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Abstract 

Prostate cancer is a significant health problem for men in the western world.  Of 

particular concern are patients who present with aggressive, invasive and 

metastatic disease, and develop lethal castration-resistant prostate cancer 

(CRPC) following androgen deprivation therapy.  The activation of Wnt/β-

catenin signalling is a common event in patients with the poorest prognosis, and 

frequently associated with the loss of PTEN and activation of the PI3K/Akt 

signalling pathway.  However, the molecular basis for the significant impact of 

these aberrations in prostate cancer remains unclear. 

By using pre-clinical transgenic in vivo models, we have demonstrated that β-

catenin is a potent proto-oncogene that drives prostate cancer tumourigenesis.  

Concurrent heterozygous loss of Pten exacerbates β-catenin-driven tumour 

progression and decreases host survival, while tumours are most aggressive when 

Pten is deleted. 

We have contributed to the field by identifying an important mechanism for the 

progression of β-catenin-driven tumourigenesis, through β-catenin/ROS-

mediated modulation of Pten localisation, required to overcome Pten-mediated 

tumour suppression during cancer initiation.  Subsequently, Pten expression is 

downregulated in advanced adenocarcinoma, associated with upregulation of 

miRNAs and emergence of Pten haploinsufficiency.  When Pten is already 

haploinsufficient, β-catenin activation drives prostate cancer evolution through 

Pten loss of heterozygosity. 

By investigating differential gene and protein expression, we have characterised 

further co-operation between β-catenin activation and Pten loss through a 

complex network of intrinsic and extrinsic molecular events.  These drive 

survival, growth and proliferation signals, and modulate tumour-immune 

response interactions to evade anti-tumourigenic processes, resulting in 

aggressive prostate cancer. 

Furthermore, by examining novel in vivo models of β-catenin-driven CRPC, we 

have indicated that β-catenin may promote treatment-resistance through 

androgen receptor (AR) reprogramming.  We propose a mechanism for β-catenin-
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driven CRPC that is independent of classical AR signalling, and mediated through 

significant upregulation of canonical and non-canonical Wnt pathway 

components, which may be effectively targeted by Wnt inhibition. 

In summary, this thesis highlights a number of potential biomarkers and 

molecular targets that may be exploited to develop new strategies to manage 

patients with aggressive prostate cancer, to improve prognosis and avoid 

progression to lethal castration-resistant disease. 
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E2F E2F transcription factor 
EGFR Epidermal growth factor receptor 
EMT Epithelial mesenchymal transition 
ERG v-ets avian erythroblastosis virus E26 oncogene homolog 
ERK Extracellular signal-regulated protein kinase 
ESC Embryonic stem cell 
ETS E26 transformation-specific transcription factor 
F4/80 Adhesion G protein-coupled receptor E1 
FBP1 Fructose-1,6-bisphosphatase 1 
FFPE Formalin-fixed paraffin-embedded 
FISH Fluorescence in situ hybridisation 
FKBP5 FK506 binding protein 5 
FZD Frizzled receptor 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 
GSK3 Glycogen synthase kinase 3 
HNPC Hormone naïve prostate cancer 
HRP Horseradish peroxidase 
HSP Heat shock protein 
IHC Immunohistochemistry 
IL-16 Interleukin-16 
IL-1ra Interleukin-1 receptor antagonist 
JNK Mitogen activated protein kinase 8 
Ki67 Marker of proliferation Ki67 
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KLK3 Kallikrein-related peptidase 3 (PSA) 
LBD Ligand binding domain 
LCM Laser-capture microdissection 
Lcor Ligand dependent nuclear receptor corepressor 
LEF Lymphoid enhancer factor 
LHRH Luteinising hormone-releasing hormone 
LOH Loss of heterozygosity 
LoxP Locus of X-over P1 
LRP Low density lipoprotein receptor-related protein  
MAPK Mitogen-activated protein kinase 
MIP2 Macrophage inflammatory protein 2 
MMP Matrix metalloproteinase 
MSKCC Memorial Slone Kettering Cancer Center 
mTORC1/2 Mammalian target of rapamycin complex 1/2 
MYC v-myc avian myelocytomatosis viral oncogene homolog 
NAC N-acetyl cysteine 
NADPH Nicotinamide adenine dinucleotide phosphate 
NGS Next generation sequencing 
NIMP Reticulon 4 interacting protein 1 
NKX3.1 NK3 homeobox 1 

Nkx3.1CreERT2 
Mouse heterozygous for tamoxifen-inducible, Nkx3.1 promoter-
driven Cre expression 

NOX NADPH oxidase 
p21 Cyclin-dependent kinase inhibitor 1A 
p53/TP53 Tumour protein p53 
p63 Tumour protein p63 
PI3K Phosphatidylinositiol-3-kinase 

Pb-Cre Mouse heterozygous for ARR2PB probasin promoter derivative-
driven Cre expression 

PIA Proliferative inflammatory atrophy 

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit α 

PIK3R1/2 Phosphatidylinositide-3-kinase, regulatory subunit 1(α)/2(β) 
PIN Prostatic intraepithelial neoplasia 
PIP2 Phosphatidylinositol-4,5-bisphosphate 
PIP3 Phosphatidylinositol-3,4,5-trisphosphate 
PKA Protein kinase A 
PORCN Porcupine homolog (Drosophila) 
PNLIPRP2 Pancreatic lipase-related protein 2 
PSA Prostate-specific antigen 
PTEN Phosphatase and tensin homolog  
Ptenfl/+ Mouse heterozygous for Pten deletion 
Ptenfl/fl Mouse homozygous for Pten deletion 
RAC1 Ras-related C3 botulinum substrate 1 
RBC Red blood cell 
RB Retinoblastoma protein  
RFP Red fluorescent protein 
RFP+/- Mouse heterozygous RFP transgene expression 
RNA Ribonucleic acid 
RNF43 Ring finger protein 43 E3 ubiquitin-protein ligase 
ROS Reactive oxygen species 
RPPA Reverse phase protein array 
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RT-(q)PCR Reverse transcription-(quantitative) polymerase chain reaction 
RTK Receptor tyrosine kinase 
S6 Ribosomal protein S6 
S6K Ribosomal protein S6 kinase, polypeptide 1 
SD/SEM Standard deviation/Standard error of the mean 
SV40 Simian virus 40 
snoRNA202 Small nucleolar RNA 202 
SRC SRC proto-oncogene non-receptor tyrosine kinase 
STAT Signal transducer and activator of transcription 
TCF T-cell factor 
TIAM1 T-cell lymphoma invasion and metastasis 1 
TIMP4 Tissue inhibitor of metalloproteinase 4 
TMA Tissue microarray 
TMEM97 Transmembrane protein 97 
TMPRSS2 Transmembrane protease, serine 2 
TrCP β-transducin repeat containing E3 ubiquitin-protein ligase 
TREM1 Triggering receptor expressed on myeloid cells 1 
TSC1/2 Tuberous sclerosis 1/2 
VAV3 Vav 3 guanine nucleotide exchange factor 
WBC White blood cell 
Wnt Wingless-type MMTV integration site family member 
ZNRF3 Zinc and ring finger 3 E3 ubiquitin-protein ligase 
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Introduction 

Prostate cancer affects one in every eight men in the UK, and is the most 

common cancer diagnosed in males in the developed world.  The majority of 

patients present with indolent disease and can be monitored by active 

surveillance.  However, at least 20% of patients progress to locally advanced and 

metastatic disease.  For this reason, prostate cancer remains the second leading 

cause of cancer death in UK males, with 10,837 men dying from prostate cancer 

in 2012 [1]. 

In 1941, Huggins and Hodges revolutionised the understanding of prostate cancer 

by demonstrating the androgen dependence of prostate cell growth and 

tumourigenesis, when regression of prostate cancer was observed following 

orchiectomy or oestrogenic injections [2].  This led to the use of endocrine 

therapy, currently known as androgen deprivation therapy (ADT), in the 

treatment of locally advanced and metastatic prostate cancer.  Unfortunately, 

most patients that initially respond favourably to ADT become castration-

resistant and relapse with incurable disease within 3 years of receiving 

treatment [3].  Therefore, much focus is still required on elucidating the 

molecular mechanisms involved in prostate cancer tumourigenesis and treatment 

resistance.  This is fundamental for the development of new diagnostic and 

therapeutic strategies to manage aggressive and treatment-resistant disease. 

 

1.1 Prostate cancer 

1.1.1 Initiation and development of human prostate cancer 

Prostate development occurs during embryogenesis, through interactions 

between epithelial and mesenchymal tissues, which require androgen signalling 

for prostate induction and growth [4, 5].  All stages of prostate growth and 

development, thereafter, remain dependent on androgen signalling and 

interactions between epithelial and stromal compartments [6].  Disruption of 

epithelial-stromal interactions is, therefore, likely to contribute to cancer 

initiation and progression. 
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The human prostate duct consists of blood vessels, stromal tissue, comprising 

fibroblasts, smooth muscle cells and infiltrating immune cells, and epithelium, 

characterised by at least three different epithelial cell types: secretory luminal 

cells, basal cells and a few neuroendocrine cells [7, 8].  The majority of the 

epithelium is composed of androgen-dependent, terminally differentiated 

luminal cells, distinguished by their expression of androgen receptor (AR) and 

cytokeratin 8 and 18.  The functional role of the adult prostate gland is the 

contribution of secretory proteins, produced by the luminal cells, to seminal 

fluid. 

The second most prevalent epithelial cell type, basal cells, forms a continuous 

layer between luminal cells and the basement membrane, which encapsulates 

the prostate gland.  Basal cells are characterised by expression of cytokeratin 5 

and 14, p63 and CD44.  The expression of AR in basal cells has been subject to 

contention but, if expressed, is present at very low levels [9, 10].  The basal cell 

compartment contains a subset of progenitor stem cells and a larger number of 

proliferative transit-amplifying cells involved in self-renewal of the epithelium.  

These intermediate transit-amplifying cells harbour both luminal and basal cell 

markers and have been shown to give rise to both cell types [11, 12].  Basal cells 

play an important role in converting testosterone to 5-α-dihydrotestosterone 

(DHT), which diffuses to luminal cells and contributes to the activation of 

androgen receptor signalling [13]. 

Neuroendocrine cells are androgen-independent and, therefore, do not express 

AR.  They are scattered among the epithelium and thought to support luminal 

cell growth in a paracrine manner [14].  While neuroendocrine cells constitute a 

small part of the normal prostate epithelium, neuroendocrine differentiation 

and expansion of the neuroendocrine cell population are associated with 

aggressive prostate cancer [15-17]. 

The cell of origin for prostate cancer has been widely debated and continues to 

be researched.  The cancer stem cell (CSC) model proposes that tumour-

initiating cells originate from a rare population of stem cells, which have an 

indefinite ability to self-renew and can accumulate mutations overtime, leading 

to oncogenic transformation and differentiation into cancer cells.  In this model, 

therapeutic efficacy may be achieved by directly targeting the CSCs, which drive 
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malignant proliferation, disease recurrence and treatment resistance [18].  An 

alternative model suggests that cancer initiates and progresses by clonal 

evolution, whereby most cancer cells are highly tumourigenic, and clones 

harbouring genetic and epigenetic events, which provide selective advantages 

for survival, growth and treatment resistance, drive tumour evolution and 

progression.  In this model, eradication of almost all tumour cells would be 

required to prevent cancer recurrence [18].  These models are not necessarily 

mutually exclusive; it is feasible that more than one tumour-initiating cell may 

drive malignancy in prostate epithelium and their clonal progeny then be 

subjected to selection during cancer progression.   

Luminal epithelial cells are the predominant cell type present in prostate 

cancer, but intermediate cell types harbouring basal and luminal markers have 

also been observed [19].  Recent investigations have shown that prostate cancer 

can potentially arise from multipotent basal or luminal stem cells (reviewed by 

Wang et al. [18], Goldstein et al. [20] and Xin [21]).  Goldstein et al. [22] 

demonstrated the tumour-initiating capability of basal cells, but not luminal 

cells, when transduced with activated Akt and ERG, and transplanted into 

immunosuppressed mice.  These basal cells gave rise to prostatic intraepithelial 

neoplasia (PIN), cancer precursor lesions, with luminal features.  Additional 

transduction of AR co-operated with Akt and ERG activation in basal cells to 

drive the development of adenocarcinoma, characterised by loss of basal cells 

and expansion of luminal cells, mimicking human disease.  Basal cells are 

androgen-independent and, therefore, survive ADT, implicating the potential 

involvement of basal CSCs in the emergence of treatment-resistant disease [22]. 

Conversely, Wang et al [23] identified a rare androgen-independent luminal 

epithelial stem cell population as a cell of origin for prostate cancer, 

characterised by expression of the prostate epithelial differentiation marker 

Nkx3.1.  These castration-resistant Nkx3.1-expressing cells (CARNs) were present 

in the regressed mouse prostate following ablation of testicular androgens, and 

targeted Pten deletion in CARNs resulted in prostate tumourigenesis following 

androgen-mediated prostate regeneration.  However, it is unclear whether 

CARNs are also a cell of origin in the hormone-naïve prostate.  Recent work by 

Wang et al [24] used lineage marking of basal or luminal cells to trace the origin 

of PIN and adenocarcinoma lesions in a number of prostate cancer mouse 
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models, including Nkx3.1+/- Pten+/-, Pten+/-, Hi-Myc and TRAMP mice, and 

consistently demonstrated luminal cells as the favoured cell of origin for 

prostate cancer.  Renal grafting of basal cells from these mice did generate 

tumours, corroborating evidence for the tumour-initiating capability of basal 

cells, but indicating these were not the preferred cell of origin in the native 

prostate microenvironment. 

In addition, partially or terminally differentiated luminal cells have also been 

proposed as potential tumour-initiating cells in prostate cancer [25].  Partially 

differentiated luminal cells may arise due to a differentiation block induced in 

intermediate cells, which reprograms an embryonic stem cell (ESC)-like 

phenotype, facilitating self-renewal of these cells [26].  Alternatively, terminally 

differentiated cells may undergo de novo reprogramming to induced pluripotent 

stem cells following stimulation by factors such as MYC, KLF4, Oct4 and SOX2 

[26].  Overall, it is possible that prostate cancer can arise from either 

multipotent stem cells or (de)differentiated progenitor cells in a context-

dependent manner, resulting in different subtypes of prostate cancer.  In this 

way, the cell of origin is likely to have implications for prostate cancer prognosis 

and therapeutic strategies. 

Although prostate cancer is a multifocal and phenotypically heterogeneous 

disease, common features have been identified that are broadly characteristic of 

prostate cancer initiation and progression (Figure 1.1.1).  It has been suggested 

that sites of proliferative inflammatory atrophy (PIA) within the prostate 

epithelium are precursor lesions to PIN and adenocarcinoma [27].  PIA has been 

observed in aging men and is associated with prostatic inflammation [28].  It 

should be noted that benign prostatic hyperplasia (BPH) is another abnormality 

of the prostate gland, associated with age and characterised by overproliferation 

of the basal layer and stroma, but this is not thought to be a precursor for 

prostate cancer.  There is strong evidence to suggest that PIN is a precursor 

lesion of prostatic adenocarcinoma [27], and it is characterised by hyperplasia of 

luminal epithelia, a reduction in basal epithelia and enlarged, atypical nuclei 

[29].  Oxidative stress [30] and telomere shortening [31, 32] have been linked to 

prostate cancer initiation, and both contribute to DNA damage.  The emergence 

of PIN is associated with specific genomic changes, including downregulation of 

NKX3.1, often due to loss of heterozygosity of the 8p21 chromosome region that 
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codes for the NKX3.1 homeobox gene [33] or otherwise as a result of epigenetic 

silencing [34].  The up-regulation of MYC expression has also been correlated 

with cancer initiation [35], although not as a direct result of gene amplification. 

As PIN lesions develop into localised adenocarcinoma, TMPRSS2-ERG fusions are 

frequently observed: present in approximately 15% of high-grade PIN lesions and 

50% of localised adenocarcinoma [36-38].  Disease progression correlates with 

further genomic alterations, including copy number loss of the phosphatase and 

tensin homolog (PTEN) tumour suppressor gene [39-41].  Conversely, an increase 

in senescence markers has also been associated with prostate cancer progression 

[42].  However, these may be markers of latent disease, with cellular 

senescence preventing carcinogenesis and clinical progression.  Alternatively, 

senescence may later be overcome by other oncogenic events leading to invasive 

adenocarcinoma.  Invasive carcinoma can be generally characterised by loss of 

basal lamina as a single-cell lining, which distinguishes it from high-grade PIN.  

There is consequential loss of the basal cell markers, p63 and cytokeratin 5 and 

14, as well as increased expression of the luminal cell marker α–methylacyl-CoA 

(AMACR) [43].  Progression to invasive adenocarcinoma has been further 

associated with the re-activation of developmental signalling pathways, such as 

canonical Wnt signalling [44, 45] and ERK/MAPK pathway activation [41]. 

 
Figure 1.1.1  Human prostate cancer carcinogenesis 
Schematic illustration showing the initiation and progression of prostate cancer, with the molecular 
processes and gene/pathway aberrations associated with each stage of cancer development. 
Proliferative inflammatory atrophy (PIA) may be a precursor to PIN.  EMT = epithelial mesenchymal 
transformation.  Adapted from Shen and Abate-Shen, 2010 [46]. 

 

The temporal sequence of other genetic aberrations and their cause and 

consequence, during stages of prostate cancer initiation and progression, 
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remains unclear.  Integrated genomic analyses and molecular profiling of 

prostate cancers are contributing to our understanding of the molecular 

mechanisms involved in cancer development, latency and prognosis, and are 

discussed further in section 1.2. 

1.1.2 Androgen signalling in prostate homeostasis and 
tumourigenesis 

The AR gene, a member of the steroid hormone receptor family of genes, is 

located on the X chromosome at locus Xq11-12.  Upon expression, it can be 

activated by androgens to undertake its role as a transcription factor, forming 

transcriptional complexes at gene promoters to up- or down-regulate target 

gene expression [47].  The AR protein is approximately 110 kDa in size, 

consisting of an N-terminal trans-activating domain (NTD), DNA-binding domain 

(DBD), hinge region and C-terminal ligand binding domain (LBD).  In the absence 

of androgen, this LBD is bound by Hsp-90 and AR circulates in the cytosol.  

Testosterone diffuses across the cell membrane and is converted to the more 

potent DHT by 5α-reductase.  DHT-bound AR dissociates from Hsp-90 due to 

conformational changes to promote hetero- or homo-dimerization of AR.  This 

active complex is targeted for translocation into the nucleus, where it interacts 

with cofactors and repressors at the promoter of target genes to regulate their 

transcription [47] (Figure 1.1.2).  AR also activates proliferation and cell survival 

signals through interactions with MAPK and PI3K/Akt pathways [48]. 

AR plays a critical role in normal prostate development, regulating the 

expression of molecules involved in differentiation, proliferation, apoptosis and 

secretion, to maintain prostate homeostasis.  AR regulates genes in a context 

specific manner, depending on the sequence and location of androgen response 

elements (AREs) associated with target genes [49].  Androgen signalling balances 

cell proliferation and survival with apoptotic signals and, therefore, has a major 

role in the development and progression of prostate cancer where this balance is 

lost [48].  The critical role of androgen signalling in prostate cancer was 

demonstrated by the regression of hormone naïve prostate cancer following 

androgen ablation, either by castration or oestrogen injection [2].  AR is not 

found to be mutated in untreated prostate cancer [50] but undergoes gain–of-

function during cancer development, by mechanistic changes in AR signalling.  
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Paracrine androgen-regulated growth signals from the stroma are required for 

homeostasis of normal prostate epithelial cells.  However, malignant prostate 

epithelial cells adopt an autocrine mechanism of androgen-stimulated growth 

regulation, leading to the hyper-proliferation of luminal epithelial cells in cancer 

lesions [51].  Thus, AR drives the growth, proliferation and survival of prostate 

cancer cells and its activity correlates with androgen-dependent disease 

progression. 

 
Figure 1.1.2  Androgen receptor signalling 
Androgen receptor (AR) is activated by 5α-dihydrotestosterone (DHT) and translocates into the 
nucleus where it regulates the transcription of target genes, including KLK3, which codes for PSA, 
and FKBP5.  Abbreviations: HSP - heat shock protein 90; P - phosphate; A - co-activators; R - co-
repressors 

 

1.1.3 Systemic factors associated with prostate cancer 

There is a direct correlation between prostate cancer development and aging, 

which is the greatest risk factor for prostate cancer.  Although, the exact age-

related molecular events that result in prostate cancer remain to be 

determined, genetic alterations pertaining to inflammation, oxidative stress and 

cellular senescence in the prostate have been associated with aging [52-54].  In 
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addition to age, a combination of environmental, ethnic and hereditary factors, 

determines cancer incidence, which varies between different populations [46].  

Although the incidence of pre-neoplastic lesions is reported to be similar across 

the world [55], there is a much higher incidence of prostate cancer in American 

and Western European men compared to Asian populations.  Studies have shown 

that the incidence of prostate cancer in Asian men increases when they migrate 

to Western countries [56], highlighting the importance of dietary and lifestyle 

factors for prostate cancer risk.  However, no preventable risk factors are 

currently clearly linked to prostate cancer. 

Within the last decade, significant evidence has emerged linking chronic 

inflammation with prostate carcinogenesis [57-59], and in vivo studies have 

shown that chronic inflammation promotes PIN development in rats and mice 

[60-62].  Furthermore, chemokines CXCL1, IL-15 and CCL4 have been reported as 

prognostic biomarkers for disease recurrence following prostatectomy [63], 

providing further evidence for the role of inflammation in prostate cancer.  

Various environmental factors, including diet, bacterial and viral infections, 

physical trauma and hormonal deregulation can contribute to chronic 

inflammation [64].  Diet, hormonal deregulation and inflammation also promote 

oxidative stress and DNA damage, which has been associated with aging and 

prostate cancer risk [65, 66].  Prostate susceptibility to the effects of reactive 

oxygen species (ROS) is likely attributed to the downregulation of major 

antioxidant enzymes, such as the glutathione S-transferase encoded by GSTP1, 

shown to be hyper-methylated and epigenetically silenced in prostate cancer 

[67]. 

Links between diet and oxidative stress have led researchers to investigate the 

potential of antioxidant supplements in prostate cancer prevention studies.  One 

prevention trial tested effects of the antioxidant lycopene, present in tomatoes.  

Reduced DNA damage and serum PSA was observed in prostate cancer patients 

who consumed tomatoes daily for 3 weeks prior to prostatectomy, suggesting 

therapeutic benefits of lycopene consumption [68].  In contrast, the SELenium 

and vitamin E Cancer prevention Trial (SELECT), found that supplementation of 

selenium and vitamin E, alone or in combination, had no significant effect on 

prostate cancer risk [69].  Other studies, which tested vitamin C, vitamin E and 

β-carotene supplementation, found no benefit from vitamin C supplements and 
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only two subgroups of men had reduced risk of prostate cancer following 

increased intake of vitamin E and β-carotene: male smokers who took vitamin E 

supplements, and men with low dietary intake of β-carotene who were 

supplemented with β-carotene [70].  Despite the association of increased 

oxidative stress with prostate cancer initiation, a number of confounding 

dietary, lifestyle and genetic factors are likely to influence the efficacy of 

antioxidant supplementation and dietary intervention in prostate cancer 

prevention. 

 

1.1.4 Diagnosis and treatment of prostate cancer 

1.1.4.1 PSA testing and Gleason score 

Since the 1980s, detection of prostate cancer has been facilitated by serum 

prostate-specific antigen (PSA) testing.  The KLK3 gene encodes PSA and its 

expression is positively and exclusively regulated by AR [71].  It was identified as 

a sensitive biomarker for prostate cancer diagnosis, disease progression and 

relapse following therapy [72] and is currently the only clinically approved 

biochemical biomarker for prostate cancer diagnosis.  Normal blood serum PSA 

levels are low, while PSA levels correlating with low-, intermediate- and high-

risk prostate cancers are <10 ng/ml, 10-20 ng/ml and >20 ng/ml, respectively. 

PSA testing is combined with histopathological analysis of prostate tissue 

biopsies to determine prognosis and aid treatment choice.  Tumours are graded 

in terms of severity and are given a Gleason score between 2 and 10, which is 

the sum of two morphologic scores for the tumour.  Each morphologic score 

ranges from 1 to 5, with 5 defined as the least well-formed glandular structure 

[73].  Combined Gleason scores of ≤6, 7 and 8-10 respectively represent low-, 

intermediate- and high-risk prostate cancer. 

Widespread PSA screening has increased the number of tumours diagnosed at 

early stages of prostate cancer [74] but this has led to concerns of 

overtreatment in men whose cancer may have remained indolent.  Active 

surveillance (distinct from watchful-waiting which signifies intention for 

symptomatic intervention in future, rather than radical treatments), has been 
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introduced into prostate cancer management for patients with low-risk, 

clinically localised disease and may also be considered for localised 

intermediate-risk prostate cancer [75].  This involves follow up with PSA testing, 

repeat biopsies and imaging to monitor signs of disease progression.  Early 

detection and treatment intervention are essential for cancers that will progress 

to locally advanced and metastatic disease.  However, diagnostic biomarkers 

that distinguish these cancers from indolent disease require to be developed in 

order to effectively manage prostate cancer treatment. 

1.1.4.2 Targeting androgen receptor signalling to treat prostate cancer 

While non-invasive, intracapsular (organ-confined) tumours can be successfully 

treated by prostatectomy or local radiotherapy, androgen deprivation therapy 

(ADT) remains the primary treatment of choice for locally advanced and/or 

metastatic prostate cancer.  Adjuvant ADT is also prescribed in combination with 

radiotherapy for localised high-risk prostate cancer and locally advanced disease 

[76].  Androgen ablation can be achieved surgically by bilateral orchiectomy, or 

chemically through treatment with gonadotropin-releasing hormone agonists or 

antagonists, oestrogens or anti-androgens.  The reduction in systemic 

testosterone levels induces programmed cell death in androgen-dependent 

prostate cells [77] and mediates prostate cancer regression.  Luteinising 

hormone-releasing hormone (LHRH) agonists are predominantly used to reduce 

testosterone levels in patients.  LHRH agonists achieve chemical castration by 

downregulating LHRH receptor activity in the pituitary gland, which leads to 

depletion of circulating LH and consequential inhibition of testosterone 

production in the testes [78]. 

However, ADT is a double-edged sword.  Despite initial tumour regression, 

almost all men with advanced-stage prostate cancer relapse and develop 

castration-resistant prostate cancer (CRPC) following ADT.  Patients experience 

a rising level of serum PSA and metastatic disease progression, often 

characterised by persistent AR signalling [79, 80].  Adrenal steroid production 

and intra-tumoural de novo steroidogenesis have been suggested to contribute to 

AR reactivation [81].  This has led to the development of second generation 

hormone therapies to overcome castration resistance mechanisms in prostate 

cancer.  These include abiraterone, a potent inhibitor of androgen biosynthesis, 
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and enzalutamide, a second-generation antiandrogen that blocks AR 

transcriptional activity through high affinity binding to AR.  These novel agents 

have brought survival benefits to some patients but unfortunately do not obviate 

cancer progression [82]. 

 

1.1.5 Castration-resistant prostate cancer 

The invariable progression of advanced prostate cancers following treatment 

with ADT is predominantly associated with the reactivation of AR signalling.  It 

has been proposed that a proportion of cells survive ADT and undergo growth 

arrest at G1 for a period of time.  Regrowth and prostate cancer progression can 

then occur through cells adapting to low levels of circulating androgens [83] or 

developing androgen-independent mechanisms of AR activation [84].  In this 

way, AR appears to be oncogenic in a castrate environment.  Mechanisms for the 

continuation or re-activation of AR signalling, involved in the failure of ADT and 

progression from HNPC to CRPC, are described in Table 1.1-1. 

A recent study by Sharma et al [80] identified a signature of 16 genes at which 

AR binding was consistently enriched in CRPC, emphasising the role of AR 

signalling in disease progression.  The signature included MYC, STAT and E2F, 

previously shown to play a role in CRPC development [85-88] and potentially 

useful as prognostic biomarkers.   

Despite growing evidence for the role of AR signalling in the emergence and 

progression of CRPC, the failure of second generation ADT in a majority of 

patients highlights the complexity of resistance mechanisms.  The transition 

from an androgen-dependent to androgen-independent molecular state within 

prostate cancer cells is also associated with AR-independent mechanisms for 

growth and survival [89].  Following treatment with ADT, prostate luminal 

epithelial cells undergo apoptosis, while androgen-independent basal stem and 

transit amplifying cells remain [90], and it is possible that these cells can give 

rise to AR-independent CRPC.  Exome sequencing of 50 aggressive CRPCs 

identified 88 canonical pathways that were significantly mutated, including p53, 

Rb/E2F, JNK/MAPK, PTEN, PI3K/Akt and Wnt/β-catenin pathways [91], which 
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have the potential to drive cell growth and survival in resistant cells, in an AR-

independent manner.  More recent developments in our understanding of the 

molecular mechanisms contributing to CRPC are described in section 1.2.2. 
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Table 1.1-1  Mechanisms for the continuation or reactivation of the AR signalling pathway in 
CRPC [84] 

Mechanism LD/LI Description 

Level of ligand LD 

Despite castration, a low level of androgen 
remains in the prostate which is capable of 
activating AR and promoting tumourigenesis.  
Androgens may be produced within the adrenal 
gland or via an intracrine mechanism in the 
prostate.  It is apparent that ADT cannot cause 
100% ablation of androgens within the prostate. 

Level of AR protein LD 

AR protein levels are increased and amplification 
of the AR gene is seen in some cases.  In other 
cases, increased AR mRNA expression is 
consistent in both hormone-naïve and castration-
resistant prostate cancer cells.  Up-regulation of 
AR protein levels increases cell sensitivity to low 
androgen concentration and results in up-
regulation of AR-dependent gene expression. 

Activating AR 
mutations LD 

AR mutations have been observed in 5-50% of 
CRPC cases and most commonly cause a gain in 
function.  These receptors are often more 
sensitive to endogenous ligand or other steroid 
hormones/anti-androgens. 

Changes in co-
regulatory molecules LI 

AR co-regulatory molecules include co-activators 
that enhance and co-repressors that reduce AR 
function.  Some co-regulatory molecules 
influence AR activity in a ligand-dependent 
manner.  If the ratio of co-activators to 
corepressors changes in a low androgen-level 
environment, AR signal transduction can be 
altered resulting in aberrant transactivation 
activity and AR reprogramming. 

Ligand independent 
activation LI 

There is evidence of crosstalk between other 
signal transduction pathways and AR, which may 
indirectly activate AR signalling, bypassing the 
need for ligand interaction.  For example, HER-
2/neu is noticeably overexpressed in CRPC 
compared to HNPC [92, 93], which may act 
through MAPK and PI3K/Akt pathways to promote 
AR stability and transcriptional activity.  
Constitutively active AR variants which lack a LBD 
have also been identified [89, 94]. 

LD = ligand-dependent; LI = ligand-independent; LBD = ligand binding domain 
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1.2 Molecular profiling of human prostate cancer 

The heterogeneity of prostate cancers reflects the genetic complexity of this 

disease, which needs to be better understood in order to improve diagnostic 

methods and treatment decisions for patients.  Over the last five years a 

concerted effort has been made to profile the genetic mutations, copy number 

alterations and molecular expression patterns associated with cancer grade and 

prognosis.  Integrated analysis using multiple modality platforms and large data 

sets is paving the way in prospective genomics.  Data sets generated by 

microarray and, more recently, next generation sequencing (NGS) of prostate 

cancer tissue have uncovered mutations and gene expression changes associated 

with primary, metastatic and castration-resistant disease.  Furthermore, NGS 

data from primary and metastasised prostate cancer tissue has been used to map 

the genetic phylogeny of prostate cancer in some patients, and work is ongoing 

to unravel the evolution of prostate cancer. 

1.2.1 Genetic phylogeny of prostate cancer 

To fully establish precision medicine in the clinic, the mechanism of prostate 

cancer development requires further investigation.  A recent study by Cooper et 

al. carried out in-depth genome-wide DNA sequencing analysis of multiple 

primary prostate cancer samples taken from three patients [95].  To track the 

evolution of prostate cancer, copy number data was used to identify shared 

mutations or ERG fusions between cancer clone lineages, and differences that 

indicated breakpoints and branching into subclonal populations.  Fluorescence 

in-situ hybridisation (FISH) was carried out to visualise mutations, such as 

different TMPRSS2-ERG fusions, to see whether they co-existed or were part of a 

lineage that underwent separate clonal expansion in a distinct cell population.   

Phylogenic maps were constructed to illustrate common ‘trunk’ mutations, 

breakpoints and branching of distinct subclones, highlighting the multifocal 

nature of prostate cancer. 

Interestingly, high levels of substitution mutations were observed in 

morphologically normal tissue that was not immediately adjacent to cancer 

tissue [95], indicative of clonal expansion.  Some mutations present in 

morphologically normal tissue were shared with cancer clones, while others 
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were not yet detected in cancer tissue.  There appears to be ongoing mutational 

processes, branching evolution and cancer clone mixing in primary prostate 

cancer tissue, suggesting that this may provide the basis for prostate cancer 

development and the multifocality of this disease [95].  Evidence of high levels 

of somatic mutations in morphologically normal tissue suggests the importance 

of targeting and ablating surrounding ‘normal’ cells, in addition to cancer, 

during focal therapy.  Furthermore, the intra-tumoural heterogeneity of prostate 

cancer illustrates the continuing challenge posed to researchers investigating 

novel diagnostic biomarkers and targeted therapies. 

Lethal prostate cancer is likely to arise from competing subclones within primary 

prostate tumours, which are able to metastasise and develop resistance to 

therapy.  Deep sequencing analyses of multiple samples from individual patients 

with lethal metastatic prostate cancer, including primary tumour, hormone-

naïve and castration-resistant metastasis, have uncovered molecular events 

involved in the evolution of metastatic disease and illustrated the complexity of 

metastatic spread [96, 97].  Multiple primary tumour subclones were found to be 

involved in metastasis [96], supporting the hypothesis of polyclonal seeding and 

contradicting an earlier hypothesis that single primary cancer cells are 

responsible for each metastasis [98].  In one study, inter-metastatic spread was 

observed in 5/10 patients [96], suggesting polyclonal seeding also occurs 

between metastatic sites.  Some of this clonal expansion was attributed to 

resistance mechanisms driven by ADT, as subclones harboured alterations in AR 

or AR pathway component genes, involved in AR-dependent mechanisms of 

resistance, or MYC amplification or CTNNB1 mutation, involved in alternative 

mechanisms to bypass ADT [96]. 

Clonal differences, within both primary tumours and metastasis, indicate that 

sub-populations of cells are likely to respond differently to treatments.  

Moreover, new mutations in cancer clones arise as a result of therapy and the 

development of resistance mechanisms [96, 97, 99].  An example of these 

phenomena was identified in an iliac metastasis, which was clonal prior to ADT 

treatment but contained two subclonal populations when castration-resistant 

[97].  One of these subclones had evolved from the hormone-naïve clonal 

population but the second subclonal population was derived from a distant 

metastatic site.  Hong et al. surmised that the iliac metastasis was receding and, 
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hence, responsive to ADT, while the subclone from the second metastatic site 

was mechanistically predisposed to be resistant to ADT and could therefore 

invade the iliac metastatic niche following treatment. 

Larger studies are required to validate these findings.  However, these new 

observations are reshaping our understanding of prostate cancer development 

and the paths of evolution leading to lethal, metastatic and treatment resistant 

disease. 

1.2.2 Classification of prostate cancers by genetic profiling 

By understanding the molecular mechanisms of aggressive and treatment 

resistant prostate cancer, we can identify better prognostic markers at early 

stages of disease to predict clinical outcome and tailor treatment decisions 

accordingly.  Currently, Gleason score is considered the best prognostic marker 

of cancer grade.  In a bid to reduce the risk of overtreatment of prostate cancer, 

active surveillance is an option for patients with low (Gleason score ≤6) to 

intermediate risk (Gleason score 7) localised prostate cancer [75].  However, a 

number of patients diagnosed with low Gleason score prostate cancer will 

progress to aggressive disease (or have higher risk disease not detected due to 

sampling errors) and may, therefore, benefit from early treatment intervention.  

A large amount of prostate cancer research is now focussed on identifying 

subsets of prostate cancer patients based on their molecular profiles and 

correlating these with cancer aggressiveness, treatment response and survival 

outcome. 

One study [100] analysed a microarray data set of 281 samples from a Swedish 

watchful-waiting cohort [101].  Markert and colleagues employed a method of 

bioinformatics analysis which studied the expression of gene sets known to be 

under- or over-expressed in embryonic stem cells (ESCs) to identify subsets of 

prostate cancer with an ESC-like signature.  This has previously been shown to 

positively correlate with aggressive cancers and poor prognosis [102, 103].  The 

expression of other gene sets associated with induced pluripotent stem cells 

(iPSCs) and the polycomb repressive complex-2 (PRC2) signatures were also 

analysed.  Unsupervised clustering of these, and other transcriptional signature 

profiles associated with prostate cancer, distinguished five molecular subtypes: 



36 

 
Chapter 1 

1) ESC, p53-, PTEN-; 2) TMPRSS2-ERG fusion; 3) Cytokine, Ras, Mesenchyme; 4) 

Transitional; and 5) PRC2 (normal-like).  Patients in cluster 1 had the poorest 

survival outcome, and this was also associated with MYC activation, increased 

inflammatory signals, indicated by cytokine expression, and increased 

proliferation [100].  These findings were corroborated using mRNA expression 

data from 185 samples obtained from a cohort of patients at the Memorial Sloan 

Kettering Cancer Centre who underwent radical prostatectomy [41]. 

In other studies, clustering data according to DNA copy number alteration (CNA) 

defined low- and high-risk prostate cancer more reliably than Gleason score [41]  

and high CNA burden has been associated with biochemical relapse of prostate 

cancer [104]. CNAs associated with poor prognosis include MYC amplification and 

PTEN loss [46, 100], and may be robust prognostic markers to stratify risk in 

prostate cancer patients. 

The application of molecular profiling analyses is also required to identify 

clinically targetable molecular alterations in individuals who already have 

aggressive metastatic and castration-resistant prostate cancer.  Pursuing the 

vision of precision therapy for prostate cancer, the Prostate Cancer Dream Team 

grant has facilitated the establishment of a multi-institutional clinical 

sequencing infrastructure, co-ordinated by Arul Chinnaiyan and Charles Sawyers.  

The team’s objective is to integrate whole-exome and transcriptome sequencing 

analysis of tumour biopsies from large cohorts of patients with metastatic CRPC, 

to characterise genomic alterations and how they differ from primary prostate 

cancer. 

A prospective study of a metastatic CRPC cohort of 150 patients identified the 

greatest proportion of genetic mutations in AR (62.7%), TP53 (53.3%), PTEN 

(40.7%) and ETS fusions (56.7%) [99].  Furthermore, comparison to primary 

prostate cancer data showed that mutations in AR were exclusive to castration-

resistant disease and over 70% of CRPC cases had aberrations in AR pathway 

genes, indicating that these tumours remained AR-dependent.  However, this 

means around 30% of CRPC cases are likely to be AR-independent and 65% of 

cases were found to harbour alterations, other than AR aberrations, that may be 

targeted therapeutically.  The authors highlighted aberrations in PI3K, Wnt, cell-
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cycle and DNA repair pathway genes and predicted benefits of prescribing 

patients with clinically-available therapies to target these signalling pathways. 

 

1.3 PTEN and Wnt signalling in prostate cancer 

The AR signalling pathway plays a fundamental role in the development of 

prostate cancer and is often central to the emergence of castration-resistant 

disease.  However, the deregulation of a number of other pathways significantly 

contributes to disease progression and prognosis.  In particular, there is 

increasing evidence that PTEN loss and Wnt/β-catenin pathway activation are 

associated with aggressive prostate cancer.  Pathways do not act linearly but co-

operate and interact, influencing the transcription and translation of their own 

and other pathway components through downstream signalling events and 

feedback loops.  The role of β-catenin signalling in prostate cancer requires 

further exploration, and mechanisms by which PTEN loss and β-catenin 

activation may co-operate are yet to be characterised in this disease. 

