. Our results
suggest novelmeans of structuring electron beams for use in specific applications, such as probingmagnetic and
chiralmaterials.
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2.Model

Weconsider an otherwise free electronmoving under the influence of a uniformmagnetic field.We take the
direction of thismagnetic field to define our z axis, and consider themotion of the electronwithin the x–y plane.
The electronmay also bemoving in the z direction, however the component of itsmomentum in this direction is
a constant ofmotion [25], andwill not affect our results.We consider non-relativistic energies,meaning that the
spin angularmomentum is also constant, and can be separated from the orbitalmotion of the electron [30]. In
what follows, we shall consider only the electron’s orbital angularmomentum. Themagnetic field B zB ˆ= can
be described by the cylindrically symmetric vector potential A B 2f̂r= / , where ρ andf are cylindrical polar
coordinates. This choice of gauge is convenient as it allows us to exploit the rotational symmetry of themagnetic
field. OurHamiltonian is therefore

p
pH

m m
e B eBL

2

1

2

1

4
, 1z

kin 2

can 2 2 2 2 can( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥r= = + -^

^

where p v p Am ekin can= = -^ ^ ^ ^ is the component of the electron’s kineticmomentum in the plane
perpendicular to themagnetic field, p ican ��= -^ ^ is the corresponding canonicalmomentum component,
L p iz

can can �r f= = - ¶ ¶f / is the z-component of the canonical orbital angularmomentum, e e∣ ∣= - is the
electron’s charge, andm itsmass.

We are interested in the evolution of non-stationary states of the system, described by the time-dependent
Schrödinger equation

r
r

t

t
H ti

,
, , 2

( ) ( ) ( )�
¶Y

¶
= Y

^
^

where r ,( )r f=^ is the position of the electron in the plane perpendicular to themagnetic field.Note that if the
electron ismoving along the z axis with a velocity vz, the Schrödinger equation (2)describes the state of the
electron after a propagation distance of z v tz= [27].

An electronwithmomentum transverse to themagnetic fieldwill exhibit cyclotronmotion. This is
conventionally described in a classical context. Here wewill derive the cyclotronmotion by assuming an electron
wavefunction

t u
p

x0 exp i , 30
cℓ( ) ( ) ( )⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥�

r fY = = Y = +

where ℓ 'Î .We have defined the x axis as the direction of the transverse kineticmomentum at t= 0. This state
has a rotationally symmetric probability density u0

2 2∣ ∣ ∣ ( )∣rY = , and an expectation value of canonical angular
momentum Lz

can ℓ�á ñ = .We shall see that themomentum p xpkin
0 c ˆá ñ =^ results in a cyclotron orbit of the

wavefunction.
Note that in ourmodel the canonical orbital angularmomentum is not collinear with the instantaneous

direction of propagation of thewavefunction. This is illustrated infigure 1. The angularmomentum is in the
direction of themagnetic field, while the kineticmomentumhas a component perpendicular to themagnetic
field. This contrasts with vortex states, either infield-free space or in amagnetic field, which are energy
eigenfunctions, as these havemomentum and angularmomentumwhich are collinear [29, 31]. Electrons in
non-stationary states can have angularmomentum at an arbitrary angle to their direction of propagation,

Figure 1.Cyclotron trajectory of the centre ofmass of thewavefunction. This orbit occurs with respect to the axis y y0= , the position
of which depends on the initial transversemomentum pkin

0á ñ^ as well as themagneticfield. Also indicated is the direction of the
canonical orbital angularmomentum zLz

can ˆá ñ .
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however [22, 32, 33]. Here, as a result of the cyclotron orbit, the time-averaged expectation value of kinetic
momentum is collinear with the angularmomentum Lz

caná ñ.

3. Electron trajectories and angularmomentum

In the followingwewill show that the different forms of angularmomentumgive rise to rotationswith respect to
more than one axis. This can be seen by examining the ‘trajectories’ associatedwith the electron’s probability
distribution and current density.

