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Abstract 

Introduction 

Glioblastoma (GBM) is characterised by local recurrence following surgery, 

radiotherapy and chemotherapy. GBM has a poor prognosis and novel approaches 

are required. Recently, a hierarchical organisation of tumour cells in GBM has 

been proposed. This hypothesis suggests only a subset of cancer cells, termed 

‘cancer stem-like cells’ (CSCs) drive tumour growth and possess properties of 

self renewal and unlimited proliferative capacity. CSCs have been described as 

radioresistant, implicating CSCs as a determinant of tumour recurrence following 

therapy. Therefore improved patient outcomes could potentially be achieved by 

targeting GBM CSCs. Nevertheless, reports of GBM CSC radioresistance have been 

conflicting, with some authors demonstrating CSC radiosensitivity. Furthermore, 

investigations of GBM CSC radioresponse have lacked robust radiobiological 

quantification and this aspect of the CSC phenotype remains controversial.  

Aims 

To investigate the radioresponse of GBM CSCs in comparison to non CSCs, 

characterise the DNA damage response (DDR) in GBM CSCs to radiation and 

investigate effects of inhibition of DNA damage response (DDR) in GBM CSCs. 

Methods 

Primary GBM cells were cultured in CSC enriching conditions and differentiating 

(‘tumour bulk’) conditions. The radioresponse of CSC and tumour bulk cultures 

derived from single parental tumours were thus compared by clonogenic survival 

assay. DDR was analysed in CSC and tumour bulk cells via Western blotting for 

DDR phosphoproteins and flow cytometric quantification of mitotic cells. DNA 

double strand break (DSB) repair was quantified by analysis of gamma H2AX foci. 

CSCs and tumour bulk response to irradiation in combination with inhibition of 

key DDR elements (ataxia telangiectasia mutated, (ATM); ataxia telangiectasia 
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and Rad3 related, (ATR); and poly (ADP-ribose) polymerase, (PARP) by small 

molecule inhibitor agents was characterised. 

Results  

CSC cultures were tumourigenic or recapitulated pathological features of 

parental tumours in orthotopic mouse models, whereas differentiated tumour 

bulk cultures did not. CSC cultures exhibited upregulation of putative CSC 

markers relative to tumour bulk. CSC cultures were radioresistant, demonstrated 

upregulated DDR and more efficient activation of the G2/M checkpoint 

compared to tumour bulk. CSC cultures repaired DNA DSBs more efficiently at 24 

hours following irradiation. Inhibition of ATM in CSCs led to abrogation of the 

G2/M checkpoint response, reduced efficiency of DNA DSB repair and potent 

radiosensitisation. Inhibition of PARP in CSCs produced an increase in unresolved 

DNA DSBs in GBM CSCs at 24 hours post irradiation in G2 phase cells and modest 

levels of radiosensitisation. Inhibition of ATR in CSCs abrogated the G2/M 

checkpoint in CSCs efficiently and was associated with modest radiosensitisation. 

Dual ATR and PARP inhibition provided highly potent radiosensitisation of GBM 

CSCs. 

Conclusions 

GBM CSCs were shown to be radioresistant relative to tumour bulk cells due to 

upregulated DDR, in support of the hypothesis that CSCs contribute to local 

recurrence, implying a need for CSC targeted therapies. 

The inhibition of G2/M checkpoint activation and DNA DSB repair via ATM 

inhibition or combined ATR/PARP inhibition potently radiosensitised GBM CSCs 

suggesting targeting both checkpoint and DNA DSB repair is important for 

optimal radiosensitisation of GBM CSCs. This study has demonstrated that DDR is 

a potential therapeutic target for radiosensitisation of GBM CSCs. 
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Chapter 1 Introduction 

1.1 Introduction 

Glioblastoma (GBM) is the most common primary brain tumour in adults and 

remains a significant therapeutic challenge. Median survival is 12-15 months 

despite triple modality therapy consisting of surgical resection, radiotherapy and 

temozolomide chemotherapy (Stupp et al., 2005), and the disease is 

characterised by inevitable local recurrence and progression. Recent clinical 

trials of novel therapeutic agents have been disappointing (Khasraw et al., 2014, 

Eisele et al., 2014). There is therefore an urgent need to readdress our approach 

to GBM in order to develop effective therapies which can improve local tumour 

control, alleviate disabling neurological symptoms of the disease and improve 

survival for patients. 

Given the failure of novel agents with promising in vitro activity to improve 

survival from GBM in recent decades, the validity of current experimental 

models of cancer has been questioned. In particular, the relevance of serially 

passaged human cancer cell lines to recapitulate an adequate in vitro model of 

malignant disease has received attention. Intratumoural heterogeneity appears 

important in determining outcomes from oncological therapy (Marusyk and 

Polyak, 2010, Gerlinger et al., 2012, Bindra and Glazer, 2005, Patel et al., 2014) 

and the CSC theory has gained prominence in many solid tumour sites. This 

hypothesis embraces the concept of functional heterogeneity within tumour 

tissues and is rapidly gaining clinical relevance. A discussion regarding the CSC 

hypothesis relevant to GBM follows. 

1.2 CSC theory 

CSC theory suggests that the organisation of tumour tissue is hierarchical in 

nature and retains some features of the organisation of normal tissue. In this 

model of malignant tumours, cancer cells exhibit considerable functional 

heterogeneity. At the apex of the tumour hierarchy are CSCs, which are a 
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distinct population of tumour cells responsible for maintaining and driving 

tumour growth which exhibit self-renewal and unlimited proliferative potential. 

Lower in the tumour hierarchy are tumour cells which are relatively more 

differentiated and unable to drive tumour growth in the absence of the stem-

like population, since these cells lack self renewal and extended proliferative 

capacity. Cancer cells that lack stem-like properties will be referred to as 

‘tumour bulk’ cells for the remainder of this thesis. Despite the central role of 

CSCs in tumour initiation and propagation it is important to stress that tumour 

bulk cells still influence the clinical outcome of treatment of a tumour. In reality 

tumour bulk cells determine the vast majority of volume of disease in a patient, 

and this tumour compartment is therefore responsible for the symptomatic 

effects of malignant disease. This is even more so in the case of glioblastoma 

where the intracranial site of disease means that relatively small increase in 

tumour volume can cause marked symptomatic deterioration due to the 

anatomical constraints of the skull. Nevertheless, failure to specifically target 

CSC populations in glioblastoma and other solid tumour sites will inevitably be 

associated with treatment failure and recurrence of disease.  

 1.2.1 Defining CSCs  

Self renewal is the cardinal feature of CSCs, and is described as the ability of 

CSCs to undergo a cell division producing one or two daughter cells which retain 

the function of self renewal. This ensures the maintenance or expansion of the 

CSC component of the tumour upon cell division by a CSC. Other features of 

CSCs are maintained proliferation and capacity for multilineage differentiation. 

CSCs have an unlimited proliferative capacity in comparison to tumour bulk cells 

and are able to produce progeny which exhibit features of multilineage 

differentiation. CSC theory suggests that the CSC subpopulation is vital to the 

continued growth and existence of a tumour. It is only the CSC subpopulation 

with the properties of self renewal and unlimited proliferation which can 

maintain the continued growth of the malignant tissue implying key roles for 

GBM CSCs in initiating and facilitating tumour recurrence following therapy. The 

terminology employed when describing CSC theory can be confusing and 

problematic. ‘Tumour initiating cells,’ ‘tumour propagating cells,’ ‘cancer stem 
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cells’ and ‘cancer stem-like cells’ are examples of terms used in the literature 

to describe a subpopulation of cancer cells which have increased tumourigenicity 

and self renewal capability. Although self renewal links both cancerous and 

normal stem cells, it is important to stress the differences between normal stem 

cells and CSCs. In CSCs the process of self renewal is deregulated, in comparison 

to the normal stem cell population where cell division and self renewal are 

highly organised and tightly regulated processes.  It is also important to 

appreciate that the use of the term ‘CSC’ does not imply that a normal stem cell 

is the cell of origin of a particular tumour (however recent studies have 

confirmed that normal stem cells can be transformed into malignant stem cells 

(Barker et al., 2009, Lapouge et al., 2011, White et al., 2011)). A recent study 

by Liu et al suggests that although neural stem cells are the targets of DNA 

mutations, only oligodendrocyte progenitor cells derived from these mutation 

bearing neural stem cells exhibit aberrant growth and proliferation. Neural stem 

cells are therefore the ‘cell of mutation’ however the ‘cell of origin’ for 

glioblastoma is the progeny of the mutated neural stem cell (Liu et al., 2011). 

Due to these obvious differences between normal and CSCs some authors would 

judge the term ‘cancer stem-like cell’ inaccurate or inappropriate. Nevertheless 

the term ‘cancer stem-like cell’ does convey the shared properties of these 

distinct entities and offers a pragmatic solution to the difficulties in terminology 

experienced when describing this subpopulation of cancer cells.  

1.2.2 Tumour heterogeneity and CSC theory 

The work of The Cancer Genome Atlas (TCGA) (Verhaak et al., 2010) has 

described a robust gene expression classification of GBM tumours into 4 main 

subtypes of proneural, classical, mesenchymal and neural which have clinical 

utility. The classical subtype is characterised by frequent mutations or 

amplifications in the gene encoding for EGFR. Mesenchymal subtypes 

demonstrate frequent mutations in the neurofibromatosis type 1 (NF1) gene and 

the proneural subtype is characterised by mutations in the p53 gene and 

platelet-derived growth factor receptor  A (PDGFR-A) gene. These classifications 

appear to have additional clinical significance, with therapy giving greatest 

benefit in classical type tumours. An analysis of single cell RNA sequencing of 
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430 individual cells from 5 different primary glioblastomas by Patel et al (Patel 

et al., 2014) however described significant intratumoural heterogeneity in GBM, 

with the clinical subtype GBM classifiers being expressed variably across tumour 

cells within different tumours. Furthermore within individual tumours there was 

evidence of previously unappreciated heterogeneity in expression of diverse 

transcriptional programmes related to oncogenic signalling, proliferation and 

immune response. Patel et al also examined CSC populations in the GBM tumours 

sampled in their study. A ‘stemness signature’ was derived by comparison of in 

vitro CSC cultures and tumour bulk cultures derived from the patient samples 

examined. Application of the stemness signature to single cell transcriptome 

profiles revealed the existence of ‘stemness gradients’ within each of the five 

tumours examined. The authors concluded that in vitro models represented 

phenotypic extremes however in vivo there are various degrees of phenotypic 

stemness exhibited by individual tumour cells.  Expression of the stemness 

signature was most closely correlated with the proneural and classical subtypes, 

however was underrepresented in cells of the mesenchymal subtype. Survival in 

patients with proneural tumours was found to correlate inversely with 

heterogeneity of expression of other tumour subtypes. These studies illustrate 

the degree of heterogeneity between and within GBM tumours, and highlight the 

limitations of current in vitro models. 

 1.2.3 Evidence for CSCs  

Although the debate surrounding CSC theory has emerged recently, the idea of a 

hierarchy of structure existing in tumours is not new.  In the mid nineteenth 

century it was proposed that cancer originated from the remnants of embryonic 

tissues, and heterogeneity in tumour cell populations was noted by the early 

pathologists in their explorations with light microscopy. In the 1960s a series of 

experiments in which tumour cells were harvested from patients and then 

transplanted subcutaneously in autologous manner demonstrated heterogeneity 

in the ability of tumour cells to recapitulate the patient’s original tumour. Only 

injections of more than 1x106 cells resulted in tumour formation, implying a 

subset of cells was responsible for tumourigenicity (Brunschwig et al., 1965). 
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The evidence for the existence of a CSC population was initially explored in 

haematopoietic malignancies, with the demonstration of a rare, slow cycling 

leukaemic cell population which was responsible for the generation of a 

proliferative fraction (BD Clarkson, 1974). The development of fluorescence 

activated cell sorting (FACS) allowed the isolation of specific populations of 

leukaemic cells facilitating further development of the CSC hypothesis. Studies 

in acute myeloid leukaemia (AML) in the 1990s demonstrated a population of 

CD24+CD38- cells from human leukaemia patients (Lapidot et al., 1994), which 

had the ability to engraft immunocompromised mice in comparison to the 

majority of AML cells which could not. This led to the proposition of a 

hierarchical organisation of AML, with a leukaemia initiating CSC population at 

the apex of this hierarchy. Since then putative CSC populations have been 

reported in a variety of solid tumours including breast, prostate, pancreas 

(Hermann et al., 2007), head and neck (Prince et al., 2007), colon (O'Brien et 

al., 2007) and sarcoma (Wu et al., 2007). However, GBM was the first solid 

tumour site in which a CSC population was recognised. The existence of CSCs in 

GBM was first proposed by Ignatova et al who isolated clonogenic neurosphere 

forming precursors from post-surgical GBM specimens (Ignatova et al., 2002). 

Singh et al provided further evidence for the existence of GBM CSCs by 

demonstrating that intracranial tumours could be induced at very high frequency 

in vivo in immunocompromised mice by injection of as few as 100 cells which 

had been sorted on the basis of the putative stem cell marker CD133 (Singh et 

al., 2004). These tumours phenotypically resembled the patient specimen and 

could be serially transplanted. In comparison injection of up to 105 CD133 

negative cells were unable to induce tumour formation in immunocompromised 

mice. Hemmati et al undertook a study of paediatric brain tumours and 

demonstrated the presence of neurosphere forming cells which were multipotent 

and able to form tumour xenografts. These cells also showed expression of 

neural stem cell markers (Hemmati et al., 2003).  

Three recent investigations have provided important support for the concept of 

CSCs in different tumour sites. Chen et al utilised a nestin promoter driven 

transgene coding for GFP and the herpes simplex virus tyrosine kinase (HSV TK) 

which was expressed specifically in quiescent subventricular zone adult neural 
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stem cells in a genetically engineered mouse model of glioma (Chen et al., 

2012). This transgene construct was also found to be expressed in a subset of 

endogenous glioma tumour cells. On arrest of tumour proliferation in response to 

treatment with temozolomide, recurrent tumour growth was found to be driven 

by the GFP labelled CSCs. Furthermore treatment with ganciclovir (which due to 

HSV TK is toxic to cells expressing the transgene construct) and temozolomide 

resulted in inhibition of tumour development. This important study 

demonstrated the reliance of tumour recurrence and regrowth on the CSC 

population. Driessens et al utilised clonal analysis of squamous skin tumours 

using genetic lineage tracing to examine the mode of in vivo tumour growth 

(Driessens et al., 2012). This study utilised a transgenic animal model which 

allows fluorescent YFP labelling of basal papilloma cells via a tamoxifen 

regulated mutant of cre recombinase and the human keratin K14 promoter 

element which is specifically active in basal layer skin cells. Dosing of mice with 

tamoxifen was found to label around 1 in 100 basal cells with YFP mediated 

fluorescence, allowing the fates of individual cells to be followed at various 

timepoints following tamoxifen induction exposure. Tracking of fluorescently 

labelled cells demonstrated clonal expansion in the days following induction, 

however many of these clonal populations disappeared at later timepoints, 

implying that a high proportion of the originally labelled cellular population did 

not possess unlimited proliferative capacity. However a fraction of tumour cells 

had extensive proliferative capacity with CSC characteristics and these clonally 

derived populations could contribute massively to the tumour cellular 

population. Schepers et al used lineage retracing in intestinal adenomas to 

demonstrate that a subset of stem-like cells were responsible for driving growth 

of adenomas (Schepers et al., 2012). These three papers provide clear support 

for the hypothesis of hierarchical organisation of cancers and the existence of 

CSCs.  

 1.2.4 Experimental models of CSCs 

CSCs can be characterised experimentally by examining the key stem properties 

of self renewal and maintained proliferative potential.  This can be achieved via 

in vivo limiting dilution transplantation assay (LDA), which is an experimental 
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technique for quantifying the proportion of biologically active particles in a 

larger population. Low numbers of CSCs can be shown to recapitulate the 

tumour of origin when transplanted into immunocompromised mouse models, 

whilst tumour bulk cells are unable to form tumours even if much higher 

numbers of tumour bulk cells are transplanted. This represents the gold standard 

CSC assay. In order to validate CSC enriched populations of cells, LDA must be 

performed with both putative CSC and tumour bulk populations. Cell viability 

must be carefully assessed and non-malignant stromal cells excluded from 

transplantation. A wide range of cell dilutions should be used within the LDA 

study and a moderate to large number of replicates per dose should be 

performed in order to achieve a robust statistical analysis. The LDA should also 

contain concentrations of cells which give both positive and negative results. 

The CSC theory suggests that a single cell is responsible for tumour initiation 

(the ‘single hit hypothesis’) and if this holds true then there should be no 

evidence of co-operating effects between tumour cells. If the single hit 

hypothesis is not true, then tumour generation will increase greater than 

expected as cell concentration increases. The statistical methods used in LDA 

are summarised by Hu et al (Hu and Smyth, 2009). LDA studies are typically time 

and resource consuming, and consequently robust LDA data is only available in 

relatively few solid tumour types.  

There are various other laboratory assays which seek to define CSC populations, 

however these are surrogate assays and must be interpreted with care. The 

neurosphere assay was developed by Reynolds and Weiss who cultured mouse 

striatal cells in serum free medium in the presence of epidermal growth factor 

(EGF), which resulted in the death of the majority of cultured cells (Reynolds 

and Weiss, 1992). However a small proportion of cells survived and continued to 

undergo cell division, forming spherical structures termed ‘neurospheres’. Early 

neurospheres were found to be positive for the intermediate neurofilament 

protein nestin, which is highly expressed in neuroepithelial stem cells.  These 

neurospheres could then be disaggregated and plated out again in serum free 

medium to form secondary neurospheres. Neurospheres upon removal of 

mitogens (EGF and fibroblast growth factor, (FGF)) could then be shown to 

differentiate into the 3 major lineages present in the mammalian central 
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nervous system (CNS), namely astrocytes, neurons and oligodendrocytes. It is 

important to point out that only a fraction of the cells within a neurosphere 

represent CSCs, with the majority of the neurosphere being made up of CSC 

progeny (Ignatova et al., 2002). 

Neural stem cell markers have been widely used to identify CSCs. Many putative 

GBM stem-like cell markers are important antigens associated with neurogenic 

processes during development and adulthood. Whilst cell sorting of CSC 

populations based on cell surface markers has greatly facilitated study of CSCs, 

the limitations of CSC markers must be appreciated. A significant problem in the 

use of CSC markers to identify GBM CSCs is that a single universal marker for 

GBM CSCs has not yet been identified. The most commonly used CSC marker in 

GBM is CD133 (or PROM1). The exact function of CD133 is unknown. CD133+ cells 

have been shown to initiate tumour formation in immunocompromised mice 

more efficiently than CD133- cells and CD133 knockdown via shRNA impairs self 

renewal in GBM CSC populations (Singh et al., 2004). Nevertheless other authors 

have shown the ability of CD133- cells to initiate tumour formation, whilst some 

tumours have been found not to have a CD133+ population at all (Beier et al., 

2007, Wan et al., 2010). The detection of CD133 relies upon the use of 

antibodies which recognise 2 different glycosylated epitopes of CD133; AC133 

and AC141.  These epitopes can be expressed discordantly, and furthermore 

both can be absent, even in the presence of CD133 protein (Bidlingmaier et al., 

2008). The complex issues surrounding detection of CD133 epitopes may underlie 

some of the diverse outcomes documented in the literature associated with 

using CD133 as a CSC marker. Whilst CD133 is clearly associated with GBM CSCs 

in many tumours, it cannot be regarded as a universal CSC marker in GBM.  

Another cell surface marker commonly used to identify GBM CSCs is nestin. 

Nestin is an intermediate filament protein which is necessary for self renewal 

and survival of neural stem cells (Park et al., 2010). Nestin is expressed in 

subventricular zone cells and a subpopulation of GBM cells and may correlate 

with dedifferentiated status, enhanced motility, invasive potential and tumour 

initiating ability (Sanai et al., 2005, Berger et al., 2004). Many other GBM CSC 

markers have been described including L1CAM (Bao et al., 2008), Sox2 (de la 

Rocha et al., 2014), CD15 (Mao et al., 2009) and Oct4 (Ikushima et al., 2011). 
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Laterra et al have recently shown that the Oct4 and Sox2 transcription factors 

induce human glioma cells to transition to a stem-like tumour propagating state 

(Laterra J, 2014). Furthermore a paper by Suva et al recently established the 

epigenetic basis of a developmental hierarchy in GBM having identified the 

existence of a core set of neurodevelopmental transcription factors (POU3F2, 

Sox2, Sall2, Olig2) essential for GBM propagation (Suva et al., 2014). 

It is difficult to estimate the number of GBM CSC lines which are in existence 

worldwide. There are 7 commercially available glioblastoma cell lines listed by 

the American Type Culture Collection (ATCC), however the relevance of serially 

passaged commercial cell lines to contemporary models of glioblastoma has been 

questioned in view of the importance of tumour heterogeneity. Most studies of 

the CSC model of glioblastoma rely upon the establishment of primary cell 

cultures from patient samples, and therefore it is impossible to quantify the 

number of GBM CSC cultures in existence currently. The establishment of 

primary cell cultures from patient samples relies upon the selection of tumour 

cells which can adapt to in vitro growth conditions, which again raises questions 

of whether in vitro CSC models are truly representative of tumour in vivo. 

Nevertheless in vitro CSC models have been shown to recapitulate patients’ 

tumour more accurately on transplantation into in vivo murine orthotopic GBM 

models (Mannino et al., 2014, Singh et al., 2004), and study of cell lines of 

limited passage avoids the selection processes which are sometimes observed in 

extensively passaged cell lines. Most studies of the GBM CSC model utilise around 

3 to 6 different primary cell lines in order to ensure a representative study of 

GBM CSC behaviour.  

GBM CSC cultures are generally propagated in non-hypoxic conditions. McCord et 

al clearly state that their cultures were generated and maintained under 

conditions of normoxia (McCord et al., 2009), whilst other authors fail to 

describe precise culture conditions (Bao et al., 2006a, Singh et al., 2004). Gritti 

et al, who detail a protocol for the establishment of neural stem cell cultures 

from mouse brain (which has been subsequently used in the establishment of 

GBM CSC cultures by other authors in this field) suggest 95% oxygen is used at 

some stages in the propagation of stem cell cultures (Gritti et al., 1996). 
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 1.2.5 Clinical relevance of CSCs  

The CSC hypothesis proposes that only a subset of tumour cells (CSCs) is 

responsible for maintaining tumour growth and that CSCs are vital for the 

viability of tumours. This raises an important issue regarding the effectiveness of 

current oncological therapy against CSCs: if CSC theory is correct, tumour cure 

can only be possible if all CSCs are eradicated. Occasionally in clinical practice 

complete responses to therapy (based on imaging studies) are seen, only for the 

patient to relapse months later with recurrent disease. This observation could be 

explained by CSC theory. Oncological therapy may be successful in destroying 

the majority of bulk tumour cells, but ineffective in treating the relatively small 

population of CSCs, which results in clearance of macroscopic tumour but later 

tumour recurrence due to CSC proliferation. This concept is illustrated in figure 

1.1. This pattern of recurrence is familiar in GBM, with most tumours being 

locally recurrent within the initial high dose radiotherapy treatment volume of 

brain (Hochberg and Pruitt, 1980), and evidence is accumulating for the 

treatment resistant nature of GBM CSCs. It must be remembered however that 

often macroscopic disease is present following surgical resection and 

radiotherapy in GBM, nevertheless the contribution of remaining CSC populations 

is still likely to be significant as a driver of tumour repopulation and clinical 

recurrence. Chen et al demonstrated a CSC population to be responsible for 

driving tumour recurrence following temozolomide therapy (Chen et al., 2012). 

Bao et al demonstrated radioresistance in CD133+ populations, via upregulation 

of cell cycle checkpoint and DNA repair pathways, a mechanism which may 

attenuate responses to other DNA damaging cytotoxic agents (Bao et al., 2006a). 

The CSC state in other solid tumour types is associated with the expression of 

high levels of drug efflux transporter pumps conferring the ability to expel 

cytotoxic agents and enhance cell survival (Beier et al., 2011). Studies report a 

lack of consensus regarding the effects of temozolomide on GBM CSCs, with 

some CSC populations being temozolomide sensitive and others resistant.  
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Figure 1.1 Proposed clinical significance of CSC theory  

Radiotherapy preferentially eliminates tumour bulk cells, however radioresistant CSCs survive. 
CSCs repopulate the original tumour leading to clinical recurrence of the tumour many weeks or 

months following treatment 

The clinical relevance of GBM CSCs has also been investigated by reports of the 

prognostic significance of GBM CSC markers in patient samples. Most of these 

studies are of a retrospective nature and take the form of correlations between 

clinical data and quantitative or semi quantitative measurement of CSC marker 

expression (CD133 and Nestin) by immunohistochemistry, (IHC). The majority of 

these studies support a correlation between poor prognosis and CSC marker 

expression. Nevertheless studies differ in regards to how CD133 expression was 

analysed, with some authors regarding pattern of staining being important as 

well as quantification of CD133 expression. These studies are summarised in 

table 1.1. 
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Table 1.1 Studies of CSC marker expression and clinical outcome in GBM 

Evidence to support the role of GBM CSCs in determining treatment resistance is 

also provided by studies of patient tumour samples. Tamura et al analysed 

CD133 expression by IHC in recurrent GBM following treatment with radiotherapy 

and chemotherapy and compared them to index specimens obtained at first 

resection. The percentage of CD133 positive cells was found to be significantly 

higher in recurrent tumours, but only in de novo GBM (Tamura et al., 2013), 

consistent with the hypothesis that GBM CSCs are capable of surviving 

radiotherapy. In a separate study of 32 patients undergoing surgery, gamma 

knife and external beam radiotherapy, Tamura et al demonstrated accumulation 

of CD133+cells in specimens of recurrent disease, compared to infrequent 
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CD133+ cells in the original resection specimens obtained prior to adjuvant 

radiotherapy treatment (Tamura et al., 2010). These results support the 

hypothesis that GBM CSCs are radioresistant, can survive high doses of radiation 

in vivo and may play a role in initiating tumour recurrence, however may also be 

consistent with plasticity in the tumour bulk population. 

 1.2.6 Quiescence of CSCs  

It is often suggested that the CSC population is quiescent. However, the 

evidence for solid tumour CSCs being relatively quiescent in comparison to other 

tumour cell populations is not entirely clear. Often CSCs are assumed to be slow 

cycling or quiescent, reflecting their normal tissue stem cell counterparts. 

However this is likely to be an oversimplification and recent evidence has 

demonstrated the existence of both actively cycling and quiescent stem cell 

populations in the normal tissues of mammals (Li and Clevers, 2010), which has 

implications for assumed CSC quiescence. AML CSCs have been shown to be 

quiescent, (Ishikawa et al., 2007, Clarkson, 1974) however it is not clear 

whether this also applies to solid tumour CSCs. Chen et al  utilised a Nestin 

promoter driven GFP transgene in order to study GBM tumour initiating GBM cells 

(Chen et al., 2012) (described in section 1.2.2). They demonstrated that the 

subset of GFP expressing tumour cells rarely co-stained for the proliferative 

marker Ki67, whilst GFP negative tumour cells often co-stained with Ki67. This 

study may suggest that GBM CSCs are quiescent. Alternatively, the study by 

Driessens et al (Driessens et al., 2012) (also described in section 1.2.2) 

demonstrated via mathematical modelling and nucleotide labelling pulse chase 

experiments that stem tumour cell populations divide and proliferate rapidly. 

The situation is clearly complex and further investigation of CSC quiescence is 

warranted. 

 1.2.7 Maintaining stemness; the influence of tumour 

microenvironment 

Tumours are complex ecosystems comprising tumour cells and a variety of 

associated non-tumour elements, which together can be termed the ‘tumour 
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microenvironment (TME). In depth review of microenvironmental influences on 

CSC function is beyond the scope of this chapter, however a short discussion 

follows, and comprehensive review articles are available (Mannino and 

Chalmers, 2011).  

Evidence suggests that CSCs reside in a specialised microenvironment, in close 

proximity to endothelial cells in a perivascular niche (Calabrese et al., 2007). 

The perivascular niche may have a vital role in supporting CSCs and enhancing 

and maintaining the stem-like phenotype of CSCs and also in promoting 

radioresistance. The perivascular niche contains many cell types such as 

pericytes, astrocytes, macrophages, ependymal cells and extracellular matrix 

(ECM). GBM CSCs are likely to have complex interactions with all of these 

elements of their surrounding microenvironment. Residence within a 

perivascular niche appears to sustain the undifferentiated state of nestin and 

CD133 + cells and supports their proliferation (Calabrese et al., 2007). Studies of 

proximity of nestin and CD133 expressing tumour cells show them to be residing 

consistently closer to endothelial cells than nestin or CD133 negative tumour 

cells, (Calabrese et al., 2007, Christensen et al., 2008, Zeppernick et al., 2008).  

Two recent studies demonstrated the ability of CD133+ cells to differentiate 

along the endothelial lineage, allowing a subset of tumour endothelium to be 

derived directly from tumour cells (Wang et al., 2010, Ricci-Vitiani et al., 2010). 

The interactions between CSCs and endothelial cells are clearly reciprocal. GBM 

CSCs have been shown to exert a pro-angiogenic effect via VEGF production (Bao 

et al., 2006b, Folkins et al., 2009, Salmaggi et al., 2006). Endothelial cells also 

appear to provide vital support for CSC maintenance. Hovinga et al 

demonstrated that removal of endothelial cells from a three dimensional GBM 

CSC culture system resulted in a >50% reduction in neurosphere production from 

CSC cells (Hovinga et al., 2010). Experiments using co-culture systems have also 

noted a survival advantage for endothelial cells cultured in the presence of 

glioma cells following exposure to radiation (Brown et al., 2004, Hovinga et al., 

2010).  Paracrine signalling by CD133+ cells also appears to increase the 

apoptotic threshold of endothelial cells, aiding the preservation of the 

perivascular niche. Infanger et al recently used a 3D in vitro scaffold culture 

system to demonstrate the role of paracrine interleukin 8 signalling in enhancing 
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CSC maintenance and growth in vitro and tumour formation in vivo (Infanger et 

al., 2013). The tumour microvasculature also appears to be radioresistant in 

GBM. Borovski et al demonstrated that tumour microvascular endothelial cells 

(tMVECs) are highly radioresistant, and become senescent following radiation 

(Borovski et al., 2013). Senescent tMVECs were detectable in human tumour 

samples following irradiation. Senescent tMVECS remained viable and were 

capable of supporting CSC growth with the same efficacy as non senescent 

tMVECs. 

Components of the ECM also appear to have an important influence on CSC 

function.  The perivascular niche contains many components which are unique to 

its anatomical situation. The vascular basement membrane contains collagen, 

fibronectin, laminin, heparan sulphate, entactin and vitronectin, whilst tumour 

ECM surrounding blood vessels contains tenascin C, secreted protein acidic and 

rich in cysteine (SPARC) and thrombospondin. Most of these components are not 

found elsewhere in the tumour ECM. Heparan sulphate has the ability to bind 

basic fibroblast growth factor (bFGF) (Folkman et al., 1988). bFGF has the ability 

to promote growth of CSCs and inhibit radiation induced apoptosis in GBM CSCs 

in vitro (Bao et al., 2006b). Tenascin C may also have a radioprotective role in 

the GBM CSC perivascular niche (Mannino and Chalmers, 2011, Midwood and 

Orend, 2009, Riekki et al., 2001).  

 1.2.8 Underlying mechanistics of CSC phenotype 

Whilst the CSC phenotype has in general been well characterised, the 

mechanisms underlying expression of the CSC phenotype are only beginning to 

be elucidated. The importance of epigenetic regulation in cancer initiation and 

progression is now established and it is hypothesised that epigenetic programs 

may be partly responsible for intratumoural heterogeneity and may distinguish 

CSCs from tumour bulk cells. This has been explored in a recent paper by 

Rheinbay et al (Rheinbay et al., 2013) which presented a comparative analysis of 

GBM CSC chromatin state which revealed widespread activation of genes in CSCs, 

the transcription of which would normally be repressed through modulation of 

chromatin structure by polycomb repressor proteins in comparison to normal 
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human astrocytes and differentiated GBM tumour cells. A large set of 

developmental transcription factors was found to be activated in GBM CSCs by 

this process. The most important of these transcription factors was ASCL1, which 

activates Wnt signalling. Wnt signalling has been shown to be important in 

maintaining an undifferentiated state in malignant cells, (Zheng et al., 2010). It 

was speculated that diminished epigenetic silencing and promiscuous 

transcription factor activation may provide CSCs with a selective advantage in 

being able to adapt to the requirements of the malignant state. 

 1.2.9 Controversies surrounding the CSC hypothesis 

The existence of CSCs and the main tenets of the CSC hypothesis have been 

questioned. Quintana et al found frequencies of tumour initiating cells in 

melanoma (defined as single tumour cells with the ability to recapitulate 

tumours in immunocompromised mice) to be as high as 25%, and furthermore the 

frequency of tumour initiating cells within the tumour appeared to change 

depending on the degree of immunocompromise of the host mouse (Quintana et 

al., 2010). This supported arguments that the CSC hypothesis was merely a 

reflection of experimental artefact, and that rather than being a property of a 

specific tumour population subset, tumourigenicity was inherent to most 

malignant cells. However the definition of a CSC does not rely upon CSC 

frequency within a tumour. There is evidence of variation between cancers in 

terms of the frequency of CSCs and it is possible that in some tumours CSCs 

make up the majority of the cancer cell population. These tumours will display a 

very shallow hierarchy in terms of cell function, and indeed could be viewed as 

being homogenous. The CSC hypothesis may not apply to every cancer type.   

Further debate surrounds the concept of stochastic clonal evolution of cancer 

proposed by Nowell in 1976 and the apparent static phenotype of CSCs (Nowell, 

1976). This model suggests that essentially every cancerous cell within a tumour 

population has a similar malignant proliferative potential, and that intrinsic (e.g. 

genetic instability) and extrinsic (e.g. hypoxia, immune surveillance) factors 

determine evolutionary pressures within a tumour and select for more aggressive 

and better adapted subclones within the tumour cell population.  It has been 
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argued that an infrequently occurring cell population within a tumour would be 

unable to acquire the necessary genetic variation to drive the clonal evolution of 

ever more aggressive and treatment resistant populations which become more 

prominent as a cancer progresses. However, the CSC hypothesis and the 

stochastic clonal evolution models of cancer are not mutually exclusive and can 

be reconciled. The targets for clonal selection within tumours must exhibit self 

renewal, since otherwise clonal exhaustion would occur and these populations 

would quickly die out. Therefore it seems very likely that genetic diversity 

within CSC populations is the driver of clonal diversity within tumours.  

Consistent with this, several authors have shown the existence of genetically 

diverse subclones of leukaemia initiating cells from a single parental tumour 

(Clappier et al., 2011, Notta et al., 2011, Anderson et al., 2011). Furthermore 

functionally distinct subclones were related to each other by branching evolution 

(Notta et al., 2011). Evidence for heterogeneity within GBM CSC populations is 

presented in the paper by Patel et al, where single cell RNA sequencing revealed 

the existence of a ‘stemness gradient’ within the tumour CSC subpopulation 

(Patel et al., 2014).   

It is likely that the organisation of solid tumours lies somewhere between the 

purist hierarchical stem cell model and the stochastic homogeneity suggested by 

Nowell. There is likely to be some plasticity in the cancer stem cell state, (i.e. 

some differentiated tumour cells are likely able to dedifferentiate into more 

stem like cancer cells) however not to the degree where the cancer stem cell 

model is trivialised. There is now clear evidence for a hierarchical organisation 

of solid tumours, although this likely varies between and within different tumour 

sites, with some tumours displaying a very clear or ‘vertical’ hierarchy, and 

other cancers having a less defined or ‘shallow’ depth of hierarchy. 

 1.2.10 GBM CSCs and radiotherapy resistance 

The idea of CSCs being the underlying cause of radioresistance in GBM is 

appealing, however evidence presented for the radioresistance of GBM CSCs has 

not been conclusive. 
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Bao et al published a seminal paper in which the authors described the 

radioresistance of a CD133+ population of GBM tumour cells (Bao et al., 2006a). 

The authors demonstrated enrichment of CD133+ populations 48 hours after 

irradiation in short term cultures from human glioma xenografts and this could 

also be described after irradiation of in vivo glioma xenografts. Irradiated 

tumour cultures were enriched for CD133+ cells and displayed reduced latency 

of tumour formation when transplanted in immunocompromised mice, 

supporting the theory that CD133+ cells were responsible for tumour recurrence 

after irradiation. Images of colony formation assays were displayed as evidence 

of increased survival after 5Gy in CD133+ cells in comparison to CD133- cells; 

however formal clonogenic survival assays accounting for plating efficiency were 

not performed in this paper. A lower rate of apoptosis in CD133+ cells was 

proposed to be the main mechanism of preferential survival as shown by 

decreased activation of caspase 3 and annexin V staining. The main focus of this 

study centred upon the investigation of altered DNA damage response (DDR) in 

GBM CSCs. DDR is a term which describes the multitude of cell cycle checkpoint 

activation and DNA repair pathways instigated by a cell following DNA damage, 

and will be discussed in more detail later in this chapter. Examination of DDR to 

radiation in this study showed CD133+ cells have upregulated DDR at baseline 

and in response to radiation. This took the form of increased levels of 

phosphorylated DDR proteins such as phosphorylation of ataxia telangiectasia 

mutated (ATM) at serine 1981 (pATM s1981), phosphorylation of radiation 

sensitive17 (RAD17) at serine 645 (pRADs645), phosphorylation of checkpoint 

kinase 1 (Chk1) at serine 345 (pChk1 s345) and phosphorylation of checkpoint 

kinase 2 (Chk2) at serine 19 (pChk2 s19). These data were described as evidence 

of enhanced checkpoint response in GBM CSCs, although a detailed analysis of 

G1/S and G2/M checkpoint kinetics was not undertaken. The alkaline comet 

assay was employed as an assay of DNA repair. CD133+ cells were found to repair 

DNA damage more efficiently at 18 and 30 hours post 3Gy compared to CD133- 

cells. However the alkaline comet assay is mainly a measure of DNA single strand 

breaks (SSB), which are generally believed to be of less consequence than DNA 

DSBs to the fate of the irradiated cell. Gamma H2AX foci resolution as a measure 

of DNA DSBs was also found to be enhanced at 24 hours following 3Gy in CD133+ 

populations, however this was not performed in a cell cycle phase specific 

manner. Addition of a Chk1/2 inhibitor debromohymenialdisine appeared to 
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reverse CD133+ radioresistance, however this agent is known to have many off 

target interactions. The authors concluded that CD133+ GBM cells contribute to 

glioma radioresistance and tumour repopulation through preferential checkpoint 

response and enhanced DNA repair. 

Further work by the Bao group examined the influence of the L1 cell adhesion 

molecule (L1CAM) on the previously documented upregulated DDR of GBM CSCs 

(Bao et al., 2008). L1CAM was previously identified as a putative GBM CSC 

marker, and in this study was demonstrated to have an influence on altered 

DDR. L1CAM knockdown attenuated DNA damage checkpoint activation and 

enhanced DNA repair. L1CAM regulates expression of Nijmegen breakage 

syndrome 1 protein (NBS1), an important component of the MRN complex 

(Meiotic recombination 11 homolog (MRE11), Radiation sensitive 50 (Rad50) and 

NBS1), which is involved in DSB detection and signalling via ATM. Ectopic 

expression of NBS1 rescued the decreased checkpoint activation and 

radiosensitivity caused by L1CAM knockdown. 

Comparison of the DDR of GBM CSCs to the DDR of neural progenitor cells (NPCs) 

was carried out by Lim et al (Lim et al., 2012). This study demonstrated 

increased survival of GBM CSCs relative to the NPCs by cell viability assay 

following irradiation which appeared to be related to an upregulation of the 

homologous recombination DNA DSB repair pathway in the GBM CSC populations. 

Non homologous recombination (NHEJ), another important DSB repair pathway, 

was not increased in the GBM CSC populations, as measured by a plasmid assay 

of NHEJ.  Quantification of Rad51 foci confirmed the finding of more efficient 

HR in GBM CSCs in comparison to NPCs. In addition, GBM CSCs were found to 

exhibit radioresistant DNA synthesis and a defective G1/S and intra S checkpoint. 

Levels of phosphorylated ATM were lower in GBM CSCs compared to NPCs and 

the authors speculated that deficient checkpoints facilitated S phase entry and 

preferential use of HR in S phase and G2. Nevertheless, deficiencies in G1/S 

checkpoints are common in many tumours due to loss of p53, and are not a 

unique feature of GBM CSCs, therefore the proposed mechanism does not explain 

radioresistance of GBM CSCs in comparison to tumour bulk cells. The finding of 

lower ATM activity appears at first to be at odds with the findings of other 
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investigators who have documented preferential activation of the DDR in GBM 

CSCs compared to differentiated tumour cells. However the activity of DDR 

elements in GBM CSCs may still be lower than NPCs, as no comparisons were 

made in this study between GBM CSCs and tumour bulk cells.  

Short et al investigated the effects of targeting homologous recombination 

repair in newly established glioblastoma cell lines (Short et al., 2011). This study 

demonstrated that GBM specimens in comparison to normal human astrocytes 

exhibited upregulation of Radiation sensitive 51 protein (Rad51) and other DNA 

repair proteins. Rad51 levels were found to be inversely proportional to 

radiosensitivity and downregulation of Rad51 induced sensitivity to 

temozolomide treatment. Newly established cell lines which demonstrated 

expression of the CD133+ marker were extremely sensitive to Rad51 knockdown, 

suggesting a vital role of HR repair in GBM. 