1.3.1 PTEN-mediated tumour suppression 

The PTEN (Phosphatase and TENsin homolog on chromosome 10) tumour 

suppressor, discovered in 1997 [105-107], is a protein and phospholipid 

phosphatase, best known for its role in the regulation of phosphoinositide 

signalling [108].  Phosphoinositide-3-kinase (PI3K) is predominantly activated and 

recruited to the membrane by receptor tyrosine kinase (RTK) signalling, and in 

turn regulates serine/threonine protein kinase (Akt) via phosphorylation of 

phosphatidylinositol (4,5)-triphosphate (PIP2) and generation of the second 

messenger phosphatidylinositol (3,4,5)-triphosphate (PIP3).  Akt is activated 

following phosphorylation by PIP3, phosphoinositide dependent kinase 1 (PDK1) 

and mammalian target of rapamycin complex 2 (mTORC2), and regulates a 

number of downstream effectors that contribute to cell survival, proliferation 

and migration.  This includes the inhibition of pro-apoptotic signalling via BCL2-

associated agonist of cell death (BAD) and BCL2-interacting mediator of cell 

death (BIM); the downregulation of p27 and GSK3β to facilitate cell cycle entry 

and proliferation; and activation of mTOR signalling, which drives protein/lipid 
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synthesis and cell growth [109].  PTEN dephosphorylates the 3’-phosphate group 

of PIP3, produced by PI3K activity, to produce PIP2.  By decreasing levels of 

PIP3, Akt is no longer recruited to the membrane for activation.  In this way, 

PTEN negatively regulates PI3K/Akt signalling, facilitating apoptosis and 

downregulating cell cycle progression and proliferation (Figure 1.3.1). 

 

Figure 1.3.1  Mechanisms of PTEN tumour suppression 
PTEN regulates tumour suppression via phosphatase-dependent inactivation of PI3K/Akt 
signalling, and via phosphatase-independent p53-mediated tumour suppression.  
Phosphoinositide-3-kinase (PI3K) converts phosphatidylinositol (4,5)-kinase (PIP2) to 
phosphatidylinositol (3,4,5)-kinase (PIP3).  PIP3 in turn activates Akt leading to cell survival, growth 
and proliferation through inhibition and activation of downstream targets, including glycogen 
synthase kinase 3 (GSK3), mammalian target of rapamycin (mTOR) and BCL2-associated agonist 
of cell death (BAD).  PTEN inhibits Akt activation in a phosphatase-dependent manner, by 
dephosphorylating PIP3, and promotes apoptosis and tumour suppression.  Phosphorylated PTEN 
translocates to the nucleus, where it facilitates p53-mediated tumour suppression in a 
phosphatase-independent manner.  ROS blocks nuclear export of PTEN, leading to PTEN 
accumulation in the nucleus. 

 

While predominantly localised in the cytoplasm, nuclear accumulation of PTEN 

can be promoted by GSK3β-mediated phosphorylation at Ser380/Thr383/Thr383 

residues in the PTEN C-tail domain [110].  Phosphorylation increases the stability 

and alters the conformation of PTEN, preventing membrane interaction and 

PTEN phosphatase activity [111].  Oxidative stress is able to regulate PTEN 

localisation by inhibiting export of PTEN from the nucleus.  This facilitates the 

role of PTEN in p53-mediated tumour suppression, whereby nuclear PTEN 

interacts with p53 in a phosphatase-independent manner to drive G1 growth 
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arrest [112].  Furthermore, nuclear PTEN protects genomic stability by 

regulating chromosomal integrity and DNA repair [113].  Thus, PTEN functions as 

a tumour suppressor by both phosphatase-dependent and phosphatase-

independent mechanisms (Figure 1.3.1). 

PTEN is essential for cellular differentiation during embryogenesis [114] and 

plays an integral role in the regulation of apoptosis, cell cycle control, cell 

adhesion and migration [115].  Given its critical role in homeostasis and tumour 

suppression, PTEN is tightly regulated by multiple transcriptional, post-

transcriptional, translational and post-translational mechanisms, which influence 

its function, stability and cellular localisation (recently reviewed by Bermudez 

Brito et al. [111] and Jerde [116]).  A number of kinases, such as Sprouty2 and 

the MAPK pathway (via c-Jun) regulate PTEN transcription, while various miRNAs 

and the PTEN pseudogene, a long non-coding RNA that sequesters miRNAs to 

positively regulate PTEN, contribute to its post-transcriptional regulation.  At 

the protein level, PTEN is further regulated by phosphorylation, oxidation and 

ubiquitination.  The extensive signalling network that regulates PTEN, together 

with the numerous cellular events regulated by PTEN, highlights the complexity 

of PTEN-mediated tumour suppression. 

1.3.2 PTEN loss in prostate cancer 

Chromosome 10q23, containing the PTEN gene, is commonly mutated and often 

undergoes loss of heterozygosity (LOH) in human cancers [108].  PTEN is down-

regulated in almost 50% of advanced metastatic prostate cancer due to 

decreased expression, mutation or biallelic deletion of the PTEN gene [41, 99, 

117].  The role of Pten loss in prostate cancer has been well characterised in 

mouse model studies, demonstrating that Pten is critical for tumour suppression.  

Pten haploinsufficiency has been shown to initiate PIN development in the 

mouse prostate [114], while homozygous deletion resulted in progression to 

invasive adenocarcinoma [118].  Furthermore, Pten null prostate tumours 

regressed in response to ADT but a subset of cancer cells continued to 

proliferate in the absence of androgens [118].  In human prostate cancer, the 

complete loss of PTEN is associated with advanced and aggressive disease, and 

frequently observed in CRPC [99].  PTEN loss correlates with deregulation of 

PI3K/Akt signalling, with just over 40% of primary prostate cancers and 100% of 
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metastatic disease harbouring alterations in this pathway [41], fuelling cell 

survival and proliferation.  This has led to the development of several inhibitors 

to target PI3K/Akt and mTOR signalling in cancer, although variations in their 

efficacy have been observed due to the emergence of resistance [109].  This 

may be explained in part by crosstalk between AR and PI3K pathways, shown to 

cross regulate each other by reciprocal feedback [119].  When PI3K signalling 

was inhibited, there was activation of both AR and MAPK signal transduction 

pathways, two pro-survival pathways capable of driving cancer progression.   

As Pten haploinsufficiency is capable of driving prostate cancer initiation in 

mice, it is likely that PTEN loss plays a role in earlier stages of cancer 

development through co-operation with other molecular aberrations.  PTEN 

itself interacts with AR as a scaffold protein, preventing AR nuclear translocation 

and promoting AR degradation [120].  Therefore, loss of PTEN may contribute to 

increased AR stability and activation in prostate cancer.  Moreover, a number of 

non-mutational processes can contribute to the loss of PTEN function through 

deregulation of signalling events that regulate PTEN expression, stability and 

localisation, such as oxidative stress, which is elevated in cancer, and aberrant 

microRNAs.  MicroRNAs have been found to down-regulate PTEN expression in 

prostate cancer cells, including miR-153 [121], miR-19b, miR23b, miR–26a and 

miR-92a [122] and many others are associated with loss of PTEN expression in 

other human cancers, such as miR-17 [123], miR-18a [124] and miR-21 [125].  

Furthermore, reactivation of developmental signalling pathways is associated 

with prostate cancer progression [46], and there is growing evidence for the role 

of developmental signalling in PTEN regulation [116]. 

1.3.3 Canonical Wnt signalling 

Wnts are a family of secreted cysteine-rich proteins.  The Wnt (or Wingless) 

gene was first identified in Drosophila melanogaster, and named so because its 

mutation prevented wing development and caused defects in the segmentation 

of larvae [126].  Similar effects were observed following the mutation of ARM (or 

Armadillo), the D. melanogaster orthologue of CTNNB1 (β-catenin), discovered 

to be key effector of the canonical Wnt signalling pathway [126].  Wnt proteins 

are expressed in a gradient pattern during embryo development, leading to 

differential activation of β-catenin, which controls the development of the 
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anterior-posterior axis.  Wnt signalling continues to be required for stem cell 

maintenance and homeostasis in adult tissue, and organs such as the intestine 

depend highly on Wnt/β-catenin activation for self-renewal processes [127].  As 

one of the essential signalling pathways required throughout early development 

and adult life, it is unsurprising that the disruption of this pathway leads to 

several types of human cancer, including colorectal, breast, liver and prostate 

cancer [128]. 

β-catenin stabilisation is regulated by a destruction complex, incorporating 

adenomatous polyposis coli (APC) protein, Axin1 scaffold protein, glycogen 

synthase kinase-3 (GSK3β) and casein kinase 1 (CK1).  In the absence of Wnt 

ligand, GSK3β and CK1 phosphorylate serine residues in β-catenin, targeting β-

catenin for ubiquitination by β-TrCP ubiquitin ligase and proteasomal 

degradation.  Wnt binding to frizzled receptors (FZD) and low-density lipoprotein 

receptor-related proteins (LRP) disrupts the destruction complex by recruiting 

dishevelled and the APC/Axin complex to the membrane.  β-TrCP dissociates 

from the destruction complex and β-catenin is no longer ubiquitinated [129].  

Stabilised β-catenin accumulates and translocates into the nucleus to carry out 

its role as a transcriptional co-activator of T-cell factor/lymphoid enhancer 

factor (TCF/LEF) and AR-regulated genes (Figure 1.3.2).   

β-catenin/TCF/LEF target genes include c-MYC [130], the metalloproteinase 

MMP7 [131] and CCND1 (cyclin D1) [132].  C-Myc is a multifunctional protein with 

important roles in cell cycle control, ribosomal biogenesis, protein synthesis, 

mitochondrial function and metabolism, and negatively regulates growth arrest 

and cell adhesion [133].  MMP7 (also known as Matrilysin-1) is involved in the 

degradation of extra-cellular matrix proteins and regulation of cell surface 

proteins [134], and cyclin D1 is part of the cell cycle machinery, contributing to 

cell cycle progression [135].  Thus, Wnt/β-catenin target genes are involved in a 

variety of processes from tissue development and regeneration to cell cycle, 

survival and metabolism.   

Further to its role as central effector of the canonical Wnt signalling cascade, a 

large proportion of β-catenin is associated with cadherin cell adhesion 

complexes at cell junctions (Figure 1.3.2), where it plays an integral role in cell-

cell interactions.  Changes in cadherin/β-catenin complexes may increase levels 
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of free β-catenin in cells, contributing to activation of canonical Wnt signalling 

[136]. 

 
Figure 1.3.2  Canonical Wnt signalling pathway 
In the absence of Wnt, β-catenin is phosphorylated by GSK3β and CK1 and targeted for 
proteasomal degradation by the APC/Axin destruction complex.  In the presence of Wnt, the 
destruction complex is disrupted and β-catenin is no longer degraded.  Stabilised β-catenin 
translocates to the nucleus where it regulates the expression of target genes, including c-Myc and 
cyclin D1.  Activation of PI3K/Akt, due to down-regulation of PTEN, has been shown to inhibit the 
destruction complex via GSK3β phosphorylation, leading to Wnt-independent β-catenin activation.  
β-catenin also plays an integral role in cell adhesion in complex with α-catenin and E-cadherin.  
(Adapted from Xu and Kimelman, 2007 [137], with permission of Company of Biologists Ltd). 

 

1.3.4 β-catenin and prostate cancer 

β-catenin is essential for normal prostate development but not required for 

homeostasis in the adult prostate [138].  Over the past two decades, researchers 

have compiled substantial evidence for β-catenin activation in prostate cancer, 

although its role as a proto-oncogene is not well defined.  Deregulation of 
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Wnt/β-catenin signalling can be attributed to a variety of causes which continue 

to be investigated.  Mutations in exon3 of the β-catenin gene (CTNNB1) have 

been found in approximately 5% of prostate cancer patients [139-141].  Exon3 

contains the GSK3β phosphorylation site, without which β-catenin can evade 

regulation by APC and TrCP.  Thus, β-catenin escapes degradation, resulting in 

its stabilisation and accumulation in the nucleus.  In a small study of 22 prostate 

cancer samples, mutually exclusive mutations were also observed in APC (9.1%) 

and TrCP1 (13.6%)[142].  Furthermore, exome sequencing of lethal metastatic 

prostate cancer has identified significant Wnt pathway mutations, including APC, 

CTNNB1 and MYC, that potentially contribute to the emergence and progression 

of CRPC [91, 143].  More recently, mutations in genes coding for APC (8.7%), β-

catenin (4%), R-spondin 2 (1.3%) and E3 ubiquitin protein ligases, RNF43 (2.7%) 

and ZNRF3 (2.0%) were identified in another cohort of patients with metastatic 

CRPC [99], contributing to Wnt pathway deregulation in aggressive prostate 

cancer. 

Overall there is a low mutation rate of Wnt pathway components in prostate 

cancer, which does not reflect the extent to which β-catenin localisation and 

expression is altered, particularly in high-grade, advanced stage disease.  

Studies have shown between 40% and as many as 80% of tumours with high 

Gleason scores ≥ 7 express increased levels of β-catenin as compared to BPH and 

low-grade cancer [44, 45, 141, 144].  Therefore, changes in β-catenin expression 

itself, the expression of Wnt ligands in the prostate tumour microenvironment 

[145, 146], or altered expression of other Wnt/β-catenin pathway components 

(Figure 1.3.3) may contribute to the activation of endogenous Wnt/β-catenin 

signalling.  Recently, APC hyper-methylation has been reported as a reliable 

biomarker in the identification of high-risk prostate cancer [147] and likely to be 

indicative of activated Wnt/β-catenin signalling. 

While the role of Wnt/β-catenin signalling has been well characterised in 

colorectal, lung and pancreatic carcinogenesis, few studies have investigated its 

role in the prostate.  To date, published data indicates that stabilisation and 

activation of β-catenin in the mouse prostate causes neoplastic transformation 

[148], high-grade PIN [149] and cancer progression to invasive adenocarcinoma, 

when combined with large probasin promoter directed SV40-large T-antigen 

expression [150], Pten loss [138] and AR amplification [151].  This suggests that 
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β-catenin activation is capable of driving prostate cancer initiation but requires 

co-operation with other molecular events to promote cancer progression. 

Several Wnt pathway inhibitors have already been developed and there is 

increasing data to suggest benefits for their use in prostate cancer management, 

where pharmacological targeting of Wnt/β-catenin signalling is clinically 

relevant.  Tankyrase inhibitors, which reactivate the destruction complex, and 

porcupine (PORCN) inhibitors, which block Wnt ligand secretion, are currently 

being evaluated in various cancer models [128].   

1.3.4.1 β-catenin co-operation with Pten loss and PI3K pathway deregulation 

Wnt/β-catenin and PI3K/Akt mediated signalling are frequently deregulated in 

prostate cancer.  Data from the MSKCC prostate adenocarcinoma study [41], 

accessed through cBioPortal for Cancer Genomics, demonstrates the clinical 

relevance of concurrent deregulation of these pathways (Figure 1.3.3).  PTEN 

and PIK3CA, PIK3R1 and PIK3R2 alterations contribute to aberrant PI3K/Akt 

signalling, while the remaining genes are indicative of canonical Wnt pathway 

alterations.  Over 70% of the primary tumours with mRNA expression data have 

alterations in one or more of the selected genes and 31% of these tumours 

display aberrations in both pathways (Figure 1.3.3A).  It should also be noted 

that Wnt pathway genes alone are altered in 28% of primary tumours.  In the 

metastatic tumour case set, 79% exhibit alterations in the selected genes but the 

number of these tumours harbouring mutations in both PTEN/PI3K and Wnt/β-

catenin extends to 93% (Figure 1.3.3B), and 95% of the metastasis have 

alterations in these pathways (Figure 1.3.3C).  Furthermore, patients in the 

metastatic tumour case set had a significantly poorer survival outcome 

compared to the 21% with no aberrations in this gene set (Figure 1.3.3D).  This 

strongly implies that deregulation, and potential crosstalk, of Wnt/β-catenin and 

PTEN/PI3K/Akt pathways drives aggressive prostate cancer with poor prognosis. 

Co-operation between Wnt/β-catenin and PI3K/Akt pathways has already been 

shown to promote tumourigenesis in a bladder cancer [152] and prostate cancer 

[138] mouse model with combined β-catenin activation and Pten loss.  However, 

mechanistically, it is unclear how these aberrations co-operate in 

tumourigenesis.  Loss of PTEN activity results in the upregulation of Akt kinase 
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activity and some studies have suggested that this in turn inhibits GSK3β to 

activate β-catenin [153, 154].  However, β-catenin deletion did not affect 

prostate tumourigenesis in a Pten null prostate cancer mouse model [138], 

suggesting this mechanism is not required for prostate cancer initiation or 

progression.  Meanwhile, the effects of β-catenin activation on PTEN or PI3K/Akt 

signalling have not been described. 

 
Figure 1.3.3  PTEN/PI3K and Wnt/β-catenin pathway deregulation in aggressive prostate 
cancer (MSKCC prostate adenocarcinoma study data set [41] analysed in cBio Portal for Cancer 
Genomics) 
Alterations in PI3K/Akt pathway regulators (above black line) and canonical Wnt pathway 
components (below black line) are shown in (A) 91 of 131 primary tumour cases with mRNA, (B) 29 
of 37 metastatic prostate tumours and (C) 19 of 20 distant metastasis with mRNA.  PTEN -
phosphatase and tensin homologue; PIK3CA - phosphoinositide-3-kinase catalytic subunit (p110); 
PIK3R1 - phosphoinositide-3-kinase regulatory subunit 1 (p85α); PIK3R1 - phosphoinositide-3-
kinase regulatory subunit 2 (p85β); FZD - frizzled receptor; BTRC – TrCP ubiquitin ligase; RNF43 
and ZNF43 – E3 ubiquitin protein ligases; CTNNB1 = β-catenin. (D) Kaplan-Meier survival plot 
corresponding to metastatic prostate cancer case set (n=37) in (C).  The red line represents cases 
with aberrations in the selected gene set and the blue line represents cases without aberrations in 
selected gene set.  P value = 0.0282, analysed by Logrank Test.   

DCB 
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1.3.4.2 β-catenin crosstalk with AR signalling 

Androgen and Wnt signalling pathway enrichment has been associated with 

early-onset prostate cancer [155].  Furthermore, up-regulation of nuclear β-

catenin immunohistochemical staining is commonly observed in in CRPC.  One 

study showed 38% of CRPC samples had abnormal β-catenin staining compared to 

only 23% of untreated prostate cancer [44], and recent genomic and 

transcriptomic analyses have identified significant Wnt/β-catenin pathway 

aberration in CRPC [99, 156].  The reactivation of AR signalling is a hallmark of 

CRPC and can be a result of changes in AR co-regulatory molecules (Table 1.1-1).  

Therefore, alterations in β-catenin protein levels may influence AR signalling, 

through β-catenin’s role as an AR cofactor [157], and play a role in prostate 

cancer progression and treatment resistance. 

There is evidence that β-catenin increases AR transcriptional activity in an 

androgen-dependent manner [158].  A recent study by Lee et al. [151] identified 

a synergistic relationship between transgenic AR and β-catenin stabilisation, 

which drove aggressive prostate cancer in mice.  Regression of these tumours in 

response to castration demonstrated that AR signalling was required for β-

catenin-driven tumourigenesis and suggested the importance of AR and β-catenin 

co-regulation in prostate cancer initiation and progression.  In correlation with 

these observations, prostate-targeted β-catenin activation has previously been 

shown to up-regulate AR signalling during development of hyperplastic lesions in 

mice [149].  However, downregulation of AR and AR target genes has been 

reported in high-grade PIN and progression to adenocarcinoma, as a consequence 

of constitutive Wnt/β-catenin signalling in murine prostate tissue [149, 150], 

suggesting that β-catenin can also decrease AR transcriptional activity.  An 

inverse correlation between β-catenin nuclear localisation and AR expression 

was also observed in human prostate cancer bone metastasis, suggesting that 

downregulation of AR may facilitate Wnt/β-catenin signalling in this context 

[159]. 

Wnt/β-catenin pathway activation has been shown to confer resistance to 

antiandrogen treatment in vitro [158] and constitutive β-catenin activation in 

the adult mouse prostate was shown to promote continuous growth post-

castration [149], implicating the involvement of Wnt/β-catenin signalling in the 
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progression from HNPC to CRPC.  A LNCaP hollow fibre model, genomically 

similar to clinical samples, demonstrated reactivation of AR signalling and 

Wnt/β-catenin pathway activation in CRPC [160].  Wang et al. observed 

increased expression of β-catenin and AR, which interacted and co-localised 

within the nucleus of castration-resistant tumour cells.  This was not observed in 

tumours from non-castrated mice, and suggested that Wnt/β-catenin activation, 

resulting from androgen ablation, may drive aberrant AR activity, contributing to 

CRPC progression.  Furthermore, inhibition of nuclear β-catenin has been shown 

to inhibit AR signalling through disruption of β-catenin/AR target gene 

transcription, and blocked prostate tumour growth in mice and the proliferation 

of castration-resistant cells [161]. 

The studies described above provide evidence for both positive and negative 

regulation of AR signalling by β-catenin in prostate cancer.  There is evidence 

that crosstalk between AR and β-catenin varies during stages of cancer 

progression in a context-dependent manner.  While AR signalling is reported to 

be required for initiation of β-catenin-driven prostate tumourigenesis, it appears 

that the activation of Wnt/β-catenin signalling is capable of promoting AR-

dependent and AR-independent mechanisms of prostate cancer progression and 

castration-resistance.  Further mechanistic insight is required to understand the 

relationship between AR and β-catenin in prostate cancer. 
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1.4 Mouse models of prostate cancer 

Molecular profiling of genomic and transcriptomic aberrations, and their 

classification according to risk, is proving invaluable for the future of prostate 

cancer management.  However, it is the translation of these aberrations into 

functional downstream effects that drives prostate cancer development and 

progression.  Signalling pathways interact and co-operate, influencing the rate 

of cancer progression and aggressiveness of disease.  The use of pre-clinical 

animal models facilitates investigation of prostate cancer drivers and pathway 

interactions in an in vivo context, also taking into account the influence of 

tumour-host interactions. 

 

 
Figure 1.4.1  Human and mouse prostate anatomy 
Diagrams illustrating the anatomy of (A) the adult human prostate in contrast to (B) the adult mouse 
prostate (adapted from Abate-Shen & Shen, 2000 [7]). 

 

The human prostate gland is approximately the size of an acorn and consists of 

three distinct regions: the central zone, the peripheral zone and the transition 

zone (Figure 1.4.1A).  This anatomy contrasts with that of the murine prostate 

which consists of the anterior, dorsal and lateral (or dorsolateral) and ventral 

lobes (Figure 1.4.1B).  These lobes are distinguishable by their different gland 

morphology (Figure 1.4.2A-C).  Murine prostate glands are composed of luminal, 

basal and neuroendocrine epithelial cells, with a central lumen containing 

secretions, and surrounded by stroma (Figure 1.4.2D).  Unlike, human prostate 

morphology, basal cells are not in a continuous single-cell layer.  Despite distinct 

differences between human and mouse prostate structure, the stages of cancer 

progression in the mouse closely mimic that in humans (Figure 1.4.3) [162].  
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Hence, xenograft, transgenic and knockout mouse models have proved to be 

suitable animal models for studying prostate development and carcinogenesis 

[7]. 

 
 

 
Figure 1.4.2  Pathology of normal mouse prostate 
Haematoxylin and eosin staining of FFPE wildtype prostate tissue, showing normal histology of (A) 
the dorsal prostate (DP) and lateral prostate (LP), (B) ventral prostate and (C) anterior 
(coagulating) prostate glands at low (top panel) and high (bottom panel) power magnification. (D) 
Cell types and compartments in murine prostate tissue.  (A-C Reproduced from Brzezinska et al, 
2015 [162], with permission of Springer). 

 

 

D 
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Figure 1.4.3  Murine prostate carcinogenesis 
Images show murine prostate morphology during cancer initiation and development: i) normal 
glandular structure, ii) hyperplastic lesions (arrows), iii) PIN development (arrows), iv) high-grade 
PIN (arrows), v) adenocarcinoma and complete loss of glandular structure.  (Reproduced from 
Brzezinska et al, 2015 [162], with permission of Springer). 

 

Examples of whole body gene knockouts that have given rise to prostate 

adenocarcinoma in mice include concurrent heterozygous deletion of Pten with 

Nkx3.1 [163] or p27 [164], while combination with Tp53 haploinsufficiency 

accelerated PIN development [165].  PIN lesions are observed in Pten 

haploinsufficient mice but do not progress to adenocarcinoma [114].  However, 

homozygous Pten deletion renders embryos unviable [114] and other knockout 

mutations result in developmental defects, limited lifespan or embryonic 

lethality, which precludes the study of their role in prostate cancer [7].  Such 

limitations have been overcome by using the conditional Cre/LoxP system [166], 

under the control of prostate-specific gene promoters, to manipulate gene 

expression in the prostate.  LoxP sites contain sequences recognised and 

digested by Cre recombinase.  These sites are inserted either side of a sequence 

that, when excised, will result in recombination and altered expression of the 

gene of interest.  In this way, the effects of loss, stabilisation and 

overexpression of gene products can be studied only where there is expression of 

Cre. 

To modulate genetic alterations in a prostate-specific manner, Cre expression 

must be regulated by a gene promoter specifically expressed in prostate tissue, 

such as the PSA-Cre [167], -426/+28 Probasin-Cre [168], Probasin-Cre4 (PB-Cre4) 

[169] or Nkx3.1-Cre [170] systems.  The PB-Cre4 and Nkx3.1-Cre models are both 

used in our laboratory.  Probasin is a rat prostate-specific promoter, discovered 

to specifically target gene expression to prostate epithelial cells [171].  The PB-

Cre4 transgenic model was developed to drive high levels of Cre expression, 

using a small composite, androgen-regulated derivative of the Probasin 
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promoter, ARR2PB [172].   The Nkx3.1 homeobox gene is expressed specifically in 

the prostate during embryonic development and can be used to drive prostate-

targeted Cre expression [170].  Recently the Nkx3.1-Cre system has been 

modified to generate the Nkx3.1CreERT2 tamoxifen-inducible system [23].  In this 

model, Cre is fused to a modified oestrogen receptor ligand-binding domain and 

activated by tamoxifen [173], facilitating the temporal control of genetic 

alterations. 

There are a number of differences between Probasin and Nkx3.1 Cre/LoxP 

systems, each with benefits or limitations with regards to the timing and 

heterogeneity of Cre expression, breeding of mice, and the role of the promoter 

gene in the prostate.  The expression of Probasin is androgen-regulated and 

peaks at sexual maturation [171], whereas Nkx3.1 expression occurs during late 

embryogenesis and is maintained in the adult mouse [170].  Use of the 

constitutive Nkx3.1 system poses a problem when studying genetic alterations 

that adversely affect prostate development, but can be overcome by using the 

Nkx3.1CreERT2 tamoxifen-inducible system to elicit Cre expression at a later time 

point.  There is heterogeneous Cre expression in each model: Probasin is 

associated with basal epithelial cells; Nkx3.1 with luminal epithelial cells [23].  

As basal and luminal cell types have both been implicated in human prostate 

cancer [19], each model is clinically relevant.  However, luminal epithelial cells 

are characterised by their expression of AR and more responsive to androgen 

manipulation, making this model preferable for CRPC studies. 

Furthermore, constitutive Nkx3.1-Cre and inducible Nkx3.1CreERT2 mouse colonies 

can be expanded more quickly than PB-Cre4 mice.  Probasin recombines in 

oocytes resulting in progeny with recombined floxed alleles in multiple tissues, 

in addition to the prostate [174].  Therefore, PB-Cre4-positive females cannot be 

used for breeding.  However, unlike Nkx3.1, manipulation of Probasin itself does 

not adversely affect prostate development or homoeostasis.  Nkx3.1 is required 

for normal ductal morphogenesis and secretory protein production [170], and its 

loss has been shown to drive prostate cancer initiation [175].  The expression of 

Cre, regulated by the constitutive or tamoxifen-inducible Nkx3.1 promoter, 

effectively results in heterozygous Nkx3.1 expression and may contribute to 

cancer initiation and progression in prostate cancer models.   
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In this project the PB-Cre4 (referred to as Pb-Cre) and Nkx3.1CreERT2 conditional 

Cre/LoxP systems have been crossed with floxed mouse models to generate mice 

with prostate-targeted Pten loss [176], β-catenin stabilisation [177] and red 

fluorescent protein (RFP) transgene expression [178].  Pten inactivation results 

from LoxP sites inserted either side of exon5 of endogenous Pten, which contains 

the Pten phosphatase domain, commonly mutated in various human cancers 

[176].  To achieve β-catenin stabilisation, LoxP sites flanking exon3 of the 

Ctnnb1 gene are excised following Cre expression.  Exon3 contains the GSK3β 

phosphorylation sites, required to maintain β-catenin association with the 

destruction complex in the absence of Wnt ligand.  Therefore, Exon3 deletion 

generates a dominant Ctnnb1 allele and results in Wnt-independent β-catenin 

stabilisation and activation of nuclear β-catenin signalling [177]. 

The Cre-LoxP system has also been manipulated to introduce cell-specific 

transgene expression, such as the RFP “knock-in” Cre-reporter [178].  This was 

achieved by inserting the RFP reporter construct in the ROSA26 locus, previously 

identified as an efficacious insertion site - ubiquitously expressed and non-

essential for development [179].  The reporter construct contains a floxed 

‘STOP’ sequence upstream of RFP, which blocks transcription in the absence of 

Cre recombinase.  On expression of Cre, this sequence is excised, facilitating 

expression of RFP.  This system was designed for use in lineage tracing 

experiments, such as those used to identify castration-resistant Nkx3.1-

expressing cells (CARNs) as a luminal cell of origin for prostate cancer [23] 

(although yellow fluorescent protein was used as a Cre-reporter in these 

studies).  The use of RFP as a Cre-reporter to identify CARNs in regressed and 

regenerated prostate tissue is described in Chapter 4.1.2. 
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1.5 Project aims and objectives 

There is a plethora of evidence that aberrant activation of Wnt/β-catenin 

signalling and PTEN loss co-occur in aggressive prostate cancer with the poorest 

prognosis [41, 100].  Furthermore, enrichment of genomic alterations in CTNNB1 

and PTEN is significantly higher in metastatic CRPC [99].  This warrants further 

investigation into the relationship between these aberrations to uncover 

molecular mechanisms that drive aggressive disease. 

We formed two main hypotheses: 

1. β-catenin activation, arising from β-catenin mutation or deregulation in 

Wnt/β-catenin signalling, co-operates with Pten loss to drive aggressive 

prostate carcinogenesis in mice 

2. β-catenin is able to reprogram AR signalling, through its role as an AR 

cofactor, and drive treatment resistant mechanisms that promote the 

progression of hormone naïve prostate cancer to castration resistant 

disease 

The aim of this project is to investigate the role of β-catenin activation in 

prostate tumourigenesis, cancer progression and the emergence of castration-

resistant disease, in the context of concurrent Pten loss.  The project can be 

divided into the following objectives: 

I. Characterise the effects of β-catenin activation and Pten loss in a Pb-Cre 

prostate cancer mouse model 

II. Investigate the co-operation between β-catenin activation and Pten loss 

in prostate cancer and elucidate intrinsic and extrinsic events that may 

drive cancer progression 

III. Develop novel pre-clinical in vivo models for CRPC, using the Nkx3.1CreERT2 

system, to characterise the role of β-catenin activation and Pten loss in 

the emergence of CRPC and identify mechanisms of treatment resistance 
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IV. Investigate the impact of aberrant β-catenin activation on AR signalling in 

prostate cancer to understand if AR reprogramming confers resistance to 

ADT in this prostate cancer model 
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2.1 Materials 

2.1.1 General reagents 

Table 2.1-1  General reagents 

Reagent Manufacturer 

Agarose Melford 

Aprotinin Sigma 

Bovine serum albumin (BSA) Sigma 

Citrate Fisher Scientific 

Collagenase Sigma 

Corn oil Sigma 

Cresyl violet Sigma 

Cryospray CellPath 

3,3-diaminobenzidine (DAB) Thermo Scientific 

Diethylpyrocarbonate (DEPC) Sigma 

Dispase BD Biosciences 

Dithiothreitol (DTT) Thermo Scientific 

Dulbecco's Modified Eagle's Medium (DMEM) GIBCO 

Enhanced chemiluminescence (ECL) GE healthcare 

Ethylene diamine triacetic acid (EDTA) Fisher Scientific 

Ethanol Sigma 

Fetal bovine serum (FBS) GIBCO 

Formaldehyde (36.5-38% solution) Sigma 

L-glutamine GIBCO 

Glycerol Sigma 

Glycine Calbiochem 

Glycogen Ambion 

HEPES Sigma 

Hydrogen chloride (HCl) Sigma 

Hydrogen peroxide (30% solution) Fisher Scientific 

Igepal Sigma 

Leupeptin Sigma 

Lithium chloride solution (LiCl) (8M) Sigma 

Matrigel Invitrogen 

β-Mercaptoethanol Sigma 
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Methanol Sigma 

Methyl Cellulose Sigma 

MOPS SDS running buffer (20x) Invitrogen 

Normal goat serum Abcam 

OCT CellPath 

PVDF membrane Millipore 

Penicillin Streptomycin GIBCO 

Pepstatin Sigma 

Phenol:Chloroform:Isoamyl Alcohol 25:24:1 Sigma 

Phenylmethylsulphonyl fluoride (PMSF) Thermo Scientific 

Protease Inhibitor Cocktail Set I Calbiochem 

Protease Inhibitor Cocktail Set III Calbiochem 

PhosSTOP™ Phosphatase Inhibitor Cocktail Roche 

RNase Inhibitor 500X Sigma 

RPMI-1640 GIBCO 

Sodium bicarbonate (NaHCO3) Sigma 

Sodium butyrate (NaBu) Sigma 

Sodium chloride (NaCl) Sigma 

Sodium deoxycholate Sigma 

Sodium dodecyl sulphate (SDS) Sigma 

Sodium fluoride (NaF) Sigma 

Sodium hydroxide (NaOH) Fisher Scientific 

Sodium orthovanadate (Na3VO4) Sigma 

Tris-HCl Sigma 

Triton X-100 Sigma 

10X Trypsin GIBCO 

Trypsin/0.05% EDTA Invitrogen 

Tween-20 Sigma 

Tween-80 Sigma 
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2.1.2 Treatments administered in vivo or in vitro 

N-acetyl cysteine (NAC): 10 mM NAC (Sigma) was dissolved in drinking water 

and adjusted to pH 7.5 by dropwise addition of concentrated NaOH solution. 

Tamoxifen: 1 g of Tamoxifen (Sigma) was resuspended in 5 ml ethanol absolute, 

vortexed and incubated at 37°C for ~2 hours to dissolve as much as possible.  

Tamoxifen was diluted to 20 mg/ml with 45 ml corn oil, vortexed and incubated 

at 37°C until all tamoxifen had dissolved. Stock was immediately aliquoted into 

amber bottles and stored at -20°C.  Each aliquot was freeze/thawed up to 3 

times, and then discarded. 

Testosterone proprionate: Silastic® tubing was cut into 1 cm implants.  One 

end was sealed with medical-grade glue and left to dry overnight.  Implants 

were filled with 10 mg testosterone proprionate (Sigma) powder and the open 

end sealed with glue and left to dry overnight.  Implants were stored in a sealed 

container at room temperature.  Control (sham) implants were left empty and 

sealed with glue at both ends.  Immediately prior to implantation, implants were 

soaked in PBS overnight. 

LGK-974: A 0.375 mg/ml suspension of LGK-974 (MedKoo) was made in 0.5% 

Methyl Cellulose/0.5% Tween 80 vehicle.  The suspension was vortexed and 

sonicated for 10 minutes to achieve a uniform (almost clear) suspension and 

stored at 4°.  LGK-974 suspension must be protected from light and is only 

stable for one week. 

ICG-001: ICG-001 (Tocris) powder was dissolved in ethanol absolute to generate 

a 50 mM stock solution.  Aliquots were stored at -20°C 
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2.1.3 Antibodies 

Table 2.1-2  Antibodies used for immunohistochemistry 

Antibody Species Manufacturer Dilution Retrieval 

Ki67* Rabbit Thermo Scientific 1:200 pH 6 

β-catenin* Mouse 
BD Transduction Laboratories 
(610154) 

1:750 pH 8 

Pten Mouse Cell Signaling (#9556) 1:50 pH 6 

Malondialdehyde Rabbit Abcam (ab6463) 1:500 pH 6 

p21 Rabbit Abcam (ab2961) 1:50 pH 6 

Akt (P Ser473) Rabbit Cell Signaling (#4060) 1:50 pH 8 

Active Rac1-GTP Mouse New East Biosciences (26903) 1:500 pH 6 

RFP Rabbit Rockland (600-401-379) 1:50 pH 6 

AR (N-20) Rabbit Santa Cruz (sc-816) 1:150 pH 6 

Myc (N-262) Rabbit Santa Cruz (sc-764) 1:50 pH 6 

F4/80* Rat Serotec (MCA-497) 1:150 Prot K 

NIMP* Rat Abcam (ab2557) 1:50 Prot K 
*IHC carried out by Histology Services 

Table 2.1-3  Reverse Phase Protein Array antibodies 

Antibody Species Manufacturer Dilution 

Survivin Rabbit Cell Signaling (#2808) 1:250 

β-tubulin Rabbit Abcam (ab6046) 1:5000 

p44/42 MAPK (ERK1/2) Rabbit Cell Signaling (#9102) 1:500 

Prohibitin Rabbit Santa Cruz (sc-28259) 1:5000 

Src Rabbit Cell Signaling (#2109) 1:500 

p21 CIP/WAF1 (P Thr145) Mouse Cell Signalling (#2946) 1:2000 

Smad3 (P Ser423/425) Rabbit Cell Signaling (#9520) 1:1000 

Calpain2 Rabbit Cell Signaling (#2539) 1:1000 

PKCα (P Thr638) Rabbit Abcam (ab32502) 1:1000 

PTEN Rabbit Cell Signaling (#9552) 1:500 

AMPKα (P Thr172) Rabbit Cell Signaling (#2535) 1:500 

Akt (P Ser473) Rabbit Cell Signaling (#4060) 1:500 

Stat1 (P Ser727) Rabbit Invitrogen (Biosource, 44-382G) 1:500 

PKCγ (P Thr514) Rabbit GeneTex (GTX25778) 1:250 

mTOR (P Ser2448) Rabbit Cell Signaling (#2971) 1:250 

ErbB-3/Her3/EGFR Rabbit Cell Signaling (#4754) 1:500 

GSK3β Rabbit Cell Signaling (#9315) 1:500 
Antibodies correspond to selected RPPA data included in heat map (Figure 3.2.9) 
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Table 2.1-4  Immunoblotting antibodies 

Antibody Species Manufacturer Dilution 

β-catenin Mouse 
BD Transduction 
Laboratories (610154) 

1:1000 

PTEN Rabbit Cell Signaling (#9552) 1:1000 

PTEN (P Ser380) Rabbit Cell Signaling (#9551) 1:1000 

Akt Rabbit Cell Signaling (#9272) 1:1000 

Akt (P Ser473) Rabbit Cell Signaling (#4060) 1:1000 

Cyclin D1 Mouse Santa Cruz (sc-246) 1:1000 

Survivin (FL-142) Rabbit Santa Cruz (sc-10811) 1:1000 

mTOR Rabbit Cell Signaling (#2972) 1:1000 

mTOR (P Ser2448) Rabbit Cell Signaling (#2971) 1:1000 

Hamartin/TSC1 Rabbit Cell Signaling (#4906) 1:1000 

Tuberin/TSC2 Rabbit Cell Signaling (#3612) 1:1000 

TSC2 (P Thr1462) Rabbit Cell Signaling (#3617) 1:1000 

S6K Rabbit Cell Signaling (#9202) 1:1000 

S6K (P Thr421/424) Rabbit Cell Signaling (#9204) 1:1000 

S6 Rabbit Cell Signaling (#2212) 1:1000 

S6 (P Ser240/244) Rabbit Cell Signaling(#2215) 1:1000 

AMPKα Rabbit Cell Signaling (#2603) 1:1000 

AMPKα (P Thr172) Rabbit Cell Signaling (#2523) 1:1000 

AMPKβ1/2 Rabbit Cell Signaling (#4150) 1:1000 

AMPKβ1/2 (P Ser108) Rabbit Cell Signaling (#4181) 1:1000 

PKA (P Thr197) Rabbit Abcam (ab75991) 1:5000 

PKA substrate (P Ser/Thr) Rabbit Cell Signaling (#9621) 1:1000 

AR (N-20) Rabbit Santa Cruz (sc-816) 1:1000 

Hsp-70 Mouse Abcam (ab3148) 1:2000 

GAPDH-HRP Mouse Sigma (G9295) 1:10000 

HRP-linked secondary Mouse Cell Signaling (#7076) 1:5000 

HRP-linked secondary Rabbit Cell Signaling (#7074) 1:5000 
 

Table 2.1-5  Immunoprecipitation antibodies 

Antibody Species Manufacturer Experiment Quantity 

AR (N-20) Rabbit Santa Cruz (sc-816) co-IP  2 µg 

HA-probe (Y-11) Rabbit Santa Cruz (sc-805 X) ChIP 10 µg 

AR (N-20) X Rabbit Santa Cruz (sc-816 X) ChIP 10 µg 

AR (H-280) X Rabbit Santa Cruz (sc-13062 X) ChIP 10 µg 
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2.1.4 Primers 

Primers used in TaqMan® qPCR assays were designed using the Roche Assay 

Design Centre (https://lifescience.roche.com) and used in combination with 

probes from the Universal ProbeLibrary (Roche). 