First, wewill consider the expectation value of the electron’s position, which is equivalent to the centre of
mass of its probability distribution. Differentiating twicewith respect to time, we obtain the equation ofmotion

r
r

r x y

r y

t

t
H H t

x p eB y p eB t

t y

1
, , ,

,

, 4

y x

2

2 2

c
2 kin kin

c
2

0( )

( ) ( )

( ) ˆ ( ) ˆ ( )
( ) ˆ ( )

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

�

w

w

¶

¶
= -

=- - + - -

=- -

^
^

^

^

where eB mcw = - is the cyclotron angular velocity and y p e B0 c (∣ ∣ )= . Herewe have used the fact that the

quantity x yx p eB y p eBy x
kin kin( ) ˆ ( ) ˆ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦+ + - , which is the centre of the orbit of a classical particle which has

position r̂ andmomentum pkin
^ [34], has the constant expectation value yy0 ˆ. The initial position and velocity of

the centre ofmass of the probability distribution are given by r 00( )á ñ =^ and

r
r x

t
H

p

m

0 i
, 0 5c

( ) ( ) ˆ ( )⎡⎣ ⎤⎦�

¶

¶
= - =

^
^

respectively, and substituting these into (4) yields the trajectory

r x yt y t tsin 1 cos . 60 c c( )( ) ˆ ˆ ( )⎡⎣ ⎤⎦w wá ñ = + -^

This trajectory, illustrated infigure 1, is a circular orbit with radius

y
p

eB
70

c∣ ∣ ( )s = =

and angular velocity cw —the cyclotron orbit of a classical particle with themomentum pc. The trajectory of the
centre ofmass of the probability distribution is therefore independent of the canonical angularmomentumof
the electron.

The canonical angularmomentum is instead associatedwith a circulation of current within the electron’s
probability distribution. This can be seen by examining the probability current density j r t,( )^ ^ =

p mRe kin( )*Y Y^ . To do sowe have solved the time-dependent Schrödinger equation (2)numerically using the
Chebyshevmethod [35–37], as described in appendix A.Wemust first specify the radial distribution, u ( )r , of
the initial wavefunction (3). Herewewill set this to be the same as that of a Landau state—one of the energy
eigenstates of the system:

u u N L
2

exp
2

, 8n n
B B

n
B

,
Lan

,

2

2

2

2
( ) ( ) ( )ℓ ℓ

ℓ
ℓ∣ ∣ ∣ ∣

∣ ∣
∣ ∣⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r r

r
r

r
r

r
r

= = -

where n 0, 1, 2,= ¼ is the radial quantumnumber, Ln
ℓ is an associated Laguerre polynomial, Br =

eB4 ∣ ∣� is thewidth of theGaussian envelope and N n n2n B, ℓ! [ ( ∣ ∣) !]ℓ p r= + is a normalization
constant. Thismeans that if p 0c = , the electronwould be in a Landau state. An arbitrary radial distribution
could be decomposed in terms of the eigenfunctions un,

Lan
ℓ .

The time-evolution of the probability density 2∣ ∣Y and the current density ĵ are shown in figure 2.Here the
transversemomentum pc has been chosen such that the radius of the cyclotron orbit is approximately equal to
thewidth of the probability distribution. In (a) and (b) the electron has no net canonical orbital angular
momentum,while in (c) and (d) it has a canonical orbital angularmomentum 1ℓ = . The evolution of these
states is shown for different directions of themagnetic field, which result in different directions of the cyclotron
orbit.Whereas the probability density follows a straightforward classical orbit, the current density is seen to
depend in a non-trivialmanner on both thewavefunction and themagneticfield. In particular, in contrast to the
classical cyclotron trajectory, and also to orbital angularmomentum eigenstates in the absence of amagnetic
field, the current distribution here is not rotationally symmetric. The rotational symmetry of the probability
distribution, with respect to its centre ofmass, is preserved, however. This reflects the fact that themagnetic field
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is rotationally symmetric, and the canonical angularmomentum Lz
can is conserved. Thismeans that the

canonical orbital angularmomentumof the electron is associatedwith a rotation axis at the centre ofmass of the
probability distribution, and is independent of the cyclotron orbit.

More surprising, perhaps, is that rotations in fact occurwith respect to the cyclotron axis and the centre of
mass axis evenwhen the electron does not possess any net canonical angularmomentum. This is as a result of the
diamagnetic angularmomentum that any electronwavefunction possesses in the presence of amagneticfield
[23, 24]. This angularmomentum arises as a result of the circulating current themagnetic field induceswithin
thewavefunction, and is associatedwith a rotation of the probability density at the Larmor angular velocity

eB m2 2L c ( )w w= = - [27, 38]. The diamagnetic angularmomentum is equal to L Iz
dia

Lw= ¢ , where

I m 92 ( )r¢ = á ¢ ñ

is themoment of inertia of the electron’s probability distribution, in the reference frame of its centre ofmass
[25]. Here r r∣ ∣r¢ = - á ñ^ ^ is the radial coordinate in this reference frame. This angularmomentumhas the

Figure 2.Probability density 2∣ ∣Y and current density ĵ forwavefunctions with canonical orbital angularmomentum 0ℓ = (a), (b)
and 1ℓ = (c), (d), for opposite directions of themagneticfield. In each case the transversemomentum is p 2 Bc � r= and the
wavefunction has the radial distribution u0,