The role of the brain microenvironment in governing radiation responses of 

CD133+ cells was investigated by Jamal et al (Jamal et al., 2010). This study 

utilised CD133+ cells from a primary GBM cell line and analysed DDR following 

radiation exposure in vitro and in vivo as orthotopic xenografts. This study 

initially compared the in vitro gamma H2AX and 53BP1 response to irradiation in 

CD133+ cells in neurobasal media versus CD133+ cells in differentiating media. 

This showed that CD133+ cells in neurobasal media exhibited higher levels of 

gamma H2AX foci following radiation at timepoints ranging from 0.5 hours to 24 

hours in comparison to CD133+ cells grown in differentiating conditions, which 

may suggest that GBM CSCs are radiosensitive in comparison to differentiated 

GBM cells at least in vitro. However the cell cycle phase of CD133+ cells in 

neurobasal conditions was not taken into account in the analysis and the authors 

stated that a higher proportion of CD133+ cells in differentiating media were in 

phase G0/1, which may account for observed differences in gamma H2AX foci 

quantification between the CD133+ neurobasal and CD133+ differentiated 

culture populations, since the quantity of cellular DNA influences gamma H2AX 

foci numbers. Analysis of orthotopic tumour sections demonstrated faster 

resolution of gamma H2AX foci following in vivo irradiation in comparison to in 

vitro studies. Whilst demonstrating the importance of tumour microenvironment 
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for DDR to DSBs, it is unclear from this study whether this pertains specifically to 

GBM CSCs, or whether this is generally the case for both CD133+ cells grown in 

neurobasal and differentiating media. 

McCord et al described the radiosensitivity of CD133+ GBM cells in comparison to 

established glioma cell lines (McCord et al., 2009). The authors argued that 

investigating survival mechanisms of CD133+ cells which were more treatment 

sensitive than established laboratory GBM cultures would not advance 

understanding of GBM therapy resistance.  CD133+ cells were shown to be 

significantly more radiosensitive than established cell lines by clonogenic 

survival assay. Direct comparison of radiosensitivity of CD133+ and CD133- GBM 

cells was examined in 2 primary GBM cultures by clonogenic survival assay. In 

one cell line CD133+ cells were indeed radioresistant, however in the other 

primary cell line there was no difference in radiosensitivity between CD133+ and 

CD133- cells. The authors concluded that CD133+ CSC radioresistance is tumour 

dependent. No evidence for decreased levels of apoptosis following irradiation 

(as evidenced by lack of a subG1 population on FACS analysis of cell cycle) was 

found in the CD133+ populations, in contrast to the findings of Bao’s study. DNA 

repair was characterised by neutral comet and RAD51/gamma H2AX foci 

analysis. All three of these assays demonstrated defective DNA repair in GBM 

CD133+ cells compared to established glioma cell lines, with the authors 

concluding that a defect in homologous recombination repair may be 

responsible. There did not appear to be preferential activation of the G2/M 

checkpoint in CD133+ cells following irradiation by quantification of mitotic 

cells. CD133+ cells were shown to have a defective S phase checkpoint however.  

The comparison of CD133+ cells with established cell lines ignores differences in 

intrinsic radiosensitivity between different cell lines. Nevertheless the pragmatic 

question of whether the concept of CSCs actually has relevance to established in 

vitro models of GBM radiation resistance is valid. 

A further study of GBM CSC DDR was described by Ropolo et al (Ropolo et al., 

2009). The authors of this study identified GBM cell lines which expressed 

varying levels of the stem-like cell markers CD133 and nestin. The DDR following 

radiation in GBM cell lines expressing higher levels of CD133 and nestin was 
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compared to GBM cell lines which showed low or no expression of these markers. 

This approach ignores important differences in intrinsic radiosensitivity between 

unrelated cell lines. Radiation sensitivity was not in itself quantified and 

clonogenic survival assays were not performed in this study. The population 

doubling time of the CD133/nestin expressing cell lines was significantly 

elevated compared to the other cell lines examined.  One primary GBM cell line 

in this study was cell sorted according to CD133 positivity and DDR following 

irradiation was evaluated and compared between CD133+ and CD133- cell 

populations. Upregulation of the cell cycle checkpoint kinases pChk1 and pChk2 

in CD133+ cells was confirmed. However there appeared to be no evidence of 

increased DNA repair in the CD133+ population when assessed by alkaline comet 

assay or by gamma H2AX foci in comparison to CD133- populations. The authors 

concluded that prolonged doubling time and elevated levels of cell checkpoint 

kinases were responsible for increased radiation resistance in GBM CSCs, 

however enhanced DNA repair was not a feature of these cells. Again the 

approach of comparing non-isogenic cell lines presents problems. Furthermore 

evidence of altered cell cycle time and DDR phosphoprotein expression does not 

necessarily equate to increased radioresistance.  

Chang et al analysed radiation sensitivity by cell viability assay in CD133+ and 

CD133- populations of primary tumour specimens in vitro (Chang et al., 2009). 

This demonstrated enhanced survival of CD133+ populations following radiation. 

Furthermore, knockdown of silent mating type information regulation 2 

homologue 1 (SiRT1) with shRNA induced radiosensitisation in the CD133+ 

population.  SiRT1 is a NAD dependent histone deacetylase and deacetylates 

p53. It has roles in transcriptional regulation, inhibition of differentiation, 

regulation of the cell cycle and inhibition of apoptosis and tumourigenesis. 

Overexpression of SiRT1 has been associated with tumourigenesis and resistance 

to radiotherapy. There were a limited number of cell lines examined in this 

study and clonogenic survival assay was not performed.  

Zhou et al investigated the radioresistance of two commercially available glioma 

cell lines (U87 and U251) following fluorescence activated cell sorting for 

CD133+ and CD133- populations (Zhou et al., 2013). They demonstrated 
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radioresistance of CD133+ populations in comparison to CD133- populations by 

clonogenic assay, however no attempt at statistical analysis of survival curves or 

data points was made, and it is therefore impossible to comment on whether the 

differences seen are significant. Furthermore a DNA repair defect at 4 hours 

following 2Gy was demonstrated by neutral comet assay. Neutral comet assay is 

a relatively insensitive assay and usually requires high doses of radiation to 

produce measurable levels of DNA damage. Overall the findings of this 

investigation are difficult to interpret. 

In the wider literature, investigations of CSC radioresistance have been made in 

other tumour sites. Desai et al investigated CSC radioresistance in lung cancer 

(Desai et al., 2014). They utilised cell sorting of CD133+ and CD133- populations 

in order to compare radioresistance by clonogenic assay in 2 commercially 

available lung cancer cell lines; A549 and H1299. CD133+ cells were found to be 

more radioresistant in the A549 cell line, but not in the H1229 cell line. This 

study relied on CD133+ status alone as a marker of CSC phenotype, and 

enhanced tumourigenicity and self renewal of CD133+ cell populations in vivo 

was not demonstrated. A549 CD133+ cells showed more efficient DNA repair of 

DSBs at 24 hours and upregulation of DDR components, whereas H1229 CD133+ 

cells did not. Interestingly, if H1229 cells were irradiated 2 weeks prior to 

sorting, CD133+ cells could then be shown to demonstrate radioresistance 

compared to H1229 CD133- cells. The author concluded that CD133+ cells were 

able to acquire radioresistance, whereas CD133- cells were not capable of this in 

the H1229 cell line. Furthermore the authors demonstrated upregulated 

expression of genes encoding DDR components in CD133+ cells compared to 

CD133- cells by realtime PCR. This is in contrast to Western blotting studies of 

CSC DDR components which in general show upregulation of phosphorylated 

components of DDR following radiation, rather than upregulation of baseline 

protein expression levels.   

Dittfield et al investigated CD133+ as a marker of radioresistance in 10 

commercially available colorectal carcinoma cell lines (Dittfeld et al., 2010). 

The authors found that cell lines could be separated into those which had 

distinct CD133+ and CD133- populations, those which were universally CD133- 
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and those which were universally CD133+. Clonogenic survival assays were 

performed in HCT 116 CD133+ and CD133- cell populations, with no difference 

being found in radiosensitivity. The authors concluded that CD133 expression 

could not be interpreted as a marker of CSC radioresistance in the cell lines 

examined. 

Evidence for radioresistance of CSC from the current literature is therefore not 

conclusive. The initial report by Bao et al received much attention, and since 

then radioresistance has become an accepted feature of CSCs and has not been 

intensely scrutinised. Only a minority of studies have performed clonogenic 

survival assays with formal curve fitting and statistical rigour, and these studies 

have reported conflicting results regarding CSC radioresistance. Furthermore 

these data relate to a relatively small number of cell lines. Evidence of 

upregulated DDR proteins and phosphoproteins in CSCs is more compelling, 

however this does not equate to radioresistance, which can only conclusively be 

shown by the gold standard of clonogenic survival assay. A possible explanation 

for the discordant findings regarding CSC radioresistance may involve the 

reliance of studies on CD133 expression as a marker of CSC phenotype. Although 

CD133 expression appears to be a robust marker of stem-like phenotype in some 

tumours, it is evident from the studies discussed above that CD133 is not a 

universal marker for the CSC phenotype or for CSC radioresistance.   

The underlying reason for the upregulated DDR and subsequent radioresistance 

proposed in CSCs is not well understood. There appears to be an almost global 

upregulation of DDR components in CSCs. In particular phosphorylation of DDR 

proteins appears to be increased in response to irradiation; however 

phosphorylation can also be upregulated under basal conditions. Upregulation of 

DDR is not limited to a particular DDR pathway; increased levels of pATM, 

phosphorylated ataxia telangiectasia and Rad 3 related protein (ATR), 

phosphorylated DNA dependent protein kinase catalytic subunit (DNAPKcs), Poly 

(ADP-ribose) polymerase (PARP), poly (ADP-ribose) (PAR), Rad17, pChk1 and 

pChk2 have all been documented and these elements play roles in diverse DDR 

pathways including NHEJ, HR, BER and response to replication stress. Given that 

a global upregulation of DDR pathways is evident in CSCs, and this appears to be 
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a shared trait amongst CSCs, then it seems likely that the underlying stimulus or 

mechanism of enhanced CSC DDR is fundamental to the CSC state. 

Venere et al proposed one such underlying fundamental CSC state to be an 

increased level of basal reactive oxygen species (ROS) within GBM CSCs (Venere 

et al., 2014). ROS are generated by cellular metabolism, or can be induced by 

exogenous insults, such as ionising radiation. ROS induce a variety of DNA 

damage, however mainly in the form of DNA base damage and SSBs. The authors 

of this paper showed upregulated basal ROS in CD133+ cells compared to CD133- 

cells isolated from freshly dissociated GBM tumour xenografts. CD133+ cells also 

displayed higher levels of oxidative DNA damage in keeping with the finding of 

elevated ROS levels. Poly (ADP-ribose) polymerase 1 (PARP-1) is integral to the 

repair of DNA SSBs and the authors demonstrated upregulation of PARP-1 and its 

product poly (ADP-ribose) (PAR) in GBM CD133+ cells in comparison to CD133- 

cells. Inhibition of PARP using the well characterised inhibitor olaparib as a 

single agent produced considerable toxicity to CD133+ GBM cells, however had 

little effect on CD133- cells. PARP inhibition was shown to reduce neurosphere 

and in vivo tumour generation following irradiation. The authors concluded that 

the likely reason for upregulation of PARP in GBM CSCs was an increased level of 

DNA base damage and SSBs secondary to elevated basal ROS. The mechanism of 

elevated basal ROS in CD133+ cells is unknown, however the authors suggested it 

may be related to EGFR hyperactivation. This study has provided interesting 

insights into the potential underlying mechanisms of upregulated DDR in CSCs, 

however this area requires further study. 

1.3 The DNA Damage Response  

Further consideration of the issues surrounding GBM CSC radioresistance requires 

a fuller understanding of the DDR to ionising radiation in mammalian cells. There 

are multiple pathways involved in DDR, often with huge complexity and some 

redundancy in function. However in general the cellular response to DNA damage 

can be summarised by two processes (1) the activation of cell cycle checkpoints 

and (2) the initiation of DNA repair pathways. These two processes are 

complementary; the activation of cell cycle checkpoints provides time for the 
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cell to repair DNA before undergoing mitosis. If repair of DNA damage is 

successful the cell will survive and retain reproductive integrity. If not, the cell 

may die via apoptosis, mitotic catastrophe or an alternative cell death 

mechanism. This is summarised in figure 1.2. A comprehensive discussion of all 

aspects of DDR is not possible within the confines of this thesis however the 

elements of DDR relevant to the repair of DNA DSBs induced by X-irradiation will 

be discussed in some detail. 

 

Figure 1.2 Responses of mammalian cells to DNA DSBs induced by gamma irradiation 
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Following induction of DNA DSBs by ionising radiation, a DNA damage response consisting of cell 
cycle checkpoint activation and DNA repair is generated. If unsuccessful this may result in cell 

death. 

 

1.3.1 DNA repair processes 

A 2Gy dose of radiation will produce on average around 2000 SSBs and 80 DSBs. 

DNA SSBs are generally readily repaired by the cell and do not normally 

contribute to the lethal effects of radiation under normal circumstances. SSB 

repair will not be considered further, other than in the context of the effects of 

PARP inhibitors later in this chapter. DNA DSBs are much more difficult for cells 

to repair, and have long been considered the lesion responsible for lethality 

after exposure to radiation (Ward, 1975, Radford, 1985). Figure 1.3 shows an 

illustration of DNA DSB repair kinetics in mammalian cells following gamma 

radiation, adapted from Goodarzi et al (Goodarzi and Jeggo, 2012). There is an 

initial fast phase of repair lasting 1 to 3 hours which represents DNA DSBs that 

can be efficiently repaired by the cell. In addition to the fast phase of repair 

there is a longer ‘tail’ which is termed the slow phase of DNA DSB repair and can 

extend past 24 hours. It is likely that both slow phase and fast phase repair are 

occurring simultaneously. If left unrepaired, even a single DNA DSB can result in 

loss of genetic information and cell death (Frankenberg et al., 1981). Therefore 

it is unsurprising that mammalian cells have developed complex and highly 

efficient systems for repair of DNA DSBs. DNA DSBs are repaired by two DDR 

pathways: homologous recombination (HR) and non-homologous end joining 

(NHEJ). For a concise review of DNA DSB repair see Shibata and Jeggo (Shibata 

and Jeggo, 2014).  
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Figure 1.3 Illustrative schematic of kinetics of DNA DSB repair following irradiation in 

mammalian cells 

The majority of DSBs are repaired a short time after irradiation in the ‘fast’ phase of DNA DSB 
repair via NHEJ. However a subset of DNA DSBs requires much more time for repair, due to 
complexity and/or chromatin context and is represented by a ‘slow’ phase tail on the above 
illustration. Slow phase repair is achieved via NHEJ in G1 phase and HR repair in G2 phase. 

Adapted from (Goodarzi and Jeggo, 2012). 

 

 1.3.2 Non Homologous End Joining (NHEJ) 

The bulk of DNA DSB repair in mammalian cells is undertaken by NHEJ, and 

exclusively so in G1 cell cycle phase where cells have a diploid DNA content. 

NHEJ is involved in both fast phase repair and slow phase repair in G1 cycle cells 

and in the fast phase of repair in G2 cycle cells (Riballo et al., 2004). NHEJ 

involves the processing of broken DNA termini to form compatible ends which 

can then be ligated back together. NHEJ is a simple and efficient method of DNA 

DSB repair but is error-prone and inherently associated with loss of genetic 

information. The mechanistics of NHEJ can be simplified into 3 steps; (for a 

comprehensive review see Weterings et al (Weterings and Chen, 2008)) 1; the 

capture of both ends of the broken DNA molecule, 2; the bridging of the two 
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broken DNA ends and 3; the religation of the broken DNA molecule. NHEJ 

generally appears to make the first attempt at rejoining all DNA DSBs, even in 

G2 phase where HR is possible, due partly to the cellular abundance of Ku70 and 

Ku80 and their high affinity for DNA termini (Beucher et al., 2009, Shibata et al., 

2011).The binding of Ku70/80 to exposed DNA termini occurs within seconds 

following the creation of a DNA DSB, and initiates the process of NHEJ (Uematsu 

et al., 2007, Mari et al., 2006). Ku70/80 form a heterodimeric doughnut shaped 

structure which allows it to load onto the DNA DSB ends (Walker et al., 2001). 

The Ku-DNA complex then acts as a scaffold for the association of the DNA-PK 

catalytic subunit (DNAPKcs). From electron microscopy it appears that the 

association of two Ku70/80 subunits and two DNAPKcs molecules can form a 

bridge between 2 broken DNA ends, allowing the broken DNA ends to be 

tethered (DeFazio et al., 2002). Association of DNAPKcs with DNA and a Ku70/80 

subunit is necessary for activation of DNAPKcs. Subsequent autophosphorylation 

of DNAPKcs is required for NHEJ to progress, since the unphosphorylated form of 

DNAPKcs blocks access for DNA end processing enzymes and ligases. 

Autophosphorylation of DNAPKcs relieves this block and allows processing of DNA 

ends in preparation for ligation (Reddy et al., 2004). The block to processing 

caused by unphosphorylated DNAPKcs is thought to protect DNA ends from 

inappropriate resection until both ends of the DSB have been brought together in 

appropriate apposition. DNAPKcs contains multiple phosphorylation sites, which 

appear to govern the progression of NHEJ events, for example 

autophosphorylation at T2609 destabilises the interaction of DNAPKcs with DNA 

allowing access for end processing enzymes such as Artemis whilst further 

DNAPKcs autophosphorylation at S2056 protects DNA ends from excessive end 

processing (Weterings et al., 2003). Studies have shown that phosphorylation of 

DNAPKcs occurs even in the absence of functional DNAPKcs kinase, which 

suggests that ATM or another PIKK kinase may have a role in the phosphorylation 

of DNAPKcs (Uematsu et al., 2007, Chen et al., 2007). A recent study by Jiang et 

al demonstrated that ATM –mediated phosphorylation of DNAPKcs is necessary 

for Artemis recruitment and end processing of DNA DSBs prior to NHEJ (Jiang et 

al., 2015).  
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The simplest form of DNA DSB is a clean incision through the phosphodiester 

backbone of the DNA molecule, leading to two blunt DNA termini that do not 

require processing and can be simply religated together. However many DNA 

DSBs resulting from radiation are more complex, with 3’ or 5’ overhangs that 

require processing in order to facilitate religation. This could be achieved either 

by using the overhanging DNA strand to resynthesize nucleotide sequence on the 

complementary strand or by resection of the overhanging sequence. Many DNA 

polymerases are capable of synthesising nucleotide sequence during NHEJ, and it 

appears these come from the common cellular DNA polymerase pool, rather than 

NHEJ specific polymerases. However, resection of ends during NHEJ appears 

more specialised and involves the nuclease Artemis (Dahm, 2007, Goodarzi et 

al., 2006). Artemis appears to be involved in the resection of ‘complex’ ends in 

NHEJ and is hyperphosphorylated by ATM and DNAPKcs. Artemis in isolation only 

possesses 5’ to 3’ exonuclease activity, however by association with DNAPKcs it 

gains an additional endonuclease function (Niewolik et al., 2006).  Other end 

processing events may be necessary prior to religation by NHEJ. Mammalian 

polynucleotide kinase (PNK) adds 5’ phosphate groups which are necessary for 

the ligation reaction. 3’ phosphoglycolates may require removal prior to ligation, 

which can be performed by Artemis, APE1, TDP1 and PNK (Weterings and Chen, 

2008). 

Ligase IV and XRCC4 are responsible for the final stage of NHEJ whereby the 

tethered and processed DNA ends are brought together and religated. A 

schematic diagram of NHEJ is shown in figure 1.4. 
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Figure 1.4 Schematic diagram of non homologous end joining (NHEJ) repair 

NHEJ is initiated by the binding of Ku70/80, followed by the recruitment of DNAPKcs and its 
subsequent autophosphorylation. End processing is achieved via artemis and additional factors 
before the broken DNA ends are ligated. 

 

An alternative mechanism of NHEJ is possible via microhomology mediated end 

joining (MMEJ) (Roth and Wilson, 1986, Wang et al., 2003). For a detailed review 

see McVey et al (McVey and Lee, 2008). MMEJ has a requirement for limited MRN 

dependent end resection and relies upon homologous matching of 5-25 base 

pairs on both strands in order to correctly align the DNA DSB ends. Any 

overhanging or mismatched bases are removed and missing bases are inserted. 
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The process is particularly error prone, since it does not identify any sequence 

lost due to the DSB. MMEJ appears to act as a reserve DSB repair pathway but 

can also repair DSBs generated at collapse of replication forks. The process is 

dependent upon ATM, PARP-1, MRE-11, C-Terminal Binding Protein Interacting 

Protein (CtIP) and DNA ligase IV but operates independently of Ku or DNAPKcs, 

(McVey and Lee, 2008). It is unknown the extent to which MMEJ contributes to 

DSB repair in normal cells, however the process can assume importance in 

cancer cells with defects in other DNA DSB repair pathways (Bentley et al., 

2004). 

 1.3.3 Homologous Recombination (HR) 

The homologous recombination (HR) pathway represents a more complex and 

sophisticated mechanism of DNA DSB repair. Although NHEJ repairs the majority 

of DNA DSBs, HR contributes to repair of DSBs in specific circumstances, such as 

the one ended DSB created by collapse of DNA replication forks and a subset of 

DNA DSBs in G2 repaired via slow kinetics (Jeggo et al., 2011, Helleday et al., 

2007, Beucher et al., 2009). HR is conventionally considered limited to the S and 

G2 phases of the cell cycle, since it relies upon homologous DNA sequence (in 

the form of a duplicate DNA strand on a sister chromatid) in order to effect 

repair; it is therefore a highly accurate repair mechanism. There is some 

evidence however that the normal regulation of HR is dissociated from cell cycle 

phase in GBM and other tumours, with Rad51 foci being evident outwith S and G2 

phases (Short et al., 2007). Nevertheless it is a generally held view that HR can 

only occur during or after S phase when the cell has duplicated its DNA in 

preparation for mitosis. A simplified schematic of HR and its subpathways is 

shown in figure 1.5. For a more detailed review of the process see Filippo et al 

(San Filippo et al., 2008), Li et al (Li and Heyer, 2008) and Krejci et al (Krejci et 

al., 2012).  

An initiating step in HR is resection of the 5’ DNA end of the DSB in order to 

create 3’ SS DNA which can then invade a partner chromosome. Initial end 

processing is achieved by the MRN complex and CtIP, (Sartori et al., 2007), 

which facilitate removal of hairpins, bulky adducts and other aberrant DNA end 
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structures and allow repair. End processing creates short 3’ tails following 

resection of 50-100 nucleotides from the 5’ break ends. Ku 70/80 has a low 

affinity for ssDNA making NHEJ less likely once resection has taken place (Dynan 

and Yoo, 1998). Further resection is undertaken via two pathways. In the first of 

these BLM and DNA2 physically interact and carry out 5’-3’ resection of DNA 

ends. In the second pathway MRN, RPA and BLM promote the recruitment of 

EXO1 to DNA ends which can then carry out further processing (Nimonkar et al., 

2011, Nimonkar et al., 2008). 

 

Figure 1.5 Schematic diagrams of homologous recombination (HR) repair and its subpathways 

HR repair is initiated by end resection and coating of ssDNA in RPA and subsequently Rad51. The 
search for homologous sequence on the sister chromatid is initiated by strand invasion and 
Holliday junction formation. Resolution of the resulting structures can occur via double strand 
break repair, (DSBR); break induced repair, (BIR); or synthesis dependent strand annealing, 
(SDSA). 
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Following creation of 3’ overhangs, ssDNA is bound by replication protein A 

(RPA), which protects ssDNA and removes DNA secondary structure in order to 

facilitate formation of a ‘presynaptic filament,’ which consists of Rad51 coated 

ssDNA (Wold, 1997, Eggler et al., 2002). Rad51 is a recombinase, i.e. an enzyme 

which facilitates genetic recombination, and it forms a helical filament on ssDNA 

which holds DNA in an extended and stretched conformation to aid the search 

for homology. Loading of Rad51 onto ssDNA can be inhibited by the presence of 

RPA, due to its high affinity for ssDNA. Rad51 therefore requires additional help 

from other proteins to facilitate its loading and the efficient formation of the 

presynaptic filament; these are called ‘recombination mediators’. Breast Cancer 

2 (BRCA 2) has an essential role in the loading of Rad51 onto ssDNA and acts as a 

recombination mediator. BRCA 2 binds DNA, physically interacts with Rad51 and 

is needed for the formation of Rad51 foci (Tarsounas et al., 2003, San Filippo et 

al., 2006). BRCA 2 has a role in targeting Rad51 filament formation to the ssDNA-

dsDNA junction on RPA coated ssDNA (Yang et al., 2005). Another protein 

required for this process is PALB2. PALB2 promotes the proper localisation and 

stability of BRCA2 in chromatin and appears to be crucial for the DNA repair 

effects of BRCA2 (Xia et al., 2006). 

Once assembled, the presynaptic filament captures a duplex DNA molecule and 

begins its search for homologous sequence. This occurs in a random fashion, with 

the presynaptic filament making many collisions against the sister duplex DNA 

molecule until homology is found. Rad51 facilitates the physical connection 

between the invading DNA strand and DNA duplex structure leading to the 

formation of heteroduplex DNA (‘D loop’) with a Holliday Junction (HJ) (see 

figure 1.5). Following successful invasion of the presynaptic strand, three 

different routes to repair can occur.  

The double strand break repair model (DSBR) requires the capture of the second 

DNA end which stabilises the D loop and forms a double Holliday junction (dHJ), 

as shown in Figure 1.5. The dHJ can then be resolved to produce crossover or 

non crossover products or dissolved to produce non crossover products 

exclusively. DSBR is used mainly during meiosis. Synthesis dependent strand 

annealing (SDSA) does not rely upon capture of the second DNA end and instead 
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the invading strand is displaced from the D loop, and then anneals to its own 

complementary strand or the complementary strand associated with the other 

end of the DNA break. DNA synthesis completes repair. SDSA is the primary 

mechanism of DSB prior to mitosis (Nassif et al., 1994). 

In the break induced repair pathway (BIR) the D loop turns into a replication fork 

capable of both lagging and leading strand synthesis (Malkova et al., 1996). An 

entire chromosome arm can be synthesised in this fashion. BIR is used when 

there is loss of one strand of DNA in the break or at collapse of replication forks.   

All of the above pathways require Rad51; however a Rad51 independent repair 

pathway exists called single strand annealing (SSA) (Lin et al., 1984). Sequences 

generated during end processing contain regions of homology in both DNA 

strands at a DSB site. These homologous sequences can be annealed and ligated, 

accomplishing DSB repair. The process is similar in mechanism to MMEJ, however 

remains a distinct pathway of HR.  

 1.3.3 Choice of DSB repair pathway 

In G1 phase of the cell cycle, NHEJ is the preferred method of DSB repair, since 

HR is not possible. Back up pathways such as MMEJ may also be used, however it 

is not currently clear under which circumstances alternate pathways are used. 

However in G2 phase, there are two possible routes which the cell can choose in 

order to achieve DSB repair, since both NHEJ and HR are possible. In general, 

most DSBs are repaired by NHEJ even in G2 phase, and NHEJ appears responsible 

for the fast phase of DSB resolution in G2 (Beucher et al., 2009). It is possible 

that NHEJ represents the first attempt at repair for all DNA DSBs, with only 

unsuccessful NHEJ leading to HR (Shibata et al., 2011). However, there appears 

to be a subset of DNA DSBs in G2 which require HR as a pathway due to 

complexity or chromatin context, and the factors governing choice of pathway 

are still a matter of contention. End resection appears to have a major influence 

on pathway choice, with extensive resection committing to HR repair and 

excluding further attempts at NHEJ (Shibata et al., 2014). 53BP1 appears to 

negatively regulate ATM dependent end resection in G1 phase, therefore 
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promoting NHEJ as the primary repair mechanism (Bothmer et al., 2010). In S 

and G2 phase however, Breast Cancer 1 (BRCA1) appears to promote the removal 

of p53 Binding Protein 1 (53BP1) in order to facilitate ATM dependent end 

resection and allow HR to take place (Bunting et al., 2010). 

 1.3.4 Cell Cycle Checkpoint Control 

Mammalian cells have three main cell cycle checkpoints; the G1 checkpoint, 

intra S checkpoint and G2/M checkpoint. These are shown in figure 1.6. These 

checkpoints regulate the progression of cells through the cell cycle, preventing a 

cell from progressing into the next phase of the cell cycle prior to satisfying the 

requirements of the previous phase. Progression through the cell cycle is 

controlled by the cyclin dependent kinases (CDKs) and cyclins, the name alluding 

to their cyclical accumulation and destruction throughout the cell cycle. These 

proteins form cyclin-CDK complexes whose activity ultimately regulates the 

machinery responsible for cycle progression. When G0 phase cells enter G1, CDKs 

4 and 6 form complexes with D type cyclins to phosphorylate the retinoblastoma 

protein (Rb1) which inactivates its function as a transcriptional repressor driving 

the cell forward in the cell cycle. In late G1 CDK2-cyclin E complexes reinforce 

Rb1 phosphorylation to initiate the gene expression programme required for S 

phase. Cyclin A-CDK1 is then responsible for driving the cell through G2 phase 

and into mitosis with cyclin B-CDK1. For a review of cell cycle checkpoint control 

see Lukas et al (Lukas et al., 2004). 
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Figure 1.6 The influence of ATR and ATM on cell cycle control in response to DNA damage 

Simplified diagram of cell cycle control following activation of the upstream PIKKs ATR and ATM. 
ATM is activated by DNA DSBs and influences all three major checkpoints, whereas ATR is 
activated by RPA coated ssDNA and has its major roles in the intra S checkpoint and maintenance 
of the G2/M checkpoint. Considerable crosstalk exists between the ATM and ATR pathways and 
DNA end resection initiated by activation of ATM will facilitate ATR activation. See text for 

details. 

 

The G1 checkpoint is usually very robust in eukaryotic cells, however in 

malignant cells the G1 checkpoint is frequently absent due to mutations 

affecting the p53 pathway. GBM tumours frequently lack a G1 checkpoint 

response to irradiation. Normal G1 checkpoint function requires functioning p53, 

which is phosphorylated in response to DNA damage by both ATM and Chk2. This 

leads to a reduction in binding of MDM2 to p53 and p53 activation, resulting in 

its nuclear accumulation and stabilisation. The increased levels of p53 protein 

lead to increased transcription of p21, which binds and inhibits CDK2-cyclin E 

activity, preventing the cell from entering S phase. The G1/S checkpoint is 

highly sensitive, but limited by the time required for p21 upregulation (Deckbar 

et al., 2010). An alternative activation of the G1/S checkpoint is mediated via 
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phosphorylation of Cdc25A, again by ATM and Chk2, which then targets Cdc25A 

for proteosomal degradation. Cdc25A removes inhibitory phosphate groups on 

CDK2, allowing progression into S phase (Mailand et al., 2000). 

The intra S checkpoint is activated in response to replication stress or other 

difficulties encountered by the cell during S phase and operates to slow DNA 

replication rather than stop it entirely, and is p53 independent. The S phase 

checkpoint suppresses origin firing and slows replication fork progression to 

reduce the rate of further DNA replication.  Abnormalities in S phase checkpoints 

result in the radio-resistant DNA synthesis (RDS) phenotype; i.e. cells are unable 

to stop or delay the synthesis of DNA following DNA damage. ATR is the primary 

modulator and amplifier of S phase DDR, with ATM playing a more minor role 

(Cimprich and Cortez, 2008).  ATR is activated by the presence of RPA coated 

ssDNA, in conjunction with ATR’s constitutive interacting partner ATRIP (Zou and 

Elledge, 2003). ATR can be further activated by direct interactions with DNA 

topoisomerase 2 binding protein 1 (TopBP1) which can be recruited to junctions 

of ss and dsDNA by the Rad9-Rad1-Hus1 complex, (911 complex) (Lee and 

Dunphy, 2010). This may limit the repertoire of the ATR response to lesions 

occurring at ss-dsDNA junctions. ATR phosphorylates Chk1. Both ATR and Chk1 

are recruited to damaged DNA sites. Chk1 dissociates from DNA following 

activation to phosphorylate its own various substrates, which include the Cdc25 

phosphatases (Smits et al., 2006). Activation of the ATR-Chk1 pathway prevents 

the loading of Cdc45 onto replication origins and prevents subsequent DNA 

replication. The ATM-Chk2-Cdc25 axis also has an effect on intra S phase 

checkpoint activation. A distinct pathway involving ATM dependent 

phosphorylation of SMC1 and SMC3 slows the rate of DNA synthesis or regulates 

recombinational repair following DNA damage (Willis and Rhind, 2009).  

Cancer cells frequently rely upon G2/M checkpoint activation to allow repair of 

DNA damage prior to entering mitosis, since the G1/S phase checkpoint is often 

dysfunctional in malignant cells. Progression through the G2/M checkpoint with 

unrepaired DNA damage can result in cell death and therefore it is essential that 

control of the G2/M checkpoint is maintained. The protein complex driving 

mitotic entry through the G2/M barrier is CyclinB1/Cdk1. During G2 phase 
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CyclinB1/Cdk1 is inactive due to phosphorylation of Tyr15 and Thr14 by Wee1 

and Myt1 kinases. For entry into mitosis, dephosphorylation of Cdk1 by Cdc25 

phosphatases is required.  CyclinB1/Cdk1 is usually held in an inactive state by 

Chk1 dependent inhibition of Cdc25. Once activated, CyclinB1/Cdk1 

phosphorylates Wee1 leading to its inactivation and phosphorylates Cdc25 which 

causes further activation of CyclinB1/Cdk1 complexes in a positive feedback 

loop ensuring commitment to the mitotic process. Activation of the G2/M 

checkpoint occurs via ATM and ATR which phosphorylate Chk1 and Chk2 leading 

to phosphorylation of Cdc25 phosphatases. Xu et al examined the function of 

ATM in the control of the G2/M checkpoint following irradiation. ATM mutant 

cells initially demonstrated an inability to activate the G2/M checkpoint but 

subsequently exhibited exaggerated accumulation of cells in G2 several hours 

following irradiation (Xu et al., 2002). The early G2/M checkpoint identified in 

this study was ATM dependent but radiation dose independent. The failure of 

this checkpoint in AT mutated cells represented the inability of cells irradiated 

in G2 to arrest appropriately following DNA damage. The second observed 

phenomenon of an enhanced G2 accumulation of cells many hours after 

irradiation in ATM mutant cells was related to cells which were in G1 or S phase 

at the time of irradiation. This is a characteristic of cells with defective S phase 

checkpoints, rather than being a defining feature of ATM deficiency, since this 

can be demonstrated in other cell lines which are ATM competent but have 

defects in the intra S checkpoint. The phenomenon of G2 accumulation is ATM 

independent and is instead ATR-Chk1 dependent. Shibata et al explored the 

functioning of the G2/M checkpoint in more detail and describe the initiation of 

G2/M arrest as ATM dependent. However other mechanisms appear responsible 

for the maintenance of G2/M arrest. ATM dependent end resection and 

processing of a subset of DNA DSBs appears to activate ATR and subsequent Chk1 

activation appears to have a major role in maintaining G2/M arrest. Likewise 

continued ATM signalling from unrepaired DSBs also appears to contribute to 

G2/M arrest maintenance (Shibata et al., 2010). The G2/M checkpoint has a 

defined threshold of sensitivity and the activation and maintenance of G2/M 

arrest appears to require around 10-15 DSBs (Deckbar et al., 2007). The G2/M 

cell cycle checkpoint arrests heavily damaged cells in G2 to provide enhanced 

time for repair of DSBs and it is proposed that this may be important for slow 

phase repair in G2 via HR. However the G2/M checkpoint is inherently insensitive 
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and allows cells to enter mitosis with a significant number of DSBs (Deckbar et 

al., 2011).  

 1.3.5 Integrating, controlling and amplifying: the DDR 

phosphatidylinositol 3 kinase-related kinases (PIKKs) 

The complex processes governing cell cycle checkpoint arrest and DNA DSB 

repair require co-ordination and control following detection of DNA damage. 

Furthermore cellular environment and heterochromatin status must be made 

conducive to repair. This is achieved by signal transduction kinases which 

amplify signals from damage detection proteins (such as MRN and Ku) and 

initiate the phosphorylation of huge numbers of substrates which effect 

checkpoint activation, chromatin structure and DNA repair.  These are the PIKKs; 

ATM, ATR and DNAPK. Although these proteins have already been mentioned in 

regard to functions in checkpoint activation and DNA repair a short discussion of 

their roles as central controllers of the DDR now follows.  

 1.3.6 ATM and its functions 

ATM is a highly prolific kinase which phosphorylates many substrates in response 

to DNA DSBs. For a detailed review see Shiloh et al (Shiloh and Ziv, 2013). 

Mutations in ATM are responsible for the radiosensitivity syndrome ‘ataxia-

telangiectasia,’  first described in 1975 (Taylor et al., 1975). Cells derived from 

patients with ataxia telangiectasia show deficient G1/S, S and G2/M checkpoints 

and a deficiency in DNA DSB repair. ATM is a very large protein with a molecular 

weight of 350kDa. It exists as inactive dimers or multimers until DNA damage 

occurs, upon which autophosphorylation at serine 1981 occurs, allowing the 

dissociation of ATM dimers into active monomers. The exact mechanism of ATM 

activation is debated in current literature. Some authors have suggested that 

ATM is activated in response to conformational changes in chromatin following 

DSB formation, rather than direct contact with DNA (Bakkenist and Kastan, 

2003). However, direct contact with DSB ends has also been shown to be 

important for ATM activation (You et al., 2007). Furthermore the MRN complex is 

necessary for optimal activation of ATM. MRN is a complex of 3 proteins (MRE-11, 
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Rad50 and NBS-1) and is a detector of DNA DSBs. It is one of the first protein 

complexes to be recruited to DNA DSB sites. Interaction between NBS1 and ATM 

appears to be critical to ATM recruitment and retention at DSB sites (Falck et 

al., 2005, Difilippantonio and Nussenzweig, 2007). Reciprocally, ATM also 

phosphorylates MRN components (Di Virgilio et al., 2009, Lim et al., 2000), 

illustrating the complex interactions which take place during the initial 

detection and transduction of the DDR signal.  

ATM phosphorylates a large number of proteins directly however, it also 

activates several other protein kinases, notably Chk2 and DNAPK which are 

capable of phosphorylating their own substrate repertoires. Although ATM 

dominates the DDR of cells in terms of its direct interactions with other DDR 

proteins, it may have an even greater effect via indirect phosphorylation and 

activation of other proximal DDR kinases.  

The effects of ATM on cellular checkpoint control via its phosphorylation of Chk2 

and p53 have been discussed above, however its effects on DNA repair are also 

significant. ATM mutant cell lines are known to exhibit defective DNA DSB 

repair. The proportion of DNA DSBs which cannot be repaired in ATM mutant 

cells is relatively small, and is estimated at around 10-20% of the total DSB 

burden. ATM has a role in DSB repair in both NHEJ in G1 phase and in NHEJ and 

HR in G2, and the proportion of ATM dependent DSBs is similar in both phases of 

the cell cycle. Goodarzi et al investigated the role of ATM in chromatin 

modification, and demonstrated that ATM has a role in repair of heterochromatic 

DSBs (Goodarzi et al., 2008). This model proposes that in G1 phase, around 75% 

of DNA DSBs occur in euchromatin regions, in which NHEJ components can freely 

access and manipulate the DNA, and therefore ATM is not required for the repair 

of these lesions. However, in heterochromatic regions, nucleosome flexibility is 

constrained by factors such as KAP-1, which severely limits the ability of the cell 

to repair these lesions. In this model, DSBs in heterochromatin are responsible 

for the slow phase of DSB repair, since the cell has difficulty rejoining DSBs 

occurring in a hostile chromatin context.  ATM is able to phosphorylate KAP-1 

and allow sufficient elasticity in DNA tertiary structure to allow repair. It has 

previously been suggested that ATM’s primary role is to deal with complex DNA 
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DSB lesions, since Artemis and ATM defects create epistatic DNA repair defects, 

and Artemis has a vital role in end resection for facilitation of NHEJ (Riballo et 

al., 2004). However, the proportion of ATM dependent DNA DSBs appears not to 

increase following irradiation with high LET radiation types which cause more 

complex DSBs, which implies that ATM dependent repair is not necessarily 

associated with complex DNA DSBs.  

Nevertheless ATM is also known to have roles in specialised DSB repair 

mechanisms that are not related to heterochromatin such as VDJ class switching 

and meiotic recombination. Alverez-Quilon et al demonstrated that ATM is 

necessary for the repair of DNA DSBs with blocked ends, and that this 

requirement was independent of chromatin status (Alvarez-Quilon et al., 2014). 

The authors speculated that ATM could promote nucleolytic activity to eliminate 

blockage at DNA ends via the MRN complex, CtIP or Artemis, or it could restrict 

excessive nucleolytic degradation of DNA ends by inhibiting these same 

nucleases or by phosphorylation of H2AX.  These two models are not necessarily 

conflicting, since ATM may have roles in both complex DNA lesion repair and 

modification of chromatin.  