Table 2.1-6  TaqMan qPCR primers 

Target Forward primer sequence Reverse primer sequence 
Probe 

Library 
number 

18S gcaattattccccatgaacg gggacttaatcaacgcaagc 48 

Pten aggcacaagaggccctagat ctgactgggaattgtgactcc 60 

Pten exon5* tcagtttgcaatgccaagg agaatcaagtttcaaatgtcttactcc 46 

Casc3* ctcagggcgtgcaatgtt gagaatggcggttctctacatc 45 

Tiam1 ggaatatttgatgacactgttcca ggtggacactgggtaagacc 7 

Vav3 cgcgtgctgaagtatcacc ctccatagggtcatgggtgt 17 

Def20 gacccagaaggatctgctctt cctgagcaggtcccataaac 75 

Adcy8 acctgactttcaattcctcagc caacaccccagtgaagacaa 68 

Apoc4 gctgttcttggtcagctttgtag gcccttaccaggctccag 108 

Pnliprp2 gggtacccctgttcctccta tttgggacacccttgttctg 38 

Fbp1 tataccccgccaacaagaaa aagctatggggttgcactca 66 

Tcf3 cgcagaccaaactgctcat gggttcaggttgcgttctc 1 

Lef1 tcctgaaatccccaccttct tgggataaacaggctgacct 94 

Ccnd1 tttctttccagagtcatcaagtgt tgactccagaagggcttcaa 72 

Wnt4 actggactccctccctgtct tgcccttgtcactgcaaa 62 

Wnt5a tgaagcaggccgtaggac agccagcacgtcttgagg 92 

Wnt10b ttcacgagtgtcagcacca aaagcactctcacggaaacc 70 

Myc cctagtgctgcatgaggaga tccacagacaccacatcaattt 77 

AR ccagtcccaattgtgtcaaa tccctggtactgtccaaacg 58 

Fkbp5 tgttcaagaagttcgcagagc ccttcttgctcccagcttt 69 

ApoF gcctggctctaaggaatgct aagctgaagagcccagacct 16 
*Used for Pten DNA copy number qPCR 
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MicroRNA qPCR analysis was carried out using TaqMan® assays (Applied 

Biosystems). 

Table 2.1-7  TaqMan MicroRNA assays (Applied Biosystems) 

Assay Product number (4427975/…) 

hsa-mir-17 2308 

hsa-miR-18a 2422 

hsa-miR-19b 396 

hsa-miR-21 397 

snoRNA202 Control Assay 1232 
 

 

Primers for ChIP qPCR were based on published primer sequences and used for 

SYBR® Green qPCR.   

Table 2.1-8  ChIP-qPCR primers 

Target Forward primer sequence Reverse primer sequence 

Fkbp5* acccccattttaatcggagaac ttttgaagagcacagaacaccct 

Tmprss2* gcaaaaagaaccgactcaatcc ggagctgtacatacaccctgattg 

Gapdh* gcccttgagctaggactggata cgattttcacctggcactgc 

ApoF** taaagccaggtgaccttcat ctttgcaaataagccaggga 

Non Target (Lcor)* attaagacacaaaggagagaggtcc tgtcatgtatcaagtttccaaaacc 
All primer sequences previously published for AR ChIP-qPCR *[180], **[181] 

All primers were tested in no-template control reactions prior to use in qPCR 

experiments. 

2.1.5 Cell lines 

LNCaP and CWR-22 cell lines were authenticated by LCG standards.  

CP1-4 cell lines were derived from prostate tumours harvested from Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ transgenic mice. 
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2.1.6 Solutions and buffers 

Solution/buffer Components 

Phosphate buffered saline 
(PBS) 

170 mM NaCl, 3.3 mM KCl, 1.8 mM Na2HPO4, 
10.6 mM K2HPO4, pH 7.4 

Tris-buffered saline-TWEEN 
(TBS-T) 

25 mM Tris-HCl (pH 7.4), 137 mM NaCl, 5 mM 
KCl, 0.1% Tween-20 

Citrate buffer, pH 6 
(immunohistochemistry) 

300 mM citrate powder dissolved in dH2O and 
titrated to pH 6 with 2M HCl 

EDTA buffer, pH 8 
(immunohistochemistry) 

1 mM EDTA dissolved in dH2O and titrated to pH 
8 with 2M HCl 

Blocking buffer 
(immunohistochemistry) 

5% normal goat serum, 1% BSA, 0.1% Triton X-
100 in TBS 

RPPA tissue lysis buffer 

1% TritonX-100, 50 mM HEPES (pH 7.4), 150 mM 
NaCl, 1.5 mM MgCl2, 1 mM EGTA, 100 mM NaF, 
10 mM Na pyrophosphate, 1 mM Na3VO4, 10% 
glycerol, containing freshly added 1X protease 
and phosphatase inhibitors 

RPPA 4X SDS sample buffer 
40% glycerol, 8% SDS, 0.25 M Tris-HCl (pH 6.8), 
1/10 β-mercaptoethanol (added immediately 
before use) 

Cell lysis buffer  
(protein extraction) 

50 mM Tris-HCl (pH 7.6), 150 mM NaCl,  1% 
Triton X-100, 0.5% Deoxycholate, 0.1% SDS, 1 
mM NaF, 1 mM Na3VO4, 1X protease cocktail 
inhibitor mix 1, 50 µg/ml PMSF, 1X PhosSTOP 

Tissue lysis buffer  
(protein extraction) 

50 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% 
Triton X-100, 0.5% Deoxycholate, 0.1% SDS, 1 
mM NaF, 1 mM Na3VO4, 1X protease cocktail 
inhibitor mix 1, 50 µg/ml PMSF, 2X PhosSTOP 

Blocking buffer 
(immunoblotting) 5% skimmed milk powder in TBS-T 

Transfer buffer 
(immunoblotting) 192 mM glycine, 25 mM Tris, 20% methanol 

Cytokine array lysis buffer 10 µg/ml Aprotinin, 10 µg/ml Leupeptin, 10 
µg/ml Pepstatin, 1% Triton X-100 in PBS 

Collagenase solution 

Non-sterile lyophilised collagenase type I 
dissolved in PBS to a concentration of 10 mg/ml; 
filtered through a 0.22 µm filter and 1 ml 
aliquots stored at -20°C 

DEPC water 
0.1% DEPC pipetted into dH2O, mixed and 
incubated overnight at room temperature, then 
autoclaved 
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Cresyl Violet 
1% Cresyl Violet powder dissolved in 50% 
ethanol/DEPC water and passed through 0.2 µm 
syringe filter; stored at 4°C 

IP washing buffer PBS/BSA (0.1% BSA, 0.02% NaN3 to preserve) 

IP lysis buffer 
50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 
1% Triton X-100, 1 mM PMSF, 1 mM Na3VO4, 1X 
protease inhibitor cocktail set III, 1X PhosSTOP 

NETN buffer STRONG 
20 mM Tris (pH 8.0), 1 mM EDTA, 900 mM NaCl, 
0.5% NP-40 

NETN buffer WEAK 
20 mM Tris (pH 8.0), 1 mM EDTA, 100 mM NaCl, 
0.5% NP-40 

Tissue cross-linking solution 
1% formaldehyde, 50 mM HEPES-KOH, 100 mM 
NaCI, 1 mM EDTA, 0.5 mM EGTA 

ChIP cell lysis buffer (CLB) 
10 mM Tris (pH 8.0), 10 mM NaCl, 0.2% Igepal, 
10 mM NaBu, 50 µg/ml PMSF, 1 µg/ml Leupeptin 

ChIP nuclear lysis buffer (NLB) 50 mM Tris (pH 8.0), 10 mM NaCl, 1% SDS, 10 mM 
NaBu, 50 µg/ml PMSF, 1 µg/ml Leupeptin 

ChIP dilution buffer (IPDB) 
20 mM Tris (pH 8.0), 150 mM NaCl, 2 mM EDTA,    
1% Triton X-100, 0.01% SDS, 10 mM NaBu, 50 
µg/ml PMSF, 1 µg/ml Leupeptin 

ChIP wash buffer 1 (IPWB1) 
20 mM Tris (pH 8.0), 50 mM NaCl, 2 mM EDTA, 
1% Triton X-100, 0.01% SDS 

ChIP wash buffer 2 (IPWB2) 
10 mM Tris (pH 8.0), 250 mM LiCl, 1 mM EDTA, 
1% Igepal, 1% Deoxycholate 

Tris-EDTA (TE) 10 mM Tris-HCl (pH 8.0), 1 mM EDTA 

ChIP elution buffer (IPEB) 100 mM NaHCO3, 1% SDS 
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2.2 Methods 

2.2.1 Animal studies 

All animal work in this study was compliant with the Animal (Scientific 

Procedures) Act 1986 and approved by the Home Office (London, United 

Kingdom). 

2.2.1.1 Transgenic models 

All mice in this study were on a mixed background and were genotyped by 

Transnetyx™ using PCR analysis of ear notch tissue.  To generate the Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ colony, ARR2Probasin-Cre (Pb-Cre) mice [169] were crossed 

with mice harbouring a Ptenfl/+ allele [176] and progeny were further crossed 

with Ctnnb1(ex3)Δ/+ mice [177].  For controls, wildtype, Pb-Cre Ptenfl/+ and Pb-Cre 

Ctnnb1(ex3)Δ/+ littermates were used.  Mice were sacrificed at 3 months for 

cancer initiation studies and other cohorts aged to 6 months and clinical 

endpoints for tumourigenesis studies. 

For tamoxifen induction optimisation, and visualisation of CARNs following 

regression and regeneration, Nkx3.1CreERT2 RFP/+ mice were generated by 

crossing Nkx3.1CreERT2 mice [23] with mice harbouring the rosa-26-RFP transgene 

(RFP/+) [178].  The optimisation of tamoxifen induction of Cre recombinase was 

carried out as described in Chapter 4.1.1 and final procedure is described below 

(2.2.1.4).  For controls, Nkx3.1CreERT2 wildtype littermates were used.  Mice were 

sacrificed 2 weeks post-induction for tamoxifen optimisation experiments, and 6 

weeks post-induction for prostate regression/regeneration experiments. 

To generate the Nkx3.1CreERT2 Ptenfl/+ (or Ptenfl/fl) Ctnnb1(ex3)Δ/+ colony, 

Nkx3.1CreERT2 mice were crossed with Ptenfl/+ or Ptenfl/fl mice, and progeny were 

further crossed with Ctnnb1(ex3)Δ/+ mice.  Tamoxifen induction of Cre 

recombinase was carried out as described below (2.2.1.4).  For controls, 

Nkx3.1CreERT2 wildtype, Nkx3.1CreERT2 Ptenfl/+ (or Ptenfl/fl) and Nkx3.1CreERT2 

Ctnnb1(ex3)Δ/+ littermates were used.  Mice were sacrificed 2 weeks post-

induction for tamoxifen optimisation experiments, 2 months post-induction for 

cancer initiation studies and a further cohort was aged to clinical endpoint for 

tumourigenesis studies.   
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Clinical endpoints were determined by clinical signs including palpable tumour 

burden, haematuria, weight loss, and reduced activity, in keeping with terms of 

the project license.  Following dissection, prostates were weighed (‘wet’ 

weight), tumours were drained of any cystic fluid infiltrate, and prostates were 

weighed again (‘dry’ weight).  The prostate was then divided into left and right 

lobes, with one half placed in 10% neutral buffered formalin for 36-48 hours 

fixation, prior to paraffin-embedding by histology services, and the other half 

snap frozen in dry ice and stored at -80°C.  Lymph nodes, spleen, liver, kidneys 

and lungs were routinely dissected and formalin-fixed for examination. 

2.2.1.2 Haematological analysis of whole blood from mice 

Whole blood was sampled from mice immediately post-mortem and transferred 

to an EDTA blood collection tube (BD).  220 µl of blood was sent to the Clinical 

Pathology Laboratory at the School of Veterinary Medicine (University of 

Glasgow) for full haematology analysis. 

2.2.1.3 N-acetyl-cysteine treatment 

Wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ 

mice were administered with 10 mM NAC (pH 7.5) in drinking water ad libitum 

between 3 and 6 months of age.  Fresh NAC water was made twice weekly.  Mice 

were sacrificed at 6 months, following 3 months of treatment, to analyse the 

effects of NAC on prostate cancer progression. 

2.2.1.4 Tamoxifen induction 

Unless otherwise stated, the expression of Cre recombinase in Nkx3.1CreERT2 mice 

was induced at 12 weeks of age by intraperitoneal injection of 160 mg/kg 

tamoxifen, administered 4 times over an 11 day period (Thursday/Monday/ 

Thursday/ Monday).  The dose was calculated based on the average weight of 

male mice at 12 weeks being ~25 g and all mice were administered with 4 mg 

tamoxifen in a 200 µl volume.  Details of the optimisation of the tamoxifen-

induction protocol are given in Chapter 4.1.1. 
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2.2.1.5 RFP fluorescence imaging  

RFP expression in dissected Nkx3.1CreERT2 RFP/+ prostates was visualised using 

the IVIS® Spectrum in vivo imaging system (Perkin Elmer) and Living Image 

software.  Fluorescence imaging mode was selected and acquisition settings 

were as follows: 3 seconds exposure time; binning factor 8; 620/520 

emission/excitation filters. 

2.2.1.6 Bilateral orchiectomy (castration) 

For all mouse experiments androgen deprivation was achieved by surgical 

removal of the testes.  Time points vary between experiments and are detailed 

in results (Chapter 4). 

2.2.1.7 Prostate regeneration 

Prostates were regenerated 6 weeks post-castration by subcutaneous 

implantation of a 1 cm Silastic® implant containing 10 mg testosterone 

proprionate powder.  Based on a 25 g mouse, this is a dose of 400 mg/kg.  Empty 

sham implants were used in control mice.  Implants were soaked in PBS 

overnight prior to implantation.  Mice were sacrificed 4 weeks after testosterone 

administration to analyse prostate regeneration. 

2.2.1.8 LGK-974 (Porcupine inhibitor) treatment 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ mice were castrated at 7-8 months post-

induction when palpable tumour was detected.  Following 10 days recovery post-

surgery, mice were treated with 1.25 mg/kg LGK-974 once daily by gavage for 1 

month.  The dose was calculated based on the average weight of mice at this 

time point being ~30 g and all mice were administered with 37.5 µg LGK-974 in a 

volume of 100 µl.  Control mice were administered with 100 µl of drug vehicle 

(0.5% Methyl Cellulose/0.5% Tween 80).  Mice were sacrificed when treatment 

ended to analyse the effects of combined Wnt inhibition and ADT. 

2.2.2 Histology and immunohistochemistry 

Processing and paraffin embedding of formalin-fixed tissue was carried out by 

Histology Services. Haematoxylin and eosin staining of tissue sections was 
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carried out on the Leica ST5020 Autostainer.  Ki67, β-catenin, F4/80 and NIMP 

immunohistochemical (IHC) staining was also carried out by Histology Services 

using an automated procedure, as previously described [162], with a pre-

treatment module (Dako) for heat-induced epitope retrieval (HIER) (Ki67 and β-

catenin staining) and an autostainer (Dako).  F4/80 and NIMP staining was 

carried out following retrieval by incubation with proteinase K (Prot K) for 10 

minutes at room temperature and Rat ImmPRESS™ (Vector Laboratories) was 

used as the secondary antibody.  All other immunohistochemical staining was 

carried out as described below. 

Pten, Malondialdehyde, p21, phospho-Akt, RFP, AR and Myc IHC: FFPE tissue 

sections were deparaffinised by three 5 minute washes in xylene and rehydrated 

by two 10 minute washes in 100% ethanol, 95% ethanol and dH2O respectively.  

HIER was carried out in preheated citrate (pH 6) or EDTA (pH 8) buffer using a 

pressure cooker to bring slides to a boil and maintain temperature for 3 minutes 

when the cooker is fully pressurised.  Slides were cooled in retrieval buffer for 

20 minutes at room temperature, before washing in dH2O and incubating in 3% 

hydrogen peroxide for 10 minutes to quench endogenous peroxidases.  Sections 

were washed in dH2O, followed by a 5 minute wash in TBS-T.  A hydrophobic pen 

was used to draw around tissue section and 100-400 µl immunohistochemistry 

blocking buffer was added to this area for 1 hour incubation at room 

temperature.  Sections were then incubated in primary antibody (diluted in 

blocking buffer) overnight at 4°C.  Slides were washed three times in TBS-T for 5 

minutes and incubated in EnVision™ secondary antibody solution (Dako) for 1 

hour at room temperature.  Secondary antibody was removed and sections 

washed three times in tap water before staining with DAB chromogen 

(UltraVision Detection system, Thermo Scientific).  Sections were incubated in 

DAB for up to 10 minutes and staining was monitored closely. Slides were 

immediately immersed in dH2O and washed, before counterstaining with 

haematoxylin using the Autostainer (Leica ST5020) and mounting using the 

automated Coverslipper (Leica). 

Rac1-GTP IHC staining was carried out according to published protocol [182].  

Details of the antibody source, dilution and retrieval method used for each IHC 

staining can be found in Materials 2.1.3, Table 2.1-2. 
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2.2.2.1 Haematoxylin and eosin image analysis 

Slides were scanned with a digital slide scanner (Leica) and images exported for 

ImageJ analysis.  A deconvolution macro (designed by David Strachan, Senior 

Scientific Officer in the Beatson Advanced Imaging Resource team) was used to 

separate ‘blue’ nuclei from ‘red’ cytoplasm in manually defined areas of 

haematoxylin and eosin stained prostate epithelial tissue.  In this way the 

percentage of haematoxylin staining was measured in Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate tissue (n=5) at a 6 month time point and compared to 

Wildtype (n=3), Pb-Cre Ptenfl/+ (n=3) and Pb-Cre Ctnnb1(ex3)Δ/+ (n=5) littermate 

controls.  This analysis was carried out to determine if differences in cancer 

progression could be objectively measured based on the percentage of nuclei in 

prostate epithelial tissue.  The number of PINs and tumour area was then 

measured in Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ tissue 

sections.  PIN lesions were defined as prostate glands in which more than half 

the lumen area was filled with hyper-proliferative epithelial cells but the basal 

lamina remained intact. Areas of tissue that had progressed beyond PIN to in 

situ carcinoma and invasive adenocarcinoma were manually annotated and 

measured in pixels.  The total of all tumour areas annotated per tissue section 

was the tumour area. 

2.2.2.2 Ki67 scoring 

To quantify Ki67 staining, images were taken of at least 5 fields of view of 

prostate tissue sections (n=3 per genotype) at 200X magnification using an 

Olympus BX51 light microscope.  Percentage of positively stained nuclei were 

counted using ImageJ software. 

2.2.3 Zeptosens’ reverse-phase protein array 

To prepare tissue lysates, 40 mg frozen prostate tissue was placed in a 2 ml tube 

with ceramic beads (Precellys® CK28), 1 ml ice-cold RPPA lysis buffer was added 

to the tube and tissue was homogenised using a Precellys 24 tissue homogeniser 

(Bertin Technologies) for three 25 second cycles at 5000 rpm and 4°C.  Vials 

were immediately transferred back to ice, homogenised lysate was transferred 

to a fresh microcentrifuge tube and centifuged at 16100 x g for 10 minutes at 

4°C.  Supernatant was transferred to another microcentifuge tube and protein 
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concentration measured using the Bradford Protein Assay (BioRAD).  The protein 

concentration was adjusted to 4 mg/ml using lysis buffer and 1X RPPA SDS 

sample buffer was mixed with the lysate before boiling for 5 minutes.  Samples 

were stored at -80°C prior to RPPA processing. 

The Zeptosen’s reverse-phase protein array (RPPA) was carried out by Neil 

Carragher’s laboratory at the Edinburgh Centre for Cancer Research, as 

previously descibed [183].  Details of the antibodies used in the data described 

can be found in Materials 2.1.3, Table 2.1-3. 

Data analysis was carried out by Gabriela Kalna (Head of Computational Biology 

at the Beatson Institute).  Dataset was normalized by protein loading 

(http://www.mdanderson.org). Pairwise fold changes were used to identify a 

list of antibodies differentially expressed among four samples. Normalized 

relative fluorescence intensities (RFIs), for which at least one fold change was 

larger than 1.1, were median centred and presented in the form of a heat map 

with hierarchical clustering and Euclidean distance similarity measure.  

2.2.4 Immunoblotting 

To prepare cell lysates, culture dishes were placed on ice and cells were washed 

twice with ice cold PBS before scraping cells into cell lysis buffer (80 µl for 6 cm 

and 100 µl for 9 cm culture dishes).  Lysates were transferred to a 

microcentrifuge tube, vortexed and incubated on ice for 15 minutes.  Following 

centrifugation at 16100 x g for 15 minutes, supernatant was collected for protein 

analysis. 

Tissue lysates were prepared by grinding ~40 mg of frozen tissue in liquid 

nitrogen to form a powder, which was transferred to a 2 ml tube with ceramic 

beads (Precellys® CK28).  1 ml of tissue lysis buffer was added before using a 

Precellys® 24 tissue homogeniser (Bertin Technologies), for three 25 second 

cycles at 5000 rpm and 4°C. Homogenised lysate was transferred to a fresh 1.5 

ml tube and incubated on ice for 15 minutes.  Lysates were then centrifuged for 

15 minutes at 16100 x g, and the supernatant collected for protein analysis. 
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Protein concentration was determined using the Bradford Protein Assay (Bio-

Rad).  Absorbance at 595 nm was measured with a spectrophotometer, from 

which protein concentration was calculated.  Protein concentrations were 

adjusted with lysis buffer so that all samples were of equal concentration, 

before NuPAGE® LDS sample buffer and DTT were added to each protein lysate 

to give a final concentration of 1X and 1 µM respectively.  Samples were then 

boiled at 100°C for 5 minutes, before being loaded alongside a prestained 

protein ladder (PageRuler™, Thermo Scientific), and resolved by SDS/PAGE on 

10% or 4-12% gradient polyacrylamide gels (NuPAGE, Invitrogen) in 1X MOPS SDS 

running buffer (Invitrogen) in a XCell SureLock Mini-Cell tank (Invitrogen) for 

45 minutes at 120mA and 200V.  Proteins were electrophoretically transferred to 

PVDF membrane (Millipore) using semi-dry transfer unit for 90 minutes at 20V 

and 180mA.  Membranes were blocked in 5% milk/TBS-T for 60 minutes, rinsed in 

TBS-T and probed with primary antibodies in 5% BSA/TBS-T solution overnight at 

4°C.  (See Materials 2.1.3, Table 2.1-4 for primary antibody information).  

Membranes were washed three times with TBS-T for 10 minutes and incubated 

with HRP-conjugated secondary antibody (1/5000 dilution in TBS-T) for 60 

minutes at room temperature.  Bands were visualised by ECL (GE Healthcare) 

detection reagent and exposure on X-ray film for 1-10 minutes. 

2.2.5 RT-PCR 

2.2.5.1 mRNA analysis 

RNA was extracted from ~40 mg frozen prostate tissue samples using an RNeasy 

Mini Kit (Qiagen), according to manufacturer’s instructions.  Homogenisation was 

carried out in a 2 ml tube with ceramic beads (Precellys® CK28) using the 

Precellys® 24 homogeniser.  On-column DNase digestion steps were included to 

remove genomic DNA contamination using 2.7 U/µl RNase-free DNase I (Qiagen).  

RNA was eluted in 50 µl nuclease-free water and quantitated by 

spectrophotometric analysis.  10 µg RNA was reverse transcribed to cDNA using a 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems), according to 

manufacturer’s instructions, in a 20 µl reaction volume.  qPCR was performed in 

duplicate in a 96-well plate in a reaction volume of 20 µl containing 1X TaqMan® 

Universal PCR Master Mix (Applied Biosystems), 0.2 µM each of forward and 

reverse primers, 0.1 µM Universal ProbeLibrary probe (Roche) and 100 ng cDNA.  
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The thermal cycling conditions were as follows: 50°C for 2 minutes, 95°C for 10 

minutes to activate enzyme, followed by 40 cycles of denaturation at 92°C for 

15 seconds and annealing/extending at 60°C for 1 minute (Applied Biosystems 

7500 Fast Real-Time PCR System).  18S was used to normalise for differences in 

murine tissue RNA input, as its expression was consistent between wildtype and 

tumour tissue samples.  (See Materials 2.1.4, Table 2.1-6 for gene target primer 

sequences and probes). 

2.2.5.2 miRNA analysis 

Total RNA was extracted from frozen prostate tissue or cell lines using a 

miRNeasy Mini Kit (Qiagen), according to manufacturer’s instructions.  On-

column DNase digestion steps were included to remove genomic DNA 

contamination using 2.7 U/µl RNase-free DNase I (Qiagen).  RNA was eluted in 50 

µl nuclease-free water and quantitated by spectrophotometric analysis.  In 

preparation for the reverse transcription reaction, 10X RT primer pool was 

prepared with the RT primers included in each TaqMan® miRNA assay, listed in 

Materials 2.1.4, Table 2.1-7.  miRNA from 1 µg total RNA was reverse transcribed 

to cDNA using a TaqMan® MicroRNA Reverse Transcription Kit (Applied 

Biosystems), according to manufacturer’s instructions.  qPCR was performed in 

duplicate in a 10 µl reaction volume containing 1X TaqMan® MicroRNA Assays, 

0.08 µl RT product, 1X TaqMan® Universal Master Mix.  384-well plates were 

used for tissue miRNA analysis in biological triplicate (Applied Biosystems 

QuantStudio 7 Flex Real-Time PCR System); a 96-well plate was used for cell line 

miRNA analysis (Applied Biosystems 7500 Fast Real-Time PCR System).  The 

thermal cycling conditions were as follows: 95°C for 10 minutes, followed by 40 

cycles of denaturation at 95°C for 15 seconds and annealing/extending at 60°C 

for 1 minute.  Sno202 was used to normalise for differences in tissue miRNA 

input, as its expression was consistent across samples. 

2.2.6 Transcriptomic analysis 

2.2.6.1 RNA-sequencing 

RNA was extracted from frozen prostate tissue samples as described in 2.2.5.1 

and quantitated by spectrophotometry.  RNA quality was evaluated by RNA 

integrity number (RIN), calculated using an Agilent 2100 Bioanalyzer (Agilent 
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Technologies) with the Agilent RNA 6000 Nano Kit.  All samples processed for 

RNA-sequencing had RIN values >7.3.  Library preparation and sequencing was 

carried out by BGI (Beijing) using the following steps and reagents according to 

manufacturer’s instructions.  The library was prepared with poly(A) messenger 

RNA (mRNA) selection using Dynabeads® mRNA Purification kit (Invitrogen), and 

Fragment buffer (Ambion) was used to generate poly (A)-containing mRNA 

fragments of 200-250 bp.  First strand cDNA synthesis was carried out using N6 

primer, First Strand Master Mix and Super Script II reverse transcription 

(Invitrogen) (thermal cycling conditions: 10 minutes at 25°C, 30 minutes at 

42°C, 15 minutes at 70 °C) and Second Strand Master Mix (Invitrogen) was added 

to synthesise second strand cDNA (2 hours at 16°C).  Purified cDNA (QIAquick 

PCR Purification Kit, Qiagen) underwent end repair (End Repair Mix, Illumina), A-

tailing (A-Tailing Mix, Illumina) and adapter ligation (Adenylate 3’-ends DNA, 

Adapter and Ligation Mix, Illumina).  Samples were run on a 2% agarose gel to 

select 300-350 bp fragments, which were purified using QIAquick Gel Extraction 

kit (Qiagen).  cDNA fragments were enriched by PCR amplification using PCR 

Primer Cocktail and PCR Master Mix (Illumina).  Prior to sequencing, the average 

fragment length was quantitated using a Agilent 2100 Bioanalyzer with Agilent 

DNA 100 reagents and the RNA yield was quantitated by qPCR to validate quality 

of library preparation.  TruSeq PE Cluster Kit V3-cBot-HS (Illumina) was used for 

paired end cluster generation.  The library was pair end sequenced on the 

Illumina® HiSeq 2000 platform, with 90 nucleotide reads and at least 6 Gb of 

reads generated per sample. 

2.2.6.2 Data analysis  

Bioinformatics analysis of RNA-sequencing data was carried out by Ann Hedley 

(Bioinformatician at the Beatson Institute).  A FastQC package was used to assess 

the quality of raw reads and, having passed FastQC quality control parameters, 

reads were mapped to mouse genome mm10 (NCBI38) using TopHat v.1.4.1.  The 

percentage of reads uniquely aligned to the mouse genome was calculated to 

measure the quality of data.  Using R and DESeq2 software, the number of reads 

mapped to each gene was counted, and normalised to read length and number.  

Fold-change values were generated relative to control data to identify 

differentially expressed genes.  The heat map comparing all significantly up- and 

downregulated genes (twofold change in expression, P <0.05) in the wildtype, 
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Pb-Cre Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ data was generated by 

hierarchical cluster analysis on a set of dissimilarities, using the complete 

linkage method to find similar clusters.  This method was also used to generate a 

heat map showing differential expression of androgen responsive genes in 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ CRPC compared to HNPC tissue.  The 

androgen-responsive gene set used for enrichment analysis in wildtype, Pb-Cre 

Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ and Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ 

HNPC and CRPC data sets was previously published by Carver et al. [119]. 

2.2.6.3 Pathway enrichment analysis 

Differential gene expression values generated from RNA sequencing data were 

uploaded into GeneGo MetaCore™ for pathway analysis.  The MetaCore Canonical 

Pathway Maps ontology was used to identify pathway enrichment in Pb-Cre 

Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue compared to 

wildtype, and in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ CRPC tumours compared to 

HNPC controls.  Each pathway was tested for enrichment in significantly up- and 

downregulated genes (P value <0.05) using a hypergeometric distribution test.  

Pathways are significantly enriched when they have a –log(P value) >1.3 (P value 

<0.05) and false discovery rate (FDR) <0.05.  Data was overlaid onto MetaCore 

Pathway Maps to show up- or downregulation of specific genes within 

significantly enriched pathways, as indicated by thermometer symbols (red = up-

regulation; blue = down-regulation). 

2.2.7 Cytokine array 

Protein lysates were prepared from ~40 mg Pb-Cre Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/fl Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/fl prostate tumour 

tissue harvested from mice at clinical endpoint.  Frozen tissue was ground in 

liquid nitrogen using a pestle and mortar and transferred to a 2 ml tube with 

ceramic beads (Precellys® CK28) for homogenisation in 900 µl cytokine array 

lysis buffer (minus 1% Triton X-100).  Samples were homogenised in a Precellys® 

24 tissue homogeniser (Bertin Technologies) at 4°C (3 cycles of 5000 rpm for 25 

seconds) and supernatant transferred to a fresh microcentrifuge tube.  Triton X-

100 (100 µl of 10% stock) was added to final concentration of 1% and samples 

were frozen at -80°C overnight and thawed the following day to complete lysis.  
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Protein concentration was measured by Bradford assay (Bio-Rad).  Samples were 

analysed using the Proteome Profiler Array: Mouse Cytokine Array Panel A (R&D 

Systems).  The assay was carried out according to manufacturer’s instructions 

and repeated in biological triplicate.  Membranes were blocked in Array Buffer 

(AB) 6 for 1 hour at room temperature.  During this time tissue protein samples 

were prepared by taking 200 µg protein lysate and diluting to 200 µg/ml in AB6.  

0.5 ml of AB4 and 15 µl reconstituted Detection Antibody Cocktail was added to 

each sample and incubated at room temperature for 1 hour.  Blocking buffer was 

removed from membranes and sample/antibody mixtures added for incubation 

overnight at 4°C.  Each membrane was washed three times in 20 ml 1X Wash 

Buffer for 10 minutes on a rocking platform shaker.  Membranes were incubated 

in Streptavidin-HRP (diluted 1:2000 in AB6) for 30 minutes at room temperature 

and washed as above.  Protein expression spots were visualised following 

application of Chemi Reagent Mix and 1-10 minutes exposure to X-ray film.  

Films were scanned in and densitometry analysis carried out using ImageJ 

software to calculate relative levels of protein expression, normalised to control 

spots (A1, A2, A23, A24, F1, F2). 

2.2.8 Laser-capture microdissection 

Frozen prostate tissue (snap frozen immediately after dissection) was embedded 

in OCT on dry ice, with freezing accelerated by cryospray (CellPath).  A cryostat 

(cleaned with RNase Zap prior to cutting sections for RNA extraction) was used 

to cut 5x 20 µm sections, which were mounted onto nuclease-free PET-

membrane 1,4 µm slides (Leica) and stored in 50 ml tubes at -80°C until 

required.  In order to visualise tissue histology and Pten expression, serial 

sections either side of these 5 sections were cut and mounted onto glass slides 

for Cresyl Violet staining and Pten IHC staining.  Cresyl Violet staining was 

carried out as follows: 30 seconds each in 70% ethanol and 50% ethanol, 45 

seconds in Cresyl Violet, 2 washes in DEPC water, and 30 seconds each in 50% 

ethanol, 70% ethanol, 95% ethanol and 2x 100% ethanol.  Pten IHC was carried 

out as follows:  Frozen sections were incubated in 5% paraformaldehyde for 5 

minutes, washed three times in PBS and three times in dH2O.  Slides were 

blocked in 3% hydrogen peroxide for 10 minutes, washed in dH2O, and sections 

outlined in hydrophobic pen.  Sections were blocked for 1 hour in IHC blocking 

buffer and incubated overnight in Pten primary antibody (1:50, Cell Signaling 
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#9559).  Signal was amplified with EnVision™ anti-mouse secondary antibody 

(Dako) and visualised using DAB chromogen.  Slides were haematoxylin 

counterstained and mounted using the autostainer (Leica ST5020).  Images of 

Cresyl Violet and Pten staining were taken using the Olympus BX51 light 

microscope at 40X magnification and compiled to assemble image of whole 

tissue section, which was used as a guide for LCM.  Microdissection was carried 

out using the Leica LCM system.  Sections mounted on membrane slides were 

kept on dry ice until required.  Prior to microdissection, sections were stained 

with Cresyl Violet as described above, with all solutions kept on ice.  When 

processing slides for RNA extraction, all solutions following the DEPC water 

washes contained 1X RNase inhibitor (Sigma).  Excess ethanol was removed 

before cutting sections.  Sections viewed at 50X magnification and epithelial or 

stromal areas were selected for microdissection, cut by the laser and collected 

into separate microcentrifuge lids (0.2 ml tubes).  For some samples, areas were 

selected based on low or high Pten expression, as observed from 

immunohistochemical staining of serial sections, and were collected into 

separate microcentrifuge lids.  For RNA extraction samples, 20 µl RLT buffer 

(RNeasy Micro Kit, Qiagen) containing 10% β-mercaptoethanol, was put into the 

lid of 0.2 ml microcentrifuge tubes and, once sample was collected, a further 30 

µl RLT buffer was added to resuspend tissue and transferred into the tube.  

Samples were frozen at -80°C until whole set was collected for RNA isolation.  

For DNA extraction samples, 15 µl ALT buffer (QIAamp DNA Micro Kit, Qiagen) 

was put into the lid of 0.2 ml microcentrifuge tubes.  Samples for RNA extraction 

and DNA extraction were processed separately, as described below.   

2.2.8.1 Pten RNA expression analysis 

Samples collected from serial sections of Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue were pooled for RNA extraction.  RNA was 

extracted from the micro-dissected prostate tissue using a RNeasy Micro Kit 

(Qiagen), according to manufacturer’s instructions.  On-column DNase digestion 

steps were included to remove genomic DNA contamination using 2.7 U/µl 

RNase-free DNase I (Qiagen).  RNA was eluted in 12 µl nuclease-free water.  8 µl 

RNA was reverse transcribed to cDNA using an Arcturus RiboAmp HS Plus RNA 

amplification kit for Random Priming 1st-Strand cDNA Synthesis, according to 

manufacturer’s instructions.  cDNA was measured by Qubit™ fluorometric 
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analysis using a Quant-iT™ BR Kit for dsDNA, as per manufacturer’s instructions, 

and 4 ng cDNA was used for each qPCR reaction.  TaqMan® qPCR was carried out 

as described in method 2.2.5.1 and 18s was used to normalise for differences in 

RNA input.  (See materials 2.1.4, Table 2.1-6 for primer sequences and probes).  

2.2.8.2 Pten copy number analysis 

Samples collected from serial sections of wildtype, Pb-Cre Ptenfl/+, Pb-Cre 

Ptenfl/fl, Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue 

were pooled for DNA extraction.  DNA was isolated from micro-dissected tissue 

using a QIAamp DNA Micro Kit (Qiagen), according to manufacturer’s instructions 

for the ‘Isolation of Genomic DNA from Laser-Micro-dissected Tissues’.  DNA 

concentration was measured by Qubit™ fluorometric analysis using a Quant-iT™ 

HS Kit for dsDNA, according to manufacturer’s instructions.  TaqMan® qPCR was 

carried out as described in method 2.2.5.1, with 4 ng of DNA per reaction, and 

Casc3 was used to normalise for differences in DNA input.  (See materials 2.1.4, 

Table 2.1-6 for primer sequences and probes). 

2.2.9 Primary cell line derivation and culture 

CP3 and CP4 cell lines were derived from Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate 

tumours, using a method adapted from Lukacs et al [184].  Immediately 

following dissection prostate tumour tissue was placed in DMEM* medium.  Tissue 

was minced with a scalpel blade, transferred into 10 ml of 1 mg/ml collagenase 

in DMEM* medium and incubated with rotation at 37°C for 2 hours.  Following 

centrifugation at 400 x g for 5 minutes at room temperature, supernatant was 

removed and tissue resuspended in 2 ml Trypsin/0.5% EDTA.  Cells were 

trypsinised for 5 minutes at 37°C.  Trypsin was inactivated following addition of 

3 ml DMEM containing 500 U DNase I and the cell suspension passed through an 

18G and 20 G needle, five times each.  Trypsinisation steps were then repeated 

and cells were filtered through a 40 µm filter into a 50 ml tube.  Cells were 

pelleted by centrifugation at 400 x g for 5 minutes at room temperature and 

resuspended in 1 ml DMEM* for counting with a haemocytometer.  Cells were 

diluted to ~0.5 x106 cells/ml in DMEM* and mixed with matrigel in a 2:3 ratio 

(cells:matrigel).  3D cell cultures were set up with 200 µl of the mixture 

pipetted evenly around the rim of wells in a 12 well plate and incubated for 30 
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minutes at 37°C to solidify the Matrigel.  800 µl warm DMEM* was added to the 

centre of each well and a half medium change was performed every three days.  

Spheres were cultured at 37°C for 7-10 days before passaging and expanding.  To 

passage spheres, medium was removed and matrigel was digested in 0.5 ml of 1 

mg/ml dispase solution for 1 hour at 37°C.  Spheres were collected in a 15 ml 

tube and centrifuged at 233 x g for 5 minutes.  Dispase was removed, the pellet 

resuspended in 1 ml Trypsin/0.5% EDTA (warmed at 37°C) and incubated at 37°C 

for 5 minutes.  DMEM* was added to inhibit trypsin and spheres were dissociated 

by pipetting up and down.  Cells were centrifuged at 500 x g for 2 minutes, 

resuspended in 2 ml and counted.  3D cultures were set up as already described.  

Cells were expanded in 3D culture until passage 4 and then expanded in 2D 

culture for use in experiments.  2D CP cell cultures were maintained in DMEM*.  

When ~80% confluent cells were passaged as follows: cells were washed in PBS, 

trypsinised in 1X trypsin/PE, resuspended in DMEM* and reseeded in fresh flasks 

or culture dishes. 

*supplemented with 10% FBS, 1% 100X glutamine, 1% 100X penicillin/streptomycin 

CP1 and CP2 cell lines, also derived from Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate 

tumours, were generated by Meiling Gao. 

To assess Pten status cell pellets were sent to Transnetyx™ for genotyping using 

standard PCR assays to detect wildtype and Pten floxed alleles.  Tail tip and 

prostate tumour tissue from mice used to generate CP3 and CP4 cell lines was 

also sent to Transnetyx™ for genotyping for comparison with the cell lines.  