Lan
ℓ . The red arcs indicate the trajectory of the centre ofmass of the probability distribution,

which is highlighted in green.
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same direction as the externalmagnetic field,meaning that the associatedmagneticmoment,
eL m2z z

dia dia ( )m = , opposes the external field, in accordancewith Lenz’s law. In contrast to cyclotronmotion,
the diamagnetic rotation depends on there being an extended probability distribution, and vanishes in the
classical limit. For the Landau radial distribution un,

Lan
ℓ , themean square radius is n

2
,

Lan
ℓrá ¢ ñ = n2 1 2B

2ℓ( ∣ ∣ )r+ + ,
and the diamagnetic angularmomentum therefore takes the quantized values
L B nsign 2 1z

dia, Lan ℓ( )( ∣ ∣ )�= + + [29]. The effect of the diamagnetic angularmomentumbecomes clear
whenwe consider a superposition of opposite values of canonical orbital angularmomentum, such as that
shown infigure 3. As this superposition has no net canonical angularmomentum, the rotation of the electron’s
probability density with respect to its centre ofmass is due entirely to the diamagnetic angularmomentum.
Previously we have interpreted this as a formof Faraday rotation for electrons [30].

In general, the orbital angularmomentumwith respect to the centre ofmass axis will be given by a sumof
canonical and diamagnetic contributions. Themotion is thus described by two independent rotations: the
cyclotron orbit, and the rotation around the instantaneous centre ofmass axis due to the canonical and
diamagnetic angularmomenta.

4. Parallel axis theorem

The rotation of the electron’s wavefunction is reminiscent of a classical rigid body.Wewill explore this analogy
further by considering the kinetic angularmomentumof the electron, which is the totalmechanical angular
momentum it possesses whilemoving in themagnetic field. This angularmomentumhas the z component

L p L eB
1

2
, 10z z

kin kin can 2 ( )r r= = -f

with an expectation value of

L I 11z
kin

Lℓ ( )� wá ñ = +

for any state with a canonical orbital angularmomentum ℓ� . Here I m 2r= á ñ is themoment of inertia of the
electron’s probability distribution for rotationwith respect to the z axis. Just as with a rigid body, we can use the
parallel axis theorem to express themoment of inertia I as a sumof two components:

I m I , 120
2 ( )r= + ¢

where r t2 1 cos0 c∣ ∣ ( )r w s= á ñ = -^ , withσ defined by (7), is the radial coordinate of the centre ofmass,
and I ¢ is themoment of inertia with respect to the centre ofmass axis, given by (9). These two components
correspond to the cyclotron orbit of thewavefunction and its diamagnetic angularmomentum respectively. The
total kinetic angularmomentumof the electron, whichwe obtain from (11) and (12), can therefore be expressed
as

L L L , 13z z z
kin cyclo diaℓ ( )�á ñ = + +

where L m t m1 cosz
cyclo

L 0
2

c c
2( )w r w w s= = - is the angularmomentum associatedwith the cyclotron orbit.

While the relation between the kinetic and canonical angularmomenta in (10) is true also for a classical point
particle [39], the decomposition into separate cyclotron and diamagnetic components which follows from (12)
is onlymeaningful for an extended probability distribution.

Figure 3.Probability density and current density for an equally weighted superposition ofwavefunctions which both have transverse
momentum p 2 Bc � r= , but have opposite values of canonical angularmomentum 1ℓ = o . The constituent states have the same
radial distributions as infigure 2.
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Unlike the canonical and diamagnetic components, the cyclotron angularmomentumdepends on our
choice of reference axis. A natural choice is to consider the angularmomentumwith respect to the centre of the
cyclotronmotion. In this reference frame, whichwe reach bymaking the transformation y y y y0˜l = - , the
cyclotron angularmomentumhas the constant value

L m . 14z
cyclo

c
2˜ ( )w s=

Irrespective of the reference frame, of course, the total kinetic angularmomentumwill be equal to the sumof the
three components described.