 1.3.7 ATR and its functions 

ATR has a critical role in DDR, however in contrast to ATM, which is concerned 

with DNA DSB repair, the primary function of ATR is to protect cells from 

replication stress. Replication stress can be defined as the slowing or stalling of 

replication forks during duplication of DNA. Cancers in general are known to 

exhibit high levels of replication stress, which is thought to be induced primarily 

by oncogene activation, leading to upregulation and increased dependence upon 

the ATR-Chk1 pathway (Halazonetis et al., 2008). The role of ATR in the DDR is 

reviewed in Marechal et al, (Marechal and Zou, 2013). ATR has an essential role 

for survival of proliferating cells and its deletion leads to embryonic lethality in 

mice and lethality in human cells (Brown and Baltimore, 2000). ATM and ATR 

share many phosphorylation substrates, however they have distinct roles in DDR 

and cannot be viewed as redundant in function. ATR is activated by RPA coated 

ssDNA which recruits and directly binds ATR interacting protein (ATRIP).  ATRIP 
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and ATR are constitutively bound, and free ATR protein does not exist in 

isolation. Any situation leading to the formation of ssDNA will result in the 

activation of ATR. The important role of ATR and Chk1 in cell cycle checkpoint 

control has already been discussed. However, both ATR and Chk1 have additional 

important functions in maintaining the integrity of replication forks. Replication 

fork collapse is characterised by the dissociation of replisome contents and may 

result in generation of a DSB. This process is still ambiguous and may be the 

result of replisome dissociation/migration, nuclease digestion of a reversed fork 

or by replication run-off (Zeman and Cimprich, 2014).  ATR is activated by ssDNA 

generated at stalled replication forks and acts to stabilise the fork and initiates 

cell cycle checkpoint activation and inhibition of DNA replication origin firing on 

a global scale throughout the cell nucleus. ATR activation inhibits origin firing 

via the phosphorylation of the lysine methyl transferase MLL, which alters 

chromatin structure around replication origins (Liu et al., 2010). In this manner, 

the stalled fork can then be restarted when the replication stress stimulus has 

been resolved. 

 1.3.8 DNA dependent protein kinase (DNAPK) 

DNAPK has a critical role in DDR via its function in NHEJ, as discussed above. It 

phosphorylates a smaller number of substrates in comparison to ATR and ATM. 

However DNAPK is able to phosphorylate some substrates of ATM in ATM 

defective cells, allowing a degree of functional redundancy. In particular DNAPK 

is able to phosphorylate histone H2AX in the absence of ATM (Stiff et al., 2004).  

 1.3.9 Ionising radiation induced foci (IRIF) 

The co-ordinated and efficient repair of DNA DSBs requires the concentration of 

repair factors to appropriately modified chromatin structure flanking the DNA 

DSB. These concentrations of DDR elements can be viewed using 

immunofluorescent microscopy and have been termed ‘ionising radiation 

induced foci’ (IRIF). For a comprehensive review on IRIFs see Bekker-Jensen et al 

(Bekker-Jensen and Mailand, 2010). The elements involved in IRIFs generally do 

not bind stably and constantly to the DSB; instead they are highly dynamic and 
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shuttle on and off the IRIF.  One aspect of IRIFs is the structural modification of 

chromatin which flanks the DSB, allowing the chromatin to act as a platform for 

the assembly of DNA repair machinery. Chromatin is modified by phosphorylation 

and ubiquitylation in order to increase the likelihood of DDR element 

interaction.  

Central to the formation of IRIF is the phosphorylation of histone H2AX on serine 

139 to form gamma H2AX which spreads either side of a DSB involving regions 

2Mbp to 30Mbp long (Rogakou et al., 1999).  ATM is the master phosphorylator of 

H2AX, however DNAPKcs and ATR can also perform this function (Kinner et al., 

2008, Fernandez-Capetillo et al., 2002, Bakkenist and Kastan, 2003, Veuger et 

al., 2004, Friesner et al., 2005). The specific physiological role of H2AX 

phosphorylation in DSB is yet to be elucidated in detail, however there is 

evidence that gamma H2AX interacts with mediator of damage checkpoint 1 

(MDC1) and has a high affinity binding site for MDC1 (Stucki et al., 2005). MDC1 

facilitates further ATM activation via its interactions with NBS-1 instigating a 

feedback loop where H2AX phosphorylation can be propagated from the DSB site 

by ATM mediated phosphorylation. Gamma H2AX formation may have a role in 

the promotion of DSB repair, however it is not essential for either NHEJ or HR 

(Chan et al., 2010, Petersen et al., 2001, Bassing et al., 2002). It does, however, 

affect the efficiency of DNA DSB repair and mice lacking H2AX are radiosensitive 

(Kao et al., 2006). Some authors have speculated that H2AX phosphorylation may 

be involved in tethering broken DNA ends (Reina-San-Martin et al., 2003, 

Ferguson and Alt, 2001). Many other DDR proteins have a role in IRIF formation 

including 53BP1, BRCA1 and Ring Finger protein 8 (RNF8). 

The specific function of IRIFs is debated, and it is likely they fulfil many 

requirements of efficient DNA DSB repair. IRIFs probably act to protect broken 

DNA ends from inappropriate translocations; the concentration of repair factors 

also facilitates increased efficiency in DNA repair and signal amplification. 

Furthermore by attracting many different repair factors to sites of DSBs the cell 

has an array of available tools with which to attempt repair; in this scenario not 

all of the multitude of DDR elements may be used but the availability of several 
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different routes to repair may be beneficial for timely DSB repair (Bekker-Jensen 

and Mailand, 2010).  

 1.3.10 The role of PARPs in the DDR 

The main processes governing the DDR to DNA DSB formation have been 

explored, however the repair of single strand DNA breaks may also govern the 

outcome of irradiation induced DNA damage. X-irradiation causes around 25 

times more SSBs than DSBs, however these are usually repaired efficiently by the 

cell and are of little consequence. However if SSBs are not dealt with efficiently, 

they can have significant effects on cell survival via the generation of DSBs.  The 

PARP family of proteins is known to facilitate base excision repair (BER) which is 

one of the main cellular single strand break repair pathways. Since the effects of 

inhibition of PARPs on GBM CSC radioresistance are studied in this thesis, a brief 

discussion of PARPs and their role in the DDR now follows. 

PARPs form a large protein family with diverse functions in the cell which 

include DNA repair, mitotic segregation, telomere homeostasis and cell death. 

PARPs are characterised by the catalytic function of poly (ADP-ribosylation). 

There are 18 reported family members, however not all have definite poly (ADP-

ribose) catalytic function and only PARPs 1-3 have well characterised roles in 

DNA repair. For an in depth review of PARP function see D’Amours and Burkle 

(D'Amours et al., 1999, Burkle and Virag, 2013). PARP-1 is the most abundant in 

cells and its functions are the best understood. 

Activated PARP-1 modifies its substrates via the covalent, sequential addition of 

ADP-ribose molecules which form branching poly (ADP-ribose) (PAR) polymers on 

the targets of PARP. The substrate from which PAR is formed is nicotinamide 

adenine dinucleotide (NAD+). Poly (ADP-ribosylation) is a commonly occurring 

post translational modification in the cell. It creates negative charge on target 

proteins altering their three dimensional structure and subsequent interactions 

with other proteins and with DNA (Krishnakumar and Kraus, 2010).   
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PARP-1 detects DNA damage, and its rapid binding to damaged DNA results in its 

activation, see figure 1.7. PARP-1 can bind to a variety of DNA damage 

structures including SSBs and DSBs (Khodyreva et al., 2010, Chasovskikh et al., 

2005, Lonskaya et al., 2005, Potaman et al., 2005) . PARP-1 appears to have a 

major role in PAR synthesis following DNA damage, as 90% of PAR production is 

attributable to PARP-1 in this context (Langelier et al., 2010). Basal PAR levels 

are low however can quickly be increased 10 to 500 fold in the presence of DNA 

damage (D'Amours et al., 1999).  High levels of DNA damage appear to be linked 

to rapid PARylation, whereas lower levels of DNA damage result in slower 

PARylation activity (Pion et al., 2005). PAR polymers can exist as short branching 

structures or long elongated polymers; the latter being degraded more quickly. 

The relationship between PAR polymer structure and DNA damage remains 

unclear (Malanga and Althaus, 1994). PARP-2 accounts for 5-10% of PAR 

production in response to DNA damage and less is known about its function and 

significance (Menissier de Murcia et al., 2003). PARP-2 appears to bind less 

effectively to SSBs and instead has a greater role in binding to gap and flap DNA 

abnormalities (Yelamos et al., 2008, Ame et al., 2009). It can homodimerize or 

heterodimerize with PARP-1, however the biological outcomes of these 

interactions is still unclear (Sukhanova et al., 2010). 
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Figure 1.7 Mechanism of radiosensitisation by PARP-1 inhibition 

PARP inhibition permits the binding of PARP-1 to DNA SSBs, however prevents the efficient repair 
of SSBs by inhibiting the recruitment of key BER effectors and by blocking access of repair 
elements to damage sites. This results in delayed SSB repair and collapse of replication forks as 

SSBs are converted into DSBs during S phase.  

 

DNA bound PARP can undergo automodification to add long negatively charged 

PAR polymers (D'Amours et al., 1999). The autoPARylation of PARP-1 allows 

dissociation of PARP-1 from the DNA molecule, allowing other DNA repair 

machinery access to the damaged DNA (Zahradka and Ebisuzaki, 1982, Ferro and 

Olivera, 1982, Lindahl et al., 1995) and facilitating recruitment of various DDR 

proteins to the damaged sites. The list of substrates for PARP-1 is extensive. 

PARP-1 can alter DDR protein function by both PARylation and direct interaction.  

Although the precise role of PARP-1 in DNA repair is still being elucidated, an 

important contribution to the repair of SSB lesions is well documented. Rather 

than being essential for SSB repair, however, PARP-1 increases the efficiency 

and rate of this process (Fisher et al., 2007, Satoh and Lindahl, 1992, Strom et 
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al., 2011). Activation of PARP-1 promotes the recruitment of the scaffold protein 

XRCC1 to the site of damage (El-Khamisy et al., 2003). PARP-1 modifies and 

interacts directly with XRCC1 during this process. Lesions then undergo end 

processing before being repaired by either short patch or long patch repair. 

PARP-1 is known to interact with many other SSB repair proteins such as DNA Lig 

III, DNA Polymerase Beta (DNA Pol Beta) and others. Additionally it appears to 

have a role in base excision repair (BER) but is not an absolute requirement for 

the function of this pathway (Strom et al., 2011). The radiosensitising effects of 

PARP inhibition will be discussed below. 

1.4 DDR kinase inhibition as a therapeutic strategy 

Given the fundamental role of DDR in determining tumour sensitivity to 

radiation, inhibition of the DDR in combination with radiotherapy is an appealing 

therapeutic strategy. DDR inhibition could potentially radiosensitise tumours 

which are clinically radioresistant, whilst having relatively little effect on 

normal tissue. The concept of ‘tumour specificity’ is vitally important in cancer 

therapy, and particularly so when considering increasing the biological effects of 

ionising radiation. If DDR inhibition were to sensitise normal tissue to the same 

degree as tumour cells then no therapeutic gain would be made, since any 

increased tumour effect would be accompanied by an unacceptable increase in 

toxicity.  

There are clearly important differences between the DDR of tumours in 

comparison to the DDR of normal tissues. DDR presents a barrier to 

carcinogenesis in the early stages of tumour development (Bartkova et al., 

2005). A cell population in the process of carcinogenesis faces pressure to 

mutate or alter the DDR process in order to tolerate oncogenic proliferative 

stress. A deficient DDR is in some ways advantageous to tumour cells, giving 

these cells the capacity to generate genomic instability and heterogeneity, 

providing adaptability and a survival advantage for the limited resources of the 

tumour microenvironment. There is evidence to suggest that tumours may be 

profoundly deficient in some aspects of DDR, rendering them overly dependent 

on other DDR pathways to carry out efficient DNA repair. Examples of this 
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behaviour are seen in the widespread loss of G1/S checkpoint integrity in solid 

tumours due to p53 mutation and resulting reliance upon the G2/M checkpoint 

for cell cycle control. A further example is seen in the context of ‘synthetic 

lethality’ in HR deficient tumours, which are sensitive to therapies which cause 

DNA lesions requiring HR for repair such as PARP inhibition. The main reason why 

radiotherapy is a successful cancer therapy is because tumour cells are less able 

than the surrounding normal tissue to deal with the DNA damage caused by 

ionising radiation. The intact DDR of normal tissues ensures a therapeutic ratio 

exists between tumour and normal tissue, allowing radiation to eradicate tumour 

cells whilst vital normal tissue structures are able to partially regenerate or 

tolerate the resulting DNA damage. Therefore pharmacological inhibition of DDR 

targets a pre-existing weakness inherent to many cancer cells and thus 

represents a valid and promising therapeutic strategy. 

Recently small molecule kinase inhibitors have become commercially available 

which possess the ability to specifically and potently inhibit individual kinases or 

proteins within the DDR. Although many of these are not yet advanced enough to 

be anything more than laboratory tools, others such as the PARP inhibitor class 

are entering phase I clinical trials in combination with radiotherapy. A discussion 

on current knowledge and application of DDR kinase inhibition and radiation 

sensitivity now follows. 

 1.4.1 PARP inhibition as a radiosensitising strategy 

PARP inhibitors are the most developed of DDR kinase inhibition strategies, 

largely due to early successful trials as monotherapy in a ‘synthetic lethality’ 

setting (Fong et al., 2009). There are now several PARP inhibitors entering 

clinical trials including AZD2281 (Olaparib), AG014699 (Rucaparib) and ABT888 

(Veliparib). However extensive preclinical investigation into their role as 

radiosensitising agents has been carried out and is summarised below.  

In vitro work has shown PARP inhibition (PARPi) to provide modest 

radiosensitisation. Sensitiser enhancement ratios (SER), which are a measure of 

the fold increase in radiation dose necessary to provide the effect seen in the 
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absence of the sensitising drug, have been reported in the range of 1.1 to 1.7, 

depending on the inhibitor and the cell line tested.  

Brock et al (Brock et al., 2004), showed this effect in fibroblast and murine 

sarcoma cell lines, with SERs (at 10% survival) of 1.4 to 1.6 using the PARP 

inhibitor INO-1001. Interestingly they also showed an enhanced sensitisation 

effect when IN0-1001 was combined with fractionated radiotherapy, suggesting 

that PARPi was able to block interfraction repair of sublethal damage. This 

effect was also reported in a study of glioblastoma cell lines (Dungey et al., 

2009). 

Other authors have confirmed the radiosensitising effects of PARPi in vitro in a 

variety of different tumour cell lines, summarised in table 1.2. These include 

head and neck squamous cancer, prostate, glioblastoma, pancreatic, colon, 

cervix and lung carcinoma cell lines.  
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Table 1.2 Summary of in vitro studies of radiosensitising effects of PARP inhibitors 
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PARP inhibitors have been shown to decrease clonogenic survival and increase 

apoptosis and mitotic catastrophe in irradiated cells in vitro. The pro-apoptotic 

effects of PARPi vary between studies and may be a cell line dependent effect. 

Noel et al demonstrated lack of radiosensitivity in asynchronously dividing 

human cell lines treated with PARPi whilst HeLa cells  which were synchronised 

in S phase were significantly sensitised to radiation by the addition of PARPi, 

suggesting that sensitisation was dependent upon DNA replication (Noel et al., 

2006). This was confirmed by Dungey et al (Dungey et al., 2009) who showed 

that radiosensitisation was enhanced by synchronisation in S phase and 

abrogated by aphidocolin (which creates an early S phase block). PARPi delayed 

repair of DNA damage and was associated with a replication dependent increase 

in gamma H2AX and Rad51 foci. Again radiosensitisation was increased with a 

fractionated schedule, indicating impaired repair of sublethal damage in PARPi 

treated cultures. The authors proposed a mechanism whereby PARPi reduced the 

rate of SSB repair which, in replicating cells, increased the burden of DSBs due 

to generation of collapsed replication forks during S phase. They also proposed 

that the DNA lesions produced by collapsed replication forks in the presence of 

PARPi might be more complicated and hence more difficult to repair by HR. 

Persistent binding of chemically inhibited PARP to DNA (via steric hindrance) 

would prevent efficient recruitment of DNA repair proteins to the lesion, 

providing an explanation for this theory (Langelier et al., 2012). The observation 

that PARP inhibition requires DNA replication in order to radiosensitise cells was 

thought to make an effect via DSB repair unlikely. 

The above discussion has important implications for the clinical use of PARPi as 

radiosensitisers. The radiosensitising effect of PARP inhibition appears to be 

limited to replicating cells. This would suggest an element of tumour specificity 

if this approach were used in tumours with significant fractions of replicating 

cells such as squamous cell carcinomas or glioblastoma, in an organ of the body 

where critical normal tissues are non replicating (e.g.CNS). The demonstration 

that the radiosensitising effect is enhanced by clinically relevant doses of 

fractionated radiation is also of clinical significance. 
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Loser et al investigated the radiosensitising effects of PARPi on cells which were 

already deficient in DDR pathways, an effect which has been termed “synthetic 

sickness”. The addition of PARPi to cell lines with a pre-existing DDR pathway 

abnormality appeared to enhance the radiosensitising effect of PARPi compared 

with DDR competent cell lines. The underlying mechanism varies according to 

the specific DDR pathway abnormality, however it appears that the combination 

of PARPi and radiation induced DNA damage leaves DDR deficient cells more 

vulnerable to DNA lesions which may otherwise have been repaired by 

alternative pathways (Loser et al., 2010). 

Liu et al (Liu et al., 2008) examined the effects of acute hypoxia on 

radiosensitisation by PARPi. The PARPi ABT888 was shown to inhibit intracellular 

PARP activity in prostate and non-small cell lung carcinoma cell lines under 

conditions of hypoxia. Under conditions of acute hypoxia cells were sensitised to 

a degree similar to the radiosensitivity of oxic cells. The authors concluded that 

PARPi with ABT888 remained an effective radiosensitiser under conditions of 

acute hypoxia; which is an important consideration in translating PARPi into 

clinical practice, given that most tumours are hypoxic to some degree (Meng et 

al., 2005, Bindra et al., 2004), and furthermore hypoxia has been characterised 

as a major determinant of radioresistance (Moulder and Rockwell, 1984). Chronic 

hypoxia induces downregulation of HR, which may allow targeting of chronically 

hypoxic cancer cells with a PARPi synthetic lethal strategy. Chan et al have 

shown that PARPi treated tumour xenografts which showed hypoxic subregions 

had increased gamma H2AX signalling and reduced survival in an ex vivo 

clonogenic assay. However the specific radiosensitising effects of PARPi in the 

context of chronic hypoxia were not investigated (Chan et al., 2010). 

Nevertheless the ability of PARPi to selectively target chronic hypoxic cancer 

cells is obviously of great clinical interest. 

The radiosensitising effects of PARPi have been replicated by several authors in 

in vivo models. The results of these studies are summarised in table 1.3. A 

recent paper by Tuli et al demonstrated tumour growth inhibition and prolonged 

survival in an in vivo orthotopic model of pancreatic carcinoma (Tuli et al., 

2014). 
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Table 1.3 Summary of in vivo studies of radiosensitising effects of PARP inhibitors 
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The radiosensitising effects of PARPi appear to be enhanced in in vivo models, 

with several studies showing radiosensitising effects that exceed those predicted 

by in vitro data.  This is unlikely to be explained by radiotherapy fractionation 

effects alone, since several of the studies also used large single fraction 

radiotherapy doses similar to those used in vitro. PARPi has been shown to have 

effects on tumour vasculature, which may partly explain the enhanced effects 

seen in in vivo. PARPi have a structural similarity to nicotinamide, which is a 

potent vasodilator. It has been proposed that PARPi may have a strong 

vasodilatory effect on tumour vasculature, thus relieving tumour hypoxia, 

increasing drug delivery  and enhancing their radiosensitising effects (Calabrese 

et al., 2004, Ali et al., 2011a), but the clinical significance of this effect remains 

to be proven. 

Normal tissue toxicity in a PARPi radiosensitisation strategy has not been 

extensively investigated, partly because most animal models of cancer do not 

yield clinically meaningful radiation toxicity data. However there are several 

features of PARPi that predict a degree of tumour specificity. Likely toxicities 

will of course depend upon the tumour site irradiated. As single agents, PARP 

inhibitors have been shown to have highly favourable toxicity profiles, consisting 

of nausea or somnolence syndrome at very high doses, (Fong et al., 

2009).Therefore toxicities out with the irradiated field would be unexpected, 

unless concomitant chemotherapy was also incorporated into treatment. 

Administration of PARP inhibitors with cytotoxic chemotherapy has resulted in 

severe myelosuppression in phase I clinical trials however (Samol et al., 2012). 

The dependence on DNA replication indicates that rapidly dividing tissues will be 

sensitised to radiotherapy by PARP inhibition. Hence squamous cell carcinomas, 

glioblastoma and other highly mitotically active tumours may be most sensitised 

by PARPi. This also has implications for normal tissue toxicity, since tissues with 

high cellular turnover such as the oesophagus, mucous membranes, skin, bowel 

and bone marrow may be sensitised by a PARPi strategy; although only if these 

sites were also irradiated. Tissues comprised of infrequently dividing cells such 

as brain, spinal cord, heart and muscle are predicted not to be sensitised by 
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PARPi, although concern must be raised with regard to supporting stromal tissue, 

e.g. astrocytes in the case of the CNS and vascular endothelial cells.  

Given that the vascular endothelium is present in every organ and tumour 

treated, the endothelium is worthy of specific consideration in terms of the 

effects of a radiation/PARPi strategy. The cell doubling time of endothelial cells 

in culture has been estimated from labelling studies to be in the region of 93 to 

2300 days, which would classically make it an intermediate to late responding 

tissue (Hobson and Denekamp, 1984). However there is evidence to suggest a 

proliferative stimulus is provided by irradiation which would decrease the 

doubling time of endothelial cells and perhaps increase endothelial sensitivity to 

PARPi plus radiation (Haveman et al., 2007). A recent paper however has shown 

that the neurovascular niche was preserved in mouse brain following irradiation, 

however there was an effect on long term neurogenesis (Bostrom et al., 2013).  

It is unknown whether the progenitor stem cells of slowly dividing tissues may be 

sensitised by PARPi strategies; this would have implications for long term 

toxicity from this strategy. In particular in the case of the CNS, it is unclear how 

neural stem cells may respond to PARPi radiosensitisation strategies. Some 

studies have shown that the subventricular zone of adult mice forebrains contain 

a population of actively dividing cells, with complete turnover of the resident 

proliferating cell population occurring every 12-28 days (Craig et al., 1999). 

These cells could therefore be predicted to experience some radiosensitisation 

by PARP inhibition, however the effect of PARP inhibition on radiosensitivity of 

human neural stem cells has not been directly investigated. Nevertheless in vitro 

models of neural stem cells which could be used to assess toxicity of novel DDR 

inhibitor agents have been described (Meli et al., 2014). Tanori et al 

demonstrate an in vivo characterisation of the effects of ionising radiation on 

neural stem cells in the murine cerebellum and a similar model could be utilised 

to explore the toxic effects of PARP inhibition (or other DDR inhibition) plus 

radiation combinations.  Examination of the cells of the subventricular zone of 

mice for DDR markers such as gamma H2AX 24 hours following treatment with 

radiation and PARP inhibition would be informative. 
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 PARPi has also been observed to accumulate in malignant tissue, an effect 

which may be related to enhanced levels of DNA damage (which would therefore 

bind more PARP) in malignant tissue. This may also increase the tumour 

specificity of PARPi (Calabrese et al., 2004) and limit normal tissue toxicity 

(Galia et al., 2012a). Potentially PARP inhibition could protect normal tissue 

from toxicity from radiotherapy. Theoretically, activated PARP will deplete cells 

of NAD+, making it difficult for damaged normal cells to activate energy 

dependent apoptotic pathways leading to cell death by necrosis and an 

inflammatory cascade leading to further tissue damage. With PARP inhibition, 

NAD+ would not be exhausted, and cells would be more likely to die from 

apoptosis. There are some studies looking at the use of PARPi in myocardial 

reperfusion injury and ovine models of acute lung injury which lend some 

support to this theory (Roesner et al., 2010, Hamahata et al., 2012). 

Furthermore it has been found that PARP inhibition is protective in irinotecan 

induced gastrointestinal toxicity (Tentori et al., 2006).  

 Laboratory models of the acute and long term toxicities of radiation therapy are 

being developed and refined(Figley et al., 2013).However, the additional 

toxicity of PARP inhibition on the acute and late effects of radiation toxicity are 

yet to be explored in these models. 

 1.4.2 ATM inhibition as a radiosensitising strategy 

In comparison to PARP inhibition, the development of radiosensitisation 

strategies based on ATM inhibition are at a much earlier stage of development, 

and no compounds are currently entering clinical trials. Much of the in vitro 

work in this area has explored the use of ATM inhibition as a laboratory tool 

rather than preclinical investigation as a radiosensitiser. 

Golding et al (Golding et al., 2009), explored the use of ATM inhibition as a 

radiosensitiser in GBM. They demonstrated highly potent radiosensitisation of 

commercially available GBM cell lines using the ATM inhibitor KU-60019, however 

radiosensitisation was not quantified by formal estimation of SER0.37. 

Furthermore the authors demonstrated an effect of ATM inhibition on cell 
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migration and invasion in vitro, and speculated that this may be due to effects 

of ATM inhibition on AKT phosphorylation. They concluded that ATM inhibition 

was a highly effective radiosensitiser and inhibitor of DDR in glioma. In a further 

paper, Golding et al explored the combination of ATM inhibition with radiation 

and temozolomide on commercially available GBM cell lines (Golding et al., 

2012). SER0.37 was calculated to be 1.8-2.1 depending on the dose of KU-60019 

used. The addition of temozolomide did not enhance the radiosensitivity 

produced by ATM inhibition, (nor did temozolomide actually radiosensitise in the 

absence of ATM inhibitor). When co-cultured with human astrocytes, the 

combination of temozolomide and ATM inhibition reduced glioma cell growth by 

around 70%. Astrocytes did not demonstrate in vitro radiosensitisation after 

exposure to KU-60019. Biddlestone-Thorpe et al explored an in vivo GBM model 

of ATM inhibition and radiation treatment (Biddlestone-Thorpe et al., 2013). In 

vivo administration of KU-60019 required the use of osmotic pumps and 

convection enhanced delivery, since the drug did not reach therapeutic 

concentrations in plasma following oral or intraperitoneal administration. KU-

60019 significantly prolonged survival and delayed tumour growth in combination 

with radiation treatment. The investigators explored the influence of p53 status 

on radiosensitising effects of ATM inhibition. U87 cells, which are known to be 

wild type for p53, were infected with a mouse retrovirus expressing the p53-

281G allele, generating U87 cells with mutant p53. U87-281G cells experience 

increased radiosensitisation following ATM inhibition in vitro, and mice bearing 

U87-281G xenografts experienced prolonged overall survival with the 

combination of ATM inhibition and radiation in comparison to mice bearing U87 

parental xenografts. Overall survival was not prolonged by ATM inhibition and 

radiotherapy in the mice with U87 parental xenografts in comparison to 

radiation alone. The authors concluded that ATM inhibition may be of potential 

benefit in combination with radiotherapy for GBM with mutated p53. 

These three papers represent the most in depth studies of the potential clinical 

applications of ATM inhibition in glioma. Other studies have demonstrated the 

potentiating effects of ATM inhibition on cisplatin mediated radiosensitisation of 

non-small cell lung cancer cells or the radiosensitisation of head and neck 

squamous carcinoma cell lines by ATM inhibition via interfering RNA (Toulany et 
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al., 2014, Zou et al., 2008). Rainey et al demonstrated that transient ATM 

inhibition for a period of 4 hours was able to potently radiosensitise HeLa cells in 

vitro (Rainey et al., 2008). Choi et al investigated the consequences of ATM 

inhibition versus ATM loss. The authors demonstrated distinct effects of ATM 

inhibition versus ATM loss, manifest by reduced sister chromatid exchange (a 

marker of homologous recombination) in ATM inhibited irradiated cells which 

was not apparent in irradiated ATM null cells (Choi et al., 2010). 

Current dogma would suggest that inhibition of ATM in combination with 

radiotherapy will lead to overwhelming normal tissue toxicity, since ATM is one 

of the central kinases of the DDR. This would limit the use of ATM inhibition as a 

clinical radiosensitiser. However, there is evidence to suggest that 

radiosensitivity following ATM inhibition may be tissue specific. A study by 

Schneider et al demonstrated that astrocytes downregulate ATM expression and 

lack significant DDR, however retain DNA repair competency via NHEJ (Schneider 

et al., 2012). In support of this Gosink et al demonstrated that astrocyte 

radiosensitivity was unaffected by ATM deficiency (Gosink et al., 1999). A 

further recent study by Moding et al using a murine sarcoma model 

demonstrated that deletion of the ATM gene had much less of a radiosensitising 

effect on normal cardiac endothelia than on rapidly proliferating tumour 

endothelia (Moding et al., 2014). These data suggest that ATM inhibition as a 

radiosensitising strategy may be clinically achievable, however further study of 

the potentially toxic effects of ATM inhibition is clearly required. 

 1.4.3 ATR inhibition as a radiosensitising strategy 

Again the effects of ATR inhibition on radiosensitivity are not well characterised 

and remain at an early stage of development. Wang et al investigated the 

effects of kinase dead ATR expression on cellular radiosensitivity. They 

demonstrated that ATR kinase loss radiosensitised cells due to deficient S and G2 

cell checkpoints and reduced HR (Wang et al., 2004). Gilad et al demonstrated a 

requirement for malignant cells to engage the ATR-Chk1 pathway in order to 

maintain genome stability following oncogenic expression of Ras, implying that 
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suppression of ATR signalling may sensitise cancer cells to DNA damaging agents 

such as radiation (Gilad et al., 2010). 

Until recently a specific and potent inhibitor of ATR has not been available. A 

study by Reaper et al characterised the effects of a specific and potent inhibitor 

of ATR, VE-821, in combination with a variety of genotoxic agents in 

commercially available cell lines. VE-821 was shown to potentiate the effects of 

cisplatin and ionising radiation. Furthermore the effects of VE-821 were 

enhanced in cells with a deficiency in the ATM-p53 axis. The authors speculated 

that ATR inhibition generated DSBs via collapse of replication forks which 

normally induced an ATM dependent S phase checkpoint response. Cells 

deficient in ATM or p53 were unable to activate this response and exhibited 

increased sensitivity to ATR inhibition (Reaper et al., 2011). 

Prevo et al investigated radiosensitisation via ATR inhibition in pancreatic 

carcinoma using VE821. VE821 was found to ablate radiation and gemcitabine 

induced Chk1 phosphorylation. It also increased the sensitivity of commercially 

available and primary pancreatic cancer cells to the combination of radiation 

and gemcitabine in both normoxic and hypoxic conditions, and effectively 

inhibited radiation induced G2/M arrest. ATR inhibition appeared to increase 

DNA DSBs following treatment with radiation as assessed by persistent gamma 

H2AX and 53BP1 foci. Rad51 foci formation was reduced 24 hours after 

treatment with IR and VE821, suggesting inhibition of HR (Prevo et al., 2012).  

Fokas et al used a more potent analogue of VE821, VE822 to study the effects of 

ATR inhibition on pancreatic cancer cell radiosensitivity in vivo. VE822 was found 

to potently inhibit Chk1 phosphorylation and sensitised pancreatic cancer cells 

to radiation, both alone and in combination with gemcitabine. In contrast VE822 

had no effect on tube formation by human dermal microvascular endothelial 

cells after radiotherapy and did not affect the clonogenic survival of fibroblasts. 

Again radiation induced foci (gamma H2AX and 53BP1) were increased by the 

combination of ATR and radiotherapy whilst Rad51 foci were decreased, implying 

that ATR inhibition causes an HR defect. The combination of IR and ATR 

inhibition produced a significant increase in tumour growth delay in 
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subcutaneous pancreatic tumour xenografts. This study also attempted to look at 

normal toxicity of the IR plus ATR inhibitor combination, by assessing the 

number of apoptotic jejunal cells and villus tip loss in mice treated with the 

combination. Neither of these parameters when compared with controls 

suggested additional toxicity with the addition of ATR inhibition (Fokas et al., 

2012). 

Pires et al investigated the effects of ATR inhibition on radiotherapy resistant 

hypoxic tumour cells. Inhibition of ATR with VE821 was shown to sensitise a wide 

variety of commercially available cell lines to radiation. There was no evidence 

of more marked effects on p53 mutated cell lines. Severe hypoxia is known to 

cause replicative stress and DDR activation via ATM and ATR signalling. VE821 

was demonstrated to abrogate hypoxia mediated ATR signalling. Importantly, 

ATR inhibition by VE821 was shown to increase radiation induced cell killing in 

physiologically relevant hypoxic conditions (Pires et al., 2012).  

Sankunny et al demonstrated that inhibition of ATR via siRNA could 

radiosensitise oral squamous cell carcinoma with distal chromosome arm 11q loss 

(a marker of relative radioresistance and poor prognosis) (Sankunny et al., 

2014). Vavrova et al demonstrated the radiosensitisation of p53 deficient 

promyelocytic leukaemia cells via ATR inhibition (Vavrova et al., 2013).  

 1.4.4 Chk1 inhibition as a radiosensitisation strategy 

The radiosensitising effects of Chk1 have been investigated by several authors in 

various tumour sites. Chk1 has important effects on G2/M checkpoint control 

and in the promotion of Rad51 mediated DNA DSB homologous recombination 

repair and would therefore be predicted to be a potent radiosensitiser. Many 

studies have focussed on the radiosensitising effects of Chk1 inhibition on p53 

mutant cells since these cells will in theory be dependent on the G2/M 

checkpoint arrest for DNA repair. Koniaras et al demonstrated that the G2/M 

checkpoint was independent of p53 and then showed that inhibition of Chk1 

(achieved by generation of a dominant negative mutated Chk1 cell line) resulted 

in radiosensitivity (Koniaras et al., 2001).  Sorensen et al further defined the 
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role of Chk1 as an essential kinase for the maintenance of genomic integrity 

(Sorensen et al., 2005). They demonstrated Chk1 inhibition with two different 

compounds (UCN01 and CEP3891), and noted an increase in phosphorylation of 

ATR targets, increased initiation of DNA replication and induction of DNA DSBs. 

Chen et al further investigated the role of Chk1 inhibition as a potential 

sensitiser to DNA damaging agents (Chen et al., 2006). The responses of p53 

mutated cancer cell lines to radiation were quantified following Chk1 inhibition 

and compared to the response of p53 wild type cell lines and normal human 

fibroblasts. Chk1 inhibition was found to potentiate the effects of radiation in 

p53 mutant cells only. 

Investigations of different Chk1 inhibitor compounds in different tumour sites 

have since been published in breast cancer and pancreatic cancer (Engelke et 

al., 2013, Ma et al., 2012).  

 1.4.5 Combination DDR inhibition 

The ability to inhibit different targets within the DDR allows the prospect of 

inhibiting combinations of DDR proteins in order to manipulate radiation 

sensitivity. There are only a few studies which have undertaken this approach. 

Vance et al investigated the radiosensitisation of pancreatic cancer cells by 

inhibition of both Chk1 and PARP in combination (Vance et al., 2011). This study 

demonstrated radiosensitisation of both p53 wild type and p53 mutants in 

isogenic cell lines by the combination treatment, however radiosensitisation was 

greater in the p53 mutated cell lines. Sensitiser enhancement ratios for PARP 

and Chk1 as mono-inhibition were modest (around 1.5), however the 

combination of agents produced sensitiser enhancement ratios of above 2. The 

combination of Chk1 and PARP inhibition caused G2/M dysfunction, inhibition of 

HR and persistent DDR. The combination treatment did not appear to 

radiosensitise normal intestinal epithelial cells in vitro. The authors speculated 

that the HR deficiency induced by Chk1 inhibition may sensitise to PARP 

inhibition via generation of a ‘BRCAness’ phenotype.  
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Hoglund et al demonstrated that the combination of PARP inhibition and Chk2 

functional loss elicits a synthetic lethal response in Myc overexpressing 

lymphoma cells (Hoglund et al., 2011). Booth et al investigated the effects of 

PARP and Chk1 inhibition in mammary cells and found that PARP inhibition and 

Chk1 inhibition produced cytotoxic effects (Booth et al., 2013). Furthermore the 

actions of PARP and Chk1 inhibition were enhanced by ATM knockdown. Peasland 

et al documented a synthetic lethal effect of the combination of the ATR 

inhibitor NU-6027 and PARP inhibition (Peasland et al., 2011). However these 

studies did not include ionising radiation. 

Clearly the combination of different DDR inhibitors has the potential to enhance 

the effects of radiation, and given the redundancy encountered within DDR 

pathways this may represent a particularly effective way of inducing potent 

radiosensitisation of resistant cancers. Nevertheless the effects of combination 

DDR inhibition on normal tissue toxicity will require careful consideration. 

1.5 DDR inhibition and GBM CSCs 

Investigation of the clinical effects of inhibition of DDR has centred on 

commercially available cell lines in a broad spectrum of tumour sites, and there 

are relatively few studies of DDR inhibition and its effects on CSCs. Given that 

several authors have documented upregulation of DDR in GBM CSCs, DDR 

inhibition would appear to be an ideal strategy for increasing CSC 

radiosensitivity. 

GBM CSCs were shown to exhibit autophagy as a mode of cell death after 

knockdown of DNAPKcs in a study by Zhuang et al (Zhuang et al., 2011). CSCs 

were radiosensitised following knockdown of DNAPKcs however did not exhibit a 

marked apoptotic response. 

Kahn et al investigated the effects of mammalian target of rapamycin complex 1 

and 2 (mTORC1m/mTORC2) inhibition on GBM CSC cultures (Kahn et al., 2014). 

mTORC inhibition by the compound AZD2014 significantly radiosensitised CD133+ 
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and CD15+ GBM CSCs isolated from 4 different primary GBM cell lines with  

SER0.1’s of 1.3-1.5. mTORC inhibition has a small but significant effect on GBM 

CSC survival in the absence of radiation. This was associated with an increase in 

unresolved gamma H2AX foci at 24 hours, however no alteration in G2/M 

checkpoint activation could be detected. In vivo studies of orthotopic xenografts 

showed addition of mTOR inhibition to radiotherapy prolonged survival in mice. 

The effects of Chk1 kinase inhibition on GBM CSC radioresistance was studied in 

the paper by Bao et al (Bao et al., 2006a). Chk1 is consistently upregulated in 

CSC populations as shown by several investigators, and as such it presents an 

obvious target for radiosensitisation strategies (Bao et al., 2006a, Ropolo et al., 

2009). Bao et al utilised the Chk1/Chk2 inhibitor debromohymenialdisine (DBH) 

and demonstrated that exposure to this agent abrogated CSC radioresistance. 

However formal clonogenic survival assay was not undertaken, and DBH is known 

to lack specificity for Chk1 kinase, (see section 1.2.8).  

Venere et al investigated the radiosensitising effects of PARP-1 inhibition on 

GBM CSCs, as discussed earlier in this chapter (Venere et al., 2014). PARP-1 

inhibition with olaparib was found to have significant radiosensitising effects on 

GBM CSCs, however this was not quantified by clonogenic assay.  

Raso et al investigated the response of GBM CSCs to radiation plus ATM inhibition 

(Raso et al., 2012). The authors of this study characterised two glioma cell lines, 

one of which expressed high levels of CSC markers and the other low or nearly 

absent expression of a panel of nine CSC markers. Effects of ATM inhibition and 

radiation were assessed by a cell viability assay. The authors demonstrated 

radiosensitisation of the CSC marker high expressing cell line. In contrast to this 

however ATM inhibition appeared to exert a radioprotective effect in the cell 

line showing poor expression of CSC markers. Culture of the CSC marker 

expressing cell line in differentiating media removed the radiosensitising effect 

of ATM. The comparison of two non-isogenic cell lines is problematic in this 

study, however it is of interest that ATM inhibition only had a radiosensitising 

effect on CSC populations. Nevertheless it is difficult to reconcile the central 

position of ATM in the DDR to ionising radiation with a radioprotective effect. 
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Biddlestone-Thorpe et al also conducted an investigation into the 

radiosensitising effects of ATM inhibition via neurosphere generation assay 

involving a cell line derived from a genetically engineered mouse model of 

glioblastoma (Biddlestone-Thorpe et al., 2013). ATM inhibition and radiotherapy 

was found to significantly reduce the generation of neurospheres. Although 

these studies have shown ATM inhibition to have effects on DDR and 

radiosensitivity on GBM CSCs, there is clearly a requirement for further 

investigation of the effects of ATM inhibition in CSCs.  

GBM produce abundant transforming growth factor beta (TGFB) which is known 

to promote effective DDR. The effects of TGFB on GBM CSCs were investigated 

by Hardee et al (Hardee et al., 2012). Inhibition of TGFB in combination with 

radiation produced a marked decrease in neurosphere formation and was shown 

to decrease DDR as assessed by gamma H2AX and 53BP1 and also reduce 

induction of self renewal signals Notch1 and CXCR4.  

 

1.6 Conclusion 

The emergence of CSC theory in recent decades and the accumulating evidence 

for its existence in GBM has led to investigators questioning the role of this 

malignant cellular subpopulation in the clinical behaviour of GBM. The existence 

of a subpopulation of tumour cells with the properties of self renewal, 

maintained proliferation and multi lineage differentiation immediately alters the 

priorities of oncological therapy. If the existence of a CSC population is 

accepted, then eradication of this tumour cell population becomes the primary 

aim of curative therapy. 