2.2.9.1 CP1 ICG-001 treatment 

CP1 cells were cultured to 70% confluency and treated with 25 µM ICG-001 or 

equivalent volume of ethanol vehicle control in DMEM (10% FBS; 1X glutamine) 

for 24 hours at 37°C.  Whole cell lysates were prepared for analysis by 

immunoblotting (as described in 2.2.4) and total RNA extracted for miRNA 

analysis (as described in 2.2.5.2). 
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2.2.10 RNAscope® 

Wnt5a RNAscope®, a form of in situ hybridisation, was carried out by Histology 

Services using the RNAscope® 2.0 High Definition kit (Advanced Cell Diagnostics) 

according to the manufacturer’s protocol.  Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ 

HNPC (n=3) and CRPC (n=4) FFPE prostate tissue sections were deparaffinised 

and rehydrated prior to pre-treatment retrieval steps to unmask target RNA.  

The Wnt5a probe, containing 20 Wnt5a-specific double Z probe pairs, was then 

hybridised to target RNA and the hybridisation signals were amplified by 6 

sequential amplification steps using the RNAscope Detection Reagents.  These 

reagents contain amplifiers which hybridise to binding sites formed by the probe 

pairs.  These were detected by DAB staining and visualised following 

counterstaining with haematoxylin.  Whole sections were scanned using a Leica 

digital slide scanner and representative images were taken at 40X and 200X 

magnification using SlidePath software (Leica Biosystems). 

2.2.11 Immunoprecipitation 

Dynabeads® M-280 sheep anti-rabbit IgG magnetic beads (Novex™, Life 

Technologies) were resuspended thoroughly by vortexing.  30 µl of bead 

suspension (6-7 x 108 beads/ml) per sample was transferred into a 

microcentrifuge tube and placed on a magnetic stand for 2 mins before pipetting 

off supernatant.  Beads were washed three times in excess volume of IP washing 

buffer and resuspended in 500 µl IP washing buffer by vortexing.  2 µg AR (N-20) 

antibody (sc-816, Santa Cruz) was added to the washed beads prior to incubation 

with slow tilt rotation mixing, overnight at 4°C.  The next day, fresh whole cell 

lysates were prepared from adherent cells (70-80% confluent) cultured in 9 cm 

dishes.  Culture dishes were placed on ice, cells were washed twice with ice cold 

PBS and scraped into 100 µl IP lysis buffer.  Lysis buffer cell suspensions were 

transferred to a microcentrifuge tube, homogenised by vortexing and incubated 

on ice for 15 minutes before centrifugation at 16100 x g for 15 minutes.  

Supernatant was collected and protein concentration was measured by Bradford 

assay (Bio-Rad).  Tubes containing antibody-bound beads were placed on a 

magnetic stand for 2 minutes and supernatant containing excess antibody was 

removed and discarded.  In preparation for immunoprecipitation, beads were 

washed three times in excess IP washing buffer.  Whole cell protein lysates were 
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adjusted to 100 µg in a total volume of 1 ml using PBS or 0.1M phosphate buffer 

(pH 7-8) and added to the beads.  Samples were incubated, with slow tilt 

rotation mixing, for 60 minutes at 4°C.  Tubes containing immunoprecipitated 

protein were placed on a magnetic stand for 2 minutes to collect the Ig-coated 

beads-protein target complex at the tube wall.  The supernatant was discarded 

and beads were washed twice in high salt NETN buffer (STRONG) and once in low 

salt NETN buffer (WEAK).  Beads were resuspended in 47.5 µl 1X sample buffer, 

boiled for 5 minutes at 100°C to elute protein from beads.  Eluted supernatant 

was transferred to a fresh tube, 1 µM DTT reducing agent was added and 

samples were boiled for another 5 minutes at 100°C ready for Western blot 

analysis.  Proteins were resolved, electrophoresed and visualised as described in 

section 2.2.5. 

2.2.12 Chromatin immunoprecipitation assay 

The method described below is the final standardised ChIP protocol used for cell 

lines and tissue.  Optimisation procedures are described in Chapter 4.4. 

2.2.12.1 Chromatin preparation 

Cell line fixation: LNCaPs were grown on 3x 15cm culture dishes to yield ~1 x 

108 cells. When 70-80% confluent, medium was removed and replaced with 15 ml 

serum-free RPMI.  1% formaldehyde was added dropwise to each plate and 

incubated at room temperature with gentle agitation for 10 minutes.  Cross-

linking was quenched with 125 mM glycine and incubated for 5 minutes at room 

temperature.  Culture dishes placed on ice and fixed cells were washed twice 

with ice cold PBS, then scraped into PBS and transferred to a 50 ml Falcon tube. 

Cells were washed in 40-50 ml PBS, centrifuged at 245 x g for 5 minutes at 4°C.  

The pellet was resuspended in 1.5 ml ice-cold PBS and centrifuged at 680 x g for 

5 minutes at 4°C ready for lysis steps (see below). 

Tissue fixation: Fresh or frozen prostate tissue was minced into small 

pieces(<0.5 cm3), added to 50 ml freshly prepared tissue cross-linking solution in 

a 100 ml glass bottle, and incubated at room temperature with stirring for 15 

minutes.  125 mM Glycine was added dropwise and incubated for 5 minutes at 

room temperature to quench fixation.  Tissue was rinsed with ice-cold PBS and 
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homogenised with a motorised tissue grinder.  Cells were resuspended in 40 ml 

PBS, filtered through a 100 µm cell strainer into a fresh 50 ml tube and 

centrifuged at 1060 x g for 3 minutes at 4°C.  The cell pellet was washed in 40 

ml PBS, cells were counted, and the cell pellet was collected by centrifugation 

ready for lysis steps. 

Cell lysis and chromatin sonication: Cell pellets were gently resuspended in 600 

µl cell lysis buffer (CLB) by pipetting up and down and incubated for 10 minutes 

on ice. Lysates were centrifuged at 1060 x g for 5 minutes at 4°C to collect 

nuclei and supernatant was discarded.  Nuclei were resuspended in 1.2 ml of 

nuclei lysis buffer (NLB) and incubated on ice for 10 minutes before 0. 72 ml of 

IP dilution buffer (IPDB) was added.  CLB, NLB and IPDB volumes are based on 

~1x108 cell sample and were adjusted according to cell number.  Lysed nuclei 

samples were divided into ~0.5 ml aliquots and sonicated using the Bioruptor 

sonicator on high setting 30s on/30s off.  Cell line samples were sonicated for 20 

minutes (2x 10 minutes) and tissue samples were sonicated for 25 minutes (2x 10 

minutes + 1x 5 minutes) (N.B. ice was replaced every 10 minutes).  Under these 

conditions, the DNA was sheared to approximately 200-500 bp fragments. 

Samples were centrifuged at 15700 x g for 5 minutes at 4°C, the supernatant 

was then pooled in a 15 ml Falcon and IPDB added to bring the ratio of NLB:IPDB 

to 1:4.   

Chromatin pre-clearing:  100 µl of normal rabbit lgG was added to the pooled 

chromatin sample and incubated for 1 hour at 4°C on a rotating wheel.  Samples 

were briefly centrifuged and 200 µl of the homogeneous protein G-agarose 

suspension (100 µl bead volume) was added prior to incubation for 3 hours (to 

overnight) at 4°C on a rotating wheel. 

2.2.12.2 Chromatin-immunoprecipitation (ChIP) 

Pre-cleared chromatin was centrifuged at 1530 x g for 2 minutes at 4°C and 

0.675 ml used per ChIP assay.  This was added to 0.675 ml NLB/IPDB (NLB:IPDB = 

1:4) and 10 µg ChIP-grade antibody in 2 ml PCR clean tubes.  HA antibody was 

used as a ChIP control.  (See Materials 2.1.3, Table 2.1-5 for antibody details).  

Samples were incubated overnight at 4°C with rotation. 10% input control (67.5 

µl) was stored at -20°C.  ChIP samples were centrifuged at 15700 x g for 5 
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minutes at 4°C and transferred to a new 1.5 ml microcentrifuge tube.  50 µI 

homogenous protein G-agarose suspension (25 µI bead volume) was added and 

samples were incubated for 4 hours at 4°C with rotation.  Samples were then 

centrifuged 15700 x g for 20 seconds at 4°C and the supernatant discarded.  The 

bead pellet was washed twice with 750 µI of IP wash buffer 1 (IPWB1), each time 

vortexing briefly and centrifuging samples at 5100 x g for 2 minutes at 4°C. The 

pellet was washed similarly, once with 750 µI of IP wash buffer 2 (IPWB2) and 

twice with 750 µI of TE pH8.0.  Beads were resuspended in 200µl IP elution 

buffer (IPEB) and input sample volume was adjusted to 200 µl with IPEB.  100 

µg/ml RNase A and 200 µg/ml proteinase K were added to samples and 

incubated overnight in a thermocycler at 65°C and 900 rpm.  Samples were 

centrifuged at 5100 x g for 2 minutes at room temperature and supernatant 

eluate transferred to a fresh microcentrifuge tube.  200 µl TE buffer and 400 µl 

Phenol:Chloroform:Isoamyl alcohol was added to each sample and mixed 

thoroughly.   Phase lock tubes (5Prime) were centrifuged for 1 minute at 14000 x 

g to pellet solvent, prior to samples being transferred to these tubes.  Samples 

were centrifuged for 5 minutes at 14000 x g and upper phase collected in a fresh 

microcentrifuge tube.  16 µl of 5 M NaCl (200 mM final concentration) and 40 µg 

glycogen were added to each sample and vortexed before adding 1 ml ice cold 

ethanol absolute.  Samples were stored at -80°C for at least 30 minutes, then 

centrifuged at maximum speed for 15 minutes at 4°C.  The precipitated pellet 

containing DNA was washed with ice cold 80% ethanol and centrifuged again for 

10 minutes at 4°C.  The supernatant was discarded; the pellet was dried for 10 

minutes; and DNA was eluted in 50 µl 10mM Tris-HCl pH 8, following 10 minutes 

incubation at 50°C to allow DNA to dissolve. 

To test sonication efficiency, input DNA was run alongside DNA HyperLadder™ IV 

(100 bp) on a 2% agarose gel, containing 1:10000 SYBR® Safe DNA gel stain.  DNA 

smears were visualised on a UV transilluminator.  

2.2.12.3 Quantitative PCR analysis 

SYBR® Green qPCR was performed in duplicate in a reaction volume of 20 µl 

containing 1X Fast SYBR® Green Master Mix (Applied Biosystems), 0.3 µM each of 

forward and reverse primers and 2 µl DNA (1:10 diluted input DNA and 1:2 

diluted ChIP DNA).  The thermal cycling conditions were as follows: enzyme 
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activation at 95°C for 20 seconds, followed by 40 cycles of denaturation at 95°C 

for 3 seconds and annealing/extending at 60°C for 30 seconds (Applied 

Biosystems 7500 Fast Real-Time PCR System).  Melting curve analysis was 

performed from 70°C to 95°C in 0.3°C intervals to demonstrate primer 

specificity and confirm absence of primer dimer formation.  (See materials 

2.1.4, Table 2.1-8 for primer sequences used for ChIP qPCR).  Relative DNA 

enrichment of target genes was normalised to DNA input as follows: Ct value for 

DNA input was adjusted to 100%, i.e. for 10% input, the Ct value was adjusted 

10–fold (Ct input - log2(10)).  % input = 100 x 2(Adjusted input Ct – ChIP Ct) 

2.2.13 Statistics 

Data are presented as mean ± SEM or SD, as noted in the figure legend.  

GraphPad Prism software was used to produce graphs and carry out statistical 

analysis.  Where statistically significant differences have been observed, details 

of the statistical tests used are provided in figure legends. 
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3.1 Introduction 

Prostate cancer patients with the poorest prognosis have tumours with an 

embryonic stem cell (ESC) signature, MYC activation and loss of PTEN.  This 

expression profile has also been associated with tumours in younger patients [41, 

100].  MYC is a β-catenin target and the deregulation of Wnt/β-catenin 

signalling, frequently observed in prostate cancer, could be a contributing factor 

for MYC activation.  The deregulation of Wnt/β-catenin signalling can be 

attributed to a variety of causes, including mutations in exon3 of the β-catenin 

gene (CTNNB1) in approximately 5% of cases [139, 140].  However, the mutation 

rate of Wnt/β-catenin pathway components in prostate cancer is low.  Instead, 

changes in the expression of β-catenin and Wnt pathway components, including 

the expression of Wnt ligands in the prostate tumour microenvironment, 

contribute to β-catenin activation.   

The MSKCC prostate cancer data set [41] (available in the cBioPortal for Cancer 

Genomics) shows that the combined deregulation of PTEN/PI3K and Wnt/β-

catenin pathways is clinically relevant.  Almost 93% of the metastatic tumour 

case set and 95% of the metastatic lesions themselves have alterations in both 

PTEN/PI3K and Wnt pathway components (Figure 1.3.4).  These data suggest the 

deregulation of Wnt/β-catenin and PTEN/PI3K pathways, and their co-operation, 

play a role in aggressive prostate cancer phenotypes. 

Direct crosstalk between Wnt/β-catenin and PI3K/Akt pathways may be 

important in promoting prostate tumourigenesis.  It has previously been reported 

that loss of PTEN activity results in the upregulation of Akt kinase activity, 

leading to phosphorylation and inactivation of GSK3β by phospho-Akt and the 

resultant activation of β-catenin [154].  However, effects of β-catenin activation 

on PTEN/PI3K/Akt signalling have not been described. 

We initiated this project to investigate the role of aberrant Wnt/β-catenin 

signalling in prostate cancer tumourigenesis and progression, alone and in 

combination with Pten loss, using pre-clinical in vivo models.  It is vital that we 

gain a better understanding of the molecular mechanisms and pathway 

interactions associated with Wnt/β-catenin activation and PTEN loss in order to 

elucidate novel therapeutic strategies to treat this subset of patients. 
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Data from our lab has demonstrated a significant co-occurrence of PTEN loss and 

high levels of nuclear β-catenin in an independent cohort of 209 prostate cancer 

patients.  Samples were analysed in a tissue microarray, comparing 

immunohistochemical staining of (Gleason grade 3 to 5) prostate cancer tissue to 

benign prostatic hyperplasia (BPH) (Figure 3.1.1).   

 

 
Figure 3.1.1  Clinical relevance of studying Wnt/β-catenin and PTEN in prostate cancer 
Tissue microarray analysis was carried out on samples from a cohort of 209 prostate cancer 
patients with local ethical committee approval (MREC 01/0/36).  The top panel shows 
representative immunohistochemical staining of PTEN and β-catenin in Benign Prostatic 
Hyperplasia (BPH), Gleason grade 3 and Gleason grade 5 FFPE prostate tissues.  Scale bar: 100 
µm.  Survival plot shows the reduced survival of patients with low PTEN and high β-catenin 
compared to patients with low PTEN and low β-catenin.  Data provided by Imran Ahmad 
(unpublished). 

Furthermore, analysis of survival data showed that patients with low levels of 

PTEN and high levels of nuclear β-catenin have a significantly poorer prognosis 

compared to patients with low levels of PTEN and low levels of β-catenin (Figure 

3.1.1) (Imran Ahmad, unpublished data).  This provides further evidence that 

concurrent loss of PTEN and expression of high levels of nuclear β-catenin are 

associated with aggressive prostate cancer. 
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3.2 Wnt/β-catenin pathway activation and Pten loss co-
operate to drive aggressive prostate cancer 

Increased stromal-derived Wnt has been reported in prostate cancer [146].  This 

can be responsible for the activation of Wnt/β-catenin signalling in cancer 

epithelial cells.  In order to demonstrate the effect of increased stromal Wnt on 

tumour epithelial cells, Wnt3A-secreting L cells and Pten null murine prostate 

cancer cells were orthotopically co-injected into the prostates of CD-1 nude 

mice (Figure 3.2.1).   

 

 
Figure 3.2.1  Increased circulating Wnt co-operates with Pten loss to drive aggressive 
prostate cancer 
Proof-of-concept experiment to show the effect of co-injecting Wnt3A-secreting L cells with Pten 
null murine tumour cells in a CD-1 orthotopic prostate model, compared to relevant controls as 
shown in the experiment schematic.  Pten null tumour cells were derived from a GEMM tumour 
driven by the complete loss of Pten.  Mice were sacrificed 4 weeks after orthotopic injection of cells 
into the prostate.  Prostate tumour weights from mice orthotopically co-injected with Wnt3A-
secreting L cells and Pten null murine tumour cells were compared to controls. Data provided by 
Rachana Patel (unpublished). 

These mice developed significantly larger prostate tumours compared to controls 

(Figure 3.2.1) (Rachana Patel, unpublished data).  Thus, concurrent activation of 

Wnt/β-catenin and Pten loss was required to drive aggressive prostate cancer, 
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not observed when Wnt3A-secreting L cells or Pten null cells were injected 

alone. 

This data provided evidence of a direct cooperation between Wnt/β-catenin 

pathway activation and Pten loss which we continued to study in a genetically 

engineered mouse model.  We hypothesised that loss of Pten would co-operate 

with β-catenin activation to drive aggressive prostate carcinogenesis in mice. 

 

3.2.1 Characterisation of an in vivo prostate cancer model with β-
catenin activation and concurrent Pten loss 

To model the effects of high levels of nuclear β-catenin and Pten loss in an in 

vivo prostate cancer model, we used a conditional Cre-loxP system modulated 

by Pb-Cre [169].  This system places Cre recombinase under the control of a 

modified rat prostate-specific probasin (Pb) promoter.  Probasin, and hence Cre, 

is expressed in the prostate during post-natal development and responsive to 

increasing levels of androgens [169].  Pb-Cre mice were crossed with Ptenfl/fl 

mice to generate mice with a conditional knockout Pten allele, with exon5 

flanked by loxP sequences (Pb-Cre Ptenfl/+) [176] and with Ctnnb1(ex3)Δ/+ mice 

[177] to generate a conditional dominant Ctnnb1 allele, with exon3 flanked by 

loxP sequences (Pb-Cre Ctnnb1(ex3)Δ/+).  These mice were then inter-crossed to 

generate mice with simultaneous heterozygous excision of Pten exon5 and 

Ctnnb1 exon3 (Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+). 

Exon5 of the Pten gene is the site of many known tumour-associated mutations 

and excision of exon5 renders Pten inactive, resulting in loss of Pten protein in 

Cre-expressing tissue [176].  Exon3 of the Ctnnb1 gene contains the GSK3β 

phosphorylation site which, in the absence of Wnt ligand, targets β-catenin for 

degradation.  When exon3 is excised, β-catenin is no longer targeted for 

degradation.  It is stabilised and accumulates in the nucleus, able to carry out its 

role as a transcriptional co-activator.  Following expression of cre recombinase, 

there is heterozygous loss of Pten, with activation of PI3K/Akt, in a subset of 

prostate epithelial cells, while β-catenin is activated and mimics canonical Wnt 

pathway activation in the absence of Wnt ligand. 
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Mice were aged and sacrificed at clinical endpoint, determined by clinical signs 

including palpable tumour burden, haematuria, weight loss and reduced activity, 

in keeping with the terms of the project licence.  Survival analysis found that 

Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ mice had a significantly poorer survival outcome 

than mice with β-catenin activation alone (Pb-Cre Ctnnb1(ex3)Δ/+) (Figure 3.2.2).  

β-catenin activation alone was sufficient to drive prostate cancer, as Pb-Cre 

Ctnnb1(ex3)Δ/+ mice also developed adenocarcinoma comparable at endpoint to 

Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ mice (Figure 3.2.3), but with a longer latency 

(Figure 3.2.2).  Pb-Cre Ctnnb1(ex3)Δ/+ mice survived up to 384 days whereas all 

Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ mice were taken within 274 days.  Heterozygous 

loss of Pten alone (Pb-Cre Ptenfl/+) did not result in prostate cancer (Figure 

3.2.4) and, therefore, did not adversely affect survival (Figure 3.2.2). 

 
Figure 3.2.2  Co-operation between β-catenin activation and Pten loss results in poor 
survival outcome in vivo 
Kaplan-Meier survival curve for Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+, Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+, 
Pb-Cre Ptenfl/fl,  and Pb-Cre Ptenfl/fl Ctnnb1(ex3)∆//+ mice (*** P < 0.001, data analysed by log-rank 
test).  Pb-Cre Ptenfl/fl survival data provided by Rachana Patel. 

 

As a result of mating combinations, Pb-Cre Ptenfl/fl Ctnnb1(ex3)Δ/+ mice, with 

homozygous loss of Pten and β-catenin activation, were also generated and aged 

to clinical endpoint.  We observed an additive effect of complete loss of Pten, as 

these mice only survived up to 159 days, over 100 days less than mice with 

heterozygous loss of Pten and β-catenin activation (Figure 3.2.2).  The additional 

loss of Pten had a ‘dose-dependent’ effect for driving tumour progression and 

suggested that Pten tumour suppression may play a role in increasing the latency 

of tumours driven by β-catenin activation alone.  Survival data for Pb-Cre 
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Ptenfl/fl  mice, with homozygous Pten deletion alone, was generated by Rachana 

Patel and used for comparison with the other genotypes.  These mice had a 

similar survival outcome to mice with β-catenin-driven prostate cancer (Figure 

3.2.2). 

 
Figure 3.2.3  β-catenin activation alone drives prostate tumourigenesis 
Representative images of prostate tumours dissected from Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ mice at clinical endpoint.  Ruler scale: 5 mm. 

 

Unlike homozygous Pten loss, heterozygous loss of Pten did not result in prostate 

cancer (Figure 3.2.4 & 3.2.5).  However, it significantly contributed to the 

progression of β-catenin-driven prostate cancer.  To further investigate how 

Pten loss and β-catenin activation co-operate to drive aggressive prostate 

cancer, we focussed on the effects of heterozygous Pten loss in combination 

with β-catenin activation.   

Mice were sacrificed at 3 month and 6 month time points to study prostate 

cancer initiation and progression in Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate tissue compared to wildtype and Pb-Cre Ptenfl/+controls.  

Macroscopic tumour was evident in anterior and dorsal-lateral prostate lobes of 

Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ mice at 3 months, and prostate weights were 

significantly greater than those from wildtype and Pb-Cre Ptenfl/+ mice (Figure 

3.2.4).  The prostates of Pb-Cre Ctnnb1(ex3)Δ/+ mice appeared slightly enlarged 

compared to wildtype but the higher standard deviation of weights in this group 

meant there was no significant difference compared to wildtype or Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate weights at 3 months (Figure 3.2.4). 

At 6 months, Pb-Cre Ctnnb1(ex3)Δ/+ prostate lobes were enlarged with white or 

necrotic lesions in the dorsal-lateral lobe, and the prostate weight was 
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significantly greater than wildtype (Figure 3.2.4).  By 6 months Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ mice had developed substantial tumour burden in the anterior 

prostate lobes, which tended to be solid with little tumour infiltrate (Figure 

3.2.4).  Furthermore, despite a large variation in the weights of Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostates, statistical analysis using the Mann Whitney test 

indicated a significant tendency for Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate 

weights to be greater than Pb-Cre Ctnnb1(ex3)Δ/+ (Figure 3.2.4). 

The average weight of Pb-Cre Ctnnb1(ex3)Δ/+ prostates increased over 2-fold from 

0.15 g at 3 months to 0.35 g at 6 months, while that of Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ increased just over 5-fold from 0.18 g at 3 months to 0.95 g at 6 

months (Figure 3.2.4).  Together with the survival data (Figure 3.2.2), this 

demonstrated that concurrent heterozygous loss of Pten and β-catenin activation 

resulted in a faster growing tumour with shorter latency compared to tumours 

driven by β-catenin activation alone. 
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Figure 3.2.4  Co-operation between β-catenin activation and Pten loss drives prostate 
tumour growth 
Representative images of prostates dissected from wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ 
and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice at 3 months and 6 months of age.  Ruler scale: 5 mm.  The 
graphs show the ‘dry’ weights of prostates sampled from mice at 3 months and 6 months and the 
amount of tumour infiltrate in Ctnnb1(ex3)∆/+ and Ptenfl/+ Ctnnb1(ex3)∆/+ prostates at 6 months.  (*** P < 
0.001, ** P < 0.01, * P < 0.05; data analysed by one-way ANOVA Kruskal-Wallis test, with Dunn’s 
multiple comparison test. * P value in red was generated by Mann Whitney test).  Data presented 
as mean ± SEM. 

 

We continued to characterise the Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ model by studying 

the histopathology of prostate tissue from mice sacrificed at 6 months compared 

to controls (Figure 3.2.5).  Heterozygous loss of Pten expression combined with 

β-catenin activation resulted in aggressive, invasive adenocarcinoma in the 

majority of the prostate tissue.  Low levels of Pten, high nuclear β-catenin and a 

large proportion of Ki67 positive cells were detected (Figure 3.2.5). 
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Figure 3.2.5  Histopathological characterisation of Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mouse model 
Representative haematoxylin and eosin staining, and Pten, β-catenin and Ki67 
immunohistochemical staining of FFPE sections of wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ 
and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue from mice sacrificed at 6 months.  To illustrate the 
variation observed in Pb-Cre Ctnnb1(ex3)∆/+ Ki67 levels, two representative inserts are included: 
lower left = PIN, upper right = tumour.  Scale bar: 100 µm.  Insert box: 100 µm2. 

 

In contrast, heterozygous loss of Pten (Pb-Cre Ptenfl/+) did not result in tumour 

and the morphological structure of glands was similar to wildtype, with few 

prostatic intraepithelial neoplasia (PIN) lesions observed at 6 months.  Pten, β-

catenin and Ki67 staining were also comparable to wildtype.  In contrast, Pb-Cre 

Ctnnb1(ex3)Δ/+ mice, with β-catenin activation alone, developed PIN and in situ 

carcinoma by 6 months.  While levels of nuclear β-catenin were similar to Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+, levels of ki67 varied, being high within regions of 
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carcinoma and low in PINs, and Pten levels were higher than wildtype (Figure 

3.2.5). 

In order to address the variation observed in weights of Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostates and identify differences between these and Pb-Cre 

Ctnnb1(ex3)Δ/+ prostates, we investigated alternative methods of measuring 

histological tumour burden in these mice.  

 
Figure 3.2.6  Analysis of haematoxylin and eosin staining to measure tumour burden 
Percentage nuclei staining was measured in haematoxylin and eosin stained of FFPE sections of 
prostate tissue from wildtype (n=3), Pb-Cre Ptenfl/+ (n=3), Pb-Cre Ctnnb1(ex3)∆/+ (n=5) and Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ (n=5) mice sacrificed at 6 months.  Slides were scanned using a Leica digital 
slide scanner and analysis was carried out using a deconvolution macro in ImageJ software.  The 
tissue area to be measured was annotated and the software measured the percentage of the area 
that was positively stained with haematoxylin (purple) as a measure of the percentage of nuclei in 
that area.  Data presented as mean ± SEM.   

 

Higher tumour density would be indicative of more advanced tumour grade.  In 

order to measure this objectively and identify if there were differences between 

Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue at 6 

months, we developed a deconvolution macro with ImageJ software to measure 

the percentage of nuclear (haematoxylin) staining in manually annotated areas 

of prostate epithelial tissue.  We observed an average 2.5-fold increase in the 

percentage of nuclei in Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ 

prostate tissue compared to wildtype (Figure 3.2.6), demonstrating that this 

may be an effective method of objectively quantifying tumour burden.  

However, the standard deviation was high across groups and no significant 
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difference between Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ was 

observed. 

  

 
Figure 3.2.7  Analysis of PIN number and tumour area in Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ prostates 
The graphs show box and whiskers plots of the number of PIN lesions, tumour area and tumour 
area to PIN number ratio measured in haematoxylin and eosin stained, FFPE prostate tissue 
sections from Pb-Cre Ctnnb1(ex3)∆/+ (n=5) and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ (n=6) mice sacrificed at 
6 months.  PINs were defined as hyper-proliferative prostate glands, in which more than half the 
lumen area was filled with epithelial cells but which had not merged with other hyperproliferative 
glands.  ImageJ software was used to annotate the tumour regions and the pixel area was used a 
measure of tumour area. 
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Further analysis was carried out on the whole sections that had been imaged 

with the Leica digital slide scanner to compare the total number of PIN lesions 

and tumour area in Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ 

prostate tissue.  There were a similar number of PIN lesions identified between 

the two groups (Figure 3.2.7).  However, larger tumours were present in Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue and there was far less variation in the 

tumour area of Pb-Cre Ctnnb1(ex3)Δ/+ prostate samples compared to Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ (Figure 3.2.7).  The two data sets were combined, 

normalising tumour area to PIN number to give a tumour to PIN ratio.  No 

statistically significant difference was observed between the two groups but 

data for each had a more normal distribution and greater difference between 

means compared to independent PIN number and tumour area data sets. 

 
Figure 3.2.8  Ki67 scoring to quantify levels of proliferation in Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ 
and control prostate tissue 
Quantification of Ki67 staining of wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ 
Ctnnb1(ex3)∆/+ prostate tissue from mice sacrificed at 6 months.  The percentage of stained nuclei 
was calculated for n=3 of each genotype, as an average value of the percentage of stained nuclei 
in 5 fields of view at 200X magnification.  (** P < 0.01, * P < 0.05; analysed by one-way ANOVA (P 
= 0.0012), with Tukey multiple comparison test).  Data presented as mean ± SEM.  No significant 
difference was observed between levels of Ki67 staining in Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue. 

 

Having also observed variation in the levels of proliferation across the 

genotypes, the percentage of Ki67 staining was measured in biological triplicate 

for each genotype.  Pb-Cre Ctnnb1(ex3)Δ/+ prostate tissue had a significantly 

higher percentage of Ki67 staining compared to wildtype tissue, while levels of 
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Ki67 were significantly higher in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue 

compared to both wildtype and Pb-Cre Ptenfl/+ (Figure 3.2.8).  Despite there 

being a trend towards higher levels of Ki67 in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ 

compared to Pb-Cre Ctnnb1(ex3)Δ/+, no significant difference was observed 

between the two groups. 

To explore the changes in molecular events associated with the development of 

β-catenin-driven prostate cancer and the co-operation with Pten loss, we carried 

out a Reverse Phase Protein Array (RPPA) screen with 138 antibody markers, in 

collaboration with Dr Neil Carragher at the Edinburgh Centre for Cancer 

Research.  At this stage, limited samples were available for analysis, so we 

conducted the screen on one sample set, later validating changes of interest by 

western blot analysis in biological triplicate. 

 
Figure 3.2.9  Reverse-Phase Protein Array screen to identify changes in protein levels 
associated with β-catenin activation and Pten loss in prostate cancer 
Protein was extracted from prostate tissue of wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+  and 
Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice sacrificed at 6 months.  Protein lysates were sent for Reverse-
Phase Protein Array analysis by Neil Carragher’s laboratory at the Edinburgh Centre for Cancer 
Research.  The heat map shows levels of proteins found to be altered between samples.  Further 
pathway analysis was carried out on proteins in red boxes. 
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From the RPPA, we identified a number of changes, including a significant 

increase in Pten protein expression in Ctnnb1(ex3)Δ/+ prostate tissue (Figure 

3.2.9).  Furthermore, I observed an interesting variation in Pten protein 

expression across sections of prostate tissue from Pb-Cre Ctnnb1(ex3)Δ/+ mice at 6 

months.  High levels of nuclear Pten were present in PIN lesions, while lower 

levels were observed in tumour regions of the same section (Figure 3.2.10).   

 

 

 
Figure 3.2.10  Pten and Akt pathway analysis 
The tissue section image is representative of Pten immunohistochemical staining of FFPE sections 
of Pb-Cre Ctnnb1(ex3)∆/+ prostate tissue, with inserts showing high levels of nuclear Pten in PIN 
lesions (blue) but less nuclear Pten in the tumour (green).  Scale bar: 100 µm.  Insert box: 100 µm2.  
Quantitative RT-PCR analysis was carried out on RNA extracted from prostate tissue of wildtype, 
Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice at 6 months and the 
graph shows the relative Pten mRNA expression in samples.  RQ = relative quantity (log scale). 
Normalised to 18S housekeeping gene.  (** P < 0.01; analysed by one-way ANOVA, with Tukey 
multiple comparison test).  The Western blot panel is representative of analysis of β-catenin, Pten, 
phospho-Pten (Ser-380), phospho-Akt (Ser-473) and total Akt protein levels in protein lysates 
extracted from prostate tissue of wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ 
Ctnnb1(ex3)∆/+ mice at 6 months (n=3).  Hsp70 was used as a loading control. 
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Western blot analysis, confirmed the presence of mutant (Δ90) β-catenin in Pb-

Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue and showed 

overall levels of Pten protein were much higher in Ctnnb1(ex3)Δ/+ prostate tissue 

compared to wildtype, Ptenfl/+ and Ptenfl/+ Ctnnb1(ex3)Δ/+.  Analysis of mRNA from 

the same set of samples did not show a corresponding increase in Pten mRNA 

expression in Pb-Cre Ctnnb1(ex3)Δ/+ prostate tissue (Figure 3.2.10).  However, the 

increase in Pten protein did correspond with increased levels of phospho-Pten 

(Ser-380) (Figure 3.2.10), which facilitates stabilisation and nuclear localisation 

of Pten [110]. 

Pten mRNA and protein expression was significantly reduced in Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate tissue compared to wildtype and Ptenfl/+ (Figure 3.2.10).  

These appeared to be below the expression levels associated with Pten 

haploinsufficiency. There was a corresponding increase in phospho-Akt levels, 

while total Akt levels remained unchanged (Figure 3.2.10).  RPPA data also 

showed high levels of the anti-apoptotic protein survivin in Ptenfl/+ Ctnnb1(ex3)Δ/+ 

prostate tissue, corresponding to Pten loss (Figure 3.2.9).  Heterozygous loss of 

Pten alone resulted in an increase in phospho-Akt (Figure 3.2.10) and survivin 

(Figure 3.2.9) but this was not sufficient to drive tumourigenesis (Figure 3.2.5).  

Despite high levels of Pten, Akt activation was also observed in Ctnnb1(ex3)Δ/+ 

prostates, in which phospho-Akt levels were elevated above those observed in 

wildtype tissue (Figure 3.2.10).  This is likely due to the accumulation of 

phospho-Pten in the nucleus, relieving repression of PI3K/Akt at the cell 

membrane. 

Overall, these data demonstrate that β-catenin activation is sufficient to initiate 

tumourigenesis in cells with intact Pten expression and is associated with 

stabilisation and nuclear accumulation of Pten in PIN lesions.  However, lower 

levels of Pten observed in tumour lesions indicate that cells must overcome Pten 

tumour suppression for cancer to progress from PIN to adenocarcinoma.  Hence, 

we observed a more aggressive phenotype in tumours harbouring concurrent β-

catenin activation and heterozygous Pten loss. 
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3.2.2 ROS-driven proliferation and Pten-modulation overcome 
tumour suppression in β-catenin-driven prostate cancer 

We wanted to further investigate the biological significance of increased levels 

of nuclear Pten in PIN lesions of prostate tissue from Pb-Cre Ctnnb1(ex3)Δ/+ mice 

(Figure 3.2.10) and assess how β-catenin activation may be modulating these 

effects.  Previous work from our lab has shown that nuclear Pten induces p53-

mediated G1 arrest in a phosphatase-independent manner [110].  It has 

previously been shown that ROS is able to drive the nuclear accumulation of 

phosphorylated Pten, resulting in p21 expression and p53-mediated tumour 

suppression [112].  Quenching of ROS with N-acetyl-cysteine (NAC) treatment 

overcame growth arrest and tumour suppression, leading to hyper-proliferation 

of epithelial cells and increased development of PIN lesions in the prostate 

[110]. 

 
Figure 3.2.11  Nuclear Pten observed in Pb-Cre Ctnnb1(ex3)∆/+ PIN lesions corresponds with 
elevated levels of ROS and p21 
Representative images of Pten, malondialdehyde (ROS) and p21 immunohistochemical staining of 
FFPE wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ sections of 
prostate tissue, harvested from mice at 6 months. Data provided by Rachana Patel (unpublished).  
Scale bar: 100 µm.  Insert box: 100 µm2. 

We carried out immunohistochemical staining for Pten, the ROS marker 

malondialdehyde and p21 in wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)Δ/+ and 
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Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ fixed prostate tissue sections.  Increased levels of 

nuclear Pten, observed in Ptenfl/+ and Ctnnb1(ex3)Δ/+ PIN lesions, correlated with 

increased levels of ROS (malondialdehyde staining) and nuclear p21, and was not 

observed in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ tumour tissue (Figure 3.2.11).  This led 

us to hypothesise that the longer latency of tumour development in Pb-Cre 

Ctnnb1(ex3)Δ/+ mice (Figure 3.2.2-3.2.4) was due to ROS-dependent Pten and p53-

mediated tumour suppression during early stages of tumourigenesis, which must 

be overcome for cancer progression. 

 

 

 

Figure 3.2.12  N-acetyl cysteine (NAC) treatment decreased tumour burden in Pb-Cre 
Ctnnb1(ex3)∆/+ mice 
Schematic shows the timeline for NAC treatment in mice.  The graphs show prostate weights of 
Pb-Cre Ptenfl/+,Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice after 3 months 
treatment with 10 mM NAC, compared to vehicle control treated mice.  Prostate weights are 
presented as a percentage of body weight to negate any variations in body weight between groups.  
NAC (or vehicle) treatment commenced when mice were 3 months old and all mice were taken 
after 3 months of treatment.  Differences between Ptenfl/+ and Ctnnb1(ex3)∆/+ data (blue box) are 
shown more clearly in the graph on the right.  (* p value <0.05; analysed by unpaired, two-tailed t-
test with Welsh’s correction). Data presented as mean ± SEM. 

 

To test this hypothesis, we treated Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-

Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ mice with 10 mM NAC antioxidant in drinking water, 

administered continuously for 3 months, to quench ROS (Figure 3.2.12).  Initial 
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analysis of NAC treated and control groups showed a significant decrease in the 

prostate weight of Pb-Cre Ctnnb1(ex3)Δ/+ NAC treated mice, and smaller standard 

deviation, compared to controls (Figure 3.2.12).  No significant difference in 

prostate weight was observed between Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ NAC treated 

and control mice (Figure 3.2.12). 

 
Figure 3.2.13  NAC treatment had a pro-proliferative effect on Pb-Cre Ptenfl/+ prostate cells 
but was chemopreventive in Pb-Cre Ctnnb1(ex3)∆/+ mice 
Haematoxylin & eosin staining, ki67 and β-catenin immunohistochemical staining of FFPE Pb-Cre 
Ptenfl/+ and Pb-Cre Ctnnb1(ex3)∆/+ prostate  tissue comparing samples from NAC treated mice to 
controls.  Scale bar: 100 µm.  Insert box: 100 µm2. 

 

We had predicted quenching ROS would decrease Pten phosphorylation and 

nuclear Pten, relieving growth arrest and facilitating cell growth and 

proliferation.  While NAC treatment in Pb-Cre Ptenfl/+ mice increased levels of 

proliferation (Ki67) in prostate tissue, NAC treatment in Pb-Cre Ctnnb1(ex3)Δ/+ 

mice had a chemo-preventative effect, and resulted in fewer PIN lesions and 

reduced proliferation (Ki67) compared to age-matched, vehicle-treated controls 

(Figure 3.2.13).  We also observed a decrease in levels of nuclear β-catenin in 

these mice compared to controls (Figure 3.2.13), suggesting that NAC treatment 
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restricted the proliferation of cells harbouring mutant (nuclear) β-catenin.  

Thus, ROS appears to be required for the proliferation of β-catenin-mutant 

prostate cancer cells.  Both genotypes displayed a decrease in nuclear Pten, ROS 

and p21 levels following NAC treatment (Figure 3.2.14), but with contrasting 

effects. 

 
Figure 3.2.14  Effects of NAC treatment on Pten, ROS and p21 in Pb-Cre Ptenfl/+ and Pb-Cre 
Ctnnb1(ex3)∆/+ prostate tissue 
Pten, malondialdehyde (ROS) and p21 immunohistochemical staining of FFPE Pb-Cre Ptenfl/+ and 

Pb-Cre Ctnnb1(ex3)∆/+ prostate  tissue comparing samples from NAC treated mice to controls.  Scale 
bar: 100 µm.  Insert box: 100 µm2. 