Onemay expect that the cyclotron angularmomentum,which exists classically, would be the dominant
contribution to the electron’s kinetic angularmomentum.However, this need not be the case, as can be seen by
considering typical parameters for free electrons in electronmicroscopes. For example, if an electron beam
which is initially propagating parallel to amagneticfield is transmitted through a diffraction gratingwith a
period d 100 nm= , thefirst diffraction orderwill have a net transversemomentumof p d h d2c ( )� p= = ,
which corresponds to an energy of p m h md2 2 0.15 meVc

2 2 2( ) ( )= = . In amagnetic field of B 1 T= , the
resulting cyclotron orbit, which has radius 41 nm, will have an angularmomentumof 2.6� . This is of the same
order ofmagnitude as the canonical angularmomentumof the lowest order vortex states, and considerably
smaller than that of vortex beams recently generatedwith awinding number of 200ℓ = [21]. Indeed, in a given
magnetic field, the cyclotron angularmomentum can in principle have any size, ranging from zero to
macroscopic values, depending on the net transversemomentum pc. The diamagnetic angularmomentum can
also take awide range of values, as themean square radius of the probability distribution is varied [25], although
this has a lower limit due to the uncertainty principle and amaximumdue to the requirement of spatial
coherence. Thismeans that the different rotationswe have described can indeed occur on the same length scale,
justifying the choices of parameters in ourfigures.

5. Superposition of cyclotron orbits

So farwe have considered rotationswith respect to two different axes—the cyclotron axis, as well as the centre of
mass axis. The position of the cyclotron axis was defined by the transversemomentum pc which appears in a
planewave factor in thewavefunction (3). Suppose, however, that we have a superposition of different transverse
momenta. Arbitrary distributions of transversemomentum could be created using appropriately designed
holograms [40–43]. A simple examplewould be the following superposition of twomomenta, pc,1 and pc,2,
whichmay also be associatedwith different canonical orbital angularmomenta,ℓ1 andℓ2:

u p
x

u p
x

2
exp i

2
exp i . 15n n

0
,

Lan

1
c,1 ,

Lan

2
c,22ℓ ℓ

( ) ( ) ( )ℓ ℓ∣ ∣ ∣ ∣⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
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⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥� �

r
f

r
fY = + + +

This is similar to thewavefunction formedwhen a planewave is transmitted through a forked diffraction grating
[10]. For the discussion here the particular formof the radial distribution is not important, and the Landau
function has been chosenwith numerical efficiency inmind. The evolution of such a state, here with equal and
opposite values of both the transversemomentum and canonical angularmomentum, is shown infigure 4. It
can be seen that there are now two cyclotron orbits, which have different rotation axes. These are associatedwith
different directions of the initialmomentum pc. As a result, the two components of the superpositionmove
apart, before re-combining and interfering.

Taken together, the cyclotron orbits infigure 4 describe a rotation, with respect to the z axis, at the Larmor
angular velocity Lw . This is consistent with the predictions of classical electron optics regarding image formation
in rotationally symmetricmagnetic lenses [3]. Interestingly, though, in our case the axis of the Larmor rotation is
not defined by a symmetry of themagnetic field—a uniformmagnetic field is rotationally symmetric with
respect to an infinite number of axes. Rather, here the Larmor rotation occurs with respect to the centre ofmass
of the electron’s probability distribution. This is the case both infigure 3, where the centre ofmass follows a
cyclotron orbit, and infigure 4, where the centre ofmass is stationary. Further, itmust be remembered that we
are considering here a single electronwhich is in a state of superposition. Thismeans, for example, that if one of
the two cyclotron components infigure 4 underwent an interactionwhichmodified its phase, this could be
detected through its effect on the subsequent interference pattern.

6. Summary and outlook

In summary, we have shown that in amagnetic field an electron can rotate aroundmore than one axis
simultaneously. Thewavefunction of the electron follows a cyclotron orbit, and superposed onto this is a
rotation around the instantaneous centre ofmass. The rotationwith respect to the centre ofmass axis arises as a
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result of the diamagnetic angularmomentum, aswell as any canonical orbital angularmomentum the electron
possesses. The kinetic angularmomentumof the electron is therefore described by the parallel axis theorem.

Our results show that canonical orbital angularmomentum and cyclotronmotion provide separate degrees
of freedom for shaping electron current distributions. This could allow electron beams to be structured for use
in specific applications. For example, the symmetry of the current distribution could be optimized to probe
specific transitions inmaterials [40, 44]. Itmay also be possible to utilize cyclotron trajectories in novel forms of
interferometry.Moreover, here we have only considered the case inwhich the canonical angularmomentum
andmagnetic field are parallel, so that the rotation is confined to a plane.With canonical angularmomentum
andmagnetic fields which are in different directions to one another, the angularmomentum and current density
could be shaped in three dimensions.