As discussed above, evidence suggests that the cancer stem –like cell population 

is resistant to many current oncological therapies. Radioresistance of GBM CSCs 

in particular has received much attention in the scientific literature and this 

particular property of CSCs is an elegant explanation for the clinical behaviour of 
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this disease. However, the evidence for radioresistance in CSCs is not yet 

compelling. The original report by Bao et al has not been confirmed by 

subsequent investigations, and some reports have conflicted with the results of 

this seminal study. There is a paucity of data quantifying GBM CSC 

radioresistance in isogenic cell lines using the radiobiological standard of 

clonogenic survival assay. Furthermore conclusions from existing data are 

complicated by extensive use of the CD133 marker to define GSCs. Although 

clearly associated with the CSC state in some tumours, the CD133 marker is not 

universal for CSCs and this may have contributed to discrepancies in the 

scientific literature regarding CSCs. Likewise detailed mechanistic studies of CSC 

checkpoint activation and comprehensive analyses of DNA DSB repair 

incorporating cell cycle effects have not been demonstrated in the literature. 

There is therefore a need to undertake these studies in order to clarify and 

confirm the putative radioresistance of CSCs. 

Small molecule DDR inhibitors facilitate the manipulation of DDR in cancer cells 

to allow sensitisation to radiotherapy, whilst theoretically having little effect on 

the radiation tolerance of normal tissues. Potentially this could bring significant 

clinical benefits for patients in terms of local control, palliation and cure, since 

radioresistance is an important reason for the failure of therapy. However the 

potential use of DDR inhibitors in GBM CSCs has not been extensively explored. 

Given data suggesting preferential activation of DDR in CSCs, the manipulation 

of DDR could provide the means to abrogate putative CSC radioresistance. 

Furthermore inhibition of specific elements of DDR may allow additional insights 

into the mechanisms of glioblastoma CSC DNA damage response. 

1.7 Aims and objectives 

 1.7.1 Aims 

1) To investigate the proposed radioresistance of glioblastoma CSCs 

2) To characterise the putative upregulated DNA damage response of 

glioblastoma CSCs and its effects on radioresistance 
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3) To investigate the modification of radioresistance in glioblastoma cancer 

stem–like cells by inhibition of key components of the DNA damage response  

 1.7.2 Objectives 

1) To quantify the radioresponse of glioblastoma CSCs using clinically relevant 

radiobiological assays 

2) To interrogate altered DNA damage response to radiation in glioblastoma CSCs 

via in vitro quantification of major DDR kinases, assessment of cell cycle 

responses and assays of DNA double strand break repair 

3) To quantify the in vitro radiosensitising effects of DDR kinase inhibition on 

GBM CSCs using small molecule DDR inhibitors via clonogenic survival assays 

4) To investigate the effects of small molecular DDR kinase inhibition on GBM 

CSC responses to radiation by in vitro assays of cell cycle effects and DNA double 

strand break repair 
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Chapter 2 Materials and Methods 

2.1 Cell culture 

All experiments involving primary and commercially available GBM cell lines 

were performed in a Class II sterile laminar flow hood, using supplied sterile 

plastic ware and solutions. Aseptic technique was maintained in order to avoid 

contamination. 

2.1.1 Source and derivation of primary GBM cell cultures 

The E2, G7 and R10 cell lines were gifted by Dr Colin Watts, University of 

Cambridge, UK. These cell lines were derived from freshly resected GBM 

specimens, by the Watts’ laboratory in Cambridge. Tissue samples were 

obtained in accordance with local ethical guidelines. Anonymised tissue was 

mechanically minced in modified phosphate buffered saline solution (PBS) prior 

to enzymatic digestion. Single cells were then isolated by filtration through a 

40µm filter (Falcon, UK) and washed with 10ml red blood cell lysis buffer. Live 

cells were quantified by trypan blue exclusion, seeded at standard density of 15 

000 cells/cm2 in CSC media (defined below) and allowed to form primary 

aggregates. These were collected and plated, without dissociation, onto 

extracellular matrix (ECM) coated flasks (ECM 1:10 dilution, Sigma, UK) and 

allowed to form a primary monolayer. As the primary monolayer approached 

confluence cells were dissociated by incubation with Accutase (Life 

Technologies) at room temperature and washed with PBS. The cell viability was 

assessed by light microscopy and cells were reseeded onto ECM-coated flasks at 

a density of 150 cells/cm2 to generate the secondary monolayer. To generate 

subsequent monolayers cells were seeded at standard density 15 000 cells/cm2 

at each passage. Cell numbers were expanded in this fashion and aliquots frozen 

at -80oC in DMSO as a cryopreservatant before being transferred to liquid 

nitrogen.  
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2.1.2 Culture of paired GBM CSC and tumour bulk populations 

CSC cultures were maintained in stem cell enriching conditions, in CSC media. 

This consisted of Adv DMEM F12 medium (Gibco) supplemented with 1% B27 

(Invitrogen), 0.5% N2 (Invitrogen), 4µg/ml heparin, 20ng/ml fibroblast growth 

factor 2 (bFGF, Sigma), 20ng/ml epidermal growth factor (EGF Sigma) and 1% L-

glutamine. Monolayer CSC cultures were seeded onto Matrigeltm at 1:40 dilution 

(matrigel : media) coated plastic tissue culture flasks or plasticware. 

Neurosphere cultures did not require Matrigeltm coated plasticware. 

Tumour bulk cultures were derived from CSC cultures by culture in 

differentiating media for at least 5 passages. This consisted of MEM (Gibco), 

supplemented with 10% foetal bovine serum (FBS Sigma), 1% L-glutamine and 1% 

sodium pyruvate. Tumour bulk cultures were grown as adherent monolayers on 

uncoated plasticware, or for clonogenic assays on Matrigeltm coated plastic ware 

to minimise experimental variation. 

2.1.3 Growth conditions 

Tumour bulk cell and CSC cultures were grown as adherent monolayers in flat 

sided flasks (Corning) of 75cm2 and 150cm2 containing 10 or 20ml of CSC or 

differentiating medium respectively in a 37oC humidified incubator, (Galaxy) at 

5% CO2in air, (21% O2 ),  gas concentration. Cell cultures were maintained at 

37oC, 5% CO2, 21% O2 and routinely passaged every 3-4 days. For all experiments, 

low passage number cells were used (maximum 20, but more commonly 5 to 15). 

2.1.4 Serial passaging of cells 

Passaging of cells was performed when cells were 70-80% confluent from 

microscopic appearance. Medium was aspirated off and the cell monolayer 

washed with phosphate buffered saline solution (PBS Gibco) to remove any 

remaining medium. Cell monolayers were then treated with 0.5ml Accutase 

(Gibco) and returned to an incubator for 5 minutes in order for the cells to 

detach from the growth surface and the flask was agitated. 5ml of media was 
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added to the cell suspension, the suspension was centrifuged at 2000rpm for 2 

minutes and media discarded. Cells were then distributed into new flasks with 

appropriate media, noting the passage number. 

2.1.5 Counting cells 

Cells were detached from monolayers and centrifuged. 3ml of media was added 

to the pellet and a single cell suspension created by passing media and cells 

through a 19 gauge needle 10 times. A further 7ml of media was added and the 

suspension thoroughly mixed. 10µl of suspension was added to each chamber of 

a haemocytometer and the number of cells in the 3 vertical large squares of the 

middle column of each chamber was counted. The mean cell count ‘C’ of the 

two chambers was calculated and the number of cells per ml of suspension was 

equal to C x 104. 

2.1.6 Cell storage and cryopreservation 

Cells were detached from monolayers and centrifuged as described. Cells were 

resuspended in cryopreservative medium, consisting of 1ml DMSO plus 9mls of 

media. Approximately 1 x106 cells were aliquoted into cryo-vials (Corning) and 

cells were initially frozen at -80oC before being transferred to liquid nitrogen for 

long term storage. 

2.1.7 Thawing cells from liquid nitrogen 

Cryo-vials were removed from liquid nitrogen and thawed rapidly in a 37oC water 

bath. The thawed cell suspension was then transferred to a 75cm2 flask 

containing 20ml of medium. Cells were allowed to adhere overnight and medium 

was changed the following day. 
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2.2 Western blot analysis of DDR protein levels 

2.2.1 Sample preparation 

Cells were harvested from 10cm diameter petri dishes. Medium was aspirated 

and a PBS wash performed prior to application of 100µl of cell lysis buffer (1% 

sodium dodecyl sulphate (SDS) as an ionic detergent, 50mM Tris pH6.8) plus a 

protease and phosphatase inhibitor cocktail (Roche). A cell scraper was used to 

homogenise the lysate and lysate was then passed through a cell shredding spin 

column (Qiagen). Supernatant was collected and stored at -20oC. 

2.2.2 Protein estimation 

The PIERCE BCA protein assay kit (PIERCE) was used to estimate the protein 

concentrations of cell lysates. This assay involves the reduction of Cu2+ to Cu+ by 

proteins in the presence of an alkali medium. The Cu+ ion is able to chelate two 

molecules of bicinchoninic acid (BCA) to form a stable purple coloured complex 

that can be detected at 562nm by spectrophotometer.  

Bovine serum albumin (BSA) was used as a standard at various concentrations 

ranging from 0.2mg/ml to 2mg/ml, and plated in triplicate wells of a 96 well 

plate. Experimental samples were diluted at a 1:5 ratio in lysis buffer and again 

plated in triplicate in a 96 well plate. BCA reagents A and B were mixed in the 

ratio 50:1 and 190µl of the mixture was pipetted into each well of the test 96 

well plate. Test plates were incubated at room temperature for 30 minutes 

before being read using a spectrophotometer (Tecan Infinite M200 Pro). The 

protein concentration of each sample was calculated using linear regression 

based on the equation obtained from the standard curve of BSA protein 

standards. 

2.2.3 Gel electrophoresis of protein 

50mcg of protein was mixed with LDS sample buffer (NuPage) with 5% beta 

mercaptoethanol (Sigma) and made up to a maximum volume of 25µl. 



Materials and Methods 

97 
 

Bromophenol blue within the LDS sample buffer allows monitoring of progress of 

the samples within the gel whilst beta mercaptoethanol denatures samples 

further by breaking down disulphide bonds. Samples were heated at 100oC for 5 

minutes. Samples were then loaded into lanes of either a 4-12% Bis-Tris (NuPage) 

or 3-8% Tris-Acetate (NuPage) precast gel depending on the molecular weight of 

the protein to be probed for. 10µl of protein standard (Pageruler Preset or 

Himark prestained, Invitrogen) was loaded in a parallel lane to allow 

visualisation of the approximate molecular weight of the detected protein in the 

test cell lysates to be determined. Electrophoresis of gels was carried out over 1 

hour and 30 minutes at 150V using an Invitrogen Mini Cell electrophoresis tank 

with approximately 700mls of electrophoresis buffer (see appendix 1). Following 

electrophoresis the gel was removed in preparation for protein transfer. 

2.2.4 Protein transfer 

Following electrophoresis the gel was transferred into a Biorad mini protean 

tetra system tank filled with transfer buffer (see appendix 1). Two pieces of 

fibre pad, filter papers and PVDF membrane (Whatman Pro) were soaked in 

transfer buffer. The fibre pad, filter paper and gel were then loaded into a 

cassette, which was placed within a transfer tank in an orientation ensuring 

migration of proteins toward the nitrocellulose membrane. The electrophoretic 

transfer was run overnight at 30V. 

2.2.5 Immunodetection 

Specific antibodies were used to detect the presence of proteins of interest. 

Following transfer of proteins, membranes were removed from the transfer 

apparatus and placed in TBS-Tween (see appendix 1) containing 5% non-fat milk 

(Marvel) (TBSTM) on a rocking platform for 1 hour to block non-specific binding 

sites on the membrane. Membranes were cut in order to facilitate analysis of 

multiple proteins of interest. Following blocking, membranes were placed into 

5mls of TBSTM or TBST containing 5% bovine serum albumin (Invitrogen) with an 

appropriate dilution of primary antibody, (see table 2.1). Membranes were 

incubated on a rocking platform at 4oC overnight and then washed 3 times in 
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TBST before incubation with an appropriate horse-radish peroxidase (HRP) 

conjugated secondary antibody in TBSTM for 1 hour at room temperature (see 

table 2.2). Following this, membranes were washed for 10 minutes in TBST and 

this was repeated 4 times. Protein visualisation was carried out using an 

enhanced chemiluminescent (ECLtm) kit (Fisher Scientific). The reagents rely 

upon the HRP-catalysed oxidation of luminol to an excited state in the presence 

of hydrogen peroxide, which results in the production of visible light as it decays 

to the ground state. ECL reagents were mixed in the ratio 1:1 and applied to 

membranes. Membranes were wrapped in plastic film and placed in apposition 

with high performance photographic film (Carestream Kodak Biomax MR Film) in 

a dark room for periods of 30 seconds-8 hours in order to achieve optimum band 

intensities.  

2.3 Clonogenic survival analysis 

2.3.1 Procedure 

6 well plates (Corning) were coated with Matrigeltm at a 1 in 40 dilution. Single 

cell suspensions of CSCs and tumour bulk cells were prepared and counted as 

above. 250 cells were aliquoted in a volume of 2mls of medium into each well of 

the 6 well plates and incubated overnight. Prior to irradiation, medium was 

aspirated from the plates and replaced with 1ml of medium containing DDR 

inhibitor in DMSO, an identical concentration of DMSO alone, or medium without 

DDR inhibitor or DMSO. 6 well plates were then returned to the incubator for 1 

hour prior to irradiation. Exposure of individual plates to 0, 1, 2, 3, 4 and 5Gy of 

radiation was undertaken during each assay; 0Gy control plates were sham 

irradiated. After irradiation plates were incubated for a period of 24 hours; 

following this drug or DMSO containing medium was aspirated and replaced with 

2mls of fresh medium which did not contain DDR inhibitor agent or DMSO and the 

plates were incubated for a further 2 weeks in the case of the E2 and R10 cell 

lines or for 3 weeks in the case of the G7 cell line to allow adequate (>50 cells 

per colony) colony formation. All control plates were subject to the same 

number and timing of medium changes throughout the experiment. CSCs were 

maintained in CSC media throughout the entire assay, and tumour bulk cultures 

were maintained in differentiating media throughout the entire assay. 
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After this period, colonies were fixed and stained. Medium was aspirated and 

1ml of 50% methanol-PBS was aliquoted into each well and left for 15 minutes. 

This was then replaced by 1ml of methanol (Sigma) and the plates left for a 

further 15 minutes. Following methanol fixation, colonies were stained with a 

1:25 solution of crystal violet/PBS (Sigma) for 3 hours before stain was removed 

and the plates dried overnight. Colonies of >50cells were counted manually. 

2.3.2 Analysis of clonogenic survival assay 

Colony counts were obtained from triplicate wells for each condition and each 

independent experiment was repeated a minimum of 3 times. Only colonies of 

greater than 50 cells were counted. A mean colony number for each 

experimental condition from these data was obtained and plating efficiency (PE) 

calculated by dividing mean number of colonies by the number of cells plated, 

(250 cells per well). Surviving fractions (SF) were then calculated by dividing the 

PE of the experimental condition by the PE of the unirradiated control. In the 

case of DDR inhibitor treatments, SF was calculated with reference to the 

unirradiated DDR inhibitor exposed control plate, therefore ensuring effects of 

DDR inhibition in the absence of radiation were taken into account during 

analyses of clonogenic survival data. 

Survival curves are conventionally presented with dose plotted on a linear scale 

on the x axis and surviving fraction plotted on a logarithmic scale on the y axis. 

The shape of the survival curve in response to gamma radiation can be described 

by the linear quadratic model, (Brenner and Hall, 1992). This model describes 

radiation induced cell killing due to a linear component which is proportional to 

radiation dose and a quadratic component which is proportional to the square of 

the dose, (see equation 2.1). A biological interpretation of the linear quadratic 

model has been attempted, however reconciliation of molecular events and 

mathematical theory requires much simplification of biological events. In brief it 

is proposed that lethal lesions induced by single DNA damaging events account 

for the linear component of the survival curve, whereas the combination of 

single DNA damaging events to create a lethal lesion accounts for the quadratic 
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component. The linear quadratic model is utilised in clinical practice to compare 

relative biological effects of different radiotherapy fractionation schedules. 

 

Equation 2.1 The linear quadratic equation 

Data derived from clonogenic survival experiments were fitted to a linear 

quadratic model. Regression analysis allowed curve fitting to be performed. 

Modelling data on the linear quadratic equation also enabled sensitiser 

enhancement ratios at 0.37 survival (SER0.37) and dose modifying factors for 

0.37 survival (DMF0.37) to be estimated. These calculations are detailed in 

equations 2.2 and 2.3.  

 

Equation 2.2 SER0.37 ratio 

 

Equation 2.3 DMF calculation 

2.4 Irradiation of cells 

Irradiation of all cell cultures was carried out using an XStrahl RS225 radiation 

unit. This unit generates 195kV X rays. Monolayer cell cultures in T75 flasks with 

5ml of media were placed on a Perspex baseboard inside the unit avoiding the 

penumbra of the radiation field as defined by the distance between the 80% and 

20% isodoses as measured by ion chamber. 195kV X rays were delivered using a 



Materials and Methods 

101 
 

current of 15mA, which provided a dose rate of 1.5Gy per minute at a distance 

of 400mm from source.  

2.5 Neurosphere assay 

Single cell suspensions of CSC cultures were made and cell counts performed. 

Cells were added to medium in a 50ml test tube (Falcon), in order to achieve a 

cell dilution of 10 cells per 100µl of media. For experiments with DDR inhibitor 

agents, DDR inhibitor in DMSO, or a corresponding volume of DMSO as a control 

was added prior to the addition of cells to the medium. The tube was agitated in 

order to achieve an even dispersal of cells. 100µl of the cell suspension was then 

aliquoted into each well of a 96 well plate in order to achieve a dilution of 10 

cells per well. The plates were placed in an incubator at 37oC for one hour prior 

to irradiation. Each plate was irradiated with 2Gy, or sham irradiated in the case 

of controls and then returned to the incubator. A further 150µl of medium was 

added to each well 48 hours following irradiation in order to dilute DDR inhibitor 

drugs. Control plates were treated in a similar manner. 96 well plates were 

incubated for a period of 3 weeks in the case of the G7 cell line or 4 weeks in 

the case of R10 and E2 cells lines. Neurospheres were imaged using an 

Optronixtm Gelcount machine. Neurospheres were assessed and counted 

manually from images produced by the Optronixtm Gelcount software. 

Neurosphere diameters were obtained from the same images. 

2.6 Gamma H2AX foci analysis 

2.6.1 Procedure 

19mm diameter circular glass coverslips were placed in the wells of 12 well 

plates (Corning). These were coated with Matrigeltm. Single cell suspensions 

were created and counted, and 1ml of medium containing 4 x 104 cells was 

added to each well. Plates were then incubated overnight at 37oC. Both CSC and 

tumour bulk monolayers were grown on Matrigeltm coated coverslips. Prior to 

irradiation medium was removed and replaced with medium containing DDR 

inhibitor agent, or medium containing a similar concentration of DMSO as 

control. Plates were incubated for 1 hour prior to irradiation as before. At time 



Materials and Methods 

102 
 

intervals following irradiation, medium was removed, cells were washed in PBS 

and then fixed in 4% paraformaldehyde/PBS for 15 minutes. Paraformaldehyde 

was then removed and replaced with 1ml PBS and plates were stored at 3-5oC. 

2.6.2 Immunostaining 

Fixed cells on coverslips were removed from PBS and permeabilised by the 

addition of 3% Triton-PBS solution for 5 minutes on a rocking platform. 3% 

Triton-PBS was then aspirated and blocking buffer (0.1% Triton-PBS plus 5% FCS 

plus 0.5% BSA) subsequently added for a period of 30 minutes on a rocking 

platform to block non-specific antibody binding sites. A dilution of primary 

antibody was made in antibody buffer (1% BSA in 0.05% Triton-PBS) and 60µl of 

this solution was aliquoted onto Parafilmtm , and inverted coverslips were placed 

on top of the primary antibody/buffer onto Parafilmtm. In the case of gamma 

H2AX and centromere protein F (CENPF) staining, primary antibodies to these 

two antigens were incubated simultaneously at 5oC overnight. Following 

incubation in the primary antibody, coverslips were washed 3 times in 0.05% 

Triton-PBS on a rocking platform 1 minute per wash. Coverslips were then 

incubated in antibody buffer with secondary Alexa Fluoro conjugate antibody for 

1 hour at 5oC in darkness. Coverslips were washed 3 times in 0.05% Triton PBS 

and mounted onto glass histology slides with 15µl of 4,’6-Diamidino-2-

Phenylindole (DAPI) (Vector laboratories). Coverslips were sealed with nail 

varnish and allowed to dry. 

2.6.3 Confocal microscopy 

Z stacks of immunofluorescent staining of cells were obtained on a Zeiss 710 

confocal microscope. A minimum of 4 sections were obtained per Z stack at 

depths of 2.5µm. Microscope settings were kept constant between all 

experimental conditions. 
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2.6.4 Quantification of gamma H2AX foci 

Gamma H2AX foci are commonly quantified manually, leading to significant inter 

(and intra) observer variation in counts obtained. Often nuclei are scored simply 

as positive or negative for gamma H2AX foci, or an arbitrary cut off of 10 foci 

per nucleus is used to define high and low levels of gamma H2AX foci, (Kinner et 

al., 2008). In order to quantify foci per nucleus in this study, Volocitytm software 

was utilised in order to provide an image analysis solution for foci quantification. 

A protocol was developed which allowed automated counting of gamma H2AX 

foci within DAPI and CENPF stained nuclei. Z stack images were processed by 

maximum intensity projection (Zen software, Zeiss) to allow quantification. A 

validation process comparing Volocitytm foci counts in cell nuclei at 1 hour 

following irradiation was performed (fig 2.1). Median values in this data set of 66 

cells from 8 images were not significantly different between automated and 

manual counting processes. 

 

Figure 1.1 Comparison of manual and automated gamma H2AX foci counts by Volocity 

software.  

Gamma H2AX immunofluorescence analysis at 1 hour post 1Gy in the E2 CSC cell cultures in 
CENPF negative populations. Foci counts were scored manually initially and then quantified using 
Volocity software; data were summarised by use of the median foci count per nucleus. Medians 
were compared using the Mann Whitney U test. P value was non-significant. 
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2.7 Neutral Comet Assay 

Neutral comet assay is a gel electrophoresis based method which allows 

detection of DNA DSBs in individual eukaryotic cells, (Olive and Banath, 2006). 

The main advantage of neutral comet assay is that it provides a direct assay of 

DNA DSBs which is not dependent on the integrity of DSB signalling, unlike 

gamma H2AX foci analysis. However there are limitations of the neutral comet 

assay. It is a relatively insensitive measure of DNA DSBs and can only be used to 

detect DNA DSBs over a range of around 50 – 10,000 breaks per cell. Some DNA 

damage (including DSBs), can be repaired rapidly, and unless repair is inhibited, 

problems in detecting DSBs can be encountered at late timepoints following 

irradiation. Large doses of radiation are required to initiate DNA damage which 

is detectable by neutral comet assay. Doses of 20Gy and above are required to 

provide a quantity of DNA damage reliably detectable by neutral comet. These 

large doses are not reflective of radiation doses used in clinical practice. 

2.7.1 Procedure 

Cell cultures in T75 flasks were incubated in media containing ATM inhibitor or a 

corresponding concentration of DMSO for one hour prior to irradiation. Cell 

cultures were placed on ice immediately after irradiation in order to inhibit DNA 

repair. Single cell suspensions in Ca2+ free PBS (Trevigen) were made from each 

experimental condition and cell counts performed. Single cell suspensions were 

then placed on ice. Suspensions of bleomycin treated control cells supplied by 

the manufacturer were also prepared in Ca2+ free PBS. Low melting point agarose 

was heated to 100oC in a water bath until molten and then transferred to a 40oC 

water bath. Cell density of the single cell suspensions was adjusted to 2 x 104 

cells/ml. 0.4ml of agarose/cell suspension was mixed with 1.2ml of molten 

agarose. 50µl of agarose/cell suspension was then pipetted onto a comet slide 

(Trevigen) and left at 4oC to set for 10 minutes. Slides were then submerged in 

neutral comet lysis buffer (Trevigen) at 4oC for 1 hour. Slides were then 

submerged in a Tris-Acetate (TA) electrophoresis buffer (see appendix 1) for 30 

minutes at room temperature. This procedure was repeated 2 more times. Slides 
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were then submerged in TA buffer in a Trevigen electrophoresis chamber and 

electrophoresis at 21V was carried out for 45 minutes at 4oC. Slides were then 

immersed in DNA precipitation buffer (see appendix 1) for 30 minutes and 

following this were immersed in 70% ethanol-PBS for 30 minutes at room 

temperature. Slides were then dried at 37oC for 10-15 minutes. 100µl of diluted 

SYBR-Green (Life-technologies) DNA stain was placed onto each circle of dried 

agarose and left for 30minutes at room temperature. Excess stain was removed 

and the slides were allowed to dry completely.  

2.7.2 Visualisation and quantification 

Comets were visualised by epifluorescent microscopy. Analysis of neutral comets 

was performed by quantification of the Olive tail moment; a measurement which 

is defined as the product of tail length and the fraction of total DNA in the tail. 

Olive tail moment was measured using ImageJ software, using a specific comet 

assay plugin available at: www.med.unc.edu/microscopy/resources/imagej-

plugins-and-macros/comet-assay.  

2.8 Immunohistochemistry of formalin fixed, paraffin embedded 

tumour sections 

2.8.1 Procedure 

5µm thickness formalin fixed paraffin embedded (FFPE) tissue sections on glass 

slides were utilised. Sections were deparaffinised in xylene for 5 minutes and 

then transferred through 99% alcohol for one minute (two changes) and 95% 

alcohol for one minute (two changes) and then rinsed in tap water. Endogenous 

peroxidase was blocked by incubating sections in 3% hydrogen peroxide solution 

for 15 minutes. Antigen retrieval was achieved by boiling sections in citrate 

buffer solution (see appendix 1), using a pressure cooker and microwave oven. A 

Vectastain Universal Elite ABC kit was used for immuunohistochemical staining. 

Blocking of non-specific antibody binding sites was achieved by incubating 

sections at room temperature for 30 minutes in blocking buffer, (consisting of 1 

drop horse serum in 5ml Optimax buffer, Optimaxtm). Primary antibodies were 

then diluted in Optimax buffer and applied to tissue sections and incubated at 

http://www.med.unc.edu/microscopy/resources/imagej-plugins-and-macros/comet-assay
http://www.med.unc.edu/microscopy/resources/imagej-plugins-and-macros/comet-assay
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4oC overnight. Tissue sections were then washed in PBST (0.2% Tween 20-PBS) 

for 3 minutes and the wash repeated 3 times. The universal secondary antibody 

was then applied to the sections and sections were incubated at room 

temperature for 30 minutes, (2 drops of universal biotinylated secondary 

antibody, 2 drops horse serum, 5ml Optimax buffer). Sections were washed in 

PBST on a rocking platform for 6 minutes and the wash repeated 3 times in total. 

Avidin Biotin HRP complex was prepared by adding 2 drops horse serum, 2 drops 

of bottle ‘A’, 2 drops of bottle ‘B’ to 5ml of Optimax buffer. 300µl of Avidin 

Biotin HRP was applied to each section and sections were incubated at room 

temperature for 30 minutes. Sections were then washed in PBST 3 times over 20 

minutes. Vector DAB substrate (3,3’ diaminobenzidine) produces a brown 

reaction product in the presence of peroxidase (HRP) enzyme. Vector DAB 

substrate was prepared by adding 84µl of Vector DAB buffer solution, 84µl 

hydrogen peroxide solution and 200µl DAB stock solution to 5ml of distilled 

water. Sections were covered in DAB substrate solution and left for 7 minutes 

until brown staining developed. Excess DAB was disposed of and sections were 

washed in tap water for 5 minutes. Sections were counterstained with 

haematoxylin, nuclei were stained with Scotts Tap water and sections were 

washed once more. Sections were transferred through 95% and 99% alcohol and 

xylene as before and a coverslip applied to the slides. For each batch of 

immunohistochemical staining a negative control was present; one tissue section 

was treated as per the above protocol, however the primary antibody step was 

omitted. 

2.9 Sanger sequencing of p53 in primary GBM cell lines 

DNA extraction from E2 CSC, E2 bulk, G7 CSC, G7 bulk and U87 cell lines was 

performed using a Qiagen DNEasy kit. In brief 5 x 106  cells were centrifuged and 

resuspended in PBS. 20µl of proteinase K was added. 200µl of buffer ‘AL’ was 

added and the suspension mixed with an equal volume of ethanol. The mixture 

was centrifuged in a DNeasy spin column and the flow-through discarded. 500µl 

of buffer ‘AW1’ was added and the tube centrifuged and flow-through discarded. 

500µl of buffer ‘AW2’ was then added and the tube centrifuged and flow-

through discarded. DNA was eluted by the addition of buffer ‘AE’ and incubation 
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for 1 minute at room temperature, followed by centrifugation. This step was 

repeated and extracted DNA stored at -20oC. 

Polymerase chain reaction (PCR)  was carried out in order to amplify the 

relevant DNA for Sanger sequencing. Forward and reverse primer sequences 

covering exons 3 to 10 of the p53 gene were gifted from Dr Patricia Roxburgh 

(Beatson CRUK Institute, Glasgow). These are detailed in appendix 2. 

Corresponding oligonucleotide sequences were obtained from Sigma, UK. 

Lyophilised oligonucleotides were suspended in DNA/RNA free water at a 

concentration of 200µM, from which a 1:10 diluted working stock was prepared. 

PCR reagents were obtained from the Qiagen Core Taq PCR kit. 0.2ml thin 

walled RNA/DNA free reaction tubes (Thermoscientific) were used for PCR 

reactions. 4µl of genomic DNA (gDNA) was placed in each reaction tube. A 

master mix containing 1.2µl magnesium chloride (25mM), 4µl PCR buffer, 0.8µl 

dNTP mixture, 2µl primer stock, 37.6µl water per tube was then added to each 

reaction, followed finally by 0.4µl Taq polymerase. A negative control containing 

PCR mastermix and Taq only was run simultaneously to detect spurious DNA 

contamination of the mastermix preparation. 

PCR reactions were run at 94oC for 5 minutes followed by 50 cycles of 96 oC for 

10 seconds, 60 oC for 1 minute, and 72 oC for 1 minute. A final annealing 

temperature of 72 oC for 10 minutes was used with subsequent incubation at 15 

oC. A Biorad DNA engine Tetrad 2 was used to carry out PCR reactions. 

Amplified DNA was purified by gel electrophoresis. A 2% agarose gel was 

prepared by dissolving 2g of agarose in 100ml of Tris/Acetate/EDTA (TAE) buffer 

(see appendix 1). Ethidium bromide (Life Technologies) was added to the gel to 

a final concentration of 0.2µg/ml. The gel was then cast in the base of an 

electrophoresis tank and allowed to set at 4oC. 4 µl of DNA loading buffer was 

added to each PCR product and mixed. 10µl of Generuler 100bp ladder was 

added to the first lane of the gel and samples loaded in parallel lanes. 300ml of 

TAE buffer was added to the electrophoresis tank and the gel was run at 80V for 

2 hours. DNA bands were visualised by ultraviolet light and a scalpel was used to 

cut out the visible DNA bands from the gel which were placed into reaction 
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tubes. The Qiaquick extraction kit was used to extract DNA from the gel bands. 

In brief, the bands were weighed and 3 volumes of buffer ‘QG’ were added 

followed by incubation at 50 oC in a heatblock. 1 volume of isopropanol was 

added and the mixture transferred to a spin column. The column was 

centrifuged and flow-through discarded. This step was repeated. 750µl of buffer 

‘PE’ was added and the sample centrifuged. 50µl of DNA elution buffer was 

added and the flow-through collected and stored at -20 oC. The DNA 

concentration of each purified PCR product was assayed by Nanodrop estimation. 

Sanger sequencing of PCR products was carried out using an Applied Biosystems 

3130 genetic analyser and was performed by William Clark and Andrew Keith, 

(CRUK Beatson Institute, Glasgow). In brief, Sanger sequencing involves the 

analysis of ssDNA. An oligonucleotide sequence is used to prime the sequence of 

interest, and initiates a cDNA elongation process via DNA polymerase. A mixture 

of normal deoxynucleosidetriphosphates (dNTPs; dATP, dGTP, dCTP, dTTP) and 

corresponding modified fluorescently labelled di-deoxynucleotidetriphosphates 

(ddNTPs) are supplied for the reaction. Different fluorophores allow detection of 

different ddNTP analogues. Elongation of cDNA occurs with the addition of 

dNTPs until a ddNTP is randomly incorporated. Incorporation of a fluorescently 

labelled ddNTP terminates the elongation reaction and results in the production 

of a DNA fragment with a fluorescently labelled terminal base. The length of the 

DNA fragment can be used to inform the position of a dNTP corresponding to the 

fluorescently labelled ddNTP. Separation of DNA fragments is achieved by gel 

electrophoresis using a denaturing polyacrylamide urea gel.  

Sequence chromatograms generated by the Sanger method were read using ApE 

software, (http://biologylabs.utah.edu/jorgensen/wayned/ape/). Sequence 

from both forward and reverse primers was utilised and compared to published 

wild type p53 sequence, (http://p53.iarc.fr/TP53Sequence_NC_000017-9.aspx). 

Significance of mutations was determined by comparison of the mutated codon 

sequence to published tables of DNA codons and respective amino acids. The p53 

database (http://p53.free.fr/Database/p53_database.html) was consulted for 

further information on any identified sequence changes in the p53 exons 

characterised by this study.  

http://biologylabs.utah.edu/jorgensen/wayned/ape/
http://p53.iarc.fr/TP53Sequence_NC_000017-9.aspx
http://p53.free.fr/Database/p53_database.html
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2.10 Flow cytometric analysis of cell cycle distribution and G2/M 

checkpoint activation 

Flow cytometry was employed to provide analysis of cell cycle distribution and 

G2/M checkpoint activation. 

Briefly, flow cytometry is a method of analysis of cell size, granularity and 

expression of cell surface markers or of ligands such as propidium iodide (PI) 

which bind to DNA. A flow cytometer allows the hydrodynamic focussing of a 

suspension of single cells. Single cells are therefore exposed to a laser one cell 

at a time. Cells or particles cause scattering of light as they pass through the 

laser light, which is detected as Forward Scatter (FS) and Side Scatter (SS). FS is 

light which is scattered at small angles relative to the incident laser light, 

whereas SS is light scattered at larger angles. FS provides information on cell 

size, whereas SS provides information on cell granularity. Based on FS and SS 

values, cells can be separated into different populations, and debris or dead 

particulate matter excluded. Furthermore, fluorochromes used for detection or 

staining of target molecules and proteins will emit light when excited by a laser 

with the corresponding excitation wavelength. Fluorescent stained cells can be 

detected individually and quantified.  

2.10.1 Procedure 

Cell cultures grown as monolayers to 30-50% confluency in T75 flasks were 

utilised. Cells were dissociated using accutase as above, centrifuged and 

pelleted in 15ml reaction tubes. Pellets were dissociated into single cell 

suspensions. Cells were then fixed in 70% ethanol and stored at 4oC. 

Fixed cells were centrifuged and pelleted and ethanol removed by aspiration. 

Cell pellets were washed in 5ml 0.05% Triton-PBS and centrifuged. This process 

was repeated twice. 0.05% Triton-PBS was aspirated and each cell pellet was 

dissociated into a single cell suspension in 125µl of 0.05% Triton-PBS containing a 

1:50 dilution of phosphorylated Histone H3 antibody-Alexa 488 conjugate, (see 

table 2.1) and transferred to a 1.5ml reaction tube. Reaction tubes were 
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incubated at 4oC on a rocking platform for 45 minutes. Reaction tubes were 

centrifuged and primary antibody mixture removed by gentle aspiration. Cell 

pellets were dissociated in 400µl of PBS containing 200µg/ml RNase A (to 

degrade RNA) and10µg/ml PI and incubated for 10 minutes. 

SS and FS characteristics were used to identify cells of interest and a region gate 

was applied using FloJo software to exclude cellular debris and doublet nuclei 

(Fig 2.2 and 2.3). The 488nm laser was utilised to excite both PI and alexa fluoro 

488 conjugate primary antibodies.  PI emission was collected by the FL32 

channel (650585/42 emission filter) whilst the FL1 channel detected Alexa 488 

emission (53085/3042 emission filter).  

 

Figure 2.2 Region gating to exclude debris from flow cytometry analyses 
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Figure 2.3 Region gating to exclude doublets from flow cytometry analyses 

From the PI emission data a cumulative histogram was plotted. PI emission 

corresponds to DNA content, and allowed the visualisation of two distinct peaks 

(G1 and G2 phase cells). The amplitude PI signal intensity of the signal from G2 

cells was double that of G1 cells. The PI intensity of S phase cells emitted a 

range of amplitudes is between the G1 and G2 peaks (fig 2.4). The application of 

a cell cycle profile using FloJo software allowed calculation of the numbers of 

cells in each phase.  
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Figure 2.4 Example of cell cycle profile following analysis of PI stained cells using FlowJo 

software 

For analysis of Alexa 488, FL1 signal was plotted against FL3A, and a regional 

gate was applied in order to facilitate quantification of G2 DNA content cells 

with bound pHisH3 antibody-alexa 488 conjugate (fig 2.5). 
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Figure 2.5 Example of regional gating applied to identify mitotic cells labelled with 

Phosphorylated Histone H3 (pHisH3) Alexa Fluoro 488 conjugate antibody 
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2.11 Cell viability assays 

Cell cultures were plated into Matrigeltm coated 96 well plates at a density of 

500 cells per well and incubated overnight in 100µl of media. Media was 

aspirated and replaced with 100µl of media containing DDR inhibitor agent or a 

corresponding concentration of DMSO. Plates were returned to the incubator for 

24 hours, after which DDR inhibitor agent/DMSO media was removed and 

replaced with fresh media, or alternatively left in DDR inhibitor/DMSO media for 

a period of 6 days. After a total of 7 days from initial plating, plates were 

analysed for viable cells using the Cell Titer-Glo assay (Promega). Briefly, this 

assay relies upon a luciferase reaction, following the lysis of cells and provides a 

quantification of cell viability based on amount of ATP. Monooxygenation of 

beetle luciferin is catalysed by luciferase in the presence of Mg2+, ATP and 

oxygen, providing a luminescent signal which is proportional to the amount of 

ATP present. This can be quantified by means of a luminometer.   

96 well plates were treated as per the manufacturer’s protocol. 100µl of Cell 

Titer-glo reagent was added to each test well and the plate placed on an orbital 

shaker for 2 minutes to induce cell lysis. The plate was then incubated at room 

temperature for 10 minutes to stabilise luminescent signal and luminescence was 

recorded using a Promega luminometer with an integration time of 1 second. 

Readouts from DDR inhibitor agent containing wells were normalised to wells 

containing DMSO control media. 
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2.12 Statistical Analyses 

Mean values were compared using student’s t-test and 95% confidence intervals. 

Minitab and GraphPad Prism were used to calculate statistical significance. 

Special consideration must be given to the analysis of clonogenic assays and 

gamma H2AX foci analysis. 

2.12.1 Clonogenic assays 

Data points of CSC versus bulk, and controls versus drug treatments were 

analysed for statistical significance using ANOVA. SF2Gy and SF4Gy values were 

summarised as means and compared using Student’s t test. SER0.37 values were 

expressed as a mean derived from a minimum of 3 independent experiments and 

a 95% confidence interval for the mean was generated from these data. 

2.12.2 Gamma H2AX foci analysis 

The distribution of gamma H2AX foci per nucleus was found to exhibit significant 

right skew, and therefore median foci per nucleus was used as a summary 

statistic. A mean of medians was generated from a minimum of 3 independent 

experiments and means were compared using student’s t test. For the validation 

of Volocity counts and manual counting methods for nuclear gamma H2AX foci 

quantification, a Mann Whitney U test was utilised to compare medians.  
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Table 2.1 Details of antibodies used, applications and dilutions 
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Table 2.2 Secondary antibody details, applications and dilutions 
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Chapter 3 Model characterisation 

3.1 Introduction 

In order to characterise the radiation response of GBM CSCs, in vitro models of 

the CSC subpopulation and differentiated tumour bulk populations were 

developed. There have been various approaches to this problem in the past. Cell 

sorting based on the cell surface marker CD133 has been utilised in several 

studies to sort populations of marker positive CSCs from non-stem populations, 

(Bao et al., 2006a, McCord et al., 2009). However a satisfactory universal CSC 

marker in GBM has not yet been identified and it is likely that CD133 expression 

does not correlate with CSC phenotype in all GBM tumours. Other investigators 

have quantified the expression levels of putative CSC markers in a variety of 

GBM cell lines and classified them as having high or low expression of these 

markers. Radiosensitivities of high and low CSC marker expressing cell lines were 

then compared, (Ropolo et al., 2009). However this model ignores important 

differences in intrinsic radiosensitivity between non isogenic cell lines, limiting 

the utility of this approach.  

A model was developed in which isogenic, paired CSC enriched and CSC depleted 

cultures were generated from the same primary parental cell line, thus avoiding 

any problems associated with differing intrinsic radiosensitivities between 

different cell lines. This was achieved by culturing primary GBM tumour samples 

in a neurobasal-like CSC media with the addition of epidermal and fibroblast 

growth factors and in the absence of serum (see chapter 2) to enrich for GBM 

CSCs. Once these CSC enriched cultures had been established, a model of 

differentiated or ‘tumour bulk' cells was generated by culturing them in 

conventional growth media containing serum without additional growth factors 

(see chapter 2). CSC enriched and depleted cultures were then characterised by 

a repertoire of assays including in vivo tumourigenicity, neurosphere formation 

and expression of a panel of CSC and differentiation markers. This culture model 

has the major advantage of not relying upon a single CSC marker, since there is 

no universal satisfactory GBM stem cell marker and even CD133 negative cells 

have been shown to exhibit CSC properties, (Beier et al., 2007). 
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Conventional CSC cultures are grown as “neurospheres” since cells grown under 

these conditions form spheres and fail to adhere to plastic tissue culture flasks. 