 

Histopathological analysis of Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostates showed that 

NAC treatment had not halted tumour progression, nor had it accelerated cell 

growth and proliferation in these mice (Figure 3.2.15).  Despite control Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue having lower levels of ROS and nuclear Pten 

in comparison to Pb-Cre Ctnnb1(ex3)Δ/+, the positive effect of NAC treatment was 

still observed by a reduction in ROS levels, and loss of nuclear Pten and p21 

(Figure 3.2.16).  Haematoxylin and eosin staining showed the development of 

adenocarcinoma and similar levels of Ki67 staining across the prostate tissue 

sections in control and NAC treated mice (Figure 3.2.15).  Although a large 
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number of cells with nuclear β-catenin remained, there did appear to be a small 

reduction in levels of nuclear β-catenin following NAC treatment (Figure 3.2.15), 

suggesting quenching of ROS had restricted proliferation in β-catenin-mutant 

cells, as observed in Ctnnb1(ex3)Δ/+ prostate tissue (Figure 3.2.13). 

 

Figure 3.2.15  NAC treatment had little effect on prostate cancer progression in Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ mice 
Haematoxylin & eosin staining, ki67 and β-catenin immunohistochemical staining of FFPE Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ prostate  tissue comparing samples from NAC treated mice to controls.  Scale 
bar: 100 µm.  Insert box: 100 µm2. 

 

There was a reduction in Pten levels in all three genotypes following NAC 

treatment (Figure 3.2.14 & 3.2.16).  In Pten haploinsufficient Pb-Cre Ptenfl/+ and 

Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostates, both nuclear and cytoplasmic Pten 

expression decreased compared to controls.  However, in Pb-Cre Ctnnb1(ex3)Δ/+ 

prostates, we observed a loss of nuclear Pten, while high levels of cytoplasmic 

Pten expression remained (Figure 3.2.14).  To investigate the downstream effect 

of these changes on Pten phosphatase activity, we looked at Akt activation in 

these samples. 
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Figure 3.2.16  Effects of NAC treatment on Pten, ROS and p21 in Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ 
prostate tissue 
Pten, malondialdehyde (ROS) and p21 immunohistochemical staining of FFPE Pb-Cre Ptenfl/+ 
Ctnnb1(ex3)∆/+ prostate  tissue comparing samples from NAC treated mice to controls.  Scale bar: 
100 µm.  Insert box: 100 µm2. 

 

Immunohistochemical staining of phospho-Akt (Ser-473) showed significant Akt 

activation in Pb-Cre Ptenfl/+prostates, with patches of intense phospho-Akt 

staining following NAC treatment (Figure 3.2.17).  The pro-proliferative effect of 

NAC treatment in Pten haploinsufficient prostate tissue is caused by overcoming 

G1 growth arrest and tumour suppression.  It is likely that cells are 

compensating for the heterozygous loss of Pten and somehow increase ROS levels 

to maintain a tumour suppressive state via nuclear Pten-mediated G1 growth 

arrest.  This explains the low incidence of PIN and tumour resulting from Pten 

haploinsufficiency.  However, when ROS levels are decreased there is loss of G1 

growth arrest and increased proliferation. 

In contrast, a low level of phospho-Akt was present in prostates of Pb-Cre 

Ctnnb1(ex3)Δ/+ control mice (also detected by western blot (Figure 3.2.10)), 
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despite high levels of Pten, but was completely ablated following NAC 

treatment, even in a region of hyperplasia (Figure 3.2.17).  NAC treatment 

caused a reduction in nuclear Pten levels, due to quenching of ROS, and Pten 

levels increased in the cytoplasm, inhibiting activation of Akt at the cell 

membrane.  Low levels of Akt activation may provide a survival benefit to cells 

in Pb-Cre Ctnnb1(ex3)Δ/+ control prostates, despite high levels of nuclear Pten in 

PIN lesions.  This ROS-dependent mechanism may be required to co-operate with 

pro-proliferative downstream effectors of β-catenin activation to initiate 

tumourigenesis.  Phospho-Akt staining was present but less intense in Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ prostates of NAC treated mice compared to controls 

demonstrating the influence of β-catenin activation in this cohort. 

 
Figure 3.2.17  Differential effects of NAC treatment on phospho-Akt expression in Pb-Cre 
Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue 
Phospho-Akt immunohistochemical staining of FFPE Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate  tissue 
comparing samples from NAC treated mice to controls.  Scale bar: 100 µm.  Insert box: 100 µm2. 
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These data illustrate the association of β-catenin activation with elevated levels 

of pro-proliferative ROS that modulates Pten localisation in order to overcome 

tumour suppression.  However, it was not clear how ROS was being produced 

following β-catenin activation. 

Similar effects of NAC treatment have been observed by Myant et al. in a 

colorectal cancer mouse model, in which β-catenin activation was triggered by 

APC loss [182].  ROS-mediated proliferation was required for cancer initiation in 

these mice, and was concordant with upregulation of Rac1 signalling.  

Therefore, we tested the levels of Rac1 activity in relation to levels of ROS in 

prostate tissue from wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ mice sampled at 6 months.  Immunohistochemical staining 

of Rac1-GTP (active Rac1) showed a positive correlation between levels of ROS 

(malondialdehyde) and Rac1-GTP.  The highest levels of ROS were detected in 

PIN lesions of Pb-Cre Ctnnb1(ex3)Δ/+ prostate tissue and significantly decreased in 

tumour regions of Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+Ctnnb1(ex3)Δ/+ mice 

(Figure 3.2.18). 

Figure 3.2.18  High levels of ROS positively correlate with Rac1 activity in Pb-Cre 
Ctnnb1(ex3)∆/+ PIN lesions 
Malondialdehyde (ROS) and Rac1-GTP immunohistochemical staining of FFPE prostate tissue 
from wildtype, Pb-Cre Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice 
sacrificed at 6 months.  To illustrate the variation observed between PIN and tumour regions of Pb-
Cre Ctnnb1(ex3)∆/+ prostate tissue, a representative image is included for each region.  Scale bar: 
100 µm.  Insert box: 100 µm2. 

 

Work by Myant et al. [182] showed a significant correlation between elevated 

levels of Rac1 and Tiam1, Vav3 and c-Myc in human colorectal cancer, and 
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attributed increased Rac1 activity to the increased expression of the Rac1-GEFs, 

Tiam1 and Vav3, driven by β-catenin/Myc signalling.  Using RT-PCR, I analysed 

Tiam1 and Vav3 expression in prostate tissue from wildtype, Pb-Cre Ptenfl/+, Pb-

Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ mice sampled at 6 months but 

did not observe any significant differences between the genotypes (Figure 

3.2.19). 

As Rac1-GTP levels are highest in PIN lesions of Pb-Cre Ctnnb1(ex3)Δ/+ prostates 

(Figure 3.2.18), I hypothesised that the levels of the Rac1-GEFs are highest at 

earlier stages of tumourigenesis, and that β-catenin activation alone could 

regulate these changes.  Analysis of RNA from Pb-Cre Ctnnb1(ex3)Δ/+ prostate 

tissue collected at 3, 6 and 12 month time points and showed a significant 

increase in levels of Tiam1 and Vav3 expression at 3 months compared to 

wildtype (Figure 3.2.20).  At 6 months, there was a drop in both Tiam1 and Vav3 

expression, and levels were equivalent to those observed in wildtype samples.  

Elevated levels of Tiam1 were again observed in endpoint tumour samples.  RT-

PCR analysis of Tiam1 and Vav3 at 3, 6 and 12 month time points in wildtype 

samples showed that there was no significant age-associated variation in their 

expression (Figure 3.2.21).  Hence, the high levels of Tiam1 and Vav3 expression 

at 3 months are a specific consequence of β-catenin activation. 

  
Figure 3.2.19  Rac-GEFs, Tiam1 and Vav3, are not significantly altered in prostate tissue 
with β-catenin activation at 6 months 
TaqMan RT-qPCR analysis of Tiam1 and Vav3 mRNA expression levels (RQ) in wildtype, Pb-Cre 
Ptenfl/+, Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mouse prostates tissue at 6 month 
time point.  Normalised to 18S housekeeping gene.  (Analysis by one-way ANOVA, with Tukey 
multiple comparison test showed no significant difference in expression levels). 
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Figure 3.2.20  Tiam1 and Vav3 are significantly upregulated in Pb-Cre Ctnnb1(ex3)∆/+ prostate 
tissue at 3 months 
TaqMan RT-qPCR analysis of Tiam1 and Vav3 mRNA expression levels (RQ) in wildtype prostate 
tissue at 6 months and Pb-Cre Ctnnb1(ex3)∆/+ prostates tissue at 3, 6 and 12 month time points.  
Normalised to 18S housekeeping gene.  (**** P < 0.0001, *** P < 0.001, ** P < 0.01; analysis by 
one-way ANOVA, with Tukey multiple comparison test). 

 

  
Figure 3.2.21  Levels of Tiam1 and Vav3 expression do not vary significantly between 3, 6 
and 12 month time points in wildtype prostate tissue 
TaqMan RT-qPCR analysis of Tiam1 and Vav3 mRNA expression levels (RQ) in wildtype prostate 
tissue at 3, 6 and 12 month time points.  Normalised to 18S housekeeping gene.  (Analysis by one-
way ANOVA, with Tukey multiple comparison test showed no significant difference in expression 
levels). 
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The increased expression of Rac1-GEFs, Tiam1 and Vav3 indicates that β-catenin 

activation upregulates the expression of Tiam1 and Vav3.  These Rac-GEFs 

convert inactive Rac1-GDP to its active Rac1-GTP state which is able to interact 

with NOX signalling machinery at the cell membrane [182].  Rac1-GTP activates 

the NOX complex, resulting in oxidation of NADPH to NADP+ and production of 

oxygen free radicals.  Thus, β-catenin activation may result in NOX-mediated 

ROS production in Pb-Cre Ctnnb1(ex3)Δ/+ prostate tissue. 

 

3.2.3 Progressive loss of Pten correlates with advanced cancer 
stage in β-catenin-driven prostate cancer 

Our work has established that Pten-mediated tumour suppression is required to 

delay the progression of prostate cancer driven by aberrant β-catenin activation.  

We further investigated Pten status during tumour progression and observed a 

progressive loss of Pten over 3, 6 and 12 month (endpoint) time points in Pb-Cre 

Ctnnb1(ex3)Δ/+ prostate tissue (Figure 3.2.22).  In some regions of tumour tissue 

sampled from Pb-Cre Ctnnb1(ex3)Δ/+ mice at endpoint, Pten expression was lower 

than the levels of Pten in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ tumour tissue sampled at 

6 months (Figure 3.2.22) 

 
Figure 3.2.22  Progressive loss of Pten in tumours driven by β-catenin activation 
Representative Pten immunohistochemical staining of FFPE sections of Pb-Cre Ctnnb1(ex3)∆/+ 
prostate tissue sampled at 3, 6 and 12 months, and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue 
sampled at 6 months.  Scale bar: 100 µm.  Insert box: 100 µm2.   
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Figure 3.2.23  Pten expression is heterogeneous in epithelial and stromal regions of 
prostate tumour 
Images show Pten immunohistochemical staining (left) and cresyl violet staining (right) of frozen 
sections of prostate tissue from a Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mouse (6 month time point).  These 
were two serial sections cut following the five serial sections used for LCM.  Images were taken at 
40X magnification and compiled to assemble an image of whole tissue section.  Pten IHC was 
used to determine regions of low (red) and high (blue) Pten in epithelial tissue and cresyl violet 
staining highlights cell nuclei to aid identification of epithelial and stromal (green) regions of tissue.  
The red, blue and green annotated regions were isolated using LCM and put in separate tubes, 
pooled across the five LCM tissue sections.  Graph shows the relative quantity of Pten expression 
at the tumour edge, centre and stroma correlates with Pten IHC (colours correspond to regions 
annotated in above images). 

  



112 
 

Chapter 3 

We wanted to investigate if the loss of Pten protein expression correlates with a 

reduction in Pten mRNA expression.  Due to the heterogeneous expression of 

Pten across tissue sections, with varying levels of Pten observed between PIN, 

tumour and stroma, we decided to employ laser capture microdissection (LCM) 

to isolate tumour epithelial tissue from 6 month Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ mice and endpoint Pb-Cre Ctnnb1(ex3)Δ/+ mice.  RNA was 

extracted from these regions of tissue for downstream quantitative analysis of 

Pten mRNA expression by RT-PCR. 

Differences in Pten mRNA expression were found to correlate with levels of Pten 

staining across areas of one Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumour.  

Regions of low Pten at the tumour edge correlated with low Pten expression and 

higher levels of Pten at the centre correlated with high Pten expression, 

comparable to levels observed in the stroma region (Figure 3.2.23).  This 

example highlights the variations within a tissue sample that can mask specific 

changes of interest if analysing RNA from the whole tissue section.  For all 

samples, a further serial tissue section was cut following five serial sections used 

for LCM, and used for immunohistochemical Pten staining.  For many samples, it 

was difficult to identify areas of epithelial tissue on the cresyl violet stained LCM 

slides that corresponded to high or low Pten levels observed in this serial 

section.  The structure of tissue in frozen sections is also not conserved in the 

same way as fixed tissue sections and varied slightly through the five serial 

sections.  It was, therefore, challenging to isolate tissue based on Pten 

expression status, but possible to distinguish epithelia from stroma (Figure 

3.2.23). 

Analysis of RNA extracted from Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumour epithelial tissue confirmed that there was significantly less 

Pten expressed in Pb-Cre Ctnnb1(ex3)Δ/+ tumour tissue at 12 months than at 6 

months.  Furthermore, the relative quantity of Pten expressed at 12 months was 

comparable to Pten expression in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ mice (Figure 

3.2.24).  This confirms the progressive loss of Pten protein correlates with loss of 

Pten transcript in tumours driven by aberrant β-catenin activation. 
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Figure 3.2.24  Pten expression significantly decreases in Pb-Cre Ctnnb1(ex3)∆/+ tumour 
epithelial tissue between 6 and 12 months 
LCM was used to isolate tumour epithelial tissue from prostates of Pb-Cre Ctnnb1(ex3)∆/+ mice at 6 
and 12 months (endpoint) and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice at 6 months.  TaqMan RT-qPCR 
analysis was carried out on RNA extracted from this tissue to compare the relative quantity (RQ) of 
Pten expression.  Normalised to 18S housekeeping gene.  (*** P < 0.001, ** P < 0.01; analysis by 
one-way ANOVA, with Tukey multiple comparison test).  Data presented as mean ± SEM. 

 

In order to understand how Pten is progressively lost in association with aberrant 

β-catenin activation, we analysed Pten gene copy number in the same samples 

to determine if loss of Pten at the genomic level was responsible for loss of Pten 

expression.  It was first necessary to determine Pten copy number in wildtype, 

Pten heterozygous and Pten null prostate epithelial tissue.  LCM was used to 

isolate DNA from prostate epithelial tissue of Pb-Cre Ptenfl/fl (Pten null) mice at 

clinical endpoint (~10 months), and Pb-Cre Ptenfl/+ (Pten heterozygous) and 

wildtype mice at 10-12 months.  In Pb-Cre Ptenfl/+ and Pb-Cre Ptenfl/fl mice, 

Pten exon5 is flanked by loxP sites.  The expression of cre recombinase results in 

Pten exon5 deletion and subsequent loss of Pten expression.  It was, therefore, 

possible to quantify Pten copy number by using primers to specifically amplify 

Pten exon5 DNA and determine the relative quantity in samples by qPCR. 

As expected, Pten copy number decreased in Pten heterozygous prostate tissue 

and was significantly lower in Pten null prostate tissue, with approximately 3-

fold and 5-fold reduction in levels of Pten exon5 DNA compared to Ptenfl/+ and 

wildtype, respectively (Figure 3.2.25).  This data provided a standard curve with 
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which to compare Pten copy number in Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate tissue. 

We observed no statistically significant difference between Pten copy number in 

6 month and 10-12 month Ctnnb1(ex3)Δ/+ prostate epithelial tissue compared to 

wildtype (Figure 3.2.25).  However, samples in each Ctnnb1(ex3)Δ/+ group do 

overlap with Ptenfl/+ copy number data and a 2-fold increase in Pten DNA was 

observed in stromal tissue compared to epithelial tissue in endpoint 

Ctnnb1(ex3)Δ/+ prostate tumours (Figure 3.2.26).  This suggests Ctnnb1(ex3)Δ/+ 

tumours may have lost one Pten allele.  By applying LCM to specifically study 

tumour epithelial cells, we were able to demonstrate that the progressive loss of 

Pten expression observed in Ctnnb1(ex3)Δ/+ prostate tissue may be partly due to 

heterozygous genomic loss of Pten but suggests that β-catenin activation drives 

other molecular changes that further down-regulate Pten expression. 

 
Figure 3.2.25  Pten copy number in Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tumour epithelia tissue is 
comparable to homozygous Pten loss 
LCM was used to isolate tumour epithelial tissue from prostates of wildtype, Pb-Cre Ptenfl/+, Pb-Cre 
Ptenfl/fl mice at 10-12 months, Pb-Cre Ctnnb1(ex3)∆/+ mice at 6 and 12 months (endpoint) and Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ mice at 6 months.  TaqMan qPCR analysis was carried out on DNA extracted 
from this tissue to compare the relative quantity (RQ) of Pten exon5.  Normalised to Casc3 
housekeeping gene.  (** P < 0.01; * P < 0.05; black* - analysis by one-way ANOVA, with Tukey 
multiple comparison test; red* - analysis by unpaired, one-tailed student t-test compared to Ptenfl/+).  
Data presented as mean ± SEM. 

 

* 
** 



115 
 

Chapter 3 

However, Pten copy number was significantly decreased in Ptenfl/+ Ctnnb1(ex3)Δ/+ 

tissue compared to wildtype and Ptenfl/+, beyond levels concordant with 

heterozygous loss of Pten and, instead, comparable to Pten null prostate 

epithelial tissue (Figure 3.2.25).  This suggests that, in the context of Pten 

haploinsufficiency, β-catenin activation leads to loss of heterozygosity (LOH) in 

Pten, and correlates with low levels of Pten expression in tumour epithelial 

tissue (Figure 3.2.5 & 3.2.24). 

 
Figure 3.2.26  Pten copy number is significantly higher in the stroma compared to epithelia 
of Ctnnb1(ex3)∆/+ prostate tissue 
LCM was used to isolate tumour epithelial tissue and stroma from prostates of Pb-Cre Ctnnb1(ex3)∆/+ 
mice at 12 months (endpoint).  TaqMan qPCR analysis was carried out on DNA extracted from this 
tissue to compare the relative quantity (RQ) of Pten exon5.  Normalised to Casc3 housekeeping 
gene.  (* P < 0.05; analysis by unpaired, two-tailed t-test with Welsh’s correction).  Data presented 
as mean ± SEM. 

 

We generated four cell lines (referred to as CP1-4) from four independent Pb-

Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumours (Figure 3.2.27).  As these tumours 

had a Pten heterozygous background, we were initially surprised to detect no 

Pten in CP1, CP2 and CP3 cells by western blot analysis (Figure 3.2.28). Only CP4 

cells maintained Pten expression but β-catenin expression was consistent across 

all four cell lines (Figure 3.2.28).  This suggested that the cell lines were derived 

from different sub-populations of tumour epithelial cells within Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumours, harbouring differential Pten status.  Alternatively, it was 
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possible that the loss of Pten in cell lines could be a consequence of culturing 

the cells in vitro and may not represent Pten status of tumour cells in vivo. 

 
Figure 3.2.27  Primary cell lines derived from Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tumours 
CP1 and CP2 cell lines were previously derived from Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tumours 
by Meiling Gao.  CP3 and CP4 were later derived from prostate tumours of the same genotype.  All 
four cell lines have similar morphology.  Images of main panels taken at 50X magnification and 
inserts at 100X magnification. 

 

 
Figure 3.2.28  Pten is completely lost in CP cell lines 1-3 but present in CP4 cells 
Western blot analysis of β-catenin and Pten protein levels in protein lysates extracted from CP1, 
CP2, CP3 and CP4 cell lines.  The two CP4 lanes show results from consecutive passages.  
GAPDH was used as a loading control. 

 

To determine their Pten status, CP1-4 cell pellets were sent to Transnetyx for 

PCR analysis using the standard primers for genotyping the Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ mouse colony.  Tumour tissue, from which CP3 and CP4 were 
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derived, and the corresponding mouse tail tips were also sent for genotyping.  

Analysis of CP cell lines 1-3 showed complete loss of wildtype and loxP Pten 

alleles, while CP4 cells retained the wildtype Pten allele (Table 3.2-1), 

corresponding to Pten protein levels in the four cell lines (Figure 3.2.28).  Cre 

and wildtype Ctnnb1 DNA was present in all cell lines and Ctnnb1 Exon3 LoxP 

was not detected, confirming that all four cell lines were derived from Pb-Cre 

positive cells in which cre-mediated recombination had taken place (Table 3.2-

1). 

Table 3.2-1  Transnetyx genotyping results for CP cell lines, tumour tissue and tail tips 

Sample Cre 
Ctnnb1 

Exon3 LoxP Ctnnb1 WT Pten 
Exon5 LoxP 

Pten WT 

CP1 cells + - + - UD 

CP2 cells + - + - - 
CP3 cells + - + - - 

CP3 tumour + UD + UD - 
CP3 tail + + + + + 
CP4 cells + - + - + 

CP4 tumour + + + + - 
CP4 tail + + + + + 

UD=undetermined (signal between positive and negative ranges) 

 

Genotyping of DNA extracted from CP3 and CP4 mouse tail tips confirmed that 

the germline harboured the Cre transgene, one Ctnnb1 allele with loxP sites at 

Exon3 and one Pten allele with loxP sites at Exon5.  However, genotyping of the 

tumour tissue used to derive CP3 cells uncovered the loss of wildtype Pten in the 

tumour itself (Table 3.2-1), indicating that LOH occurred prior to generation of 

the CP3 cell line and was not a consequence of culturing cells in vitro.  Loss of 

wildtype Pten in CP4 tumour tissue also suggested LOH had occurred, but was 

contradictory to the positive expression of Pten protein in CP4 cells.  It should 

be noted that the tumour tissue genotyped will not be completely 

representative of the tissue used to generate the cell lines.  However, it is also 

likely that cancer cells evolve during the establishment of cell lines. 

These cell line data corroborate findings from Pten transcript and gene analysis 

of Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ tumour epithelial tissue (Figure 3.2.24 & 3.2.25) 

and demonstrate that LOH in Pten occurs within tumours initiated by aberrant β-
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catenin activation and Pten haploinsufficiency.  It is likely that the level of LOH 

varies between cells and tumours, leading to differential expression of Pten 

across the tissue.  This makes it possible to generate cell lines such as CP4 which 

retain wildtype Pten and, hence, Pten expression. 

While we elucidated that LOH was responsible for the low levels of Pten 

expression in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumours, this was not the 

case in Pb-Cre Ctnnb1(ex3)Δ/+ tumours.  Therefore, we investigated other 

mechanisms of Pten transcript regulation in tumours driven by aberrant 

activation of β-catenin alone. 

We searched the miRBase database and identified a number of microRNAs 

involved in Pten-regulation.  These included miR-17, miR-18a, miR-19b and miR-

21, which negatively regulate Pten expression.  Using TaqMan microRNA assays, 

we carried out RT-PCR expression analysis of these microRNAs in total RNA 

extracted from wildtype and Ctnnb1(ex3)Δ/+ prostate tissue.  This experiment was 

carried out on samples collected at 3, 6 and 12 month time points in order to 

assess temporal changes in miRNA expression.  We hypothesised that the 

negative regulation of Pten expression would be more apparent at later stages of 

tumour progression, between 6-12 months, correlating with tumour development 

and the progressive loss of Pten that we had identified in Pb-Cre Ctnnb1(ex3)Δ/+ 

prostates. 

In keeping with our hypothesis, at 3 months no significant differences in miR-17, 

18a, 19b or 21 (Figure 3.2.29) expression were observed between Ctnnb1(ex3)Δ/+ 

and wildtype prostate tissue.  However, in Ctnnb1(ex3)Δ/+ prostate tissue at 6 

months there was a significant increase in miR-17, 18a, 19b and 21 expression 

(Figure 3.2.29), all associated with the negative regulation of Pten.  These 

differences in miR-18a and 19b were maintained in Ctnnb1(ex3)Δ/+ prostate tissue 

at 12 months.  We noted no significant age-related changes in miRNA expression 

in wildtype prostate tissue (Figure 3.2.29), meaning that the changes in miRNA 

expression in Ctnnb1(ex3)Δ/+ prostate tissue were a consequence of aberrant β-

catenin activation. 
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Figure 3.2.29  Upregulation of miRNA-17, -18, 19b and -21 expression is associated with 
aberrant β-catenin activation 
TaqMan microRNA assays for miR-17, -18a, -19b and -21 were used to measure the relative 
quantity (RQ) of these miRNAs expressed in wildtype and Pb-Cre Ctnnb1(ex3)∆/+ prostate tissue at 
3, 6 and 12 month time points.  Expression data was normalised to SnoRNA-202 housekeeping 
gene and the data is shown relative to wildtype 3 months.  (** P < 0.01, * P < 0.05; analysed by 
unpaired, one-tailed t-test with Welsh’s correction). 

 

From this experiment it was not possible to determine if expression changes 

were a direct consequence of β-catenin activation or an indirect effect 

associated with tumour development.  To test whether transcriptional β-catenin 

activity can directly regulate the expression of Pten-regulatory miRNAs, we 

analysed miRNA expression in CP1 cells following treatment with 25 µM ICG-001 

inhibitor or vehicle control for 24 hours.   



120 
 

Chapter 3 

 
Figure 3.2.30  Western blot analysis of CP1 and CP2 cells treated with ICG-001 inhibitor 
Western blot analysis of β-catenin, Cyclin-D1 and Survivin protein levels in protein lysates 
extracted from CP1 and CP2 cell lines following 24 hours treatment with 0 µM (vehicle control), 10 
µM or 25 µM of ICG inhibitor.  GAPDH was used as a loading control. 

 

 
Figure 3.2.31  Preliminary data suggests that blocking β-catenin transcriptional activity 
decreases expression of miRNA-17 
TaqMan microRNA assays for miR-17, -18a, -19b, and -21 were used to measure the relative 
quantity (RQ) of these miRNAs expressed in CP1 cells following 24 hours treatment with 25 µM of 
ICG inhibitor compared to treatment with ethanol vehicle control.  Expression data was normalised 
to SnoRNA-202 housekeeping gene and the data is shown relative to vehicle control.  This is 
preliminary data from n=1 experiment and results need to be validated. 

 

ICG-001 is a small molecule inhibitor that down-regulates β-catenin/TCF 

signalling by specifically binding to cyclic AMP response element-binding protein.  

Western blot analysis of protein lysates prepared from ICG-001-treated CP1 and 
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CP2 cells confirmed that 25 µM of ICG-001 inhibitor downregulated protein 

expression of the β-catenin/TCF target genes, Cyclin-D1 and survivin (Figure 

3.2.30).  Preliminary data showed that miR-17 expression was downregulated 

following β-catenin/TCF inhibition in CP1 cells (Figure 3.2.31) but it was unclear 

whether there was a significant effect on expression of miR-18, 19b or 21.  

Validation of these interesting results is warranted in repeat experiments. 

Further work is required to determine whether expression of Pten-regulatory 

miRNAs is directly regulated by β-catenin.  However, it is likely that the 

upregulation of miR-17, 18a, 19b and 21 are collectively contributing to loss of 

Pten expression in Pb-Cre Ctnnb1(ex3)Δ/+ prostate tissue in advanced stages of 

prostate cancer. 

 

3.3 Tumour intrinsic events that facilitate co-operation 
between β-catenin activation and Pten loss in 
prostate cancer 

We proceeded to investigate intrinsic molecular alterations arising from β-

catenin activation and Pten loss that may potentially contribute to their co-

operation.  Changes in phospho-Akt (Ser-473), phospho-mTOR (Ser-2448) and 

phospho-AMPK (Thr-172) protein expression were identified in the RPPA screen 

(Figure 3.2.9).  Therefore, we proceeded to investigate changes in mammalian 

target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signalling 

pathways that could be contributing to prostate cancer development and 

progression.  

Further downstream analysis of the mTOR signalling pathway found that there 

was phosphorylation of TSC2 (Thr1462) by phospho-Akt in Pb-Cre Ptenfl/+, Pb-Cre 

Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ samples (Figure 3.3.1), so that 

Rheb was no longer inhibited from activating mTORC1 signalling.  Total mTOR 

levels were elevated in Pb-Cre Ptenfl/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ samples 

compared to wildtype and to a lesser extent in Pb-Cre Ctnnb1(ex3)Δ/+ samples.  

Similar levels of phospho-mTOR were detected in the three groups.  However, 

increased total and phosphorylated levels of the downstream pathway effectors, 
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S6 kinase (S6K) and its substrate, S6, were most apparent in Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate tissue compared to control groups, with only low levels of 

phospo-S6K and phospho–S6 present in Ctnnb1(ex3)Δ/+ prostate (Figure 3.3.1). 

 

Figure 3.3.1  mTOR pathway analysis 
Representative western blot analysis of mTOR, phospho-mTOR (Ser-2448), TSC1, TSC2, 
phospho-TSC2 (Thr1462), S6K, phospho-S6K (Thr421/Ser424), S6 and phospho-S6 (Ser-240/244) 
protein levels in protein lysates extracted from prostate tissue of wildtype, Pb-Cre Ptenfl/+, Pb-Cre 
Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice at 6 months (n=3).  Hsp70 was used as a 
loading control. 

S6K regulates mRNA biogenesis and translation and it is well established that 

phosphorylation and activation of S6K drives increased protein synthesis and also 

lipid synthesis for the production of cell membrane [185], required in 

proliferating cells.  Activation of the mTOR pathway will also positively regulate 

energy metabolism to maintain cellular ATP requirements.  
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Figure 3.3.2 AMPK and PKA pathway analysis 
Representative western blot analysis of total AMPKα, total AMPKβ1/2, phospho-AMPKα (Thr172) 
and phospho-AMPKβ1 (Ser108) protein levels, and phospho-PKA (Thr197) and phospho-PKA 
substrate levels in protein lysates extracted from prostate tissue of wildtype, Pb-Cre Ptenfl/+, Pb-Cre 
Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mice at 6 months (n=3).  Hsp70 was used as a 
loading control. 

 

AMPK functions upstream of mTOR and is activated in response to cellular 

stresses such as hypoxia, low energy and DNA damage, inhibiting mTOR signalling 

through promotion of TSC2 activity or direct allosteric inhibition of mTORC1 

[185].  Thus, upregulation in mTOR signalling activity should correspond with low 

levels of AMPK signalling activity.  I therefore further characterised the 

phosphorylation status of AMPK subunits.  The highest levels of phospho-AMPKα 

were present in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ samples, as suggested by the RPPA 

screen, with lower but significant levels also detected in Pb-Cre Ptenfl/+  and Pb-

Cre Ctnnb1(ex3)Δ/+ samples (Figure 3.3.2).   

AMPK activation is likely to be a consequence of the high energy requirements of 

rapidly proliferating Ptenfl/+ Ctnnb1(ex3)Δ/+ cancer cells, which will generate high 

levels of AMP.  This is also likely to activate PKA signalling.  Phosphorylation of 

PKA was similar across the genotypes but showed increased activity, measured 
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by increased levels of phospho-PKA substrate, in Ctnnb1(ex3)Δ/+ prostate tissue 

compared to Ptenfl/+ Ctnnb1(ex3)Δ/+ and Ptenfl/+ alone (Figure 3.3.2).  AMPK and 

PKA activation highlight the increase in cellular stresses and energy 

requirements within prostate tissue with elevated β-catenin activation. 

 
Figure 3.3.3  Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ tumours have similar gene 
expression patterns 
RNA extracted from wildtype prostate tissue (12 months) and Pb-Cre Ctnnb1(ex3)∆/+  and Pb-Cre 
Ptenfl/+ Ctnnb1(ex3)∆/+ tumour tissue (endpoint) underwent RNA sequencing and gene expression 
analysis.  The heat map shows significant (P <0.05) expression changes in 1638 genes in 
Ctnnb1(ex3)∆/+ and/or Ptenfl/+ Ctnnb1(ex3)∆/+ tumours compared to wildtype. 
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To better characterise the molecular changes associated with β-catenin 

activation in Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours, we 

carried out transcriptomic analysis of RNA from tumours sampled at clinical 

endpoint.  We found the expression of over 1600 genes was significantly altered 

in the tumour prostate tissue compared to wildtype.  The heat map represents 

these changes (Figure 3.3.3) and illustrates the overall similarity in gene 

expression pattern between Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumours. 

From RNA sequencing data, I selected 5 genes that were significantly 

upregulated in β-catenin driven tumours. RT-PCR was used to analyse their 

expression in RNA extracted from Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue compared 

to Ctnnb1(ex3)Δ/+, Ptenfl/+ and wildtype controls, all sampled at 6 months.  There 

was a significant increase in expression of alpha-defensin 20 (Defa20), adenylate 

cyclase 8 (Adcy8), apolipoprotein C-IV (Apoc4) and pancreatic lipase-related 

protein 2 (Pnliprp2) in both Ptenfl/+ Ctnnb1(ex3)Δ/+ and Ctnnb1(ex3)Δ/+ prostate 

tissue compared to Ptenfl/+ and wildtype (Figure 3.3.4).  Defa20, the most highly 

expressed gene, is associated with antimicrobial innate immune response, and is 

known to be released from neutrophils [186].  Adcy8 catalyses the biosynthesis 

of cyclic-AMP (cAMP) from ATP to activate PKA-mediated signalling [187].  Apoc4 

and Pnliprp2 are both involved in lipid metabolism: Apoc4 is a lipid-binding 

protein which can facilitate stabilisation and solubilisation of lipoproteins for 

lipid metabolism and cholesterol transport [188]; Pnliprp2 plays a role in fat 

digestion and absorption [189].  We surmised that expression of Adcy8, Defa20, 

Apoc4 and Pnliprp2 is upregulated by β-catenin signalling and independent of 

Pten loss because there was no significant difference between the level of gene 

expression in tissue with β-catenin activation alone or with additional Pten loss. 

Although RNA sequencing data showed significant changes in expression of the 

gluconeogenesis regulatory enzyme, fructose bisphosphatase (Fbp1), no 

significant increase in Fbp1 expression was observed in Ctnnb1(ex3)Δ/+ or Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tissue compared to controls at 6 months (Figure 3.3.4).  It should 

be noted that RNA sequencing analysis was carried out on endpoint tumour 

samples, whereas RT-PCR validation of gene expression changes was conducted 

on samples taken at a 6 month time point. There are likely to be temporal 

changes in gene expression associated with the stage of tumour development. 
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Figure 3.3.4  Validation of expression changes observed in genes associated with innate 
immune response, cAMP biosynthesis, lipid metabolism and glycolysis 
TaqMan RT-PCR analysis of alpha-defensin 20 (Defa20), adenylate cyclase 8 (Adcy8), 
apolipoprotein C-IV (Apoc4), pancreatic lipase-related protein 2 (Pnliprp2) and fructose 
bisphosphatase (Fbp1) mRNA expression levels in wildtype, Pb Cre Ptenfl/+, Pb Cre Ctnnb1(ex3)∆/+ 
and Pb Cre Ptenfl/+ Ctnnb1(ex3)∆/+ mouse prostates tissue at 6 month time point. Normalised to 18S 
housekeeping gene.  Relative quantity (RQ) presented as log scale due to high expression 
differences.  (**** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05; analysis by one-way ANOVA, 
with Tukey multiple comparison test). 
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Figure 3.3.5  MetaCore pathway analysis of gene expression changes in Pb-Cre Ctnnb1(ex3)∆/+ 
tumour tissue compared to wildtype 
MetaCore pathway analysis software was used to elucidate the signalling pathways associated 
with gene expression changes identified in RNA sequencing data.  This histogram shows the most 
significantly altered pathways in Pb-Cre Ctnnb1(ex3)∆/+ prostate tumours taken at clinical endpoint 
compared to wildtype prostate tissue (orange line), ranked according to statistical significance and 
ordered from most significant to least significant.  Significance of pathway alterations observed in 
Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+  tumour tissue compared to wildtype (blue line) included for reference.  
(–log (P value) > 2 = P < 0.01). 
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Figure 3.3.6  MetaCore pathway analysis of gene expression changes in Pb-Cre Ptenfl/+ 
Ctnnb1(ex3)∆/+ tumour tissue compared to wildtype 
This histogram shows the most significantly altered pathways in Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ 

prostate tumours taken at clinical endpoint compared to wildtype prostate tissue (blue line), ranked 
according to statistical significance and ordered from most significant to least significant.  
Significance of pathway alterations observed in Pb-Cre Ctnnb1(ex3)∆/+  tumour tissue compared to 
wildtype (orange line) included for reference.  (–log (P value) > 2 = P < 0.01). 

 

Only 203 genes were significantly altered in Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ 

compared to Pb-Cre Ctnnb1(ex3)Δ/+ tumours.  MetaCore pathway analysis software 

was used to examine the similarities and differences in pathway alterations 

associated with these tumours.   
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In Pb-Cre Ctnnb1(ex3)Δ/+ tumours, gene expression changes in TGF, Wnt and 

cytoskeletal remodelling pathways, and glycolysis and gluconeogenesis pathways 

were more significantly enriched when compared to Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ 

tumours (Pathways 1, 3, 13 and 14; Figure 3.3.5).  Most of the other pathways 

that were significantly enriched in Pb-Cre Ctnnb1(ex3)Δ/+ tumours were enriched 

to the same or greater extent in Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours, such as cell 

adhesion, development and cell cycle (Pathways 4-7; Figure 3.3.5).  In Pb-Cre 

Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours, the most significant alterations occurred in 

immune response pathways (Pathways 1, 2 and 4; Figure 3.3.6) that were not 

enriched in Ctnnb1(ex3)Δ/+ tumours, and the blood coagulation pathway (Pathway 

3; figure 3.3.6).   

 

3.4 Tumour extrinsic events that facilitate co-operation 
between β-catenin activation and Pten loss in 
prostate cancer 

The significant enrichment of immune response pathways, identified in prostate 

tumours driven by concurrent β-catenin activation and Pten loss, suggested that 

many gene expression changes were associated with tumour extrinsic events.  

Such events may also provide an explanation for variations between weights of 

β-catenin-driven tumours (Figure 3.2.4, 3.2.6, 3.2.7).  Furthermore, we 

frequently observed weight loss (and haematuria) in mice harbouring these 

aggressive prostate tumours, demonstrating the systemic consequences of 

tumour development.  It is important to develop our understanding of the 

tumour-host interaction, which is fundamental in facilitating tumour 

progression, and how this is influenced by the mutations driving prostate cancer.   

To characterise tumour extrinsic events that may influence cancer progression 

and host survival, we studied innate immune cell infiltration into prostate tissue 

during cancer development and progression, carried out haematological analysis 

of whole blood from tumour-bearing mice and analysed the cytokines present in 

advanced-stage prostate tumours. 
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To examine the effect of age on macrophage and neutrophil infiltration, we 

carried out F4/80 and NIMP immunohistochemical staining of wildtype prostate 

tissue to respectively identify macrophages and neutrophils at 3, 6 and 12 month 

time points.  Few macrophages were present in the stroma at 3 and 6 months 

but infiltration increased at 12 months.  Macrophages were not observed in 

epithelial tissue (Figure 3.4.1) and neutrophils were not normally present in the 

stroma or epithelial tissue at any time point (Figure 3.4.2). 

We proceeded to examine macrophage and neutrophil infiltration in Pb-Cre 

Ptenfl/+, Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue 

compared to wildtype.  There was significant macrophage infiltration (F4/80 

immuno-reactivity) during PIN development in Ctnnb1(ex3)Δ/+ and Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tissue at 3 months and sustained presence of macrophages in 

stroma and epithelial tissue during cancer progression (Figure 3.4.1).  The age-

associated increase in basal levels of macrophages (observed in wildtype 

prostate tissue at 12 months) may contribute to the high levels of macrophages 

present in Ctnnb1(ex3)Δ/+ tumours at 12 months (Figure 3.4.1). 

Significant neutrophil infiltration (positive for NIMP staining) was observed in 

Ctnnb1(ex3)Δ/+ and Ptenfl/+ Ctnnb1(ex3)Δ/+ tissue at 3 months, and was highest 

within regions of PIN and in situ carcinoma (Figure 3.4.2).  In contrast to 

macrophage infiltration, only small patches of neutrophils were detected in 

advanced adenocarcinoma and were absent from large regions of Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumours at 6 months (lower panel) and Ctnnb1(ex3)Δ/+ tumours at 12 

months (lower panel) (Figure 3.4.2).  Neutrophils observed in Ctnnb1(ex3)Δ/+ 

tumours at 12 months (upper panel; Figure 3.4.2) are likely to be associated 

with regions of fluid infiltrate. 