Further, if the angularmomentawere in different directions, it appears that theywould become coupled.
Canonical orbital angularmomentumwhich is at an angle to a uniformmagnetic fieldwould be expected to
precess around the direction of thefield [22, 33]. The canonical angularmomentum is also not conservedwhen
the rotational symmetry of themagnetic field is broken, such as in astigmaticmagnetic lenses [45–47]. Not only
this, but in non-uniformmagnetic fields the spin and orbital degrees of freedomof an electronwith non-
relativistic velocity are no longer independent [12, 48]. The nature of the coupling between all of these angular
momenta is an interesting avenue for future investigation.
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AppendixA.Numerical solution of Schrödinger equation

The time-dependent Schrödinger equation can be solved numerically with high accuracy and efficiency by
expanding the time-evolution operator in a series of Chebyshev polynomials. In this appendix, we describe how
thismethod can be applied to the two-dimensional Schrödinger equation for an electron interactingwith an
externalmagnetic field. For generality, we shall consider here aHamiltonian of the form

x y S
x y

S x y
x

S x y
y

S x y

, i ,

i , , 16

x

y

2

2

2

2

2 1

1 0

( ) ( )

( ) ( ) ( )

⎛
⎝⎜

⎞
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Figure 4.Probability density and current density for an equally weighted superposition of a wavefunctionwith p 3 Bc � r= and
1ℓ = - and awavefunctionwith p 3 Bc � r= - and 1ℓ = . The constituent states have the same radial distributions as infigures 2

and 3. The centre ofmass of the superposition remains stationary in the x–y plane, while the individual components follow the
cyclotron trajectories indicated.
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[37] . In the case of theHamiltonian used in themain text, wewould have S m22
2 ( )�= - ,

S eBy m2x1 ( )�= - , S eBx m2y1 ( )�= and S e B x y m80
2 2 2 2( ) ( )= + . TheMathematica codewe have used to

perform these calculations has beenmade available online at [49].
Since theHamiltonian (16) is independent of time, we canwrite the solution of the Schrödinger equation as

t t t texp
i

. 17( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠�

 Y + D = - D Y

In order to evaluate this numerically, first wemust represent thewavefunction, and the coefficients S2 etc., on a
two-dimensional grid. If this grid covers an area L Lx y´ , and contains N Nx y´ points, then themaximum
spatial frequencies represented are k N Lx x x,max p= and k N Ly y y,max p= . Themaximumandminimum
values of energy represented on the grid are then

E S k k S k

S k S
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Max Max 18
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2
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2
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1 ,max 0
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and
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Let us now introduce a newoperator

b

a
, 20˜ ( ) 

 
=

-

where a E E 2max min( )= - and b E E 2max min( )= + . This operator has eigenvalues represented on the grid
which lie in the range 1, 1[ ]- .We can then expand the time-evolution operator in a series of Chebyshev
polynomialsTq ( ˜ ) :
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Chebyshev polynomials are chosen as theseminimize the error associatedwith truncating the expansion at a
finite orderM [35]. The expansion coefficients are given by
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J a t q
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22q

q
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q
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where Jq is a Bessel function. For q a te 2( )�> D , where e, in roman font, denotes themathematical constant,
themagnitudes of these coefficients decay exponentially with increasing q [50, 51]. Thismeans that the error due
to truncating the series at orderM, which can be estimated by a tM∣ ( )∣a D , can bemade arbitrarily small. If we set

M a t
e

2
, 23( )

�
d= D +

δ can be adjusted so that this error is less thanmachine precision. The numerical error resulting from the
Chebyshev expansion is then negligible.

In order to evaluate the individual terms in the expansion (21), the action of theChebyshev polynomial
Tq ( ˜ ) on the initial wavefunction t( )Y must be calculated. Using the recurrence relation for theChebyshev
polynomials, we obtain

T t T t T t2 , 24q q q1 2( ) ( ) ( )˜ ( ) ˜ ˜ ( ) ˜ ( ) ( )    Y = Y - Y- -

for q 0> , with the initial conditionsT t t0 ( ˜ ) ( ) ( ) Y = Y andT t t1( ˜ ) ( ) ˜ ( )  Y = Y . The action of the
Hamiltonian on thewavefunction can be efficiently calculated by evaluating the spatial derivatives in Fourier
space [50, 52]. That is,

t S k k S k

S k S
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i FT i FT , 25
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-

where kx, ky are the coordinates in Fourier space and FTdenotes a discrete Fourier transform and FT 1- the
corresponding inverse transform.
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[99] T. Schachinger, S. Löffler, M. Stöger-Pollach, and P. Schattschneider. Peculiar

rotation of electron vortex beams. Ultramicroscopy, 158:17–25, 2015.

[100] P. A. M. Dirac. Quantised singularities in the electromagnetic field. Proc. R.

Soc. London A, 133:60–72, 1931.

[101] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the

quantum theory. Phys. Rev., 115:485–491, 1959.
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