Neurospheres differ from spheroid cultures in that the cells within the 

neurosphere are thought to represent the progeny of a single cancer stem cell, 

whereas spheroids represent cellular aggregates of cultured cells. This can be 

shown by plating single cells into 96 well dishes and demonstrating the 

generation of neurospheres. Both E2 and G7 CSC cultures produced neurospheres 

when grown in this manner, (fig 3.1). Bulk cultures on the other hand adhered in 

the conventional manner to tissue culture flasks producing a monolayer culture. 

Neurospheres are problematic to work with for the purposes of in vitro assays, 

and the architecture of a particular form of cell culture may provide a further 

confounding factor when comparing functional differences and radiation 

sensitivities between CSC and tumour bulk cultures. Therefore GBM CSCs were 

cultured as monolayers by allowing them to adhere to a Matrigeltm coating which 

was applied to tissue culture plastics, (fig3.2).  

 

Figure 3.1 Representative images of E2 and G7 neurospheres 

E2 and G7 cells were cultured in CSC media in tissue culture flasks and allowed to form 

neurospheres (10x magnification light microscopy). 

Differences between CSC and tumour bulk monolayer Matrigeltm cultures were 

apparent by inspection under the microscope at low (10x) magnification. 

Particularly in the E2 cell line the tumour bulk cells appeared spiculated and 
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more differentiated in nature, compared to the rounded, seed like 

undifferentiated appearance of the CSC cultures, (fig 3.2). 

 

 

Figure 3.2 Representative images of E2 and G7 monolayer cultures 

Representative images of G7 and E2 cell line cultures when cultured as monolayers (10x 
magnification light microscopy). CSC cultures were grown in CSC media on Matrigeltm coated 
tissue culture flasks. Bulk cultures were grown in FCS containing media in tissue culture flasks 
without Matrigeltm. 

 

3.3 Comparison of expression of putative CSC markers in GBM CSC and 

tumour bulk cultures 

As discussed in the introduction to this thesis, a single satisfactory CSC marker 

does not exist for GBM CSCs, and the functional analysis of CSCs in their ability 

to recapitulate the parental tumour in vivo remains the gold standard method of 

identifying GBM CSCs. Nevertheless, panels of CSC markers are of value as 

surrogate indicators of the CSC state. Commonly used CSC markers in GBM are 
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CD133, Sox2 and Nestin. Glial fibrillary acidic protein (GFAP) is used as a marker 

of astrocytic differentiation.  

Analysis of the CSC markers Nestin and Sox2 by Western blotting is shown in 

figure 3.3. The levels of these CSC markers were clearly elevated in CSC cultures 

of both the E2 and G7 cell lines. The percentage of CD133+ cells and GFAP+ cells 

in CSC and bulk cultures by FACS analysis are also shown in figure 3.4. The CSC 

marker CD133 was again clearly and significantly elevated in the CSC cultures of 

E2 and G7 whilst expression of the astrocytic differentiation marker GFAP was 

reduced in CSC cultures but significantly elevated in tumour bulk cultures. 

 

Figure 3.3 Analysis of CSC markers via Western blotting 

E2 and G7 CSC and bulk cultures were incubated for 48 hours in their respective media types 
before lysis for Western blotting. Membranes were probed for the GBM stem markers nestin and 

sox2 
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Figure 3.4 Quantification of CD133 expression by flow cytometry 

CSC and bulk cultures of both cell lines were dissociated and incubated with CD133 or GFAP 
antibody respectively and then analysed via flow cytometry using a BD FACSCalibur. Results 
represent means and SD from 3 independent experiments. P values were generated by student’s 
t test. The data shown in this figure is the work of Dr N Gomez-Roman and Dr S Ahmed, and not 

the author’s own. 

 

These findings were confirmed via immunofluorescent microscopy in the E2 cell 

line (fig 3.5). Nestin expression was increased in the CSC cultures by 

immunofluorescence when compared to bulk cultures, however nestin staining 

was not entirely absent in the tumour bulk culture. This implies either that a 

CSC population was present in tumour bulk cultures, but depleted compared to 

CSC culture conditions, or that nestin expression was not specific for CSC and 

could be observed at lower levels in more differentiated GBM populations. A 

similar pattern was seen when CD133 staining was performed, (fig 3.5). CD133+ 

cells were more frequent in CSC cultures compared to the differentiated tumour 

bulk conditions. 
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Figure 3.5 Demonstration of immunofluorescent staining for CSC markers in E2 CSC and 

tumour bulk cells 

Cells were grown on Matrigeltm coated circular glass slides until 80% confluent. Cells were then 
incubated with antibody to nestin (upper panels), or CD133 (lower panels) before being stained 
with DAPI and visualised using a Zeiss confocal microscope. Cells were incubated with CD133 
antibody prior to fixation in order to prevent degradation of the AC133 glycosylated portion of 

the CD133 antigen. Images represent maximum intensity projections of 6 slice Z stacks.   

 

3.3 Effects of switching media on CSC markers 

The model of CSC and bulk tumour cell cultures discussed above was dependent 

upon the culture conditions which the cell lines were grown in. An investigation 

of the effects of changing the culture conditions on the CSC or bulk phenotypes 

of the respective cell lines and culture conditions was undertaken. Established 

CSC and bulk cultures (i.e. CSC and bulk cell cultures which had been grown in 

CSC media or bulk media respectively for greater than 5 passages) were used for 

this experiment. CSC cultures were incubated in bulk media and lysed for 

Western blotting at timepoints of 0, 2, 12, 24, 48, 72 and 96 hours respectively 
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post incubation in bulk media. Established tumour bulk cultures were switched 

to CSC media and lysed for Western blotting at similar timepoints post 

incubation in CSC media. The resulting Western blots which were probed for the 

CSC marker nestin and the differentiation marker GFAP. These are shown for E2 

CSC and bulk cultures and G7 CSC and bulk cultures (fig 3.6). 

 

Figure 3.6 Comparison of CSC marker and differentiation marker expression by Western 

blotting in CSC and bulk cultures following switching of original growth media conditions. 

E2 and G7 CSC cultures were incubated in FCS containing bulk media and lysed for Western 
blotting at the timepoints shown.  E2 and G7 bulk cultures were incubated in CSC media and 
lysed for Western blotting at the timepoints shown. Membranes were probed for the CSC marker 

nestin and the astrocytic differentiation marker GFAP. 

 

In both G7 and E2 CSC cultures the expression of nestin was maintained, even 

after 96 hours of incubation in differentiating bulk medium. GFAP levels 

remained constant in the G7 CSC cell populations, however in the E2 CSCs the 
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expression of GFAP increased from 48 hours onwards, demonstrating that a 

degree of differentiation was occurring in the E2 CSC cultures. The stability of 

nestin expression over this period of time would suggest that CSC marker 

expression is a robust and durable feature of CSC cultures and not an artefact of 

cell culture conditions.  

In the E2 and G7 bulk cell cultures, nestin expression decreased on exposure to 

CSC media. This is an unexpected finding but may have been a non-specific 

effect of the abrupt withdrawal of foetal calf serum from culture medium. 

Nestin expression increased from 48 to 96 hours again suggesting a CSC enriching 

effect occurred, particularly in the G7 cell line. 

3.4 In vivo validation of the CSC phenotype 

CSC markers are unsatisfactory as a sole indicator of the CSC status of tumour 

cells. CD133 is the most widely used marker of CSCs in GBM, yet CD133- cells 

have been shown to harbour CSC properties in some tumours, (Beier et al., 

2007). Due to the uncertainties associated with putative CSC markers, the 

culture of GBM CSCs must be validated by in vivo transplantation studies. CSCs 

should display properties of self renewal, multipotency and the ability to initiate 

tumours at low dilutions on orthotopic transplantation, (Pilkington, 2005, 

Vescovi et al., 2006). 

For these validation studies, 1 x 105 E2 and G7 cells cultured as CSC and bulk 

cultures were injected as orthotopic transplants into the brains of CD1 nude 

immunocompromised mice. In vivo studies were performed by Dr Lesley Gilmour 

and Katrina Stevenson. E2 CSCs generated tumours in 100% of mice. 

Furthermore, CSC culture derived tumours in E2 were highly invasive.HLA1-ABC 

can be used as a marker for human cells in murine orthotopic tumour transplant 

models, and is therefore highly specific for the transplanted cells. Ki67 is a 

mitotic marker which, although not a tumour marker per se, is likely to be 

positive in mitotically active GBM tumour cells and negative in surrounding 

mature mouse brain, which can be assumed to be non-dividing. PARP-1 

expression is also associated with indices of proliferation and has been reported 
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as a GBM tumour cell marker (Galia et al., 2012b). Immunohistochemical staining 

for HLA1-ABC, PARP-1 or Ki67 detected tumour cells throughout both 

hemispheres of brain in FFPE sections, (fig 3.7). Quantitative analysis of Ki67 

staining in whole brain slices harvested at various timepoints demonstrated 

increasing tumour burden up to 30 weeks post injection of E2 CSCs, as did 

quantification of HLA1-ABC, (fig 3.8). In contrast after injection of E2 bulk cells, 

very few positively staining cells are apparent. These cells are located 

exclusively around the injection site and fail to infiltrate the brain. E2 bulk cells 

are therefore non-tumourigenic, (fig 3.8). 

 

Figure 3.7 Comparison of in vivo tumour generation by E2 CSC and bulk cultures 

105 E2 stem cells or 105 E2 bulk cells were orthotopically transplanted into immunocompromised 
CD1 mice brains. At 16 weeks mice were euthanised and brains were perfusion fixed and 
sectioned. Representative images of immunohistochemical staining for the human leucocyte 
antigen HLA1-ABC, the tumour marker PARP-1 and the mitotic cell marker Ki67 are shown in 

sections of mouse brain. Images were taken at 10x magnification. 
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Figure 3.8 Quantification of Ki67 and HLA immunohistochemical staining as a tumour cell 

marker in sections of murine xenograft tumours derived from E2 CSC and bulk cultures  

Quantification of cells staining positive for Ki67 (left panel) and HLA1-ABC (right panel) in 
sections of xenograft tumours generated in CD1 immunocompromised mice by orthotopic 
injection of 105 E2 CSCs or 105 E2 tumour bulk cells. Mice were euthanised at the number of 
weeks post injection shown and mouse brains were perfusion fixed. Tile scans covering the 
entire tissue section were taken at 10x magnification using a light microscope and visualised 
using Carl Zeiss Zen Blue imaging software. Quantification of positively staining cells was carried 
out using Zen Blue Imaging Software also. This figure represents the work of Dr N Gomez-Roman 
and S Chahal and is not the authors own. 

 

 

E2 CSC xenograft sections were stained for CD133, and demonstrated positivity 

for this CSC marker (fig 3.9). Different patterns of CD133 staining were evident. 

CD133 staining was observed in perivascular areas (i), generalised regions of 

tumour (ii) or as isolated infiltrative cells (iii). 

 

Figure 3.9 Demonstration of patterns of CD133 immunohistochemical staining observed in E2 

CSC murine orthotopic intracranial xenograft tumours 

Representative images of patterns of immunohistochemical staining for the GBM CSC marker 
CD133 observed in orthotopic xenograft models generated from E2 CSC cells. Images were taken 

at 10x magnification. 
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Injection of G7 GBM CSCs produced tumours which had invasive margins and 

recapitulated key features of human GBM. Injection of G7 bulk cells also 

produced tumours, however these tumours did not recapitulate key features of 

GBM and failed to infiltrate the brain; representative sections from G7 CSC and 

bulk xenografts are shown in figure 3.10. Please see Mannino et al for published 

details of E2 and G7 CSC and bulk cell in vivo tumour formation in orthotopic 

xenograft models, (Mannino et al., 2014), as described in the figures 3.8 and 

3.10.  

 

Figure 3.10 Demonstration of PARP-1 expression in G7 CSC and tumour bulk orthotopic 

xenograft tumours by immunohistochemistry  

Representative images of immunohistochemical staining for PARP-1 in orthotopic xenograft 
tumours generated from injection of 105 G7 CSC or bulk cells into a CD1 immunocompromised 
mouse model. Images obtained at 10x magnification.  

 

3.5 Characterisation of cell proliferation rate in CSC and tumour bulk 

cultures 

Cell proliferation rates of the CSC and bulk cultures of the E2 and G7 cell lines 

were investigated by cell viability assay using CellTiter-glotm.  In brief E2 and G7 

CSC and tumour bulk cells were seeded into 96 well plates at a density of 200 

cells per well and incubated for the time points shown before being analysed 

using the ATP dependent CellTiter-glotm assay. The resulting cell proliferation 

curves are shown in figure 3.11. These curves show comparable proliferation 

rates of CSC and tumour bulk cells. Tumour bulk cultures reach confluency arrest 

earlier than CSC cultures, which is likely a reflection of their increased surface 
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area in comparison to the smaller CSC cells, rather than any increase in 

proliferation rate per se. 

 

Figure 3.11 Cell proliferation in E2 and G7 CSC and bulk cultures measured by cell viability 

assay 

Graph of cell viability over 20 days following plating of 400 cells per well of a 96 well plate. Data 
points represent mean with standard deviations. Assay performed in triplicate using CellTiter-
glotm. Plates were read on a luminometer at the timepoints shown on the x axis. Points and bars 

represent mean and SEM of 3 independent experiments 

 

3.6 Cell cycle distribution of stem and bulk cultures 

The cell cycle distribution of CSC and bulk cultures of E2 and G7 under basal 

conditions was characterised. Cells were incubated in PI after ethanol fixation 

and permeabilisation in order to characterise the cell cycle distribution of CSC 

and tumour bulk culture populations by FACS analysis. Representative images of 

cell cycle profiles are shown in figure 3.12.   
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Figure 3.12 Cell cycle profiles of E2 and G7 CSC and tumour bulk cultures under basal 

conditions 

Representative cell cycle profiles for E2 and G7 CSC and bulk cultures. Cell cultures were 
dissociated and fixed in ethanol before being permeabilised and incubated with 1mg/ml PI and 

analysed on a BD FACSCalibur.  

The percentage of cells in each of G1, S and G2 was quantified for CSC and 

tumour bulk cultures of both E2 and G7 cell lines. In the E2 cell line there were 

significant differences in cell cycle distribution between CSC and bulk cells with 

the proportion of cells in G1 phase being higher in tumour bulk cultures 

compared to the proportion of cells in G1 phase in E2 CSC cultures. E2 CSC 

cultures had a greater proportion of cells occupying S and G2 phases in 

comparison to E2 tumour bulk populations, (fig 3.13). In the G7 cell line similar 

trends were apparent between CSC and bulk cultures, however only the 

differences in proportions of G1 and S phase cells reached statistical 

significance, (fig 3.13). 
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Figure 3.13 Analyses of cell cycle distribution of E2 and G7 CSC and tumour bulk cultures 

under basal conditions 

Quantification of percentage of cells in G1, S and G2 phase of the cell cycle in E2 CSC and 
tumour bulk (left panel) and G7 CSC and tumour bulk (right panel). Cells were fixed in ethanol 
and stained with PI prior to analysis. Columns and error bars represent mean and SEM from 9 
independent experiments. P values calculated by student’s t test. 

 

3.7 Sanger sequencing of p53 

The p53 pathway is integral to any cellular response to ionising radiation, and 

therefore the p53 status of the E2 and G7 cell lines was investigated. Sanger 

sequencing of the exons 3 to 10 of the p53 gene was performed in both E2 and 

G7 cell lines in CSC and bulk cultures separately. The U87 cell line, which is 

known to have wild type p53, was sequenced as a negative control.  No 

mutations were found in E2 in exons 3 to 10 in either CSC or bulk cultures, 

demonstrating that this cell line has wild type p53. No mutations were found in 

the G7 cell lines in exons 4 to 10 in either CSC or bulk culture. Exon 3 in G7 was 

not sequenced due to difficulties obtaining adequate PCR product for 

sequencing, however only a very small percentage of mutations in p53 in GBM 

tumours are found outside exons 5-8. The cell line U87 was found to have a p53 

R72 polymorphism, however this is of no functional consequence. See table 3.1 

for details. 
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Table 3.1 Results of Sanger sequencing of P53 exons 3-10 

P53 sequencing results for E2 and G7 CSC and bulk cultures. WT = wild type. DNA was extracted 
from in vitro CSC and tumour bulk cultures of E2 and G7 and PCR product obtained for Sanger 
sequencing of exons 3 to 10. No mutations were found in exons 3 to 10 for E2. No mutations were 
found in exons 4 to 10 in G7; however exon 3 was not sequenced in this cell line due to 
difficulties in obtaining PCR product. U87 is known to have WT p53 and was sequenced as a 

negative control, however was found to have the p53-R72 polymorphism in exon 4.  

 

3.8 Conclusions  

The GBM cell lines E2 and G7, cultured as paired CSC and tumour bulk, were 

characterised. Upregulation of putative CSC markers Nestin, Sox2 and CD133 by 

Western blot, immunofluorescent staining and flow cytometry assays could be 

demonstrated in CSC cultures in comparison to bulk cell cultures. Tumour bulk 

cultures exhibited reduced levels of CSC marker expression and in contrast had 

elevated levels of the astrocytic differentiation marker GFAP.  

Expression of CSC markers appeared to be retained by CSC cell cultures for up to 

96 hours after incubation in differentiating media. Further exploration of the 

response to CSC and bulk cultures by switch of media conditions could be 

achieved by extending the timepoints examined in this assay. Furthermore it 

would have been informative to conduct neurosphere formation assay at the 
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various timepoints in order to assess sphere forming capacity of CSC cultures 

following exposure to differentiating conditions. LDA would be a more robust 

assessment of CSC tumourigenic potential in this setting. A further avenue of 

study would be the assessment of gene expression via DNA microarray in CSC and 

bulk tumour cells at time intervals post exposure to differentiating or stem-like 

cell enriching media respectively. Unfortunately time and resource constraints 

during the project prevented these investigations being performed.   

Furthermore CSC cultures exhibit enhanced tumourigenicity in an 

immunocompromised orthotopic xenograft mouse model in the E2 cell line when 

compared to tumour bulk cultures. The G7 CSC cultures recapitulated features 

of the parental tumour such as invasion and infiltration whereas the G7 bulk 

cultures lacked these features, although G7 bulk cells appeared to retain 

tumourigenicity.  Therefore CSC cultures exhibited a robust expression of the 

CSC phenotype in comparison to tumour bulk cultures thus validating this in 

vitro model.  

CSC and bulk cultures exhibit significant differences in cell cycle distribution, 

with a lower proportion of CSCs being in G1 cell cycle phase under basal 

conditions in both E2 and G7 cell lines. This has not previously been reported in 

the wider literature concerning GBM CSCs, and may influence important DDR 

mechanisms in CSCs. One consequence of this may be increased utilisation of HR 

DNA DSB repair in GBM CSCs, since preferential occupation of the S and G2 cell 

cycle phase in GBM CSC populations may facilitate use of this repair pathway in 

CSCs.  

Both E2 and G7 cell lines were found to have wild type p53, with no difference 

between the CSC and bulk culture populations. Only 38% of primary GBM tumours 

have mutated p53. The proportion of tumours with mutated p53 in secondary 

GBM rises to 65% however. Mutations and other abnormalities of the p53 

pathway such as MDM3 amplification are however common in GBM, (Nagpal et 

al., 2006). 
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In conclusion it can be shown that in vitro CSC and bulk culture models 

demonstrated increased expression of putative CSC markers and key phenotypic 

features of GBM CSCs. This is illustrated by increased tumourigenicity in 

orthotopic mouse models and recapitulation of histological features of the 

parental tumour. 
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Chapter 4 Investigation of GBM CSC radioresistance 

4.1 Introduction 

Previous investigations of GBM CSC radioresistance have not utilised clinically 

relevant radiobiological measures of radiation sensitivity such as clonogenic 

survival assay and there is debate in the current scientific literature regarding 

the radioresistance of GBM CSCs. Bao et al demonstrated that GBM CSCs 

exhibited radioresistant properties and demonstrated enrichment of the CD133+ 

population in tumours following irradiation. Furthermore this investigation 

demonstrated enhanced activation of cell cycle checkpoint proteins in CD133+ 

GBM cells and more efficient DNA repair after irradiation in the CD133+ 

population compared to CD133- cells as measured by the alkaline comet assay 

(Bao et al., 2006a). Images of clonogenic colonies were demonstrated by the 

authors however formal clonogenic survival assay comparing CD133+ and CD133- 

populations was not undertaken. Clonogenic survival is a radiobiological 

standard, and has been shown to correlate with clinical outcome (Bjork-Eriksson 

et al., 2000, Bjork-Eriksson et al., 1998, West et al., 1997). The investigation by 

Bao and colleagues also did not include a robust assay of DNA DSB repair 

(alkaline comet assay is a measure of DNA SSB repair) or a functional measure of 

cell cycle checkpoint control. Other authors have failed to replicate the findings 

of Bao et al. McCord et al compared the radiation response of CD133+ GBM cells 

to that of established GBM cell lines and found that CD133+ GBM cells were 

radiosensitive in comparison, and exhibited less efficient DNA DSB repair; 

however this approach ignores probable differences in intrinsic radiosensitivity 

between different GBM cell lines (McCord et al., 2009). Ropolo et al found that 

CD133+ GBM cells displayed upregulated phosphorylation of Chk1 and Chk2 

kinases under basal conditions and elongated cell cycle durations however found 

no evidence for enhanced DNA DSB repair (Ropolo et al., 2009).  

Given the uncertainty in the literature concerning the proposed radiation 

resistance of GBM CSCs a key objective of this thesis was to quantify radiation 

response in GBM CSCs using clinically relevant assays of radiation resistance. 

Using the model of paired GBM CSC and bulk cultures from a common parental 
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GBM specimen, clonogenic survival assays, examination of cell cycle checkpoint 

kinetics and phosphoprotein quantification, and interrogation of DNA DSB repair 

were performed and compared between the CSC and bulk cultures. 

4.2 Investigation of radioresistance of GBM CSCs by clonogenic survival 

assay 

Three GBM cell lines (E2, G7 and R10) grown as CSC and bulk cultures were 

subjected to clonogenic survival assay using a range of radiation doses from 1 to 

5Gy. Both CSC and bulk cultures were grown in their respective media 

throughout the experiment, however bulk cells were seeded onto Matrigeltm 

coated tissue culture plates in order to minimise differences in experimental 

conditions. The resulting clonogenic survival curves are shown in figure 4.1. 

Countable colonies were formed under both conditions and plating efficiencies 

were similar. All three cell lines could be viewed as radioresistant in both CSC 

and bulk culture conditions, with surviving fraction at 2Gy (SF2Gy) values above 

0.8 in all CSC lines, and SF2Gy above 0.7 in all but the R10 tumour bulk cell line. 

Radioresistance is a relative term, and is not well defined, nevertheless the SF2Gy 

of radiosensitive cell line such as a Burkitt’s lymphoma can be as low as 0.2. 

Repair deficient cell lines can also be markedly radiosensitive. Loser et al 

described the in vitro radiation survival of mouse embryonic fibroblast (MEF) cell 

lines deficient in artemis, ATM and Ligase IV using clonogenic assay (Loser et al., 

2010). ATM null MEFs had a SF2Gy of 0.17 and artemis null MEFs had an SF2Gy of 

0.16. Ligase IV null MEFS were highly radiosensitive with a SF2Gy of 0.004. These 

data place the marked radioresistance seen in GBM CSC and tumour bulk cells 

into context. However the CSC culture populations were significantly more 

radioresistant than bulk culture populations. This represents the first 

demonstration of radioresistance in GBM CSCs compared to tumour bulk cultures 

by clonogenic assay in paired GBM cell lines. Curves were fitted with the linear 

quadratic equation and dose modifying factors (DMF) calculated at a surviving 

fraction of 37% (table 4.1). All CSC clonogenic survival curves were significantly 

different from their corresponding bulk cell clonogenic curves by ANOVA. The 

dose of radiation required to produce an equivalent decrease in surviving 

fraction to 37% was 1.3 fold greater for E2 CSCs (p<0.001), 1.5 fold greater for 
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G7 CSCs cells (p = 0.015) and 1.47 greater for R10 CSCs (p<0.0001) than for the 

corresponding bulk populations. Hence the DMFs for all 3 CSC cultures were 

similar. The surviving fractions at 4Gy (SF4Gy) are shown in table 4.2 and again 

these values are significantly greater in the CSC culture populations. SF4Gy values 

are shown rather than the more conventional SF2Gy because the extreme 

radioresistance of these cell lines makes the latter parameter less meaningful. 

SF2Gy remains a more clinically relevant measure of radiation sensitivity however 

and is shown in table 4.3. The difference in mean SF2Gy values between CSC and 

tumour bulk populations in the G7 cell line was not statistically significant 

despite there being significant differences between G7 CSC and tumour bulk in 

terms of SF4Gy and DMF 0.37 values. Radioresistance of G7 CSCs may only be 

evident at higher doses of ionising radiation. 
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Figure 4.1 Clonogenic survival analysis of CSC versus bulk cultures 

Clonogenic survival curves showing response of CSC and tumour bulk cell cultures to ionising 
radiation in R10, E2 and G7 primary cell cultures. Mean surviving fraction plus SEM of 9 
independent experiments is shown for E2 and G7, whilst means plus SEM of 3 independent 
experiments are shown for R10 fitted to a linear quadratic model. Curves are significantly 
different by ANOVA (E2 CSC vs  bulk cells p < 0.001, G7 CSC vs differentiated tumour cells p 
<0.001, R10 CSC vs differentiated tumour cells p < 0.0001). Representative images of colony 

formation at 0 and 4Gy in each population are shown.  
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Table 4.1 Dose modifying factors for CSC vs tumour bulk cells at 0.37 survival 

Dose modifying factors at 37% clonogenic survival (DMF0.37) with 95% confidence intervals for CSC 
versus tumour bulk cell cultures of R10, G7 and E2 indicating that  CSC cultures are significantly 
more radioresistant than bulk cell cultures in all cell lines. DMF0.37 values were calculated from 
clonogenic survival data fitted to a linear quadratic model as shown in Figure 4.1.  Values shown 
represent the means of 9 (E2 and G7) or 3 (R10) experiments. P values (H0: DMF0.37 = 1) 

calculated by one sample t test.  

 

Table 4.2 Surviving fraction at 4Gy values for E2, G7 and R10 CSC and tumour bulk cultures 

Mean surviving fractions at 4Gy (SF4Gy) with 95% confidence intervals for CSC and bulk cell 
cultures of E2, G7 and R10 cell lines. Means of 9 independent experiments each performed in 
triplicate for E2 and G7, and means of 3 independent experiments in triplicate for the R10 cell 
line are shown with corresponding 95%CI’s. P values for 2 sample t test of mean SF4Gy are also 
shown. 

 

 

Table 4.3 Surviving fraction at 2Gy values for E2, G7 and R10 CSC and tumour bulk cultures 

Mean surviving fractions at 2Gy (SF2Gy) with 95% confidence intervals for CSC and bulk cell 
cultures of E2, G7 and R10 cell lines. Means of 9 independent experiments each performed in 
triplicate for E2 and G7, and means of 3 independent experiments in triplicate for the R10 cell 

line are shown with corresponding 95%CI’s. P values were calculated using student’s t test.  
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4.3 Investigation of radioresistance of GBM CSCs by neurosphere 

formation assay 

The validity of the clonogenic survival assay data was confirmed by performing 

neurosphere formation assays. Radioresistance of GBM CSCs was investigated 

using an assay that was unaffected by the possible confounding factor of 

different media. Cell sorting using the CD133/AC133 antigen as a CSC marker 

was performed in E2 CSC cultures, producing a population of E2 CD133+ cells and 

a population of E2 CD133- cells which could both be maintained in CSC media 

conditions. These cells were plated into 96 well plates at a density of 10 cells 

per well and irradiated with 2Gy. After an incubation period of 4 weeks, 

neurosphere numbers per well were quantified, as shown in figure 4.2.  

In figure 4.2 neurosphere forming capacity of the control E2 CD133+ and CD133- 

cells is detailed in the absence of radiation (top left panel). CD133+ cells have 

an enhanced ability to produce neurospheres. In addition to forming more 

neurospheres per plated cell, the neurospheres produced by CD133+ cells had a 

significantly larger diameter (top right panel). Representative images of the 

neurospheres produced by CD133+ and CD133- cells are shown. 

Furthermore, figure 4.2 shows that CD133+ cells have a significantly enhanced 

ability to produce neurospheres after exposure to 2Gy when compared to CD133- 

E2 cells, indicating that CD133+ cells are radioresistant, (lower left panel). This 

confirms observations from clonogenic survival assays and supports the 

hypothesis that GBM CSCs are radioresistant. These findings also support the 

hypothesis that the increased radioresistance observed in CSC populations is an 

intrinsic property of the GBM CSCs and not a confounding effect of the different 

culture media used to generate the two different culture types.  
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Figure 4.2 Analysis of neurosphere formation in E2 CD133+ and CD133- cells 

Top left; neurosphere forming capacity of E2 CD133+ cells and E2 CD133- cells is plotted. Bars 
represent means plus SEM of 3 independent experiments. P values calculated using student’s t 
test. 

Top right; diameters of CD133+ and CD133- neurospheres are plotted, bars represent mean plus 

SD. Representative images of neurospheres are shown. P values calculated using student’s t test. 

Bottom left; neurosphere production following 2Gy from CD133+ and CD133- E2 cells; results 
represent means and SEM from 3 independent experiments. Results are normalised to 

unirradiated controls. P values calculated using two sample t test. 

 

4.4 Investigation of cell cycle checkpoint phosphoproteins in GBM CSCs 

As previously discussed several authors have documented important differences 

in cell cycle checkpoint activation in CD133+ GBM cells compared to CD133- cells 

following radiation. However these data are restricted to quantification of 

phosphorylated checkpoint protein expression and assays of cell doubling times 

rather than robust analysis of checkpoint function. Cell cycle checkpoint 
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function in CSC and bulk populations following radiation was therefore 

investigated. 

Western blot analysis revealed evidence of an upregulated DDR in GBM CSC 

cultures compared to bulk cultures in the absence of radiation in the G7 cell line 

and after radiation in the E2 and R10 cell lines. A radiation dose of 5 Gy induced 

phosphorylation of ATM at serine 1981 (pATM s1981) to a greater degree in E2 

CSC cultures than in E2 bulk cultures. Differences in DDR protein phosphorylation 

were evident at lower doses of radiation, however 5Gy showed maximal 

induction of DDR phosphoproteins in both cell lines (personal communication, Dr 

Shafiq Ahmed). The levels of total ATM were similar between the two 

populations. Correspondingly the levels of phosphorylated Chk2 at threonine 68 

(pChk2 thr68; a major phosphorylation target of ATM) were increased in E2 GBM 

CSC cultures following 5Gy compared to E2 bulk cultures (fig 4.3). A similar 

pattern was seen in the R10 cell line, with R10 GBM CSC cultures exhibiting 

higher levels of pATM s1981 and pChk2 thr68 after 5 Gy radiation compared to 

R10 bulk cultures (fig 4.3). Levels of phosphorylated ATR serine 428 (pATR s428) 

and phosphorylated Chk1 serine 345 (pChk1 s345) were also found to be elevated 

in the E2 CSC population compared to bulk. The phosphorylation of ATR 

appeared to be upregulated at baseline and was not increased by radiation 

exposure, whereas the phosphorylation of Chk1 was increased both at baseline 

and in response to radiation. 

Phosphorylation of key DDR proteins was also increased in G7 GBM CSC cultures 

compared to bulk; however the pattern of upregulation was somewhat different. 

G7 GBM CSC cultures appeared to have an upregulated baseline level of pATM 

s1981 and pChk2 thr68 in the absence of radiation, rather than upregulation in 

response to radiation per se (fig 4.3). Total Chk2 levels were increased at 

baseline in the G7 CSC population compared to bulk. Phosphorylated ATR levels 

were increased in the G7 CSC cells compared to bulk at baseline, similar to the 

pattern seen in E2 CSC and bulk.  
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Figure 4.3 DDR protein and phosphoprotein expression by Western blotting in CSC and bulk 

cells in response to radiation 

Western blots comparing levels of pATM s1981 and pChk2 thr68 following 5Gy of ionising 
radiation in E2, G7 and R10 bulk and CSC populations. Levels of pChk1 s345 and pATR s428 are 

also shown in the E2 cell line. 

 



Investigation of GBM CSC radioresistance 

144 
 

4.5 Investigation of cell cycle kinetics in GBM CSC and tumour bulk 

cultures 

It was hypothesised that the differential DDR seen in GBM CSC cells compared to 

bulk cells would translate into different cell cycle checkpoint kinetics following 

radiation. In the first instance the G1/S checkpoint was examined by incubation 

with PI and subsequent flow cytometry. Representative cell cycle profiles are 

shown in fig 4.4 at 0, 1, 3 and 6 hours following 5Gy of radiation. The 

proportions of cells in G1, S and G2/M phases were quantified and these results 

are shown in fig 4.5. The E2 and G7 cell lines showed no G1/S cell cycle 

checkpoint response to radiation at these timepoints whereas a modest 

accumulation of cells in G2/M was evident in both cell lines suggesting that the 

G2/M checkpoint was intact.  

 G2/M checkpoint activation was investigated in more detail by quantifying the 

proportion of cells undergoing mitosis in CSC and bulk cultures at various 

timepoints following radiation. This was achieved by flow cytometric analysis of 

pHisH3 which is a marker for mitotic cells, (Hans and Dimitrov, 2001). In the E2 

cell line CSC cultures exhibited a rapid fall in the percentage of mitotic cells 

after exposure to 5 Gy. An attenuated reduction in percentage of mitotic cells 

was observed in E2 bulk cells (fig 4.7). A similar significant effect was observed 

in G7 CSC compared to bulk cells following 5Gy (fig 4.7). Representative images 

of the gating used to quantify pHisH3 positive cells is shown (fig 4.6). 

These data demonstrate for the first time that the cell cycle phosphoprotein 

changes described here in GBM CSCs and published previously (Bao et al., 2006a) 

result in enhanced cell cycle checkpoint activation in GBM CSCs, which is likely 

to contribute to their radioresistant phenotype. 
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Figure 4.4 Cell cycle profiles of E2 and G7 CSC and tumour bulk cultures following 5Gy 
radiation exposure 

Representative cell cycle profiles of E2 and G7 CSC and bulk cultures treated with 5Gy. Cells 
fixed with ethanol at timepoints indicated and DNA content analysed by and incubation with PI 

subsequently facilitating flow cytometric quantification of DNA content. 
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Figure 4.5 Cell cycle phase quantification of cells following ionising radiation exposure in E2 
and G7 CSC and tumour bulk cultures 

The proportion of cells in G1, S and G2 phases at 0, 1, 3 and 6 hours post 5Gy of radiation was 
plotted for CSC and tumour bulk cultures of E2 and G7 cell lines. DNA content was measured by 
flow cytometry following incubation of fixed cells with PI.  Data points represent mean and SEM 

of 3 independent experiments. 
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Figure 4.6 Analysis of mitotic cells following ionising radiation by pHisH3 

Representative images of gating defining pHisH3 positive cells for flow cytometric quantification 

of mitotic proportion of CSC and tumour bulk cells of E2 and G7 cell lines post 5Gy. 
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Figure 4.7 Quantification of mitotic cells following ionising radiation by pHisH3 

Quantification of proportion of mitotic cells in E2 and G7 CSC and tumour bulk cultures following 
5Gy radiation by flow cytometric quantification of pHisH3. Results are plotted as mean +/- SEM 
of 6 independent experiments normalised to unirradiated controls. Results are plotted as line 
graphs to illustrate effects on mitotic fraction over time post 5Gy and as column charts to 
facilitate statistical comparison of timepoints. Columns and error bars represent means and SEM 
of 6 independent experiments, p values calculated by student’s t test. 

 

4.6 Investigation of DNA DSB repair in GBM CSC cultures 

Having described changes in cell cycle kinetics contributing to GBM CSC 

radioresistance an examination of DNA repair in CSC populations was 

undertaken. Previous authors have addressed this with assays encompassing 

single strand and double strand DNA damage such as the alkaline comet assay. In 

this study, a specific examination of  DNA DSB repair was performed because 

DNA DSBs are the key lethal lesions generated by radiotherapy, as well as being 
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the most relevant lesions in terms of clinical radiation resistance in cancers 

(Banath et al., 2004). 

A quantitative analysis of induction and resolution of DNA DSBs in E2 CSC and 

bulk cells following radiation exposure was performed by cell cycle phase 

specific immunofluorescence analysis of gamma H2AX foci using CENPF as a 

marker of G2 phase cells. Gamma H2AX foci are a marker for DNA DSBs 

(Sedelnikova et al., 2002). Gamma H2AX represents a phosphorylated histone 

modification of the histone chromatin component H2AX. H2AX becomes locally 

phosphorylated in the vicinity of DNA DSBs to form gamma H2AX foci, which are 

visible and quantifiable using immunofluorescent microscopy. It is generally 

accepted that each gamma H2AX focus represents the presence of a single DNA 

DSB, (Kinner et al., 2008). For these experiments a radiation dose of 1Gy was 

administered in order to be able to quantify DNA DSBs at early timepoints 

following radiation exposure. Following an initial pilot experiment (fig 4.8), 

timepoints of 0, 1, 3 and 24 hours were chosen in order to characterise 

induction, fast phase resolution and slow phase resolution of gamma H2AX foci 

respectively. As shown in figure 4.8 the number of gamma H2AX foci in CENPF 

positive populations at 1 hour is increased compared to that seen in the CENPF 

negative populations consistent with the increased DNA content of G2 phase 

cells. Per Gy of radiation G2 phase cells will theoretically experience 

approximately twice the number of DNA DSBs in comparison to G1 phase cells, 

(Lobrich et al., 2010). Given that this study demonstrated in chapter 3 that GBM 

CSC cultures have a higher proportion of G2 phase cells compared to bulk 

cultures, it was necessary to analyse gamma H2AX foci resolution in the G1 and 

G2 cell cycle populations separately in CSC and bulk cultures. Hence the G2 cell 

cycle phase marker CENPF was incorporated into the gamma H2AX assay used in 

this study (Liao et al., 1995). 
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Figure 4.8 Quantification of gamma H2AX foci following 1Gy irradiation (initial pilot 

experiment) 

Gamma H2AX foci quantification following exposure of cells to 1Gy in E2 CSC and bulk cells. Pilot 
experiment where foci per nucleus were quantified in CENPF negative cells at timepoints of 
5mins, 30mins, 1, 3, 6, 12 and 24 hours. Cells were fixed at time points shown and stained with 
CENPF and gamma H2AX antibodies. Each data point represents mean number of foci per nucleus 
from 1 experiment. Representative images of gamma H2AX foci and CENPF staining in E2 bulk 
and CSC are shown at 1 hour post irradiation. Images represent maximum intensity projections of 

6 slice Z stacks at 63x magnification using a Zeiss 710 confocal microscope. 
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Figure 4.9 Quantification of gamma H2AX foci in CENPF negative and CENPF positive E2 CSC 
and bulk cell nuclei  

Gamma H2AX nuclei were quantified following exposure to 1Gy at timepoints of 0, 1, 3 and 24 
hours in CENPF negative (G1)  and CENPF positive (G2) cell populations. The median number of 
foci per nucleus was calculated in 6 independent experiments and the mean of these medians is 
plotted for each data point with SEM in the graphs above. P values were calculated by student’s 
t test. 
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No difference in induction of gamma H2AX foci between E2 CSC and bulk cell 

cultures was observed at baseline or at 1 hour following irradiation, and the 

early or “fast” kinetics of foci resolution did not differ between CSC and bulk 

populations when measured at the 3 hour time point (fig 4.9). However E2 CSC 

cultures displayed a significantly enhanced ability to repair DNA DSBs at the 24 

hour timepoint compared to E2 bulk culture cells in CENPF positive (i.e. G2) 

populations. Mean of median foci per nucleus (plus 95% confidence interval) in 

G2 populations of CSCs was 5.17 (2.78, 7.55) compared to 10.58 (8.09, 13.07) in 

G2 bulk populations. This would suggest that GBM CSCs are able to resolve DNA 

DSBs much more efficiently at 24 hours post irradiation than their more 

differentiated bulk counterparts. The above data demonstrates that GBM CSCs 

are almost twice as efficient as tumour bulk cells in resolving DNA DSBs at late 

repair timepoints which would partly explain why GBM CSCs are radioresistant in 

comparison to tumour bulk cells. There were no statistically significant 

differences in foci numbers at 24 hours between CSC and bulk cultures in CENPF 

negative (i.e. G1) populations. 

Different patterns of gamma H2AX staining were seen in the nuclei of cells at 

baseline and in response to radiation. The presence of large radiation induced 

foci was differentiated from the background non-specific nuclear speckled 

staining which is produced by antibodies to gamma H2AX. Solid, intense nuclear 

staining is associated with apoptosis whereas a more diffuse pattern of nuclear 

staining occurs in S phase cells. ATR is a known phosphorylator of H2AX and will 

be activated at DNA DSBs produced by the collapse of replication forks in S 

phase, resulting in gamma H2AX foci which do not represent direct radiation 

induced DNA DSBs. Furthermore stretches of SS DNA present under conditions of 

replication stress in S phase cells will activate ATR via ATRIP also resulting in 

H2AX phosphorylation (Kinner et al., 2008). Gamma H2AX immunofluorescent 

staining in S phase cells must therefore be interpreted with caution. These 

patterns of staining were excluded from the analysis as they are not 

representative of DNA DSBs directly induced by radiation. 
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4.7 Conclusion 

A detailed comparison of radiation resistance in GBM CSC and bulk cultures has 

been documented. GBM CSCs were significantly more radioresistant than tumour 

bulk cultures. The dose modifying factor for GBM CSCs relative to tumour bulk 

cells at 0.37 survival was in the range 1.3-1.5. This magnitude of radioresistance 

is likely to be clinically significant and supports the hypothesis that CSCs are one 

of the factors contributing to clinical tumour recurrence after radiotherapy in 

GBM.  