While few macrophages or neutrophils were observed in Ptenfl/+ prostate tissue 

at 3 and 6 months, both were present at 12 months (Figure 3.4.1 and 3.4.2), 

correlating with development of PIN lesions at this time point.  Overall, these 

data suggest that macrophages and neutrophils respond to abnormal epithelium 

that develops during stages of cancer initiation, and the timing of their 

infiltration correlates with PIN development.  Further work is required to 

understand the impact of innate immune cell infiltration on cancer initiation and 

progression. 
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Figure 3.4.1  Characterisation of macrophage infiltration in prostate tissue with β-catenin 
activation and Pten haploinsufficiency 
Representative F4/80 immunohistochemical staining of FFPE sections of wildtype, Pb-Cre Ptenfl/+, 
Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue from mice sacrificed at 3, 6 
and 12 months.  To illustrate the patterns of macrophage infiltration across the tissue sections, two 
different areas of Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostates are shown.  Two 
representative inserts are included for some sections to show F4/80 staining within epithelial 
regions (top) and within stromal regions (bottom).  Scale bar: 100 µm.  Insert box: 100 µm2.  The 6 
month panel of images were taken at a different time from those at 3 and 12 months. 
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Figure 3.4.2  Characterisation of neutrophil infiltration in prostate tissue with β-catenin 
activation and Pten haploinsufficiency 
Representative NIMP immunohistochemical staining of FFPE sections of wildtype, Pb-Cre Ptenfl/+, 
Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue from mice sacrificed at 3, 6 
and 12 months.  To illustrate the patterns of neutrophil infiltration across the tissue sections, two 
different areas of Pb-Cre Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ prostates are shown.  Two 
representative inserts are included for some sections to show the patchy nature of NIMP staining.  
Scale bar: 100 µm.  Insert box: 100 µm2.  The 6 month panel of images were taken at a different 
time from those at 3 and 12 months. 
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To extend our study to the systemic level, we carried out haematological 

analysis of whole blood sampled from tumour-bearing mice post-mortem.  Due to 

some variations in haematology of whole blood between wildtype mice at 6 and 

12 months, we compared results from tumour-bearing mice to their age-matched 

wildtype control.  At this stage, haematology data was only available from one 

Ctnnb1(ex3)Δ/+ mouse but has been included for reference in the following results.   

The only statistically significant differences observed from red blood cell 

analysis were increased RBC distribution width (RDW) and decreased mean 

corpuscular volume (MCV) in mice bearing advanced Ptenfl/+ Ctnnb1(ex3)Δ/+ 

tumours compared to wildtype (Figure 3.4.3).  The RDW measures the variation 

in RBC size and MCV is a measure of average RBC volume.  Higher RDW indicates 

a greater variation in RBC sizes within the blood, while lower MCV suggests RBCs 

are smaller and may not be holding sufficient haemoglobin.  This may be 

indicative of anaemia in these mice.  However, only one mouse had low mean 

corpuscular haemoglobin concentration (MCHC) (Figure 3.4.3).  It should be 

noted that RDW and MCV normally range between 15.9-20.3% and 42.7-56.0 fL 

respectively in C57BL/6 mice (Charles River 2012), so although we observed 

statistically significant differences, these may still be within the ‘normal’ range.  

Mice in the Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ colony had a mixed background so the 

normal range of values may vary slightly from C57BL/6 mice.   

White blood cell (WBC) analysis showed no overall difference in WBC numbers 

between mice.  Only numbers of monocytes significantly increased in Ptenfl/+ 

Ctnnb1(ex3)Δ/+ mice compared to wildtype, although there was also a trend 

towards higher levels of neutrophils and eosinophils (Figure 3.4.4). 

As we observed a dose-dependent effect of Pten loss on tumour progression and 

poor survival outcome (Figure 3.2.1), we also analysed whole blood from mice 

bearing late stage Ptenfl/fl Ctnnb1(ex3)Δ/+ tumours to determine effects on the 

host compared to mice bearing single mutant Ptenfl/fl or Ctnnb1(ex3)Δ/+ tumours.  

As in mice bearing Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours, we observed a mild but 

statistically significant increase in RDW relative to age-matched wildtype control 

(Figure 3.4.5).  There was a trend towards decreased MCV but this was not 

statistically significant (Figure 3.4.5).  Overall, RBC data from blood of mice 

bearing Ptenfl/fl tumours was similar to age-matched wildtype controls.   
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Figure 3.4.3  Analysis of circulating red blood cells and platelets in mice harbouring β-
catenin-driven prostate tumours with heterozygous Pten loss  
Full haematology analysis was carried out on whole blood, collected from mice post-mortem, by the 
University of Glasgow Veterinary School Clinical Pathology Laboratory.  Graphs show the number 
of red blood cells (RBCs), percentage of haematocrit (HCT), RBC distribution width (RDW), mean 
corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC) and number of 
platelets (PLT) in endpoint Ptenfl/+ Ctnnb1(ex3)∆/+ mice (n=5) compared to wildtype at 6 months (n=3) 
and endpoint Ctnnb1(ex3)∆/+ mice (n=1) compared to wildtype at 12 months (n=4).  (** P < 0.01; 
analysed by unpaired, one-tailed t-test with Welsh’s correction).  Data presented as mean ± SD. 
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Figure 3.4.4  Analysis of circulating white blood cells in mice harbouring β-catenin-driven 
prostate tumours with heterozygous Pten loss  
Full haematology analysis was carried out as described in Figure 3.4.3. Graphs show the overall 
number of white blood cells (WBCs),and number of monocytes, neutrophils, eosinophils and 
lymphocytes circulating in endpoint (~6 months) Ptenfl/+ Ctnnb1(ex3)∆/+ mice (n=5) compared to 
wildtype at 6months (n=3) and endpoint (~12 months) Ctnnb1(ex3)∆/+ mice (n=1) compared to 
wildtype at 12 months (n=4).  (* P < 0.05; analysed by unpaired, one-tailed t-test with Welsh’s 
correction).  Data presented as mean ± SD. 
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Figure 3.4.5  Analysis of circulating red blood cells and platelets in mice harbouring β-
catenin-driven prostate tumours with homozygous Pten loss  
Full haematology analysis was carried out as described in Figure 3.4.3.Graphs show the number of 
red blood cells (RBCs), percentage of haematocrit (HCT), RBC distribution width (RDW), mean 
corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC) and number of 
platelets (PLT) in endpoint (~6 months) Ptenfl/fl Ctnnb1(ex3)∆/+ mice (n=4) compared to wildtype at 6 
months (n=3) and endpoint (~12 months) Ptenfl/fl (n=4) and Ctnnb1(ex3)∆/+ (n=1) mice compared to 
wildtype at 12 months (n=4).  (* P < 0.05; analysed by unpaired, one-tailed t-test with Welsh’s 
correction).  Data presented as mean ± SD. 
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Figure 3.4.6  Analysis of circulating white blood cells in mice harbouring β-catenin-driven 
prostate tumours with homozygous Pten loss  
Full haematology analysis was carried out as described in Figure 3.4.3. Graphs show the overall 
number of white blood cells (WBCs),and number of monocytes, neutrophils, eosinophils and 
lymphocytes circulating in endpoint Ptenfl/fl Ctnnb1(ex3)∆/+ mice (n=4) compared to wildtype at 6 
months (n=3) and endpoint Ptenfl/fl (n=4) and Ctnnb1(ex3)∆/+ (n=1) mice compared to wildtype at 12 
months.  (*** P < 0.001, * P < 0.05; analysed by unpaired, one-tailed t-test with Welsh’s correction).  
Data presented as mean ± SD. 
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Analysis of WBCs in whole blood showed a substantial increase in WBCs in 

Ptenfl/fl Ctnnb1(ex3)Δ/+ tumour-bearing mice compared to wildtype, specifically in 

monocytes, neutrophils and eosinophils (Figure 3.4.6), while neither Ptenfl/fl 

tumours nor Ctnnb1(ex3)Δ/+ tumour elicited this effect.  Numbers of lymphocytes 

were similar in wildtype and tumour-bearing mice. 

Blood processed for haematological analysis was sampled from mice that had 

reached clinical endpoint meaning that tumours had progressed to the same 

stage.  However, only Pb-Cre Ptenfl/fl Ctnnb1(ex3)Δ/+ mice, which harboured the 

most aggressive tumours, elicited a significant systemic immune response.  Our 

data suggest that the systemic effects of tumours are more related to the rate 

of tumour growth rather than the stage of tumour development or genotype of 

the tumour. 

  
Figure 3.4.7  Endpoint prostate tumour weights and quantity of tumour infiltrate do not vary 
significantly between tumour genotypes 
The graphs show the weight of solid prostate tumour tissue and the amount of cystic fluid within 
these tumours from Pb-Cre Ctnnb1(ex3)∆/+, Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+, Pb-Cre Ptenfl/fl Ctnnb1(ex3)∆/+ 
and Pb-Cre Ptenfl/fl mice.  Cystic fluid tumour infiltrate was calculated by subtracting dry prostate 
weight (cystic fluid removed) from wet prostate weight (cystic fluid present) and presented as a 
percentage of total (wet) prostate weight.  Data presented as mean ± SEM.  Protein extracted from 
these tumours was used for the cytokine array analysis (Figure 3.3.22 & 3.3.23). 

 

To determine whether there were genotype-dependent differences in host-

tumour interactions, we analysed cytokine expression, produced by tumour 

epithelia or immune cells, in late stage Pb-Cre Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/+ 

Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/fl Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/fl tumours.  The 

protein lysates analysed were extracted from tumours with similar solid tumour 
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weight (Figure 3.4.7).  However, Pten null tumours contained approximately 20% 

more cystic tumour infiltrate than tumours with β-catenin activation, and two 

Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours were completely solid (Figure 3.4.7). 

A mouse cytokine array kit was used to analyse cytokine expression in Pb-Cre 

Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+, Pb-Cre Ptenfl/fl Ctnnb1(ex3)Δ/+ and Pb-

Cre Ptenfl/fl tumours in biological triplicate.  We identified 5 pairs of spots that 

showed differential expression between tumours (Figure 3.4.8).  These 

corresponded to B lymphocyte chemoattractant (BLC/CXCL13), triggering 

receptor expressed on myeloid cells 1 (TREM-1), interleukin-16 (IL-16), 

macrophage inflammatory protein 2 (MIP-2/CXCL2) and interleukin-1 receptor 

antagonist (IL-1ra/IL-1F3).   

 
Figure 3.4.8  Protein array showing differential expression of cytokines associated with β-
catenin activation and Pten loss in prostate tumour tissue 
Protein array analysis showing the relative expression of cytokines in protein lysates extracted from 
Pb-Cre Ctnnb1(ex3)∆/+, Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+, Pb-Cre Ptenfl/fl Ctnnb1(ex3)∆/+ and Pb-Cre Ptenfl/fl 
endpoint prostate tumour tissue.  This image is representative of n=3 cytokine arrays; analysis 
carried out for each tumour genotype in biological triplicate.  1 = BLC/CXCL13, 2 = TREM-1, 3 = IL-
16, 4 = MIP-2 (CXCL2), 5 = IL-1ra (IL-1F3). 
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Figure 3.4.9  Cytokines BLC/CXCL13, TREM-1, IL-16, MIP-2 and IL-1ra differ significantly 
between Pten loss- and β-catenin-driven prostate tumours 
ImageJ was used for densitometry analysis of spots 1-5 annotated in the cytokine array blots in 
Figure 3.4.8.  Graphs show the relative protein levels of BLC/CXCL13, TREM-1, IL-16, MIP-2 and 
IL-1ra cytokines in Pb-Cre Ctnnb1(ex3)∆/+, Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+, Pb-Cre Ptenfl/fl Ctnnb1(ex3)∆/+ 
and Pb-Cre Ptenfl/fl endpoint prostate tumour tissue.  Results show analysis of n=3 cytokine arrays 
for each tumour genotype.  (** P < 0.01, * P < 0.05; analysed by one-way ANOVA, with Tukey 
multiple comparison test).  Data presented as mean ± SEM. 



141 
 

Chapter 3 

ImageJ densitometry analysis was used to quantify the levels of these cytokines 

in each tumour.  The most striking difference observed was the 4-fold increase 

in BLC levels in Ptenfl/fl tumours compared to the three other genotypes (Figure 

3.4.9).  This suggested that increased levels of BLC were a consequence of Pten 

loss in prostate tumours, while the presence of β-catenin activation, alone or in 

addition to heterozygous or homozygous Pten loss, prevented upregulation (or 

instigated downregulation) of BLC. 

Low levels of TREM-1 were expressed in Ctnnb1(ex3)Δ/+ and Ptenfl/+ Ctnnb1(ex3)Δ/+ 

tumours, while increased expression of TREM-1 was observed in Pten null 

tumours with and without β-catenin activation.  However, there was a large 

standard deviation in TREM-1 expression in Ptenfl/fl Ctnnb1(ex3)Δ/+ tumours.  The 

expression of IL-16 and MIP-2 in these tumours followed a similar pattern.  The 

only cytokine which showed a difference in expression between Ctnnb1(ex3)Δ/+ 

and Ptenfl/+ (or Ptenfl/fl) Ctnnb1(ex3)Δ/+ was IL-1ra; increased IL-1ra expression was 

associated with Pten loss whether alone or in combination with β-catenin 

activation (Figure 3.4.9). 

Overall, low levels of BLC, TREM-1, IL-16, MIP-2 and IL-1ra were associated with 

β-catenin activation, while high expression of these cytokines was associated 

with Pten loss.  Their expression pattern varied in tumours harbouring both 

mutations.  Our data suggest that expression of certain cytokines is dictated by 

the underlying genetic mutations driving prostate cancer.  These are likely to 

contribute to different phenotypes observed in prostate cancers, such as the 

increased percentage of cystic tumour infiltrate in Ptenfl/fl compared to 

Ctnnb1(ex3)Δ/+ tumours, and host-tumour interactions that may influence cancer 

response to therapy.  Further work is necessary to characterise the role of intra-

tumoural immune cells and the pro- and anti-tumourigenic effects associated 

with cytokine expression, to understand how the immune response is modulated 

during β-catenin-driven cancer initiation and progression. 

 



142 
 

Chapter 3 

3.5 Discussion 

Concurrent aberrations in the canonical Wnt signalling pathway and PI3K/Akt 

signalling pathway leads to aggressive prostate cancer with poor prognosis [41, 

100].  Our data demonstrate that aberrant activation of Wnt/β-catenin signalling 

is sufficient to drive prostate tumourigenesis in mice.  Pten status determines 

the latency of these tumours and β-catenin activation co-operates with Pten 

loss, in a dose-dependent manner, to drive the survival and proliferation of 

cancer cells.  Thus, complete Pten loss and concurrent β-catenin activation 

generates the most aggressive prostate cancer and poorest host survival 

outcome.   

There is extensive evidence that PTEN loss results in PI3K/Akt pathway 

activation [108] and activation of pro-survival signals, such as survivin [190], 

whereas Wnt/β-catenin pathway activation drives pro-proliferative signals via 

downstream targets, such as Myc [130, 133].  Consistent with the literature, we 

observe elevated Akt activation and expression of survivin following Pten loss in 

prostate tissue, and increased proliferation when β-catenin was activated.  

Levels of phospho-Akt, survivin and cell proliferation were increased in Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate tissue compared to controls.  In this way, Pten loss and β-

catenin activation co-operate: Pten loss provides a survival advantage to cells 

via PI3K/Akt activation, while β-catenin activation is able to drive cell 

proliferation. 

In prostate cells with β-catenin activation, we observed great pressure on cells 

to modulate Pten and employ mechanisms to downregulate its expression in 

order for cancer to progress.  We have elucidated a mechanism by which β-

catenin signalling modulates Pten localisation, via increased ROS production, to 

overcome Pten tumour suppression.  At early stages of tumourigenesis, β-catenin 

activation correlates with increased ROS and nuclear accumulation of phospho-

Pten.  While Pten mRNA expression in Ctnnb1(ex3)Δ/+ prostates at 6 months was 

comparable to wildtype, protein levels were increased due to stabilisation of 

Pten following phosphorylation.  Elevated ROS has previously been shown to 

promote phosphorylation and nuclear accumulation of PTEN, resulting in 

PTEN/p53 mediated tumour suppression [110, 112].  Quenching of ROS in 

prostate cells with heterozygous loss of Pten overcame Pten/p53-mediated 
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growth arrest leading to increased proliferation and development of PIN lesions, 

which corroborates previous work from our laboratory [110].  In this context, 

ROS promotes phosphorylation and stabilisation of Pten, while there is also 

sufficient inhibition of PI3K/Akt.  In the absence of ROS, cells overcome growth 

arrest and proliferate, leading to Akt activation in a large number of cells.  

Conversely, NAC treatment in Ctnnb1(ex3)Δ/+ mice decreases proliferation and 

halts tumour progression. 

This observation is supported by previous reports of ROS-dependent proliferation 

of intestinal stem cells following Wnt/β-catenin pathway activation and 

accumulation of nuclear β-catenin [182].  Myant et al. demonstrated that 

elevation of pro-proliferative ROS, downstream of β-catenin activation, arises 

via activation of Rac-GEFs, Tiam1 and Vav3.  The upregulation of Rac-GEF 

expression activates the Rac1-GTPase and NOX signalling complex, increasing 

ROS production.  Indeed, we have confirmed that Tiam1 and Vav3 mRNA levels, 

together with levels of Rac1-GTP and ROS, are increased in Ctnnb1(ex3)Δ/+ 

prostate tissue during stages of cancer initiation.  Thus, after Cre-mediated 

recombination of Ctnnb1(ex3)Δ/+ in prostate cells, there is a wave of proliferation 

driven by the activation of β-catenin, Tiam1, Vav3 and Rac1-GTP, which elevate 

ROS production.   

In the context of β-catenin activation, the dominant effect of increased ROS is 

pro-proliferative, demonstrated by the abrogation of proliferation and loss of 

nuclear β-catenin and phospho-Akt expression in NAC-treated Pb-Cre 

Ctnnb1(ex3)Δ/+ mice.  A reduction in nuclear β-catenin staining was also observed 

in NAC-treated Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue, despite Pten 

haploinsufficiency.  In this way, ROS appears to be required for the proliferation 

of cells with nuclear β-catenin.  ROS-mediated proliferation in Ctnnb1(ex3)Δ/+ 

prostate cells seems counterintuitive to the simultaneous ROS-mediated 

accumulation of nuclear Pten, which promotes p53-mediated growth arrest.  

However, the increase in nuclear Pten relieves Pten phosphatase-mediated 

inhibition of PI3K/Akt signalling at the cell membrane.  Activation of low levels 

of phospho-Akt is sufficient for cell survival, while β-catenin activation drives 

cell cycle progression and proliferation [133, 135], leading to evasion of Pten 

tumour suppression (Figure 3.5.1).   
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Figure 3.5.1 β-catenin activation modulates Pten localisation to overcome tumour 
suppression 
Schematic illustrating the ROS-mediated mechanism by which β-catenin activation drives Pten 
nuclear localisation, facilitating Akt activation and cell survival, and leading to tumour initiation.  
RTK = receptor tyrosine kinase; PI3K = Phosphoinositide-3-kinase; PIP2 = phosphatidylinositol 
(4,5)-kinase; PIP3 = phosphatidylinositol (3,4,5)-kinase; Akt = protein kinase B; β-cat = β-catenin; 
ROS = reactive oxygen species. 

 

While Pten/p53-mediated growth arrest is insufficient to stop tumourigenesis, it 

is likely to be responsible for delayed cancer progression and longer latency of 

tumours in Pb Cre Ctnnb1(ex3)Δ/+ mice.  Therefore, concurrent heterozygous 

deletion of Pten relieves tumour suppression, via PI3K/Akt activation and 

reduced growth arrest, and co-operates with β-catenin activation, decreasing 

tumour latency and host survival (Figure 3.5.2).  

Following initial evasion of Pten tumour suppression mechanisms by modulation 

of Pten localisation, we observed progressive loss of Pten expression in tumours 

driven by β-catenin activation alone (Figure 3.5.2).  This may be partly due to 

changes in Pten at the genomic level as there was a decrease in DNA copy 

number in the epithelium compared to stroma of advanced-stage Ctnnb1(ex3)Δ/+ 

prostate tumours, indicating potential heterozygosity at the Pten gene locus 

(Figure 3.5.3).  Therefore, at this point Ctnnb1(ex3)Δ/+ tumours may become 
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genotypically similar to early stages of Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours.  In 

addition, we identified increased expression of microRNAs 17, 18a, 19b and 21 in 

Ctnnb1(ex3)Δ/+ prostate tumour tissue during later stages of cancer progression, 

correlating with reduced Pten expression (Figure 3.5.3).  These miRNAs are 

known to negatively regulate PTEN expression and their aberrant expression has 

been implicated in various cancer types, including prostate cancer [111].  

Increased expression of miR-18a in response to β-catenin/Myc activation has 

been reported in a breast cancer study [124] and β-catenin/STAT signalling is 

reported to up-regulate miR-21 expression [191].  Preliminary data, from ICG-

001 inhibition of β-catenin/TCF transcriptional activity in CP1 cells, suggest that 

increased miR-17 expression may be a direct consequence of β-catenin activity, 

but further work is required to confirm whether β-catenin directly regulates 

miR-17, -18a, -19b and -21 in this prostate cancer model.  

 
Figure 3.5.2 Pten status determines the latency of β-catenin-driven prostate cancer 
Timeline of events involved in prostate tumour initiation and progression to clinical endpoint in Pb-
Cre Ctnnb1(ex3)∆/+ (C) and Pb-Cre Ptenfl/+ Ctnnb1(ex3)∆/+ (CP) mice.  Pten loss = monoallelic Pten 
deletion and Pten mRNA downregulation; LOH = loss of heterozygosity. 

 

In tumours with Pten haploinsufficiency and β-catenin activation, we observed a 

significant decrease in Pten expression, lower than levels expected from 

heterozygous Pten loss.  We established that this was due to LOH in Pten, a 

common event in human prostate cancer, which tends to occur in late-stage 

tumours [41, 99, 117].  We hypothesise that the increased dependence cells 

have on Pten-mediated tumour suppression, following β-catenin activation, 

initially drives Pten transcription and puts pressure on the remaining Pten allele.  

Highly transcribed DNA will retain an open chromatin structure and is more likely 

to be damaged, leading to loss of the remaining functional Pten allele.  It would 

be interesting to test whether further passaging of CP4 cells would eventually 

result in loss of Pten expression.  If this were the case, we could study 
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differences between Pten positive and Pten negative passages to understand the 

mechanism for Pten LOH in association with β-catenin activation.  Furthermore, 

β-catenin-driven LOH may not be restricted to Pten, and loss of Pten can, itself, 

contribute to aberrations in chromosomal integrity and DNA repair [113], and 

play a role in genomic instability.  

 
Figure 3.5.3 Pten is lost during the evolution of β-catenin-driven prostate cancer 
Schematic illustrating that β-catenin activation leads to upregulation of Pten-regulatory microRNAs 
and genomic deletion of Pten, which result in Pten loss in advanced β-catenin-driven prostate 
cancer. 

 

Pten LOH may provide some explanation for the variation in Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate weights compared to Ctnnb1(ex3)Δ/+ at 6 months.  Although, 

analysis by Mann Whitney test showed a significant trend towards increased 

weight of Ptenfl/+ Ctnnb1(ex3)Δ/+ prostates, a number of samples were of similar 

weight to Ctnnb1(ex3)Δ/+ prostates.  Therefore, it is likely that the rate of Pten 

LOH in Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumours is non-uniform, resulting in 

heterogeneity of Pten levels between tumours, which will influence the level of 

endogenous Pten tumour suppression and the stage of tumour progression. This 

hypothesis can be tested using fluorescence in-situ hybridisation (FISH) to 

compare Pten LOH between different sizes of Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours at 6 
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months.  Variations in the rate of PTEN LOH and tumour evolution are likely to 

contribute to PTEN haplodiploidy and heterogeneity observed in clinical samples.  

Our work demonstrates that Pten loss occurs during tumour evolution (Figure 

3.5.2), as a consequence of β-catenin activation, and provides an explanation 

(Figure 3.5.3) for the significant co-occurrence of nuclear β-catenin and PTEN 

loss in clinical samples.  From mouse in vivo studies, we know that Pten loss 

does not depend on β-catenin activation to drive tumourigenesis [138].  I have 

shown that β-catenin activation regulates signalling events upstream of Pten and 

does depend on Pten loss to drive tumourigenesis.  By increasing our 

understanding of how β-catenin modulates Pten tumour suppression, we may be 

able to identify methods to prevent Pten loss and halt tumour progression in β-

catenin-driven prostate cancer. 

To further investigate the pathway co-operation observed between PTEN/PI3K 

and Wnt/β-catenin signalling, we studied the tumour-intrinsic and -extrinsic 

events involved in initiation and progression of β-catenin-driven prostate cancer.  

Murine prostate tumours with concurrent β-catenin activation and Pten loss are 

characterised by increased mTOR signalling.  It is well established that Pten loss 

can upregulate mTOR signalling via Akt activation [185] but increased circulatory 

Wnt can also lead to mTOR activation via loss of GSK3β activity, preventing 

TSC1/2 phosphorylation and relieving mTOR inhibition [192].  If co-operation 

between Wnt/β-catenin pathway activation and Pten loss is driving mTOR 

signalling, mTOR may be a good target for therapy in this model.  However, work 

in our laboratory failed to show inhibition of tumour growth in CP1 orthotopic 

tumours treated with mTORC1/2 inhibitor (data not shown).  Furthermore, it has 

previously been shown that transgenic mice with concurrent AKT1 and MYC 

activation, or MYC activation alone, developed prostate tumours that were 

resistant to mTOR inhibitors [193], and a recent study revealed that mTOR 

inhibitors can in fact promote tumour growth and survival by providing an 

alternative source of nutrients to highly catabolic cancer cells [194].  This 

suggests β-catenin-driven tumours are highly adaptable to nutrient-depletion 

and evade dependence on mTOR activity for cell growth and energy metabolism.  

Increased AMPK signalling, PKA pathway activation and expression of genes 

involved in cAMP biosynthesis and lipid metabolism were observed in prostate 
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tissue with β-catenin activation, irrespective of genomic Pten loss.  Up-

regulation of Adcy8 is likely to generate increased levels of cAMP and AMP, 

resulting in both PKA and AMPK pathway activation [195], which we observe in β-

catenin-driven prostate cancer.  PKA activation inhibits glycogen and lipid 

synthesis and regulates a number of pathways contributing to cell survival and 

proliferation [187].  AMPK is activated by a decrease in ATP production and 

positively regulates fatty acid oxidation and lipolysis [195].  Activation of these 

pathways correlates with an increase in Apoc4 and Pnlprp2 expression, which 

play respective roles in stabilisation and solubilisation of lipoproteins for lipid 

metabolism and cholesterol transport [188], and in fat digestion and absorption 

[189].  Therefore, β-catenin-driven tumours enhance lipid metabolism due to 

higher energy requirements for cell survival and proliferation.  If lipid and 

cholesterol uptake and metabolism are important for β-catenin-driven 

tumourigenesis, it is likely that conditions such as obesity and hypertension 

could be potential etiological factors in prostate cancer.  A better understanding 

of their role may elucidate potential treatments or preventative strategies for β-

catenin-driven prostate cancer.  

Overall, there were a number of similarities between Ctnnb1(ex3)Δ/+ and Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumours, indicating β-catenin’s role as a driver mutation in 

prostate tumourigenesis.  This included significant upregulation of Defa20, which 

is released from neutrophils as part of innate immune response [186], 

highlighting the involvement of tumour extrinsic factors and immune system 

interaction in β-catenin-driven tumourigenesis.  To understand the pro-

tumourigenic co-operation between Wnt/β-catenin and PI3K/Akt pathway 

activation, we need to investigate the 203 genes differentially expressed in 

Ctnnb1(ex3)Δ/+ and Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumours, together with their 

associated pathways.  Initial analysis of pathway enrichment has identified 

further tumour extrinsic events arising from co-operation between β-catenin 

activation and Pten loss that may contribute to development and progression of 

these tumours. 

The significant enrichment of immune response pathways, in particular the 

classical, alternative and lectin-induced complement pathways, in advanced 

Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours was not observed in advanced Ctnnb1(ex3)Δ/+ 

tumours.  The classical complement pathway is activated by antibody-antigen 
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complexes, whereas the alternate and lectin pathways are activated, 

independently of antigen-antibody reactions, in response to pathogens.  The 

complement system forms part of the innate immune response and is involved in 

initiation of inflammation and host defence [196].  These pathway alterations 

may have a pro-tumourigenic effect as they are associated with aggressive 

tumours with short latency. 

Furthermore, highly aggressive Ptenfl/fl Ctnnb1(ex3)Δ/+ tumours had the most 

dramatic impact on host immune response, demonstrated by the significant 

increase in monocytes, neutrophils and eosinophils in the blood of these mice.  

Systemic effects, such as these, may lead to detrimental effects on the host, 

and contribute to the underlying cause of prostate cancer-associated mortality.   

While rate of tumour progression may impact upon host immune response, the 

effect of Pten loss itself may result in different tumour-host interactions to that 

of Ctnnb1(ex3)Δ/+ tumours.  In corroboration with this hypothesis, I have shown 

that BLC/CXCL13, TREM-1, IL-16, MIP-2 and IL-1ra cytokines are all highly 

expressed in Ptenfl/fl but not in Ctnnb1(ex3)Δ/+ tumours.  IL-1ra inhibits the effect 

of pro-inflammatory cytokines, IL1α and IL1β, which are mostly produced by 

neutrophils and macrophages [197].  Macrophage and neutrophil infiltration 

occurred during early stages of cancer development in Ctnnb1(ex3)Δ/+ and Ptenfl/+ 

Ctnnb1(ex3)Δ/+ prostate tissue, relative to perturbations in epithelium and PIN 

development.  Thus, it appears Pten loss further co-operates with β-catenin 

activation via tumour extrinsic mechanisms to evade immune response and 

facilitate tumour progression.   

The expression of BLC was unusual in that the presence of Ctnnb1(ex3)Δ/+ 

mutation, regardless of Pten status, was associated with low levels of 

BLC/CXCL13, whereas expression was significantly increased in Ptenfl/fl tumours 

in the absence of β-catenin activation.  The release of BLC/CXCL13 recruits B 

lymphocytes to tissue and is known to be expressed by tumour-associated 

myofibroblasts in human prostate cancer.  Furthermore BLC/CXCL13 expression 

is positively associated with clinical severity [198].  Given that the clinical 

severity is greater in Ptenfl/+ Ctnnb1(ex3)Δ/+ and Ptenfl/fl Ctnnb1(ex3)Δ/+ mouse 

models than Ctnnb1(ex3)Δ/+ or Ptenfl/fl alone, it is interesting that this does not 

correlate with BLC/CXCL13 expression and warrants further investigation.   



150 
 

Chapter 3 

In addition to heterogeneity of Pten LOH between tumours, already discussed, 

extrinsic factors are likely to contribute to the variations I observed in the rate 

of Ptenfl/+ Ctnnb1(ex3)Δ/+ tumour development between mice.  This may be 

attributed to the mixed background of mice, which is arguably more 

representative of human prostate cancer.  It would be interesting to correlate 

Pten status with the expression of extrinsic factors, such as the chemokine IL-

1ra, which may positively correlate with Pten loss and stage of tumour 

progression. 

In summary, I have shown that concurrent activation of β-catenin and Pten loss 

drive aggressive prostate cancer in vivo.  I have identified that β-catenin-driven 

tumourigenesis is dependent on overcoming Pten-mediated tumour suppression 

and loss of Pten occurs during evolution of these tumours.  β-catenin activation 

and Pten loss drive tumourigenesis through co-operation between pro-survival 

and pro-proliferative tumour intrinsic signalling events, as well as up-regulation 

of cell growth, energy and lipid metabolism pathways.  Furthermore, I provide 

evidence of tumour extrinsic co-operation between β-catenin activation and 

Pten loss via cytokines and mechanisms of immune response modulation. 
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4.1 Introduction 

Androgen receptor (AR) signalling is integral to prostate homeostasis and the 

development of prostate cancer.  Androgen deprivation therapy (ADT) remains 

the first-line treatment for locally advanced and metastatic prostate cancer.  

While the initial response to treatment is favourable, at least 20% of patients 

stop responding to treatment within 18 months and develop castration-resistant 

prostate cancer (CRPC).  It is vital that we gain a better understanding of the 

mechanisms involved in the development of resistance to ADT, and the level of 

heterogeneity between patients.  This will enable better stratification of 

patients for treatment and the identification of targets for intervention 

therapies, to be used alone or in combination with ADT. 

The majority of studies on CRPC use human cell line or xenograft models, along 

with direct analysis of human prostate cancer tissue.  To date, few genetically-

engineered mouse models have been established to study CRPC, despite the 

benefits of studying a model which closely mimics the development and 

progression of human prostate cancer.  One such transgenic mouse model uses 

the tamoxifen-inducible Nkx3.1CreERT2 system, developed in Michael Shen’s 

laboratory [23] 

The Nkx3.1 homeobox gene is expressed specifically in the prostate during 

embryonic development [170].  The non-inducible Nkx3.1 Cre-loxP model has 

been used in our laboratory.  However, if the gene undergoing mutation is 

required for prostate organogenesis, e.g. β-catenin, mutation during late-

embryogenesis will impact on normal prostate development.  The tamoxifen-

inducible system overcomes this issue, as Cre-mediated recombination at loxP 

sites can be specifically induced in the adult mouse.  Furthermore, induction of 

genetic alterations at later time points is more realistic of the later-onset of 

prostate cancer in humans. 

Nkx3.1 is expressed in luminal epithelial cells, in contrast to Probasin, which is 

expressed in basal epithelial cells.  These gene promoters will therefore drive 

Cre expression in distinct cell populations in our transgenic models.  Each has 

distinct cell markers: p63, cytokeratin 5 and 14 are expressed in basal cells, 

while cytokeratin 18 and AR expression is characteristic of luminal cells [7].  
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Expression of both luminal and basal epithelial cell markers have been observed 

in human prostate cancer [19], meaning that both models are clinically relevant.  

However, as AR is a luminal cell marker, these cells are more androgen 

responsive and, hence, more responsive to effects of androgen ablation than 

probasin-expressing basal cells [23].  Thus, the Nkx3.1 Cre-loxP transgenic 

mouse is a good model to study the effects of manipulating AR signalling in 

prostate cancer. 

The tamoxifen-inducible Nkx3.1CreERT2 system was used to identify castration-

resistant Nkx3.1-expressing cells (CARNs) as a cell of origin for prostate cancer 

[23].  This model can be manipulated to interrogate the role of CARNs in CRPC, 

and provides a means to study prostate-specific targeted genetic alterations and 

the effects of castration, in different spatial and temporal contexts.  Therefore, 

we established the Nkx3.1CreERT2 inducible system in our laboratory in order to 

develop new models for CRPC. 

Alterations in Wnt/β-catenin and PI3K/AKT signalling pathways are significantly 

enriched in CRPC [99].  A number of studies have shown higher levels of nuclear 

β-catenin present in CRPC compared to hormone naïve prostate cancer (HNPC) 

[44, 156].  Alterations in β-catenin protein levels may influence androgen 

receptor (AR) signalling, through β-catenin’s role as an AR cofactor [157], and 

facilitate the escape from androgen-dependent to androgen-independent 

prostate cancer following ADT.   

We hypothesised that β-catenin is able to reprogram AR signalling, through its 

role as an AR cofactor, and play a role in the progression of HNPC to castration-

resistant disease.  Using the tamoxifen-inducible Nkx3.1CreERT2 system, we have 

developed a novel CRPC model to study the effects of β-catenin activation (and 

Pten loss) on AR physiology in HNPC and CRPC, and other changes contributing to 

CRPC. 
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4.2 Manipulating the Nkx3.1CreERT2 transgenic mouse 
model to study treatment resistant prostate cancer 

4.2.1 Optimisation of the tamoxifen induction protocol 

In the Nkx3.1CreERT2 system, Cre is fused to a mutated ligand binding domain of 

the human oestrogen receptor and placed under the control of the Nkx3.1 

promoter (Figure 4.2.1).  Hence, Cre is only activated in the presence of 

tamoxifen and only expressed in Nkx3.1-expressing cells.  Nkx3.1CreERT2 RFP+/- 

and Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ models (Figure 4.2.1) were used to optimise 

tamoxifen induction and select the best regime for efficacious induction of Cre 

and excision of floxed alleles. 

 
Figure 4.2.1  Schematic of the tamoxifen-inducible Nkx3.1CreERT2 Cre-loxP system 
In this system, a mutated ligand binding domain (LBD) of the human oestrogen receptor (ER) is 
fused to the cre gene, such that the chimeric cre is functionally activated following intraperitoneal 
injection with tamoxifen, and placed under the control of the prostate-specific Nkx3.1 promoter.  
Mice expressing RFP (Nkx3.1CreERT2 RFP+/-) or activated (nuclear) β-catenin (Nkx3.1CreERT2 
Ctnnb1(ex3)∆/+ were used for optimisation of the tamoxifen-induction protocol.  In the Nkx3.1CreERT2 
RFP+/- model, loxP sites are present either side of a stop cassette upstream of the RFP transgene.  
On expression of cre recombinase, the loxP sites are cleaved and the RFP transgene is 
expressed.  In the Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ model, loxP sites are present either side of exon3 of 
the β-catenin gene, resulting in the heterozygous deletion of exon3 and activation of β-catenin 
following expression of cre. 
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Successful induction of Cre expression in the Nkx3.1CreERT2 RFP+/- model results in 

the cleavage of loxP sites either side of a STOP cassette that prevents the 

expression of RFP.  Removal of this STOP cassette facilitates RFP expression, 

which can be detected by fluorescence imaging (IVIS) and immunohistochemical 

staining.  In the Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ model, successful Cre induction and 

recombination led to the loss of Ctnnb1 exon3 and stabilisation of nuclear β-

catenin, which can be detected by western blot analysis and 

immunohistochemical staining. 

The published induction regime for Nkx3.1CreERT2 mice used one intraperitoneal 

injection of 225 mg/kg tamoxifen [23].  This induced efficient recombination 

when tested in Nkx3.1CreERT2 RFP+/- mice (Figure 4.2.2A); however, mice did not 

tolerate this high dose well.  We therefore tested three other regimes with 

lower doses of tamoxifen: 1) 120 mg/kg (3 mg) on day one and 90 mg/kg (2 mg) 

on days two to four (3,2,2,2 regime); 2) four doses of 160 mg/kg (4 mg) over 11 

days, administered on Thursday/Monday/Thursday/Monday (4 mg T/M/T/M 

regime); and 3) one dose of 160 mg/kg (4 mg).  In our colony, the average 

weight of male mice at 12 weeks was 25 g.  We calculated doses accordingly 

(shown above in brackets), which were administered to all mice. 

Unfortunately, IVIS fluorescence imaging of live Nkx3.1CreERT2 RFP+/- mice could 

not detect RFP expression in vivo.  However, we used the IVIS to image 

fluorescence in dissected prostates from mice sacrificed two weeks post-

induction, and detected RFP expression following induction with the 3,2,2,2 

regime (Figure 4.2.2B) and T/M/T/M regime (Figure 4.2.2C).  We further 

confirmed RFP expression following the T/M/T/M regime using 

immunohistochemical staining, which correlated with the level of RFP detected 

by fluorescence imaging (Figure 4.2.2). 
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Figure 4.2.2  Detection of RFP expression in Nkx3.1CreERT2 RFP+/- prostate tissue following 
tamoxifen induction 
Fluorescence imaging of the dissected prostate, using an in vivo imaging system (IVIS), detects 
recombination and expression of RFP in Nkx3.1CreERT2 expressing cells two weeks after the 
following tamoxifen regimes: (A) 225mg/kg once; (B) 120mg/kg tamoxifen on day 1, followed by 
three doses of 90mg/kg on consecutive days (3,2,2,2 regime); (C) four doses of 160mg/kg over 11 
days (4 mg T/M/T/M regime).  The IHC images show representative staining for RFP, 
corresponding to prostates in C.  Scale bar: 100 µm. 
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We detected expression of mutant (ΔEx3) β-catenin protein by western blot 

analysis following all induction regimes (Figure 4.2.3), showing that exon3 of the 

Ctnnb1 gene had been successfully deleted.  Densitometry analysis showed 

comparable levels of expression following 3,2,2,2 and T/M/T/M regimes and 

slightly lower expression following the 4 mg once regime (Figure 4.2.3).  When 

we carried out immunohistochemical analysis of nuclear β-catenin expression in 

tissue sections from the same prostates, we observed the highest levels in both 

anterior and dorsal-lateral prostate of mice induced by the T/M/T/M regime 

(Figure 4.2.4). 