The radioresistance of CSCs was confirmed by neurosphere assay of sorted 

CD133+ and CD133- cells from an E2 CSC culture population. This assay was not 

dependent on different cell culture conditions since both CD133+ and CD133- 

cells could be maintained in neurobasal CSC medium. It is of interest that 

CD133- cells from this population were still able to form neurospheres, 

suggesting that although they lack the CD133 CSC marker they still have some 

proliferative capacity. Nevertheless this proliferative capacity is clearly less 

than the CD133+ population given that the neurospheres produced were 

significantly reduced in diameter. The ability of CD133- cells to produce 

neurospheres was significantly impaired after exposure to 2Gy in comparison to 

that of CD133+ cells, supporting the hypothesis of GBM CSC radioresistance. 

The analysis of cell cycle phosphoproteins in GBM CSCs and bulk cells confirms 

previously published work documenting upregulation of pChk2 and pATM in 

response to radiation in GBM CSCs. In addition to the pattern of upregulated 

phosphorylation of these proteins in response to radiation in the E2 and R10 cell 

lines, this study also identified upregulated basal levels of cell cycle checkpoint 

proteins in G7 CSCs. The functional analysis of the G2/M checkpoint using pHisH3 

as a mitotic marker in E2 and G7 CSCs demonstrates for the first time that 

altered levels of cell cycle phosphoproteins are associated with more efficient 

activation of the G2/M checkpoint. This is a likely contributor to radioresistance. 

Both G7 and E2 cell lines demonstrated lack of G1/S checkpoint activation 

following radiation, despite having wild type p53. This likely signifies a defective 
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p53 pathway, which is a common finding in GBM tumours (Cancer Genome Atlas 

Research, 2008). 

A detailed investigation of DNA DSB repair in GBM CSC populations was 

undertaken. This demonstrated kinetics of gamma H2AX induction and resolution 

broadly in agreement with previous studies of irradiation induced foci in other 

cell lines. There is a clear fast phase resolution of foci in the first 3 hours 

following irradiation followed by a much slower phase of foci resolution 

stretching from 3 hours to 24 hours. The E2 CSC and bulk G2 cell populations 

exhibited higher numbers of foci following irradiation compared to G1 cell 

populations, in keeping with their increased DNA content, however G2 cells did 

not have double the number of foci compared to G1 phase cells at 1 hour post 

irradiation. This may reflect a higher degree of aneuploidy in the E2 cell line 

compared to fibroblast cell lines studied by other authors. This analysis of DNA 

DSB resolution provides evidence of a significant repair advantage present in 

GBM CSCs compared to bulk cells.  This was evident only at 24 hours post 

radiation and affected the slow phase of repair of DNA DSBs in G2 phase cells 

only. The median number of gamma H2AX foci at 24 hours post 1Gy in CSCs was 

10.58 vs 5.17 in bulk cell populations. This repair advantage is likely to be 

clinically significant since it has been shown that the level of unresolved DSBs at 

24 hours correlates with radiation sensitivity both in vitro and in vivo (Banath et 

al., 2004). This represents an approximate doubling of efficiency of DNA DSB 

repair at 24 hours post irradiation in the CSC population relative to that seen in 

the tumour bulk population, and may partly explain the very high radioresistance 

seen in the CSC population. Other authors have been unable to demonstrate 

upregulated repair in GBM CSCs. Ropolo et al examined gamma H2AX foci 

resolution in CD133+ and CD133- cells following radiation and could not show any 

difference in foci numbers at 24 hours following radiation. However the study by 

Ropolo et al did not carry out a cell cycle specific examination of foci resolution 

and furthermore discriminated only between cells with foci and cells without 

foci, instead of the more comprehensive foci counts per nucleus which were 

undertaken in this thesis. Studies of CSC DNA DSB repair using the gamma H2AX 

foci assay in other tumour sites are in agreement with a repair advantage for 



Investigation of GBM CSC radioresistance 

155 
 

CSC populations in the slow phase of repair following irradiation (Desai et al., 

2014, Frame et al., 2013). 

The investigations detailed above show that GBM CSC radioresistance is due to 

dual mechanisms of efficient activation of the G2/M checkpoint following 

radiation and increased DNA DSB resolution specifically in the slow phase of DNA 

DSB repair in G2, which suggests CSCs have increased efficiency in the HR 

pathway of DNA DSB repair. ATM has been proposed to have a specific 

contribution to the slow phase of repair of DNA DSBs (Goodarzi et al., 2008, 

Alvarez-Quilon et al., 2014), and is also a controller of the G2/M cell cycle 

checkpoint. Given that these investigations have demonstrated upregulated 

levels of pATM in response to radiation in GBM CSCs, these data suggest that ATM 

function is key to the radiation resistance seen in GBM CSCs. 
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Chapter 5  Effects of ATM inhibition on GBM CSC 

radioresistance 

5.1 Introduction 

Chapter 4 demonstrated the radioresistance of GBM CSCs was associated with 

more efficient activation of the G2/M cell cycle checkpoint and increased 

resolution of DNA DSBs in the slow phase of DNA DSB repair in G2 cells. This was 

accompanied by increased levels of phosphorylated ATM in response to ionising 

radiation in GBM CSCs. ATM is an apical kinase in the DDR to ionising radiation, 

and phosphorylates many effectors of DNA repair. It has key roles both in cell 

cycle checkpoint activation and DNA DSB repair in response to ionising radiation. 

Therefore it was hypothesised that GBM CSCs rely upon upregulation of ATM 

function in order to maintain their radioresistant phenotype and studies of the 

effects of ATM inhibition in GBM CSC bulk cultures were undertaken. 

5.2 Effect of ATM inhibition on upregulated DDR in GBM stem cells 

The potent and selective ATM inhibitor KU-55933 was utilised for these studies. 

A concentration of 10µM was chosen from pre-existing literature concerning this 

compound. Previous studies illustrate that at this concentration KU-55933 

specifically inhibits ATM, with no evidence of direct inhibition of DNAPK or ATR 

(Hickson et al., 2004).  In preliminary studies, E2 and G7 CSC and bulk cells were 

incubated for 1 hour in medium containing 10µM KU-55933 prior to 5Gy of 

radiation and lysed for Western blotting at timepoints of 1, 3 and 6 hours post 

treatment, (fig. 5.1). ATM inhibition was able to completely inhibit the 

phosphorylation of Chk2 at threonine 68 (a major phosphorylation target of ATM) 

in both CSC and bulk cultures of E2 and G7 cell lines. Furthermore 

autophosphorylation of ATM at serine 1981 was also inhibited by KU-55933. The 

inhibition of Chk2 phosphorylation would suggest that 10µM KU-55933 effectively 

inhibits function of the ATM kinase in the E2 and G7 cell lines in both CSC and 

bulk cultures. 
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Figure 5.1 Comparison of phosphorylated DDR proteins in CSC and bulk cell cultures 

following 5Gy radiation +/- KU-55933 

E2 and G7 CSC and bulk cultures were incubated with 10µM KU-55933 or a corresponding 
concentration of DMSO for 1 hour prior to 5Gy radiation. Cells were lysed for Western blotting at 
timepoints after radiation as shown. Membranes were probed for pATM s1981, pChk2 thr 68 and 
actin as a loading control. 

 

5.3 Effect of ATM inhibition in the absence of radiation on cell viability 

in GBM CSC and bulk cells 

Effects of KU-55933 on cell viability in CSC and bulk cultures were assessed using 

the CellTiter-glotm assay. In brief, CSC and tumour bulk cultures of E2 and G7 

were plated onto Matrigeltm plates and incubated with different concentrations 

of KU-55933 for a period of 24 hours prior to the drug being removed and 

replaced with fresh CSC or bulk media (fig. 5.2). The experiment was repeated 

with a longer exposure (6 days) to differing concentrations of KU-55933 in order 

to assess prolonged exposure to the drug and the effects of cumulative DNA 

damage (fig. 5.2). Prolonged inhibition with KU-55933 was necessary to assess 
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effects on the repair of relatively infrequently occurring DNA damage under 

basal conditions.  

24 hour incubation of E2 CSC and bulk cells in media containing 10µM KU-55933 

produced a 10% decrease in cell viability relative to controls treated with an 

identical concentration of DMSO. This concentration of drug had a slightly larger 

effect on the G7 CSC cultures producing a 23% decrease in cell viability. There 

was no effect on the viability of G7 bulk cultures. 

Prolonged 6 day exposure of E2 CSC and bulk cells to 10µM KU-55933 had more 

marked effects on cell viability. Both CSC and bulk viability was reduced relative 

to controls to 51 and 61% respectively. In G7 CSC and bulk cultures 6 day 

exposure to 10µM KU-55933 had modest effects on CSC and bulk culture viability, 

reducing CSC culture viability to 76% and bulk culture viability to 84%.  

Decreasing cell viability was seen in both cell lines and culture conditions as the 

concentration of KU-55933 increased. This likely represents non-specific off 

target effects with very high concentrations of drug. 
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Figure 5.2 Effect of KU-55933 exposure on cell viability in CSC and bulk cultures 

E2 and G7 CSC and bulk cultures were plated onto Matrigeltm coated 96 well plates and allowed 
to adhere. After 24 hours cultures were incubated with incremental concentrations of KU-55933 
or corresponding DMSO concentrations for 24 hours prior to media removal and replacement or 
for 6 days without media removal and replacement. A Cell Titer-glo assay was carried out 7 days 
post plating of cells and cell viability results of cells exposed to KU-55933 were normalised to 
those of DMSO controls and plotted as shown. Plotted points represent means +/- SEM from 3 
independent experiments. 
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5.4 Effects of ATM inhibition on G2/M checkpoint activation in GBM CSC 

and bulk cells 

The effects of ATM inhibition on activation of the G2/M checkpoint following 

radiation were investigated by flow cytometry using pHisH3 as a mitotic marker 

in CSC and bulk cultures of E2 and G7 cell lines (fig. 5.3). Cell cultures were 

incubated in 10µM KU-55933 for 1 hour prior to 5Gy of radiation before being 

fixed in ethanol and analysed at the timepoints shown. KU-55933 can be seen to 

inhibit the G2/M checkpoint in both E2 and G7 CSCs relative to DMSO treated, 

irradiated controls. CSC cultures still appear to activate the G2/M checkpoint in 

response to radiation after ATM inhibition, although the degree of activation is 

much attenuated. The effect in bulk cell cultures however is more marked, 

particularly in the E2 cell line, where KU-55933 is observed to provide almost 

complete inhibition of the G2/M checkpoint following irradiation. A similar trend 

is seen in G7 bulk cells; however the error bars on each data point are wide, 

making further interpretation difficult. 

Representative images of the gating used for the flow cytometric analysis of 

pHisH3 are shown in figure 5.4. 
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Figure 5.3 Analysis of G2/M checkpoint activation in CSC and bulk cultures following 5Gy 

radiation +/- KU-55933 

E2 and G7 CSC and bulk cultures were plated and allowed to reach 30-40% confluency before 
being incubated with media containing 10µM KU-55933 or DMSO alone 1 hour prior to 5Gy of 
radiation. Cells were fixed in ethanol at the timepoints shown before analysis of pHisH3 
positivity and cell cycle phase was carried out using flow cytometry. Results were normalised to 
unirradiated controls and plotted as shown. Each data point represents mean +/- SEM from a 
minimum of 3 independent experiments. 
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Figure 5.4 Analysis of G2/M checkpoint activation in CSC and bulk cultures following 5Gy 
radiation +/- KU-55933 

Representative images of flow cytometry gating used to identify pHisH3 populations in figure 5.4 

in E2 and G7 CSC and tumour bulk cultures 
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5.5 Effects of ATM inhibition on DNA DSB repair in GBM CSC and bulk 

cells by Gamma H2AX foci analysis 

The effects of ATM inhibition on radiation induced DNA DSB repair in GBM CSC 

and bulk cultures were investigated by means of quantification of gamma H2AX 

foci. Representative images of gamma H2AX and CENPF immunofluorescent 

staining are shown (fig. 5.5). CSC and bulk cultures of E2 cells were incubated in 

10µM of KU-55933 prior to irradiation with 1Gy and were then fixed at 

timepoints of 1, 3 and 24 hours and analysed for gamma H2AX foci formation. 

Populations were again subdivided into G1 and G2 populations using the CENPF 

cell cycle marker, and foci quantified as median number per cell nucleus (fig. 

5.6).  A mean of medians was then calculated to provide a summary of foci 

counts at each timepoint. 

Examination of median nuclear gamma H2AX foci number at 24 hours in CENPF 

positive (G2 cell cycle phase) populations revealed a significant increase in foci 

numbers in E2 CSCs incubated with KU-55933 compared to DMSO treated 

controls. Inhibition of ATM completely removed the previously seen efficient 

repair of DNA DSBs in E2 CSCs at 24 hours in the G2 population. A similar trend 

was seen in bulk cells in CENPF positive  populations at 24 hours post radiation, 

which did not reach statistical significance (p = 0.058). Consistent with ATM 

being the primary, but not exclusive, phosphorylator of H2AX in response to IR, 

ATM inhibition produced a marked reduction in Gamma H2AX foci formation at 

early timepoints (< 3 hours) post irradiation in both CSC and bulk cultures. This 

finding is discussed in more detail later in this chapter. 

No statistically significant effects were seen on late repair (>3 hours) in CENPF 

negative (G1) CSCs or bulk cells, (fig. 5.7).  
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Figure 5.5 Representative images of gamma H2AX foci and CENPF immunofluorescent 

staining in E2 CSC and bulk cultures 
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Figure 5.6 Quantification of gamma H2AX foci in CENPF positive (G2 cell cycle phase) E2 CSC 

and bulk cultures following 1Gy +/- 10µM KU-55933 

Analysis of gamma H2AX foci as per figure 5.5, demonstrating median foci count per nucleus in 
E2 CSC and bulk in CENPF positive (i.e. G2 cell cycle phase) populations at baseline, 1, 3 and 24 
hours post 1Gy +/- KU-55933. Each column represents the mean of 3 median foci per nucleus 
estimations from 3 independent experiments. Error bars represent SEM. P values were calculated 
by student’s t test.  
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Figure 5.7 Quantification of gamma H2AX foci in CENPF negative (G1 cell cycle phase) E2 CSC 
and bulk cultures following 1Gy +/- 10µM KU-55933 

Analysis of gamma H2AX foci as per figure 5.5, demonstrating median foci count per nucleus in 
E2 CSC and bulk in CENPF negative (i.e. G1 cell cycle phase) populations at baseline, 1, 3 and 24 
hours post 1Gy +/- KU-55933. Each column represents the mean of 3 median foci per nucleus 

estimations from 3 independent experiments. Error bars represent SEM.  
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5.6 Effects of ATM inhibition on DNA DSB repair in GBM CSC and bulk 

tumour cells by neutral comet assay 

Further characterisation of the effects of ATM inhibition on DNA DSB repair was 

undertaken using the neutral comet assay in an attempt to quantify DNA DSBs via 

an assay which was not reliant upon an ATM mediated signalling cascade, since 

ATM is the main early phosphorylator of H2AX at early timepoints following 

radiation exposure. Figure 5.8 shows plots of Olive tail moments in E2 CSC and 

bulk cultures following exposure to 40Gy plus or minus KU-55933. Preliminary 

studies suggested the neutral comet assay was not sensitive enough to quantify 

DNA DSBs following lower, clinically relevant doses of radiation. Cells were 

analysed 1 hour post irradiation. These data show no significant differences in 

DNA DSB levels in CSC or bulk cells treated with DMSO or with KU-55933 at 1 

hour post irradiation. However these data also fail to show differences between 

irradiated and unirradiated controls. Given the extreme radioresistance of our 

GBM cell populations this may represent effective repair of the majority of 

lesions 1 hour post irradiation, to an extent where the relatively insensitive 

neutral comet assay was unable to detect a difference between control and 

irradiated samples. This could also represent failure of the neutral comet assay 

in this investigation due to operator dependent variables, however commercially 

available bleomycin treated control cells produced a satisfactory dose response 

curve, suggesting the execution of the assay was carried out appropriately. 

The comet assay was repeated in E2 CSC cultures using a dose of 40Gy, again 

incubating cells in KU-55933 or a corresponding DMSO concentration for 1 hour 

prior to irradiation (fig. 5.9). Cell cultures were maintained on ice immediately 

after radiation in order to inhibit DNA DSB repair. This showed an increase in 

olive tail moment in cells receiving 40Gy compared to unirradiated controls. 

There was no decrease in olive tail moment with the addition of KU-55933 

relative to cells irradiated in the absence of KU-55933, demonstrating that ATM 

inhibition although impairing gamma H2AX foci formation at early timepoints in 

the E2 cell line does not decrease DNA DSB formation. Unirradiated control cells 

show the formation of a comet tail in figure 5.9. This is explained by relaxation 
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of tertiary chromatin structure during the assay and is expected in control cells 

in the neutral comet assay (Olive and Banath, 2006). 

 

Figure 5.8 Quantification of DNA DSBs in E2 CSC and bulk cultures following radiation +/- 

10µM KU-55933 by neutral comet assay 

Neutral comet assay performed in E2 CSC and bulk cultures after 40Gy, 40Gy plus KU-55933 and 
in untreated, unirradiated controls. Cultures were incubated in media containing 10µM KU-55933 
or DMSO 1 hour prior to irradiation with 40Gy and then lysed as per neutral comet protocol 1 
hour post irradiation. Neutral comet assay was performed and Olive tail moment was then 
quantified and medians, interquartile range and range plotted as above. Results are 

representative of 1 experiment only.  
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Figure 5.9 Quantification of DNA DSBs in E2 CSC cultures following radiation +/- KU-55933 by 
neutral comet assay  

Neutral comet assay performed in E2 stem cultures quantified and plotted as per fig 5.6a. 
However cell cultures were placed on ice immediately after irradiation in this experiment to 
inhibit DNA repair. Cells were lysed and neutral comet assay performed shortly after completion 
of radiation treatment. Medians of 1 experiment are plotted. Representative images of comets 
are shown. 

 

 

Given that the high doses of radiation necessary to detect DNA DSB repair 

differences with the neutral comet assay are not representative of clinical 

radiotherapy doses, and the inability to assess DNA repair effects in these cell 

lines at late or even early timepoints due to the lack of sensitivity of the assay, 

further use of the neutral comet assay was discontinued. 
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In view of difficulties experienced with the neutral comet assay attempts were 

made to quantify a surrogate of DNA DSB formation which did not rely upon ATM 

function, such as MRE11 foci, NBS1 foci or 53BP1 foci (fig. 5.10). E2 bulk cells 

were found to produce MRE11 foci following irradiation; however these were 

unsuitable for quantification. Immunofluorescent staining for NBS1 failed. 

Formation of 53BP1 foci was found also to be ATM dependent in the E2 cell line 

at early timepoints post radiation (fig. 5.11).   

 

Figure 5.10 Immunofluorescent detection of MRE11 foci following irradiation 

E2 bulk cells were fixed at 1 hour post 1Gy of radiation to generate DNA DSBs and stained for 

Gamma H2AX (red) and MRE11 (green) with DAPI staining of nuclei. 
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Figure 5.11 Analysis of 53BP1 foci in E2 bulk cells following irradiation +/- KU-55933 

E2 bulk cell cultures were irradiated with 1Gy in the presence or absence of KU-55933 fixed at 1 
hour post irradiation and stained for CENPF and 53BP1. Median 53BP1 foci per nucleus were 
quantified in CENPF negative cells. Medians from 1 experiment are plotted. An image of 

immunofluorescent staining for 53BP1 foci following radiation exposure is shown. 
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5.7 Effects of ATM inhibition on clonogenic survival of GBM CSC and 

bulk cultures 

The radiosensitising effects of ATM inhibition by KU-55933 on GBM CSC and bulk 

cultures were investigated by clonogenic survival assay. CSC and bulk cultures 

were incubated for 1 hour in media containing 10µM KU-55933 prior to 

irradiation and for 24 hours post radiation after which media was replaced. 

Clonogenic survival curves for CSC and bulk cultures of E2, G7 and R10 are shown 

in figure 5.12. ATM inhibition demonstrated very potent radiosensitising effects 

on both CSC and bulk cultures of all three cell lines. ATM inhibition in the 

absence of radiation had no effect on plating efficiency in any cell line or 

culture condition.  

Application of the linear quadratic equation allowed estimation of a sensitiser 

enhancement ratio for 0.37 survival (SER0.37) in the presence of ATM inhibition. 

This value represents the fold change in radiation dose necessary to produce a 

survival of 0.37 in the absence of the sensitising drug. The SER0.37 values for ATM 

inhibition are summarised in table 5.1. ATM inhibition was shown to 

radiosensitise R10 CSCs to a significantly greater degree than R10 bulk cells for a 

surviving fraction of 37%. Surviving fraction at 4Gy (SF4Gy) values were also 

calculated in the presence and absence of KU-55933 and are shown in table 5.1. 
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Figure 5.12 Effects of radiation +/-10µM KU-55933 on clonogenic survival of E2, R10 and G7 

CSC and bulk cultures 

Effects of KU-55933 on radiosensitivity of E2, R10 and G7 cell lines.  Clonogenic survival curves 
comparing effects of KU-55933 plus radiation versus radiation alone on CSC and bulk cell cultures 
in E2, R10 and G7 cell lines. Data points represent mean +/- SEM from 3 independent 

experiments. Representative images of colony formation at 0 and 4 Gy are also shown. 
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Table 5.1 Sensitiser enhancement ratios at 0.37 survival (SER0.37) and surviving fraction at 
4Gy (SF4Gy) +/- 10µM KU-55933 are tabulated for CSC and bulk cultures of the E2, G7 and 
R10 cell lines 

 

To confirm the effects of ATM inhibition and radiation on GBM CSC survival, 

neurosphere formation assays were conducted in E2 and G7 CSC populations. The 

extent to which 2Gy inhibited neurosphere formation in vitro was significantly 

increased by treatment with 10µM KU-55933 in both E2 and G7 CSC populations 

(fig. 5.13). ATM inhibition in the absence of radiation did not affect neurosphere 

formation.  
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Figure 5.13 Effects of radiation +/- KU-55933 on neurosphere formation 

Neurosphere formation assay in E2 and G7 CSC cultures.  10 cells per well were seeded into 96 
well plates and treated with KU-55933 or DMSO prior to irradiation with 2 Gy. Neurospheres were 
quantified manually after incubation for 3 (G7) or 4 weeks (E2) under 5x magnification. Mean 
plus SEM of 3 independent experiments shown, normalised to control values. Neurosphere 
forming efficiency of controls (Mean and 95% CI): E2 = 18.56% (15.72, 21.40), G7 = 34.74% (28.50, 
40.98). Representative images of neurospheres are shown. P values calculated by student’s t 
test. 

 

5.8 Conclusions 

The effects of ATM inhibition on CSC and bulk GBM cultures have been fully 

characterised. ATM inhibition provided highly potent radiosensitisation of both 

GBM CSC and bulk cultures, as demonstrated by both clonogenic assay and 

neurosphere formation assays. The degree of radiosensitisation produced by ATM 

inhibition when quantified by SER0.37 was extremely high and ranged from 2 to 

3.5 in the cell lines examined. This is in contrast to radiosensitising agents in 
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clinical use today, such as cytotoxic chemotherapy drugs, which have SER0.37 

levels of around 1.3 to 1.8. ATM inhibition clearly has a profound ability to 

modify the intrinsic radiosensitivity of highly radioresistant tumour cells. This 

study presents the first evidence of radiosensitisation of GBM CSCs by ATM 

inhibition using clinically relevant clonogenic survival assays. Vecchio et al 

(Vecchio et al., 2014) investigated the effects of ATM inhibition on GBM CSC 

cultures versus differentiated GBM cultures via MTT assay and found ATM 

inhibition to have a radiosensitising effect in CSCs however, this was in contrast 

to a radioprotective effect observed in differentiated GBM cells. Clonogenic 

survival assays are the gold standard for measuring radiobiological effects and 

the differing results may reflect use of a more robust assay, or be cell line 

dependent. However it is difficult to relate the profound effects of ATM 

inhibition on the DDR to a radioprotective effect. In E2 and R10 cells, ATM 

inhibition completely abrogated the relative radioresistance of CSC’s, since the 

survival curve of the KU-55933 exposed CSCs was superimposed on that of the 

KU-55933 exposed bulk tumour cells. These data indicate that ATM function is a 

dominant component of CSC radioresistance in these cell lines. 

The complex role of ATM in the cellular DDR to ionising radiation has been 

characterised by other authors. ATM has both a cell cycle checkpoint role and a 

DNA repair role. ATM controls both S phase and G2/M checkpoints in response to 

radiation, and ATM deficient cells are known to exhibit continued S phase 

progression and abnormal G2/M cell cycle control after irradiation. ATM null 

cells in particular are noted to exhibit an apparently paradoxical deficient G2/M 

checkpoint activation following irradiation along with prolonged G2 

accumulation. Xu et al (Xu et al., 2002) demonstrated the existence of two 

molecularly distinct G2/M checkpoints following ionising radiation. The first 

G2/M checkpoint occurs early following radiation exposure and is ATM 

dependent, however dose independent. This phenomenon represents failure of 

cells in G2 at the time of irradiation to progress into mitosis. The second type of 

radiation induced G2/M checkpoint (described as ‘G2 accumulation’) is ATM 

independent and dose dependent, and occurs at later timepoints (around 24 

hours in the study by Xu et al) following irradiation and represents G2 

accumulation of cells which were in G1 or S phase at the time of irradiation. 
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G2/M accumulation is a reflection of DNA damaged cells continuing to progress 

through S phase, and is a feature of cell lines with deficient S phase checkpoints 

rather than being a specific feature of ATM null cells. G2 accumulation is an ATR 

dependent process.  

Investigations detailed in this thesis demonstrated the ability of ATM inhibition 

with KU-55933 to inhibit ATM mediated Chk2 phosphorylation in GBM CSC 

cultures by Western blot. Furthermore the effects of ATM inhibition on the G2/M 

cell cycle checkpoint were documented, with partial abrogation of radiation 

mediated G2/M cell cycle checkpoint activation seen in CSC cultures and almost 

complete abrogation of G2/M cell cycle checkpoint seen in bulk cell cultures. 

The study presented in this thesis is an analysis of the initial transient ATM 

dependent G2/M checkpoint occurring early after radiation exposure rather than 

G2/M accumulation at later timepoints. The analysis of pHisH3 presented above 

demonstrates that CSCs are not completely reliant upon ATM for early G2/M 

checkpoint activation, in comparison to GBM bulk cells which appear ATM reliant 

for this function. It may be that an alternative mechanism contributes to 

activation of the G2/M checkpoint in GBM CSCs. Increased ATR activity in GBM 

CSCs may be responsible for this effect. 

Analysis of gamma H2AX foci resolution in this chapter provided insight into the 

effects of ATM inhibition on DNA DSB repair following radiation. Other 

investigators have characterised the role of ATM in DNA DSB repair. ATM has 

been described as having a specific function in the resolution of DNA DSBs in the 

slow phase of DNA repair via NHEJ in G1 (Riballo et al., 2004) and HR in G2 

(Beucher et al., 2009). This subset of DNA DSBs represents around 10-15% of the 

overall DSB burden induced by radiotherapy, and ATM appears essential for the 

repair of these DNA DSBs.  ATM may have specific functions required for repair 

of this subset of radiation induced DSBs (Kuhne et al., 2004). Goodarzi et al 

presented evidence that ATM facilitated DNA DSB repair in areas of 

heterochromatin (Goodarzi et al., 2008). In this model ATM facilitates relaxation 

of densely packed heterochromatin and access to heterochromatic DSB sites by 

DNA repair machinery via the phosphorylation of KAP1. Inhibition of KAP1 

function by siRNA knockdown of KAP1 relieved the DNA DSB repair deficit of ATM 
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deficient cells in this study. Alvarez-Quilon et al however demonstrated that 

ATM is required for the repair of DNA DSBs with blocked ends (Alvarez-Quilon et 

al., 2014). It seems that ATM may have multiple roles in the repair of DSBs which 

in the absence of ATM activity are otherwise impossible for the cell to repair.  

In the studies presented in this chapter, ATM inhibition effectively removed the 

previously demonstrated repair advantage of GBM CSCs at 24 hours post 

radiation. This effect was evident only in G2 populations. A similar trend was 

also seen in bulk cell cultures however again in G2 cell populations exclusively 

although this failed to reach statistical significance. The excess unresolved 

gamma H2AX foci in irradiated G2 GBM CSCs treated with ATM inhibitor at 24 

hours represents 18% of the DNA DSBs present at 1 hour in the DMSO irradiated 

G2 GBM CSC controls, which approximates to the 10-15% of overall DNA DSB 

burden thought to require ATM for repair. 

An increase in unresolved gamma H2AX foci was not evident in G1 phase cells 

following ATM inhibition and radiation in either CSC or bulk cultures in the E2 

cell lines. ATM has been shown to contribute to repair of a subset of DNA DSBs 

repaired by NHEJ in G1 phase (Riballo et al., 2004). Therefore it would have 

been expected that the G1 populations treated with irradiation and ATM 

inhibition in this study would also have experienced increased DNA DSBs at 24 

hours following irradiation. However, earlier in this study the E2 cell line was 

demonstrated to have a dysfunctional G1 checkpoint in response to radiation. 

Therefore cells which are in G1 phase at the time of irradiation will progress into 

S phase with DNA damage present instead of exhibiting a G1/S cell cycle arrest. 

It is speculated that the G1 phase cells analysed at 24 hours post irradiation 

represent cells which have completed DNA repair in S and G2 phase and 

progressed through mitosis to exist in G1 phase at the time of analysis. As they 

have completed repair and progressed through mitosis into G1 phase these cells 

would not exhibit increased levels of gamma H2AX foci following ATM inhibition. 

ATM inhibition suppressed phosphorylation of H2AX at early timepoints following 

irradiation. This was expected, since ATM is known to be the major protein 

kinase responsible for the phosphorylation of histone H2AX in the early response 



Effects of ATM inhibition on GBM CSC radioresistance 

179 
 

to radiation (Burma et al., 2001). DNAPK and ATR are capable of phosphorylating 

gamma H2AX, (Wang et al., 2005). However, ATM is thought to be more capable 

of phosphorylation of H2AX due to its ability to become immediately activated 

by local chromatin modifications associated with DNA breakage. Since chromatin 

modification occurs over entire chromatin domains, activated ATM will be able 

to phosphorylate multiple H2AX molecules within each domain (Bakkenist and 

Kastan, 2003). DNAPK will become activated after direct interaction with Ku, 

but only after direct binding to a DSB. Therefore the H2AX phosphorylation range 

of DNAPK will likely be shorter (Stiff et al., 2004). ATR is mainly activated by 

replication stress associated DNA DSBs after interaction with ATRIP following 

generation of ssDNA (Zou and Elledge, 2003). Therefore immediate 

phosphorylation of H2AX by ATR after irradiation appears unlikely (Kinner et al., 

2008). The effects on H2AX phosphorylation at early timepoints after irradiation 

and ATM inhibition are varied in the literature and the effect is likely cell line 

dependent. Some investigators report no effect of ATM inhibition on early 

gamma H2AX foci formation after radiation (Beucher et al., 2009), whilst others 

demonstrate a profound effect of ATM inhibition on H2AX phosphorylation at 

early timepoints post radiation (Shaheen et al., 2011). Criticism that KU-55933 is 

non-specifically inhibiting DNAPK in addition to ATM at the concentrations used 

in these investigations in this chapter is not supported by the available 

literature. Beucher et al used KU-55933 at a concentration of 20µM to achieve 

ATM inhibition and saw no effect on early phosphorylation of gamma H2AX. The 

investigations in this thesis used a much lower concentration of 10µM KU-55933 

which resulted in a profound effect on gamma H2AX formation. It is unlikely that 

the reduction in gamma H2AX foci formation at these timepoints represents a 

reduced induction of DNA DSBs. Although the neutral comet assay was 

unsatisfactory due to its lack of sensitivity at later timepoints following 

irradiation, there was no reduction in DNA DSBs following radiation and ATM 

inhibition. The reduction in gamma H2AX foci at early timepoints post radiation 

plus ATM inhibition therefore likely reflects a reduction in signalling at DSBs. 

In conclusion ATM is central to the radioresistance of GBM CSCs. Inhibition of 

ATM in GBM CSCs is associated with partial abrogation of G2/M checkpoint 

activation and reduction in efficiency of slow phase DNA DSB repair in G2 phase 
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GBM CSC populations. ATM inhibition provides highly potent levels of 

radiosensitisation in both CSC and bulk populations, and completely abrogates 

CSC radioresistance relative to bulk cells in the E2 and R10 cell lines.  
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Chapter 6 PARP  and GBM CSC radioresistance  

6.1 Introduction 

The radiosensitising effects of PARP inhibitors on various cell lines have been 

characterised by several authors (Liu et al., 2008, Dungey et al., 2009, Noel et 

al., 2006, Albert et al., 2007). PARP inhibition provides modest radiosensitisation 

in most cell lines, with SER0.37 ranging from 1.3 to 1.8. PARP inhibition 

radiosensitises effectively in hypoxic conditions (Liu et al., 2008). Furthermore, 

its mechanism of radiosensitisation has been shown to predominantly affect 

actively replicating cells which may facilitate tumour specific radiosensitisation, 

since many normal cells within organs of the human body are generally non-

dividing or much more slowly proliferating than malignant tissue. In vivo studies 

have shown PARP inhibition to have an even greater radiosensitising effect than 

those predicted from in vitro studies, possibly due to vasodilatory effects on 

tumour vasculature (Calabrese et al., 2004, Ali et al., 2011b). Furthermore 

PARP-1 expression is greatly increased in GBM tumour cells and can be used as a 

tumour marker (Galia et al., 2012b) whilst PARP-1 expression is not present in 

normal brain. Given these properties, there is great interest in the development 

of PARP inhibitors as clinical radiosensitisers, particularly in GBM. 

Nevertheless, the effect of PARP inhibition on GBM CSC radioresistance is 

relatively unexplored. A detailed investigation of the role of PARP-1 in GBM CSC 

radioresistance was undertaken. 

6.2 PARP-1 expression in GBM tumour samples 

PARP-1 expression in tumour samples was investigated by immunohistochemical 

staining for PARP-1 as shown in figure 6.1. Two patient GBM samples were 

stained for PARP-1 in addition to sections from E2 and G7 CSC derived 

xenografts. Sections of normal human brain were also stained for evaluation of 

PARP-1 expression. Tumour nuclei appear to stain intensely for PARP-1 in both 
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patient GBM samples and in xenografts derived from E2 and G7 CSC cultures. In 

comparison, normal brain shows no detectable staining of nuclei for PARP-1. 

 

Figure 6.1 Demonstration of PARP-1 expression by immunohistochemical staining in normal 
human brain, GBM patient samples (GBM 1 and 2), and orthotopic murine xenografts (G7 CSC 

and E2 CSC) 

 

6.3 Investigation of PARP-1 expression and activity in GBM CSC and bulk 

cultures 

GBM CSC and tumour bulk cultures of E2 and G7 cell lines were incubated with 

1µM olaparib or a corresponding concentration of DMSO and irradiated with 5Gy. 

Cells were lysed for Western blotting at timepoints of 0, 1, 3 and 24 hours post 

radiation. Membranes were then probed for PARP-1, Poly (ADP ribose) (PAR) and 

actin, as shown in figure 6.2. In both the G7 and E2 cell lines, enhanced 

expression of PARP-1 was seen in GBM CSC cultures at baseline and after 

irradiation with 5Gy compared to tumour bulk cultures. Levels of PAR expression 

were increased in GBM CSC cultures compared to bulk cultures in both cell lines 

at baseline and after irradiation. The addition of 1µM olaparib to cell culture 

medium 1 hour prior to irradiation with 5Gy abolished PARylation in both GBM 

CSC and bulk cultures.  
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Figure 6.2 Analysis of PARP-1 and PAR expression in CSC and bulk cells following 5Gy 

radiation +/- olaparib by Western blotting 

E2 and G7 CSC and bulk cultures were irradiated with 5Gy after incubation in media containing 
1µM olaparib or corresponding DMSO concentration. Cultures were then lysed for Western 
blotting at the time points shown. Membranes were probed for PARP-1, PAR and actin as a 

loading control. 

 

6.3 Investigation of effects of PARP-1 inhibition on GBM CSC 

radioresistance 

The effects of PARP inhibition on GBM CSC radioresistance were investigated by 

clonogenic assay. GBM CSC and bulk cultures of the cell lines E2, G7 and R10 

were seeded onto Matrigeltm covered plates as described previously. Cell 

cultures were then incubated with 1µM olaparib 1 hour prior to irradiation. 

Colonies were counted and surviving fractions were plotted in figure 6.3.  
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Figure 6.3 Effects of radiation +/- 1µM olaparib on clonogenic survival of CSC and bulk 

cultures 

Clonogenic survival curves comparing effects of olaparib plus radiation versus radiation alone on 
CSC and tumour bulk cultures in E2, G7 and R10 cell lines. Data points represent mean +/- SEM 

from 3 independent experiments. Representative images of colonies are shown at 0 and 4Gy. 

As can be seen in figure 6.3, PARP inhibition radiosensitised E2, G7 and R10 GBM 

CSC cultures. Treatment with olaparib in combination with radiation reduced 

colony formation in both GBM CSC and bulk cultures of all 3 cell lines compared 

to DMSO treated controls. There was no significant effect of PARP inhibition 

alone on the plating efficiency of any cell line or cell culture condition. 
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Calculation of SER0.37 for PARP inhibition was performed in all three cell lines for 

GBM CSC and bulk cultures and is presented in table 6.1. SER0.37 values ranged 

between 1.1 and 1.9 in the cell lines and culture conditions examined. SF4Gy 

values are also tabulated in table 6.1. Incubation with PARP inhibitor prior to 

irradiation with 4Gy produced a statistically significant reduction in colony 

formation in both CSC and bulk cultures of all 3 cell lines. 

 

Table 6.1 SER0.37 and surviving fraction at 4Gy values (SF4Gy) following PARP inhibition and 

radiation 

SER0.37 and SF4Gy +/- olaparib are tabulated with corresponding 95% CIs for CSC and bulk cultures 
of the E2, G7 and R10 cell lines. SER0.37 and SF4Gy represent mean values of 3 independent 

experiments; corresponding 95% confidence intervals are also shown. 

The effects of PARP inhibition on radiosensitivity of GBM CSCs were confirmed by 

neurosphere assay. E2 and G7 GBM CSCs were seeded in 96 well plates at a 

density of 10 cells per well and treated with 1µM olaparib or a corresponding 

DMSO concentration before irradiation with 2Gy. 96 well plates were then 
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incubated for 3-4 weeks and allowed to form neurospheres. Results plotted 

normalised to controls are shown in figure 6.4. Treatment with 1µM olaparib 

alone had no effect on generation of neurospheres in either cell line. However 

combined treatment with olaparib and 2Gy significantly reduced neurosphere 

production in both cell lines when compared to the effects of 2Gy in the absence 

of olaparib. Olaparib exposure alone had no effect on the appearance or size of 

neurospheres.  
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Figure 6.4 Effect of radiation +/- olaparib on neurosphere formation  

E2 and G7 CSCs were seeded at a dilution of 10 cells per well into 96 well plates and exposed to 
olaparib or DMSO prior to irradiation with 2 Gy. Neurospheres were quantified manually after 3 
(G7) or 4 weeks (E2) after imaging using an Optronix Gelcount colony counter. Mean plus SEM of 
3 independent experiments is shown, normalised to control values. Neurosphere forming 
efficiency of controls (Mean and 95% CI): E2= 18.56% (15.72, 21.40), G7 =34.74% (28.50, 40.98). 

Representative images of neurospheres are shown. P values were calculated by student’s t test. 
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6.4 Investigation of effects of PARP inhibition on DNA DSB repair in GBM 

CSCs 

A detailed investigation of DNA DSB repair following radiation and olaparib was 

undertaken by analysis of gamma H2AX foci, as in chapter 5. E2 GBM CSC and 

bulk cultures were seeded onto glass coverslips and exposed to 1µM olaparib or a 

corresponding concentration of DMSO in media for a period of 1 hour prior to 

1Gy of radiation. Cells were fixed and stained for gamma H2AX and CENPF at 

timepoints of 0, 1 and 24 hours following radiation. Representative images of 

staining for CENPF and gamma H2AX are shown in figure 6.5. Cells were assessed 

to be either CENPF positive (i.e. in S or G2 cell cycle phase) or CENPF negative 

(i.e. in G1 cell cycle phase) by the investigator. 
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Figure 6.5 Images of gamma H2AX immunofluorescent staining in E2 CSC and tumour bulk 

cells exposed to 1µM olaparib and 1Gy radiation 

CENPF and gamma H2AX immunofluorescent staining following incubation with olaparib or DMSO 

at 0, 1 and 24 hours post irradiation with 1Gy. 

 

Figure 6.6 illustrates the effects of olaparib exposure on the median nuclear 

gamma H2AX foci in G2 cell cycle phase GBM CSCs and tumour bulk cells of the 

E2 cell line following 1Gy. There was a significant increase in the mean number 

of foci per nucleus in both GBM CSC and bulk cultures at 24 hours post 
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irradiation and olaparib. There was no significant difference in foci numbers at 

baseline or 1 hour after irradiation with 1Gy plus olaparib. 

 

Figure 6.6 Quantification of gamma H2AX foci following 1Gy +/- 1µM olaparib in CENPF 

positive (G2 cell cycle phase) CSC and bulk cell populations 

Resolution of gamma H2AX foci in E2 CSC and bulk cultures after treatment with 1Gy in the 
presence and absence of 1µM olaparib in CENPF positive (i.e. S/G2 cell cycle phase) populations. 
Gamma H2AX foci were quantified at the timepoints shown. Columns represent mean plus SEM of 
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3 median nuclear gamma H2AX foci values from independent experiments. P values calculated by 

student’s t test. 

Figure 6.7 illustrates the effects of olaparib exposure on radiation induced 

gamma H2AX foci in G1 cell cycle phase GBM CSCs and tumour bulk cells of the 

E2 cell line. There were no significant differences in foci number at baseline, 1 

or 24 hours in G1 phase cells following 1Gy plus olaparib exposure.  
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Figure 6.7 Quantification of gamma H2AX foci following 1Gy +/- 1µM olaparib in CENPF 

negative (G1 cell cycle phase) CSC and bulk cell populations 

Resolution of gamma H2AX foci in E2 CSC and bulk cultures after treatment with 1Gy in the 
presence and absence of 1µM olaparib in CENPF negative (i.e. G1 cell cycle phase) populations. 
Gamma H2AX foci were quantified at the timepoints shown. Columns represent mean plus SEM of 
3 median nuclear gamma H2AX foci values from independent experiments. Differences between 

controls and olaparib treated cells are non-significant at all timepoints by student’s T test. 
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6.8 Conclusion 

This study presents an investigation of PARP and its importance as a determinant 

of radiosensitivity in GBM CSCs. Investigations in this chapter have demonstrated 

the upregulation of PARP-1 in GBM tumour samples in comparison to normal 

brain, upregulated expression of PARP-1 in GBM CSCs in comparison to tumour 

bulk cells and inhibition of DNA repair by PARP inhibition in GBM CSCs resulting 

in radiosensitisation.  

Venere et al have investigated the importance of PARP in GBM CSC DDR (Venere 

et al., 2014). They have shown that PARP-1 and PAR levels are elevated in GBM 

CSCs, which is in agreement with the results from this thesis. Furthermore it was 

demonstrated that PARP-1 has an important role in GBM CSC survival. 10µM of 

olaparib was shown to decrease neurosphere formation in CD133+ GBM cells. In 

contrast, the investigations detailed in this chapter were unable to demonstrate 

an effect of olaparib on neurosphere formation in the absence of radiation. This 

likely reflects the use of a much lower (1µM) concentration of olaparib, which 

nevertheless was found to ablate PARylation in GBM CSCs. Venere et al proposed 

that PARP was upregulated in GBM CSCs in order to efficiently repair damage 

from an increased level of basal ROS in GBM CSCs. Upregulated basal ROS was 

demonstrated in CD133+ cells from primary tumour specimens and in vitro 

cultures in keeping with this hypothesis.  

GBM CSCs have a marked upregulation of PARP-1 expression in comparison to 

tumour bulk cells. This is accompanied by increased PARylation of proteins both 

at baseline and after irradiation. Inhibition of PARP by olaparib radiosensitises 

GBM CSCs to a modest degree in vitro by clonogenic assay. Radiosensitisation 

with PARP inhibition is also seen in tumour bulk cells. SER0.37 values range from 

1.2 to 1.9, which is in keeping with the degree of radiosensitisation seen with 

PARP inhibition in established commercial cell lines (Brock et al., 2004, Dungey 

et al., 2009). The clonogenic survival curve of the E2 and R10 GBM CSCs treated 

with olaparib is superimposed on the olaparib treated bulk cell survival curve 

which suggests complete abrogation of GBM CSC radiation survival advantage. 

There is therefore a clear trend towards increased radiosensitising effects of 
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olaparib in CSCs compared to bulk tumour cells in the E2 and R10 cell lines, 

which would be in keeping with the overexpression of PARP-1 in CSCs. However 

the difference between bulk and GBM CSC SER0.37 is not statistically significant. 

These data represent the first demonstration of radiosensitisation by olaparib in 

GBM CSCs by clonogenic survival assay. 

Previous studies have shown an increase in DNA DSB generation following PARP 

inhibition and radiation when compared to radiation alone (Dungey et al., 2009). 

In the investigations presented above, the median gamma H2AX foci per nucleus 

was significantly increased in both CSC and bulk populations in the E2 cell line 

following 1Gy plus PARP inhibition in G2 cell cycle phase populations. This was 

not evident in E2 GBM CSC and bulk G1 cell cycle phase cells treated with 

radiation and olaparib. This result is in keeping with current knowledge on 

mechanisms of radiosensitivity induced by PARP inhibition. 

PARP-1, although having no direct DNA repair enzymatic activity itself, is a key 

DDR effector and modulates many other proteins involved in DNA repair via 

PARylation of its substrates (D'Amours et al., 1999). PARP-1 acts as a sensor of 

DNA damage and will bind to sites of DNA SSBs and will become activated upon 

DNA binding. Activated PARP is then able to PARylate a wide variety of DDR 

proteins and have direct interactions with many other DNA repair proteins 

including XRCC1, DNA Ligase III and DNA Polymerase Beta. AutoPARylation of 

PARP-1 also occurs, and is important in allowing DNA bound PARP to dissociate 

from DNA permitting access of other DNA repair machinery to the site of DNA 

damage. PARP inhibition will prevent the autoPARylation of DNA bound PARP 

molecules and also the PARylation of its DDR substrates (D'Amours et al., 1999). 

DNA bound PARP will prevent access to SSB sites by the appropriate DNA repair 

machinery. Furthermore, PARP will be unable to PARylate and interact with its 

substrates leading to a defect in SSB repair (Dungey et al., 2009, Zahradka and 

Ebisuzaki, 1982, Ferro and Olivera, 1982, Lindahl et al., 1995). It is accepted 

that the main role of PARP-1 is to facilitate SSB repair via Base Excision Repair 

(BER). PARP is not essential for the function of this pathway; however the 

presence of functioning PARP greatly improves the rate and efficiency at which 

BER can be carried out (Fisher et al., 2007, Satoh and Lindahl, 1992, Strom et 
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al., 2011, El-Khamisy et al., 2003).  The radiosensitising effects of PARP 

inhibition are related to the role of PARP in SSB repair. Ionising radiation will 

cause up to 25 times as many SSBs as DSBs, however usually SSBs are repaired 

quickly and effectively and are of little consequence to the cell. However the 

presence of PARP inhibition will greatly impede the repair of these SSBs allowing 

them to be converted into DSBs during S phase DNA replication and subsequent 

replication fork collapse (Dungey et al., 2009, Brock et al., 2004). The 

upregulation of PARP-1 demonstrated in GBM CSCs would therefore provide a 

DNA repair advantage for GBM CSCs contributing to their relative 

radioresistance.  

There are also less well characterised functions of PARP-1 which may confer a 

benefit for GBM CSC DDR following ionising radiation. PARP-1 is known to 

contribute to the MMEJ repair pathway of DNA DSB repair. PARP-1 normally 

directly competes with Ku heterodimers in binding to DNA DSBs; usually the 

higher affinity of Ku for DSBs prevails, however in the presence of a NHEJ 

defect, MMEJ achieves prominence (Wang et al., 2006). MMEJ does not normally 

significantly contribute to DNA DSB repair, however it can be an important 

pathway in malignant cells (Bentley et al., 2004). MMEJ is known to be sensitive 

to PARP inhibition. 

In conclusion, GBM CSCs exhibit upregulation of PARP-1 expression and elevated 

levels of PAR both at baseline and in response to radiotherapy. Olaparib 

effectively reduces levels of PAR following radiation in both CSC and tumour 

bulk cultures and is associated with preferential radiosensitisation of GBM CSCs 

compared to tumour bulk cells. Radiosensitisation is associated with an 

increased median number of DNA DSBs per nucleus at the 24 hour timepoint 

following irradiation in CSCs in G2 cell cycle phase. These data have clinical 

significance in relation to the targeting of GBM CSCs in therapeutic strategies. 

The demonstration that GBM CSCs have increased expression of PARP-1 and 

increased PARP activity suggests that PARP-1 is a viable therapeutic target. 

Furthermore the ability of PARP inhibition to preferentially radiosensitise GBM 

CSCs as demonstrated by clonogenic survival assay in these studies suggests that 

PARP inhibition may provide enhanced tumour cell kill in combination with 
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radiotherapy, which may provide improved local control and survival from GBM. 

The combination of PARP inhibition in addition to radiotherapy for GBM is being 

explored in the PARADIGM study, which is soon to open to recruitment in the UK.  
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Chapter 7  Radiosensitisation of GBM CSCs by inhibition of ATR 

and PARP 

7.1 Introduction 

The reliance of GBM CSCs on both efficient G2/M cell cycle checkpoint activation 

and enhanced DNA DSB repair was demonstrated in Chapter 4. Whilst potent 

radiosensitisation was achieved via the inhibition of ATM, ATM inhibition did not 

completely abrogate the G2/M checkpoint, suggesting alternative mechanisms of 

G2/M checkpoint activation could be important in cell cycle control in GBM 

CSCs. GBM CSCs were demonstrated to express high levels of phosphorylated ATR 

and Chk1 in vitro in chapter 4. ATR is known to have a key role in the function of 

the G2/M cell cycle checkpoint via the activation of Chk1 and subsequent 

phosphorylation of Cdc25c. It was postulated that ATR might perform an 

important role in the DDR of GBM CSCs, particularly in relation to G2/M 

checkpoint response. Therefore an investigation of the effects of ATR inhibition 

on GBM CSCs was undertaken. 

7.2 Effects of VE-821 on ATR function in GBM CSCs 

The effects of ATR inhibition were investigated using the specific ATR kinase 

inhibitor VE-821 (Reaper et al., 2011). G7 CSC and bulk cultures were incubated 

with incremental doses of VE-821 and subjected to irradiation with 5Gy prior to 

being lysed and prepared for Western blotting. Blots were probed for 

phosphorylated ATR ser428 and phosphorylated Chk1 ser345 (fig. 7.1). 

Phosphorylation at ser428 has been shown to be a marker of activated ATR in 

response to UV mediated DNA damage, whilst Chk1 is a key substrate of ATR and 

phosphorylation of Chk1 at s345 provides an indication of ATR function (Vauzour 

et al., 2007). A concentration of 5µM VE-821 was found to produce adequate 

suppression of the phosphorylation of Chk1 ser345 in G7 GBM CSC cultures 

following irradiation, (figure 7.1). This is in keeping with published literature 

regarding VE-821 (Reaper et al., 2011). 
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Figure 7.1 Analysis of DDR protein expression following 5Gy +/- VE-821 in CSC and bulk 
cultures 

Investigation of expression of phosphorylated ATR ser428 and phosphorylated Chk1 s345 in G7 
CSC and bulk cultures by Western blot 1 hour after exposure to 5Gy and incubation with various 
concentrations of VE-821 or 0.02% DMSO (D) or media only (U) for 1 hour prior to radiation. Total 

levels of Chk1 are also shown. 

 

7.3 Effects of VE-821 on cell viability in GBM CSC and bulk cultures 

GBM CSC and bulk cultures were incubated for 24 hours in 96 well plates in 

media containing differing concentrations of VE-821. After 24 hours of exposure 

to VE-821, the media was replaced with drug-free media. A cell viability 

(CellTiter-GloTM) assay was then performed 6 days following drug treatment 

(figure 7.2). 5µM VE-821 had a statistically significant effect on the viability of 

E2 bulk cells and no significant effect on E2 CSC. In the G7 cell line however, 

exposure to 5µM VE-821 for 24 hours decreased cell viability in both CSC and 

tumour bulk populations. However there was no significant difference in the 

effect of ATR inhibition on cell viability between CSC and bulk cultures.  

Concentrations of VE-821 of 10µM and above were associated with marked 

effects on cell viability in CSC and bulk cultures of both cell lines. Since 

inhibition of phosphorylation of Chk1 could be demonstrated in the G7 cell line 

at a concentration of 5µM VE-821 and the main focus of the study was 
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radiosensitisation rather than the effects of VE-821 as a single agent, the 

concentration of 5µM VE-821 was selected for further investigations. 

 

Figure 7.2 Effect of VE-821 on cell viability 

Upper panels; investigation of cell viability following 24 hours exposure to incremental 
concentrations of VE-821 in CSC and bulk cultures of E2 and G7 cell lines. Mean and SEM from 3 
results are plotted. Cell viability was assessed by CellTiter-Glotm analysis performed 6 days after 
drug treatment. Lower panel; mean cell viability results after exposure to 5µM VE-821 are 
charted as bars and a one sample t test was used to assess whether cell viability was significantly 
different from controls (normalised data); results from 3 independent experiments. Mean values 
for cell viability +/- 95% CI’s are as follows: E2 CSC 0.9 (0.7, 1.1); E2 bulk 0.88 (0.87, 0.88); G7 

CSC 0.76 (0.76, 0.84); G7 bulk 0.70 (0.56, 0.82).  

 

7.4 Effects of VE-821 on the G2/M checkpoint in GBM CSCs 

Effects of ATR inhibition on G2/M checkpoint function after radiation were 

assessed in E2 and G7 GBM CSC and bulk cultures following incubation with 5µM 

VE-821 for 1 hour prior to irradiation with 5Gy. Cells were fixed at timepoints of 

0, 3 and 6 hours post irradiation and pHisH3 positive cells were quantified by 

flow cytometry as in chapter 5. 



Radiosensitisation of GBM CSCs by inhibition of ATR and PARP 

200 
 

Results of G2/M checkpoint interrogation are plotted in figure 7.3. ATR 

inhibition efficiently abolished radiation induced G2/M checkpoint activation and 

maintenance in the E2 CSC and bulk cultures. VE-821 treated E2 cells failed to 

show a decrease in mitotic fraction at both 3 and 6 hours following radiation. 

The mitotic fraction of irradiated cells exposed to ATR inhibition was increased 

at the 6 hour timepoint relative to DMSO treated, unirradiated control cells.  
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Figure 7.3 Effect of 5Gy radiation +/- VE821 on G2/M checkpoint function in E2 and G7 CSC 

and bulk cultures 

Investigation of G2/M checkpoint function by flow cytometric quantification of pHisH3 positive 
cells after exposure to 5Gy in the presence of ATR inhibition. E2 and G7 CSC and bulk cultures 
were incubated with 5µM VE-821 or a corresponding concentration of DMSO and then exposed to 
5Gy of radiation. Cells were fixed in ethanol at timepoints shown and analysis of pHisH3 and PI 
incorporation was undertaken via flow cytometry. Each data point represents mean and SEM of a 

minimum of 3 independent experiments normalised to unirradiated controls. 

 

VE-821 had less effect on G2/M checkpoint function in G7 GBM CSCs following 

radiation, however. G7 GBM CSCs exhibited an attenuated G2/M checkpoint 

response to 5Gy radiation in the presence of ATR inhibition. The effect of ATR 
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inhibition was more marked in G7 bulk cultures, in which the G2/M checkpoint 

response to 5Gy was completely abolished. However the mitotic population after 

5Gy was similar to that of the DMSO treated, unirradiated control cells and no 

‘pro-mitotic’ effects above baseline were observed (unlike in E2 cells). 

Representative images of the flow cytometry gating used in the experiment are 

shown in figure 7.4 

 

Figure 7.4 Flow cytometry gating for analysis of pHisH3 positive cells 

Examples of gating used for the flow cytometric analysis of pHisH3 positive cells in CSC and bulk 

cultures of the E2 cell line. 

 

7.5 Effects of VE-821 and radiation on clonogenic survival of GBM CSC 

and bulk cultures 

The effect of VE-821 on radioresistance was investigated by clonogenic assay in 

GBM CSC and bulk cultures of the E2 and G7 cell lines. Cultures were incubated 

with 5µM VE-821 for one hour prior to irradiation. 24 hours post irradiation drug 

containing medium was removed and replaced with fresh, drug-free medium. 
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Clonogenic survival curves are shown in figure 7.5; surviving fractions for 

combined treatment with radiation and VE-821 were normalised to the surviving 

fractions of unirradiated VE-821 treated cells during calculation of plating 

efficiency, therefore eliminating any baseline additive effects of the drug on the 

analysis of clonogenic survival curves.  

 

Figure 7.5 Effects of ATR inhibition and VE-821 on clonogenic survival of GBM CSC and bulk 

cells 

Clonogenic survival curves comparing effects of VE-821 plus radiation versus radiation alone on 
CSC and bulk cell cultures in E2 and G7 cell lines. Data points represent mean +/- SEM from 3 
independent experiments. Representative images of colony formation at 0 and 4 Gy are also 

shown. 

 

ATR inhibition was associated with radiosensitisation of GBM CSCs with SER0.37 

values of 1.97 in E2 CSC and 2.05 in G7 CSC. In bulk cultures SER0.37 values were 

2.37 in G7 and 2.56 in E2, (table 7.1). Although SER0.37 values were higher in bulk 

cultures than CSC cultures of both cell lines, these differences were not 

statistically significant. SF4Gy values were significantly decreased by ATR 

inhibition in both cell lines and culture types.  
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Table 7.1 SER0.37 following ATR inhibition in GBM CSC and bulk cultures 

SER0.37 and SF4Gy values represent means of values from 3 independent experiments.  

The radiosensitising effects of ATR inhibition were confirmed by neurosphere 

formation assay in CSC cultures of the E2 and G7 cell lines (figure 7.7). Single 

cell suspensions were exposed to ATR inhibitor for 1 hour prior to irradiation and 

then left for 48 hours post irradiation before ATR inhibitor was diluted with the 

addition of further medium to each well, (see materials and methods). This 

assay demonstrated that ATR inhibition and radiation in combination 

significantly reduced the formation of neurospheres relative to CSCs treated 

with 2Gy radiation only. 

7.6 Investigation of combination DDR kinase inhibition on 

radiosensitivity of GBM CSCs 

Inhibition of ATM kinase provided very potent radiosensitisation of GBM CSCs via 

the dual mechanism of G2/M checkpoint inhibition and inhibition of effective 

DNA DSB repair, as described in Chapter 5. As discussed in this chapter and 

chapter 6, ATR and PARP inhibitors as single agents were associated with lower 

levels of radiosensitisation in CSCs. However ATR inhibition efficiently abrogated 
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radiation induced G2/M checkpoint function, whilst PARP inhibition was an 

efficient DNA repair inhibitor. It was hypothesised that the combination of these 

two agents may provide enhanced radiosensitisation of GBM CSCs, since PARP 

inhibition would increase the number of unrepaired DNA DSBs following IR, 

whilst ATR would prevent G2/M checkpoint arrest. 

The effect of dual PARP and ATR kinase inhibition on radioresistance of GBM 

CSCs was therefore investigated. Cell cultures were incubated with 1µM olaparib 

and 5µM VE-821 prior to irradiation. Cell media containing olaparib and VE-821 

was removed 24 hours after irradiation and replaced with fresh media containing 

no added inhibitor agents. Figure 7.6 shows cell survival curves in CSC and bulk 

cultures of E2, G7 and R10 cell lines following dual PARP/ATR inhibition and 

radiation.  
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Figure 7.6 Effects of combination of VE-821 and olaparib on radiosensitivity of E2, G7 and 

R10 cell lines.   

Clonogenic survival curves comparing effects of olaparib and VE-821 plus radiation versus 
radiation alone on CSC and bulk cell cultures in E2, G7 and R10 cell lines. Data points represent 
mean +/- SEM from 3 independent experiments. 

SER0.37 values are plotted in table 7.2. These data show that the combination of 

ATR and PARP inhibition produced highly potent radiosensitisation of GBM CSCs. 

SER0.37 values for the combination of PARP and ATR inhibition ranged from 2 to 3 
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for CSC cultures of E2, G7 and R10 cells. In R10 and E2 cells, SER0.37 values were 

significantly higher for CSC cultures than for bulk cell cultures, indicating that 

dual inhibition of ATR and PARP has a particular impact on radiation sensitivity 

of GBM CSCs, despite the fact that ATR inhibition alone had slightly less effect 

on the radiosensitivity of CSC than bulk cells. A significant difference was not 

observed in G7 cells, nevertheless both CSC and bulk cultures of G7 were 

potently radiosensitised by the combination. Again surviving fractions for ATR 

and PARP inhibition in combination with radiotherapy were normalised to 

unirradiated cells treated with ATR and PARP inhibition, therefore eliminating 

any baseline additive effects of the drugs on the analysis of clonogenic survival 

curves. 

 

Table 7.2 SER0.37 for dual ATR and PARP inhibition in GBM CSC and bulk cultures 

SER0.37 values and SF4Gy +/- VE-821 plus olaparib are tabulated for CSC and bulk cultures of E2, 
G7 and R10 cell lines. Mean values from 3 independent experiments with 95% confidence 

intervals are presented. 
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Neurosphere formation assays were performed to assess the effects of combined 

ATR and PARP inhibition in the absence of radiation. This data is presented in 

figure 7.7 and demonstrates marked inhibition of neurosphere formation by 

olaparib and VE-821 even in the absence of radiation in both E2 and G7 CSC cell 

cultures. The combination of PARP and ATR inhibition reduced neurosphere 

production more efficiently than exposure to 2Gy alone.   
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Figure 7.7 Neurosphere formation assay in E2 and G7 CSC cultures following combinations of 

DDR inhibitors and 2Gy 

10 cells per well were seeded into 96 well plates and treated with VE-821, olaparib plus VE-821 
or DMSO prior to irradiation with 2 Gy or no irradiation. Neurospheres were quantified manually 
after 3 (G7) or 4 weeks (E2) after imaging. Mean plus SEM of 3 independent experiments shown, 
normalised to control values.  Student’s t test was used to calculate p values.  
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 7.7 Conclusion 

In this chapter the effect of ATR inhibition on GBM CSC and bulk cultures was 

investigated. 

A study of ATR inhibition on the G2/M checkpoint in GBM CSCs and bulk cells 

following irradiation was carried out. ATR inhibition had a very pronounced 

effect on G2/M checkpoint function in the E2 cell line. Exposure to ATR 

inhibition following irradiation led to a large increase in mitotic cells in both E2 

CSC and bulk populations relative to controls, indicating a vital role for ATR in 

the control of the G2/M checkpoint in this cell line. ATR inhibition appeared to 

completely abrogate the efficient IR induced G2/M checkpoint response in E2 

CSCs, suggesting that it is the ATR pathway which provides the main mechanism 

of upregulated G2/M checkpoint function in E2 CSCs compared to bulk cells. 

Furthermore, the proportion of mitotic cells at 6 hours following irradiation was 

in excess of the proportion of mitotic cells seen in unirradiated controls. This 

likely represents an effect of ATR inhibition on the intra-S phase checkpoint in 

combination with G2/M checkpoint abrogation. Shibata et al examined the 

importance of ATR in mediating the G2/M checkpoint (Shibata et al., 2010). 

They demonstrated that ATM is required for initial activation of the G2/M 

checkpoint, however ATR signalling is then recruited via ATM dependent 

resection of DSBs requiring repair by homologous recombination. ATR-Chk1 

mediated signalling was critical to the maintained activation of the G2/M 

checkpoint in early timepoints following irradiation. Continued ATM signalling 

from unrepaired DSBs also contributed to this process. It is of interest that the 

attenuation of the G2/M checkpoint in the G7 CSC cultures following ATR 

inhibition and radiation was much less than the degree of effect seen in the E2 

CSC cultures. A possible reason for this may be that ATM can compensate for the 

loss of ATR signalling in the G7 CSC cultures. 

Although ATR is an important controller of the G2/M checkpoint, its inhibition is 

also known to have effects on DNA integrity and repair (Zeman and Cimprich, 

2014). As discussed in the introduction, ATR has a vital role in the response to 

replication stress. ATR stabilises stalled replication forks, slows DNA replication 
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and activates cellular checkpoints in response to replication stress. Ionising 

radiation causes a multitude of DNA lesions including pyrimidine lesions, purine 

lesions, SSBs and DSBs which can be a source of significant replication stress. 

Upon encountering these lesions DNA polymerases become stalled, whilst DNA 

helicases continue to unwind the DNA double helix in advance of the replication 

machinery generating long stretches of ssDNA. This generates an ATR-Chk1 

response allowing stabilisation of replication forks, suppression of S phase origin 

firing and G2/M arrest, providing the cell the means to avoid DSBs caused by 

collapse of replication forks. ATR can therefore be predicted to play a significant 

role in in the DNA damage response to ionising radiation, particularly in 

replicating cells, which may account for some of the radiosensitising effects of 

ATR inhibition. Analysis of gamma H2AX foci was not carried out following the 

combination of IR and ATR inhibition, however other authors have demonstrated 

an increase in gamma H2AX foci following ATR inhibition and radiation, in 

pancreatic carcinoma cell lines (Prevo et al., 2012).  

It was observed that the effect of ATR inhibition on the G2/M checkpoint was 

greater than that seen following ATM inhibition, particularly in the E2 cell line. 

It was hypothesised that if ATR inhibition was subsequently combined with a DNA 

repair inhibitor, such as a PARP inhibitor, then highly potent levels of 

radiosensitisation would be produced in GBM CSCs, given that studies of 

radioresistance detailed in chapter 4 suggested CSCs rely upon two aspects of 

DDR; namely efficient cell cycle checkpoint activation combined with more 

efficient DNA repair. In agreement with this hypothesis, dual ATR and PARP 

inhibition via the combination of VE-821 and olaparib with radiotherapy 

produced very potent radiosensitisation of GBM CSCs which could be 

demonstrated by clonogenic assay and neurosphere assay. Furthermore GBM CSC 

cultures appeared to experience greater radiosensitisation than bulk cultures in 

the E2 and R10 cell lines with this combination, with SER0.37 being significantly 

higher in GBM CSC cultures compared to bulk. This combination of DDR inhibitors 

completely abrogated the increased radioresistance of GBM CSCs in the E2 and 

R10 cell lines which confirms the importance of DNA repair and cell cycle control 

in the GBM CSC population. In the G7 cell line, however, CSC cultures still 

retained their relative radioresistance despite the combination of ATR and PARP 
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inhibition. This may reflect the reduced attenuation of the G2/M checkpoint 

seen after radiation and ATR inhibition in this cell line compared to the 

complete attenuation of the G2/M checkpoint seen after ATR inhibition in the E2 

cell line 

An interesting observation during the course of these studies was the induction 

of significant cytotoxicity by the combination of ATR inhibition and PARP 

inhibition without additional radiation by neurosphere production assay. 

Reduction in neurosphere production by the combination of ATR and PARP 

inhibition (without radiation) was significantly greater than that that achieved 

by 2Gy of radiation alone. In contrast, ATM and PARP inhibitors as single agents 

had no measurable effects on CSC neurosphere production at lowest effective 

concentration in the absence of radiation, whilst ATR inhibition had a smaller 

effect on CSC survival. 

The mechanism of cytotoxicity of the ATR and PARP inhibitor combination in the 

absence of radiation requires further investigation. Several possible mechanisms 

could underlie the effects of dual ATR and PARP inhibition. The observed 

cytotoxicity may be a form of induced synthetic lethality. Cells lacking BRCA1 or 

2 are known to be sensitive to PARP inhibition. In this setting PARP inhibition 

delays the repair of SSBs arising endogenously from normal cellular metabolism. 

These lesions result in replication fork collapse and DSB generation, which would 

normally be dealt with by HR, however the HR deficiency seen in homozygous 

BRCA 1 or 2 loss results in unrepaired DSBs and cell death. The ATR-Chk1 

pathway is known to facilitate HR (Brown et al., 2014) therefore ATR inhibition 

could induce a ‘BRCAness’ phenotype, producing cytotoxicity on exposure to 

PARP inhibition. Another possible mechanism involves the role of PARP-1 at 

collapsed replication forks following an inadequate replication stress response. 

ATR is required for the stabilisation of stalled replication forks and subsequent 

activation of Chk1. In the absence of ATR activity, stalled replication forks 

undergo collapse and DSBs are generated. Bryant et al have shown that PARPs 1 

and 2 bind to DSBs formed at collapsed replication forks, and that PARP also 

binds to short SSB sections of a subset of stalled forks, allowing their detection 

and the subsequent attraction of MRE11 facilitating resection and replication 
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restart (Bryant et al., 2009). The upregulation of PARP1 in CSCs may allow for 

the recovery and repair of stalled/collapsed forks created via ATR inhibition. 

The inhibition of both elements of this vital repair pathway may result in 

catastrophic failure of the replication stress response, and synergistic cytotoxic 

effects. 

Peasland et al explored the applications of the ATR inhibitor NU6027 in breast 

and ovarian carcinoma cell lines and demonstrated a synthetic lethal interaction 

with PARP inhibition (Peasland et al., 2011). A decrease in RAD51 foci was seen 

following the combination of ATR and PARP inhibition in comparison to cells 

treated with PARP inhibition only. The authors hypothesised that ATR inhibition 

prevented efficient HR and repair of DSBs created via collapse of replication 

forks following PARP inhibition, leading to cytotoxicity. Nevertheless, the 

investigations in this chapter represent the first demonstration of 

radiosensitisation by this drug combination and the first demonstration of 

cytotoxicity of combined ATR and PARP inhibition in GBM CSCs. 

In summary, ATR inhibition appears to provide potent attenuation of the G2/M 

checkpoint in response to radiation, and radiosensitises GBM CSCs, although to a 

lesser degree than inhibition of ATM. The combination of checkpoint ablation 

and repair inhibition via ATR and PARP inhibition provides highly potent 

radiosensitisation of GBM CSCs and is associated with complete abrogation of the 

radioresistance seen in some GBM CSC cultures. The combination of ATR and 

PARP inhibition is also highly effective in reducing neurosphere formation by 

CSCs in the absence of radiation. These data suggest that the combination of 

ATR and PARP inhibition should be explored in in vivo models of GBM. Dual ATR 

and PARP inhibition may have promising clinical activity even in the absence of 

radiation treatment.  
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Chapter 8  Discussion 

8.1 Introduction 

This project aimed to investigate the putative radioresistance of GBM CSCs, 

interrogate the DDR of GBM CSCs to irradiation and characterise the effects of 

DDR inhibition on the radioresponse of GBM CSCs. 

Evidence for radioresistance in GBM CSCs was presented by Bao et al, who 

demonstrated preferential activation of DDR in response to radiation and 

increased DNA repair in a CD133+ subpopulation of GBM cells (Bao et al., 2006a). 

However, subsequent reports have been conflicting regarding the radioresistance 

of GBM CSCs (Ropolo et al., 2009, McCord et al., 2009). Furthermore the 

literature in general lacks robust measurement of GBM CSC radioresistance. 

Some investigations have been unable to demonstrate GBM CSC radioresistance 

via the gold standard of clonogenic assay (McCord et al., 2009), which has been 

shown to correlate with clinical outcome (Bjork-Eriksson et al., 2000, West et 

al., 1997). Instead many investigations have relied upon surrogates of 

radioresistance such as cell viability assays and demonstration of upregulation of 

DDR. In addition previous studies have attempted comparison of CSC and tumour 

bulk radioresponse by comparing non-isogenic cell lines from different parental 

tumours or by comparing CSC with commercially available cell lines, which 

ignores differences in intrinsic radiosensitivity and may prove a confounding 

factor (McCord et al., 2009, Ropolo et al., 2009). Studies of radioresistance in 

GBM CSCs to date have been highly reliant on the sorting of GBM cell populations 

using the CD133 marker into CD133 positive and negative subpopulations. Whilst 

this allows comparison to be made between isogenic CSCs and bulk cells, CD133 

is not a universal marker of GBM CSCs and there is evidence that CD133 negative 

cells can also exhibit CSC properties, which may in part account for the 

conflicting results seen in the literature. If all of these factors are taken into 

account, radioresistance in GBM CSC subpopulations has only been robustly 

investigated by clonogenic assay in a few in vitro cell lines, with at times 

discordant results. Therefore, although radioresistance of GBM CSCs is a widely 

stated phenomenon, this property of GBM CSCs remains contentious. 
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In addition to investigating the radioresistance of GBM CSCs this project also 

explored previously documented upregulated DDR in GBM CSCs and investigated 

the effects of DDR inhibition on this tumour subpopulation. Upregulated DDR in 

GBM CSCs has been consistently documented by a number of investigators (Bao 

et al., 2006a, Ropolo et al., 2009), however a detailed analysis of the effects of 

upregulated DDR expression on the functional endpoints of cell cycle control and 

DNA DSB repair has not been undertaken. Previous studies have not examined 

the activation and maintenance of the G2/M checkpoint in GBM CSCs following 

radiation. Furthermore, studies of DNA DSB repair using gamma H2AX foci in GBM 

CSCs have not accounted for cell cycle effects, and have provided conflicting 

data on CSC DSB repair (McCord et al., 2009, Bao et al., 2006a). 

A summary discussion of the main findings of the thesis and how these data 

contribute to current knowledge now follows. 

8.2 Modelling GBM CSCs in vitro 

This project developed a model of GBM CSCs which was not reliant upon the cell 

surface marker CD133 (see Chapter 3). Instead paired CSC and tumour bulk 

cultures were derived from a single parental primary GBM cell line. The GBM CSC 

state was maintained by culture in a serum free neurobasal type medium with 

supplementation of growth factors, whilst a differentiated tumour bulk 

phenotype was achieved by culture in FCS containing medium. This model has 

important advantages over the cell sorting methods described by other authors. 

In particular, the lack of reliance upon a single GBM CSC marker allows greater 

heterogeneity in the CSC populations studied in this project. Since there is no 

accepted universal GBM CSC marker, the possibility of misidentification of the 

tumour CSC subpopulation is avoided. Furthermore the effects on cellular 

phenotype of the sorting process are poorly defined, and some authors have 

questioned whether binding of primary antibody during cell sorting may 

influence cellular behaviour, although this has not been shown in the case of 

anti-CD133 antibodies (Taussig et al., 2008).  
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This culture based model of GBM CSC and tumour bulk cells was validated by in 

vitro and in vivo methods. Elevated expression levels of CSC markers were 

demonstrated in GBM CSC cultures in comparison to tumour bulk cultures. In the 

E2 cell line, GBM CSC cultures were tumourigenic in orthotopic murine GBM 

models after injection of 105 tumour cells, producing highly invasive tumours. In 

contrast, intracranial injection of 105 E2 tumour bulk cells was essentially non-

tumourigenic in these mouse models. The G7 GBM CSCs and tumour bulk cultures 

were both equally tumourigenic in orthotopic models, however G7 GBM CSCs 

were found to reproduce invasive tumours which recapitulated features of the 

original parental tumour, in contrast to the G7 bulk cell tumours which had well 

defined edges and no invasive features (Mannino et al., 2014). 

The model described in this project has limitations, since CSC populations and 

tumour bulk populations are being maintained in different culture conditions, 

and this could represent a confounding factor in the experiments carried out in 

this project. However, evidence is accumulating that the CSC state is dependent 

on microenvironmental influences. CSC phenotype is influenced by the 

microenvironmental milieu of the perivascular niche, and the CSC state appears 

to exhibit significant plasticity (Meacham and Morrison, 2013, Vlashi and Pajonk, 

2014). The different culture conditions employed in this study recreate some of 

the tumour microenvironmental cues which are present in the perivascular niche 

in vivo which determine the CSC phenotype. Furthermore criticism could be 

made of investigations which rely upon cell sorting of CD133+ cells and 

comparison with CD133- cells. In these investigations it is not clear what the in 

vivo correlate of a CD133- cell maintained in CSC medium is. Certainly CD133- 

cells can be defined in a negative sense in that they lack the CD133 cell surface 

marker. However this does not necessarily make them a valid representation of 

differentiated tumour cells in vivo, since they are existing in culture medium 

which is designed to inhibit differentiation. Nevertheless, the CSC phenotype of 

the cell cultures described in this project is not a transient cell culture medium 

based phenomenon. The increased level of expression of the GBM CSC marker 

nestin appears to be maintained in CSC cultures upon transfer into 

differentiating tumour bulk medium (chapter 1), which provides further support 

for the robustness of the GBM CSC model employed in this project. However this 
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model does have certain limitations. CSC cultures utilised in this project are not 

a pure CSC population; rather these cultures are enriched for CSCs and will also 

contain some differentiated tumour cells. Likewise bulk cultures grown in FCS 

containing medium will probably also harbour a subpopulation of CSCs, however 

this will be depleted in comparison to CSC cultures.  

Cell proliferation rates of CSC cultures and tumour bulk cultures were similar 

following measurement of cell doubling time via cell viability assay in this 

project, which is in contrast to the opinion that the GBM CSC population is 

quiescent and divides relatively infrequently. This may represent an artefact of 

in vitro culture of CSC populations in this project. Nevertheless, on review of 

the literature, CSC quiescence in solid tumours is based mainly on extrapolation 

of the behaviour of normal stem cell populations. There is relatively little 

experimental evidence to confirm the quiescence of CSC populations in solid 

tumours and no studies of proliferation rates of CSCs in vivo. Gao et al 

demonstrated that CD24+ cells in primary ovarian tumours expressed stem cell 

associated markers such as nestin and were more slowly proliferating than bulk 

tumour cells up to one week following cell sorting based on this marker (Gao et 

al., 2010). Dembinski et al identified a slow cycling tumourigenic population of 

cells in pancreatic tumours, which possessed CSC properties (Dembinski and 

Krauss, 2009). Nevertheless, conclusive evidence regarding CSC quiescence in 

vivo in GBM is lacking. 

This project demonstrated important differences in cell cycle phase occupancy 

between CSC and bulk cultures. There was a higher proportion of CSCs occupying 

S and G2 phase of the cell cycle compared to tumour bulk populations. Gao et al 

demonstrated increased S phase proportions of CSCs compared to tumour bulk 

cells in ovarian tumours (Gao et al., 2010). Furthermore normal neural 

embryonic stem cells are known to have a shortened G1-S transition, leading to 

an overall reduction in cell cycle time (Calegari and Huttner, 2003). The 

increased proportion of cells in S and G2 phases in CSC populations has 

important implications for DDR. Conventionally, homologous recombination 

repair can only occur in late S and G2 phase, and therefore may be important in 

CSC function, given that CSCs appear to favour S and G2 cell cycle phases. This 
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has critical implications for comparison of DSB repair between CSC and bulk 

populations, since cells existing in G2 phase will experience a greater number of 

DNA DSBs than cells in G1 phase following an equivalent radiation exposure due 

to their higher DNA content (Lobrich et al., 2010). Previous studies of DNA repair 

in GBM CSCs by gamma H2AX foci quantification have not taken this important 

factor into account. 

8.2 Radioresistance of GBM CSCs  

Studies undertaken in this project provide strong support for the contention that 

GBM CSCs exhibit radioresistance relative to non-CSC tumour cells. The radiation 

response of 3 GBM cell lines cultured as paired CSC and tumour bulk cultures 

were subjected to clonogenic analyses of survival following irradiation, which 

demonstrated radioresistance of the CSC population. Clonogenic data were 

fitted to a conventional linear quadratic model of survival in order to generate a 

dose modifying factor for 0.37 survival (DMF0.37). DMF0.37for the E2, G7 and R10 

CSC cultures relative to tumour bulk cultures was approximately 1.5, indicating 

that the radiation dose required to produce a 0.37 surviving fraction in CSC 

cultures was 1.5 times greater than the radiation dose producing 0.37 survival in 

tumour bulk cultures. This difference in radiosensitivity was statistically 

significant, and given its magnitude is also likely to be clinically significant. The 

studies in this thesis therefore provide evidence to support the hypothesis that 

GBM CSC radioresistance is an important factor in determining disease 

recurrence in GBM patients. Given concerns regarding confounding effects of 

medium, the radioresistance of CSCs was confirmed in the E2 cell line by 

neurosphere production assay of irradiated CD133+ and CD133- sorted cells from 

the CSC culture population, which demonstrated relative radioresistance of 

CD133+ cells in comparison to CD133-ve cells. 

The study by McCord et al questioned the relevance of GBM CSC radioresistance 

to current in vitro models of GBM (McCord et al., 2009). This study argued that 

the concept of radioresistant CSCs was irrelevant to current in vitro models of 

GBM, since the established model was more radioresistant than the GBM CSC 

model. However, all of the GBM CSC cultures subject to clonogenic assay in this 
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thesis demonstrated extremely high levels of radioresistance. SF2Gy for the CSC 

populations of E2, G7 and R10 were in the range 0.83-0.89. Direct comparison to 

the commercially available cell lines used in the study by McCord et al is 

difficult, since SER0.37 or other radiobiological parameters were not presented. 

However the radioresistance of CSC cultures in the present study appears in 

excess or at least equal to that described by the clonogenic survival curves in 

commercial GBM cell lines illustrated by McCord et al, and certainly in excess of 

the CD133+ GBM CSCs used in the McCord study. This suggests that CSC radiation 

resistance documented in this thesis is relevant to current laboratory GBM 

models and relevant to the clinical problem of GBM radioresistance. 

Similarly to Bao et al, the investigations in this thesis support the concept of 

increased activation of DDR in GBM CSCs (Bao et al., 2006a). Upregulation of 

phosphorylated components of the DDR in CSCs in response to radiation was 

demonstrated in chapter 4. Following irradiation CSCs displayed high levels of 

pATM s1981 and pChk2 thr68, along with pATR and pChk1 compared to tumour 

bulk. This study also presents evidence for upregulation of PARP-1 in CSC 

populations. Increased expression of DDR components does not appear to be 

limited to a particular pathway and the overall impression from the data in this 

study and also from published literature is of an almost global pattern of 

upregulation of DDR elements in CSCs. The underlying process for this 

phenomenon is unlikely to represent the convergence of multiple alterations in 

individual DDR pathways, and more likely represents the effect of a process 

which is fundamental to the CSC phenotypic state. Whether this is due to effects 

mediated by expression of the CSC marker L1CAM (Bao et al., 2008) or due to 

the effects of higher baseline reactive oxygen species in CSCs (Venere et al., 

2014) is unclear. It is likely that other mechanisms are also responsible. 