 

Figure 4.2.3  Detection of β-catenin exon 3 deletion in Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ prostate 
tissue following tamoxifen induction 
Western blot analysis of wildtype and exon3 mutant β-catenin levels in protein extracted from 
Nkx3.1CreERT2 wildtype and Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ prostate tissue two weeks after the following 
tamoxifen regimes: 120 mg/kg (3 mg) tamoxifen on day 1, followed by three doses of 90 mg/kg (2 
mg) on consecutive days (3,2,2,2 regime); four doses of 160 mg/kg (4 mg) over 11 days (T/M/ T/M 
regime); and 160 mg/kg (4 mg) once.  The amount in brackets corresponds to the dose given to a 
25 g mouse.  The level of β-catenin ∆Ex3 bands was quantified relative to Hsp70 loading control 
using ImageJ.   
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Figure 4.2.4  Detection of β-catenin activation in Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ prostate tissue 
following tamoxifen induction 
Representative images of β-catenin immunohistochemical staining of FFPE sections of 
Nkx3.1CreERT2 wildtype and Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ mouse prostate, two weeks after induction 
by 3,2,2,2 mg, 4mg T/M/T/M or 4 mg once tamoxifen regimes.  The top panel compares levels of 
nuclear (activated) β-catenin in the anterior prostate (AP) and bottom panel shows the dorsal-
lateral prostate (DLP).  Scale bar: 100 µm.  Insert box: 100 µm2. 
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The higher dose of 4 mg injections given four times over 11 days (T/M/T/M 

regime) was well tolerated by mice and we proceeded to use this induction 

regime for future work. 

We crossed Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ mice with Cre negative Ptenfl/fl (or 

Ptenfl/+) mice to generate an Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ colony with 

respective controls.  A limitation of the Nkx3.1CreERT2 model is that Cre 

expression results in the heterozygous loss of Nkx3.1 itself, which has been 

associated with prostate cancer initiation.  Therefore, all wildtype controls used 

were Nkx3.1CreERT2 positive.  Initial histological  and immunohistochemical 

analysis of prostate tissue sampled from mice two months post-induction, 

showed PIN-like lesions, increased Ki67 staining and high levels of nuclear β-

catenin staining in prostates from Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ and Nkx3.1CreERT2 

Ptenfl/+ Ctnnb1(ex3)Δ/+ mice, which were not present in Nkx3.1CreERT2 wildtype and 

Nkx3.1 CreERT2 Ptenfl/+ controls (Fig. 4.2.5).  We were, therefore, satisfied that 

the tamoxifen regime was effective in initiating Cre recombination and prostate 

tumourigenesis in this model.  
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Figure 4.2.5  Using the inducible Nkx3.1CreERT2 loxP system to manipulate Pten (Ptenfl/+) and 
β-catenin (Ctnnb1(ex3)∆/+) and investigate effects of castration in vivo 
Timeline for cre induction and castration in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice and respective 
controls.  Mice were induced using the 4mg T/M/T/M tamoxifen regime and sacrificed 60 days after 
tamoxifen induction for histopathological analysis.  The panel shows representative haematoxylin 
and eosin staining, and ki67 and β-catenin immunohistochemical staining of FFPE sections of 
Nkx3.1CreERT2 wildtype, Nkx3.1 CreERT2 Ptenfl/+, Nkx3.1 CreERT2 Ctnnb1(ex3)∆/+ and Nkx3.1 CreERT2 
Ptenfl/+ Ctnnb1(ex3)∆/+ mouse prostate tissue.  Scale bar: 100 µm.  Insert box: 100 µm2. 

  



161 
 

Chapter 4 

4.2.2 Nkx3.1 expression is retained in a sub-population of cells in 
regressed and regenerated prostate 

To demonstrate the essential role of androgens for normal prostate growth and 

homeostasis, the effects of ADT were initially studied in wildtype mice.  We 

observed significant regression of normal, adult mouse prostates following 

ablation of testicular androgens using surgical orchiectomy (Figure 4.2.6). 

 
Figure 4.2.6  The effect of castration on wildtype mouse prostate 
(Top panels) Representative images of intact and castrate wildtype prostate.  Ruler scale: 5 mm.  
(Bottom panels) Representative haematoxylin and eosin staining showing the histology of FFPE 
sections of intact and castrate (regressed) prostate.  Scale bar: 100 µm 

 

To study the effects of ADT and replacement of androgens following ADT, a 

working regression/regeneration model was established.  In an initial pilot study, 

wildtype mice were castrated at 8 weeks of age and the prostate was allowed to 

regress for 6 weeks.  A 1 cm Silastic implant containing testosterone proprionate 

(or empty sham control) was inserted subcutaneously between the shoulders 6 

weeks after castration, and mice were sampled 4 weeks after the implant was 

inserted.  The size and weight of prostates from castrated (ADT) mice treated 

with testosterone were over three times greater than control mice with sham 

implants (Figure 4.2.7).  This confirms the prostate’s ability to regenerate in the 

presence of androgens. 
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Figure 4.2.7  Manipulating androgen levels to study regression and regeneration of the 
mouse prostate 
Wildtype mice were castrated at 8 weeks and the prostate was allowed to regress for 6 weeks 
before a 1 cm Silastic implant containing testosterone proprionate (or empty sham control) was 
subcutaneously implanted to regenerate the prostate.  Images are representative of the effect of 
testosterone administration on the prostate 1 month after the Silastic implants were inserted. The 
top panel of the image shows the regeneration of the seminal vesicles around the anterior prostate 
and bottom panel shows the regeneration of the dissected prostate compared to the regressed 
sham control.  Ruler scale: 1 mm/increment.  The graph shows weights of regenerated prostates 
as percentage body weight compared to prostates of control mice with sham implant and intact 
wildtype mice.  (**** p value <0.0001; n=3, analysed by one-way ANOVA with Tukey multiple 
comparison test).  Data are presented as mean ± SD. 
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The Nkx3.1CreERT2 RFP+/- model was used to study whether Cre expression could 

be induced post-castration and the effect of prostate regeneration after 

tamoxifen-induction.  Following castration, prostates were allowed to regress for 

1 month before tamoxifen-induction of Cre.  Implants containing testosterone 

proprionate (or empty sham control) were then inserted subcutaneously, 18 days 

after induction, and the experiment was ended one month later.  This 

experiment was carried out in mice at 6-7 months (Figure 4.2.8), corresponding 

to a time point when most of our murine prostate cancer models have 

established tumours. 

In mice which underwent castration, followed by tamoxifen-induction and 

insertion of a sham implant, a large proportion of cells in the regressed, 

androgen ablated prostate expressed RFP (Figure 4.2.8).  This demonstrated that 

Nkx3.1-expressing cells remain in the absence of androgens when a majority of 

AR is inactive, in the cytoplasm, as shown by immunohistochemical staining 

(Figure 4.2.8).  These CARNs are responsive to tamoxifen induction, resulting in 

expression of Cre, recombination at loxP and expression of RFP.  The 

reintroduction of androgens regenerated the prostate and reactivated AR, which 

translocated to the nucleus (Figure 4.2.8).  RFP immunohistochemical staining 

showed that patches of CARNs were present in the regenerated tissue (Figure 

4.2.8).  This suggests that these are stem cells, capable of regenerating the 

prostate following reactivation of AR signalling, which commonly occurs in CRPC.  

Regression and regeneration studies can be carried out in the inducible Nkx3.1 

CreERT2 system, to manipulate AR signalling in vivo, in combination with 

induction of prostate-specific genetic alterations at any time point.  In this way, 

we can study the role of CARNs in CRPC. 
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Figure 4.2.8  Detection of castration-resistant Nkx3.1-expressing cells (CARNs) in regressed 
and regenerated prostate 
The timeline indicates the protocol used to study the regression and regeneration of Nkx3.1CreERT2 
RFP+/- mouse prostates.  Following castration at 6 months, the prostate was allowed to regress for 
1 month before administration of tamoxifen to induce expression of RFP.  A Silastic implant 
containing testosterone proprionate (or empty sham control) was subcutaneously implanted 18 
days after tamoxifen induction to regenerate the prostate.  The panel shows representative 
haematoxylin and eosin staining, and ki67, RFP and AR immunohistochemical staining of FFPE 
sections of Nkx3.1CreERT2 RFP+/- mouse prostate tissue.  AP=anterior prostate; DLP=dorsal-lateral 
prostate.  Scale bar: 100 µm.  Insert box: 100 µm2. 
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4.3 Tumours with β-catenin activation are resistant to 
androgen deprivation therapy – a novel pre-clinical 
model for castration resistant prostate cancer 

4.3.1 Investigating the effect of castration in Nkx3.1CreERT2 Ptenfl/+ 
Ctnnb1(ex3)∆/+ genetically engineered mouse model 

After initial analysis confirmed tumourigenesis as expected in Nkx3.1CreERT2 

Ptenfl/+ Ctnnb1(ex3)Δ/+ mice two months post-induction, mice were allowed to 

age.  When palpable tumour was detected in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ 

mice, they were castrated (see timeline; Figure 4.3.1).  Palpable tumour was 

detected at 7 months post-induction (~300 days), so this was the time point 

established for castration of Ptenfl/+ Ctnnb1(ex3)Δ/+ mice and controls.  Intact and 

castrated Ptenfl/+ Ctnnb1(ex3)Δ/+ mice were allowed to age to respective clinical 

endpoints and compared to age-matched Nkx3.1CreERT2 wildtype, Ptenfl/+ and 

Ctnnb1(ex3)Δ/+ controls. 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ mice developed large tumours and reached 

clinical endpoint approximately one year post-induction due to tumour burden, 

weight loss and haematuria.  Tumours responded to ADT as indicated by the 

significant decrease in weights compared to controls (Figure 4.3.1).  However, 

sizeable tumour burden remained in four out of six mice post-ADT.  Wildtype, 

Ptenfl/+ and most Ctnnb1(ex3)Δ/+ prostates regressed significantly in response to 

ADT (Figure 4.3.1).  A large tumour was present in only one of five Nkx3.1CreERT2 

Ctnnb1(ex3)Δ/+ mice post-ADT and only two of five Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ 

control (without ADT) mice. 

The body weight of castrated wildtype and Ptenfl/+ mice decreased significantly 

compared to intact mice of the same genotype (Figure 4.3.2).  Body weight was 

lost as result of tumour burden in intact Ctnnb1(ex3)Δ/+ and Ptenfl/+ Ctnnb1(ex3)Δ/+ 

mice, relative to intact wildtype mice.  While castration in Ctnnb1(ex3)Δ/+ mice 

did not have a significant effect on body weight, the majority of castrated 

Ptenfl/+ Ctnnb1(ex3)Δ/+ mice did lose weight in comparison to controls, despite 

overall analysis not showing a significant difference (Figure 4.3.2). 



166 
 

Chapter 4 

 

 

 

 

Figure 4.3.1  Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ tumours develop resistance to ADT 
Representative images of control and ADT treated Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ prostates 
taken at clinical endpoint, compared to age-matched genotype control mice.  To illustrate the 
variation observed in Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ control and ADT mice, two representative images 
are included.  Ruler scale: 5 mm.  The graph shows weights of solid prostate tissue (drained of any 
tumour infiltrate).  Differences between wildtype and Ptenfl/+ data, (blue box) are shown more 
clearly in the graph on the right.  (** p value <0.01, * p value <0.05; analysed by Mann-Whitney test 
relative to genotype control).  Data are presented as mean ± SEM. 
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Figure 4.3.2  The effect of ADT on body weight of Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice 
compared to controls 
The graph shows body weights of mice after prostate weight (including any tumour infiltrate) has 
been subtracted.  (** p value <0.01, * p value <0.05; analysed by one-way ANOVA with Fisher LCD 
test, comparing all groups to wildtype control.  ++ p value <0.01; analysed by Mann-Whitney test).  
Data are presented as mean ± SEM. 

 

 
Figure 4.3.3  Treatment of Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice with ADT provides no 
survival benefit 
Kaplan-Meier survival plot for Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice treated with ADT (n=7) 
compared to control (n=5). 
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Ptenfl/+ Ctnnb1(ex3)Δ/+ mice lived 5-6 months post-ADT but this was comparable to 

survival of untreated control mice (Figure 4.3.3).  Despite decreased tumour 

burden in Ptenfl/+ Ctnnb1(ex3)Δ/+ mice post-ADT, mice lost weight and became 

weak and inactive.  I, therefore, observed no survival advantage of ADT in these 

mice.  This suggests that the extrinsic effects of prostate tumour burden, prior 

to ADT, including weight loss, compromise the host’s ability to recover 

regardless of tumour regression in response to ADT.   

Histopathological characterisation of prostate tissue, excised from endpoint 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ mice and age-matched controls, was 

conducted to establish whether ADT simply halted tumour growth from the time 

of castration or if tumour cells were actively proliferating following ADT.  In 

Nkx3.1CreERT2 wildtype prostate, H&E staining showed complete regression of the 

prostate glands following ADT and no Ki67 expression in control or ADT 

prostates, while β-catenin continued to be expressed at the membrane of 

regressed prostate tissue (Figure 4.3.4).  Nkx3.1CreERT2 Ptenfl/+ prostate histology 

was similar to wildtype.  There was some evidence of hyperplasia and PIN in 

Ptenfl/+ prostates but, overall, little Ki67 expression, and prostates regressed in 

response to ADT.  In contrast, Ctnnb1(ex3)Δ/+ control mice all developed 

carcinoma to varying extents.  The central panel (Figure 4.3.4) shows the 

histology of a small Ctnnb1(ex3)Δ/+ control prostate tumour, expressing Ki67 and 

nuclear β-catenin, and the histology of regressed ADT-treated Ctnnb1(ex3)Δ/+ 

prostate tissue, which expressed little Ki67 but retained some cells with nuclear 

β-catenin expression.  The Ctnnb1(ex3)Δ/+ panel to the right (Figure 4.3.4) shows 

the histology of more advanced HNPC and established CRPC driven by β-catenin 

activation alone, which was similar to Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ 

prostate tissue.  Ki67 immunohistochemical staining identified increased 

proliferation in epithelial cells within the CPRC tumours and high levels of 

nuclear β-catenin compared to controls (Figure 4.3.4).  This illustrated that cells 

with β-catenin activation were actively proliferating following ADT. 
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Figure 4.3.4  Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice develop aggressive adenocarcinoma 
and maintain high levels of proliferation following ADT 
Representative haematoxylin and eosin staining, and ki67 and β-catenin immunohistochemical 
staining of FFPE sections of Nkx3.1CreERT2 wildtype, Nkx3.1 CreERT2 Ptenfl/+, Nkx3.1 CreERT2 
Ctnnb1(ex3)∆/+ and Nkx3.1 CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ comparing mouse prostate tissue from ADT 
treated mice to controls at clinical endpoint.  To illustrate the variation observed in Nkx3.1CreERT2 
Ctnnb1(ex3)∆/+ control and ADT mice, two representative images are included. Left Ctnnb1(ex3)∆/+ 
column represents 60% of control and 80% of ADT-treated Ctnnb1(ex3)∆/+ prostate tissue; right 
Ctnnb1(ex3)∆/+ column represents 40% of controls and 20% of cases with detectable CRPC.  Scale 
bar: 100 µm.  Insert box: 100 µm2. 
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Figure 4.3.5  Growth of Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ castration-resistant tumours is not 
dependent on PI3K/Akt or classical androgen receptor signalling 
Representative Pten, pAkt and AR immunohistochemical staining of FFPE sections of 
Nkx3.1CreERT2 wildtype, Nkx3.1 CreERT2 Ptenfl/+, Nkx3.1 CreERT2 Ctnnb1(ex3)∆/+ and Nkx3.1 CreERT2 
Ptenfl/+ Ctnnb1(ex3)∆/+ mouse prostate tissue comparing ADT treated mice to controls at clinical 
endpoint.  To illustrate the variation observed in Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ control and ADT mice, 
two representative images are included.  Left Ctnnb1(ex3)∆/+ column represents 60% of control and 
80% of ADT-treated Ctnnb1(ex3)∆/+ prostate tissue; right Ctnnb1(ex3)∆/+ column represents 40% of 
controls and 20% of cases with detectable CRPC.  Scale bar: 100 µm.  Insert box: 100 µm2. 
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Immunohistochemical staining of regressed prostate tissue from ADT-treated 

Nkx3.1CreERT2 wildtype mice, compared to controls, showed decreased Pten, 

increased phospho-Akt and loss of nuclear AR expression (Figure 4.3.5).  In 

Nkx3.1CreERT2 Ptenfl/+ prostate tissue, Pten haploinsufficiency led to increased 

phospho-Akt expression in intact mice, which was retained following castration 

(Figure 4.3.5).  Corroborating data from the Pb-Cre Ctnnb1(ex3)Δ/+ mouse model 

(Chapter 3), high levels of nuclear Pten were present in Nkx3.1CreERT2 

Ctnnb1(ex3)Δ/+ prostate tissue at earlier stages of tumour development (central 

panel, Figure 4.3.5) and decreased in advanced cancer (right panel, Figure 

4.3.5), providing evidence for similar tumour evolution in this mouse model.  

Ctnnb1(ex3)Δ/+ prostates that regressed in response to ADT showed a modest 

increase in phospho-Akt expression and some nuclear AR expression, neither of 

which were present in CRPC (Figure 4.3.5). 

Compared to intact controls, castration-resistant Nkx3.1CreERT2 Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumours had lower Pten expression but no phospho-Akt activation 

(Figure 4.3.5).  Furthermore, AR expression was completely lost (Figure 4.3.5).  

Therefore, β-catenin remains active and is able to sustain tumour proliferation 

in the absence of androgens, without reactivating classical androgen receptor 

signalling or requiring PI3K/Akt pathway activation. 

 

4.3.2 The Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)∆/+ mouse model 
develops aggressive castration-resistant prostate cancer 

In the Pb-Cre conditional transgenic mouse model, β-catenin exon3 mutation 

(Ctnnb1(ex3)Δ/+) in combination with homozygous deletion of Pten (Ptenfl/fl) 

generated a very aggressive prostate cancer model (Chapter 3).  I established 

Nkx3.1CreERT2 mice with the same mutations to investigate effects of ADT in a 

more aggressive model.  Palpable tumour was detected at 5 months post-

induction.  One group of mice underwent castration at this time point, while the 

control group were untreated.  Both groups were allowed to age to their 

respective clinical endpoints, determined by tumour burden, weight loss and 

haematuria.   
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ADT did provide a survival advantage for Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)Δ/+ 

mice, which survived approximately 3 months longer than controls (Figure 

4.3.6).  However, at clinical endpoint, ADT-treated mice had developed CRPC 

and their tumour weight and body weight was comparable to control mice with 

HNPC (Figure 4.3.6). 

 

  
Figure 4.3.6  ADT increases survival in Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)∆/+ mice but tumour 
burden is comparable at endpoint 
Kaplan-Meier survival plot for Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)∆/+ mice treated with ADT (n=4) 
compared to control (n=6) shows a significant increase in survival following ADT.  (P = 0.0119; 
analysed by log-rank (Mantel-Cox) test).  The graphs show prostate tumour weights (drained of any 
tumour infiltrate), and body weights of mice after prostate weight (including any tumour infiltrate) 
has been subtracted.  Data are presented as mean ± SD. 
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Figure 4.3.7  Castration-resistant Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)∆/+ tumours have increased 
stroma area, high levels of proliferation and maintain high levels of nuclear β-catenin 
Haematoxylin and eosin staining, and ki67 and β-catenin immunohistochemical staining of FFPE 
sections of Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)∆/+ mouse prostate tissue, comparing ADT treated mice 
to controls at clinical endpoint.  The two images for each set are representative of different areas 
observed in the tumours.  Arrows indicate increased stromal area in Ptenfl/fl Ctnnb1(ex3)∆/+ CRPC.  
Scale bar: 100 µm.  Insert box: 100 µm2. 

 

Histopathological analysis of these tumours showed different tumour morphology 

following ADT.  Control tumours had a greater number of regions with pockets of 

cystic fluid (left control H&E panel, Figure 4.3.7), while an expansion of stroma 

was observed in ADT-resistant tumours (left ADT H&E panel, Figure 4.3.7).  

Levels of proliferation (Ki67) were comparable between tumours and cells 

harbouring intense nuclear β-catenin were present throughout tumour 

epithelium of control and ADT-resistant tumours (Figure 4.3.7). 
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4.3.3 Transcriptomic analysis of gene expression changes 
associated with castration-resistant tumours highlighted 
increased expression of Wnts 

To gain a better understanding of the differences between HNPC and CRPC 

driven by β-catenin activation and Pten loss, we performed RNA-sequencing (≥6 

Gb, 90 nucleotide paired-end reads) and transcriptomic analysis on RNA from 

hormone-naïve and castration-resistant Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ 

tumours.  Quality control analysis of RNA-sequencing data showed there was 

~85% alignment to the mouse genome for all samples.  Following data 

normalisation and differential gene expression analysis using R and DESeq2 

software, we identified 422 genes that were at least twofold (P <0.05) 

upregulated and 291 genes at least twofold (P <0.05) downregulated in CRPC 

tumours compared to HNPC.  MetaCore pathway analysis of these data indicated 

that one of the most significantly enriched pathways in CRPC was the Wnt 

signalling pathway (Pathway 5, Figure 4.3.8).  This included increased expression 

of Wnt ligands, canonical Wnt pathway transcription factors, Tcf and Lef, and 

downstream target, Cyclin D1 (Figure 4.3.9). 

Despite the primary difference between CRPC and HNPC mice being the ablation 

of androgens, androgen receptor nuclear signalling was number 16 in the list of 

most significantly altered pathways (Figure 4.3.8).  Therefore, the 

downregulation of AR signalling was not as significant as the alteration of other 

pathways in this model of CRPC.  Wnt expression and Cyclin D1 negatively 

regulate AR (Figure 4.3.10) and may prevent the reactivation of classical AR 

signalling in this model. 

To confirm Wnt signalling was activated in prostate tissue with β-catenin exon3 

deletion, I quantified expression of Wnt target genes in Nkx3.1CreERT2 Ptenfl/+ 

Ctnnb1(ex3)Δ/+ HNPC and wildtype, Ptenfl/+ and Ctnnb1(ex3)Δ/+ controls.  Tcf3 and 

Adcy8 expression was increased in Ptenfl/+ Ctnnb1(ex3)Δ/+ compared to controls 

(Figure 4.3.11).  Adcy8 was also upregulated in Ctnnb1(ex3)Δ/+ compared to 

wildtype, while no difference in Ccnd1 or Myc expression were observed (Figure 

4.3.11).   



175 
 

Chapter 4 

 
Figure 4.3.8  Pathways significantly altered in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ castration-
resistant tumours compared to hormone naïve controls 
MetaCore pathway enrichment analysis was carried out on 655 genes identified as being at least 
twofold up- or downregulated (P <0.05) in RNA sequencing gene expression data of Nkx3.1CreERT2 
Ptenfl/+ Ctnnb1(ex3)∆/+ castration-resistant tumours (n=3) compared to hormone naïve controls (n=2).  
The top 16 significantly altered pathways are shown in this histogram.  (–log (P value) > 2 = P < 
0.01). 
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Figure 4.3.9  Increased Wnt signalling pathway activity in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ 
castration-resistant tumours 
Diagram of Wnt/β-catenin signalling pathway.  MetaCore pathway enrichment analysis carried out 
on RNA-sequencing data showed a significant change in Wnt signalling pathway components in 
Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ castration-resistant tumours compared to controls.  The 
thermometer symbols indicate expression of Wnt signalling pathway components that are 
significantly upregulated (red) or downregulated (blue). 
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Figure 4.3.10  The classical androgen receptor signalling pathway is not reactivated in 
Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ castration-resistant tumours 
Diagram of AR signalling pathway.  MetaCore pathway analysis carried out on RNA-sequencing 
data showed a significant downregulation of positive regulators and downstream targets of the 
androgen receptor signalling pathway, and upregulation of a negative regulator, cyclin D1, in 
Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ castration-resistant tumours compared to controls.  The 
thermometer symbols indicate expression of androgen receptor signalling pathway components 
that are significantly upregulated (red) or downregulated (blue). 
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Figure 4.3.11  Expression of Tcf3 and Adcy8, but not Ccnd1 or Myc, is significantly 
upregulated in prostate tissue with β-catenin activation 
The expression of Wnt target genes in hormone-naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ prostate 
tumours at endpoint was compared to age-matched controls.  TaqMan RT-qPCR analysis was 
carried out on RNA extracted from Nkx3.1CreERT2 wildtype, Nkx3.1 CreERT2 Ptenfl/+, Nkx3.1 CreERT2 
Ctnnb1(ex3)∆/+ and Nkx3.1 CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue.  Normalised to 18S 
housekeeping gene and presented as relative quantity (RQ) of RNA expression.  (** p value <0.01, 
* p value <0.05; analysed by one-way ANOVA with Fisher’s LSD test, comparing each group to 
wildtype).  Data are presented as mean ± SD (n=3). 

 

I proceeded to measure the expression of Tcf3, Lef1, Ccnd1, Wnt4, Wnt5a, 

Wnt10b and Myc in CRPC compared to HNPC.  In the Nkx3.1CreERT2 Ptenfl/+ 

Ctnnb1(ex3)Δ/+ model, there was a significant increase in the expression of Lef1, 

Ccnd1, Wnt5a and Myc in CRPC (Figure 4.3.12).  There was a trend towards an 

increase in Tcf3, Wnt4 and Wnt10b expression but the standard deviation 

between samples was high.  In the Ptenfl/fl Ctnnb1(ex3)Δ/+ model, only Tcf3 
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expression was increased relative to untreated controls (Figure 4.3.12).  There 

was a trend towards higher expression of Lef1, Ccnd1, Wnt5a and Wnt10b in 

CRPC compared to HNPC, but there was high standard deviation within the 

sample group. 

 

 
Figure 4.3.12  Upregulation of Wnt pathway genes in castration-resistant compared to 
hormone-naïve tumours 
TaqMan RT-qPCR analysis was carried out on RNA extracted from castration-resistant (ADT) and 
hormone-naïve (CTRL) Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+  (top graph) and Nkx3.1CreERT2 Ptenfl/fl 

Ctnnb1(ex3)∆/+ (bottom graph) prostate tumours.  Normalised to 18S housekeeping gene and 
presented as relative quantity (RQ) RNA expression.  (** p value <0.01, * p value <0.05; analysed 
by unpaired, one-tailed student t-test with Welsh’s correction).  Data are presented as mean ± SD 
(n=3). 
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Further analysis was carried out on Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours, 

as the greatest differences in Wnt pathway gene expression between HNPC and 

CRPC were observed in this model.  Myc expression was analysed by 

immunohistochemical staining and confirmed that Myc protein levels were 

elevated in castration-resistant compared to hormone-naïve prostate tumours 

(Figure 4.3.13).  Although staining was patchy, nuclear Myc was observed in 

CRPC in biological triplicate, while only low levels of Myc were observed in PIN 

lesions of control HNPC prostate and not in tumour. 

 
Figure 4.3.13  Myc expression is elevated in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ castration-
resistant tumours. 
Representative images of Myc immunohistochemical staining of FFPE tissue sections, comparing 
mouse prostate tissue from ADT-treated Nkx3.1 CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice (n=3) to controls 
(n=3) at clinical endpoint.  Scale bar: 100 µm.  Insert box: 100 µm2. 

 

As immunohistochemical staining of Wnts can be challenging, RNAscope was used 

to detect the expression of Wnt5a in control and ADT-resistant Nkx3.1CreERT2 

Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumour tissue.  CRPC tumours had higher levels of 

Wnt5a than HNPC tumours (Figure 4.3.14), consistent with RT-PCR analysis of 

Wnt5a expression in these tumours (Figure 4.3.12).  As Wnts are secreted, it is 

possible for epithelial and stroma cells to contribute to the levels of Wnt present 

in tumour tissue.  However, Wnt5a is predominantly localised to the tumour 
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epithelial cells, indicating that these cells are responsible for the increased 

secretion of Wnt5a in CRPC. 

 
Figure 4.3.14  Wnt5a expression is elevated in castration-resistant prostate tumour tissue 
Representative images of Wnt5a RNAscope staining of FFPE tissue sections, comparing mouse 
prostate tissue from ADT-treated Nkx3.1 CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice (n=3) to controls (n=3) 
at clinical endpoint.  Scale bar: 500 µm. 

 

Overall, I have confirmed there is significant Wnt pathway enrichment in 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours which have become castration-

resistant.  This was demonstrated by a significant increase in Lef1, Ccnd1, 

Wnt5a and Myc expression in CRPC tissue compared to HNPC controls.  The 

increase in Wnt5a mRNA was confirmed by RNAscope analysis.  Myc protein 

expression was shown to be elevated in CRPC, corresponding with higher levels 

of Myc transcription, and likely to drive proliferation in castration-resistant 

prostate cells. 
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4.3.4 Investigating the effect of Wnt inhibition and androgen 
deprivation combination therapy in Nkx3.1CreERT2 Ptenfl/+ 

Ctnnb1∆(ex3)/+ mice 

Having established that CRPC in mice with β-catenin activation and Pten loss had 

significant enrichment of Wnt ligand expression, we tested a Wnt inhibitor in 

combination with ADT in vivo.  LGK-974 inhibits the N-palmitoyltransferase 

molecule Porcupine (PORCN), blocking Wnt post-translational acylation, which 

consequently blocks Wnt secretion [199]. 

On detection of palpable tumour, Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ mice were 

castrated.  After 10 days recovery, mice were treated daily with 100 µl of 1.25 

mg/kg LGK-974 or vehicle control by gavage for one month.  Doses of 1-3 mg/kg 

LGK-974 treatment have previously shown strong efficacy for inhibition of 

tumour growth in a Wnt tumour model [199].  Due to concerns of host toxicity, 

we selected a dose at the lower end of this range.  A trend towards a decrease 

in prostate weight was observed following combined ADT and LGK treatment 

compared to ADT alone, but this did not reach statistical significance (Figure 

4.3.15). 

 
Figure 4.3.15  The effect of ADT and Wnt inhibition on regression of prostate tumours in 
Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice 
The graph shows prostate weights of Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ mice after castration 
(ADT), and 1 months treatment with 1.25 mg/kg LGK-974 (PORCN inhibitor) or vehicle control.  
Mice were castrated 7-8 months post-induction when palpable tumour was detected.  LGK-974 (or 
vehicle) treatment commenced 10 days post-castration and all mice were taken after 1 month of 
treatment.  Data presented as mean ± SEM. 
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Histopathological analysis of prostate tissue showed evidence of prostate 

regression and tumour following treatment with LGK or vehicle control (Figure 

4.3.16).  Overall observations suggest that Ki67 and β-catenin levels are lower in 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue following combined ADT and 

Wnt inhibitor treatment as compared to controls.  It should be noted that Ki67 

staining may reflect the proliferation of infiltrating immune cells rather than the 

continued proliferation of tumour epithelial cells.  Further work is required to 

fully characterise the effects of Wnt inhibition in tissue in combination with 

ADT. 

 
Figure 4.3.16  Histology of Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ tumours following treatment 
with ADT and Wnt inhibitor 
Haematoxylin and eosin staining, and ki67 and β-catenin immunohistochemical staining of FFPE 
sections of Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)∆/+ mouse prostate tissue, comparing ADT + LGK-974 
treated mice to ADT treated controls.  Mice were castrated 7-8 months post-induction when 
palpable tumour was detected.  LGK-974 (or vehicle) treatment commenced 10 days post-
castration and all mice were taken after 1 month of treatment.  The two images for each treatment 
group are representative of the most regressed regions (left) and largest extent of tumour (right) 
observed in the prostates.  Scale bar: 100 µm.  Insert box: 100 µm2. 
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4.4 Evidence for androgen receptor reprogramming in 
tumours with β-catenin activation 

4.4.1 Identification of a pseudo-castrate gene expression 
signature in β-catenin-driven prostate cancer 

β-catenin is a known AR cofactor [157] and can therefore influence the 

transcriptional regulation of AR target genes.  Co-immunoprecipitation 

experiments were carried out in LNCaP and CWR-22 prostate cancer cell lines to 

confirm that AR and β-catenin interact in human prostate cancer (Figure 4.4.1).   

 
Figure 4.4.1  Co-immunoprecipitation experiments show AR and β-catenin interaction 
Panels show western blot analysis of AR and β-catenin expression in protein from AR 
immunoprecipitation experiments in LNCaP and CWR-22 prostate cancer cell lines.  WCE = whole 
cell extract, No Ab = negative IP beads control, IP AR = androgen receptor immunoprecipitation.   

 

Immunohistochemical staining showed that AR is expressed in hormone-naïve 

Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ and Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate 

tumours (Figure 4.3.5).  AR is localised in the nucleus of tumour epithelial cells, 

indicating that it is actively functioning as a transcription factor in the presence 

of nuclear β-catenin. 

To investigate the effects of β-catenin activation on AR activity, I initially 

studied the expression of AR-regulated genes in a microarray data set comparing 

Pb-Cre Ctnnb1(ex3)Δ/+ prostate tissue to wildtype.  This data was generated in our 

laboratory by Meiling Gao, using a Pb-Cre Ctnnb1(ex3)Δ/+ mouse colony.  The 

androgen responsive gene list was identified by Carver et al [119] from 

microarray analysis of intact and castrate wildtype mouse prostate.  This gene 

set provided a castrate gene signature, clustering one set of genes that were 

upregulated post-ADT and another set downregulated post-ADT (Figure 4.4.2).  

Regulation of the murine androgen responsive gene data set in intact Pb-Cre 

Ctnnb1(ex3)Δ/+ prostate was similar to that observed in castrate wildtype prostate 
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(Fig. 4.4.2).  Therefore, Pb-Cre Ctnnb1(ex3)Δ/+ tumours had a pseudo-castrate 

gene expression signature, providing evidence for AR reprogramming as a 

consequence of β-catenin activation. 

 
Figure 4.4.2  Prostate cancer driven by aberrant β-catenin activation has a pseudo-castrate 
gene expression signature 
Heat maps represent expression changes in 133 androgen responsive genes identified in 
microarray data from Pb-Cre Ctnnb1(ex3)∆/+ and wildtype (WT) prostate (data from Meiling Gao, 
produced using Illumina Mouse Ref-8 v2.0 BeadChip Array) and intact and castrate wildtype 
prostate [119].  The mouse androgen responsive gene set was identified by Carver et al [119] from 
gene expression differences observed between intact and castrate wildtype prostate tissue.  This 
gene set was analysed in Pb-Cre Ctnnb1(ex3)∆/+ and wildtype (WT) microarray data and genes are 
listed in the same order on both heat maps. 

 

Having carried out RNA sequencing analysis of Ctnnb1(ex3)Δ/+ and Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumours in both the Pb-Cre and Nkx3.1CreERT2 mouse colonies, I 

analysed the expression changes of the androgen responsive gene set in these 

data.  I selected four genes from Cluster 2 (Figure 4.4.2), responsible for the 

expression of FK506 binding protein 5 (Fkbp5), apolipoprotein F (ApoF), tissue 

inhibitor of metalloproteinases 4 (Timp4) and transmembrane protein 97 

(Tmem97).  The same downregulation of Fkbp5, ApoF, Timp4 and Tmem97 
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expression, as a result of β-catenin activation, was observed in one or both of 

Pb-Cre Ctnnb1(ex3)Δ/+ and Pb-Cre Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumours 

compared to wildtype (Table 4.4-1).  These genes were selected because ChIP 

sequencing data from wildtype mouse epididymal [180] or prostate [181] tissue 

identified enrichment of AR binding in the promoter regions of these genes. 

 

Table 4.4-1  Androgen responsive genes downregulated in HNPC with aberrant β-catenin 
activation 

  In
ta
ct
 

C
as
tr
at
e
 

Pb‐Cre 
Ctnnb1(ex3)Δ/+ 
vs wildtype 

P value 
Pb‐Cre Ptenfl/+ 
Ctnnb1(ex3)Δ/+ 
vs wildtype 

P value 

Fkbp5        ‐3.3  0.088  ‐4.1  0.022 

ApoF        ‐4.4  0.047  ‐3.8  0.095 

Timp4        ‐19.5  1.30E‐03 ‐29.4  3.00E‐05

Tmem97        ‐4.4  0.033  ‐6.4  0.003 
Red indicates high expression and blue indicates low expression.  Significant p values <0.05 in red. 

 

Table 4.4-2  Androgen responsive genes downregulated in HNPC are not significantly 
altered in CRPC 

  

In
ta
ct
 

C
as
tr
at
e
 

Nkx3.1CreERT2Ptenfl/+ 
Ctnnb1(ex3)Δ/+         
ADT vs CTRL  P value 

Fkbp5  ‐3.11  0.110 

ApoF  ‐3.36  0.334 

Timp4  ‐7.15  0.210 

Tmem97  1.18  1.000 
Red indicates high expression and blue indicates low expression. 

 

Analysis of RNA sequencing data from Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ CRPC 

compared to HNPC showed no statistically significant difference in the 

expression of Fkbp5, ApoF, Timp4 or Tmem97 (Table 4.4-2).  Indeed, 

independent clustering analysis of the androgen responsive gene set in 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ HNPC and CRPC (compared to wildtype) 

demonstrated that significant AR reprogramming occurred in HNPC, but overall 

expression of these genes in CRPC was similar to HNPC (Figure 4.4.3).  MetaCore 

pathway enrichment analysis showed that downregulation of the AR signalling 

pathway was not as significant as other pathway alterations in CRPC compared 
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to HNPC (Figure 4.3.8).  This suggests that tumours had already developed a 

pseudo-castrate gene signature prior to castration, which was not significantly 

altered in CRPC. 

 
Figure 4.4.3  Expression of androgen responsive genes is reprogrammed in HNPC and 
maintained in CRPC 
RNA was extracted from wildtype prostate tissue (12 months) and Nkx3.1CreERT2 Ptenfl/+ 
Ctnnb1(ex3)∆/+  hormone-naïve (CTRL) and castration-resistant (ADT) tumour tissue (endpoint).  
RNA was sent for sequencing and gene expression analysis.  R and DESeq2 software was used to 
determine fold changes in gene expression of tumour RNA compared to wildtype.  The heat map 
represents independent clustering analysis of expression changes in 133 androgen responsive 
genes, previously identified [119]. 
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Figure 4.4.4  Fkbp5 and ApoF transcript expression is downregulated in hormone-naïve 
prostate tissue with β-catenin activation 
The expression of AR, Fkbp5 and ApoF in hormone-naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ 
prostate tumours at endpoint was compared to age-matched controls.  TaqMan RT-qPCR analysis 
was carried out on RNA extracted from Nkx3.1CreERT2 wildtype, Nkx3.1CreERT2 Ptenfl/+, Nkx3.1CreERT2 
Ctnnb1(ex3)∆/+ and Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue.  Normalised to 18S 
housekeeping gene and presented as relative quantity (RQ).  (** p value <0.01, * p value <0.05; 
analysed by unpaired, one-tailed student t-test).  Data are presented as mean ± SD (n=3). 

 

AR, Fkbp5 and ApoF transcript expression was validated in end point, hormone-

naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue compared to wildtype, 

Ptenfl/+ and Ctnnb1(ex3)Δ/+ age-matched controls.  It was interesting to observe 

that AR, Fkbp5 and ApoF expression was elevated in Ptenfl/+ tissue compared to 

wildtype (Figure 4.4.4).  In contrast, Fkbp5 expression was significantly 

decreased in Ptenfl/+ Ctnnb1(ex3)Δ/+ compared to wildtype, while ApoF was 

significantly decreased in Ctnnb1(ex3)Δ/+ compared to wildtype (Figure 4.4.4).  AR 
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expression was not significantly different between genotypes, although there 

was high standard deviation in Ptenfl/+ Ctnnb1(ex3)Δ/+ samples (Figure 4.4.4).   

RT-PCR analysis of AR, Fkbp5 and ApoF expression in ADT resistant and control 

tumours demonstrated that there was no significant difference in expression of 

these genes between CRPC and HNPC in both Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ 

and Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)Δ/+ models (Figure 4.4.5).  This corroborated 

observations from RNA sequencing analysis (Figure 4.4.3) 

 

 
Figure 4.4.5  AR, Fkbp5 and ApoF expression is similar in hormone-naïve and castration-
resistant tumours with β-catenin activation and Pten loss 
TaqMan RT-qPCR analysis was carried out on RNA extracted from castration-resistant (ADT) and 
hormone-naïve (CTRL) Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+  (top graph) and Nkx3.1CreERT2 Ptenfl/fl 

Ctnnb1(ex3)∆/+ (bottom graph) prostate tumours.  Normalised to 18S housekeeping gene and 
presented as relative quantity (RQ).  Data are presented as mean ± SD (n=3). 

 

The down-regulation of androgen-responsive gene expression observed in RNA 

sequencing data relate to advanced tumours.  However, upregulation of 
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androgen responsive gene expression has previously been observed in 

hyperplastic lesions of Ctnnb1(ex3)Δ/+ prostate tissue [149] and it was recently 

reported that castration of Pb-Cre Ctnnb1(ex3)Δ/+ mice at 16 weeks results in 

prostate regression [151], indicating that the presence of androgens and AR 

signalling are essential for cancer initiation in β-catenin-driven prostate cancer.  

Therefore, I hypothesised that expression of androgen responsive genes at early 

stages of β-catenin-driven tumour development will be similar or elevated in 

comparison to wildtype prostate tissue.  RT-PCR analysis of prostate tissue 

sampled two months post-induction, showed similar levels of AR and Fkbp5 

expression between wildtype, Ptenfl/+, Ctnnb1(ex3)Δ/+ and Ptenfl/+ Ctnnb1(ex3)Δ/+ 

(Figure 4.4.6).  However, there was a trend towards elevated ApoF expression in 

Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue compared to controls. 

These data suggest that initiation of prostate cancer driven by aberrant β-

catenin activation is dependent on AR signalling.  However, at later stages of 

tumour development AR signalling is reprogrammed, generating a pseudo-

castrate gene expression signature in androgen responsive genes and 

predisposing tumours to ADT-resistance. 
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Figure 4.4.6  Fkbp5 and ApoF are not downregulated at early stages of tumourigenesis 
The expression of AR, Fkbp5 and ApoF in hormone-naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ 
prostate tissue 2-months post-induction was compared to age-matched controls.  TaqMan RT-
qPCR analysis was carried out on RNA extracted from Nkx3.1CreERT2 wildtype, Nkx3.1CreERT2 Ptenfl/+, 
Nkx3.1CreERT2 Ctnnb1(ex3)∆/+ and Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ prostate tissue.  Normalised to 
18S housekeeping gene and presented as relative quantity (RQ).  Data are presented as mean ± 
SD (n=3). 
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4.4.2 Optimisation of ChIP protocol in tissue samples 

To understand how AR binding at target genes is altered by aberrant β-catenin 

activation, a chromatin immunoprecipitation (ChIP) assay protocol was optimised 

to study the enrichment of AR at target genes in wildtype and tumour prostate 

tissue. 

 
Figure 4.4.7  LNCaP chromatin sonication optimisation 
Image of agarose DNA gel showing analysis of the sonication pattern of chromatin prepared from 
LNCaP cells.  Cells were cross-linked with 1% formaldehyde for 10 minutes and, following lysis 
steps, were sonicated for 10, 15, 20 and 25 minutes with the Bioruptor sonicator;.24s on/24s off on 
high power setting.  After 15 minutes sonication fragments were sheared to 150-500 bp in size.  M 
= HyperLadder IV (100 bp). 

 

Initially the basic ChIP protocol was tested in the LNCaP prostate cancer cell 

line.  Cells were cross-linked with 1% formaldehyde solution for 10 minutes, prior 

to cell lysis to extract chromatin.  The sonication of chromatin then had to be 

optimised to generate fragments 200-500 bp in size (Figure 4.4.7).  This was 

achieved after 15 minutes of sonication in the Bioruptor sonicator.  The ChIP 

assay was tested using an antibody for the transcriptional repressor CTCF to 

confirm good enrichment was achieved at known CTCF binding sites in LNCaP 

cells.  Primers designed to amplify CTCF binding regions in TMPRSS2, TAL1 and 

KLK3 were used for qPCR analysis of CTCF ChIP DNA, and all three targets were 
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enriched as expected, while there was no enrichment at negative control regions 

(Figure 4.4.8) 

 
Figure 4.4.8  ChIP protocol validation using CTCF ChIP in LNCaPs 
SYBR Green qPCR analysis of CTCF target gene enrichment following ChIP CTCF using 
chromatin from parental LNCaP cells.  TMPRSS2, TAL1 and KLK3 primers correspond to known 
CTCF binding sites, while KLK nc (KLK3 negative control) and TMP nc (TMPRSS2 negative 
control) primers correspond to regions of KLK3 and TMPRSS2 where CTCF does not bind.  Target 
gene enrichment presented as percentage input (n=1).   

 

Satisfied that the basic ChIP protocol was working efficiently, I proceeded to 

optimise formaldehyde cross-linking and sonication steps in prostate tissue.  Two 

batches of wildtype prostate tissue were cross-linked with 1% formaldehyde 

immediately after dissection; one for 10 minutes and the other for 15 minutes.  

Following cross-linking, samples were lysed to extract chromatin, and each 

batch was subjected to sonication for 10, 15, 20 or 25 minutes using the 

Bioruptor sonicator.  DNA was fragmented to 100-300 bp in size following 25 

minutes of sonication in samples cross-linked for 10 or 15 minutes (Figure 4.4.9).  

In future experiments prostate tissue was cross-linked for 15 minutes and 

chromatin was sonicated for 25 minutes before use in ChIP assays. 

To select the best AR antibody for use in prostate tissue ChIP assays, ChIP was 

carried out in wildtype prostate tissue samples using the Santa Cruz sc-816X and 

sc-13062X antibodies.  In two independent ChIP experiments, greater enrichment 

of Fkbp5 and Tmprss2 was observed in the eluted DNA after using the sc-13062 

antibody to immunoprecipitate AR (4.4.10). 
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Figure 4.4.9  Optimisation of cross-linking and sonication in tissue chromatin 
Image of agarose DNA gel showing analysis of the sonication pattern of chromatin prepared from 
wildtype mouse prostate tissue cross-linked with 1% formaldehyde for 10 or 15 minutes.  Following 
lysis steps, chromatin was sonicated for 10, 15, 20 and 25 minutes with the Bioruptor 
sonicator;.30s on/30s off on high power setting.  After 25 minutes sonication, fragments were 
sheared to 150-300 bp in size, regardless of cross-linking time.  Marker = HyperLadder IV. 

  



195 
 

Chapter 4 

 

 
Figure 4.4.10  AR ChIP antibody selection 
Graphs show SYBR Green qPCR analysis of replicate AR ChIP experiments to test the yield of AR 
target gene DNA using sc-816X or sc-13062X (Santa Cruz) AR antibodies.  Fkbp5 and Tmprss2 
primers correspond to known AR binding sites.  Gapdh primers used as a negative control.  Target 
gene enrichment presented as percentage input and compared to HA ChIP negative control.   
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Tumour samples to be analysed were snap frozen immediately following 

dissection and stored at -80oC.  I wanted to compare AR enrichment in fresh and 

frozen tissue to make sure frozen tissue was suitable for AR ChIP analysis.  AR 

ChIP was carried out on chromatin prepared from fresh and frozen wildtype 

prostate tissue.  The enrichment of Fkbp5 in fresh prostate tissue was greater 

than that in frozen tissue (Figure 4.4.11).  However, Fkbp5 enrichment was 

observed in DNA eluted from AR ChIP in frozen tissue, and was significantly 

higher than negative HA ChIP and non-target controls (Figure 4.4.11). 

 

 
Figure 4.4.11  AR enrichment at Fkbp5 in fresh and frozen tissue 
Graphs show SYBR Green qPCR analysis of AR ChIP experiments to measure the enrichment of 
AR at Fkbp5 enhancer region and non-target negative control in chromatin prepared from fresh and 
frozen wildtype prostate tissue.  The intronic region of the ligand-dependent nuclear receptor 
corepressor-like (Lcor) gene was used for non-target control primers.  Target gene enrichment is 
presented as percentage input and compared to HA ChIP negative control. (FRZ signifies frozen 
samples.) 
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4.4.3 Enrichment of AR binding at target genes is altered in β-
catenin-driven prostate cancer 

I proceeded to analysis AR enrichment at target genes in wildtype and hormone-

naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tissue that had been snap 

frozen immediately after dissection. 

 

 
Figure 4.4.12  Hormone-naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ tumours have decreased 
enrichment of AR binding at Fkbp5 compared to wildtype 
Graphs show SYBR Green qPCR analysis of AR enrichment at Fkbp5 in wildtype (n=2) and 
Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ (n=3) prostate tissue.  Upper graph shows combined analysis of 
Fkbp5 enrichment in AR ChIP DNA samples for biological replicates; lower graph shows data for 
each sample.  Fkbp5 enrichment presented as percentage input and compared to HA ChIP 
negative control. (* p value <0.05; analysed by unpaired, two-tailed student t-test, compared to 
wildtype ChIP AR).  Data are presented as mean ± SD. 
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There was a significant decrease in AR enrichment at the Fkbp5 enhancer 

binding site in tumour compared to wildtype prostate tissue (Figure 4.4.12).  

This correlated with decreased Fkbp5 mRNA expression changes observed in 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours (Figure 4.4.4).  A similar decrease in 

AR enrichment at the ApoF promoter region was also observed (Figure 4.4.13), 

while there was no significant enrichment in non-target negative control (Figure 

4.4.14). 

 

 
Figure 4.4.13  Hormone-naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ tumours have decreased 
enrichment of AR binding at ApoF compared to wildtype 
Graphs show SYBR Green qPCR analysis of AR enrichment at ApoF in wildtype (n=2) and 
Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ (n=3) prostate tissue.  Upper graph shows combined analysis of 
ApoF enrichment in AR ChIP DNA samples for biological replicates; lower graph shows data for 
each sample.  ApoF enrichment presented as percentage input and compared to HA ChIP negative 
control.  (** p value <0.01; analysed by unpaired, two-tailed student t-test, compared to wildtype 
ChIP AR).  Data are presented as mean ± SD. 
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Figure 4.4.14  No enrichment of AR binding is observed at non-target negative control 
Graphs show SYBR Green qPCR analysis of AR enrichment at non-target gene negative control in 
wildtype (n=2) and Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)∆/+ (n=3) prostate tissue.  The intronic region of 
the Lcor gene was used as a non-target control.  Upper graph shows combined analysis of non-
target gene enrichment in AR ChIP DNA samples for biological replicates; lower graph shows data 
for each sample.  Non-target enrichment presented as percentage input and compared to HA ChIP 
negative control.  (ns = not significant; analysed by unpaired, two-tailed student t-test, compared to 
wildtype ChIP AR).  Data are presented as mean ± SD. 

 

ChIP-qPCR data indicated that the level of AR binding enrichment at target 

genes correlated with transcript expression.  At least 3 ng DNA was acquired 

from each ChIP assay and samples have been sent for whole genome sequencing 

analysis to identify AR binding regions in wildtype prostate, and how this 

enrichment is altered in hormone-naïve tumours with β-catenin activation and 

Pten loss. 
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4.5 Discussion 

Wnt/β-catenin activation and PTEN loss are both associated with lethal 

metastatic CRPC in men [99].  Mice which develop advanced prostate tumours, 

as a consequence of genetic alterations that drive aberrant β-catenin activation 

and Pten loss, become resistant to ADT and progress to CRPC.  Using the 

Nkx3.1CreERT2 system, I have generated novel pre-clinical in vivo models for CRPC 

with β-catenin activation (Ctnnb1(ex3)Δ/+) alone and in combination with 

heterozygous (Ptenfl/+) or homozygous (Ptenfl/fl) Pten loss.  Only one of five 

Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ mice developed detectable CRPC, following castration 

at 7 months post-Cre induction.  Nonetheless, this confirms that β-catenin 

activation does promote tumour cell growth and proliferation post-castration, as 

previously described [149].   

ADT provided no survival advantage to Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ mice 

when they were castrated 7 months post-induction.  Although overall tumour 

burden was reduced at endpoint in comparison to intact controls, mice reached 

clinical endpoint due to weight loss and decreased activity, in the absence of 

obvious macroscopic evidence of widespread metastasis.  This is relevant to 

clinical CRPC in that the prostate is often small, with low tumour load within the 

prostate, and patients develop paraneoplastic symptoms, such as weight loss and 

fatigue [200].  While Nkx3.1CreERT2 Ptenfl/fl Ctnnb1(ex3)Δ/+ ADT-treated mice lived 

~3 months longer than controls, there was no significant difference in the 

endpoint tumour burden in this aggressive model of CRPC. 

Castration resistant Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate tumours are 

highly proliferative, correlating with nuclear β-catenin expression in a large 

proportion of tumour cells.  Despite observing reduced levels of Pten expression, 

survival of tumour cells was not fuelled by PI3K/Akt signalling, as indicated by a 

lack of phospho-Akt expression.  Critically, loss of nuclear AR expression 

indicates that classical AR signalling is not reactivated in this model of CRPC and 

growth and proliferation, therefore, occurs through alternative mechanisms.  

Similar observations were made in the Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ castration-

resistant tumour, demonstrating the role of β-catenin activation in driving the 

transition from HNPC to CRPC.   
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Nkx3.1 loss of function in the mouse prostate is reported to cause cancer 

initiation [175], demonstrating the tumour suppressive role of Nkx3.1.  Cre 

expression using the Nkx3.1CreERT2 system effectively results in heterozygous loss 

of Nkx3.1.  While the histology of Nkx3.1CreERT2 wildtype mice, 12-months post-

castration, showed little evidence of cancer initiation, castrated Nkx3.1CreERT2 

wildtype mice have reduced Pten, increased Akt activation and loss of nuclear 

AR.  This does not result in proliferation but may increase pro-survival signalling 

and stress in the prostatic epithelium.  Co-operation between Nkx3.1 and Pten 

haploinsufficiency in mouse prostate tissue has previously been shown to lead to 

invasive adenocarcinoma in aging mice [164] and androgen-independent growth 

following castration [201].  However, we did not find evidence of this in prostate 

tissue from Nkx3.1CreERT2 Ptenfl/+ mice 12 months post-induction, indicating that 

the heterozygous loss of Nkx3.1, as result of induction, does not have a potent 

co-operative effect in this model. 

The tumours that developed resistance to ADT were characterised by elevated 

expression of Wnt pathway components.  Elevated Myc expression in 

Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ tumours indicated that there was increased 

canonical Wnt pathway activity, which drives cell cycle progression, protein 

synthesis and stem cell renewal, and is a known cancer oncogene [133].  High 

levels of the β-catenin-independent, non-canonical Wnt pathway ligand, Wnt5a, 

were also expressed in CRPC.  Non-canonical Wnt signalling activates protein 

kinase C, Rho/ROCK and Rac/JAK pathways involved in cell polarity and 

migration [202].  Wnt5a is reported to play a role in the attenuation of canonical 

Wnt/β-catenin signalling [203].  It is negatively regulated by testosterone during 

prostate development [204] and has been associated with aggressive prostate 

cancer and relapse following treatment intervention [205].  As our model forces 

the hyper-activation of Wnt/β-catenin signalling in prostate epithelial cells, it is 

not clear whether the enrichment in Wnt5a is a specific consequence of aberrant 

β-catenin activation and/or Pten loss following ADT, or a more general response 

to ADT.  However, we are further investigating the potential of Wnt5a as a 

biomarker or therapeutic target for CRPC. 

Evidence of increased Wnt ligand expression in the CRPC tumours led us to test 

the efficacy of Wnt inhibition in combination with ADT.  Treatment with PORCN 

inhibitor, LGK-974, showed modest effects with respect to controls, and 
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histopathological analysis suggested there was reduced cell proliferation and β-

catenin levels following Wnt inhibition.  However, due to the variation between 

samples in each group, it was difficult to conclude whether Wnt inhibitor 

treatment increased the rate of tumour regression in prostate cancer following 

ADT.  Further work is required to assess the effects of Wnt inhibitor in prostate 

tissue, including measurement of Wnt expression in treated versus control 

tumours. 

Variations between Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ and Nkx3.1CreERT2 Ptenfl/+ 

Ctnnb1(ex3)Δ/+ mice are likely to be partly due to use of the tamoxifen-inducible 

system for Cre induction.  Induction efficiency can be affected by tamoxifen 

batch variation and administration.  In general, evidence of efficient 

recombination was observed in mice taken 2 months post-induction but tumour 

burden was not consistent at the time point established for castration.  

Additionally, the mixed background of mice may affect tumour-host interaction 

and contribute to this variation in rate of tumour development.   

The ADT/Wnt inhibitor study may benefit from better stratification of mice prior 

to treatment intervention, using a method such as CT in vivo imaging to 

determine when tumour size has reached the required threshold to commence 

treatment.  Unfortunately, this facility was not available during the course of 

this project.  An increased dose of LGK-974, if tolerated by mice, could also be 

tested if the current dose has limited effect on Wnt inhibition.  However, 

inhibiting Wnt secretion elicits some toxicity to other organs, such as skin, due 

to reliance on Wnt for homeostatic processes [206], and may result in side-

effects.  If Wnt5a is particularly important for sustaining growth and survival in 

CRPC, it may be possible to specifically target this ligand. 

The upregulation of Wnt signalling in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ CRPC 

does not lead to AR reactivation and proliferation occurs independently of 

classical AR signalling.  A pseudo-castrate gene expression signature was 

associated with aberrant β-catenin activation in hormone-naïve prostate cancer 

and this pattern of androgen-responsive gene expression was not greatly altered 

in CRPC.  In corroboration with published evidence that β-catenin activation 

downregulates AR signalling during progression to adenocarcinoma [150], this 

suggests that β-catenin is capable of reprogramming AR signalling, which may 
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promote resistance to ADT in invasive prostate tumours.  AR reprogramming has 

previously been observed in Pten null prostate tumours, and was attributed to 

activation of PI3K/Akt bypassing the need for AR signalling [119].  I have shown 

in Chapter 3 that β-catenin activation drives progressive loss of Pten in advanced 

Pb-Cre Ctnnb1(ex3)Δ/+ prostate tumours and also observe loss of Pten in advanced 

Nkx3.1CreERT2 Ctnnb1(ex3)Δ/+ tumours.  This may indicate co-operation between β-

catenin and Pten loss is required to drive the pseudo-castrate gene signature.  

However, tumours harbouring β-catenin activation retain nuclear AR and do not 

have high levels of PI3K/Akt, indicating that two different mechanisms are at 

play in these and Pten null tumours.  Each may predispose HNPC tumours to 

ADT-resistance but further work is required to understand the mechanisms of AR 

reprogramming and their co-operation in these models.  Furthermore, there 

were a handful of genes that did not follow the castrate pattern of expression in 

hormone naïve tumours.  These were not investigated in the scope of this 

project but their roles and regulation pre- and post-castration may be important 

in the development of CRPC. 

Fkbp5, ApoF, Timp4 and Tmem97 expression was down-regulated in wildtype 

prostate tissue following castration [119] and in β-catenin-driven HNPC.  

However, their expression was not further downregulated in CRPC with β-catenin 

activation.  Fkbp5 is known to play a major role in the activity of steroid 

receptors, including androgen receptor, through complexes formed with heat-

shock protein 90 (Hsp-90) [207].  The downregulation of Fkbp5 expression itself 

is indicative of AR reprogramming.  ApoF, also known as lipid transfer inhibitor 

protein (LTIP), has reported roles in HDL metabolism and reverse cholesterol 

transport, and has been found to reduce HDL cholesterol metabolism when 

overexpressed in mice [208].  However, another study on the effects of ApoF 

deficiency did not show any significant change in HDL cholesterol metabolism 

[209] and there are no reports of its role in prostate cancer.  Timp4 is an 

endogenous inhibitor of matrix metalloproteinases (MMPs) and the decline in 

TIMP-4 expression has been associated with invasive prostate cancer [210].  

MMPs, also known as matrixins, are key regulators of cell-cell and cell-

extracellular matrix interactions and are associated with the tumour 

microenvironment in cancer, promoting tumour progression, invasion and 

immune escape [211].  Therefore, Timp4 loss may correlate with increased MMPs 
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activity in tissue, contributing to aggressive tumourigenesis.  Tmem97, also 

known as MAC30, plays a role in cholesterol metabolism [212] and its 

downregulation has been associated with the inhibition of proliferation and 

migration in gastric cancer cells [213], while its overexpression has been 

correlated with poor prognosis in breast cancer [214].  The mechanisms by which 

the downregulation of Fkbp5, ApoF, Timp4 and Tmem97 expression elicits 

effects in HNPC driven by β-catenin activation are unclear.  Further work is 

required to ascertain the clinical significance of expression changes in these 

genes. 

AR ChIP experiments in hormone-naïve Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ 

prostate tissue confirmed that lower expression of Fkbp5 and ApoF correlated 

with lower AR binding enrichment at these genes.  This indicates that β-catenin 

activation alters AR binding at target genes, perhaps by sequestering AR or due 

to competition for binding with other transcription factors regulated by β-

catenin, and, in this way, AR signalling is reprogrammed.  Whole genome 

sequencing of AR ChIP DNA samples from wildtype and Nkx3.1CreERT2 Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tumour tissue will help to identify changes in AR binding 

enrichment at target genes.  ChIP sequencing data can be overlaid with RNA 

sequencing gene expression data to identify the functional effects of changes in 

AR enrichment at target genes, which are associated with β-catenin activation in 

tumours. 

Work so far has investigated the effects of ADT in advanced stages of prostate 

cancer, but experiments have been set up to investigate resistance at early 

stages of tumourigenesis in mice castrated 1 month post-induction.  Published 

data suggests that, at early stages of tumourigenesis, prostate tissue will regress 

in response to ADT regardless of β-catenin activation [151] or Pten loss [118].  

Indeed, our data show that AR signalling in Ctnnb1(ex3)Δ/+ and Ptenfl/+ 

Ctnnb1(ex3)Δ/+ tissue is comparable to wildtype 2 months-post induction, with a 

trend towards upregulation of AR and ApoF expression in Ptenfl/+ Ctnnb1(ex3)Δ/+ 

prostates.  It is interesting to note that Ptenfl/+ prostate tissue develops PIN at 

12 months post-induction and increased expression of AR and Fkbp5 was 

observed at this time point, correlating with early tumourigenesis in this model. 
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While it appears that ablation of androgens at early stages of prostate 

tumourigenesis effectively attenuates tumour progression [151], further work is 

required to establish the stage at which ADT-resistant cells emerge in tumours 

driven by β-catenin activation.  Having confirmed that CARNs remain in 

regressed prostate tissue following castration and are regenerated after AR 

reactivation, as previously described [23], we can also use the Nkx3.1CreERT2 

system to study whether genetic alterations such as β-catenin mutation and Pten 

loss can drive regeneration and tumourigenesis in these cells following ADT and 

without androgen replacement.  Work is ongoing to study the effects of 

tamoxifen-induction of Cre at 1 month post-castration in Nkx3.1CreERT2 Ptenfl/fl 

Ctnnb1(ex3)Δ/+ mice in comparison to Nkx3.1CreERT2 Ptenfl/fl controls.  Initial 

experiments have been initiated using this aggressive prostate cancer model 

which is likely to drive more pronounced tumourigenic effects.  In the future, 

RFP can be used as a marker in our Nkx3.1CreERT2 prostate cancer models to 

monitor the role of CARNs in CRPC. 

In summary, ADT is having an incomplete effect on the treatment of advanced, 

invasive prostate cancer driven by aberrant β-catenin activation, leading to 

CRPC.  Higher grade tumours have hyper-activation of multiple pro-growth, pro-

survival pathways, making them less reliant on AR signalling.  Therefore, tumour 

cells can quickly overcome AR loss as a consequence of ADT, particularly if a 

proportion of tumour epithelial cells have adapted to actively proliferate in a 

pseudo-castrate environment.  This highlights the value of using a combinatorial 

therapeutic approach from the outset to eradicate tumour cells that may be pre-

disposed to ADT-resistance, while also targeting ADT-responsive cells. 
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5.1 Final Summary 

Prostate cancer is a highly heterogeneous disease, with varying risk of cancer 

progression following diagnosis.  Current methods of diagnosis by serum PSA 

testing and histopathological Gleason score of needle biopsies have limited 

prognostic capability.  To effectively manage prostate cancer treatment, better 

diagnostic biomarkers require to be developed in order to distinguish between 

cancers with high-risk of progression to locally advanced and metastatic disease, 

and those that will remain indolent.  At least 20% of patients develop locally 

advanced and metastatic prostate cancer and ADT is generally the first line 

therapy for these men.  Prostate cancers invariably develop resistance to ADT, 

leading to lethal metastatic CRPC.  Earlier detection and therapeutic 

intervention may avoid progression to locally advanced disease and the 

requirement for ADT.  However, this does not benefit patients with locally 

advanced disease at the time of diagnosis.  Therefore, it is essential that 

mechanisms driving aggressive prostate cancers and castration-resistance are 

understood in order to improve treatment options for these patients. 

Over the past 5 years, researchers have made a concerted effort to understand 

prostate cancer evolution and molecular aberrations associated with poor 

prognosis, through phylogenic mapping and molecular profiling of clinical 

prostate cancer samples.  In one study, Markert et al. [100] identified five 

molecular subtypes that could be used to stratify prostate cancer patients, in a 

watchful-waiting cohort, according to risk of cancer progression and survival 

outcome.  This demonstrated that a number of patients initially diagnosed with 

low Gleason score prostate cancer progress to aggressive disease.  Prostate 

cancers harbouring an ESC-like signature, MYC activation, PTEN loss, and 

increased proliferation were the most aggressive and correlated with the poorest 

prognosis [100].  MYC activation is indicative of Wnt/β-catenin pathway 

activation and PTEN loss with PI3K/Akt pathway activation.  Both pathways are 

frequently deregulated in aggressive, metastatic prostate cancer [41] and 

enriched in lethal metastatic CRPC [99], illustrating the significant role they play 

in aggressive and treatment-resistant disease.  Furthermore, data from our 

laboratory confirms that co-occurrence of nuclear β-catenin and PTEN loss in 

Gleason score 3-5 prostate cancers positively correlates with poor survival 

outcome. 
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Clinically, molecular profiling offers a means of earlier diagnosis and better 

prediction of patient prognosis.  From a research perspective, it has highlighted 

the genetic aberrations associated with aggressive prostate cancers that 

currently have limited treatment options.  Investigation into the biological co-

operation between aberrations that drives aggressive prostate cancer, and 

elucidation of alterations that may confer resistance to treatment, is required to 

inform novel strategies for therapy and prostate cancer management.  

Therefore, this project was initiated to investigate the role of canonical Wnt 

pathway activation and its co-operation with PTEN loss during prostate cancer 

initiation and progression, and in the emergence of castration-resistant disease. 

Using pre-clinical transgenic mouse models with prostate-targeted, heterozygous 

deletion of Ctnnb1 exon3, I have shown that constitutive activation of β-catenin 

drives prostate cancer initiation and ultimately leads to advanced 

adenocarcinoma, with a clinical endpoint of ~12 months in the Pb-Cre model, 

evidence of which has only recently been reported [151].  Consistent with 

clinical data [99, 156] and a previous mouse study [149], β-catenin-driven 

tumours develop castration-resistance, with cells continuing to proliferate 

following ADT. 

Concurrent heterozygous deletion of Pten exon5 increases the rate of cancer 

progression, and Pten null tumours with β-catenin activation have the shortest 

latency and poorest survival outcome.  This dose-dependent effect of Pten loss 

demonstrates the co-operation between β-catenin and Pten loss in aggressive 

prostate cancer, corroborated by recently published data from a similar mouse 

model [138].  Pten loss increases cell survival signals through PI3K/Akt pathway 

activation and increased expression of survivin, while β-catenin activation drives 

increased levels of Cyclin D1 and Myc, driving cell cycle progression and 

proliferation.  In this way, PI3K/Akt and Wnt/β-catenin signalling pathways co-

operate to drive aggressive prostate cancer.  

There is evidence to suggest that PTEN loss is able to activate Wnt/β-catenin 

signalling, via Akt phosphorylation of GSK3β and inactivation of the β-catenin 

destruction complex, independently of Wnt signalling [153, 154].  However, β-

catenin was not required for tumourigenesis in a Pten null prostate cancer 

mouse model [138], suggesting little impact of this mechanism in prostate 
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tumourigenesis, while mechanisms for PTEN modulation by β-catenin have not 

been reported. 

I have provided evidence that β-catenin-driven prostate tumourigenesis is 

limited by Pten and overcomes Pten-mediated tumour suppression to facilitate 

cancer progression (Figure 5.1.1).  Consistent with previous observations in 

intestinal stem cells [182], the proliferation of prostate cells with nuclear β-

catenin is ROS-dependent.  During β-catenin-driven cancer initiation, increased 

ROS correlates with elevated expression of Rac-GEFs, Tiam1 and Vav3, and 

higher levels of active Rac1-GTP, which mediates ROS production through 

interaction with the NOX signalling complex [182].  Elevated ROS, in turn, drives 

the phosphorylation, stabilisation and nuclear accumulation of Pten observed in 

Ctnnb1(ex3)Δ/+ PIN lesions.  Although this contributes to phosphatase-independent 

Pten/p53-mediated growth arrest in the nucleus [110, 112], it simultaneously 

reduces levels of cytoplasmic Pten and relieves phosphatase-dependent Pten 

tumour suppression at the cell membrane.  This results in low levels of Akt 

activation, which is sufficient for cell survival.  While Pten/p53-mediated growth 

arrest contributes to the increased latency of prostate tumours with β-catenin 

activation alone, it is not sufficient to stop progression to adenocarcinoma.  

Thus, β-catenin modulates Pten by a ROS-mediated mechanism to overcome 

endogenous tumour suppression, and activates downstream targets, including 

Myc and Cyclin D1, which drive tumour growth and proliferation. 

The quenching of ROS by NAC treatment in Pb-Cre Ctnnb1(ex3)Δ/+ mice reduces 

nuclear Pten, increases cytoplasmic Pten and abrogates Akt activation and cell 

proliferation, demonstrating the validity of this mechanism.  The same 

experiment in Ptenfl/+ Ctnnb1(ex3)Δ/+ mice did not show a significant effect, due 

to co-operation with Pten haploinsufficiency, which conversely promotes cell 

survival and proliferation in the absence of ROS, as demonstrated in previous 

work from our laboratory [110].  The capacity for molecular aberrations, such as 

β-catenin activation and Pten loss, to determine the role of ROS in tumour 

initiation and progression has implications for the use of antioxidants for 

prostate cancer prevention.  Although oxidative stress and DNA damage are 

considered to be prostate cancer risk factors [65, 66], there has been mixed 

success in prevention trials investigating the potential of antioxidant 

supplements to reduce prostate cancer risk [68-70].  Indeed, our data suggest a 
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context-dependent role for ROS with respect to the genetic alterations 

responsible for driving prostate cancer initiation and progression and help to 

explain the variations in efficacy of antioxidant supplements for prostate cancer 

prevention. 

In addition to driving ROS-mediated modulation of Pten localisation, I have 

shown that β-catenin activation leads to downregulation of Pten expression and 

genomic loss of Pten in advanced prostate cancer (Figure 5.1.1).  Tumours 

initiated from activation of β-catenin alone, progressively lose Pten mRNA 

expression, correlating with increased expression of miRNAs 17, 18a, 19b and 21, 

which negatively regulate Pten.  Moreover, I observe a reduction in Pten copy 

number in tumour epithelial cells relative to stroma, suggesting these tumours 

become Pten haploinsufficient.  As Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate cancer 

progresses to advanced adenocarcinoma there is LOH in Pten, which accounts for 

the decrease in Pten mRNA expression beyond levels associated with 

heterozygous Pten loss.  Thus, loss of Pten occurs when there is activation of β-

catenin in tumours, placing Pten loss as a later event in prostate cancer 

evolution with respect to β-catenin activation, and is consistent with reports 

that Pten copy number loss occurs during the development of localised 

adenocarcinoma [39-41].  Elevated levels of ROS, driven by β-catenin activation, 

will increase DNA damage and are likely to contribute to genomic loss of Pten.  

This provides an explanation for the incidence of PTEN haploinsufficiency in 

human prostate cancers with canonical Wnt pathway activation, and 

furthermore, explains the frequent co-occurrence of high levels of nuclear β-

catenin and PTEN loss in aggressive prostate cancers. 

AR signalling remains the central target for treatment of locally advanced and 

metastatic prostate cancer [76], due to its pivotal role in the survival and 

proliferation of prostate cancer cells [2].  It is apparent from the literature that 

malignant prostate cells harbouring mutant β-catenin [151] or homozygous Pten 

loss [118] are ablated in response to castration at early stages of tumourigenesis.  

However, castration of Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ mice at later stages of 

tumour development leads to the emergence of CRPC.  Although a reduction in 

tumour size indicates a proportion of tumour cells are responsive to androgen 

deprivation, the remaining castration-resistant cells are highly proliferative.  

Various mechanisms have been proposed for the invariable emergence of 
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castration-resistant disease following treatment with ADT, including the 

reactivation of AR signalling due to alterations in cofactors [84].  While β-

catenin is a known AR cofactor [157], its aberrant activity does not result in 

classical AR reactivation in CRPC, demonstrated by the absence of nuclear AR in 

these tumours.  Therefore, CRPC in this model must be driven by an alternative 

mechanism, independently of classical AR signalling. 

I have identified a pseudo-castrate expression signature of androgen-responsive 

genes in hormone-naïve Ctnnb1(ex3)Δ/+ prostate cancer and propose that this is 

likely to confer resistance to ADT (Figure 5.1.1).  A similar pseudo-castrate gene 

expression signature has been identified in hormone-naive Pten null prostate 

tumours that progress to CRPC following ADT [119].  This indicates that both β-

catenin activation and Pten loss reprogram AR signalling during tumour 

progression, promoting (classical) AR-independent mechanisms for cell survival 

and proliferation.  Hence, β-catenin activation and PTEN loss are not only 

prognostic markers for poor survival outcome but also molecular biomarkers for 

high risk of developing resistance to ADT.  These data highlight the significant 

requirement for alternative methods to treat patients with aggressive prostate 

cancer, either alone or in combination with ADT, to avoid progression to lethal 

castration-resistant disease. 

By driving Pten loss, β-catenin activation facilitates the co-operation between 

pathways mediated by these two aberrations.  It is this pathway co-operation 

that drives aggressive prostate cancer by tumour intrinsic and extrinsic 

mechanisms.  I have shown that β-catenin driven tumours are characterised by 

activation of AMPK and PKA signalling pathways, which further coincides with 

the upregulation of genes involved in lipid and cholesterol uptake and transport, 

and cyclic-AMP biosynthesis.  This illustrates the enhanced nutrient uptake and 

high energy requirements of cells for survival and proliferation, and offers a 

potential axis on which to therapeutically target these tumours.  High systemic 

levels of lipid and cholesterol, associated with obesity, hypertension and 

Western lifestyle, may be etiological factors that contribute to the progression 

of highly catabolic prostate tumours.  Therefore, some patients may benefit 

from dietary intervention to lower lipid and cholesterol availability. 
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β-catenin-driven tumours are further characterised by increased mTOR 

signalling, which is enhanced through co-operation with Pten loss, via Akt 

activation.  mTOR pathway activation is indicative of increased amino acid 

uptake and energy metabolism required to fuel protein synthesis and cell growth 

[185].  However, tumours driven by canonical Wnt and PI3K/Akt pathway 

activation have been shown to be insensitive to mTOR inhibitors [193].  A recent 

study reported that mTOR pathway activation inhibits the utilisation of 

extracellular nutrients, which suppresses proliferation of highly catabolic cells 

[194].  Thus, mTOR inhibitors relieve this suppression, leading to uptake of 

extracellular amino acids as an alternative nutrient supply for highly catabolic 

cells, such as β-catenin-driven prostate tumour cells.  This may have 

implications for the use of mTOR inhibitors for patients with prostate cancers 

harbouring Wnt/β-catenin and PI3K/Akt pathway activation.  It may be advisable 

to seek alternative therapies, despite the upregulation of mTOR signalling in 

these tumours. 

Alternative therapeutic targets may be elucidated through better understanding 

of the co-operation between tumour extrinsic events associated with aggressive 

prostate tumourigenesis.  I have identified changes in cytokine expression within 

tumours that may promote cancer progression, including the upregulation of 

cytokine IL-1ra when Pten is lost.  IL-1ra dampens the effects of pro-

inflammatory cytokines [197], released following the infiltration of macrophages 

and neutrophils, during cancer initiation and tumourigenesis.  This is likely to be 

pro-tumourigenic by helping to evade anti-tumourigenic effects of innate 

immune response.  In contrast, β-catenin activation, both independently and 

concurrently with Pten loss, appears to prevent upregulation of BLC/CXCL13 in 

tumours, indicating that these tumours evade recruitment of B lymphocytes to 

tissue.  Additional work is required to link these findings to the significant 

enrichment of differential gene expression in classical, alternative and lectin-

induced complement pathways in advanced Ptenfl/+ Ctnnb1(ex3)Δ/+ prostate 

tumours.  However, it is apparent that underlying genetic aberrations within 

prostate tumours differentially modulate pro- and anti-tumourigenic effects of 

the host immune response to facilitate cancer progression. 

Finally, the emergence of CRPC in Nkx3.1CreERT2 Ptenfl/+ Ctnnb1(ex3)Δ/+ mice is 

associated with significant enrichment of the Wnt signalling pathway, including 
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upregulation of Myc and Wnt5a (Figure 5.1.1).  This suggests a role for both 

canonical and non-canonical Wnt signalling in AR-independent CRPC.  Myc 

activation drives cell cycle progression and proliferation [133], contributing to 

the continuous growth of these castration-resistant cells.  Wnt5a is negatively 

regulated by testosterone [204] and may be a useful biomarker for androgen-

independent disease progression.  Its association with aggressive prostate cancer 

and relapse following treatment [205] may also implicate Wnt5a as a therapeutic 

target for CRPC.  There is certainly potential for the use of Wnt inhibitors, to 

target both canonical and non-canonical pathways, in combination with ADT.  By 

simultaneously targeting AR-dependent and AR-independent mechanisms for cell 

survival and proliferation, aggressive prostate cancers may be effectively 

treated, avoiding the emergence of CRPC. 

 
Figure 5.1.1 Summary of the role of β-catenin in prostate cancer tumourigenesis and 
treatment resistance 
β-catenin activation must overcome Pten-mediated tumour suppression to drive prostate 
tumourigenesis.  β-catenin activation drives ROS-mediated modulation of Pten localisation, 
resulting in nuclear accumulation of Pten and activation of Akt at the membrane, which promotes 
cell survival.  β-catenin activation overcomes Pten-mediated growth arrest and drives proliferation, 
resulting in tumour initiation.  During the progression of β-catenin-driven prostate cancer, Pten 
expression is downregulated, coinciding with increased expression of microRNAs that negatively 
regulate Pten, and genomic loss of Pten.  A pseudo-castrate androgen-responsive gene 
expression signature occurs in β-catenin-driven tumours and may facilitate the emergence of 
CRPC that occurred following ADT.  β-catenin-driven CRPC progresses independently of classical 
AR signalling and Akt activation.  Instead tumour progression is associated with upregulation of 
canonical and non-canonical Wnt signalling.  Thus, Wnt inhibition (LGK-974) in combination with 
ADT may be efficacious in preventing the emergence of CRPC. 
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The mouse models used in this project reliably mimic stages of human cancer 

progression and provide novel models for CRPC.  These provide useful tools for 

the continued study of β-catenin-driven prostate cancer to identify efficacious 

therapeutic targets, and further elucidate mechanisms of treatment-resistance 

which lead to lethal CRPC.  The Nkx3.1CreERT2 system can now be further 

manipulated to study the contribution of CARNs to the emergence of β-catenin-

driven CRPC. 

5.2 Concluding Remarks 

Despite a plethora of evidence associating the upregulation of Wnt/β-catenin 

signalling and PTEN loss with aggressive and castration-resistant prostate cancer, 

the role of β-catenin in prostate cancer tumourigenesis and treatment resistance 

is unclear.  I have presented work which characterises the role of β-catenin as 

an oncogenic driver in prostate cancer, from cancer initiation to the emergence 

of castration-resistance, and confirm that concurrent deregulation of Wnt/β-

catenin and PTEN/PI3K signalling pathways drives aggressive prostate cancer 

with poor prognosis.  I have shown what I believe to be a novel mechanism for 

the evolution of prostate tumours harbouring β-catenin activation, through the 

modulation and progressive loss of Pten, explaining the significant co-occurrence 

of β-catenin activation and PTEN loss observed in the most aggressive subset of 

human prostate cancers.   

Within these tumours, pathway co-operation occurs through the activation of a 

number of intrinsic downstream signalling events that increase tumour cell 

survival, growth and proliferation, and may confer resistance to ADT by AR-

reprogramming.  Further pathway co-operation occurs through tumour extrinsic 

events, manipulating tumour-host interaction, via regulation of cytokines and 

immune response, to facilitate cancer progression.  Together these mechanisms, 

resulting from concurrent β-catenin activation and Pten loss, drive aggressive 

prostate cancer and contribute to the progression of castration-resistant disease.  

These data identify biomarkers and molecular targets that can potentially be 

exploited to inform management strategies and provide new treatment options 

for the most aggressive prostate cancers, leading to improved clinical outcome 

for these patients, and ultimately overcoming mechanisms of castration-

resistance. 
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