This thesis presents novel data regarding activation of the G2/M checkpoint in 

CSCs in response to radiation. Following exposure to 5Gy, CSCs in the E2 and G7 

cell lines appeared to activate the G2/M checkpoint to a greater degree than 

corresponding tumour bulk cultures at 6 hours post radiation. This would be in 

keeping with the observed higher levels of pATR, pATM, pChk1 and pChk2 in CSC 

populations since these proteins are known to control the G2/M checkpoint. 
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More efficient activation of the G2/M checkpoint allows attempts at DSB repair 

to be completed prior to entering mitosis, theoretically allowing CSCs to 

potentially avoid DSB induced cell death. These data also provide a rationale for 

therapeutic targeting of the G2/M cell cycle checkpoint in GBM CSCs. 

A detailed examination of DSB repair incorporating cell cycle phase was 

undertaken in GBM CSC and tumour bulk populations using immunofluorescent 

gamma H2AX foci for DNA DSB quantification following irradiation. Previous 

studies have examined DNA DSB repair via the gamma H2AX foci assay, however 

have not undertaken a simultaneous assessment of cell cycle phase. As discussed 

above, previous studies have ignored the contribution of cell cycle phase to 

radiation induced DSB burden, which is a potentially important confounding 

factor when comparing cellular populations which differ in cell cycle phase 

occupancy. These investigations demonstrated a repair advantage of GBM CSCs 

relative to tumour bulk cells in G2 phase at 24 hours post radiation. Induction 

and initial fast phase of DSB resolution appeared similar between CSCs and 

tumour bulk cells. Quantification of unrepaired gamma H2AX foci at 24 hours has 

been shown to correlate with clonogenic survival, and these data are in keeping 

with the clonogenic survival studies performed on CSC and tumour bulk 

populations in chapter 3 (Banath et al., 2004). The observation that slow phase 

repair in G2 is enhanced in GBM CSCs is in keeping with an advantage in 

homologous recombination repair of complex or heterochromatic lesions (Jeggo 

et al., 2011). An advantage in slow phase DNA DSB repair also implicates ATM 

function in GBM CSC DSB repair, since ATM has been shown to have a vital role in 

lesions repaired via slow kinetics. These observations suggest the upregulation of 

pATM s1981 levels seen in irradiated GBM CSCs have a vital role in the 

radioresistant phenotype of this cellular subpopulation. Lim et al have previously 

suggested that HR is a key repair pathway in GBM CSCs, and described a reduced 

dependency on NHEJ for DSB repair in CSCs (Lim et al., 2012). In a more recent 

paper they described ablation of the HR pathway by ATM inhibition as having 

marked effects on GBM CSC survival following irradiation, whilst ablation of 

NHEJ via DNAPK inhibition did not. ATM inhibition of irradiated cultured GBM 

CSCs prior to intracranial orthotopic injection appeared to increase survival in 

vivo.  They concluded that GBM CSCs are highly reliant upon HR as a mode of 
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repair following radiation (Lim et al., 2014). Nevertheless it can be argued that 

ATM inhibition does not only affect HR repair. As discussed previously, ATM is 

involved in NHEJ repair of lesions (again in the slow phase of DNA DSB repair) 

and has a role in G2/M checkpoint activation. Furthermore it would be difficult 

to reconcile a relative deficiency in NHEJ with the efficient repair of DNA DSBs 

seen in G1 phase in GBM CSCs unless an alternative pathway such as MMEJ was 

being utilised in GBM CSCs. This study did not compare GBM CSCs to non CSC 

tumour bulk cells and instead used normal neural progenitor cells as a control.  

It is unclear why GBM CSCs have upregulation of HR repair in comparison to 

tumour bulk cells. Investigators have suggested that increased utilisation of HR 

may reflect a lack of a functioning G1/S checkpoint in response to ionising 

radiation (Lim et al., 2014, Jeggo et al., 2011). Irradiated cells with a deficient 

G1/S checkpoint will progress into S phase with DNA damage. This will result in 

stalling and collapse of replication forks in S phase and subsequent generation of 

one ended DNA DSBs. This type of DSB has a requirement for HR repair (Jeggo et 

al., 2011), since NHEJ cannot perform this type of repair. This is an elegant 

explanation for upregulation of HR in cells with deficient p53 function or 

deficient G1/S checkpoint function, however it does not explain why GBM CSCs 

have an HR advantage in comparison to tumour bulk cells, since data from this 

thesis shows that both have a defective G1/S checkpoint, (despite the E2 and G7 

cell lines being p53 wild type). A possible explanation might be that GBM CSCs 

are somehow more deficient in G1/S checkpoint than tumour bulk cells thus 

favouring HR, and interestingly mouse embryonic stem cells exhibit this 

particular feature (Aladjem et al., 1998). However studies of cell cycle 

distribution following irradiation of CSC and tumour bulk cells in this thesis 

would not support this hypothesis. Another explanation may be that upregulation 

of HR repair in GBM CSCs is simply a reflection of the increased proportion of 

CSCs in S and G2 phase cell cycles compared to tumour bulk cells, however this 

would not explain the upregulation in DDR signalling seen in GBM CSCs or the 

more efficient activation of the G2/M checkpoint. Alternately the upregulation 

of DDR components seen in GBM CSCs (such as pATM and pATR) may be actively 

promoting HR in G2 phase and facilitating slow phase DSB repair at 

heterochromatic regions and at collapse of replication forks. However the 
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underlying reason of upregulation of pATM and pATR is not clear. The situation 

appears complex and further work is required to elucidate underlying 

mechanisms of HR upregulation in GBM CSCs. 

8.3 The role of ATM in GBM CSC radioresistance 

The upregulation of pATM in response to radiation in GBM CSCs, enhanced 

activation of the G2/M checkpoint and more efficient G2 slow phase repair 

implicates ATM function as being a fundamental determinant of GBM CSC 

radioresistance. This was explored in detail using the ATM kinase inhibitor KU-

55933. ATM inhibition prior to irradiation effectively abrogated phosphorylation 

of ATM at serine 1981 and Chk2 at threonine 68. Furthermore ATM inhibition 

partially abrogated the activation of the G2/M checkpoint in GBM CSCs. In 

contrast complete abrogation of the G2/M checkpoint in the E2 tumour bulk 

cultures following radiation was observed. A study of gamma H2AX foci 

resolution following ATM inhibition in the E2 CSC and bulk cultures demonstrated 

that KU-55933 removed the slow phase repair advantage of GBM CSCs at 24 

hours. KU-55933 also had a marked effect on phosphorylation of H2AX at early 

timepoints following irradiation, an effect related to a reduction in signalling at 

DSBs rather than a reduction in DSB generation. 

The failure of ATM inhibition to completely abrogate the G2/M checkpoint in 

GBM CSCs implies that another pathway is involved in G2/M checkpoint 

activation and maintenance in these cells. The ATR-Chk1 pathway would be an 

obvious candidate. ATM has been implicated in early G2/M checkpoint initiation, 

whereas the ATR-Chk1 pathway is thought to be important in later continued 

maintenance of the checkpoint following radiation (Shibata et al., 2010). ATM is 

necessary for resection of DSBs requiring HR repair; in the process of resection 

long ssDNA stretches are created which then activate ATR/Chk1 resulting in a 

‘switch’ from ATM mediated signalling to ATR mediated signalling at DSBs. 

Continued ATM signalling from unrepaired DSBs also contributes however. 

Therefore the mechanism of partial abrogation in GBM CSCs by ATM inhibition 

becomes apparent; ATM inhibition prevents DSB resection by ATM which in turn 

reduces activation of ATR. However, the upregulation of pATR which is present 
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at baseline may partially compensate for this effect, resulting in an attenuated 

G2/M response to radiation in the E2 GBM CSCs under conditions of ATM 

inhibition. 

In E2 bulk cells ATM inhibition appeared to completely abrogate the G2/M 

checkpoint. Again it could be hypothesised that the ATM to ATR switching 

process is inhibited by the lack of end resection due to kinase dead ATM. The 

comparative deficiency in pATR at baseline in the E2 bulk cells compared to 

CSCs might then lead to total G2/M checkpoint incompetence, since a 

compensatory upregulation of pATR does not exist in these cells. The situation is 

more difficult to explain in the G7 CSC and bulk cells, since the experimental 

variation is greater in G7 tumour bulk, however similar trends are seen. 

Further mechanistic insights were gained by the analysis of gamma H2AX foci 

resolution following ATM inhibition and radiation in the E2 GBM CSC and tumour 

bulk cultures. In keeping with current literature, ATM inhibition provided a slow 

phase repair deficit in the G2 phase E2 CSCs at 24 hours. This deficit abrogated 

the previously documented repair advantage seen at this timepoint in E2 CSCs. 

Interestingly, ATM inhibition of the E2 tumour bulk cultures produced a trend 

towards an increase in unresolved gamma H2AX foci at 24 hours, however the 

effect was non-significant. This may suggest that the E2 tumour bulk cells have a 

pre-existing deficit in slow phase G2 repair which is either ATM independent, or 

only partially sensitive to ATM inhibition.  

Both CSC and bulk cultures are potently radiosensitised by ATM inhibition as 

demonstrated by clonogenic assay. SER0.37 was in excess of 2.5 in CSCs. 

Furthermore ATM inhibition had a relatively greater sensitising effect on the CSC 

cultures of the E2 and R10 cell lines compared to tumour bulk cultures, since the 

survival curves of the ATM inhibitor treated CSC cultures appeared superimposed 

on that of the ATM inhibitor treated tumour bulk cultures in these cell lines. This 

effect was statistically significant in the R10 cell line, with SER0.37 for ATM 

inhibition being significantly greater in the R10 CSCs than the tumour bulk cells. 
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Based on the observations of G2/M checkpoint response and gamma H2AX foci 

analysis following ATM inhibition and radiation, the E2 tumour bulk cultures are 

reliant upon ATM kinase function for G2/M checkpoint activation, however ATM 

inhibition does not affect DNA DSB repair efficiency significantly in tumour bulk 

populations. In contrast ATM has important roles in G2/M checkpoint activation 

and DNA DSB repair in E2 CSCs. 

These data represent the first characterisation of ATM inhibition in GBM CSCs by 

clonogenic assay. This investigation is also the first to compare the effects of 

ATM inhibition in paired tumour bulk and CSC primary cell lines. Other 

investigations have detailed the response of commercially available cell lines to 

ATM inhibition (Golding et al., 2012, Golding et al., 2009, Biddlestone-Thorpe et 

al., 2013), or have looked at cell viability in response to radiation and ATM 

inhibition (Vecchio et al., 2014). Whilst the radiosensitising effects of ATM 

inhibition have been extensively explored in immortalised fibroblasts and 

commercially available immortalised cell lines, these data lend further novel 

mechanistic insights into the role of ATM in the GBM CSC subpopulation. 

8.4 The role of Poly (ADP ribose) polymerase (PARP) in GBM CSC 

radioresistance 

PARP-1 is upregulated in GBM tumour tissue and PARP-1 immunostaining can be 

utilised as a GBM tumour marker (Galia et al., 2012b). The investigations in this 

thesis demonstrated that whilst being generally upregulated in GBM tumour cells 

in comparison to normal brain tissue, PARP-1 and PAR levels are also upregulated 

specifically in the GBM CSC subpopulation compared to tumour bulk populations. 

Given these observations it was hypothesised that PARP-1 had an important role 

in GBM CSC radioresistance. 

Venere et al have examined the role of PARP-1 in GBM CSC DNA damage 

response (Venere et al., 2014). They found that exposure to olaparib at a 

concentration of 10µM over 24 hours greatly reduced the viability of CD133+ 

cells, but did not affect the viability of CD133- cells. PARP inhibition reduced 

neurosphere production in CD133+ cells and had significant effects on colony 
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formation by CD133+ cells but not by CD133- cells. It should be noted however 

that colony formation by CD133+ cells in this study was performed by 

neurosphere culture, with subsequent induction of monolayer colony formation 

by addition of FCS. CD133- cells on the other hand were grown as conventional 

monolayer colonies in FCS containing media.  In combination with 3Gy, olaparib 

prevented recovery of viability in GBM CSC cultures in the 10 days following 

irradiation. Furthermore olaparib increased gamma H2AX foci formation in 

irradiated CSCs relative to DMSO treated controls and was associated with 

increased apoptosis as measured by activated caspase 3/7 activity. Treatment of 

subcutaneous xenografts with olaparib and radiation reduced tumour volume and 

inhibited secondary neurosphere formation. The authors also demonstrated 

upregulated basal ROS levels in CD133+ cells and suggested that this may be an 

underlying reason for the increased levels of PARP in CSCs. They concluded that 

targeting of upregulated PARP in GBM CSCs had therapeutic potential. 

In comparison to Venere’s investigations the studies documented in this thesis 

found that a much lower concentration of olaparib inhibited PARylation in GBM 

CSCs. 1µM olaparib completely inhibited PARylation in GBM CSCs and this 

concentration was subsequently used in radiosensitisation studies. No effect of 

olaparib on neurosphere formation was observed in the absence of radiation. 

Likewise this concentration of PARP inhibition had no effect on colony formation 

by CSCs or tumour bulk cells in clonogenic assays. Nevertheless PARP inhibition 

with 1µM olaparib effectively radiosensitised GBM CSCs and tumour bulk cells, 

with SER0.37 in the range 1.4 to 1.9, which is in keeping with other studies of 

PARP inhibition induced radiosensitisation in commercially available in vitro cell 

lines. Although SER0.37 values were not significantly different between CSC and 

tumour bulk cells following PARP inhibition, a preferential radiosensitising effect 

of olaparib on CSCs was suggested by examination of clonogenic survival curves. 

This radiosensitising effect of olaparib on CSCs was confirmed by neurosphere 

assay following exposure of CSCs to olaparib and 2Gy radiation. In addition a 

study of gamma H2AX foci resolution in the presence of olaparib was carried out. 

This showed that exposure to olaparib prior to irradiation caused a reduction in 

the resolution of gamma H2AX foci at 24 hours in GBM CSCs in G2 phase of the 

cell cycle. This is in keeping with published literature concerning the mechanism 
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of radiosensitisation of PARP inhibition, which involves the delay of radiation 

induced SSBs and generation of DSBs during subsequent DNA replication in S 

phase.  

The observation that PARP inhibition had no effect on GBM CSCs in the absence 

of radiation contradicts the findings of Venere et al, however is likely due to the 

lower concentrations of olaparib used in this project. Nevertheless, this study 

demonstrates that a lower dose of olaparib effectively ablates PARylation of 

proteins in CSCs as demonstrated by Western blot, suggesting that higher 

concentrations of olaparib may induce other cytotoxic effects not necessarily 

related to inhibition of PARylation. Jelinic et al investigated the effects of two 

different PARP inhibitors; olaparib and veliparib (Jelinic and Levine, 2014). They 

found that olaparib treated cells demonstrated a dramatic decrease in DNA 

damage repair whereas veliparib did not, irrespective of inhibitory potency. This 

was a result of cell cycle effects induced by olaparib. Olaparib treatment 

appeared to induce a G2 arrest in a p53 dependent manner in the cell lines 

tested in Jelinic’s study. The effects of PARP inhibition in CSCs may therefore be 

dose and inhibitor molecule dependent. 

8.5 ATR inhibition and GBM CSC radioresistance 

The G2/M checkpoint in GBM CSCs was only partially abrogated by ATM inhibition 

leading to the hypothesis that ATR may have a significant role in checkpoint 

control in GBM CSCs. Western blot data also suggested elevated levels of pATR 

s428 in CSC cultures relative to tumour bulk. Therefore the effects of ATR 

inhibition in GBM CSCs were investigated. This represents an entirely novel area 

of study, with no investigations of the effects of ATR inhibition on 

radiosensitivity of GBM CSCs being available in the current literature. 

ATR inhibition with VE-821 provided very effective abrogation of the G2/M 

checkpoint following irradiation with 5Gy in both E2 CSCs and bulk cultures. 

Therefore ATR is an important controller of the G2/M checkpoint in the E2 cell 

line. Interestingly at the 6 hour time point following radiation, there was a large 

increase in proportion of mitotic cells relative to unirradiated DMSO controls. 
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This may reflect abrogation of the intra S checkpoint and G2/M checkpoint, 

resulting in a shift of cells into G2 and subsequently into mitosis. The effect in 

G7 CSCs is different, with a partial inhibition of G2/M checkpoint activation 

following radiation. However, total abrogation of G2/M checkpoint in the G7 

tumour bulk cells was observed.  

Radiosensitisation was achieved in both CSC and tumour bulk cultures with ATR 

inhibition, however the effects were modest, particularly in CSC cultures. SER0.37 

was approximately 2 in both E2 and G7 CSC cultures. Tumour bulk cultures 

appeared to be more effectively radiosensitised by ATR inhibition in comparison 

to CSCs, with SER0.37 being in the region of 2.3-2.5 however differences in SER0.37 

between bulk and CSC were not statistically significant. The radiosensitising 

effect of ATR inhibition was confirmed by neurosphere assay, with ATR inhibition 

in combination with 2Gy being associated with a significant decrease in 

neurosphere formation in both G7 and E2 cell lines in comparison to irradiated 

controls. 

ATR inhibition also produced a significant reduction in neurosphere survival in 

the E2 and G7 cell lines in the absence of radiation, suggesting that ATR has an 

important role in CSC renewal and proliferation. 

ATR inhibition has been investigated as a potential radiosensitiser of pancreatic 

carcinoma. Prevo et al investigated the potential of ATR inhibition using VE-821 

to sensitise pancreatic carcinoma to radiation and gemcitabine in vitro. VE-821 

was found to inhibit activation of the G2/M checkpoint and increase DNA 

damage, via inhibition of homologous recombination, as evidenced by inhibition 

of Rad51 foci formation. Whether ATR inhibition has a direct effect on the HR 

pathway is debateable and it seems more likely in this case that ATR inhibition 

was contributing to DNA damage via indirect effects on HR repair. The inability 

of ATR inhibited cells to activate the G2/M checkpoint may lead to less efficient 

HR repair of DNA lesions. ATR inhibition was associated with reduced cancer cell 

radiosurvival (Prevo et al., 2012). Fokas et al investigated ATR inhibition as a 

means to radiosensitise pancreatic tumours in vivo. This study utilised the 

compound VE-822, which is a more potent inhibitor of ATR in comparison to VE-
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821. VE-822 delayed growth of irradiated murine pancreatic xenografts in 

comparison to irradiated controls. Furthermore ATR inhibition was found not to 

increase intestinal toxicity in irradiated mice, suggesting ATR inhibition shows a 

degree of tumour specificity in its radiosensitisation effect (Fokas et al., 2012). 

8.6 Combined checkpoint and DSB repair inhibition for optimal 

radiosensitisation of GBM CSCs 

PARP inhibition and ATR inhibition as single agents were both modest 

radiosensitisers of CSC and bulk cultures in studies conducted in this thesis. PARP 

inhibition is known to have its major radiosensitising effects via the inhibition of 

SSB DNA repair and subsequent generation of DNA DSBs, whilst ATR inhibition, 

although contributing to repair following collapse of replication forks, can be 

characterised as a significant controller of the G2/M checkpoint. In contrast ATM 

inhibition provided highly potent radiosensitisation of GBM CSCs through 

simultaneous effects on DNA DSB repair and G2/M checkpoint abrogation. It was 

hypothesised that optimal radiosensitisation of GBM CSCs requires inhibition of 

both these elements of DDR. 

Therefore investigations of dual inhibition of G2/M checkpoint control and DSB 

repair via combined inhibition of ATR and PARP respectively were carried out. 

Dual ATR and PARP inhibition provided potent radiosensitisation of both CSC and 

bulk cultures by clonogenic survival assay in all cell lines. Furthermore, E2 and 

R10 CSCs were radiosensitised by this combination to a significantly greater 

degree than E2 and R10 tumour bulk cells, which again suggests that the 

mechanism of CSC radioresistance is due to both cell cycle activation and DNA 

repair. CSC radioresistance was completely abrogated by blockage of G2/M 

checkpoint activation and inhibition of DNA repair using olaparib and VE-821 in 

combination. In contrast in the G7 cell line the radiosurvival advantage of CSCs 

compared to tumour bulk cells was not altered by this combination suggesting 

that alternative undefined mechanisms determine CSC radioresistance in this 

cell line. It can be concluded that in certain GBM tumours, both checkpoint 

repair and DSB repair are vital to radiation resistance in CSC subpopulations. It is 

not clear from the investigations carried out whether the effects of ATR and 
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PARP inhibition in combination with radiotherapy represent synergistic or 

additive effects. Given the molecular DDR mechanisms known to involve both 

ATR and PARP it would be likely that the effect is synergistic with radiation, 

however isobologram analysis would be necessary to prove this conclusively. 

These data suggest therapeutic strategies aimed at radiosensitising GBM CSCs via 

DDR inhibition require to target both cellular checkpoint control and DSB repair 

to achieve optimal radiosensitisation. 

The study of dual ATR and PARP inhibition as a radiosensitising strategy is 

entirely novel. Other authors have examined the combination of Chk1 inhibition 

and PARP inhibition, and found that this combination of DDR inhibition 

selectively radiosensitised p53 mutant cells in pancreatic carcinoma (Vance et 

al., 2011). A more recent study by Teng et al examined the effects of ATR and 

ATM inhibition on the platinum and radiation sensitivity of cervical, ovarian and 

endometrial carcinoma cell lines (Teng et al., 2015). They demonstrated a 

profound effect of ATM inhibition on the radiosensitivity of all cell lines tested, 

however ATM inhibition did not appear to affect platinum sensitivity. The 

addition of ATR inhibition to ATM inhibition produced even greater levels of 

radiosensitisation in the cell lines examined. 

8.7 Cytotoxic effects of ATR and PARP inhibition in the absence of 

radiation 

A potent cytotoxic effect of ATR and PARP inhibition in combination was 

observed in both CSC and tumour bulk cultures, even in the absence of 

radiation. This was demonstrated by neurosphere production assays in the 

investigations detailed in chapter 7. The effect on neurosphere production of 

inhibition of ATR and PARP in combination was very marked and was greater 

than the effect of irradiation with 2Gy alone. It is likely that this was a 

synergistic effect, since PARP inhibition in the absence of ATR inhibition had no 

effect, and the effect of ATR and PARP inhibition on neurosphere production was 

significantly greater than the effect of ATR inhibition alone. 
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Peasland et al demonstrated a synthetic lethal effect of combined PARP and ATR 

inhibition in commercially available ovarian carcinoma cell lines (Peasland et 

al., 2011). The authors showed an increase in nuclear gamma H2AX foci and a 

reduction in Rad51 foci following exposure to both drugs and hypothesised that 

ATR inhibition produced inhibition of both HR and G2/M arrest, leading to 

increased sensitivity to the effects of PARP inhibition. Combined ATR and PARP 

inhibition has not been explored further in recent years, perhaps due to a lack of 

effective ATR inhibitor compounds. The data presented in this thesis are novel, 

and the combination of ATR and PARP inhibition would seem particularly 

appealing in a clinical setting, given the effects seen on CSC radiosensitivity and 

also in the absence of radiation. 

8.8 Clinical utility of DDR inhibition as a GBM radiosensitiser strategy 

This project has quantified GBM CSC radioresistance and demonstrated the 

importance of DDR as a mechanism of radioresistance in this cellular 

subpopulation. Potent radiosensitisation of CSCs has been achieved by inhibition 

of key elements of the DDR to ionising radiation, and the sterilisation of this 

tumour cell population may bring important benefits in terms of local control, 

palliation of symptoms and possible improved survival for GBM patients. DDR 

inhibition has obvious therapeutic application, however utilisation of DDR 

inhibition as a clinical GBM CSC targeted therapy creates additional complexity 

and several important issues must be explored. 

Tumour specificity is a vital property of any clinical radiosensitisation strategy. 

Only radiosensitisers which increase the radiation sensitivity of tumour cells to a 

greater degree than that of surrounding normal cells are clinically useful; 

otherwise the therapeutic ratio of radiation treatment does not change and any 

clinical benefit from increased tumour cell kill will be outweighed by increased 

normal tissue toxicity. Evidence suggests that targeting of the DDR may be 

potentially tumour specific in GBM and other tumour sites.  

Bartkova et al described the DDR as a barrier to carcinogenesis, therefore 

implicating altered DDR as a universal feature of malignant cells (Bartkova et 
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al., 2005). In this seminal study, activation of an ATM/ATR regulated DDR was 

observed early in tumourigenesis, prior to the development of genomic 

instability and malignant conversion. Normal proliferating cells did not show 

evidence of this enhanced DDR. One potential source of enhanced DDR in 

premalignant cells identified by the authors was that of S phase promoting 

oncogenes increasing replication stress. Tumourigenic abnormalities that 

deregulated DNA replication induced DNA damage and checkpoint activation. 

The authors proposed that activation of the ATM/ATR pathways serve to limit 

malignant progression, until the DDR is circumvented by events such as p53 

mutation that allow the development of further mutations, genetic instability 

and the complete malignant phenotype. Gorgoulis et al also proposed that 

cancer development was associated with replication stress and an enhanced DNA 

damage response prior to the development of p53 mutation and the onset of 

genomic instability (Gorgoulis et al., 2005). 

Many cancer types are known to be deficient in DNA damage responses in 

comparison to normal tissues. This concept can cause confusion in relation to 

studies of DDR in CSCs, since CSCs have been shown to have upregulated DDR in 

comparison to other tumour cells. It is important to remember however that 

although CSCs may have upregulated DDR relative to non-CSC tumour cells, they 

are still very likely to harbour abnormalities in DDR function and could therefore 

be DDR deficient relative to normal cells. Recent studies have used next 

generation sequencing technologies to explore the different mutations, deletions 

and copy number alterations occurring in different tumour sites. These have 

shown that inactivating mutations typically constitute a cancer-specific 

signature of affected DDR pathways. For example HR repair deficiency appears 

to be enriched in breast and ovarian cancer, whilst colorectal cancer exhibits 

alterations in mismatch repair (MMR) and HR (Cancer Genome Atlas, 2012b, 

Cancer Genome Atlas, 2012a, Cancer Genome Atlas Research, 2011). The 

concept of altered DDR being fundamental to the process of carcinogenesis 

provides an explanation for the efficacy of radiotherapy as an oncological 

therapy. Tumour cells, due to the alterations in DDR necessary to procure the 

malignant state, may be less able to repair DNA damage than normal tissue, 

producing a therapeutic ratio between malignant and normal tissue which can be 
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exploited by radiotherapy and other DNA damaging therapies. The result of 

alterations in the DDR landscape of cancer cells may produce reliance or 

addiction of cancer cells to particular pathways in order to complete DNA repair 

as a result of deficiencies in altered pathways or mutations in key DDR genes. 

These deficiencies in DDR could be further exploited by DDR kinase inhibition in 

order to enhance radiosensitivity of DDR deficient tumour cells. In view of the 

fact that normal surrounding tissue would possess a full complement of DDR 

functions, allowing them to maintain an effective DDR despite radiation and 

inhibition of a particular element or pathway of the DDR, it is plausible that 

tumour radiosensitisation could be achieved with little or no increase in normal 

tissue toxicity. 

Evidence to support this hypothesis comes from several published studies. Loser 

et al demonstrated the increased susceptibility of cells deficient in one or more 

aspects of DNA DSB repair to the radiosensitising effects of PARP inhibition 

(Loser et al., 2010). Radiosensitisation of ligase IV deficient fibroblasts by PARP 

inhibition was explained by inhibition of MMEJ, whilst defective repair of 

replication associated DNA damage was seen in ATM and Artemis null fibroblasts. 

The authors concluded that PARP inhibitors would preferentially radiosensitise 

tumour cells with defective DNA repair in comparison to normal tissues. 

Biddlesthorpe et al investigated ATM inhibition in GBM and demonstrated 

increased radiosensitisation of p53 deficient cells by ATM kinase inhibition in 

comparison to p53 wild type cells. Vance et al showed preferential 

radiosensitisation of pancreatic cells with p53 mutations to dual Chk1 and PARP 

inhibition. In general targeting of the ATR/Chk1 pathway results in a tumour 

specific radiosensitisation effect due to abrogation of the G2/M checkpoint in 

G1/S checkpoint deficient tumour cells. Normal cells may be more able to 

tolerate DNA damage in this scenario due to an intact G1/S checkpoint. High 

levels of replication stress in tumour cells may also facilitate tumour specific 

radiosensitisation. Fokas et al in their study of radiosensitisation via ATR 

inhibition in pancreatic cancer xenografts demonstrated no radiosensitising 

effect of ATR inhibition on normal cells, and in particular examined the effects 

of ATR inhibition and radiotherapy on the small intestine of mice. The small 

intestine is a common dose limiting organ in pancreatic cancer radiotherapy in 
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humans.  They hypothesised that the tumour specific effect of ATR inhibition 

may be due to loss of ATM/p53 signalling and exacerbation of replication stress 

in tumour cells via ATR depletion (Fokas et al., 2012). 

The application of DDR inhibition strategies for radiosensitisation will require 

biomarkers to be developed in order to develop personalised strategies to ensure 

optimal tumour radiosensitisation. As described above, next generation 

sequencing technology has allowed the comprehensive sequencing of tumour 

genomes, facilitating a detailed analysis of mutations, copy number variants and 

deletions in cells of a particular tumour. It could be envisaged that this 

information be used to select inhibition of a particular DDR pathway using a 

specific kinase inhibitor which could facilitate optimal radiosensitisation. For 

example, a tumour which was deficient in the HR pathway may benefit from 

PARP inhibition, or cancers with high levels of replication stress may benefit 

from ATR inhibition. Tumours lacking p53 mediated G1/S checkpoint may 

usefully be radiosensitised by Chk1 or ATM inhibition. In this way radiosensitiser 

strategies could in future be tailored to a patient’s tumour allowing 

manipulation of the therapeutic ratio of radiation treatment to its maximum 

extent.  

Other factors may also contribute to the potential tumour specificity of DDR 

kinase radiosensitisation approaches. Current dogma would suggest that 

inhibition of central DDR kinases such as ATM and ATR will result in potent and 

universal radiosensitisation of all tissues, both cancerous and normal within the 

human body, implying that these strategies would lack tumour specificity. 

However recent work suggests that DDR pathway utilisation is organ specific, and 

anatomical location of tumours may allow further tumour specific effects of DDR 

kinase radiosensitisation. For example, in the brain, astrocytic cells have been 

shown to have downregulated ATM transcription, yet retain DNA repair 

proficiency, due to the retention of expression of genes involved in NHEJ (Gosink 

et al., 1999, Schneider et al., 2012). The studies by Gosink and Schneider 

suggest that ATM inhibition may allow relative tumour specific radiosensitisation 

depending upon the anatomical location of tumour in the body. In view of this, 



Discussion 

234 
 

GBM may represent an ideal tumour for ATM inhibitor radiosensitisation 

strategies. 

A recent report by Moding et al has highlighted differential effects of ATM 

inhibition on the radiosensitivity of tumour and normal endothelial cells (Moding 

et al., 2014). Microvasculature has long been implicated in the long term 

toxicities associated with radiotherapy, and the effects of any radiosensitising 

strategy on endothelial tissue must be carefully considered. Moding et al 

examined the effects on radiosensitivity of ATM deletion in proliferating tumour 

endothelium in comparison to quiescent cardiac endothelium in a murine 

sarcoma model. ATM deletion in tumour endothelium led to a significant growth 

delay in murine tumours following a 20Gy irradiation treatment, however ATM 

deletion in quiescent cardiac endothelium did not sensitise mice to myocardial 

necrosis. The authors hypothesised that the radiosensitising effect of ATM 

deletion is dependent upon the proliferative status of the cell, and confirmed 

this by demonstrating a reversal of the radiosensitising effect on tumour 

endothelium by blocking cell cycle progression. With the knowledge that many 

tumour cells have defective cell cycle checkpoints and enhanced proliferation 

compared to normal tissue, this may imply that ATM inhibition could exhibit 

considerable tumour specificity as a radiosensitisation strategy. Furthermore this 

differential effect of ATM inhibition on tumour vasculature compared to normal 

tissue vasculature will contribute to tumour specificity. Proliferative status and 

cell cycle checkpoint competency is not necessarily a comprehensive 

explanation of effects of ATM inhibition on radiosensitivity however, since 

fibroblasts in a state of confluency arrest were radiosensitised by ATM inhibition 

in one study (Kuhne et al., 2004). In keeping with the idea that ATM inhibition 

may be clinically deliverable, Batey et al demonstrated chemopotentiation via 

ATM inhibition in murine tumour xenograft models without significant normal 

tissue toxicity (Batey et al., 2013). Nevertheless, given the catastrophic effects 

of radiotherapy in AT patients with lymphoma in the 1960’s, clinical 

development of ATM inhibition as a radiosensitising strategy should be cautious 

(Gotoff et al., 1967). Furthermore development of DDR inhibitor strategies 

would benefit from adequate models of acute and long term radiation toxicity, 

which currently are not in existence. Mouse tumour models are inadequate for 
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the measurement of long term toxicity from radiation and large animal radiation 

studies may provide more adequate data concerning toxicity of DDR inhibition 

and radiation. 

Considerable evidence also exists for the potential tumour specificity of PARP 

inhibition as a radiosensitiser. In general, PARP inhibition only produces 

radiosensitivity in replicating cells, since PARP inhibition delays SSB repair 

resulting in increased DSB generation only if the cell enters S phase. Therefore 

PARP inhibition could be expected to radiosensitise only tissues which have a 

significant replicating fraction of cells. Tumours with a high replicative fraction, 

which includes diverse tumour sites such as GBM, squamous cancers, small cell 

cancers and lymphomas could therefore be predicted to experience 

radiosensitisation following PARP inhibition, whereas less mitotically active 

normal tissues may experience less or no radiosensitisation. Again GBM may 

represent a particularly favourable site for radiosensitisation using PARP 

inhibitors, given that many of the normal cellular populations of brain, such as 

neurons, are terminally differentiated and therefore could be expected to be 

essentially non-dividing. This thesis also demonstrated the upregulation of 

expression of PARP-1 in comparison to normal cells in the brain, again suggesting 

that PARP-1 in particular may be a relatively tumour specific target in GBM. 

Furthermore the vasodilatory effects of PARP inhibition on tumour vasculature 

may further enhance efficacy and specificity of this approach by counteracting 

radioresistance due to tumour hypoxia. 

The recent developments in radiotherapy delivery also offer an opportunity to 

increase therapeutic gains and minimise additional toxicities of DDR inhibitor 

radiosensitisation strategies. The adoption of intensity modulated radiotherapy 

(IMRT) technologies have allowed greater conformity in radiation treatment 

planning, (i.e. how closely the volume of tissue irradiated to high dose matches 

the targeted high dose volume) and sparing of organs which can be damaged 

irreparably by ionising radiation such as spinal cord. In the past, radiation 

treatments were limited by the ability to shape the irradiated volume to closely 

match the tumour whilst at the same time achieving a dose high enough within 

the tumour to be clinically effective. Often large volumes of tissue were 
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included in treatment fields, which increased toxicity of the treatment and 

excluded the possibility of employing radiosensitisation strategies. A case in 

point is the irradiation of pancreatic tumours, which once proved difficult due to 

toxicities associated with irradiation of liver, small bowel and kidney; any 

further increase in normal tissue toxicity by DDR inhibition would have been 

unacceptable. However IMRT provides highly conformal planning which allows 

sparing of liver and small bowel and better tolerability which then facilitates 

therapeutic manoeuvres which may marginally increase toxicity. IMRT and 

associated dose delivery technologies will also allow sparing of critical structures 

such as spinal cord. This is important in radiosensitisation strategies since often 

these structures are irradiated to the limit of their radiation tolerance in 

conventional radical (curative) radiotherapy treatments. Risking additional 

radiosensitisation of these critical structures may be unacceptable. However 

limiting the dose to organs at risk of radiation damage by using IMRT may allow 

consideration of the use of radiosensitiser agents. Image guided radiotherapy 

(IGRT) is another recent development which aims to provide better anatomical 

localisation of radiotherapy beams via tumour imaging during fractionated 

radiotherapy. Again this can minimise dose to surrounding normal tissues by 

reducing the margins added to radiotherapy volumes to account for tumour 

movement and patient setup issues. 

Review of current literature would therefore support the assumption that a CSC 

targeted radiosensitiser strategy mediated by DDR inhibition is, in theory, 

clinically achievable, particularly in the setting of GBM. Phase I clinical trials of 

PARP inhibition and radiotherapy are already ongoing in several tumour sites 

including brain, head and neck cancer, lung cancer and oesophageal cancer and 

toxicity data is awaited.  

8.9 Final Conclusions 

This thesis has successfully met its aims and endpoints. The putative 

radioresistance of GBM CSCs in comparison to tumour bulk cells has been 

investigated, confirmed and quantified. The upregulated DDR seen by other 

authors in GBM CSCs has been confirmed, and novel data representing the 
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effects of upregulated DDR on the enhanced activation of the G2/M checkpoint 

of CSCs in response to radiation has been presented. Investigations of DNA repair 

mechanisms in GBM CSCs in this thesis have demonstrated enhanced slow phase 

repair of DNA DSBs in GBM CSCs in G2 cell cycle phase, implicating HR repair in 

the radioresistance of GBM CSCs. 

Studies of the radiosensitising effects of DDR inhibition in GBM CSCs have 

validated DDR as a suitable target for future GBM CSC directed therapies. 

Inhibition of ATM, ATR, PARP and dual ATR and PARP inhibition all successfully 

radiosensitised GBM CSCs at clinically relevant doses of radiation. Further 

mechanistic insight into GBM CSC radioresistance was achieved following 

observation of the radiosensitivity of GBM CSCs and tumour bulk cells after 

exposure to DDR inhibition. Only inhibition of ATM and the combination of ATR 

and PARP inhibition provided significantly increased radiosensitivity of GBM CSCs 

relative to tumour bulk cells. This suggests that both cell cycle control and DNA 

DSB repair are important in mediating GBM CSC radioresistance, since ATM 

inhibition and the combination of ATR and PARP inhibition affect both these 

facets of DDR.  

Further work is required to validate the effects of DDR inhibition in in vivo 

models of GBM CSCs, which was not carried out due to time constraints. 

However these investigations are now underway, and will provide data on 

efficacy and normal tissue toxicity of DDR inhibition as a radiosensitisation 

strategy. 

These data demonstrate that GBM CSCs are highly radioresistant entities which 

are likely to contribute to the clinical recurrence of GBM tumours following 

multimodality treatment and influence patient survival from this disease. This 

thesis would argue that DDR inhibition is a viable potential clinical strategy for 

targeting radiotherapy resistant GBM CSCs in order to improve local control, 

palliate symptoms and improve survival in patients with GBM.  
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Appendix 1 

Western blotting 

Novex NuPage 4-12% Bis-Tris gels with NuPage MOPS SDS running buffer (NP0001) 

Novex NuPage 3-8% Tris-Acetate gels with NuPage Tris/Ace running buffer 

(LA0041) 

NuPage Transfer buffer NP0006-1 (200ml transfer buffer + 300ml methanol + 

1500ml distilled water) 

TBS-tween: 50mM TRIS (pH7.5) + 150ml NaCl + 0.05% Tween 20 

TAE buffer: 242g Tris Base + 57.1 glacial acetic acid + 100ml 0.5M EDTA (final 

volume made up to 1000ml with distilled water) 

TA buffer for neutral comet: 60.57g Tris Base + 204.12g sodium acetate (final 

volume made up to 500ml with distilled water and pH altered with glacial acetic 

acid to pH9.0) 

DNA precipitation solution for neutral comet: Stock solution: 5.78g of 

ammonium acetate was solubilised to a final volume of 10ml, then 6.7ml of 

stock solution was combined with 43.3ml of ethanol to make final solution 

Citrate buffer for immunohistochemistry: 1.92g anhydrous citric acid dissolved 

in 1000ml distilled water and pH adjusted to pH6 with NaOH 1M. 
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Appendix 2  

 

Sequence (5'->3') Template strand Length Tm GC%

E4 PR1

Forward primer ctttcagACTTCCTGAAAACAAC Plus 23 57.22 39

Reverse primer CAGCCTCTGGCATTCTGG Minus 18 60.51 61

Product length 250

E4 PR2

Forward primer TGGATGATTTGATGCTGTCC Plus 20 59.46 45

Reverse primer ggcattgaagtctcatggaag Minus 21 59.69 48

Product length 300

E5 PR1

Forward primer actttcaactctgtctccttcct Plus 20 57.71 43

Reverse primer agccctgtcgtctctccag Minus 20 60.56 63

Product length 250

E6

Forward primer gagagacgacagggctggt Plus 19 60.41 63

Reverse primer cactgacaaccacccttaacc Minus 21 59.36 52

Product length 231

E7

Forward primer cctcatcttgggcctgtgt Plus 19 61.09 58

Reverse primer tgatgagaggtggatgggtag Minus 21 59.93 52

Product length 260

E8 

Forward primer gggacaggtaggacctgattt Plus 21 59.31 52

Reverse primer ctcctccaccgcttcttgt Minus 19 60.39 58

Product length 229

E9

Forward primer acaagaagcggtggaggag Plus 19 60.39 58

Reverse primer ccccaattgcaggtaaaaca Minus 20 60.72 45

Product length 247

E10

Forward primer ttgaaccatcttttaactcaggt Plus 23 57.01 35

Reverse primer ggaatcctatggctttccaa Minus 20 58.97 45

Product length 240
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